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Abstract

In a series of work initiated by Nemirovsky and Yudin, and later extended by Nesterov,
first-order algorithms for unconstrained minimization with optimal theoretical complexity
bound have been proposed. On the other hand, conjugate gradient algorithms as one of
the widely used first-order techniques su↵er from the lack of a finite complexity bound. In
fact their performance can possibly be quite poor. This dissertation is partially on tight-
ening the gap between these two classes of algorithms, namely the traditional conjugate
gradient methods and optimal first-order techniques. We derive conditions under which
conjugate gradient methods attain the same complexity bound as in Nemirovsky-Yudin’s
and Nesterov’s methods. Moreover, we propose a conjugate gradient-type algorithm named
CGSO, for Conjugate Gradient with Subspace Optimization, achieving the optimal com-
plexity bound with the payo↵ of a little extra computational cost.

We extend the theory of CGSO to convex problems with linear constraints. In par-
ticular we focus on solving l

1

-regularized least square problem, often referred to as Basis
Pursuit Denoising (BPDN) problem in the optimization community. BPDN arises in many
practical fields including sparse signal recovery, machine learning, and statistics. Solving
BPDN is fairly challenging because the size of the involved signals can be quite large;
therefore first order methods are of particular interest for these problems. We propose
a quasi-Newton proximal method for solving BPDN. Our numerical results suggest that
our technique is computationally e↵ective, and can compete favourably with the other
state-of-the-art solvers.
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Hans De Sterck, and Michael Friedlander for their insightful comments and helpful sug-
gestions.

Furthermore, I would like to acknowledge the role of the sta↵ members, the faculty
members and my fellow graduate students in the department of Combinatorics and Opti-
mization. I wish to specially thank the members and organizers of the Continuous Opti-
mization group for the wonderful seminars and useful discussions.

Thank you to all my friends who were there for me. Particularly, I owe a heartfelt
thanks to my dear friend Ali who encouraged me and lightened me up whenever I needed
it the most.

Last but certainly not least, my greatest, deepest and most special thanks goes to my
parents, Mehdi and Fahimeh, and my brother, Soheil, who made finishing this thesis pos-
sible with their unconditional love, endless patience and continuous support. My gratitude
is beyond words, but thank you for believing in me and encouraging me on this journey.

iv



Dedication

To my parents

v



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Notation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Calculus and Convex Analysis . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Introduction to Sparse Recovery . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Conjugate Gradient with Subspace Optimization 23

2.1 CGSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Restarting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Correction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Detection and Correction of Loss of Independence . . . . . . . . . . . . . . 34

2.3 Computational Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Remarks on Computational Divided Di↵erences . . . . . . . . . . . 38

vi



2.3.2 Implementation of CGSO . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Numerical Results for the Detection and Correction Procedure . . . 45

2.4 CGSO for Constrained Problems . . . . . . . . . . . . . . . . . . . . . . . 50

3 On Nesterov’s Technique 51

3.1 Nesterov’s Optimal Method . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Substituting CG for xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Substituting CG for yk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 IMRO: A Practical Proximal Quasi-Newton Method 59

4.1 Computing xk+1 in IMRO . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 IMRO - The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 IMRO-1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 IMRO-2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Convergence of IMRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 FIMRO - Accelerated Variant of IMRO . . . . . . . . . . . . . . . . . . . . 79

5 Computational Experiment on IMRO 85

5.1 Related Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusion and Future Work 103

Appendix 106

A CGSO for Convex Problems with Linear Constraints 106

A.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Implementation of CGSO for BPDN Problem . . . . . . . . . . . . . . . . 112

A.2.1 Computing the Projected Gradient . . . . . . . . . . . . . . . . . . 113

A.3 Computational Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References 120

vii



List of Tables

2.1 Comparison of CGSO and HZ for linear log barrier function . . . . . . . . 43

2.2 Comparison of CGSO and HZ for log of determinant function . . . . . . . 44

2.3 Comparison of CGSO and HZ for d-norm function . . . . . . . . . . . . . . 44

2.4 Maximum value of quotient (2.23) (⇢̄) . . . . . . . . . . . . . . . . . . . . . 45

2.5 Number of units of computation for convex quadratic functions. . . . . . . 47

2.6 Number of units of computation for log-barrier functions. . . . . . . . . . . 48

2.7 Number of units of computation for regularized BPDN functions. . . . . . 48

2.8 Number of units of computation for distance geometry functions. . . . . . . 49

3.1 Nesterov’s method and CG for the convex quadratic function . . . . . . . . 58

3.2 Nesterov’s method and CG for the smoothed BPDN problem . . . . . . . . 58

5.1 Test cases with orthonormal A . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Numerical results (number of A/At calls) for comparison of IMRO and NestA 89

5.3 Information on test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Numerical results (number of A/At calls) for BPDN solvers . . . . . . . . . 93

5.5 Accuracy of the solution, i.e. kxt � x⇤k, in IMRO and other BPDN solvers 94

A.1 Results on CGSO for constrained problems . . . . . . . . . . . . . . . . . . 119

A.2 Comparing the error of the solution, kxk � x⇤k . . . . . . . . . . . . . . . . 119

viii



List of Figures

2.1 Quotient (2.23) (⇢̄) with respect to iteration count . . . . . . . . . . . . . . 46

5.1 Accuracy of solution in IMRO and NestA . . . . . . . . . . . . . . . . . . . 90

5.2 Accuracy of the solution for BPDN solvers . . . . . . . . . . . . . . . . . . 95

5.3 Recovered signal after 100 iteration for Sparco(5) . . . . . . . . . . . . . . 96

5.4 Recovered signal after 300 iteration for Sparco(9) . . . . . . . . . . . . . . 97

5.5 Recovered signal after 300 iteration for Sparco(10) . . . . . . . . . . . . . . 98

5.6 Recovered signal after 1000 iteration for Sparco(10) . . . . . . . . . . . . . 99

5.7 Recovered signal after 200 iteration for Sparco(11) . . . . . . . . . . . . . . 100

5.8 Recovered signal after 300 iteration for Sparco(401) . . . . . . . . . . . . . 101

5.9 Recovered signal after 500 iteration for Sparco(402) . . . . . . . . . . . . . 102

A.1 Illustration of the su�cient reduction in objective value when A(xj+1) =
A(xj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 Signal recovery for CGSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



Chapter 1

Introduction

The rapid progress in technology and the larger problem sizes arising in optimization call for
fast, accurate and robust algorithms. For many large-scale problems, forming the Hessian
is quite expensive so algorithms that rely only on function and gradient evaluations are of
particular interest. These algorithms are often referred to as first-order algorithms (FOA);
in other words, FOA refers to iterative algorithms that rely on information obtained by
the first derivative of function in each iteration.

This dissertation is divided into two parts. The first part focuses on a class of first-
order techniques for unconstrained problems called Conjugate Gradient algorithms (CG).
The second part focuses on solving “Basis Pursuit Denoising Problem” (BPDN) arising
in many applications including sparse recovery in compressive sensing. In the remainder
of this chapter, we first present the notation and review the required background used
throughout this thesis. CG methods are reviewed in Section 1.2. In Section 1.3 we give a
brief overview of sparse recovery and BPDN problem. An outline and the contribution of
this work is discussed in Section 1.4.

1.1 Notation and Background

1.1.1 Linear Algebra

The material of this section is covered in [63, 62] in extensive detail. We reserve the
lowercase alphabet for vectors, and uppercase alphabet for matrices throughout this thesis.
Scalars are denoted by lowercase Greek letters. We are mainly working with real Euclidean
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vector space Rn equipped with inner product denoted by h·, ·i, and defined as hx, yi =Pn
i=1

xiyi.

A linear transformation, matrix, is defined as A : Rn ! Rm. Its adjoint is denoted by At,
and we have hAx, yi = hx,Atyi. We use the standard notion of “square”, “symmetric”,
“nonsingular”, “diagonal” and “orthonormal” for matrices of size n⇥ n. det(A), and A�1

stand for determinant and inverse of A, respectively. aij, a[i], and a[j] represent the ijth
entry, ith row, and jth column of A, respectively.

Norms:

The p-norm of a vector is defined as (
Pn

i=1

|xi|p)
1

p . The following special cases are partic-
ularly important in our discussions:

kxk
2

:=

vuut
nX

i=1

x2

i , kxk
1

:=
nX

i=1

|xi|, kxk1 := max
i

|xi|.

The function kxk
2

is often referred to as Euclidean norm, and kxk
1

as l
1

-norm. The
following inequalities play important roles regarding vector norms:

kx+ ykp  kxkp + kykp , (1.1)

|hx, yi|  kxk
2

kyk
2

. (1.2)

The first inequality is the “triangle inequality”, which holds true for any norm; while the
second one is “Cauchy-Schwarz inequality” and holds for Euclidean norm. In the remainder
of this thesis we use kxk for Euclidean norm unless otherwise is stated.

Matrix induced norms are natural extensions of vector norms. Associated with any vector
norm, its corresponding matrix norm is defined as:

kAkp = sup
kxk

p

=1

kAxkp = sup
x 6=0

kAxkp
kxkp

. (1.3)

The induced l
1

and l1 norms are sometimes called maximum column sum and maximum
row sum because the induced norm formulation essentially boils down to the following
equivalent forms:

kAk
1

= sup
1jn

nX

i=1

|aij| and kAk1 = sup
1in

nX

j=1

|aij|. (1.4)

The induced Euclidean or l
2

-norm is called the “spectral norm” and equals to

kAk
2

=
p
�
max

(AtA), (1.5)
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where �
max

stands for the maximum eigenvalue (to be defined shortly).

Note that any m ⇥ n matrix can be considered as a vector of size mn, hence we can still
define a component-wise matrix norm as

kAkc =
 

mX

i=1

nX

j=1

|aij|c
! 1

c

. (1.6)

Frobenius norm refers to entry-wise 2-norm for matrices. In our discussion, we use induced
norms for matrices unless otherwise is stated.

Eigenvalue Decomposition and Positive Definiteness:

Scalar � and nonzero vector v are called eigenvalue and eigenvector of matrix A 2 Rn⇥n

if Av = �v. All eigenvalues of a symmetric matrix are real numbers. A symmetric matrix
can be represented by its eigenvalues as V ⇤V t, where V is an orthogonal matrix consisting
of eigenvectors of A, and ⇤ is a diagonal matrix with eigenvalues as the diagonal entries.

A symmetric matrix A is called positive semidefinite if xtAx � 0 for all x 2 Rn; if the
inequality holds strictly for all nonzero vectors x, i.e., xtAx > 0, then we call A positive
definite. Notations A ⌫ 0 and A � 0 represent positive semidefinite and positive definite
matrices. Also A ⌫ B and A � B means A � B ⌫ 0 and A � B � 0, respectively. All
eigenvalues of a positive semidefinite matrix are nonnegative; similarly a positive definite
matrix has only positive eigenvalues, so it is nonsingular. The eigenvalue decomposition
enables us to define the square root of a positive semidefinite matrix A, as A

1

2 = V ⇤
1

2V t,
where ⇤

1

2 stands for the diagonal matrix with square root of eigenvalues on the diagonal.
I and e refer to the identity matrix and all ones vector, respectively.

Definition 1.1. The scaled norm associated with a positive definite matrix H is defined
as

kxkH =
p
xtHx . (1.7)

It is not too di�cult to show that (1.7) satisfies all the axioms for a vector norm, namely

• Since H � 0, xtHx = 0 , x = 0,

• k↵xkH =
p
↵2xtHx = ↵kxkH , and

• kxkH + kykH � kx+ ykH , (kxkH + kykH � kx+ ykH)2 ,
p
xtHxytHy � xtHy

Let a = H
1

2x, and b = H
1

2y, then the final inequality is simply Cauchy-Schwarz
inequality on a, and b, i.e., kakkbk � ha, bi.

3



Suppose a and b are defined as above, then

atb = xtHy  kakkbk =
p
xtHx

p
ytHy = kxkHkykH ;

in other words the notion of Cauchy-Schwarz inequality can be extended for scaled norms
as

xtHy  kxkHkykH . (1.8)

In addition, suppose �min and �max denote the minimum and maximum eigenvalues of a
positive definite H, then for any x we have

�minkxk  kxkH  �maxkxk . (1.9)

1.1.2 Calculus and Convex Analysis

In this section we present a brief overview of convex analysis and the notions we require
throughout this thesis. For detailed discussion on convex analysis, one may refer to [97, 61].
The standard notations of rf(x) and r2f(x) are reserved for gradient and Hessian of
function f : Rn ! R. Since the algorithms discussed in this thesis are iterative methods,
we sometimes use the notation rfk for rf(xk), where k is the iteration counter. Moreover
D(f) denotes the domain of a function f : Rn ! R [1, and is defined as

D(f) = {x : f(x) < 1}.

The signum function is denoted by sgn, and is defined as

sgn(x)i =

8
><

>:

�1 if xi < 0,

0 if xi = 0,

1 if xi > 0.

(1.10)

Rate of Convergence: Suppose {xk} is a sequence converging to x⇤. The sequence
{xk} is said to have convergence rate of order p if there exists a constant m such that

kxk+1 � x⇤k
kxk � x⇤kp  m, (1.11)

for su�ciently large k. In the special cases that p = 1 andm 2 (0, 1) the rate of convergence
is called “linear”. When p = 2, the sequence has “quadratic” rate of convergence. A
sequence converges “superlinearly” if

lim
k!1

kxk+1 � x⇤k
kxk � x⇤k = 0. (1.12)

4



Convex Sets and Convex Functions:

Set C is called convex if for any x, y 2 C and � 2 (0, 1), we have �x + (1 � �)y 2 C. Let
B✏(x) denote a ball of radius ✏ centred at x. The sets int(C) and rint(C) stand for the
interior and relative interior of a convex set C which are defined as

int(C) = {x 2 C : 9✏ > 0, B✏(x) ✓ C}, (1.13)

rint(C) = {x 2 C : 9✏ > 0, B✏(x) \ a↵(C) ✓ C}. (1.14)

A set of the form {x : Ax  b} is called a polyhedron. It’s not di�cult to show that every
polyhedron is a convex set.

Projection of a point x 2 Rn, onto a closed convex set C is defined as

ProjC(x) = argmin
u2C

ku� xk. (1.15)

Let C 2 Rn be a set, not necessarily convex. The dual cone of C, which is always closed
and convex, is denoted by C⇤ and defined as

C⇤ = {d : hd, ci � 0, 8c 2 C}. (1.16)

The polar cone of C is denoted by C� and is defined as

C� = {d : hd, ci  0, 8c 2 C}. (1.17)

Clearly the polar cone is equal to the negative of the dual cone, i.e., C� = �C⇤.

Similarly, the dual cone and the polar cone of a cone K are defined as

K⇤ = {d : hd, ci � 0, 8c 2 K}, (1.18)

K� = {d : hd, ci  0, 8c 2 K}. (1.19)

Moreover, if the cone K is closed and convex, then K = K⇤⇤.

Theorem 1.1. [60, Theorem 3.2.5 (Moreau’s Decomposition Theorem)] Let K be a closed
convex cone. For x, y, and z in Rn, the following statements are equivalent:

• z = x+ y, x 2 K, y 2 K� and hx, yi = 0,

• x = ProjKz and y = ProjK�z.
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The cone of feasible directions, the tangent cone, and the normal cone of a set C at point
x 2 C are denoted by FC(x), TC(x), and NC(x), respectively and defined as

FC(x) = {d : 9 ✏̄ > 0 s.t. x+ ✏d 2 C for ✏ 2 (0, ✏̄)} , (1.20)

TC(x) =

⇢
d : 9{xk} ✓ C, {⌧ k} s.t. xk ! x, ⌧ k ! 0 and

xk � x

⌧ k
! d

�
, (1.21)

NC(x) = {d : hd, x� yi  0 for 8y 2 C} . (1.22)

A function f is said to be convex if

f (�x+ (1� �)y)  �f(x) + (1� �)f(y),

for each x, y 2 D(f) and � 2 (0, 1). Any convex function is continuous over the interior
of its domain. If the above inequality holds true as strict inequality for all x, y 2 D(f),
x 6= y, and � 2 (0, 1), then the function is strictly convex.

The indicator function of a convex set C is convex and is defined as:

IC(x) =

(
0 if x 2 C,
1 otherwise.

(1.23)

The vector ⇠ is called a subgradient of a convex function f at x 2 D(f) if

f(y)� f(x) � h⇠, y � xi for all y 2 D(f). (1.24)

The set of all subgradients of f at x is denoted by @f(x). The set @f(x) is always nonempty,
closed and convex. A point x is a minimizer of f if and only if 0 lies in @f(x).

A function is said to be di↵erentiable at x if rf(x) is the only element in @f(x). A
continuously di↵erentiable function is a di↵erentiable function whoserf(x) is a continuous
function as well. Function f belongs to the class of k continuously di↵erentiable functions
if the first k derivatives of f (rf, r2f, . . . ,rkf) exist and are continuous.

Let Ck stand for the class of k continuously di↵erentiable convex functions; no superscript
simply means that k = 1, i.e., the class of continuously di↵erentiable functions. The
following inequality holds for a function f 2 C at every x, y 2 D(f):

hrf(x)�rf(y), x� yi � 0. (1.25)

A function is called strongly convex if there exists a constant l such that for any x, y 2 D(f)
we have

f(y) � f(x) + h⇠, y � xi+ l

2
kx� yk2, (1.26)

6



where ⇠ 2 @f(x). We say a function is “Lipschitz continuous with constant L” on C ✓ D(f)
if for any x, y 2 C and a constant L,

kf(x)� f(y)k  Lkx� yk; (1.27)

L is called the Lipschitz constant of f . For first-order algorithms, the Lipschitz continuity
of the gradient is often desired. We use the notation CL for the class of continuously
di↵erentiable convex functions with Lipschitz continuous gradient. In the first part of this
thesis we are primarily focused on continuously di↵erentiable strongly convex functions
with Lipschitz continuous gradients, namely functions f for which we have

krf(x) � rf(y)k  Lkx� yk, (1.28)

f(y) � f(x) + hrf(x), y � xi+ l

2
kx� yk2. (1.29)

We use the notation Cl,L for the aforementioned class of functions. As a result of (1.28),
we have the following for a function f 2 Cl,L:

f(y)  f(x) + hrf(x), y � xi+ L

2
kx� yk2, (1.30)

f(y) � f(x) + hrf(x), y � xi+ 1

2L
krf(x)�rf(y)k2, (1.31)

hrf(x) � rf(y), x� yi � 1

L
krf(x)�rf(y)k2. (1.32)

For derivation of the above inequalities one may refer to [85, Theorem 2.1.5].

Mean Value Theorem: Let f be di↵erentiable on a convex set C. Then for any
x, y 2 C we have

f(y) = f(x) +rf (x+ �(y � x))t (y � x), for some � 2 (0, 1). (1.33)

Taylor’s Theorem: Let f be twice di↵erentiable on an open convex set C. The
second-order Taylor’s expansion of f at x is

f(y) = f(x) +rf(x)t(y � x) +
1

2
(y � x)tH(y � x) +O(ky � xk3).

If f is di↵erentiable, one may aim for the first-order Taylor’s expansion as

f(y) = f(x) +rf(x)t(y � x) +O(ky � xk2) y 2 C.

7



Taylor’s theorem generalizes the above equations to k�th di↵erentiable functions. This is
however beyond the scope of our work and needs additional definitions and notations. The
interested reader may refer to [80, Theorem 3.3.1].

We use the term “composite function” to refer to a function of the following form:

F (x) := f(x) + g(x), (1.34)

where f and g are both convex functions. Function g is possibly non-smooth, but f 2 CL.
The notion of composite function has been commonly used in the literature of first-order
method for the summation of two convex functions, see for example [87, 74], and should
not be confused with the composition of two functions.

Definition 1.2. [30] The projection of the steepest descent direction, i.e., �rf(x), of a
convex function f : C ! R at x 2 C is denoted by rCf(x) and defined as below:

rCf(x) = argmin
v

{kv +rf(x)k : v 2 TC(x)} . (1.35)

This is often referred to as the projected gradient.

Definition 1.3. The “proximal mapping” or “proximal operator” of convex function g at
y is defined as

Proxg(y) = argmin
x

⇢
1

2
kx� yk2 + g(x)

�
. (1.36)

Note that projection onto a convex set C corresponds to a proximal mapping in which g(x)
is the indicator function for C, i.e.,

ProjC(x) = Proxg(x), (1.37)

where

g(x) =

(
0 x 2 C,
1 otherwise.

(1.38)

The proximal point, Proxg(y), exists and is unique because 1

2

kx � yk2 + g(x) is strictly
convex. Moreover, the proximal operator is firmly nonexpansive, i.e.,

kProxg(x)� Proxg(y)k2  hProxg(x)� Proxg(y), x� yi 8x, y 2 D (p(x)) . (1.39)

It is not too di�cult to see why (1.39) is true. By the optimality of x, there exists a
⇠g(x) 2 @g(x) such that

Proxg(y)� y + ⇠g (Proxg(y)) = 0 ) ⇠g (Proxg(y)) = y � Proxg(y). (1.40)
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Similarly, we have ⇠g (Proxg(x)) = x� Proxg(x). Using the convexity of g we get

g (Proxg(x)) � g (Proxg(y)) + hy � Proxg(y),Proxg(x)� Proxg(y)i, (1.41)

g (Proxg(y)) � g (Proxg(x)) + hx� Proxg(x),Proxg(y)� Proxg(x)i. (1.42)

Adding the above two inequalities concludes that the proximal operator is nonexpansive.
Also using (1.39) and Cauchy-Schwarz inequality we derive

kProxg(x)� Proxg(y)k  kx� yk. (1.43)

Definition 1.4. “Shrinkage” or “Soft-thresholding” (commonly called thresholding) oper-
ator refers to a proximal mapping where g(x) is the l

1

-norm function, i.e.,

S�(y) = argmin
x

⇢
1

2
kx� yk2 + �kxk

1

�
. (1.44)

What makes thresholding operator interesting is the fact that it can be easily computed,

S�(y)i =

8
><

>:

yi � � yi � �,

0 |yi|  �,

yi + � yi  ��.
(1.45)

One may easily check that (1.45) is actually equivalent to

S�(y) = sgn(y)�max {|y|� �, 0} , (1.46)

where � denotes the entry-wise, or Hadamard product.

Using the definition of scaled norm (1.1), we can define the notion of a “scaled proximal
mapping”.

Definition 1.5. The scaled proximal mapping (or operator) of a convex function g, asso-
ciated with a positive definite matrix H, is defined as

ProxHg (y) = argmin
x

⇢
1

2
kx� yk2H + g(x)

�
. (1.47)

The properties of proximal mapping can be generalized to scaled proximal mapping. The
scaled proximal point, ProxHg (y), exists and is unique because for a positive definite matrix
H the proximity function, 1

2

kx� yk2H + g(x), is strictly convex. Besides we have

⇠g
�
ProxHg (y)

�
= H

�
y � ProxHg (y)

�
,

⇠g
�
ProxHg (x)

�
= H

�
x� ProxHg (x)

�
, (1.48)
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by optimality conditions for (1.47). We may now use the convexity of g to obtain

g
�
ProxHg (x)

�
� g

�
ProxHg (y)

�
+ hH

�
y � ProxHg (y)

�
,ProxHg (x)� ProxHg (y)i,

g
�
ProxHg (y)

�
� g

�
ProxHg (x)

�
+ hH

�
x� ProxHg (x)

�
,ProxHg (y)� ProxHg (x)i.

Adding the above two inequalities gives us

kProxg(x)� Proxg(y)k2H  hProxg(x)� Proxg(y), H(x� y)i, (1.49)

which shows that the scaled proximal map is firmly nonexpansive. Using the notion of
scaled Cauchy-Schwarz inequality we attain

kProxg(x)� Proxg(y)kH  kx� ykH . (1.50)

This concludes the review on proximal operator. The interested reader can reach a more
in-depth discussion on proximal operators in [7].

1.1.3 Convex Optimization

An optimization problem has the following general form:

min
x2C

f(x), (1.51)

where f(x) is the objective function and C is the feasible region. When f is a linear function
and C is a polyhedron, the resulting problem is a linear program (LP); similarly, when f
is quadratic, (1.51) is a quadratic program (QP).

An important class of problems in optimization is convex problems, in which C is a convex
set and f is a convex function. In the absence of constraints and when f 2 C, it su�ces
to have rf(x⇤) = 0 for x⇤ to be the minimizer of f . The first order optimality condition
for constrained convex problems requires the minimizer x⇤ to satisfy �rf(x⇤) 2 NC(x⇤).
In fact, for convex problems this condition is su�cient for optimality.

It is possible to state any convex problem in the format below:

min f(x)
s.t. gi(x) � 0 i 2 {1, . . . ,I},

hj(x) = 0 j 2 {1, . . . ,E},
(1.52)
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where f(x) and �gi(x) for all i = 1, . . . ,I are convex functions and hj(x) for all j =
1, . . . ,E are a�ne functions. The Lagrange function associated with problem (1.52) is
defined as

L(x,�, µ) = f(x)�
IX

i=1

�igi(x)�
EX

i=1

µihi(x), (1.53)

where � 2 RI and � � 0 and µ 2 RE are Lagrange multipliers of problem (1.52). The
Lagrange function is quite important in deriving optimality conditions on the minimizer
of (1.52). The point x⇤ is the minimizer of (1.52) if it solves

min
x

max
��0, µ

L(x,�, µ). (1.54)

Problem (1.54) is called the primal problem. Its dual is

max
��0, µ

min
x

L(x,�, µ). (1.55)

By weak duality theorem, any feasible solution of the dual problem provides a lower bound
on the primal problem. Strong duality states that the value of the primal equals the
value of the dual problem at optimality. Strong duality does not necessarily hold for any
convex problem. There are, however, conditions under which strong duality holds. These
conditions are called constraint qualifications [90, Chapter 12]. Suppose x⇤, �? � 0, and
µ? are the optimal solutions of the primal-dual problem and the constraint qualifications
hold. Then the following set of equations is true:

rxL(x
⇤,�?, µ?) = 0, (1.56a)

gi(x
⇤) � 0 i 2 {1, . . . ,I}, (1.56b)

hj(x
⇤) = 0 j 2 {1, . . . ,E}, (1.56c)

�? � 0, (1.56d)

�?i gi(x
⇤) = 0 8i 2 {1, . . . ,I}. (1.56e)

Conditions (1.56) called KKT conditions are su�cient optimality conditions for the class
of convex problems, i.e., if KKT conditions hold, then x⇤, µ?, and �? are optimal solutions
to the primal and dual problems.
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1.2 Conjugate Gradient Method

The method of Conjugate Gradient (CG) was introduced by Hestenes and Stiefel [59] for
minimizing convex quadratic functions,

f(x) =
1

2
xtAx� btx, (1.57)

where A � 0, or A ⌫ 0 and b 2 range(A). The first order optimality conditions (i.e.,
rf(x) = Ax � b = 0) imply that the solution to the above problem, x⇤, solves the linear
equation Ax = b; therefore we refer to this algorithm as “linear conjugate gradient”.
Hestenes and Stiefel’s original linear CG has the following form:

xj+1 = xj � (rj)
t
dj

(dj)t Adj
dj, (1.58a)

dj+1 = �rj+1 +
(rj+1

)t Adj

(dj)t Adj
dj. (1.58b)

In the above equations rj is rf(xj) = Axj � b and d0 = �r0, where x0 is the starting
point. It is possible to show that the number of iterations in linear CG is bounded by the
dimension of the problem, n. For more details on linear CG, one may refer to [50] or [90].

