
Discrete Path Planning Strategies for
Coverage and Multi-robot

Rendezvous

by

Neil Mathew

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical Engineering

Waterloo, Ontario, Canada, 2013

c© Neil Mathew 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis addresses the problem of motion planning for autonomous robots, given
a map and an estimate of the robot pose within it. The motion planning problem for a
mobile robot can be defined as computing a trajectory in an environment from one pose
to another while avoiding obstacles and optimizing some objective such as path length
or travel time, subject to constraints like vehicle dynamics limitations. More complex
planning problems such as multi-robot planning or complete coverage of an area can also
be defined within a similar optimization structure. The computational complexity of path
planning presents a considerable challenge for real-time execution with limited resources
and various methods of simplifying the problem formulation by discretizing the solution
space are grouped under the class of discrete planning methods. The approach suggests
representing the environment as a roadmap graph and formulating shortest path problems
to compute optimal robot trajectories on it. This thesis presents two main contributions
under the framework of discrete planning.

The first contribution addresses complete coverage of an unknown environment by a
single omnidirectional ground rover. The 2D occupancy grid map of the environment is
first converted into a polygonal representation and decomposed into a set of convex sectors.
Second, a coverage path is computed through the sectors using a hierarchical inter-sector
and intra-sector optimization structure. It should be noted that both convex decomposi-
tion and optimal sector ordering are known NP-hard problems, which are solved using a
greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics,
respectively.

The second contribution presents multi-robot path-planning strategies for recharging
autonomous robots performing a persistent task. The work considers the case of surveil-
lance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to
plan minimum cost paths for a separate team of dedicated charging robots such that they
rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajecto-
ries are discretized into sets of charging locations and a partitioned directed acyclic graph
subject to timing constraints is defined over them. Solutions consist of paths through
the graph for each of the charging robots. The rendezvous planning problem for a single
recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algo-
rithmic approach, using a transformation to the TSP, is presented as a scalable heuristic
alternative to the MILP. The solution is then extended to longer planning horizons using
both a receding horizon and an optimal fixed horizon strategy.

Simulation results are presented for both contributions, which demonstrate solution
quality and performance of the presented algorithms.

iii

Acknowledgements

I would like to express my gratitude, appreciation and respect for my two exceptional
supervisors, Dr. Steven Waslander, and Dr. Stephen Smith who gave me the opportunity
to work on such a relevant, interesting and addicting research area. Their constant encour-
agement, drive, and mentorship has made me stronger as a person, researcher, academic,
and student.

My life at the Waterloo Autonomous Vehicles Lab would not have been nearly as
interesting without all my lab mates and colleagues, past and present, who made this
experience memorable. I would like to thank my roommates and fellow researchers Arun
and Carlos whose collective advice on robots, relationships and the universe has made
me a wiser individual and without whom living in Waterloo wouldn’t be half as enjoyable.
Thanks to PJ, Yan and Rahul who were always ready to discuss the next billion dollar idea.
A special thanks to Andy, who worked tirelessly with me through long hours of frustration
and fleeting moments of bliss when algorithms worked as expected. Finally, thanks to
James, Kevin, Sirui, Adeel, Mike S., Mike T., Nima, and Sid, who were always excited to
discuss new research problems and wildly ambitious solutions to them. Their drive and
passion for research inspired me in my own work and many an enlightened conversation
was shared over the smell of coffee and solder in the lab.

I would also like to thank the University of Waterloo Robotics team, for all the work
that went into the competitions we entered over the years, and the great memories that
came along with them.

Finally, I would like to thank my mother, father and family whose unconditional support
and confidence have been the pillars of all my endeavours so far and will continue to do so
long after this thesis.

iv

Dedication

This thesis is dedicated to my parents who have consistently been the optimal solutions
to the complexities in my life.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 The Motion Planning Problem . 2

1.2 Discrete Planning . 4

1.3 Contributions . 5

1.3.1 Coverage Path Planning . 6

1.3.2 Multi-robot Rendezvous for Autonomous Recharging 7

1.4 Primer on Relevant Graph Theory . 9

2 Coverage Path Planning 12

2.1 Related Work . 12

2.2 Coverage Planning Approach . 14

2.3 Map Preprocessing . 15

2.4 Map Decomposition . 16

2.5 Path Generation . 18

2.5.1 Problem Formulation . 18

2.6 Inter-sector Path Optimization . 20

2.6.1 Metric Closure Method . 21

vi

2.7 Intra-sector Route Optimization . 22

2.7.1 Sweep Graph Construction . 22

2.8 Dynamic Re-planning . 24

2.9 Results . 25

2.9.1 Coverage Planning Simulations . 27

2.9.2 Integrated Experimental Results . 28

3 Persistent Surveillance 31

3.1 Related Work . 31

3.2 Motion Planning For Charging Robots . 33

3.2.1 Continuous Problem Formulation 33

3.2.2 Problem Discretization . 34

3.2.3 Optimization on a Partitioned Directed Acyclic Graph 37

3.2.4 Hardness of Discrete Problem . 37

3.3 Mixed Integer Linear Program Formulation 40

3.3.1 Special Problem Characteristics . 41

3.3.2 Extending the MILP for Multiple Charging Robots 42

3.4 Algorithmic Approach: Graph Transformations 43

3.4.1 Path Computation for a Single Charging Robot 44

3.4.2 Path Computation For Multiple Charging Robots 45

3.4.3 Reconstructing the MGTSP Solution 49

3.5 Extending the Planning Horizon . 50

3.5.1 Optimal Periodic Recharging . 50

3.5.2 Receding Horizon Planning . 55

3.6 Simulation Results . 56

3.6.1 Single Recharge Cycle Path Computation 56

3.6.2 Recharging in Extended Planning Horizons 58

vii

4 Conclusions and Future Directions 64

APPENDICES 67

A Optimal Periodic Charging MILP Formulation 68

A.1 Notation . 68

A.2 MILP Formulation . 69

References 70

viii

List of Tables

2.1 Greedycut decomposition results, 6m pitch. 28

2.2 Path generation results, rectangular region. 28

2.3 Path generation results for varying sensor footprints. 29

3.1 Fixed horizon runtimes . 61

3.2 Receding horizon runtimes . 61

3.3 Receding horizon cumulative runtime . 63

3.4 Receding horizon total path cost . 63

ix

List of Figures

1.1 Illustration of the coverage planning problem 7

1.2 Illustration of the multi-robot recharging problem 8

2.1 Coverage planning algorithm flowchart . 14

2.2 Greedycut decomposition of non-convex vertices 17

2.3 Gridded versus simple greedycut decomposition 18

2.4 Sector graph generation . 20

2.5 Intra-sector sweep coverage optimization 22

2.6 Sweep graph construction . 24

2.7 Final coverage path for illustrated example 25

2.8 University of Waterloo rover for the NSRRC 2013 26

2.9 Coverage planning on real drivability maps 27

2.10 Dynamic replanning . 30

3.1 Persistent recharging problem formulation 34

3.2 Directed acyclic graph construction . 36

3.3 NP-Hardness of the One-in-a-set DAG path problem 39

3.4 The Noon-Bean transformation for a GTSP 46

3.5 Sample instance of Problem (P2), with R = 3, and M = 2 47

3.6 Problem (P3), generated using the Modified Noon-Bean algorithm 47

3.7 The periodic MILP representation . 52

x

3.8 Rendezvous path results for a single recharge cycle 57

3.9 Performance comparison of CPLEX and LKH 59

3.10 Large scale heuristic solution . 60

3.11 Total path cost comparison for fixed and receding horizon methods 62

xi

Chapter 1

Introduction

Advances in autonomous mobile robotics research have demonstrated their potential for
adoption in a wide range of applications that are too hazardous, inaccessible or repetitive
for a human operator. Examples of such situations are search and rescue operations,
surveillance, environmental monitoring and exploration, wherein a single or coordinated
team of mobile robots must fulfil certain mission objectives that entail navigating through
and interacting with the environment in varied capacities of sensing and actuation. In
recent years, mobile robots have already had a significant impact in a number of these
application domains.

Search and rescue robots have been used in many recent tragedies, such as the 2001
World Trade Centre collapse [40], Hurricane Katrina in 2005 [39], and the 2011 Tohoku
tsunami and earthquake [19]. Currently, the majority of robots used for search and rescue
missions are teleoperated, which are effective to an extent, but fall short in their ability
to reduce the workload of the field operator in time-critical disaster scenarios [34]. Vehicle
autonomy in such scenarios can vastly enhance rescue efforts of human operators. Simi-
larly, robots capable of autonomous exploration and surveillance are of importance in tasks
such as climate change monitoring, forest resource monitoring, wildlife population moni-
toring [14] and biogeological surveying [57], as improvements in vehicle autonomy allow for
scientific data collection in settings such as the deep sea, volcanoes, and other locations
which are unsuitable for human exploration. Autonomous exploration capabilities are also
desirable for planetary exploration missions as teleoperation becomes cumbersome due to
large transmission delays.

The autonomous robots performing these tasks are generally Unmanned Aerial Vehicles
(UAVs), Unmanned Ground Vehicles (UGVs, Rovers) or Unmanned Underwater Vehicles

1

(UUVs), known as agents that conduct missions in known or unknown environments. As
the capabilities of these robots grow it will also be possible to deploy heterogeneous teams
of autonomous agents with different capabilities to collaborate on missions that are too
complex for a single robot. Regardless of agent or environment, the goal of any autonomous
operation is to specify a mission objective as a high-level task, such as surveillance or
exploration and enable the robot to interpret it into a set of low-level functions of motion,
sensing and actuation to accomplish the task. This thesis focusses on autonomous motion
planning, which is an active area of research that addresses some of the most significant
challenges in the current sphere of mobile robotics.

Autonomous motion planning involves compiling high-level mission tasks into low-level
motion control to enable a robot to traverse through its environment. At the most basic
level, motion planning requires a robot to perceive its environment or configuration space,
identify drivable regions and obstacles, localize itself within the environment, and compute
a path from one configuration to another while avoiding obstacles and possibly optimizing
a certain objective function subject to constraints like vehicle dynamics. In the case of an
unknown environment, perception and localization are accomplished by a robot using a
suite of sensors such as laser scanners, stereo cameras, Inertial Measurement Units (IMU)
and GPS to build a representational map of its surroundings and simultaneously localize
within the generated map. Mapping and localization are out of the scope of this work and
the thesis assumes a fully or partially known map, as well as a robot pose, to be provided
as inputs to the motion planner. Let us first characterize path planning problems and
overview some of the major concepts within this framework.

1.1 The Motion Planning Problem

The prototypical task for motion planning is to compute a feasible path for a robot from
one configuration to another while avoiding obstacles [9]. For a mobile robot, in addition
to avoiding obstacles the planner may be required to optimize certain objectives such as
computing a path of the shortest length, shortest time or lowest energy consumption from
one point to another while satisfying constraints determined by vehicle dynamics or the
environment. Planning objectives can vary widely based on the robot, environment or
application and each new objective presents a unique set of challenges that the field of
motion planning seeks to solve. In fact, the motion planning problem is not limited to
simply computing a trajectory from one configuration to another. Especially in mobile
robotic missions such as exploration, surveillance or search and rescue, the overarching
task is to compute a path to explore, surveil or consistently monitor an area. In such

2

scenarios, the motion planner is faced with objectives like complete coverage over all areas
in the environment or visiting certain areas periodically with specified frequencies. Further,
if a task is to be performed collaboratively by a team of robots, a central or distributed
motion planner must compute paths for multiple robots to interact with each other as well
as the environment and the scope of the planning problem may expand to task assignment
or scheduling along with motion planning to successfully manage the mission.

Motion planners are not only characterized based on planning objectives, but also on
the path constraints imposed by the robot or the properties of the planning algorithm. A
robot that is free to move instantaneously in any direction in its environment presents no
motion constraints to the planner and is known as omnidirectional. On the other hand, a
kinodynamic robot such as a differential drive rover or a quadrotor imposes kinematic or
dynamic constraints that must be incorporated into the motion plan. Once the objectives
and constraints of the optimization have been defined, an algorithm to compute the path
must be developed. Based on the properties of this algorithm, a motion planner can be
characterized as offline, if the plan is computed in advance, assuming a known model of the
environment, or online if the plan is dynamically updated during execution. For example,
a robot mapping an unknown environment must dynamically update its trajectory using
a cycle of sensing, planning and execution to account for new map information. In some
cases motion planners can be structured hierarchically with a high-level offline planner and
a lower-level online component to improve robustness to uncertainties in the environment
model.

Given the focus on real-time execution and dynamic replanning, an important con-
sideration in path-planning is computational resources. An algorithm to find an optimal
solution could be constant, polynomial or exponential in runtime or memory usage with a
growth in problem complexity. Naturally, exponential time algorithms do not scale well
with problem size and often, a polynomial approximation to the optimal solution is com-
puted to speed up execution at the cost of optimality. Such algorithms are known as
approximation algorithms, heuristics or meta-heuristics and will be investigated in more
detail in Section 1.4. At the cost of optimality, planning complexity can also be reduced
by simplifying the problem formulation. Since computing a path in the continuous domain
involves solving an optimization over a very large solution space of robot trajectories, we
can reduce the solution space by discretizing the problem formulation. This involves dis-
cretizing the map representation and enables the use of graph-based techniques to compute
an optimal solution.

3

1.2 Discrete Planning

As the complexity of path planning grows, due to a growth in the size and dimensionality
of the configuration space or number of constraints imposed on the optimization, com-
putation in the continuous domain becomes impractical. The goal of discrete planning is
to enable rapid path computation with a discrete representation of the planning problem
using integer programming and graph-based algorithms to compute optimal solutions.

Discretization of the problem is achieved by abstracting the environment on a graph
G where the vertices in V represent discrete locations in the environment and the edges
in E represent traversable paths between then. The cost function c defines the cost of
travel (i.e. distance, time, energy consumption) along each edge. The robot is constrained
to travel along the roadmap graph G and the optimal path plan is now computed using
shortest path optimizations on the graph.

Given an environment with obstacles, a discrete map representation can be generated
using three main methods.

(i) Occupancy Grid: A gridded map of the environment where each square is marked as
free space or in an obstacle. The graph represents traversable grids as vertices and
the adjacency relationships between them as edges.

(ii) Visibility Graph: A polygonal representation of the environment where the robot
is constrained to move along edges of a graph, the vertices of which are defined by
polygonal vertices in the environment and the edges represented by collision free
paths between them.

(iii) Sampling Based Roadmap: The vertices of the graph are generated by randomly
or uniformly sampling the free space of the environment and the edges define a
roadmap of collision free paths between them. Often, the sampling of points is done
in a manner that satisfies complex vehicle dynamics constraints as in the methods
of Probabilistic Roadmaps (PRM) [23] and Rapidly Exploring Random Trees (RRT)
[30].

Given a roadmap graph G and a simple navigation from a start vertex to a goal ver-
tex in the graph, the shortest path can be computed using well established graph search
algorithms like Breadth First Search, A* or Dijkstra’s algorithm. For more complex plan-
ning objectives such as visiting all or a subset vertices in the environment the shortest
path problem must be formulated as an optimization to find the minimum cost ordering
of vertices in the robots path.

4

Finding a shortest path through all vertices of a graph is a known NP-Hard problem
called the Travelling Salesman Problem (TSP) (defined in Section 1.4), and most complex
planning problems such as coverage or exploration that involve visiting a set of vertices
in a graph can be modelled as variants of the TSP. Multi-robot path planning problems
can be similarly represented as TSP variants such as the Multiple Travelling Salesman
Problem (MTSP), Multiple Generalized Travelling Salesman Problem (MGTSP) or the
Vehicle Routing Problem (VRP), and their applications are explored in Chapter 3. Since
the TSP and its variants are known NP-Hard problems, computing the optimal MILP
solutions to these problems is not scalable to large problem sizes and generally polynomial
approximation algorithms or heuristics are developed to compute near-optimal solutions
with minimal computational effort.

Another approach to solve TSP variants involves transforming the problem into a TSP
instance through a graph transformation, such that the optimal solution to the TSP can
be used to construct the optimal solution to the original problem. This stems from the
property that any NP-Hard problem can be polynomially transformed into any other NP-
Hard problem and is generally used to benefit from the large body of established exact,
approximate and heuristic algorithms developed to solve the TSP. The work in this thesis
explores transformations like Metric Closure and the Noon-Bean Transformation to solve
GTSP instances and also presents a novel adaptation of the Noon-Bean method for MGTSP
solutions to Multi-robot path planning problems.

