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Abstract

Research in the field of non-viral gene delivery has demonstrated that a deeper understanding of the
fundamental processes of nanoparticle assembly is required in order to improve their efficacy. While
gemini nanoparticles (gemini NPs) and other non-viral delivery systems have been vigorously
characterized using several techniques, our knowledge is still incomplete. The first objective of this study
was the development of new methodology using fluorescence correlation spectroscopy (FCS) to
investigate the stages of gemini NPs assembly. It was demonstrated that by labeling the plasmid, different
stages of gemini NP assembly from the gemini-plasmid pre-complex (GP) to the final gemini nanoparticle
(or gemini-plasmid-lipid complex; GPL), could be studied. Based on diffusion coefficients and particle
numbers extrapolated from the autocorrelation function (ACF), FCS was able to determine that each
phase of assembly had distinct characteristics. The FCS study using 12-3-12 gemini surfactant showed
that both the diffusion coefficient and particle number of GPs (0.98+0.31 x 10 m%s) was significantly
lower than the final GPL (3.11+0.41 x 10™ m?/s). Based on the Stokes-Einstein equation the particle size
was calculated to be 300-500 nm for GP and 200-300 nm for GPLs. The raw intensity histograms showed
that both GPs and GPLs are composed of multiple plasmids. Furthermore the study showed that the final
GPLs contain fewer plasmids compared to the intermediate GP. FCS results were validated by using
existing characterization methods including dynamic light scattering (DLS), zeta potential and dye
exclusion assays. The second objective involved the detailed characterization of gemini NP. Nine
different gemini surfactants and two different phospholipids were used in a systematic study to assess the
effect of gemini surfactant and lipid structure on the final morphology of gemini NP. The study revealed
that gemini surfactant structure had a strong effect on structure of GP intermediates, but addition of
phospholipids resulted in the formation of uniform gemini NPs. Based on the results of this study a new
model for GP and GPL assembly is proposed based on the formation of supramolecular aggregates of
gemini-plasmids, governed by gemini surfactant chemical structure, and dispersed by phospholipids to
form GPLs.
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1.0 Introduction

This section will introduce the current status of gene delivery in terms of human gene therapy. It will
lead into a brief outline of the tools used to characterize delivery systems and the significance of their
insight in increasing our understanding and improving efficacy of these therapeutics. Finally, the role of
new fluorescence techniques, with a focus on FCS, and why it is being investigated as a new tool to
further our understanding of gene delivery systems using gemini nanoparticles (NPs) as a model.

1.1 Introduction to gene therapy

Human gene therapy is the treatment of disease by introducing therapeutic nucleic acids into the
cell to change the course of a disease. This concept of treating hereditary diseases was first proposed in
1947 by Clyde E. Keeler. As a geneticist, he saw the limitations of traditional medicines in treating such
diseases as it only provided temporary relief of the symptoms. He realized the problems were “rooted
deep within the germplasm” and “fated always to re-appear generation after generation forever”. He went
on to propose that “what is in effect a therapeutic technique [gene therapy] actually is widely in use in
applied genetics, and presumably in nature in the evolution of gene systems. This has the effect of
achieving a permanent correction of hereditary diseases or dyscrasias occurring in strains of organisms,
by a homozygous modification of the genetic formula” [1]. In description, Keeler imagined modern gene
therapy. Although the concept appeared simple to him, Keeler realized the limitation of the technology of
his time, and therefore, could only describe the principles. These theories would not be placed into
practice until 1980s, when advancements in the field of molecular biology allowed for the transfer of

exogenous genes into host cells [2].

The goal of gene therapy depends on the application. For example, for genetic diseases (e.g.
cystic fibrosis and cancer) the goal is to override the influence of malfunctioning gene in order to restore
normal physiological function [3-5]. Gene therapy can also be applied to prevention of diseases. By
introducing genes that would code for the production of an antigen gene therapy can be used for
vaccination against cancer, bacterial infection and allergies [6, 7]. For the context of this discussion, the
term gene therapy will be directed towards the treatment of somatic cells versus germline cells [8]. Since
the first human gene therapy trial in 1989 by Rosenberg and colleagues, the number of gene therapies
approved for clinical trials has exceeded 1800 in over 32 different countries, with 63% of the trials taking

place in the United States. A majority of the trials (over 63%) are focused towards treating a spectrum of
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cancers, but monogenic disorders such as cystic fibrosis, neurological, ocular diseases, bone fractures and

erectile dysfunction are being tested in clinical trials of gene therapy [9].

Even with our current understanding the human genome (with the completion of the human
genome project and the completion of the first stage of the 1000 genome project) and the identification of
genetic markers of certain diseases (e.g. BRCAL for breast cancer), that gene therapy still has a long way
before it can be seen as a routine application tool in the medical world [10]. In the past two decades,
various hurdles, both ethical and technical, have hampered the development of clinical gene therapy
treatments. One of the major technical barriers lies with the delivery of the therapeutic gene of interest.
Early gene therapy studies have shown low levels of gene expression after localized injection of a
therapeutic gene in diseased tissue [11-13]. This example shows that the limiting factor of successful gene
therapy is not in the lack of therapeutic genes, but in its delivery [14].

1.2 Gene delivery systems

1.2.1 The “ideal” delivery system

The need for an effective delivery system for gene therapy has sparked intense research in the
field of gene delivery. To understand why there is such a wide selection of delivery systems one must first
consider what makes an ideal delivery system. A delivery system would have several characteristics
optimized for clinical gene therapy applications. The ideal delivery system would have no immunogenic
effect; it would not be cytotoxic once disassociated in its target cell. It would have high transfection with
controllability over its expression, and the effects would be long lasting without the risk of mutagenic
insertions or generating unwanted dosing effects. The delivery system should also be tunable; meaning it
can be rationally modified to meet specific needs and increase specificity to target tissues [15-18]. This
would avoid unwanted interaction with other biological materials (e.g. unwanted interaction with other
blood components and healthy tissues) [19-22]. From an economical standpoint, the ideal delivery system
would also be manufactured from commercially available materials (to streamline approval), low costing
with a long shelf life to aid in storage and distribution. Currently, there are no delivery systems that have
all of these characteristics (yet). Delving into the field of nanomedicine, there is a prominent effort to
develop novel delivery systems with enhanced properties for clinical uses. The following section will

briefly introduce various delivery systems that are been studied.



1.2.2 Physical delivery methods

Since the beginning of gene therapy, the use of naked DNA has been readily investigated. Studies
with animals in the past have demonstrated that even the direct introduction of naked plasmid to target
tissues have minimal efficacy due to short half life and uptake of therapeutic DNA by the liver [23, 24].
To aid the delivery of naked plasmids, various physical methods have been explored to enhance gene
transfer both in vitro and in vivo. These methods include electroporation, gene gun, hydrodynamic gene
transfer (Table 1). All these methods enhance gene delivery by bringing the transgene closer to the cell,
and causing reversible disruptions to the plasma membrane, which increase the intake of the transgene.
These methods make up approximately 18% of the clinical gene therapy. Although these methods work
in vitro and have been applied in vivo, their usefulness is limited by invasiveness, tissues damage or poor

penetration of deep tissues [25].

Table 1: Summary of physical gene delivery systems. Adapted from [25-27]

System

Mechanism

Route

Advantages

Disadvantages

Direct Injection

Direct injection of DNA into
target tissue

Intramuscular

o Simplicity
o low toxicity

o Low efficacy

e Good efficacy

e Tissue damage

Bombardment of tissue/cells with - e Unsuitable for dee
Gene gun gold particles coated with DNA ~ 1°PICal « Good for skin, mucosa tissue P
areas
e Tissue damage (high
voltage)
Electric field is generated to . * :—lighdefficacyl inl ) :E\C/?sflo\;et(? fe(lléuedeeper
Electroporation disrupt plasma membrane to . TOP'C_a| ° pr;;rsc:nitace multiple tissue, require injection
facilitate entry of DNA * Intratissue e Localized dose prior to electroporation
o Requires large quantity
of plasmid
e Low efficacy in vivo
Ultrasound creates membrane ) o Accessibility
Ultrasound pores. Can also rupture delivery ~ ® TOPICE“_ o Non invasive e Large volume of plasmid
systems loaded with DNA e Systemic needed
] o e Require large volume of
Hydrodynamic In mice, large volu_me of saline is o Simplicity dose, hard to translate to
injected through tail to infuse Intravenous humans

delivery

tissues with DNA solution

o High effectiveness for
highly perfused organs

e Tissue damage




1.2.3 Viral vectors

Viral vectors have made significant landmarks in the history of gene therapy. In 1989 Rosenberg
and his group utilized a viral vector and were in the first human clinical trials for the treatment of
metastatic melanoma [28, 29]. This pioneering work sparked great interest in gene therapy in the 90s. In
2004 China became the first country to approve a gene therapy for commercial use, with the release of
adenovirus-based Gendicine, used to treat head and neck tumors. Then in the summer of 2012, European
drug regulators gave approval for Glybera a gene therapy to treat lipoprotein lipase (LDL) deficiency
[30].

Currently, several classes of viruses are used for gene therapy - the majority being adenoviruses
and retroviruses, each with their own unique properties and characteristic (see Table 2) [9]. The success
of viral vectors is due to the nature of viruses to gain access to their hosts in order to replicate as part of
their life cycles and therefore make good candidates for gene delivery system. This is achieved by re-
engineering the wild virus by removing large fragments of the genome, generally sections related to life
cycle and pathogenesis, with the therapeutic gene of our interest, while leaving viral genome elements
responsible for packaging of DNA and DNA integration in the host chromosome intact. [31, 32].
However several concerns about viral vectors have arisen and have been the cause of many clinical trials
to fail. One major disadvantage is capsid coat which limits the size of therapeutic DNA that can be
packaged inside. Furthermore the risk of immunogenicity, due to the capsid coat, limits the dose that be
administered and its re-administration for long-term treatment [33, 34]. Another disadvantage is
production costs for bioreactors required to culture viral vectors and also poses a risk of contamination
[35]. Some undesirable results from these trials have manifested as symptoms of leukemia-like diseases,
and even death. Needless to say, these outcomes raise key safety concerns about the use of viral vectors
[36, 37]. There is active research into making viral vectors safer; however there are other groups that

make for a safer alternative [31].



Table 2: Main groups of viral vectors. Table modified from [31, 32]

. . . Host
Vector Genet_lc Par_tlcle Packlr_lg Coat Tropism Inflammz_atory Genome
Material Size Capacity Potential .
Interaction
Retrovirus RNA 100 nm 8 kb Enveloped D'c\:/é(ljllsng Low Integrated
Lentivirus RNA 100 nm 8 kb Enveloped Broad Low Integrated
Herpes 150-200 Favors
Simplex dsDNA 40 kb Enveloped High Episomal
- nm Neurons
Virus-1
Episomal
Adeno- 0
associated sSDNA 20-25 <5 kb Naked Broad Low (90%)
Virus nm Integrated
(10%)
Adenovirus dsDNA 706#00 8 kb Naked Broad High Episomal

1.2.4 Non-viral delivery systems

An emerging alternative to the mainstream viral vectors is the use of synthetic or non-viral

delivery systems. Although the term “non-viral” has been used with physical methods of naked DNA

delivery, for the context of this study, the term non-viral delivery systems will be used to describe pre-

encapsulated methods of gene delivery. Since the first non-viral transfection by Felgner and colleagues in

1987, decades of research in the field of non-viral delivery has resulted in development of several

delivery systems [38, 39]. Non-viral delivery systems, an extensive class of man-made complexes or NPs,

are composed of nucleic acid cargo, typically a plasmid, with one or more soft matters used as the carrier

[39]. Generally non-viral delivery systems are composed of cationic material that will electrostatically

bind nucleic acids and condense genetic material at a size of a few tens or hundreds of nanometer in

diameter (see Figure 1 below).




Base nanoparticle

Composed of cationic materials (lipid and/or polymers)
that protects and aid in compaction of the therapeutic
nucleic acids to form the base of the nanoparticle.

In addition, various modifications made to improve
efficacy. These include:

o Fusogenic properties
o Increased biocompatibility
o Colloidal stability

Inner core

Therapeutic nucleic acid either compacted
by cationic envelope or a pre-condensing agent.

Functionalization

Addition of moiety(ies) to further improve the
function of the nanoparticle. These include targeting
ligands and stealth groups.

Figure 1: Basic anatomy of a non-viral gene delivery system: Non-viral delivery systems are composed of three
fundamental elements. The first is the nucleic acid that forms core of the NP. Second, is the soft material that
forms the basic element of the NP and encapsulate the DNA into a NP. Finally additional functional groups can be
added to the base NP to augment the system and improve overall efficacy.

This mechanism occurs due to the neutralization of the negative charge on the phosphate backbone of
nucleic acid by the polycations. This results in the relief of the repulsive forces and the loss of volume or
compaction of the nucleic acids [40]. The resulting NPs have a positive surface charge to facilitate
binding to the negatively charged plasma membrane of the cell. Compaction of the genetic material also
provides protection against degradation [41-45]. These NPs are defined by their composition and exist as
two major classes: lipoplexes and polyplexes as outlined in Table 3.



Table 3: Main classes of non-viral delivery systems [46-50].

Delivery System Composition Examples

DOGS

DOTMA

DOTAP

DC-Chol*

DOSPA and DOPE*
(Lipofectamine)
Polyethylenimine (PEI)
Poly-L-lysine (PLL)
Poly-L-ornithine(PO)
Chitosan

Cyclodextrin
Dendrimers
PEI-DOTAP-Dc-Chol
DOTAP-Chol-protamine
sulfate (LPD)

e PLL-DOTOP

Lipoplexes Cationic and neutral™ lipids

Polyplexes Polymers

Lipopolyplexes Hybrid of lipids and polymers

The first class of non-viral delivery systems is composed of cationic lipids that spontaneously
assemble into liposomes. Liposomes are closed micro-nano vesicles, of uni- or multilamellar forms
composed from the self-assembly of one or more phospholipids. Their biological origin makes liposomes
a good candidate for clinical applications due to their biocompatibility [51]. Most literature on lipoplex
analysis is in vitro studies performed in solution. [26, 52-54]. There are many variables that are
considered in these solution studies which include: chemical structure of the lipid(s), the ratio of lipids or
charge ratio, the physical structure of the lipoplex, and of course, the intended target. To consider the
chemical structure of a lipid, its structure can be modified at three major areas, at the head group, linker
and hydrophobic tail. Although there are a variety of lipid formations used in lipoplex formulations,
generally, the composition of the lipoplex utilizes cationic lipids. The positive charge on the lipid head
facilitates the spontaneous interactions with DNA where upon it aids in the binding the r lipoplex with the
negatively-charged plasma membrane. The amount of cationic lipid also plays a role in determining the
charge-ratio of the final lipoplex, which has been shown to have profound effects on transfection
efficiency [55, 56]. Lipoplex can also incorporate zwitterionic lipids, known as helper lipids, to enhance
the cationic lipoplex. These phospholipids enhance the effectiveness of cationic lipoplexes by increasing

stability and bestowing fusogenic properties to aid in endosomal release [57-59].



A second class of non-viral delivery systems is polyplexes. They utilize a wide range of synthetic
and biological polymers to form complexes with DNA. Although polymers also condense DNA (through
electrostatic interactions to aid in endosomal uptake), there are key differences compared to lipoplexes
that were previously discussed. The key difference between a lipoplex and a polyplex is the chemical
nature of monomers. Although there are a wide range of polymers used, generally all cationic polymers
lack a hydrophobic domain. This means that polyplexes generally form more compact (smaller) and
uniform particles (relative to lipids) due to higher number of amine and positive charges. For example,
polyethyleneimine (PEI), one third of its molecular structure is composed of nitrogen with one sixth
carrying a positive charge at physiological pH [60]. One drawback with the absence of the hydrophobic
domain is that polymers do not readily interact with lipid membranes [61]. The problem with early
polyplexes such as poly-L-lysine (PLL) is they lack an effective mechanism to escape the endosome
Therefore these polyplexes suffered from low transfection efficiencies without the addition of endosomal
Iytic agents or additional modifications [62]. Nonetheless, commonly used polymers are not
biodegradable (PEI, PLL), which can result in increased cytotoxicity. Other biodegradable polymers such

as chitosan have been investigated as a solution to decrease cytotoxicity [63].

Non-viral delivery systems show promise in vitro, however there are problems that are exhibited
in vivo. Early studies with lipoplexes showed that systemic distribution of NP was quite poor in biological
systems [64]. Unlike viral vectors which developed mechanisms to reach their targeted cells, non-viral
carriers are impeded by intracellular trafficking [39, 65-67]. Nevertheless, research has also demonstrated

flexibility of the NP in allowing for modifications to improve its systemic distribution [68].
1.3 Nanoparticle design

As described previously (Section 1.2.1) the ideal delivery system would have various
characteristics to achieve high degree of transfection in target cells. Although neither lipid nor polymer
based delivery systems have all of these characteristics, modifications can be made to impart new
functions to optimize the amount of transfection. This rational design of NPs takes into consideration the
applications of the delivery system in order to overcome hurdles, increase efficacy and develop a profile
to match a particular therapeutic strategy. One important modification is the introduction of targeting
ligands to NPs that are specific for certain receptor expressed on certain cells. The field of targeting
ligands is popular in the field of cancer research where several ligands are added to increase NP-
specificity to cancer cells [69]. This important modification not only increases the effectiveness of the

NP, but also reduces side effect by decreasing toxicity to non-targeted cells. Once the NPs are taken into
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the cells, the next barrier escapes the endosome to avoid lysomal degradation. Modifications such as
fusogenic lipids, pH sensitive chemical structures (respond to shift in pH of the late endosome) or
addition of endolytic agents can be added to aid the release of the NP and its contents [70, 71]. Recently
new ligand have been used to exploit new pathways to the nucleic via the Golgi body, therefore
bypassing the lysosome, as a new mechanism of entry into the cell [72]. A final consideration for building
NPs is to increase their stability. This factor is particularly important for in vivo applications of these
delivery systems, where non-specific biological interactions such as serum proteins and the immune
system can result in the clearance of the NPs [73]. A common solution in preventing this unwanted
uptake is the application of polyethylene glycol (PEG). PEG is functionalized to the outer coat of NPs and
decreases steric interactions and provides stealth capabilities against cells of the immune system. In a
study it was shown that addition of a PEG coat significantly increased the systemic circulation of NPs
from hours to days [74, 75]. Other novel functions that have been evaluated include environment stimuli

such as light and magnetic fields, adding an additional degree of control to NPs [70, 76, 77].

This flexibility of engineering non-viral delivery systems provides several key advantages over
their viral counter-parts. These advantages include reduced immunogenicity based on their construction
from biologically inert materials and at reduced costs of production. Furthermore, many of these materials
are previously FDA-approved for implants and injection, aiding with regulations [78, 79]. Overall, the
“bottom-up” design allows for customization in composition and incorporation of specific moieties to suit
a wide range of applications. [54, 80, 81]. Although the number of non-viral delivery systems currently
in clinical trials has increased to 18%, , they are still the dark horse in the world of gene therapy compared
to viral counterparts [28]. Although there is active research in this field, there are many unknown factors
about the intracellular fate of non-viral delivery systems [67, 82-84]. To further develop non-viral
delivery systems, critical information must be obtained on how the carriers interact in the extra- and
intracellular environments. To truly appreciate the extensive research, one must also investigate the

various barriers they were designed to overcome to develop more effective therapeutic options.



1.4 Barriers to gene transfer

The site of action of somatic gene therapy is the nucleus of the target cell. The barriers to gene
delivery vary and depend on the location of targeted cells and the route of administration. These barriers
can be classified as either intracellular or extracellular that will be discussed below. Intracellular barriers
will be discussed first due to the extensive use of tissue culture to evaluate and development of new gene

delivery systems.
1.4.1 Intracellular barriers

At the molecular level of a single cell, there are numerous obstacles that hinder transfection of
exogenous DNA. Upon contact with the cell, the DNA must adhere to the plasma membrane, overcoming
columbic interactions on the surface of the cell to make contact with plasma membrane, a lipid bilayer of
various phospholipids embedded with proteins that governs the entry and exit of molecules into cell.
Upon binding this outer membrane, the gene must be internalized by some form endocytosis or other
uptake mechanism [85-89]. Even entering the cell, the gene is separated from the cytoplasm by a lipid
vesicle or endosome. The DNA must then escape the endosomal pathway or risk degradation within the
lysosome. After leaving the internalization pathway, the gene must navigate through the cytoplasm, which
contains networks of cytoskeleton and endonuclease and macromolecules that hinder the gene to its final
barrier [90, 91]. The nuclear membrane consists of a double membrane that is fenestrated with thousands
of nuclear pore complexes. Although numerous, the nuclear pore complexes are very narrow (9 nm
closed, to 39 nm dilated), are highly selective, and without a specific tag sequence for facilitated transport
the DNA cannot reach the host genome within [92]. Only then can the therapeutic DNA access the host
genome to express its therapeutic effect [65, 66, 93, 94]. This tortuous path to the nucleus demonstrates
the need for a carefully orchestrated delivery method to ensure sufficient quantity of the gene reaches the
nucleus to achieve a therapeutic dose. Even after leaving the endosome, the DNA must continue to
overcome various physical and biochemical barriers within the cytosol and cross the final barrier, the
nuclear membrane. In the field of gene delivery, these delivery systems are divided into two broad
categories: viral and non-viral delivery systems. A large body of work investigating the mechanism of
gene delivery has focused on the intracellular barriers that the delivery system must overcoming to
transfer genes into the host cell’s nucleus. Although this is vital step in study of gene delivery systems,

another important consideration for in vivo applications are the extracellular barriers.
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Figure 2: Overcoming cellular barriers to gene delivery. The plasma membrane is the first cellular barrier that must
be overcome. This is achieved through adherence and triggering internalization (1). Upon entering the cell the
delivery system must escape the endosome to reach the cytosol or risk lysosomal degradation (2). The cargo must
also be released from the carrier and transit through the highly structured and dense cytoplasm and avoid
degradation by various nucleases (3). Depending on the cargo (e.g. anti-sense oligonucleotide, journey ends at the
cytosol), but plasmids for instance must also pass the nuclear membrane in order to be expressed (4).