Conjugate gradient technique was soon generalized by Fletcher and Reeves [47] and Polak
and Ribière [92], to the general problem of unconstrained minimization, i.e.,

min
x2Rn

f (x) . (1.59)

However, the theoretical basis for nonlinear CG is considerably weaker than that of the
linear case. In the linear case, the successive gradients are mutually orthogonal and the
search directions are mutually conjugate; these facts allow several strong convergence proofs
including finite termination, convergence bounded in terms of problem condition number
(i.e., �max

(A)

�
min

(A)

), and superlinear convergence [50].

The general form of nonlinear CG is as follows:

xj+1 = xj + ↵jdj, (1.60a)

dj+1 = �rf(xj+1) + �jdj. (1.60b)
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Here, dj is the search direction at each iteration, and ↵j is the step size, usually determined
by a line search. Di↵erent updating rules for �j gives us di↵erent variants of nonlinear CG.
The most common formulas for computing �j are:

Fletcher-Reeves (1964): �FR = kgj+1k
kgjk , and

Polak-Ribière (1969): �PR =
(gj+1)

t

(gj+1�gj)
kgjk .

Hager and Zhang [54] present a complete list of all updating rules in their survey on
nonlinear CG. The convergence of nonlinear CG is highly dependent on the line search;
for some, the exact line search is crucial. There are numerous papers devoted to the study
of convergence properties of nonlinear CG, most of which discuss variants of nonlinear CG
that do not rely on exact line search to be globally convergent. Al-Baali [3] shows the
convergence of Fletcher-Reeves algorithm with inexact line search. Gilbert and Nocedal
[48] establish the convergence of a variant of the Polak-Ribière nonlinear CG algorithm with
no restart and no exact line search. Dai and Yuan [39] present a nonlinear CG for which
the standard Wolfe condition su�ces. A recent variant of CG has been proposed by Hager
and Zhang [53] that relies on a line search satisfying the Wolfe Conditions. Furthermore
this algorithm has the advantage that every search direction is a descent direction, which
is not necessarily the case in nonlinear CG.

From Yuan and Stoer’s perspective [116], CG is a technique in which the search direction
dj+1 lies in the subspace of Span{gj+1, dj}. In their proposed algorithm, they compute the
new search direction by minimizing a quadratic approximation of the objective function
over the mentioned subspace. The idea of finding the next iterate of CG through a subspace
optimization is the core of the variant of CG we proposed in the next chapter. It is also
explored in the proposed CG techniques in [1] and [70]. A more generalized form of CG
called Heavy Ball Method, was introduced by Polyak [93], in which xj+1 is xj + ↵(�gj) +
�(xj � xj�1). He proved a geometric progression rate for this algorithm when ↵ and �
belong to a specific range.

About two decades after nonlinear CG was originated, Nemirovsky and Yudin [82] proposed
a variant of this algorithm with the worst-case complexity bound of O(ln(1/✏)

p
L/l). Here

✏ is the desired relative accuracy, that is, (f(xn) � f(x⇤))/(f(x0) � f(x⇤))  ✏, where x0

is the starting point, x⇤ is the optimizer, and xn is the final iterate. This is the best
achievable bound for this particular class of methods and functions [82, 85]. We refer to
this algorithm as NY-CG, and will cover some more details about their method in the next
chapter.
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Although NY-CG algorithm can be regarded as a variant of conjugate gradient, it does
not reduce to linear conjugate gradient when applied to a convex quadratic function. In
fact, it can be much slower. In contrast, the FR and PR variants of nonlinear CG reduce
to linear CG in the case of a convex quadratic and if an exact line search is used. Many
would argue that this is a defining property of nonlinear CG. In addition, NY-CG requires
an expensive subspace optimization step on every iteration. A later paper by Nesterov [84]
remedied this drawback by achieving the same complexity without the need for subspace
optimization.

The general form of Nesterov’s algorithm is:

xk = yk � ↵krf(yk), (1.61a)

tk+1 =
1 +

p
1 + 4tk2

2
, (1.61b)

yk+1 = xk +
tk � 1

tk+1

�
xk � xk�1

�
, (1.61c)

where t0 = 1, and ↵k  1

L
is determined through a line search. If the Lipschitz constant is

known, one may take the constant step size of 1

L
in each iteration. Let us denote tk�1

tk+1

by
⌧ k. Rewriting Nesterov’s algorithm solely in terms of sequence {yk}, we get

yk+1 = yk � ↵krf(yk) + ⌧ k
�
yk � ↵krf(yk)� yk�1 + ↵k�1rf(yk�1)

�

= yk + ⌧ k(yk � yk�1)� (1 + ⌧ k)↵krf(yk) + ⌧ k↵k�1rf(yk�1).

Letting dk+1

y = yk+1 � yk, the above equation can equivalently be stated as

dk+1

y = ⌧ kdky � (1 + ⌧ k)↵krf(yk) + ⌧ k↵k�1rf(yk�1). (1.62)

Assuming that nonlinear CG has the format mentioned in (1.60), dk+1

y in nonlinear CG
would be

dk+1

y =
↵k�k

↵k�1

dky � ↵krf(yk), (1.63)

because
yk+1 = yk + ↵kdk,

where

dk = �kdk�1 �rf(yk) = �k

✓
yk � yk�1

↵k�1

◆
�rf(yk).
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Comparing of (1.62) and (1.63) sheds more light on some similarities between CG and
Nesterov’s algorithm. In both algorithms dk+1

y is a linear combination of the previous
gradients; the di↵erence lies in the coe�cients used in the linear combinations.

Despite close similarities between Nesterov’s, NY-CG, and traditional CG algorithms, the
question of whether nonlinear CG can achieve the same complexity bound has remained
unanswered. In Chapter 2 we derive conditions under which CG can achieve the same
iteration bound of NY-CG. As a result of our study we propose an algorithm called CGSO
that can achieve the same complexity bound with the cost of extra computational work
per iteration.

We have already pointed out that the orthogonality of gradients does not hold for nonlinear
CG, and in fact gradients may become nearly dependent causing a significant slow-down in
the convergence of the algorithm. A natural measurement on the orthogonality of gradients

is defined as (rfk

)

trfk�1

krfkk2 � ⌫; and a normal approach to fix the dependence of gradients
is to restart CG by taking a steepest descent step. It is often believed in optimization
community that the Polak-Ribière variant is more robust than Fletcher-Reeves nonlinear
CG. Note that when rfk+1 ' rfK , �PR ' 0; thus the algorithm takes almost a steepest
descent step at the next iteration. There is, however, no rigorous theory on when to restart
a nonlinear CG, and how to prevent the dependence of gradients in subsequent iterations
after a restart.

The theory of CGSO relies on two safeguard inequalities. Roughly speaking, one measures
the amount of reduction in the objective value; while the other checks orthogonality of the
gradients. Both these properties are crucial for reaching the optimal complexity bound
of NY-CG. These safeguard conditions can be applied to any variant of nonlinear CG. In
Section 2.2 we present how these conditions can e↵ectively detect the loss of independence
of gradients. Using CGSO, we also propose a technique for recovering the orthogonality of
gradients. We refer to this procedure at “detection and correction” of loss of independence
of gradients in CG.

1.3 Introduction to Sparse Recovery

Compressive Sensing (CS) [31, 5, 34] refers to the idea of encoding a large sparse signal
through a relatively small number of linear measurements. This approach is essentially
to apply a linear operator A 2 Rm⇥n to a signal x 2 Rn and storing b̂ = Ax instead.
Naturally we want b̂ 2 Rm to be of a smaller dimension than x; hence in practice m ⌧ n.
The main question is how to decode b̂ to recover signal x, i.e., finding the solution to the
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underdetermined system of linear equations

Ax = b̂. (1.64)

Sparse recovery particularly aims at finding the sparsest solution to (1.64). The sparsest
solution might be obtained by solving

min kxk
0

s.t. Ax = b̂,
(1.65)

where kxk
0

corresponds to the number of nonzero entries of x. Problem (1.65) is, how-
ever, NP-hard and di�cult to solve, therefore the following relaxation was suggested for
recovering the sparse solution:

min kxk
1

s.t. Ax = b̂.
(1.66)

The theory of compressive sensing has been well-established. Candes, Tao, Romberg, and
Donoho are among the pioneers of compressive sensing theory, see [32, 33, 42]. In fact, they
have shown that under some conditions, (1.66) can recover the solution to (1.65). Note
that problem (1.66) can be reformulated as an LP; however general purpose LP solvers are
not a suitable choice for solving it because of the excessive run time for large instances of
the problem.

In the presence of the noise in computing and storing b̂, the in-hand measurement is often
b = b̂+ ✏̂; hence it is customary to replace

Ax = b̂,

with
kAx� bk  ✏,

in (1.66), where ✏ is an estimated upper bound on the noise. The resulting problem is

min kxk
1

s.t. kAx� bk  ✏.
(BP✏) (1.67)

Problem (1.66) is usually referred to as “Basis Pursuit” (BP) problem, while BP✏ refers to
its least-square constrained variant, i.e., (1.67).

Other common problems in sparse recovery are

min 1

2

kAx� bk2 + �kxk
1

, (BPDN) (1.68)
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and
min kAx� bk
s.t. kxk

1

 ⌧.
(LASSO) (1.69)

In the literature of compressive sensing, (1.68) is often called “Basis Pursuit Denoising
Problem” (BPDN) or l

1

-regularized least square problem, and (1.69) goes by the name
of “LASSO” (Least Absolute Shrinkage and Selection Operator). Although in statistics,
problem (1.68) is also referred to as LASSO, we stick with the customary labels used in
compressive sensing.

Theoretically all the aforementioned formulations are equivalent, provided that some spe-
cific relations hold true for ✏,�, and ⌧ . However, there is no simple manner to compute
this relationship without already knowing the optimal solution. The algorithms proposed
in this work are tailored for solving (1.68).

Compressive sensing has been a flourishing field of research for the last few decades. The
formulations mentioned above (BP✏, BPDN, and LASSO) rises in many applications in-
cluding medical screening [79], machine learning [108], statistics [101, 118], missing data
recovery [117, 99], and many other applications. One may refer to [103] for a vast list of
references on the theory, applications, algorithms, and software of this field.

The key desired factors for an algorithm suited for solving any of the above formulations are
speed and accuracy. Although e�cient second order methods such as interior-point meth-
ods [89, 109, 94] can achieve high accuracy, solving large-scale instances can be challenging
for these algorithms. First-order methods, on the other hand, are faster and more e↵ective
for solving large-scale problems rising in CS. There are numerous gradient-based first-order
algorithms proposed for sparse recovery, see for example [83, 46, 21, 57, 18, 114, 43, 110, 11].

In [18, 17] an e�cient root finding procedure has been employed for finding the solution of
BP✏ through solving a sequence of LASSO problems. In other words a sequence of LASSO
problems for di↵erent values of � is solved using a spectral projected-gradient method
[22]; and as � ! �?, the solution of the LASSO problem coincides with the solution
of BP✏. In [114], the solution of BP problem is recovered through solving a sequence of
LASSO problems with an updated observation vector b. GPSR [46] is a gradient projection
technique for solving the bound constrained QP reformulation of BPDN.

Many other state-of-the-art algorithms in CS are inspired by iterative thresholding/shrinkage
idea [37, 38, 36]. The algorithms, however, can su↵er from slow rate of convergence.
Theoretically iterative thresholding algorithms have sublinear convergence in general and
can achieve linear convergence only under some strict conditions [26]. The accelerated
technique originally proposed by Nesterov [86] has been applied to iterative thresholding
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algorithms to enhance their convergence rate, see [9] and references therein. Nesterov’s ac-
celerated proximal gradient algorithm has been adopted for solving di↵erent formulations
in image processing such as BP✏ in [11], LASSO problem in [52], and total variation min-
imization in [40]. Other possible approaches for solving LASSO problem are augmented
Lagrangian and penalty methods as in [72] and [73], respectively. Nesterov’s algorithm is
employed for solving the subproblem in both augmented Lagrangian and penalty methods.

In what follows we present iterative shrinkage idea and other relevant techniques to our
work in more details. Similar to the algorithms we discussed for smooth unconstrained
optimization problems, algorithms discussed in this section are also iterative techniques.
Recall steepest descent method as the simplest gradient based method for unconstrained
problems. The general format of the generated sequence by this algorithm is:

xk+1 = x� ↵rf(xk). (1.70)

We can consider the above sequence as solutions to the following quadratic approximations
of function f , i.e.,

xk+1 = argmin
x

⇢
f(xk) + hx� xk,rf(xk)i+ 1

2↵
kx� xkk2

�
. (1.71)

In the above model, one may think of

f(xk) + hx� xk,rf(xk)i, (1.72)

and
1

2↵
kx� xkk2, (1.73)

as the first order approximation to the objective function and the proximity term with
weight 1

↵
, respectively. If ↵ = 1

L
, the model would have been the upper approximation of

the objective function, and we would have the steepest descent with fixed step size.

“Iterative Shrinkage Thresholding Algorithm” (ISTA) is an extension of the steepest de-
scent idea to composite functions using the thresholding operator.

Consider the problem of minimizing a composite function, i.e.,

min F (x) = f(x) + g(x). (1.74)
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The idea of steepest descent has been extended to minimizing a composite function by
simply using the same approximation model as in (1.71) for f(x). As a result we get the
following iterative scheme:

xk+1 = argmin
x

⇢
f(xk) + hx� xk,rf(xk)i+ 1

2↵
kx� xkk2 + g(x)

�
. (1.75)

Shu✏ing the linear and quadratic terms and ignoring the constant terms in (1.75), it can
equivalently be written as

xk+1 = argmin
x

⇢
1

2↵
kx� (xk � ↵rf(xk)k2 + g(x)

�
. (1.76)

Using the notion of Prox operator we conclude that

xk+1 = Prox↵g
�
xk � ↵rf(xk)

�
. (1.77)

The iterative scheme of (1.77) is “Generalized Gradient Method” or “Proximal Gradient
Method”. Note that it actually coincides with steepest descent method in the absence
of g(x). Finding the proximal point may not be a trivial task in general, but for solving
BPDN it can be computed e�ciently because the l

1

-norm is separable.

Iterative scheme (1.77) is often called “Forward-backward Splitting Method” [36, 111]. It
gets its name from the two separate stages during each iteration while minimizing (1.74);
the first stage is taking a forward step xk�↵rf(xk) involving only f , and the second stage
is a backward step Prox↵g

�
xk � ↵rf(xk)

�
which involves only g.

The algorithm that goes by the name of ISTA in the literature of sparse recovery is derived
from the same chain of arguments for composite functions in which g(x) = �kxk

1

. Using
Definition 1.4 an ISTA step in its general form is

xk+1 = S�↵
�
xk � ↵rf(xk)

�
. (1.78)

FISTA1 [9] is the accelerated variant of ISTA that was built upon the Nesterov’s idea
[84, 86]. Each iteration of FISTA has the following format:

xk+1 = S� 1

L

✓
yk � 1

L
rf(yk)

◆
, (1.79)

tk+1 =
1 +

p
1 + 4tk2

2
, (1.80)

yk+1 = xk +

✓
tk � 1

tk+1

◆�
xk+1 � xk

�
. (1.81)

1Fast Iterative Shrinkage Thresholding Algorithm
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When no knowledge of L is in hand, a backtracking line search is employed in (1.79). FISTA
is not restricted to BPDN problem. In fact it was originally proposed for minimizing a
general composite function. Replacing (1.79) with

xk+1 = Prox� 1

L

✓
yk � 1

L
rf(yk)

◆
, (1.82)

would generalize FISTA to an algorithm well-suited for minimizing composite functions.

In order to incorporate more information about the function without trading o↵ the e�-
ciency of the algorithms, Newton/quasi-Newton proximal methods [14, 74] has attracted
researchers quite recently. Most of previous extensions on quasi-Newton methods are suited
either for nonsmooth problems [75, 115], or for constrained problems with simple enough
constraints [28, 98, 41]. For l

1

-regularization, however, proximal quasi-Newton methods
might be a more e↵ective approach.

Recall that generalized gradient method was basically derived by approximating f with a
quadratic model of the form

m↵(x) = f(xk) + hx� xk,rf(xk)i+ 1

2↵
kx� xkk2 (1.83)

= f(xk) + hx� xk,rf(xk)i+ 1

2

�
x� xk

�t
✓
1

↵
I

◆�
x� xk

�
, (1.84)

and solving
min m↵(x) + g(x), (1.85)

in each iteration. A natural extension of the above algorithm is to replace the diagonal
matrix 1

↵
I in the quadratic term of m↵(x) with a suitable positive definite matrix. In other

words, one may define mH(x) as

mH(x) = f(xk) + hx� xk,rf(xk)i+ 1

2

�
x� xk

�t
H
�
x� xk

�
, (1.86)

where H � 0, and solve
min mH(x) + g(x), (1.87)

instead of (1.85). Ignoring the constant terms and using definition of scaled norm, we can
rewrite (1.86) as

mH(x) =
1

2
kx�

�
xk �H�1rf(xk)

�
k2H . (1.88)
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By definition of scaled proximal mapping, we can now define the proximal quasi-Newton
algorithm as

xk+1 = ProxHg
�
xk �H�1rf(xk)

�
. (1.89)

If H = r2f(xk) in (1.89), then we obtain the proximal Newton method.

Alternating Direction Method (ADM), see [112, 113] and references therein, is also a tech-
nique that can be applied to BPDN. It is suited for minimizing the summation of (sepa-
rable) convex functions, say f(x) + g(y), over a linear set of constraints. The augmented
Lagrangian technique then solves for x and y interchangeably while fixing the other vari-
able. Alternating Linearization Method (ALM) [49] also applies to minimizing composite
functions. In (1.75), we linearize f at every iteration to build the quadratic approximation
model; in ALM a similar model based on g is also minimized at every iteration. Nesterov’s
accelerated technique has also been adopted and the resulting algorithm is called FALM,
for fast ALM.

A randomized first-order technique is proposed in [65] suitable for solving bilinear saddle
point problem. It is, also, shown that BP✏ formulation can be transformed into an equiva-
lent bilinear saddle point formulation and solved through the proposed first-order scheme.
The presented numerical results suggest that the randomization can enhance the practical
performance of first-order techniques particularly for large-scale problems. This issue has
attracted researchers lately and is discussed in [15] as well.

1.4 Outline of the Thesis

We mentioned in the introduction that a key question we aim to answer in this thesis
is whether conjugate gradient can achieve the optimal complexity bound of Nemirovsky-
Yudin’s and Nesterov’s algorithms. As a result of our study, we propose a variant of
conjugate gradient algorithm named CGSO that achieves the desired complexity bound.
Moreover, the analysis of CGSO suggests a new scheme for detecting and correcting the
loss orthogonality of gradients in other variants of nonlinear conjugate gradient. CGSO and
the detection and correction procedure for avoiding the slow-down in nonlinear conjugate
gradient is presented in Chapter 2. We extend the theory of CGSO to convex problems
with polyhedral constraints; and apply the resulting technique to solving the basis pur-
suit denoising problem (BPDN); this result is presented in Appendix A. In Chapter 3,
we review Nesterov’s optimal method for minimizing strongly convex functions. Despite
its rich theory, Nesterov’s method in some cases has slower convergence than conjugate
gradient methods. We present a hybrid scheme to combine conjugate gradient and Nes-
terov’s method that benefits from the theory of Nesterov’s method as well as the practical
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e�ciency of conjugate gradient. In Chapter 4, we propose a novel and e↵ective proximal
quasi-Newton scheme called IMRO for solving BPDN. The established theory of IMRO
is not restricted to BPDN, and can be employed to the general problem of minimizing a
convex function. We also present an accelerated variant of this technique that is inspired
by Nesterov’s method. Chapter 5 concludes IMRO by presenting the computational ex-
periment with this algorithm. Finally in Chapter 6 we conclude our discussion and present
several venues for future work.
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Chapter 2

Conjugate Gradient with Subspace
Optimization

We introduced the conjugate gradient (CG) technique in Section 1.2, and as mentioned,
nonlinear CG algorithms all have the property that when applied to a quadratic objective
function and coupled with an exact line search, they reduce to linear CG (LCG). For LCG
we have the following results.

Theorem 2.1. [90, Theorem 5.2] Suppose {xk} is a sequence generated by the LCG for
minimizing a convex quadratic function f , then

(rfk)tpi = 0 8i = 0, 1, . . . , k � 1,

where pi is the search direction at i-th iteration. Moreover xk is the minimizer of f over
the space of �

x : x = x0 + Span
�
p0, p1, ..., pk�1

  
.

Theorem 2.2. [90, Theorem 5.2] At each iteration k, either xk is the optimal solution or
the properties below hold.

(rfk)trf i = 0, for i = 0, 1, . . . , k � 1,

Span
�
rf 0,rf 1, . . . ,rfk

 
= Span

�
rf 0, Arf 0, . . . , Akrf 0

 
,

Span
�
p0, p1, . . . , pk

 
= Span

�
rf 0, Arf 0, . . . , Akrf 0

 
,

(pk)tApi = 0, for i = 0, 1, . . . , k � 1.
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Theorem 2.2 indicates that LCG finds the solution in at most n iterations. Nonlinear
CG, however, has no known complexity bound when applied to nonquadratic functions.
Indeed, Nemirovsky and Yudin [82] argue that their worst-case complexity for strictly
convex functions is quite poor.

Nemirovsky and Yudin, on the other hand, found a di↵erent generalization of CG with
worst-case complexity bound of O(ln(1/✏)

p
L/l) iterations for the class of Cl,L functions.

Actually, their algorithm, which we refer to as NY-CG, is not a generalization of the CG
algorithm itself but rather a derivation from some equations and inequalities that underlie
it:

f(xk+1)  f(xk)� 1

2L
krf(xk)k2, (2.1a)

rf(xk+1) ?
�
rf(xk) + · · ·+rf(x0)

�
, (2.1b)

rf(xk+1) ? xk+1 � x0, (2.1c)

hrf(xk), x⇤ � xki  f(x⇤)� f(xk), (2.1d)

⌫f (x
0) := f(x0)� f(x⇤) � l

2
kx⇤ � x0k2. (2.1e)

Note that in linear CG, xk+1 is the minimizer of f(x) on the space mentioned in Theorem
2.1, therefore the first condition is true because f(xk+1)  f(xk � 1

L
rf(xk)) and f 2 Cl,L.

The next two conditions follows from Theorem 2.2. Fourth and fifth conditions hold true
by convexity and strong convexity of function f , respectively.

As an algorithm that inherits all the mentioned properties, Nemirovsky and Yudin suggest
to find iterate xk+1 by performing a two dimensional search on the plane passing through
x0, qk + x0, and x̄k = xk � 1

L
rfk, where qk = rf 0 + . . . + rfk, i.e., a general step of

NY-CG is

xk+1 = arg min
x2Ek

f(x), where Ek = x0 + Span
�
qk, x̄k � x0

 
. (2.2)

Clearly all of the properties listed in (2.1) hold for NY-CG method. Inequality (2.1a) holds
because f(xk+1)  f(x̄k); properties (2.1b) and (2.1c) are true because (rfk+1)tqk = 0
and (rfk+1)tx̄K = 0; and the other two inequalities are properties of the function. Using
(2.1), Nemirovski and Yudin [82] showed that their method achieves the complexity bound
of O(ln(1/✏)

p
L/l), where ✏ is the desired accuracy. Moreover, they showed that this

complexity bound is optimal and can not be improved further. In other words, no first-order
algorithm in which xk 2 x0 + Span

�
rf 0,rf 1, . . . ,rfk

 
, can achieve a better complexity

bound for the class of Cl,L functions.
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A disadvantage of NY-CG is that it has a relatively expensive computation on every iter-
ation, namely, one must solve a two-dimensional convex optimization problem using the
ellipsoid method[82, 105]. Although, as mentioned before, Nesterov’s algorithm [84] reme-
dies this disadvantage, both NY-CG and Nesterov’s algorithm does not reduce to linear
CG (and in fact, is much slower in practice). A second drawback is that both algorithms
require prior knowledge of the ratio L/l. This is because they need to be restarted every
O(
p

L/l) iterations in order to achieve the optimal complexity bound.

The purpose of conjugate gradient with subspace optimization (CGSO) is to avoid the dis-
advantages mentioned above. In particular, we seek a CG-like algorithm with the following
properties:

1. The algorithm should reduce to linear CG when the objective function is quadratic.

2. The algorithm should have the complexity bound of O(ln(1/✏)
p
L/l) for the class of

Cl,L functions.

3. The algorithm should not require prior knowledge of any parameters describing f .

4. The cost per iteration should not be excessive.

The algorithm we propose achieves goals 1–3, and mostly achieves goal 4. It is built upon
NY-CG, and like NY-CG it must solve a convex optimization subproblem on every itera-
tion. The dimension of the subproblem is always at least 2 and is determined adaptively
by the algorithm. The worst-case upper bound we are able to prove for the dimension of
this subproblem is O(log j), where j is the number of iterations so far. However, in our
testing, the dimension of the subproblem was 2 in almost all instances; in one test case
it reached the value 3 for a few iterations, but it never exceeded 3. Furthermore, we find
that solving the subproblem is usually fairly e�cient because we usually apply Newton’s
method when possible. Note that Newton’s method is not even defined for Cl,L functions
in general. In a case that Newton’s method fails to be defined or fails to converge, CGSO
falls back on a first-derivative method as mentioned below. However, Newton’s method in
the subspace proved to be a valuable technique in practice according to our computational
experiments.

