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Abstract

Aggregating financial assets together to form a portfolio, commonly
referred to as “asset pooling”, is a standard practice in the banking and
insurance industries. Determining a suitable probability distribution
for this portfolio with each underlying asset is a challenging task un-
less several distributional assumptions are made. On the other hand,
imposing assumptions on the distribution inhibits its ability to capture
various idiosyncratic behaviours. It limits the model’s usefulness in its
ability to provide realistic risk metrics of the true portfolio distribu-
tion. In order to conquer this limitation, we propose two methods to
model a pool of assets with much less assumptions on the correlation
structure by way of finding analytical bounds.

Our first method uses the Fréchet-Hoeffding copula bounds to cal-
culate model-free upper and lower bounds for aggregate assets evalua-
tion. For the copulas with specific constraints, we improve the Fréchet-
Hoeffding copula bounds by providing bounds with narrower range.
The improvements proposed are very robust for different types of con-
straints on the copula function. However, the lower copula bound does
not exist for dimension three and above.

Our second method tackles the open problem of finding lower bounds
for higher dimensions by introducing the concept of Complete Mixa-
bility property. With such technique, we are able to find the lower
bounds with specified constraints. Three theorems are proposed. The
first theorem deals with the case where all marginal distributions are
identical. The lower bound defined by the first theorem is sharp un-
der some technical assumptions. The second theorem gives the lower
bound in a more general setup without any restriction on the marginal
distributions. However the bound achieved in this context is not sharp.
The third theorem gives the sharp lower bound on Conditional VaR.
Numerical results are provided for each method to demonstrate sharp-
ness of the bounds.

Finally, we point out some possible future research directions, such
as looking for a general sharp lower bound for high dimensional corre-
lation structures.
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1 Introduction

Asset pooling is the practice of combining many different assets into one
portfolio. This is a common idea in finance and one of its major motivations
is to manage the overall risk. By combining assets that have either small
or negative correlations, the entire portfolio becomes less volatile. Some
examples include portfolio of mortgages that have similar time to maturity
but are in different geographic regions. The combined portfolio manages
to diversify and even eliminate some risk. More detailed examples will be
discussed in section 2 to demonstrate this concept.

Theory in asset pooling is well established. Markowitz addresses this prac-
tice systematically in Modern Portfolio Theory (Markowitz (1952)). Develop-
ment in statistical models for correlation structure is mature. For instance,
a copula is a robust function to model the correlation structure of pooled
assets. Nelsen (2006) gives a comprehensive review on copulas. Fréchet
(1951) and Hoeffding (1940) together proposed the Fréchet-Hoeffding point-
wise copula bounds that lay the foundation for finding bounds on aggregate
assets. Tankov improved the standard Fréchet-Hoeffding copula bounds in
Tankov (2011). In this thesis, we first focus on improving Tankov’s work on
copula bounds, which is presented in section 3.

Studies on copulas are relatively advanced in dealing with bivariate de-
pendence structures. On the other hand, there are computational and con-
vergence issues with statistical inference of multidimensional data, and the
choice of multivariate distributions is rather limited compared with the mod-
eling of marginal distributions. An inappropriate dependence assumption can
have significant risk management consequences. For example, the abuse of
the Gaussian multivariate copula can severely underestimate probability of
simultaneous default in a large basket of firms (McNeil et al. (2005)). In sec-
tion 4, we focus on another model based on the Complete Mixability property
introduced by Wang and Wang (2011). We prove three theorems based on
the Complete Mixability property to improve point-wise lower bounds for
dependence structures with specific marginal distributions. Some numeri-
cal illustrations are provided to demonstrate the improvements of the lower
bounds over old models.

In section 5, we conclude the research covered in the thesis and propose
some possible extensions.



2 Background Knowledge

2.1 Motivation for asset pooling

In order to show how risk can be reduced with diversification, we use a
simplified numerical example. Diversification can be defined as spreading a
fixed amount of funding on a variety of assets to reduce risk. Its benefit can
be justified by two arguments. The convexity of risk measures is the first
argument. Assuming we have 15 independently distributed assets each
worth $1, with yearly return distributions modeled by Gaussian
distributions of mean 0.1 and standard deviation 0.1. Consider two
portfolios A and B: portfolio A consists of $15 dollars of the first asset, and
portfolio B consists of one dollar of each asset. Using Monte Carlo
simulation, the distribution of return of the two portfolios can be generated
as shown in Panel I in figure 1.

Figure 1: Return distribution of two different portfolios (Panel I)
40 periods cumulative return simulation of two different portfolios (Panel II)
Panel I Panel II
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Note that from Figure 1 Panel I, both density distributions center on 1.5.
This is because the two portfolios have the same expected return. However,
the return distribution of the one asset portfolio (i.e., Portfolio A) is much
more spread out than that of the multi-asset portfolio (i.e., Portfolio B).
If risk is considered as a measure of dispersion, we can say that the multi-
asset portfolio has less risk. Over a longer period of time, the multi-asset
portfolio will observe a much smoother growth in value as observed in Panel
IT of Figure 1. The diversification effect illustrated in this example is widely



observed in finance. This describes an incentive for a financial institution or
a corporation to construct a portfolio of diversified assets.

This argument explains the benefit of asset pooling, diversification of
assets effectively limits risk while keeping expected return the same. This is
why insurance companies can establish a business by collecting a fee from
each individual and managing the collective risk. Since asset pooling explains
the incentive of large financial institutions, the modeling problem on the
aggregate assets is a very important issue. However, it is a complex exercise
to model the distribution of a pool of different assets, each of which might
behave differently. The following sections will further explore the models
in more depth. Models in the industry often face the challenge of either
making too many assumptions or calibrating too many parameters. The two
models proposed in the following sections can solve this problem without the
trade-off.

2.2 Modeling aggregate assets

In order to model pools of assets, it is necessary to understand the distribu-
tion of each individual asset, and calibrate their dependence structure. The
problem with calibrating a high dimensional distribution is that without too
many assumptions, many parameters need to be estimated, which decreases
the accuracy of the results. Different models have been proposed. The study
of copulas is one widely used tool for multidimensional dependence structure.
A copula does not depend on the marginal distribution; it is a function of the
quantiles of each variable. This claim can be asserted by the following theo-
rem named after the mathematician Sklar (1959). A more formal treatment
of copulas is hereafter presented in section 3.

Theorem 2.1 (Sklar’s theorem) (i) A cumulative distribution function,
H(zy,...,2q) =P[X; < 21,..., X4 < 24

of a random vector (X1, Xo, ..., Xq) with marginals Fi(x) = P[X; < z] can
be written as
H(SU1,...,LUd> = C(Fl(x1>7"'7Fd(‘rd>>7

where C' is a copula.
(i1) Given a cumulative distribution function H, the copula is unique on
Range(Fy) X - - - x Range(Fy), which is the cartesian product of the Range of



the marginal cdf’s. This implies that the copula is unique if the marginals F;
are continuous.

Sklar’s theorem shows that we can divide the modelling multidimensional
cumulative distribution into two parts, finding the marginal distribution and
defining the copula. In practice, there exist many accurate statistical tech-
niques to estimate the respective marginal distributions of Xy, ..., X,,, while
the joint dependence structure of (X, Xs,..., Xy) is often much more dif-
ficult to capture. Therefore, deeper understanding of models defined with
copula functions can help us model joint distributions with more sophisti-
cated dependence structure.

In order to avoid calibration of too many parameters, assumptions have
to be made about the copula. For 2-dimensional problems, the Gaussian
copula used to be a popular tool to price aggregate assets. The advantage
of the Gaussian copula is that it is a one parameter model which is easy
to calibrate. The convenience of the model made it a popular choice for
pricing in the industry. However, the assumption of a Gaussian copula is
very specific, and the abuse of this model caused dire consequences in the
2008 financial crisis.

Among all the useful properties copulas have, one property is that there
exists a point-wise upper bound for copula in any dimension. This is a special
copula named the co-monotonic copula or the Fréchet-Hoeffding upper bound
defined as the following,

C (uy, ug, ug, ..., Uy) = min (ug, Ug, Us, ..., Up,) -

In two dimensions, copulas also have a Fréchet-Hoeffding lower bound. Stud-
ies have been done on improving Fréchet-Hoeffding bounds under specific
conditions on the copula function. The existence of such point-wise bounds
can provide price bounds on measures of aggregate assets without making
any assumptions on the dependence structure. The Fréchet-Hoeffding bounds
are convenient but they are too general since they are bounds on the whole
copula space. In reality, the dependence relationship between real assets
have many idiosyncratic structures; Fréchet-Hoeffding bounds are too wide
to accurately capture the distribution of the asset pool. The bounds offer
a limit on the asset pool by giving the best and the worst case scenarios of
the measure. By understanding and specifying conditions on assets, further
improvements on the bounds can be achieved. Section 3 reformats the paper
Bernard, Jiang and Vanduffel (2012) discussing different scenarios where the
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copula bounds can be improved. This study is based on the paper Tankov
(2011), whereas the conditions on which the bounds can be improved are
broadened.

The copula is a very useful tool in modeling dependence structure. One
problem with copula is that there does not exist a Fréchet-Hoeffding lower
bound in any space with dimension higher than three. One way to solve
the minimization problem in higher dimensions is to use the complete mix-
ability property. Complete mixability property is concerned with the sum
distribution of n random variables X, X5, X3, ..., X,,, where each random
variable follows defined marginal distributions, X; ~ Fj, Xy ~ F,, X3 ~
F;, ..., X,, ~ F,. If there exist a set of X7, X5, Xs,..., X,, such that the
sum is a constant, this set is called a complete mixable set. Notice that as
the sum of X/s is a constant in this setup,

S = ZXi = Constant.
i=1

Notice that since S is constant, the standard deviation o (S) = 0 is at its
minimum. The Fréchet-Hoeffding lower bound achieves the same minimum
in dimension two. In section 3, we prove that for any convex function f, the
complete mixable distribution has the constant S = C' as the solution to the
minimization problem

minE [f(.5)]
S.t.Xl ~ Fl, X2 ~ FQ, cery Xn ~ Fn

i=1

With a bit of careful examination, we can use the complete mixability prop-
erty on a much wider range of distributions to find lower bounds. We propose
and prove three theorems that give the lower convex ordering bound. The
first theorem proves the existence of a bound in the case where all marginal
distributions are identical. The lower bound provided in this theorem is
sharp under some technical conditions. The second theorem gives the lower
bound without restrictions on the marginal distributions. As a tradeoff be-
tween sharpness and generality, it can be shown that the bound in theorem
two, although more general, is not a sharp bound. The third theorem gives
the sharp lower bound on TVaR. Using the Rearrangement Algorithm as



described by Puccetti and Riichendorf (2012), the bounds are verified nu-
merically for sharpness.



3 Improved Copula Bounds

A copula is a mathematical function that describes all of the information in
a correlation structure in a high dimensional distribution. It is widely used
in risk and portfolio management for pooled assets and pricing of basket
asset derivatives. The method using copula for pricing of collateralized debt
obligation (CDOs) was popularized in the early 2000s for its simplicity. It
was believed by some that the Gaussian copula model for pricing CDOs
was partially responsible for the global financial crisis in 2008-2009. It is
true that before and after the crisis, Gaussian copula was recognized to have
limitations on extreme tail events (the event where all single random variables
have values in their respective lower range). It is a known phenomena that
during a market shock and a financial crisis, higher level market co-movement
is observed. By assuming Gaussian copula, the probability of tail events
decays exponentially, thus it cannot capture this type of systematic risk.
This problem can be solved by giving the Fréchet-Hoeffding bound on copulas
without making more assumptions or introducing more parameters.