In general, the discrete path planning framework involves discretizing the problem by
building a roadmap graph of the environment, formulating the shortest path problem as
an optimization on the graph and solving it using a number of graph-search or optimal
routing problems. Section 1.3 motivates the two main discrete planning problems studied
in this thesis and presents each of their contributions within this framework that will be
elaborated in Chapters 2 and 3.

1.3 Contributions

This thesis presents two main contributions under the framework of discrete path planning
that concern two different classes of planning problems. The first contribution addresses
complete coverage of an unknown environment by a single omnidirectional ground rover
and the second presents a multi-robot path planning strategy for optimally scheduled
rendezvous between UAVs conducting persistent surveillance and UGVs functioning as
mobile charging stations.

5

In both problems, a discrete environment representation is used to generate a graph-
based roadmap on which a path or set of paths must be computed. The problem is
formulated as a MILP optimization and heuristic algorithms are presented to compute near-
optimal solutions with less computational effort than an optimal solver. Algorithms are
validated in runtime and solution quality against optimal solutions and existing approaches.

1.3.1 Coverage Path Planning

The objective of coverage is to generate a path for a robot to pass a given sensor footprint
over all areas of a search environment with a guarantee that no areas will be left unvisited.
The main cost metric of the optimization is the total path distance required to completely
cover an area with the sensor footprint that sweeps along the path. As the terrain is not
known ahead of time, the solution should not require full map knowledge and should allow
replanning as the location is explored.

The approach to coverage planning in this work is to use a convex decomposition to
reduce the environment to a set of convex regions that can be searched using a simple sweep
pattern as illustrated in Figure 1.1. Further, the notions of sensor based robust coverage
and dynamic replanning are investigated and a heuristic algorithm to compute coverage
solutions that outperform existing approaches is presented. The main contributions of this
work are the following.

(i) The 2D drivability map is approximated using a polygonal representation of free
space that is then decomposed into a set of convex sectors.

(ii) The coverage problem is defined as finding the shortest length path that covers every
searchable sector of the environment.

(iii) The polygonal environment is further abstracted on visibility graphs representing the
searchable sectors, their vertices and the adjacency relationships between them. The
robot is constrained to move along edges of the graph between sector vertices.

(iv) The problem is approached in two-step hierarchical manner. First, the optimal order
of sectors to visit is computed using a Hamiltonian Path solution on the sector graph.
Next, the path is refined by finding the best entry-exit points and sweep pattern
directions in each sector.

(v) The developed path planning framework is extended to online planning scenarios
where a partially known map is consistently updated during plan execution.

6

decomposed convex sectorsearch path

environment boundary

Figure 1.1: Illustration of the coverage planning problem

(vi) Results that demonstrate the feasibility of real-time execution and the quality of the
resulting path are presented and compared to existing coverage approaches.

1.3.2 Multi-robot Rendezvous for Autonomous Recharging

Coordinated teams of autonomous robots are often proposed as a means to continually
monitor changing environments in applications such as air quality sampling [10], forest fire
or oil spill monitoring [5, 58] and border security [26]. These surveillance tasks generally
require the robots to continuously traverse the environment in trajectories designed to
optimize certain performance criteria such as quality or frequency of sensor measurements
taken in the region [11, 51, 47].

The challenge with using autonomous robots in persistent tasks is that mission dura-
tions generally exceed the run time of the robots, and in order to maintain continuous
operation they need to be periodically recharged or refuelled. In accordance with current
persistent surveillance literature, we consider the case of a team of UAVs monitoring an
environment in planar trajectories as illustrated in Figure 1.2. The proposal is to intro-
duce a separate team of dedicated charging robots that can autonomously dock with the
UAVs and recharge them periodically over the duration of the mission. The approach to
the problem is to position multi-robot persistent recharging in the space of graph-based
optimal path planning problems formulated using mixed integer linear programs. Based

7

Figure 1.2: A sample scenario with coordinated UAVs performing a persistent surveillance
task in planar trajectories. We introduce a team of four ground robots capable of docking
with and recharging the UAVs.

on certain enabling assumptions, the problem is formulated as finding optimal paths on
the ground for the charging robots to meet the working robots along their trajectories and
recharge them as needed. The main contributions are the following.

(i) The idea of multi-robot recharging in dynamic persistent tasks using dedicated teams
of mobile charging stations is formally introduced.

(ii) A graph-based abstraction of the problem is presented and defined as a one-in-a-set
path problem on a partitioned directed acyclic graph (DAG). The problem is proved
to be NP-hard even on a DAG.

(iii) The problem is formulated as a Mixed Integer Linear Program (MILP) and special
properties that distinguish it from Travelling Salesman Problem (TSP) and Gener-
alized Travelling Salesman Problem (GTSP) formulations are investigated.

(iv) An algorithmic solution is proposed using novel modifications to existing methods
developed for solving the GTSP.

(v) Based on the developed path planning framework the recharging problem is extended
to longer planning horizons using both, receding horizon and fixed horizon strategies.

8

1.4 Primer on Relevant Graph Theory

The following is a review of relevant graph-theory and fundamental optimal path computa-
tion problems that comprise the problem formulations and algorithms employed throughout
this work.

A graph G is represented by (V,E, c), where V is the set of vertices, E is the set of
edges and c : E → R is a function that assigns a cost to each edge in E. The number
of vertices in G is given by the cardinality of the set V and is denoted N = |V |. In an
undirected graph, each edge e ∈ E is a set of vertices {vi, vj}. In a directed graph each
edge is an ordered pair of vertices (vi, vj) and is assigned a direction from vi to vj.

A partitioned graph is a graph G with a partition of its vertex set into R exhaustive
and mutually exclusive sets (V1, . . . , VR) such that (i) Vi ⊆ V for all i, (ii) ∪iVi = V , and
(iii) Vi ∩ Vj = ∅ for all i 6= j.

A path in a graph G, is a subgraph denoted by P = ({v1, . . . , vk+1}, {e1, . . . , ek}) such
that vi 6= vj for all i 6= j, and ei = (vi, vi+1) for each i ∈ {1, . . . , k}. The set VP represents
the set of vertices in P and by definition VP ⊆ V . Similarly a tour or cycle T is a closed
path in the graph such that v1 = vk+1. Finally, a directed acyclic graph (DAG) is a
directed graph in which no subset of edges forms a directed cycle. With this we can define
the following key problems.

Definition 1.4.1 (Hamiltonian Path/Tour). A Hamiltonian Path in a graph G is a path
P that visits every vertex in G exactly once. Similarly, a Hamiltonian tour T is a closed
Hamiltonian Path.

Problem 1.4.2 (The Hamiltonian Path Problem). Given a complete, undirected graph
G, does G contain a Hamiltonian path?

Problem 1.4.3 (Travelling Salesman Problem (TSP)). Given a complete graph G, find
a Hamiltonian tour T such that total cost of

∑
e∈ET

c(e) is minimized, where ET is the
set of edges in T . A symmetric TSP is computed on an undirected graph. Similarly, an
asymmetric TSP is obtained on a directed graph.

The TSP can be formulated as a MILP and solved using a variety of exact, approx-
imate and heuristic solvers. In this work we use the IBM CPLEX Optimization Studio
to compute exact solutions. Since the TSP is an NP-hard problem, it is intractable to
compute exact solutions for large problem instances. In such cases, heuristic algorithms
may be used to obtain near-optimal solutions with significant reductions in run time. One

9

of the best known algorithms is the Lin-Kernighan heuristic [31] implemented as the Con-
corde LinKern TSP solver and an adaptation proposed by Helsgaun [20] implemented as
the Lin-Kernighan-Helsgaun (LKH) TSP solver. While these heuristics do not have proven
guarantees on sub-optimality, they have been empirically shown to often produce solutions
within 2% of the optimal [1].

There are a number of TSP variants that extend the problem by imposing additional
constraints on the graph optimization. The variant employed in this work is the Generalized
Travelling Salesman Problem (GTSP). Let us first define a One-in-a-set Path.

Definition 1.4.4 (One-in-a-set Path/Tour). A One-in-a-set Path in a partitioned graph G
with a vertex partition (V1, . . . , VR), is a path P that visits a single vertex in every vertex
set Vi ⊂ G exactly once. Similarly, a One-in-a-set tour T is a closed One-in-a-set path.

Problem 1.4.5 (Generalized Travelling Salesman Problem (GTSP)). Given a partitioned
complete graph G, find a One-in-a-set tour T such that the total cost

∑
e∈ET

c(e) of T is
minimized, where ET is the set of edges in T .

The TSP can be seen as a special case of the GTSP where all vertex sets have a cardi-
nality of one [43]. There are a number of approaches to solve GTSP instances developed
in literature. Exact algorithms using Lagrangian relaxation and Branch and Cut methods
have been proposed by Noon and Bean [42] and Fischetti et al. [48]. Improvement heuris-
tics [22], and meta-heuristics like genetic algorithms [52] and ant colony optimizations [60]
have also been proposed.

Another approach, proposed by Noon and Bean [43], involves transforming (or reducing)
a GTSP instance into an equivalent TSP instance through a graph transformation, such
that the optimal solution to the TSP can be used to construct the optimal solution to
the original GTSP. The benefit of such a transformation is that it allows the vast body
of existing TSP approaches to be applied to the transformed problems. While such an
approach may not necessarily outperform a specialized GTSP algorithm, it provides a
platform to verify optimality and compare results of complex routing problems on the
foundation of well-studied TSP approaches.

The GTSP can be extended to compute multiple One-in-a-set tours originating at
multiple depots as defined in Problem 1.4.6.

Problem 1.4.6 (Multiple Generalized Travelling Salesman Problem (MGTSP)). Consider
a complete partitioned graph G with vertex partition (V0, V1, . . . , VR), where V0 consists of
M start-depots. Find a collection of M paths, one for each start depot, which collectively
visit each vertex set (V1, . . . , VR) exactly once, with minimum total cost.

10

In an MGTSP, since all start-depots may not be used in the solution, the decision of
the number of routes chosen for the optimal solution is implicit in the formulation. The
objective of the optimization can be chosen to minimize the total sum of path costs (min-
sum objective), or to minimize the maximum individual path cost (min-max objective).

11

Chapter 2

Coverage Path Planning

The notion of coverage investigated in this work involves using two sensor modules, namely
mapping and vision based object detection to navigate and search an environment for
samples. The mapping module generates a 2D drivability map using a laser scanner with
a large sensor footprint of 75m radius. The path planner must generate a path to search
the environment as identified by the map by passing a smaller camera sensor footprint of
approximately 3m radius over every point in the search space. The planning process must
be consistently updated as new map and visual information becomes available.

The path planning problem is solved in two main stages. The first stage consists of
transforming the map into a polygonal representation and decomposing it into a set of
smaller polygons (sectors). The second stage involves generating an optimal coverage path
through all the internal sectors. The two stages are each formulated as separate NP-
hard problems and algorithms are presented to achieve improvements over related work in
coverage planning literature.

2.1 Related Work

Solutions to the coverage planning problem have been presented in a variety of application
domains, including search and rescue [38], domestic vacuum cleaning robots [27], and au-
tomated milling tool path generation [2]. A common solution from the robotics domain is
the Frontier Exploration method [59], which assumes no knowledge of the map at initial-
ization. Instead, a map is incrementally built via sensor feedback while commanding the
robot to constantly drive toward the nearest boundary of unexplored space, defined as a

12

frontier. The primary shortcoming of such an approach is the high probability of erratic
overlapping paths that lead to excessive redundant sensor sweeps.

If the problem is relaxed by assuming a known map, a more efficient approach may be
taken. For instance, Arkin [2] proposes a methodical ”zig-zag” sweeping pattern along a
single major axis, applied across the entire map. The problem is formulated as a graph in
which a vertex is created for each sweep collision with an obstacle or map boundary. A
collision-free Eulerian tour of the graph can then be found. The heuristic solution presented
results in a total path length that is bounded by 2.5 times the optimal. A major drawback
of this approach is the need to circumnavigate obstacle and environment boundaries more
than once.

The inefficiencies presented by a constant sweep direction can be mitigated using a
method proposed by [38]. The authors propose a decomposition of the map into smaller
sectors as it allows for variations in the sweep direction within each sector to better suit map
geometry and minimize overall path length [38]. The map is converted into a polygonal
representation, and partitioning is performed at major vertices. The decomposed sectors
are then represented as a graph and the shortest coverage path through all sectors is
computed using a TSP solution. The major assumption, however, is that no obstacles
exist in the search space. The assumption simplifies the decomposition problem to one
which can be solved using existing polynomial approximation algorithms [18, 24].

In practice, obstacles and non-convex boundaries in the polygonal representation of an
environment can block lines of sight from a sensor. Therefore, any sectors derived from
a decomposition must also be convex to guarantee sensor coverage. Given this additional
constraint, the coverage path planning problem can be transformed into the Watchman
Problem [44], which finds the shortest path for a guard to fully monitor an area containing
obstacles.

The Watchman problem is an NP-hard problem with its computational complexity
dependent upon the number of regions present. One method of mitigating run-time in a
real-time system is to reduce the number of regions required to represent the environment,
the minimum of which is called the Optimal Convex Decomposition (OCD). Unfortunately,
the OCD of a polygon with obstacles (or ”holes”) is itself an NP-hard problem [25].

To date, there have been various methods of sub-optimal decompositions. The Trape-
zoidal cut method [6] slices the region in a constant direction from each obstacle and
boundary vertex to form convex trapezoidal partitions. However, the large aspect ratios
and often small areas make sweeping within such partitions inefficient. Another choice is
Delaunay decomposition [8], which forms small triangles around every vertex, optionally
followed by aggregation algorithms. However, many more regions than are necessary are

13

Partition
Set

Connectivity
Graph

Waypoints

Drivability Map

Robot Pose

Mapping

Map
Preprocessing

Object
Detection

Map
Decomposition

Inter-Sector
Optimization

Intra-Sector
Optimization

Low-Level
Planner

Polygonal Environment

Sensor Footprint

Partition Sequence

Swept Areas

Figure 2.1: Coverage planning algorithm flowchart.

generated with Delaunay decomposition, which again leads to impractical search geome-
tries.

More recently, a greedy decomposition approach [56] displays functionality similar to
OCD but extends the capability to polygons with holes. The algorithm presents an approx-
imation scheme which has been demonstrated to consistently outperform the Trapezoidal
or Delaunay methods.

2.2 Coverage Planning Approach

The coverage planning approach is depicted in Figure 2.1, and consists of four main steps.
The first step is map pre-processing, which collects inputs from the two perception modules
of the robot. A 2D drivability map and the current robot pose are obtained from the map-
ping module while the sensor footprint is obtained from the object detection module. The
map is then pre-processed into a polygonal representation using an edge-tracing method to
define boundaries. In the map decomposition step, the greedy cut algorithm is applied to
decompose the polygonal map into a set of convex sectors to be explored. Next, the inter-
sector path optimization step represents the adjacency relationships between the convex

14

sectors on a graph-based roadmap. The problem of finding an optimal order of sectors to
visit is an NP-hard problem that is transformed to a TSP and solved using the well-known
Lin-Kernighan heuristic algorithm [31]. Finally, the intra-sector path optimization refines
the complete coverage path, given the sequence of sectors to traverse from the previous
step. The sweep pattern orientation as well as the points of entry and exit points in each
sector are computed to minimize the path length.

An important feature of coverage planning algorithms is the need to guarantee complete
coverage in a changing map. The drivability map is frequently updated as new information
becomes available to the robot and it is not sufficient to simply re-generate a path at every
map update. The re-planning process retains a memory of previously visited regions to
avoid re-traversals and the update frequency is limited to one sector at a time. The
output of the path planning process is a set of waypoints that can be executed by low-level
obstacle avoidance planners such as Wavefront [3], trajectory roll-out, or other graph based
planning techniques. The choice of the low-level planner is correlated with the dynamics
of the robot. However, since the particular application requires the robot to operate at
low speeds, both differential steer and swerve drive robots are able to execute straight line
paths designed using a simple A* graph based path planner.

