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Abstract

Image segmentation is an important step in the image analysis process. Current image segmen-
tation techniques, however, require that the user tune several parameters in order to obtain max-
imum segmentation accuracy, a computationally inefficient approach, especially when a large
number of images must be processed sequentially in real time. Another major challenge, partic-
ularly with medical image analysis, is the discrepancy between objective measures for assessing
and guiding the segmentation process, on the one hand, and the subjective perception of the end
users (e.g., clinicians), on the other. Hence, the setting and adjustment of parameters for medical
image segmentation should be performed in a manner that incorporates user feedback.

Despite the substantial number of techniques proposed in recent years, accurate segmentation
of digital images remains a challenging task for automated computer algorithms. Approaches
based on machine learning hold particular promise in this regard because, in many applications,
including medical image analysis, frequent user intervention can be assumed as a means of cor-
recting the results, thereby generating valuable feedback for algorithmic learning.

This thesis presents an investigation of the use of evolving fuzzy systems for designing a
method that overcomes the problems associated with medical image segmentation. An evolving
fuzzy system can be trained using a set of invariant features, along with their optimum parame-
ters, which act as a target for the system. Evolving fuzzy systems are also capable of adjusting
parameters based on online updates of their rule base. This thesis proposes three different ap-
proaches that employ an evolving fuzzy system for the continual adjustment of the parameters of
any medical image segmentation technique.

The first proposed approach is based on evolving fuzzy image segmentation (EFIS). EFIS
can adjust the parameters of existing segmentation methods and switch between them or fuse
their results. The evolving rules have been applied for breast ultrasound images, with EFIS be-
ing used to adjust the parameters of three segmentation methods: global thresholding, region
growing, and statistical region merging. The results for ten independent experiments for each of
the three methods show average increases in accuracy of 5%, 12% and 9% respectively. A com-
parison of the EFIS results with those obtained using five other thresholding methods revealed
improvements. On the other hand, EFIS has some weak points, such as some fixed parameters
and an inefficient feature calculation process.
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The second approach proposed as a means of overcoming the problems with EFIS is a new
version of EFIS, called self-configuring EFIS (SC-EFIS). SC-EFIS uses the available data to
estimate all of the parameters that are fixed in EFIS and has a feature selection process that
selects suitable features based on current data. SC-EFIS was evaluated using the same three
methods as for EFIS. The results show that SC-EFIS is competitive with EFIS but provides a
higher level of automation.

In the third approach, SC-EFIS is used to dynamically adjust more than one parameter,
for example, three parameters of the normalized cut (N-cut) segmentation technique. This
method, called multi-parametric SC-EFIS (MSC-EFIS), was applied to magnetic resonance im-
ages (MRIs) of the bladder and to breast ultrasound images. The results show the ability of
MSC-EFIS to adjust multiple parameters. For ten independent experiments for each of the blad-
der and the breast images, this approach produced average accuracies that are 8% and 16% higher
respectively, compared with their default values.

The experimental results indicate that the proposed algorithms show significant promise in
enhancing image segmentation, especially for medical applications.
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Chapter 1

Introduction

1.1 Image Segmentation

An image is a two-dimensional function f(x, y), where x and y are spatial coordinates. The
amplitude of f at any coordinate (x, y) is the intensity or gray level of the image at that location.
An image is called digital when x, y, and their values are all finite and discrete [1].

The task of marking or extracting a group of pixels that belongs to the same object is a major
step in many image analysis applications [1]. This process, also known as image segmentation
involves the assigning of a label to each individual pixel in an image so that all pixels with the
same label share specific visual characteristics. The result of image segmentation is a set of
segments that collectively cover the entire image, or a set of contours extracted from the image.
The pixels in a given region may be similar with respect to some characteristics or to a computed
property, such as colour, intensity, or texture. Adjacent regions may be significantly different
with respect to the same characteristics [2]. Edges and texture are additional image attributes
that are also useful for segmentation [3]. In other words, the essential feature of the analysis of
objects in images is the ability to distinguish between the objects of interest and irrelevant data,
such as the background of the image. The techniques used to determine the objects of interest
are usually referred to as segmentation techniques: that is they separate the foreground from the
background.

Image segmentation is a very important process because of its use in a number of practical

1



applications, such as medical imaging: the creation of images of the human body for clinical pur-
poses and to help in the diagnosis and treatment of diseases such as cancer. Medical image seg-
mentation is used for locating tumours and other pathologies, measuring tissue volumes, direct-
ing computer-guided surgery, diagnosing, planning treatment, and studying anatomical structures
[4]. Medical images can be captured in a variety of ways such as X-ray, ultrasound, computed
tomography, and magnetic resonance imaging [5].

The literature contains a large number of reports of segmentation algorithms based on a
variety of methods, such as thresholding [6], region growing [1], watershed [7, 8, 9], active
contours [10], graph cuts [11], and many clustering approaches [4, 12]. Techniques based on
fuzzy set theory have also been proposed for segmentation tasks [13, 14, 15].

In spite of this broad exploration, segmentation remains highly challenging, especially if the
larger goal is to design a universal segmentation algorithm capable of correctly, i.e., accurately,
classifying any and all objects of interest in an image or series of images belonging to the same
application. A main reason researchers have thus far failed to design such a universal algorithm
is the intractably great diversity of digital images and their contents. Images can be expected
to have varying resolutions and to contain objects depicted (digitized) with a huge variety of
intensities and texture patterns. Hence, without a learning or dynamic adjustment technique,
a generally applicable segmentation method, even for a specific class of images, appears to be
beyond current capabilities. The challenge of designing a capable segmentation method becomes
even more apparent in view of the impossibility of acquiring accurate results and meaningful
segments even when a specific image category comprised of a very small subset of all digital
images is targeted. For example, if the investigation is restricted to only medical imaging using
ultrasound, and the segmentation target is limited to the narrow set of objects such as breast
lesions, accurate segmentation results can still not be delivered. Thus, empirical knowledge
indicates that generically designed algorithms are simply incapable of overcoming the challenges
inherent in segmentation unless they are customized or fine-tuned. Acknowledging the desire for
a general approach leads to the recognition that acquiring superior results is possible only if the
methods are adjusted to the particularities of the imaging technique and to the domain knowledge
of the imaged objects.

In the research presented in this thesis, the motivation has been the conviction that a superior
segmentation framework ought to remain general but also be continually customized to fit the
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problem at hand. To achieve this goal, the guiding maxim is the application of perpetual learning
to the updating of the decision mechanisms for pixel classification. Using a type of learning
technique for clustering and segmentation, however, is not an entirely new idea [16, 17, 18, 19].
The question has been why an approach should be chosen based on fuzzy segmentation when
one could use more learning-oriented techniques such as neural nets, evolutionary algorithms,
or swarm intelligence. Simply put, the answer is that in light of the introduction of evolving
fuzzy systems [20, 21], a fuzzy platform offers a unique and flexible framework for knowledge
representation, and thus a convenient strategy for domain-refined segmentation.

This thesis presents a proposed evolving fuzzy method for image segmentation based on
expert user feedback. This method is designed to enable the adjustment of the parameters asso-
ciated with any medical image segmentation technique. The central concept is to extract features
from images and then associate them with optimal segmentation parameters via the formation of
fuzzy rules based on past data (images plus their manually created segments) and then to continue
the learning process (the evolution of the rules) through continual observation and the integration
of user feedback in order to produce new images (images plus user-corrected segments). Three
different approaches are proposed. The first, evolving fuzzy image segmentation (EIFS), is de-
signed to adjust the parameters associated with any medical image segmentation technique. As
an example, EFIS is used to estimate the parameters of three different segmentation techniques.
The second approach is an advanced version of EFIS, called self-configuring EFIS (SC-EFIS),
which incorporates a feature selection mechanism and produces a higher level of automation.
The final approach involves a modification of SC-EFIS that enables the adjustment of multi-
parametric segmentation techniques such as the normalized cut (N-cut) segmentation technique.

Medical images, specifically breast ultrasound and bladder MR images, were used in order to
validate the proposed methods and to demonstrate how evolving rules lead to improved results.

1.2 Problem Formulation

Most medical image segmentation techniques have several parameters that must be tuned man-
ually or experimentally in order to obtain the maximum degree of segmentation accuracy. Any
change in the values of these parameters affects the accuracy of the segmentation for each im-
age. The process of manually tuning these parameters is time consuming and may not produce
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the required generalization. The primary focus of this research encompasses the threshold values
in thresholding techniques, the similarity threshold that is part of region growing methods, the
scale in statistical region merging technique and the set of parameters that are a component of
the normalized cut (N-cut). These techniques represent areas in which the necessity of tuning
parameters impedes the effectiveness of medical image segmentation. The other, more signifi-
cant, problem addressed by this research is that, in medical image analysis, the expert user has
the final say and always modifies the results of the segmentation to match his or her anatomical
knowledge. Adjusting the segmentation parameters is thus effective only if based on user feed-
back. A learning or knowledge-based approach that puts the expert user (observer) at the centre
of the calculations therefore has the highest chance of success.

An additional difficulty related to the application of these concepts for medical imaging is
the problem associated with global image thresholding. Because of differences in the properties
of the images, the use of a static thresholding technique such as Otsu [22] may provide accurate
segmentation for some images but not for all. For example, as illustrated in Fig. 1.1, the top im-
age segmented with Otsu is very close to the gold standard image, with a segmentation accuracy
level of 95%. However, another image segmented using the same method generated a result very
different from the gold standard image, with a segmentation accuracy level of only about 30%.

Figure 1.1: Global thresholding results from left to right: original image, segmented images
using Otsu, and the gold standard image.
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With the region growing technique, as shown in Fig. 1.2, the resulting segment for the first
image, which was assigned a similarity threshold of 0.15, is very close to the gold standard image,
with a segmentation accuracy of about 95.5%. However, segmenting the second image using the
same threshod of 0.15 generated a segment well removed from the gold standard image, with a
segmentation accuracy of about 83%. An additional threshold of 0.13 was used to segment the
two images. For the first image, a segmentation accuracy of 95% was achieved: less than the
95.5% accuracy obtained when the threshold was 0.15. For the second image, a better result was
achieved: a segmentation accuracy of about 91%.

Figure 1.2: Region growing results from left to right: original image, segmented images using a threshold
= 0.15, segmented images using a threshold = 0.13, and the gold standard image.

On the other hand, the N-cut segmentation technique has more than one parameter that affects
the accuracy of the segmentation. These parameters are the number of segments NS , the rate
RA, the radius RD, and the edge variance EV . Different values of these parameters thus affect
segmentation accuracy. For example, as can be seen in Fig. 1.3, for the same image, different
values of the parameters produce different segmentation accuracies relative to the gold standard
image.
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Figure 1.3: Different segments generated using different values of N-cut parameters (from top to
bottom): Original image, segment using default values, segment using NS = 10, segment using
RD = 20, segment using RA = 0.5, and segment using EV = 0.2.

1.3 Contribution

To enhance the segmentation of medical images, this research proposes a framework that updates
an initial fuzzy system in order to adjust the parameters in segmentation methods through the
online integration of user feedback. This work focused on solving two problems as examples of
the observer-oriented adjustment of parameters with the goal of increasing the accuracy of the
segmentation:

• Adjust a single parameter:

1. The threshold in global binarization.

2. The similarity threshold in region growing technique.

3. The scale value in statistical region merging method.

• Adjust more than one parameter: The N-cut segmentation technique parameters.

An evolving fuzzy image segmentation technique is proposed that incorporates online learning as
a means of solving these problems. The proposed algorithm uses a set of training data to extract
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a set of features that are used to build an initial set of fuzzy rules. These rules are then employed
to segment new images, which simultaneously serve as a new source of information for updating
the rule base. The updating process results in the generation of a new set of rules. As long as new
images are available, the process is repeated so that any incoming new image is segmented and
then contributes to the process of regenerating the rule base, which results in a broader general
knowledge base. This approach is designed not to increase the segmentation accuracy of the
process involved in a specific segmentation task (comprising of several methods) but rather to
be used as a general method of adjusting the segmentation parameters of a given segmentation
technique in order to increase its accuracy. The previously mentioned techniques were used as
examples to enable the evaluation of the proposed approach and to demonstrate its ability to fine-
tune any medical image segmentation technique. This approach seems to be capable of achieving
the goals of the study because it automatically assigns parameters and integrates expert feedback
in order to provide intelligent guidance of the segmentation process.

1.4 Organization

The thesis is organized as follows. In Chapter 2, a survey of existing image segmentation tech-
niques is presented along with a background review of fuzzy systems, the scale invariant feature
transform (SIFT) technique, and evolving fuzzy systems. In Chapter 3, the proposed evolving
fuzzy segmentation techniques are explained. Chapter 4 contains a description of the experiments
and their results. Chapter 5 includes the conclusion and suggestions for future work.
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Chapter 2

Segmentation, Features, and Fuzzy
Systems

2.1 Image Segmentation

Segmentation refers to the process of partitioning a digital image into multiple regions, which are
sets of pixels, also known as super pixels, in order to simplify and/or change the representation
of an image into a format that is more meaningful and easier to analyze. Image segmentation is
typically used to locate objects and boundaries (lines, curves, etc.) in images [2]. If R denotes
the input image, then image segmentation means that R is portioned into n regions, such that⋃n

i=1Ri = R, where Ri is a connected set, and Ri ∩Rj = ∅ for i 6= j [1].

A large number of medical image segmentation techniques are available. Pham et al. [4]
divide medical image segmentation methods into eight categories: thresholding approaches, re-
gion growing approaches, classifiers, clustering approaches, Markov random field models, arti-
ficial neural networks, deformable models, atlas-guided approaches, and other approaches, such
as the watershed method. Hu et al. [12] divide medical segmentation methods into four gen-
eral categories: region-based approaches, boundary-based approaches, hybrid approaches, and
atlas-based approaches. The following sections provide a brief review of selected relevant seg-
mentation methods: thresholding, clustering, neural nets, deformable methods, watershed, and
graph cut segmentation. Also described are the scale-invariant feature transform (SIFT), fuzzy
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systems, and evolving fuzzy systems. Features that can subsequently be employed to train a
fuzzy system can be extracted from images through the use of SIFT.

2.1.1 Thresholding Methods

Image thresholding can be viewed as the simplest technique for image segmentation because it
separates an object from its background based on the gray levels in the image [6]. Thresholding
is used in many applications because of its simplicity and speed. Let image I = f(x, y), where
f(x, y) is the gray level of I at point (x, y), a thresholded image g(x, y) using a threshold T is
defined as

g(x, y) =

0 if f(x, y) > T,

1 if f(x, y) ≤ T.
(2.1)

Within this technique are included a vast number of methods for thresholding gray-level im-
ages. Sezgin et al. [6] provide a survey of the most popular thresholding methods and categorize
them based on the information used to differentiate six classes:

• Histogram-shape-based methods
These methods are based on the determination of the threshold using the shape of the
histogram whereby the peaks and valleys of the histogram are taken into consideration
for the purpose of detecting the threshold. Many algorithms use the shape of the image
histogram, but one of the popular methods is the Rosenfeld [23] method, in which the
threshold is the deepest concavity identified by the calculation of the convex hull of the
histogram.

• Clustering-based methods
With these methods, the gray values of the image histogram are divided into two clusters:
foreground and background. The most popular clustering algorithm is the Otsu method
[22], in which the image histogram is divided into foreground and background clusters
using a threshold that minimizes the variance between these two classes. Kittler et al. [24]
also tried to obtain the minimum thresholding error by minimizing the error rate in the
classification of object and background.
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• Entropy-based methods
In these methods, the detection of the threshold of the images is based on the level of
entropy. The maximum sum of the entropy in the foreground and background regions
is considered the threshold in [25], and the fuzzy membership of the gray level in the
foreground and background is used in [26].

• Object-attribute-based methods
These methods entail the calculation of the threshold based on a determination of simi-
larities between the image and its binary form. The most popular algorithm based on this
method is that proposed in [27], which uses fuzzy similarity to detect the threshold.

• Spatial methods
These methods are based on the location of the pixels. According to [12], the most effective
technique is to use a co-occurrence matrix to calculate the threshold [28].

• Local methods
The algorithms used in these methods calculate the threshold for each pixel from statistics
such as variance or the surface-fitting parameters of the pixel neighbourhood. The most
popular method was proposed by Niblack [29], in which the mean and standard deviation
of a window are used to calculate the threshold.

Most thresholding techniques are based primarily on the histogram of the image. Because the
shape of the histogram is not identical for all images and because detecting an accurate threshold
is difficult with a unimodal histogram, most of these methods work well only when the histogram
is bimodal or multimodal. Other methods not dependent on histograms either use a static scheme
for all images, that is, one without any ability to adjust to the features of the image, or are based
on several parameters that must be tuned separately for each image in order to obtain maximum
accuracy.

Numerous studies have been conducted with the goal of overcoming the limitations of thresh-
olding techniques. Tizhoosh [30] proposed a new thresholding technique based on type II fuzzy
sets. Liu et al. [31] used the entropy approach to calculate image thresholds. However, they
assumed that the histogram of the image is multimodal. Bazi et al. [32] used an expectation-
maximization algorithm to find the optimal global threshold of the image based on an estima-
tion of the statistical parameters of the object and on the use of background classes that follow
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generalized Gaussian distribution. This method has a lengthy computation time and produces
very poor results when the histogram of the image is monomodal. Rather than relying on the
optimization of one criterion, Nakib et al. [33] used the histogram of the image and a multi-
objective optimization approach in order to determine the optimal thresholds of three criteria: a
within-class criterion, a level of entropy criterion, and an overall probability of error criterion.
This method generates good results compared with other popular thresholding techniques but is
parameter-dependent. Kamal et al. [34] used a genetic algorithm in order to generate from the
histogram a threshold that has been compressed using a wavelet transform. Although success-
ful in some cases, this method is time-consuming. Wang et al. [35] proposed that the optimal
threshold could be obtained by optimizing a criterion function created by applying the Parzen
window technique to the image histogram in order to estimate the spatial probability distribution
of the gray-level image values. The main difficulty with this method is the very long computation
time required for calculating a global threshold. Nakib et al. [36] used a digital fractional differ-
entiation of the image histogram in order to calculate the threshold of the image. This method
depends on an assumed correlation of the probabilities of the gray levels in the image, which is
not the case for all images. As well, the process of selecting the order of fractional differentiation
is complicated and does not work well for all images. Li et al. [37] proposed a new statistical
image thresholding method that takes into account not only the sum of the variance, as with the
Otsu method, but also the discrepancies between the variances. The difficulty with this method
is selecting the parameters used to control the weights assigned to the class variance sum and
to the variance discrepancy. As extensions of the Otsu method and the Kittler method, Xue et
al. [38] proposed two different approaches using median-based criteria. The problems with this
method are the inability of the algorithm to detect an efficient threshold if the histogram is mul-
timodal and the increase in the computional time resulting from the time required for calculating
the median.

Othman and Tizhoosh [39, 40, 41] proposed methods using neural networks and evolving
fuzzy rules for overcoming the problems associated with thresholding in medical images.

Although a great deal of effort has been dedicated to solving the problem of thresholding,
many challenges remain. Most methods still depend on the shape of the image histogram, which
prevents the generalization of the methods. On the other hand, methods that are not dependent on
the shape of the image histogram require complicated operations that increase the computational
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time required for the calculation of the threshold. Most methods also depend on the tuning of
several parameters, all of which must be altered for each image in order to achieve a high degree
of segmentation accuracy. In general, no method works well for a varied types of images because
the lack of consideration of the features of the image itself and the disconnection from the visual
perception of the user. A need therefore exists for a thresholding method that can dynamically
adapt to a variety of images by taking into consideration both the features of the image and user
feedback.

2.1.2 Region-Based Segmentation Methods

Region-based methods are derived from the suggestion that neighbouring pixels within the same
region have similar intensity values and involve one of two different procedures: region growing,
or split and merge.

The general region-growing procedure is to compare one pixel to its neighbours. If a sim-
ilarity criterion is satisfied, the pixel is assumed to belong to the same region. The algorithm
starts with a seed point selected manually inside the region of interest and begins to compare the
intensity of this point to that of its neighbours. If a predefined threshold is satisfied, the new point
can be added to the region. Several criteria have been suggested, such as the distance from the
seed point or the average gray-level intensity. Region growing methods are popular techniques
for image segmentation. However, these methods involve two major challenges: finding the
seed point in the region of interest and determining the threshold value for stopping the growth
process. Region growing can also be computationally expensive.

A method that does not require a predefined seed was suggested by Lin et al. [42]. They
start with any point inside the image as a seed point and begin to grow from this point as long as
the neighbours of the point satisfy a similarity criterion. If the algorithm encounters a point that
does not satisfy the criteria, it considers it a new seed for a new region. This method increases
the computational time because it requires the scanning of the whole image, and the similarity
threshold problem remains unsolved.

Stewart et al. [43] combined a pulse-coupled neural network with a region growing algorithm
in order to solve the problem of selecting seed points. The difficulty with this method is that
both the similarity function and the similarity threshold must be tuned for each image. Lu et
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al. [44] proposed a simplified version of the algorithm presented in [43]. They modified the
linking channel function and decreased the complexity of the adjusting parameters. However,
the parameters remain the same and must still be tuned to accommodate different images.