1.4.2 Extracellular barriers: Challenges to clinical use

Although a great deal of research has been done to study the intracellular barrier role in
transfection efficiency, it has been established that in vitro results are poor prediction for in vivo
applications [95-98]. The main reason for this discrepancy is the presence of extracellular barriers,
obstacles that hinder delivery system from the point of entry to surface of the target cell. Approaching the
cell, therapeutic genes must bypass the extracellular environment; a maze of physical and biochemical
hurdle that either adhere or degrade free DNA. These barriers can be classified as anatomical barriers,

interactions with biological fluids, extracellular matrix and non-specific cell interactions.

One of the key anatomical barriers to gene therapy is epithelial cells that line the various surfaces

in the host body. This broad class of cells, vary in composition depend on it location in the body, but is
11



generally made of closely arranged cells in one or more layers and plays a key role in the protection of the
host [99]. Specific epithelium such the one found in the eyes, airways, gastrointestinal tract and colon
have an additional layer of mucus, a robust, semi-permeable gel that exchange nutrient with the epithelial
cells below and block bacteria and pathogens[100]. However, these barriers also limit the uptake of

therapeutic genes to the targeted tissues resulting in lower efficacy [101-104].

Additional barriers depend on the route of administration. Oral delivery is the simplest and most
ideal route of drug administration, but it is challenging due additional physiological barriers such as the
acidic environment of the stomach, and the digestive enzymes of the intestines [105]. Even with systemic
administration, the therapeutic gene faces several barriers before efficient transfection can occur. In the
circulation genes are traveling through the blood, a specialized fluid, containing a suspension of cells and
macromolecules. The gene must make it through various hurdles such as immune system, avoid
unspecific interaction with serum protein (albumin) and lipoprotein (HDL and LDL [106, 107].
Depending on the target site, the gene must escape the vasculature through fenestrate and find the target
cell or risk degradation by various nucleases and scavenging by hepatocytes in the liver [23, 108-110].
While in circulation, or upon entering the target tissue, the nucleic acids must avoid being scavenged by
immune systems components [111, 112]. Even upon avoiding these obstacles, unless guided, the gene
still have to find the target cells or risk uptake by unspecific cells, which can reduce the efficacy of the
therapeutic drug and increase the risk of side effects. Even with topical gene delivery; whether through
direct injection into tissue or application to surrounding tissues, the nucleic acid still must bypass the
extracellular matrix (ECM) upon approaching the target cells. The ECM is composed of a meshwork of
proteins and polysaccharides that are extruded locally by the cells within the matrix. Within this matrix
key units are the polyanionic molecules such as glycosaminoglycans (GAGS) that form the structural unit
of protoglycans that cover the surface of all mammalian cells. This matrix not only plays a structural
function, but also plays role in governing cell growth and behavior and is even the unique marker for
specific viruses. Due to their anionic nature and abundance, GAGs pose a barrier and inhibit gene transfer
[113-115]. To overcome these numerous hurdles, extensive research has been done to development

method to increase the stability and expression of the therapeutic gene.
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1.5 Nanoparticle design and transfection efficiency

In general non-viral delivery systems assemble through electrostatic interaction between the
highly anionic nucleic acids and a polycation (cationic lipids, dendrimers, PEI etc). The bottom-up
engineering of NPs allow for the production of multi-functional particles in a modular fashion to meet a
variety of therapeutic strategies. It is difficult to correlate all factors to ultimate delivery system efficiency
amongst various physiochemical properties that govern the efficacy of the NPs. However, there are

several factors that are routinely monitored in delivery system design.
1.5.1 Size

One of the most studied factors in gene delivery is particle size. Although on average most
particles range between 100-300 nm, in the literature there is no ideal size for a delivery system. A
number of groups have reported that either smaller or larger particles are more effective [54]. One of the
key reasons for this discrepancy is due to the factors that govern the particle size of delivery systems. The
factors that govern the size and size-distribution of NPs are efficiency of compaction (in turn controlled
by the N/P), preparation method and the environment (pH and ionic strength). In addition, due to
spontaneous self-assembly of non-viral delivery systems, even in the simplest NPs, composed of two
elements (DNA and single polycation material) will generate a population of particles [54, 116-123].
Generally, since numerous groups have various formulations of their own NPs, and without a
standardized method to monitor particle size, it is easy to see why there is little agreement on the issue of
size. Furthermore characterization studies performed by single groups have begun to demonstrate that size
does not always correlate with transfection efficiency [122]. Nevertheless, particle size still defines the
route to the target and determines which obstacles it will face. For instance it has been reported that
particles within a specific size range are favored by certain endocytosis pathways compared to others. A
control study using labeled beads of increasing size range (50, 100, 200, 500 nm) showed that smaller
particles (<200nm) were rapidly taken up, via the clathrin-mediated pathway, but resulted in lysosomal
clearance. On the other hand larger particles (>200 nm) were taken up slower by an alternative pathway,
the caveolae pathway, but showed prolonged circulation within the cell, and more importantly, avoided

lysosome degradation [124].

On the contrary to in vitro results, in vivo studies have shown that smaller particles have better
results. Smaller particles (<100nm) showed reduced adsorption to plasma proteins, reduced hepatic

filtration, and opsonization and clearance by the immune system. Along with the increased circulation
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time in the blood, smaller sizes aid in the permeation of NPs into target tissues [125, 126]. On the whole,
size still remains a fundamental characteristic to consider in terms of the mechanism of uptake available
to specific cell lines [16, 17]. Size can be used as a measure of the physical properties which play a key
role in quality control and assurance. Especially in terms of manufacturing gene delivery system it does

not always correlated to final efficacy, in which other factors must also be considered [53, 61, 127, 128].
1.5.2 Surface charge

Surface charge of the delivery system, like size, is determined by the composition of the particle.
In vitro, the charge ratio (ratio of cationic material to nucleic acid) may vary based on the chemical
structure of the delivery systems. Typically, an overall positive surface charge provides increases
transfection efficiency. This is widely accepted due to the ability of the cationic delivery system to
electrostatically interact with the negatively-charged plasma membrane of the cell and improve adhesion
(the first step in cellular uptake process). The effect of charge ratio on transfection efficiency is also
material (e.g. PEI, cationic lipids and dendrimers) and cell-line dependent, generally a 1:1 ratio is the
minimal, which is the amount required to neutralize the negative charge on nucleic acids. The charge
ratio also needs to be optimized for each case because an excess of charge ratio generally results in
reduced transfection efficiency. This is widely believed to be due to cytotoxicity related to the presence of
free or unbound cationic material [129-131].

Although the effect of surface charge in vitro is well defined, its role in vivo is not as clear.
Several groups have reported that cationic delivery systems suitable for in vitro applications show
reduced efficiency in vivo. This is because simple electrostatic interactions that help delivery systems
bind to cells in vitro, result in non specific interactions with other molecules in the body such as serum
proteins and immune cells. This reduces the number of particles reaching the target cell and resulting in
reduced efficacy. It has been shown that anionic or weakly cationic delivery systems provided increase
transfection efficiency in vivo [125, 126]. In a study using mouse lungs by He and colleagues, showed
that higher charges, either positive or negative, resulted in increased opsonization and interaction with
macrophages and clearance of the NPs [126]. The paper demonstrated that for in vivo applications,

mixtures that were stable after extend periods of storage resulted in high expression in mouse lungs [98].
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1.5.3 Nanoparticle structure

Another parameter that is assessed is the overall structure of the delivery system that can be
divided into external and internal features. The external structure, or shape of particle and its internal
structure are evaluated based on the interaction of DNA with the delivery system. As with other
physiochemical properties, the composition of the delivery system will have profound effects on its shape.
In terms of external structure, the majority of particles are believed to be spherical, although other shapes
such as rods, globules and toriods have also been reported [132-134]. Studies have also demonstrated that
the shape of the delivery system affects transfection efficiency, but why that is has yet to be understood
[135]. One main explanation for this discrepancy is the methods of visualizing the delivery systems.
Techniques such as electron microscopy (EM) and atomic force microscopy (AFM) have been

traditionally utilized but are prone to artifacts (to be discussed later in Section 1.6.1).

As well as looking at external structures of delivery systems, there are internal structures to be
considered and believed to be more significant. Internal structure refers to the long-range order or internal
arrangement molecules within the delivery system. In lipoplex delivery systems, various polymorphic
phases such as lamellar, hexagonal and cubic occur [136, 137]. Studies have indicated that hexagonal
phases provide higher levels of transfection compared to lamellar structures. This is due to lamellar
phases being more stable within cells, while hexagonal phases encounter fusogenic properties aid in the
release of the delivery system’s cargo. New research has demonstrated lamellar phase mechanism to be
charge-density dependent in contrast to hexagonal phase being independent [138]. Furthermore research
by our group has also demonstrated that other polymorphic phases exist and aids in increasing the

efficacy of the delivery systems [139].

To build an ideal delivery system, a multi-faceted approach must be taken to optimize a delivery
system for delivery. One of the key issues lies in the condition in which these test are performed. Despite
pure delivery system populations and well-controlled environments, in vitro studies and in vivo studies
are not well-correlated. Therefore new techniques must be used to extend our current understanding in the

cellular world.
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1.6 Physicochemical characterization of nanoparticles: Current

methods

Numerous physicochemical parameters have been shown to affect NPs making the relationship
between NP assembly and transfection efficiency difficult to describe. To advance the field of non-viral
gene delivery for in vivo applications, additional information is required on the effects of different
materials of NP composition. Therefore, a method of monitoring the influence of different compositions
is required to show the true relationship between structure and function. This section will review
commonly used techniques in studying these physiochemical parameters and their limitations. Figure 3
highlights the most important NP properties assessed by non-viral research groups. It is beyond the scope
of this thesis to discuss the theory for each technique, though some key concepts will be touched upon.
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Figure 3: Summary of NP characterization. Various biophysical properties of NPs are evaluated using several
techniques each with their own unique advantages and disadvantages. Size distribution and hydrodynamic
diameter can be determined by DLS. External morphology and direct measure of physical size can be done with EM
and AFM. Surface charge can be studied using zeta potential measurements. Internal structures can be evaluated
using SAXS, WAXS, and XRD.
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1.6.1 Particle size and size distribution

The two key parameters of delivery systems that are monitored by researchers are particle size
and size distribution. As described previously, the key to performance of NP is their small size. Therefore
it is crucial to monitor the size and stability of the particle to ensure optimal activity. Additionally, these
parameters can also give insight into the stability of the systems, encapsulation efficiency which are
crucial for pharmaceutical quality control [140]. Due to its importance it is not surprising that several
techniques have been employed to screen particle size - each technique having their own advantages and
disadvantages (Table 4).

Table 4: Summary of particle sizing techniques used to characterize NPs

Technique Mechanism Advantage Disadvantage
Low throughput
EM _ ¢ High Resolution Extensive sample prep
(TEM) Microscopy: Electrons ) D_ire_ct si_ze, shape and Acrtifact _due to sample
distribution measurement preparation
Extensive user training
Microscopy: Atomic * H!gh Re_solut|on Acrtifact due to mounting
AFM e Direct size, shape and . .
probe distributi Extensive user training
istribution measurement
Measure hydrodynamic
e Minimal sample diameter not physical size
DLS Light scattering preparation Affe(_:t by large particle in
e Fast measurement solution
¢ Simple operation Poor sensitivity at low
concentration
Measure hydrodynamic
. . diameter, not physical size
Light scattering and e Fast measurement S
NTA ; ; . . Affect by large particle in
particle tracking e Simple operation solution
Requires sample labeling
* '2222/5'5 of large size R_equires user_calibration
FFF Chromatographic ¢ Molecule specific T|m_e consuming
detection Optimization of instrument
. . for different NPs
e Minimal preparation
Requires sample labeling
e High sensitivity Tedious set up and
FCS Fluorescent fluctuations e Fast measurement time calibration

e Can use in vitro

Requires extensive user
knowledge to analyze data

In regards to microscopy, traditional light microscopy cannot be used to study the size NP

particles. This is due to the diffraction limitation of light, which limits technique resolution to
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approximately 200 nm [141]. To overcome this obstacle, other forms of microscopy are needed. Electron
microscopy (EM) is able to overcome this limitation by using electrons that have shorter wavelength
compared to photons, and pushes resolution of microscopy to the atomic scale. Transmission electron
microscopy (TEM) and various derivations (cryo-TEM and freeze-fracture TEM) have been used for the
detailed studies of size and shape of the delivery systems [41, 142, 143]. Although structures could be
studied in stunning detail using TEM, samples sometimes require fixation in resin prior to imaging. Due

to the soft nature of the non-viral system being studied, increases the risk of preparation artifacts.

Scanning probe microscopy (SPM), another form of microscopy to study delivery systems, is a
form of atomic force microscopy (AFM). AFM is a powerful tool able to investigate NPs in a variety of
environmental conditions, most importantly liquid, making it a versatile technique. AFM utilizes a probe
attached to a sensitive cantilever that measures the vertical deflection of the probe as it interacts with its
environment [144]. In a sense, AFM allows the user to “feel” the topology of various materials. A
resolution of 1A is possible; however resolution is limited by the sharpness of the tip. AFM has gained
particular attention as an alternative to TEM since it does not require the extensive sample preparation
and harsh conditions as such with TEM (conditions that may affect the morphology of the delivery
systems). Although the sample preparation is less invasive, it is not free from artifacts. One example of

AFM application is the study the surface morphology of functionalized liposomes [145].

Although the resolution of both TEM and AFM give for stunning images of individual or small
populations of particles this window is quite small. Therefore due to the heterogeneity observed with NP
preparations, great care must be taken in selecting the number of particles to sample and measure to avoid
bias. Furthermore due to the high cost of specialized equipment and operations, it is difficult to obtain
large number of images. Generally this number will be orders of magnitude smaller than total number of
particles yet, too small a sample size can result in bias and misleading data. Therefore to inquire into the

population distribution of NPs other techniques are required.

Techniques that are routinely used to monitoring of size and distribution are dynamic light
scattering (DLS), flow-field fractionation (FFF) and NP tracking analysis (NTA). These techniques
indirectly measure the hydrodynamic diameter which is based on the Stokes-Einstein equation below.
Where k is Boltzman constant (1.38 x 102%J/K), T is absolute temperature in Kelvins and 1 is viscosity of

medium.
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Each technique utilizes different methods to determine the diffusion coefficient (D), with each
having their own advantages and disadvantages. Dynamic light scattering (DLS, or photon correlation
spectroscopy, PCS), a frequently used method, is used to determine size and size distribution of NPs [135,
146-150]. DLS uses light (in form of a laser) which is directed at a suspension of particles and a record is
taken from the fluctuation caused by scattering-based Brownian motion. This autocorrelation function
(ACF) is then fitted by a mathematical model which is used to determine the diffusion coefficient. Due to
its simplicity of use, DLS is a widely used technique in the study of NP size and dispersion. One
consideration of the DLS is that it does not reveal the true physical size of the particles, but rather it
evaluates the hydrodynamic diameter based on NP movement through solution. Although DLS is suitable
for determining particle size distribution or polydispersity of relatively homogenous samples, and more
heterogeneous samples can result in measurement errors. Furthermore the presence of larger particles
(causing larger amounts of scattering compared to smaller particles) can lead to an over-estimation of

particle size.

Nanoparticle tracking analysis (NTA) is another popular technique that is similar to DLS in that
they both measure the scattering generated from particles in solution. But unlike DLS (which uses ACF)
NTA uses a charged-couple device (CCD) camera (a high resolution camera) to monitor the trajectory of
individual particles as a means to determine diffusion coefficient [151]. Since each particle is measured
individually, NTA is not as prone to partiality due to the presence of larger aggregates. This makes it a
more suitable technique for the study of poly-dispersed systems. A disadvantage of NTA is that NP need
to be labeled which is not required for DLS. Although both DLS and NTA are simple to use for routine

analysis, there are limitations

Field-flow fractionation (FFF) is another technique used for sizing NPs [152-155]. FFF and its
sub-techniques are chromatographic techniques that pump sample through a ribbon-like channel, where
an external force (dependent on the sub-technique, could be centrifugal, thermal, electrical or
hydrodynamic) is applied perpendicularly to the flow [156]. This results in the separation of particles
based on size, density or surface functionalize in the presence of the external force. From this, the
diffusion coefficient can be used and particle size is determined via the Stokes-Einstein as mentioned

previously.
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While these techniques allow for the study of population of NPs there are some limitations. One
consideration is that these techniques do not reveal the true physical size of the particles, but rather their
hydrodynamic diameter based on NP mobility movement through solution. Furthermore another
consideration for these techniques as the Stokes-Einstein equation used to determine size based on
mobility is under the assumption the particles are spherical. Another factor that needs to be considered is
the polydispersity or how uniform the particles are. While one of the advantages of these techniques is the
ability to study larger populations of particles and determine their distribution, there are limitations. For
instance with DLS, the presence of larger particles or aggregates cause significant increase in input signal
which can mask smaller particles. This results in an over-estimation of the reported particle size for both
DLS and NTA (although the effect is not as severe with NTA). This make NTA more suitable for analysis
of poly-dispersed systems compared to DLS. Overall, these methods work best with mono-dispersed
systems, while the size values from very poly-dispersed systems must be interpreted with care.

1.6.2 Other physical characterization

Another key factor that is routinely monitored in delivery system characterization is the surface
charge or zeta potential. Zeta potential () is a measure in colloidal science that describes the electrical
potential that exist within the electron double layer of the particle specifically, at the sheer plane with
respect to the electroneutral bulk medium. In theory, the magnitude of zeta potential, both positive and
negative, can be used to predict the stability of the suspension [157]. Electrophoresis can be used to
determine the zeta potential by monitoring the mobility of the charged particles in the presence of an

electric field. This electrophoretic mobility or velocity can be used to calculate the zeta potential.

To study the internal structure of NPs, techniques such as small-angle x-ray scattering (SAXS)
have been used. SAXS makes use of a high-energy x-ray, generally produced by a synchrotron, and
produces a scatter pattern which reveals the pattern of organization of components. SAXS has been used

to characterize DNA-liposome complex and reveal several polymorphic structures exist [136, 158-162].

From a pharmaceutical production stand-point, a lack of understanding of the interactions that
govern a cationic delivery system limits the control of the stability of these formulations. There are
several methods that have been used to counter this and allow for the study of interactions within the

delivery systems.
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1.6.3 Characterizing interactions of nanoparticle components

Besides surface features and transfection efficiency of NPs, other traits can also be examined.
One of the key requirements of good NP design is study of the interactions between the various
components that make up the NP.

One of the simplest techniques that can be used to study the interaction of the carrier with DNA is
dye exclusion assay. Dye exclusion assay utilizes a nucleic acid dye, typically ethidium bromide (EtBr)
that only fluoresces when bound to DNA. Therefore if the assembly process affects the conformation of
the DNA, this can affect the binding sites for the dye. Therefore the degree of signal detected can be used

as an inverse measure of affinity of the carrier to DNA [116, 132].

For a more quantitative measure of the energies involved in the assembly of the NP systems other
techniques can be employed. Isothermal titration calorimetry (ITC) is a technique used to monitor the
change in enthalpy (AH) of biomolecular interactions. By using the change in enthalpy, in combination
with stoichiometry, ITC can indirectly monitor the stability of the delivery system in such situations, such
as in the binding of DNA with its cationic carrier [163-165]. Another technique utilizing thermodynamics,
is differential scanning calorimetry (DSC), which measures the shift in heat capacity (C,). Deviations in
these values can be used to identify conformational states of the molecules and determine changes in
packing or structural fluctuations [166]. For both ITC and DSC, thermodynamic properties can be

monitored without additional modification to the sample.