Goal 3, the condition of no prior knowledge of parameters, has the obvious benefit of
making the algorithm easier to apply in practice. It also has a second subtler benefit.
For some convex problems, e.g., minimization of a log-barrier function, there is no prior
bound on L/l over the domain of the function since the derivatives tend to infinity at the
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boundaries. However, as the minimizer is approached, the bad behavior at the boundaries
becomes irrelevant, and there is a new smaller ratio L/l relevant for level sets in the
neighborhood of the minimizer. In this case, CGSO automatically adapts to the improved
value of L/l. Such adaptation is possible also with NY-CG, and Nesterov’s algorithm too,
but, as far as we know, the adaptation must be done by the user and cannot be easily
automated.

2.1 CGSO

2.1.1 The Algorithm

CGSO, in its preliminary form, is as follows:

x0 = arbitrary;
for j = 0, 1, . . .

xj+1 = xj + ↵jrf(xj) + �jdj,
where dj = xj � xj�1 and ↵j, �j = argmin↵,� f(xj + ↵rf(xj) + �dj)

As we shall see, some modifications are necessary to achieve the desired complexity bound.
The above algorithm is certainly a generalization of nonlinear CG, since each search direc-
tion is a combination of previous gradients. Moreover it reduces to LCG when applied to a
quadratic function because xj+1 is the minimizer of f over the space of xj+{rf j, dj} in both
algorithms. Notice that the above algorithm is a descent method (i.e., f(xj+1)  f(xj)),
and it performs at least as well as steepest descent in each iteration. Hence it converges to
a stationary point, which, for the class of convex problems, coincides with the minimizer
of the function.

Let ⌫f (x) denote the residual of the function, i.e., f(x)� f(x⇤). By the fact that f 2 Cl,L,
we get the following properties for the above algorithm

f(xj+1)  f(xj)� 1

2L
krf jk2, (2.3a)

⌦
rf j, x⇤ � xj

↵
 f(x⇤)� f(xj), (2.3b)

⌫f (x
0) = f(x0)� f ⇤ � l

2
(x⇤ � x0)2. (2.3c)

Similar to NY-CG, property (2.3a) follows from the fact that f(xj+1)  f(xj � 1

L
gj) and

f 2 Cl,L. Property (2.3b) is true by convexity of the function, and property (2.3c) is a
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derivation from the strong convexity of f . We are now ready to present the main lemma
on the complexity bound of this algorithm.

Lemma 2.1. Suppose m �
l
8⇢
q

L
l

m
and

(f(xm�1)� f(x0))

4

 
m�1X

j=0

�j
!

+
m�1X

j=0

�j
⌦
rf(xj), xj � x0

↵
< 0, (2.4)

and �����

m�1X

j=0

�jrf(xj)

�����  ⇢

vuut
m�1X

j=0

(�j)2 krf(xj)k2, (2.5)

are satisfied for a constant ⇢, where

�j =

s
f(xj)� f(xj+1)

krf(xj)k2 . (2.6)

Then the residual of the function is divided in half after m iterations; i.e., ⌫f (xm) 
1

2

⌫f (x0).

Before we provide the proof of the above lemma, we would like to elaborate on parameter
⇢. In the first glance at Lemma 2.1, the fact that m depends on ⇢ while ⇢, in theory, can be
as large as m might be confusing. Note that when rfk is orthogonal to rf 0, . . . ,rfk�1

(as in linear CG) or rf 0 + . . . +rfk (as in NY-CG), ⇢ is 1. Although the orthogonality
of the gradients are no longer guaranteed for CGSO, we expect that the gradients remain
nearly orthogonal. Our experiment with CGSO suggests that ⇢ is normally a constant
far below m, typically two at the beginning and converging to one as we get closer to the
optimizer. We will discuss more details about ⇢ in Section 2.3.2; but for now, let us assume
that ⇢ is a given parameter equal to a small finite number, say less than five.

Proof. Our proof is an extension of the proof in [82, Section 7.3] in which some derivations
depend on inequalities (2.1b) and (2.1c), while here we rely on inequalities (2.4) and (2.5).

Suppose by contradiction that m �
l
8⇢
q

L
l

m
, (2.4) and (2.5) are satisfied, but ⌫f (xm) >

⌫
f

(x0

)

2

.

By definition of �j,
f(xj+1) = f(xj)�

�
�j
�
2 krf(xj)k2,

27



hence
⌫f (x

j+1) = ⌫f (x
j)�

�
�j
�
2 krf(xj)k2.

Summing these equalities over j = 0, · · · ,m� 1, we get

0  ⌫f (x
m) = ⌫f (x

0)�
m�1X

j=0

�
�j
�
2 krf(xj)k2,

or equivalently,
m�1X

j=0

�
�j
�
2 krf(xj)k2  ⌫f (x

0). (2.7)

By convexity of the function we have
⌦
rf(xj), x⇤ � xj

↵
 f(x⇤)� f(xj) = �⌫f (xj), (2.8)

and so

⌦
rf(xj), x⇤ � x0

↵
�
⌦
rf(xj), xj � x0

↵
 �⌫f (xj)  �⌫f (xm) <

�⌫f (x0)

2
. (2.9)

Let us consider the weighted sum of all the above inequalities for j = 0, . . .m � 1 with
weights �j’s to get

*
m�1X

j=0

�jrf(xj), x⇤ � x0

+
�

m�1X

j=0

�j
⌦
rf(xj), xj � x0

↵
<

�⌫f (x0)

2

 
m�1X

j=0

�j
!
,

which can be rearranged to the following form
*

m�1X

j=0

�jrf(xj), x⇤ � x0

+
< �⌫f (x

0)

2

 
m�1X

j=0

�j
!

+
m�1X

j=0

�j
⌦
rf(xj), xj � x

0

↵
.

Equivalently we can rewrite the above inequality as
*

m�1X

j=0

�jrf(xj), x⇤ � x0

+
<� ⌫f (x0)

4

 
m�1X

j=0

�j
!

+

 
f(x⇤)� f(x0)

4

 
m�1X

j=0

�j
!

+
m�1X

j=0

�j
⌦
rf(xj), xj � x0

↵
!
.
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Using inequality (2.4) along with the facts that f(x⇤)  f(xj) and �j � 0 for all j, we get
*

m�1X

j=0

�jrf(xj), x⇤ � x0

+
< �⌫f (x

0)

4

 
m�1X

j=0

�j
!
. (2.10)

By the Cauchy-Schwarz inequality we have

�
�����

m�1X

j=0

�jrf(xj)

�����
��x⇤ � x0

�� 
*

m�1X

j=0

�jrf(xj), x⇤ � x0

+
< �⌫f (x

0)

4

 
m�1X

j=0

�j
!
,

hence �����

m�1X

j=0

�jrf(xj)

�����
��x⇤ � x0

�� >
⌫f (x0)

4

 
m�1X

j=0

�j
!
. (2.11)

By property (2.3c) we have
��x⇤ � x0

�� 
r

2⌫f (x0)

l
. (2.12)

Furthermore, by inequalities (2.5) and (2.7) we get

�����

m�1X

j=0

�jrf(xj)

�����  ⇢

vuut
m�1X

j=0

(�j)2 krf(xj)k2  ⇢
q
⌫f (x0). (2.13)

Replacing inequalities (2.12) and (2.13) in inequality (2.11), we get

⇢
q
⌫f (x0)

r
2⌫f (x0)

l
>
⌫f (x0)

4

 
m�1X

j=0

�j
!
. (2.14)

Notice that by definition of � and property (2.3a), �j �
q

1

2L
for all j, so

m�1X

j=0

�j �
r

1

2L
m. (2.15)

Using this fact in inequality (2.14), we get

⇢
q
⌫f (x0)

r
2⌫f (x0)

l
>
⌫f (x0)

4

 r
1

2L
m

!
, (2.16)
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therefore

m < 8⇢

r
L

l
, (2.17)

which contradicts our assumption on the value of m.

Lemma 2.1 shows that under conditions (2.4) and (2.5), the residual of the function is

divided in half every m = O
⇣q

L
l

⌘
iterations. For the next m iterations, a further reduc-

tion of 1

2

is achieved provided that (2.4) and (2.5) hold with xm substituted in place of
x0. Hence by letting xm to be the new x0 and repeating the same algorithm, we can find

the ✏-optimal solution in
⌃
log

2

1

✏

⌥ l
8⇢
q

L
l

m
iterations. Of course, m is not known to our

algorithm, a point to which we return in the next section.

2.1.2 Restarting

We have already seen in the previous section that in CGSO, the residual of the function
is divided in half every m iterations if (2.4) and (2.5) are satisfied. The algorithm, then,
needs to be restarted with xm substitutes for x0 to get further reductions in the residual
of the function. A closer look at the algorithm, however, clarifies that finding each iterate
is independent of knowing x0. Initial point x0 is only required for checking inequalities
(2.4) and (2.5). We use the term “restarting” to refer to the process of replacing x0 in
inequalities (2.4) and (2.5) with xm for some m > 0. Notice that this process does not
change any of the iterates, and it solely changes the interval of indices in which we check
inequalities.

Knowing L and l, we can compute m directly; hence we would be able to determine exactly
when we need to restart the algorithm. In many cases, however, finding the parameters of
the function is a nontrivial problem itself. In order to have an algorithm which does not
rely on any prior knowledge about the function, we propose the following technique.

Suppose p is an integer for which 2p  m  2p+1. By restarting the algorithm every 2p+1

iterations, we are guaranteed that the residual of the function is divided in half between

every two consecutive restarts that contains at most 2m = d16⇢
q

L
l
e iterates. The last

statement follows from the fact that 2p+1  2m. Since the exact value of p is usually
unknown, we repeat the above procedure for every value of p 2 {'l, . . . ,'u}, where 'l and
'u are lower and upper bound estimates on the value of p. Typically several values of p
su�ce since the size of the intervals corresponding to p’s grows exponentially. Furthermore
p never exceeds dlog

2

je, where j is the current iteration count; because inequalities (2.4)
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and (2.5) are the same for all p � dlog
2

je. We can now state the CGSO algorithm in a
more complete form:

x0 = arbitrary, ⇢ given, d0 = 0.
for j = 0, 1, . . .

xj+1 = arg min
x2Ej

f(x) where Ej = xj + Span {rf(xj), dj}

Let �j =
q

f(xj

)�f(xj+1

)

krf(xj

)k2

for p = 'l, . . . , dlog
2

je
if j + 1 = p2p for some integer p

Let rp = (p � 1) 2p;
check

(f(xj+1

)�f(xr

p

))
4

⇣Pj
i=r

p

�i
⌘
+
Pj

i=r
p

�i hrf(xi), xi � xr
pi < 0

and���
Pj

i=r
p

�irf(xi)
���  ⇢

qPj
i=r

p

(�i)2 krf(xi)k2
If any of the above inequalities fails, take the “correction step”.
(which will be defined in the subsequent section)

2.1.3 Correction Step

For convenience, let us refer to the set of iterates between two consecutive restarts as a
“block” of iterates. In other words for any p, the set of iterates x0, x1, . . . , x2

p�1 is the first
block of size 2p which we refer to as first block of p; x2

p

, x2

p

+1, . . . , x2(2

p

)�1 is the second
block of p, and so on. At the end of each block we check inequalities (2.4) and (2.5). If

they are satisfied and 2p �
l
8⇢
q

L
l

m
, then by Lemma 2.1 we know that the residual of the

function is divided in half. On the other hand if any of these inequalities fails, then as
mentioned in the previous section we need to take “correction step” for the next block of
iterates. The correction step is basically computing the next block of iterates in a way that
satisfaction of inequalities (2.4) and (2.5) is guaranteed for that particular block. Then
the correction step is omitted in the subsequent blocks until the inequalities are violated
again.

Recall that in an ordinary step, the new iterate, xj+1 is calculated by a two-dimensional
search on the plane passing through xj, and parallel to the two-dimensional subspace
spanned by rf(xj), and dj. Suppose at least one of the inequalities (2.4) and (2.5) is
violated for th block of p; i.e., for the block of iterates xr

p , . . . , xr
p

+2

p�1, where rp =
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(� 1)2p. In other words, when checking the inequalities at iteration rp + 2p � 1 they fail.
Then for the next block of p, i.e., for iterations rp+2p(= 2p),2p+1, . . . , (+1)2p�1, we
search for the new iterate xj+1 on the space of xj + Span

�
rf(xj), dj, qjp, x

j � xr
p

 
, where

qjp =
Pj

i=r
p

�irf(xi). Finding the new iterate xj+1 through a search on the space that in

addition to rf(xj) and dj includes qjp and xj �xr
p is what we refer to as “correction step”.

Notice that for each p with the violated constraints we increase the dimension of the search
space by 2. However, the dimension of the search space never exceeds O('u) = 2+2dlog

2

je,
which happens to be the case when the inequalities are violated for all possible values of p.

It is quite easy to see that inequalities (2.4) and (2.5) are satisfied for the (k+1)th block of
p when we take the correction step throughout it. By the first order optimality condition
and the chain rule, we have hrf(xj), xj � xr

pi = 0 for all j in this block. Using this,
along with the fact that f(xj) < f(xr

p) and non-negativity of �j for all j, we derive (2.4).
Similarly one can argue that

⌦
rf(xj), qj�1

p

↵
= 0 for all j, hence

������

r
p

+2

p�1X

i=r
p

�irf(xi)

������
=

vuut
r
p

+2

p�1X

i=r
p

(�i)2 krf(xi)k2,

which means inequality (2.5) is satisfied. After finding the iterates of one block through a
correction step, the algorithm switches back to taking a regular step until the next failure
of the inequalities. We can now present the algorithm in its entirety. To save space, we
use the tabbing convention that the end of a code-block is denoted by a retraction of the
indent-level.

Algorithm 2.1.
x0 = arbitrary, ⇢ given, d0 = 0, S = ;.
for j = 0, 1, . . .

xj+1 = arg min
x2Ej

f(x) where Ej = xj + Span
�
rf(xj), dj,[p2Sqjp,[p2Sxj � xr

p

 

Let �j =
q

f(xj

)�f(xj+1

)

krf(xj

)k2

for p = 'l, . . . , dlog
2

je
if j + 1 = p2p for some integer p

Let rp = (p � 1) 2p

if p 2 S
S = S \ {p}

else (i.e., if p 62 S),
check
(f(xj+1

)�f(xr

p

))
4

⇣Pj
i=r

p

�i
⌘
+
Pj

i=r
p

�i hrf(xi), xi � xr
pi < 0
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and���
Pj

i=r
p

�irf(xi)
���  ⇢

qPj
i=r

p

(�i)2 krf(xi)k2
if any of the above inequalities fails, S = S [ {p}

We use Newton’s method (with no line search) for solving the subspace optimization sub-
problem in algorithm 2.1 mostly because of its fast rate of convergence. It has been shown
that under some assumptions, Newton’s method convergences quadratically, see [90, Theo-
rem 3.5]. Note that these assumptions are beyond strong convexity of the function and rely
on twice di↵erentiability of the function and Lipschitz continuity of the Hessian. Newton’s
method succeeds in many cases nonetheless. In the case of failure of Newton’s algorithm,
the ellipsoid method carries out the task of solving the subspace optimization problem. In
other words we assign an upper bound to the number of iterations that Newton’s method
may take, and if it fails to converge within the given number of iterations CGSO switches
to the ellipsoid method for finding the next iterate. The main reason that we do not solely
rely on ellipsoid method for solving the subproblem is its convergence rate, see [105, Sec-
tion 6.3]. It can, also, be much slower than Newton’s method in practice. More details on
implementation of the algorithm will be covered in Section 2.3.2.

We next turn to checking (2.4) and (2.5). It is apparent from their form that they can
be checked e�ciently by keeping running totals of all the summations appearing in them.
This is how we have implemented them. The extra cost for tracking these summations is
very low compared to the existing cost of evaluating f and rf in an ordinary CG iteration.
For the storage, we need to store xj and directions in the subspace Ej, i.e., rf j, dj, qjp
for all p 2 S, and xj � xr

p for all p 2 S. We also need to update and store xr
p ,
Pj

i=r
p

�i,
Pj

i=r
p

�i hrf i, xi � xr
pi,

Pj
i=r

p

�irf i,
Pj

i=r
p

(�i)2 krf ik2 for all p 2 {'l, . . . , log
2

j}. Let
! denote the dimension of the subproblem. Hence, the required storage space for the
above elements is in O(nmax{!, log

2

j}). We have observed that ! is typically two. The
maximum value we observed for ! was three. This is a point to which we return in Section
2.3.2.

Theorem 2.3. Suppose m �
l
8⇢
q

L
l

m
, and {xj} is a sequence generated by Algorithm 2.1

for solving problem (1.59); then ⌫f (x(n+4)m)  1

2

⌫f (xnm).

Proof. Let p̄  'u be the integer for which 2p̄�1  m  2p̄; and let sp̄ stand for 2p̄. Consider
any two consecutive blocks of size sp̄. Then either inequalities (2.4) and (2.5) hold at the
end of the first block, or Algorithm 2.1 takes the correction step throughout the second
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block which guarantees the satisfaction of the inequalities at the end of the second block.
Therefore inequalities (2.4) and (2.5) are satisfied for at least one of any two consecutive

blocks of size sp̄. The size of this block is sp̄ � m �
l
8⇢
q

L
l

m
and hence by Lemma 2.1 we

have

⌫f (x
nm+2s

p̄)  1

2
⌫f (x

nm). (2.18)

Since 2sp̄  4m, so f(xnm+4m)  f(xnm+2s
p̄); hence

⌫f (x
nm+4m)  ⌫f (x

nm+2s
p̄). (2.19)

(2.18) and (2.19) gives us the result we wanted to show.

2.2 Detection and Correction of Loss of Independence

In the previous section we proposed a variant of nonlinear CG named CGSO, that achieves
the optimal complexity bound of the first-order algorithms for the class of functions
f 2 Cl,L. Each iteration of CGSO, requires a relatively expensive subspace optimization
compared to traditional variants of nonlinear CG that may overshadow the theoretical ad-
vantages of the algorithm. As explained, the convergence of CGSO relies on two safeguard
inequalities, and a correction procedure when these inequalities fail. In this section, we
aim to combine the theory of CGSO with traditional nonlinear CG to obtain an algorithm
that has lower computational cost than CGSO, but achieves the same optimal complexity
bound.

Nonlinear CG has been widely used in practice, mainly because of its e�ciency and low
computational cost. The performance of nonlinear CG, however, can be a↵ected by the loss
of independence of gradients. In fact, the main drawback of nonlinear CG over the linear
CG is the loss of orthogonality of search directions. Orthogonality of search directions is
essentially the reason that safeguard inequalities, (2.4) and (2.5), always hold for linear
CG.

The standard technique to combat loss of independence is restarting the method, i.e.,
occasionally taking a step of pure steepest descent. However, there is little rigorous theory
that explains when to restart the method. The best known rigorous result in this direction
is a proof that when an iterate is su�ciently close to the root, if one restarts every n
iterations, one is guaranteed n-step quadratic convergence to the optimizer [35]. Here,
n denotes the number of variables. This result is unsatisfying for at least two reasons.

34



First, there is no apparent method to detect when an iterate is su�ciently close to the
root in order to apply this theorem. Second, restarting every n iterations does not seem to
be practically motivated. The reason is that the convergence of conjugate gradient, both
linear and nonlinear, is much more closely tied to the conditioning of the problem than
to n, the number of variables. Thus, one would apparently prefer a rigorously supported
restart strategy that is condition-dependent rather problem size-dependent.

It is clear from our analysis in the previous section, namely Lemma 2.1, that the con-
vergence of CGSO mostly depends on inequalities (2.4) and (2.5). In fact, our approach
for generating the sequence of iterates, i.e. the two dimensional subspace optimization,
increases the chance that the aforementioned inequalities hold but does not guarantee it.
The correction step is actually a consequence of their failure. Moreover, recall that if the
gradients are orthogonal then both inequalities hold; therefore their failure is a fair indica-
tor of loss of independence of gradients. This suggests a rigorous procedure for detecting
and correcting the loss of independence in any variant of CG.

Suppose {xk} is a sequence of iterates generated by any variant of CG. We check in-
equalities (2.4) and (2.5) for {xk} in the same fashion that we check them for CGSO. We
define the phrase “loss of independence” to mean the failure of these inequalities. When
loss of independence is detected, we take the correction step according to what was de-
scribed in Section 2.1.3. Similar to CGSO, we use Newton’s and ellipsoid methods to solve
the subspace subproblem when the correction step is taken. The detection procedure is
relatively cheap; the correction procedure, however, is more expensive. Nonetheless, non-
linear conjugate gradient (any variant) augmented by our correction procedure in practice
is sometimes the fastest method for solving the problem, according to our experiments
detailed in Section 2.3.3.

Recall that another requirement for getting the optimal complexity bound of NY-CG
through Lemma 2.1 is f(xk+1)  f(xk) � 1

2L
krf(xk)k2. For CGSO, this condition al-

ways holds because f(xk+1)  f
�
xk � 1

L
rf(xk)

�
; however for a general nonlinear CG

algorithm this may not be the case. If we had prior knowledge of L, then this condition
would be trivial to check since nonlinear CG already computes rfk on every iteration.
Without prior knowledge of L, we can still in principle check this condition by carrying
out a Wolfe line-search [90] in the direction �rfk on every iteration. It is known that,
up to a constant factor depending on the parameters used in the line-search, the reduction
guaranteed is at least as good as krfkk/(2L). However, it is quite expensive to carry out a
line search in the steepest descent direction on every iteration in addition to the line search
already required for the CG direction. Our computational experiments (not reported here)
indicate that it is not necessary because there is little improvement in the behavior of the
method. Hereafter, we will simply assume that this condition holds.
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The subspace optimization needs a termination test. For this purpose, we again rely on
inequalities (2.4) and (2.5). Although the lemma requires these inequalities to be checked
only at an iteration at the end of a block, it is also possible to check them on intervening
iterations. We use these inequalities to terminate the search for a subspace solution.

We can now present our detection and correction procedure in its entirety. In this proce-
dure, S is a subset of {'l, . . . ,'max

} and denotes the set of values of p for which correcting
is currently active. Also let m(j, p) denotes the largest multiple of 2p less than or equal to
the current iteration counter j. In the correction step, B is a matrix whose columns are
the collection of the directions in the subspace optimization problem, i.e., rf j, dj, qjp for
all p 2 S, and xj �xm(j,p) for all p 2 S; and yl denotes the variable of the subproblem, i.e.,
a vector whose entries are coe�cients of columns of B. Recall that in CGSO, inequality
(2.5) seems to hold for a modest value of ⇢ even without correcting for violations of (2.5).
Therefore, in CGSO, we did not set a fixed value of ⇢ but simply tracked the behavior

of the quotient
k
P

j

i=r

p

�irf(xi

)k
qP

j

i=r

p

(�i)2krf(xi

)k2
in experiments to verify that it did not grow. In our

implementation of the correction-detection procedure, however, this quotient grew large
without correction steps. Therefore, we fixed ⇢ = 1.2 in the correction-detection procedure
and took correction steps when either (2.4) or (2.5) was violated.

Algorithm 2.2. CGwDC1

SUBROUTINE: verify_step(xj, sj)
for each p 2 S

if (2.4) or (2.5) fail with xm(j,p) substituted for x0 and xj + sj substituted for
xm�1

return False;
return True;

MAIN PROCEDURE: CGwDC(x0)
S = ;
for j = 1, 2, . . .

dj = �rf j + �jdj�1;
Remark: dj is the ordinary nonlinear CG direction.
Remark: take �j = 0 if either j = 1 or dj�1 was discarded.

↵j = Wolfe_line_search(f, xj, dj);
stepfound = False;
if verify_step(xj,↵jdj)

1CG armed with Detection and Correction Procedure
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stepfound = True;
sj = ↵jdj;

else
discard dj;

if not stepfound
Apply Newton’s method to solve:

xj+1 = arg min
x2Ej

f(x)

where Ej = xj + Span
�
rf(xj), dj,[p2Sqjp,[p2Sxj � xm(j,p)

 

Terminate if either verify_step(xj, Byl) or iteration-max is attained.
if verify_step(xj, Byl)

stepfound = True;
sj = Byl;

if not stepfound
Apply the ellipsoid method to solve:

xj+1 = arg min
x2Ej

f(x)

where Ej = xj + Span
�
rf(xj), dj,[p2Sqjp,[p2Sxj � xm(j,p)

 

Terminate when verify_step(xj, Byl).
stepfound = True;
sj = Byl;

xj+1 = xj + sj;
for p = pl, . . . , dlog

2

je
if j + 1 = kp2p for some integer kp

if p 2 S
S = S \ {p}

elseif not verify_step(xj�1, sj�1);
S = S [ {p}

As mentioned earlier, because the above algorithm enforces (2.4) and (2.5) for every value
of 2p (i.e. taking the correction step at every other iteration in the worst case), we get the
optimal convergence bound using Lemma 2.1 and Theorem 2.3.
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2.3 Computational Experiment

2.3.1 Remarks on Computational Divided Di↵erences

In a line-search for conjugate gradient, it is necessary to accurately evaluate quantities
of the form f(x + ↵d) � f(x). A similar quantity arises in the ratio test for the trust-
region method [90]. It is well known to implementors of such methods that these divided
di↵erences are problematic near the root because of cancellation error between the two
terms. A brief discussion of this issue appears in Hager and Zhang [53]. Failure to compute
these quantities accurately can lead either to premature termination of an algorithm or to
infinite loops.

A solution to this problem, perhaps not as widely known in the optimization literature as
it should be, is “computational divided di↵erences” by Rall and Reps [95]. The idea is to
transform a source-code program for computing f into another source-code program for
accurately computing divided di↵erences of f . The technique is somewhat reminiscent of
automatic di↵erentiation.

To give a concrete example, consider the log-barrier function that will be used in Sec-
tion 2.3.2 as a test case, which is written as f(x) =

Pm
i=1

log(aTi x � bi), where each ai
is given vector in Rn and each bi is a given scalar. This function is defined on the open
polyhedron given by Ax > b and strongly convex on this polyhedron provided that the
polyhedron is bounded. Suppose x is our current iterate and � is a small step. We have
the following derivation:

f(x+ �)� f(x) =
mX

i=1

log(aTi (x+ �)� bi)�
mX

i=1

log(aTi x� bi)

=
mX

i=1

log

✓
1 +

aTi �

aTi x� bi

◆
.