3.1 Definition of Copula

In probability terms, a n-dimensional copula C : [0,1]" — [0,1] is a cumu-
lative distribution function on the unit hypercube [0,1]" with each marginal
distribution as the uniform distribution.

Definition 3.1 An n-dimensional copula is a function C : [0,1]" — [0, 1]
with the following properties:

1. C(uy,ug,...;ui—1,0,Uy1, ..., u,) = 0, for each 1 = 1,2, ..., n.
2. C(1,1,...,1,u,1,...,1) = u, for each i = 1,2, ..., n.

3. C'is d — increasing, i.e., for each hyper-rectangle

B = H[miayi] c [0,1]*

i=1

its C-volume is non-negative:

/ iCwy= S (—)¥ICE) >0,

zexgizl{:ri,yi}
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where

This section will only discuss the two dimensional case of the copula, and
therefore the third condition of the copula function can be simplified to con-
ditions 3 and 4 in the following definition:

Definition 3.2 A bivariate copula is a function C : [0,1]° — [0,1] with the
following properties:

1. C(0,u) =C(u,0) =0Vu e (0,1).
2. C(u,1)=C(1,u) =uVu € (0,1).

3. C (u,v) is non-decreasing in each variable, i.e., C' (u, vg) is non-decreasing
function in u and C' (ug,v) a non-decreasing function in v.

4. For each pair of (uy,v1), (ug,v2) € [0,1]%, with u; < uy and vy < v,
we have the following inequality C (ug,ve) — C (u1,v2) — C (ug,v1) +
C (ul, Ul) 2 0

As a generalization of copula, we can replace the third property by a weaker
assumption to define a quasi-copula as follows,

Definition 3.3 A bivariate quasi-copula is a function C : [0,1]2 — [0,1]
with the following properties:

C(0,v) = C(u,0) =0, for each i = 1,2,....,n
C(u,1)=C(1,v) =1, foreach i = 1,2,....,n
C(

u,v) is non-decreasing in each variable, i.e., for each ug, vy € (0, 1),
C’ (u, vg) is non-decreasing function in v and C (ug, v) a non-decreasing
function in v.

4. Lipschitz property: |C (ugz,vs2) — C (uy,v1)| < |ug — wy| + |vg — vy| for
all U1, U2, V1,V € [O, 1}



3.2

Properties of Copula

Copula is a popular object in the study of dependence structure because it
has very nice properties. Here is a list of well-known properties of copulas.
Part (1) can be found in Nelsen (2006), the rest of the properties and proofs
can be found in Deheuvel (1981). The best summary of the properties can
be found from the paper Durrleman et al. (2001),

1.

(Existence) Sklar’s theorem: Let H be a joint distribution function
with margins F' and G. Then there exists a copula C such that for all
r,y in R,

H(z,y) = C(F(z),G(y)).

(Convexity) The set of all copulas, C is convex, namely if A, B € C,
then YA € (0,1), M 4+ AB € C. This property can help us generate
new copulas via the known copulas.

(Compactness) The set of all copulas, C is compact with any of the
following topologies: point-wise convergence, uniform convergence on
[0,1], weak convergence of the associated probability measure (De-
heuvel (1978)).

. (Scale-Invariant)If hy, ..., h,, are strictly monotonic and non-decreasing

mappings of R to itself, any copula function of (Xj,..., Xy) is also a
copula function of (hy (X1), ..., An (Xn))-

(Convergence in distribution) If {F™ m > 1} is a sequence of cu-
mulative distribution functions in RV, the convergence of F™ to a
distribution function F' with continuous margins F,, as m — oo, is
equivalent to the following two conditions:

(a) V1 <n < N, F{™ — F, pointwise.
(b) if C is the unique copula function associated to F, and if C™ is a

copula function associated with Ffzm)7 C(™ — C (with the weak
topology of C).

. (Lipschitz condition) Every copula C' is continuous and satisfies the

following inequality

n
|C (uy, ug, us, ..., uy) — C (v1, 02,03, ..., 0,)| < Z |u; — vy
i=1



7. (Fréchet-Hoeffding bounds) The classical Fréchet-Hoeffding bounds are
defined as follows: The Fréchet-Hoeffding lower bound W(u,v) :=
max (0,u +v —1). The Fréchet-Hoeffding upper bound M (u,v) :=
min (u,v). The classical Fréchet-Hoeffding bounds are absolute point-
wise bounds, meaning for any copula C' in two dimensional space, the
following is always true

W (u,v) > C (u,v) = M (u,v). ¥ (u,v)e0,1].
Remark 3.1

(1) The existence property shows that the copula theory can be applied to
correlation structures for all possible joint distributions, thus ensuring the
wide practicality of this study. (2) The convexity of the copula space can
help to generate new copula from the existing classes of copulas, i.e. for any
two known different copulas where A, B, C = A+ (1—-\)B, for A € (0,1),
the convex combinations of these copulas can create new classes of copu-
las for calibration. (3) Compactness implies that any continuous function
on copula will attain its optima. (4) Scale invariance means copula only
describes different random variables’ ranking relative to each other. Notice
that Kendall’s 7 and Spearman’s p can be defined as a function of copula
inheriting these properties. For example, consider two random X,Y, where
Y = ¥, since exponent is an increasing function (for any two events wy, wo,
if X (w1) < X (wy) then YV (w;) < Y (ws)), the copula of the joint distribu-
tion (X,Y) is the Fréchet-Hoeffding upper bound. Also as a result, both
Kendall’s 7 and Spearman’s p on (X,Y) are equal to 1. (5) The convergence
in distribution is equivalent to the convergence in copulas, this means, the
studies of the topology in the copula space can be used to study topological
space of joint distributions. (6) The Lipschitz condition is a regularity con-
dition on copula analytically, it is a function with many properties such as
uniform continuity. (7) Fréchet-Hoeffding bounds are point-wise bounds, it
could provide solutions to many optimizations on copulas.

3.3 Tankov’s improved bound

Tankov (2011) introduced an improved bound on copula with fixed values
Q(a,b) defined on a set (a,b) € S.

We will use the following notations consistent with relevant literature.
Let us denote by S a compact subset of the unit square [0,1]* and let Q

10



be a quasi-copula. Let Qs denote the set of all quasi-copula satisfying the
following condition:

Qs = {C a quasi — copula|C (u,v) = Q (u,v) V(u,v) € S}.

Denote A%? as the upper bound and B the lower bound,
ASQ(u,v) = min {u,v, (rrll))ins{@(a, b)+ (u—a)t + (v — b)*}} , (3.1)
a,b)e
BSC(u,v) = max {O,U +v—1, (H})?XS{Q(G, b) — (a—u)t — (b— v)+}} :
a,b)e

where (u,v) € [0,1]°.

We will say S is increasing if for any two points (ao, bo) , (a1,b1) € S, ap <
a; = by < by. Symmetrically, if for any two points (ag, bo), (a1,b1) € S,
ag < ag = by > by, then we will call S decreasing. Theorem 1 of Tankov
(2011) states the following properties.

Theorem 3.1 .
1. Asq and Bsq are quasi-copulas satisfying
B9 (u,v) < Q' (u,v) < A%9(u,v) VY(u,v) € 0,1]?
for every Q' € Qs and
A%C(a,b) = BS%(a,b) = Q(a,b)
for all (a,b) € S.

0. If the set S is increasing, then BS? is a copula; if the set S is
decreasing, then AS®? is a copula.

In other words, the above theorem shows that amongst all quasi-copulas
Q' coinciding with Q on S, AS? (resp. BS?) is the best possible upper
(resp. lower) bound, and thus improves the Fréchet-Hoeffding bounds in
particular. Similar improved bounds have been provided in the paper of
Rachev and Riichendorf (1994) and it is also discussed in Section 7.3 in
Rachev and Riichendorf (1998). Furthermore, Tankov (2011) also showed

11



that ASQ (resp. BS?Q) are quasi-copulas and demonstrates that a sufficient
condition for AS@ (resp. BS?) to be a copula is to suppose that S is non-
increasing (resp. non-decreasing). In this section, we extend this result
by showing that when Q is a copula, AS? (resp. BS?) is a copula when
S is a compact set satisfying some additional conditions, namely a “non-
increasingness” (resp. “non decreasingness”’) and a “connectivity” property.
For instance, when S is a rectangle then both AS? and BS9 are copulas.

Theorem 1 of Tankov (2011) and our additions to it are of interest in
finance. Tankov already demonstrated how his results are instrumental in
finding model-free bounds for the prices of some two-asset derivatives. He
shows how information embedded in the financial market (such as the price
of another two-asset option) translates into extra information about depen-
dence, and thus allows to sharpen the traditional bounds for prices. These
improvements on traditional bounds are based on Fréchet-Hoeffding bounds
on copulas (where information on dependence is ignored). In this section, we
show that the study of optimal investment strategies is intimately connected
to finding bounds on their dependence with the so-called stochastic discount
factor (pricing kernel or state-price process). In particular, knowing that
BS% is a copula is useful to determine investment strategies that are opti-
mal for investors with state-dependent constraints, i.e. when they not only
care about the distribution of final wealth but also about the states where
cash-flows are received. More details are given in Section 3.6. Both men-
tioned applications make clear that it is of interest to know more situations
for which the bounds appearing in Tankov (2011) are copulas (Theorems
3.3, 3.4 and 3.6 in this section). The main part of the next chapter is largely
quoted from a paper by Bernard, Jiang and Vanduffel (2012). Some new
developments are presented at the end of the chapter with a new theorem
and a brief discussion of a numerical method to generate improved Fréchet-
Hoeffding bounds.

3.4 Extensions of Theorem 1 of Tankov (2011)

In this section, we extend Theorem 1 of Tankov (2011). To this end, we need
the following lemma.

Lemma 3.2 Assume f : [0,1]* — R is two-increasing, non-decreasing in
each argument and satisfies the Lipschitz property. Define function g : [0,1]* —

12



R as
g = max{f, W},
where W (u,w) = max{u + v — 1,0} is the anti-monotonic copula. Then

g is also two-increasing, non-decreasing in each argument and satisfies the
Lipschitz property.

Proof. Note that W is Lipschitz continuous. Hence ¢, as the maximum of
two functions with the Lipschitz property, also satisfies the Lipschitz property
(as shown in Part (i) of the proof of Theorem 1 in Tankov (2011)). It is
obvious that ¢ is also non-decreasing in each argument. In order to prove
that ¢ is two-increasing, let us consider any rectangle R = [uy, us] X [v1, vo] !
in the unit square. We identify the following three cases:
Case 1: Assume that either max {f (ug,v1),us +v; — 1} < 0 or

max{ f (u1,v2),u; +v9 — 1} < 0. Since both functions are non-decreasing in
each argument we find that

max { f (ug,v1),u; +v3 — 1} <0.

Without loss of generality we can take max { f (ug2,v1),us +v; — 1} < 0 (the
other case is similar). Then the g—volume of the rectangle R is given by

Vo(R) = g(ug,v2) — g(ug, v1) — g(us, v2) + g(u, v1)
> g(ug,ve) — g(u1,ve)
= max{ f(ug, va), Wuz,vy)} — max{f(uy,vs), Wiug,vs)}
2 07

where the last inequality follows from f(us,vs) = f(u1,v2) and W (ug, ve) >
W (uy,ve).

For cases 2 and 3, we can now assume that both max { f (u2,v1),us + vy — 1} >
0 and max {f (u1,ve),us +vg — 1} > 0.