Fluorescence microscopy has been widely used in studying gene delivery systems despite having
lower resolution than EM and light microscopy. One of the major applications of fluorescence
microscopy is the study of transfection effectiveness of gene delivery system. In general, a gene that
expresses a fluorescent protein, is monitored for the amount of fluorescent expression. The amount of
fluorescence can be used to study transfection efficiency of one system versus another [167]. The delivery
system and cargo can also be labeled with specific fluorescent dyes to study other properties of gene
delivery systems. One application involves using the fluorescent-labeled components as reporters. These
reporters determine the sub-cellular location of labeled molecules, such as delivery system components or
nucleic acid cargo [82, 168]. Other examples of fluorescent techniques are Fluorescence Recovery After
Photo-Bleaching (FRAP) and Fluorescence (Forster) Resonance Energy Transfer (FRET); both
techniques utilize the phenomena of fluorescence to determine biophysical parameters such as diffusion,

unpacking and interactions of non-viral delivery systems. [82, 84, 169, 170]
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Important in delivery system design, secondary structures of DNA-carrier complex were shown to
have an effect on transfection. Circular dichroism (CD) and Fourier Transform Infrared Spectroscopy
(FTIR) are two techniques are that able to measure secondary structures of DNA-carrier complexes. CD
uses polarized light to study the secondary structure of DNA-carrier complex [121, 171, 172]. FTIR can
also be utilized to study the effect of cationic complexing agents on the secondary structure of DNA
inside the NPs [118, 173].

1.7 Gemini nanoparticles as gene delivery system

1.7.1 Introduction to gemini surfactants

The initial study of gemini surfactants by Menger’s group in the 1990s generated significant
interest in both industry and academic circles due its remarkable properties. The basis of this interest is
linked to its unique dimeric structure. In structural comparison, monomeric surfactants are composed of a
single hydrophobic tail that is attached to a polar head-group, while gemini surfactant are composed of
two hydrocarbons tails with two polar heads linked by a rigid spacer as shown in Figure 4 [174].
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Figure 4 General chemical structure of gemini surfactants. Gemini surfactants are composed of two hydrophobic
tail with charged head group linked by a spacer (A). To change their properties various structural modifications can
be made. These include changes to spacer length (B), tail length (C) and addition of various functional groups (D).

The dimeric structure gives it remarkable aqueous properties when placed in solution and
provides advantages to gemini surfactant NPs. Compared to monomeric counter-parts, gemini surfactants
possess a significantly lower critical micelle concentration (cmc), increased solubilization, high surface
activity and better wetting and foaming properties [175, 176]. Simply, a small amount of gemini
surfactant can have dramatic effects. In terms of formulation development, this is an advantage in that less
material is required to form NPs therefore reducing cost and potentially toxicity. Additionally, gemini
surfactants can be easily synthesized at a low cost which adds another economical advantage.
Furthermore, studies have demonstrated that the properties of the gemini surfactants can be adjusted by
modifying their structure. As a result, a wide array of morphological structures can be obtained, giving

gemini surfactants greater flexibility [177, 178]. This flexibility has been demonstrated by their
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widespread application in various fields such as cosmetics, cleaning agents, nano-engineering (used a
scaffold for gold NPs), anti-microbial agents, enhancing oil recovery, preparative chemistry, and nano-
sensors (carbon nanotubes with gemini) to detect containments in food products [179-193]. Lastly,
another application related to Foldvari research group is the application of gemini surfactant in drug

delivery, which will be further discussed in the following section.
1.7.2 Gemini surfactants as cationic delivery agents

Research has shown that a sub-group of gemini surfactants, the cationic gemini, can be utilized as
novel delivery systems for gene therapy. Unique physical properties, due to the dimeric structure of
gemini surfactants, makes them ideal candidates for non-viral delivery systems [175]. One advantage of
gemini surfactants is low cmc that allows gemini surfactant to readily associate with DNA at low
concentrations. From a drug delivery system point this is advantageous because a low concentration of

surfactant would mean lower cytotoxicity levels.

Studies by the Foldvari group have also revealed other desirable properties of gemini NPs. As
with other non-viral delivery systems, gemini surfactants have been shown to be effective pre-complexing
agents by effectively neutralizing the anionic charge of DNA. Although gemini surfactants on their own
have shown cytotoxicity, with the addition of a phospholipids, gemini NPs become an effective delivery
system for gene delivery [194, 195]. Several studies have also shown that the effectiveness of the gemini
NPs can be tuned through structure modifications to the gemini surfactant. These studies have shown that
short spacers and longer tails have been correlated to higher transfection efficiency [195]. Modifications,
like the addition of various chemical groups have been shown to add necessary functions to the gemini

NPs, such as response to pH and increased biocompatibility [196, 197].

With every new generation of gemini, there has been an increase transfection efficiency compared
to parent compounds. SAXS studies on internal structures have revealed that gemini NPs assume a
unique, cubic-lamellar phase which has been correlated to increase transfection efficiency [161]. In
addition, physiochemical studies have found these phases to be safe in cutaneous gene therapy in mice
[162].
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1.8 Current status of gene delivery

A wide variety of commercial transfection systems based on non-viral delivery systems are
available for in vitro cell studies [198-202]. As shown in Table 5, the majority of commercial transfection
systems utilize a non-viral delivery system, rather than a viral vector. Although this is a promising
application for non-viral gene delivery, it reflects their applications to ex vivo, instead of in vivo therapies
[203]. This trend is also supported by the clinical applications of non-viral delivery systems (see Table 5).
As of 2012, less than 6% of gene therapy clinical trials worldwide utilize lipid-based non-viral delivery
systems, versus 66% which use viral vectors [9]. One of the major reasons for this discrepancy is
transfection efficiency. Unlike viral vectors that have adapted mechanisms to bypass host defenses, non-
viral delivery systems do not have these mechanisms and currently have in vivo issues which are related
to pharmacokinetics and intracellular trafficking [39, 66, 67]. There is active research in the field of non-
viral gene delivery, but additional information is needed concerning the mechanism of crossing the
delivery barriers. This information is necessary for the rational design of suitable non-viral delivery
systems for clinical use [67, 82-84, 204]. An additional issue is that majority of the study of non-viral
delivery systems is based on in vitro studies and studies have shown that in vitro results do not reflect the
efficacy in in vivo studies [95]. Therefore to overcome this hurdle and improve the clinical efficacy of

non-viral delivery systems, further studies must be performed in vivo to gain more useful information.
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Table 5: List of commercial transfection reagents for in vitro applications.

Non-viral

Name Formulation Manufacturer
Convoy™ Cationic Polymer ACTgene
GeneCellin™ Cationic Polymer Bio Cell Challenge
Lipofectamine®  Cationic Lipid Invitrogen

Effectene Non- liposomal Qiagen

Superfect activated dendrimer Qiagen

Fugene 6® Non-liposomal Promega

TransIT Not disclosed Mirus Bio
TransFast™ Synthetic cationic lipid Promega

JetPEI® PEI Polyplus Transfection
ExGen 500™ Linear PEI Fermentas/Thermo Sci
TurboFect Cationic Polymer Fermentas/Thermo Sci
Escort™ Cationic Liposome (DOTAP DOPE 1:1) Sigma Aldrich Co. LLC.
NeuroPORTER™  Cationic lipid Genlantis

HiFect® Biochemical trasnfection agent Lonza

X-tremeGENE Non-liposomal reagent, synthetic Roche

Genejuice® Not disclosed Millipore

Glycofect Not disclosed Kerafast

Viral

Name Formulation Manufacturer
SMARTvector Lenti Virus Thermo Sci
Virapower™ Adenovirus or lentivirus Invitrogen
Polybrene® Retrovirus Millipore

rAVE™ AAV Gene Detect
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1.9 Studying intracellular trafficking of non-viral delivery systems

Extensive research in the field of non-viral delivery systems has revealed that to improve our
design of carrier requires additional insight into their intracellular behavior. Techniques such as PCR and
separation of cellular components through ultracentrifugation are generally labor intensive and cannot
provide real-time data about the dynamics of the vectors in the cellular environment [205, 206].
Currently, most intracellular studies routinely use fluorescence techniques to gain insight into the critical

steps in trafficking processes [207, 208].
1.9.1 Confocal laser scanning microscopy

Confocal laser scanning microscopy (CLSM) has become one of the fundamental tools in
studying the mechanism of non-viral delivery systems due to its high degree of sensitivity, resolution and
ability to generate 3D images in living cells with minimal disturbance. With labeled-delivery system
components, CLSM has been used to study the localization and trafficking of delivery systems within
cells. Adding multi-fluorophores for instance, an organelle stain and labeled nucleotides, it is possible to
determine the interaction of NPs components with a high degree of spacial resolution through a technique
known as co-localization [209]. Transfection efficiency of non-viral delivery systems can also be
monitored using CLSM. This is accomplished by loading delivery systems with reporter plasmids that
express a recombinant protein, and using them to transfect the cell. The degree of expression can be
visualized by an increase in the signal for that fluorescent protein and can be used to gauge the
effectiveness of a specific delivery system. Although CLSM is widely used in studies of trafficking, there
are limitations. One limitation is the need for image processing which prevents the study of particles in
true real-time. The second issue relates to the diffraction limit of light. Although co-localization is a
useful technique to show that two molecules are close together, due to limit of resolution, it is impossible
with CLSM to distinguish if the two molecules are just close (<200 nm) or actually interacting. Since
many NP used for gene therapy are smaller than 100 nm, this limits CLSM applications in studying
interactions between a NP components and DNA for example. To gain insight into the biophysical

properties of NPs other fluorescent techniques have been used.
1.9.2 Fluorescence recovery dfter photobleaching

One technique that is used to determine mobility of molecules is FRAP. FRAP utilizes a high
intensity laser to photobleach all labeled molecules in a select region; followed by it monitoring the time

required for fluorescence to return therefore measuring the mobility of the molecules [210]. FRAP has
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been applied to measure different regions of the cell and to determine which components, such as the
extracellular matrix (ECM) affect diffusion of DNA. This enables the identification of possible barriers to
gene delivery [169, 211, 212]. The drawbacks of FRAP is that it can only measure the average movement
of a high concentration of molecules over large distances. Therefore this limits the resolution of FRAP to
study the interactions and movement of the delivery systems within a cell. Furthermore, the use of high
intensity lasers poses the risk of damaging cells and or the components of the gene delivery system. These
limitations reduce its application in studying intracellular diffusion since many non-viral complexes are
not present in high enough concentrations for FRAP to be performed. Also, due to the Rayleigh limit, it is
not possible to confirm the physical interaction of the molecules using traditional microscopy technique,
meaning that two molecules could be very close to each other (<200 nm apart) but not interacting [207].
To obtain precise information on the physical interactions of molecules, beyond the resolution of light
based microscopes, another technique is required.

1.9.3 Férster resonance energy transfer

FRET occurs when two distinct fluorophores, the donor and acceptor, are in close proximity (< 10
nm). If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, a non
radiative transfer of excitation energy from the donor to the acceptor can occur. Since FRET only occurs
within 1-10 nm this makes it suitable for studying dynamic molecular interactions of non-viral delivery
systems [213]. FRET enables to obtain data beyond the resolution of optical techniques; it has become a
very popular technique in the study of non-viral delivery systems. FRET’s ability to detect when two
molecules are in close proximity is applied quite frequently to study the stability of non-viral carriers. By
labeling the complexing agent and the cargo (e.g. plasmid) with separate fluorophores, FRET should only
appear when the NP is intact. Therefore by monitoring the quenching of the donor and the excitation of
the acceptor by FRET, the state of the complex can be determined [82, 84]. Although FRET is a powerful
tool in studying interactions, it requires a careful set of design parameters of the system to ensure FRET
only occurs under controlled conditions. This includes the selection of FRET dye pairs and their strategic
placement which is difficult in the spontaneous assembly of DNA complexes. This section shows that a
variety of techniques are needed to complement each other in order to gain information of intracellular
trafficking of delivery systems. Therefore to expand our understanding, additional techniques need to be

used to gain deeper insight into the nature of the non-viral delivery systems.
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1.10 Introduction to fluorescence correlation spectroscopy

One technique that is able to study the molecular dynamics of the molecules in solution, while
being minimally invasive is fluorescence correlation spectroscopy (FCS). Developed in the 1970s, FCS is
a technique that measures the minute fluctuation in fluorescence intensity in a small population of
molecules around equilibrium [214]. From these fluctuations patterns, one can extract various biophysical
properties of molecules. Fluctuations can occur at wide variety of time ranges and include shifts in
molecular orientation (picoseconds), blinking or triplet state transitions (microseconds) and molecular
interactions such as binding and chemical reactions (milliseconds).This section will introduce the theory
of FCS and discuss why FCS can be a powerful tool in the study of non-viral delivery systems. For the
context of this thesis, a brief description of the FCS theory and set up is shown in Figure 5. For more

information, several excellent reviews cover the in-depth theory and instrumentation of FCS [214-217].
1.10.1 Instrumentation and data collection

FCS is a time-dependent statistical analysis of the minute spontaneous fluorescent intensities that
fluctuate around equilibrium. To be able to resolve the fluorescent fluctuations at a single molecular level,
the number of individual particles being measured must be decreased order to increase the significance of
each fluctuation. To achieve this level of detection in a bulk solution, the focal volume is spatially limited
by means of a confocal set-up (Figure 5A). This provides a high degree of spatial resolution and allows
for the selective exciting and monitoring of a small number of fluorophores. Streams of photons are taken
from florescent samples and are recorded by the avalanche photodiode detector (APD). It is indexed
based on arrival times, generating raw intensity data (Figure 5B). This raw data contains all the
information that can be determined by FCS, but requires additional processing to extract the biophysical

parameters of interest.
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Figure 5: A brief introduction to FCS. (A): Instrumental set-up of FCS system using a confocal microscope: laser
excitation enters the object from behind and is focused on the sample. Emission from sample is collected through
the objective and is separated from excitation via a dichroic mirror. Emission is then focus in front of pinhole place
in front of the Avalanche Photodiode (APD) to remove out of focus fluorescence. This provides FCS the ability to
focal volume of less than one femtoliter. (B) Principle of FCS measurements: fluorescence fluctuations are
recorded by the APD as the fluorophores diffuse through the focal volume. The temporal recording is subjected to
the autocorrelation function (ACF) and generates a correlation curve (G(t)) which is used to reveal parameters of
about the fluorophore [218].

1.10.2 Autocorrelation function
The first phase of analysis is the preparation of the ACF in conjunction with the raw photon data.

The ACF (Eq. 2) describes the time-dependent decay of fluctuations around an average value at

equilibrium.

(SF(t)SF (t + 7))
T Fop

G(t)

Where §F (t) and §F (t + 7)) are the amplitude of fluctuations from the mean at time (¢t), and (t + 7) and
(F(t)) is the mean fluorescence signal. To simplify, ACF is a plot of the degree of self-similarity (that is
how similar a molecule is to itself in terms of fluorescence) between its signal and a signal at some other

time interval (Figure 6).
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Figure 6: Schematic diagram of the principle of autocorrelation calculation of a single molecule. As the fluorophore
passes through the focal volume, the degree of self-similarity (G(t)) will decay relative to residual time of the
molecule. This rate of decay at equilibrium for numerous molecules is interpreted as the ACF.

The degree of self-similarity will decay at a rate based on the resident time of the molecule in the focal
volume that is recorded as the ACF. Depending on the time frame of the measurement, various

parameters can be determined from the ACF (Figure 7).
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Figure 7: Anatomy of the autocorrelation function. Various properties of the molecule can be determined by
analyzing the ACF. A) For this study, the main interest is the diffusion time of the molecule, at half amplitude of the
curve, and the number of molecules or concentration which is inverse to the maxima of the amplitude. Shifts in the
ACF can also reveal changes in the behavior of the molecule such as change in the mobility (B) and shifts in

concentration (C).

For most practical applications, the parameter of interest is the time it takes for a molecule to pass
through the focal volume. This is known as the decay time or diffusion time (tp) of the molecule (used to

determine the diffusion coefficient) to study the mobility of the molecules. Shorter fluctuations (pico-and
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micro-seconds) can arise within the focal volume (a 3-dimensional space from which the fluorescent
measurement is being taken) which can be significant in describing other internal dynamics of molecules,
such as rate of blinking and molecular rotations. Furthermore, based on Poisson distribution, theoretically,
there is an inverse relationship between the time-zero of the ACF and the number of particles in the focal

volume. To obtain quantitative data based on the shape of ACF additional processing is required.

To produce analytical data, the ACF needs to be fitted to mathematical models to obtain
guantitative biophysical data such as diffusion time of molecule. In terms of the fitting parameters of the
mathematical model, they are designed to report for various molecular and instrumental factors, which
determine the quality of data extracted. The parameters can be set up to account for variables such as
population types (homogenous or heterogeneous), diffusion types (passive or active) and focal volume
characteristics. Several publications are available for an in-depth coverage of various models of fitting
ACF [219, 220]. As the data extracted will depend on the fitting parameters that make up the fitting
model, the user must take great care in selecting the appropriate model. To select the appropriate
parameters, the user must understand the system and account for as many variables as possible to generate
the best possible fit. In short, to be able to interpret the FCS data, the researcher is required to have some
previous knowledge of the system being studied in order to apply the correct interpretation based on the
fitting model [221].
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1.10.3 Applications of FCS

The point of interest of FCS is to determine the source of fluorescent fluctuations created by the
molecule in question. By using FCS one can distinguish the source of these fluctuations that occur, such
as protein binding, molecular rotations of small molecules, changes in triplet state of the fluorophores due
to changes in the micro-environment; all of which are intramolecular dynamic and chemical reactions
[219]. For FCS to achieve great results, however, it is necessary to understand the ability of this

technology with which it operates.

One of the goals of FCS is to monitor the minute fluctuation of fluorescence as small molecule
moves through the focal volume. Therefore it cannot accurately measure the diffusion of large, slow-
moving molecules in such a small focal volume. Photo-damage may pose a threat to these large
molecules if left too long in the focal volume, or may not be detected due to their slow diffusion and fast
acquisition of FCS. In addition, with FCS being highly sensitive, the addition of fluorophores to non-
fluorescent molecules requires tactful management to minimize artifacts and invalid results. Careful
experimental design with sufficient controls in place is essential to ensure the measurement represent a
specific mechanism is occurring. A second consideration is that FCS can monitor binding events if
significant changes in mobility of the labeled molecules occur. This is explained by dependence of
diffusion coefficient (D) on the molecular weight of the molecule based on the Stokes-Einstein equation.

kT
3Dy (Eqg. 3)

Where the diameter (Dy) is related to molecular weight (MW) with a specific gravity (0) as shown below:

These equations demonstrate that the relationship between diffusion coefficient and molecular weight is
quite weak. To simplify a 10-fold change in molecular weight of the particles is required to show a 2-fold
increase in diffusion coefficient [222]. If these concerns are not addressed, it can provide poor
autocorrelations and unreliable data. With proper experimental design, and knowledge and use of the

technology, FCS can be a powerful investigative tool.
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In the field of gene delivery, FCS has been applied to study two key biophysical properties of
non-viral delivery systems. The first property, mobility, can reveal information about the state of the
delivery system. Factors that affect mobility include the size of delivery system due to binding/releasing
events, changes in the viscosity of the micro-environment and the effect of active transport. These events
can all be monitored with great detail and are important to consider in order to overcome barriers to gene
delivery [90, 223-225]. Secondly, FCS can be utilized to monitor local concentrations of specific
molecules (DNA) and to determine localized concentrations, for example, DNA concentrations on either
side of a lipid membrane. Both of these properties are vital to aid in the determination of barriers to gene
delivery [209]. In the context of this thesis, FCS will be used to determine the stability of different gemini

NP compositions in solution.

34



2.0 Motivation of the study

The scope of the project was to study the biophysical properties of a series of gemini NPs using
FCS. The first goal is to determine the proper method of labeling of the gemini NPs and to optimize FCS
measurement parameters. The second goal of this study was to evaluate the effect of the chemical
structure and physicochemical properties of each gemini surfactant component on the properties of the
formed respective NPs and to assess the limitations of FCS to study these properties. FCS application to
NP characterization would introduce a powerful analytical tool to study the assembly of gemini NPs in a
wide variety of environments in real-time. Overall, a better understanding of biophysical properties of
NPs will aid with the rational development of non-viral gene delivery and improve efficiency,
effectiveness and safety.
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3.0 Research hypothesis and objectives

This thesis describes the development of FCS method to probe the assembly of gemini NPs. The
main hypothesis is that due to the condensation properties of gemini surfactants, FCS will be able to
monitor the assembly of the gemini NP. In order to evaluate the FCS the following objectives have been
established.

e Optimize the labeling and instrumental settings required to monitor gemini NP using FCS.

e Evaluate the ability of FCS to monitor changes in NP assembly compared to other techniques
such as DLS, zeta potential and dye exclusion assays.

e Study the effect of gemini surfactant chemical structure on gemini surfactant-plasmid

complexation and gemini NP assembly using FCS.

It is believed that a thorough understanding of the assembly of gemini NPs will provide crucial
information that will contribute to the rational development of non-viral gene delivery systems with
improved efficiency, effectiveness and safety.
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4.0 Materials and methods

4.1 Plasmids

gWiz GFP (5757 bps) and gWiz Luc (6732 bps) were purchased from Aldevron (Fargo, ND,

USA). Plasmids were routinely checked for purity and topology using spectroscopy and agarose gel

electrophoresis, respectively.

4.2 Gemini surfactants

A series of gemini surfactants listed in Table 6 were previous synthesized as described elsewhere

[121, 165, 226]. The gemini surfactants in this study were systematically selected to investigate change to

spacer and tail length and functionalization. Gemini surfactants were prepared to a final concentration of

3mM with milli-Q grade water. Aliquots were stored at 4°C and used immediately after warming to room

temperature.

