
Efficient Jacobian Determination by

Structure-Revealing Automatic Differentiation

by

Xin Xiong

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Xin Xiong 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis is concerned with the efficient computation of Jacobian matrices of nonlin-
ear vector maps using automatic differentiation (AD). Specificially, we propose the use of
two directed edge separator methods, the weighted minimum separator and natural order
separator methods, to exploit the structure of the computional graph of the nonlinear sys-
tem. This allows for the efficient determination of the Jacobian matrix using AD software.
We will illustrate the promise of this approach with computational experiments.

iii

Acknowledgements

I am heartily thankful to my supervisor, Thomas F. Coleman, whose encouragement,
guidance and support from the initial to the final level enabled me to develop an under-
standing of the subject.

Lastly, I offer my regards and blessings to all of those who supported me in any respect
during the completion of the project.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Overview . 1

1.2 Structure of the Thesis . 2

2 Automatic Differentiation 3

2.1 Introduction . 3

2.2 Automatic Differentiation and The Edge Separator 4

2.3 Automatic Differentiation and Multiple Edge Separators 9

3 On Finding Edge Separators to Increase Efficiency in the Application of
Automatic Differentiation 14

3.1 Introduction . 14

3.2 Weighted Minimum Separator . 14

3.3 Natural Order Edge Separator . 18

3.4 Multiple Edge Separators . 19

3.5 Experiments . 20

3.5.1 Thin Computational Graphs . 21

3.5.2 Fat Computational Graphs . 21

3.6 Accelerating the Calculation of the Jacobian matrix 24

v

4 A Combination of Sparsity Techniques and Edge Separator Method 26

4.1 Introduction . 26

4.2 A Brief Review of Sparsity Techniques . 28

4.3 Example Problems with Hidden Structure 32

4.3.1 Dynamic System Problem . 32

4.3.2 Partial Separability Problem . 33

4.4 Pseudo-Code for Calculating the Extended Jacobian Matrix JE 34

4.4.1 Global Approach and Online Approach 34

4.4.2 Edge Separators Locating Methods in the Numerical Experiments . 36

4.4.3 Sparsity Techniques in Numerical Experiments 39

4.5 Computational Results . 39

4.5.1 The Dynamic System Problems . 40

4.5.2 The Partial Separability Problems 43

4.6 Concluding Remarks . 47

5 The Special Case: the Structure of the Function is Provided 48

5.1 Introduction . 48

5.1.1 Cost Analysis . 51

5.2 Computational Results . 51

5.2.1 The Dynamic System Problem . 52

5.2.2 The Partial Separability Problem 53

5.3 Concluding Remarks . 55

6 Conclusions and Future Work 56

APPENDICES 57

A Sparsest Cut 58

vi

B Generation of Computational Graphs 59

B.1 A computational graph view of AD . 59

B.1.1 Basic Ideas . 60

B.1.2 Computational Cost Analysis . 63

B.2 Vector mode of AD . 67

B.3 A Brief Introduction to ADMAT . 68

B.4 Tape to Graph . 70

B.5 Compensation to Condensed Nodes . 70

B.6 The Method to Identify the Intermediate Variables 71

References 72

vii

List of Tables

4.1 Maximum tape length – DS problems : n = 64, 144, L = 100, 200 40

4.2 Running time – DS problems : n = 64, 144, L = 100, 200 40

4.3 Maximum tape length – DS problems : n = 9, · · · , 121, L = 100 42

4.4 Running time – DS problems : n = 9, · · · , 121, L = 100 42

4.5 Maximum tape length – DS problems : n = 9, · · · , 121, L = 200 43

4.6 Running time – DS problems : n = 9, · · · , 121, L = 200 43

4.7 Maximum tape length – PS problems : n = 64, 121, L = 100, 200 44

4.8 Running time – PS problems : n = 64, 121, L = 100, 200 44

4.9 Maximum tape length – PS problems : n = 9, · · · , 121, L = 100 46

4.10 Running time – PS problems : n = 9, · · · , 121, L = 100 46

4.11 Maximum tape length – PS problems : n = 9, · · · , 121, L = 200 46

4.12 Running time – PS problems : n = 9, · · · , 121, L = 200 47

5.1 Maximum tape length (×106) – DS problems : n = 20, k = 50, · · · , 1000 . 52

5.2 Running time (second) – DS problems : n = 20, k = 50, · · · , 1000 52

5.3 Maximum tape length (×106) – PS problems : n = 20, k = 50, · · · , 1000 . . 54

5.4 Running time (second) – PS problems : n = 20, k = 50, · · · , 1000 54

viii

List of Figures

2.1 Head node and tail node of a given edge ek 6

2.2 An example of computational graphs and a sample directed separator . . . 7

3.1 Depth of edges in F ’s (equation (2.3)) computational graph 15

3.2 An example of an undirected edge separator and corresponding adjustment 17

3.3 Performance of Ford-Fulkerson algorithm on Fk 18

3.4 Obtained separators of F1’s condensed computational graph by the two dif-
ferent algorithms . 22

3.5 Obtained separators of F2’s condensed computational graph by the two dif-
ferent algorithms . 23

3.6 Acceleration of directed edge separators method 25

4.1 Global approach for generation of the tape 35

4.2 Online approach for generation of the tape 36

4.3 Running time for dynamic system problems 41

4.4 Space and running time for dynamic system problems with L = 100 42

4.5 Space and running time for dynamic system problems with L = 200 43

4.6 Running time for partial separability problems 45

4.7 Space and running time for partial separability problems with L = 100 . . 46

4.8 Space and running time for partial separability problems with L = 200 . . 47

5.1 Performace comparison on the DS problems with n = 20, k = 50, · · · , 1000 53

ix

5.2 Performace comparison on the DS problems with n = 20, k = 50, · · · , 1000 54

B.1 The computational graph of Example. B.1.1 61

B.2 Forward mode computation of Example. B.1.1 61

B.3 Reverse mode computation of Example. B.1.1 62

B.4 The computational graph of Example. B.1.2 64

B.5 Forward mode of Example. B.1.2: first sweep for ∂z
∂x1

. 65

B.6 Forward mode of Example. B.1.2: second sweep for ∂z
∂x2

. 65

B.7 Reverse mode of Example. B.1.2: calculation of values 65

B.8 Reverse mode of Example. B.1.2: calculation of deriv 66

B.9 Vector Mode: Foward mode of Example. B.2.1 68

B.10 Vector mode of reverse mode computation of Example. B.2.1 69

x

Chapter 1

Introduction

1.1 Overview

In the summer of 2012, the 6th International Conference on Automatic Differentiation was
held in Colorado State University. In spite of the fact that automatic differentiation is
a joint field of computer science and mathematics, the conference attracted many schol-
ars and researchers from a wide diversity of areas, including magnetohydrodynamics[38],
atmospheric remote sensing[34], community land modelling[35], crop modelling[33], and
pressure swing adsorption optimization[21].

Computational modeling and quantitative analysis is a trend for almost all disciplines
nowadays. Scientific computation plays a more and more important role in industry and
academia, as it helps making estimations and predictions; in some areas fast computation is
essential — computing speed is the bottleneck and directly determines the overall efficiency.

In many cases the determination of Jacobian matrix reflects the major portion of the
overall computation, this is where automatic differentiation comes in — given the computer
code to evaluate a function, automatic differentiation can calculate the function’s Jacobian
matrix accurately and efficiently. Compared to the well-known finite difference method,
automatic differentiation can be much more efficient, especially when the function has some
special structures.

This efficiency and accuracy pay-off is why researchers and practitioners with different
background joined the conference. Many of them experienced computation speed issues.
Having tried different techniques to optimize the method calculating Jacobian matrices,
they turned to automatic differentiation and some obtained excellent results. In the process

1

of exploiting AD, they successfully made improvements on AD itself, and came to the
conference to share their ideas.

Automatic differentiation performs extraordinarily well under many scenarios; however
it has limitations. For example, reverse mode of AD cannot be used for complicated com-
putation due to space constraint, and the superior sparsity techniques cannot be used when
the Jacobian matrix is dense. Therefore it is beneficial to develop methods to overcome
these limitatons, to allow automatic differentiation to be used more widely.

1.2 Structure of the Thesis

In this thesis we will discuss a graph theory approach to improve automatic differentia-
tion. More specifically, directed edge separators of the associated computational graph are
located, to help reduce the space requirement of the AD reverse mode, and reveal hidden
structure for apparently dense functions.

Chapter 2 begins with a brief review of automatic differentiation, followed by the
definition of computational graph and an introduction to the directed edge separator idea.
Chapter 3 presents two methods locating good directed edge separators and the test result
of the methods. Hidden structure revealing methods and sparsity techniques are discussed
in Chapter 4, followed by numerical experiments. In Chapter 5 we investigate a special
case that the structure of functions is provided, in which a special technique can be used
to greatly boost the efficiency. Main conclusions of the thesis and some directions of future
work are presented in Chapter 6.

2

Chapter 2

Automatic Differentiation

2.1 Introduction

In many scientific and engineering applications, the computations of matrices of deriva-
tives are performed repeatedly. For example if F : Rn 7→ Rm is a smooth differen-
tiable mapping, then many nonlinear regression methods require the determination of the

m × n Jacobian matrix J(x)
∆
=
(

∂fi
∂xj

)i=1:m

j=1:n
, evaluated at many iterates of x ∈ Rn, where

F (x) =

f1(x)
...

fm(x)

. In a similar fashion the minimization of a sufficiently smooth nonlinear

function, f : Rn 7→ R, may require both the determination of the gradient, Of(x) =
(

∂f
∂xi

)
i=1:n

and the n× n (symmetric) Hessian matrix, H(x)
∆
=
(

∂2f
∂xi∂xj

)
i=1:n,j=1:n

The repeated calculation of the derivative matrices and Hessian matrices often represent
a large portion of the overall computational cost. Therefore it is valuable to develop a
general method that can obtain these matrices accurately and efficiently.

Automatic differentiation (AD) is a joint field of computer science and applied mathe-
matics, that has advanced rapidly over the past 15 years [37]. AD can compute matrices of
derivatives numerically given the source code to evaluate a function F (or in the case of min-
imization, the objective function f). Good methods that can exploit and take advantage of
sparsity, constant values, and duplicated values have also been developed [6, 40]. Further-
more, if certain structures are embedded in the objective functions, and are provided, then

3

the efficiency of automatic differentiation can be greatly improved [3, 11, 13, 14, 15, 19, 37].

This thesis is concerned with the improvement of AD under two cases: when the struc-
ture is not provided and when the structure is provided. For example, consider the auto-

matic differentiation of the gradient function Of(x) =
(

∂f
∂xi

)
i=1:n

∈ Rn, provided the source

code to evaluate f(x). The reverse mode[37] of automatic differentiation can be applied
to get the gradient accurately and efficiently, where the computational cost of getting the
derivative is same as that to evaluate the function[15]. However the space requirement of
reverse mode is the same as the number of arithmetic operations needed to evaluate f ,
which implies that the real running time can be considerably longer than the theoretical
prediction because of the need to use secondary memory[11]. One solution to this space
issue is to take advantage of the structure of f [19], and apply AD ‘slice by slice’. This
approach is very effective but does require the user to understand the structure and provide
them. In this thesis we will do further tests on this method, and discuss a more automatic
but less intuitive solution.