Malek et al. [45] proposed a method of segmenting microcalcifications in breast images
by means of the automatic selection of the initial seed points, which represent image regions
based on mathematical morphology. Their method uses a similarity criterion that calculates the
difference between the intensity of each pixel in the image and the mean intensity of the region.
The pixel with the smallest difference is then allocated to the corresponding region. This method
is case-based because it depends primarily on the brightness of the microcalcifications for the
selection of both the seeds and the similarity criteria. Park et al. [46] proposed a new skull-
stripping method for analyzing magnetic resonance brain images. Rather than selecting seed
points, they suggested beginning from two seed regions that represent the brain and non-brain
regions and then using a mask produced through morphological operations in order to detect
these two regions. A region growing method is then employed to provide expansion from these
two regions. Their method is customized for information related to brain anatomy, and their
experimental results show that the similarity threshold must be tuned for different images in
order to obtain a satisfactory degree of segmentation accuracy.

The researchers mentioned as well as many others have tried to solve the two major problems
related to region growing. Most of the approaches described have been directed at finding a
solution to the selection of a seed point, but the suggested solutions are limited by their lack
of generalization or by the need for tuning parameters. A need thus still exists for a satisfactory
general method of detecting the seed point and of adjusting the similarity threshold used in region
growing.

In contrast to region growing, the split and merge technique begins with the whole image,
which is divided into disjointed parts so that similar regions can be merged based on similarity
criteria. The primary difficulty with this method is the challenge of selecting both the similarity
function and the similarity threshold. A recent technique [47] uses statistically based region
merging. In this technique, the image segmentation problem is viewed as an inference problem,
which then leads to a simple merging predicate and a simple ordering of the merges. However, to
obtain maximum accuracy, this method has several parameters that must be tuned for each image
such as the scale of the segmentation.
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2.1.3 Classification and Clustering

Classifiers are supervised methods based on training images that are segmented manually by
an expert. This category included numerous techniques, such as nearest-neighbour, K-nearest-
neighbour, the Parzen window, the maximum-likelihood, and the Bayes rule. Clustering meth-
ods, on the other hand, are unsupervised methods that depend on the clustering of the available
image into different groups. The following are the two commonly used clustering techniques
[4, 12]:

• K-means is a clustering technique whose operation requires the number of clusters so that
a centre can be assigned for each cluster. All image pixels are classified as belonging (=
1) or not belonging (= 0) to a cluster, based on a selected criterion related to the distance
between the pixel and the centre of the cluster.

• Fuzzy C-means is similar to K-means but with a major difference: any image pixel can
belong to more than one cluster based on a selected membership function.

2.1.4 Segmentation Using Neural Networks

Due to the large number of differing neural architectures on the one hand, and the proliferation of
varying learning schemes on the other, providing an in-depth review of all the neural approaches
to image segmentation is difficult. Using a constraint satisfaction neural network, Faith et al.
[48] have provided a survey of image segmentation based on relaxation. Glass et al. [49] used
a self-organizing map for the process of segmenting brain images into different regions. They
also trained a multilayer backpropagation neural network to classify and label the segmented
region of the brain. Chaun et al. [16] segmented medical images using a three-dimensional Hop-
field neural network architecture based on contextual constraint. Nunez et al. [50] introduced
an algorithm for segmenting astronomical images based on self-organizing neural networks and
wavelets. They used the second plane of the wavelet decomposition to separate stars and other
prominent objects, and the network was then employed to segment the rest of the image. Lee
et al. [51] used artificial neural networks for the segmentation of swallow from healthy partici-
pants. The network is trained to accept signals from both single and combined sources, and the
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accuracy of the segmentation is at its highest level when the network accepts input from com-
bined signal sources. Victor et al. [17] used two different artificial neural networks to segment
micro-structures from metallo-graphic images. The challenge with such methods that depend on
a self-organizing map is the large number of parameters that must be tuned before the training,
such as the number of classes and the size of the neigbourhood function. As well, the latter three
methods depend primarily on prior information about the image, which renders their generaliza-
tion very difficult.

In [18], Nadir et al. extended their incremental neural network proposed in [52] in order to
segment tissues in ultrasound images using a discrete Fourier transform and a discrete cosine
transform (DCT) for feature extraction. Using DCT and vector quantization, Dokur [53] em-
ployed an incremental self-organizing map to compress and segment medical images obtained
by magnetic resonance, computed tomography, and ultrasound. Iscan et al. [54] presented a
method that uses an incremental supervised neural network for segmenting tissues in medical
images. They employed a continuous wavelet transform and the moments of the gray-level his-
togram in order to compute a features vector for medical images. Although these methods are
incremental in the sense that the number of nodes is not predefined, a large number of parameters
still must be tuned in order to accommodate different images. A threshold value that controls the
number of nodes, and the gain constraint of the network when DCT is used must both be tuned
as appropriate for different images. As well, the process of selecting the region of interest used
to extract the features is time consuming because it is performed manually by an expert.

Fu et al. [55] used a pulse-coupled neural network along with a statistical expectation-
maximization (EM) model in order to develop adaptive techniques for the segmentation of brain
images. The EM technique is applied to the image histogram in order to estimate initial thresh-
olds for segmenting different regions of the brain and for adjusting the parameters of the neural
network. The difficulty with this method is the large number of parameters that must be tuned,
such as the watershed threshold used in the enhancing stage. In addition, the threshold used to
segment portions of the brain is generated from the image histogram, which is not to be trusted
when the shape of the histogram is unclear.
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2.1.5 Deformable Methods

He et al. [56] have provided a comparative study of snake and level set methods. Snake methods
included the balloon snake, the topology snake, the distance snake, and the gradient vector flow
snake. For the level set methods, they reviewed the original level set method, the geodesic active
contour method, the area and length active contour method, and the constrained optimization
method. Due to their popularity, only level set methods are briefly reviewed in the following
subsection.

Level Set Segmentation

The level set method is a tool for modeling time-variant objects because it uses numerical tech-
niques for tracking shapes. The method is based on the initialization of a contour inside or
outside the region of interest, which then evolves toward the optimum segment. The curvature
of the contour and the features of the image are used to calculate the speed of the deformation of
the contour [56].

In traditional level set methods [57], to overcome the problems associated with a sharp and/or
flat shape generated during the evolution, a common numerical scheme initializes a function as
a signed distance function prior to any evolution. This scheme periodically reshapes (or re-
initializes) the function so that it is a signed distance function during the evolution. The re-
initialization process is therefore crucial, cannot be avoided in traditional level set methods.
Chan et al. [58] proposed a new level set method, in which the re-initialization process is op-
tional. This important method can detect objects whose boundaries are not defined by a gradient.
Li et al. [59, 60] completely eliminated the need for the re-initialization procedure by forcing the
level set function to be close to a signed distance function and presenting a new variational for-
mulation for geometric active contours. Their formulation consists of an internal and an external
energy term. The internal energy term penalizes the deviation of the level set function from a
signed distance function. The external energy term drives the motion of the zero level set toward
the desired image features, such as object boundaries. They managed to minimize the overall
energy function using the gradient flow generated from the evolution of the level set function.
Lankton et al. [61] proposed a new method that reformulated any region-based segmentation
energy in a local way, and used local information to cause the contour to evolve. Shi et al.
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[62] proposed a new level set algorithm suitable for real-time implementations. They eliminated
the need for solving partial differential equations by using a two-cycle algorithm: one cycle for
the data-dependent term, and a second cycle for the smoothness regularization. Bernard et al.
[63] proposed a fast level set method that relies on a continuous parametric implicit function ex-
pressed as a B-spline rather than on the use of a discrete representation of the implicit function.
Yan et al. [64] used a level set framework to develop a new hybrid medical image segmentation
method, which achieves robust and accurate results through the use of the boundary of the object
as a means of detecting the precise location of the target object, and information about the region
as a means of preventing boundary leakage. Bo et al. [10] proposed a novel model based on a
level set for segmenting breast ultrasound images. They used the differences between the actual
and estimated probability densities of the intensities in different regions to develop an energy
function. The actual probability densities are calculated directly, and a level set approach is used
to formulate the energy function, along with a partial differential equation approximated by the
central difference and non-re-initialization approach for finding the minimum of the energy func-
tion. Chen [65] used statistical decision theories such as conditional average risk and Bayesian
risk in order to derive a level set evolution function. The author classified pixels and applied
the losses in pixel classification to form the Bayesian risk, which is minimized and utilized to
generate the evolution function. Achuthan et al. [66] proposed a level set method for segment-
ing similar regions in computed tomography images. They used a wavelet transform in order to
adapt a set of features to represent different regions inside the image. The features are then used
in a level set segmentation technique in order to segment the regions.

Although several variations in level set methods have been proposed for medical image seg-
mentation, they all entail two main challenges: defining the initial segment/polygon, and adjust-
ing multiple parameters (e.g., for smoothness regulation, balloon force, penalty term, and time
step). Moreover, a set of parameters are associated with specific methods, such as propagation
parameters in [57], the curvature parameter in [58], curvature and radius parameters in [61], the
scale parameter in [63], and the Gaussian filter and weight evolution parameters in [62].

In an attempt to solve the problem of determining the initial contour, Li et al. [67] proposed
a method that incorporates the results of the fuzzy C-means (FCM) segmentation as an initial
contour for segmenting liver images. They extended their method in [19] by using the FCM to
provide a guess about the set of parameters that control the level set. The difficulty with this
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method is that it relies mainly on an FCM method for clustering the image and dividing it into
regions, a method that could be efficient for a carotid artery ultrasound or liver images that have
clear edges and small number of objects but not for medical images that involve a large number
of objects or unclear edges.

2.1.6 Graph Cut Segmentation

A graph cut (GC) is a recent technique for image segmentation. The general idea of GC tech-
niques [11] is to treat the image as a graph G = (V,E) whereby each pixel of the image is
represented as a graph node vi ∈ V , and the connection between two pixels is represented as
the graph edges (vi, vj) ∈ E. Each edge in the graph is associated with a weighted function
w(vi, vj) of the similarity between pixels. This weighted function becomes the basis for parti-
tioning V into a set of disjoint regions based on thresholding. Weiss [68] proposed a review of
GC segmentation methods that are based on the eigenvectors of the affinity matrix. The most
efficient technique involving eigenvectors is the normalized cut (N-cut) technique proposed in
[69]. These methods are very slow and involve the tuning of numerous parameters that affect the
accuracy of the segmentation, such as the weight function and the threshold used in the weighted
function.

As an alternative category of GC segmentation, Boykov et al. [70, 71, 72, 73] proposed an
interactive GC method that asks the user to identify a set of object seeds and a set of background
seeds. They suggested adding two additional terminal nodes, a source node and a sinking node,
which are connected with an edge-weighted function to object seed nodes and background seeds,
respectively. This weighted function calculates how close in intensity each pixel is to the source
and to the sink terminals. Each pixel node is also connected to its neighbours with a weight
function so that every pixel node in the graph thus has three edges: two for the two terminals
and one with its neighbours. The authors suggested cutting the graph and separating the two
terminals by minimizing a cost function of the boundary B(A) and region R(A) properties of
segment A using a min-cut max-flow algorithm:

E(A) = λR(A) +B(A), (2.2)

where the constant λ determines the importance of the region properties term R(A) versus the
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boundary properties term B(A) [72].

Unfortunately, this technique presents problems, especially for use with medical images.
First, it requires intensive user interaction in the marking of multiple objects and background
seeds, and after the results have been obtained, even greater user interaction is required in order
to correct the segment with additional marking of the object and background. Second, medical
images lack strong edges between objects and contain multiple objects with very similar inten-
sities, both of which features lead to errors in the results generated by this technique. Because
the user marks the object and background seeds, when multiple objects have similar intensities,
a multi-object segment is generated, which is considered a bad segment. Third, the energy and
the weighted functions contain parameters such as λ in equation 2.2, which must be tuned for
each different image. Finally, the min-cut max-flow algorithm necessitates the construction of
large graphs that consume a great deal of memory.

Many researchers have proposed solutions that overcome these problems, including combin-
ing a pre-segment technique such as a watershed with a GC technique [74], or blending water-
shed and iterative region-merging methods [75], or using an iterative GC [76], or employing the
prior shape of the object to address the problem of similar objects [77], or relying on a recursive
minimum description length to represent the image [78] or to reduce the graph size [79]. These
techniques may not overcome all of the problems associated with the GC technique because
they still require user interaction and parameter adjustment, but this method remains relatively
popular due to its underlying sophisticated theory [80, 81, 82].

In [11], the authors proposed an efficient GC technique that depends on a predicate weight
function for detecting whether a boundary exists between two regions in the image. The bound-
ary is considered not to exist, and the two regions are merged if the weight of the edge between
these two regions is smaller than the internal differences in both regions; otherwise, the two
regions remain separate. The weight function of the edges is calculated based on the distance
between pixels, and the internal difference in a region is taken as the maximum weight inside the
region. This technique does not require the initialization of seeds in the foreground and back-
ground, and clusters the image into different regions. An extension of this work that makes use
of the statistical information about each sub-region was proposed in [83]. The drawbacks of this
method are that it employs a Gaussian filter for the image using different values of the standard
deviation (σ) and that the predicate is controlled by a threshold that determines the degree of
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difference between the boundary weight and the internal weight. The accuracy of the resulting
segment is therefore affected by the tuning of these parameters.

Normalized Cut (N-cut)

A review of the GC segmentation methods that are based on the eigenvectors of the affinity
matrix is presented in [68] . However, the most efficient technique involving eigenvectors is the
N-cut technique proposed in [69]: the authors suggest thresholding a generalized eigenvector
of a normalized affinity matrix rather than using the first eigenvector of the affinity matrix as a
means of cutting the image into segments. In this method, the image is treated as a graph that is
segmented using an N-cut criterion, which calculates the similarity within the group as well as
the dissimilarity between different groups and is optimized using a technique based on a general
eigenvalue problem. A weighted undirected graphG = (V,E) is constructed from a set of points
(graph nodes) in an arbitrary feature space, and a weight function of similarity w(i, j) is built on
the edges between node i and node j. The graph is segmented based on a grouping approach,
in which the set of vertices V1, V2, · · ·Vm is divided into different sets in which the similarity
between the vertices within the same set is high, and the similarity between different sets is low.
The image is then divided using eigen vectors. In general, the graph G = (V,E) is divided into
two sets: A,B where A ∪ B = V , and A ∩ B = ∅ by removing the edges connecting the two
parts. The total weight or degree of dissimilarity, called the cut between the two pieces, can be
computed as follow:

cut(A,B) =
∑

u∈A,v∈B

w(u, v). (2.3)

This cut value should be minimized in order to achieve the best partition of the graph. In [69],
a new measure of disassociation, or N-cut, is proposed, which computes the cost of the cut as a
fraction of the total edge connections to all nodes in the graph:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (2.4)

where assoc(A, V ) =
∑

u∈A,t∈V w(u, t).
In the same manner, a measure for total normalized association within the groups for a given
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partition could be defined as follows:

Nassoc(A,B) =
assoc(A,A)

assoc(A, V )
+
assoc(B,B)

assoc(B, V )
, (2.5)

where assoc(A,A) and assoc(B,B) are the total weights of the edges connecting nodes within
A and B. In the grouping algorithm, the two criteria are therefore that the association within
the groups should be maximized and that the disassociation between the groups should be min-
imized. In the N-cut algorithm, this normalized cut is used as the partition criterion. In general,
as stated in [69], the grouping algorithm consists of the following steps:

• Construct a weighted graph G = (V,E) for every image, with the weight on the edges
between nodes being the measure of similarity.

• Solve (D −W )x = λDx for eigenvectors with the smallest eigenvalues, where D is an
N×N diagonal matrix with d(i) =

∑
j w(i, j) on its diagonal,W is anN×N symmetrical

matrix with W (i, j) = wij and N = |V |, and x is an indicator vector.

• Use the eigenvector with the second smallest eigenvalue to divide the graph by finding the
splitting point such that the N-cut is minimized.

• Determine whether the current partition should be divided by checking the stability of the
cut and ensuring that the N-cut is below the prespecified value.

• Recursively repartition the segmented parts if necessary.

This method entails the tuning of numerous parameters that affect the accuracy of the seg-
mentation, such as the number of segmentsNS , the rateRA, the radiusRD, and the edge variance
EV .

2.1.7 Watershed Segmentation

In geography, the ridge that divides the areas between different rivers is called a watershed.
Watershed segmentation incorporates this concept in the segmentation of regions into differ-
ent gray scale images. Watershed segmentation techniques include those based on a watershed
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transformation, a watershed that uses a distance transform, a watershed with gradients, and a
marker-controlled watershed [1]. Letteboer et al. [84] present a method for segmenting tumours
in brain images using an interactive multiscale watershed segmentation technique. Jung et al. [8]
incorporated watershed segmentation as the second stage of a new segmentation scheme after a
stage involving multiresolution wavelet decomposition. Cristoforetti et al. [9] used a marker-
controlled watershed segmentation technique to segment the left atrial surface in multi-detector
cardiac images. Kuo et al. [85] combined watershed segmentation with a competitive Hopfield
clustering network for the segmentation of brain images. Hamarneh [86] improved the watershed
algorithm used in medical image segmentation by employing prior shape knowledge. Hsu [87]
employed vector quantization and a competitive Hopfield neural network in order to compress
the tumour and breast regions in mammogram images that had been previously segmented by
means of an improved watershed transform.

2.2 Scale-Invariant Feature Transform

The scale-invariant feature transform (SIFT) is an approach developed by Lowe [88] as a method
of object recognition. It is based on the detection of a set of key points for an object and the
subsequent calculation of a set of descriptors, or features, for these points. These features, in-
variant to image scale and rotation, can enable the differentiation of one object from a group of
different objects. The process of detecting key points and calculating the descriptors consists of
the following four stages:

• Scale-space extrema detection
In this stage, the points of interest called key points are detected. First, Gaussian filters
at different scales are generated and then convolved with the image at every scale. The
difference of Gaussians (DoGs) blurred images are determined, and the candidate key
points are assigned as the maxima and minima of the DoGs D (x, y, σ) at multiple scales.
To create the scale space of an image, the convolution of a Gaussian filter G(x, y, σ), with
an input image I(x, y), is determined and defined as a function L(x, y, σ), where

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.6)
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and (DoG) is given by

D (x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y). (2.7)

The maxima and minima of the DoGs are calculated through a comparison of each point
with its eight neighbours in the current image and nine neighbours in the scale above and
below (Fig. 2.1 [88]). The point is selected to be a key point if it is larger or smaller than
all of these neighbours.

Figure 2.1: Process for detecting key points: The pixel indicated by the cross is compared to all
of the circled pixels.

• Key point localization
A substantial number of candidate points are detected in the previous step; however, many
of these points are useless due to either low contrast or to poor localization across the
edges. Therefore, for each candidate point, a measure of stability is calculated so that
points with low contrast or poor localization along the edges can be discarded.

• Orientation assignment
Local image gradient directions are used as a means of assigning one or more orientations
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to each keypoint location in order to ensure that the candidate points are invariant to orien-
tation. The orientation of the keypoint is calculated based on the orientation and magnitude
of the pixels in a region around the keypoint.

• Key point descriptor
After the candidate points have been selected, the local image gradients are measured in the
region around each key point. Orientation histograms are created from 4 × 4 pixel neigh-
bourhoods with eight bins each, and the magnitude and orientation values of the samples in
a 16× 16 region around the key points are calculated. When 4× 4 = 16 histograms exist,
each with eight bins, the feature vector of each key point with 128 elements is calculated.

SIFT has been used in numerous applications, such as object recognition, image stretching, 3D
modeling, gesture recognition, video tracking, match moving, and face authentication [89] as
well as to provide a self-calibration strategy for estimating intrinsic and extrinsic camera param-
eters [90]. A number of published reports [91, 92, 93, 94] help provide an understanding of the
SIFT technique. Details about the SIFT technique are provided in Appendix A.

2.3 Fuzzy Image Segmentation

Relatively popular methods of image segmentation, fuzzy methods are based on the interpretation
of the image, its histogram, or features, all considered as fuzzy sets. This section provides a
review of samples of these methods, which are similar to the approach presented in this thesis.
The following are general categories of fuzzy image segmentation methods [30]:

• Fuzzy clustering methods
These methods cluster (i.e., classify) all image pixels into different segments, or in the
specific case of thresholding, into foreground and background pixels. The fuzzy clustering
method most commonly used is fuzzy c-means (FCM) [95, 96, 97, 98, 99]. An additional
recent development is collaborative fuzzy clustering [100].

• Rule-based methods
These methods use fuzzy if-then rules to determine a threshold. The rules may be defined
by an expert or generated from data with continual updates [101, 39].
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• Fuzzy-geometrical methods
These methods minimize or maximize fuzzy geometrical measures, such as compactness,
in order to binarize the image. In contrast to other fuzzy techniques, fuzzy geometry is
generally focused on local image information [102, 103].

• Information-theoretical methods
These algorithms minimize or maximize fuzzy information measures such as fuzzy en-
tropy, index of fuzziness, and fuzzy divergence. Implemented primarily globally, operating
on image histograms, these methods are relatively fast [104, 27, 105].

• Type II thresholding methods
These methods interpret image information as Type II, or interval-valued, fuzzy sets and
may use information-theoretical measures such as fuzzy entropy or the index of ultrafuzzi-
ness to locate a global threshold [106, 107].