Case 2: Assume that f(us,v1) = us+v; — 1 and f(ug,ve) = ug +vy — 1.
This implies that g(us,v1) = f(ug,v1) and g(uy,ve) = f(uy,vs). Hence the
g—volume of the rectangle R satisfies

Vy(R) = g(ua, va) — g(uz, v1) — g(ur,v2) + g(ur, v1)

> flug,v2) — f(ug,v1) — fur,v2) + f(ug,v1)
20,
!For any rectangle R = [uj,uz2] X [v1,v2] , we conventionally assume u; < up and

v < V2.

13



where the last inequality follows from the two-increasing property for f.

Case 3: Assume that f(ug,v1) < us+v; — 1 or f(u,ve) < up +ve — 1,
without loss of generality we take f(ug,v1) < ug + v — 1 (the other case is
similar). Since max {f (ug,v1),us +v, —1} > 0 (assumption in Case 1), it
follows that us + v; — 1 > 0 and thus also uy + v9 — 1 > 0. Furthermore,
the Lipschitz property for f then also implies that f(ug,ve) < ug + vy — 1.
Therefore

Vo(R) = g(ug, va) — g(uz, v1) — g(us,v2) + g(uy, v1)
= (ug + v — 1) — (ug +v1 — 1) — g(u1,v2) + g(u1, v1)
= (v2 —v1) — (g(u1, v2) — g(u1,v1))

where the last inequality follows from the Lipschitz property for g. m

Let us denote by &; the set obtained by the first variable projection of
the compact set S, namely v € S; if and only if there exists v € (0, 1) such
that (u,v) € S. Similarly, we define Sy as the second variable projection.
Define the two following functions

1t 81 — 82
w +— min {v|(u,v) € S} (3.2)
and
Y21 81—+ S
u — max {v|(u,v) € S}, (3.3)

The existence of the above maxima and minima is guaranteed because of the
compactness of S. The points (u,1(u)) are the “lower” boundary points of
S. Similarly, (u,72(u)) are the “upper” boundary points. We are now ready
to prove the following result.

Theorem 3.3 Let Q) be a copula and S C [0, 1]2 be a compact set with both
v1 and v as non-decreasing functions, and satisfying the following property:

Y (u,v9), (u,v1) €S, (u, UO;“) €S. (3.4)

Then BS% is a copula.
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Proof. Tankov (2011) already showed that BS® is a quasi-copula. Thus
we only need to show that BS€ is two-increasing. Let us write BSY as
max {fS’Q, W}, where 99 is the function

F59u,v) = max {Q(a,b) — (a = u) = (b—v)"}.

Tankov (2011) proved that 5@ satisfies the Lipschitz condition. Since ¢
is also non-decreasing in each argument, it remains to prove that it is also
two-increasing. Then, Lemma 3.2 implies that BS€ is a two-increasing quasi-
copula and therefore a copula. Let us consider any rectangular area R =
[u1, up] X [v1,v2]. We want to prove that Vis.o([u1,v1] X [ug, v2]) = 0.

By compactness of S, there exist (u},v;) € S and (uj,vy) € S, such that

fS,Q (uh U2> = (g}){)ﬁé{s {Q(CL, b) — (a — u1)+ _ (b — 1)2>+}

= Q (uj,vy) — (uy — U1)+ - (Uék - U2)+7
and

59 (ug, 1y) = max, {Q(a,b) — (a—uz)" — (b—w1)"}

= Q(u3,v7) — (uy —u)" = (v] —w1)”
Case 1: First, we assume that (uf, vy) and (u}, v]) form a non-decreasing
set. Observe that

fS,Q (Ug, 1)2) = (Q;)ié{s {Q(a, b) — (a — u2)+ _ (b — 1)2>+}

> Q (ui,vy) — (U] —up)" — (v5 — )",
and

£ (ur,00) = ax {Q(a,0) = (@ —u)" = (b—v1)"}

> Q (uh, v7) — (w3 —ur) " — (vf — o).
Then we bound the volume of the rectangle [uy, v1] X [ug, v9] as follows:
F29 (ug,v9) = 59 (ur,09) = 59 (ug, v1) + f59 (ug, v1)
> [Q (uf, v3) — (uf —u2)™ — (05 —v2) "] = [Q (uf,v5) — (uf —ur)" = (v5 — )]
= [Q (u3,v7) = (u5 —ua) ™ = (v} —01) "] + [Q (g, 0) — (u5 —wr)" — (v} —v1)"]
= Q (uy,v3) — Q(uy,v3) — @ (u3,v7) + Q (u3,v7)
+ [y — )" = (uf —ue) "] = [(us — )" — (uh —uz) ]

> [(uf —ur)” — (uf —ug) "] = [(uh —wr)" — (uf — ua)"] (3.5)
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where the last inequality (3.5) holds because @ is two-increasing and (u}, v3)
and (ul,v}) form a non-decreasing set. Hence, if u] < u} in (3.5), then the
volume Vis.q([u1, v1] X [ug, v2]) = 0 holds true. In the opposite case (uj > uj),
we proceed similarly. Indeed, it also holds that

F59 (ug, v2) = Q (uh, vf) — (uh —uz)™ — (v — o)™,

FE9 (ury01) = Q (uf,v3) = (uf —wn) " — (03 —vr)"

Therefore using the same proof as above, we obtain

139 (ug, v2) — F39 (u, vg) — 139 (u2,v1) + F (u1,v1)
> [(us —w)" — (w5 —u2)"] = [(uf —wr)" = (u —uz)"]
= 0.

Case 2: Second, we assume (uj,vs) and (u3,v]) form a non-increasing
set.

When uj < ul, then v5 > vi. By compactness of S, property (3.4) implies
that for each u € S;, S contains the vertical segment connecting (u,v;(u))
and (u,72(u)). Thus y(uf) < v; < 72(uf) and y(uz) < of < 72(uj).
Moreover, by the non-decreasing property of 7, and 72, we have v, (u}) <
7 (u3) and 72 (u]) < 72 (u3). Therefore v (uf) < vf < 72(uf) and 71 (u3) <
vy < Yo(ul). Hence (uj,v}) € S and (uj,v3) € S. Similarly, we can prove
that when uj < uj, (uj,v]) € S and (ul,v}) € S.

We obtain that, for (uq,v1) and (ug, v),

FE9 (ur,v) = Q (uj, vf) — (uf —wy) " — (vf —vy)",
and
FE9 (uz,v2) = Q (uh, v3) — (uh —uz) " — (V3 —vg) "

We can then conclude that the volume of the rectangle [uy, v1] X [ug, vo]
is non-negative because

F59 (ug,v2) = 59 (ug, v9) — f59 (ug, v1) + f59 (ur, 1)
> [Q (u3,v3) — (U5 —uz) ™ — (v5 —va) "] — [Q (uf, v3) — (U} —ur)" — (v5 — )" ]
— [Q (u3, v}) = (us —u2)™ — (vf — 1) "] + [Q (u, v}) — (u} —ur)™ — (v —v1)7]
= Q (u3,v3) — Q (u7,v3) — Q (uz,v7) + Q (uj, vy)
0.

WV
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We have proved that fS€ is two-increasing. Lemma 3.2 implies that BS? is
a copula. m

Define the two following functions which define the “left” and “right”
boundary points of S.

Y3 - S — &
v — min {u|(u,v) € S} (3.6)
and
Y4 : Sy — &
v — max {u|(u,v) € S} (3.7)

The following result is dual to Theorem 3.3. The proof is obtained by
Symmetry.

Theorem 3.4 Let Q be a copula and S C [0,1]? be a compact set with both s
and 4 being non-decreasing functions and satisfying the following property:

¥ (uo, v) , (ur,v) € S, (“O ; “w) €s. (3.8)

Then BS® is a copula.
Remark 3.2

The conditions in Theorems 3.3 and 3.4 cannot be readily relaxed. In-
deed consider S = {A, B,C, D}, where A = (1/3,0), B = (1/3,2/3), C =
(2/3,1/3), D = (2/3,1) and let @) = min{u,v}. Note that property (3.4) is
not satisfied and also that -3 (as well as ~,) is not non-decreasing, so that
neither Theorem 3.3 nor Theorem 3.4 can be invoked to show that BS% is a
copula. We observe that B9 is not a copula indeed, because

373 373 373 373
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Remark 3.3

At first glance, part(ii) of Theorem 1 in Tankov (2011) does not appear
to always follow from Theorem 3.3 or Theorem 3.4. For example, let us
consider the compact set S = {A, B,C} where A = (z1,vy1), B = (x2,11),
C' = (x9,y2), and where 1 < x5 and y; < yz. Then neither property (3.4)
nor property (3.8) is satisfied. Nevertheless, S is a non-decreasing compact
set for which part(ii) of Theorem 1 in Tankov (2011) can be applied implying
that BS? is a copula. However, we can also use our results combined with
a limiting argument to obtain the same result. Consider S, = {4, B,,CY},
where A = (x1,11), B, = (z9 — 22 yy) and C = (x3,y2). Then using

n Y

Theorem 3.3, we have that for all positive n € N, B5*© is a copula. Moreover,

B9 (u,v) = max {O,u +v—1,Q(z1,y1) — (x1 —u)t — (y1 —v)T,
Q(w2,y2) — (w2 —u)™ — (y2 —v)7,

. . +

converges point-wise for all (u,v) € [0,1]% to BS?(u,v). Finally, to prove
that BS? is a copula we need to verify the boundary conditions and the two-
increasing property. Both elements are satisfied when the sequence converges
point-wise?. Therefore, BS? is a copula. The same limiting arguments can
be used to show that BS? is a copula when S is a non-decreasing compact
that contains a vertical part and a horizontal part that are both disconnected
(so that both (3.4) and (3.8) are not satisfied). In this sense, the results in
Tankov (2011) appear as a special case of ours.

Corollary 3.5 Let Q be a copula and S C [0, 1]2 be a compact conver set
satisfying

3(&0,[)0) € S,El(al,lh) € S,V(U,U) € 8, ao § u § as, bo g (% < bl. (39)

Then BS% is a copula.

2In fact, if the point-wise limit of a sequence of copulas exists at each point of [0, 1]
then the limit must be a copula (see comment of Nelsen (2006) page 97 after definition
3.3.4).
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Proof. We prove that v; and 7, are non-decreasing on (ag,a;) and apply

Theorem 3.3 (since property (3.4) is satisfied). Indeed, by convexity of S, for

<z1+x2 Wz(wl)+72(ﬂc2)> c
2 2

any two points (x1,72 (z1)) and (z9, v (72)), we have

S. We can conclude that
T+ 1+
(5] esp=n (25).

1)+ z
(o2 ) ¢,
thus v, is concave. Similarly, +; is convex. Finally, since 7, is concave,
R(x1,x9) = % is non-increasing in x; for x, fixed, and in x5 for

fixed. Therefore 75 is non-decreasing on [ag, a1] because of property (3.9). A
similar reasoning shows that ~; is also non-decreasing. =

Note that Corollary 3.5 is not valid when the compact S is simply convex
and compact as shown by the following example.

Example 3.1 Let S be the line connecting (%, %) to (%, %) Let Q) be the

copula defined by the support in Figure 2, namely,

Qo) = e frmin {5 75,00, v e [0.]
max {u+v—1min{v,i}}, veli1].

It can be easily shown that Q takes the constant value + on S. Observe

tar 599 (3.3) = 1 5%9 (12) = L 599 (30) - 1’59 (LY) — 0

Therefore, on the rectangle [%, %}2, B3 is not two-increasing.

11
373

Figure 2: Support of the copula in Example 3.1

0 0.2 0.4 0.6 0.8 1
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However Theorems 3.3 and 3.4 show that there is a wide class of convex

compact sets such that BS? given by (3.1) is a copula. Similar results can
be obtained for A%,

Theorem 3.6 Let QQ be a copula and S C |0, 1]2 be a compact set. (i) If
Y1 and 7y, are non-increasing functions and S satisfies (3.4) then AS? is a
copula. (i) If v3 and 4 are non-increasing functions and S satisfies (3.8)
then AS® is a copula.