2.2 Automatic Differentiation and The Edge Separa-

tor

Let us consider a nonlinear mapping

F : Rn 7→ Rm

where F (x) =

f1(x)
...

fm(x)

, and each component function fi : Rn 7→ R1 is differentiable. The

Jacobian matrix J(x) is the m × n matrix of first derivatives defined by: Jij = ∂fi
∂xj

(i = 1, · · · ,m; j = 1, · · · , n). If the source code to evaluate F (x) is provided, automatic
differentiation can be used to evaluate the Jacobian matrix J(x). Generally speaking, in
the presence of sparsity in J(x), the work required to evaluate J(x), via a combination of
the forward and reverse modes of AD, is proportional to χB(GD(J)) · ω(F), where χB is the
bi-chromatic number of the double intersection graph GD(J), and ω(·) is the work required
(i.e., number of flops) to evaluate the argument -see [15]. Note that if reverse mode AD
is invoked, the space required to compute the Jacobian is proportional to ω(F), and this
can be prohibitively large. Meanwhile if AD is restricted to forward mode, then the space
required is much less, i.e., it is proportional to σ(F), the space required to evaluate F (x),

4

and typically ω(F)� σ(F); however, forward mode alone can be much more costly than a
combination of forward and reverse modes in terms of work required. For example, reverse
mode can calculate the gradient of differentiable function f : Rn 7→ R1 in time proportional
to ω(f) whereas forward mode requires n ·ω(f) operations. The following result formalizes
the space and time requirements for the bi-coloring AD method1 [15, 19].

Lemma 2.2.1. Assume F : Rn 7→ Rm is differentiable and its Jacobian matrix J is com-
puted by the bi-coloring AD method [15]. Assuming the optimal coloring is found, then in
general,

ω(J) = O(χB(GD(J)) · ω(F) + |J |NNZ)
σ(J) = O(ω(F) + |J |NNZ)

}
(2.1)

where χB(GD(J)) is the bi-coloring number1 of J , and |J |NNZ is the number of nonzero
entries in J .

Proof. According to [15], a bi-coloring for J ∈ Rm×n corresponds to thin matrices V ∈
Rn×tV and W ∈ Rm×tW , where J can be determined with work O(|J |NNZ) if W TJ and JV
are given. We can obtain J in O(|J |NNZ) because at least one nonzero entry is determined
in one substitution, so at most |J |NNZ substitutions are required. Now consider cost for
calculating W TJ and JV : The forward mode of AD allows for the computation of product
JV in time proportional to O(tV ·ω(F)), and similarly reverse mode allows for the compu-
tation of product W TJ in time proportional to O(tW · ω(F)) [15]. If the optimal coloring
is found

χB(GD(J)) = tV + tW ,

and then
ω(J) = O((tV + tW) · ω(F) + |J |NNZ)

= O(χB(GD(J)) · ω(F) + |J |NNZ).

The second equation in (2.1) is obviously true because the reverse mode of AD needs
O(ω(F)) space [15] and J itself needs O(|J |NNZ) space.

The bi-coloring AD method does not guarantee to find an optimal coloring, but heuristic
coloring methods determine tV , tW aiming for (tV + tW) ∼= χB(GD(J)). Therefore total
work for computing J in practise is given by (2.1).

Consider now the (directed) computational graph that represents the structure of the
program to evaluate F (x):

~G(F) = (V, ~E) (2.2)

1 Please refer to Section 4.2 for the details of the bi-coloring method and the bi-coloring number.

5

Figure 2.1: Head node and tail node of a given edge ek

where V consists of three sets of vertices. Specifically, V = {Vx, Vy, Vz} where vertices in Vx
represent the input variables; a vertex in Vy represent both a basic or elementary operation
receiving one or two inputs, producing a single ouput variable and the output intermediate
variable; vertices in Vz represent the output variables. So input variable xi corresponds
to vertex vxi

∈ Vx, intermediate variable yk corresponds to vertex vyk ∈ Vy, and output
zj = [F (x)]j corresponds to vertex vzj ∈ Vz. Note that the number of vertices in Vy, i.e.,
|Vy|, is the number of basic operations required to evaluate F (x). Hence ω(F) = |Vy|.

The edge set ~E represents the traffic pattern of the variables. For example, there is a
directed edge ek = (vyi , vyj) ∈ ~E if intermediate variable yi is required by computational

node vyj to produce intermediate variable yj. If ek = (vyi , vyj) ∈ ~E is a directed edge from
vertex vyi to vertex vyj then we refer to vertex vyi as the tail node of edge ek and vertex
vyj as the head node of edge ek. See Figure 2.1 for an illustration. It is clear that if F is

well-defined then ~G(F) is an acyclic graph.

Example 2.2.2. F : R2 7→ R3 is defined as:

F

([
x1
x2

])
=

 sin(cos(sin 2x1 + x22) · (5x1 − 6x2))
(2xx2

1 + xx1
2)sinx1+cosx2

cos(sin 2x1 + x22) + (5x1 − 6x2) + (2xx2
1 + xx1

2) + (sin x1 + cosx2)

 (2.3)

Then F ’s computational graph is Figure 2.2(a).

Definition 2.2.3. Ed ⊆ ~E is a directed edge separator in directed graph ~G if ~G− {Ed}
consists of disjoint components ~G1 and ~G2 where all edges in Ed have the same orientation
relative to ~G1, ~G2.

Example 2.2.4. One choice of an edge separator for F defined by equation (2.3) is given
in Figure 2.2(b).

6

(a) F ’s computational graph G (b) An example of graph G’s directed edge sepa-
rator

Figure 2.2: An example of computational graphs and a sample directed separator

Suppose Ed ⊆ ~Ey is an edge separator of the computational graph ~G(F) with orientation
forward in time. Then the nonlinear function F (x) can be broken into two parts:

solve for y: F1(x, y) = 0
solve for z: F2(x, y)− z = 0

}
(2.4)

where y is the vector of intermediate variables defined by the tail vertices of the edge
separator Ed, and z is the output vector, i.e., z = F (x). Let p be the number of tail
vertices of edge set Ed, i.e., y ∈ Rp. Note: |Ed| ≥ p. The nonlinear function F1 is defined
by the computational graph above Ed, i.e., G1, and nonlinear function F2 is defined by the
computational graph below Ed, i.e., G2. See Figure 2.2(b). We note that the system (2.2)
can be differentiated wrt (x, y) to yield an ‘extended’ Jacobian matrix [14, 16, 26]:

JE
∆
=

[
(F1)x (F1)y
(F2)x (F2)y

]
(2.5)

Since y is a well-defined unique output of function F1 : Rn+p 7→ Rp, (F1)y is a p × p non-
singular matrix. The Jacobian of F is the Schur-complement of (2.4), i.e.,

J(x) = (F2)x − (F2)y(F1)
−1
y (F1)x. (2.6)

7

There are two important computational issues to note. The first is that the work to evaluate
JE is often less than that required to evaluate J(x) directly. The second is that less space
is often required to calculate and save JE relative to calculating and saving J directly
by AD (when the AD technique involves the use of “reverse mode” as in the bi-coloring
technique). Theorem 2.2.5 formalizes this.

Theorem 2.2.5. Assume the computational graph G is divided into two disjoint subgraphs
G1, G2 with the removal of directed edge separator Ed as described above. Let JE be
computed by the bi-coloring technique [15]. Then assuming optimal graph coloring, in
general,

ω(JE) = O(χB(GD[(F1)x, (F1)y]) · ω(F1) + χB(GD[(F2)x, (F2)y]) · ω(F2) + |JE|NNZ)
σ(JE) = O(max(σ[(F1)x, (F1)y], σ[(F2)x, (F2)y]) + |JE|NNZ)

= O(max(ω(F1), ω(F2)) + |JE|NNZ)

(2.7)

Proof. With reference to (2.5), we first determine
[
(F1)x (F1)y

]
, and then determine[

(F2)x (F2)y
]
. By Lemma 2.2.1,

ω(JE) = O(χB(GD[(F1)x, (F1)y]) · ω(F1) + |[(F1)x, (F1)y]|NNZ

+ χB(GD[(F2)x, (F2)y]) · ω(F2) + |[(F2)x, (F2)y]|NNZ)
= O(χB(GD[(F1)x, (F1)y]) · ω(F1) + χB(GD[(F2)x, (F2)y]) · ω(F2) + |JE|NNZ).

Now consider the space: To determine
[
(F1)x (F1)y

]
, O(ω(F1)) is required for the

reverse mode of AD. Then to evaluate
[
(F2)x (F2)y

]
, previous memory can be cleared

and needs O(ω(F2)) space for F2’s reverse mode. Hence total space requirement is the
peak usage which is O(max(ω(F1), ω(F2))). Extra O(|JE|NNZ) space is to restore results
obtained, and hence

σ(JE) = O(max(ω(F1), ω(F2)) + |JE|NNZ).

We can compare (2.7) to (2.1) to contrast the time/space requirements of the separator/bi-
coloring AD approach to obtain JE versus the time/space requirements of the bi-coloring
AD method to obtain J . Specifically, and most importantly, the space requirement typi-
cally decreases: (2.7, σ(JE)) indicates that the required space is O(max(ω(F1), ω(F2))),
since the term |JE|NNZ is usually dominated by the first, whereas determining J di-
rectly by bi-coloring takes space approximately proportional to O(ω(F)), by (2.1). For

8

example, if the edge separator divides G(F) into two equal-sized pieces G1, G2, then
σ(JE) ' ω(F)/2 ' σ(J)/2; that is, we have essentially halved the space requirements.

The computational cost, comparing (2.7,ω(JE)) to (2.1,ω(J)) can either increase or
decrease. However, due to increased sparsity usually

χB(GD[(F1)x, (F1)y]) 6 χB(GD(J))
χB(GD[(F2)x, (F2)y]) 6 χB(GD(J)),

(2.8)

and then

χB(GD[(F1)x, (F1)y]) · ω(F1) + χB(GD[(F2)x, (F2)y]) · ω(F2)
6 χB(GD) · (ω(F1) + ω(F2))
= χB(GD) · ω(F),

(2.9)

and so in this case there is a no increase (and typically a reduction) in computational cost.
The upshot is that use of the edge separator often results in cost savings both in time and
in space (when computing JE rather than J).

It is usually less expensive, in time and space, to compute JE(x) rather than J(x), using
a combination of forward and reverse modes of automatic differentiation[18]. However,
what is the utility of JE(x)? The answer is that JE(x) can often be used directly to
simulate the action of J and this computation can often be less expensive (due to sparsity
in JE that is not present in J) than explicitly forming and using J . For example, the
Newton system ‘solve Js = −F ’ can be replaced with

solve JE

[
s
t

]
=

[
0
−F

]
. (2.10)

The main points are that calculating matrix JE can be less costly than calculating matrix
J , and solving (2.10) can also be relatively inexpensive given sparsity that can occur in JE
that may not be present in J .

2.3 Automatic Differentiation and Multiple Edge Sep-

arators

The ideas discussed above can be generalized to the case with multiple mutually indepen-
dent directed edge separators, Ed1 , · · · , Edk ∈ ~E, where we assume G − {Ed1 , · · · , Edk} =
{G1, · · · , Gk+1}. The connected graphs G1, · · · , Gk+1 are pairwise disjoint and are ordered
such that when evaluating F , Gi can be fully evaluated before Gi+1, i = 1, · · · , k.

9

Suppose Ed1 , · · · , Edk ∈ ~E are pairwise disjoint separators of the computational graph
~G(F) with orientation forward in time (as indicated above). Then the evaluation of non-
linear function F (x) can be broken into k + 1 steps:

solve for y1 : F1(x, y1) = 0
solve for y2 : F2(x, y1, y2) = 0

...
...

solve for yk : Fk(x, y1, · · · , yk) = 0
solve for z : Fk+1(x, y1, · · · , yk)− z = 0

(2.11)

where yi is the vector of intermediate variables defined by the tail vertices of the edge
separator Edi , for i = 1, · · · , k and z is the output vector, i.e., z = F (x). Let pi be the
number of tail vertices of edge set Edi , i.e., yi ∈ Rpi . The nonlinear function Fi is defined
by the computational graph to the left of Edi , i.e., Gi. We note that the system (2.11) can
be differentiated wrt (x, y) to yield an ‘extended’ Jacobian matrix:

JE
∆
=

(F1)x (F1)y1 0 0 0 0
(F2)x (F2)y1 (F2)y2 0 0 0

...
...