With the goal of solving the problem associated with the manual selection of the parameters
of the fuzzy membership, which was encountered in previous fuzzy segmentation techniques,
Karmakar et al. [13] proposed a segmentation technique based on a generic fuzzy rule. Their
proposed technique is application independent and incorporates the spatial relationships between
pixels. Cinque et al. [15] suggested a modification to the existing fuzzy approach for image
segmentation: the adaptive reasoning theory (ART) model. They maintain that their proposed
approach solves the problems inherent in the existing ART model, such as overfitting, complex-
ity, and the inability to measure the extent of the match between any two patterns. However, this
method still does not address the difficulty of tuning network parameters, such as the learning
and vigilance parameters, which affect the results for different images.

Fuzzy C-means (FCM) has been used as a popular clustering algorithm for image segmen-
tation. Zhang et al. [108] suggested a new algorithm that uses a kernel-induced distance metric
rather than the original Euclidean distance in the FCM and adds a spatial penalty to the member-
ship functions in order to modify the objective function in the FCM. They use their approach for
the segmentation of magnetic resonance (MR) imaging data. Chuang et al. [109] provided a new
version of the FCM that uses the spatial information about the image for segmenting medical
images. They created a spatial function by combining the spatial information with the member-
ship function. However, tuning is required for some of their parameters such as the parameters
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that control the importance of the functions. Yang et al. [110] proposed a new fuzzy clustering
algorithm for managing noisy images, which is a modification of the existing FCM segmenta-
tion algorithm. Zhuge et al. [111] developed image segmentation based on fuzzy connections in
order to segment vectorial images. Their technique extends previous work on scalar images to
include vectorial images, and they applied their method to arbitrary dimensional vectorial MR
medical images. However, several of their parameters must also be tuned, such as the percentile
value used for estimating the parameters. Zhao et al. [112] proposed a method that makes use of
the spatial information about the image in order to overcome the sensitivity of the FCM to noisy
images.

Methods that depend on an FCM technique have failed to address the main problems asso-
ciated with FCM: the setting of the threshold so that cause the method converges for different
images as well as the determination of the number of clusters and the cluster radius, all of which
must be tuned in order to enhance the clustering. The setting of these parameters generates
different results for different images.

Dou et al. [113] proposed a fuzzy fusion technique for automatically segmenting tumour
areas of MR images of the human brain. They suggested building a separate fuzzy model for
each type of MR image about which prior information has been obtained. These separate models
are then fused into one model. However, this method seems to be specific to the segmentation of
brain images because it depends on prior information provided by an expert in the nature of the
images. It also uses a region growing method with a threshold that must be tuned for different
images. Hata et al. [114] proposed a fuzzy technique for the segmentation of endorrhachis in
MR images. Their algorithm checks the possibility of the existence of endorrhachis regions in
the image and assigns a high fuzzy degree to a higher possibility. The researchers also described
a fuzzy maximum intensity projection technique that maps higher fuzzy membership degrees to
brighter values in the data set. This method seems to be a case-based customization for segment-
ing only endorrhachis in MR images. Foo et al. [115] proposed an image segmentation method
based on a fuzzy rule in order to segment tumours in three-dimensional computed tomography
(CT) data. Their method relies on the initial selection of a region of interest by the user, and a set
of parameters must also be tuned, such as the similarity threshold used to segment the tumours.
Khotanlou et al. [116] proposed an automated method for segmenting tumours in brain images.
They employed fuzzy classification for the initial segmentation of the tumours, followed by the
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use of a parametric deformable model controlled by fuzzy relations for the final segmentation.
However, this method is based on two assumptions: that the brain is symmetrical in shape and
that the tumour has a specific gray level.

Many fuzzy segmentation techniques use fuzzy rules in order to segment images or to com-
bine fuzzy rules with other techniques such as the principal component analysis approach. In
addition to the previously described challenges that still must be addressed, a method is also
required for updating fuzzy rules to enable online segmentation. Such an approach might help
improve the accuracy of the segmentation and might also reduce the time required for updating
the rules manually.

2.4 Evolving Fuzzy Systems

The possibility of designing an optimal fuzzy system that could be used in any application has
been investigated in numerous studies. Developing an efficient fuzzy system requires effective
methods of determining three factors: the selection of the fuzzy rule base, the definitions of the
membership functions, and the structure of the fuzzy system (number of rules and membership
functions) [117]. Many researchers have attempted to address these issues automatically in order
to generate efficient fuzzy systems, and the following processes have been investigated as possi-
bilities: the swarm optimization technique [118] and the application of evolutionary computation
directly to the data structure of the fuzzy logic system rather than using binary representation
[117]. Genetic algorithms have been employed as a means of enabling the type and the shape of
membership functions as well as the number of rules to evolve [119], for example, in forecasting
financial time series data for stocks [120]. The Pittsburgh and Michigan schemes are well-known
approaches that facilitate the evolution of the rule set using genetic algorithms. The Pittsburgh
approach enables the rule set to evolves as a whole whereas the Michigan method deals with
individual rules [121, 122]. A hybrid approach combining the Pittsburgh and the Michigan tech-
niques has also been proposed for classifying tissue in MR images [123], and more recently, a
hybrid model of self-organization maps as well as a genetic algorithm and a fuzzy rule-based
system have appeared in the literature [124].

These methods are focused on the automatic generation of fuzzy parameters from the input
data in order to design a fuzzy system. However, they still represent a static paradigm because
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they do not make use of new data that becomes available online in order to update or expand
the knowledge contained in the rule base, which would increase the accuracy of a fuzzy system
because the membership functions would be extended to cover larger areas.

Attempts to make use of online data could involve the evolution of fuzzy rules through a
variety of methods that either combine them with neural networks or incorporate genetic algo-
rithms or other techniques for updating fuzzy rules online. Linden et al. [125] used evolving
fuzzy rules and a genetic algorithm in which the rules are represented as an expression in reverse
Polish notation in order to extract rules from microarray data.

Kasabov [126, 127] proposed evolving fuzzy neural networks (EFNN) that can update their
structures online as new data arrive. This network can learn and perform reasoning, rule ex-
traction, and aggregation online. EFNN uses locally tuned elements to perform the process of
incremental online learning. When more data are available, the network must be updated by
pruning or by the aggregation of the nodes. For use in prediction applications, Lin et al. [128]
proposed a self-adaptive neural fuzzy network with a group-based symbiotic evolution process.
Their approach contains an online self-clustering algorithm that addresses the internal structure
in which the number of clusters (fuzzy rules) is equal to the true number of clusters in a given
training data set. A group-based symbiotic evolutionary learning method is used to adjust the
parameters in order to produce the desired output. Juang et al. [129] have provided a dynamic
system processing approach that uses a recurrent self-evolving fuzzy neural network with local
feedback. Their method is an online technique that involves a learning process for determining
the structures (generating the fuzzy rules online) and the parameters. A Kalman filter is used to
enable the system to learn the consequent parameters, and a gradient descent algorithm deter-
mines the antecedent parameters. Rong et al. [130] applied the functional equivalence between
a radial basis function network and a fuzzy inference system in order to develop a sequential
adaptive fuzzy inference system. Their proposed algorithm is an adaptive technique that depends
on the data input in order for a determination to be made about whether to add or remove a fuzzy
rule to or from the fuzzy rule base.

EFNNs have shown promise in a variety of applications, ranging from the extraction of fuzzy
rules associated with cancer-related genes [131] to the forecasting of sales of printed circuit
boards [132].

Previous methods attempted to make use of online input data in order to increase the range
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of a system. However, all of these methods relied on neural networks that update their structure
online as new data arrive, and they still involve a number of parameters that must be assigned so
that decisions can be made with respect to adding a new node or updating or replacing an existing
one in the neural network. This process seems to be infeasible for image segmentation because
tuning the parameters requires substantial time and effort, especially when a large number of
images are involved.

Evolving fuzzy systems are a rather recent development that has been used for a variety of
applications: fault detection, intelligent sensors, robotics, and internet-based information mining.
They are especially helpful when new data can be used to expand and improve core capabilities,
such as in the segmentation of medical images. According to [20, 21], an evolving fuzzy system
is an unsupervised method of updating the rule-base structure of a fuzzy inference system in a
non-iterative way. As additional information becomes available, the rule base evolves by adding
more rules to the basic ones that formed the initial fuzzy model. The existing rules might also be
replaced with new rules if the new ones are more descriptive. The evolution of rules in a fuzzy
inference system can occur in a variety of ways. As long as the initial fuzzy model (set of rules)
is continually updated, no preference exists with respect to how the actual update is performed.
The only reason for favouring one evolutionary strategy over others is that the preferred strategy
has demonstrated superior memory and speed characteristics. The term “evolving” may imply
that rather than retraining the initial system, the system should be updated online when new data
becomes available. The learning process can start from scratch: the first point in an online dataset
can be treated as the centre point of the cluster, and the sum of the contributions of the Euclidean
distances between that point and all other data points is called the potential of that point. When
data is captured online, its potential is calculated and the potentials of existing cluster centres are
recursively updated. The potential of the new data is compared with the existing centres and one
of the following decisions is made:

• Replace one or more existing clusters with the new data point if its potential is higher than
a specific threshold and if the new data point is close to an old centre.

• Add the new data as a new cluster if its potential is higher than a specific threshold.

In [133], a Takagi-Sugeno (TS) type of fuzzy controller with an evolving structure was proposed
as a new technique for the online identification of TS systems. The fuzzy rules of the structure
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of the controller are expanded through the use of data collected during the control process. The
fuzzy controller is thus trained in a non-iterative, recursive way. The interpretability of evolving
fuzzy systems is discussed in [134]. Recent approaches based on evolving fuzzy systems have
also been proposed in [135, 136], and in general, the idea of evolving fuzzy systems is finding its
way into a new range of applications, such as high dimensional problems [137], fault detection
[138], the modeling of non-linear dynamic systems [139] and image classification [140].

2.5 Feature Selection

Feature selection is an important step in any machine learning process. Providing relevant fea-
tures to the system will increase its ability to learn and elevate its performance. Feature selection
is the process of selecting the most relevant features out of a larger group of features so that
either redundant or irrelevant features are removed [141]. Redundant features add no new infor-
mation to the system, and irrelevant features may confuse the system and decrease its ability to
learn efficiently. In mathematical formulation, feature selection could be defined as follows: if
Y is a set of all features, then feature selection is the process of calculating a weight wi for each
feature yi ∈ Y in order of relevance. Feature selection may be conducted according to one of
four schemes [142]:

• Filter feature selection
Filter feature selection methods work directly on the available data and select features
based on the data properties. They are independent of any learning methods [143, 144].

• Wrapper feature selection
Unlike filter methods, in wrapper methods, learning methods may evaluate features but
without consideration of the structure of the classifier [144].

• Embedded feature selection
In embedded methods, the learning and feature selection aspects are related and work
together.

• Hybrid systems
These systems may be a combination of wrapper and filter approaches [145].
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Feature selection may also be categorized into three main branches: supervised, semi-supervised,
and unsupervised, as explained in the following subsections.

2.5.1 Supervised Feature Selection

In supervised feature selection, the selection of a set of features from a larger number of features
is based on one of three characteristics [142]:

• Features of a size that optimizes an evaluation measure.

• Features that meet a specific condition in the evaluation measure.

• Features that best match a size and evaluation measure.

Supervised feature selection methods deal primarily with the classification problem, in which the
class labels are known in advance [146]. Numerous studies have investigated supervised feature
selection using the measures of the information theoretic [147], Hilbert-Schmidt independence
criterion [148]. Unfortunately, no class labels are available in medical image segmentation, so,
the supervised feature selection was unsuitable for the research presented in this thesis.

2.5.2 Semi-Supervised Feature Selection

The concept of semi-supervised feature selection has emerged recently as a means of addressing
situations in which insufficient labels are available to cover the entire training data [149] or in
which a substantial portion of the data are unlabeled. Traditional supervised feature selection
techniques are ineffective under such circumstance. The concept of semi-supervised feature
selection is therefore employed for the selection of features when not enough labels are available.

A semi-supervised feature selection constraint score that takes into account the unlabeled
data is proposed in [150]. The literature also contains proposals for numerous semi-supervised
techniques based on spectral analysis [149], a Bayesian network [151], a combination of a tra-
ditional technique with feature importance measure [152], or the use of a Laplacian score [153].
Although semi-supervised selection does not require a complete set of class labels, it does need
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some. Because no labels are available in the case of this research, semi-supervised feature selec-
tion was not an option.

2.5.3 Unsupervised Feature Selection

Unsupervised feature selection is the process of selecting the most relevant non-redundant fea-
tures from a larger number of features without the use of class labels. Mitra et al. [154] proposed
an unsupervised feature selection algorithm based on feature similarity. They used a maximum
information compression index to measure the similarities between features so that similar fea-
tures could be discarded. He et al. [155] proposed an unsupervised feature selection technique
that relies on the Laplacian score to indicate the significance of the features. Zhao et al. [156]
used spectral graph theory to develop a new algorithm that unifies both supervised and unsuper-
vised feature selection in one algorithm. They applied the spectrum of the graph that contains the
information about the structure of the graph in order to measure the relevance of the features. Cai
et al. [157] proposed a new unsupervised feature selection algorithm called Multi-Cluster Feature
Selection, in which the features selected are those that maintain the multi-cluster structure of the
data. Farahat et al. [158] present a novel filter unsupervised greedy feature selection algorithm.
Their method consists of two parts: a recursive technique for calculating the reconstruction er-
ror of the matrix of features selected along with a greedy algorithm for feature selection. The
method was tested on six different benchmark data sets, and the results show an improvement
over state-of-the-art unsupervised feature selection techniques.

For the research presented in this thesis, because of the unavailability of class labels, the
previous five popular unsupervised feature selection algorithms were applied for the selection
of suitable features for training the evolving fuzzy system. These five methods, along with an
additional correlation-based method, were combined to produce an ensemble of final relevant
features that could be used for training. In the remaining of the thesis, the output matrices of
these techniques are denoted as follows:

• Mitra et al. [154]- FF (feature similarity).

• He et al. [155]- FL (Laplacian score).

• Zhao et al. [156]- FP (spectral graph).
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• Cai et al. [157]- FM (multi-cluster).

• Farahat et al. [158]- FG (greedy algorithm).

• FC (correlation method).
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Chapter 3

Evolving Rules for Image Segmentation

3.1 Introduction

The potential of evolving fuzzy systems for user-oriented image segmentation in general and for
medical imaging in particular seems not to have been intensively explored. The general approach
proposed in this thesis is based on the evolving of fuzzy rules as a continual function of user feed-
back, which entails the use of manually segmented images to serve as “gold standard images” or
“ground-truth images”. These function as the baseline for benchmarking the segmentation algo-
rithm: the more the algorithmically generated segments overlap with the gold standard images,
the higher the accuracy of the algorithm. In this work, “evolving” is understood to be an iterative
regeneration of rules as more and more images are processed, for example, in applications such
as medical image analysis. Compared to other methods, segmentation using fuzzy rules offers
the benefits of transparency and interpretability [13, 14, 15]. Fuzzy inference systems generally
consist of a set of if-then rules of the following form:
IF x1 is A1 AND x2 is A2 AND · · · AND xn is An,
THEN y is B,
where xi, y ∈ X are variables defined in corresponding universes of discourse Xi and Y , respec-
tively, and Ai and B are fuzzy subsets. For a Takagi-Sugeno fuzzy inference system [133], a
fuzzy rule is of the following general form:
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IF x1 is A1 AND x2 is A2 AND · · · AND xn is An,
THEN y = fj(x1, x2, . . . , xn), j = 1, 2, · · · , N ,
where xi and y are variables defined in corresponding universes of discourse Xi and Y , respec-
tively, and Ai is a fuzzy subset. The function fj(x1, x2, . . . , xn) is a crisp (non-fuzzy) function
of xi. In general, the function fj is defined as the weighted combination of all variables:

fj(x1, x2, . . . , xn) = w0 + w1x1 + w2x2 + · · ·+ wnxn. (3.1)

The output is then calculated by

y =

N∑
j=1

fj(x1, x2, . . . , xn)T
mj

i=1µj(xi)

N∑
j=1

T
mj

i=1µj(xi)

, (3.2)

where N is the number of fuzzy rules, n is the number of inputs (features), µj(xi) is the mem-
bership value of the i-th input xi for the j-th rule, 1 ≤ mj ≤ n, and T is a T-norm representing
the logical conjunction.

Assuming that a clustering or optimization approach is used to generate the rules from a
dataset (features plus the desired outputs), the general idea of an evolving fuzzy technique for
image segmentation can be defined as follows:

Definition [159]– The evolving fuzzy technique for image segmentation is a fuzzy rule-based
approach to image segmentation that starts with an initial rule base, developed from the classi-
fication of existing input/output data, and that continually adds input data from user feedback
in order to reclassify the data and to regenerate the rule base using both the initial and the new
data. The input to the system consists of image features that characterize the image content. The
output of system consists of either parameters for directly segmenting the image (e.g., a thresh-
old for binarization) or adjusted parameters for a parent algorithm (e.g., a similarity threshold
for region growing). The output can also be a set of weights for quantifying the quality of multi-
ple segments and thereby determining whether to switch between different algorithms or to fuse
segments generated by different algorithms.
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Definition of Rule evolving [159] – The evolving fuzzy technique for image segmentation
is based on rule evolving in which the rule base adapts to incoming data so as to reclassify and
capture the overall dataset with greater efficiency and accuracy.

Rule evolving depends, of course, on the availability of new data that is structured by the
application based on user feedback. “User” here indicates an experienced user: an “expert”.
For the purposes of this research, segmented images (gold standards) were prepared manually in
advance by an expert and introduced incrementally in order to simulate the process of user feed-
back. This method neglects the effect of intra-observer variability, (which is beyond the scope of
this thesis). Relying on proper (correct) feedback is generally safe if substantial feedback from
the same user is available, since the likelihood of mistakes need not affect the performance of the
learning system. Alternatively, feedback from multiple users could be applied.

Three proposed approaches are presented in this chapter: evolving fuzzy image segmentation
(EFIS), self-configuring EFIS (SC-EFIS), and multi-parametric SC-EFIS (MSC-EFIS).

3.2 EFIS - Evolving Fuzzy Image Segmentation

In this section, the proposed evolving fuzzy image segmentation (EFIS) framework is presented.
For any segmentation technique, EFIS can be trained and used as a means of adjusting the pa-
rameters of that technique in order to increase its segmentation accuracy. EFIS is not a single
algorithm but rather a set of algorithms. An EFIS approach typically entails three stages: an
offline phase (Algorithm 1), a training phase (Algorithm 1), and an online and evolving phase
(Algorithm 2).

3.2.1 Offline Phase

In the offline phase, the available images are scanned so that the best parameters for each image
can be calculated, and so that a region of interest (ROI) around each image segment can be
detected. The process is as follows:

• Select one or more parent algorithms to perform segmentation (in case the objective is to
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use EFIS to adjust the parameters of existing methods) and to determine the parameters to
be adjusted (Algorithm 1, DPA).

• Collect images and corresponding gold standard images (segmented by an expert user)
(Algorithm 1, RTI, and RGI).

• Determine a procedure for finding the optimal parameters for training (e.g., via brute force
search prior to training) (Algorithm 1, BSP).

• Use domain knowledge to customize a detection algorithm for finding the seed points that
are assumed to be the centre of the ROI in order to calculate the features (Algorithm 1,
DRI, and SRI).

ROI Detection

The detection algorithm should find the ROI, which is defined as a rectangle that contains the
given segment. In this research, a simple approach was developed that starts with the detection
of the position of a point (xcROI, y

c
ROI) assumed to be the centre of the ROI (i.e., region to be

segmented). This point is detected by tracing an n×n mask (e.g., 10×10 pixels) over the image
in order to calculate the sum and the standard deviation of the intensities within the mask as well
as the correlation between the mask and its neighbour. Based on empirical knowledge about
the test images (section 4.1), the ROI will be dark (most breast lesions in ultrasound images are
hypo-echoic, meaning that they are darker than surrounding tissue). The segments also exhibit
relatively low standard deviations. The mask with the minimum sum and standard deviation is
designated to contain the seed point. If the minimum sum and standard deviation are found in
more than one mask, the correlation coefficients between those masks and the masks preceding
them are used as a basis for the selection of a single mask. For every n×nwindow, the minimum
sum, standard deviation, and in some cases, correlation, are thus considered in the designation
of the position of the ROI centre (xcROI, y

c
ROI). The algorithm begins by defining an ROI around

this point and then enlarges it in small steps. This process stops when the standard deviation of
one region becomes greater than or less than the standard deviation of the previous region by a
specified percentage (e.g., 2%). The window at its next-to-last dimension is then considered to
be the ROI. Of course, ROIs are different sizes for different images. Fig. 3.1 shows the detected
ROI RO (large rectangle).
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Algorithm 1 Offline and Training Phases Algorithm
1: ———— Offline phase ————
2: DPA – Determine the parent algorithm(s) (e.g., global thresholding) and its parameters
p1, p2, · · · , pk.

3: RTI – Read the available images I1, I2, · · · , INI
.

4: RGI – Read the gold standard images G1, G2, · · · , GNI
.