2.3 Map Preprocessing

In map preprocessing, obstacle boundaries are dilated and converted into vector repre-
sentations using Suzuki’s border-tracing algorithm [54]. The boundary contours are then
simplified, to reduce the number of vertices at the cost of shape fidelity, since the eventual
polygon decomposition stage is sensitive to the number of vertices in the system. The
result is a set of polygons, that represent the obstacle boundaries.

We then apply the Ramer Douglas Peucker (RDP) algorithm for boundary vertex re-
duction. In a review by Nguyen [41], RDP was found to be over twice as fast as the next
best candidate in a comparison with incremental, line regression, RANSAC, Hough Trans-
form, and Expectation-Maximization techniques. The RDP algorithm works by removing
points less than a configurable orthogonal distance away from a line joining a start and end
vertex. The remaining vertices are then iteratively used to form new lines toward the end
vertex until all points have been inspected. The end result is control over the amount of
detail along an obstacle border while maintaining the overall obstacle shape. It is assumed
that the sensor footprint of the robot will cover any small areas no longer present due to
smoothing.

15

2.4 Map Decomposition

Given a polygonal representation of the search space, the map decomposition problem can
be stated as follows. Let an environment E ⊂ R2 be bounded by a simple polygon, S,
consisting of a set of vertices V and a set of directed edges E.

Each edge e, represented by the ordered pair, (vi, vj) ∈ E, is defined as a line segment
between two vertices vi and vj where i 6= j. The vertices and edges in polygon S are listed
in a clockwise (CW) fashion. The furthest Euclidean distance between any two vertices
in S is defined as ξ. Obstacles (holes) are denoted by simple polygons that are internal
to S. The set of all holes in the system is defined as H and each hole, hk is indexed by
k ∈ {1, . . . , nH}, where nH is the cardinality of the set H. Each obstacle is also defined by
a set of directed edges, but stated in a counter-clockwise (CCW) manner. The interior of
the boundary excluding the obstacles represents the search space to be covered.

Let the interior angle between two adjacent edges of a polygon be defined as ψi, oc-
curring at the vertex of intersection, vi. The set of non-convex vertices (NCV) in the
environment is defined by

VNCV = {vi ⊂ V : (vi ∈ S ∧ ψi > π) ∨ (vi ∈ H ∧ ψi < π)} (2.1)

Greedy cut decomposition algorithm

The greedy cut decomposition is an approximation algorithm to the optimal convex decom-
position of a polygon [56]. A sequential cut-based approach is taken which incrementally
segments the map until all its constituents are convex. The main premise is that convex
partitions can be formed by adding cuts emanating from each NCV, thereby dividing a
non-convex region into convex sectors [7].

A cut from an NCV to an existing edge or another cut is referred to as a single cut,
defined as an added edge to the system. It has been demonstrated that at most, a cut
may eliminate two NCVs, one at each endpoint [7]. Such two-NCV cuts are referred to
as matching cuts. One condition is that all cuts must exist within the NCVs’ cones of
bisection, defined as an area bounded by the projection of the two edges emanating from
an NCV.

The algorithm greedily searches all NCVs in the system to make matching cuts first,
followed by single cuts for unmatched NCVs. Since greedy cuts are made until all NCVs
are eliminated from the system, there is no pre-planning or merging of partitions during
the cut process. Instead, the combined set of all cut and boundary edges is used to trace

16

V2

V1

cut

(a) Single Cut

V1

V2

(b) Matching Cut

Figure 2.2: Two types of cuts possible in a non-convex polygon. Here, red dots represent
an NCV. Green dashed lines represent an added cut edge. Dotted lines represent each
vertex’s cone of bisection.

the resultant partition boundaries. Starting with an arbitrary edge, a loop may be initiated
and extended with an element within the edge set which forms the tightest convex turn
with the previous edge. Edges are incrementally removed from the set once connected, and
retracing a path back to the original start point signifies the completion of one sector. The
process is repeated until no edges remain in the set. After cuts are applied to outstanding
NCVs, the resulting edges define a set of nS convex polygonal sectors.

The algorithm operates in O(n log n) time for the total number of NCVs in the matching
cut and polygon identification stages, while a remaining single-cut stage runs in O(n|E|),
with the number of remaining unmatched NCVs. Alternative NCV-elimination methods
discovered in literature are either slower (Greene’s optimal Dynamic Programming algo-
rithm which operates in O(n4) time [18]), or results in too many polygons (the swept-line
approximation method at O(n log n) time [18].)

The purpose of convex decomposition is to generate sectors of the map that locally
guarantee line of sight within each sector area. While this property is necessary to generate
feasible sweep patterns in any direction, Section 2.8 shows why this is important for online
planning to limit the replanning frequency to one sector at a time with the assumption that
the convex sector closest to the robot is fully mapped prior to executing coverage. In order
to make this assumption the size of each sector must be limited to the confidence range of
the mapping sensor. Figure 2.3 illustrates one method to accomplish this by constraining
the greedycut algorithm to a gridded environment using polygon clipping operations.

17

(a) Simple Greedycut decomposition (b) Gridded Greedycut decomposition

Figure 2.3: Comparison of gridded and simple Greedycut decomposition of a test environ-
ment.

2.5 Path Generation

Given the set of sectors to cover, the task of the path planner is to compute an optimal
path P for the robot through the sectors such that sensor coverage is guaranteed over the
entire searchable area. Each sector is entered and exited at points along its boundary and
is searched using a “zig-zag” sweep coverage pattern. The optimality of the path depends
on the order in which sectors are visited, the structure of the coverage pattern within each
region, and the entry and exit points used to link successive sectors. The solution approach
involves a discrete problem formulation for which graph-based path planning algorithms
can be applied.

2.5.1 Problem Formulation

After the map decomposition step, the boundary polygon, S, is decomposed into a set of
nS convex polygonal sectors. Each sector, indexed by si where i ∈ {1, . . . , nS}, represents a
subset of the total traversable area to be covered by the robot such that ∪nS

i=1α(si) = α(E),
where α : R2 → R is a function that represents the area of a polygon.

18

Let each sector si where i ∈ {1, . . . , nS}, be represented by a set of vertices Vsi . The
complete set of vertices in the map, V = ∪nS

i=1Vsi is the union of nS collectively exhaustive
but non-mutually exclusive sets. It is clear that connected sectors share vertices. If sectors
si and sj are not connected, Vsi ∩ Vsj = ∅. If they are connected, Vsi ∩ Vsj 6= ∅ for i 6= j.
The discrete formulation of the path generation problem enables an efficient graph-based
approach to compute a search path. The approximation scheme employed to compute the
search path is dependant on a number of simplifications to the problem formulation that
are detailed as follows.

Computing a path that passes through an entry and exit vertex in each sector vertex set
Vsi in the polygonal map presents a problem with a high level of computational complex-
ity. Similar problems, like the Generalized Vehicle Routing Problem (GVRP) [17],which
involves finding a path passing through one vertex in each of many vertex sets, have been
previously studied in literature. However, for the coverage problem, defining sector sweep
coverage costs between every pair of intra-sector and inter-sector vertices is computation-
ally expensive and unsupportable, given the temporal constraints of real time operation.
The problem can be mitigated by splitting the process into two smaller sub-problems,
namely an inter-sector path optimization and an intra-sector path optimization.

Inter-sector path costs are minimized by finding a path that travels only between ad-
jacent sectors, through shared vertices between them. In the case where two consecutive
sectors are not adjacent, the path travels along collision free lines between sector vertices.
Restricting inter-sector paths in this manner is deemed suitable as it is equivalent to ap-
plying visibility graphs in polygonal maps, which have been shown to determine shortest
paths between any two vertices on the map [12]. The polygonal vertices and connecting
edges in the map decomposition generate a similar visibility graph over the environment.

Intra-sector sweep path costs can be minimized by optimally structuring the sweep
path within a sector, given a sector’s entry and exit points. By applying pre-determined
search patterns, sweep paths can be easily projected over large areas, and costs calculated
rapidly for real-time path optimization.

The goal of the path generation problem formulation is to design a path such that for
all i ∈ {1, . . . , nS}, the robot enters each polygonal sector si at a vertex va ∈ Vsi , covers
the sector using a sweep coverage pattern and then leaves at a vertex vb ∈ Vsi to continue
its path.

19

s1 s2

s3

s4

s5

v2

v4

v8

v5

v6

v7

v9

v12
v13

v11v10

v3v1

Start Traversable sector Sector vertex Edge in Gs Metric closure

Figure 2.4: Graph based formulation to optimize the inter-sector path generation.

2.6 Inter-sector Path Optimization

An unweighted, undirected sector graph Gs = (Vs, Es) is defined, where Vs is the set of
vertices representing each of the nS traversable sectors in E . Each vertex vi ∈ Vs, i ∈
{1, . . . , nS} represents a sector si. An edge e is added, between vertices vi and vj, repre-
senting sectors si and sj if, for i 6= j, Vi∩Vj 6= ∅ (i.e. the sectors have at least one common
vertex).

The sector graphGs is constructed under the assumption that the robot, when restricted
to travel between adjacent sectors, will minimize the inter-sector travel costs. This is
a reasonable simplification that allows a significant amount of edge pruning, given the
assumption that every sector in the map is connected via a common vertex to at least one
other sector. Figure 2.4 shows the construction of Gs over the polygonal sectors in the map
decomposition. Assuming the robot only travels through shared vertices, the optimization
over Gs can be described as the Sector order decision problem.

Problem 2.6.1 (Sector Visit Order Problem). Consider a graph Gs in which Vs represents
each of the nS traversable sectors in the environment. Find a path P in Gs starting at
v0 that visits every vertex in Vs atleast once such that the total path cost

∑
e∈EP

c(e) is
minimized.

The optimization problem, as described, belongs to a known class of NP-hard problems,

20

that can be solved using a transformation to the Hamiltonian Path Problem. Since the
graph Gs is connected, but not complete and thereby not guaranteed to be Hamiltonian, a
reduction to the Hamiltonian path can be obtained using metric closure whereby for each
pair of vertices vi and vj that are not connected in Gs, a temporary edge that represents the
best shortest path between the vertices is computed using a shortest path algorithm such
as A* or Djikstras [12]. The problem can then be solved using a variety of commercially
available exact and heuristic traveling salesman problem (TSP) solvers [31].

2.6.1 Metric Closure Method

The sector graph Gs is transformed, using a metric closure as described in this section,
into a graph on which the solution to the Hamiltonian path will provide the solution to
the sector order visit problem.

First, the vertex graph Gv = (Vv, Ev, cv) is defined, where Vv is the total set of all
vertices in the polygonal decomposition of E , Ev is the set of edges where an edge (vi, vj)
exists if there is a direct, collision free path between the two vertices. The cost function cv
on edge (vi, vj) is the Euclidean distance between the vertices. This graph forms the basis
of inter-sector route planning in the robot. The robot is constrained to move only along
the edges defined on graph Gv during all inter-sector travel.

Next, the augmented graph Gsv = (Vsv, Esv, csv) is defined, where the set of vertices Vsv
inherits directly from the vertex set Vs of the sector graph Gs. All edges in Es are copied
into Esv. For every pair of sectors si and sj, where i 6= j and e /∈ Es, a supplementary
edge is added and the edge costs are defined using the function csv(e) as follows.

For each edge e,

c(e) =

{
0, if e ∈ Es,
τ(si, sj), if e /∈ Es.

(2.2)

where τ(si, sj), defined as the shortest route cost between sectors si and sj is calculated
on graph Gv, by finding vl ∈ si and vk ∈ sj, such that they minimize the smallest Euclidean
distance between the two sectors. Now the cost τ(si, sj) between vl and vk is computed
on Gv using an A* search and assigned to c(e) on Gsv. The graph Gsv thus defined is a
complete graph that can be used to compute the Hamiltonian path through the sectors
using the Concorde LinKern solver which is a freely available implementation of the Lin-
Kernighan Heuristic [31]. The resulting path provides an order of sectors for the robot to
visit, given the defined cost metric.

21

unnecessary
inter-sector travel

minimal
inter-sector travel

coverage path

(a) Intra sector route optimization problem

va

vb

θ

optimal orientation

(b) Intra sector route optimization solution

Figure 2.5: Intra-sector sweep coverage optimization.

2.7 Intra-sector Route Optimization

The optimal sector visit order was computed as a Hamiltonian path with the assumption
that in transitioning between adjacent sectors, the robot will pass through a common
vertex. When faced with non-adjacent sectors, it will follow the shortest path through
their two closest vertices. Note that since adjacent polygons can share more than a single
vertex, the chosen entry and exit points in each sector will significantly affect the final cost.
Ideally, the path must seamlessly transition between sectors with minimal unnecessary
travel.

In optimizing the coverage path within a sector, a sweep pattern is generated within a
convex polygon, as shown in Figure 2.5. For a pair of entry and exit points denoted by vl
and vk, a sweep pattern, with a pitch is equal to the diameter of the sensor footprint of
the robot, is generated. The orientation of the sweep is chosen to minimize the total sweep
path length within the sector.

2.7.1 Sweep Graph Construction

From Figure 2.4, it is observed that the shortest route through all sectors travels through
entry and exit vertices which are shared between adjacent sectors in the Hamiltonian path.

22

By formulating the intra-sector cost metric between the vertices, the problem space for the
intra-sector path optimization can be defined.

A sweep graph Ga = (Va, Ea, ca) is defined, where Va is the set of vertices, Ea is a
set of directed edges between them, and ca is the cost function for the edges in Ea. The
attributes of the graph are detailed as follows:

Vertices: Define nS − 1 disjoint vertex sets, Va1 , . . . , VanS−1 . The set Vai for i ∈
{1, . . . , nS − 1} is given by the set of all shared vertices between sector si and si+1 that are
indexed according to the sector visit order. Shared vertices between every pair of sectors
are defined independently and if the same vertex is shared between more than two sectors,
it is repeatedly defined in the formulation. In the case where consecutive sectors si and
sj do not share any vertices, a dummy vertex is added to the empty set Vai . Any path
through the graph is implicitly forced to pass through this dummy vertex. Once the path
optimization is complete, the dummy vertex is replaced by a set of way points comprising
the shortest path between the two disconnected sectors.

Another vertex set Va0 is defined to contain the start position v0 of the robot in the
map. The total vertex set in graph Ga is then Va = Va0 ∪ Va1 ∪ . . . ∪ VanS−1 .

Edges: We add a directed edge e between vertex vl and vk where vl ∈ Vai and vk ∈ Vaj
for some i, j ∈ 1, . . . , nS − 1, to Ea if j = i+1. The edge e represents a transition from the
entering vertex vl to the exiting vertex vk in the sector si. vk is subsequently the entering
vertex in sector sj.

Edge Costs: Each edge e ∈ Ea between vertices vl and vk, is associated with a
cost ca(e) that is computed based on the distance traversed by the complete intra-sector
coverage path within sector si. The cost includes the sweeping pattern as well as travel to
and from the entry and exit points. A zero cost is assigned to any edge for which either vl
or vk is a dummy vertex.

As a simple illustrative example, Figure 2.6 shows the graph Ga constructed for the
problem defined in Figure 2.4. The constructed graph is a partitioned directed acyclic
graph, with a partition of vertices given by (Va0 , Va1 , . . . , VanS−1) representing the shared
inter-sector vertices. The graph is multipartite in that there are no edges between vertices
in the same vertex partition. Since edges are only defined between vertices of consecutive
sectors, this graph construction lends itself to a shortest path search to find the optimal
traversal route from the start position to the final sector.

The A* shortest path search algorithm is now implemented on Ga and the solution is an
ordered list of vertices in Ga that have a direct mapping to vertices in Gv on the polygonal
map. In the A* solution path Pa := {v0, v1, v2, . . . , vnS

}, every pair of consecutive vertices

23

s1 - s3
s3 - s5

s5 - s2

s2 - s4

(no shared vertices)

v4

v5

v8

v9

v6

v7

v0

vdummy

Figure 2.6: Graph construction for intra-sector path optimization. v0 is the start position
of the robot. The path vertices chosen are in the order {v0, v5, v8, vdummy, v7}. Consecutive
sectors s5 and s2 have no shared vertices.

are an entry-exit pair for a visited sector. In the case where a vdummy(i) occurs in the path,
it is replaced with the shortest path between the two sectors si and si+1 with a cost of
τ(si, sj) as calculated on Gv. The intermediate waypoints between the two sectors are
then injected into the dummy vertex placeholder. The path Pa is transformed into the
final solution path P by injecting intermediate waypoints generated by the sweeping path
in each sector si between vertices vi and vi+1 indexed according to Pa. Using the above
mentioned methods, the final path obtained for the example in Figure 2.4 is illustrated in
Figure 2.7.