...
. . .

...
...

...
...

... · · · · ...
(Fk)x (Fk)y1 (Fk)y2 · · · · · · (Fk)yk

(Fk+1)x (Fk+1)y1 (Fk+1)y2 · · · · · · (Fk+1)yk

(2.12)

We note that matrix JE is a block lower-Hessenberg matrix; moreover, since all interme-
diate variables are well-defined for arbitrary input vectors it follows that the super-diagonal
blocks (F1)y1 , (F2)y2 , · · · , (Fk)yk are all non-singular; e.g., matrix (Fi)yi is a pi × pi non-
singular matrix where pi is the length of vector yi. The extended Jacobian matrix is of
dimension (m+

∑k
i=1 pi)× (n+

∑k
i=1 pi).

In analogy to the 1-separator case, we argue below that the matrix JE can often be
calculated more efficiently than the Jacobian of F (x), i.e., J(x). In addition, due to the
increased sparsity/structure in JE, the Newton system ‘solve Js = −F ’ can often be solved
more efficiently by solving

JE

s
t1
...
tk

 =

0
0
...
−F

 . (2.13)

10

We note that again a Schur-complement computation can yield the Jacobian matrix J
given the extended Jacobian JE. Specifically, if we define:

A = [(F1)x, (F2)x, · · · , (Fk)x]T

B =

(F1)y1 0 0 · · · 0
(F2)y1 (F2)y2 0 · · · 0
(F3)y1 (F3)y2 (F3)y3 · · · 0

...
...

...
. . .

...
(Fk)y1 (Fk)y2 (Fk)y3 · · · (Fk)yk

C = [Fk+1]x

D = [(Fk+1)y1 , (Fk+1)y2 , (Fk+1)y3 , · · · , (Fk+1)yk],

then

JE =

[
A B
C D

]
, (2.14)

where B is nonsingular, and
J = C −DB−1A. (2.15)

The space/time requirements for the multi-separator case will be formalized in Theo-
rem 2.3.1, in analogy to the 1-separator case captured by Theorem 2.2.5.

Theorem 2.3.1. Assume the computational graph G is divided into k+1 disjoint subgraphs
G1, G2, · · · , Gk+1 with the removal of directed edge separators Ed1 , Ed2 , · · · , Edk as described
above. Let JE be computed by the bi-coloring technique [15]. Then assuming optimal graph
coloring, in general,

ω(JE) = O(χB(GD[(F1)x, (F1)y1]) · ω(F1)
+χB(GD[(F2)x, (F2)y1 , (F2)y2]) · ω(F2)
+ · · ·
+χB(GD[(Fk)x, (Fk)y1 , · · · , (Fk)yk]) · ω(Fk)
+χB(GD[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]) · ω(Fk+1)
+ |JE|NNZ)

= O(
∑k

i=1(χB(GD[(Fi)x, (Fi)y1 , · · · , (Fi)yi]) · ω(Fi))
+χB(GD[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]) · ω(Fk+1)
+ |JE|NNZ))

= O(
∑k+1

i=1 (χB(GD[Fi]) · ω(Fi)) + |JE|NNZ))
σ(JE) = O(max(σ[(F1)x, (F1)y1], σ[(F2)x, (F2)y1 , (F2)y2], · · · ,

σ[(Fk)x, (Fk)y1 , · · · , (Fk)yk], σ[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]) + |JE|NNZ)
= O(maxi=1,··· ,k+1(ω(Fi)) + |JE|NNZ)

(2.16)

11

Proof. With reference to (2.12), to determine JE, we determine [(F1)x, (F1)y1], [(F2)x, (F2)y1 , (F2)y2],
· · · , [(Fk)x, (Fk)y1 , · · · , (Fk)yk], and [(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk] sequentially. By Lemma
2.2.1,

ω(JE) = O(χB(GD[(F1)x, (F1)y1]) · ω(F1) + |[(F1)x, (F1)y1]|NNZ

+χB(GD[(F2)x, (F2)y1 , (F2)y2]) · ω(F2) + |[(F2)x, (F2)y1 , (F2)y2]|NNZ

+ · · ·
+χB(GD[(Fk)x, (Fk)y1 , · · · , (Fk)yk]) · ω(Fk) + |[(Fk)x, (Fk)y1 , · · · , (Fk)yk]|NNZ

+χB(GD[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]) · ω(Fk+1) + |[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]|NNZ

= O(
∑k

i=1(χB(GD[(Fi)x, (Fi)y1 , · · · , (Fi)yi]) · ω(Fi))
+χB(GD[(Fk+1)x, (Fk+1)y1 , · · · , (Fk+1)yk]) · ω(Fk+1)
+ |JE|NNZ))

= O(
∑k+1

i=1 (χB(GD[Fi]) · ω(Fi)) + |JE|NNZ)).

Now consider the space: To determine [(F1)x, (F1)y1], O(ω(F1)) space is required for
the reverse mode of AD. Then to evaluate [(F2)x, (F2)y1 , (F2)y2], previous memory can
be cleared and needs O(ω(F2)) space for F2’s reverse mode. Similarly for arbitary i =
1, · · · , k+1, O(ω(Fi)) space is required for Fi’s reverse mode. Hence total space requirement
is the peak usage which is O (maxi=1:k+1(ω(Fi))). Extra O(|JE|NNZ) space is to restore
results obtained, and hence

σ(JE) = O(max
i=1,··· ,k+1

(ω(Fi)) + |JE|NNZ).

Note that if the edge separators divide ~G(F) into equal-size pieces ~G1, ~G2, · · · , ~Gk+1,
the space requirement can be simplified to

σ(JE) =
ω(F)

k + 1
+ |JE|NNZ . (2.17)

Given any number of k edge separators, the first term in equation (2.17) decreases as k
increases. On the other hand, the size of extended Jacobian matrix JE increases as number
of intermediate variables y increases. It is clear that the optimal value of k to minimize
the space requirement is a balance between the two terms in equation (2.17).

It is helpful to consider the two extreme cases. If no edge separator is chosen, then
JE = J hence size of JE remains m×n. However the first term will be ω(F), which can be
large. In the other extreme case with finest granularity, the first term in equation (2.17)

12

is negligible but the second term is proportional to ω(F). Determining the optimal value
k is a combinatorial optimization problem, which is hard to solve. It is useful to build up
models to study the dependency on k and other behaviours for this problem.

The number of nonzeros in JE, |JE|NNZ , is problem dependent. We can first assume
that there is a constant β such that the number of nonzeros in each row of JE is bounded by
β. The number of rows of JE is problem dependent too. We will assume that the number
of row is m + p(k), where m is the dimension of input variable x, and p(k) is the total
dimension of intermediate variables y1, y2, · · · , yk. We further assume that the average size
of intermediate variables is pavg, which is independent of the number of separators k. In
this case the number of rows in JE is m + p(k) = m + k · pavg. The space requirement in
equation (2.17) can now be simplified to the following inequality:

σ(JE) =
ω(F)

k + 1
+ |JE|NNZ ≤

ω(F)

k + 1
+ (m+ k · pavg) · β, (2.18)

where the optimal value of occurs at

k∗ =

√
ω(F)

pavg · β
− 1,

at which the space requirement upper bound is

σ(Jk∗

E) ≤ 2
√
ω(F) · pavg · β + (m− 1) · β. (2.19)

The result in inequality (2.19) relies on several assumptions, however it is still very instruc-
tive. Compared to the first term in inequality (2.19), the second term is neglectable. If we
only consider the first term 2

√
ω(F) · pavg · β, the space requirement is the square root of

that required by traditional AD. Moreover, the factor
√
pavg suggests that smaller edges

separators are greatly preferable.

13

Chapter 3

On Finding Edge Separators to
Increase Efficiency in the Application
of Automatic Differentiation

3.1 Introduction

In Section 2.2 we observed that if a small directed edge separator divides the computa-
tional graph ~G into roughly two equal components ~G1 and ~G2, then the space requirement
are minimized (roughly halved). Moreover, the required work, as indicated by equation
(2.7), will not increase, and due to increased sparsity, will likely decrease.

Therefore, our approach is to seek a small directed edge separator that will (roughly)
bisect the fundamental computational graph. In this section, we present two algorithms
to find good separators.

3.2 Weighted Minimum Separator

This minimum weighted separator approach is based on the Ford-Fulkerson (FF) algorithm
[22], a well known max-flow/min-cut algorithm. The Ford-Fulkerson algorithm finds the
minimum s− t cut, a set of edges whose removal separates specified node s and node t, two
arbitrary nodes in the graph. A minimum cut does not always correspond to a directed
separator, hence we “post process” the min-cut solution to obtain a directed separator.

14

Figure 3.1: Depth of edges in F ’s (equation (2.3)) computational graph

We desire that the determined separator (roughly) divides the fundamental computa-
tional graph in half. To add this preference into the optimization, we assign capacities to
edges to reflect distance from the input or output nodes, whichever is closer. With this
kind of weight distribution, a ‘small’ separator will likely be located towards the middle of
the fundamental computational graph.

To determine the weights we first calculate depth of nodes and edges.

Definition 3.2.1. We define the depth of a node v in a DAG to be the shorter of shortest
directed path from an input node (source) to v and the shortest directed path from v to an
output node (sink). We define the depth of an edge y in a DAG in an analogous fashion.

Example 3.2.2. Figure 3.1 is depth of edges in F ’s computational graph, where F is
defined by equation (2.3).

Define a decreasing function
f : Z+ 7→ Z+ (3.1)

taking depth as inputs and gives weights for each edge as outputs. Notice weights are
restricted to be integers, because the original Ford-Fulkerson algorithm assumes integral
edge weights and has running time bounded in terms of the final flow. Notice that the

15

Edmonds-Karp variant of the FF algorithm allows arbitrary real weights and runs in poly-
nomial time regardless of the magnitude of the flow. For the Edmonds-Karp algorithm,
the running time is determined by the size of the network. However, for simplicity, in the
numerical experiments we use the original Ford-Fulkerson algorithm to find the min-cuts
for the weighted graphs.

There are many possible choices for f . Currently we find that quadratic weights give
reasonable results. See Chapter 3.5 for numerical examples. Once weights are determined,
the Ford-Fulkerson algorithm can be applied and edge separators can be obtained.

Hence our proposed method is as follows:

1. Assign weights to edges to reflect depth of an edge;

2. Solve the weighted mincut problem, e.g. using the Ford-Fulkerson method;

3. If the cut is not a directed separator, modify according to Algorithm 3.2.3.

Algorithm 3.2.3. Let Eu ⊆ ~E such that graph ~G − Eu consists of two components ~G1

and ~G2, where source nodes are in ~G1 and sink nodes are in ~G2. If Eu is not a directed
separator, then Eu contains both edges from ~G2 to ~G1 and edges from ~G1 to ~G2. Let
S = V (~G1) and T = V (~G2). A directed separator Ed = ~E(S, T) can be generated either
by moving tail nodes of T → S edges from T to S recusively, or by moving head nodes of
T → S edges from S to T recursively. The formal description is stated as follows:

1. T1 ← {v : v ∈ T} ∪ {v : there exists a directed uv-path in ~G, u ∈ T};

2. S1 ← V (~G)− T1, E1 = E(~G)− E(~G(S1))− E(~G(T1));

3. S2 ← {v : v ∈ S} ∪ {v : there exists a directed vu-path in ~G, u ∈ S};

4. T2 ← V (~G)− S2, E2 = E(~G)− E(~G(S2))− E(~G(T2));

5. Pick the smaller between E1 and E2 as the desired separator.

Compared with edge separators with no direction constraint, finding a directed sepa-
rator is usually harder. Considering this, we sometimes use separators locating schemes
which do not guarantee directedness. In this case the above algorithm can always be
used to ‘direct’ such an edge separator. The following is an example for directing an edge
separator.