Thus, to evaluate this divided di↵erence accurately, one needs a function to compute
log(1 + a) accurately when |a| is small. One can develop a method for this computation
using calculus. That e↵ort is, however, unnecessary since Matlab and C++ both contain
the built-in library function log1p for exactly this purpose.

We have used computational divided di↵erences for all of our testing in Section 2.3.3. (We
hand-coded the accurate divided di↵erences rather than using a source-to-source transla-
tion tool; we are not sure if such a tool exists.) In addition to the line-search, our method
uses computational divided di↵erences for the evaluation of the left-hand side of (2.4).
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Without them, all the methods would be less reliable and the test results harder to inter-
pret. Indeed, we believe that computational divided di↵erences deserve to be used much
more widely in general nonlinear optimization than they are currently. See [104] for some
additional comments on their use in optimization.

Because of our reliance on this technique, it is not possible to directly compare our results
in the next section to well known packages like CG-DESCENT, or on benchmark test
cases like CUTEr which do not use computational divided di↵erences. For this reason,
we compare only our own implementations against each other. A stated goal of CG in
general (as well as of our variants of CG) is to use as little information about the function
as possible. It may thus seem contradictory that we are assuming the availability of a
source-code program for the objective function in order to obtain computational divided
di↵erences. But one should note that obtaining divided di↵erences from f is in principle an
automatic procedure given the source code, whereas obtaining parameters l and L would be
quite di�cult. Indeed, it is known that simply checking whether a 4th degree multivariate
polynomial is convex (presumably an easier problem than obtaining l and L) is NP-hard
[2].

2.3.2 Implementation of CGSO

Obviously the most important part in CGSO is solving the subspace optimization problem
in each iteration. As mentioned, we used Newton’s method for this task unless it fails to
rapidly converge to the optimum in our implementation. In the case of failure of Newton’s
algorithm, the ellipsoid method carries out the task of solving the optimization problem.
We would like to point out again that the assumption of strong convexity or the Lipschitz
continuity of the gradient are not su�cient for convergence of Newton’s method, but it
succeeds in many cases nonetheless. In our experiment we assigned the upper bound of
15 to the number of iterations Newton’s method may take. If it does not converge in 15
iterations, the algorithm switches to ellipsoid method.

Recall that xj+1 is the minimizer of the function over the space of vectors x = xj+↵rf j+
�dj+Qa+Rb, where Q 2 Rn⇥|S| is the matrix formed by columns qjp for all p 2 S; R is the
matrix of the same dimension with columns xj �xr

p for all p 2 S; ↵, � 2 R, and a, b 2 R|S|

are coe�cients that we want to find. Let y denote the variable of the subspace optimization
problem, i.e., y = [↵, �, at, bt]t; in addition let B = [rf j, dj, Q, R] and ! = 2 + 2 |S|.
The formal statement of the subspace optimization problem is

min
y2R!

f
�
xj +By

�
. (2.20)
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As mentioned, we solve problem (2.20) with Newton’s method. Letting f̃(y) = f(xj +By)
and using the chain rule we get the following formulas for the gradient and Hessian of each
Newton’s iteration,

rf̃(y) = Btrf(x), (2.21)

r2f̃(y) = Btr2f(x)B. (2.22)

Notice that some second order information of the function comes into play in equation
(2.22). For the subspace optimization subproblem, we solve a problem of size ! which
is typically two. From (2.22) it is clear that we require r2fB, i.e., Hessian times few
(normally two) vectors, and we are not forming the Hessian explicitly. Since computing a
Hessian-vector multiplication can often be a cheaper task as opposed to finding the Hessian,
Newton’s method is e↵ective for solving the subproblem. The Newton equations are typi-
cally very low dimensional (say, dimension 2 or 3), so our implementation solves them using
MATLAB’s backslash operator, which is implemented via dense Cholesky factorization.

As we discussed in Section 2.3.1, a di�culty we need to overcome especially when we are
trying to achieve high accuracy, is round-o↵ error. In particular f(xj) � f(xj+1), which
is required for computing �j, gets more and more inaccurate as the iterates approach the
optimum. In Section 2.3.1 we explained how one may overcome this problem by com-
putational divided di↵erences. The experiments in this section, however, were performed
before we knew about computational divided di↵erences. Therefore, we took advantage of
the second order Taylor series expansion to solve the problem here. We have a subroutine
that analyses the absolute error of f(xj)� f(xj+1) computed directly and through Taylor
series, i.e. f(xj) � f(xj+1) ⇡ �

�
rf(xj)t(xj+1 � xj) + 1

2

(xj+1 � xj)tr2f(xj)(xj+1 � xj)
�
;

the one with smaller error is accepted. In some cases the error analysis is not easy, hence a
heuristic is used to choose the preferred formula. Computing the di↵erence of two objective
values appeared in inequality (2.4) as well, in f(xm�1)�f(x0); the same subroutine is used
to compute this term.

Test Cases:

We have tested our algorithm on the following classes of problem:

1. f
1

(x) = �
Pm

i=1

log (atix� bi)

2. f
2

(x) = ctx� log (det (C �Diag(x)))

3. f
3

(x) =
Pm

i=1

(atix� bi)
d where d is a given even integer.
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Functions f
1

and f
2

are log-barrier functions, and f
3

is an approximation to the infinity
norm of the vector Ax � b. Note that we need to restrict the degree, d, to even numbers
to enforce the convexity of f

3

. Suppose ./ and .⇤ denote the component-wise division and
multiplication, respectively; similarly · before the exponent denote the component-wise
power. Using this notation, the gradient and the Hessian (times a vector) of the above
functions are

1. f
1

(x) = �
Pm

i=1

log (atix� bi)
rf

1

(x) = At (e./s), where s = Ax� b
r2f

1

(x)p = AtAp./s·2

2. f
2

(x) = ctx� log (det (C �Diag(x)))
rf

2

(x) = c+ diag(Z�1), where Z = C �Diag(x)
r2f

2

(x)p = diag (Z�1Diag(p)Z�1) = (Z�1. ⇤ Z�1)p

3. f
3

(x) =
Pm

i=1

(atix� bi)
d where d is a given even integer.

rf
3

(x) = dAts·d�1, where s = Ax� b
r2f

3

(x)p = d(d� 1)AtDiag(s·(d�2))Ap = d(d� 1)At
�
s·(d�2). ⇤ (Ap)

�

Before presenting the results, we need to comment on how the running time was measured.
We measure time in “units”, where we count as one unit an evaluation of a function
or gradient or function/gradient pair (at the same point). In the line-search procedure,
gradients are evaluated several times, so each outer iteration costs several units. We count
the evaluation of r2f(x)p, needed for Newton’s method, as two units. Here, x and p
are arbitrary vectors. From the presented formulas, it is clear that the computation of
r2fp in our test cases costs twice as much as the gradient, namely two matrix-vector
multiplication as opposed to one for the gradient. The main theorem of backward-mode
automatic di↵erentiation states that the evaluation of r2f(x)p should never cost more
than 5 units [90, Chapter 8]. (None of our examples reach this upper bound of 5.) Note
that each iteration in Newton’s method needs two r2fp typically, so its cost counts as five
units. Finally, one iteration of the ellipsoid method also counts as one unit since it involves
one gradient evaluation.

Parameter ⇢:

We already discussed that ⇢ is a parameter of CGSO required for checking inequality (2.5).
We desire ⇢ to be close to one. In our experiment, we do not check inequality (2.5); instead
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we gather the values of

⇢̄ :=

���
Pj

i=r
p

�irf i
���

qPj
i=r

p

(�i)2krf ik2
(2.23)

and study their trend. Our observation (to be presented shortly) suggests that a reasonably
small bound for ⇢ should su�ce, meaning that we may assign a relatively small value, say
5, to ⇢ for inequality (2.5) to always go through. In other words, we never require any
correction regarding to (2.5), since it never fails.

Numerical Results:

We take 'l, the lower bound on the range of p for checking inequality (2.4), to be 4. In
fact, there is little harm in omitting the check on the conditions for very small values of
p since the lemma will still guarantee convergence, albeit slightly more slowly, if we catch
those corrections for larger values.

All the codes are written in MATLAB. The stopping criterion we used for both CGSO and

its subproblem are krf(xj)k  ✏ and
���rf̃(xj)

���  ✏N , respectively. In our implementation,

✏N at iteration j is
kBtrfjk

100

; however, if the subproblem is solved by Newton’s method, the
obtained solution is usually more accurate due to the fast local convergence of the Newton’s
method. Notice that for f

1

and f
2

we have some hidden constraints, namely Ax � b > 0
in f

1

and C � Diag(x) � 0 in f
2

. Since in CGSO we use direct Newton’s method without
any line search, the algorithm switches to ellipsoid method if the iterates get infeasible. In
addition, we have set the upper bound of 15 to the number of iteration Newton’s method
may take. After reaching 15 iterations in the Newton’s method, the algorithm switches to
ellipsoid method; this, however, never happened in our experiment.

Note that the termination criterion used in this experiment is not scale invariant. An ideal
termination criterion would be a relative error on the residual of the objective value (or
the solution), i.e.,

f(xj)� f(x⇤)

f(x⇤)
 ✏. (2.24)

This, however, requires knowing the optimal solution. Other possible candidates for a scale
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HZ CGSO
m(=3n) ds(A) itr. ls. unit itr. New. ellp. unit corr.
6000 1 404 2999 2999 261 402 394 2404 0
6000 0.5 357 2535 2535 213 323 422 2037 0

Table 2.1: Comparison of CGSO and HZ for linear log barrier function

invariant termination test might be

krf(xj)k  ✏krf(x0)k, (2.25)

f(xj)� f(xj�1)

f(xj)
 ✏. (2.26)

Because of the hidden constraints for most of our test cases, krf(x0)k might be very
large if x0 is not su�ciently close to the optimizer. Therefore, termination criterion (2.25)
can perform poorly. Criterion (2.26) may also result in early termination at a non-optimal
point for CG methods due to loss of independence of the gradients. As we discussed earlier,
when the independence of the gradients is lost in CG, two or more consecutive iterates
may become almost identical. In fact, this phenomenon is the motivation for recovering
the independence of the gradients or restarting in the CG techniques. We observed that
the tolerance on the norm of the gradient is a better option for our experiment.

Hager and Zhang [53] compared their variant of CG with L-BFGS and PRP
+

, and estab-
lished the superior performance of their variant of CG. We compare our algorithm with
their variant of CG, represented by HZ on a set of randomly generated instances. In the
tables summarizing the results, “itr.”, “ls.”, “New.” and “ellp.” refer to the total number
of (outer) iterations, line search iterations, Newton’s iterations and ellipsoid iterations,
respectively. The column “unit” represents the total cost (according to the presented defi-
nition of unit) for each algorithm. m and n are for the dimension of the problem. “ds(A)”
denotes the sparsity of matrix A, i.e., ds=0.5 means that half of the entries of A are zeros.
For the SDP log barrier function (log of determinant) we assume c = µe for some constant
µ. The value of this parameter in Table 2.2 is stated by µf . The larger gets the value for
µ, the more ill-conditioned the problem is. Finally, the number of times that inequality
(2.4) has failed (i.e., the number of times the correction step was required) is listed under
column “corr.”

The number of iterations CGSO takes is less than HZ in all instances, and the number
of iterations for solving subproblems is significantly less than the number of line search
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HZ CGSO
n µf itr. ls. unit itr. New. ellp. unit corr.
500 100 3059 92682 92682 1080 1884 6195 15615 0
1000 10 928 14596 14596 419 600 1641 4641 0

Table 2.2: Comparison of CGSO and HZ for log of determinant function

HZ CGSO
n m d ds(A) itr. ls. unit itr. New. ellp. unit corr.
3000 1500 6 0.5 225 6220 6220 148 545 0 2725 0
5000 2500 4 0.5 203 7333 7333 136 410 0 2050 0
50 50 4 1 3442 53474 53474 658 1055 0 5723 7

Table 2.3: Comparison of CGSO and HZ for d-norm function

iterations. The “unit” cost of both algorithms indicates that CGSO outperforms HZ,
especially on the ill-conditioned instances like the first SDP log barrier and the third d-
norm function reported here. The correction step was almost never required. The only
instance that correction step was taken is in the third row of Table 2.3. Actually the purpose
of this instance is to show that correction step might be required for some problems. In this
instance the condition number of A is in O(103). The correction step is taken throughout
7 blocks corresponding to 'l = 4. This, however, is consistent with the theory because
the larger the condition number is, the larger L

l
is; therefore 2'l may not be a good

approximation of
l
8⇢
q

L
l

m
.

Earlier, we mentioned that we collect ⇢̄ and study their values. Table 2.4 summarizes the
maximum value of ⇢̄ reached in each instance over all values of p. Figure 2.1 depicts ⇢̄ for
the instances corresponding to the first rows of Tables 2.1 and 2.2. We chose these instances
because they have higher ⇢max and iteration count in each category. As we expected the
maximum value of ⇢̄ is fairly small (indeed much smaller than m), so talking ⇢ = 5 makes
inequality (2.5) to hold for all our instances. Notice that the plotted values imply that ⇢̄
reaches its maximum for some p̄ and then it decreases for larger values of p, so it does not
grow with p. Furthermore, as we get closer to the optimum ⇢̄ gets closer to 1. This is a
common pattern for all test problems we had. The fact that ⇢̄ decreases as we get closer
to the optimum suggests an adaptive way to update this parameter instead of fixing it.
In other words, we can assign an initial value to parameter ⇢ and if inequality (2.5) fails
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⇢max

Linear Log Barrier
1.9848
1.9803

Log of Determinant
3.2511
2.144

d-norm
1.016
1.0281
1.9430

Table 2.4: Maximum value of quotient (2.23) (⇢̄)

for more than a certain number of blocks, then we may increase ⇢, and as the algorithm
progresses towards the optimum we can decrease ⇢.

2.3.3 Numerical Results for the Detection and Correction Pro-
cedure

We have tested the correction method on four classes of problems, three convex and the
fourth nonconvex. Our setup was as follows. We tried three di↵erent variants of conjugate
gradient, namely FR, PR+, and HZ. Here, PR+ denotes the Polak-Ribière method in
which the parameter � is replaced by 0 in the case that it becomes negative (thus forcing
a restart), which is a recommended modification (see [90]).

Most of our test cases are small. This allowed us to perform more experiments in a reason-
able amount of time. As mentioned earlier, the behavior of conjugate gradient is governed
much more by conditioning of the problem than problem size. However, to illustrate that
the method is also suitable for large problems, we have included two somewhat larger test
cases.

The results of our experiments can be summarized as follows. For uncorrected methods, the
HZ direction is usually the best, while the FR method is usually the worst, and sometimes
FR is much worse. For corrected methods, all three directions perform about equally
well. The corrected methods are typically slower than the uncorrected HZ method for
well-conditioned problems. For ill-conditioned problems, however, the corrected method is
sometimes much better than HZ (as well as the other two methods). Note that no forced
restarts have been implemented. However, there are still restarts in some cases. As noted
above, in our correction procedure, when a conjugate gradient search direction is discarded,
the following step is, at least initially, the steepest descent direction. Also as noted above,
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Figure 2.1: Quotient (2.23) (⇢̄) with respect to iteration count
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Uncorrected Corrected
HZ FR PR+ HZ FR PR+

cond(A) = 105 38,483 98,442 73,756 87,894 85,930 88,280
cond(A) = 108 *5,552,754 8,557,387 *27,669,107 2,407,560 2,181,492 2,517,924
cond unknown 149,543 66,373 400,112 115,698 110,230 86,200

Table 2.5: Number of units of computation for convex quadratic functions.

the PR+ method will sometimes restart automatically if it computes a negative �.

Similar to what was described for CGSO, we measure time in “units”. Recall that one
unit is an evaluation of a function or gradient or function/gradient pair, and the evaluation
of r2f(x)p, needed for Newton’s method, counts as two units. Our line search is based
on simple bisection and the Wolfe conditions [90, Inequality 3.6 and Algorithm 3.1]. An
asterisk indicates a computation terminated due to an iteration limit.

We now present the results in more detail. The first test function is a simple quadratic,
f(x) = xTAx+bTx for a positive definite matrix A. The first two rows are smaller instances
with n = 1000, the last row is a larger problem with n = 197, 136. Note that none of the
methods reduce to linear CG in this case because we did not implement an exact line
search. Therefore, there is no prior guarantee that independence of search directions is
maintained. On the other hand, because the problem is quadratic, the Newton method on
the subspace converges in a single iteration and the ellipsoid method is never used. In two
cases we formed A by choosing 1000 geometrically spaced eigenvalues in a predetermined
interval and then multiplying on the left and right by a random 1000 ⇥ 1000 orthogonal
matrix. In this way, the condition number of A is determined exactly. In the third case we
formed A as the assembled sti↵ness matrix of a finite-element discretization of Poisson’s
equation on the unit disk with a relatively uniform and well-behaved mesh. This problem
has moderate ill-conditioning, but the matrix was too large to exactly measure its condition
number. The results of these experiment are shown in Table 2.5.

The next class of experiments is with linear log-barrier functions, that is f(x) = µ
Pm

i=1

log(aTi x� bi) + cTx. The first three lines are smaller problems (A 2 R400⇥100); the last line
is a larger DIMACS graph problem (A 2 R91,756⇥15,605). In the third line, the condition
number of A was slightly worse. In these experiments we generated A randomly with
known condition number for two smaller cases, and we took A to be the node-arc incidence
matrix of an undirected graph (hence two copies of each edge, one for each direction) for
a larger test case. This matrix A is relatively well conditioned. However, we can make
the problem more ill-conditioned by decreasing µ (thus pushing the solution closer to the
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Uncorrected Corrected
HZ FR PR+ HZ FR PR+

µ = .4 292,012 1,496,650 963,968 461,036 394,382 420,808
µ = .1 593,190 3,034,394 2,059,235 1,568,258 1,477,938 1,463,452
µ = .1 *55,190,257 *58,728,472 *55,665,606 13,349,163 15,235,567 14,813,917
µ = 100 1,298,292 *6,633,403 2,297,573 762,649 654,900 668,127

Table 2.6: Number of units of computation for log-barrier functions.

Uncorrected Corrected
HZ FR PR+ HZ FR PR+

� = 10�3 † 51,514 263,202 116,740 97,781 99,072 91,763
� = 10�4 ‡ 986,314 5,049,449 3,397,063 810,887 926,389 879,384
� = 10�4 ‡ 46,206,176 56,618,846 55,827,526 15,523,751 19,667,056 14,350,066
† cond(A) = 105
‡ cond(A) = 106

Table 2.7: Number of units of computation for regularized BPDN functions.

boundary of the feasible region). The graph in question came from a DIMACS challenge
problem. The results are in Table 2.6.

The third test case consists of smoothed versions of the BPDN problem. The unsmoothed
version of this problem has an objective function of the form kAx � bk2 + �kxk

1

, where
A has fewer rows than columns. In the smoothed version we approximate the function |x|
by (x2 + �)1/2 which is convex (strongly convex on bounded intervals) and smooth. For
each case, A 2 R100⇥400. For both rows, the regularization parameter � is 5 · 10�4. We did
not try a large instance of this problem because typically A is taken to be a dense matrix,
so a large problem would require too much computation time. The results are shown in
Table 2.7.

The final test case is the nonconvex distance geometry problem. In this problem, there
is a sequence of n points (x

1

, . . . , xn) each in Rd whose coordinates are mostly unknown.
However, many pairs of interpoint distances are given. The problem is to find the positions
of the points. This can be posed as a nonlinear least squares problem of minimizingX

(i,j)2E

�
d2i,j � kxi � xjk2

�
2

where E is a list of the pairs (i, j) whose distances are known,
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Uncorrected Corrected
HZ FR PR+ HZ FR PR+

stretch=1 29,829 61,148 56,453 42,311 38,501 43,123
stretch=5 328,436 672,881 974,868 87,416 93,771 102,012

Table 2.8: Number of units of computation for distance geometry functions.

dij is the known distance, and the xi’s are unknown, except for a few, called ‘anchors’, which
make the problem well posed (i.e. the problem has isolated unique solution provided that
the graph is su�ciently well connected and that there are enough anchors [58, 4, 64]).

Because of the nonconvexity, it is possible for di↵erent algorithms to converge to di↵erent
local optimizers; such a result would naturally make the running time estimates di�cult
to interpret. In order to prevent this inconsistency, the data was constructed so that there
is an exact solution (i.e., the nonlinear least squares instance has a solution with zero
residual), and then all the methods were initialized at a point close to that solution. With
this device, we were able to ensure convergence to the same solution. The coordinates of
the known solution were taken as random points in the plane, and a random subset of
possible edges was used in the objective function. We do not attempt to experiment here
with the global convergence behaviour of the detection-correction procedure for nonconvex
objective functions, but this is a topic of possible future study.

A second issue with nonconvexity is that the ellipsoid method is no longer valid for solving
the subspace problem. Therefore, our two methods for solving the subspace problem in this
case were Newton, and, if it fails, a trust-region method [90]. Note that our Newton method
used in this test case and all the others reported in this chapter was not globalized (i.e., no
line search or trust region was employed), so the trust-region method can be regarded as
recomputing a Newton step with a globalization. We define failure of pure Newton method
to be any of the following conditions: excessive number of iterations, badly conditioned
Jacobian, or a computed step with an excessive norm. It turned out that the trust-region
method was never invoked, most likely because we started su�ciently close to the root. We
can control the conditioning of the problem by stretching the random data points along
one axis (x or y). The results of a well-conditioned and ill-conditioned problem are in
Table 2.8. In each case the number of unknowns was 400 while the number of distances
was 600.
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2.4 CGSO for Constrained Problems

In Appendix A, we extend our results for CGSO to minimization of a strongly convex
function over a polyhedron using the notion of projected gradient, Definition 1.2. The
number of iterations required to decrease the residual of the function by a factor of two

is d8⇢
q

L
l
e + |A| in the constrained variant of CGSO (as opposed to d8⇢

q
L
l
e in the

unconstrained case), where |A| denotes the number of iterations between each two restarts
for which the active set has changed.

Currently we have no bound on the number of active set changes. In general, finding this
bound is not possible; but the question of whether this bound exists for a special class of
problems, say box-constrained QP, has remained unanswered. Moreover, a notion similar
to the correction step presented in Section 2.1.3 is required for the constrained variant of
CGSO as well, since it also relies on the two safeguard inequalities. How to perform a
correction step in the constrained case is unclear at this point and needs further study.

In Appendix A we applied CGSO to the following reformulation of BPDN problem

min 1

2

kAx� bk2 + �ety,
s.t. y � x,

y � �x.
(2.27)

Note that this may not be a suitable test case as the objective function is no longer strongly
convex, because Ax� b is underdetermined. But computing the projected gradient for this
problem can be done quite e�ciently.

As we expect, the solution of BPDN is typically very sparse. The sparsity of the solution
means that many constraints are active at the optimal solution. Our observation in the
experiment presented in Appendix A indicates that many iterations of CGSO correspond
to active set changes. This influences the convergence rate of the algorithm considerably
since it depends on |A|. For the BPDN problem, we present a quasi-Newton method in
Chapter 4 that is more e↵ective than CGSO in practice.
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Chapter 3

On Nesterov’s Technique

We presented a simple form of Nesterov’s algorithm in Section 1.2, and we discussed some
connections between this algorithm and CG. Similar to NY-CG, Nesterov’s algorithm does
not reduce to linear CG when applied to a quadratic function; in fact, our numerical
experiment suggests that it can be much slower than linear CG. Unlike NY-CG, Nesterov’s
algorithm has not been motivated by the essence of CG. It is rather built on the idea of an
estimate sequence proposed by Nesterov [85]. In this chapter we first give an overview of
Nesterov’s technique; then we explain how we can partially incorporate CG in Nesterov’s
scheme.

3.1 Nesterov’s Optimal Method

A major di↵erence between Nesterov’s method and CG is that the former generates two
sequences of iterates. This idea, albeit originated by Nesterov, has been adopted by other
researchers as well, see [9, 102, 81] and references therein. Nesterov motivates his algorithm
in [85, Section 2.2]. The idea is to generate a sequence of functions {�k} with certain
properties, then update the sequence of iterates using the minimizer of �k and the previous
iterate.

Definition 3.1. [85, Definition 2.2.1] A pair of sequences {�k(x)} and {�k}, �k � 0 is
called an estimate sequence of the function f(x) if �k ! 0 and for any x 2 Rn and all
k � 0 we have

�k(x)  (1� �k)f(x) + �k�0(x).
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The question of how to create an estimate sequence is nontrivial. Nesterov, however,
proposed an iterative mechanism for generating an estimate sequence for any f 2 Cl,L.

Lemma 3.1. [85, Lemma 2.2.2] Suppose �0(x) is an arbitrary function, and {yk} is an
arbitrary sequence in Rn. Let �0 = 1 and {↵k} be a sequence such that ↵k 2 (0, 1) andP1

k=0

↵k = 1. Then the pair of {�k(x)} and {�k} defined as

�k+1

= (1� ↵k)�k, (3.1)

�k+1 = (1� ↵k)�k(x) + ↵k


f(yk) + hrf(yk), x� yki+ l

2
kx� ykk2

�
, (3.2)

is an estimate sequence.

As mentioned before, the minimizer of �k is required for the algorithm, so we would like
it to be simple enough so that its minimizer can be computed e�ciently. The following
lemma handles this task.

Lemma 3.2. [85, Lemma 2.2.3] Suppose �0 = �̄0 + �0

2

kx� v0k2. The sequence generated
in (3.1) and (3.2) forms

�k(x) = �̄k +
�k

2
kx� vkk2, (3.3)

where

�k+1 = (1� ↵k)�k + ↵kl, (3.4)

vk+1 =
1

�k+1

⇥
(1� ↵k)�kvk + l↵k � ↵krf(yk)

⇤
, (3.5)

�̄k+1 = (1� ↵k)�̄k + ↵kf(yk)� (↵k)2

2�k+1

krf(yk)k2

+
↵k(1� ↵k)�k

�k+1

✓
l

2
kyk � vkk2 + hrf(yk), vk � yki

◆
. (3.6)

Using the above lemma, we may now present Nesterov’s method.

Algorithm 3.1.
Let x0 2 Rn be an arbitrary point, �0 > 0, and v0 = x0

for k = 0, 1, . . .
Let �k+1 = (1� ↵k)�k + ↵kl,

where ↵k is the solution of the equation L(↵k)2 = (1� ↵k)�k + ↵kl.
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Let yk = ↵k�kvk+�k+1xk

�k+↵kl
,

compute f(yk) and rf(yk).

Find xk+1 such that f(xk+1)  f(yk)� 1

2L
krf(yk)k2.