5: BSP – Via exhaustive or trial-and-error comparisons with gold standard images, determine
the best segments S1, S2, · · · , SNI

and the best parameters p∗1, p
∗
2, · · · , p∗k that generate the

best segments and store them in matrix T .
6: DRI – Determine ROIs RO around each segment.
7: SRI – Save ROIs for each image.
8: ———— Training phase ————
9: DTI Determine the available training images I1, I2, · · · , Ir with ROIs RO1 , RO2 , · · · , RONR

.

10: INI – Create two empty matrices: M for input and O for output.
11: for each ROI do
12: SNS – Determine the number of SIFT points NF inside ROi

(e.g. NF = 10).
13: for each SIFT point do
14: EXF – Extract features f1, f2, · · · , fNT

from the SIFT point’s neighbourhood and store
them in FT .

15: AFM – Append matrix FT to M .
16: AOM – Append the optimum parameters that belong to ROi

to O.
17: end for
18: GFR – Generate fuzzy rules RF1 , RF2 , · · · from the input matrix M and the output matrix

O (e.g., using clustering).
19: end for

3.2.2 Training Phase

In this phase, the set of training images is selected, and the features are extracted from their
detected ROIs and used to train the fuzzy system as follows:

• Determine the training images (Algorithm 1, DTI).

• Determine the number and the locations of scale invariant feature transform (SIFT) points
inside the detected ROI (Algorithm 1, SNS). SIFT is used to locate 10 points within the
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Figure 3.1: ROI detected (large rectangle), with three SIFT points indicated crosses within the
smaller rectangle for feature calculation.

ROI (Fig. 3.2). Fig. 3.1 depicts multiple seed points (white crosses). Fig. 3.2 shows a
sample case for seed point detection inside an ROI. This process is as follows:

1. Pass the image to the SIFT, which detects a set of NA points inside RO, along with
their SIFT descriptors DS .

2. Sort the NA points in descending order according to the mean value of their SIFT
descriptors DS .

3. Return the first NF points (e.g., NF = 10) that are separated from each other by 20
pixels in each direction.

• Establish a procedure for extracting features from the ROIs detected (Algorithm 1, EXF).

Feature Extraction

To characterize the image, multiple features inside the detected ROI are calculated (Fig.
3.1). For each seed point delivered by the SIFT, a neighbourhood is constructed around the
seed point, e.g., 40 × 40 pixels (small rectangles centered around the crosses in Fig. 3.1)
and a set of features are extracted in those neighbourhoods.
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Figure 3.2: Example of seed point detection inside an ROI: 10 SIFT points are detected inside
the cropped ROI.

EFIS hence extracts NF (e.g., NF = 10) different data points from the same image. Each
data point is represented as a single row consisting of the following features:

– The mean graylevel (an indication of darkness)

– The standard deviation (intensity variation)

– A set of texture features from the gray level co-occurrence matrix (GLCM) in the
directions of 0◦, 45◦, 90◦, and 135◦.

The texture features are as follows:

– Contrast (CON ): a measure of the difference in intensity between a pixel and that of
its neighbours.

– Correlation (COR): a measure of how correlated a pixel is to its neighbours.

– Energy (EN ): the sum of squared elements in the GLCM.

– Homogeneity (HOM ): a value that measures the closeness of the distribution of the
GLCM elements to the GLCM diagonal.

• In conjunction with the optimum parameters, the extracted features are used in order to
generate the initial fuzzy rules (Algorithm 1, GFR). For the generation and implementation
of the fuzzy inference system, the Matlab function “genfis3” was used with a Sugeno
inference mechanism [160] and FCM for clustering. Gaussian membership functions were
used for input, and linear membership functions for the output.
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A general example of the rules generated is as follows:
IF (µ IS µ1) AND (σ IS σ1) AND (CON0 IS low) AND (COR0 IS high) AND (EN0 IS
medium) AND (HOM0 IS high) AND (CON45 IS low) AND (COR45 IS low) AND (EN45

IS medium) AND (HOM45 IS medium) AND (CON90 IS high) AND (COR90 IS high) AND
(EN90 IS low) AND (HOM90 IS low) AND (CON135 IS high) AND (COR135 IS medium)
AND (EN135 IS medium) AND (HOM135 IS high) THEN (T ∗ IS T1 ), where CON0 is the
contrast at 0◦, etc.

3.2.3 Online and Evolving Phase

In this phase, the testing and the evolving process are performed for each testing image as follows
(Fig. 3.3):

• Fill a matrix FS with extracted features (Algorithm 2, EXF).

• Perform fuzzy inference using FS , and a parameter vector TO (size 1 × 10, parameter for
each row in FS) is returned and the final output parameter T ∗ is calculated (Algorithm 2,
PFI and GSO).

• Apply T ∗ to segment the image (Algorithm 2, APS).

• Store the resulting segment and then display it to the user for review and eventual correc-
tion (Algorithm 2, FED).

• Calculate the best parameter for the current image using the user-corrected segment and
store it in TB (Algorithm 2, DPA).

• Following pruning, append a revised version of features FS , thresholds TO to M and O
(Algorithm 2, PRU and AIS).

Pruning

Compared to streamed data, the number of images a clinical expert can process in daily
practice is quite small. It may take the expert several weeks or months just to process
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several thousand images that lead to the addition of several thousand rows to the M matrix
and the generation of a significant number of rules. It seems that “memory” is not a
critical aspect; nonetheless, a “pre-pruning” stage for EFIS was implemented and tested.
Once a new image is processed, a new row is added to the M matrix only if the features
and corresponding output parameters have not been previously observed. The difference
between an input row (features plus output) and all rows in M , result in the addition of the
information from the new image only if it is not identical or very similar. The Euclidean
distance is used as a parameter for the application of the pruning process.

• Regenerate the current fuzzy system using the updated M , and O matrices (Algorithm 2,
GFR).

• Repeat the process as long as new images are available.

Figure 3.3: The online and evolving phase emphasizing the expert feedback loop.

EFIS must be designed and trained for specific algorithms and image categories. For the experi-
ment presented in this thesis, the following component was designated:

• Parent algorithms: global thresholding (with a static/fixed rule base), region growing, and
statistical region merging
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Algorithm 2 Online and Evolving Phase Algorithm
1: ———— Online phase ————
2: LFR – Load the fuzzy rules RF1 , RF2 , · · · and the matrices M and O.
3: DTI – Determine the available testing images I1, I2, · · · , INE

with ROIs
RO1 , RO2 , · · · , RONE

.
4: for each ROI do
5: SNS – Determine the number of SIFT points NF inside ROi

(e.g. NF = 10).
6: for each SIFT point do
7: EXF – Extract features f1, f2, · · · , fm from the SIFT point’s neighbourhood and store

them in FS .
8: end for
9: FS of NF ×NT .

10: PFI – Perform fuzzy inference to generate output:
TO = FUZZY-INFERENCE(RF1 , RF2 , · · · , FS).

11: TO of 1×NF .
12: GSO – Generate a single output T ∗ from TO using the mean of TO (µTO

), the median of
TO (MTO

), the fuzzy membership (mTO
) of the standard deviation of TO (σTO

) using a
Z-shaped function (zmf )
mTO

= zmf(σTO
, [10, 30]), and

T ∗ = mTO
∗ µTO

+ (1−mTO
) ∗MTO

13: APS – Apply the parameters to segment Ii
14: FED – Display the segment S and wait for the user feedback (user generates a gold stan-

dard image G by editing S)
15: ———–Evolving phase—–
16: DPA – Determine the best output(s) p∗1, p

∗
2, · · · , p∗k (via comparison of S with G) and store

it in TB.
17: PRU – Pruning step: Discard row from FS , TB that are similar to rows in M and O,

respectively.
18: AIS – Append the updated matrices FS and TB to M and O respectively.
19: GFR – Generate fuzzy rulesRF1 , RF2 , · · · from the updated matricesM andO (e.g., using

clustering).
20: end for

• Parameters: thresholds (section 4.3.1)

• Images and corresponding gold standard images: breast ultrasound images collected online

• Procedure for finding optimal parameters: brute force (or trial-and-error) via comparison
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with gold standard images

3.2.4 EFIS for Single Parameter

EFIS can be used for the learning of a single output parameter, which can be used to perform
segmentation directly (e.g., for image thresholding) or as an adjustable parameter of a parent
algorithm. If the parent algorithm has only one parameter, the operating rules of the following
general form:
IF x1 is A1 AND x2 is A2 AND · · · AND xn is An,
THEN y is B.
With n features to adjust a threshold τ ,
IF f1 is F1 AND f2 is F2 AND · · · AND fn is Fn

THEN τ is T .
Subsection 4.3.1 explains the use of global thresholding (calculating a threshold based on the
image histogram), region growing (RG), and statistical region merging as examples of parent
algorithms in which a single parameter is adjusted.

3.2.5 EFIS for Fusion and Switching

This subsection explains the use of EFIS for enabling the learning of the weights for three meth-
ods. Because weight quantifies how accurately individual methods perform for given images, an
evolving switch can be designed to select the method with the highest weight. The weights for
the same image for all methods are determined at the same time and under the same conditions,
i.e., using the same preprocessing. A fusion algorithm, called STAPLE [161] is employed to
incorporate the EFIS output as fusion weights. The output parameters can therefore serve as
the mechanism for a given algorithm with respect to the selection of the parent algorithms to be
used, or to fuse the results from different parent algorithms. The EFIS approach builds two new
configurations or versions:

• Switching EFIS (EFIS-S) results in switches among three different thresholding methods
based on a fixed (or unadjusted) parameter. The three methods selected were the Niblack
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method [29], statistical region merging (SRM) [47], and region growing RG. The results
of the method with the highest weight is selected as the output.

• Fusion EFIS (EFIS-F) fuses the results of the three different segmentation methods using
the weights generated and the STAPLE algorithm [161]. The weights are first mapped
into a specific number of copies (one copy per each 20% of the weight (Algorithm 3)) to
be fused by the STAPLE algorithm, after which, weights below 50% are ignored. The
STAPLE algorithm, which is an optimization method, can extract a contour from multiple
binary segments in order to establish a “consensus segment.”

Algorithm 3 Conversion Weights into Number of Copies for Each Segment to be Fused by
STAPLE

1: Get the weights: W1,W2,W3 // e.g., (0.90, 0.80, 0.60)
2: Normalize: Wi =

Wi

Wmin
− 1 // e.g., (0.5, 0.3, 0)

3: Copies(Wi) = round(Wi

0.2
) + 1 // e.g., (4, 3, 1)

Assuming NT features, weights wi can be generated so that they quantify the level of confidence
in the results of a given method for a given image, as follows:
IF f1 is F1 AND f2 is F2 AND · · · AND fn is Fn,
THEN w1 is W1 AND w2 is W2 AND w3 is W3,
or
IF f1 is F1 AND f2 is F2 AND · · · AND fn is Fn,
THEN W = [W1 W2 W3].

The Jaccard index J (equation 4.1, section 4.2) for each image (during training) can be used
as the weight for that method. For new images, EFIS-F infers a weight for each method. More
images were used to train EFIS-S and EFIS-F than to train EFIS because extra parameters must
be learned.

3.3 Disadvantages of EFIS

EFIS has some disadvantages that prevent its use as a general approach. The features are calcu-
lated from a rectangles around a set of points assigned by the SIFT inside an ROI. This process
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requires an ROI to be detected for each image, and EFIS uses a customized algorithm for detect-
ing the ROI, which is not appropriate for all images. The number of SIFT points detected and
used inside the ROI is fixed and may or may not be sufficient to have an efficient feature extrac-
tion process. The area around each SIFT point is also a fixed size, which may not be efficient
for feature extraction if other types of images are processed. EFIS also extracts a fixed number
of features from each rectangle around each SIFT point, which may not be effective for different
categories of images. No pruning process is applied in the EFIS training phase. This process
occurs only in its online phase and only with fixed pruning parameters that remain unchanged
regardless of the current segmentation technique. In calculating the final threshold from a thresh-
old matrix, EFIS uses a fusion process but with a fixed parameter range that may work well for
one segmentation technique but be useless for others.

3.4 Self-Configuring EFIS (SC-EFIS)

This section introduces a new version of EFIS, called self configuring evolving fuzzy image
segmentation (SC-EFIS) representing a higher level of automation than that offered by EFIS.
SC-EFIS was developed in an attempt to provide solutions for the problems associated with
EFIS, as explained in section 3.3. A detailed explanation of the proposed SC-EFIS algorithm is
presented in this section. It consists of three phases: the preprocessing phase, the training phase,
and the online and evolving phase.

3.4.1 Preprocessing Phase

In the preprocessing phase, all available images are processed in order to determine two crucial
elements: the size of the area around the SIFT points, and the final number of features to be used
for the current type of image.

The Z × Z rectangle around each SIFT point (Fig. 3.4) to be used for feature calculation
is determined based on the sizes of all available images (algorithm 4, RSI and DSI). Following
this step, the set of features that should be used for the available images is selected from a large
number of features which are calculated for each image from a rectangle around the SIFT points
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located in the entire image (since there is no longer an ROI) (Fig. 3.5). This process starts
with a determination of the number of SIFT points NF that should be used in the current image
(algorithm 4, DSP). This step is identical to the procedure used in the EFIS training phase, as
previously explained in subsection 3.2.2, with three exceptions: the SIFT points are detected
inside the entire image, the final number of SIFT points NF is not fixed, and the final NF points
returned are separated from each other by Z in each direction.

Figure 3.4: Size of the rectangle around a SIFT point

For all NF points, features are extracted from a rectangle RC around each point, based on the
discrete cosine transform (DC) of RC , the gradient magnitude (GM ) of RC , the approximation
coefficient matrix AC of RC (computed using the wavelet decomposition of RC), and the SIFT
descriptors DS . The following set of features is extracted (Algorithm 4, EXF and EIF):

1. The mean, median, standard deviation, co-variance, mode, range, minimum, and maxi-
mum of RC , DCRC

, and ACRC
, and GMRC

(32 features)

2. The mean, median, standard deviation, co-variance, range, minimum, maximum, and zero
population of DS (eight features) with the minimum of DS changed to be the minimum
number after zero

3. The contrast, correlation, energy, and homogeneity of the gray level co-occurrence matri-
ces (computed in four directions 0 ◦, 45 ◦, 90 ◦, and 135 ◦) of RC , DCRC

, and ACRC
, and

GMRC
(64 features)
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4. The contrast, correlation, energy, and homogeneity of the gray level co-occurrence matri-
ces (computed in only one directions of 0 ◦) of DS (four features)

5. A feature matrix F1 of size NF ×NT generated for I (in this case NT = 108)

Figure 3.5: Feature extraction process.

The next step is to calculate eight different statistical measures (mean, median, mode, standard
deviation, co-variance, range, minimum, and maximum) from F1. The resulting matrix F2 (size
8×NT ) is returned, in which each row represents a statistical measure (Algorithm 4, CSF). F2 is
then appended to the feature matrix F3 (Algorithm 4, AF I). After all images are processed, the
feature matrix F3 is formed from the features of all images, with each image being represented
by eight rows.

In the last step, the final set of features that should be used in the current type of image are
selected from F3 (Fig. 3.6). This process starts with the removal of very similar features in F3

based on the calculation of the correlations between all features in F3. Hence, if two features
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are correlated with a correlation coefficient of at least 99%, then one is kept and the other is
discarded. The output of this process is a matrix F4 (Algorithm 4, RSF).

Algorithm 4 Preprocessing Phase Algorithm
1: RTI – Read the available images I1, I2, · · · , INI

.
2: RSI – Read the size of the images RW1 , RW2 , · · · , RWNW

, CL1 , CL2 , · · · , CLNC
.

3: DSI – Determine the size of the rectangle
Z = max(median(RW1 , RW2 , · · · , RWNW

),median(CL1 , CL2 , · · · , CLNC
)) ∗ 10%.

4: CFI – Create an empty initial matrix F1 and an empty final matrix F ∗.
5: for each image do
6: DSP – Determine the number of SIFT points NF that should be used in image Ii.
7: for each SIFT point do
8: EXF – Extract features f1, f2, · · · , fNT

(e.g., NT = 108) from the Z × Z rectangle
around each SIFT point (Fig. 3.4).

9: AIF – Append the row to the initial matrix F1, which becomes of size NF ×NT .
10: end for
11: CSF – Calculate ST (e.g., ST = 8) different statistics from F1 and assigned in F2.
12: AFI – Append F2 of the current image of size ST ×NT to the feature matrix F3.
13: FMS – The feature matrix F3 becomes of size L×NT , L = ST ∗NI .
14: end for
15: RSF – Remove very similar features from F3 (e.g., at least 99% correlated). F4 is a reduced

matrix of F3 of size L×NT1 , NT1 ≤ NT .
16: DNF – Determine the number of features by discarding similar ones from F4 (e.g., at least

90% corelated). FC is a feature matrix generated from F4 of size L×NT2 , NT2 ≤ NT1 .
17: UFS – Use k (e.g., k = 5) different unsupervised feature selection methods to generate k

different feature matrices in addition to FC : FP , FM , FF , FG, and FL. All of these matrices
are of size L×NT2 .

18: SFF – Select any features found in at least half of the matrices to form F5 of size L × NT3 ,
NT3 ≤ NT2 .

19: FFM – Generate a final feature matrix F ∗ from F5 by removing similar features (e.g., at least
90% correlated). F ∗ is of size L×NL, NL ≤ NT3 .

For any unsupervised feature selection technique, the number of features NT2 that should be
returned must be established in advance. A correlation with a threshold of 90% is used in order to
determine the number of features that should be returned from F4 (Algorithm 4, DNF). Following
this process, FC is the resulting feature matrix. In addition to FC , five different unsupervised
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feature selection methods are also used for feature selection. The matrix F4 and the variable NT2

are passed to the methods, and each method returns a different matrix with its selected features.
The resulting matrices are FG [158], FL [155], FF [154], FP [156], and FM [157] (Algorithm
4, UFS). For all features in the six matrices, any found in at least three of the six methods are
selected and appended to a matrix F5 (Algorithm 4, SEF). The final matrix F ∗ is generated based
on the discarding of features from F5 that are at least 90% correlated (Algorithm 4, FFM).

Determine the 
Number of SIFT 

points 

All Images 

Extract Features 

Discard 99% 
correlated features 

Determine the size of the 
rectangle around SIFT 

points 

Determine the number of features 
(Discard 90% correlated )  

Multi-
cluster FM 

Spectral FP 
Correlated 

Fc 
Laplacian FL Similarity FF Greedy FG 

Combine Features 

Final feature matrix  

Figure 3.6: SC-EFIS preprocessing phase.

3.4.2 Offline Phase

In the offline phase, the best parameters for segmenting each image are calculated through an
exhaustive search and then stored in matrix T (Algorithm 5, BSP). The process is performed as
explained in subsection 3.2.1.
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3.4.3 Training Phase

In this phase, the features selected for the training images are used for the training of the fuzzy
system. A set of images are randomly selected for training (Algorithm 5, DTI). A matrix M is
created and filled with the rows from F ∗ that belong to the training images (Algorithm 5, FRM
and AIT). A matrix O is created and filled with the rows from T that belong to the training
images (Algorithm 5, FRO and AIT). A pruning step is performed starting from the second
training image in order to ensure that M and O do not contain similar rows (Algorithm 5, PRU).
The pruned matrices M and O are used for the generation of the initial fuzzy rules (Algorithm
5, GFR). The initial fuzzy system is built through the creation of a set of rules using the Takagi-
Sugeno approach to describe the input and output matrices. Based on NL different features from
the input and one optimal parameters from the output, a set of rules is generated whereby the
features are in the antecedent part and the optimal parameters are in the consequent part of the
rules.

3.4.4 Online and Evolving Phase

In the online and evolving phase, the testing process is performed, and the results are saved.
The evolving process is also performed in order to increase the capabilities of the proposed
system. For each test image, a matrix FS is filled with the rows from F ∗ that belongs to the
test image (Algorithm 6, FSM). A fuzzy inference using FS is applied, and a parameter vector
TO is returned (size 1 × 8) and the final output parameter T ∗ is calculated (Algorithm 6, PFI
and GSO). The resulting parameter is used for the segmentation of the image (Algorithm 6,
APS), and the resulting segment is stored and then displayed to the user for review and eventual
correction (Algorithm 6, FED). The best parameter for the current image is then calculated based
on the user-corrected segment and is stored in TB (Algorithm 6, DPA). A pruning of FS and TB
is performed as described in subsection 3.2.3, with the exception that the Euclidean distance
thresholds are different for different techniques. After pruning, a revised versions of FS and
TB are appended to M and O (Algorithm 6, PRU and AIS). In the final step, the current fuzzy
system is regenerated using the updated M and O matrices (Algorithm 6, GFR), and the process
is repeated as long as new images are available.
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Algorithm 5 Offline and Training Phases Algorithm
1: ———— Offline phase ————
2: DPA – Determine the parent algorithm(s) (e.g., global thresholding) and their parameters
p1, p2, · · · , pk.

3: RGI – Read the gold standard images G1, G2, · · · , Gn.
4: BSP – Via exhaustive or trial-and-error comparisons with gold standard images, determine

the best segments S1, S2, · · · , Sn and the best parameters p∗1, p
∗
2, · · · , p∗k that generate the

best segments and store them in matrix T .
5: ———— Training phase ————
6: DTI – Determine the available training images I1, I2, · · · , INR

.
7: INI – Create two empty matrices M for input and O for output.
8: for i=1:NR do
9: FRM – Fill matrix FT with rows from matrix F ∗ that belong to the training image Ii

(FT = F ∗(Ii)).
10: FRO – Fill matrix TR with rows from matrix T that belong to the training image Ii

(TR = T (Ii)).
11: if i=1 then
12: AIT – Append FR to M , and TR to O.
13: else
14: PRU – Pruning step: Discard rows from FR and TR that are similar to rows in M and

O, respectively.
15: AIT – Append the updated matrices FR and TR to M and O respectively.
16: end if
17: end for
18: GFR – Generate fuzzy rules RF1 , RF2 , · · · from the input matrix M and the output matrix O

(e.g., using clustering).