16

(a) A constructed undirected edge separator (b) Edge separator becomes directed after adjust-
ment

Figure 3.2: An example of an undirected edge separator and corresponding adjustment

Cost Analysis

For integral weights, the run time of Ford-Fulkerson is bounded by O(|E|f) [22] where |E|
is number of edges in the graph, and f is the maximum flow. In computational graphs,
equation (3.1) is always a decreasing function so weights in the middle are smaller. Due to
this special distribution, usually there exists a edge separator in the middle with a small
total weight, bounding f . In practice, in most cases O(|E|f) is just a very loose upper
bound and running time is more like O(|E|).

Example 3.2.4. Use function defined in equation (3.5) to test. Notice that Fk gets more
complicated as k increases. The time used to evaluate Fk and find cutsets is shown in
Figure 3.3.

17

Figure 3.3: Performance of Ford-Fulkerson algorithm on Fk

3.3 Natural Order Edge Separator

A second method to generate directed separators comes from the observation that if the
‘tape’ generated by reverse-mode AD is snipped at any point then effectively a directed
separator is located.

As described in (2.2), computational graphs represent the process of evalution of func-
tions. They are generated based on information recorded during the execution of the
reverse mode. These records are called computational tapes, each of which contains a long
vector of cells. Each cell represents a basic operation of the input function, hence corre-
sponds to a node in the computational graph. Cells in a tape are ordered according to
the execution time of its corresponding basic operation, therefore cells are in chronological
order. Permutation on tape method is based on this property of computational tapes.

Suppose we are given a computational graph ~G and the correponding computational
tape T with length |V (~G)|. A natural partition (~G1,~G2) of ~G is ~G1 = ~G(T (1 : i)), ~G2 =
~G(T (i+ 1 : |V (~G)|)), where i is some integer between 1 and |V (~G)| − 1. Since cells in the

tape are in chronological order, all basic operations represented in ~G1 are evaluated before
those represented in ~G2, therefore all edges between ~G1, ~G2 are directed from ~G1 to ~G2.
Since these edges form a directed edge separator, we can then choose i to get the preferred
edge separator in terms of separator size and partition ratio. The following is a formal
description to global version natural order edge separator method.

18

Algorithm 3.3.1. Suppose a cost function f cost is defined on an directed edge separator
Ed, representing the quality of Ed in terms of separator size and partition ratio, and the
function value decreases as the quality increases. Then the following are the steps finding
the optimal natural order edge separator.

1. Perform forward sweep on candidate function F , and generate the tape T for F ;

2. i← 1, i∗ ← 0, f ∗ ← +∞, E∗
d ← Ø;

3. Edi ← E(T (1 : i), T (i+ 1 : |V (~G)|));

4. if f cost(Edi) < f ∗, then i∗ ← i, E∗
d ← Edi, and f ∗ ← f cost(Edi);

5. if i < |V (~G)| − 1, then i← i+ 1 and return to step 3, otherwise proceed to step 6;

6. E∗
d is the optimal natural order edge separator.

Notice that there are many choices to the cost function f cost. In numerical experiments
the f cost we use is the sparsity function defined by

f cost =
|E(~G1, ~G2)|

min (|~G1|, |~G2|)
. (3.2)

The good choice of the cost function is a topic for future research.

3.4 Multiple Edge Separators

Either of the proposed directed separator methods can be applied, recursively, to yield
multiple separators. We do exactly this in our code and in our computational experiments
below, always working on the largest remaining subgraph:

Algorithm 3.4.1. If we are given a partition V1, V2, · · · , Vi of V (~G), where ∀a, b =

1, · · · , i, a 6= b, edges between ~G(Va) and ~G(Vb) are in one direction. (This partition defines
i− 1 directed separators.)

1. j ← arg maxk=1,··· ,i |Vk|;

2. Ej ← the directed separator in ~G(Vj) founded by either of the methods. Suppose
~G(Vj)− Ej consists of Sj and Tj;

19

3. Vj ← V (Sj) and Vi+1 ← (Tj);

4. Repeat above step 1-3 until enough directed separators are generated.

3.5 Experiments

In this section we provide computational results on some preliminary experiments to au-
tomatically reveal a ‘AD-friendly’ structure using the separator idea. These experiments
are based on the minimum weighted separator algorithm and natural order separator al-
gorithm described in the previous section, to find directed edge separators that bisect the
fundamental computational graph.

In particular, in weighted minimum edges separator approach, we use two weighing
strategies, quadratic weighing and 1-∞ weighing.

Definition 3.5.1. The quadratic weighing is based on the fundamental computational
graph, defined by

Wei = (max
j
Dej −Dei)

2 + 1, (3.3)

where depth De is calculated by Definition 3.2.1.

Definition 3.5.2. The 1-∞ weighing is also based on the fundamental computational
graph, defined as follows:

1. S ← ∅;T ← ∅;

2. Calculate depth for each node in the computational graph by Definition 3.2.1;

3. S ← S∪{s};T ← T ∪{t}; where in graph ~G−S−T , s is a source node with smallest
depth and t is a sink node with smallest depth (the depth calculated in step 2);

4. Repeat previous step until |S| = |T | > |V (~G)|/4;

5. If both ends of an edge is in ~G− S − T , assign 1 to it as its weight, otherwise assign
infinity to it.

The cutset found using 1-∞ weighting scheme is equivalent to the minimum-cut in
~G − S − T . In the case that S and T are adjacent or even overlapping in ~G, we can
similarly find another minimum-cut for ~G(S ∪ T), and then combine it with the one in

20

~G− S − T , to get a directed edge separator in ~G. A directed edge separator can then be
generated from this edge cutset by algorihtm described in Algorithm 3.2.3.

We use the AD-tool, ADMAT [31], to generate the computational graphs. However,
for efficiency reasons, ADMAT sometimes condenses the fundamental computational graph
to produce a condensed computational graph. In a condensed computatonal graph nodes
may represent matrix operations such as matrix-multiplication. Therefore our weighting
heuristic is adjusted to account for this.

In our numerical experiments we focus on two types of structures that represent the
two shape extreme cases.

3.5.1 Thin Computational Graphs

A function involving recusive iterations usually produces a “thin” computational graph.

Example. Define

F

x1x2
x3

 =

x3 · cos(sin(2x1 + x22))
5x1 − 6x2
2xx2

2 + xx1
2

 , (3.4)

and
F1 = F ◦ F ◦ F ◦ F ◦ F ◦ F.

Note that F1’s computational graph is long and narrow (i.e. ‘thin’).

After three iterations, three separators in Figure 3.4 are found. The graph is divided
into four subgraphs. Visually, these edge separators are good in terms of size and evenly
dividing the graph.

3.5.2 Fat Computational Graphs

A “fat” computational graph is produced when macro-computations are independent of
each other. A typical example is:

F2 =
6∑

i=1

F (x+ randi(3, 1)),

where F is defined by equation (3.4) in the previous experiment.

The separators found by our two algorithms on this example are useful but are less
than ideal in contrast to the separators found in the “long thin” class. This is a topic for
future experimental research.

21

(a) Qudratic Minimum
Weighted Separator

(b) 1-∞ Minimum
Weighted Separator

(c) Natural Order
Separator

Figure 3.4: Obtained separators of F1’s condensed computational graph by the two different
algorithms

22

(a) Quadratic Minimum Weighted Separator

(b) 1-∞ Minimum Weighted Separator

(c) Natural Order Separator

Figure 3.5: Obtained separators of F2’s condensed computational graph by the two different
algorithms

23

3.6 Accelerating the Calculation of the Jacobian ma-

trix

To illustrate how directed edge separators accelerate computation, we construct the fol-
lowing numeric example:

Let

f

x1x2
x3

 =

 x2+3x3

4√
x1x3

x1+2x2+x3

4

 ,
and

Fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k f ’s

. (3.5)

It is obvious that Fn ≡ Fk1 ◦ Fk2 ◦ · · · ◦ Fkm provided n =
∑m

i=1 ki.

Now we try to calculate the Jacobian matrix J ∈ R3×3 of F2400(x0) at x0 = [6, 9, 3]T .
We will use ADMAT[31] reverse mode to obtain J both directly and by constructing edge
separators. Their running time and space usage will be recorded to see improvements.
If cutset method is used, JE defined by equation (2.12) will be calculated, and J will be
further calculated by equation (2.14) and (2.15).

Figure 3.6 illustrates our results.

For cases that directed separators method is introduced, computational graph is always
divided evenly. For example: In one separator case, F2400 is treated as F1200 ◦ F1200. In
two separators case, F2400 is treated as F800 ◦F800 ◦F800, etc.. Space and time requirement
decreases inversely as number of cuts increases, which is the same as the prediction of
Theorem 2.2.5. This is a remarkable result.

The performance plot in Figure 3.6 did not count in time used to locate directed edge
separators. The ‘running time’ refers to the time used to obtain Jacobian matrix with
separators provided. In practice, generation of computational graphs and analysis may
be costly, compared with those used to get Jacobian matrix directly. However once the
desired edge separators are located, they are likely to be reusable in computations with
same/similar functions but different initial input values. Therefore this optimization is
useful in terms of the long run. For example if one want to calculate F2400(x0)’s Jacobian
matrix many times at different points, x0, then separator method need only be applied a
single time.

The computational graph of Fk is a long thin graph. Our method locates small separa-
tors that tend to break the graph in a well-balanced way. So edge separators optimization

24

Figure 3.6: Acceleration of directed edge separators method

is expected to have good performance. In practice, the computational graphs are not so
ideal; hence running time and memory may not be reduced so dramatically, but we expect
a significant improvement.

25

Chapter 4

A Combination of Sparsity
Techniques and Edge Separator
Method

4.1 Introduction

In many scientific computing applications, the functions have hidden structure, i.e., they
are mostly involved with sparse operations meanwhile having dense Jacobian matrices.
For such functions, since their Jacobian matrices are dense, the bi-coloring methods[15]
and other sparsity techniques cannot improve the efficiency of automatic differentiation.
However, the edge separator method is able to reveal the hidden structure, and make the
sparsity techniques applicable again. Let us consider the following two examples:

Example 4.1.1. Define F : Rn 7→ Rm:

F (x) = A(x)−1Fsparse(x)

where A(x) ∈ Rm×m is a nonsingular matrix depending on x, and Fsparse : Rn 7→ Rm is
a sparse function, whose computational cost represents the major portion for the overall
computation, i.e., w(Fsparse(·))� w(A(x)−1(·)).

Because of the inverse operation A(x)−1(·), the Jacobian matrix of F in general is dense.
Therefore sparsity techniques do not accelerate the determination of the Jacobian matrix
and the computing time is proportional to min(m,n) ·ω(F). Now suppose we apply the di-
rected edge separator method on F first and generated p+ 1 sub-functions F1, F2, · · · , Fp+1,

26

then Fp+1 is the only sub-function containing the ‘dense operation’ A(x)−1(·). Sparsity tech-
niques now can be applied to accelerate all other sub-functions F1, F2, · · · , Fp. According to
Theorem 2.3.1, the computing time now is proportional to χB(GD(Fsparse)) ·

∑p
i=1 ω(Fi)+

min(m,n) · ω(Fp+1), which is much less than min(m,n) · ω(F) = min(m,n) ·
∑p+1

i=1 ω(Fi),
because χB(GD(Fsparse)) �min(m,n) in the presence of the sparsity of F sparse.

Example 4.1.2. Define function F : Rn 7→ Rn:

F = Fsub ◦ Fsub ◦ · · · ◦ Fsub︸ ︷︷ ︸
n Fsub’s

where the Jacobian matrix Jsub of Fsub is sparse, and nonzero only for entries Jsub
ij where

|i − j| 6 1. F ’s Jacobian matrix J is dense since J =
∏n

i=1 J
sub
i , hence sparsity tech-

niques do not apply. With reference to Example 4.1.1, the overall computing time is
proportional to n · ω(F). Now suppose we applied the directed edge separator method on
F first and generated n sub-functions F1, F2, · · · , Fn, and further assume ideal separators
are located, i.e., F1 = F2 = · · · = Fn = Fsub, then χB(GD(F1)) = χB(GD(F2)) = · · · =
χB(GD(Fn)) = χB(GD(Fsub))) = 3 [15]. Therefore the computational cost can be reduced
to
∑n

i=1 χB(GD(Fi)) · ω(Fi) = 3 · ω(F)� n · ω(F) for big n’s.