2.8 Dynamic Re-planning

The planning algorithm described thus far is capable of generating a compete coverage
path over a static drivability map. However, in a partially known search environment the
planner must be able to dynamically adapt to a changing map and re-plan a coverage path
as more information about the environment becomes available. Of particular concern in this
situation is determining the re-planning frequency and retaining a memory of previously
visited regions of the map to minimize redundant search.

The approach used to solve this problem is consistent with the overarching planning
method. Given that within each convex sector, every point lies within the line of sight
of the laser scanner, it can be safely assumed that the sectors near the robot contain no
large occlusions in the current map. Therefore a path plan for each sector can be executed
without a global re-plan. Once each sector is searched, the robot decomposes the map
with new information while blocking out sectors already visited. A new coverage path can

24

s1
s2

s3 s4

s5

v2

v4

v8

v5 v6
v7

v9

v12
v13

v11v10

v3

v1

Sector vertex

Robot start position

Robot finish position

Final search path

Vertices in final search path

Figure 2.7: Final coverage path: The Sector visit order generated is {x1, x3, x5, x2, x4}.
The path travels through inter-sector vertices in the order {v5, v8, v9, v5, v7}. Observe that
vdummy between sectors s5 and s2 is replaced with the waypoints {v9, v5}.

now be planned to continue the search. This continues until all regions in the map are
searched.

2.9 Results

To spur innovation and expand on the state of the art, NASA has developed a Centennial
Challenge for rover algorithm design, with a prize of $1.5 million USD. The first NASA
Sample Return Robot Challenge (NSRRC) [46] was held in June of 2012 at Worchester
Polytechnic Institute, and a second competition took place in June 2013. The challenge
requires competitors to develop an autonomous rover weighing less than 80 kg, capable
of searching an unknown 80,000 m2 area for 10 known samples in under 2 hours, at a
maximum speed of 2 m/s. Some reference features from the environment are provided, as
is a topographical map of the area, but neither GPS nor magnetometer measurements are
to be relied on. The test platform designed for this competition is depicted in Figure 2.8.

The objective of coverage is to generate a path to pass a given sensor footprint over all
the free space of a search area using a sensor with a larger footprint to generate a map of the
environment. Given the dependency on the sensor footprint, it is clear that the navigation

25

Figure 2.8: University of Waterloo rover for the NSRRC 2013.

algorithms cannot be developed in isolation from object detection, as the design of the
coverage path is inherently related to the maximum range at which the object detection
can reliably perform. Further, the performance of the planning and mapping algorithms are
heavily coupled, as the planned path directly affects the consistency and density of features
in the map, and the consistency of the map directly affects the replanning behaviour of
the planning algorithm. Thus, the development of a complete autonomous rover system
requires careful considerations for each of the algorithms to ensure the overall effectiveness
of the system

The experimental results for path planning are presented in two segments. The first set
of experiments demonstrate the solution quality and run-time performance of the planning
algorithms on a single map against other methods described in literature. The second set
of results are presented as integrated experimental results to highlight the considerations
required for applying the presented path planning methodology as a component of the
autonomous sample return solution. We first consider the interaction between mapping and
coverage planning, and second consider the effect of the object detection sensor footprint
on planning efficiency.

26

(a) Decomposition, rectangular region (b) Tour Path, rectangular region

Figure 2.9: Path planning on sample drivability maps generated at Waterloo Park. On
the decomposition, grey spots are obstacles, blue lines are boundaries, red lines are single
cuts, and green lines are matching cuts. On the right, generated paths are shown overlaid
on a satellite image.

2.9.1 Coverage Planning Simulations

The results demonstrating basic path planning are conducted in a centrally sparse region,
with an approximate area of 11,000 m2 that is bounded by shrubbery along a nearly rect-
angular perimeter. The proposed planning algorithm is validated by making comparisons
to the Eulerian path approximation method by Arkin [2]. The main metric of comparison
is total path length, and our coverage solutions are displayed in Figure 2.9. Table 2.1
presents detailed decomposition results and collective processing times for the subroutines
used in the planning algorithm, excluding initialization routines such as message handling
and collision checks. For the experiments, a sweep pitch of 6m is used to reflect the current
sample detection camera range of the robot, and the on-board robot computers were used
to measure execution times. Table 2.2 shows detailed path length results for the environ-
ment, including scenarios for various sweep pitches. In these comparisons, an exaggerated
lower bound on the path length is found by dividing the area by the sensor footprint diam-
eter (sweep pitch). Path lengths for the lower bound, Arkin’s Eulerian path approximation
and the decomposition approach are presented.

It can be noted that the greedy algorithm consistently outperforms the Eulerian path
approximation by an average of 25%, with the performance gap widening as pitch is en-

27

Table 2.1: Greedycut decomposition results, 6m pitch.

Total Area (m2) # Obstacles # Sectors # Vertices Run-Time(s)

10,943 4 32 100 0.55

Table 2.2: Path generation results, rectangular region.

Pitch (m) Lower Bound (m) Arkin (m)
Coverage Planning

Length (m) Impr. (%) Run-Time (s)

3 3,648 4,682 4,024 14.05 0.94
6 1,823 2,858 2,124 25.72 0.55
12 9,16 1,946 1,317 32.32 0.31

larged. Given a larger pitch, the distance required to sweep an area is reduced, and the
savings from setting sweep directions to avoid circumnavigating obstacles make up a larger
percentage of the total path length. In comparing absolute path lengths, experimental
results show a distance approximately 1.1 to 1.6 times the lower bound for both test cases.
These results demonstrate that the algorithm can successfully decompose a search region
into convex search sectors, given a boundary and obstacle data derived from an online
2D drivability map. Execution times have been demonstrated to be under 3 seconds for
the given environments, proving its viability for real-time applications. For further exper-
imental analysis, Section 2.9.2 shows how by dynamically reacting to new obstacles, the
algorithm is capable of generating tour paths which guarantee full sensor coverage to all
areas of a changing map.

2.9.2 Integrated Experimental Results

This section highlights the considerations required for applying the planning algorithms
as a component in an integrated solution to solving the autonomous coverage and sample
return problem.

The results showing the dynamic re-planning technique are presented on two drivability
maps generated by the mapping module at different time steps in the coverage process, as
shown in Figure 2.10. In each map, we assume a known governing boundary for coverage
planning. The first map in Figure 2.10(a), is the view of the environment in the initial
position of the robot. It shows the tentative path generated to cover the entire environment

28

Table 2.3: Path generation results for varying sensor footprints.

Pitch (m) Lower Bound (m) Arkin (m)
Coverage Planning

Path length (m) Improvement (%)

1 16,992 19,286 17,614 8.67
2 8,496 10,790 9,175 14.96
3 5,664 7,957 6,332 20.42
4 4,248 6,541 4,860 25.71
5 3,398 5,692 4,218 25.89

given the current information. In Figure 2.10(b), the path is re-planned from the current
robot pose using new map information that is available once the robot is within the line of
sight of a previously occluded hedge of shrubs. At each re-planning step, the robot retains
a memory of visited sectors as denoted by the red polygons.

While the mapping and planning modules are heavily coupled in their application to
navigating the robot, the object detection module is coupled to the planning module
through the sensor footprint which sets the width of the sweep pattern. In Table 2.2,
it is observed that the radius of the sensor footprint has a significant impact on the quality
of the coverage path generated. As the sensor footprint grows, the path not only gets
shorter by virtue of a larger footprint, but it also progressively performs better than the
alternatives because of the cost savings with inter-sector transitions. A larger sensor radius
also implies that the robot can cover the environment at a safer distance from obstacles
and reduce the probability of unexpected collisions. Table 2.3 illustrates the effect of vary-
ing the width of the sweep pattern on the quality of the computed coverage path for the
drivability map in Figure 2.10.

29

(a) Path plan at initial time step

(b) Re-plan at second time step

Figure 2.10: Demonstration of re-planning at two time steps based on an updated map.
The robot pose is denoted by a red dot. The maps show the polygonal decomposition and
path plan at each instance. 30

Chapter 3

Persistent Surveillance

This chapter presents a recharging or refuelling strategy for a team of working robots
(UAVs) performing a surveillance task, using one or more dedicated charging robots (UGVs)
to keep them operational over extended periods of time. The objective is to plan a set of
paths for the charging robots to rendezvous with the working robots along their trajectories
and recharge them as needed during a surveillance operation. It is advantageous to use
mobile charging robots because of the ease of deployment in unknown environments and
a greater flexibility that comes with dynamic charging locations. The charging process
could be performed, for example, by automated docking and battery swap systems, as
demonstrated in [55] and [53]. The charging robots carry a payload of batteries than can
be swapped into docked working robots to replenish their charge.

3.1 Related Work

The problem of persistent coverage and surveillance with mobile robots has been previ-
ously investigated in a variety of contexts. Cortes et al. [11] employ Lloyd’s algorithm to
develop a centroidal Voronoi tessellation-based controller that optimally covers a convex
area with a team of mobile robots. Smith et al. [51] design optimal velocity controllers
along precomputed paths to persistently cover a set of discrete points with varying desired
frequencies of observation, taking advantage of the ability of mobile robots to sense while
in motion. While both these works present persistent surveillance scenarios, neither tackle
the problem of limited energy resources in the robotic agents.

Persistent surveillance tasks by definition will exceed the range capabilities of any in-
spection robot, and therefore naturally require inclusion of recharging in their formulations.

31

Derenick et al. [13] propose a modification to [11] which introduces a combined coverage
and energy dependent control law to drive each robot toward a fixed docking station as
their energy levels become critical. Their work considers only the static coverage case with
the assumption that the combined sensor footprint of the agents is sufficient to cover the
entire environment. There is also no notion of charge scheduling as each agent is assigned
a dedicated static charging station. In the worst case scenario all agents will move towards
their charging locations simultaneously, leaving the environment unattended.

Contrary to [13], we introduce the notion of mobile charging stations to minimize
hindrances to the surveillance objective and plan optimal paths for charging robots to
rendezvous with each working robot. Litus et al. [33, 32] consider the problem of finding
a set of meeting points for working robots and a single charging robot, given a static set
of locations for all robots and a fixed order of working robots to charge. Since our work
addresses a dynamic surveillance scenario, we discretize UAV trajectories into rendezvous
locations using a sampling-based roadmap method employed by Obermeyer et al. [45] to
plan paths for a UAV conducting visual reconnaissance. Obermeyer et al. abstract the
path planning problem onto a roadmap graph, formulate it as a variant of the Travelling
Salesman Problem and develop approximation algorithms to solve it. In this work, we will
extend these graph-based techniques to design rendezvous paths for charging robots.

The work presented in [33], [32] and [45] only considers optimal paths that visit desired
targets once to fulfill mission objectives. However, in persistent surveillance missions,
working robots may require multiple periodic recharges to ensure functionality over the
lifetime of the mission. A common approach, as investigated by Bellingham et al. [4] is
to use a receding horizon strategy to dynamically extend shorter trajectories over a larger
planning horizon. A challenge with this approach is ensuring that each subsequent planning
iteration can provide a feasible solution path. Schouwenaars et al. [50] present an iterative
MILP path planning approach with implicit safety guarantees that ensure feasibility of
successive planning iterations.

An alternative approach is to formulate an optimal path planning problem over the
entire planning horizon. Michael et al. [37] investigate a persistent surveillance problem
for a team of UAVs to periodically visit a set of interest points with varying frequencies.
They formulate the problem as a Vehicle Routing Problem with Time Windows (VRPTW),
which is a variant of the classical Vehicle Routing Problem (VRP) that seeks to design
routes for multiple vehicles to visit all vertices in a graph. In this work we address an
additional challenge of planning optimal paths for a team of charging robots to rendezvous
with moving targets (UAVs).

32

3.2 Motion Planning For Charging Robots

Given a team of robots performing a persistent task, the problem in question is to compute
paths for the team of charging robots such that they optimally rendezvous with every
working robot exactly once. We extend our results to multiple charging rendezvous over
finite planning horizons in Section 3.5.1. The working robots are not required to divert
from their trajectories. This minimizes hindrances to the persistent mission caused by the
recharging process. The assumption is made that charging robots possess sufficient energy
resources and need not be refuelled or restocked within the planning horizon. The problem
can now be formally stated.

3.2.1 Continuous Problem Formulation

Consider an environment, E ⊂ R2, which contains R working robots, denoted by the set
R = {1, . . . , R}, performing a persistent task. Each working robot, indexed by r ∈ R,
is described by its motion along a known trajectory, pr(t) ∈ E within a planning horizon
t ∈ [0, Tr] determined by its lifetime on a single charge, and a charging time window
[T r, T r] ⊆ [0, Tr].

The environment also contains M charging robots, denoted by the setM = {1, . . . ,M},
that are free to move arbitrarily within E . Each charging robot, indexed by m ∈ M, is
described by its initial position pm(0) and its maximum speed, υ. We assume that all
charging robots have the same maximum speed. The problem is to find optimal paths for
the charging robots, pm(t) ∈ E (where |ṗm(t)| ≤ υ) such that for each r ∈ R, there exists
a charging robot m ∈M and a time tr ∈ [T r, T r] for which pm(tr) = pr(tr).

This constraint states that the team of charging robots must rendezvous at least once
with each working robot at a point along its respective path before it runs out of charge.
Figure 3.1 illustrates the problem statement with a team of four working robots following
a single path, along with two charging robots.

The continuous-time problem, as stated, requires an optimization over the space of all
charging robot trajectories [49]. Hence, discretizing the formulation converts the prob-
lem into a more tractable form and allows the application of graph-based linear program
techniques to obtain a solution.

33

charging robot

working robot

[0,Tr]

[Tr,Tr] 1

2

3

4

T
3

T
2

T
4

T
1

T
1T

1

T
2

T
2

T
3

T
3

T
4

T
4

1

2

Figure 3.1: Four working robots (red triangles) travelling along one path. Each working
robot’s lifetime horizon is denoted by a bold grey line and the charging window, by a bold
black line. The two blue charging robots must meet all working robots on their paths
within their charging windows to guarantee persistent operation.

3.2.2 Problem Discretization

For each working robot r, given that the trajectory pr(·) is known over the planning
horizon, we can discretize its charging time window to generate a set of Kr charging times
τr = {tr,1, . . . , tr,Kr} ⊆ [T r, T r] at which it can be reached along its trajectory. The set of
charging points that result are defined as,

Cr = {(pr(t), t) | t ∈ τr}.

Each charging point (pr(tr,i), tr,i) is described by its time of occurrence, tr,i, and its
position along the robot path pr(tr,i).

A charging robot, subject to its speed constraints, will attempt to charge a working
robot by arriving at one of its charging points (pr(tr,i), tr,i) ∈ Cr at a time t ≤ tr,i and stay-
ing there until time tr,i such that pm(tr,i) = pr(tr,i). This definition satisfies the previously
stated condition for a rendezvous in continuous time. Note that for the sake of simplicity,
the formulation assumes instantaneous charge, but it can be extended directly to the case
of nonzero charging durations, as discussed in Remark 3.2.1.

34

The discrete problem is one of finding paths for the charging robots that visit one
charging point in each set Cr. We can encode every possible charging path in a partitioned
directed graph G, defined as follows.

Vertices The vertices, are defined by R + 1 disjoint vertex sets, V0, V1, . . . , VR. The set
V0 is the set of initial locations of the charging robots. Each vertex in set Vr, for r ∈ R
corresponds to a charging point in Cr, the set of all charging points for robot r. The
complete vertex set is then V = V0 ∪ V1 ∪ · · · ∪ VR.