3.5 Multi-Parametric SC-EFIS

SC-EFIS can also applied for multiple output parameters, which can be used to perform segmen-
tation directly (e.g., multi-thresholding), or as the adjustable parameters of a parent algorithm.
In such cases, the system is called multi-parametric SC-EFIS (MSC-EFIS) with operating rules
such as the following:
IF x1 is A1 AND x2 is A2 AND · · · AND xn is An,
THEN y1 is B1 AND y2 is B2 AND · · · .
With n features to adjust the parameters p1, p2, · · · ,

52



Algorithm 6 Online and Evolving Phase Algorithm
1: LFR – Load the fuzzy rules RF1 , RF2 , · · · and the matrices M , O, and F ∗.
2: DSI – Determine the available testing images I1, I2, · · · , INE

.
3: for i=1:NE do
4: FSM – Fill matrix FS with the rows from matrix F ∗ that belong to the testing image Ii

(FS = F ∗(Ii)).
5: PFI – Perform fuzzy inference to generate output:

TO = FUZZY-INFERENCE(RF1 , RF2 , · · · ).
6: GSO – Generate a single output T ∗ from TO using the mean of TO (µTO

), the median of
TO (MTO

), the fuzzy membership (mTO
) of the standard deviation of TO (σTO

) using a
Z-shaped function (zmf )
mTO

= zmf(σTO
, [(µTO

∗0.10) (µTO
∗0.20)]), and T ∗ = mTO

∗µTO
+(1−mTO

)∗MTO
.

7: APS – Apply the parameters to segment Ii.
8: FED – Display segment S and wait for user feedback (user generates a gold standard

image G by editing S)
9: ———– *Rule Evolution - Invisible to User* ———–

10: DPA – Determine the best output p∗1, p
∗
2, · · · , p∗k (via comparison of S with G) and store it

in TB.
11: PRU – Pruning step: Discard rows from FS , TB that are similar to rows in M and O,

respectively.
12: AIS – Append the updated matrices FS and TB to M and O, respectively.
13: GFR – Generate fuzzy rulesRF1 , RF2 , · · · from the updated matricesM andO (e.g., using

clustering).
14: end for

IF f1 is F1 AND f2 is F2 AND · · · AND fn is Fn,
THEN p1 is P1 AND p2 is P2 AND · · · .

As an example, this section describes the use of SC-EFIS for adjusting more than one param-
eter in a normalized cut (N-cut) image segmentation technique [69]. An N-cut technique involves
multiple parameters that should be tuned manually in order to achieve maximum segmentation
accuracy. From those available, four different N-cut parameters are selected to be adjusted using
the proposed algorithm:

• The number of segments (NS): This parameter indicates the number of different regions
into which the image will be divided. It has a default value of 5 and can range from 5 to
20.
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• The radius (RD): This parameter has a default value of 10 and a range from 8 to 20.

• The rate (RA): This parameter has a default value of 0.3 and a range from 0.2 to 0.5.

• The edge variance (EV ): This parameter has a default value of 0.1 and a range from 0.1 to
0.5.

The last three parameters, RD, RA, and EV , are used to calculate the similarity matrix. The
specified ranges are determined experimentally based on the downloaded code 1. This code
is subject to a number of problems and the specified ranges are the ranges that do not cause
problems in the code. Regarding the NS parameter, three different default values are found in
the code: 5, 8, and 10. However, the default number 5 is contained in the start demo file. For
this reason, all operations performed in this research, such as the process for determining the
optimum values explained in subsection 3.5.2, are based on the use of 5 as the default NS value.
However, in the result section, the proposed system is compared with three different results for
the default values using NS = 5, NS = 8, and NS = 10.

Different values of these parameters will produce different segmentation results, even for
the same image. To achieve maximum segmentation accuracy, these parameters may therefore
be fine-tuned manually for every set of images. To achieve maximum segmentation accuracy
for each image, SC-EFIS is thus used to tune these parameters for each image based on its
features. However, in some image data sets, keeping the default value of one parameter may be
more efficient than training and adjusting that parameter. Different types of images may hence
require the adjustment of four parameters while others may require three, two, or even only one
parameter adjustment. The number of parameters that should be adjusted is determined based
on the available data. The first step in MSC-EFIS is therefore to decide how many parameters
should be adjusted for the available data set. SC-EFIS for the N-cut entails two main stages:

• Determining the number of parameters to be adjusted.

• Adjusting the selected parameters.

1 http://timotheecour.com/software/ncut/ncut.html
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3.5.1 Determining the Number of Parameters to Be Adjusted

In this stage, the number of parameters that should be adjusted for the available data is deter-
mined. First, SC-EFIS is used to train and adjust each parameter alone. Based on a comparison
of the results with the default values, the number of parameters that should be adjusted from the
four possible parameters is determined. The aim of this process is to establish, based on the data
available, whether a parameter is worth adjusting or whether it is preferable to leave it at the
default value.

SC-EFIS is applied to adjust each parameter in an independent system, and the final number
of parameters that should be adjusted for the current data is determined based on the results. The
results for each parameter are compared with the default results. The number of parameters that
should be adjusted for the data available is determined based on this comparison. SC-EFIS will
therefore have four versions: one for each parameter. For each parameter, the process consists of
four phases: preprocessing, offline, training, and online and evolving. Each phase is the same as
described for the overall SC-EFIS process (section 3.4).

3.5.2 Adjusting the Selected Parameters

In this stage, SC-EFIS is used to adjust the parameters selected in the previous stage. This stage
is comprised of three phases:

• Offline phase
In this phase, the optimum values for the combination of the selected parameters are cal-
culated.

• Training phase
In this phase, features are extracted, and an initial fuzzy system (rule base) is generated in
order to train the set of parameters selected.

• Online and evolving phase
In this phase, each incoming image is segmented using the parameters estimated by the
fuzzy system. The proposed method is also used to update the N-cut parameters assigned
by the system based on the segment provided by the expert. These updated parameters,
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along with the features extracted from the test image, are used to evolve the existing fuzzy
system. Each image encountered online is thus not only segmented by the system but also
helps improve the system by facilitating the enhanced accuracy of the segmentation of
future images (Fig. 3.7). Of course, the expert feedback, in the form of the provision of
the ideal segmentation, is a crucial factor that can be assumed as a given in the medical
field.

All images 

Training 
images 

Testing images 

SIFT 

Build the initial 
fuzzy system 

Find 
corresponding 

optimum 
parameters 

Update 
parameters 

Evolve fuzzy rules 

Have expert 
correct the 

result 

Segment the 
image (N-Cut) 

Features  

Calculate the  
best parameters 

SIFT Apply the rules 

Parameters 

Features 

Store the result of 
current image 

the optimum N-cut 
parameters are calculated 

Figure 3.7: Proposed approach for the parameter adjustment of N-cut segmentation using evolv-
ing fuzzy rules.

The Offline Phase

After the optimum values are calculated for each parameter (subsection 3.5.1), the best values for
the combination of selected parameters are calculated. An optimization technique is used for the
calculation of the best N-cut parameters using the optimum values calculated for each parameter
(subsection 3.5.1) as the initial input, as follows:
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• Simulated annealing (SA) (with 10 iterations) [162, 163] is used to calculate the optimum
parameters.

• NSO
, RDO

, and RAO
are provided as initial input for the SA.

• The optimization function is represented by

Minimize f = 100− |B
⋂
G|

|B
⋃
G|

(3.3)

subject to:
5 ≤ NS ≤ 20,
0.2 ≤ RA ≤ 0.5, and
8 ≤ RD ≤ 20.

• The output of the SA are NSF
, RAF

, and RDF
which are stored to be used in the training

phase.

Training Phase

The training phase is identical to the SC-EFIS training phase for a single parameter (subsection
3.4.3), with the exception that the set of rules is generated based on three optimal parameters
from the output rather than one.

Online and Evolving Phase

In the online and evolving phase, the remaining images are used for testing and evolving the
system. For every incoming image, the parameters of the N-cut algorithm are estimated by the
fuzzy system. The segmented image is then provided to an expert for correction. The parameters
assigned by the system are updated using an optimization technique based on a comparison with
the segment provided by the expert. The features extracted from the image, and the updated
parameters are used for updating the existing system with the addition of the new information.
The parameters of the next image are thus estimated using the updated system. Therefore, as
long as new images are provided, and the results can be inspected by an expert, the scope and
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vision of the system is continually increased through new information. This process enhances the
ability of the system to estimate parameters for subsequent images. This phase is identical to the
SC-EFIS online and evolving phase explained in subsection 3.4.4, with the following exceptions:

• The matrix TE that results from the fuzzy inference is of size 8 × 3, with each column
representing the results of one parameter. The trained fuzzy rules estimate a value for each
parameter for each row in the feature matrix FS . Because FS consists of eight rows, the
size of the returned matrix TE is 8× 3.

• The final output N∗S , R∗D and R∗A are calculated for each parameter in the same way as
SC-EFIS (Algorithm 6, GSO).

Prior to their use in the N-cut algorithm, N∗S and R∗D are rounded whereas R∗A is rounded
and normalized to values less than one.

• If the value of any parameter is greater than or less than its range, it is assigned to the upper
or the lower value of its range, respectively.

The final parameters calculated are used to segment the current image using the N-cut technique
(Algorithm 7, APS). Most of the parameters generated by the initial fuzzy system may not the
best ones, especially if a small number of images have been used to generate the first set of rules.
For its accuracy to increase, the system therefore requires continual updating. This process
starts with the resulted segment S being provided to an expert for correction (assuming that the
corrected segment is the available gold standard image G previously segmented by an expert)
(Algorithm 7, FED). The updating process is based on the segment G provided by the expert.
In other words, the updating technique searches for values of the parameters NS , RD and RA

that generate a segment more closely resembling to G. The corrected segment is then used for
updating the current parameters, as explained in subsection 3.5.2, with the following exceptions
(Algorithm 7 OUP):

• The input to the SA techniques are the parameters N∗S , R∗D , and R∗A (Algorithm 7, OUP)

• The output of the SA technique (NSB
, RAB

, and RDB
) is appended to the TB matrix and

used for the evolving/retraining of the existing fuzzy system
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Following the pruning process, the final input and output matrices are used for the evolution of
the existing fuzzy rules (Algorithm 7, PRU, AIT, and RFR). The N-cut parameters of the next
image are then estimated using the evolved fuzzy system.

Algorithm 7 Online and Evolving Phase Algorithm
1: LFR – Load the fuzzy rules RF1 , RF2 , · · · and the matrices M , O, and F ∗.
2: DSI – Determine the available testing images I1, I2, · · · , Is.
3: for i=1:NE do
4: FSM – Fill matrix FS with the rows from matrix F ∗ that belong to the test image Ii

(FS = F ∗(Ii)).
5: PFI – Perform fuzzy inference to generate output(s):

TE = FUZZY-INFERENCE(FS). TE = [NSi
, RAi

, RDi
]

6: The size of each parameters NSi
, RAi

, RDi
= 1× 8.

7: COP – A single output N∗S , R∗D , and R∗A is calculated for each parameters from
NSi

, RDi
, RAi

using fusion (Algorithm 6, GSO).
8: APS – Use N-cut with the parameters N∗S , R∗D , and R∗A to segment Ii.
9: FED – Display segment S and wait for user feedback (user generates a gold standard

image G by editing S).
10: ———– *Rule Evolution - Invisible to User* ———–
11: OUP – Input the parametersN∗S ,R∗D , andR∗A withG to the simulated annealing optimiza-

tion technique to estimate the best output NSB
, RAB

, and RDB
(that generate a segment

close to G), and store it in TB.
12: PRU – Pruning step : Discard rows from FS and TB that are similar to rows in M and O

respectively.
13: AIT – Append the updated matrices FS and TB to M and O, respectively.
14: RFR – Regenerate fuzzy rules RF1 , RF2 , · · · from the updated matrices M and O (e.g.,

using clustering).
15: end for

3.6 Summary

This chapter has presented a detailed explanation of the proposed approaches: EFIS, SC-EFIS,
and MSC-EFIS. The basic EFIS approach is designed for the adjustment of a single parametric
segmentation techniques. EFIS can be used to improve the performance of any segmentation
technique by adjusting its parameter based on the image features. Along with the optimum values

59



of the parameter, these features are employed in order to train a fuzzy system and create fuzzy
rules. The fuzzy rules then become increasingly evolved online as additional images become
available. EFIS is also used for switching between the results of more than one segmentation
technique and for fusing the individual results. Although EFIS is an efficient approach, it seems
to be a technique customized for breast ultrasound images. The several fixed parameters in EFIS
limits its suitability for use as a general approach.

An improved, highly automated version of EFIS called SC-EFIS is proposed as a means of
overcoming the problems associated with EFIS. SC-EFIS is a general approach that depends
on the available images for determination of the set of parameters that would be fixed in EFIS.
SC-EFIS has also includes a multistage feature selection approach that enables the selection of
the valuable features for the current type of images. In the third proposed approach, a modified
version of SC-EFIS called MSC-EFIS allows the adjustment of more than one parameter. As an
example, the N-cut segmentation technique was used for testing the proposed MSC-EFIS.
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Chapter 4

Experimentation and Results

This chapter describes the experiments conducted in order to test evolving fuzzy image segmen-
tation (EFIS), self configuring EFIS (SC-EFIS), and multi-parametric SC-EFIS (MSC-EFIS). A
set of 35 breast ultrasound images and 33 bladder magenetic reasoning (MR) images were em-
ployed to train and test the approaches. Segmentation of the breast ultrasound or bladder MR
images is challenging, especially with a simple approach such as thresholding. A large number
of tests were run in order to verify the performance of the algorithms.

To build the initial fuzzy system, for each training set, a set of five randomly selected images
from the data set were used for the extraction of the features along with the optimum parame-
ters as output. This initial fuzzy system was then used to test the proposed methods using the
remaining images. The initial fuzzy system evolves as long as new, previously unseen images
are input to the system and as long as the segmentation results produced by the algorithms are
corrected by an expert user in order to generate optimal parameter values. This process drives the
evolution of the fuzzy rules for different segmentation techniques (e.g. region growing, global
thresholding, statistical region merging, and normalized cut). During the experimentation, the
training-testing cycle was repeated many times. The results of ten different training sets for each
segmentation technique in each approach are presented in order to verify the efficiency of the
proposed approaches. The number of rules was monitored during the evolution process in order
to provide additional information about the algorithm. As well, to verify the convergence of the
algorithm, one training set was chosen from the ten training sets and used to illustrate for each
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image the improvement from the test set after multiple evolving iterations. All experiments are
performed using Matlab. EFIS was developed using Matlab 32-bit, while other experiments used
Matlab 64-bit. The experimental results using an image dataset for four different segmentation
techniques (region growing, global thresholding, statistical region merging, and normalized cut)
are presented.

4.1 Image Data

The first target dataset was developed from 35 breast ultrasound scans that were segmented by
an expert. The images were of different dimensions, ranging from 230×390 to 580×760 pixels.
Ultrasound images are generally difficult to segment, primarily due to the presence of speckle
noise and low level of local contrast. An additional set of 33 bladder MR images were also
used as a means of evaluating the N-cut approach. It should be noted that the segmentation of
ultrasound and MR images actually does require a complete processing chain, (including proper
preprocessing and postprocessing steps). However, the purpose of using these images was solely
to demonstrate that the accuracy of the binarization can be increased with the application of
EFIS, SC-EFIS, or MSC-EFIS.

4.2 Evaluation Measures

For consideration of two segments S (generated by an algorithm) andG (the gold standard image
manually created by an expert), the following measures were applied in order to evaluate the
performance of the proposed methods:

• The average of the Jaccard index1 J (area overlap) [164]:

J(S,G) =
|S ∩G|
|S ∪G|

. (4.1)

1In medical image segmentation both the Dice similarity coefficient and Jaccard index are widely used. However,
Dice values are generally higher than Jaccard values. Jaccard was chosen because it is a more conservative measure.
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• The standard deviation σJ of the Jaccard index

• 95% confidence interval (CI) of the Jaccard index CIJ

• The null hypothesis (t-test) for comparing the results of a parent algorithm and its evolved
version in order to verify whether any increase in accuracy is statistically significant

Ground-truth images G were created so that the objects of interest (i.e., lesions and tumours)
could be labeled as white (1) and the background as black (0). All thresholding techniques were
used consistently to label object pixels in this way.

4.3 Evolving Fuzzy Image Segmentation - EFIS

In this section, the results of testing the EFIS approach are presented for EFIS, EFIS-S, and
EFIS-F (described in subsections 3.2.4, 3.2.5).

4.3.1 EFIS for Binarization

Image binarization is the simplest form of segmentation yet remains a somewhat difficult task.
Three methods with one parameter p have been chosen to serve as parent algorithms:

1. Region growing (RG) with p = ε (the similarity threshold)

2. Global thresholding (THR) with p = T (the threshold): In this case, the initial fuzzy rules
are used (generated during the training phase) in order to estimate the threshold. The re-
sults are then compared to the EFIS technique whereby the initial rules are added/modified
as additional images are processed.

3. Statistical region merging (SRM) with p = s (the scale)

The results are discussed with respect to visual inspection, accuracy verification, rule evolution,
and the analysis of the EFIS results.
Visual Inspection – The results from the parent algorithms (RG, THR, and SRM) and their
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evolved versions (EFIS-RG, EFIS-THR, and EFIS-SRM) were visually compared to the corre-
sponding gold standard images in order to confirm the improvement in the accuracy. Sample
results are illustrated in Fig. 4.1 shows clear improvement in segmentation.

Figure 4.1: Sample results: The first two columns show the original images (along with the
detected ROIs) and the corresponding gold standard images (manual segmentation). From top to
bottom (the last two columns) indicate THR versus EFIS-THR, RG vesus EFIS-RG, and SRM
versus EFIS-SRM.

Accuracy Verification – The results of the ten different runs (each run is an independent
experiment trained and tested with different images) are presented in Tables 4.1, 4.2 and 4.3. In
all experiments, the accuracy of the EFIS version of the parent algorithm was greater than that
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of the parent algorithm alone, and the increase in accuracy was confirmed by the t-test to be
statistically significant.

Training Method J σJ CIJ

1st run
RG 54% 30% 43%-65%

EFIS-RG 68% 21% 60%-76%

2st run
RG 52% 30% 41%-64%

EFIS-RG 63% 24% 54%-72%

3rd run
RG 54% 30% 43%-65%

EFIS-RG 65% 25% 55%-74%

4th run
RG 54% 31% 42%-65%

EFIS-RG 64% 23% 56%-73%

5th run
RG 54% 29% 43%-65%

EFIS-RG 66% 21% 58%-74%

6th run
RG 52% 30% 41%-63%

EFIS-RG 64% 23% 55%-73%

7th run
RG 57% 29% 46%-68%

EFIS-RG 67% 24% 58%-75%

8th run
RG 53% 30% 42%-64%

EFIS-RG 64% 25% 55%-73%

9th run
RG 53% 31% 41%-64%

EFIS-RG 66% 23% 58%-75%

10th run
RG 57% 29% 46%-67%

EFIS-RG 68% 21% 60%-76%

Table 4.1: Sample results for region growing (RG) and evolved region growing (EFIS-RG) based
on training with 5 randomly selected images and testing with 30 in each run, with each run a
separate experiment. The default similarity threshold for RG was set to 0.17. The null hypothesis
was rejected for 10/10 runs.

Rule Evolution – For any new image being segmented, the rule matrix M may grow, but
the number of rules may not necessarily increase. The general tendency seems to be an initial
increase in the number of rules followed by a decrease after additional images are processed.
Fig. 4.2 provides an example of rule generation over time for EFIS-THR; similar behaviour was
observed for EFIS-RG and EFIS-SRM. To verify the effectiveness of the rule evolution, the same

65



image was processed sequentially; i.e., the same image was repeatedly used as input. As Fig.
4.3 illustrates, for some representative cases, the segmented images reach their highest achiev-
able level of accuracy after an image has been observed multiple times. The highest achievable
accuracy for an image is the maximum Jaccard index that can be obtained for that image using a
specific technique (e.g., global thresholding).