The function in Example 4.1.2 reflects the characteristics of many real world appli-
cations — their associated computational graphs are sparse, i.e., each variable takes at
most two variables as input and on average serves as the input variable for few subsequent
nodes. The whole function may appear to be ‘dense’, however by applying the directed
edge separators method on it, the sparsity will show up gradually as number of separa-
tors increases. To see this we can consider an extreme case that number of separators is
maximized — the function is broken down in to ω(F) sub-functions (p+ 1 = ω(F)); each
basic operation corresponds to a sub-function Fi, and hence corresponds to one row in the
extended Jacobian matrix JE. Because each basic operation has one output variable and
at most two input variables defining the relationship between at most three variables, JE is
sparse with at most three nonzero entries in each row. In this case with ‘finest granularity’
partition, the bi-chromatic number is bounded by maxi (|rowi(JE)|NNZ) = 3 [15].

As pointed out in Section 2.3, in practice we do not partition the computational graph
into finest granularity due to its large space requirement. Instead we aim at sub-functions
with reasonable size, balanced by the time requirement and the space requirement.

After suitable edge separators are located, we can take advantage of the hidden struc-
ture of functions. The acceleration is remarkable when applying sparsity techniques such
as the bi-coloring method. In this chapter, Section 4.2 briefly reviews several sparsity

27

techniques. Section 4.3 describes several typical problems with hidden structure. Details
and specifications of the algorithms used in the numerical experiments are given in Section
4.4, and Section 4.5 contains the results of the numerical experiments.

4.2 A Brief Review of Sparsity Techniques

For a function F : Rn 7→ Rm, if its Jacobian matrix J ∈ Rm×n is sparse and the sparsity
pattern is known, then sparsity techniques can be applied to improve the efficiency for
calculating J . The improvement depends on the specific sparsity patterns, and in general
is bigger for sparser J .

The key idea of all sparsity techniques is: instead of calculating J directly, calculate
JV and/or W TJ first for some ‘thin’ W and V , and then extract J from JV and/or W TJ .
(JV,W TJ) is preferable because it can be obtained with less work compared with that
needed to determine J directly.

Given an arbitary matrix V ∈ n× tV , the product JV can be directly computed using
forward mode in time proportial to tV · w(F); given an arbitary matrix W ∈ m × tW ,
the product W TJ can be directly computed using reverse mode in time proportial to
tW ·w(F)[15, 25, 36]. If W and V are thin, the work required to obtain (JV,W TJ) can be
much less than that to obtain J directly, i.e., (tV + tW) · w(F)� min(m,n) · ω(F).

The objective for sparsity techniques is: for given pattern of J , find (V,W) with small
tV + tW , meanwhile maintain (JV,W TJ)’s extractability for J . See the following examples
for an illustration.

Example 4.2.1. Suppose for a function F : Rn 7→ Rn, its Jacobian matrix J has the
following pattern:

J =

J1,1 0 0 · · · · · · 0

J2,1 J2,2 0
...

J3,1 0 J3,3
. . .

...
...

...
.

...
...

...
. 0

Jn,1 0 · · · · · · 0 Jn,n

.

28

Choose V to be the following n× tV matrix where tV = 2

V =

1 0
0 1
...

...
0 1

 .
Then the product JV is

JV =

J1,1 0 0 · · · · · · 0

J2,1 J2,2 0
...

J3,1 0 J3,3
. . .

...
...

...
.

...
...

...
. 0

Jn,1 0 · · · · · · 0 Jn,n

1 0
0 1
0 1
...

...
0 1
0 1

=

J1,1 0
J2,1 J2,2
J3,1 J3,3

...
...

...
...

Jn,1 Jn,n

.

Because each nonzero entry of J is in JV as well, clearly J can be extracted from JV .
Notice that the work required to calculate JV is tV · ω(F) = 2 · ω(F)� n · ω(F).

The method of solely using JV to retrieve J is known as one-sided column method, since
JV is a compact way to store the nonzeros of J by compressing the columns. One-sided
column method works very well for the above example, but it is not as useful for computing
Jacobian matrices with dense rows, the following is an expamle:

Example 4.2.2. Suppose for a function F : Rn 7→ Rn, its Jacobian matrix J has the
following pattern:

J =

J1,1 J1,2 J1,3 · · · · · · J1,n
0 J2,2 0 · · · · · · 0

0 0 J3,3
. . .

...
...

.
...

...
. 0

0 0 · · · · · · 0 Jn,n.

.

It is not very useful to use the one-sided column method here, because column contraction
leads to summation of the nonzeros in the first row of J . These nonzero entries will not be
retrievable after the summation. To avoid the summation, the only choice for V is V = I,
the identity matrix, where tV = n. There will be no gain on efficiency for such a V since
tV · ω(F) = n · ω(F).

29

However if use W TJ instead of JV to extract J , we will not have to sum on the
nonzeros. Let W be the following n× tW matrix where tW = 2:

W =

1 0
0 1
...

...
0 1

 .
Then the product W TJ is:

W TJ =

[
1 0 · · · 0
0 1 · · · 1

]

J1,1 J1,2 J1,3 · · · · · · J1,n
0 J2,2 0 · · · · · · 0

0 0 J3,3
. . .

...
...

.
...

...
. 0

0 0 · · · · · · 0 Jn,n

=

[
J1,1 J1,2 · · · J1,n
0 J2,2 · · · Jn,n

]
.

Similar to Example 4.2.1, because each nonzero entry of J is in W TJ as well, obviously J
can be extracted from W TJ . Notice that the work required to calculate W TJ is tW ·ω(F) =
2 · ω(F)� n · ω(F).

The method of solely using W TJ to retrieve J is known as one-sided row method, since
W TJ is a compact way to store the nonzeros of J by compressing the rows.

It is easy to construct J with both dense rows and dense columns. For such patterns
neither the one-sided column method nor the one-sided row method works well. However
a combination of JV and W TJ can usually bring much better performance. The following
is an example.

Example 4.2.3. Suppose for a function F : Rn 7→ Rn, its Jacobian matrix J has the
following pattern:

J =

J1,1 J1,2 J1,3 · · · · · · J1,n
J2,1 J2,2 0 · · · · · · 0

J3,1 0 J3,3
. . .

...
...

...
.

...
...

...
. 0

Jn,1 0 · · · · · · 0 Jn,n

.

30

The Jacobian matrix J is sparse. However the one-sided column method leads to the sum-
mation of the nonzeros in the first row, while the one-sided row method leads to the sum-
mation of the nonzeros in the first column. Neither of the two is helpful in this problem.

It turns out that if we use JV and W TJ together, then the sparsity pattern can be
facilitated to improve the efficiency again. Choose V and W to be:

V =

1 0
0 1
...

...
0 1

 ,W =

1
0
...
0

 .
Then JV and W TJ are the following respectively:

JV =

J1,1 J1,2 J1,3 · · · · · · J1,n
J2,1 J2,2 0 · · · · · · 0

J3,1 0 J3,3
. . .

...
...

...
.

...
...

...
. 0

Jn,1 0 · · · · · · 0 Jn,n

1 0
0 1
0 1
...

...
0 1
0 1

=

J1,1 �
J2,1 J2,2
J3,1 J3,3

...
...

...
...

Jn,1 Jn,n

,

W TJ =
[
1 0 · · · 0

]

J1,1 J1,2 J1,3 · · · · · · J1,n
J2,1 J2,2 0 · · · · · · 0

J3,1 0 J3,3
. . .

...
...

...
.

...
...

...
. 0

Jn,1 0 · · · · · · 0 Jn,n

=
[
J1,1 J1,2 · · · J1,n

]
.

The first column and the diagonal of J can be retrieved from JV , and the first row of J
can be retrieved from W TJ . Hence the full Jacobian matrix J can be extracted from the
matrix pair (JV,W TJ).

To obtain (JV,W TJ), both forward mode and reverse mode are necessary. The overall
computation time is proportional to (tV + tW) · ω(F) = 3 · ω(F).

In general for an arbitary sparse function F : Rn 7→ Rm, its pattern can be much more
complicated than that in Example 4.2.3. We aim to find (V,W) such that tV + tW is
minimized, meanwhile J is retrievable from (JV,W TJ).

31

The bi-coloring method is an algorithm that returns an almost optimal (V,W) pair for
an arbitary pattern[15]. The performance of the bi-coloring method is proven by experi-
ments, and it is being widely used in numerous applications.

4.3 Example Problems with Hidden Structure

Many functions have hidden structure. Here we describe two extreme examples: the dy-
namic system problem and the partial separability problem.

The dynamic system problem and the separability problem are represented using a set
of sub-functions. This representation does not limit to these two problems; it is a general
framework which can adapt various types of functions. This framework is as follows:

solve for ysub1 : F sub
1 (x, ysub1) = 0

solve for ysub2 : F sub
2 (x, ysub1 , ysub2) = 0

...
...

solve for ysubp : F sub
p (x, ysub1 , · · · , ysubp) = 0

solve for z : F sub
p+1(x, y

sub
1 , · · · , ysubp)− z = 0

(4.1)

Notice that though it looks similar, the above system is different from that in (2.11).
The above system is the definition of a function F , and is independent of the edge separa-
tors. In contrast, F1, F2, · · · , Fk+1 in (2.11) is a decomposition of F based on the locations
of the associated edge separators.

4.3.1 Dynamic System Problem

Definition 4.3.1. Dynamic System Problem (DS) is a special case of System (4.1)
where the sub-functions have the following form:

solve for ysub1 : F sub
1 (x, ysub1) ≡ F sub

1 (x)− ysub1 = 0
solve for ysub2 : F sub

2 (x, ysub1 , ysub2) ≡ F sub
2 (ysub1)− ysub2 = 0

...
...

solve for ysubk : F sub
p (x, ysub1 , · · · , ysubp) ≡ F sub

p−1(y
sub
p−1)− ysubp = 0

solve for z : F sub
p+1(x, y

sub
1 , · · · , ysubp)− z ≡ F̄ sub(x, ysub1 , · · · , ysubp)− z = 0

(4.2)

Or equivalently,

solve for ysubi : F sub
i (ysubi−1)− ysubi = 0, i = 1, 2, · · · , p

solve for z : F̄ sub(x, ysub1 , · · · , ysubp)− z = 0

}
(4.3)

32

where y0 = x.

Suppose the directed edge separator method is applied to evaluate the extended Jaco-
bian JE, and sub-functions F1, F2, · · · , Fk, F̄ are located. If F̄ ’s computational graph is
a superset of F̄ sub’s, i.e., ~G(F̄) ⊇ ~G(F̄ sub), then the Jacobian matrix of F described by
equation (2.12) can be simplified to:

JE
∆
=

(F1)x −I 0 · · · · · · 0

0 (F2)y1 −I
. . .

...
...

.
...