Table 6: List of gemini surfactants used in the study. Gemini surfactants are separated based on category of

modification.
4.3 Lipids
DOPE

Gemini surfactants series

Spacer-series

Tail-series

Functionalization

-series
12-3-12 16-3-16 12-7NH-12
12-6-12 18-3-18 Py-3-12
12-7-12
12-10-12
12-16-12

(1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine)

and

DPPC

(1,2-

dihexadecanoyl-sn-glycero-3-phosphocholine) were obtained from Avanti Polar Lipids (Alabaster, AL,

USA).
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4.4 Nucleic acid labeling

Plasmid DNA (gWiz GFP; 5757 bps) was labeled with Cyanine 5 fluorophore (Cy5) using the
Cy5 LabellT® Tracker kit from Mirus Bio LLC (Madison, WI, USA) at 0.25:1 (w/v) labeling reagent-
DNA ratio. Labeled gWiz GFP (Cy5-gWiz) was purified by ethanol precipitation and filtration through
Amicon Ultra centrifuge filters (3kD cutoff) from Millipore Corporation (Billerica, MA, USA). Labeling

density was determined by determining the ratio of base to dye using the equation:

(Anucleic acid X gCyS)
(ACyS X Enucleic acid) (Eqg. 5)

Base: Dye =

Where Anucieic acia and Acys are the absorbance measured at 260 nm and 649 nm respectively. The
extinction coefficients for nucleic acid and Cy5 dye were previously determined to the values gcys = 250
000; €nycelic acia = 6600. A correction factor (CFys = 0.05) was included to the Anycreic acia Measurement
using the equation Anycieic acia = A260 — (Agys X CFog0).

4.5 Confirmation of super-coiled plasmid and purity

Purity of unlabelled and labeled gWiz GFP was determined by spectrophotometry by measuring
absorbance at 260 nm and 280 nm on the Nanodrop 2000C (Thermo Scientific, Wilmington, DE, USA).
The topology of Cy5-gWiz was determined by electrophoresis on a 0.8% agarose gel run at 80V for two
hours (VWR International, Mississauga CA). Supercoiled DNA was quantified using densitometric

analysis with ImageJ software (National Institutes of health, Maryland, USA).
4.6 Liposome preparation

Liposomes (neutral phospholipids) composed of either pure DOPE or DOPE and DPPC at a ratio
of 0.25:0.75 (DD 1:3) were prepared by thin-film method. Lipids were dissolved in 100% ethanol in a
round bottom flask. Thin-films were deposited by removal of solvent with a rotary evaporator under
vacuum at 50°C at 150 rpm. Trace amount solvent was removed by freeze-drying (Labconco) for 4 hours.
Lipid thin-film was re-hydrated to 3mM concentration with a 9.25% w/v sucrose solution adjusted to pH7
and pH 9 for DD 1:3 and DOPE respectively at 50°C for 30 minutes to produce crude/multi-lamellar
liposomes. pH of all liposomes were determined using a Fisher Accumet pH meter (Thermo Fisher

Scientific Inc., MA, USA). Crude liposome solutions were sonicated for 30 minutes in a bath sonicator
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(VWR 75D, VWR International LLC,PA, USA) or until solution was clear. Liposomes were filtered
through a 0.45um cellulose filter prior to use. Liposome size was routinely checked by DLS using

Zetasizer Nano (Malvern Instruments Ltd, Worcestershire, UK) to be approximately 150 nm.
4.7 Gemini nanoparticle preparation

Gemini NPs were prepared in a two-step process. Primary assembly consists of the addition of
gemini surfactant to 0.5 pg of Cy5-gWiz to obtain a charge ratio (N/P) of 10:1 and incubated at room
temperature for 15 minutes to form the gemini-plasmid complex (GP). The secondary assembly requires
the addition of 75uL of 1mM DOPE:DPPC liposome to GP and further incubation for an additional 30

minutes to form GPL or gemini NP.
4.8 Fluorescence correlation spectroscopy experimental set-up

FCS measurements were performed on a commercial Zeiss LSM 710 microscope with Confocor
3 system (Zeiss, Jena, DE). Cy5 was excited by a 633 nM HeNE laser at approximately 50 pW and
reflected by a dichroic beam splitter (488/633) and focused 200 pum into the sample to avoid reflection of
the laser on the glass through a 40x Zeiss Apochromat NA 1.2 water-immersion objective lens. Emission
spectra were collected through a 580 nm long-pass filter and record by an avalanche photo-detector
(APD). Out-of-focus emission was blocked by a pair of confocal pinholes set at 45 pym. The lateral
diameter of the focal volume for 633 nm laser was determined by a calibration dye (Cy5-NHS-ester) to be
250 nm. FCS measurements were carried out in 200 pL volumes of diluted gemini NP in a 4-well
CELLview coverslips (Grenier-Bio One, Frickenhausen, DE). NP samples were prepared in triplicates for
FCS and measurements were taken for 10 s, twenty-five times for each sample. Calibration of the system
was performed with a 50 nM Cy5 solution. Using the known diffusion coefficient of rhodamine G6 (3.2
x 10 mes?), the laterial (wg) and axial (w,) radii of the focal volume was determined to be respectively

of 0.25 and 1.6 um, giving an focal volume of 0.19 fL using the equation below (Eg. 6).

3
/2
V = E O‘)RZO‘)Z (Eq 6)
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4.9 FCS data analysis

The ACF was determined from count rate collected from APD as described elsewhere [219].
Assuming a three-dimensional Gaussian excitation intensity distribution, the free diffusion of a single
species was calculated using the formula:

-1

G(t)=%(1+i)_1(1+ ! ) 2 e

Tgq SZTd

Where N is the mean number of molecules in the excitation volume, s is the ratio between the equatorial
and axial radii of the focal volume, andtyis defined as the characteristic diffusion time of the
particle. Diffusion coefficients (D) were determined using the equation shown below.

mRZ

D =— (Eq.8
e (Eq. 8)

Where or is the lateral radius of focal volume experimental determined by measuring the diffusion time
of calibration dye (t4c,s) with a known diffusion coefficient (Cy5 NHS-ester; D¢ys=3.2 x 10-6 cm?/s). 14
for the sample is obtained from the fitted ACF. FCS data was analyzed using Confocor 3 Software Zen
2009 (Jena, DE). Files were exported into Origin 7.5 (Microcal, MA, USA) to plot ACF and intensity
histograms. All reported diffusion coefficients were averaged based on four separate batches of

formulations and each measurement repeated 25 times.
4.10 Particle size and zeta potential measurements

Particle size and zeta potential measurements were performed simultaneously using the Zetasizer
Nano (Malvern Instruments Ltd, Worcestershire, UK). Particle size was determined using DLS and zeta
potential was determined using laser doppler micro-electrophoresis (LDME). Gemini NPs were prepared
at a charge ratio of 10:1 as described previously. Measurements were carried out with 70 puL of aqueous
solution in micro-cuvette (Brandtech Scientific, CT, USA). Samples were prepared in triplicates and four
aliquots were measured five times for DLS and LDME. pH of all formulations were determined using a

Twin compact pH meter (Horiba Scientific, Kyoto, JP). pH of GPs and GPLs were between 6.5-7.1.
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4.11 Dye exclusion assay

Gemini NPs were prepared at a charge ratio of 10:1 as described previously. For PicoGreen dye
exclusion assay NPs were diluted 10-fold in water and incubated in PicoGreen dye prepared as
recommended by the manufacturer for 5 minutes prior to measurement. NPs were diluted 5-fold in water
for EtBr assay in water and incubated in EtBr (Bio-Rad Laboratories Ltd., Hercules, CA, USA) dye was
prepared at final concentration of 1 pug/mL for 5 minutes. Fluorescence measurements were made on the
Spectramax M5 spectrophotometer at 485 nm and 560 nm for PicoGreen and 250 nm and 605 nm for
EtBr [227]. To assess the quantity of DNA, a standard curve was prepared from gWiz Luc for both

PicoGreen and EtBr dye exclusion assays to determine amount of detectable DNA in NPs.
4.12 Statistics

Statistical analysis was performed using SPSS V 17.0. For FCS data sets, data was log
transformed to account for non-normality prior to two-way ANOVA analysis. One-way ANOVA was
used to determine the significance for particle size, zeta potential and transfection studies. Significance

was determined between experimental groups with a p-value less than 0.05 level of significance.
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5.0 Results

5.1 Development of FCS method for nanoparticle characterization

5.1.1 Confirmation of labeled plasmid DNA

The results of the labeling of gWiz GFP at 0.05:1, 0.25:1 and 0.5:1 labeling ratios are presented in
Table 7 and Figure 8. The most optimal labeling was achieved at 0.05:1 and 0.25:1 labeling ratios,
resulting in a similar diffusion coefficients and high preservation of SC form (D 5=3.6+0.3x 10" m?/s)
and Dy s=4.2+0.2 x10™? m?/s). However at the 0.5:1 labeling ratio, a large portion of the plasmid (at least
40%) was nicked into an open circular form resulting in a shift in the diffusion coefficient (Figure 8, lane
3; Dos=7.10.7 x10™* m%s).

Table 7: Analysis of gWiz GFP labeling reaction. gWiz GFP plasmid was labeled at three dye:base pair ratios. The
labeling density, topology was measured by two different analytical techniques (fluorescence and densitometry)
and FCS diffusion time were also recorded. The diffusion coefficient could not be determined for control sample
due to lack of fluorescent label.

1 0
Lane Labeling  Base-dye Degree supercoiled DNA (%) Diffusion coefficient
ratio ratio Spectroscopy ~ Densitometry (102 m¥s)
1 Control - 84% 85% -
2 0.05:1 N/A 82% 83.5% 3.6+0.3
3 0.5:1 196.76 65% 40% 7.1£0.7
4 0.25:1 400 83% 83.4% 4.2+0.2
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Figure 8: Gel electrophoresis of gWiz GFP with various degree of labeling with Cy5 on 0.8% agarose gel. Samples
were arranged as followed: 1) Control, 2) 0.05:1, 3) 0.5:1 and 4) 0.25:1 Cy5-gWiz GFP.

The reproducibility and yield was highest with 0.25:1 labeling ratio, hence these conditions were
used to prepare the Cy5-labeled gWiz GFP plasmid for the FCS experiment. The comparative studies
using DLS, zeta potenail and dye exclusion were also performed using the same batch of Cy5-gWizGFP

plasmid.
5.1.2 FCS measurement of individual nanoparticle components

To better understand the gemini NP, Cy5-gWiz GFP, gemini surfactants and phospholipids were
examined individually by FCS to create an independent profile of their behavior. Cy5-gWiz was studied
at a concentration of 2 ng/uL which was experimentally determined to be optimal for FCS measurements
to achieve a mean particle number (N) of 1. It should be noted that due to the Zen2009 software, the mean
particle of 1 on the G(t) scale is expressed as 2. The ACF for Cy5-gWiz GFP (open squares) was
satisfactorily fitted to the model described in (Eq. 7 (Figure 9). The diffusion coefficient of Cy5-gWiz
GFP, with a labeling ratio of 0.25:1 (Dyons) Was calculated to be 4.2+4.76% x10™ m?/s (n=4).
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Figure 9: Autocorrelation function (ACF) from the FCS measurement of Cy5-gWiz GFP. ACF of Cy5 labeled gWiz
GFP. Open squares show the experimental signal and red line represent the fitting model to ACF. DNA was
prepared at 2 ng/uL for all experiments; calculated diffusion coefficient: 4.2+0.2 x 102 m%/s (n=4).

To gain additional insight into the distribution of fluorophores on the plasmids, raw intensity
count rates from the APD were also analyzed. The raw intensity data (Figure 10A) was plotted as a
histogram to show the distribution of the photons intensity (Figure 10B). The intensity histogram shows
that Cy5-gWiz GFP had an average intensity of 250 kHz with the majority of the peaks between 150-300
kHz. Figure 10B also shows a long tail of the histogram as a result of a small number of measurements
ranging up to 5000 kHz. This variation in peak intensity is indicative of different degrees of labeling, or
the presence of small populations of aggregates. To ensure this was not an artifact due to the presence of
free dye or dye aggregates, additional purification steps by ethanol precipitation and centrifugation were
performed. This additional purification did not remove the larger signal peaks and resulted in the decrease
of the diffusion coefficient due to increased DNA degradation (data not shown). Furthermore, the agarose
gel did not reveal the production of a significant amount of aggregation in the plasmid DNA due to the
labeling process. Overall, the presence of the brighter peaks in the Cy5-gWiz GFP did not interfere with
the quality of the FCS measurement and confirmed that the only source of fluorescence was due to

presence of the labeled plasmids.

44



A 80000

4000

60000

40000
2000

Count Rate (kHz)
Frequency

20000

T T T T T 1 VP PSSP
o 2 2 6 8 10 ,\9,]/0,50@%0@0«0%0@0\900

Acquisition Time (s) Count Rate (kHz)

Figure 10: Raw intensity count rate for Cy5-gWiz GFP. A) Count rate measurement for Cy5-gWiz GFP (10 seconds of
250 second measurement shown). B) Intensity histogram of Cy5-gWiz count rate measurement.

Individual solutions of gemini surfactants and phospholipids were also evaluated at the same final
concentration found in NPs (30 nM and 300 nM, respectively). Gemini surfactant and phospholipid
samples showed no background fluorescence was found in the NPs and that only Cy5-gWiz GFP was
being monitored by FCS. Milli-Q water was used for all experiments and was also measured on FCS to
establish the baseline or background fluorescence.
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5.1.3 Systematic screening of GPs and GPLs with FCS

Gemini-plasmid complexes (GPs) and gemini nanoparticles (or gemini-plasmid-lipid complexes;
GPLs) were prepared as described in Figure 11.

Phase 1: Compaction of plasmid using gemini surfactants

300-1000 nm

Plasmid (P) Gemini Surfactant (G) Gemini-Plasmid Pre-Complex (GP)J

Phase 2: Formation of gemini nanoparticles
s A

100-250 nm

Gemini Nanoparticle /
Gemini-Plasmid Pre-Complex (GP) Phospholipid Gemini-Plasmid-Lipid
\ (GPL) )

Figure 11: Schematic diagram of gemini nanoparticle assembly. Plasmids are pre-compacted by the addition of
cationic gemini surfactant to form GP. The GPs is then stabilized through the addition of the helper lipid to form
the completed gemini nanoparticle (or GPL).

A systematic screening of GPs and GPLs based on different gemini surfactant structure (increasing spacer
and tail length and the addition of functional groups) and addition of different phospholipids (DD 1:3 and
DOPE). The ACFs and intensity histograms profiles for all GPs and GPLs are shown in Figure 12,
Figure 13 and Figure 14.
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Figure 12: Systematic screen of gemini NPs prepared with DD 1:3 using FCS. Autocorrelation curves of free Cy5-
gWiz GFP, GP and GPL (open square, circle and triangle respectively) organized by gemini surfactant. ACF is shown
on the left and a normalized ACF is shown on the right to highlight shifts in diffusion coefficient. Curves represent
an average of 25 measurements repeated with three individual samples (n=3).
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Figure 13: Systematic screen of gemini NPs prepared with DOPE using FCS. Autocorrelation curves of free Cy5-gWiz
GFP, GP and GPL (open square, circle and triangle respectively) organized by gemini surfactant. ACF is shown on
the left and a normalized ACF is shown on the right to highlight shifts in diffusion coefficient. Curves represent an
average of 25 measurements repeated with three individual samples (n=3).
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Figure 14: Intensity histograms from systematic screen of various gemini NPs. Representative samples of GPs (left)
and GPLs (right) are organized by gemini surfactant. GPLs are prepared with DD 1:3 phosopholipid. DOPE values
were similar and therefore not shown. Histogram represent an average of 25 measurements of one sample (n=1).
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5.1.4 FCS measurements of gemini-plasmid complexes

FCS was performed on GPs with Cy5-gWiz GFP and unlabelled gemini surfactants prepared at

10:1 charge ratio as described in Section 4.8. Samples normalized to a final DNA concentration of 2

ng/uL for all FCS measurements as optimized previously in Section 5.1.2. Therefore any changes to FCS

profiles of plasmid were due to interactions during NP assembly and not concentration differences in

plasmid. Figure 15 below shows the ACF of Cy5-gWiz GFP in the absence and presence of gemini

surfactant 12-3-12.
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Figure 15: FCS measurement of GPs at charge ratio of 10:1 with 12-3-12. Open circle shows the experimental signal
and red line represent the autocorrelation for GP. Cy5-gWiz GFP (solid line) are added as references. DNA
concentration for both samples was 2 ng/uL. A) Original ACF B) Normalized ACF, sample were normalized to one
particle on Zen 2009 software. Calculated diffusion coefficient: 0.98+0.31 x 102 m%/s (n=4).
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Figure 16: Raw intensity count rate for GP prepared with 12-3-12. A) Count rate measurement for GP (10 seconds
shown). B) Intensity histogram of GP count rate measurement.

Figure 15 (open circle) demonstrates the two key parameters that can be observed from the ACF.
With the addition of the 12-3-12 gemini surfactant, two major shifts are seen compared to the free Cy5-
gWiz GFP ACF (Figure 15, solid line). The first is a significant upward translation of the curve which
represents decrease in the mean number of molecules in the focal volume as shown in Figure 15A. Recall
this number corresponds to the inverse of the G(t). This indicates that there was a decrease in the number
of fluorophores in solution passing through the focal volume. The second change was a horizontal
translation of the curve of the right. To emphasize the shift in diffusion time between free Cy5-gWiz GFP
and GP the mean number was normalized to 1 (Figure 15B). This indicates a deceleration of the Cy5-
gWiz GFP with a diffusion coefficient of 0.98+0.31x10™ m%s (n=4). The diffusion coefficient of the

other GP formed from the remaining gemini surfactants is shown below in Table 8.

In addition to the FCS analysis, the raw intensity profiles can also provide insight into the
morphology of the GPs. Figure 16A shows that the addition of 12-3-12 resulted significant changes in
raw intensity profile compared to in the free Cy5-gWiz (Figure 10A). One of the major changes is a
decrease in the number of fluorescent fluctuation as seen in Figure 16A. This is quantified by an intensity
histogram in Figure 16B due to the increase in the 0-50 kHz counts that was established previously as
background, and indicates a lack of fluorophores in the focal volume. This indicates a drop in mean
number of particles, as shown previously in the FCS data in the previous section by the upward
translation of the ACF (Figure 15A). Attempts were made to increase the amount of labeled plasmid in

order to increase the concentration of GP in order to increase fluorescence fluctuation to improve data
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quality of FCS measurements. This resulted in significant increase in high intensity spikes and an increase
in saturation of the detector (data not shown). Figure 16 shows that the maximum intensity increases
dramatically (well over 15,000 kHz in most cases). This indicates the formation of very bright particles,
due to aggregation of multiple fluorophores. This suggests an aggregation and formation of multi-plasmid
system for GP. GP composed of other gemini surfactants were also measured using FCS by the same

procedure. A summary of the ACF and diffusion coefficients are shown in Figure 17 and Table 8.
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Figure 17: ACF of GPs prepared with different gemini surfactants. A) Effect of gemini spacer length. B) Effect of
gemini tail length. C) Effect of gemini functionalization.
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Table 8: Diffusion coefficients of various GPs from FCS measurements (n=4)

Mean diffusion cV
Sample coefficient %)
(102 m?s) 0

12-3-12 0.98 31.66
12-6-12 1.36 21.76
12-7-12 1.03 32.82
12-10-12 4.15 23.20
12-16-12 1.37 24.35
16-3-16 1.91 14.98
18-3-18 0.17 175.59

12-7NH-12 3.06 8.65

Py-3-12 2.03 6.04

Although the diffusion coefficient could be calculated from the ACF, the fitting represented in
Equation 1 provided a poor fit for the majority of the GPs such as 12-3-12, 12-6-12, 12-7-12, and 16-3-
16. 18-3-18 also had the poorest fit, but this was due to the presence of flocculation in the sample.
Several other fitting models where tested to account for other parameters, such as additional populations
and diffusion rate, but did not produce a tighter fit for the ACF (data not shown). The reason for the large
deviation is not based on the fitting model but the quality of the raw intensity data. Recall that FCS is
fundamentally a study in the fluctuation of molecules as they diffuse through the focal volume. As shown
in Figure 16, the GP resulted in higher intensity peaks, but decrease in the overall number of fluctuations.
This in turn directly impacts the calculation of ACF making the GP samples difficult to analyze by FCS.
Another issue was the saturation of the APD due to the larger intensity values which resulted in the
termination of the measurement. The issue of the presence of high intensity peaks has also been reported
by other groups studying gene transfer by NPs that can impede the use of FCS [228]. Therefore due to the
lower particle count and high degree of saturation it made the reproducibility of GP measurements by
FCS difficult. Also the presence of the extreme high intensity peaks also resulted in deviations in the
normalized ACF as seen by the difference in starting positions of a some GP on the X-axis in Figure 17A.
Although quantitative fitting is not possible, the diffusion coefficients can still be interpreted but with a

degree of caution.
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Although a majority of the GPs were hard to monitor using FCS, there are exceptions. As shown
in Figure 17A-C, 12-10-12, 12-7NH-12 and Py-3-12 GP showed a different ACF profiles. These ACF
show a shift to the left compared to other GPs indicating a faster diffusion coefficient. In addition the
lower deviation of the overall intensity of the peaks was also not as large, resulting in less saturation of
the detectors. These two factors results in significantly better fit compared to the previous model (Eq. 7)
and more confident assessment of diffusion coefficient. These changes can be explained in part by
studying the intensity profiles of these select GPs. As seen in

Figure 18B, an increase in number of measured fluctuations which is shown by the drop in 0-50 kHz
counting indicating fewer background measurements. Another trend noticed is a drop in average intensity
closer to 150 kHz, compared to 250kHz seen for the free labeled plasmid, but the shape of the distribution
is similar.
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Figure 18: Raw intensity count rate for GPs prepared with 12-7NH-12. A) Count rate measurement for GP (10
seconds shown). B) Intensity histogram of GP count rate measurement.
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Figure 19: FCS measurement of 12-7NH-12 GP at a charge ratio of 10:1. Open circle shows the experimental signal
and red line represent the fitting model to ACF for GP. Free Cy5-gWiz GFP is shown for comparison (open squares).
DNA concentration for both samples was 2 ng/uL. A) Original ACF B) Normalized ACF; samples were normalized to
one particle on Zen 2009 software. Calculated diffusion coefficient: 3.06+0.26 x 102 m%/s (n=4).