Training Method J σJ CIJ

1rd run
THR 62% 24% 53%-71%

EFIS-THR 62% 25% 53%-71%

2rd run
THR 59% 27% 48%-69%

EFIS-THR 61% 24% 52%-70%

3rd run
THR 54% 31% 42%-65%

EFIS-THR 63% 25% 54%-73%

4rd run
THR 57% 29% 46%-68%

EFIS-THR 63% 22% 55%-71%

5th run
THR 59% 25% 49%-68%

EFIS-THR 62% 24% 53%-71%

6th run
THR 61% 25% 52%-71%

EFIS-THR 63% 23% 55%-72%

7th run
THR 52% 28% 42%-63%

EFIS-THR 60% 24% 51%-69%

8th run
THR 62% 24% 53%-71%

EFIS-THR 62% 21% 54%-70%

9th run
THR 60% 25% 50%-69%

EFIS-THR 63% 23% 54%-71%

10th run
THR 60% 27% 50%-70%

EFIS-THR 58% 26% 48%-68%

Table 4.2: Sample results for global thresholding (THR) and evolved global thresholding (EFIS-
THR) training with 5 randomly selected images and testing with 30 in each run with each run a
separate experiment. The null hypothesis was rejected for 1/10 run.
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Training Method J σJ CIJ

1st run
SRM 60% 28% 50%-71%

EFIS-SRM 71% 19% 64%-78%

2nd run
SRM 60% 27% 50%-70%

EFIS-SRM 69% 22% 61%-77%

3rd run
SRM 61% 28% 50%-71%

EFIS-SRM 67% 24% 58%-76%

4th run
SRM 59% 29% 48%-70%

EFIS-SRM 71% 21% 63%-79%

5th run
SRM 59% 29% 49%-70%

EFIS-SRM 67% 23% 59%-76%

6th run
SRM 60% 28% 49%-70%

EFIS-SRM 69% 21% 61%-76%

7th run
SRM 61% 29% 50%-72%

EFIS-SRM 71% 22% 62%-79%

8th run
SRM 59% 28% 48%-69%

EFIS-SRM 68% 22% 60%-76%

9th run
SRM 59% 30% 47%-70%

EFIS-SRM 71% 22% 63%-79%

10th run
SRM 61% 29% 51%-72%

EFIS-SRM 68% 23% 60%-77%

Table 4.3: Sample results for statistical region merging (SRM) and evolved SRM (EFIS-SRM)
based on training with 5 randomly selected images and testing with 30 in each run, with each
run a separate experiment. The default scale for SRM was set to 32. The null hypothesis was
rejected for 8/10 runs.
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Figure 4.2: Rule evolution for EFIS-THR: The number of rules changes as more images are
processed but then converges toward a lower number. Each curve shows the number of rules for
a separate run (trained with 5 different images and tested with 30 new images).

Figure 4.3: Convergence to the maximum degree of accuracy achievable: Sample results, with
each curve representing a different image, show that if the same image is processed many times,
the accuracy converges toward a maximum degree of accuracy achievable.
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Fig. 4.4 show that if the same image is processed many times, the accuracy converges toward
a maximum degree of accuracy achievable.

Figure 4.4: Sample results: To demonstrate the positive effect of rule evolution, the same image
was processed multiple times (in this example, 5 times).

Analysis of EFIS Switching and Fusion Results – As can be seen in Fig. 4.5 and Table 4.4,
SRM delivers better results than Niblack or RG (an average accuracy of m = 64.7%). EFIS-S
produces the best results (an average accuracy of 66.5%). EFIS-F produces an accuracy level
almost identical to that of the best individual method, namely SRM, but with slightly lower
variability (64.3%± 14%).
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Figure 4.5: Sample results: (from left to right) results for Niblack, SRM, and RG and for all
three fused by STAPLE. Note that the result of the fusion correctly reflects the fact that SRM is
the best overall method based on the experiments.

Dataset Niblack SRM RG EFIS-S EFIS-F
1 76% 68% 50% 77% 77%
2 52% 55% 48% 53% 53%
3 77% 74% 72% 80% 72%
4 74% 57% 55% 54% 56%
5 43% 33% 33% 36% 34%
6 59% 59% 62% 62% 62%
7 55% 82% 80% 81% 78%
8 62% 62% 58% 66% 66%
9 68% 64% 63% 76% 70%
10 59% 90% 89% 79% 76%
m 62.3% 64.7% 61.0% 66.5% 64.3%
σ 11% 16% 16% 15% 14%

Table 4.4: Accuracy of switching (EFIS-S) and fusion (EFIS-F) for three methods: Niblack,
SRM (scale = 32), and region growing (similarity = 0.17). Each dataset had 30 images for
training and 5 images for testing.

4.3.2 Comparison of EFIS Results

To compare the results of EFIS for image thresholding (EFIS-THR) with those produced by other
methods, four global thresholding methods were used: two fuzzy and two non-fuzzy. A “local”
thresholding method was also used: local methods are generally expected to outperform global
methods. Specifically, EFIS-THR was compared with the following:

70



• Huang-Wang method – based on optimization of fuzzy entropy [165]

• Tizhoosh method – fuzzy thresholding using interval-valued fuzzy sets and optimization
of the index of ultrafuzziness [30]

• Otsu method – one of the most popular methods, based on bimodality and variance [22]

• Kittler method – based on error minimization [24], reportedly one of the best thresholding
algorithms [6]

• Niblack method – a local method based on the calculation of the local mean and standard
deviation [29]

Table 4.5 shows the results for three different (representative) runs in which the average and
standard deviation of the Jaccard index J ± σJ as well as the 95% confidence interval CIJ of
all accuracy numbers were calculated for each method and for each run/experiment. Five im-
ages were randomly selected for thresholding in each run (with EFIS-THR using the remaining
30 for training). To achieve good benchmarking, the maximum achievable accuracy (MAA)
was also calculated for each experiment. MAA is the highest accuracy level (via global thresh-
olding) when the optimal threshold is selected through exhaustive search and comparison with
gold standard images. MAA is hence the upper bound of the degree of accuracy, and no global
thresholding technique can exceed it for the images used in each experiment. When the com-
parative experiments were analyzed, in all experiments, EFIS-THR produced the highest level
of accuracy. Other global thresholding methods achieved predictably poor results since the test
images are extremely difficult to binarize via global thresholding, and these methods are static
and have no learning capability. The local Niblack method produced the second best results, but
this method was extremely slow compared to the others (≈ 10 times slower).
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Run Method Type J ± σJ CIJ
MAA – 79%±12% [75% 84%]

EFIS-THR global 62%±25% [53% 71%]
Niblack local 56%±24% [47% 65%]

1 Huang global 45%±27% [35% 55%]
Kittler global 39%±32% [27% 51%]
Tizhoosh global 35%±32% [23% 47%]
Otsu global 28%±25% [18% 37%]
MAA – 79%±11% [75% 83%]

EFIS-THR global 60%±24% [51% 69%]
Niblack local 57%±25% [48% 66%]

2 Huang global 44%±29% [34% 55%]
Kittler global 41%±31% [29% 52%]
Tizhoosh global 38%±32% [26% 50%]
Otsu global 29%±25% [19% 38%]
MAA – 79%±12% [74% 83%]

EFIS-THR global 63%±23% [54% 71%]
Niblack local 59%±24% [49% 68%]

3 Huang global 46%±27% [35% 56%]
Kittler global 41%±33% [29% 53%]
Tizhoosh global 35%±33% [23% 48%]
Otsu global 28%±23% [20% 37%]

Table 4.5: Comparison of the results of EFIS-THR (EFIS for global thresholding) and four other
global thresholding as well as one local thresholding method: Average and standard deviation
of the Jaccard index J ± σJ and 95% confidence interval CIJ . The MAA indicates the maxi-
mum achievable accuracy determined via exhaustive search and through comparison with gold
standard images; no global thresholding method can achieve higher accuracies than the MAA.

4.4 Testing SC-EFIS

In this section, the SC-EFIS results for RG, global thresholding, and SRM are presented. The
results are discussed with respect to visual inspection, accuracy verification, rule evolution, and
the analysis of the Jaccard results.
Visual Inspection - A visual inspection of Fig. 4.6 shows that the results produced by the
proposed SC-EFIS-RG represent a substantial improvement over those obtained with the FRG
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(fuzzy RG – the initial fuzzy rules are used in order to estimate the similarity threshold). A visual
inspection of Fig. 4.7 revails a significant improvement in the SC-EFIS-SRM images over the
SRM ones.

Figure 4.6: Segmentation results: From left to right, the original image, FRG, SC-EFIS-RG, and
the gold standard image.
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Figure 4.7: segmentation results: From left to right, the original image, SRM, SC-EFIS-SRM,
and the gold standard image.

Accuracy Verification - Ten different runs are presented for each method. Each run is an
independent experiment involving training and testing with different images.

Table 4.6 presents a comparison of the results for the RG technique: RG results with fuzzy
inference, RG results with similarity threshold = 0.17, RG with best similarity threshold (0.12)
for the available data (RG-B), the EFIS-RG technique, and the SC-EFIS-RG technique. The
best similarity threshold is determined via exhaustive search. However, this selection is a manual
process that requires an exhaustive search of all possible values of similarity threshold for a given
dataset for the best value to be detected. It can be seen that the results achieved with EFIS are
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better than those from SC-EFIS in only two of ten experiments, and that the SC-EFIS results are
better than the EFIS results in eight experiments.

Training Metrics FRG RG RG-B EFIS-RG SC-EFIS-RG

1st run
J 63% 54% 69% 68% 67%
σJ 26% 30% 21% 21% 23%
CIJ 53%-73% 43%-65% 62%-77% 60%-76% 58%-75%

2nd run
J 37% 52% 69% 63% 66%
σJ 35% 31% 19% 24% 22%
CIJ 24%-50% 41%-64% 62%-76% 54%-72% 57%-74%

3rd run
J 43% 54% 70% 65% 68%
σJ 31% 30% 21% 25% 21%
CIJ 31%-54% 43%-65% 63%-78% 55%-74% 61%-76%

4th run
J 33% 54% 71% 64% 66%
σJ 33% 31% 20% 23% 24%
CIJ 21%-46% 42%-65% 63%-78% 56%-73% 57%-74%

5th run
J 46% 54% 71% 66% 67%
σJ 32% 29% 17% 21% 20%
CIJ 34%-58% 43%-65% 64%-77% 58%-74% 60%-74%

6th run
J 46% 52% 69% 64% 62%
σJ 31% 30% 20% 23% 24%
CIJ 35%-58% 41%-63% 61%-76% 55%-73% 53%-71%

7th run
J 61% 57% 70% 67% 68%
σJ 28% 29% 21% 24% 23%
CIJ 51%-71% 46%-68% 62%-78% 58%-75% 59%-76%

8th run
J 56% 53% 70% 64% 67%
σJ 30% 30% 20% 25% 23%
CIJ 45%-67% 42%-64% 62%-78% 55%-73% 59%-75%

9th run
J 37% 53% 70% 64% 66%
σJ 29% 31% 20% 25% 23%
CIJ 26%-48% 41%-64% 63%-78% 55%-73% 58%-75%

10th run
J 57% 57% 71% 66% 69%
σJ 29% 29% 18% 23% 21%
CIJ 46%-68% 46%-68% 64%-78% 58%-75% 61%-77%

Table 4.6: Sample results for fuzzy region growing (FRG), RG with a similarity threshold (0.17),
RG-B with the best similarity threshold (0.12) (determined via exhaustive search), EFIS-RG, and
SC-EFIS-RG. The null hypothesis was rejected in 10/10 runs.
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Table 4.7 presents a comparison of the results for the global thresholding technique: THR,
the EFIS-THR results, and the SC-EFIS-THR results. It is clear that the SC-EFIS results surpass
the EFIS ones in six of ten experiments.

Training Method J σJ CIJ

1st run
THR 58% 24% 49%-67%

EFIS-THR 62% 25% 53%-71%
SC-EFIS-THR 63% 23% 54%-72%

2nd run
THR 48% 33% 35%-60%

EFIS-THR 61% 24% 52%-70%
SC-EFIS-THR 61% 28% 51%-72%

3rd run
THR 43% 32% 31%-55%

EFIS-THR 63% 25% 54%-73%
SC-EFIS-THR 63% 26% 53%-72%

4th run
THR 23% 23% 14%-32%

EFIS-THR 63% 22% 55%-71%
SC-EFIS-THR 66% 21% 58%-74%

5th run
THR 54% 26% 44%-64%

EFIS-THR 62% 24% 53%-71%
SC-EFIS-THR 63% 25% 54%-73%

6th run
THR 55% 30% 44%-66%

EFIS-THR 63% 23% 55%-72%
SC-EFIS-THR 64% 23% 55%-72%

7th run
THR 38% 27% 28%-48%

EFIS-THR 60% 24% 51%-69%
SC-EFIS-THR 59% 26% 49%-69%

8th run
THR 52% 24% 43%-62%

EFIS-THR 62% 21% 54%-70%
SC-EFIS-THR 63% 21% 55%-70%

9th run
THR 39% 31% 28%-51%

EFIS-THR 63% 23% 54%-73%
SC-EFIS-THR 65% 21% 57%-73%

10th run
THR 44% 25% 34%-53%

EFIS-THR 58% 26% 48%-68%
SC-EFIS-THR 57% 26% 47%-67%

Table 4.7: Sample results for global thresholding: fuzzy thresholding (THR), EFIS-THR, and
SC-EFIS-THR. The null hypothesis was rejected in 9/10 runs.
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However, EFIS produces better results in two experiments and equal results in another two.

Fig. 4.8 shows the improvement in the Jaccard index of the SC-EFIS-SRM images and the
images for SRM with a scale = 32. Table 4.8 presents a comparison of the results for the SRM
technique: results for SRM using fuzzy inference FSRM, results for SRM with a scale = 32
(SRM), results for SRM with the best scale (64) for the available images (SRM-B) determined
via exhaustive search, EFIS-SRM results, and SC-EFIS-SRM results. It can be seen that the
results produced by SC-EFIS are superior to the EFIS results in five experiments, inferior in
another four experiments, and the same in the remaining experiments.

Figure 4.8: Comparison of the Jaccard accuracy obtained with SC-EFIS-SRM (blue) and with
SRM (red); arrows point to significant gaps.

Rule Evolution - Fig. 4.9 indicates the change in the number of rules during the evolution of
the thresholding (THR) process. The initial number of rules starts to increase with new, incoming
images and then begins to decrease as additional images become available. The same behaviour
was noted for both SRM and RG.
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Training Metrics FSRM SRM SRM-B EFIS-SRM SC-EFIS-SRM

1st run
J 64% 60% 71% 71% 72%
σJ 24% 28% 21% 19% 17%
CIJ 55%-73% 50%-71% 64%-79% 64%-78% 65%-78%

2nd run
J 67% 60% 67% 69% 67%
σJ 25% 27% 24% 22% 20%
CIJ 57%-76% 50%-70% 59%-76% 61%-77% 60%-75%

3rd run
J 63% 61% 70% 67% 69%
σJ 25% 28% 22% 24% 18%
CIJ 53%-72% 50%-71% 62%-78% 58%-76% 62%-76%

4th run
J 57% 59% 69% 71% 71%
σJ 28% 29% 24% 21% 19%
CIJ 46%-67% 48%-70% 60%-78% 63%-79% 64%-78%

5th run
J 42% 59% 68% 67% 68%
σJ 33% 29% 24% 23% 22%
CIJ 30%-54% 49%-70% 59%-77% 59%-76% 60%-77%

6th run
J 63% 60% 69% 69% 68%
σJ 26% 28% 22% 21% 20%
CIJ 53%-73% 49%-70% 61%-77% 61%-76% 61%-76%

7th run
J 55% 61% 71% 71% 70%
σJ 30% 29% 23% 22% 20%
CIJ 44%-67% 50%-71% 62%-79% 62%-79% 63%-78%

8th run
J 67% 59% 70% 68% 69%
σJ 19% 28% 22% 22% 20%
CIJ 60%-74% 48%-69% 62%-78% 60%-76% 62%-76%

9th run
J 47% 58% 69% 71% 67%
σJ 31% 30% 24% 22% 24%
CIJ 36%-59% 47%-70% 60%-78% 63%-79% 58%-76%

10th run
J 64% 61% 69% 68% 71%
σJ 28% 29% 24% 23% 19%
CIJ 54%-74% 51%-72% 60%-78% 60%-77% 64%-78%

Table 4.8: Sample results for fuzzy statistical region merging (FSRM), SRM with the default
scale (32), SRM-B with the best scale (64) (determined via exhaustive search), EFIS-SRM, and
SC-EFIS-SRM. The null hypothesis was rejected in 8/10 runs.
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Figure 4.9: Rule evolution for SC-EFIS-THR: The number of rules increases as more images are
processed but then converges toward a lower number. Each curve shows the number of rules for
a separate run.

In general, SC-EFIS is able to be competitive with and can even surpass EFIS with respect to
the three segmentation techniques, while offering a higher level of automation.

On the other hand, the switch/fusion technique [159] was re-examined for use with SC-
EFIS. Table 4.9 presents the results of switching and fusion for three methods: Niblack, SRM
(scale=32), and RG (similarity = 0.17) using EFIS (EFIS-S and EFIS-F) and using SC-EFIS (SC-
EFIS-S and SC-EFIS-F). It is clear that the outcomes with EFIS are superior to the results with
SC-EFIS. In addition, the results with EFIS-S and SC-EFIS-S surpass those for SRM, which
represents the best method. However, the results of SC-EFIS-F are considered the poorest of all
of the EFIS and SC-EFIS results.
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Dataset Niblack SRM RG EFIS-S EFIS-F SC-EFIS-S SC-EFIS-F
1 76% 68% 50% 77% 77% 76% 65%
2 52% 55% 48% 53% 53% 62% 52%
3 77% 74% 72% 80% 72% 80% 81%
4 74% 57% 55% 54% 56% 65% 67%
5 43% 33% 33% 36% 34% 30% 29%
6 59% 59% 62% 62% 62% 61% 56%
7 55% 82% 80% 81% 78% 62% 78%
8 62% 62% 58% 66% 66% 63% 57%
9 68% 64% 63% 76% 70% 73% 65%

10 59% 90% 89% 79% 76% 76% 77%
m 62.3% 64.7% 61.0% 66.5% 64.3% 64.9% 62.7%
σ 11% 16% 16% 15% 14% 14% 15%

Table 4.9: Accuracy of switching and fusion for three methods: Niblack, SRM, and RG using
EFIS and SC-EFIS: Each dataset had 30 images for training and 5 images for testing.

Table 4.10 enables a comparison of EFIS and SC-EFIS results for global thresholding with
different global and local thresholding techniques. The data listed are taken form three exper-
iments selected from Table 4.7. It is clear that, in the three experiments, EFIS and SC-EFIS
provide outcomes that are more accurate than those produced with the non-evolutionary thresh-
olding techniques.
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Run Method Type J ± σJ CIJ
MAA – 79%±12% [75% 84%]

EFIS-THR global 62%±25% [53% 71%]
SC-EFIS-THR global 63%±23% [54% 72%]
Niblack local 56%±24% [47% 65%]

1 Huang global 45%±27% [35% 55%]
Kittler global 39%±32% [27% 51%]
Tizhoosh global 35%±32% [23% 47%]
Otsu global 28%±25% [18% 37%]
MAA – 79%±11% [75% 83%]

EFIS-THR global 60%±24% [51% 69%]
SC-EFIS-THR global 59%±26% [49% 69%]
Niblack local 57%±25% [48% 66%]

2 Huang global 44%±29% [34% 55%]
Kittler global 41%±31% [29% 52%]
Tizhoosh global 38%±32% [26% 50%]
Otsu global 29%±25% [19% 38%]
MAA – 79%±12% [74% 83%]

EFIS-THR global 63%±23% [54% 71%]
SC-EFIS-THR global 65%±21% [57% 73%]
Niblack local 59%±24% [49% 68%]

3 Huang global 46%±27% [35% 56%]
Kittler global 41%±33% [29% 53%]
Tizhoosh global 35%±33% [23% 48%]
Otsu global 28%±23% [20% 37%]

Table 4.10: Comparison of EFIS, SC-EFIS, and four other global thresholding technique as well
as one local thresholding method: Average and standard deviation of the Jaccard index J±σJ and
95% confidence intervalCIJ . The MAA indicates the maximum achievable accuracy determined
via exhaustive search and through comparison with gold standard images; no global thresholding
method can achieve higher accuracies than the MAA.

4.5 Testing MSC-EFIS

This section presents the experimental results obtained when multiple parameters of the N-cut
technique are adjusted. A set of 33 bladder MR and 35 breast ultrasound images were used
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to evaluate the performance of the proposed algorithm. The results of applying the algorithms
explained in subsections 3.5.1, and 3.5.2 are presented in the following subsections.

4.5.1 Determining the Number of Parameters to Be Adjusted

This subsection presents the results of the training, testing, and the evolving of four different
independent evolving fuzzy systems for the purpose of determining the number of parameters
that should be adjusted in the N-cut technique. The processes are performed for the four parame-
ters associated with the breast ultrasounds and the bladder MR images. For each parameter, five
different experiments were conducted, with five randomly selected images being used for train-
ing and the remaining images for testing/evolving. The results for each system were compared
with the results using the default values. As is clear from Tables 4.11 and 4.12, no value is to
be gained by including the fourth parameter, namely the edge variance (EV ), in the adjustment
solution because its Jaccard index drops dramatically when adjusted compared to the default val-
ues in most of the training sets either for the bladder or for the breast images. For example, in
the first training set, Jaccard index fell from 62% using the default bladder parameters to 42%
when adjusted using the evolving fuzzy system. On the other hand, the other three parameters
show either improvement or stability when adjusted using the evolving fuzzy system. Based on
the use of the proposed MSC-EFIS evolving fuzzy system, three parameters were selected for
adjustment: NS, RA, and RD.
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Training Metric DNS ENS DD ED DR ER DEV EEV

1st set
J 58% 66% 62% 66% 59% 58% 62% 42%
σJ 29% 22% 29% 27% 29% 30% 28% 23%

2nd set
J 58% 62% 59% 62% 61% 61% 60% 45%
σJ 29% 25% 29% 28% 29% 29% 29% 27%

3rd set
J 62% 71% 58% 61% 64% 64% 60% 47%
σJ 29% 21% 28% 26% 29% 28% 29% 27%

4th set
J 60% 63% 60% 63% 59% 60% 58% 43%
σJ 28% 24% 28% 27% 29% 29% 29% 24%

5th set
J 57% 63% 59% 62% 57% 57% 58% 40%
σJ 29% 24% 29% 28% 29% 29% 28% 22%

Table 4.11: Results for the four independent evolving fuzzy systems for each parameter for blad-
der MRI segmentation: default NS (DNS), evolving NS (ENS), default RD, evolving RD(ED),
default RA (DR), evolving RA (ER), default EV (DEV), and evolving EV (EEV).