Proof. (i) Similarly as in the proof of Theorem 1 of Tankov (2011) we note
that AS®(u,v) = BSQ(u,v) where S is defined as S = {(a,b) | (a,1 —b) € S}
and Q(u,v) = u— Q(u, 1 —v). The non-increasing property of v, and 7, (de-
fined on S) implies that 7, and ¥, (defined in an obvious way on S) are
non-decreasing. Since () is a copula the first part of the proof implies that

BSQ(u,v) is copula, hence AS®@(u,v) = BSQ(u,v) is also a copula. The
proof for (i7) is similar. m

As an immediate result of Theorems 3.3 and 3.6, we have also the follow-
ing corollary.

Corollary 3.7 For any copula Q and any rectangle S = [uy, us] X [v1,v5] in
the unit square, A5 and BS? are both copulas.

Proof. For a rectangle S, v, and 7, (as defined by (3.2) and (3.3)) are clearly
non-decreasing and non-increasing and property (3.4) is obviously satisfied.
Therefore using Theorems 3.3 and 3.6, A9 and BS® are both copulas. m

3.5 New development on Improved Bounds

The above chapter found a few conditions on S that imply A9 and BS?
are copulas. Different conditions on & with the same implication have been
discovered since the publication of Bernard, Jiang and Vanduffel (2012).
Bernard et. al. (2012) also expanded on conditions with only constraints
on the four points (ao, bo), (ag,b1), (a1,b), (ai,br).

The following paragraphs also introduce new conditions on S that can
define AS? and B®® as copulas. There seems to be duality in terms of
the region S that allows A9 and BS® to be copulas. Let us denoteSt =
0,1]*\'S. Numerical results seem to suggest that the class of AS? and BS<@

we identified as copulas, AS @ and BS'9 are copula as well.
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Theorem 3.8 (reshuffle theorem) For any copula Q and any rectangle
S = [uy, us] X [v1,v9] in the unit square, AS'Q and BS® 9 are both copulas.

Proof. Again, to show that AS'Q i a copula, we only have to discuss one
case where (ay,b1), (ag,bs) € [uy, us| X [v1,v9]. All other cases can be reduced
to the first case. Heuristically, for any two points (ay, by), (ag, b2) € [u1, ug] X
(01, 2] with a1 < az and by < by, AS"? (ay,b1) = min {Q (a1, v2) , Q (2, by)},
therefore
ASB’Q (CLQ, bg) — ASC’Q (CL17 bg) — ASD’Q (ag, bl) + ASC’Q (al, bl)
=min {Q (az,v2), Q (ug,b2)} —min{Q (a1, v2), Q (ug, b2)}
— min {Q (CL27 U2) ) Q (u27 bl)} + min {Q (ala UQ) ) Q (u2> bl)}
=min {Q (az,v2), Q (ug,b2)} — min{Q (a1, v2), Q (ug, b2)}
— (min {Q (az,v2) , Q (ug,b1)} — min {Q (a1, v2) , Q (u2,b1)})
= (min {zo, yo } — min {1, yo}) — (min {wo, y1} — min {1, y1}).
Using the figure below, we can show that the function f(y) = min {zy, y}—

min {z1,y} is an increasing function. The function f(y) can be redefined as
follows,
To — T fory > x
fly)=9 x2—y fory€ [r:,
0 fory < ax

Figure 3: Interval Proof

X1 X2

Therefore, we have the following equation:

min {xg, Yo} — min{z1,y2} > min{zs, y1 } — min {xy,y;} .

We can conclude that

ASPQ (qy,by) — AS°Q (ay, by) — ASQ (ag, b)) + A5°Q (a1, by) > 0.
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By symmetry, we can also show BS°Q i a copula. m
Remark 3.4 (numerical solutions for improved bounds)

Numerically, the idea of this theorem is very easy to understand. Imagine
we numerically generate a copula @), we can proceed to do the following to
find the improved Fréchet-Hoeffding bounds:

1. we select all points {(a;, b;)}; € [u1, ua] X [v1, va).

2. replace {(a;,b;)}, with {(agl(i)7b02(i))}i where oy (i) ,09 (i) are both
sorting algorithms, meaning,

01 (Z) < 01 (]) - aal(i) < ao’l(j)'

This implies that the new copula generated with {(aal(i),b@(i)) }Z follows
the co-monotonic structure on the rectangle [uy, us] X [v1, v9] and everywhere
else, it still has the copula value of (). This numerical solution can offer new
ways to generate improved Fréchet-Hoeffding bounds with easy visualization
aspect. An example is shown in figure 4, the first copula is generated by two
random variables X, Y, where X follows the Pareto(1,1) distribution and
Y follows the uniform distribution on [0, 1]. Define S = [0.4,0.6] x [0, 0.2],
Panel(B) gives the Fréchet-Hoeffding upper bound A%%, and Panel(C) gives
the Fréchet-Hoeffding lower bound BS?. Based on the numerical method,
we can also conjecture the following statement:

Conjecture 3.9 Let QQ be a copula and S C |0, 1]2 be a compact set with
both v1 and 7 being non-decreasing functions. Then ASQ s copula.

Remark 3.5 (Ideas on numerical proof of the conjecture)

Numerically, for any two points (uq,v2), (ug,v1) € S with u; < ug, vy < v,
since 77 and v, are non-decreasing functions, we have yo(ug) = Y2 (uy) = vs,
7 (uz) < v1 < ve. We can therefore conclude that (ug,vy) € S. Similarly
the inequalities vy; (u1) < 71 (ug) < v1, Yo(u1) = vy > v9 show that (ug,vp) €
S. The rearrangement solution in the remark 3.5 can be decomposed into
a sequence of rearrangement switching the above pair (uq,vs), (ug,v1) —
(u1,v1), (ug,ve). Therefore, the result of the rearrangement algorithm will
stay in S, thereby giving a new copula C with C'(u,v) = Q(u,v) ¥ (u,v) € S
and C(u,v) maximized over the S region. This is identical to AS?,
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Example 3.2 (Numerical Solution)

In the following figure 4, the @) distribution is generated using two indepen-
dent random variables X, Y and the correlation coefficient p. X follows a
Pareto(1,1) distribution and Y follows a uniform distribution. Let us de-
note the new random variable Y’ = pX + /1 — p2Y. The multidimensional
distribution is described by

F(m,y):P[ng, pX—i—\/l—p?ng}
:P[Xéx, Yléy}.

Denote the cumulative distribution function of X as Fx and the cumu-
lative distribution function of Y as Fy. From the multidimensional distri-
bution, its corresponding Q(u,v) can be generated as follows:

Q(u,v) =P [FX (X) <u, Fyr (Y) < v} .
Let us define S = [0.4,0.6] x [0, 0.2]. If the numerical remark 3.5 is correct,

then in the following figure 4, Panel(B) and Panel(C) offer a solution to the
problem of finding the improved bounds.
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Figure 4: Numerically Solving for Improved Upper and Lower Bound
Panel(A)

The Q distribution

v (generated from uniform)

08 1

0 0.2

04 06
u (generated from pareto)

Panel(B)

Improve upper bound on the region(0.4,0.6)x(0,0.2)
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3.6 Application to optimal investment strategies and
derivative pricing

Tankov (2011) also described the broad application of copula bounds. Con-
sider a derivative payoff scheme f (X,Y’) based the final return of two assets
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X and Y, if the marginal distribution of the two asset returns are given, then
the price of the derivative 7 = Eg [f (X, Y)] is a function of the copula C' of
X and Y.

wc)= | ) / " F(e,1)dC (Fx(a), Fr(y))
=[] @) B e ).

Assume f is always two-increasing, then 7 is non-decreasing with respect
to the concordance order of copulas, i.e., if for copulas A and B, A (uy,us) <
B (uy,us) Yuy,ug € [0,1]%, then 7(A) < m(B). Therefore, once we find the
concordance Fréchet-Hoeffding bound on the copulas then we can decide the
upper and lower bounds on the price of the derivative.

Let (2, F,P) be a probability space describing a financial market. Using a
suitable equilibrium model or no-arbitrage arguments, financial theory shows
that the price of a strategy with terminal payoff X7 (paid at time 7' > 0)
can be written as

o(Xr) = ElérX7], (3.10)

where &7 is some given stochastic discount factor (also called state-price
process at T'). In fact, for w € Q, {r(w) can be interpreted as the price of
consuming one unit in state w and zero in all others. It is high in the worst
states of the economy, that is when the “market” is at its lowest levels.

Example 3.3
Let Q(u,v) = wv be the independence copula. And
S ={(a,b) €[0,1]* | a > ug, b€ [0,1]}.

Applying Corollary 3.7, we find after some calculations that the maximum
copula AS9 satisfying

Vu € [ug, 1], v € [0,1] ASC(u,v) = uv, (3.11)
is given by AS?(u,v) = min(u, ugv)lycu, + U0 1y5y,. Similarly, we find that
B9 (u,v) = max (0, uo(v — 1) + 1) Lucyy + U0 1Lysy,-

is the minimum copula. The supports of AS? and BS? are represented
graphically in Panel A and B of Figure 5.
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Figure 5: Supports for the copulas AS@ (Panel A) and BS? (Panel B)
of Example 3.3 with uy = 0.56. To simulate from A% or BS?, we use
(A59) 7 () = (&) Lucuo + Ylusur and (BS9) ™ (1) = (1= 2) Tucuy +

y1u>u0-
Panel A Panel B

0 0.2 04

The minimum copula obtained in this example allows us to construct a
strategy that provides at the lowest possible cost, the desired distribution
which also exhibits independence with the market when the latter is low
(high states for &r). This is thus a very useful strategy for investors who
seek for diversification (i.e. some degree of protection) in times of crisis.

Example 3.4

Similar to Tankov’s example, use the Black-Scholes model to price the fol-
lowing basket option:

fX,)Y)=(aX +BY —K)".

The copula assumed by the model is the Gaussian copula, namely for a
given correlation matrix ¥ € R?*2. The Gaussian copula with parameter
matrix Y can be written as :

Q™ (u,v) = @5 (7' (u), @' (v)),

where ® is the cumulative distribution function of a standard normal distri-
bution and Py, is the joint cumulative distribution function of a multivariate
normal distribution with mean vector zero and covariance matrix equal to
the correlation matrix .
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However, as we mentioned in the introduction, during a financial crisis,
it is a known phenomenon that the market exhibits a higher level of co-
movement. In order to account for the systematic risk, we assume that
the usual Gaussian copula dependence structure is destroyed in an extreme
event of a crisis. In the copula, we define this event to be in the rectangle
[0,0.2] x [0,0.2]. We consider Qg the set of all copulas C such that C'(u,v) =
QSauss (y, v), for all (u,v) € S, where S is the set {u > 0.2} U {v > 0.2}.

From Corollary 3.8, we know that the maximum copula AS© satisfying

Vu € [ug, 1], v € [0,1] AS9(u,v) = Q5™ (u, ), (3.12)

is given by AS?(u,v) = min(u, ugv)lucuy + QE™* (U, 1) 1ysy,- Similarly, we
find that

BS’Q(u, v) = max (0,up(v — 1) + u) Lycy, + an“SS(u, V) Lysag-

is the minimum copula.