...
. 0

0 · · · · · · 0
. . . −I

(F̄)x (F̄)y1 · · · · · · · · · (F̄)yk

. (4.4)

4.3.2 Partial Separability Problem

Definition 4.3.2. Partial Separability Problem (PS) is a special case of equation
(4.1) where the sub-functions have the following form:

solve for ysub1 : F sub
1 (x, ysub1) ≡ F sub

1 (x)− ysub1 = 0
solve for ysub2 : F sub

2 (x, ysub1 , ysub2) ≡ F sub
2 (x)− ysub2 = 0

...
...

solve for ysubk : F sub
p (x, ysub1 , · · · , ysubp) ≡ F sub

p−1(x)− ysubp = 0
solve for z : F sub

p+1(x, y
sub
1 , · · · , ysubp)− z ≡ F̄ sub(x, ysub1 , · · · , ysubp)− z = 0

(4.5)

Or equivalently,

solve for ysubi : F sub
i (x)− ysubi = 0, i = 1, 2, · · · , p

solve for z : F̄ sub(x, ysub1 , · · · , ysubp)− z = 0

}
(4.6)

Suppose the directed edge separator method is applied to evaluate the extended Jaco-
bian JE, and sub-functions F1, F2, · · · , Fk, F̄ are located. If F̄ ’s computational graph is a
superset of F̄ sub’s, i.e., ~G(F̄) ⊇ ~G(F̄ sub), the Jacobian matrix of F described by equation

33

(2.12) can be then simplified to:

JE
∆
=

(F1)x −I 0 · · · · · · 0

(F2)x 0 −I . . .
...

...
...

.
...

...
...

. 0
(Fk)x 0 · · · · · · 0 −I
(F̄)x (F̄)y1 · · · · · · · · · (F̄)yk

. (4.7)

4.4 Pseudo-Code for Calculating the Extended Jaco-

bian Matrix JE

Below is a general framework, or pseudo-code, for calculating JE.

Algorithm 4.4.1. The ‘slice by slice’ framework for calculating the extended Jacobian
matrix JE of function F is described as the following:

1. Locate the directed edge separators and corresponding sub-functions F1, F2, · · · , Fk, Fk+1

for F , i← 1;

2. Apply forward sweep on Fi to obtain SPi, the pattern of Fi’s Jacobian matrix;

3. With sparsity pattern SPi obtained, apply sparsity techniques on Fi to get the ith

row-block [(Fi)x, (Fi)y1 , · · · , (Fi)yi , 0, · · · , 0] of JE. Save this row-block;

4. if i < k + 1, then i← i+ 1 and return to step 2, otherwise proceed to step 5;

5. Combine all the row-blocks to get the complete extended Jacobian matrix JE.

4.4.1 Global Approach and Online Approach

Before locating the directed edge separators, the computational graph/tape of function F
must be generated first. There are two approaches to perform the generation tasks: the
global approach and the online approach.

As illustrated in Figure 4.4.1, the global approach generates the complete tape first.
Then the edge separators are located, and they are used to compute of JE. Notice that

34

the highlighted cells correpond to the intermediate variables1 yi’s and output variable z
defined in Section 2.2.

Sweep forward to generate tape

Sweep forward to generate separators

(a) Generation of the tape and the edge separators

Sweep forward, detect sparsity, and pause at the separator

JE=

Sweep both forward and backward, using bicoloring technique, to
get certain blocks of extended Jacobian matrix

F1 F2 F3x y1 y2 z

[F1]x

[F2]x

[F3]x

[F2]y1

[F3]y1[F3]y2

-I
-I
0

(b) Calculation of the 1st row-block of JE

Sweep forward, detect sparsity, and pause at the separator

JE=

Sweep both forward and backward, using bicoloring technique, to
get certain blocks of extended Jacobian matrix

F1 F2 F3x y1 y2 z

[F1]x

[F2]x

[F3]x

[F2]y1

[F3]y1[F3]y2

-I
-I
0

(c) Calculation of the 2nd row-block of JE

Figure 4.1: Global approach for generation of the tape

In contrast, the online approach generates the tape in an on-the-fly fashion, i.e., at
any point of time only a partial-tape is stored. After a separator is located using this
partial-tape, a row-block of JE will be calculated using the separator information. Once
the computation for the row-block is complete, this partial-tape is removed except the
intermediate variables1 (highlighted cells), and new partial-tapes will be generated. In the
online approach the complete computational graph/tape is never stored. See Figure 4.4.1
for an illustration.

1 The intermediate variables are those that will be needed again as inputs in later computations. Please
refer to Appendix B.6 for the method to identify the intermediate variables.

35

Sweep forward, generate a separator detect sparsity, and pause

JE=

Sweep both forward and backward, using bicoloring technique, to
get certain blocks of extended Jacobian matrix

F1x y1

[F1]x

[F2]x

[F3]x

[F2]y1

[F3]y1[F3]y2

-I
-I
0

(a) Generation of the 1st partial-tape and the cor-
responding edge separator

Sweep forward, generate a separator detect sparsity, and pause

Sweep both forward and backward, using bicoloring technique, to
get certain blocks of extended Jacobian matrix

F1 F2x y1 y2

JE=
[F1]x

[F2]x

[F3]x

[F2]y1

[F3]y1[F3]y2

-I
-I
0

(b) Generation of the 2nd partial-tape and the
corresponding edge separator

Figure 4.2: Online approach for generation of the tape

Since more information is accessible, the global approach can generate better separators
compared to online approach. However the online approach is much more “space-friendly”
than the global approach, since it stores at most one partial-tape each time. Global
approach can be space costly, especially for computationally intense functions. However in
some cases it may be worth the effort to use the global approach, because good separators
can be used repeatedly. For example, given a function F whose Jacobian matrix J(x) is
desired at many different x’s, it is better to use global approach to generate good separators
first, and use them repeatedly for calculations at different x’s.

4.4.2 Edge Separators Locating Methods in the Numerical Ex-
periments

In Chapter 3 two methods were introduced: the weighted minimum edge separator method
and the natural order edge separator method.The natural order separator method generates
sub-functions corresponding to a consecutive sub-tape of the full tape. Furthermore, the
reverse mode of ADMAT is tape-based, therefore it is more convenient to use the edge
separators located by the natural order separator method.

Online version natural order edge separator is a combination of Algorithm 3.3.1 and
online approach, it is stated as follows:

Algorithm 4.4.2. Suppose a cost function f cost is defined on a directed edge separator
Ed, representing the quality of Ed in terms of separator size and partition ratio, and the

36

function value decreases as the quality increases. Then the following are the steps finding
the optimal natural order edge separators using online approach:

1. Set partial-tape length parameter L, i← 1;

2. Perform forward sweep on F , and generate the partial-tape T for F , pause when
length of T reaches L;

3. Scan through tape T to find j∗ = arg minj f
cost(E(~G(T (1 : j), ~G(T (j + 1 : end)));

4. ~Gi ← ~G(T (1 : j∗)), compute and store the row-block [(Fi)x, (Fi)y1 , · · · , (Fi)yi , 0, · · · , 0]
where Fi is defined by T (1 : j∗);

5. Remove non-intermediate variable cells in T (1 : j∗) from T , resume generation of
tape T , and append newly generated cells to the end of T until number of new cells
reaches L or the computation of F is finished, i← i+ 1;

6. Return to step 3 if computation of F is not completed, otherwise proceed to step 7;

7. Combine the row-blocks obtained to get JE.

Notice that in the above algorithm when locating the separators on the partial-tapes, we
do not count the edges going from the already-generated partial-tapes to the partial-tapes
to be generated. An example is the edge (ci, ce) going from an arbitrary cell ci to the last
cell ce on the tape. When Algorithm 4.4.2 processes the partial-tape containing ci, unless
ce is also in this partial-tape, the information of the edge (ci, ce) is not accessible since the
last cell ce is not yet generated. The miscounting of edge size does affect the quality of the
separators located. The edge information is incomplete because we only store partial-tapes,
and the drawback is unavoidable as long as we do not store the complete tape.

The above algorithm assumes most of the edges are short — for each edge its tail node
and head node are close to each other on the tape. This is a reasonable assumption, because
for most computations, most of the variables are used shortly after their generation. Under
this assumption, the edge sizes counted by the above algorithm are good approximations
to their real sizes, and Algorithm 4.4.2 will generate good edge separators.

If the space is the major concern, then subgraphs ~G1, ~G2, · · · , ~Gk+1 with equal size will
help — see Section 2.3. We can modify Algorithm 4.4.2 slightly to generate equal-size
separators:

Algorithm 4.4.3. The following are the steps to find k evenly distributed edge separators
for a given a function F :

37

1. Estimate the amount of computation for F , suppose the estimation is ω̃(F), set

partial-tape length parameter L to be
⌈
ω̃(F)
k+1

⌉
, i← 1;

2. Perform forward sweep on F , and generate the partial-tape T for F , pause when
length of T reaches L;

3. ~Gi ← ~G(T), compute and store the row-block [(Fi)x, (Fi)y1 , · · · , (Fi)yi , 0, · · · , 0] where

Fi is defined by ~Gi;

4. Remove non-intermediate variable cells from T , resume generation of tape, and ap-
pend newly generated cells to the end of T until number of new cells reaches L or the
computation of F is finished, i← i+ 1;

5. Return to step 3 if computation of F is not completed, otherwise proceed to step 6;

6. Combine the row-blocks obtained to get JE.

Notice that L needs to be picked carefully as analyzed in Section 3.4. To see this we can
consider the following two extreme cases: 1) if L = 1, then every cell is an intermediate cell
and needs to be stored, and as a result the space requirement is not reduced since we need
to store the complete graph; 2) if L = |T |, then the algorithm reduces to the traditional
reverse mode, and the space requirement remains the same.

In the numerical experiments, Algorithm 4.4.3 is used to generate the tapes and locate
directed edge separators.

Cost Analysis

In the above two algorithms, only a constant number of sweeps on the tape is needed
to generate the edge separators. Therefore the running time for generating separator
is proportional to ω(F), which is negligible compared to that needed to compute the
extended Jacobian matrix. Therefore the running time for Algorithm 4.4.2 is ω(JE) =
O(
∑k+1

i=1 (χB(GD[Fi]) · ω(Fi)) + |JE|NNZ)), and the running time for Algorithm 4.4.3 is

ω(JE) = O(L ·
∑k+1

i=1 (χB(GD[Fi])) + |JE|NNZ)).

Since both algorithms store at most a length L partial-tape, the space required for
these two algorithms is the same: σ(JE) = O(L+ |JE|NNZ).

38

4.4.3 Sparsity Techniques in Numerical Experiments

As reviewed in Section 4.2, there are several sparsity techniques available, including the
one-sided row method, the one-sided column method, and the bi-coloring method. Among
these three methods, the one-sided row method is appropriate, because an arbitary row-
block J i

E = [(Fi)x, (Fi)y1 , · · · , (Fi)yi , 0, · · · , 0] ∈ Rmi×ni has many more columns than rows,
i.e., mi � ni. Hence the one-sided row method brings good performance since tW ·ω(Fi) ≤
mi · ω(Fi)� ni · ω(Fi)[15, 25, 36].

The numerical experiments in Section 4.5 use the one-sided row method to calculate
the extend Jacobian matrix JE.

4.5 Computational Results

Space and time are the two major concerns in scientific computations.

According to Section 2.2, the space required for automatic differentiation is propor-
tional to the maximum length of the tape. Therefore in each experiment, we will use the
maximum length of tape as the indicator for space requirement.

Now let us analyze the computing time. First consider the directed edge separator
method, if sub-functions F1, F2, · · · , Fk+1 are located, and for each Fi, Wi ∈ RtWi

×pi is ob-
tained by one-sided row method to help calculating the ith row-block [(Fi)x, (Fi)y1 , · · · , (Fi)yi , 0, · · · , 0]
in JE, then the work required to calculate this row-block is proportional to tWi

· ω(Fi).
Therefore the work required for calculating all the row-blocks of JE is proportional to∑k+1

i=1 tWi
· ω(Fi). In contrast, the work required by the traditional reverse mode to calcu-

late J is proportional to m · ω(F) =
∑k+1

i=1 m · ω(Fi).