In addition to studying the mobility, the hydrodynamic diameters of the GPs were also calculated using

the Stokes-Einstein equation (Eq. 8), from the diffusion coefficients shown in Table 8.
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Table 9: Particle size of GPs determined from FCS data using the Stokes-Einstein equation.

Gemini Mean diameter Ccv
compound (nm) (%)
12-3-12 502.24 31.66
12-6-12 359.32 21.76
12-7-12 475.38 32.82
12-10-12 117.88 23.20
12-16-12 358.05 24.35
16-3-16 255.76 14.98
18-3-18 2836.96 175.59
12-7NH-12 159.89 8.65
Py-3-12 241.33 4.33

Table 9 shows that the chemical structure of the gemini surfactant has effect on the size of GP.
Changes to the spacer length of the gemini surfactant did not significantly affect the particle size of GPs
except with C-10 where smaller particle formed. The effect of tail length modifications to gemini
surfactant was shown to have a greater effect on the particle size of GP. Compared to spacer length
modification of similar length (4C increase for 12-7-12 from 12-3-12), the 16-3-16 gemini surfactant
produced smaller particles (Dy 12.7nm-12 = 475.38+£32.82 nm and Dy 16316 = 255.76£14.98 nm respectively).
This trend was not observed though with 18-3-18 GP due to presence of large particles (DH 18-3-18 =
2836.96+175.59) that were observed in the sample as flocculation. One explanation for the flocculation is

due to the 18-3-18 significantly lower cmc compared to other gemini surfactants (

Table 16). A study has demonstrated that surfactant concentration can affect the stability of emulsion,
where flocculation can occur at a concentration above the cmc [229]. The effect of functionalization has
also shown to have a significant effect on the final size of GP. Both modifications to spacer and tail of
gemini surfactant resulted in significantly smaller GPs compared GPs prepared with parent un-
functionalized GPs. Overall the compaction of the plasmid was most effective with 12-10-12, 12-7NH-12

and Py-3-12 resulting in smaller particle size.
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5.1.5 FCS measurements of GPLs

Following the study of GPs, a FCS study was carried out on GPLs prepared with the addition of
phospholipids vesicles composed of pure DOPE or mixture of DOPE and DPPC at 1:3 molar ratio (DD
1:3). GPLs were prepared at 10:1 ratio as described in section 4.7 to reproduce NPs previous studied by
our research group [121, 195]. DNA concentration was normalized to 2 ng/uL as described in previous
FCS measurements of Cy5-gWiz GFP and GPs (Section 5.1.2 and 0). Figure 20 below shows an example
of the ACF from GPLs prepared with 12-3-12 and DD 1:3.
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Figure 20: FCS measurement of GPLs at charge ratio of 10:1 with 12-3-12 and DD 1:3 phospholipid. Open triangles
shows the ACF and red line represent the fitting model for the ACF for GPL. Cy5-gWiz GFP (solid line), GP (dashed
line) are added as references. DNA concentration for all samples was 2 ng/uL. A) Original ACF B) Normalized ACF.

Figure 20 demonstrates that the addition of the phospholipids causes significant shifts to the ACF.
Compared to GPs (Figure 17), the GPLs show both a downward and right shift of the curve. This
indicates an increase in the number of particles and that the particles also move faster through the focal
volume (Dgp-1231,=3.120.4 x10™? (n=4), Dgp.1231,=1.0x10"? 0.3 (n=4)). An additional difference is in the
overall quality of the ACF. Figure 20A shows that the model described by (Eq. 7) fitted to ACF very
well. Furthermore the measurements were more reproducible, which is demonstrated by the smaller
standard deviation in the subsequent derivation of diffusion coefficient from the ACFs (Table 10). This

suggests that the addition of the phospholipid produces smaller and more homogenous particles.
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Figure 21: Raw intensity count rate for GPLs with 12-3-12 and phospholipids DD 1:3. A) Count rate measurement
for GPLs prepared with DD 1:3. B) Intensity histograms measurement for GPLs prepared with DD 1:3.

These finding were also supported by a change in profile of the intensity histogram that showed a
decrease in the number of background signals (0-50 kHz) and an increase in the 100 and 200 kHz peaks
as shown in Figure 21B and D. The raw intensity diagram in Figure 21A and C also show the increase in
the number of fluorescence fluctuations and decrease in the intensity of the higher peaks. The test shows
that reduction in the number of measurements had no effect on overall distribution of the intensity
histograms.

The fitting model (Eq. 7) also showed a tighter fit for the GPLs compared to the GPs counterpart,
partly due to the increase in fluctuations and decrease in high intensity peaks that provide more suitable
data for the ACF analysis. Additional fitting models with more variables were also tested on the ACF for
the GPLs but did not result in a better curve fitting (data not shown). FCS measurements performed for all
ten GPLs with two different phospholipids (DOPE and DD 1:3) are presented in Table 10 and Table 12.
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Figure 22: ACF of GPLs prepared with various gemini surfactants and DD1:3 organized by A) effect of gemini spacer
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Table 10: Diffusion coefficient of GPLs prepared with DOPE:DPPC 1:3 phospholipids

ot e
(10" m/s)
12-3-12 3.11 13.18
12-6-12 3.21 19.46
12-7-12 3.76 6.32
12-10-12 3.84 13.56
12-16-12 3.47 14.12
16-3-16 3.68 17.34
18-3-18 2.36 79.62
12-7NH-12 4.33 8.38
Py-3-12 3.57 6.63

Table 11: Particle size of GPLs prepared with DOPE:DPPC at 1:3 molar ratio phospholipids determined by FCS
calculated using the Stokes-Einstein equation. Dimensions are expressed as diameter in nm.

Gemini Mean diameter CV
compound (nm) (%)
12-3-12 157.50 13.18
12-6-12 152.46 19.46
12-7-12 130.38 6.32
12-10-12 127.51 13.56
12-16-12 140.97 28.15
16-3-16 133.18 17.34
18-3-18 207.16 79.62
12-7NH-12 112.99 8.38
Py-3-12 137.25 6.63
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Table 12: Diffusion coefficient of GPLs prepared with DOPE phospholipids

oty tent O
(10 m*/s)
12-3-12 3.21 19.11
12-6-12 3.24 15.25
12-7-12 2.64 13.90
12-10-12 4.60 6.40
12-16-12 3.06 15.71
16-3-16 2.85 12.66
18-3-18 0.58 66.68
12-7NH-12 3.92 6.17
Py-3-12 3.80 14.32

Table 13: Particle size of GPLs prepared with DOPE phospholipids determined by FCS calculated using the Stokes-
Einstein Equation. Dimensions are expressed as diameter in nanometers.

Gemini Mean diameter CV
compound (nm) (%)
12-3-12 152.48 19.11
12-6-12 151.35 15.25
12-7-12 185.50 13.90
12-10-12 106.46 6.40
12-16-12 160.00 15.71
16-3-16 171.99 12.66
18-3-18 849.68 66.68
12-7NH-12 124.87 6.17
Py-3-12 126.06 14.32

Figure 22 shows that addition of DD 1:3 to the GPs results in ACF with very similar curve

profile. A similar trend was also observed with addition of DOPE and no significant difference in the
ACF between DD 1:3 and DOPE GPLs (data not shown). As shown in Table 10 and
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Table 12 the addition of either class of phospholipids resulted in GPL with similar diffusion coefficient.
The trends observed for GPs regarding the structure of the gemini surfactants was not as evident. Overall,
the diffusion coefficient of most GPL was an average of 3.2-3.3x10™2 m?s. As a result, the calculated
particle size for the majority of GPL were also quite uniform with an average of approximately 120 £30
nm as shown in Table 11 and Table 13. This uniformity is also reflected in the ACF of the phospholipids
as shown in Figure 22. This suggests that in contrast to the GP, composed of large and heterogeneous
particles (Table 9; 300-500 £20-30% nm), the addition of phospholipid normalized the size and produced
smaller and more uniform NPs (Table 11 and Table 13; ~120-150 (+ 10-20%) nm).

As shown in Figure 21, the addition of the phospholipids increased the number of fluctuations,
but there were some larger peaks still present. To help identify these high intensity peaks a control was
run using Cy5-gWiz and DD 1:3 in the absence of pre-compaction with gemini surfactant.
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Figure 23: FCS measurement of DD1:3-plasmid vesicles (dotted line). DNA concentration for all samples was 2
ng/uL. A) Original ACF B) Normalized ACF. Free Cy5-gWiz GFP (solid line) and 12-3-12 GP (dashed line) was shown
for comparison. Diffusion coefficient of DD 1:3 was calculated to 1.39x10™% (+40%) m*/s (n=4).

The DD 1:3-plasmid complexes had a diffusion coefficient of 1.39x10™ m?/s with a CV of 40%
(n=4; Figure 23). The encapsulation of the plasmid DNA by the phospholipids is suggested by the
decrease in particle number shown by the increase in the maxima of the ACF in Figure 23A. Although the
DD1:3 are slow moving like other GPs, Figure 23A shows that there were more particles in solution like
GPLs. Based on the FCS information, it is not possible to determine the source of the small populations
of aggregated particles found in the GPLs preparation since there is no method to determine which

element of gemini NP the plasmid is interacting with.
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5.2 Additional physicochemical characterization of GPLs

To validate FCS as a tool to monitor physiochemical parameters of GPLs, additional techniques
were also used in parallel to monitor these parameters. Key physical characteristics of GPLs such as
particle size and zeta potential were measured using DLS and DLP for various compositions at various
stages of assembly. The results are presented in two major sections: particle size and zeta potential.

5.2.1 Evaluation of particle size by DLS

5.2.1.1 Optimization of particle size measurement

The first experiment was to determine the size for the various individual components of GPLs.
This includes the labeled-plasmid, gemini surfactant and phospholipids vesicles. As expected, size
distribution of Cy5-gWiz GFP, was heterogeneous, 300 nm + 400 nm, with a high PDI 0.5+0.3 (n=4).
This demonstrates that free plasmid alone is not compacted and the measurement is of low reliability
based on the DLS correlogram. Gemini surfactant solutions contained particles (micelles) of average
diameter of 250-300 nm. Vesicles prepared with phospholipids DOPE and DD 1:3 by thin-film method
had a final average diameter of 120+30 nm and 140+20nm (n=4) and narrow size distribution with PDI of

0.2 and 0.23, respectively.

5.2.1.2 Effect of dilution on particle size of GPLs

The purpose of this experiment was to evaluate the effects of dilution on the size of prepared NPs.
This was important because the sub nano-molar concentration required for FCS measurement to monitor
if any artifact can occur due to dilution. Figure 24 shows the effect of dilution on the particle size of both
GPs and GPL complexes measured by DLS.
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Figure 24: Effect of dilution on particle size measurement of GP and GPL. A) Diameter of gemini assemblies B) PDI
of gemini NP assemblies (n=4). GP could not be measured undiluted and therefore a 3x and 10x dilution were
used.

In the case of GP, the first step in the assembly process of the GPLs; three samples were tested:
undiluted GP (6.28 ng/uL), samples diluted to 2ng/uL for FCS analysis (GP) and 10x diluted (0.628
ng/pL). This initial study showed that undiluted gemini DNA complexes were quite large; with diameters
over 20, 000 nm an PDI of 0.98 (data not shown). This indicates that the system is very heterogeneous
and a PDI value over 0.7 indicates that this sample is unsuitable for DLS analysis. A three-fold dilution
brought the concentration to the range used FCS analysis (2ng/uL) and showed that GP forms complexes
were ~500 nm with a PDI of about 0.35 (Figure 24A and B). Further dilution (10-fold) showed no
significant effect on particle size and PDI. These results indicated that a certain degree of dilution was
required to acquire adequate measurement for GP complex. These initial studies suggests that the initial
condensation of plasmids by gemini surfactants results in large particles. The second set of measurements
were performed with the completed GPL particle (Figure 24A and B). Measurements with undiluted GPL
showed that GPLs have an average size of about 166 +2nm and PDI 0.38. Upon a three-fold dilution, no
significant change was observed in size or size distribution. A 10-fold dilution was also performed and no
significant change was observed (data not shown). The results confirm that no dilution-related artifact
occurred due to sample preparation for FCS. This demonstrates that there is an upper limit for
measurement of GP due to the concentrations of particles, and heterogeneity of the population of

particles. The effect of dilution is minimal between application range and FCS range for GPLs.
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5.2.1.3 Effect of gemini surfactant composition on particle size of GPs

The aim of this part of the research was to study the effect of compositional changes in GPL
assembly, in particular, the effect of gemini surfactant structure on particle size and size distribution.
Figure 25 shows the effect of gemini surfactant structure on the size and size distribution of GP.
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Figure 25: Particle size and distribution of GPs prepared with various gemini surfactants. DLS measurements were
performed and the diameter of the NP and PDI were reported. A) Particle size of various GPL B) PDI of various GPL.

Figure 25 shows the particle size and PDI of GP formed from different gemini surfactants and Cy5-gWiz
GFP at a charge ratio (N/P) of 10:1. Overall, the average size of GP was approximately 650+40 nm with
PDI greater than 0.3. The structure of gemini surfactants was also found to play a role in modulating the
size of the GP. The effect of spacer length begins with 12-3-12 and size decreases until 12-10-12 (with
the exception of 12-7-12) and rises slightly with 12-16-12. Overall, the size distribution does not
significantly change for spacer length 3, 6 and 7. Increasing the tail length from 12C to 16C generated
significantly smaller GPs. In contrast, 18-3-18 produced significantly larger GP. This can be explained by
the flocculation in the sample. Functionalization of the gemini surfactants also had an effect on particle
size. As seen in Figure 25, Py-3-12 produced the smallest pre-complexes (143 nm compared to 543 nm
for its parent gemini surfactant) and PDI of 0.24. This suggests that Py-3-12 is capable of producing NPs
without the aid of a phospholipid (data shown in following figures). This is significant, because of its
similarity to gemini NPs. The pH-sensitive functionalization 12-7NH-12 showed an insignificant
difference compared to the parent compound (12-7-12). When compared to free-plasmid, it is evident that

overall the DNA is being compacted into a more organized form than it was previously.
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The raw intensity data in some measurements shows the presence of a larger species of GP
(Figure 26). These complexes typically appear in all GP, with the exception being Py-3-12. This minor
species typically consist of larger particles (4000-5000 nm) and makes up 9% of the GP in those runs
(data shown in Appendix 0), which could represent free-DNA or lesser organized form of the gemini-

plasmid complex.
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Figure 26: Size distribution by intensity for 12-3-12 GP. Graph is an average (n=4) and exported from Zetasizer
Nano software.

5.2.1.4 Effect of helper neutral phospholipids on the size of nanoparticles
GPLs were prepared by the addition of phospholipid vesicles to the GP. For this experiment, two

different composition of phospholipids, DOPE and DOPE:DPPC at 1:3 ratio (DD 1:3) were used to
explore its effects on the formation GPLs.
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Figure 27: DLS measurement of GPLs. A) Particle size and B) PDI of GPLs prepared with a series of gemini
surfactants neutral phospholipids DOPE and DD 1:3. Values are expressed as meantSD, n=4.

66



GPLs in general have a diameter between of 100 -200 nm (Figure 27). Overall, the type of phospholipids
used to prepared the GPL resulted in a small change in size (Z-AvQgpipp13=159+47 nm and Z-
AvQerLpore=168+42 nm), but statistically insignificant between the two groups. The only exception to
this trend is with the imine gemini surfactants (12-7NH-12) where the DD 1:3 GPL was significantly
larger than the GPL prepared with DOPE. Within each groups of GPL, trends arise once again based on
the gemini surfactant used previously to compact the plasmid. As shown in Section 5.2.1.3, gemini spacer
length shows a trend of decreasing size from starting 3C spacer (206+8 nm) down to a minimum at 7C
spacer (115+24) with increase in particle size up to 12-16-12 (178+15 nm). Similarly increase in the tail
length of the gemini surfactants resulted in decrease of particle size (172+40nm). Again this trend could
not be extended onto 18-3-18 due to the presence of flocculation in the sample. The addition of functional
groups to both the spacer and tail region of the gemini surfactants in the form of the 12-7NH-12 and Py-3-
12 also resulted in smaller GPLs (123+35 nm and 125+28 nm respectively).

Figure 27B also demonstrates that the gemini surfactant structure have an effect on the
polydispersity of the GPL. This suggests that gemini surfactants do not only aid in the production of
smaller, but also more uniform particles depending on specific structural modifications. Furthermore
GPLs prepared from DD1:3 were smaller in size but showed a larger PDI compared to their DOPE
counterparts. One explanation for this larger size distribution could be due to the mixing of different
lipids. This could result in polymorphism in lipid vesicles and in turn result in a greater diversity of GPLs
[51, 230]. Compared to GP which had a broad size distribution and larger particle sizes (PDl,,4=0.38, 450
nm), the addition of neutral phospholipids creates a more homogenous population of smaller particles
(PDlayg =0.28, 150 nm). This trend is reflected upon in Figure 28 that demonstrates that not only are GPLs
are more homogenous compared GPs (Figure 26) but also that there is a reduction of the large minor

population.
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Figure 28 : Size distribution by intensity for 12-3-12 GPL prepared with DD 1:3. Graph is an average (n=4) and
exported from Zetasizer Nano software.

5.2.2 Evaluation of surface charge of nanoparticles

The aim of this section was to determine the effect of composition on surface charge (zeta
potential) of gemini NPs at various stages of assembly. Measurements were performed on the Zetasizer
Nano using laser Doppler velocimetry (LDV) which was used to determine the electrophoretic mobility of
a particle in solution. The zeta potential was then used as an indicator of thermodynamic stability (with

surface charge greater than 30 mV generally being considered as stable) [231].

The shifts in zeta potential during NP assembly are summarized in
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Figure 29 using 12-3-12 as a model. Initially, it shows that the plasmid has a strong negative charge (-63
mV) due to the phosphate backbone. With the addition of gemini surfactant, the negative charge is

neutralized. The low zeta potential (~ 0 mV) suggests that these initial complexes are not stable and are
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also prone to aggregation. After the addition of the phospholipids, the zeta potential of NPs increased to
around +30 mV. This suggests that the phospholipids aid in stabilizing the initial complex formed
between gemini surfactant and DNA, therefore making them more uniform. The following sections will

provide a deeper evaluation of the effect of gemini surfactant structure on the zeta potential.
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Figure 29: Zeta potential measured at different stages of gemini NPs assembly. Dotted red line indicates a neutral
charge. Plasmid DNA has a strong negative charge (Circle; -63 mV). The addition of gemini surfactants neutralizes
the negative charge of the plasmid to form the GP (Square; 0-25 mV). The addition of phospholipid (e.g. DD 1:3)
forms the stable GPL (Triangle; 40-50 mV).
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5.2.2.1 Effect of gemini surfactant composition on surface charge of GPs

The goal of this study was to investigate the relationship between gemini surfactant structure on
the overall stability of the GP and to investigate the process of NP assembly. Figure 30 shows the effect
of chemical structural modification of gemini surfactants on the surface charge of the GP.
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Figure 30: Effect of gemini surfactant structure on zeta potential of GPs. Values expressed as meanzSD (n=4).

All gemini surfactants in this study were able to effectively neutralize the negative charge of the
plasmid (-63 mV, Figure 30). Beyond neutralizing the plasmids, it was shown that the structure of the
gemini surfactant also governed the final charge of GPs. Overall increase in the alkyl chain length of
either the spacer or the tail region of the gemini surfactant resulted in a significant increase in zeta
potential. Overall, modifications to the tail regions resulted in greater changes compared to spacers (81g.3.
1= T44mV, 815.10.1,=+20 mV). The 18-3-18 was previously shown to produce highly charged GPs (+44
mV) but the quality of the measurement was poor due the presences of flocculation in solution. The
introduction of functional groups was also shown to have a significant effect on the surface charge. GP
complexes made either with 12-7NH-12 (9.6+2 mV) or Py-3-12 (24.64+2.8 mV), had significantly higher
surface charges compared to their parent compounds (015.7.1,=6.71+£0.4 mV and 61,.3.1,=0.0920.4)

respectively).
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5.2.2.2 Effect of phospholipid on surface charge of GPLs

The role of neutral phospholipid components of gemini NPs on their zeta potential was
investigated in detail. The effect of two lipid compositions, DOPE or DD 1:3 are shown in Figure 31.
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Figure 31: Surface charge of GPLs prepared with DOPE and DD 1:3 phospholipids. Surface charge is expressed as
the zeta potential (mV). pH of DOPE and DD 1:3 GPLs was between 6.5-7.1.