Set vk+1 = 1

�k+1

⇥
(1� ↵k)�kvk + ↵klyk � ↵krf(yk)

⇤
.

Now that an e�cient scheme for generating an estimate sequence is on hand, we can present
the lemma required for the convergence of the algorithm.

Lemma 3.3. [85, Lemma 2.2.1] If for an estimate sequence of f , (�k, {�k}), and a sequence
of iterates, {xk}, we have

f(xk)  �̄k = min
x
�k(x),

then
f(xk)� f(x⇤)  �k

�
�0(x⇤)� f(x⇤)

�
.

The above lemma indicates that the convergence of the presented algorithm is directly
related to the rate of convergence of {�k}. Nesterov has constructed the updating rules
for his algorithm in a smart fashion so that the optimal convergence is attained. For more
details on the convergence, one may refer to [85, Section 2.2]. Note that other than the
sequence {vk} which is the optimizer of �k, we are free in choosing {yk} and {xk} provided
that

�̄k = min�k(x) � f(xk), (3.7)

f(xk)  f(yk)� 1

2L
krf(yk)k2, (3.8)

are satisfied. The updating formulas for yk and xk were actually suggested such that the
satisfaction of (3.7) and (3.8), respectively is guaranteed. As mentioned earlier, Nesterov’s
method can be much slower than CG in practice. Since the only restriction on the sequences
xk and yk are inequalities (3.7) and (3.8) for achieving the optimal complexity bound, we
may replace the iterates generated by CG for either xk or yk in Nesterov’s scheme hoping
to get a hybrid method that is more e�cient than Nesterov’s method in practice while it
maintains the desired optimal complexity bound. This is the topic we cover in the next
two sections.
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3.2 Substituting CG for xk

The investigation in this chapter concerns methods for combining CG and Nesterov’s
method. The purpose of combining them is to develop a hybrid method with the best
properties of both methods. In particular, the combined method should reduce to linear
conjugate gradient in the case that the objective is function is quadratic and an exact line
search is used, but on the other hand Nesterov’s complexity bound will apply no matter
what input function in Cl,L is given.

As the title of this section implies, we can combine CG and Nesterov’s method by running
these two algorithms in parallel; checking inequality (3.8); if the inequality holds then
accept the xk

CG, else perform a line search as Nesterov’s method suggests and restart the
CG algorithm. A more rigorous presentation of this hybrid method is as follows.

Algorithm 3.2.
Let x0 2 Rn be an arbitrary point, �0 > 0, and v0 = x0.
SUBROUTINE (any variant of CG): (x+

CG, p
+

CG) = CG(xCG, pCG)
Compute � using an updating rule in a variant of CG
p+CG = �rf(xCG) + �pCG

x+

CG = xCG + ↵p+CG, where ↵ is a step size found through a line search.
return

for k = 0, 1, . . .
Let �k+1 = (1� ↵k)�k + l↵k,

where ↵k is obtained by solving L(↵k)2 = (1� ↵k)�k + l↵k.

Let yk = ↵k�kvk+�k+1xk

�k+l↵k

,
compute f(yk) and rf(yk).

Let (xk+1

CG , pk+1

CG ) = CG(xk
CG, p

k
CG).

if f(xk+1

CG )  f(yk)� 1

2L
krf(yk)k2

accept xk+1

CG for xk+1,
else

find xk+1 by a line search on direction rf(yk).
Restart CG: set xk+1

CG = xk+1, and pk+1

CG = 0.

Set vk+1 = 1

�k+1

⇥
(1� ↵k)�kvk + l↵kyk � ↵krf(yk)

⇤
.

The above algorithm carries all the properties of Nesterov’s method, so it has the same
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complexity bound. A drawback of Algorithm 3.2 is that two gradients, namely rf(xk)
and rf(yk), must be computed per iteration; while in Nesterov’s algorithm only rf(yk)
is required. Note that rf(xk) is needed for finding p+CG in the CG subroutine. This issue
can possibly overshadow the improvement in the performance of the algorithm, since it
increases the cost of each iteration to two gradient evaluation. This extra computational
burden can be avoided by substituting CG iterates for {yk} rather than {xk}. This is the
topic of the next section. Before moving on to the next section we show that in fact for a
sequence {xk

CG} generated by linear CG the inequality always holds.

Proposition 3.1. When f is a strongly convex quadratic function, and linear CG is used
in Algorithm 3.2, the condition f(xk+1

CG )  f(yk)� 1

2L
krf(yk)k2 always holds, i.e., the CG

sequence always gets accepted.

Proof. Suppose f(x) = 1

2

xtAx� btx. Let us define sets S i as follows:

S i =
�
x : x = x0 + Span

�
r0, Ar0, . . . , Ai�1r0

  
,

where r0 = rf(x0).

Our proof is by induction. Notice that by the choice of parameters y0 = x0. By linear CG,
x1

CG is the minimizer of f over the space S1; therefore

f(x1

CG)  f(y0 � 1

L
r0)  f(y0)� 1

2L
kr0k2.

Furthermore v1 2 S1, and as a result y1 2 S1.

Suppose yk, xk, vk 2 Sk, then
�
yk � 1

L
rf(yk)

�
2 Sk+1. Since xk+1

CG is the minimizer of f
over Sk+1, the inequality f(xk+1

CG )  f
�
yk � 1

L
rf(yk)

�
holds.

3.3 Substituting CG for yk

As mentioned earlier, computing rf(yk) in Nesterov’s method is unavoidable. It is re-
quired both in finding xk+1 and updating vk+1. Using the CG sequence in the place of
{yk} in Nesterov’s method minimizes the computational cost per iteration as opposed to
substituting the sequence {xk} with the CG sequence. The trade o↵ is that inequality
(3.7) must be checked in each iteration as yk is no longer constructed in a specific way
that guarantees it. On the positive side, this inequality can be e↵ectively calculated as
presented in the equation (3.6) in Lemma 3.2. If the inequality fails, we update yk based
on Nesterov’s formula and restart CG. The algorithm in its complete form is stated below.
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Algorithm 3.3.
Let x0 2 Rn be an arbitrary point, �0 > 0, and y0, v0 = x0.
SUBROUTINE (any variant of CG): (x+

CG, p
+

CG) = CG(xCG, pCG) as in Algorithm 3.2
for k = 0, 1, . . .

Let �k+1 = (1� ↵k)�k + l↵k,
where ↵k is obtained by solving L(↵k)2 = (1� ↵k)�k + l↵k

For k � 1: (ykCG, p
k
CG) = CG(yk�1

CG , pk�1

CG ), for k = 0 y0CG = x0

compute f(ykCG) and rf(ykCG).
Compute �̄k+1 from equation (3.6).

if �̄k+1 � f(ykCG)� 1

2L
krf(ykCG)k2

accept ykCG for yk,
else

Let yk = ↵k�kvk+�k+1xk

�k+l↵k

,
Restart CG: set ykCG = yk, and pkCG = 0

Let xk+1 = yk � 1

L
rf(yk).

Set vk+1 = 1

�k+1

⇥
(1� ↵k)�kvk + l↵kyk � ↵krf(yk)

⇤
.

Note that choosing xk+1 as yk� 1

L
rf(yk) fulfils inequality (3.8). Also note that computing

↵k requires solving a quadratic equation. It can be checked that the equation always has
one positive real root.

Proposition 3.2. When f is a strongly convex quadratic function, and linear CG is used
in Algorithm 3.3, the condition �̄k+1 � f(ykCG)� 1

2L
krf(ykCG)k2 always holds, i.e. the CG

sequence always gets accepted.

Proof. Let S i be as defined earlier in the proof of Proposition 3.1. Our proof is by induction.
Note that �̄0 is by user’s choice. Nesterov’s suggestion is to take f(x0), so

�̄1 = (1� ↵0)f(x0) + ↵0f(x0)� (↵0)2

2�k+1

krf(y0)k2 � f(y0)� 1

2L
krf(y0)k2,

by the fact that (↵0

)

2

2�k+1

= 1

2L
and v0 = y0.

Suppose �̄k � f(xk). Note that f(xk) � f(yk) because f(xk) = f
�
yk�1 � 1

L
rf(yk�1)

�

and yk�1 � 1

L
rf(yk�1) 2 Sk; while yk is the minimizer of f over Sk. Furthermore since
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{yk} is generated by linear CG, hrf(yk), vk � yki = 0. This is true by Theorem 2.2; i.e.,
because both vk, yk 2 Sk, so vk � yk 2 Span

�
rf 0, . . . ,rfk�1

 
; and rfk is orthogonal to

rf 0, . . . ,rfk�1. Now using closed form of �̄k+1 obtained in Lemma 3.2 we conclude that

�̄k+1 = (1� ↵k)�̄k + ↵kf(yk)� (↵k)2

2�k+1

krf(yk)k2

+
↵k(1� ↵k)�k

�k+1

✓
l

2
kyk � vkk2 + hrf(yk), vk � yki

◆

� f(yk)� 1

2L
krf(yk)k2 + ↵k(1� ↵k)�k

�k+1

✓
l

2
kyk � vkk2

◆

� f(yk)� 1

2L
krf(yk)k2.

We have implemented the above techniques for two test cases. The first one is a strongly
quadratic function and the second one is the smoothed BPDN problem explained in Section
2.3.3, i.e., f(x) = 1

2

kAx�bk2+�
Pn

i=1

p
x2

i + �, where � is a small regularization parameter
equal to 5 · 10�4. Tables 3.1 and 3.2 summarize the obtained results. For the quadratic
function, employing CG with no exact line search was not significantly helpful, but for the
smoothed compressive sensing problem it was very helpful. Table 3.1 also clarifies that
Nesterov’s method does not reduce to LCG, and can be quite slower.

57



n = 400, cond(A)=1e2, tol=1e-5

Nst.1 Nst. Nst.+CGx
2 Nst.+LCGx Nst.+CGy

3 Nst.+LCGy

cst.4 bs. ls.5 bs. ls. ex. ls6. bs. ls. ex. ls.

it.7 147 145 113 74 113 74
ls. 8 146 793 637 73 637 73
rj. 9 - - 0 0 1 0

1: Nesterov’s method
2: Nesterov’s method with CG for {xk}
3: Nesterov’s method with CG for {yk}
4: Constant step size of 1

L
5: Bisection line search
6: Exact line search
7: Iteration count
8: Line search iteration count
9: rejection count for sequence {xk} or {yk}

Table 3.1: Nesterov’s method and CG for the convex quadratic function

A 2 R100⇥400, cond(A)=1e6, tol=1e-5
Nst. Nst. Nst.+CGx Nst.+CGy

cst. bs. ls. bs. ls. bs. ls.

it. DNC (> 1e6) DNC (> 1e6) 87021 85843
ls. (> 1e6) (> 1e6) 506417 604050
rj. - - 1561 16

Table 3.2: Nesterov’s method and CG for the smoothed BPDN problem
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Chapter 4

IMRO: A Practical Proximal
Quasi-Newton Method

In Section 1.3 we briefly introduced a quasi-Newton proximal technique. In this chapter
we present a practical variant of this method for solving the BPDN problem. Recall that
the BPDN problem is

min
x

F (x) :=
1

2
kAx� bk2 + �kxk

1

. (4.1)

Let us denote the quadratic part of F (x) with f(x). As mentioned earlier in Chapter 1,
we may substitute f(x) with a quadratic approximation model

mH(x, x
k) = f(xk) + hx� xk,rf(xk)i+ 1

2

�
x� xk

�t
H
�
x� xk

�
, (4.2)

to find the next iterate. Ignoring a constant additive term, an equivalent form of (4.2) is

mH(x, x
k) =

1

2
kx�

�
xk �H�1rf(xk)

�
k2H . (4.3)

We enforce the condition H � 0 on model (4.2) to make sure mH(x, xk) + �kxk
1

is a
strongly convex function; therefore its minimizer exists and is unique. The next iterate,
xk+1, is then defined as

xk+1 = argmin
x

�
mH(x, x

k) + �kxk
1

�
. (4.4)

The above scheme is what we refer to as a proximal quasi-Newton methods. In the algo-
rithms presented in this chapter we propose the following format for H:

H = �I� uut. (4.5)
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In fact the term “IMRO” stands for “Identity Minus Rank One” which is the proposed
format for matrixH. We will see shortly that one of the advantage of IMRO is the e�ciency
in computing xk+1. In [14], Becker and Fadili suggest a proximal quasi-Newton method in
whichH is an identity plus rank one matrix. The methodology that we develop for selecting
� and u presented in Sections 4.2.1 and 4.2.1 does not seem to extend to the case of identity
plus rank one according to our analysis, but this question may need future investigation.
Lee et al. [74] have also recently proposed proximal Newton-type method, and generalized
the superlinear convergence of quasi-Newton methods to this class of algorithms under
some assumptions on H.

In the next section we present how we can e↵ectively compute xk+1 in IMRO. Our discussion
is then followed by two di↵erent variants of IMRO, their properties and convergence results.

4.1 Computing xk+1 in IMRO

In this section we explain how we can attain the solution of (4.4), xk+1, in linearithmic
time, i.e. O(n log n).

By (4.4) and (4.3) we observe that at optimality

H
�
x� (xk �H�1rfk)

�
+ �⇠ = 0, (4.6)

holds, where ⇠ 2 @k · k
1

(xk+1). Let us denote xk � H�1rfk by xc. Recall that in IMRO
H = �I� uut; thus H�1 might be computed in closed form:

(�I� uut)�1 =
1

�
I� 1

�(kuk2 � �)
uut, (4.7)

so we are able to calculate xc easily. Condition (4.6) may now be restated as

(�I� uut)(x� xc) + � [±1]n = 0, (4.8)

where [±1]n is a vector of size n with ±1 entries. Actually ⇠i 2 [�1, 1] for i’s corresponding
to zero entries of x. However as will be discussed soon, we require condition (4.8) to find
the breakpoints that xi changes sign, and we do not directly solve this equation; therefore
we may ignore this notation abuse for now.

Let µ(to be found) = ut

(x�xc

)

�
, then (4.8) reduces to

x� xc � uµ+
�

�
[±1]n = 0. (4.9)
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By (4.9), we conclude that i-th entry of x is either 0 or xc
i + uiµ � �

�
(for xi > 0) or

xc
i + uiµ + �

�
(for xi < 0). Using this and sign of ui, we may now find the proper interval

for µ so that the mentioned equations for xi holds true; in other words:

xi > 0 ) xc
i + uiµ� �

�
> 0

! µ >
�

�

�xc

i

u
i

if ui > 0,

! µ <
�

�

�xc

i

u
i

if ui < 0,
(4.10)

xi < 0 ) xc
i + uiµ+

�

�
< 0

! µ <
��

�

�xc

i

u
i

if ui > 0,

! µ >
��

�

�xc

i

u
i

if ui < 0.
(4.11)

Note that by definition of µ, we have

utx� µ� = utxc. (4.12)

Searching over all the breakpoints mentioned in (4.10) and (4.11) (i.e.
�

�

�xc

i

u
i

and
��

�

�xc

i

u
i

),
enables us to find the proper value of µ for which (4.12) holds. It remains to note that

utx = ut(xc [±]
�

�
) + utuµ, (4.13)

hence equation (4.12) has the equivalent form of

(lhs) ut(xc [±]
�

�
) + (utu� �)µ = utxc (rhs). (4.14)

Since �I� uut � 0, the slope utu� � < 0. To find µ, we sort all the breakpoints (a vector
of size 2n); we start with an initial value of µ small enough such that lhs > rhs; we then
increment the value of µ over the sorted breakpoints until we reach the desired interval
[µl, µu] such that lhsµ

l

> rhs and lhsµ
u

< rhs, or the value of µ⇤ for which lhsµ⇤ = rhsµ⇤ .
In the case that we reach the interval, a simple interpolation solves (4.14). Note that we
may e↵ectively update the lhs when reaching a breakpoint, since only one of xi’s changes
sign for each breakpoint. The following chart visualizes how the search process is actually
carried out:

ui > 0 : ����� || {z }
x
i

<0

��
�
� xc

i

ui

| ����� || {z }
x
i

=0

�
�
� xc

i

ui

| �����| {z }
x
i

>0
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ui < 0 : ����� || {z }
x
i

>0

�
�
� xc

i

ui

| ����� || {z }
x
i

=0

��
�
� xc

i

ui

| �����| {z }
x
i

<0

The algorithm below summarizes all we said above for finding xk+1. The presented pseu-
docode is in MATLAB notation. “slp” in the following algorithm stands for the slope of
lhs in (4.14) of the current piece (i.e., the derivative with respect to µ).

Algorithm 4.1.
Input: �, u, xc, and �
slp-Update Subroutine:
Let i = |ā(j, 2)|
if ā(j, 2) < 0

if ui < 0
slp= slp + u2

i

else
slp= slp - u2

i

else
if ui < 0

slp= slp - u2

i

else
slp= slp + u2

i

Main Procedure

Let I = {i : ui 6= 0}
Form a 2 R2|I|⇥2 such that a(i, :) = [

�

�

�xc

i

u
i

,+i] and a(|I|+ i, :) = [
��

�

�xc

i

u
i

,�i]
Let ā := sorted “a” on first column
Let rhs:= utxc

Choose µ < ā(1, 1) such that lhs:= utxµ � µ� > rhs,
where xµ is derived by (4.9)
slp= ut

I0

uI0 � �, where I0 = {i : xµ
i 6= 0}

for j = 1, 2, . . . 2|I|
Let µ+ = ā(j, 1)
lhs+ = lhs + slp(µ+ � µ)
Update slp using slp-Update Subroutine (ā(j, :), slp)
if lhs+  rhs

µ⇤ = (rhs�lhs+)µ
lhs�lhs+

+ (lhs�rhs)µ+

lhs�lhs+
,

Find xµ by (4.9)
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return
µ = µ+ and lhs = lhs+

The computation of xk+1 can actually be done in linear time, i.e., O(n) (rather than
O(n log n)). The linear-time algorithm for finding µ is based on the fact that there is an
algorithm to find the median of an unsorted array of size n in O(n). So after computing
the 2n breakpoints, we can find the median of the breakpoints and calculate the lhs and
rhs of (4.14) in O(n). If the lhs�rhs, then we can discard all the breakpoints below the
median. Likewise, if lhsrhs we can drop all the values above the median. This step can
also be done in O(n), and reduces the size of the problem to n

2

. The same procedure can be
applied to the remaining breakpoints until we reach the desired interval for µ (an interval
[µl, µu] such that lhsµ

l

� rhs and lhsµ
u

 rhs). Thus, the total running time is of the
form O(n) +O(n

2

) +O(n
4

) + · · · which is O(n).

4.2 IMRO - The Algorithm

The general format of algorithm IMRO is:

x0 arbitrary,
for k=0,1,. . .

Find �k and uk, let Hk = �kI� ukukt

Solve (4.4) for xk+1 via algorithm 4.1.

In this section, we present two variants of IMRO. The di↵erence between these two variants
lies in the derivation of �k and uk. We refer to these variants as IMRO-2D, for IMRO on
two-dimensional subspace, and IMRO-1D for IMRO on one-dimensional subspace.

4.2.1 IMRO-1D

In IMRO-1D, we find � and u such that the approximation model mH(x, xk) equals f(x)
on a one-dimensional a�ne space xk + ↵v. We will later discuss the possible choices for
v. Moreover, we require mH(x, xk) to be an upper approximation for f(x). The latter
property has some theoretical benefits in convergence of the algorithm as we shall see in
Section 4.3. The formal statement of these imposed constraints is

mH(x, x
k) = f(x) whenever x 2 xk + Span {v} , (4.15)

mH(x, x
k) � f(x) 8x. (4.16)

63



Using (4.2), we deduce that (4.15) implies that

1

2
vtHv =

1

2
vtAtAv, (4.17)

and condition (4.16) implies that

1

2
(x� xk)tH(x� xk) � 1

2
(x� xk)AtA(x� xk). (4.18)

Obviously (4.18) holds if H ⌫ AtA. By (4.17) and (4.18), the required conditions on H
boils down to

vt(H � AtA)v = 0, (4.19)

H ⌫ AtA. (4.20)

In the rest of this section we show how we can compute � and u such that the above
conditions are satisfied.

Finding �, and u in IMRO-1D

Conditions (4.19) and (4.20) imply that

v 2 N (H � AtA). (4.21)

Without loss of generality, we assume that v is normalized, i.e. kvk = 1. The following
lemma gives us the formula for � and u in IMRO-1D.

Lemma 4.1. (4.19) and (4.20) are satisfied for

� = kAk2, (4.22)

and

u =

(
�v�AtAvp
��kAvk2

if v is not a dominant singular vector of A,

0 otherwise.
(4.23)

Proof. Note that kAk2 = �
max

(AtA) = �2

max

(A), where �
max

and �
max

stand for the maxi-
mum eigenvalue and maximum singular value, respectively. Let us first consider the case
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where v is a dominant singular vector of A. In this case H = �I = kAk2I ⌫ AtA and
(�I� AtA)v = 0, so both requirements hold.

Suppose v is not a dominant singular vector of A. Then the denominator in the formula
for u is positive and u is defined. We, therefore, have

(H � AtA)v = �v � (utv)u� AtAv = �v � (
p
� � kAvk2) �v � AtAvp

� � kAvk2
� AtAv = 0,

which concludes equality (4.19). It remains to show (4.20), that is xt(�I�uut)x � xtAtAx
for all x 2 Rn. Equivalently, we will show that for all x 2 Rn such that kxk = 1 we have
� � xtAtAx+ (utx)2, i.e.,

� � sup
kxk=1

����

✓
A
ut

◆
x

����
2

=

����

✓
A
ut

◆����
2

.

In fact, we prove that � =

����

✓
A
ut

◆����
2

. Clearly

����

✓
A
ut

◆���� � kAk,

because ����

✓
A
ut

◆
x

���� =

����

✓
Ax
utx

◆���� � kAxk 8x 2 Rn.

It remains to show that

����

✓
A
ut

◆����  kAk. By the value of �, we have �I � AtA ⌫ 0, so

we can define B such that BBt = �I� AtA. Note that

xt
�
At u

�✓ A
ut

◆
x = xtAtAx+

�
utx

�
2

= xtAtAx+
(xt (�I� AtA) v)2

� � kAvk2

= xtAtAx+
(xt (�I� AtA) v)2

vt (� � AtA) v

= xtAtAx+
(xtBBtv)2

vtBBtv
 xtAtAx+ xtBBtx = �xtx, (4.24)

where the last inequality is ensured by Cauchy-Schwarz inequality, i.e.,
�
xtBBtv

�
2  kBtxk2kBtvk2 =

�
xtBBx

� �
vtBBtv

�
.
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Combining the definition of induced matrix norms and the result obtained in (4.24) we get

����

✓
A
ut

◆���� = sup
x:kxk=1

xt
�
At u

�✓ A
ut

◆
x  sup

x:kxk=1

�xtx = � = kAk,

which yields the result we wanted to show.

4.2.2 IMRO-2D

IMRO-2D is a variant of IMRO algorithm in which the quadratic model mH(x, xk) matches
the function on the two dimensional space of xk+Span

�
rfk, xk � xk�1

 
. For convenience,

let us denote (xk�xk�1) with dk; furthermore without loss of generality let us assume that
rfk and dk are normalized.

The imposed condition for IMRO-2D requires

f(xk) + hrfk, x� xki+ 1

2
(x� xk)tH(x� xk) =

1

2
kA

�
xk + (x� xk)

�
k2, (4.25)

for all x 2
�
xk + Span

�
rfk, dk

  
, that is when x� xk = ↵rfk + �dk.

Condition (4.25), therefore, reduces to

1

2
(x� xk)tH(x� xk) =

1

2
(x� xk)tAtA(x� xk), i.e.,

1

2
(↵rfk + �dk)tH(↵rfk + �dk) =

1

2
(↵rfk + �dk)tAtA(↵rfk + �dk), (4.26)

for all ↵, � 2 R. The fact that H = �I� uut in IMRO enables us to find �, ⌧, and ⇢ such
that (4.26) is satisfied for � and u = ⌧rfk+⇢dk. This is the topic covered in the remainder
of this section.

Finding � and u in IMRO-2D

By (4.26), we need to solve

(↵rfk + �dk)tAtA(↵rfk + �dk) = (↵rfk + �dk)t(�I � uut)(↵rfk + �dk), (4.27)

for � and u. We first derive �, then using � we will compute vector u.
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Let S be the following matrix

S =
�
rfk dk

�t
AtA

�
rfk dk

�
=

✓
(rfk)tAtArfk (rfk)tAtAdk

(dk)tAtArfk (dk)tAtAdk

◆
. (4.28)

Then (4.27) impose the following equations on �, and u

S
11

= � � (rfk)tuutrfk,

S
12

= �(rfk)tdk � (rfk)tuutdk, (4.29)

S
22

= � � (dk)tuutdk.

Let ✏ be (rfk)tdk, an easily computable constant in each iteration, then

det(S) = S
11

S
22

� S2

12

= �2

�
1� ✏2

�
+ �

�
�(rfk)tuutrfk � (dk)tuutdk + 2✏(rfk)tuutdk

�

= �2(1� ✏2) + � (S
11

� � + S
22

� � + 2✏(�✏� S
12

)) ,

using the set of equations in (4.29). Hence � can be calculated by solving the following
quadratic equation

�2 (1� ✏2)| {z }
⌘
1

+� (�S
11

� S
22

+ 2✏S
12

)| {z }
⌘
2

+det(S)| {z }
⌘
3

= 0. (4.30)

Suppose u = ⌧rfk + ⇢dk; using (4.29) we get

� � S
11

= ⌧ 2 + 2✏⌧⇢+ ✏2⇢2 = (⌧ + ✏⇢)2,

✏� � S
12

= ✏⌧ 2 + ⌧⇢+ ✏2⌧⇢+ ✏⇢2 = (⌧ + ✏⇢)(✏⌧ + ⇢), (4.31)

� � S
22

= ✏2⌧ 2 + 2✏⌧⇢+ ⇢2 = (✏⌧ + ⇢)2,

so (⌧ + ✏⇢) =
p
� � S

11

and (✏⌧ + ⇢) =
p
� � S

22

sgn(✏�� S
12

). Therefore ⌧ and ⇢ are the
solutions of the linear system below

✓
1 ✏
✏ 1

◆✓
⌧
⇢

◆
=

✓ p
� � S

11p
� � S

22

sgn(✏� � S
12

)

◆
. (4.32)

In what follows, we show that IMRO-2D is a valid algorithm, namely 9�, ⌧, ⇢ 2 R that
solve (4.30) and (4.32).
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Validity of IMRO-2D

Property 4.1. Let ⌘
1

, ⌘
2

, and ⌘
3

be defined as in (4.30). Then

⌘
1

� 0, (4.33)

⌘
2

 0, (4.34)

⌘
3

� 0. (4.35)

Proof.