Edges An edge (vi, vj) is added to E, where vi ∈ Vr1 and vj ∈ Vr2 for some r1, r2 ∈ R with
r1 6= r2, to E if there exists a feasible traversable path from charging point (pr1(tr1,i), tr1,i)
to (pr2(tr2,j), tr2,j). That is, if

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − tr1,i. (3.1)

Edge Costs Each edge e = (vi, vj) ∈ E is associated with a non-negative cost c(e) that
can be chosen based on the objective of the optimization such as minimizing total distance
travelled by charging robots or total makespan of the recharging process. Further, in order
to avoid recharging UAVs too early, a penalty proportional to the voltage level of robot r
at its charging point (pr(tr,i), tr,i) can be added to all incoming edges at each vertex vi ∈ Vr.

Remark 3.2.1 (Nonzero Charging Durations). For simplicity of presentation we have as-
sumed that charging occurs instantaneously. Thus, if a charging robot performs a ren-
dezvous with a working robot at charging point (pr(tr,i), tr,i), it can leave that charging
point at time tr,i. We can extend this formulation to charging points described as triples
(pr(tr,i), tr,i,∆tr,i), where ∆tr,i is the time required to charge robot r at the ith charging
point. In this case the charging robot can leave the charging point at time tr,i + ∆tr,i. The
condition to add an edge in equation 3.1 then changes slightly to

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − (tr1,i + ∆tr1,i). (3.2)

•

As a simple illustrative example, Figure 3.2(a) shows two working robots r1 (blue) and r2
(red) following arbitrary trajectories and one charging robot m1 in an environment E ⊂ R2.
Each robot path is discretized into three charging points and graph G is constructed on
them based on the feasibility conditions.

35

1

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

2

(a) Sampled UAV trajectories and roadmap graph

1

2

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

(b) Optimal recharge path solution

Figure 3.2: Building a traversal graph for two working robots and one charging robot. The
resulting graph is a directed acyclic graph with vertex partitions.

36

In addition to the vertex partition, an interesting property of the constructed graph
G is that there are no edges between vertices of the same vertex set. This property
makes the graph multipartite in nature. Further, since the edges represent rendezvous
conditions between pairs of time-stamped locations and all edges are directed towards
vertices increasing in time, it is impossible for G to contain any directed cycles. Hence, by
definition G is a partitioned directed acyclic graph (DAG).

3.2.3 Optimization on a Partitioned Directed Acyclic Graph

Given a partitioned DAG G, the goal is to find an optimal path or set of paths that
collectively visit each set in the partition once, as shown in Figure 3.2(b). To characterize
the complexity of our problem, it will be helpful to state it as a graph optimization.

We begin by defining the stated problem of computing a set of charging robot ren-
dezvous paths as a decision problem known as the One-in-a-set DAG Path Problem.

Problem 3.2.2 (The One-in-a-set DAG Path Problem). Consider a partitioned DAG G
and a partition (V0, V1, . . . , VR) of V where V0 = {vm|m ∈ M}. Does there exist a set of
paths P = {P1, . . . , PM} in G, where Pm ∈ P starts at vm ∈ V0, such that |Vi ∩ VP | = 1
for all i ∈ R ?

We will say that the partitioned DAG G contains One-in-a-set path(s) if and only if
the answer to the corresponding decision problem is yes.

The One-in-a-set Path problem has been proved to be NP-hard for the case of undi-
rected, complete, or general directed graphs, because they contain, as special cases, the
undirected and directed TSP problems, respectively, which are both NP-hard. Unlike these
TSP problems, the One-in-a-set DAG Path problem consists of a path through a directed
acyclic graph, which is not trivially provable as NP-hard given that the longest path prob-
lem for directed acyclic graphs is solvable in polynomial time using dynamic programming
[16]. However, in the following section we prove that the One-in-a-set DAG Path problem
is in fact an NP-hard problem.

3.2.4 Hardness of Discrete Problem

We will prove NP-hardness of the One-in-a-set DAG Path problem by using a reduction
from the NP-Complete Hamiltonian path problem [28].

37

Theorem 3.2.3 (NP-Completeness of Problem 3.2.2). The One-in-a-set DAG Path prob-
lem is NP-Complete.

Proof. Suppose we have an instance of the Hamiltonian path problem defined on graph G.
We will give a polynomial transformation of G into an input G for the One-in-a-set DAG
Path decision problem.

Given the undirected graph G, we need to create a DAG G = (V ,E) along with
the vertex partition (V 0, V 1, . . . , V R). Our approach will be to encode every possible
Hamiltonian path order in G. The One-in-a-set DAG decision problem will then have a
yes answer if and only if the graph G contains a Hamiltonian path.

Let V = (v1, . . . , vR) and for each r ∈ {1, . . . , R}, let V R be given by R copies of vr,
which we will denote by V r := (vr,1, . . . , vr,R). The jth copy of vr will correspond to all
paths in G that have vr as their jth vertex. Finally, we create a (dummy) vertex V 0 and
define V = V 0 ∪ V 1 ∪ · · · ∪ V R.

Now, we define the edges E as follows. We begin by adding an the edge (V 0, vr,1) to E
for each r ∈ {1, . . . , R}. Then for any two sets V i and V j and for k ∈ {1, . . . , R − 1} we
add the edge (vi,k, vj,k+1) if and only if (vi, vj) ∈ E. Figure 3.3 illustrates this reduction
and shows that a feasible path is found in the DAG. It is clear that a feasible solution to
the described One-in-a-set DAG Path problem yields a feasible solution to the Hamiltonian
path problem.

38

V1

V3

V2

(a) G = (V,E)

1

2

3

1 1

2 2

3 3

V1 V2 V3

V0

(b) G = (V ,E)

Figure 3.3: A reduction of the Hamiltonian Path Problem to the One-in-a-set DAG Prob-
lem. Each color in graph G represents an individual vertex. Each vertex color in graph G
corresponds to a unique vertex set in graph G

This defines the input G to the One-in-a-set DAG decision problem. It is easy to see
that G is acyclic since it has a topological sort: Define the partial ordering as vi,k ≤ vj,` if
and only if k ≤ ` and note that there is an edge from vi,k to vj,` only if ` = k + 1. Also,
note that G has R2 + 1 vertices.

Finally, we just need to show that G contains a Hamiltonian path if and only if G
contains a One-in-a-set path. Suppose G contains a Hamiltonian path P = vr1vr2 · · · vrR ,
where (vij , vij+1

) ∈ E for each j ∈ {1, . . . , R−1}. Then, the path P = V 0, vr1,1vr2,2 · · · vrR,R
is a One-in-a-set path in G since each edge (vrj ,j, vrj+1,j+1) is in E.

Conversely, suppose that G contains a One-in-a-set path P . By the definition of the
edges E, the path must be of the form V 0, vr1,1vr2,2 · · · vrR,R. This implies that (vrj , vrj+1

) ∈
E for each j ∈ {1, . . . , R− 1} and thus P = vr1 · · · vrR is Hamiltonian path in G.

NP-Completeness of the One-in-a-set DAG decision problem implies that Problem 3.2.2
is NP-Complete, and thus our recharging optimization problem is NP-hard. In what follows
we present our approach to the problem from the bottom up. We first formulate the MILP
for the single charging robot case and use it to characterize the structure of the optimization

39

and inform our solution methods. We then extend the problem to include multiple charging
robots and investigate algorithmic alternatives to generate near optimal solutions.

3.3 Mixed Integer Linear Program Formulation

The One-in-a-set DAG Path problem can be stated as a MILP and optimally solved for
smaller instances of the problem. For ease of presentation we first formulate the MILP for
a single charging robot path in a partitioned DAG.

Given a partitioned graph G defined for the One-in-a-set DAG Path problem, we make
a small modification to apply degree constraints. A dummy finish vertex, vf , is added to
V0 and equal cost edges are assigned from every vertex back to vf .

Given the partitioned graph G with vertex sets (V0, V1, . . . , VR), we define a decision
variable, xij ∈ {0, 1} with xij = 1 if, in the resulting path, a visit to vertex vi is followed
by a visit to vertex vj, where i ∈ Vr1 , j ∈ Vr2 and r1 6= r2, r1, r2 ∈ R. The cost of the edge
traversal xij is denoted by cij, and is defined as follows. For the edge e = (vi, vj) (with
associated decision variable xij) we define.

cij =

{
c(e), if e ∈ E,
∞, if e /∈ E.

(3.3)

The start vertex is denoted by index d. The solution path must end at the dummy
vertex denoted with index f . The single charging robot MILP is now defined as follows.

min
∑
i∈V

∑
j∈V

cijxij (3.4)

40

subject to ∑
j∈V \V0

xdj = 1 (3.5)

∑
i∈V \V0

xif = 1 (3.6)

∑
j∈Vr

∑
i∈V

xij = 1 ∀r ∈ R (3.7)∑
i∈Vr

∑
j∈V

xij = 1 ∀r ∈ R (3.8)∑
i,j∈V

(xik − xkj) = 0 ∀k ∈ V \ V0 (3.9)

xij ∈ {0, 1} ∀i, j ∈ V (3.10)

The objective function (3.4) seeks to minimize the total path cost defined as the travel
distance of the charging robot. Constraint (3.5) and (3.6) guarantee that the tour starts
at the start vertex and ends at the finish vertex. Constraint (3.7) and (3.8) ensure that
each vertex set is visited only once. Constraint (3.9) is a flow constraint to guarantee that
the entering and exiting edge for each vertex set are both incident on the same vertex in
the group. Finally Constraint (3.10) specifies binary constraints on the decision variables
xij. Given M = 1, the total number of constraints in this formulation is (2M + 2R +N).
The maximum number of binary decision variables on the edges of a complete graph is
N(N − 1). However, owing to the multipartite nature of the graph G, a decision variable
xij is only defined if vi and vj belong to different vertex sets.

The complexity of the MILP problem is influenced by the number of binary variables
and constraints, which grows with the number of vertices in graph G. For a given envi-
ronment and configuration of working and charging robots, the size of G is determined by
the length of the charging window [T r, T r] ⊆ [0, Tr], and the density of charging locations
along each robot path.

3.3.1 Special Problem Characteristics

The optimal solution to the MILP provides a minimum cost path that passes through each
vertex set of a DAG exactly once. We observe from the formulation that the problem can
be modelled as the Generalized Travelling Salesman Problem (GTSP) [43] as stated in

41

Problem 1.4.5.

Despite structural similarities to the GTSP, it is interesting to note that the MILP
formulated for the One-in-a-set DAG Path problem introduces a significantly smaller con-
straint set than TSP and GTSP routing problems. In addition to the degree and flow
constraints stated, routing problems require subtour elimination constraints to ensure a
continuous path and avoid disjoint subtours in the solution. A sub-tour elimination con-
straint in both classes of problems is formulated as∑

i,j∈S

xij ≤ |S| − 1, ∀S ⊂ V, 2 ≤ |S| ≤ N − 2,

where, for a graph G, N is the total number of vertices in V , S is any subset of vertices in
V that can form a sub-tour and xij is the decision variable on edge (vi, vj) ∈ E. A TSP
with N vertices requires 2N−2N−2 subtour elimination constraints. Likewise for a GTSP
with N vertices and R vertex sets, the linear program contains as many as 2R−1 − R − 1
subtour elimination constraints [42].

In comparison, the lack of directed cycles in a DAG eliminates any need for sub-tour
elimination constraints in our formulation. Further, the multipartite nature of the graph
removes the need for binary decision variables on intraset edges. This significant reduction
in the number of constraints means that we can solve larger problems with relatively lesser
computational effort. In practice, we observed that problems with an order of magnitude
increase in the number of vertices that could be solved in comparable time. Nevertheless,
given the NP-hardness of the problem, optimally solving the MILP will not always be
computationally tractable and Section 3.4 describes the algorithmic approach we use to
compute near-optimal solutions.

3.3.2 Extending the MILP for Multiple Charging Robots

The linear program in Section 3.3 can be easily extended to the multiple charging robot
problem, using a three-index flow formulation. We highlight the differences here and refer
a reader to [35] for more details.

In the extended formulation each charging robot m is represented by an independent
route pm. Thus the binary decision variables on edges are defined as xijm ∈ {0, 1} with
xijm = 1 if, in route pm, the vertex vj is visited after vertex vi, where i ∈ Vr1 , j ∈ Vr2 , r1 6=

42

r2 and r1, r2 ∈ R. The new objective function is

min
M∑
m=1

∑
i∈V

∑
j∈V

cijxijm.

This expression represents a min-sum objective that seeks to minimize the total path cost
of all charging vehicles. The MILP can be redefined to include a min-max objective that
minimizes the maximum path cost of any single charging robot, or, to add constraints to
bound each path cost, similar to the well-known Capacitated Vehicle Routing Problem
(CVRP) [29]. These extensions are applicable when we wish to set limits on the maximum
load capacities of the charging robots, balance their work loads or include depots to restock
their charging payload.

Similar to the single charging robot problem, the multiple charging robot problem can
be modelled as an MGTSP (see Definition 1.4.6), where each of the M charging robots
is assigned a start-depot and, at most, M paths that optimally visit each vertex set once
must be computed.

3.4 Algorithmic Approach: Graph Transformations

As covered in Section 1.4, there are a number of algorithmic approaches for solving the
GTSP. A common approach is the Noon-Bean Transformation [45], which transforms any
GTSP instance into an equivalent TSP instance. The method guarantees that the optimal
TSP solution to the transformed problem will always correspond to the optimal solution
to the original GTSP.

Section 3.4.1 presents an implementation to transform the One-in-a-set DAG path
problem, with a single charging robot, into a TSP using the Noon-Bean Transformation.
The Noon-Bean method applies only to a problem modelled as a GTSP and in order
to solve the multiple charging robot route problem, a specialized solution approach for
MGTSP instances is required. Hence, in Section 3.4.2, we propose a novel modification to
the Noon-Bean method to allow a transformation of any MGTSP instance into a TSP. The
optimal solution to the TSP can then be used to construct the optimal MGTSP solution.

43

3.4.1 Path Computation for a Single Charging Robot

In what follows we define a sequence of problems, beginning with the One-in-a-set DAG
Path problem, and ending with a TSP problem. To begin, we define Problem (P0) to be
an instance of the One-in-a-set DAG Path problem for a single charging robot. Problem
(P0) is a GTSP instance defined on a Partitioned DAG G0 with a partition of vertices into
R + 1 mutually exclusive sets V 0 = (V 0

0 , V
0
1 , . . . , V

0
R). Set V 0

0 contains the start-depot of
the charging robot, vd. We seek the shortest path starting at vd, and visiting each vertex
set exactly once. Figure 3.4(a) shows a sample instance of the problem.

As shown in [43], the Noon-Bean Transformation can now be used to transform the
graph instance in Problem (P0) to new problem (P1), which is a TSP defined on a graph
G1. The vertices V 1, edges E1 and cost function c1 are defined as follows.

(i) Define the set of vertices of G1, as V 1 = V 0. In set V 1
0 , add a depot vf , as the

charging robot route finish-depot. Add edges (vj, vf), where vj ∈ V 1 \ V 1
0 and assign

a cost based on the desired optimization objective.

(ii) For each vertex set V 1
r , create an arbitrary ordering of its vertices (vi, vi+1, . . . , v|V 1

r |).
Add zero-cost directed edges that create a directed cycle through the vertices in the
chosen order. The dotted black edges in figure 3.4(b) show these intraset edges in
Problem (P1).

(iii) Shift the tail end of each interset edge (vi, vk) ∈ E0, to (vi−1, vk), the vertex immedi-
ately preceding it in the corresponding intraset cycle. Add these edges to E1.

(iv) A large penalty β >
∑

e∈E1 c1(e) is added to all the interset edges to ensure that
the lowest cost TSP tour will never exit a vertex set without traversing the entire
intraset vertex cycle.

Problem (P1) is a TSP instance, which can be solved using a variety of freely and
commercially available TSP solvers. The goal of the Noon-Bean method is to transform
the GTSP into a TSP instance, in which an optimal tour visits all vertices in a vertex set
in a clustered manner before moving on to other sets. The penalty β added to interset
edges ensures that the shortest tour always contains a clustered solution.

The TSP solution to Problem (P1), denoted by Υ1 can be used to construct the GTSP
solution, Υ0, to Problem (P0), given that it satisfies

∑
e∈EΥ1

c1(e) ≤ (R + 2)β. This

condition ensures the clustered nature of the TSP tour and stems from the fact that a
feasible GTSP solution through R+ 1 vertex sets contains only R+ 1 interset edges. Since

44

β >
∑

e∈E1 c1(e), has been added to every interset edge, we know that the cost of a TSP tour
that corresponds to a feasible GTSP tour cannot be greater than (R+ 1)β+β = (R+ 2)β.