Regardless of gemini surfactant structure, all GPLs possess a positive surface charge above +30 mV
(Figure 31). Generally, GPLs prepared with DOPE and DD 1:3 GPLs had similar zeta potential values
(between +40-60 mV). Only in the cases of 12-3-12, 12-6-12 and 12-7NH-12 GPLs prepared with DOPE
showed a higher zeta potential compared to GPLs made with DD 1:3. The effect of spacer length on the
zeta potential showed a bimodal pattern (two peaks at C3 and C10), with tail length resulted in a slight
decrease of the surface charge. Also, compared to the GP, the effect of gemini surfactant structure was not
as pronounced as the trends observed in Figure 30. Furthermore, the zeta potential for both DOPE and
DD 1:3 NP were more uniform than their GP counterparts. This suggests that the lipid composition

played a major role in governing the final surface charge of the NPs.
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5.2.2.3 Effect of dilution on surface charge of GPLs

Table 14 shows the effect of dilution on the zeta potential measurements of 12-3-12 GPL prepared with
DD 1:3. These results show that zeta potential was not affected by dilution in water. This demonstrates
that GPLs were stable when measured at sub-nanomolar concentrations that are required for FCS.

Table 14: Effect of dilution on zeta potential of G12-3-12 GLP.

Age  :SD.

Dilution (mV) (mV)
2-fold 39.28 211
3-fold 41.80 271
4-fold 40.27 3.08

5.3 Dye exclusion assay

Dye exclusion assays, using both PicoGreen® and EtBr, were used to investigate the
microenvironment around the nucleic acid cargo within the NP. This was to gain a deeper understanding
of the role of NP composition in the self-assembly process. Dye exclusion occurs when cationic agents
compact DNA which results in an increase in DNA rigidity, thus denying the dye access to the DNA
[232, 233]. This results in a decrease in fluorescence intensity which is used to monitor the degree of
compaction of the plasmid by the NP. Experiments were performed using gWiz Luc plasmid to conserve
labeled gWiz GFP for FCS experiments. Controls were performed to ensure the degree of dye exclusion
was not affected by the labeling (data not shown). As a side note, due to similar size of gWiz GFP to

gWiz Luc plasmid, the difference in size was considered negligible (5757 bp vs. 6730 bp).
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Figure 32: PicoGreen dye exclusion assay for various GP and GPLs. Results reported as percentage of fluorescence
remaining relative to free DNA. Values expressed as meanSD (n=4). A) Degree of fluorescence blocked by GP with
different gemini surfactant B) Degree of fluorescence blocked by GPLs with DOPE and DD 1:3 GLP.

Figure 32 shows the ability of GP and GPLs to block the fluorescence of PicoGreen. Overall, GPs were
found to have significantly lower fluorescence compared to the GPLs counterparts. GPs were capable of
blocking approximately 95% of fluorescence that suggest a very high degree of DNA compaction
occurred at this phase (Figure 32A). The modification of gemini surfactant has generally minor effect on
dye blocking with GPs. Increasing spacer length in gemini surfactants from 3C (4.2+1.8%) caused a slight
increase of fluorescence up to 10C spacer (10.1£2.5%), followed by a significant drop at 16C spacer
(1.4+0.5%). Modification to the tail region of the gemini surfactants provided a significant shift in dye
blocking (16-3-16=2.1+0.7%, 18-3-18=2.9+1.2%). The GPs prepared from functionalized gemini
surfactants 12-7NH-12 and Py-3-12 also did not provide significant shift in degree of dye block (4.3£1.3
and 3.9+1.8 respectively). shows that the addition of phospholipids normalized the degree of fluorescence
exclusion among the final GPLs (Figure 32B). Compared to GPs (Figure 32A), where gemini surfactants
determined the degree of dye blocking, the majority of the GPLs showed a similar degree of dye blocking
with a mean for most GPLs of around 20%. A significant shift was seen with GPLs prepared from gemini
surfactants with longer tails; 16-3-16 and 18-3-18 gemini surfactants produced significantly higher
degrees of fluorescence. These results, along with the trend observed with GPs (Figure 32A) would
suggest that the hydrophobic regions of the gemini surfactants played a key role in controlling the
compaction of the DNA. Furthermore, the composition of the phospholipid did not only normalize the

GPs, but it also governed the final degree of dye blocking. It was observed in Figure 32B that GPLs
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prepared from DD 1:3 had an overall lower fluorescence compared to DOPE counter-parts. In addition to

PicoGreen, a second dye exclusion assay with EtBr assay was also performed.
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Figure 33: Ethidium bromide dye exclusion assay for various GP and GPLs. Results reported as mean SD
percentage of fluorescence remaining relative to free plasmid. Values expressed as meantSD (n=4). Degree of
fluorescence from GPs with different gemini surfactant B) Degree of fluorescence from GPLs prepared with DOPE
and DD 1:3 GLP.

EtBr provided similar results to PicoGreen® in dye exclusion assays, such as the increased blocking of
GPs relative to GPLs. However, in the case of Py-3-12, the two assays showed significantly different
result for both GP and GPL (Figure 32 and Figure 33 respectively). In the PicoGreen® assay, GP and
GPL prepared with Py-3-12 gemini surfactant was able to effectively block PicoGreen®. However with
EtBr, no fluorescence blocking was observed at all. Controls were also performed to ensure the unique

Py-3-12 surfactant did not interact with EtBr which would cause the resulting fluorescence.
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6.0 Discussion

6.1 Preparation of fluorescently labeled gemini nanoparticles

6.1.1 Selection of labeled nanoparticle component

The first step in the development of the FCS methodology is to label the molecule of interest.
Since the gemini NP is composed of three elements; plasmid, gemini surfactant and phospholipids, an
important step in the optimization of the FCS experiment is ensuring the physical and spectral integrity of
the fluorescent-labeled specimen of interest. Since FCS only monitors fluorescent fluctuations, the choice
of labeled molecule in the gemini NP directly affect which parameter can be studied. Furthermore the
labeling must also not interfere with the assembly of the gemini NP and must also be evaluated to ensure

no artifacts occurring due to the labeling process.

For this study the plasmid was selected due to its key role as the cargo for gemini NP and its
central presence in all phases of the gemini NP assembly. This allowed for a greater deal of flexibility in
experimental design in terms of characterizing the gemini NPs. To study the interaction of plasmid with
other components of the gemini NPs, it was essential to confirm that the process of labeling had no affect
on the plasmid in order to provide a more accurate study of biophysical properties of gemini NPs. The
first step was to determine the effect of labeling plasmids on the FCS measurements and optimize its
labeling. Previous FCS experiments investigating other non-viral systems utilized smaller strands of
nucleic acids such as oligonucleotide or siRNA [90, 209, 234-238]. In these cases, conjugation was
performed at the terminal ends of the nucleic acids. This ensured a specific base-dye ratio — typically of
one label per nucleic acid molecule. This was ideal for FCS because changes in fluorescent intensity and
the number of fluctuation could be directly related to the concentration of the labeled species in solution.
Plasmids, being larger and lacking of terminus (for SC form of interest), the labeling reaction involved
further steps, such as binding grooves or intercalations between base pairs. This resulted in various
degrees of labeling or labeling densities. The position of dye conjugation was one key difference noted
from these previous experiments. This proved to be less consistent compared to reactions to linear forms
of nucleic acids (due to the presence of N and C terminals). As shown in Table 7 the degree of labeling
had an effect on the integrity of the plasmid topology. Furthermore, due to the sensitivity of the FCS
technique, variation in the labeled and the quality of the plasmid needed to be controlled. This required

extensive screening to verify the quality of the labeled plasmid, however it was considered the best
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candidate for studying gemini NPs by FCS. This will be discussed in the following section (Section
6.1.1).

Labeling the other components of the gemini NP were also considered during the experimental
design but were deemed not feasible for studying the biophysics of the gemini NPs that were previously
studied by our group [121, 162, 226]. This is because the addition of any fluorophore to a gemini
surfactant would modify the properties of the final GPL. Therefore any labeled gemini surfactant would
not be a true representation of the unlabeled gemini surfactants. The phospholipid component was also
considered for the evaluation of gemini NP. However, the reason why this component was not pursued in
this study was because phospholipids are only added in the final step, and therefore would not provide
information about the earlier stages of gemini NP assembly. Furthermore, with the addition of labeled
lipids, or the integration of labeled lipids into the existing lipid vesicles, it has been shown in previous
studies to have an effect on diffusion of the complexes [239]. Although the addition of any tracking
moiety would have an effect on the system in study, effects were minimized in the presence of the
plasmid, as examined in this section. Therefore an important part of this study was ensuring the labeling

of the plasmid had no effect on the activity and interactions of the plasmid.
6.1.2 Evaluation of Cy5-gWiz GFP plasmid for FCS

Cy5-gWiz GFP was thoroughly evaluated to ensure that the labeling reactions had a minimal
effect on the plasmids and was ideal for FCS measurements. To determine the effect of the labeling
process on the plasmid, different labeling ratios were screened to observe the effects on the topology and
diffusion coefficient. Agarose gel electrophoresis and fluorescent dye PicoGreen, developed by Levy and
colleagues (SCfluro Assay), was used to evaluate and quantify the topology of the plasmid [240]. Table 7
shows that plasmid topology had significant effects on diffusion coefficient. Although claims by the
manufacturer state that no degradation should occur due to labeling, studies by our group demonstrate that
longer incubation times, or higher labeling density, resulted in degradation of the gWiz GFP plasmid. A
possible explanation for this could be due to the labeling methods. The manufacturer's instructions require
an incubation at 37°C for specific time intervals (to achieve 0.5:1 a one hour incubation is necessary).
Therefore, one theory was that the longer exposure to the elevated temperature could result in the
degradation that was observed. This was seen with the 0.5:1 base-dye reaction that had approximately
60% SC content with a diffusion coefficient of 7.1£0.7 x10™ m?/s. In comparison, ratios of 0.25:1
labeled-plasmid had less effect with SC content (83% compared to 85% for unlabelled) and diffusion

coefficient of 4.2+0.2 x10™ m?/s. The experimental determined diffusion time of SC plasmid correlated
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with findings from other groups, which was around 3.8+0.3 x10™ m?/s [241]. The study also showed that
the conjugation of the dye had little impact on the diffusion time of the plasmid. By comparing the ratios
of 0.05:1 and 0.25:1, which had a similar degree of SC plasmid (85%), even though there was a 5-fold
increase in the amount of label, there was an insignificant shift in the diffusion coefficient of the labeled
plasmid. Since the mass of single a Cy5 fluorophore is 533 g/mol, the total mass of the Cy5 conjugated
per plasmid can be approximated as 1519, 7462 g/mol and 15,457 g/mol for 0.05:1, 0.25:1 and 0.5:1
respectively, based on the base-dye ratio calculated in (Eq. 5). Therefore with the total mass of a plasmid
being 3.74 x10° g/mol (5757 bp x 650 g/mol*bp), it would indicate that the mass of additional Cy5 would
account for less (0.04%-0.4%) of the plasmid overall mass. Although the mass of the Cy5 used in this
estimate could be smaller (the actual structure of labeling reagent with Cy5 unknown), it is clear that the
mass of the dye has little effect on the diffusion of the plasmid

The next set of considerations focused on the optimization of FCS measurement conditions for
labeled plasmid. With FCS being very sensitive and easily saturated, a successful FCS measurement is
being able to achieve a low photon count. A low count rate would allow for longer measurement time
which would increase the statistical validity of the FCS experiments [242]. A series of Cy5-gWiz GFP
dilutions were prepared and it was determined that the optimal concentration of labeled plasmid was 2
ng/uL to achieve a mean particle number of 1. It was determined that this concentration was independent
of the degree of labeling. The only difference was in the amplitude intensity of the signals. The optimal
laser power was also experimentally determined by monitoring the brightness of the Cy5-gWiz GFP

solution as a function of laser power.
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Figure 34: Determination of optimal laser power for Cy5. Count per molecule was recorded for individual sample at
several different laser power ranging from 1-40%.

To reduce the possibility of photo-bleaching of the fluorophore and damaging the plasmid, a laser power
setting of 5% laser was used for the FCS experiment. It provided a suitable number of photons or
brightness for the calculation of ACF. Initial studies with 12-3-12 GPL also demonstrated the issue of
intensity spikes (Figure 21A).Due to lower the intensity of measurement in GP and GPL complex, this
resulted in the choice of 0.25:1 labeling ratio as the standard for experiment. A 0.05:1 batch was also
prepared which had much lower intensity, but could not be re-produced in sufficient quantities for all the
FCS experiments. Therefore to minimize variation in labeling densities, a larger batch of 0.25:1 labeling
ratio plasmid, (referred to as Cy5-gWiz GFP) was prepared and used for the gemini NP FCS experiments.
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6.2 Evaluation of FCS as method for characterization of gemini NPs

This section will talk about the applications of FCS as a tool to characterize gemini NP and
discuss the advantages and limitations. In addition this section will compare techniques currently used

within our group.
6.2.1 Monitoring assembly of gemini NP with FCS

One of the important prerequisites for a non-viral delivery system is the protection of the nucleic
acid cargo through the process of encapsulation by the delivery system’s soft material during assembly of
the NP. To gain a better understanding of this process FCS was used to monitor the labeled plasmid
during formation of the gemini NP. The initial study was performed using the 12-3-12 gemini surfactant
and DD 1:3 phospholipid. The 12-3-12 based gemini NP was also selected as the first due it central role

in screening of the remaining gemini surfactants, that will be discussed later.

The initial study with 12-3-12 demonstrated that formation of GPs and GPLs could be monitored
by FCS. This was demonstrated by the significant right-shift of ACF for Cy5-gWiz GFP upon addition of
the gemini surfactant (GP; Figure 15) and phospholipid (GPL; Figure 20). Furthermore, the FCS study
was able to detect that two assemblies had distinct features based on the shape of ACF. Figure 15
suggested that the GP was composed of large and heterogeneous particles, as shown by the right-shift of
the ACF, upon the addition of 12-3-12 to the free Cy5-gWiz GFP. This indicated a slower diffusion
coefficient and a larger standard deviation compared to free labeled plasmid (D1y.3.10¢p = 0.98£31.66% X
10™% m?/s, Deys.qwiz are = 4.244% x 10™ m?/s). The second step involved the addition of phospholipid to
the GP to form the GPLs (Table 10). The characteristic features of the GPLs were formation of smaller
and more uniform NPs, which were relative to the previous GP. This was supported by the left-shift of the
ACF which indicated a faster diffusion coefficient and lower standard deviation relative to GP (D1s.3.10¢pL
=3.11+13.18% x 10™ m%s). This demonstrates that FCS has the ability to differentiate between the three
phases of assembly of gemini NP based on changes to the mobility of labeled plasmid, as summarized in
Figure 20. The next phase of the study was to determine if compositional changes to gemini NPs could be

monitored using FCS.
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6.2.2 Effect of GP composition on FCS measurements

The gemini surfactants in this study were selected to systematically evaluate three key
modifications: spacer (12-s-12; s=3,6,7,10 and 16), tail (m-3-m; m=12,16 and 18) and addition of
functional group (Py-3-12 and 12-7NH-12), based on studies performed previously by our group [195,
196, 226]. Overall, the majority of GP studied by FCS suggested a heterogeneous distribution of large
particles (average of 324+132 nm) across all the gemini surfactants tested. FCS was able to monitor
changes to ACF of the Cy5-gWiz GFP based on specific structural modifications to gemini surfactant
(Figure 17). It was seen that with changes in the spacer length resulted in a non-linear shift in the
diffusion coefficient of GPs. The diffusion coefficient for GP was highest at s=10 (4.15x10™ m?s) and
decreased as spacer got shorter or longer (Table 8). Similarly, increasing tail length also resulted in an
increase in diffusion coefficient when comparing 12-3-12 to 16-3-16 (0.98 vs 1.91x10™%? m?s,
respectively. This trend could not be extended onto 18-3-18 due to issue with aggregation caused by very
low cmc, as discussed in section 0 [229]. The most significant change was observed with the introduction
of functional groups. Both Py-3-12 and 12-7NH-12 formed smaller GPs compared to their parent gemini
surfactant (12-3-12 and 12-7-12, respectively; Table 8).

6.2.3 Validation of GP measurements made with FCS

One of the interesting applications of the mobility values obtained from FCS was the ability to
estimate particle sizes based on the Stokes-Einstein equation (Table 9). To validate the findings from the
FCS study, in parallel, the samples were also analyzed using DLS. Figure 35 shows that although the
general trends based on the structural activity relationship of gemini surfactant were observed using both

techniques, there were some differences.
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Figure 35: Comparison of particle size of GPs prepared with several gemini surfactants determined by DLS and FCS.
DLS (grey) and FCS measurement (white) were performed on the same samples (n=4). Dotted red line indicates the
beam width of focal volume (250 nm).

Overall the FCS and DLS provide similar estimates of particle size. FCS is particularly sensitive to the
presence of particles greater than 300 nm and aggregates which is reflected in the significant increase in
the standard deviation when compared to DLS. This trend was observed with 12-s-12 gemini GP (s=3,6
and 7) where the GP were greater than 400 nm. One reason for this large deviation was believed to be the

suitability of FCS technique to measure larger NPs such as the GPs.

The original design of FCS was to monitor fast moving events at a single molecular level (at pico-
microsecond range). To achieve this level of detection, a confocal light path is utilized to limit the focal
volume. With a beam width calculated to be approximately 250 nm and GP sizes being greater than 250
nm, this caused monitoring difficulties using FCS. This was observed for larger particles where the
deviation was larger, versus particles closer or below the 250 nm size-range had smaller deviations
(502+159 nm vs. 256+90 nm for 12-3-12 and 16-3-16, respectively). Although the focal volume was a
major factor in the quality of the measurement, this does not explain the variability of all the GPs. For
example, 12-7NH-12 GP which is similar in size to 16-3-16, had a significant difference in their standard

deviation (244+15 nm and 256+90 nm, respectively).

81



To understand this, the population distribution of molecules that make up the GP sample must be
observed. It has been known that many self-assembling structures are not mono-distributed, or uniform in
size [243-247]. This distribution can be demonstrated by DLS measurements where various sub-
populations make up GP (see Appendix 9.3). These larger particles or aggregates are most likely
composed of a large proportion of plasmid DNA, which resulted in a higher concentration of fluorophores
(Figure 16). Due to technical limitations, these high intensity measurements could not be recorded due to
the saturation of the APD detector. A saturation of the APD detector caused an automatic trigger of a
safety shutdown on the APD. In addition, the larger peaks could not physically be measured by the FCS.
This caused a reporting bias where the results that were shown were based on runs devoid of larger
aggregates, and may have resulted in an under-estimation of the particle size. While biophysical values
can still be extrapolated from the GP, these approximations should be interpreted with caution. Although
this limits the quantitative analysis of the GP using traditional FCS, it does highlight a key feature of the
assembly process of the gemini NPs.

During FCS analysis, there was varying degrees of difficulty in measuring each GP. Gemini
surfactant 12-10-12, 16-3-16, 12-7NH-12 and Py-3-12 demonstrated smaller diffusion coefficients
compare to other GPs, indicated by the left shifts in their ACF. In addition to the increased mobility, the
reproducibility of these curves were higher, as demonstrated by smaller standard deviations compared to
other GPs (Table 8). In Figure 19, 12-7NH-12 and Py-3-12, also had ACF that were different from the
typical shape shown in Figure 15. These ACFs were unique due to their resemblance to the ACF of GPLs.
This suggests that these gemini surfactants were more effective at condensing the plasmid, relative to the
other gemini surfactants. This finding was also supported by a previous in vitro study that showed that

GPs prepared with 12-7NH-12 were able to transfect cells due to increase stability of the complex [196].

Additional studies have also been performed to validate the FCS findings on GP systems. In
Figure 30 the surface charge of all GPs were between 0 and +20 mV which suggests that the gemini
surfactants were effective at neutralizing the DNA (-63 mV), but were unable to form stable complexes
greater than +30 mV. This data supports the theory shows that the slow diffusion coefficients were caused
by aggregates. It was observed that the surface charges changed based on the structure of the gemini
surfactants. Both increased spacer and tail length resulted in faster diffusion coefficients and increased
positive surface charges. This suggests that the increasing stability of the GP aids in reducing the degree
of aggregation. In the case of 12-7NH-12 the zeta potential was lower than +20 mV, however it still had a
relatively fast diffusion coefficients, whereas Py-3-12 which had the highest zeta potential for GP had a

similar diffusion coefficient to 12-7NH-12 which had the lowest zeta potential. Overall, in both cases the
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functionalized GP (Py-3-12 and 12-7NH-12) were faster than their non-functionalized parent GP (12-3-12
and 12-7-12). Furthermore, this suggests that other forces, other than surface charge, must also influence
the stability of the NPs.