• Note that ✏2  ✏  1 because ✏ = (rfk)tdk and krfkk = kdkk = 1, therefore
⌘
1

= 1� ✏2 � 0.
• ⌘

3

= det(S) and S ⌫ 0 ) ⌘
3

� 0.
• (S

11

� S
22

)2 � 0 , S2

11

+ S2

22

+ 2S
11

S
22

� 4S
11

S
22

� 4S2

12

� 4✏2S2

12

,
where the last two inequalities hold by S ⌫ 0 and ✏2  1, respectively; therefore
(S

11

+ S
22

)2 � 4✏2S2

12

) S
11

+ S
22

� 2✏S
12

) ⌘
2

 0.

Claim 4.1. Equation (4.30) has a real solution, i.e., � exists.

Proof. Basically we want to show that ⌘2
2

� 4⌘
1

⌘
3

� 0. Note that

⌘2
2

� 4⌘
1

⌘
3

=
�
S2

11

+ S2

22

+ 4✏2S2

12

+ 2S
11

S
22

� 4✏S
11

S
12

� 4✏S
22

S
12

�

+
�
�4S

11

S
22

+ 4S2

12

+ 4✏2S
11

S
22

�4✏2S2

12

�
. (4.36)

Now let us make the following substitutions in (4.36)

S2

11

= (1� ✏2)S2

11

+ ✏2S2

11

, (4.37)

S2

22

= (1� ✏2)S2

22

+ ✏2S2

22

, (4.38)

4✏2S
11

S
22

= 2✏2S
11

S
22

+ 2✏2S
11

S
22

, (4.39)

to get

⌘2
2

� 4⌘
1

⌘
3

= (1� ✏2)S2

11

+ ✏2S2

11

+ (1� ✏2)S2

22

+ ✏2S2

22

� 4✏S
11

S
12

� 4✏S
22

S
12

�2S
11

S
22

+ 4S2

12

+ 2✏2S
11

S
22

+ 2✏2S
11

S
22

= (✏S
11

+ ✏S
22

� 2S
12

)2 + (1� ✏2)(S
11

� S
22

)2 � 0.
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Claim 4.2. � � S
11

and � � S
22

; therefore u exists.

Proof. We will prove it for S
11

, the proof for S
22

would be similar.

(✏S
11

� S
12

)2 � 0 ) S2

12

� �✏2S2

11

+ 2✏S
11

S
12

,

) S2

12

� S
11

S
22

� �✏2S2

11

+ 2✏S
11

S
12

� S
11

S
22

+ S2

11

� S2

11

,

) �⌘
3

� S2

11

⌘
1

+ S
11

⌘
2

,

) �4⌘
1

⌘
3

� 4⌘
1

�
S2

11

⌘
1

+ S
11

⌘
2

�
= 4S2

11

⌘2
1

+ 4S
11

⌘
1

⌘
2

,

) ⌘2
2

+�4⌘
1

⌘
3

� 4S2

11

⌘2
1

+ 4S
11

⌘
1

⌘
2

+ ⌘2
2

= (2S
11

⌘
1

+ ⌘
2

)2 ,

)
q
⌘2
2

+�4⌘
1

⌘
3

� 2S
11

⌘
1

+ ⌘
2

,

) � =
�⌘

2

+
p
⌘2
2

+�4⌘
1

⌘
3

2⌘
1

� S
11

.

Claim 4.3. Suppose � and u are as defined in IMRO-2D by (4.30) and (4.32). Then
H = (�I� uut) ⌫ 0.

Proof. We will prove that � � kuk2, which implies that �kxk2 � kuk2kxk2 � (utx)2 for all
x 2 Rn; thus H ⌫ 0.

Recall that u = ⌧rfk + ⇢dk, krfkk = kdkk = 1 and ✏ = (rfk)tdk by definition, so

kuk2 = ⌧ 2 + ⇢2 + 2⌧⇢✏. (4.40)

In addition, recall (4.31) in which we had

� � S
11

= ⌧ 2 + 2✏⌧⇢+ ✏2⇢2,

✏� � S
12

= ✏⌧ 2 + ⌧⇢+ ✏2⌧⇢+ ✏⇢2,

� � S
22

= ✏2⌧ 2 + 2✏⌧⇢+ ⇢2.

Let us multiply the second equation by �2✏ and add the result to the summation of the
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other two equations to get

lhs = � � S
11

� 2✏2� + 2✏S
12

+ � � S
22

= 2(1� ✏2)� + ⌘
2

= 2⌘
1

� + ⌘
2

,

rhs = ⌧ 2 +���2✏⌧⇢+ ✏2⇢2
::::

� 2✏2⌧ 2 ����2✏⌧⇢� 2✏3⌧⇢� 2✏2⇢2
:::::

+ ✏2⌧ 2 + 2✏⌧⇢+ ⇢2
::

= ⌧ 2(1� ✏2) + 2✏⌧⇢(1� ✏2) + ⇢2(1� ✏2) = (1� ✏2)kuk2 = ⌘
1

kuk2,
) 2⌘

1

� + ⌘
2

= ⌘
1

kuk2,

)����⌘
2

+
q
⌘2
2

� 4⌘
1

⌘
3

+⇢⇢⌘2 = ⌘
1

kuk2,

) kuk2 =
p
⌘2
2

� 4⌘
1

⌘
3

⌘
1

.

By the value of �, we have

� � kuk2 = �⌘
2

+
p
⌘2
2

� 4⌘
1

⌘
3

2⌘
1

�
p
⌘2
2

� 4⌘
1

⌘
3

⌘
1

=
�⌘

2

�
p
⌘2
2

� 4⌘
1

⌘
3

2⌘
1

� 0,

where the final inequality holds by property (4.1), i.e.,

⌘
1

� 0, ⌘
3

� 0 ) �4⌘
1

⌘
3

 0,

hence

⌘2
2

� 4⌘
1

⌘
3

 ⌘2
2

)
q
⌘2
2

� 4⌘
1

⌘
3

 |⌘
2

| = �⌘
2

.

Note that � > kuk2 unless ⌘
1

= 0 (i.e. ✏ = 0) or ⌘
3

= 0 (i.e. det(S) = 0). Both cases
happen only if rfk and dk are parallel, otherwise H = �I� uut � 0.

Before we start the analysis on the convergence of IMRO, we would like to point out that
IMRO-2D reduces to linear CG (LCG) in the absence of �kxk

1

term. In fact, IMRO-2D
was slightly motivated by CG algorithms and in particular CGSO. The following theorem
explains why IMRO-2D is essentially linear CG when the regularized term is missing.

Theorem 4.1. Suppose IMRO-2D is applied to minimizing the quadratic function 1

2

kAx�
bk2, then the sequence of iterates generated by IMRO-2D is the same as iterates generated
in linear CG.

Proof. Notice that

f(x) =
1

2
kAx� bk2 = 1

2
xt

Qz}|{
AtAx� xt

cz}|{
Atb +

1

2
btb.
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The proof is by induction. Let x0 and r0 = rf(x0) = Qx � c be the starting point for
both algorithms. The subscript CG, classifies iterates for LCG from iterates obtained by
IMRO-2D. For IMRO-2D at the first iteration we have

1

2
(r0)t(�I)r0 =

1

2
(r0)tAtAr0 ) � =

(r0)tAtAr0

(r0)tr0
,

and

x1 = x0 +
1

�
(�r0).

By the fact that for LCG, p0CG = �r0 and ↵0 = (r0)tr0

(r0)tAtAr0
= 1

�
, we get x1

CG = x1. Suppose

this holds true for k, i.e. xk
CG = xk. To ensure that xk+1

CG = xk+1 it su�ces to show that
xk+1 2 xk + Span

�
rk, pk

 
. Because mH(x, xk) = f(x) on the space of xk + Span

�
rk, pk

 
,

hence xk+1 must be the minimizer of f(x) over the space xk +Span
�
rk, pk

 
which is xk+1

CG .

Using optimality condition for our model mH(x) we get that

xk+1 = xk �H�1rk = xk �
�
�I� uut

��1

rk

= xk �
✓
1

�
I� 1

�(kuk2 � �)
uut

◆
rk

= xk � 1

�
rk +

utrk

�(kuk2 � �)
(⌧rk + ⇢pk) 2

�
xk + Span{rk, pk}

 
.

4.3 Convergence of IMRO

The di↵erence of IMRO and other proximal quasi-Newton methods is the special structure
of H. The format of H in IMRO facilitates computation of the next iterate as mentioned
earlier in this chapter. The convergence properties of IMRO, however, can mostly be
generalized to other variants of proximal quasi-Newton methods. In the preceding sections,
we established that H ⌫ 0 for both IMRO-1D and IMRO-2D. Furthermore, the conditions
under which H is singular are apparently unusual (that vk is a dominant singular vector
of A in the case of IMRO-1D; that rfk and dk are parallel in the case of IMRO-2D) and
never arose in our computational experiments. Therefore, for the remainder of this section,
we assume H � 0. If one of these unusual cases arose in practice, we could simply modify
the algorithm by replacing � by � + ✏ for some small ✏ > 0 to ensure that H � 0.
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Let us review the general scheme of these algorithms. The problem we aim to solve is

min F (x) := f(x) + p(x), (4.41)

where f(x) 2 CL (such as f(x) = 1

2

kAx � bk2) and p(x) is a convex function (such as
�kxk

1

). We find each iterate by solving

min
x

MH(x, x
k) : = mH(x, x

k) + p(x) (4.42)

=
1

2
kx� xkk2H + hrfk, x� xki+ f(xk) + �kxk

1

,

where H � 0. Let us fix the following notation:

M⇤
H(x

k) = min MH(x, x
k), (4.43)

x⇤
H(x

k) = argmin MH(x, x
k), (4.44)

gkH(x
k) = H(xk � x̄k

H). (4.45)

Throughout this section, we use the compact notation of Mk
H(x), x̄

k
H and gkH for MH(x, xk),

x⇤
H(x

k) and gkH(x
k), respectively.

Note that optimality conditions for (4.42) imply that

gkH = rfk + ⇠k+, (4.46)

where ⇠k+ 2 @
�
p(x̄k

H)
�
. We will see in this section that the notion of the scaled gradient,

gkH , mimics some of the properties of the gradient in unconstrained optimization. An
important property of gkH is captured in the following property.

Property 4.2. gkH = 0 if and only if xk is the optimizer of the problem.

Proof. Note that if gkH = 0, then xk� x̄k
H = 0 because H � 0 (thus invertible). This implies

that xk = x̄k
H . Therefore (4.46) reduces to optimality condition for (4.41). Likewise if xk is

the optimal solution of (4.41), then rfk + ⇠k = 0 implies that x̄k
H = xk; thus gkH = 0.

The following lemma, presented in [74], shows that in fact direction x̄k
H � xk = �H�1gkH is

a descent direction; in other words using this direction armed with a line search we attain
the next iterate, xk+1, for which we have F (xk+1) < F (xk).

Lemma 4.2. Suppose the scheme of (4.42) with some H � 0 has been applied to problem
(4.41). Let xk+1 = xk + ↵(x̄k

H � xk). Then F (xk+1) < F (xk), for su�ciently small step
size ↵.
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Proof. Let us denote x̄k
H � xk by dk. Since x̄k

H is the unique optimizer of (4.42), we have

1

2
kdkk2H + hrfk, dki+ f(xk) + p(x̄k

H) <
↵2

2
kdkk2H + ↵hrfk, dki+ f(xk) + p(xk+1)

 ↵2

2
kdkk2H + ↵hrfk, dki+ f(xk) + ↵p(x̄k

H) + (1� ↵)p(xk),

where the last inequality follows from convexity of p(x). Rearranging the terms and divid-
ing by 1� ↵ we get

hrfk, dki+ p(x̄k
H)� p(xk) < �1 + ↵

2
kdkk2H . (4.47)

Using the convexity of p(x) and the Taylor expansion for f(x), we derive

F (xk+1)� F (xk) = f(xk+1)� f(xk) + p(xk+1)� p(xk)

 ↵hrfk, dki+O(↵2) + ↵p(x̄k
H) + (1� ↵)p(xk)� p(xk)

= ↵
⇥
hrfk, dki+ p(x̄k

H)� p(xk)
⇤
+O(↵2) < 0, (4.48)

by (4.47) for su�ciently small values of ↵.

The above lemma indicates that both variants of IMRO coupled with a proper line search
generate a decreasing sequence. The following lemma shows that under certain condition
(that always holds for IMRO-1D), no line search is required to get a descent algorithm.

Lemma 4.3. Suppose the scheme of (4.42) with some H � 0 has been applied to problem
(4.41), and

F (x̄k
H)  Mk

H(x̄
k
H). (4.49)

Let xk+1 = xk + ↵(x̄k
H � xk), where ↵ 2 (0, 1). Then

F (xk+1) < F (xk).

Proof. By the hypothesis and the fact that x̄k
H is the unique minimizer of Mk

H we get

F (x̄k
H)  Mk

H(x̄
k
H) < Mk

H(x
k) = F (xk).

We now attain the desired result using the convexity of F (x):

F (xk+1)  ↵F (x̄k
H) + (1� ↵)F (xk) < F (xk).
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Note that for IMRO-1D condition (4.49) always hold because H ⌫ AtA.

The following lemma which is analogous to [9, Lemma 2.3] plays a key role in the conver-
gence of IMRO.

Lemma 4.4. Suppose xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1). For 8x 2 Rn we have

F (x)� F (xk+1) � 1

2
kxk+1 � xkk2H + hgkH , x� xki.

Proof. Recall that we have

H(xk+1 � xk) +rf(xk) + ⇠ = 0, (4.50)

where ⇠ 2 @
�
p(xk+1)

�
. By hypothesis we have

F (x)� F (xk+1) � F (x)�Mk
H(x

k+1), (4.51)

and by convexity of f(x) and p(x) we derive

f(x) � f(xk) + hrf(xk), x� xki, (4.52)

p(x) � p(xk+1) + h⇠, x� xk+1i. (4.53)

Summing the above inequalities, we get

F (x) � f(xk) + hrf(xk), x� xki+ p(xk+1) + h⇠, x� xk+1i. (4.54)

Substituting (4.54) in (4.51) gives us

F (x)� F (xk+1) �����f(xk) + hrf(xk), x� xki+⇠⇠⇠⇠p(xk+1) + h⇠, x� xk+1i

�1

2
kxk+1 � xkk2H � hrf(xk), xk+1 � xki �����f(xk)�⇠⇠⇠⇠p(xk+1)

= �1

2
kxk+1 � xkk2H + hrf(xk) + ⇠, x� xk+1i

= �1

2
kxk+1 � xkk2H + hH(xk � xk+1), x� xk + (xk � xk+1)i

=
1

2
kxk+1 � xkk2H + hgkH , x� xki.
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We may obtain a stronger bound on F (x) � F (xk+1) in Lemma 4.4 for strongly convex
functions. Suppose f 2 Cl,L in problem (4.41), then inequality (4.52) might be replaced
with

f(x) � f(xk) + hrf(xk), x� xki+ l

2
kx� xkk2,

to get the following lemma.

Lemma 4.5. Suppose f 2 Cl,L in problem (4.41), xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1).

Then for 8x 2 Rn

F (x)� F (xk+1) � l

2
kx� xkk2 + 1

2
kxk+1 � xkk2H + hgkH , x� xki.

As mentioned earlier, in IMRO we have H � �I, thus H�1 ⌫ 1

�
I and

kxk2H�1

� 1

�
kxk2. (4.55)

Also recall that x̄k
H � xk = H�1gkH . As a result we get the following corollaries.

Corollary 4.1. Suppose xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1). For 8x 2 Rn we have

F (x) � F (xk+1) + hgkH , x� xki+ 1

2
kgkHk2H�1

(4.56)

� F (xk+1) + hgkH , x� xki+ 1

2�
kgkHk2. (4.57)

Proof. Immediately follows from Lemma 4.4 and inequality (4.55).

Corollary 4.2. Let f 2 Cl,L in problem (4.41), xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1).

Then for 8x 2 Rn we have

F (x) � F (xk+1) + hgkH , x� xki+ 1

2
kgkHk2H�1

+
l

2
kx� xkk2 (4.58)

� F (xk+1) + hgkH , x� xki+ 1

2�
kgkHk2 +

l

2
kx� xkk2. (4.59)

Proof. Immediately follows from Lemma 4.5 and inequality (4.55).

Corollary 4.3. Let xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1). Then

F (xk+1)  F (xk)� 1

2�
kgkHk2. (4.60)
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Proof. It is derived by applying Corollary 4.1 at x = xk.

Inequality (4.60) clarifies more similarities between the scaled gradient, gH , and the notion
of the gradient in smooth unconstrained problems. Suppose that � = L as in IMRO-1D,
then inequality (4.60) implies

F (xk+1)  F (xk)� 1

2L
kgkHk2, (4.61)

which is similar to the inequality we had in unconstrained smooth optimization for su�cient
reduction in the objective value at each iteration.

Corollary 4.4. Suppose f 2 Cl,L in problem (4.41), xk+1 = x̄k
H and F (xk+1)  Mk

H(x
k+1).

Then

hgkH , xk � x⇤i � 1

2�
kgkHk2 +

l

2
kx⇤ � xkk2, (4.62)

where x⇤ is the minimizer of F (x).

Proof. Applying Corollary 4.2 at x = x⇤ along with the fact that F (x⇤)  F (xk+1) con-
cludes the desired result.

As explained, our gradient based method, IMRO, is as follows.

Algorithm 4.2.
Let x0 2 Rn be an arbitrary starting point and x1 = Proxp(x0 �rf 0/�).

for i = 1, 2, . . .
Find � and u:

equations (4.22) and (4.23) for IMRO-1D
equations (4.30) and (4.32) for IMRO-2D

Find xk+1 using Algorithm 4.1
Update rfk and dk

The following theorem states the linear convergence of Algorithm 4.2 for strongly convex
functions.

Theorem 4.2. Suppose f 2 Cl,L in problem (4.41), � � L, and ↵  1

�
in Algorithm 4.2.

Then
kxk � x⇤k2  (1� ↵l)kkx0 � x⇤k2. (4.63)
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Proof. Proof is by induction. The base case, i.e., k = 0 is true. Assume it holds for k; then

kxk+1 � x⇤k2 = kxk � ↵gkH � x⇤k2 (4.64)

= kxk � x⇤k2 � 2↵hgkH , xk � x⇤i+ ↵2kgkHk2 (4.65)

 (1� ↵l)kxk � x⇤k2 + (↵2 � ↵

�
)kgkHk2 (4.66)

= (1� ↵l)kxk � x⇤k2, (4.67)

where (4.66) follows from Corollary 4.4.

Since in IMRO-1D, � � L, we can conclude that it has linear convergence by the above
theorem for the class of strongly convex functions. Moreover, because BPDN problem is
not strongly convex, l might be zero in which case Theorem 4.2 does not apply. In what
follows we derive a lemma that leads us to the sublinear convergence of IMRO-1D for
convex problems.

Lemma 4.6. Suppose xk+1 = x̄k
H , and F (xk+1)  Mk

H(x
k+1). Then

F (xk)� F (xk+1) �
�
F (xk+1)� F (x⇤)

�
2

2�2�2
, (4.68)

where � is the diameter of the level set of x0.

Proof. By Lemma 4.4 at x⇤ we have

F (x⇤)� F (xk+1) � 1

2
kxk+1 � xkk2H + hH(xk � xk+1), x⇤ � xki

=
1

2

�
hH(xk � xk+1), xk � xk+1 + 2x⇤ � 2xki

�

=
1

2

�
hH(x⇤ � xk+1)�H(x⇤ � xk), (x⇤ � xk+1) + (x⇤ � xk)i

�

=
1

2

�
kx⇤ � xk+1k2H � kx⇤ � xkk2H

�

=
1

2

�
kx⇤ � xk+1kH � kx⇤ � xkkH

� �
kx⇤ � xk+1kH + kx⇤ � xkkH

�

� 1

2

�
�kxk+1 � xkkH

� �
kx⇤ � xk+1kH + kx⇤ � xkkH

�
,

where the last line is by triangle inequality. Therefore we have

kxk+1 � xkkH �
2
�
F (xk+1)� F (x⇤)

�

kx⇤ � xk+1kH + kx⇤ � xkkH
� F (xk+1)� F (x⇤)

��
, (4.69)
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by the fact that kxk � x⇤k, kxk+1 � x⇤k  � because IMRO is a descent method, and
kxkH  �kxk by the choice of H in IMRO.

Moreover, by Lemma 4.4 at xk we have

F (xk)� F (xk+1) � 1

2
kxk+1 � xkk2H . (4.70)

Applying inequality (4.69) concludes the result we wanted to show.

The sublinear convergence of IMRO-1D is established using the following lemma.

Lemma 4.7. Suppose {!k} ! !⇤ is a decreasing sequence, !k � !k+1 � (!k+1�!⇤
)

2

µ
for all

k, and !
1

� !⇤  4µ. For all k we have

!k � !⇤  4µ

k
.

Proof. Proof is by induction. For k = 1, the result holds by hypothesis. Let pk =
4µ
k
, then

!k+1 � !⇤ = !k � !⇤ + !k+1 � !k

 !k � !⇤ � (!k+1 � !⇤)2

µ

 pk �
(!k+1 � !⇤)2

µ
.

Let ⌫ = !k+1 � !⇤; then the above inequality is

⌫2

µ
+ ⌫ � pk  0, (4.71)

which has nonnegative solution by

⌫  �µ+
p

µ2 + 4pkµ

2
=

2pk

1 +
q

1 + 4p
k

µ

. (4.72)

Note that function f(x) = 1

1+

p
1+x

is convex; thus on any interval [0, a], it is bounded above
by its secant interpolant.
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We now consider two separate cases; when k = 1 to show that lemma holds for k + 1 = 2,
and when k � 2 to show that the lemma holds for k + 1 � 3. For k = 1 we have p

1

 4µ,
so 4p

1

µ
 16. Therefore

⌫  2p
1

 
1

2
+

1

1+

p
17

� 1

2

16

4p
1

µ

!
 4µ

2
, (4.73)

i.e., the lemma holds for k = 2. For k � 2, pk  4µ
k
 2µ, so 4p

k

µ
 8; hence

⌫  2pk

 
1

2
+

1

1+

p
9

� 1

2

8

4pk
µ

!

= 4µ

✓
1

k
+ 4

✓
1

4
� 1

2

◆
1

k2

◆
 4µ

k + 1
, (4.74)

where the last inequality follows from the fact that 1

k
� 1

k2
 1

k+1

.

The sublinear convergence of IMRO-1D is a direct conclusion of applying the previous
lemma to !k = F (xk) and µ = 2�2�2 along with Lemma 4.6.

To sum up this section we would like to point out that in IMRO-1D we fix �; however,
even if it was changing we could set � = max{�i} and the previous results hold.

4.4 FIMRO - Accelerated Variant of IMRO

We briefly introduced the notion of an estimate sequence in Definition 3.1, and mentioned
some ground properties of Nesterov’s accelerated technique for minimizing function f 2
Cl,L in Chapter 3. In this section, we present in details how we can extend the theory of
Nesterov’s method to IMRO, particularly IMRO-1D, for minimizing a composite function.
The resulting algorithm is named FIMRO for fast IMRO.

As in Nesterov’s method, we have two sequences {yk} and {xk} in this section. The model
MH(x, yk) is built using yk, while its solution generates {xk}. In other words, we have the
following:

MH
⇤(yk) = min MH(x, y

k) (4.75)

x⇤
H(y

k) = argmin MH(x, y
k) (4.76)

gkH(y
k) = H(yk � x̄k

H) ⌘ gkH . (4.77)
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Similar to what was described in Definition 3.1, a pair of sequences {�k(x)} and {�k},
�k � 0 are called an estimate sequence of a composite function F (x) if �k ! 0 and for any
x 2 Rn and all k � 0 we have

�k(x)  (1� �k)F (x) + �k�0(x).

The following two lemmas which are analogous to [85, Lemmas 2.2.2 and 2.2.3] summarize
how we can construct an estimate sequence for the composite function F . The first one
recursively generates the estimate sequence using the scaled gradient at each iterate; while
the second one presents a closed form for the recursively generated sequence.

Lemma 4.8. Suppose {yk} is an arbitrary sequence, {↵k} is a sequence such that ↵k 2
(0, 1) and

P1
k=0

↵k = 1, and �0 = 1. Then the pair of sequences {�k} and {�k(x)}
generated as

�k+1 = (1� ↵k)�k,

�k+1(x) = (1� ↵k)�k(x) + ↵k

2

664F (x⇤
H(y

k)) + hgkH , x� yki+ 1

2�
kgkHk2

| {z }
 (x)

3

775 ,

is an estimate sequence for F (x).

Proof. Note that by Corollary 4.1, F (x) �  (x) for 8x 2 Rn. Our proof is by induction.
The base case holds true for k = 0. Suppose it holds true for k, then for k + 1 we have

�k+1(x) = (1� ↵k)�k(x) + ↵k (x)  (1� ↵k)�k(x) + ↵kF (x)

= (1� (1� ↵k)�k)F (x) + (1� ↵k)
�
�k(x)� (1� �k)F (x)

�

 (1� (1� ↵k)�k)F (x) + (1� ↵k)�k�0(x)

= (1� �k+1)F (x) + �k+1�0(x).

In the following lemma we show how we may write �k+1(x) in closed form.

Lemma 4.9. Suppose �0(x) = F (x0)+�0

2

kx�z0k2. Then �k+1(x) generated by the recursive
formulation of the previous lemma is

�k+1(x) = �̄k+1 +
�k+1

2
kx� zk+1k2,
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where

�k+1 = (1� ↵k)�k,

zk+1 = zk � ↵k

�k+1

gkH ,

�̄k+1 = (1� ↵k)�̄k + ↵kF (x⇤
H(y

k)) +

✓
↵k

2�
� (↵k)2

2�k+1

◆
kgkHk2 + ↵khgkH , zk � yki.

Proof. The proof is by induction. The base case for k = 0 holds. Suppose for k we have

�k(x) = �̄k +
�k

2
kx� zkk2,

then by the previous lemma we have

�k+1(x) = (1� ↵k)


�̄k +

�k

2
kx� zkk2

�

+↵k


F (x⇤

H(y
k)) + hgkH , x� yki+ 1

2�
kgkHk2

�
.