Furthermore, the equal-size partition (Algorithm 4.4.3) is used in numerical experi-
ments, as a result, ω(F1) = ω(F2) = · · ·ω(Fk+1). The work required by the directed edge
separator method for getting JE can be simplified to ω(F1) ·

∑k+1
i=1 tWi

= (k+1) ·ω(F1) · t̄Wi
,

where t̄Wi
is the average of tWi

over i = 1 : k+ 1. Similarly the work required by the tradi-
tional reverse mode for getting J can be simplified to ω(F1) ·

∑k+1
i=1 m = (k+ 1) ·ω(F1) ·m.

({tWi
}i=1:k+1,m) and (t̄Wi

,m) are both running time indicators. When comparing run-
ning time of the two methods on a single problem, we will study the relationship between
{tWi
}i=1:k+1 and m; when comparing their running time on a set of problems, we will study

the relationship between t̄Wi
and m.

In this section we will provide the numerical results of above comparisons on the dy-
namic system problems and the partial separability problems.

39

4.5.1 The Dynamic System Problems

In the dynamic system problem (equation (4.3)) used in the experiments, the sub-functions
F i
sub and F̄sub are defined by:

F i
sub(y

sub
i−1) = ysubi−1 + Ci · ysubi−1, i = 1, 2, · · · , k

F̄sub(x, y
sub
1 , · · · , ysubk) = A(x)−1 · ysubk ,

(4.8)

where y0 = x, Ci is a contant square matrix, k = 50, A(x) is a nonsingular square matrix
depending on input variables x. Notice that x, ysubi , z ∈ Rn.

The DS problem can then be simplified to:

ysubi = ysubi−1 + Ci · ysubi−1, i = 1, 2, · · · , 50
z = A(x)−1 · ysub50

}
(4.9)

By changing problem size n, we can get different instances of DS problem; by changing
the partial-tape length parameter L, we can control the behaviour of directed edge sepa-
rator method. The following are the results for n = 64 and n = 144 DS problems with
L = 100 and L = 200:

Traditional Reverse Mode Directed Edge Separator method

n = 64
L = 100

2504
225

L = 200 265

n = 144
L = 100

2504
225

L = 200 265

Table 4.1: Maximum tape length – DS problems : n = 64, 144, L = 100, 200

From Table 4.1 we can see that the space requirement is greatly reduced by the directed
edge separator method.

The results on running time are shown in Table 4.2.

m tWi
, i = 1 : p+ 1

n = 64
L = 100

64
8 7 8 8 22 37 21 19 19 10 11 10 7 7 8 8 22 37 21 19 19 10 11 10 64

L = 200 13 15 61 40 20 21 13 15 61 40 20 21 64

n = 144
L = 100

144
8 8 8 8 23 37 21 19 18 10 11 9 8 8 8 8 23 37 21 19 18 10 11 9 144

L = 200 16 16 64 41 19 22 16 16 64 41 19 22 144

Table 4.2: Running time – DS problems : n = 64, 144, L = 100, 200

40

The above results on running time are also plotted in Figure 4.3. In the figures the
x-axis is the indices of the sub-functions, and the y-value of the dash line is tWi

, which
is proportional to the work required to obtain the ith row-block of JE using the directed
edge separator method. The solid line is at height m, which is proportional to the work
required for the traditional reverse mode to process Fi.

0 5 10 15 20 25
0

10

20

30

40

50

60

70
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(a) x, ysubi , z ∈ R64 and L = 100

0 2 4 6 8 10 12 14
10

20

30

40

50

60

70
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(b) x, ysubi , z ∈ R64 and L = 200

0 5 10 15 20 25
0

50

100

150
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(c) x, ysubi , z ∈ R144 and L = 100

0 2 4 6 8 10 12 14
0

50

100

150
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(d) x, ysubi , z ∈ R144 and L = 200

Figure 4.3: Running time for dynamic system problems

To see how the performance of the directed edge separator method changes as size of the
problem varies, numerical experimental is done on a set of DS problems whose dimension
n varies from 9 to 121. Maximum tape length is compared between the directed edge
separator method and the traditional reverse mode. Besides, t̄Wi

, the average value of tWi
,

is computed for each problem and compared with m.

We first choose L = 100, the test results on space and running time for these problems

41

are listed in Table 4.3 and Table 4.4.

n 9 16 25 36 49 64 81 100 121

Traditional Reverse Mode 2054 2054 2054 2054 2054 2054 2054 2054 2054
Directed Edge Separator Method 225 225 225 225 225 225 225 225 225

Table 4.3: Maximum tape length – DS problems : n = 9, · · · , 121, L = 100

n 9 16 25 36 49 64 81 100 121

m 9 16 25 36 49 64 81 100 121
t̄Wi

11.88 12.40 13.76 14.16 15.32 16.92 17.88 18.48 19.88

Table 4.4: Running time – DS problems : n = 9, · · · , 121, L = 100

The test results on space and running time are also plotted in Figure 4.4. From the
graph we can see that the improvements are significant.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

Performance Test − Space

n (size of the problem)

M
a

x
im

u
m

 L
e

n
g

th
 o

f
T

a
p

e

Reverse Mode

Online Algorithm

(a) Maximum tape length

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Performance Test − Width of W

n (size of the problem)

W
id

th
 o

f
W

 (
d

im
e

n
s
io

n
)

Reverse Mode

Online Algorithm

(b) Running time

Figure 4.4: Space and running time for dynamic system problems with L = 100

On the same set of problems, we let L to be 200, and repeat above experiments. The
results are shown in Table 4.5 and Table 4.6.

42

n 9 16 25 36 49 64 81 100 121

Traditional Reverse Mode 2054 2054 2054 2054 2054 2054 2054 2054 2054
Directed Edge Separator Method 265 265 265 265 265 265 265 265 265

Table 4.5: Maximum tape length – DS problems : n = 9, · · · , 121, L = 200

n 9 16 25 36 49 64 81 100 121

m 9 16 25 36 49 64 81 100 121
t̄Wi

19.31 22 23.77 26.69 29.15 31.08 33.38 33.92 36.77

Table 4.6: Running time – DS problems : n = 9, · · · , 121, L = 200

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

Performance Test − Space

n (size of the problem)

M
a

x
im

u
m

 L
e

n
g

th
 o

f
T

a
p

e

Reverse Mode

Online Algorithm

(a) Maximum tape length

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Performance Test − Width of W

n (size of the problem)

W
id

th
 o

f
W

 (
d

im
e

n
s
io

n
)

Reverse Mode

Online Algorithm

(b) Running time

Figure 4.5: Space and running time for dynamic system problems with L = 200

The test results on space and running time are also plotted in Figure 4.5. Similar to
the L = 100 case, the improvements are significant.

4.5.2 The Partial Separability Problems

Now consider the partial separability problem (equation (4.6)) in which F i
sub and F̄sub are

defined by:
F i
sub(x) = x+ Ci · x, i = 1, 2, · · · , k
F̄sub(x, y

sub
1 , · · · , ysubk) = A(x)−1 ·

∑50
i=1 y

sub
i ,

(4.10)

43

where Ci is a contant square matrix, k = 50, A(x) is a nonsingular square matrix depending
on input variables x. Notice that x, ysubi , z ∈ Rn.

The PS problem can then be expressed as:

ysubi = x+ Ci · x, i = 1, 2, · · · , 50

z = A(x)−1 ·
∑50

i=1 y
sub
i

}
(4.11)

By changing the problem size n, we can get different instances of PS problem; by
changing the partial-tape length parameter L, we can control the behaviour of the directed
edge separator method. The following are the results for n = 64 and n = 121 PS problems
with L = 100 and L = 200:

Traditional Reverse Mode Directed Edge Separator method

n = 64
L = 100

3409
300

L = 200 285

n = 121
L = 100

2504
300

L = 200 285

Table 4.7: Maximum tape length – PS problems : n = 64, 121, L = 100, 200

From Table 4.7 we can see that the space requirement is greatly reduced by the directed
edge separator method.

The results on running time are shown in Table 4.8.

m tWi
, i = 1 : p+ 1

n = 64
L = 100

64
15 9 15 13 9 4 11 5 10 5 13 4 9 5 11 5 10 5 13 6 9 6 9 4
9 6 9 6 9 7 9 6 9 64

L = 200 9 13 4 5 5 4 5 5 5 6 6 4 6 6 7 6 64

n = 144
L = 100

144
14 8 11 14 8 5 10 4 11 4 14 5 8 5 10 5 10 5 15 6 9 6 9 5
7 6 7 6 8 7 8 7 8 121

L = 200 9 15 5 4 4 5 5 5 5 6 6 5 6 6 7 7 121

Table 4.8: Running time – PS problems : n = 64, 121, L = 100, 200

The above results are plotted in Figure 4.6. In this figure the x-axis is the index i for
the sub-function Fi, and the y-value of the dash line is tWi

, which is proportional to the
work required to obtain the ith row-block of JE using the directed edge separator method.

44

The solid line is at height m, which is proportional to the work required for the traditional
reverse mode to process Fi.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(a) x, ysubi , z ∈ R64 and L = 100

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

Reverse Mode

Online Algorithm

(b) x, ysubi , z ∈ R64 and L = 200

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

 Reverse Mode

Online Algorithm

(c) x, ysubi , z ∈ R144 and L = 100

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140
Performance Test − Width of W

index of subgraph

N
u

m
b

e
r

o
f

R
o

w
s
 i
n

 W
 (

tW
)

 Reverse Mode

Online Algorithm

(d) x, ysubi , z ∈ R144 and L = 200

Figure 4.6: Running time for partial separability problems

To see how the performance of the directed edge separator method changes as size of the
problem varies, numerical experimental is done on a set of PS problems whose dimension
n varies from 9 to 121. Maximum tape length is compared between the directed edge
separator method and the traditional reverse mode. Besides, t̄Wi

, the average value of tWi
,

is computed for each problem and compared with m.

We first choose L = 100, the test results on space and running time for these problems
are listed in Table 4.9 and Table 4.10.

45

n 9 16 25 36 49 64 81 100 121

Traditional Reverse Mode 3409 3409 3409 3409 3409 3409 3409 3409 3409
Directed Edge Separator Method 300 300 300 300 300 300 300 300 300

Table 4.9: Maximum tape length – PS problems : n = 9, · · · , 121, L = 100

n 9 16 25 36 49 64 81 100 121

m 9 16 25 36 49 64 81 100 121
t̄Wi

7.15 7.97 8.24 8.74 9 9.97 10.09 11.12 11.35

Table 4.10: Running time – PS problems : n = 9, · · · , 121, L = 100

The test results on space and running time are also plotted in Figure 4.7. From the
graph we can see that the improvements are significant.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Performance Test − Space

n (size of the problem)

M
a

x
im

u
m

 L
e

n
g

th
 o

f
T

a
p

e

Reverse Mode

Online Algorithm

(a) Maximum tape length

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Performance Test − Width of W

n (size of the problem)

W
id

th
 o

f
W

 (
d

im
e

n
s
io

n
)

Reverse Mode

Online Algorithm

(b) Running time

Figure 4.7: Space and running time for partial separability problems with L = 100

On the same set of problems, we let L to be 200, and repeat above experiments. The
results are shown in Table 4.11 and Table 4.12.

n 9 16 25 36 49 64 81 100 121

Traditional Reverse Mode 3409 3409 3409 3409 3409 3409 3409 3409 3409
Directed Edge Separator Method 285 285 285 285 285 285 285 285 285

Table 4.11: Maximum tape length – PS problems : n = 9, · · · , 121, L = 200

46

n 9 16 25 36 49 64 81 100 121

m 9 16 25 36 49 64 81 100 121
t̄Wi

5.82 6.29 7.12 7.59 8.59 9.41 10.29 11.65 13

Table 4.12: Running time – PS problems : n = 9, · · · , 121, L = 200

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Performance Test − Space

n (size of the problem)

M
a

x
im

u
m

 L
e

n
g

th
 o

f
T

a
p

e

Reverse Mode

Online Algorithm

(a) Maximum tape length

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Performance Test − Width of W

n (size of the problem)

W
id

th
 o

f
W

 (
d

im
e

n
s
io

n
)

Reverse Mode

Online Algorithm

(b) Running time

Figure 4.8: Space and running time for partial separability problems with L = 200

The test results on space and running time are also plotted in Figure 4.8. Similar to
the L = 100 case, the improvements are significant.