Using these copula to generate the price of the derivative numerically and
setting @« = 8 = 1 we have the following figure, using a numerical method
similar to the one in remark 3.5 to solve for the improved bounds.
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Figure 6: Numerically Solving for Improved Upper and Lower Bound for the
Gaussian Copula
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4 Convex Ordering Bounds on Risk Aggrega-
tion

A copula is a very powerful tool with bivariate distributions. However, in
higher dimensional space, the Fréchet-Hoeffding lower bound of copula does
not exist, i.e. we cannot readily find a lower bound by convex order. This
lower bound can give us the lowest price of a basket asset derivative or a
lower convex risk measure of a portfolio. Therefore, minimization becomes a
challenging problem. To solve this problem, it is necessary to use a completely
different approach. In this thesis, we demonstrate that a certain type of
minimization is solvable by looking for the lower bound of the convex order.
The rest of the section will cite results from 7. Major theorems that improved
the lower bound are introduced and discussed. A more in-depth discussion
based on interesting observations of the numerical results will be provided.
This section will also propose some possible new directions.
We formalize the new problem with the following definitions.

Definition 4.1 (Convex order) Let X and Y be two random wvariables
with finite mean. X is larger than Y in convex order, denoted by X <Y, if
Y convex functions f,

E[f(X)] <E[f(Y)].

To translate convex order optimization into copula optimization prob-
lems, we have the co-monotonic copula as the convex upper bound

S <ox FFYU) + FSHU) + FyH(U) + ...+ EHU),

and in two variable case, we have the anti-comonotonic bound (Fréchet-
Hoeffding lower bound) expressed as the convex lower bound

Ffl(U) + Ffl(l -U) <cx S,

where U ~ U]0,1]. Proofs for this assertion can be found in Meilijson and
Nadas (1979), Tchen (1980) and Riichendorf (1980, 1983). As stated above,
there does not exist a general solution for the lower bound for over dimension
3. However, partial solutions exist for certain cases. Wang and Wang (2011)
obtained the sharp lower bound for n > 3 in the special case when marginal
distributions are identical with a monotone density function.
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To introduce the complete mixability property, we will introduce a few
notations. To keep the notation consistent, we will consider this from a risk
manager point of view. However, the bound obtained in these calculations
can be applied to derivative pricing as well.

Aggregate risk can be defined as the following problem. Assume we have
n assets displaying return distributions of Fi, F5, F3, ..., F}, along with random
variables X1, X5, X3,..., X,, . Let us denote this space F,,

Fo={X;~F, i=1,2,3,...,n}

For ease of notation, denote X = { X1, Xo, X3,..., Xy, }, and F = {F\, F,, I, ..., [, }.
Complete mixability property concerns itself on the distribution property of
the sum of the random variables. Let us define the distribution of this type
of sum as the admissible risk class.

Assume that all random variables live in a general atomless probability
space (€2, A, P). This means that for all A C Q with P(A) > 0, there exists
B C A such that P(B) > 0. The atomless assumption is very weak: in our
context, it is equivalent to saying that there exists at least one continuously
distributed random variable in this space (roughly, (€2, 4,P) is not a finite
space). In particular, it does not prevent discrete variables from coming
into existence. In such a probability space, we can generate independent
random vectors with any distribution. We denote by L°(2, A, P) the set of
all random variables defined in the atomless probability space (€2, A, P). See
Delbaen (2002) for details on risk measures defined in an atomless probability
space.

Definition 4.2 (Admissible risk) An aggregate risk S is called an ad-
missible risk of marginal distributions Fy,--- , F, if it can be written as
S=X1+ -+ X, where X; ~ F; forv =1,--- ,n. The admissible risk
class is defined by the set of admissible risks of given marginal distributions:

S,(Fy, -+, F,) = {admissible risk of marginal distributions Fy,--- | F,}
(Xt A X Xim By i=1,---,n).

The admissible risk class has many nice properties. To state the theorem
on its properties, we need to introduce a few notations. I, is the indicator
function for the set A € A, and T,, is an affine operator on univariate
distributions such that for a,b € R,

T, p(distribution of X) = distribution of aX + b.
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We also use ' ® G to denote the distribution of X + Y where X ~ F' and
Y ~ G are independent, ie. (F® G)(z) = [* F(x —y)dG(y), and use L

and % to denote equality and convergence in law, respectively.

Theorem 4.1 (Properties of the admissible risk class)

1.

(convezity) If S; € 6,(F), So € &,(G), then 1,51 + (1 —14)S; €
G.(P(AF + (1 —P(A))G) for A € A independent of Sy and Sz. In

particular,

((l) Zf Sl,SQ < Gn(F), then 1457 + (1 — IA)SQ € 6N<F) fO’I’ Ae A
independent of S1 and Ss;

(b) if S € 6, (F)NG,(G), then S € &,(AF+(1—-\)G) for X € [0,1].
That is, 6,(F)NS,(G) C &,(AF + (1 — \)G) for A € [0,1].

(independent sum) If S1 € &,(F) and Sy € 6,(G) are independent,
then Sl + SQ S Gn(Fl ® Gl, tee ,Fn &® Gn)

(dependent sum) If S; € S,(F) and Sy € &,,(G), then S; + Sy €
6n+m<F17"' 7Fn7G17"' 7Gm)

. (affine invariance) S € 6,(F) < aS+b € &,(Top, F1,- -, Tup, Fr) for

abeR,i=1,--- nandb=> .

(permutation invariance) Let o be an n-permutation, then &,(F) =

S, (o (F)).

(completeness) If S, € &,(F), k = 1,2,---, and Sk S S, then S €
S, (F).

(continuity) If Fi(k) — F; point-wise when k — +oo and for i =
1,---,n, then

(a) each S € &, (F) is the weak limit of a sequence Sy, € GH(Fl(k), e ,F,S’“)).

(b) each weakly convergent sequence Sy € GH(Fl(k), e ,Fék)) has its
weak limit S € &,(F).

Proof. In the proof, we first recall that the definition of admissible risks

only concerns the distribution. That is, if S; 4 Sa, then S; € G,(F) < 5, €
S, (F).
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. Write S; = X1,, and Sy = Y1,, where X € §,(F) and Y € §,(G). Let

B € A be independent of X and Y, and P(B) = P(A). It is easy to
check that 1457+ (1—14)S5, 4 I5S1+ (1—15)S,. Note that I5S; + (1—
I5)S2 = (Ig X1+ (1-1g)Y1)+ - -+(IpX,+(1-1p)Y,) € S, (P(B)F+(1—
P(B))G). It follows that 14514+ (1—14)52 € 6,(P(A)F+(1-P(A))G).

. Write S; = X1,, and Sy = Y1,, where X € §,(F) and Y € §,(G). Let

Z € §,(G) be independent of X and Z LY. It is easy to check that

Sy 4 Sy £ X1, + Z1,,. Note that X1, + Z1, = (X + Z)1, € &, (F; ®
Gy, -+, F,®G,). It follows that S; + S5 € 6,(F1 ® Gy, , F, RG,).

. (iii)-(v) Trivial.
. (vi) This is a special case of (vii)(b) below.

. (vii)

(a) Write S = X1,,, where X € §,(F) and let C' be the copula of X.
Let S, = X1, where X, € Sn(Fl(k), , ,F,(Lk)) with copula C. Tt
is obvious that S 4

(b) Write S = X1, where X, € Sn(Fl(k), e ,F,S’“)) with copula C}.
Note that the space of n-copulas is a compact space. Hence, there
is a subsequence Cj, of Cj such that Cj, has a limit. Then the

subsequence S, A X1, where X € §,(F) with copula C' as the
limit of Cy,. Since Sy A S, we have S 4 X1, € 6,(F).

Remark 4.1

Part (B) of the convexity of the admissible risk class is equivalent to the
convexity of the set S of all copulas. Similarly the convexity of the admissible
risk class can help to generate new copulas from the existing classes. The
completeness of &,, means that any optimization problem with the entire
admissible risk class as feasible region can always reach a solution. The
continuity can help to find properties on S by approximating using discrete
distributions numerically.
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4.1 Convex Ordering Bounds on Admissible Risks
4.1.1 Convex ordering bounds

Let F be a distribution on R* with finite mean. We first consider the homo-
geneous case and give a lower convex ordering bound on &, (F,--- , F) for
n > 3 in Theorems 4.2 and 4.3. Let us define H(-) and D(-) as follows.

Vo e [O,%], Hz)=n-1DF ' ((n—1)2)+F'(1-2),

Va € {0, %) ., D(a) = —" /j H(z)da = nf(:z”“ Fﬁl(y)dy, (4.1)

:1—na 1—na

and H(0) = +oo when the support of F' is unbounded. The possible infinite-
ness of H(0) is for convenience only and will not be problematic in what

follows. Note also that D(a) is always finite since fjl H(z)dr < foi H(z) =
E [X;] is finite (as F' is a distribution with finite mean). Let us give some
intuition about these two quantities. From the last expression of D(a), it is
clear that D(a) is directly related to the average sum when its components
(X1, -+, X,) are all in the middle of the distribution (also called body of the
distribution). Precisely,

D(a) = ZIE [X; |X; € [F ' ((n—1)a), F (1 —a)]] (4.2)

because P [X; € [F~'((n —1)a), F'(1 —a)]] =1 — na and X, Xo, -+, X,
all have the same distribution. It is also clear that H(x) and D(a) can be
easily calculated for a given distribution F'.

Intuitively, the dependence scenario to attain the convex ordering lower
bound is constructed such that when one of the X, is large then all the
others are small (all X; are in the tails of the distribution; the pair (X;, X;)
is counter-monotonic for X; large and j # i) and when one of the X; is of
medium size (in the body of the distribution) we treat the sum ) . X, as
a constant equal to its conditional expectation as in (4.2). Precisely, the
lower bound in the coming theorem corresponds exactly to the following
dependence structure. The probability space is split into two parts: the tails
(with probability na for a small value of a € [0,1/n]) and the body (with
probability 1 — na). H(-) gives the values of S in the tails and D(a) is the
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value of S in the body of the distribution. To this end, for a € [0, %] , wWe
introduce a random variable

T, = HU/n)wepna) + D) eman) (4.3)

where U ~ U [0,1]. The atomless assumption of the probability space
(Q, A, P) allows us to generate such U, and since we only care about dis-
tributions to prove convex order, we do not specify the random variable U.
In Theorem 4.2, we prove that T, is a convex ordering lower bound given
that H(-) satisfies a monotonicity property. In the proof of Theorem 4.3,
we find the best convex ordering bound and exhibit the worst dependence
structure explicitly.

Theorem 4.2 (Convex ordering lower bound for homogeneous risks)
Suppose condition (A) holds:
(A) for some a € [0,1], H(x) is non-increasing on the interval [0,a] and
lim, . H(x) > D(a),

then,

1. T, <cx S forall S € S, (F,--- | F);

2. Ty <cx Ty for all0 <u < v < % Thus, the most accurate lower bound
is obtained by the largest a such that (A) holds.

Proof.

1. Let X € §u(F, -+, F), S=X1, € 6,(F,--- ,F) and T, be defined in
(4.3). It is straightforward to check E[T,]. Let Fg and Fr, be the cdf
of S and T, respectively, and further let Uy, --- , U, be U [0, 1] random
variables such that F~'(U;) = X; for i = 1,--- ,n. Such Uy,---,U,
always exist in an atomless probability space. Our goal is to show that

Ve € [0,1], /lFil(t)dt>/l F3l(t)dt. (4.4)

Property (4.4) together with E[T,] = E[S] is equivalent to T, < S
(for example, see Theorem 2.5 of Biuerle and Miiller (2006)).