A feasible GTSP solution Υ0, to Problem (P0), can now be constructed by sequentially
extracting the entry vertex at every cluster in the TSP tour Υ1. The total cost of the
reconstructed GTSP solution

∑
e∈EΥ0

c0(e) =
∑

e∈EΥ1
c1(e).

3.4.2 Path Computation For Multiple Charging Robots

In this section we propose a novel extension to the Noon-Bean method to transform the
MGTSP into a TSP. The transformation ensures that the optimal solution to the TSP can
be used to construct the optimal solution to the MGTSP. The algorithm is implemented
to solve the One-in-a-set DAG path problem for multiple charging robots.

We begin by stating the One-in-a-set DAG Path problem as an MGTSP and call this
Problem (P2). See Figure 3.5 as an example. Problem (P2) is an instance of an MGTSP,
defined over a partitioned DAG, G2, with a partition of its vertices V 2 into R + 1 sets,
(V 2

0 , V
2
1 , . . . , V

2
R). The vertex set V 2

0 contains M start-depots for charging robots. We seek
a set of paths starting at the depots vid, i ∈ M that visit all the vertex sets V 2

1 , . . . , V
2
R

exactly once.

Transformation Algorithm

The new transformation algorithm converts the MGTSP problem instance (P2), into a
new problem instance (P3) on which a TSP solution may be computed. Problem (P3) is a
TSP defined over a graph G3. The vertices, V 3, edges E3 and cost function c3 are defined
as follows.

(i) Define the set of vertices of G3, as V 3 = V 2. In set V 3
0 , add M vertices, vif , i ∈M, as

the charging robot route finish-depots. At each vertex vif , add edges (vj, v
i
f), where

vj ∈ V 2 \ V 2
0 and assign costs based on the optimization objective.

(ii) In vertex set V 3
0 , arrange all start-finish depot pairs (vid, v

i
f) in an arbitrary sequential

ordering to obtain V 3
0 = {v1d, v1f , v2d, v2f , . . . , vMd , vMf }. Create zero-cost intraset edges

forming a single directed cycle through all vertices in V 3
0 , in the chosen order. Hence,

create edges (v1d, v
1
f), (v

1
f , v

2
d), . . . , (v

M
d , v

M
f), (vMf , v

1
d).

(iii) For the definition of all edges (vi, vj) where vi, vj ∈ V 3\V 3
0 and i 6= j, use the original

Noon-Bean method presented in Section 3.4.1.

45

V1
0

V2
0

V3
0

vd

v1

v1

v1

v3

v2

v2

v2

V0
0

(a) A sample instance of (P0) with vertex sets (V 0
1 , V

0
2 , V

0
3) and

set V 0
0 , which contains the charging robot depots.

V1
0

V2
0

V3
0

vd vf

v1

v1

v1

v3

v2

v2

v2

V0
0

(b) The problem instance (P1) generated using the Noon-Bean
Transformation. Transformed interset and instraset edges are
shown in red.

Figure 3.4: The Noon-Bean transformation for GTSPs

46

V2
2

V1
2

V3
2

vd
1 vd

2V0
2

v1

v2

v1

v2

v3

v1

v2

Figure 3.5: An sample instance of Problem (P2), with R = 3, and M = 2

V0
2

V1
2

V2
2

V3
2

vd
1 vd

2vf
1 vf

2

v1

v2

v1

v1

v2

v2

v3

Figure 3.6: Problem instance (P3), generated using the modified Noon-Bean algorithm.
Red edges represent the Noon-Bean transformation and blue edges represent new additions
in the modified algorithm.

47

(iv) Add the penalty β >
∑

e∈E3 c3(e) to all edges (vi, vj) where vi, vj ∈ V 3\V 3
0 and i 6= j.

Further, add penalty β to all outgoing interset edges from start-depots vid in set V 3
0 .

Penalty β is not added to any edges incident on finish-depot vertices in V 3
0 .

Figure 3.6 illustrates the transformed graph G3, for Problem (P3). Before proving
correctness of the modified Noon-Bean theorem, we require some intermediate results.

Lemma 3.4.1. In any TSP solution to Problem (P3), each start-depot vertex vid ∈ V 3
0 will

be immediately preceded by the finish-depot vertex, vi−1f ∈ V 3
0 in the chosen cyclic ordering

of vertices in set V 3
0 .

Proof. Every start-depot vid ∈ V 3
0 has an in-degree of one. Hence a path visiting a start-

depot can do so only through the preceding finish-depot vertex in the given cyclic ordering
of V 3

0 .

This simple result implies that the indices of the finish-depot vertices will allow us to
“cut” a single TSP tour into paths for each working robot. Lemmas 3.4.2 and 3.4.3 define
the method and conditions under which the TSP solution to Problem (P3) provides the
MGTSP solution to Problem (P2).

Lemma 3.4.2. The optimal TSP solution to Problem (P3) can be used to construct the
optimal MGTSP solution to Problem (P2).

Proof. According to the modified Noon-Bean transformation, if an optimal MGTSP solu-
tion to Problem (P2), Υ2, is defined by the set of M paths as,

{{v1d, vj, . . . , vk, v1f}, . . . , {vMd , va . . . , vb, vMf }},

then the corresponding optimal TSP solution Υ3 to the transformed problem (P3) will be,

v1d, vj, vj+1, . . . , vj−1, . . . , vk, vk+1, . . . , vk−1, v
1
f ,

vMd , va, va+1, . . . , va−1 . . . , vb, vb+1, . . . , vb−1, v
M
f , v

1
d

The optimal TSP path visits all vertices in vertex sets {V 3
1 , . . . , V

3
R} in a clustered

manner as shown in the Noon-Bean transformation. The vertices of set V 3
0 are visited

intermittently between interset transitions in finish-depot, start-depot pairs as specified in
Lemma 3.4.1. As stated in Lemma 3.4.1, the TSP tour can be cut into optimal paths for
each of the charging robots. Further, given that each interset edge of Υ3 has a cost equal to
the corresponding interset edge in Υ2, we can determine that

∑
e∈EΥ3

c3(e) =
∑

e∈EΥ2
c2(e).

48

We know that an optimal solution (P3) always corresponds to the optimal solution to
(P2). Lemma 3.4.3 extends this result to define the condition under which a feasible TSP
solution to (P3) can provide a feasible solution to (P2)

Lemma 3.4.3. A feasible TSP solution, Υ3, to Problem (P3) provides a feasible MGTSP
solution, Υ2, to Problem (P2) given that

∑
e∈EΥ3

c3(e) < (R + 2)β.

Proof. From Subsection 3.4.1, we know that a feasible GTSP solution through R+1 vertex
sets contains R + 1 interset edges and the cost of a corresponding TSP solution cannot
exceed (R + 2)β.

In the case of multiple charging robots, the number of interset edges in the solution
depends on the number of charging robot routes. However, since the edges incident on
finish-depots in V 3

0 do not have the penalty, β, added to their cost, the number of large-
cost interset edges in the solution is R + 1, independent of the number of charging robot
routes used. Hence, a feasible solution to Problem (P2) can be constructed from a solution
to Problem (P3), if

∑
e∈EΥ3

c3(e) < (R + 2)β.

In the case of both Lemma 3.4.2 and 3.4.3, the cost of the constructed MGTSP solution
is equal to the cost of the TSP solution. Hence,

∑
e∈EΥ3

c3(e) =
∑

e∈EΥ2
c2(e).

3.4.3 Reconstructing the MGTSP Solution

The transformed graph G3 defined in Problem (P3) can now be used to compute the TSP
solution using a variety of freely and commercially available TSP solvers. The experimental
simulations in this work use the LKH solver based on the Lin-Kernighan Helsgaun heuristic
to solve TSP instances. .

Given the optimal solution Υ3 to Problem (P3), we can construct, Υ2, the optimal
solution to Problem (P2) as follows. Find the indices of all the finish-depot vertices used
in Υ3. If the indices are {l1, l2, . . . , lM}, pick the vertices immediately following them in
the tour as {l1 + 1, l2 + 1, . . . , lM + 1}. These are the start-depots of each individual path.
Between every pair of start-depot and finish-depot indices (li + 1, li+1), use the Noon-Bean
method to select vertices for each set in {V 2

1 , . . . , V
2
R}, as described in Section 3.4.1. The

49

MGTSP solution to (P2) can be constructed from the TSP solution to (P3) only if Lemma
3.4.3 is satisfied.

Combining the methods described by Noon and Bean and the lemmas stated in this
section, we can transform an MGTSP to a TSP, solve it, and use the TSP solution to
re-construct the original MGTSP solution. Our final result can be formally stated as the
Modified Noon-Bean Theorem.

Theorem 3.4.4 (Modified Noon-Bean Theorem). Given a MGTSP in the form of Problem
(P2) with R vertex sets and M depots, we can transform the problem into a TSP in the form
of Problem (P3). Given a solution Υ3 to Problem (P3), we can construct a corresponding
solution Υ2 to Problem (P2) if

∑
e∈EΥ3

c3(e) < (R + 2)β.

3.5 Extending the Planning Horizon

To this point, we have restricted our problem formulation to a single recharge per work-
ing robot. For persistent surveillance tasks, however, it is necessary to consider multiple
recharging events per working robot to maintain functionality over longer planning hori-
zons. One approach is to formulate the recharging problem as a path optimization over
the entire planning horizon, known as a fixed horizon plan. Computing an optimal fixed
horizon path may be intractable for larger problem sizes and an alternative approach to
reduce computational effort is to consider an iterative computation of the single recharge
cycle plan over a receding planning horizon. We first formulate the fixed horizon plan as
a MILP to generate an optimal recharge schedule over a finite planning horizon and then
present the receding horizon planning approach as an extension of the single recharge cycle
problem.

3.5.1 Optimal Periodic Recharging

The fixed horizon approach to path planning involves computing an optimal path over the
entire planning horizon. This approach, although significantly increasing the size of the
problem, guarantees optimality of rendezvous paths over the lifetime of the mission. In
this section, we formally state the optimal periodic recharging problem and present a MILP
solution, which extends the approach in Section 3.3 for a single recharge cycle.

As in the single recharge cycle computation, in the periodic recharging problem, working
robot trajectories are known for the entire planning range [0, T]. However, the objective is

50

now to compute charging robot paths that rendezvous with working robots at a sequence
of charging points such that no working robot runs out of charge over the planning range.
Our approach to the problem is as follows.

Approach

Three main factors distinguish the periodic charging problem from the single charge cycle
problem:

(i) Arrival times of working robots at charging points cannot be determined a-priori,
since they depend on previous rendezvous in their paths.

(ii) The time elapsed between consecutive recharges of each robot must be constrained
to ensure successful continued operation.

(iii) The variability of arrival times at charging points implies that the feasibility condition
applied on a path between them, as defined in Equation 3.2, cannot be predetermined.

Given these considerations, we formulate the periodic charging problem as an optimiza-
tion on a partitioned graph, G, for a set of working robots R and a set of charging robots
M in an environment E ⊂ R2. The graph G is defined as follows.

Vertices: Define a set of vertices V that is partitioned into R + 1 disjoint vertex sets,
V0, V1, . . . , VR. The set V0 is the set of start-depots of the charging robots. The vertices in
each set Vr, r ∈ R, correspond to charging locations in Cr.

The charging point set for periodic charging, Cr = {(pr(t)|t ∈ T} for robot r ∈ R is
defined as the set of locations pr(t) that a robot would visit along its trajectory, given
infinite charge and no recharge stops. The estimated arrival times at the charging points
will be updated as part of the optimization.

Edges: Edge-feasibility is subject to change based on UAV arrival times at charging points.
Hence define all edges (vi, vj) where vi ∈ Va, and vj ∈ Vb for a, b ∈ R and a 6= b as valid
edges in the periodic charging graph. The edge-feasibility condition will be applied as a
constraint in the optimization.

Costs: The cost on an edge can be defined based on the optimization objective. In this
formulation we consider the distance between two charging locations.

In addition to the graph G, we introduce two sets of variables, yr,i and tr,i. The variable,
yr,i ∈ R+, stores the value of the time elapsed since the last recharge of robot r, at each

51

r1

r2

T

p1(t11)

p1(t12)

p1(t13)

p1(t14)

p2(t21)
p2(t22)

p2(t23)

p2(t24)

y11

y12

y13

y14

y21
y22

y23

y24

δ13,4

m1

Figure 3.7: The periodic MILP representation: An sample problem instance illustrating
charging point discretization and key variables. A path for charging robot m1 is computed
to visit charging point sets Vr1 and Vr2 , for robots r1 and r2, periodically to ensure yr,i < τr.

charging point i in Cr. By placing a bound, τr, on the maximum value of yr,i, we can
ensure that robot r will always rendezvous with a charging robot before it is completely
discharged. The variable, tr,i ∈ R+, computes the time of arrival of a UAV r at its charging
point i in set Cr. The value of tr,i is computed at each point taking into account the service
times at charging points chosen for rendezvous.

A sample instance of the discretized problem for optimal periodic charging is shown in
Figure 3.7.

We can now formally state the optimal periodic recharging problem.

Problem 3.5.1 (Optimal Periodic Charging Problem). Consider a partitioned DAG G
with the partition (V0, V1, . . . , VR) of V where V0 = {vm|m ∈ M}. Find a set of paths
P = {P1, . . . , PM} in G that minimize

∑M
i=1

∑
e∈EPi

c(e) and satisfy the constraints (i)

Pm ∈ P starts at vm ∈ V0, such that |Vr ∩ VP | ≥ 1 for all r ∈ R and (ii) yr,i < τr for all
r ∈ R and all vi ∈ Vr.

Periodic MILP Formulation

Given the problem statement, the periodic charging MILP can be defined as an extension
to the single charge cycle MILP defined in Section 3.3. For ease of presentation, the

52

MILP is formulated to compute a single charging robot path through a team of UAVs
performing a persistent task. The extension to multiple robots is straightforward as shown
in Section 3.3.2.

The periodic charging MILP refers to a vertex vi with an index i in the context of
the complete vertex list V , as well as an index within each working robot vertex set Vr.
Hence, to avoid ambiguities in the indices, we define the set of vertex indices of Vr as
IVr = {1, . . . , |Vr|}, and the set of vertex indices of V as IV = {1, . . . , N}. Finally, we
define the index function σ : R× IVr → IV as a function that takes a working robot index
r ∈ R and the local index of the charging vertex i ∈ IVr and returns the global index of
the vertex in the complete vertex list IV .

The objective of the periodic charging problem, as inherited from the single recharge
cycle MILP, is to minimize the total sum of path costs of the charging robots.

min
∑
i∈V

∑
j∈V

cijxij (3.11)

The constraints of the periodic optimization inherit degree and flow constraints of
the One-in-a-set DAG path problem and extend the problem definition to fulfill periodic
charging. Constraints (3.5), (3.6) and (3.9) are inherited directly. Set degree constraints
(3.8) and (3.9) are modified to form Constraints (3.12) and (3.13) to allow multiple recharge
rendezvous within each set Vr of a robot r:

∑
j∈Vr

∑
i∈V

xij ≥ 1, ∀r ∈ R (3.12)

∑
i∈Vr

∑
j∈V

xij ≥ 1, ∀r ∈ R (3.13)

Constraint (3.14) computes the value of tr,i, the arrival time at each charging point, as
the sum of the arrival time at the previous charging point, tr,i−1, the service time sr at the
point if a recharge has taken place, and the travel time, δri−1,i

, between two consecutive
charging points.

tr,i = tr,i−1 + sr
∑
j∈V

xjσ(r,i−1) + δri−1,i
,

∀r ∈ R ∀i ∈ IVr
(3.14)

53

Given the value for tr,i at each charging point, an edge feasibility constraint for every
edge in the graph can now be defined. Constraint (3.15) is defined as a logical or implication
constraint which ensures that if the value of xσ(r1,i)σ(r2,j) = 1, signifying an active edge in
the solution, then the feasibility constraint as shown in constraint (3.15) must be satisfied.
Logic constraints can be reformulated into MILP constraints using linear relaxations and
big-M formulations as shown in [21].

xσ(r1,i)σ(r2,j) = 1 =⇒ tr2,j − tr1,i >
dσ(r1,i)σ(r2,j)

υ
∀r1, r2 ∈ R; r1 6= r2 ∀i ∈ IVr1

∀j ∈ IVr2

(3.15)

Note that dσ(r1,i)σ(r2,j) is the distance between the two charging points. The final three
constraints (3.16), (3.17) and (3.18) compute the value of yr,i and ensure that it is bounded
by τr. Constraint (3.16) computes the value of yr,i at every charging point, where a ren-
dezvous does not occur, as the sum of yr,i−1 and δri−1,i

.