Training Metric DNS ENS DD ED DR ER DEV EEV

1st set
J 54% 71% 57% 57% 56% 55% 56% 54%
σJ 30% 22% 30% 30% 31% 30% 32% 32%

2nd set
J 57% 71% 56% 55% 54% 52% 54% 48%
σJ 30% 22% 30% 30% 30% 29% 31% 31%

3rd set
J 54% 70% 55% 54% 58% 57% 60% 59%
σJ 31% 23% 31% 30% 29% 28% 28% 29%

4th set
J 58% 75% 59% 58% 60% 60% 57% 54%
σJ 29% 19% 29% 29% 30% 30% 29% 30%

5th set
J 54% 71% 56% 55% 54% 54% 58% 56%
σJ 32% 23% 30% 29% 29% 28% 30% 31%

Table 4.12: Results for the four independent evolving fuzzy systems for each parameter for breast
ultrasound segmentation: default NS (DNS), evolving NS (ENS), default RD, evolving RD(ED)
default RA (DR), evolving RA (ER), default EV (DEV),and evolving EV (EEV).
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4.5.2 Adjusting the Selected Parameters

In this section, the results of applying the proposed algorithm MSC-EFIS are presented for blad-
der and breast images. MSC-EFIS was used to adjust three parameters (NS, RA, and RD) in
either bladder or breast images. Ten different experiment were performed for both the bladder
and breast images with 5 randomly selected images as training images and the remaining images
for the testing and evolving the system (each run is an independent experiment trained and tested
with different images). The simulated annealing (SA) technique used in the online updating of
the parameters may give different estimates of the parameters when repeated, even for the same
image (section 3.5.2). Therefore, to verify generality, each experiment was repeated five times,
and the resulting best, worst, and average values of the Jaccard index for the five repeated runs
were recorded. The proposed approach was compared with the results obtained using the default
values. Three different values of NS were used for comparison: NS = 5, NS = 8, and NS = 10.
The results for the bladder and breast images are discussed with respect to visual inspection,
accuracy verification, rule evolution, and the analysis of the The Jaccard results.
Visual Inspection - A visual inspection of the results in Fig. 4.10 and Fig. 4.11 shows a signifi-
cant improvement in the segmentations obtained using the proposed MSC-EFIS approach for the
bladder MR and the breast ultrasound images when compared with NC5 (N-cut with NS = 5).

Accuracy Verification - The results for the bladder images were recorded and are presented
in Table 4.13. It can be seen that, for the bladder images, the proposed MSC-EFIS approach pro-
duce significant improvement compared to the NC5 results. For example, in the first training set,
the average Jaccard index of the proposed approach is increased from 55% to 62%, the standard
deviation is decreased from 28% to 25%, and the confidence interval is shifted from 45%-66%
to 52%-72%. The MSC-EFIS approach also yielded results that surpass those generated with
NC10 in all cases and compete favorably with those generated using the NC8 default values
which seem to be the optimum selection for this set of data. With respect to the average Jaccard
values, those produces with MSC-EFIS surpass those obtained with NC8 in two training sets and
are equal in another two training sets. The results for the best value surpass those obtained with
NC8 in six training sets and are equal in another training sets.

With respect to the breast ultrasound images (Table 4.14), the best value for NS that returns
the maximum Jaccard value shifted from 8 to 10. It is clear that the best, average, and worst
results of MSC-EFIS surpass those generated by NC5 and NC8 in all cases. For example, in
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Figure 4.10: Sample results for three segmented bladder images: From left to right, original
image, NC5, MSC-EFIS, and the gold standard segment prepared by an expert.

the first training set, with the proposed approach, the average Jaccard index is increased from
57% (NC5) to 72%, the standard deviation is decreased from 30% to 22%, and the confidence
interval is shifted from 46%-68% to 63%-80%. With respect to the best results, the results with
MSC-EFIS also surpass those generated by NC10 in seven cases and are equal in three cases,
while for the average, the MSC-EFIS results are superior to those with NC10 in three training
sets and are equal in four sets. Fig. 4.12 shows the improvement in the Jaccard index of the
corresponding images when the results obtained with the MSC-EFIS approach applied to breast
images are compared with those with NC5.
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Figure 4.11: Sample results for three segmented breast images: From left to right, original image,
NC5, MSC-EFIS, and the gold standard segment prepared by an expert.

Rule Evolution - For the breast ultrasound images, Fig. 4.13 shows the changes in the number
of rules during the evolution process for the first five training sets (first run of each). Unlike the
behaviour noted in Fig. 4.9, the number of rules starts low, then increases during the evolution
process, and continues to increase for as long as new images are introduced. The same behaviour
was recorded for the bladder images Fig. 4.14 except in two cases, a dramatic drop is evident
at the last image. This effect occurs because the consequent part of the rules now contains more
than one parameter (three parameters).
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Training Metrics NC5 NC8 NC10 MSC-EFIS
Best Average Worst

1st set
J 55% 67% 58% 65% 62% 58%
σJ 28% 20% 20% 23% 25% 26%
CIJ 45%-66% 60%-75% 50%-66% 57%-74 52%-72% 48%-69%

2nd set
J 62% 70% 58% 71% 69% 68%
σJ 28% 21% 21% 24% 25% 26%
CIJ 51%-73% 62%-78% 50%-66% 62%-80 60%-79% 58%-78%

3rd set
J 59% 69% 61% 66% 66% 65%
σJ 29% 21% 20% 24% 25% 25%
CIJ 48%-70% 61%-77% 53%-68% 57%-76 56%-76% 55%-75%

4th set
J 64% 72% 61% 74% 72% 71%
σJ 29% 21% 21% 22% 25% 27%
CIJ 52%-75% 64%-80% 53%-69% 66%-83 62%-81% 60%-81%

5th set
J 62% 68% 60% 69% 68% 66%
σJ 29%% 22% 21% 24% 25% 27%
CIJ 51%-73% 60%-77% 52%-68% 60%-78 58%-77% 55%-76%

6th set
J 60% 71% 59% 69% 68% 68%
σJ 29% 22% 22% 24% 24% 24%
CIJ 49%-72% 62%-79% 50%-67% 60%-79 59%-78% 58%-77 %

7th set
J 58% 68% 58% 70% 67% 64%
σJ 29% 21% 21% 22% 24% 25%
CIJ 46%-69% 60%-76% 50%-66% 62%-79 58%-76% 54%-73%

8th set
J 62% 71% 59% 73% 72% 70%
σJ 30% 22% 22% 21% 22% 24%
CIJ 51%-74% 62%-79% 50%-68% 65%-82 63%-81% 61%-80%

9th set
J 62% 69% 57% 73% 71% 70%
σJ 28% 21% 21% 21% 22% 24%
CIJ 52%-73% 61%-78% 49%-65% 65%-81 63%-80% 60%-79%

10th set
J 58% 70% 59% 70% 69% 69%
σJ 29% 20% 21% 23% 24% 24%
CIJ 47%-70% 62%-77% 51%-67% 61%-79 60%-78% 60%-78%

Table 4.13: Results for bladder MR segmentation: For each training set (each training set is
repeated five times), the results produced with NC5 (NS = 5), NC8 (NS = 8), and NC10
(NS = 10) are compared with the best, average, and worst results obtained with MSC-EFIS for
the N-cut technique.
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Training Metrics NC5 NC8 NC10 MSC-EFIS
Best Average Worst

1st set
J 57% 65% 71% 72% 72% 71%
σJ 30% 27% 24% 20% 22% 25%
CIJ 46%-68% 54%-75% 62%-79% 65%-79 63%-80% 61%-80%

2nd set
J 52% 63% 69% 70% 69% 69%
σJ 31% 28% 24% 20% 20% 21%
CIJ 40%-63% 53%-74% 60%-78% 62%-77 62%-77% 61%-77%

3rd set
J 56% 68% 72% 72% 71% 70%
σJ 31% 26% 22% 21% 21% 21%
CIJ 44%-67% 58%-77% 64%-81% 65%-80 64%-79% 62%-78%

4th set
J 53% 62% 70% 70% 69% 67%
σJ 30% 27% 24% 21% 22% 22%
CIJ 42%-65% 52%-73% 61%-79% 62%-78 61%-77% 59%-75%

5th set
J 60% 70% 75% 76% 75% 74%
σJ 29%% 24% 21% 19% 19% 19%
CIJ 49%-71% 61%-79% 67%-83% 69%-83 68%-82% 67%-81%

6th set
J 52% 64% 70% 71% 70% 69%
σJ 30% 27% 24% 20% 21% 20%
CIJ 41%-64% 54%-74% 61%-79% 64%-79 62%-78% 62%-77 %

7th set
J 56% 67% 72% 74% 72% 71%
σJ 29% 25% 22% 18% 18% 18%
CIJ 45%-67% 58%-76% 64%-80% 67%-80 65%-79% 64%-78%

8th set
J 54% 64% 70% 74% 72% 70%
σJ 31% 28% 24% 18% 21% 23%
CIJ 42%-65% 53%-74% 61%-79% 67%-81% 65%-80% 62%-79%

9th set
J 56% 65% 71% 71% 70% 69%
σJ 31% 28% 24% 20% 21% 22%
CIJ 45%-68% 54%-75% 62%-80% 63%-78 62%-77% 61%-77%

10th set
J 55% 66% 70% 72% 71% 71%
σJ 31% 27% 24% 20% 21% 23%
CIJ 44%-67% 56%-76% 61%-79% 64%-79 64%-79% 63%-80%

Table 4.14: Results for breast ultrasound segmentation: For each training set (each training set
is repeated five times), the results produced with NC5 (NS = 5), NC8 (NS = 8), and NC10
(NS = 10) are compared with the best, average, and worst results obtained with MSC-EFIS for
the N-cut technique.
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Figure 4.12: Comparison of the Jaccard accuracy obtained with MSC-EFIS (blue) and with NC5
(red); arrows point to significant gaps.

Figure 4.13: Rule evolution for MSC-EFIS for the first five training sets (first run of each) for
breast images: A continual increases in the number of rules is exhibited during the evolution
process. Each curve shows the number of rules for a separate run.
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Figure 4.14: Rule evolution for MSC-EFIS for the first five training sets (first run of each) for
bladder images: A continual increases in the number of rules is exhibited during the evolution
process, except two training set, the number of rules converges at the end of the images. Each
curve shows the number of rules for a separate run.
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Chapter 5

Conclusions and Future Work

This chapter presents a summary of conclusions that can be drawn based on the research pre-
sented in this thesis and includes suggestions for future studies.

5.1 Conclusions

Most image segmentation techniques involve multiple parameters that must be tuned in order to
achieve maximum segmentation accuracy. In most cases, the threshold generated by thresholding
algorithms, the similarity threshold in region growing techniques, the scale in statistical region
merging methods, and a variety of parameters in graph cut must all be adjusted in order to obtain
maximum segmentation accuracy. Intelligent segmentation as a means of generating a threshold
for unseen images would therefore seem to be a valuable approach. More importantly, the fine-
tuning of any segmentation technique for medical image analysis should always be coupled with
user feedback because the expert user is the ultimate authority with respect to evaluating the
quality of the segmentation.

For this research, an evolving fuzzy image segmentation system has been designed for seg-
menting medical images through the online updating of the fuzzy rules. This system is a general
approach that can be used to adjust the segmentation parameters of any segmentation technique
in order to increase its accuracy. Initial fuzzy rules are established using a set of features ex-
tracted from training images, and their optimum parameters are determined as the target of the
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rules. Based on expert feedback, these rules are then updated online during the processing of
each image. The evolving nature of this system makes this approach appealing for applications
that can benefit from or that depend on user feedback; medical image analysis is such a field,
in which clinical experts usually approve computer-generated results. Processing similar cases
leads to continual improvement in the results. This evolving process seems to be efficient for
enhancing the accuracy of the segmentation for a variety of images. Three approaches have been
proposed: evolving fuzzy image segmentation (EFIS), self configuring EFIS (SC-EFIS), and
multi-parametric SC-EFIS (MSC-EFIS).

EFIS is a segmentation scheme that relies on user feedback in order to improve the quality
of segmentation. Its evolving nature makes this approach attractive for applications that incor-
porate high-quality user feedback, such as the analysis of medical images. Two versions of EFIS
have been proposed: one for single-parameter output and one for switch and fusion. Both meth-
ods showed promising results, with further processing of similar cases leading to continual and
measurable improvements. The capability of EFIS was demonstrated for three distinct segmen-
tation algorithms: Global thresholding, statistical region merging, and region growing. EFIS
can be leveraged to incorporate observer-driven adjustments and to achieve an overall boost in
segmentation accuracy. Further improvements were demonstrated with EFIS, in which is added
a component that enables the fusion of the results from variety of methods. The results of EFIS
for global thresholding were compared with those from five other methods, including one lo-
cal method: the evolving EFIS rules consistently generated better results than the non-evolving
methods.

EFIS entails some limitations, such as the large number of parameters that must be selected
prior to the running of the algorithm and the lack of a feature selection component. These draw-
backs restrict the use of EFIS to specific types of images. An improved version of EFIS, called
self-configuring EFIS (SC-EFIS) has been proposed. SC-EFIS is a general image segmentation
approach that does not require the advance assignment of parameters. SC-EFIS operates with the
data available and extracts all the required parameters from those data regardless of the data type.
SC-EFIS also has a multi-stage feature selection algorithm that combines many popular unsu-
pervised feature selection approaches. A comparison of the SC-EFIS results with those obtained
with EFIS demonstrates the efficiency of the proposed SC-EFIS approach, which also offers a
higher level of automation.
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An additional new multi-parametric SC-EFIS approach has also been proposed as a means
of adjusting the parameters of the N-cut segmentation technique for different images based on
image features.

The positive experimental results offer empirical evidence of and indicate confidence in the
significant benefits to be derived from the algorithms developed for this thesis, especially in the
field of medical image segmentation.

5.2 Future Works

Further research using larger datasets of real-world images is required to verify the benefits of
rule evolution and to explore different methods of integrating user feedback, including online
web technology. Additional investigation is also necessary with respect to exploring the online
estimation of desired (best) output under multi-parametric settings. Examples of areas that could
be explored as a means of estimating the best parameters for multi-parametric settings are ge-
netic algorithms, differential evolution, and even independent evolving fuzzy systems. Another
possible avenue of inquiry is the generation of separate rule bases for each parameter, which
could represent a more practical approach in some cases, such as those in which a correlation
between parameters is non-existent or negligible.

93



Bibliography

[1] R. Gonzalez and R. Woods, Digital Image Processing. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2nd ed., 2001.

[2] L. Shapiro and G. Stockman, Computer Vision. NJ: Prentice-Hall: Upper Saddle River,
2nd ed., 2001.

[3] W. K. Pratt, Digital Image Processing: PIKS Inside. New York, NY, USA: John Wiley &
Sons, Inc., 3rd ed., 2001.

[4] D. Pham, C. Xu, and J. Prince, “Current methods in medical image segmentation,” Annual
Review of Biomedical Engineering, vol. 2, no. 1, pp. 315–337, 2000.

[5] M. Ogiela and R. Tadeusiewicz, Modern Computational Intelligence Methods for the
Interpretation of Medical Images. New York, USA: Springer, 2008.

[6] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative
performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, pp. 146–165, 2004.

[7] J. Kim and H. Kim, “Multiresolution-based watersheds for efficient image segmentation,”
Pattern Recognition Letters, vol. 24, no. 1, pp. 473–488, 2003.

[8] C. Jung, “Combining wavelets and watersheds for robust multiscale image segmentation,”
Image and Vision Computing, vol. 25, no. 1, pp. 24–33, 2007.

[9] A. Cristoforetti, L. Faes, F. Ravelli, M. Centonze, M. Del Greco, R. Antolini, and G. Nollo,
“Isolation of the left atrial surface from cardiac multi-detector CT images based on marker

94



controlled watershed segmentation,” Medical Engineering & Physics, vol. 30, no. 1,
pp. 48–58, 2008.

[10] B. Liu, H. Cheng, J. Huang, J. Tian, X. Tang, and J. Liu, “Probability density difference-
based active contour for ultrasound image segmentation,” Pattern Recognition, vol. 43,
no. 6, pp. 2028–2042, 2010.

[11] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image segmentation,”
International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181, 2004.

[12] Hu, Grossberg, and Mageras, “Survey of recent volumetric medical image segmentation
techniques,” Biomedical Engineering, vol. 2, no. 1, pp. 315–337, 2009.

[13] G. Karmakar and L. Dooley, “A generic fuzzy rule based image segmentation algorithm,”
Pattern Recognition Letters, vol. 23, no. 10, pp. 1215–1227, 2002.

[14] W. Tao, J. Tian, and J. Liu, “Image segmentation by three-level thresholding based on
maximum fuzzy entropy and genetic algorithm,” Pattern Recognition Letters, vol. 24,
no. 16, pp. 3069–3078, 2003.

[15] L. Cinque, G. Foresti, and L. Lombardi, “A clustering fuzzy approach for image segmen-
tation,” Pattern Recognition, vol. 37, no. 9, pp. 1797–1807, 2004.

[16] C. Chang and P. Chung, “Medical image segmentation using a contextual-constraint-based
hopfield neural cube,” Image and Vision Computing, vol. 19, no. 9, pp. 669–678, 2001.

[17] V. de Albuquerque, A. de Alexandria, P. Cortez, and J. Tavares, “Evaluation of multilayer
perceptron and self-organizing map neural network topologies applied on microstruc-
ture segmentation from metallographic images,” NDT & E International, vol. 42, no. 7,
pp. 644–651, 2009.
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[79] N. Lermé, L. Létocart, and F. Malgouyres, “Reduced graphs for min-cut/max-flow ap-
proaches in image segmentation,” Electronic Notes in Discrete Mathematics, vol. 37,
no. 10, pp. 63–68, 2011.

[80] W. Tao, F. Chang, L. Liu, H. Jin, and T. Wang, “Interactively multiphase image segmenta-
tion based on variational formulation and graph cuts,” Pattern Recognition, vol. 43, no. 10,
pp. 3208–3218, 2010.

101



[81] S. Ababneh, J. Prescott, and M. Gurcan, “Automatic graph-cut based segmentation of
bones from knee magnetic resonance images for osteoarthritis research,” Medical Image
Analysis, vol. 15, no. 4, pp. 438–448, 2011.

[82] W. Tao and X. Tai, “Multiple piecewise constant with geodesic active contours (MPC-
GAC) framework for interactive image segmentation using graph cuts optimization,”
Image and Vision Computing, vol. 29, no. 8, pp. 499–508, 2011.

[83] Q. Huang, S. Lee, L. Liu, M. Lu, L. Jin, and A. Li, “A robust graph-based segmentation
method for breast tumors in ultrasound images,” Ultrasonics, vol. 52, no. 2, pp. 266–275,
2012.

[84] M. Letteboer, O. Olsen, E. Dam, P. Willems, M. Viergever, and W. Niessen, “Segmenta-
tion of tumors in magnetic resonance brain images using an interactive multiscale water-
shed algorithm,” Academic Radiology, vol. 11, no. 10, pp. 1125–1138, 2004.

[85] W. Kuo, C. Lin, and Y. Sun, “Brain MR images segmentation using statistical ratio:
Mapping between watershed and competitive hopfield clustering network algorithms,”
Computer Methods and Programs in Biomedicine, vol. 91, no. 3, pp. 191–198, 2008.

[86] G. Hamarneh and X. Li, “Watershed segmentation using prior shape and appearance
knowledge,” Image and Vision Computing, vol. 27, no. 1, pp. 59–68, 2009.

[87] Wei-Yen and Hsu, “Improved watershed transform for tumor segmentation: Application
to mammogram image compression,” Expert Systems with Applications, vol. 39, no. 4,
pp. 3950–3955, 2012.

[88] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[89] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the use of SIFT features for face
authentication,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshop, pp. 35–41, 2006.

[90] J. Yun and R. Park, “Self-calibration with two views using the scale-invariant feature
transform,” Advances in Visual Computing, pp. 589–598, 2006.

102



[91] Y. Meng and B. Tiddeman, “Implementing the scale invariant feature transform (sift)
method,” Department of Computer Science University of St. Andrews, 2008.

[92] U. Sinha, “SIFT: Scale invariant feature transform.” http://www.aishack.in/

2010/05/sift-scale-invariant-feature-transform, Nov. 2012.

[93] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision
algorithms.” http://www.vlfeat.org/, Nov. 2012.