To obtain this, denote Ag(u) = (J{U; > 1 — u} and let W(u) =
P(As(u)). Obviously u < W(u) < nu and W is non-decreasing. For
c € [0,na] , let uv* = W~(c), it then follows that ¢ > u* > ¢/n
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and {U; € [1—¢/n, 1|} C {U; € [1 —u* 1]} C As(u*). Note that
P(As(u*)) = ¢, therefore P{Ag(u*)\U; € [1 —¢/n, 1]} = ¢c—¢/n =
P{U; € [0,(n —1)c/n]}. Since X; = F~1(U;) is non-decreasing in U;
and the above two sets have the same measure, we have

E v m-ve/myXi] <E [Lagn@ien—empXe] - (45)

It follows that
E [Ly<oTu] = E Ly H(U/n)]

c/n
n/o (n=1)F Y (n—1z)+F'(1—=x))dx

(n—1)c

1
=n F(t)dt + n/ F~Y(t)at
1—c/n

0
= nE [(Lpen-1)e/n) + Lwien—emy) Xi]
< 1B [(Taguon wielt—c/n 1y + Lwie—e/my) Xi]

where the inequality follows from (4.5). We then find that E [I;y<47,] <
nE[IAS(u*)XZ] = ]E[IAs(u*)S] Thus we have

E [L<gTo] < EllagwnS)- (4.6)
Note that H(z) is non-increasing on [0, a| and lim,,, H(z) > D(a).

Thus for ¢ € [0, nal,

1
B [loeT] = Bllwea HOU/m) = [ Filode @)
1—c
Also note that .
E [LagwS] g/ F3l(t)dt (4.8)
1—c

since P(Ag(u*)) = c. It follows from (4.6), (4.7) and (4.8) that for any
c € [0, nal,

1 1
/ FT‘al(t)dtgf F3l(t)dt. (4.9)

1—c 1—c
For = € [0 1 — nal, let G(z f F! f F;1(t)dt. Note that
f F3'(t)dt is concave, and Frl(t) = (a) is a Constant when ¢ €
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[0,1 —na), hence G(x) is concave over [0,1 —na). Since G is concave,
G(0) =E[S]-E[T,] =0, and G(1—na) > 0 by (4.9), we have G(x) > 0
over [0,1 — na]. Thus

/1 Fpl(t)dt < /1 F3l(t)dt (4.10)

for any ¢ € [0, 1]. This implies T}, <cx S.

2. ForO<u<g<v < %, it can be easily checked that the distribution of T,
is a fusion of the distribution of T;,, and thus T, <. T}, (see Theorem
2.8 of Bauerle and Miiller (2006) for the definition of a fusion and a
proof of this assertion).

Definition 4.3 (Complete Mixability) A distribution function F on R is
n-completely mixable (n-CM) if there exist n random variables X, ..., X,
wdentically distributed as F such that

for some p € R referred as a center of F. A distribution function F' on R is
called n-CM on an interval I (finite or infinite) if the conditional distribution
of F on I is n-CM.

As F has finite mean, if F' is n-CM, then its center is unique and equal
to the mean. Note that I is n-CM equivalent to nE[X] € &, (F,--- , F),
where X ~ F. Some straightforward examples and properties of completely
mixable distributions are given in Wang and Wang (2011) and Puccetti et
al. (2012). By Theorem 4.2, one needs to find the largest possible a to get
the most accurate lower bound. This motivates us to define ¢, by

¢, = infe e (07 %) . H(¢) < D(¢) (4.12)

Note that ¢, is the largest possible a satisfying lim, ,,— H(z) > D(a). When
F is a continuous distribution, H(c,) = D(c¢,). On the other hand, ¢, is ex-
actly the smallest possible a such that F on I = [F~!((n — 1)a), F~'(1 — a)]
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satisfies the mean condition necessary for the CM property. See, for exam-
ple, (7) in Proposition 2.1 of Wang and Wang (2011) for more details on this
condition.

? improved the aforementioned convex ordering lower bounds under two
broader assumptions. The first bound is proposed by assuming F; = ... = F,,
namely all random variables being added up follow the same distribution.
Under this assumption, a sharp lower bound can be obtained. This case
significantly reduces the complexity of the problem but is relevant in practice.
For example, it is useful for an insurer who has a portfolio of identically
distributed policyholders’ individual risks. In another context, it can be
used to find bounds on prices of variance options when subsequent stocks’
log-returns are identically distributed. More information on these examples
is given in Section 4.2.3. In the last part of this section, we then generalize
to the case when the distributions F; can be different, called heterogeneous
risks.

Theorem 4.3 (Sharp convex ordering lower bound for homogeneous risks)
Suppose

(A) H(x) is non-increasing on the interval [0, ¢,] , where ¢, is given by (4.12)

then T,, <cx S for all S € &,(F,--- ,F). Moreover, T,, € &,(F,--- ,F)

that is T, 1is sharp if (B) holds:

(B) F is n-CM on the interval I = [F~'((n — 1)¢,), F71{(1 —¢,)] .

Proof. T,, <. S follows from Theorem 4.2 by noting that lim, ., H(z) >
D(c,) from the definition of ¢, in (4.12). Let us prove the second half of
the theorem. When condition (B) holds, that is F" is n-CM on I, there exist
random variables Yj,--- .Y, from the conditional distribution F' on [ such
that Y7 +--- 4+ Y}, is a constant. Thus, as Y has finite mean (because F' has
finite mean), Y7 4+ --- + Y, = nE(Y1) = D(¢,) by (4.1) and (4.2). Now we
construct S € &, (Fy,---, F,) which has the same distribution as 7, , by
imposing a special dependence structure. For each i, when X; € I (the body
part), we let X; = Y; and when X; & I (the tail part), we let (X;, X;) be
counter-monotonic for each j # i. That is,

X; = I{U>ncn}YVi + I{Uénc,L}F_l(‘/D? (413)

where U ~ U [0,1], (V4,---,V,) is independent of U and uniformly dis-
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tributed on the line segments

n

O = U{(vl7"' ,’Un) “U = (n_l)(l_vk’)v U € [1 - Cnal] ) ] = 17 ) Ty j 7é k}
k=1
(4.14)
We can check that V; is uniformly distributed on [0, (n — 1)c,] U [1 — ¢p, 1],
and thus the distribution of F~1(V;) is the conditional distribution of F' on
R* \ I. Moreover by construction, Y; has the conditional distribution of F’
on I. It follows that X; ~ F. Then

n

S = ) (LwsnenYi + Lveney F (V)

=1

= I{U>ncn}D(Cn) + I{Ugncn} Z F_l(‘/l)

i=1

Note that

S F0) = Y Lo (P (0= A=V)HF (V) = Y Tsr-e HO-V)),

i=1
and for t > 0,
P (Z F7Y(V;) < t) = P (Z Lvizi-e, ) H(1 = Vi) < t)

i=1 i=1

= E (Z I{%>1—Cn}P(H(1 - Vi) <tV > 1- Cn))
i=1

= PH(1-V)<tV1 21—¢,)
— P(HV) <)

for some V'~ U [0, ¢,,] , independent of U. Note that the second equality holds
because {V; > 1—c¢,} are mutually exclusive. Therefore, S 2 Livsne,y D(cn)+
Lycney H(V) £ T,,, and thus T,, € &,(F,--- ,F). =

Theorem 4.4 Suppose H(x) is strictly decreasing on [0, c,]. Then,
1. T, € &,(F,--- | F) if and only if (B) holds;
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2. T, ¢ S, (F,--- ,F) for all a < c,.

Proof.

1. The “<” part follows directly from Theorem 4.3. Let us show the “="
part. We begin by showing this assertion in the discrete case. Let
F be any continuous distribution on R*, with F~! strictly increasing.
Let G be the distribution of F~!(V) where V is a discrete uniform
distribution on {0, %, e ,%} for some large number K > n and let
Tcn be defined as T, with F' replaced by G:

Tcn = P[(U/n)I{UGO,ncn} + DI{UE(ncn,l]}, (4.15)

where H(z) = (n —1)G"(n —1)z) + G*(1 — z), U ~ U[0,1],

1
1 K 1 ~ n nooa
=] —_— . — | — 5 < ,
Cn mf{c € {0, R L”J } H(e) e ), H(a:)dx}

and D = —2 fj H(z)dz is a constant. Note that G~'(t) = F~1(t)

1—ncn
for t = O,A%,--- VAL and Gl (z) = Ffl(%) for x € [0,1). Thus,
H(t) = H(t) for t = 0,%,---, 521 and the interval I = G*((n —

1)en), G1(1—¢,). Note that since G is discrete, this function H is not
non-increasing, but this would not hurt our proof since we are not using
the results in convex order. To simulate the strict decreasing property,
we assume
. X X .
i<aitl H (E) ~ i+112:?<xi+2H <E) fori =0, Kep =2 (4.16)

Suppose T, = X1, € 6,(G,---,G) for X € §.(G,---,G). Let us
show that this implies G is n-CM on /. Note that by definition of 7,

and (4.16),
P {T -Gt (1 — %) € ((n —1GH(0), (n—1)G Y(n — 1)%)} = %
" P {T > (n—1)G Y(n — 2)% +G M- %} = 0.
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This implies that when one of X; takes the value G~! (1 — %) , all the
others must take values in [G7'(0),G7! ((n—1)%)), by observing
that G~'(z) is strictly increasing. . Using this argument again,we
obtain that when one of X;, takes the value G~1 (1 — %), all the others
must take values in

{G_l(n - 1)%, G Hn — 1)%) .

Eventually, we have that for all 1 < j < K¢,, when X; takes the value '
G~' (1 — 1), all the others must take valuesin [G~! ((n — 1)22) G ((n — 1)L)).
The remaining part is

P[Acnzﬁ] =1—ncy,.

Let A = {T,, = D}. The conditional distribution of X; on A is exactly
the conditional distribution G on I, since {X; ¢ I} has been contained
in the set A¢. Since T}, is a constant on A, we have G is n-CM on
I. The above proof shows that for a discrete distribution G, if G~! is
strictly increasing and H satisfies (4.16), then T, is admissible implies
that the conditional distribution is n-CM on I. To prove the case of
F' being continuous, we can simply replace % by an infinitesimal d¢,
and the condition (4.16) is equivalent to H being strictly decreasing.
Note that H being strictly increasing is sufficient for F=! to be strictly
increasing on [1 — nc,, 1], which is sufficient for our proof.

2. By (4.1), we know D(a) is a strictly decreasing function of a. Suppose
a < ¢, and let ¢ = 1a + ic,, then ¢ < L and D(a) > D(c). It is

straightforward to check that
E[(T, — D(a))"] = E[T,] — D(a) = E[T.] — D(a) < E[(T. - D(a))"]

since P(T. < D(a)) = P(T. = D(c)) = 1—nc > 0. This shows T, A T,
by the definition of convex order. Since ¢ < ¢,, we have H(c) > D(c),
and by Theorem 4.2 T, < S for any S € &,(F,---,F). Thus we
conclude that T, &€ &, (F,--- , F) for a < c,.

]
We have the following theorem as a generalization of Theorem 4.2.
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Theorem 4.5 (Convex ordering lower bound for heterogeneous risks)

1. G, (Fy, -+ F,) CG,u(F,--- | F).
2. Suppose (A) holds, then T, <cx S for all S € &, (Fy,--- , F,).
Proof.

1. Let o4, Kk = 1,2,--- ,n! be all different n-permutations. By Theorem
4.1 (i)(b) and (iv), we have

n!

Sn(Fy,--, Fy) = ﬂgn(ak(Fb"' , F)) C 6, (Z)\kU(Fla"' an))a

k=1

where A, >0, k = 1,2,--- ,nl and 3p, Ay = 1. Take A\, = 2 for all
k then we get &,,(Fy, -, F,) C &, (F,--- , F).