Using the fact that � is a quadratic function we get

r2�k+1(x) = �k+1 = (1� ↵k)�k.

By r�k+1(x) = 0, we get the minimizer of �k+1 which is 1

�k+1

zk+1, so

r�k+1(x) = (1� ↵k)�k(x� zk) + ↵kgkH ,

) x = zk+1 = argmin�k+1(x) = zk � ↵k

�k+1

gkH .

To find �̄k+1 we set equal the �k+1(yk) in both formulations of �k+1. We, therefore, have

�̄k+1 +
�k+1

2
kyk � zk+1k2 = �̄k+1 +

�k+1

2
kzk � ykk2 � ↵khgkH , zk � yki+ (↵k)2

2�k+1

kgkHk2

= (1� ↵k)�̄k +
(1� ↵k)�k

2
kyk � zkk2 + ↵kF (x⇤

H(y
k)) +

↵k

2�
kgkHk2,

i.e.,

�̄k+1 = (1� ↵k)�̄k + ↵kF (x⇤
H(y

k)) +

✓
↵k

2�
� (↵k)2

2�k+1

◆
kgkHk2 + ↵khgkH , zk � yki. (4.78)
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Similar to what we mentioned for unconstrained smooth case in Chapter 3, we would like
to construct yk such that �̄k+1 � F (x⇤

H(y
k)) = F (xk+1). The benefit of this condition will

be clear in Theorem 4.3. Note that for k = 0, �̄0 = F (x0), so the condition holds. Let
xk+1 = x⇤

H(y
k), and suppose the required condition is satisfied for k, i.e., �̄k � F (xk).

Using Corollary 4.1 at xk = yk and x = xk we derive

�̄k � F (xk) � F (x⇤
H(y

k)) + hgkHxk � yki+ 1

2�
kgkHk2. (4.79)

Substituting inequality (4.79) in the equation (4.78) we get

�̄k+1 � F (x⇤
H(y

k)) +

✓
1

2�
� (↵k)2

2�k+1

◆
kgkHk2

+ hgkH ,↵k(zk � yk) + (1� ↵k)(xk � yk)i. (4.80)

To make sure that �̄k+1 � F (x⇤
H(y

k)), we need to set

�(↵k)2 = (1� ↵k)�k ⌘ �k+1, (4.81)

yk = ↵kzk + (1� ↵k)xk. (4.82)

Equation (4.81) ensures that the coe�cient of kgkHk2 is zero, and (4.82) makes the linear
term vanish. The proposed accelerated scheme is summarized as follows.
Algorithm 4.3.

Let z0 = x0 be arbitrary initial points, �0 � L
for i=0,1,. . .

Compute ↵k as �(↵k)2 = (1� ↵k)�k

Let �k+1 = �(↵k)2

Let yk = ↵kzk + (1� ↵k)xk

Compute f(yk) and rf(yk)
Find �k and uk:

equations (4.22) and (4.23) (as in IMRO-1D)
Find xk+1 = x⇤

H(y
k) using algorithm 4.1

(Note that for this choice of x we get F (xk+1)  F (yk)� 1

2�
kgkHk2)

Let zk+1 = zk � ↵k

�k+1

gkH

The following theorem reveals the importance of condition �̄k+1 � F (x⇤
H(y

k)).

Theorem 4.3. Suppose F (xk)  �̄k holds true for a sequence {xk}, then

F (xk)� F (x⇤)  �k

F (x0) +

�0

2
kx0 � x⇤k2 � F (x⇤)

�
.

82



Proof. By definition of an estimate sequence we get

F (xk)  �̄k  min
x

(1� �k)F (x) + �k�0(x)  (1� �k)F (x⇤) + �k�0(x⇤),

) F (xk)� F (x⇤)  �k[�0(x⇤)� F (x⇤)] = �k

F (x0) +

�0

2
kx0 � x⇤k2 � F (x⇤)

�
.

The beauty of the above theorem lies in the fact that the convergence of {xk} follows the
convergence rate of {�k}. It remains to find the convergence rate of {�k}.

Lemma 4.10. [85, 2.2.4] Suppose �0 � L, then

�k  4�

(2
p
� + k

p
�0)2

.

Proof. Inductively, we first show that �0�k  �k. It holds by our assumption that �0 = 1
for 0. Suppose it holds for k, then for k + 1 we get

�0�k+1 = �0�k(1� ↵k)  �k(1� ↵k) = �k+1.

Using the fact �k+1 = �(↵k)2 we conclude that ↵k �
q

�0�k+1

�
.

Let ⌧ k = 1p
�k
, be an increasing sequence; then we have

⌧ k+1 � ⌧ k =

p
�k �

p
�k+1

p
�k�k+1

=
�k � �k+1

p
�k�k+1

p
�k +

p
�k+1

� �k � �k+1

2�k
p
�k+1

=
�k � (1� ↵k)�k

2�k
p
�k+1

=
↵k

2
p
�k+1

� 1

2

r
�0

�
.

Hence,

⌧ k � 1 +
k

2

r
�0

�
) �k  4�

(2
p
� + k

p
�0)2

.

The following corollary immediately follows from Theorem 4.3, Lemma 4.10, and the fact
that (F (x0)� F (x⇤)  L

2

kx0 � x⇤k2).
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Corollary 4.5. Suppose �0 � l then the generated sequence by Algorithm 4.3 satisfies

F (xk)� F (x⇤)  �0 + L

2

 
4�

(2
p
� + k

p
�0)2

!
kx0 � x⇤k2.

Note that in IMRO-1D, � � L. Under the assumption that � = �0 = L, we have

F (xk)� F (x⇤)  4L

(2 + k)2
kx0 � x⇤k2.
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Chapter 5

Computational Experiment on IMRO

In this chapter we test the performance of IMRO in practice. We compare speed and
accuracy of IMRO with other available solvers summarized in the succeeding section.

5.1 Related Software

• GPSR (Gradient Projection for Sparse Reconstruction)[46] This gradient
projection based algorithm, first reformulates BPDN problem (1.68) into a bound
constrained quadratic program (BCQP) as

min 1

2

kb� [A,�A] zk2 + �1tz,

s.t. z =


u
v

�
� 0.

The BCQP formulation is then solved through a projected gradient technique. In
other words

zk+1 = zk + �k
�
Proj

+

�
zk � ↵krF (zk)

�
� zk

�
,

where �k and ↵k are step sizes and Proj
+

is the projection on nonnegative orthant.
Two variants of the algorithm have been proposed. In the basic variant �k = 1 and
↵k is determined through a backtracking line search. The BB version finds �k 2 [0, 1]
using the technique due to Barzilai and Borwein [6], then updates ↵k+1 accordingly.
GPSR software is available at [44].
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• l1-ls [69] l1-ls solves the same reformulation of BPDN problem as in GPSR through a
truncated Newton interior point method. In l1-ls, preconditioned conjugate gradient
(PCG) has been adopted for finding the search direction. Although forming the New-
ton system explicitly requires AtA, the computational cost of each iteration of PCG
is reduced to a matrix vector multiplication by the proper choice of preconditioner.
The MATLAB code of this solver is available at [71].

• FPC and FPC-AS [56, 57] Recall that first order optimality conditions implies
that x⇤ is the minimizer of a composite function (defined in (1.34)) if and only if

x⇤ = Prox↵g (x
⇤ � ↵rf(x⇤)) , (5.1)

because

0 2 rf(x⇤) + @g(x⇤),

, �rf(x⇤) 2 @g(x⇤),

, (x⇤ � ↵rf(x⇤))� x⇤ 2 ↵@g(x⇤),

, x⇤ = Prox↵g (x
⇤ � ↵rf(x⇤)) .

Equation (5.1) is called “fixed point equation”. “Fixed Point Continuation” (FPC)
aims to solve equation (5.1) through a proximal gradient method. The resulting
algorithm has the following general scheme

xk+1 = Prox↵g
�
xk � ↵rf(xk)

�
. (5.2)

The developed theory on the convergence of this method suggests that the algorithm
converges faster for larger values of �. “Continuation” strategy is essentially solving
BPDN problem for a decreasing values of �̄ ! � and warm starting the algorithm
from the terminating solution corresponding to the previous value of �̄. FPC has
later been extended to FPC-AS [107]. For each continuation interval, FPC-AS first
solves the problem through FPC, then hard-theshold the solution for nonzero entries.
The kxk

1

is replaced with sgn(x)tx, and the smaller smooth problem is minimized to
attain the final solution. FPC and FPC AS software are available at [55, 106].

• SpaRSA (Sparse Reconstruction by Seperable Approximation) [110] SpaRSA
is a proximal gradient framework for composite functions in which the nonsmooth
part, g(x), is separable. When g(x) = kxk

1

as is BPDN problem, SpaRSA reduces
to an ISTA algorithm. The Barzilai and Borwein [6] and a continuation scheme has
been applied to enhance the performance of the algorithm. The MATLAB code is
available at [45].
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• NestA[11] NestA is an algorithm built upon the Nesterov’s accelerated technique for
minimizing convex functions with Lipschitz continuous gradients over simple convex
sets [85]. NestA is tailored for solving problem BP✏, i.e., (1.67), with orthonormal
matrix A. A continuation scheme has been adapted to improve the performance of
NestA. The MATLAB package for NestA might be reached at [10].

• SPGL1 [18] This method solves BP✏ formulation, (1.67), through solving a sequence
of LASSO problems, (1.69). Each LASSO problem is solved using a spectral projected
gradient method [23]. In this technique, a single parameter function for LASSO
problem is defined as �(⌧) = kAx⇤

⌧ � bk. Using the dual information of the LASSO
problem, one may recover derivative of �; hence Newton method is applied to find
the root of �(⌧) = ✏, where ✏ is the parameter of BP✏ problem. At termination the
solution of LASSO⌧⇤ coincidences with the solution of BP✏. The MATLAB package
for SPGL1 is available at [16].

• TwIST[21] Recall that ISTA algorithm as presented in Section 1.3 had the general
form of S�↵

�
xk � ↵rf(xk)

�
or (1� �)xk + �S�↵

�
xk � ↵rf(xk)

�
for � = 1. TwIST

is a two step ISTA technique in which each iterate depends on the last two previous
iterates. The general form of TwIST is (1�↵)xk�1+(↵��)xk+�S�↵

�
xk � ↵rf(xk)

�
.

Note that ↵ and � are not necessarily smaller than 1. For our experiment we have used
the default setting on these parameters. The MATLAB package of this algorithm is
available at [20].

• FISTA[9] We presented FISTA in Section 1.3. The algorithm has been proposed
by Beck and Teboulle in [9] and by Nesterov in [84]. The algorithm is part of the
TFOCS package [13] that is available at [12].

5.2 Numerical Results

The termination criterion used for IMRO is the measurement on the norm of subgradient
of function F (x), ⇠, which at iteration k is

⇠i = �+rfk
i if xi > 0,

⇠i = ��+rfk
i if xi < 0,

⇠i = ��↵ +rfk
i if xi = 0 for some ↵ 2 [�1, 1].
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Note that for zero entries, if |rfk
i |  �, then 9↵ such that ⇠i = 0. In case that |rfk

i | > �,
then ⇠i 6= 0; so we take ↵ such that ⇠i is minimized, i.e., ⇠i = |rfk

i | � �. Therefore, The
norm of subgradient at xk is easily calculated with no extra computational cost.

In both variants of IMRO, we took xk+1 as the minimizer of the approximation model, i.e.,
no line search has been employed. Our experiment (not reported here) with IMRO coupled
with a bisection line search suggested that there is no significant advantage in applying
the line search. Other techniques such as Barzilai and Borwein [6], however, might be
advantageous and needs further investigation. One of the key questions regarding the
implementation of IMRO-1D is what direction v should be used. In our experiment, we
have used the previous direction for v, i.e., vk = xk � xk�1. The choice of v, however,
needs further study. Our measurement on the computational cost of each algorithm is the
number of matrix-vector multiplications, i.e., the number of calls to A or At.

As mentioned earlier, NestA only runs on instance with orthonormal A. In the first part of
our experiment we compare IMRO with NestA. For increasing the accuracy of IMRO, we
can simply use a smaller tolerance on the norm of subgradient. For NestA, parameter µ
controls the accuracy of the solution; the smaller parameter µ gets, the more accurate the
solution becomes. We have used the default value of µ = 0.02 suggested by the authors,
and µ = 0.002 in our experiment. All other settings are set to their default value. The
number of continuation steps in the default setting is five.

The information on test cases with orthonormal A is summarized in Table 5.1. These
instances are generated by L1TestPack package [78]. “Ent. type” stands for the type of
entries in matrix A or vector x⇤, the optimal solution of the problem. “Gaussian” entries
are generated using MATLAB’s “randn” function and “dynamic 3” gives random entries
with a dynamic range of 103. In other words, when entry type of x⇤ is “dynamic 3”, each
nonzero entry of x⇤ is generated as

sgn(rn)10
3r,

where rn is a normally distributed (Gaussian) random number and r is a uniformly dis-
tributed random number in (0, 1). The dynamic range typically varies between zero to five.
It is often believed that instances with higher dynamic range are harder to solve.

In Table 5.2, we have presented the number of A or At calls each algorithm takes to
converge. We also include the residual of the solution at termination for each algorithm
(i.e., kxt � x⇤k); this quantity is depicted in Figure 5.1 as well. We can see from the graph
that in IMRO, especially IMRO-2D, the decrease of the residual is significantly sharper
than NestA.
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m n Ent. type of A Ent. type of x �
Ins 1 2500 10000 Gaussian Gaussian 0.5
Ins 2 2500 10000 Gaussian Gaussian 0.05
Ins 3 2500 10000 Gaussian dynamic 3 0.5
Ins 4 2500 10000 Gaussian dynamic 3 0.1

Table 5.1: Test cases with orthonormal A

IMRO-2D IMRO-1D NestA
tol it. kxt � x⇤k it. kxt � x⇤k it. kxt � x⇤k µ

Ins 1
1e-2 51 0.047 54 0.057 684 1.539 0.02
1e-6 138 7.119e-6 214 9.102e-06 1010 0.474 0.002

Ins 2
1e-2 60 0.048 60 0.058 424 0.173 0.02
1e-6 120 6.755e-6 220 8.759e-06 572 0.026 0.002

Ins 3
1e-2 198 0.051 208 0.061 532 1.488 0.02
1e-6 267 7.169e-6 347 7.515e-06 580 0.182 0.002

Ins 4
1e-2 393 0.055 630 0.06 504 1.487 0.02
1e-6 474 7.194e-06 796 1.160e-05 552 0.646 0.002

Table 5.2: Numerical results (number of A/At calls) for comparison of IMRO and NestA
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Figure 5.1: Accuracy of solution in IMRO and NestA
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The comparison of IMRO and solvers other than NestA has been separated into two phases.
The first one is testing available software for solving BPDN formulation on L1TestPack
generated instance. The second one is testing IMRO and couple of other state-of-the-
art solvers in sparse signal recovery on a number of examples from Sparco [19]. Table
5.3 summarizes the information on the test cases used for our computational experiment.
Before presenting the numerical results, we would like to elaborate few details on the data
structure of Sparco problems. In Sparco problems, the operator A has the format of

A = MB, (5.3)

where M is the measurement matrix and B is the sparsity basis. The sparsity basis enables
the original signal, y, to accept a sparse representation, i.e.,

y = Bx, (5.4)

has a solution x⇤ with only few nonzero entries. The measurement matrix describes the
sampling procedure. Recall that in compressive sensing (sampling), we desire to construct
the signal through a relatively few measurements. Therefore the problem we would like to
solve is essentially finding a sparse x such that

b := My = Ax. (5.5)

After finding the sparse solution of (5.5), we can reconstruct the original signal as

y = Bx⇤. (5.6)

One may refer to [19] for more information on Sparco package and specifics of each problem.

When comparing BPDN solvers, we run IMRO-2D for a given tolerance to get x̃; and the
other solvers terminate when their solution x̂ satisfies

1

2
kAx̂� bk2 + �kx̂k

1

 1

2
kAx̃� bk2 + �kx̃k

1

. (5.7)
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cond(A) Ent. type of A Ent. type of x �
L
1T

es
tP

ac
k

A
2
R

2
5
0
0
⇥
1
0
0
0
0

Ins 1 O(1) Gaussian Gaussian 0.5
Ins 2 O(1) Gaussian dynamic 3 0.5
Ins 3 O(1) Gaussian Gaussian 0.1
Ins 4 O(1) Gaussian dynamic 3 0.1
Ins 5 O(103) Gaussian Gaussian 0.1
Ins 6 O(103) Gaussian dynamic 3 0.1

ID m n Operator �

S
p
ar
co

5 300 2048 Gaussian, DCT1 0.1
9 128 128 Heaviside 0.1
10 1024 1024 Heaviside 0.1
11 256 1024 Gaussian 0.1
401 29166 57344 Windowed (DCT) 0.1
402 29166 86016 Windowed (DCT) 0.1

1: Discrete Cosine Transform

Table 5.3: Information on test cases

The number of calls to A or At, and the residual of the solution (i.e., kxt � x⇤k) are
presented in Tables 5.4 and 5.5, respectively. In almost all cases IMRO-2D outperforms
other algorithms, especially when a highly accurate solution is desired. The performance
of some of the techniques like GPSR or SpaRSA has been a↵ected considerably by the
increase in the dynamic range. Moreover, some of the solvers failed to converge when A
is ill-conditioned, or failed to reach high accuracy as in FPC-AS. IMRO-2D on the other
hand, performs consistently well in all our test cases. Graph 5.2 visualizes the residual of
the solution with respect to the number of A or At calls.
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B

S
p
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P
C
-A

S

L
1l
s(
p
cg
)

Ins 1
1e-2 37 52 32 24 24 60 23 368
1e-6 103 232 106 64 48 153 DNRT† DNC‡

Ins 2
1e-2 175 190 168 230 180 187 142 1311
1e-6 253 392 258 264 203 277 DNRT DNC

Ins 3
1e-2 52 54 36 26 30 53 25 504
1e-6 136 242 118 56 53 136 DNRT DNC

Ins 4
1e-2 322 416 382 1208 880 313 160 2201
1e-6 394 616 480 1242 904 387 DNRT DNC

Ins 5
1e-2 136 DNC 225 380 DNC 356 DNC 502
1e-6 277 DNC 997 884 DNC 883 DNC DNC

Ins 6
1e-2 202 540 399 820 DNC 554 DNRT 2550
1e-6 538 1292 1741 1416 DNC 1033 DNRT DNC

† Did Not Reach the Tolerance (DNRT): The solver terminates before reaching
the desired tolerance.

‡ Did Not Converge (DNC): The solver reaches the maximum iteration count

of 5⇥k2D, where k2D is the number of iterations IMRO-2D takes to converge.

Table 5.4: Numerical results (number of A/At calls) for BPDN solvers
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IM
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B

S
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R
S
A
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-A

S

L
1
ls
(p
cg
)

Ins 1
1e-2 1.4e-01 1.2e-01 2.5e-01 1.1e-01 1.6e-02 1.3e-01 5.7e-02 1e-02
1e-6 2.9e-05 2e-05 2.2e-05 2.7e-05 1.8e-05 4.5e-05 2.3e-03 1.9e-05

Ins 2
1e-2 1.1e-01 1.5e-01 1.5e-01 1.1e-01 3.7e-02 1e-01 1.4e-02 7.3e-03
1e-6 2.6e-05 2.5e-05 3.7e-05 4.4e-05 2.5e-05 6.3e-05 1.3e-04 2.9e-03

Ins 3
1e-2 8.8e-02 1.3e-01 1.2e-01 8.4e-02 2.2e-02 8.5e-02 3.9e-02 5e-03
1e-6 2.3e-05 2.5e-05 3.1e-05 3.2e-05 2.1e-05 3e-05 4.4e-03 1.8e-05

Ins 4
1e-2 9.3e-02 1.6e-01 1.2e-01 1.2e-01 2.7e-02 8.1e-02 3.9e-02 7.6e-03
1e-6 3.4e-05 2.1e-05 4.2e-05 5.2e-05 2.6e-05 1.8e-04 1.4e-04 2.7e-05

Ins 5
1e-2 1e-01 1e-01 1e-01 1.1e-01 9.2e+00 8.8e-02 1.7e+03 5.9e-03
1e-6 2.4e-05 2.2e-05 4.3e-05 2.7e-05 9.2e+00 2.6e-05 1.7e+03 1.7e-05

Ins 6
1e-2 1e+01 7.6e+00 9.8e+00 1e+01 1.8e+03 1e+01 6.4e+03 5.2e-01
1e-6 2.2e-03 1.9e-03 1.8e-03 2.2e-03 1.8e+03 2.1e-03 6.4e+03 1.5e-03

† For instance with DNRT or DNC in Table 5.4, we report the error of the final iterate.

Table 5.5: Accuracy of the solution, i.e. kxt � x⇤k, in IMRO and other BPDN solvers†

When testing the algorithms on Sparco test cases, we run all the solvers to a fixed number
of iterations, and plot the signal at termination. We have compared IMRO-2D with several
other state-of-the-art techniques in sparse signal recovery. Figures 5.3 to 5.9 demonstrate
the results. In figures 5.3 to 5.7, the original signal (i.e., Bx⇤ by (5.6)) is plotted in blue
and the recovered signal (i.e., Bxt) is in red. Figures 5.8 and 5.9 are on Sparco(401)
and Sparco(402). The signals in these two problems are mixed audio signals. Hence,
for these two instances we plot both original and the recovered signals in each subplot.
The plotted signal on the top of each subplot is the original signal (i.e. Bx⇤), while the
one in the bottom is the recovered signal (i.e., Bxt). An asterisk next to the name of a
solver indicates that the solver had premature termination, or found the optimum before
the assigned iteration count. A double asterisk, stands for cases that the solver did not
converge (terminate) in 10000 iterations. obviously, IMRO-2D has a stable performance
and has almost perfect recovery in all test cases. The di↵erence between IMRO-2D and
other solvers is more noticeable in test cases Sparco(9) and Sparco(10) (figures 5.4, 5.5
and 5.6). Note that for Sparco(10), the signal recovered by IMRO-2D after 300 iterations
outperforms the signal recovered by other solvers at iteration 1000.
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Figure 5.2: Accuracy of the solution for BPDN solvers
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Chapter 6

Conclusion and Future Work

The low computational cost of first-order methods makes this class of algorithms a pop-
ular choice and an e�cient technique for solving large-scale problems. These techniques,
however, may su↵er from slow rates of convergence. In particular, the conjugate gradient
method is a practical technique that sometimes encounters slow convergence due to the loss
of independence of search directions. The question of whether CG can achieve the optimal
complexity bound for the class of strongly convex functions has remained open for decades.
In this thesis, we partially answer this question, namely we derive conditions under which
CG achieves the complexity bound proved to be optimal for the class of strongly convex
functions. These conditions almost always hold for our proposed algorithm, CGSO. We
also suggest a firm scheme for detecting and correcting the loss orthogonality of gradients in
other variants of CG. The analysis of CGSO has also been extended to linearly constrained
problems in Appendix A. Our experiment suggests that CGSO is a stable technique and
can often outperform other methods, especially on ill-conditioned problems.

Another algorithm proposed in this thesis is IMRO, a proximal quasi-Newton method for
minimizing composite functions. The theory of IMRO implies that choosing a suitable
matrix H in proximal quasi-Newton methods enables us to incorporate more information
about the function in the approximation quadratic model, making IMRO superior to its
predecessor techniques. IMRO is proposed and applied to BPDN problem in this thesis.
Two variants of this algorithm have been proposed, IMRO-1D and IMRO-2D. Our numer-
ical experiment indicates that IMRO is very e↵ective in solving BPDN, and outperforms
other state-of-the-art solvers in most cases. One of the advantages of IMRO, especially
IMRO-2D, is that it can attain a highly accurate solution. This important property is
quite crucial in retrieving an almost sparse signal, i.e. a signal with large number of entries
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close to zero. Moreover IMRO has shown to be more stable than other techniques, and
less sensitive to parameters of the problem.

This thesis has raised many questions, some remained unanswered:

• The analysis of CGSO relies on two conditions. These conditions must be checked
every m iteration, where m is a constant dependent on parameters of the function.
Satisfaction of these conditions concludes the optimal complexity bound for the class
of functions f 2 Cl,L. Since we normally do not know the parameters of the function,
we check these conditions for all possible choices of m. In our experiment, these con-
ditions are always satisfied except in one instance. This particular instance, however,
is ill-conditioned and the required inequalities failed for the smallest estimate on m.
This, in fact, suggests that the smallest pick form might have been an underestimate,
promoting the idea that there might exists a variant of conjugate gradient method
that attains the optimal complexity bound.

• Checking the conditions derived in the analysis of CGSO has been applied to the
traditional variants of CG as a technique for detection and correction of the loss of
independence of gradients. As reported, the performance of CG equipped with the
detection and correction procedure is similar for all the tested variants of CG. It is
still unclear as to why the three variants of CG in our experiment have almost the
same behaviour after the detection and correction procedure, while their performance
is significantly di↵erent prior to it.

• We also proposed a hybrid technique for combining Nesterov’s algorithm and conju-
gate gradient method. Two variants of this method is proposed, one is substituting
iterates of CG for x in Nesterov’s method, and the other replaces y in Nesterov’s
method by the iterates of CG. The proposed methods need further computational
experiments. Our preliminary experiment shows promising result for the smoothed
compressive sensing problem. It is, however, unclear as to which hybrid technique
performs better in general. The question of how this hybrid technique compares with
CGSO or other variants of nonlinear CG has also remained unanswered.

• As described, in IMRO-1D the quadratic model matches the function on direction
v. A key question to answer is which choice of direction v is preferred. An extensive
study is required on di↵erent choices of v. It might also be helpful to study whether
combining di↵erent directions, say the previous gradient and the previous direction,
can enhance the performance of the algorithm. FIMRO (the accelerated variant of
IMRO) needs to be extensively tested and compared to IMRO. All the proposed
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techniques in Chapter 4 can potentially be applied to other suitable test cases. This
is also another venue for future work.
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Appendix A

CGSO for Convex Problems with
Linear Constraints

We extend CGSO to solving the problem

min
x2P

f (x) , (A.1)

where f(x) 2 Cl,L and P is a polyhedron. We first present the algorithm in the next
section. Then we apply this method to l

1

-regularized least square problem in Section A.2.
The numerical results are presented in Section A.3.