[94] A. Vedaldi, “An implementation of sift detector and descriptor,” University of California
at Los Angeles, vol. 7, 2006.

[95] W. Cai, S. Chen, and D. Zhang, “Fast and robust fuzzy C-means clustering algorithms
incorporating local information for image segmentation,” Pattern Recognition, vol. 40,
no. 3, pp. 825–838, 2007.

[96] Z. Ji, Q. Sun, Y. Xia, Q. Chen, D. Xia, and D. Feng, “Generalized rough fuzzy c-
means algorithm for brain MR image segmentation,” Computer Methods and Programs
in Biomedicine, vol. 108, no. 2, pp. 644 – 655, 2012.

[97] Z. Ji, Y. Xia, Q. Chen, Q. Sun, D. Xia, and D. Feng, “Fuzzy c-means clustering with
weighted image patch for image segmentation,” Applied Soft Computing, vol. 12, no. 6,
pp. 1659 – 1667, 2012.

[98] J. Feng, L. Jiao, X. Zhang, M. Gong, and T. Sun, “Robust non-local fuzzy c-means algo-
rithm with edge preservation for SAR image segmentation,” Signal Processing, vol. 93,
no. 2, pp. 487 – 499, 2013.

[99] F. Zhao, L. Jiao, and H. Liu, “Kernel generalized fuzzy c-means clustering with spatial
information for image segmentation,” Digital Signal Processing, vol. 23, no. 1, pp. 184 –
199, 2013.

[100] L. Coletta, L. Vendramin, E. Hruschka, R. Campello, and W. Pedrycz, “Collaborative
fuzzy clustering algorithms: Some refinements and design guidelines,” IEEE Transactions
on Fuzzy Systems, vol. 20, no. 3, pp. 444–462, 2012.

103

http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform
http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform
http://www.vlfeat.org/


[101] G. Krell, H. Tizhoosh, T. Lilienblum, C. Moore, and B. Michaelis, “Enhancement and
associative restoration of electronic portal images in radiotherapy,” International journal
of medical informatics, vol. 49, no. 2, pp. 157–171, 1998.

[102] S. Pal and A. Rosenfeld, “Image enhancement and thresholding by optimization of fuzzy
compactness,” Pattern Recognition Letters, vol. 7, no. 2, pp. 77–86, 1988.

[103] S. Pal and A. Ghosh, “Fuzzy geometry in image analysis,” Fuzzy Sets and Systems,
vol. 48, no. 1, pp. 23–40, 1992.

[104] N. Pal, D. Bhandarai, and D. Majumder, “Fuzzy divergence, probability measure of fuzzy
events and image thresholding,” Pattern Recognition, vol. 13, no. 12, pp. 857–867, 1992.

[105] Q. Wang, Z. Chi, and R. Zhao, “Image thresholding by maximizing the index of nonfuzzi-
ness of the 2-d grayscale histogram,” Computer Vision and Image Understanding, vol. 85,
no. 2, pp. 100–116, 2002.

[106] R. Rajesh, N. Senthilkumaran, J. Satheeshkumar, B. Shanmuga, C. Thilagavathy, and
K. Priya, “On the type-1 and type-2 fuzziness measures for thresholding MRI brain im-
ages,” in IEEE International Conference on Fuzzy Systems, pp. 992–995, 2011.

[107] D. Neog, M. Raza, and F. Rhee, “An interval type 2 fuzzy approach to multilevel im-
age segmentation,” in IEEE International Conference on Fuzzy Systems, pp. 1164–1170,
2011.

[108] D. Zhang and S. Chen, “A novel kernelized fuzzy C-means algorithm with application in
medical image segmentation,” Artificial Intelligence in Medicine, vol. 32, no. 1, pp. 37–
50, 2004.

[109] K. Chuang, H. Tzeng, S. Chen, J. Wu, and T. Chen, “Fuzzy C-means clustering with spa-
tial information for image segmentation,” Computerized Medical Imaging and Graphics,
vol. 30, no. 1, pp. 9–15, 2006.

[110] Z. Yang, F. Chung, and W. Shitong, “Robust fuzzy clustering-based image segmentation,”
Applied Soft Computing, vol. 9, no. 1, pp. 80–84, 2009.

104



[111] Y. Zhuge, J. Udupa, and P. Saha, “Vectorial scale-based fuzzy-connected image segmen-
tation,” Computer Vision and Image Understanding, vol. 101, no. 3, pp. 177–193, 2006.

[112] F. Zhao, L. Jiao, H. Liu, and X. Gao, “A novel fuzzy clustering algorithm with non local
adaptive spatial constraint for image segmentation,” Signal Processing, vol. 91, no. 4,
pp. 988–999, 2010.

[113] W. Dou, S. Ruan, Y. Chen, D. Bloyet, and J. Constans, “A framework of fuzzy information
fusion for the segmentation of brain tumor tissues on MR images,” Image and Vision
Computing, vol. 25, no. 2, pp. 164–171, 2007.

[114] Y. Hata and S. Kobashi, “Fuzzy segmentation of endorrhachis in magnetic resonance im-
ages and its fuzzy maximum intensity projection,” Applied Soft Computing, vol. 9, no. 3,
pp. 1156–1169, 2009.

[115] J. Foo, G. Miyano, T. Lobe, and E. Winer, “Three-dimensional segmentation of tu-
mors from CT image data using an adaptive fuzzy system,” Computers in Biology and
Medicine, vol. 39, no. 10, pp. 869–878, 2009.

[116] H. Khotanlou, O. Colliot, J. Atif, and I. Bloch, “3D brain tumor segmentation in MRI us-
ing fuzzy classification, symmetry analysis and spatially constrained deformable models,”
Fuzzy Sets and Systems, vol. 160, no. 10, pp. 1457–1473, 2009.

[117] V. Rivas, J. Merelo, I. Rojas, G. Romero, P. Castillo, and J. Carpio, “Evolving two-
dimensional fuzzy systems,” Fuzzy Sets and Systems, vol. 138, no. 2, pp. 381–398, 2003.

[118] A. Borji and M. Hamidi, “Evolving a fuzzy rule-base for image segmentation,”
International Journal of Intelligent Systems and Technologies, vol. 28, pp. 178–183, 2007.

[119] S. Yuhui, R. Eberhart, and C. Yaobin, “Implementation of evolutionary fuzzy systems,”
IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 109–119, 1999.

[120] R. Lai, C. Fan, W. Huang, and P. Chang, “Evolving and clustering fuzzy decision tree for
financial time series data forecasting,” Expert Systems with Applications, vol. 36, no. 2,
pp. 3761–3773, 2009.

105



[121] H. Mallinson and P. Bentley, “Evolving fuzzy rules for pattern classification,” in
Proceedings of the International Conference on Computational Intelligence for Modelling,
Control and Automation - CIMCA99, vol. 55, pp. 184–191, 1999.

[122] A. Pipe and B. Carse, “Michigan and pittsburgh fuzzy classifier systems for learning mo-
bile robot control rules: an experimental comparison,” in 14th International Conference of
Artificial Intelligence Research Society FLAIRS, pp. 493–497, 2001.

[123] S. Mehta, S. Chaudhury, A. Bhattacharyya, and A. Jena, “Tissue classification in mag-
netic resonance images through the hybrid approach of michigan and pittsburg genetic
algorithm,” Applied Soft Computing, vol. 11, no. 4, pp. 3476–3484, 2011.

[124] P. Chang, C. Liu, and Y. Wang, “A hybrid model by clustering and evolving fuzzy rules
for sales decision supports in printed circuit board industry,” Decision Support Systems,
vol. 42, no. 3, pp. 1254–1269, 2006.

[125] R. Linden and A. Bhaya, “Evolving fuzzy rules to model gene expression,” Biosystems,
vol. 88, no. 1, pp. 76–91, 2007.

[126] N. Kasabov, “On-line learning, reasoning, rule extraction and aggregation in locally opti-
mized evolving fuzzy neural networks,” Neurocomputing, vol. 41, no. 1, pp. 25–45, 2001.

[127] N. Kasabov, “Evolving fuzzy neural networks for supervised/unsupervised online
knowledge-based learning,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 31, no. 6, pp. 902–918, 2001.

[128] C. Lin and Y. Xu, “A self-adaptive neural fuzzy network with group-based symbiotic evo-
lution and its prediction applications,” Fuzzy Sets and Systems, vol. 157, no. 8, pp. 1036–
1056, 2006.

[129] C. Juang, Y. Lin, and C. Tu, “A recurrent self-evolving fuzzy neural network with local
feedbacks and its application to dynamic system processing,” Fuzzy Sets and Systems,
vol. 161, no. 19, pp. 2552–2568, 2010.

[130] H. Rong, N. Sundararajan, G. Huang, and P. Saratchandran, “Sequential Adaptive Fuzzy
Inference System (SAFIS) for nonlinear system identification and prediction,” Fuzzy Sets
and Systems, vol. 157, no. 9, pp. 1260–1275, 2006.

106



[131] M. Futschik, A. Reeve, and N. Kasabov, “Evolving connectionist systems for knowledge
discovery from gene expression data of cancer tissue,” Artificial Intelligence in Medicine,
vol. 28, no. 2, pp. 165–189, 2003.

[132] P. Chang, Y. Wang, and C. Liu, “The development of a weighted evolving fuzzy neural
network for PCB sales forecasting,” Expert Systems with Applications, vol. 32, no. 1,
pp. 86–96, 2007.

[133] P. Angelov, “A fuzzy controller with evolving structure,” Information Sciences, vol. 161,
no. 1, pp. 21–35, 2004.

[134] E. Lughofer, “On-line assurance of interpretability criteria in evolving fuzzy systems
achievements, new concepts and open issues,” Information Sciences, vol. 251, pp. 22 –
46, 2013.

[135] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy classifiers using different model
architectures,” Fuzzy Sets and Systems, vol. 159, no. 23, pp. 3160–3182, 2008.

[136] P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from data streams,” IEEE
Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1462–1475, 2008.

[137] D. Wang, X. Zeng, and J. Keane, “A simplified structure evolving method for mamdani
fuzzy system identification and its application to high-dimensional problems,” Information
Sciences, vol. 220, pp. 110 – 123, 2013.

[138] A. Lemos, W. Caminhas, and F. Gomide, “Adaptive fault detection and diagnosis using an
evolving fuzzy classifier,” Information Sciences, vol. 220, pp. 64 – 85, 2013.

[139] J. de Barros and A. Dexter, “On-line identification of computationally undemanding
evolving fuzzy models,” Fuzzy Sets and Systems, vol. 158, no. 18, pp. 1997–2012, 2007.

[140] E. Lughofer, “On-line evolving image classifiers and their application to surface inspec-
tion,” Image and Vision Computing, vol. 28, no. 7, pp. 1065–1079, 2010.

[141] Wikipedia, “Feature selection.” http://en.wikipedia.org/wiki/Feature_

selection, 2013.

107

http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Feature_selection
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Appendix A

Scale-Invariant Feature Transform

The scale-invariant feature transform (SIFT) is an approach developed by Lowe [88] as a method
of object recognition. It is based on the detection of a set of key points for an object and the
subsequent calculation of a set of descriptors, or features, for these points. These features, in-
variant to image scale and rotation, can enable the differentiation of one object from a group of
different objects. The process of detecting key points and calculating the descriptors consists of
the following four stages:

• Scale-space extrema detection:
In this stage, the points of interest called key points are detected. First, Gaussian filters
at different scales are generated and then convolved with the image at every scale. The
difference of Gaussians (DoGs) blurred images are determined, and the candidate key
points are assigned as the maxima and minima of the DoGs D (x, y, σ) at multiple scales.
To create the scale space of an image, the convolution of a Gaussian filter G(x, y, σ), with
an input image I(x, y), is determined and defined as a function L(x, y, σ), where

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (A.1)

and (DoG) is given by

D (x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y). (A.2)
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The maxima and minima of the DoGs are calculated through a comparison of each point
with its eight neighbours in the current image and nine neighbours in the scale above and
below. The point is selected to be a key point if it is larger or smaller than all of these
neighbours. This process is performed as follows:
Let the input image be I(x, y)

1. The scale space L(x, y, σ) of the input image I(x, y) is calculated using the following
equation:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (A.3)

where G(x, y, σ) is the Gaussian filter with the initial value for σ = 1.6.

2. The σ is changed to k ∗ σ where k =
√
2.

3. Steps 1 and 2 are repeated five times in order to generate scales from L1 to L5 where
σ = k ∗ σ.

4. After the five different scales of the image I(x, y) are generated, the different of
Gaussian is calculated by subtracting every two adjacent scale spaces of I(x, y) using
the following equation:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ). (A.4)

5. These calculations produce the first octave, which consists of five different scales
L1 . . . L5 of the input image I(x, y) and four different difference of Gaussians images
D1 . . . D4 (Fig. A.1 [88]).

6. The input image is downsampled by a factor of 2. If I(x, y) is 512× 512, it will then
be 256 × 256 (at the end of the algorithm, the keypoints is re-sampled to be located
at the original image).

7. Steps from 1 to 5 are repeated in order to generate the second octave. The second
octave is begun with the Gaussian image that was filtered with σ equal to double the
initial σ, and this new σ = 2 ∗ 1.6 is the initial sigma for this octave.

8. Steps 1 to 5 are repeated in order to generate the third octave. The third octave starts
with the image filtered with σ = 4 ∗ 1.6.
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9. For every pixel in D2(x, y, σ) and D3(x, y, σ) in every octave, a pixel with coordi-
nates (x1, y1) is selected to be a candidate key point if

(a) Its intensityD(x1, y1) is larger than that of its eight neighbours in a 3×3 window
centered in D(x1, y1) in its scale and larger than its nine neighbours in the scale
above it and the scale below it (Fig A.2). The candidate is then compared with
26 pixels: eight in its scale and nine in the scale above, and nine in the scale
below.

(b) Its intensity D(x1, y1) is smaller than that of its eight neighbours in a 3 × 3

window centered in D(x1, y1) in its scale and smaller than its nine neighbours in
the scale above it and its nine neighbours in the scale below it Fig (A.2 [88]).

Figure A.1: The process of building the difference of Gaussians and the octaves
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Figure A.2: The process of detecting key points

• Key point localization: A substantial number of candidate points are detected in the pre-
vious step; however, many of these points are useless due to either low contrast or to poor
localization across the edges. Therefore, for each candidate point, a measure of stability
is calculated so that points with low contrast or poor localization along the edges can be
discarded. This process is performed as follows:

1. The Taylor expansion up to quadratic terms is used to discard points with low con-
trast. The Taylor value is calculated from the following equation:

D(x) = D +
∂(DT )

∂(x)
+

1

2
xT
∂2(D)

∂(x2)
x, (A.5)

where D and ∂(D) are evaluated at the sample point, and x = (x, y, σ)T is the offset
from this point.

(a) The location of the extremum x̂ is calculated using the following equation:

x̂ = −∂
2(D−1)

∂(x2)

∂(D)

∂(x)
. (A.6)

(b) The value of the Taylor expansion at the etxremum x̂ is calculated using the
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following equation:

D(x̂) = D +
1

2

∂(DT )

∂(x)
x̂. (A.7)

(c) Any point with |D(x̂)| < 0.03 is discarded.

2. The principal curvature across the edges is used to discard points that are poorly
localized across the edges.

(a) The principal curvature is calculated from the Hessian matrix from the difference
of Gaussian image D using the following equation:

H =

[
Dxx Dxy

Dxy Dyy

]
. (A.8)

(b) The trace of H and the determinant of H are then calculated:

Tr(H) = Dxx +Dyy, (A.9)

Det(H) = DxxDyy − (Dxy)
2. (A.10)

(c) Any point that fails in the following inequality is discarded:

Tr(H)2

Det(H)
<

(r + 1)2

r
, (A.11)

where r = 10.

• Orientation assignment: Local image gradient directions are used as a means of assigning
one or more orientations to each keypoint location in order to ensure that the candidate
points are invariant to orientation. The orientation of the keypoint is calculated based on
the orientation and magnitude of the pixels in a region around the keypoint. The process is
as follows:

1. For every keypoint in the image scale L(x, y, σ), a region W (with a maximum size
up to 16× 16) around the point is generated.

2. For every pixel in the region,
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(a) The magnitude m(x, y) of the pixel is calculated:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + L(x, y + 1)− L(x, y − 1))2.

(A.12)

(b) The orientation θ(x, y) at each pixel is calculated:

θ(x, y) = arctan

(
(L(x, y + 1)− L(x, y − 1))

(L(x+ 1, y)− L(x− 1, y))

)
. (A.13)

3. A histogram of 36 bins is formed, with each bin representing 10 of the total 360
degrees.

4. The value at each bin is the sum of the magnitude of the pixels at this orientation
weighted according to a Gaussian weighted window of the same size as W and
with σ = 1.5σ0, where σ0 is the scale used to generate the first Gaussian image
in the octave of the detected point. For example, if the point whose orientation is
currently being calculated is detected in the second DoG of the first octave, then
the σ0 is equal to the σ used to generate the first Gaussian image L(x, y, σ) in the
first octave (which, in this case, = 1.6). For example, given a keypoint (x1, y1) and
W = 16 × 16, for every pixel in W , the magnitude m(x, y) and θ(x, y) are calcu-
lated. If there are 5 pixels with a direction of 95 degrees and with magnitudes equal
to m1 : m5 = 50, 80, 20, 100, 40, respectively. Therefore, the value V in the tenth bin
of the histogram that covers the degrees from 90 to 100 is then calculated as follow:
V = (50 ∗G) + (80 ∗G) + (20 ∗G) + (100 ∗G) + (40 ∗G),
where G is the Gaussian filter with the same size as W and with a sigma value equal
to σ = 1.5σ0.

5. The peak point in the histogram and the 80% bins are selected to be the orientations
of the key point. For example, if the tenth bin that covers the degrees from 90 to 100
has a peak value V = 200, and if there is another bin, e.g., the eighth bin, that covers
the degrees from 70 to 80 and has a value V = 180, which is greater than 80% of the
peak, then this point will have two orientations from 70 to 80 and from 90 to 100.
On the other hand, if no values at any bin reach 80% of the peak, this point will have
only one orientation: the orientation of the peak.

117



• Key point descriptor: After the candidate points have been selected, the local image
gradients are measured in the region around each key point. Orientation histograms are
created from 4× 4 pixel neighbourhoods with eight bins each, and the magnitude and ori-
entation values of the samples in a 16 × 16 region around the key points are calculated.
When 4 × 4 = 16 histograms exist, each with eight bins, the feature vector of each key
point with 128 elements is calculated as follows:

1. The image used to calculate the descriptors is selected L(x, y, σ). The first Gaussian
image L(x, y, σ) in the octave where the keypoint is detected is used to calculate the
descriptors. For example, if the current point is detected in the second octave, then
the image used to calculate the descriptors is the first Gaussian image in the second
octave.

2. A 16× 16 region is generated around each keypoint in L(x, y, σ).

3. If the current point has more than one orientation, then, starting from its second
orientation, the image L(x, y, σ) is rotated using the orientation of the point before
starting the process of descriptor calculation. In the first orientation of the point,
L(x, y, σ) is not rotated, and the descriptors are calculated directly from L(x, y, σ).

4. This 16× 16 window is divided into 16 different 4× 4 subregions.

5. At each subregion, the magnitude m(x, y) and the orientation θ(x, y) are calculated
at each pixel.

6. An eight-bin histogram is initiated, in which each bin covers 45 degree of orientation.

7. The value at each bin is the sum of the magnitude at each degree (as in the previous
step), weighted by a 4 × 4 Gaussian filter with σ = 1.5∗ the width of the descriptor
window (e.g., up to 16× 16).

8. The descriptor vector at each point is formed from eight bins from each subregion
(16 subregions), i.e., 16× 8 = 128.

• Matching process

The main challenge associated with SIFT is the matching process, which requires a large
number of comparisons. The matching process is performed as follows:
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Given two images I1(x, y), and I2(x, y) with descriptor matrices M1,M2 of dimensions
M1 : N1 × k and M2 : N2 × k, where k = 128,

1. For every row in M1, the Euclidean distances between this row and all rows in M2

are calculated:

E(p, q) =

N2∑
i=1

(pi − qi)2, (A.14)

where p1 · · · k are the elements of a row in M1, and q1 · · · k are the elements of a row
in M2.

2. The minimum distance, or nearest point is selected.

3. The second nearest point is selected.

4. The point with the minimum distance is considered the matching point if the ratio
between the minimum distance and the second minimum distance is less than 0.8 of
the distance to the first nearest point. Otherwise the point is discarded.

5. In summary, point p1 in M1 is matched to point p2 in M2 if

(a) The Euclidean distance d1 between p1 and p2 is the minimum distance between
p1 and every point in M2.

(b) The ratio of the distance d1 and the Euclidean distance d2 between p1 and p3 (the
second nearest point) is less than 0.8.

For example, if the distance d1 = 0.1, and d2 = 0.15, then p1 and p2 are matched.
On the other hand, if the distance d1 = 0.1, and d2 = 0.12, then p1 and p2 are not
matched.

SIFT has been used in numerous applications, such as object recognition, image stretching, 3D
modeling, gesture recognition, video tracking, match moving, and face authentication [89] as
well as to provide a self-calibration strategy for estimating intrinsic and extrinsic camera param-
eters [90]. A number of published reports [91, 92, 93, 94] help provide an understanding of the
SIFT technique.
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