2. By Theorem 4.2 and (i), T, <cx S for all S € &,,(F,--- , F), and hence
Ty <o Sforall S €&, (F, -, F,).

4.2 Applications to Risk Measures, Finance and Insur-
ance

We now present several applications of the theorems of the previous section
on convex order for risk aggregation. Our results on convex order apply
naturally on bounds on convex risk measures and in particular on coherent
risk measures as well as on convex expectations. The first paragraph recalls
definitions and properties of risk measures. The second paragraph contains
the main result on convex risk measures, a third paragraph is dedicated to
bounds on TVaR and the last paragraph describes a series of applications on
convex expectations.

Throughout the applications, we use the conditions (A), (A’) and (B)
introduced in Section 4.1:

1. (A)Fora € [0,1], H(z) is non-increasing on [0, a] and lim,_,,_ H(z) >
D(a).

41



2. (A’) H(x) is non-increasing on the interval [0, ¢,].
3. (B) The distribution F' is n-CM on the interval

I=[F((n— 1)), F (1 - )]

Here, for consistency, H(x) and D(a) are defined as in Section 4.5 for marginal
distributions Fy,--- , F,, (this definition coincides with the one in Section
41.1 when F = F; = --- = F,), and ¢, is defined by (4.12). (A) is used
for both homogeneous and heterogeneous risks, while (A’) and (B) are used
only for homogeneous risks.

4.2.1 Convex and coherent risk measures

A risk measure is a mapping from random variables to real numbers, which
can be used as a capital requirement to regulate risk assumed by market par-
ticipants. For a detailed introduction on risk measures and more specifically
on coherent risk measures, we refer to Artzner et al. (1999). Consider a risk
measure as p: L°(2, A,P) — RU {oo}. Most discussions focus on risk mea-
sures on LP(Q, A, P) for p € [1,00]. Delbaen (2009) studied the case of non-
integrable random variables, and proved that there exist no finite convex risk
measures defined on LP(Q2, A,P) for p € [0,1). Since convex order is defined
for L' random variables, we restrict our discussion on p : L}(Q2, 4, P) — R.
Let X, X;, X5, -+ € L'(Q,A,P). Recall the following properties of a risk
measure p(-)

1. Monotonicity: if X; < X5 then p(X;) < p(Xs).

2. Translation invariance: p(X +m) = p(X) +m for m € R.

3. Subadditivity: p(X; + X3) < p(X1) + p(X2).

4. Positive homogeneity: p(AX) = Ap(X) for A > 0.

5. Convexity: p(AX1 + (1 —N)Xs) < Ap(X1) + (1= XN)p(X3) for A € [0,1].
6. Law invariance: if X; < X,, then p(X1) = p(Xs).

7. L'-Fatou property: if X,, — X in L', then p(X) < liminf p(X,,).
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A risk measure is coherent if it satisfies properties (1-4). It is immediate that
a coherent risk measure satisfies also (5). Recall that a coherent risk measure
has the typical dual representation

p(X) = sup Eq[X]
QeQ
where Q is some family of probability measures on 2. This was introduced
in Artzner et al. (1999) in a finite state probability space and discussed in
Delbaen (2002) in a more general probability space.

A risk measure on L>*(), A, P) is called a convez risk measure, defined
in Follmer and Schied (2002), if it satisfies properties (1,2,5). A dual rep-
resentation is also given in the same paper. The concept was later studied
in Svindland (2008) and Kaina and Riischendorf (2009), for more general
probability spaces. A recent review of convex and coherent measures can be
found in Follmer and Schied (2010).

e The commonly used risk measure Value-at-Risk (VaR), defined as
VaR,(X)=inf{z:P(X <z)>p}, pe(0,1),

satisfies (1,2,4,6). Tt is often criticized for not being subadditive (and
thus it is neither convex nor coherent).

e Another commonly used risk measure is the Tail Value-at-Risk (T'VaR;
it has other names and variations such as CTFE, AVaR, CVaR and ESF
in different contexts). It is defined as

1 1
TVaRp(X) = Tp V&RQ(X)d(I, pE [0, 1)
p

As it satisfies (1-7), it is a coherent risk measure. Furthermore, any
risk measures on L'(£2, A, P) satisfying (1-7) has a representation of

p(X) = sup / TVaR,(X)pu(dp) (4.17)

nePy

where P, is a compact, convex set of probability measures on [0, 1] (for
this result, see Biuerle and Miiller (2006); Kusuoka (2009)).

e The standard deviation principle, defined as p(X) = E(X)+k+/var(X)
for some constant k, satisfies (2-7): it is neither coherent nor convex.
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e A distortion risk measure, defined as

p(X) = / F(0)g/(1 - t)dt

for an increasing function g with ¢(0) = 0, g(1) = 1 is coherent if g is
concave on [0, 1]. In particular it satisfies convex order.

e The entropic risk measure, defined as

1
p(X) = 5 log B[],
satisfies (1-2) and (5-7): it is an example of a non-coherent convex risk
measure.

Due to the increasing importance of TVaR in risk management according
to recent industrial regulations (see e.g. Panjer (2006) and Basel
Committee on Banking Supervision (2010); ?7) and the representation
(4.17) of law-invariant coherent risk measures, bounds for TVaR,(S) are of
practical interest.

Theorem 4.6 (Bounds on TVaR of admissible risk)
1. For p € [0,1], if (A) holds, then
L [E[S]—pD(a)] p<1-na

inf  TVaR,(S) =< 7 (1 pym
SeGV,L(I?H,-~~,F,L) ARy () { Lf(l 2 H(z)dr p>1-—na

1-p JO
(4.18)
2. In the homogeneous case F; = --- = F,, = F, the bound (4.18) is
sharp for a = ¢, if (A’) and (B) hold.
3. In the homogeneous case Fy = -+ = F,, = F, if (A) holds for a > L2,
then
n [O-Pn
inf  TVaR,(S) / H(z)da (4.19)
SEG(Fywe ,F) L=pJo
if .
inf P S>H< _p)}zo, (4.20)
S€6n(FJ,-~,FJ) n

where F; is the conditional distribution of F' on
J = Ffl("—l)(l—p) Ffll . ﬂ
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Corollary 4.7 For a convex function f, if (A) holds, then

inf )]E Lf(S)] = n/oaf(H(x))dx + (1 —na)f(D(a)). (4.21)

SEGR(F1, ,Fn

Specifically, in the homogeneous case

inf E[f(S)] > n/o F(H(2)dz + (1 —na) f(D(a)),  (4.22)

SeG, (F, ,F)
and moreover, the equality in (4.26) holds for a = ¢, if (A’) and (B) hold.

Remark 4.2

We can always use discrete distributions to approximate the marginal distri-
butions Fi,--- , F,. When using a discrete approximation, the optimization
over all possible dependence structures becomes a finite-state problem, and
hence it can be solved numerically. For example, Puccetti (2013) used the
Rearrangement Algorithm (RA) to calculate the bounds on TVaR over the
admissible risk class. There are three notable facts about the merits of our
theoretical results compared to the RA approximation. First, our result gives
an explicit form and a sharpness condition, while the RA only gives a nu-
merical approximation. Second, although being easy to implement, there is
yet no proof that the RA approximation converges to the sharp lower bound
on the TVaR as the number of discretization steps m goes to infinity. Third,
the RA becomes slow when the dimension n or the number of discretization
steps m is large. Our method only requires to numerically find ¢, and the
complexity does not depend on n. We provide some numerical examples in
Section 4.3.

4.2.2 Bounds on convex risk measures of aggregate risk

In practice, information about dependence is limited. Bounds on a convex
(or coherent) risk measure p(S) over the admissible risk class &,,(F,--- , F,)
are thus of much importance in risk management. The consistency of con-
vex order and convex risk measures is given in Theorem 4.3 of Bauerle
and Miiller (2006). Since it is well-known that the convex ordering up-
per bound of &, (F},- -, F,) is given by the co-monotonic scenario of X,
a sharp upper bound on p(S) over S € &, (Fy, -, F,) is p(nF~*(U)) where
U ~ U[0,1] and it is well-discussed in the literature (for a review, see
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Dhaene et al. (2006)). On the other hand, the lower bound on p(S) over
S € 6,(Fy, -, F,) is unknown in the literature except for n = 2. Using the
results in Section 4.1, we are able to give a lower bound on p(S5), as follows:

Corollary 4.8 For any risk measure p satisfying (5-7), i.e. law-invariant,
convex, L'-Fatou, if (A) holds, then

inf S) = p(Th), 4.23
SeG,L(ll{“11,~~-,Fn)p(> p(T,) (4.23)

where T, is defined by (4.3). Moreover, in the homogeneous case Fy = --- =
F,=F, if (A’) and (B) hold, then the above bound is sharp for a = ¢, and

{p(8): S €Gu(F, -, F)} = [p(Te,), p(nFH(U))], (4.24)

where U ~ U[0,1].
Proof. The inequality (4.23) is a corollary of Theorem 4.5 in this paper and
Theorem 4.3 of Béauerle and Miiller (2006). The sharpness in the homoge-
neous case is implied by Theorem 4.3. The property (4.24) is guaranteed by
Theorem 4.1 (i). m

Remark 4.3 Note that we assume finite means for F, Fy,--- | F,, thus only
the behavior of p on L'(Q, A,P) matters. In Corollary 4.8, we do not re-
quire p to satisfy (1,2), and thus p is not necessarily a convex risk measure
as defined in Follmer and Schied (2002) and does not necessarily have a fi-
nancial interpretation. A law-invariant coherent risk measure with the Fatou
property s thus only a special case in this corollary.

Remark 4.4 Since the VaR does not satisfy the convezity (5), Corollary 4.8
does not provide its lower bounds. However, similar ideas based on completely
mizable distributions can be used to find sharp bounds on VaR over the ad-
missible risk class &, (Fy, -+, F,). This is not the focus of this paper. The
readers are referred to Theorem 2.3 and Corollaries 5.5-3.6 of Wang et al.
(2013) for some special cases of sharp bounds on the VaR based on the idea
of completely mizable distributions.

4.2.3 Convex expectation and applications in finance and insur-
ance

A conver (concave) expectation of a random variable X is defined as E[f(X)]
where f: R — R is a convex (concave) function. If f is convex and bounded,
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then E[f(X)] satisfies (5-7) and thus is a risk measure as described in Corol-
lary 4.8. Theoretically, E[f(X)] can be infinity. By definition of convex order,
we have a straightforward corollary about the lower bound on a convex ex-

pectation (or upper bound on a concave expectation) over the admissible risk
class &, (Fy,--- , F,),

E[f(S) =E[f(Xi+Xo+ -+ X,)] (4.25)

regardless of E[f(.5)] being finite or infinite. Recall that when f is convex, the
upper bound can be computed explicitly with the co-monotonic dependence
scenario.

Corollary 4.9 For a convez function f, if (A) holds, then

inf )]E [f(S)] = n/oa f(H(z))dz + (1 —na)f(D(a)). (4.26)

S€G, (F1,-,Fy

Specifically, in the homogeneous case

inf  E[f(5)] = n/oa f(H(x))dx + (1 —na)f(D(a)), (4.27)

SEG,(F,,F)
and moreover, the equality in (4.27) holds for a = ¢, if (A’) and (B) hold.

Remark 4.5 Corollary 4.9 can be seen as a generalization of Jensen’s in-
equality as (4.26) is simply Jensen’s inequality when a = 0. It can also be
seen as a generalization of Theorem 3.5 of Wang and Wang (2011), where
monotone densities were assumed.