∑
j∈V

xjσ(r,i) = 0 =⇒ yr,i − yr,i−1 = δri−1,i

∀r ∈ R ∀i ∈ IVr
(3.16)

Constraint (3.17) resets the value of yr,i to 0 at a charging point chosen for rendezvous.
Thus the value of yr,i increments throughout the charging point set, occasionally resetting
to 0 at points where recharge rendezvous occur.

∑
j∈V

xjσ(r,i) = 1 =⇒ yr,i = 0

∀r ∈ R ∀i ∈ IVr
(3.17)

Finally Constraint (3.18) limits the growth of yr,i to guarantee that robot r is consis-
tently charged through the mission.

0 ≤ yr,i ≤ τr, ∀r ∈ R ∀i ∈ IVr (3.18)

The full MILP formulation block can be found in Appendix A.

54

The total number of constraints in this formulation is 2M + 2R + N2 + 5N , of which
N2 + N are implication constraints. Similar to the single recharge cycle MILP defined
in Section 3.3, the complexity of the fixed horizon problem is influenced by the number
of vertices in the graph G. For a given scenario of working and charging robots, the size
of the G grows with the length of the planning horizon [0, T] and the density of charging
locations on each robot path.

This formulation produces a significantly larger constraint set than the single recharge
cycle MILP and as a result, the fixed horizon MILP quickly becomes intractable for larger
problem instances. An alternative approach to minimize computational effort is a receding
horizon strategy.

3.5.2 Receding Horizon Planning

Receding horizon methods have been extensively applied to MILP based motion plan-
ning [4] to minimize computational effort and enhance robustness of the computed path.
In a general receding horizon formulation, a path plan is computed and implemented over a
shorter time window and then iteratively updated from the state reached at each planning
event, for the duration of the planning horizon.

In the persistent recharging scenario, we maintain a set of R working robots waiting to
be charged. At each planning iteration, a time horizon [0, Tr] is defined using the current
state of the robots as their starting state. A One-in-a-set DAG problem is defined over
the R working robots and a set of rendezvous paths for charging robots are computed
using the single recharge cycle method of either Section 3.3 or Section 3.4. Each time a
working robot is charged (i.e., a rendezvous occurs), we have an option to re-plan. Thus,
given a team of R working robots, the receding horizon window can be varied from 1 to R
rendezvous between re-plans.

The size of this window influences the quality of solutions generated. A larger planning
window results in fewer planning iterations, a lower cumulative computation time and a
lower total path cost per recharge cycle. However, it suffers from a greater possibility
that a subsequent planning iteration will produce an infeasible path problem. A smaller
planning window, while producing a more myopic path and a larger number of planning
iterations, is more robust to uncertainties and is less likely to reach an infeasible solution.

In Section 3.6.2, we examine the effects of the planning window on the performance,
and compare this method to the multiple charge MILP.

55

3.6 Simulation Results

The optimization framework for this work was implemented and tested in simulated exper-
iments generated in MATLAB R©. The mixed integer linear programs were solved optimally
using the IBM CPLEX R© solver and the TSP heuristic used in the computation was the
freely available LKH Solver [20]. The solutions were computed on a laptop computer run-
ning a 32 bit Ubuntu 12.04 operating system with a 2.53 GHz Intel Core2 Duo processor
and 4GB of RAM.

The simulation environment consists of a test set of planar trajectories that are assigned
to a team of R working robots. Each working robot r is defined by its assigned trajectory,
current pose, voltage level and battery lifetime Tr. The environment also contains a set of
M randomly located charging robots, each defined by an initial position and a maximum
velocity, υ. The goal is to enable the working robots to persistently traverse their assigned
trajectories for the duration of mission.

Using these simulations, we benchmark rendezvous path solutions and examine the
performance of the receding horizon and fixed horizon strategies for persistent recharging.

3.6.1 Single Recharge Cycle Path Computation

The recharge path is algorithmically computed using the Noon-Bean Transformation in the
case of a single charging robot and the Modified Noon-Bean Transformation for multiple
charging robots.

Figure 3.8(a) illustrates a sample problem instance with 8 working robots distributed
along 8 paths and 1 charging robot. The result compares the heuristic solution obtained
with the Noon-Bean transformation and LKH solver against the optimal MILP solution
computed with CPLEX, for a single charging robot. The generated DAG contains 500
vertices. The optimal solution for a single charging robot was computed by CPLEX in 102
seconds. The heuristic solution was computed by LKH in 2 seconds and resulted in a path
cost 12.8% higher than the optimal cost.

Figure 3.8(b) presents a sample problem instance with eight working robots distributed
among eight paths and 3 charging robots. The result compares the heuristic solution
obtained with the Modified Noon-Bean transformation followed by the LKH solver against
the optimal MILP solution for multiple charging robots. The DAG consists of 500 vertices.
The optimal solution was computed by CPLEX in 97 seconds. The heuristic solution was
computed by LKH in 1.2 seconds and resulted in a path cost 7.8% higher than the optimal
cost.

56

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

(a) Comparison of the optimal CPLEX solution (light
grey/green path) against the Noon bean Transform and LKH
Heuristic solution (dark grey/red path). The problem con-
sists of 8 working robots (triangles) on 8 paths.

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

(b) Comparison of the optimal CPLEX solution (light
grey/green path) against the Modified Noon bean Trans-
form and LKH Heuristic solution (dark grey/red path). The
problem consists of 8 working robots (triangles) on 8 paths
and 3 charging robots.

Figure 3.8: Rendezvous path computation for a single recharge cycle.

57

The results demonstrate that the performance of the Modified Noon-Bean transforma-
tion closely matches the original Noon-Bean method as an algorithmic strategy in compar-
ison with the optimal MILP solutions.

To further benchmark the performance of the LKH heuristic against the optimal CPLEX
solution, we conducted an experiment to examine the effect of growth in problem complex-
ity on the runtime and solution quality for both solvers.

A test set of simulation environments with different path and robot configurations was
created. Given each environment configuration, the complexity of the path optimization
was varied by incrementing the density of charging points along each working robot trajec-
tory from {10, 20, 30, . . . , 100} charging points per path. The recharge path was computed
several times for each charging point density level. The resulting runtimes and path lengths
for each environment are normalized to show trends in performance with growth in problem
complexity. The results are summarized Figure 3.8 using box plots that show the spread
of results over each charging point density level, using quartiles (box edges), extreme data
points (whiskers) and outliers (crosses). Boxes for the optimal and heuristic solutions are
plotted adjacently for each x-axis data point.

Figure 3.9(a) demonstrates the the growth in runtime for the optimal CPLEX solution
and the LKH heuristic solution with a growth in problem complexity. Similarly, Figure
3.9(b) demonstrates the trend in path costs for the optimal and heuristic solutions. The
optimal path cost for each simulation environment is generally consistent for all problem
sizes since the complexity is varied by only increasing the number of charging points per
path. The results show that, on average, as problem complexity grows, the optimal solver
grows exponentially in runtime and the heuristic solver consistently provides solutions
within 10% of the optimal with significant savings in computational effort.

Finally, since an optimal MILP solution is not computationally tractable for large
problem sizes an extremely large problem was solved as a performance benchmark. The
environment consists of sixteen working robots, evenly distributed among eight paths and
one charging robot. The resulting graph for the TSP solution contains 5761 vertices. The
LKH solver found a TSP solution in 368 seconds. The optimal MILP solver was not able
to compute an solution within a reasonable time frame.

3.6.2 Recharging in Extended Planning Horizons

The following simulation experiments examine the receding horizon and fixed horizon meth-
ods of computing recharge paths over an extended planning horizon. For appropriate
benchmarking, the receding horizon strategy is implemented by computing the optimal

58

(a) Runtime comparison: Optimal CPLEX (blue) vs. LKH heuristic
(green).

(b) Cost comparison: Optimal CPLEX (blue) vs. LKH heuristic
(green).

Figure 3.9: Performance comparison of Optimal CPLEX and LKH TSP heuristic solutions

59

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Figure 3.10: The heuristic solution(computed using LKH) to the single charging robot
problem with sixteen working robots distributed among eight paths.

MILP solution at each planning iteration and compared with the optimal fixed horizon
path over the planning horizon.

The computational effort required by the receding horizon method is significantly less
than the fixed horizon strategy due to a shorter planning window and a much smaller MILP
formulation. For the same reason, however, global optimality is not guaranteed over the
entire planning horizon. To investigate this trade-off, we conducted an experiment, similar
to the single recharge cycle tests, to examine the effect of growth in problem complexity
on the runtime and solution quality for both methods.

A test set of simulation environments with different path and robot configurations
was created. For each simulated environment, the recharge path was computed using
both the receding and fixed horizon methods for a set of different planning horizons from
{10, 15, 20, . . . , 40} minutes assuming the estimated lifetime of each working robot to be
6 minutes. For all receding horizon simulations, the replanning window was chosen to be
R/2 rendezvous per iteration. The optimization of each planning strategy was aborted if
a solution was not found in 1000 seconds. The aggregate results for cumulative runtime
and total path cost are summarized in Tables 3.1 and 3.2 due to the large differences in
results between the two strategies.

60

Table 3.1: Fixed horizon runtimes

Horizon (minutes)
Runtime Quartiles (seconds)
25% Median 75%

10 0.12 0.33 0.42
15 5.34 10.23 14.04
20 12.65 21.14 45.87
25 91.71 200.14 500.32
30 254.03 401.55 801.39
35 712.28 900.61 +1000
40 968.75 +1000 +1000

Table 3.2: Receding horizon runtimes

Horizon (minutes)
Runtime Quartiles (seconds)
25% Median 75%

10 0.11 0.14 0.18
15 0.12 0.15 0.20
20 0.16 0.20 0.30
25 0.21 0.28 0.38
30 0.25 0.32 0.49
35 0.31 0.43 0.58
40 0.37 0.54 0.68

Tables 3.1 and 3.2 demonstrate the spread in the growth of runtime for the fixed horizon
strategy and the receding horizon strategy respectively with a growth in planning horizon,
using quartiles, similar to the box plots. For each planning horizon, the 25th percentile,
75th percentile and median of the runtime results are shown. Figure 3.11 compares the
normalized path costs for both methods with a box plot.

The results show that, on average, as problem complexity grows, the growth in runtime
for the fixed horizon solver is exponential with a wide spread of growth rates based on the
problem configuration. On the contrary, the receding horizon strategy consistently results
in a significantly smaller cumulative runtime even with an optimal MILP solution at each
iteration. On average, the receding horizon method is seen to produce solutions with a
total path cost within 20% of the optimal fixed horizon solution.

Next, we investigate the effect of varying the planing window size on the receding

61

Figure 3.11: Total path cost: Fixed horizon (dark/black) and Receding horizon (light/red)

62

Table 3.3: Receding horizon cumulative runtime

Planning window 1 2 4 6 8
Runtime (seconds) 6.14 3.49 2.03 1.41 infeasible

Table 3.4: Receding horizon total path cost

Planning window 1 2 4 6 8
Total Path Cost 1.22 1.01 1.23 1.02 infeasible

horizon strategy. For a set of 8 working robots and 3 charging robots, a test set of simulation
environments with different path configurations and charging point densities was generated.
For each environment, the planning window was varied from 1 rendezvous to 8 rendezvous
and the receding horizon solution was computed for each window size. Tables 3.3 and 3.4
show the normalized results of cumulative runtime and path cost, respectively, averaged
over all the experiments.

It is important to note that in the presented receding horizon strategy, at each iteration,
regardless of planning window, the optimal recharge path is computed to visit all working
robots. Hence, Table 3.3 shows that the cumulative runtime generally drops as the planning
window grows, due to fewer replanning iterations. However, a larger planning window also
increases the possibility of the path reaching an infeasible solution as seen with the planning
window of 8 rendezvous per iteration. Table 3.4 shows that the cumulative path cost over
the planning horizon is not significantly affected by the size of the planning window.

63

Chapter 4

Conclusions and Future Directions

This work addresses the motion planning problem as a component of autonomy in mobile
robots, given a fully or partially known map of the environment and an estimate of the
robot pose. The complexity of motion planning tends to grow exponentially with problem
size in decision based planning problems such as coverage and exploration due to the nature
of the optimization. To mitigate this complexity, the discrete planning approach involves
simplifying the solution space by discretizing the environment and using integer programs
on a graph to compute shortest paths. The graph-based optimization structure lends itself
well to the development of novel heuristics and approximation algorithms to compute near-
optimal solutions with minimal computational effort. This thesis investigates two motion
planning problems in mobile robotics, namely coverage and persistent surveillance, and
presents contributions in each area under the overarching framework of discrete planning.

The coverage path planning approach in this work presents two major optimization
problems to generate a minimum length path that guarantees search coverage over a
bounded environment. The map decomposition algorithm presents a novel application
of the greedy cut approach on a 2D drivability map of the environment, which is demon-
strated to consistently produce solutions which outperform other well known decomposition
methods in terms of minimizing the number of convex regions produced. The path gener-
ation algorithm computes search paths that are, on average, 25% shorter than algorithms
presented in the literature that do not use decomposition methods. Further, the presented
planning approach provides a complete global path which can also be used to calculate
the total required mission time. Knowledge of the mission provides a significant advantage
over random search approaches such as the Frontier Exploration methods, for which no re-
liable predictions on path length can be made. Experiments illustrated that the algorithm
was capable of coverage planning on test areas between 10,000 and 20,000 m2 in under 3

64

seconds. Given the speed of the vehicle and the desire to only re-plan after searching each
convex sector, this update rate is sufficient for online coverage planning applications. The
integrated approach is shown to be successful in a sample return application, and is able
to achieve real-time performance running on-board our test vehicle.

Most coverage approaches in existing literature consider theoretical environments with
idealistic assumptions like fully known maps, perfect localization or simple indoor envi-
ronments such as floor cleaning applications. This thesis attempts to solve the complete
coverage problem in real outdoor environments in which the map is unknown and gradually
updated online as planning is executed. The presented approach is robust and dynamic
but guaranteeing complete coverage in such applications requires a more rigorous treat-
ment of map and pose uncertainty. For example, if the map changes over time when loop
closure is used to correct global consistency, the path planner may incorrectly mark areas
as obstacles or leave out small sections of the environment uncovered. Further, noise in the
robot pose estimate, can render the planner unable compute a path due to an infeasible
initial state. Given that the map and pose are the only two inputs to the planner it is
difficult to correct errors unless additional information from a second local mapping sensor
or an improved vehicle motion model are incorporated into the motion planner to enhance
performance.

This thesis also presents the problem of persistent recharging with coordinated teams
of autonomous robots. The One-in-a-set DAG problem is proved to be NP-hard and the
MILP formulation for a single recharge cycle is presented. A solution approach is devel-
oped, using the Noon-Bean transformation to obtain a TSP problem instance which can be
solved with a TSP heuristic solver. Subsequently, a novel modification to the Noon-Bean
transformation is proposed to address the MGTSP case and find multiple rendezvous paths
for a team of charging robots. Simulation results show that the heuristic solution using
the Modified Noon-Bean transformation and LKH solver is a viable alternative that pro-
duces solutions of comparable cost and significant runtime savings. Finally, the problem is
extended to longer planning horizons using a receding horizon and fixed horizon approach.
Simulations demonstrate the trade-off between optimality and computational complexity
presented by the two alternatives.

The main challenge faced by the receding horizon approach is ensuring that each sub-
sequent planning iteration admits a feasible solution. One way to mitigate this issue is to
incorporate terminal constraints for each planning iteration to ensure continued feasibility
of path solutions [15]. Implementing safety constraints in the MILP formulation is a future
direction for this work. In the fixed horizon strategy, in addition to high computational
complexity, another drawback is poor robustness to uncertainties or modelling errors. Since
the computation is performed offline, this strategy does not adapt the charging schedule to

65

incorporate disturbances and mistiming errors in the execution of the optimal plan. How-
ever, robustness strategies such as reactive rescheduling [36] may be used to make it an
effective planning strategy. Robustness of optimal path plans is another potential direction
for this work.