A.1 The Algorithm

Let pj denote the projection of the steepest descent direction of f at xj on P , i.e., pj = rPf j

which is defined as ProjTP (xj

)

(�rf j) according to Definition 1.2. We refer to pj as the
projected gradient throughout this appendix. Substituting pj for rf(xj), we derive the
following natural extension of CGSO:

Algorithm A.1.
x0 = arbitrary;
for j = 1, 2, . . .

xj+1 = xj + ↵jpj + �jdj

where dj = xj � xj�1 and
↵j, �j = argmin↵,�f(x

j + ↵pj + �dj) s.t. xj + ↵pj + �dj 2 P
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xj+(1/L)pj

xj+1

xj

(a) Case 1

xj+(1/L)pj

xj+1

xj

(b) Case 2

Figure A.1: Illustration of the su�cient reduction in objective value when A(xj+1) = A(xj)

Let A(xj) stand for the set of active constraints at xj.

Claim A.1. In each iteration of the Algorithm A.1, either f(xj+1)  f
�
xj + 1

L
pj
�
or

A(xj+1) 6= A(xj).

Proof. Let Hj = xj + Span {pj, dj}. Then the feasible region of the two dimensional
optimization subproblem in each iteration is Pj = Hj\P ; hence at most a two-dimensional
polyhedron.

If xj + 1

L
pj 2 Pj, or A(xj) 6= A(xj+1), then the claim holds. Suppose xj + 1

L
pj 62 Pj, and

A(xj) = A(xj+1). Two cases may occur; either xj and xj+1 are both in the int(Pj) as in
Figure A.1(a), or in the relative interior of a one dimensional face of Pj which we refer to
as F as demonstrated in Figure A.1(b).

In both cases the line segment connecting xj+1 and xj + 1

L
pj intersects Pj at the point

x̄ = �xj+1 + (1 � �)
�
xj + 1

L
pj
�
for some � > 0. This is true in the first case by the fact

that xj+1 2 int(Pj). In the second case, it follows from the fact that pj 2 TP(xj) and so
xj + 1

L
pj 2 S where S is the half-space containing Pj and supported by F .

Suppose by contradiction that f(xj + 1

L
pj) < f(xj+1). By convexity of the function we

have,

f(x̄)  �f(xj+1) + (1� �)f(xj +
1

L
pj) < f(xj+1),

which contradicts the optimality of xj+1 on Pj.

Lemma A.1. Let pj be the projected gradient of f . Then hpj,�rf(xj)i = kpjk2
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Proof. By definition, pj = ProjTP (xj

)

(�rf j). TP(xj) is a closed convex cone, and its polar
is NP(xj)[60, Proposition 5.2.4]. Let oj = ProjNP (xj

)

(�rf j). By Moreau’s decomposition
theorem, Theorem 1.1, �rf j = pj + oj, and hpj, oji = 0. Thus

hpj,�rf ji = hpj, pj + oji = kpjk2.

We are now ready to list the properties of Algorithm A.1.

1. If A(xj) = A(xj+1), then f(xj+1)  f(xj)� 1

2L
k pj k2.

Proof. By Claim A.1 we have

f(xj+1)  f

✓
xj +

1

L
pj
◆
.

Since f 2 CL we get

f

✓
xj +

1

L
pj
◆

 f(xj)� h 1
L
pj,�rf(xj)i+ L

2
k 1
L
pjk2 = f(xj)� 1

2L
k pj k2,

where the last equation holds by Lemma A.1, i.e., hpj,�rf(xj)i = kpjk2.

2. h�pj, x⇤ � xji  f(x⇤)� f(xj).

Proof. Note that x⇤ � xj 2 TP(xj); and recall that by definition, the projected
gradient is

pj = argmin
�
kv +rf(xj)k : v 2 TP(x

j)
 
. (A.2)

It is easy to observe that derivative of kv + rf(xj)k is @kv+rf(x)k
@v

= v+rf(x)
kv+rf(x)k . If

�rf(xj) 2 TP(xj), then pj = �rf(xj) and the inequality holds by the convexity of
f . When �rf(xj) 62 TP(xj), by optimality condition for (A.2) we get

hpj +rf(xj), (x⇤ � xj)� pji � 0.

Therefore
hpj +rf(xj), x⇤ � xji � kpjk2 � h�rf(xj), pji = 0. (A.3)
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Again the last equation follows from Lemma A.1. By inequality (A.3) we get

hrf(xj), x⇤ � xji � h�pj, x⇤ � xji,
and by convexity of the function we have

hrf(xj), x⇤ � xji  f(x⇤)� f(xj).

This concludes the property we wanted to show.

3. ⌫f (x0) = f(x0)� f(x⇤) � l
2

kx⇤ � x0k2.

Proof. By strong convexity of f we have,

f(x0) � f(x⇤) + hrf(x⇤), x0 � x⇤i+ l

2
kx0 � x⇤k2.

Using the first order optimality condition (i.e., �rf(x⇤) 2 NP(x⇤)) we get

hrf(x⇤), x0 � x⇤i � 0,

hence

f(x0) � f(x⇤) +
l

2
kx0 � x⇤k.

The above properties essentially are the same as those we had for CGSO. In the following
lemma, we extend Lemma 2.1 to constrained problems.

Lemma A.2. Suppose A represents the set of iterations in which active set changes; i.e.,

j’s for which A(xj) 6= A(xj+1). Let m �
l
8⇢
q

L
l

m
+
��A

�� and suppose

(f(xm�1)� f(x0))

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA+
m�1X

j=0

j 62A

�j
⌦
�pj, xj � x0

↵
< 0, (A.4)

and ��������

m�1X

j=0

j 62A

�jpj

��������
 ⇢

vuuut
m�1X

j=0

j 62A

(�j)2 kpjk2, (A.5)

are satisfied for a constant ⇢, and �j =
q

f(xj

)�f(xj+1

)

kpjk2 . Then the residual of the function

is divided in half after m iterations; i.e., ⌫f (xm)  1

2

⌫f (x0).

109



Proof of the above lemma is along the same ideas used in Section 2.1 and very similar to
Proof 2.1.1.

Proof. Suppose by contradiction that m �
l
8⇢
q

L
l

m
+
��A

��, (A.4) and (A.5) are satisfied;

but ⌫f (xm) > ⌫
f

(x0

)

2

.

By definition of �j,
f(xj+1) = f(xi)�

�
�j
�
2 kpjk2,

hence
⌫f (x

j+1) = ⌫f (x
j)�

�
�j
�
2 kpjk2.

Summing these inequalities over j  m� 1, we get:

0  ⌫f (x
m) = ⌫f (x

0)�
m�1X

j=0

�
�j
�
2 kpjk2  ⌫f (x

0)�
m�1X

j=0

j 62A

�
�j
�
2 kpjk2,

or equivalently,
m�1X

j=0

j 62A

�
�j
�
2 kpjk2  ⌫f (x

0). (A.6)

By property (2) of the function we have,

⌦
�pj, x⇤ � xj

↵
 f(x⇤)� f(xj) = �⌫f (xj),

and so

⌦
�pj, x⇤ � x0

↵
�
⌦
�pj, xj � x0

↵
 �⌫f (xj)  �⌫f (xm) <

�⌫f (x0)

2
.

Let’s consider the weighted sum of all the above inequalities for j 2 {0, . . .m� 1} \A
with weights �j’s to get:

*
m�1X

j=0

j 62A

��jpj, x⇤ � x0

+
�

m�1X

j=0

j 62A

�j
⌦
�pj, xj � x0

↵
<

�⌫f (x0)

2

0

BB@
m�1X

j=0

j 62A

�j

1

CCA ,
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which can be rearranged to the following form,

*
m�1X

j=0

j 62A

��jpj, x⇤ � x0

+
< �⌫f (x

0)

2

0

BB@
m�1X

j=0

j 62A

�j

1

CCA+
m�1X

j=0

j 62A

�j
⌦
�pj, xj � x

0

↵
.

Equivalently, we can rewrite the above inequality as

*
m�1X

j=0

j 62A

��jpj, x⇤ � x0

+
<� ⌫f (x0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA

+

0

BB@
f(x⇤)� f(x0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA+
m�1X

j=0

j 62A

�j
⌦
�pj, xj � x0

↵

1

CCA .

Using inequality (A.4) along with the facts that f(x⇤)  f(xj) and �j � 0 for all j, we get

*
m�1X

j=0

j 62A

��jpj, x⇤ � x0

+
< �⌫f (x

0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA . (A.7)

By the Cauchy-Schwarz inequality we have

�

��������

m�1X

j=0

j 62A

�jpj

��������

��x⇤ � x0

�� 
*

m�1X

j=0

j 62A

��jpj, x⇤ � x0

+
< �⌫f (x

0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA ,

hence ��������

m�1X

j=0

j 62A

�jpj

��������

��x⇤ � x0

�� >
⌫f (x0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA . (A.8)

By property (3) we have
��x⇤ � x0

�� 
r

2⌫f (x0)

l
. (A.9)
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Furthermore, by inequalities (A.5) and (A.6) we get:
��������

m�1X

j=0

j 62A

�jpj

��������
 ⇢

vuuut
m�1X

j=0

j 62A

(�j)2 kpjk2  ⇢
q
⌫f (x0). (A.10)

Replacing inequalities (A.9) and (A.10) in inequality (A.8), we get

⇢
q
⌫f (x0)

r
2⌫f (x0)

l
>
⌫f (x0)

4

0

BB@
m�1X

j=0

j 62A

�j

1

CCA . (A.11)

Notice that by definition of � and property (1), �j �
q

1

2L
for all j 2 {0, . . . ,m� 1} \A,

so
m�1X

j=0

j 62A

�j �
r

1

2L

�
m� |A|

�
.

Using the above inequality in (A.11), we get

⇢
q
⌫f (x0)

r
2⌫f (x0)

l
>
⌫f (x0)

4

 r
1

2L

�
m� |A|

�
!
.

Therefore we have

m� |A| < 8⇢

r
L

l
, (A.12)

or

m <

&
8⇢

r
L

l

'
+ |A|,

which contradicts our assumption on the value of m.

A.2 Implementation of CGSO for BPDN Problem

In this section, we apply Algorithm A.1 to the BPDN problem, i.e., formulation (1.68).
The main task in CGSO approach is computing the projected gradient which will be
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discussed shortly. Before getting into details of computing the projected gradient, we need
to point out that BPDN is actually not a strongly convex function because Ax � b is
underdetermined, hence AtA is not full rank.

Using the standard linear programming technique for (linearly) expressing the absolute
value, we are able to reformulate the BPDN problem as the following QP:

min f(y, x) := 1

2

kAx� bk2 + �ety,
s.t. y � x,

y � �x.
(A.13)

The feasible region of the above problem is F = {(y , x)t : y � x, y � �x}. Since the
feasible region is a polyhedron, the tangent cone and the feasible directions cone of F at
xj coincide.

A.2.1 Computing the Projected Gradient

Note that at each iteration if yi > |xi|, we would be able to improve the solution by
decreasing yi. Hence for each i the list of active constraints is as follows:

yi = xi and yi > �xi if xi > 0,
yi > xi and yi = �xi if xi < 0,
yi = xi and yi = �xi if xi = 0.

(A.14)

The set of all directions in the tangent cone of F at (y , x) is

TF(y , x) =
�
p = (py , px)t : (y , x)t + ✏(py , px) 2 F , for some ✏ > 0

 
.

This implies that for each i,

yi + ✏pyi � xi + ✏pxi ,

yi + ✏pyi � �(xi + ✏pxi ). (A.15)

We may now derive conditions on (py , px) 2 TF(y, x) using (A.14). Clearly for all non-
active constraints it is always possible to choose ✏ small enough such the inequalities in
(A.15) are satisfied. For active constraints, however, certain conditions must hold:
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��yi + ✏pyi �⇢⇢xi + ✏pxi if xi > 0,

��yi + ✏pyi � �(⇢⇢xi + ✏pxi ) if xi < 0, (A.16)

��yi + ✏pyi �⇢⇢xi + ✏pxi
��yi + ✏pyi � �(⇢⇢xi + ✏pxi )

if xi = 0.

From (A.16), we conclude the following required inequalities for a feasible direction:

pyi � pxi � 0 if xi > 0,
pyi + pxi � 0 if xi < 0,

pyi � pxi � 0 and pyi + pxi � 0 if xi = 0.
(A.17)

The above inequalities conclude the required specifications for a vector to be in TF(y , x).
The projection of �rf(y , x) may now be obtained by solving the following problem

min kp+rf(y , x)k2,
s.t. pyi � pxi � 0 8i : xi > 0,

pyi + pxi � 0 8i : xi < 0,
pyi � pxi � 0
pyi + pxi � 0

8i : xi = 0.

(A.18)

For convenience in notation, let us denote rf(y , x) by g = (gy , gx)t. For problem (A.13),
the gradient of the objective function is

g =

✓
gy

gx

◆
=

✓
�e
gx

◆
=

✓
�e

At(Ax� b)

◆
.

Therefore (A.18) reduces to

min
Pn

i=1

((pyi + �)2 + (pxi + gxi )
2) ,

s.t. pyi � pxi � 0 8i : xi > 0,
pyi + pxi � 0 8i : xi < 0,
pyi + pxi � 0
pyi � pxi � 0

8i : xi = 0.

(A.19)

Let i
0

 n be the number of zero entries of x. We define �i for i = 1, . . . , n and µi for
i = 0, . . . , i

0

as the Lagrangian multipliers for inequalities in (A.19); the former one refers
to the multipliers of the first three set of inequalities, and the latter one stands for the last
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set of inequalities, i.e.,

min
Pn

i=1

((pyi + �)2 + (pxi + gxi )
2) ,

s.t. (�i) pyi � pxi � 0 8i : xi > 0,
(�i) pyi + pxi � 0 8i : xi < 0,
(�i) pyi + pxi � 0
(µi) pyi � pxi � 0

8i : xi = 0.

The above problem is separable in i, thus we are able to find the projected gradient
in the closed form by solving n separate one-dimensional problems. We categorize these
problems based on sgn(xi); and in the remainder of this section we describe the mechanism
for obtaining the solution of (A.19).

i : xi > 0

When xi is positive, the one dimensional problem for i is

min (pyi + �)2 + (pxi + gxi )
2,

s.t. pyi � pxi � 0.
(A.20)

If gxi � � then pyi = �� and pxi = �gxi solves the problem. Suppose gxi < � then by KKT
conditions we get

pyi � pxi � 0, (A.21)

�i � 0, (A.22)

�i(p
y
i � pxi ) = 0, (A.23)

✓
�i
��i

◆
=

✓
2(pyi + �)
2(pxi + gxi )

◆
. (A.24)

By (A.24), we have pyi =
�
i

�2�
2

and pxi = ��
i

�2gx
i

2

. Substituting these in (A.23) gives us

�i (�i + (gxi � �)) = 0.

Hence either �i = 0 or �i = �� gxi > 0 must hold. If �i = 0, then pyi = �� and pxi = �gxi
which is not possible by the assumption that gxi < �. If �i = �� gxi > 0, then

pyi = pxi =
��� gxi

2
. (A.25)

i : xi < 0
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For negative entries, we acquire the corresponding entries of projected gradient by solving

min (pyi + �)2 + (pxi + gxi )
2,

s.t. pyi + pxi � 0.
(A.26)

If gxi  �� then pyi = �� and pxi = �gxi solves the problem. Suppose gxi > ��; by KKT
conditions we have:

pyi + pxi � 0 (A.27)

�i � 0 (A.28)

�i(p
y
i + pxi ) = 0 (A.29)
✓
�i
�i

◆
=

✓
2(pyi + �)
2(pxi + gxi )

◆
. (A.30)

Similar to what we described for xi > 0, we get pyi = �
i

�2�
2

and pxi = �
i

�2gx
i

2

by (A.30).
Replacing these equations in (A.29) we get

�i (�i + (�gxi � �)) = 0.

Therefore either �i = 0 or �i = � + gxi > 0 must hold. In the former case, we derive
pyi = �� and pxi = �gxi which contradicts gxi > ��; in the latter case we deduce

pyi =
��+ gxi

2
,

pxi =
�� gxi

2
. (A.31)

i : xi = 0

Finally, for zero entries we need to solve the following problem

min (pyi + �)2 + (pxi + gxi )
2,

s.t. pyi � pxi � 0,
pyi + pxi � 0.

(A.32)

In this case pyi = �� and pxi = �gxi is an impossible solution because

��+ gxi � 0 and � �� gxi � 0 ) �2� � 0 )(
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The KKT conditions for Problem (A.32) are

pyi + pxi � 0, (A.33)

pyi � pxi � 0, (A.34)

�i, µi � 0, (A.35)

�i(p
y
i + pxi ) = 0, (A.36)

µi(p
y
i � pxi ) = 0, (A.37)

✓
�i + µi

�i � µi

◆
=

✓
2(pyi + �)
2(pxi + gxi )

◆
. (A.38)

By (A.38) we have pyi =
�
i

+µ
i

�2

2

and pxi = �
i

�µ
i

�2gx
i

2

. Replacing these in (A.37), we conclude

�i (�i + (�gxi � �)) = 0,

so either �i = 0; or �i = �+ gxi > 0 provided that gxi > ��.
Likewise by using (A.36) we get

µi (µi + (gxi � �)) = 0

which means either µi = 0; or µi = � � gxi > 0 if gxi < �. Depending on the interval that
gxi belongs to, we can solve the Problem (A.32) as follows

if gxi  ��! �i = 0 , µi = �� gxi ) pyi = pxi =
��� gxi

2
, (A.39)

if |gxi | < � ! �i = �+ gxi , µi = �� gxi ) pyi = pxi = 0, (A.40)

if gxi � � ! �i = �+ gxi , µi = 0 ) pyi =
��+gx

i

2

,

pxi = ��gx
i

2

.
(A.41)

A.3 Computational Experiment

In this section we test CGSO on few instances of BPDN problem. We compared CGSO with
FISTA, GPSR, and l1 ls. We explained FISTA in Section 1.3; GPSR is a projected gradient
type algorithm; finally l1 ls is an interior point algorithm. In l1 ls, the linear system of
equations which is the bottle neck of the algorithm is solved by PCG (preconditioned CG).
These algorithms are presented in more details in Chapter 5. The results presented here
are simply for demonstration. In Chapter 4 we presented a more e�cient technique for
solving BPDN that outperforms CGSO for this class of problems.
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Figure A.2: Signal recovery for CGSO

Graph A.2 is the plot of the original signal in blue and the recovered signal in red for an
instance generated through L1TestPack [77, 78]. Table A.1 shows the number of iterations
each algorithm takes to recover the solution. The first column is the tolerance used on the
norm of projected gradient. The first instance is the one plotted in the Graph A.2; while
the second one is randomly generated. For CGSO, we have also reported the number of
iteration for which the set of active constraints did not change under the column AS. Table
A.2 presents the distance from the optimal solution versus iteration counts for another
instance generated by L1TestPack.

Our numerical experience with CGSO suggests that CGSO for the class of problems rising
in sparse recovery acts similar to an active set method rather than a conjugate gradient
method. It soon reaches the boundary and travels along the boundary. The positive e↵ect
of this behaviour is that it can achieve high accuracy. On the negative side, this slows down
the algorithm; since at optimality a great share of constraints are active, and we have no
theory advocating the idea that the algorithm will not revisit any set of already travelled
active sets. Recall that for each zero entry two constraints are active, so the number of
nonactive constraints at optimality is essentially the number of nonzeros at the solution.

In Chapter 4, we presented an algorithm that similar to CGSO combines the previous
gradient and direction to reach the next iterate. It, however, performs much faster than
CGSO and proves to be stronger in practice.
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CGSO l1-ls
GPSR FISTA

it. AS it. PCG

A 2 R1000⇥3000

1e-3 20 2 12 41 7 13

l1TestPack
1e-6 30 10 30 177 25 44
1e-10 39 19 37 281 31 209

A 2 R500⇥1500

1e-3 4942 1158 19 2959 11279 417

Random
1e-6 6149 2207 30 8076 - 3821
1e-10 6619 2552 46 16988 - -

Table A.1: Results on CGSO for constrained problems

A 2 R200⇥1000

it. CGSO FISTA GPSR l1 ls(pcg)
10 0.83722 0.01673 0.01523 0.10299(42)
20 2.50265e-05 4.25162e-4 7.73314e-06 9.384300e-05(144)
30 4.97380e-10 7.29341e-06 6.28312e-09 1.05611e-07(264)
40 - 2.37749e-07 5.45133e-10 7.77589e-10(459)
50 - 3.84988e-08 4.92008e-10 -
60 - 1.62263e-09 4.92008e-10 -

Table A.2: Comparing the error of the solution, kxk � x⇤k
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Ö. Yılmaz. Sparco: A testing framework for sparse reconstruction. Technical Report
TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver,
October 2007. Available from: http://www.cs.ubc.ca/labs/scl/sparco/.

[20] J. M. Bioucas-Dias and M. A. T. Figueiredo. TwIST: Two-step iterative shrink-
age/thresholding algorithm for linear inverse problems. Available from: http:

//www.lx.it.pt/~bioucas/TwIST/TwIST.htm.

121

http://www-stat.stanford.edu/~candes/nesta/#code
http://www-stat.stanford.edu/~candes/nesta/#code
http://cvxr.com/tfocs/paper/
http://cvxr.com/tfocs/paper/
http://arxiv.org/abs/1206.1156v1
http://arxiv.org/abs/1206.1156v1
http://arxiv.org/abs/1210.6853
http://arxiv.org/abs/1210.6853
http://www.cs.ubc.ca/~mpf/spgl1/
http://www.optimization-online.org/DB_HTML/2007/06/1708.html
http://www.optimization-online.org/DB_HTML/2007/06/1708.html
http://www.cs.ubc.ca/labs/scl/sparco/
http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm
http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm


[21] J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Two-step iterative
shrinkage/ thresholding algorithms for image restoration. IEEE Transactions Image
Process., 16:2992–3004, 2007.

[22] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected
gradient methods on convex sets. SIAM Journal on Optimization, 10:1196–1211,
2000.

[23] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Inexact spectral projected gradient
methods on convex sets. IMA Journal of Numerical Analysis, 23(4):539–559, 2003.

[24] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
and Examples. Springer-Verlag, 2000.

[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[26] K. Bredies and D. A. Lorenz. Linear convergence of iterative soft-thresholding. Jour-
nal of Fourier Analysis and Applications, 14:813–837, 2008.

[27] L. Bregman. The relaxation method of finding the common points of convex sets and
its application to the solution of problems in convex programming. Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[28] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. AISTATS, 2009.

[29] J. F. Cai, S. Osher, and Z. Shen. Convergence of the linearized bregman iterations
for l

1

-norm minimization. Mathematics of Computation, 78:2127–2136, 2009.

[30] P. H. Calamai and J. J. More. Projected gradient methods for linearly constrained
problems. Mathematical Programming, 39:93–116, 1987.

[31] E. Candès. Compressive sampling. International Congress of Mathematics, 3:1433–
1452, 2006.

[32] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

122



[33] E. Candès and T. Tao. Near optimal signal recovery from random projections: Uni-
versal encoding strategies. IEEE Transactions on Information Theory, 52(12):5406
– 5425, 2006.

[34] E. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal
Processing Magazine, 25(2):21–30, 2008.

[35] A. Cohen. Rate of convergence of several conjugate gradient algorithms. SIAM
Journal on Numerical Analysis, 9(2):248–259, 1972.

[36] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling and Simulation, 4:1168–1200, 2005.

[37] P. L. Combettes and J. C. Pesquet. Proximal thresholding algorithm for minimization
over orthonormal bases. SIAM Journal on Optimization, 18:1351–1376, 2007.

[38] P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing.
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–
212, 2011.

[39] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global
convergence property. SIAM Journal on Optimization, 10(1):177–182, 1999.

[40] C.D. Dang, K. Dai, and G. Lan. A linearly convergent first-order algorithm for total
variation minimization in image processing. International Journal of Bioinformatics
Research and Applications, 10(1):4 – 26, 2014.

[41] I. Dhillon, D. Kim, and S. Sra. Tackling box-constrained optimization via a new
projected quasi-Newton approach. SIAM Journal Scientific Computing, 32(6):3548–
3563, 2010.

[42] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289 – 1306, 2006.

[43] M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

[44] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Software: GPSR (gradient
projection for sparse reconstruction). Available from: http://www.lx.it.pt/~mtf/
GPSR/.

123

http://www.lx.it.pt/~mtf/GPSR/
http://www.lx.it.pt/~mtf/GPSR/


[45] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Software: Sparse reconstruction
by separable approximation. Available from: http://www.lx.it.pt/~mtf/SpaRSA/.

[46] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems. IEEE
Journal of Selected Topics in Signal Processing, 1:586–597, 2007.

[47] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Com-
puter Journal, 7:149–154, 1964.

[48] J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient
methods for optimization. SIAM Journal on Optimization, 2(1):21–42, 1992.

[49] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for
minimizing the sum of two convex functions. Mathematical Programming, 141(1):349–
382, 2013.

[50] G. H. Golub and C. F. Van loan. Matrix Computations. Hopkins Fulfillment Service,
1996.

[51] N. Gould, D. Orban, and P. Toint. Numerical methods for large-scale nonlinear
optimization. Acta Numerica, pages 299–361, 2005.

[52] M. Gu, L. Lim, and C. Wu. ParNes: a rapidly convergent algorithm for accurate
recovery of sparse and approximately sparse signals. Numerical Algorithms, pages
1–27, 2012.

[53] W. W. Hager and H. Zhang. A new conjugate gradient method with guaranteed
descent and an e�cient line search. SIAM Journal on Optimization, 16(1):170–192,
2005.

[54] W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods.
Pacific Journal of Optimization, 2(1):35–58, 2006.

[55] E. T. Hale, W. Yin, and Y. Zhang. Software: Fixed point continuation (FPC).
Available from: http://www.caam.rice.edu/~optimization/L1/fpc/#soft.

[56] E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l
1

-
regularized minimization with applications to compressed sensing. Technical report,
Rice University, 2007.

124

http://www.lx.it.pt/~mtf/SpaRSA/
http://www.caam.rice.edu/~optimization/L1/fpc/#soft


[57] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for l
1

-minimization:
Methodology and convergence. SIAM Journal on Optimization, 19:1107–1130, 2008.

[58] B. Hendrickson. Conditions for unique graph realizations. SIAM Journal Computing,
21:65–84, 1992.

[59] M. R. Hestenes and E. Stiefel. Methods of conjugate gradient for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–436, 1952.
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