Although finite convex expectations can be viewed mathematically as a
special case of law-invariant risk measures, the application and financial in-
terpretation of convex expectations are different from those of risk measures.
Some quantities of interest that can be viewed as a convex or concave expec-
tation of the aggregate risk .S include:

1. the variance of a joint portfolio S with dependent assets because E|[S]
is a constant and f(S) = (S — E[S])? is convex.

2. the price of a European basket option written on a joint portfolio of
assets with values X1, --- , X,, at a future time T'. Precisely, a European
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basket call option (respectively a European basket put option) with
strike K and maturity 7" has the following price

Eq [Dr(S — K)*] resp. Eq [Dr(K —S5)*]

where @) is a risk-neutral measure and S = > . X;. If interest rates
are deterministic, this is a convex expectation as Dy can be factored
out of the expectation. When interest rates are stochastic, we can
use a change of numéraire with the zero-coupon bond and introduce
the forward neutral risk measure Q7. The basket call price becomes
P(0,T)Eq,(S — K)* (where P(0,T) is the price of the zero-coupon
bond at time 0), which is a convex expectation.

. the expected utility of a joint portfolio S for risk-avoiding or risk-
seeking utilities. An investor or portfolio manager can be concerned
about the expected utility E[u(.S)] of the portfolio. Her utility function
u(+) is typically a concave (or convex) function (for instance the expo-
nential utility function is given by u(z) = 1 —e™** for k > 0). When
the dependence of X is unknown, the upper bound on E[u(S)] given
by Corollary 4.9 can be useful to investors to make decisions.

. the stop-loss premium of an aggregate loss S with dependent risks.
Consider for instance an insurance company with n customers: X; de-
notes the potential loss for policyholder ¢ and S denotes the insurer’s
aggregate risk exposure. The insurer is interested for example in the
variance of S, or in E[(S — K)T] for some level K. The latter quan-
tity is the stop-loss (net) premium, which is important for stop-loss
reinsurance with retention K on the aggregate loss S.

. the price of a European option on realized variance of an asset price pro-
cess Sy with partition ¢g, - - , ¢,. In this case X; = (In(S;,) —In(S;,_,))?,
for i =1,--- ,n; the price of a call option on the realized level of vari-
ance associated with the partition 0 =t < t; < --- < t, = T of the
time interval [0, 77 is

n—1 2 +
S;,
Eo (DT§ :ln% —K> : (4.28)
i=0 g

where the underlying asset price is denoted by S; (see Carr and Lee
(2009)). We assume that the distribution of log increments (In S;T“) is

48



known but that their dependence is not perfectly known (in particular,
they are not necessarily independent). These bounds can be useful to
detect arbitrage (see for example Tankov (2011)).

6. the expected n-period return E[S,,/So] = Elexp{X; + - -- + X,,}| with
dependent single-period return rates;

7. some convex risk measures of an aggregate risk .5, such as the entropic
risk measure (as defined in Section 4.2.1).

Bounds on convex or concave expectations help to analyze risks under best
or worst case scenarios when the information on dependence is unreliable.
The last section gives some further illustration and proposes a method to
check property (B) numerically.

4.3 Numerical Illustrations

Considering the conditions (A), (A’) and (B) are sometimes difficult to check,
we give some numerical illustrations in this section. As mentioned in Remark
4.2, anatural idea is to construct a discretization of the marginal distributions
Fy,--- F,, then the optimization over all possible dependence structures
becomes a finite-state problem and is always solvable. For each discretization,
we find the optimal discrete structure with respect to minimal convex order,
and compare some quantities such as variance and T'VaR with our theoretical
results.

4.3.1 Rearrangement algorithm

The Rearrangement Algorithm (RA) introduced in Puccetti and Riichendorf
(2012) and also used in Embrechts et al. (2013) and Puccetti (2013) is a
quick algorithm to provide discrete numerical approximations for the optimal
structure with respect to minimal convex order. In the following, the RA is
used to approximate the lower bound on E[f ()] for some convex functions f
and for TVaR,(S) when p = 0.95. We compare the RA approximation with
the lower bound suggested by Theorem 4.6 and Corollary 4.7. The numerical
results suggest that the lower bound for homogeneous risks is very likely to
be sharp (and thus that (B) is satisfied thanks to Theorem 4.4).
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4.3.2 Homogeneous case

In this section, we compare the RA approximation with the lower bound
suggested by Corollary 4.7 for different settings for homogeneous risks. We
take the number of discretization steps in the RA as m = 10°.

Table 1: RA results vs theoretical bounds, homogeneous case
We consider 6 different settings: Pareto(1,3), Pareto(1,4) with n = 4,

Gamma(2,0.5), Gamma(3,1) with n = 3, Log-Normal(0,1) with n = 3 and n = 10.
Four quantities are calculated: the variance: f(S) = (S—npu)? where u = E[X1], the
European call option prices f(S) = (S—K)* when K = nu and when K = nu— 22
where 0 = 3" | \/var(X;), and the TVaR of S at level 95%.

Pareto(0, a); n Gamma(a, 8); n || Log-Normal(u, 0?); n

(1,3);4 | (1,4);4 ]| (2,05);3 ] (3,1);3] (0,1); 3] (0,1); 10

Variance

RA 1.2903 | 0.2567 0.3014 0.0236 || 2.5220 1.6649
Corollary 4.7 || 1.2904 | 0.2562 0.3002 0.0235 | 2.5071 1.6668

Option Price when K = npu

RA 0.2318 | 0.1111 0.1866 0.0510 || 0.6230 0.1615
Corollary 4.7 || 0.2317 | 0.1112 0.1865 0.0510 || 0.6227 0.1614

Option Price when K = nu —no/4

RA 0.8482 | 0.4695 2.0268 1.2461 1.3301 0.2285
Corollary 4.7 || 0.8481 | 0.4694 2.0073 1.2342 1.3186 5.2234

TVaR at level 0.95

RA 9.4729 | 6.9996 15.1148 | 10.0058 || 13.0479 20.3635
Theorem 4.6 | 9.4748 | 6.9999 15.1148 | 10.0058 || 13.0483 20.3623
Independent || 11.0538 | 8.1348 || 24.2688 | 16.2819 | 16.4913 35.4328

Co-monotonic || 16.2100 | 11.2968 || 35.5736 | 22.7693 | 25.6970 85.6566

Numerical results are given in Table 1 in 6 different settings. For each
setting, we also give the TVaR under the assumption of independence and co-
monotonicity to show the impact of various dependence assumptions. Note
that the Gamma and Lognormal distributions above do not have a decreasing
density and therefore theoretically we do not know whether they satisfy (B),
while for the Pareto distributions we know the bounds given in Theorem 4.6
and Corollary 4.7 are sharp.

From Table 1, we conclude that the bounds obtained for homogeneous
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risks in Theorems 4.3 and 4.6 are very likely to be sharp for all above distri-
butions, and the structure described in Theorem 4.3 is likely to be optimal.

4.3.3 Heterogeneous Case

In the heterogeneous case, we give a numerical example with 3 different
Pareto distributions and n Log-Normal distributions in Table 2.

From Table 2, it appears that the bounds given in Theorem 4.5 are not
sharp in general. Note also that the theoretical bounds tend to be more pre-
cise when the distributions are similar. This confirms the intuition provided
when deriving the lower bound for heterogeneous risks in Section 4.5.

4.3.4 Checking condition (B)

Recall that Condition (B) in Theorem 4.17 corresponds to checking that F'
is n-CM on the interval I = [F~'((n—1)¢,), F~(1 —¢,)]. This is equivalent
to

var(S) == See,,L(llrvllf;-.,FI)UaT(S) =0 (4.29)
where F7 is the conditional distribution of F' on . Since the RA gives a
discrete approximation of the optimal dependence structure, (4.29) holds if
the RA approximation of var(S), denoted by var(S),,, goes to zero when the
number of discretization steps m goes to infinity (however, in the opposite
direction, (4.29) does not imply that var(S),, — 0 since the convergence of
the RA approximation is not proved). To illustrate this convergence of the
rearrangement algorithm, we represent in Figures 7 and 8 the variance of the
sum of n risks for different distributions as a function of the discretization
step m.
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Figure 7: Panels A and C display var(S),, as a function of m for a Pareto
distribution and Panels B and D illustrate the speed of convergence in 1/m?.
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Figure 8: Panels A and C display var(S),, as a function of m for a Pareto
distribution and a Gamma distribution and Panels B and D illustrate the
speed of convergence in 1/m?.

From Figures 7 and 8, the RA approximations var(S),, clearly converge
to zero, at a rate of m~2. Based on all the observations in Section 5, we have
the following conjecture.

Conjecture 4.10 A Gamma or Log-Normal distribution F' is n-CM on the
interval [ = [F~Y((n — 1)c,), F~Y(1 — ¢,)] for any integer n, and the convex
ordering bounds in Theorems 4.3 and 4.5 are sharp.

Even if we are not able to prove this conjecture at this moment, the numer-
ical results clearly show that the lower bounds on convex risk measures and
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convex expectations are sharp enough to apply in practice, for identical or
almost identical marginal distributions.
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5 Conclusions and Future Work

This thesis develops different models to measure the distribution of a pool
of assets. Explanations from diversification and Modern Portfolio theory are
provided to demonstrate the economical reasoning behind the asset pool-
ing. Two different methods in the financial literature are introduced, and
improvements on models required in both methods are presented.

The first method, introduced in the second section, improves Fréchet-
Hoeffding copula bounds to calculate a model free upper and lower bounds
for aggregate assets evaluation. AS® and BS€ are defined as improved
point-wise quasi-copula bounds for the class of quasi-copulas with C'(u,v) =
Q(u,v), ¥Y(u,v) € S. The rest of the section focuses on conditions on the set
S, such that AS? and B9 are also copulas. As a result, the two functions
improve point-wise bounds for the class of copulas with the same constraint
as stated above. The major theorem in the section proved that for § C
[0,1]), a compact set with both v, and 7, non-decreasing functions, satisfying
the following property V (u,vp), (u,v1) € S, (u, %) € S, then BS€ is a
copula.

Numerical methods are suggested in solving improved Fréchet-Hoeffding
copula bounds. Duality in terms of the region S are proposed that allows
ASQ and BS? to be copulas. Denote S¢ = [0,1]° \ S, numerical results
are described to suggest that the class of AS? and B5Y we identified as
copulas, AS*Q and BSD’Q, are copulas as well. Partial results have been
shown in theorem 3.8 and Conjecture 3.9. If the hypothesis is true, the class
of improved Fréchet-Hoeffding copula bounds can be almost doubled.

In section three, we introduce and investigate the admissible risk class
Sn(F,---F) ={Xi+-+X, : X; ~F, i =1,---,n} for given
marginal risk distributions Fi,--- | F,. We give a new lower bound over
S, (Fy, -+, F,). In the homogeneous case, [} = --- = F,, we give a suf-
ficient condition for the new lower bound to be sharp. The results can be
used to find sharp bounds on convex risk measures and other quantities in
finance when the dependence information among individual risks is missing.
Numerical illustrations suggest that the new lower bound is likely to be sharp
for most risk distributions and the conditions used in our main results are
usually satisfied.

Some future directions related to this topic include proving Conjecture
4.10. More generally, we expect Conjecture 4.10 to hold for all unimodal
densities given some smooth conditions and also for heterogeneous risks under
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some additional conditions. Recall that the heterogeneous analog of complete
mixability is called joint mizability and is introduced in Wang et al. (2013).
Note that proving Conjecture 4.10 for heterogeneous risks is an open problem
even in the case of decreasing densities. Finally, it is of interest to determine
conditions under which convex ordering bounds for heterogeneous risks (over
S, (Fy, -+, F,)) are sharp. We believe that these research directions are all
technically challenging and relevant to quantitative risk management.
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