Furthermore, the presence of aggregates also explains the high intensity peaks observed in the
raw intensity data (Figure 16). Since neutralization of phosphate backbone is known to result in
condensation of DNA, this supports the theory that faster diffusion coefficients are in fact due to
condensation of the labeled plasmid. This also supported by the dye exclusion data that show that the
addition of gemini surfactants to the plasmid effective neutralizes the ability of both EtBr and PicoGreen
to bind to DNA due to structural changes in the topology of the plasmid (going from free-plasmid to
condensed plasmid).

6.2.4 Effect of GPL composition evaluated by FCS

Unlike the GPs that varied widely based on the chemical structure of gemini surfactant, the
addition of phospholipids generated smaller NPs. These smaller NPs are more uniform and not as
dependent on NP composition (either gemini or phospholipid component). This normalization of the NP
is seen in ACF for all GPLs (Figure 22) when compared to ACF for GPs (Figure 17). This idea is
supported by diffusion coefficients of GPL which span over a narrower range of 3-4 x 10™ m%s
compared to GP (0.98-4 x 10™ m?s). Furthermore, standard deviation of each GPLs decreased
significantly compared to GPs (+20-30% for GPs and +10-17% for GPLSs) that support formation of

uniform NP.

A second phospholipid (DOPE) was screened to further investigate the role of the phospholipid
on GPL morphology. Similar to the GPLs prepared with DD 1:3, the DOPE GPLs also resulted in the
dispersion of the GP into a smaller more uniform particle, averaging 149+28 nm; 145+34 nm for DOPE
and DD1:3 GPLs. The FCS measurements suggested that the type of phospholipid was not significant in
governing the morphology of GPLs. The trends observed with GP were also seen with both GPL, but to a
lesser degree. Also, recall that in Section 6.2.2, the FCS measurements suggested that certain GPs (e.g.
12-7NH-12 and Py-3-12) were capable of forming stable “GPL-like” complexes without the assistance of
phospholipids. The addition of phospholipids in this case only resulted in a small decrease in particle size.
Overall, this suggests that interactions between gemini and DNA formed during GP stages are still

present during GPL stage.
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6.2.5 Validation GPL measurements made with FCS

In terms of particle size, FCS reported an average of approximately 120-150 nm for the majority
of GPLs screened in this study. To validate these findings, DLS was performed in parallel to verify GPL
sizes reported by FCS.

5000 4 N DLS DOPE

I DLs DD 1:3
4 BEZF FCSs DOPE
FCS DD 1:3

Particle Size (nm)

Figure 36: Comparison of particle size of various GPL determined by DLS and FCS. Values expressed as meanSD
(n=4).

Both DLS and FCS reported similar particle sizes for all GPLs which ranged between 100-200 nm
(Figure 36). The surface charge of the majority of the GPLs was shown to be greater than +30 mV which
is empirically accepted as the formation of stable particles in solution [231]. This finding supports the
theory that an increase in diffusion coefficient from GP to GPL is in fact due to the formation of stable
NP. This stabilizing effect of the phospholipid on GP is also supported by the dye exclusion data. The
formation of GPL also strongly excludes both EtBr and PicoGreen® for most GPLs but the degree is
slightly less than the corresponding GP. A possible explanation is due to the phenomena of self-
guenching. This occurs when a high local concentration of fluorophores results in energy transfer between
closely packed fluorophores resulting in a decrease in observed fluorescence. Therefore it is believe that
in the GP, where many plasmids, and therefore fluorophores, are packed in close proximity, this
phenomenon could occur. Once the phospholipid disperses the GP into smaller GPL this reduces the

degree of self-quenching since few plasmids are in close proximity and result in an observed increase in
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fluorescence. This supported the finding from the FCS data that also show the drop in intensity of the
Cyb5-gWiz GFP peak when transitioning from GP to GPL. Also this phenomena has been reported in the
literature with other NPs loaded with fluorophores [248].

6.2.6 Effects of compositional changes on gemini assembly

The FCS study suggests that modifications to the basic structure (m-s-m) increase in the
hydrophobicity of the of the gemini surfactants results in smaller and more stable GPs. A longer tail
length would affect the overall hydrophobic nature of the gemini surfactant. Although the spacer are
traditionally associated with the polar region of the amphiphilic molecule, spacer length have also been
previous shown to cause changes to the hydrophobicity. Literature has suggested that beyond a critical
spacer length, the alkyl chain can fold, therefore incorporated into the hydrophobic region [249]. Shorter
spacers (s=3-8) on the other hand have lack the flexibility and therefore cannot integrate into the
hydrophobic region [250]. This mechanism explains the smaller GP and in turn GPL formed from s=3-10.
However, this does not explain why the 12-16-12, which has a longer spacer, produces smaller GP
compared to 12-10-12. One theory is due to the packing arrangement between gemini surfactant and
DNA. A previous study by our group had shown that head group area (a°), the distance between cationic
head groups of the gemini surfactant, has an effect on the binding properties of the gemini surfactant with
DNA (Table 15).

Table 15 Head group area of various gemini compounds. Modified from Badea et al, 2005 [195]. 12-8-12 is used to
approximate 12-7-12 since data was not available. a® = Head group area

. (@)
Gemini Compound )
[nm<“/molecule]
12-3-12 0.98
12-6-12 1.40
12-8-12 1.78
12-10-12 2.16
12-16-12 1.44

The increase in diffusion coefficient of the final GP can be correlated to an increase in the head group
areas. This is unexpected because as the head group areas increases, one would believe based on sterics,

that the overall number of molecules that can come in contact with the DNA would decrease. A theory as
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to why diffusion coefficient increases with fewer gemini surfactants is related back to the issue of gemini
concentration. It was reported that an excess of cationic surfactants can results in aggregation and results
in larger NPs as measured by FCS [229]. This parameter was shown to be important in governing the
interaction between DNA and gemini surfactant. A study by Chen and colleagues have also demonstrated
that surface properties, such as molecular area of GP is not linear and reaches a maximum around s=6,
with longer spacer assuming a new conformation [251]. This further suggests that the interaction between
DNA and gemini changes upon the spacer folding. This theory of a new confirmation is supported by
surface charge data. Figure 30 shows that 12-10-12 has the highest zeta potential (815-10.12=+18.7 mV)
compared to other gemini compounds. This higher surface charge would result in higher repulsion and
therefore more stable particle that would resist aggregation and explain the smaller size. 12-3-12 on the
other hand had a smallest a® and very low surface charge (a%5.3.1,=0.98 and 815.3.1,=+0.09 mV) which
would suggest weak force between particles. This could promote aggregation and result in the larger GP
particles and therefore smaller diffusion coefficient. While no data exist to our knowledge of the tail
length and functionalization, the initial finding suggests that the compaction of DNA, which was believed
to be a simple neutralization, is based on electrostatic interactions and stoichiometry. This suggests that
interaction between gemini and DNA is complex and that multiple factors come into play to govern the

final shape of the final particle.
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One such factor that was studied previously is the critical micellar concentration (cmc). Cmc for

gemini surfactants were established previously within our research group (
Table 16).

Table 16 Critical micellar concentration for various gemini surfactants

Gemini cmce
surfactant (MM)
12-s-12
12-3-12 0.98
12-6-12 1.08
12-7-12 0.85
12-10-12 0.62
12-16-12 0.12
m-3-m
16-3-16 0.03

18-3-18 0.013
m-NH-m

12-7NH-12 | 129
Pyrenyl

Py-3-12 | 022

Key observations from this study are that the relationship between alkyl length and cmc is not linear. This

is evident with spacers as an increase does not result in large change until longer spacers are achieved.

Table 16 also shows that the location of the modification is also essential. By comparing 12-7-12 and 16-
3-16, both had an addition of 4C but have different cmc. This demonstrated that similar increase in alkyl
chain length to the tail region results in greater shifts to the cmc values. This occurs because it is known
that modification to the tail regions, which affects the hydrophobic region or the surfactant, has more
dramatic effect on packing arrangement of the micelle. This also explains why gemini surfactants with

long spacer (10 and 16C) also have significant changes.

While basic structure is one factor that governs gemini surfactant interaction with DNA, other
factors can also influence the self-assembly process. This was observed with significant shifts in diffusion
coefficient that occurred with functionalized gemini surfactants. While their cmc is lower than their
counter parts, compared to their parent gemini surfactants (12-3-12 and 12-7-12) both Py-3-12 and 12-
7NH-12 showed significant increase its diffusion coefficient 2.00 and 3.06 x 10™* m%s respectively). This
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demonstrates that several different forces are at work that can all be utilized to govern NP formation. It is
this versatility of chemical modifications of gemini surfactants provide many opportunities to fine-tune

their activity and possibly the properties of the resulting NPs.
6.2.7 Evaluation of particle size determined by FCS

FCS was originally designed to study the dynamics of small molecules at a single molecule scale
which is primarily determined by the dimension of the focal volume. Although the NPs are indeed small,
in the realm of single molecule detection the NPs are relatively large. This issue of size measurement was
seen in the study of the GPs which exceed the focal volume and severely limits the analytical validity of
the FCS measurement for particles exceeding the pre-determined focal volume. The size of the NP
complicates the FCS analysis in two ways. First these NPs, especially the GP, move relatively slowly (in
the micro-millisecond range) and therefore longer measurements times are required to acquire sufficient
data to generate an ACF. Beyond the physical limit of the focal volumes, the condensed labeled DNA
poses another issue. The condensation of a plasmid increases the local concentration of fluorophores and
significantly increases the brightness of each individual particle under study. This increases the molecular
brightness and runs the risk of overwhelming the detector that affects validity of the ACF. This issue
becomes even more significant if multiple plasmids are condensed which further increase the molecular
brightness. This is highlighted in Table 8 by the large standard deviations seen with a majority of the GP
studied due to the presence of large spikes. These issues are most evident while studying GP but are also

present in to a degree with GPLSs.

To overcome these issues, different set-up to FCS were considered and evaluated. One common
modification is to change the dimension of the focal volume. This set-up is generally based on system
being measured. For instance, small molecules (single fluorophores and intramolecular dynamics) require
smaller pinholes to maximize the resolution of the FCS technique. The focal volume can be enlarged to
track larger or slowly moving complexes at the cost of resolution. The reduction in resolution is due to the
increased number of particles passing through the focal volume which reduces the significance of each
individual fluctuations used to calculate the ACF [242]. Therefore to account for the larger GPs, the use
of a larger pinhole (500 nm, compared to 250 nm) was evaluated. The experiments showed that although
the number of fluctuations did increase, it also increased the difficulty in making a measurement. This is
because with a larger focal volume, more fluorophores could be monitored for longer periods of time that
aids in collecting fluorescent fluctuation for the calculation of ACF. But since the brightness of each

individual GP was very high, the increase in number of molecules resulted in the saturation of the detector
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and the canceling of the measurement. Since laser power was already optimized to minimize damage to
labeled DNA this option could not be used to help with saturation issues. Therefore due to these technical
limitations, using a larger pinhole to monitor the GP was not feasible. Although no strict upper limit has
been reported in the literature, similar issues have been reported by other groups which have
demonstrated that FCS is not well suited for the analytical evaluation of self-assembled complexes larger
than 500 nm [228, 252]. Therefore to be able to extract meaningful values such as diffusion coefficient
and size, from the FCS one need to study the data carefully in order to validate it. This provides a
significant learning curve when developing new FCS methodology as a lot of firsthand experience is
needed to understand each system. Another complication with the interpretation of FCS data is based on
the way particle size is determined.

To be able to extract meaningful data, particle size data from FCS the limitations of the Stokes-
Einstein equation must also be considered. A careful examination of the formula shows that particle size
is calculated assuming the particles are spherical. Since non-viral delivery systems can assume a variety
of shapes using the Stokes-Einstein equation without knowing the physical morphology of the particles
being evaluated this model could be too simple and any measure of diameter of the particles could be
erroneous. While other groups have addressed other shapes by using modified equations, a researcher still
needs to know the physical morphology in order to apply the appropriate corrections. Generally, a direct
method of visualizing the NP is required to confirm the actual morphology being studied prior to
evaluation of sizing using FCS. For the GPLs, previous studies in our research group have also utilized
both TEM and AFM to study gemini NP. A TEM images shown in Figure 37 revealed that GPLs
prepared from 12-3-12 and 12-7NH-12 are in fact spherical and the particle size are consistent with the
findings in this study by FCS and DLS.
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Figure 37: Transmission electron microscopy (TEM) by negative staining of the structural morphology of 12-3-12 A)
and 12-7NH-12. B) GPL prepared at N/P 10:1 with DOPE. Scale bar corresponds to 200 nm. Images were taken by a
JEOL 2010F TEM at the Canadian Centre for Electron Microscopy at McMaster University (Ontario, Canada) by M.
Foldvari.

Additional studies by AFM confirmed the morphology of other GPLs. A study performed on 16-3-16
GPL also confirms the morphology of 16-3-16 GPL to be spherical NP. Furthermore this particle size

approximated by AFM (100-200nm) also supports the values from the FCS and DLS study [195].

Figure 38: Atomic force microscopy (AFM) image of 16-3-16 GPL prepared at N/P 10:1 with DOPE. Bar represents
200 nm. Image reproduced from Badea et al, 2005 [195].

Both the TEM and AFM study show a small window into the polydispersity that is observed with
spontaneously self-assembling structures. As seen in both the FCS and DLS study the presence of a small
population of large aggregates that could skew the average upwards. Overall, the GPL monitored by DLS
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were rigorously tested to ensure the maximum uniformity with a major population being over 98% with
aggregates forming less than 2%. Therefore, the effect of these large particles was minimal and can be
overlooked. This verification of FCS as particle sizing tool highlight that no one technique was free of
artifacts and that each one had to be understood and evaluated carefully to ensure the results reported

where correct [253]. Therefore it is recommended that multiple techniques be used.

To conclude this section we will also evaluate the FCS as particle sizing technique against the
current standard DLS. Both FCS and DLS are based around the extrapolation of the particle size based on
diffusion coefficients obtain from an ACF. The key difference between FCS and DLS is the values used
to construct the ACF (fluorescence fluctuations vs light scattering and the sensitivity of the detectors).
Overall both are biased by the presence of large aggregates which generates stronger signals (both
fluorescence and light scattering) that can mask smaller signals. This demonstrates the limitation of these
measurement values which are intensity-weighted [254]. Therefore the artifacts experienced by FCS also
need to be considered when analyzing DLS data. While both techniques are best suited for studying small
mono-dispersed systems, their size range do vary. Traditionally FCS is focused on smaller molecule
interactions or even intramolecular changes, while DLS is better suited for the study of larger NPs in the
range of 10-1000 nm. Technical requirements are also quite different from between the DLS and FCS
platforms. Currently DLS instrumentation is easy to use and automated, able to quickly calculate ACF
and extrapolate values with minimal user input. FCS on the other hand requires careful calibrations and
for size measurements are not automated and require custom software or exported FCS data into other
programs to calculate size. This makes for a steeper learning curve as hinted earlier in this section. While
DLS is still a benchmark for the routine size analysis, FCS does have specific advantages. One of the
advantages of FCS over DLS is small sample size. Since the focal volume of FCS extremely small (~1
fL), technically any size sample could be used as long as there is an appropriate cover slip to control
factors such as evaporation. In the literature and discussion with other groups indicated that FCS can be
routinely performed with as small as 10-20pL of sample or less [255, 256]. In the early phase of drug
development, this is critical as the raw materials may not be in excess (e.g. synthesis of a new gemini
surfactant). Although there are many technical parameters that need to be accounted for during FCS set-
up, the actual acquisition time for each measurement is very fast [253]. Furthermore these parameters can
be saved to aid easy subsequent set-up. Along with automation and fast measurement time makes ideal
for high-throughput screening. A unique advantage of FCS has over DLS is the ability to simultaneously
size and monitor compaction of plasmid. Other techniques such as DLS can also provide particle size of
the GPL, it cannot conclusive confirm if nucleic acid is actually present in the various complexes. To

deduce the compaction of nucleic acids, a secondary measurement, such as zeta potential, is necessary to
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monitor the charge shift of the nucleic acids and dye exclusion study or centrifugation method is needed
to confirm the encapsulation of the nucleic acid within the NP. This is useful for future solution studies to

monitor the assembly and disassembly properties of GPL systems.

6.2.8 Additional characterization of gemini NP by FCS

While particle sizing by FCS may not be as practical compared to other routinely used techniques
such as DLS, FCS provides other unique advantages. This section will discuss these unique advantages

and their applications towards characterizing gemini NPs.

6.2.8.1 Monitoring the structural state of gemini NPs

Most traditional particle size techniques lack is the ability to monitor the structural state of NPs.
By measuring the zeta potential of NPs at various stages the self assembly process can be determined. By
correlating the surface charge with the ACF of the corresponding GPL and GP, one can indirectly monitor
the state of the NP. This a powerful tool since FCS can monitor changes in real-time and under various
environmental conditions. For example, changes in the environment such as pH, ionic strength and
presence of additives can be recorded as a series of ACF and the changes to the NP structural state can be
mapped.

6.2.8.2 Estimation of the number plasmids inside gemini NPs: Intensity histogram analysis

In addition to monitoring the conformation of labeled plasmids, other factors can be determined
by having a deeper look at the raw data. FCS photons are collected and the fluorescent fluctuations are
analyzed in a time-dependent manner to extract values such as the diffusion coefficient. This allows one
to distinguish between different species of particles based on their mobility and is the basis of the spectral
fingerprinting established for free plasmid, GPs and GPLs. These same photons also carry a specific
intensity or molecular brightness that is also recorded but is ignored in FCS-based analysis as shown in
Figure 10. As shifts in the mobility of the molecules can be utilized to characterize molecules with FCS,
changes in the intensity of the peaks or molecular brightness can also be used to extract other
characteristics of the molecules. In the context of studying assembly of gemini NPs, these shifts in
intensity are used to approximate the distribution of plasmid at each stage of gemini NP assembly. By
evaluating the intensity histograms of the free plasmid, GP and GPL and comparing the changes that
occur one can gain insight into the distribution of the plasmid within the NP. Figure 10A shows the raw
photon stream from APD for free Cy5-gWiz GFP. This plot shows that although the peaks fluctuate

randomly, they are equilibrated around average value, or baseline at approximately 250 kHz. Some of the
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fluorescent fluctuations are more intense that the others and this is due to the uneven labeling of plasmid.
This artifact resulted in small spikes in intensity, but was shown not to affect analysis since the ACF
could be calculated and fitted. To gain a better understanding of the distribution of intensity peaks, the
data were re-plotted in the form of a histogram. The majority of the peaks have an intensity of
approximately 250 kHz (Figure 10B), which correlates with observed baseline in Figure 10A. Since the
concentration of free Cy5-gWiz GFP was determine to be approximately 1, this suggests that on average
most plasmids passing through the focal volume have an intensity of approximately 250 kHz. The
intensity histogram also has a specific shape that can reveal other characteristics of the molecules. The
Cy5-gWiz GFP generally has a bell-shaped distribution with a significantly long tail on the right-side of
the maxima. This suggests that brighter molecules also exist within the population of plasmids. One
source of these high intensity peaks are due to the presence of uneven labeling as described earlier.
Another reason could due to the morphology of the plasmid. Since the SC form of the plasmid is a tightly
wound coil, it is possible that labeled regions can overlap and therefore increase the number of
fluorophores in the focal volume. Although these peaks are significantly larger than average, these events
were rare and had little impact on the calculation of the ACF. Since all the samples in the FCS study
contained the same amount of Cy5-gWiz GFP any changes in the characteristics of the intensity

histogram profile can be related to the addition of the gemini surfactant and neutral phospholipids.

The GPs were described as large particles based on the aggregation of plasmid and gemini
surfactant during the initial neutralization (see the intensity histogram in Figure 16A), furthermore these
aggregates are composed of a large number of plasmids. Evidence of multi-plasmids complex is seen in
Figure 16A which shows a significant upward shifts in the intensity histogram profile of the Cy5-gWiz
GFP upon the addition of gemini surfactant. The intensity histogram (Figure 16B) reveals a very long tail
to the right and shows a major increase in the brightness of the GP (from 5000 kHz for free Cy5-gWiz
GFP to well over 10,000 kHz for GP). Since the focal volume is restricted, it must indicate that these
labeled plasmids must in fact be concentrated with in very close proximity (<250 nm) to cause these large
spikes in intensity. Since previously it was established that each plasmid has an average brightness of 250
kHz, the large peaks seen in Figure 16A suggest that larger peaks with intensities of 10,000 kHz, must
contain over 40 plasmids. The intensity study also reveals that the addition of the gemini surfactants
effectively encapsulates all the plasmids in solution. This is supported by data in Figure 16B that shows a
loss of the previous maxima (250 kHz for Cy5-gWiz GFP) and a left-shift of the maxima to between 0-
50 kHz that was previously determined to be background (Section 5.1.2). This indicates there are long
intervals with no fluorophores (plasmids) in the focal volume. This supports the idea of a multi-plasmid

assembly within the GP since this would result in the depletion in free plasmid in solution. Not only do
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GP contain multi-plasmids, but they are very few in number. This shown in Figure 16A as significant
decrease in the number of fluorescence fluctuations. These finding support the theory that addition of the
gemini surfactant results in aggregation of the multiple plasmids to form the GPs. While the majority of
the peaks are quite large, a small sub-fraction of peaks is still evident between 100-300 kHz. The source
of these fluorescent fluctuations could due the presence of smaller GP that formed. Another possibility is
that these are the large particle that did not pass directly over the focal volume resulting in a lower
florescence burst. While it may be possible these peaks represent some free plasmids in solution due to
the excess gemini surfactant added it is unlikely that this is the case. Furthermore the zeta potential data
shows that in all GP charge is at least neutral (close to 0 mV to +20 mV) that does not suggest the
presence of negatively charged free DNA.