In the future, the foundation laid in this work can be built upon in a number of
interesting research directions. Especially in problems involving energy awareness and
recharging it is justified to assume that owing to uncertainties in the environment and
vehicle dynamics, some robots may fail during the course of a long-term mission. In such
cases the motion planners must ideally be fault tolerant and make up for the loss of an agent
by allowing other robots to compensate for surveillance blind spots, or possibly summon
a spare agent to substitute it. Fault tolerant motion planners could be a useful direction
to take this work.

While the problems explored in this thesis have largely been treated as two separate
application domains of discrete planning, they have the potential to compliment each
other in the case of autonomous exploration, surveillance or coverage with added energy
constraints. For instance, the coverage problem could be augmented to formulate multi-
robot UAV or UGV coverage with a separate team of service robots managing the overall
health of the working robot team. In general the recharging problem could be combined
with the path planning problem to generate optimal, yet energy aware motion plans for
exploration problems like mapping or maximizing information gain about an environment.
Further given a set of deterministic or stochastically arriving locations to survey, a team of
UAVs could potentially be enabled to generate distributed path plans to consistently visit
regions of interest and periodically schedule optimal rendezvous for recharging.

While a significant body of robotics research is dedicated to navigation, coverage and ex-
ploration, implementing robust long-term autonomous missions still remains a challenging
problem for the robotics community. A complete solution for long-term autonomy necessi-
tates the simultaneous treatment of mission specific planning as well as energy awareness
and recharging strategies to enable continuous operation. The methods presented in this
work are a step in this direction and coupled with advancements in robotic perception
and control, will significantly influence numerous application domains with a pervasive
technological impact.

66

APPENDICES

67

Appendix A

Optimal Periodic Charging MILP

A.1 Notation

Functions

σ : R× IVr → IV :
The function takes a working robot index r ∈ R and the local index of the charging vertex
i ∈ IVr and returns the global index of the vertex in the complete vertex list IV .

Decision Variables

xij (Binary):
Define xij = 1 if, in the solution path, the vertex vj is visited after vertex vi, where
i ∈ Vr1 , j ∈ Vr2 , r1 6= r2 and r1, r2 ∈ {1, . . . , R}.

yr,i (+ve Real):
For robot r, at a charging vertex indexed by i ∈ IVr , yr,i is the time elapsed since its last
recharge.

tr,i (+ve Real):
tr,i is the time at which robot r arrives at the charging vertex indexed by i ∈ IVr .

68

A.2 MILP Formulation

For each charging robot m, index d represents the initial position of the charging robot,
pm(0). The solution paths must end at the dummy vertex denoted by index f .

min
∑
i∈V

∑
j∈V

cijxij (A.1)

subject to∑
j∈V \V0

xdj = 1 (A.2)

∑
i∈V \V0

xif = 1 (A.3)

∑
j∈Vr

∑
i∈V

xij ≥ 1 ∀r ∈ R (A.4)∑
i∈Vr

∑
j∈V

xij ≥ 1 ∀r ∈ R (A.5)

tr,i = tr,i−1 + sr
∑
j∈V

xjσ(r,i−1) + δri−1,i
∀r ∈ R ∀i ∈ IVr (A.6)

xσ(r1,i)σ(r2,j) = 1 =⇒ tr2,j − tr1,i >
dσ(r1,i)σ(r2,j)

υ
∀r1, r2 ∈ R (A.7)

r1 6= r2 ∀i ∈ IVr1
∀j ∈ IVr2∑

j∈V

xjσ(r,i) = 0 =⇒ yr,i − yr,i−1 = δri−1,i
∀r ∈ R ∀i ∈ IVr (A.8)∑

j∈V

xjσ(r,i) = 1 =⇒ yr,i = 0 ∀r ∈ R ∀i ∈ IVr (A.9)

0 ≤ yr,i ≤ τr ∀r ∈ R ∀i ∈ IVr (A.10)

xij ∈ {0, 1} ∀i, j ∈ V (A.11)

69

References

[1] D. Applegate, R. Bixby, V. Chvtal, and W. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, New Jersey, USA, 2011.

[2] E.M. Arkin, M. Held, and C.L. Smith. Optimization problems related to zigzag pocket
machining. Algorithmica, 26(2):197–236, 2000.

[3] J. Barraquand, B. Langlois, and J.C. Latombe. Numerical potential field techniques
for robot path planning. Systems, Man and Cybernetics, IEEE Transactions on,
22(2):224–241, 1992.

[4] J. Bellingham, A. Richards, and How J.P. Receding horizon control of autonomous
aerial vehicles. In in Proceedings of the American Control Conference, pages 3741–
3746, 2002.

[5] D.W. Casbeer, R.W. Beard, T.W. McLain, Sai-Ming Li, and R.K. Mehra. Forest
fire monitoring with multiple small UAVs. In American Control Conference, 2005.
Proceedings of the 2005, pages 3530–3535 vol. 5, 2005.

[6] B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz and
C. K. Yap, editors, Algorithmic and Geometric Aspects of Robotics, pages 145–185.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

[7] B. Chazelle and D. Dobkin. Decomposing a polygon into its convex parts. In Pro-
ceedings of the eleventh annual ACM symposium on Theory of computing, STOC ’79,
pages 38–48, New York, NY, USA, 1979. ACM.

[8] L.P. Chew. Constrained delaunay triangulations. Algorithmica, 4(1):97 – 108, 1989.

[9] H. M Choset. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT press, 2005.

70

[10] J. Corrales, Y. Madrigal, D. Pieri, G. Bland, T. Miles, and M. Fladeland. Volcano
monitoring with small unmanned aerial systems. In American Institute of Aeronautics
and Astronautics Infotech Aerospace Conference, page 2522, 2012.

[11] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing
networks. IEEE Transactions on Robotics and Automation, 20(2):243 – 255, 2004.

[12] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, second edition, 2000.

[13] J. Derenick, N. Michael, and V. Kumar. Energy-aware coverage control with docking
for robot teams. In IEEE International Conference on Intelligent Robots and Systems,
pages 3667–3672, 2011.

[14] M. Dunbabin and L. Marques. Robots for environmental monitoring: Significant
advancements and applications. Robotics & Automation Magazine, IEEE, 19(1):24–
39, 2012.

[15] M.G. Earl and R. D’Andrea. Iterative MILP methods for vehicle-control problems.
Robotics, IEEE Transactions on, 21(6):1158–1167, 2005.

[16] D. Eppstein. Finding the k shortest paths. In Foundations of Computer Science, 1994
Proceedings., 35th Annual Symposium on, pages 154 –165, 1994.

[17] A. Goel and V. Gruhn. A general vehicle routing problem. European Journal of
Operational Research, 191(3):650–660, 2008.

[18] D. H. Greene. The decomposition of polygons into convex parts. Computational
Geometry, Advances in Computing Research, 1:235–259, 1983.

[19] E. Guizzo. Japan earthquake: Robots help search for survivors.
http://spectrum.ieee.org/automaton/robotics/industrial-robots/

japan-earthquake-robots-help-search-for-survivors, 2011.

[20] K. Helsgaun. General k-opt submoves for the Linkernighan TSP heuristic. Mathemat-
ical Programming Computation, 1:119–163, 2009.

[21] J.N. Hooker and M.A. Osorio. Mixed logical-linear programming. Discrete Applied
Mathematics, 9697(0):395 – 442, 1999.

71

http://spectrum.ieee.org/automaton/robotics/industrial-robots/ japan-earthquake-robots-help-search-for-survivors
http://spectrum.ieee.org/automaton/robotics/industrial-robots/ japan-earthquake-robots-help-search-for-survivors

[22] D. Karapetyan and G. Gutin. Linkernighan heuristic adaptations for the generalized
traveling salesman problem. European Journal of Operational Research, 208(3):221 –
232, 2011.

[23] L.E. Kavraki and J. Latombe. Probabilistic roadmaps for robot path planning, 1998.

[24] J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput.,
14(4):799–817, 1985.

[25] J. M. Keil. Handbook of Computational Geometry, volume 2, chapter Polygon decom-
position. North Holland, 2000.

[26] D. Kingston, R.W. Beard, and R.S. Holt. Decentralized perimeter surveillance using
a team of UAVs. Robotics, IEEE Transactions on, 24(6):1394–1404, 2008.

[27] K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig, and P. Shah. A low-cost laser
distance sensor. In IEEE International Conference on Robotics and Automation, pages
3002–3008, 2008.

[28] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007.

[29] G. Laporte, H. Mercure, and Y. Nobert. An exact algorithm for the asymmetrical
capacitated vehicle routing problem. Networks, 16(1):33–46, 1986.

[30] S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Tech-
nical report, 1998.

[31] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):pp. 498–516, 1973.

[32] Y. Litus, R.T. Vaughan, and P. Zebrowski. The frugal feeding problem: Energy
efficient, multi-robot, multi-place rendezvous. In IEEE International Conference on
Robotics and Automation, pages 27–32, 2007.

[33] Y. Litus, P. Zebrowski, and R.T. Vaughan. A distributed heuristic for energy-efficient
multirobot multiplace rendezvous. IEEE Transactions on Robotics, 25(1):130 –135,
2009.

[34] Y. Liu and G. Nejat. Robotic urban search and rescue: A survey from the control
perspective. Journal of Intelligent and Robotic Systems, 2013.

72

[35] N. Mathew, S.L. Smith, and S. Waslander. A graph based approach to multi-robot
rendezvous for recharging in persistent tasks. In IEEE International Conference on
Robotics and Automation, 2013.

[36] C. Mendez and J. Cerd. An MILP framework for batch reactive scheduling with
limited discrete resources. Computers & Chemical Engineering, 28(67):1059 – 1068,
2004. FOCAPO 2003 Special issue.

[37] N. Michael, E. Stump, and K. Mohta. Persistent surveillance with a team of MAVs.
In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pages 2708–2714, 2011.

[38] B. M. E. Moret, M. J. Collins, J. Saia, and Y. Ling. Ice rinks and cruise missiles:
sweeping a simple polygon. In Workshop on Algorithm Engineering (WAE), Venice,
Italy, 1997.

[39] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, and A. M.
Erkmen. Search and rescue robotics. In B. Siciliano and K. Oussama, editors, Springer
Handbook of Robotics, pages 1151–1173. Springer Verlag, 2008.

[40] R.R. Murphy. Trial by fire [rescue robots]. Robotics Automation Magazine, IEEE,
11(3):50–61, 2004.

[41] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison of
line extraction algorithms using 2D range data for indoor mobile robotics. Autonomous
Robots, 23(2):97–111, August 2007.

[42] C. E. Noon and J. C. Bean. A Lagrangian based approach for the asymmetric gener-
alized traveling salesman problem. Operations Research, 39(4):pp. 623–632, 1991.

[43] C. E. Noon and J. C. Bean. An efficient transformation of the generalized traveling
salesman problem. INFOR, 31(1):39 – 44, 1993.

[44] S. Ntafos. Watchman routes under limited visibility. Computational Geometry,
1(3):149–170, 1992.

[45] K. J. Obermeyer, P. Oberlin, and S. Darbha. Sampling-based path planning for
a visual reconnaissance unmanned air vehicle. Journal of Guidance, Control, and
Dynamics, 35(2):619–631, 2012.

[46] The Office of the Chief Technologist. NASA sample return robot challenge 2013.
http://www.nasa.gov/robot, 2013. Accessed: 3/12/2012.

73

http://www.nasa.gov/robot

[47] F. Pasqualetti, J. W. Durham, and F. Bullo. Cooperative patrolling via weighted tours:
Performance analysis and distributed algorithms. IEEE Transactions on Robotics,
28(5):1181 –1188, 2012.

[48] C. Pintea, P.C. Pop, and C. Chira. The generalized traveling salesman problem solved
with ant algorithms. Journal of Universal Computer Science, 13(7):1065–1075, 2007.

[49] A. Scheuer and T. Fraichard. Continuous-curvature path planning for car-like vehi-
cles. In Intelligent Robots and Systems, 1997. IROS ’97., Proceedings of the 1997
IEEE/RSJ International Conference on, volume 2, pages 997–1003 vol.2, 1997.

[50] T. Schouwenaars, J. How, and E. Feron. Receding horizon path planning with implicit
safety guarantees. In American Control Conference, 2004. Proceedings of the 2004,
volume 6, pages 5576–5581 vol.6, 2004.

[51] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring and
sweeping in changing environments. IEEE Transactions on Robotics, 28(2):410–426,
2012.

[52] L.V. Snyder and M.S. Daskin. A random-key genetic algorithm for the generalized
traveling salesman problem. European Journal of Operational Research, 174(1):38 –
53, 2006.

[53] K. Suzuki, P. Kemper Filho, and J. Morrison. Automatic battery replacement system
for UAVs: Analysis and design. Journal of Intelligent and Robotic Systems, 65:563–
586, 2012.

[54] S. Suzuki and K. Be. Topological structural analysis of digitized binary images by
border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46,
April 1985.

[55] K.A. Swieringa, C.B. Hanson, J.R. Richardson, J.D. White, Z. Hasan, E. Qian, and
A. Girard. Autonomous battery swapping system for small-scale helicopters. In IEEE
International Conference on Robotics and Automation, pages 3335 –3340, May 2010.

[56] M.P. Vitus, S.L. Waslander, and C.J. Tomlin. Locally optimal decomposition for
autonomous obstacle avoidance with the tunnel-MILP algorithm. In IEEE Conference
on Decision and Control (CDC), pages 540–545, Cancun, Mexico, 2008 2008.

74

[57] D. Wettergreen, M. Wagner, D. Jonak, V. Baskaran, M. Deans, S. Heys, D. Pane,
T. Smith, J. Teza, D. Thompson, P. Tompkins, and C. Williams. Long-distance au-
tonomous survey and mapping in the robotic investigation of life in the Atacama
desert. In International Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space (iSAIRAS), 2008.

[58] B.A. White, A. Tsourdos, I. Ashokaraj, S. Subchan, and R. Zbikowski. Contaminant
cloud boundary monitoring using network of UAV sensors. Sensors Journal, IEEE,
8(10):1681–1692, 2008.

[59] B. Yamauchi. A frontier-based approach for autonomous exploration. In IEEE In-
ternational Symposium on Computational Intelligence in Robotics and Automation
(CIRA), pages 146–, Washington, USA, 1997.

[60] J. Yang, X. Shi, M. Marchese, and Y. Liang. An ant colony optimization method for
generalized TSP problem. Progress in Natural Science, 18(11):1417 – 1422, 2008.

75

	List of Tables
	List of Figures
	Introduction
	The Motion Planning Problem
	Discrete Planning
	Contributions
	Coverage Path Planning
	Multi-robot Rendezvous for Autonomous Recharging

	Primer on Relevant Graph Theory

	Coverage Path Planning
	Related Work
	Coverage Planning Approach
	Map Preprocessing
	Map Decomposition
	Path Generation
	Problem Formulation

	Inter-sector Path Optimization
	Metric Closure Method

	Intra-sector Route Optimization
	Sweep Graph Construction

	Dynamic Re-planning
	Results
	Coverage Planning Simulations
	Integrated Experimental Results

	Persistent Surveillance
	Related Work
	Motion Planning For Charging Robots
	Continuous Problem Formulation
	Problem Discretization
	Optimization on a Partitioned Directed Acyclic Graph
	Hardness of Discrete Problem

	Mixed Integer Linear Program Formulation
	Special Problem Characteristics
	Extending the MILP for Multiple Charging Robots

	Algorithmic Approach: Graph Transformations
	Path Computation for a Single Charging Robot
	Path Computation For Multiple Charging Robots
	Reconstructing the MGTSP Solution

	Extending the Planning Horizon
	Optimal Periodic Recharging
	Receding Horizon Planning

	Simulation Results
	Single Recharge Cycle Path Computation
	Recharging in Extended Planning Horizons

	Conclusions and Future Directions
	APPENDICES
	Optimal Periodic Charging MILP Formulation
	Notation
	MILP Formulation

	References