The addition of phospholipids results in the formation of GPL that have fewer plasmids then the
GP particles (Figure 21). As the focal volume is limited, this relative decrease in intensity suggests that
GPL particle have fewer plasmids then GP. The GPL not only contain fewer plasmids, but are also more
numerous compared to GP. This is seen as the increase in the number of peaks (Figure 21A). While the
peaks are smaller and more numerous than the GPs some larger peaks still existed around 5000-15,000
kHz. Whether these larger peaks are based on the presence of GPL aggregates or the remainder of GP
cannot be verified during this study. This is because the fluorescence represents one species (plasmid) and

we cannot comment on the present or absence gemini and lipid in the focal volume.

This insight into the quantity of plasmids in NPs is unique to FCS. For instance, although DLS
can reveal the overall size of the NPs like FCS, while assumed, it cannot say for certain that the NP in fact
contains DNA. This can only be confirmed by performing a second experiment to monitor the state of the
DNA. These experiments could include zeta potential or dye exclusion assays to monitor changes in the
state of the nucleic acid based on the presence of the gemini NP components but cannot quantify the

amount of plasmid that exist within each complex.

While this initial study allowed us to understand that distribution of plasmid changes throughout
the assembly process we cannot analytically quantify the exact amount. This is because in both GP and
GPL the polydispersity makes it difficult to categorize each peaks. Therefore without a proper software or
algorithm to quantitatively analyze, it is difficult count the exact number of plasmids to see if there are
subtle differences between different GP and GPL populations. Furthermore factors such as the uneven
labeling of plasmid makes it difficult to precisely quantify the exact number of plasmid within a complex.

Although at this stage of the study quantification is not possible, the initial data has already provided
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insight into the distribution of plasmids throughout gemini NP assembly. This study is unique compared
to other characterization methods since it not only demonstrated the heterogeneity of the external

structure but also hinted at differences at the internal structure of the NPs.

6.2.8.3 Current model of gemini NP assembly

To conclude the discussion, a model of the assembly on gemini NP is proposed based on the
findings from this study and previous data from the literature. Overall the data from the current and
previous studies suggest that formation of gemini NP is a two-step process governed by the addition of
the gemini surfactant and the phospholipids. The formation of GP is based on the compaction of the
plasmid due to the addition of gemini surfactants to form large particles of approximately 300-500 nm.
The FCS and DLS study confirms the GP consists of a collection of large particles/ aggregates whose
morphology is governed by the structure of the gemini surfactant. In addition, the lower stability is
supported by zeta potential studies that shows that most GPs have a surface charge less +30 mV. In
addition, new data from the intensity histograms (Section 6.2.8.2) provides evidence that the initial
encapsulation by gemini surfactants is not a simple compaction of a single plasmid, but a collection of
multiple plasmids to form larger GP complexes. Based on the new data, it is shown that the aggregates
can vary widely and can contain upwards of 20-40 plasmids per complex. Furthermore, due to the low
surface charge exhibited by the GP, it would be possible that these finite units of condensed plasmid
could collapse to form aggregates or what would appear to be larger particles. The presence of peaks with
various intensities suggests the presence of different number of gemini-plasmid units within the larger
final GP. While the exact morphology of the GP stage is hard to quantify, a theory is proposed based on
existing data. Previous studies have highlighted that gemini/DNA interaction could form “ball-on-a-
string” structures [257]. Therefore it could be possible upon addition of gemini surfactants to plasmids,
that a fixed number of plasmids could be condensed into finite units with excess gemini surfactant
forming micelles. The presence of excess or unbound gemini surfactants could be one explanation of the
increased cytotoxicity of GPs compared to GPLs (see appendix 0). This is also supported by other studies
have shown that gemini surfactants alone are cytotoxic [186, 189]. The morphology of these units can be
determined by the chemical structure of the gemini surfactant. With the 12-s-12 gemini surfactants, the
study was shown that the zeta potential and cmc increase with spacer length. At low spacer lengths (s=3-
7), the cmc is lower which can promotes the formation of free micelles in solution. This reduces the
number of gemini surfactants that can condense the plasmid, resulting in initial gemini-plasmid
complexes with lower zeta potential. This results in the smaller gemini-plasmid units aggregating to form

the larger GPs that are observed in our study. This can be extended to the 12-7NH-12 which has the
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highest cmc of the gemini surfactants screened and also has a higher zeta potential. This could be one
factor in the ability of 12-7NH-12 to form smaller and more stable GPs. Although the GPs are more
stable, the higher cmc could result in the formation of free monomers of gemini surfactant. This could
explain why it stable GPs are as cytotoxic as other GPs. Although the cmc can play a role in governing
the morphology of the GPs, other forces are also at work. As the spacer length increases (s=10 and 16) the
cmc also increases significantly. This not only allows for more gemini surfactants to be involved in the
compaction process resulting in higher zeta potential, the additional hydrophobic interaction, due to the
folding spacer, could also aid in the additional stabilization of the gemini-plasmid interaction. Therefore
these initial gemini-plasmids units are less prone to aggregations as seen with the smaller particle size of
their GPs. This trend can also be applied to the Py-3-12. Although its cmc is the lowest of gemini
surfactants screened, it has the highest zeta potential and smallest GPs. This could be due to the ability of
the pyrene functional group intercalating with DNA providing additional stabilization [258]. This
additional interaction could also limit the formation of free gemini surfactant micelles and explain the
observed decrease in cytotoxicity with Py-3-12 GPs compared to GPs (refer to appendix 0). Further
evidence of this intercalation is the ability of EtBr to penetrate Py-3-12 based gemini NPs. This is could
be due to orientation of the pyrene tail into the DNA molecule which could leave small areas exposed that
would allow EtBr to enter as well. This supramolecular aggregate model of GP assemble could also aid in

the explanation of the formation of GPL.

Previous studies have demonstrated that addition of the phospholipids to GPL results in a
decrease in overall size and formation of stable NPs. This finding is supported by FCS and DLS study and
it was shown that the type of phospholipids (DOPE or DD 1:3) had no effect on final morphology. The
theory of dispersion effect of the phospholipids is also supported by the raw intensity values. Figure 21
show that the addition of phospholipids not only decrease the intensity of each peak, suggesting there are
fewer plasmids, it also increases the frequency of the peaks indicating the presence of more particles in
solution. Furthermore, the study also shows that different populations of GPL exist and each contains
different amount of plasmids as shown by the small and large peaks. This study has also shown that the
number of plasmids within the GPL typically ranges between 10-20 plasmids per complex. Although no
study to date has shown the dynamics of the transition between GP and GPL, a theory is proposed based
on the data. Since it is believed that the GP is composed of a supramolecular aggregate, the phospholipid
may interact with excess gemini to disperse the aggregated GP complexes. The theory is supported by
another study has reports that gemini surfactants in fact do interact with the liposomes [259]. This

suggests that the addition of the phospholipids acts as a sort of molecular scissor, scavenging free-gemini
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surfactants and aiding in the formation of GPL. This would allow the condensed plasmids to disperse
forming the final GPL (Figure 39).
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Figure 39: Diagram of the proposed supramolecular aggregate model of gemini NP assembly.

Step 1: Free negatively charged plasmids are initially condensed by the adsorption/binding of cationic gemini
surfactant molecules. The initial compaction produces gemini-plasmid units that aggregate due to their lower
surface charge and decreased repulsive forces and form the larger supramolecular GPs.

A) In the 12-series of gemini surfactants cmc is relatively high providing sufficient number of monomer
surfactants to neutralize the plasmids which results in the decrease in overall charge (low zeta potential
values) and aggregation of GPs; gemini surfactants with short spacers especially form GPs with very low
zeta potential; for the gemini surfactants with increasing spacer length zeta potential of GPs increases
with decreasing cmc and this maybe due to the difference in the interaction with the phosphate groups
on the DNA [196]

B) Pyrene gemini surfactants have the lowest cmc but due to possible additional intercalation interactions
the resulting GPs are more stable, as shown by smaller particle size and higher zeta potential.

C) Thel2-7NH-12 gemini surfactant has the highest cmc, with few free micelles and more available
monomers to aid in the binding of gemini surfactants to plasmid providing fewer large supramolecular
complexes compared to the 12-series of surfactants.

Step 2: The added phospholipids form mixed bilayers and potentially other polymorphic phases (hexagonal and/or
cubic [161]) with the gemini surfactants and produce a relatively spherical vesicle-like particles (GPL) with
increased overall surface charge which stabilizes the individual GPLs. In addition, some of the phospholipids also
form plasmid-free mixed gemini-lipid vesicles.
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7.0 Concluding remarks

In this thesis we have described the development and application of a novel method to study
gemini NPs using FCS. Monitoring of gemini NP assembly was established using labeled plasmid and
optimal conditions for FCS measurement were determined. It was demonstrated that particle size of both
the GPs and GPLs could be determined by FCS and was validated by comparing to DLS. In addition to
determining particle size, FCS was able to evaluate changes to the plasmid morphology during the various
stages based on the mobility in solution. When the FCS raw data was interpreted in an intensity-
dependent manner, other values could also be determined such as an approximation of the number of
plasmids within GP and GPL complex. By screening various structural changes to both gemini surfactant
and lipid gemini NPs it was revealed that FCS was able to reveal even small changes. Overall, FCS
provides deeper insight into the mechanism of gemini NP assembly. Based on these finding, a model of
gemini NP assembly has been proposed based the formation of GPs composed of “supramolecular
aggregates” which are governed by the chemical structure of the excess gemini surfactants followed by

dispersion due to the incorporation of the phospholipids to form final GPLs.
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8.0 Future directions

This initial study has demonstrated that although FCS is capable of determining the difference
between free-DNA, GP and GPL based on shifts in the ACF. Using this existing database, the next phase
of the experiments will involve studying the disassembly of NPs in solution. By changing various
external factors (e.g. pH, ionic concentration, addition of DNase) shifts in the ACF of GPL can be
monitored to see if DNA is released (restoration of free-Cy5-gWiz ACF) or other disassembly phase
occurs. Also since the ACF of GPL is established, results can be compared over multiple measurements
and over long periods of time to evaluate the stability of various formulations.

One of the technical barriers that need to be overcome to improve the effectiveness of FCS is a
more controlled labeling of the targeted molecules. Although this chemical approach (LabellT kit) was
optimized and allows for the simple conjugation of any fluorophore to a plasmid, the labeling was still
random allowing for minimal control over the position and degree of labeling. Although it was shown to
have little effect on monitoring free plasmids, upon compaction, the higher number of fluorophores
resulted in uneven brightness and saturation of the detector that hindered proper ACF analysis. This was
particularly evident in the studies with GPs. To overcome this issue, alternatives to the chemical method
of fluorophore conjugation must be considered. The field of bio-conjugation chemistry has developed a
wide variety of methods to increase the specificity of labeling. Techniques such as triple helix
oligonucleotide and sequence-specific methyltransferase-induced labeling (SMILing) have been
demonstrated to specifically label plasmid with a variety of labels. Although these methods provide
increased specificity they require either the introduction of specific target sequences (triple helix
oligonucleotides) or require specialized enzymes and custom labeled nucleotides for SMILing [260]
[261]. To further lower the degree of labeling, new dyes are constantly being developed to provide higher
guantum yields and offer better brightness for biological applications, for instance the synthesis of new
Cyh5 that can sequenced into nucleotides [262]. By increasing the specificity of the labeling two objectives
can be achieved. The first major step is decreased brightness of the plasmids. This is essential as a
majority of the delivery system designs revolves around encapsulation and compaction of DNA which
also concentrates the fluorophores. By having more specific reactions one can actually lower the
brightness of these molecules so that they can be studied with greater detail by avoiding saturation of the
detector. Secondly with a precisely labeled plasmid additional experiments can be performed using FCS.
For instance more quantitative studies of particle number or concentration are more accurate since

specific concentration can be associated to certain number of fluorophores as shown in previous work by
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other groups [237]. Specific regions of the plasmid can also be labeled using specific dye(s) to monitor
degradation of DNA (since known cuts of plasmid will have specific diffusion coefficient) or FRET pair

can be used to evaluate internal dynamics of compacted plasmids [263-265].

As mentioned in this study, the overall characteristics of gemini NPs is understood better when
several techniques are used in tandem to generate a clear image of the vesicles. Although FCS and DLS
provide large amounts of particle size data, to gain a deep understanding of the final size, and more
importantly shape, additional microscopy images are required. Although previous studies by our group
investigated the morphology of a select few GPLs, no in depth screening of various GPL and GP has been
performed. Furthermore with the addition of the new phospholipids (DOPE and DD 1:3) showing similar
particle sizes additional information could be obtained by studying their morphology using microscopy
techniques such as AFM and TEM.

While FCS does provide a new tool in characterization of gemini NP there are limitations. While
the changes in the topology of plasmid could be monitored, in multi-component situations such as GPL,
one cannot monitor the interactions between the components. Furthermore situations such as the identity
of the large peaks in GPL (Figure 21) cannot be determined since the other two components are not
labeled. While additional FCS study could be performed with labeled gemini surfactant or lipids, it still
would not prove that they are in fact interacting in the gemini NP. To overcome this limitation a
derivative of FCS is fluorescence cross correlation spectroscopy (FCCS) can be explored. FCCS, or dual-
channel FCS, utilizes two fluorophores that are monitored simultaneously and independent
autocorrelation are performed for each channel, and then cross-correlated. These cross-correlation curves
generate a new set of information such as binding coefficients, interactions and chemical kinetics [218].
The ability to study the binding or interaction of molecule within a NP can provide even deep insight into
the composition of the gemini NP. FCCS could be used to study the interactions of various components
of the gemini NP. This would be interesting study to add pieces to the story of the intracellular fate of
gemini NPs. Also by understanding the interaction between gemini surfactant and phospholipid could
confirm the supramolecular aggregate model to see if fact the phospholipids could scavenge the excess
gemini surfactant. A second extension of FCS that also be explored is photon counting histogram (PCH).
As shown in Section 6.2.8.2, the intensity of photon can be used to characterize the molecules but that
without proper method of analyze the data it becomes difficult to interpret analytically. One method is to
use photon counting. Similar to how the FCS utilizes changes in fluorescent fluctuation in time-dependent
manner to generate biophysics values, PCH monitors the changes in fluorescent intensity using other

mathematical models. PCH would prove to be a more analytically valid method to study the precise
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stoichiometry of the gemini NPs. This technique can be applied to our currently experiment to gain a

more analytical study of the plasmid number discussed in section 6.2.8.2.

While this study has shown the application of FCS as a complimentary technigque to existing
methods, there are many other applications of FCS. One of the most exciting is the use FCS for studying
the NP in the context of a living cell in vitro. Since this study have verified that FCS is capable of
collecting information on mobility and particle size, with additional optimization it can be extended to
cellular environment. This would provide additional information link in solution characterization to
biological function of NPs in vitro. One application of in vitro FCS is the study of the trafficking of
labeled plasmid within the cell. Using a time-lapse experiment, one could monitor the mobility of the
plasmid or NP within the cell. By adding other FCS extension such as FCCS, the distribution of NP to
different organelles (e.g. using organelle specific dyes and labeled plasmid) can also be monitored. All of
this new information will be essential toward the rational design of new generation of non-viral systems

to advance nanomedicine.
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Appendix
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Figure 40: Size distribution by intensity for 12-3-12 GP. Graph was exported from Zetasizer nano software
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Figure 41: Size distribution by intensity for 12-3-12 GPL prepared with DD 1:3
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Figure 42 Size distribution by intensity for 12-3-12 GPL prepared with DOPE
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Figure 43: Size distribution by intensity for 12-6-12 GP. Graph was exported from Zetasizer Nano Software
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Figure 44: Size distribution by intensity for 12-6-12 GPL prepared with DD 1:3
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Figure 45:Size distribution by intensity for 12-6-12 GPL prepared with DOPE
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Figure 46: Size distribution by intensity for 12-7-12GP. Graph was exported from Zetasizer Nano Software
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Figure 47: Size distribution by intensity for 12-7-12 GPL prepared with DD 1:3
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Figure 48: Size distribution by intensity for 12-7-12 GPL prepared with DOPE
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Figure 49: Size distribution by intensity for 12-10-12GP. Graph was exported from Zetasizer Nano Software
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Figure 50 : Size distribution by intensity for 12-10-12 GPL prepared with DD 1:3
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Figure 51: Size distribution by intensity for 12-10-12 GPL prepared with DOPE
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Figure 52 : Size distribution by intensity for 12-16-12GP. Graph was exported from Zetasizer Nano Software
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Figure 53 : Size distribution by intensity for 12-16-12 GPL prepared with DD 1:3
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Figure 54: Size distribution by intensity for 12-16-12 GPL prepared with DOPE
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Figure 55: Size distribution by intensity for 16-3-16 GP. Graph was exported from Zetasizer Nano Software
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Figure 56: Size distribution by intensity for 16-3-16 GPL prepared with DD 1:3
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Figure 57: Size distribution by intensity for 16-3-16 GPL prepared with DOPE
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Figure 58: Size distribution by intensity for 18-3-18 GP. Graph was exported from Zetasizer Nano Software
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Figure 59: Size distribution by intensity for 18-3-18 GPL prepared with DD 1:3
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Figure 60: Size distribution by intensity for 18-3-18 GPL prepared with DOPE
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Figure 61: Size distribution by intensity for 12-7NH-12GP. Graph was exported from Zetasizer Nano
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Figure 62: Size distribution by intensity for 12-7NH-12 GPL prepared with DD 1:3
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Figure 63: Size distribution by intensity for 12-7NH-12 GPL prepared with DOPE
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Figure 64: Size distribution by intensity for Py-3-12GP. Graph was exported from Zetasizer Nano Software
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Figure 65: Size distribution by intensity for Py-3-12 GPL prepared with DD 1:3
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Figure 66: Size distribution by intensity for Py-3-12 GPL prepared with DOPE
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In vitro experiments

Cell culture and PrestoBlue® methodology

The origin and characterization of the parental PAM 212 has been described previously [266].
The PAM 212 cell line is a spontaneously malignant transformed cell line derived from neonatal BALB/c
keratinocytes in vitro, and was provided by Dr. Stuart Yuspa of the National Cancer Institute. The PAM
212 cells were cultures using MEM plus media with 10% FCS and 1% penicillin streptomycin. The cells

were routinely cultured at 37°C in a 5% CO,and humidified atmosphere until ~70-80% confluency.

PAM 212 were seeded at 20,000 cells per well in a black clear-bottom 96-well plate and incubated for 24
hours. At 80% confluency, cells were washed with MEM and treated with lipofectamine or gemini
compounds (GPs and GPLs) in quadruplicate for five hours. Cells were washed and allowed to incubate
for 24 hours in supplemented MEM. Cells were washed an incubated in 10 pL of PrestoBlue®
(Invitrogen, CA, USA) added to each well with 90 pL of basic MEM for 10 mins at 37°C. PrestoBlue®
was excited at 535nm and emission was measured at 615nm using a spectrophotometer (Spectramax M5,
Molecular Devices, CA, USA).

Cell viability assays for transfected keratinocytes

To assess the suitability of the gemini NPs for applications for in vitro studies, the cytotoxicity of
various transfection agents were tested. PrestoBlue® reagent is used to evaluate the viability and
proliferation of cells. The resazurin-based reagent used the reducing potential of the intracellular

environment as an indicator of cell viability.
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Figure 67: Cell viability assay using Presto Blue reagent in Pam 212 cell line. A) viability assay of various gemini GPs

B) viability assay of various GPLs. Measurements expressed as a meanSD (n

=4).
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Figure 68 Bright-field microscopy images of Pam 212 cells 24 hour post treatment with various formulations. A)
Negative control (MEM medium), B) Lipofectamine C) 12-3-12 GP D) 12-3-12 GPL. Images were taken at 400X
magnification.

Figure 67 shows the effects of GPs and GPLs on the viability of the Pam 212 cells. The study
showed that both commercial transfection reagent Lipofectamine Plus and GPLs do no significantly affect
the health of the Pam 212 cells. This was suggested by the viability measurement of over 95% for both
transfection reagents. This was also confirmed by bright field microscopy as shown in Figure 68 to have
no rounding or abnormal cell growth (data for other gemini surfactants not shown). All GPs screened in
this study were observed to be extremely cytotoxic with viability generally lower than 20%. An exception
was with Py-3-12 GP which was significantly less cytotoxic (57£7%). Overall, GPL have no
significantly cytotoxicity when evaluated by brightfield and PrestoBlue® assay. Comparison between
select DOPE and DD 1:3 NP also demonstrated that there was no significant difference based on lipid
composition. Gemini surfactant structure also did not have a significant effect on the viability of the cells.
Select DD 1:3 were screened for cytotoxicity due to the absence of transfection in the previous study. In
term of GPLs assembly, the additional of the phospholipid is the key factor in regulating cytotoxicty of
the GPLs.
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