4.6 Concluding Remarks

From the result, we can see that for both DS and PS problems, the directed edge separator
method can greatly improve the efficiency, meanwhile reduce the space requirement. The
improvements get even larger as the size of the problem increases. By reducing the partial-
tape length constant L, computations may get more efficient depending on the specifics of
the problems.

47

Chapter 5

The Special Case: the Structure of
the Function is Provided

5.1 Introduction

In Chapter 4 we discussed how to use the the directed edge method to reveal the hidden
structure for candidate function F : Rn 7→ Rm, and hence improve the computation of
J(x) using the structure. Structure-revealing was necessary because we assumed they were
not given explicitly. In contrast, this chapter considers a different case that the structure
of the function is provided.

One trivial approach is: instead of trying to find the structure, take the provided one as
an input for the directed edge method, and use the edge separator method to calculate JE.
It is reasonable to assume higher quality of the provided structures, hence this approach
usually leads to better results. Since this trivial approach is essentially the edge separator
method, which was investigated thoroughly in previous chapters, we will not repeat the
analysis here.

This chapter mainly discusses a different method, called S-2 algorithm, which facilitate
the structures in a ‘reverse’ fashion. The S-2 algorithm was proposed by Thomas Coleman
and Wei Xu[20]. For an arbitary function F : Rn 7→ Rm, it performs extremely well if m is
small, i.e., m� t̄Wi

. The following are the basic ideas.

48

Suppose for a function F : Rn 7→ Rm, its structure is given by:

solve for y1 : F1(x)− y1 = 0
solve for y2 : F2(x, y1)− y2 = 0

...
...

solve for yk : Fp(x, y1, · · · , yp−1)− yp = 0
solve for z : F̄ (x, y1, · · · , yp)− z = 0

(5.1)

As shown in Section 2.3, the extended Jacobian matrix JE of F is

JE
∆
=

J1
x −I 0 · · · · · · 0

J2
x J2

y1
−I . . .

...
...

...
.

...
...

...
. 0

Jp
x Jp

y1
· · · · · · Jp

yp−1
−I

J̄x J̄y1 J̄y2 · · · · · · J̄yp

=

[
A B
C D

]
,

and J = C −DB−1A.

Since using JE we can always calculate for J , obviously JE contains at least as much
information as J does; in fact JE contains more information needed to obtain J . This
property of JE is the essential to this method: instead of calculating the complete JE, we
calculate for a ‘contracted’ version of JE, which can be much cheaper to compute, and
then use this ‘contracted’ JE to obtain J . The formal description is as follows.

Define W = [W1,W2, · · · ,Wp] = D ·B−1. Obviously D = W ·B, and hence,

D = [J̄y1 , J̄y2 , · · · , J̄yp] = [W1,W2, · · · ,Wp] ·

−I 0 · · · · · · 0

J2
y1
−I . . .

...
...

.
...

...
. 0

Jp
y1
· · · · · · Jp

yp−1
−I

 . (5.2)

49

By taking the transpose of (5.2),

−I (J2
y1

)T · · · · · · (Jp
y1

)T

0 −I . . .
...

...
.

...
...

. (Jp
yp−1

)T

0 · · · · · · 0 −I

W T

1

W T
2
...
...

W T
p

 =

J̄T
y1

J̄T
y2

...

...
J̄T
yp

 , (5.3)

hence

J = C −DB−1A = C −WA = J̄x − (W1J
1
x +W2J

2
x + · · ·+Wp−1J

p−1
x +WpJ

p
x). (5.4)

Given (5.3) and (5.4), it is now possible to work backward through (5.4) to compute J
as the following.

1. From the last row-block of (5.3) it is clear that Wp = −J̄yp ;

2. Apply reverse mode of automatic differentiation on Fp(x, y1, y2, · · · , yp−1) with matrix
W T

p to obtain WpJ
p
x and [WpJ

p
y1
, · · · ,WpJ

p
yp−1

];

3. Use the second last row-block of (5.3) to solve for Wp−1 = −J̄p1 +WpJ
p
yp−1

;

4. Apply reverse mode of automatic differentiation on Fp−1(x, y1, y2, · · · , yp−2) with ma-
trix W T

p1
to obtain Wp−1J

p−1
x and [Wp−1J

p−1
y1

, · · · ,Wp−1J
p−1
yp−2

];

5. Use the third last row-block of (5.3) to solve for Wp−2 = −J̄p2 +Wp−1J
p−1
yp−2

+WpJ
p
yp−2

;

6. Repeat above steps until W1J
1
x is obtained;

7. Use (5.4) to calculate J .

A formal description of the above idea as follows.

Algorithm 5.1.1. Structured Jacobian calculation (S-2 Algorithm) can described as the
following steps.

1. Use (5.1) to evaluate the value of intermediate variables y1, · · · , yp;

2. Apply reverse mode of AD on z = F̄ (x, y1, · · · , yp) to obtain [J̄x, J̄y1 , · · · , J̄yp];

50

3. Compute the Jacobian matrix J from JE using (5.1).

(a) J ← J̄x, Ti ← 0 for i = 1 : p;

(b) For j = p, p− 1, · · · , 1:

i. Wj ← −J̄yj + Tj;

ii. Apply reverse mode of AD on yj = Fj(x, y1, · · · , yj−1) with matrix W T
j to

obtain Wj · [J j
x, J

j
y1
, · · · , J j

yj−1
];

iii. Ti ← Ti +WjJ
j
yi

for i = 1, · · · , j − 1;

iv. J ← J −WjJ
j
x.

5.1.1 Cost Analysis

In S-2 Algorithm (Algorithm 5.1.1) the major computation is for the reverse mode of
AD applied on F̄ , Fp, · · · , F1. For F̄ the work required is proportional to m · ω(F̄); for
an arbitary Fi, we notice that the reverse mode is applied with matrix W T

i , which has m
columns, hence the work required is proportional to m · ω(Fi). Therefore the overall work
required for computing J is proportional to m · (ω(F̄) +

∑p
i=1 ω(Fi)) = m ·ω(F). It is clear

that this algorithm works well for small m, and works best for m = 1.

The S-2 Algorithm has the same running time as that of the traditional reverse mode,
however we notice that this algorithm makes huge improvement on space requirements.
In S-2 Algorithm, the computation of F̄ , Fp, · · · , F1 are performed separately — at most
one sub-function has its tape stored in memory at any momment. As a result the space
requirement is proportional to the peak usage, which is max({ω(F̄)}∪{ω(Fi)}i=1:p). Com-
pared to ω(F), the space requirement of the reverse mode, spaced required by S-2 Algo-
rithm can be much smaller. To see this, consider the example that F̄ and Fi’s require a
same amount of work to evaluate, i.e., ω(F̄) = ω(F1) = · · · = ω(Fp) = ω(F)

p+1
. Obviously

max({ω(F̄)} ∪ {ω(Fi)}i=1:p) = ω(F)
p+1

.

5.2 Computational Results

This section compares the performance between the reverse mode and S-2 Algorithm. More
specifically, space and running time experiments are performed on the DS problems and
the GSP problems.

51

5.2.1 The Dynamic System Problem

In the dynamic system problem (equation (4.3)) used in the experiments, the sub-functions
F i
sub and F̄sub are defined by:

F i
sub(y

sub
i−1) = ysubi−1 + Ci · ysubi−1, i = 1, 2, · · · , k

F̄sub(x, y
sub
1 , · · · , ysubk) =

∥∥∥x+
∑k

i=1 y
sub
i

∥∥∥2
2

(5.5)

where y0 = x and Ci are constant square matrices. Notice that x, yi, z ∈ Rn.

The DS problem can then be simplified to:

ysubi = ysubi−1 + Ci · ysubi−1, i = 1, 2, · · · , k
z =

∥∥∥x+
∑k

i=1 y
sub
i

∥∥∥2
2

}
(5.6)

where n and k are adjustable. By changing (n, k), we can get different instances of DS
problem. Table 5.1 and 5.2 shows the results on space and time respectively for the
n = 20, k = 50, · · · , 1000 instances.

k 50 100 150 200 250 300 350 400 450 500
The reverse mode 9.889 19.78 29.66 39.55 49.44 59.33 69.22 79.11 88.99 98.88
Algorithm 5.1.1 0.198 0.199 0.200 0.201 0.202 0.229 0.267 0.305 0.343 0.381

k 550 600 650 700 750 800 850 900 950 1000
The reverse mode 108.8 118.7 128.5 138.4 148.3 158.2 168.1 178.0 187.9 197.8
Algorithm 5.1.1 0.419 0.457 0.495 0.533 0.571 0.609 0.647 0.685 0.723 0.761

Table 5.1: Maximum tape length (×106) – DS problems : n = 20, k = 50, · · · , 1000

k 50 100 150 200 250 300 350 400 450 500
The reverse mode 5.23 13.63 20.08 26.36 34.07 51.65 71.73 82.53 103.93 126.80
Algorithm 5.1.1 4.42 9.65 14.05 17.77 24.81 29.14 33.91 41.53 44.75 51.37

k 550 600 650 700 750 800 850 900 950 1000
The reverse mode 156.4 156.3 169.0 192.9 208.0 242.0 236.5 255.1 267.7 354.9
Algorithm 5.1.1 56.58 66.72 68.97 75.02 75.53 84.44 90.74 93.21 107.8 114.5

Table 5.2: Running time (second) – DS problems : n = 20, k = 50, · · · , 1000

52

The results are also plotted in Figure 5.1. From the figures we can see that the
improvements of the S-2 Algorithm are significant.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8 Performance Test − Maximum Tape Length

k (Number of Iterations)

M
a

x
im

u
m

 T
a

p
e

 L
e

n
g

th

Structured Algorithm

Reverse Mode

(a) Maximum tape length

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400
Performance Test − Running Time

k (Number of Iterations)

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

)

Structured Algorithm

Reverse Mode

(b) Running time

Figure 5.1: Performace comparison on the DS problems with n = 20, k = 50, · · · , 1000

5.2.2 The Partial Separability Problem

In the partial separability problem (equation (4.6)) used in the experiments, the sub-
functions F i

sub and F̄sub are defined by:

F i
sub(y

sub
i−1) = x+ Ci · ysubi−1, i = 1, 2, · · · , k

F̄sub(x, y
sub
1 , · · · , ysubk) =

∥∥∥x+
∑k

i=1 y
sub
i

∥∥∥2
2

(5.7)

where Ci’s are constant square matrices. Notice that x, yi, z ∈ Rn.

The PS problem can then be simplified to:

ysubi = x+ Ci · ysubi−1, i = 1, 2, · · · , k
z =

∥∥∥x+
∑k

i=1 y
sub
i

∥∥∥2
2

}
(5.8)

where n and k are adjustable. By changing (n, k), we can get different instances of the
PS problems. Table 5.3 and 5.4 shows the results on space and time respectively for the
n = 20, k = 50, · · · , 1000 instances.

53

k 50 100 150 200 250 300 350 400 450 500
The reverse mode 9.889 19.78 29.66 39.55 49.44 59.33 69.22 79.11 88.99 98.88
Algorithm 5.1.1 0.198 0.199 0.200 0.201 0.202 0.229 0.267 0.305 0.343 0.381

k 550 600 650 700 750 800 850 900 950 1000
The reverse mode 108.8 118.7 128.5 138.4 148.3 158.2 168.1 178.0 187.9 197.8
Algorithm 5.1.1 0.419 0.457 0.495 0.533 0.571 0.609 0.647 0.685 0.723 0.761

Table 5.3: Maximum tape length (×106) – PS problems : n = 20, k = 50, · · · , 1000

k 50 100 150 200 250 300 350 400 450 500
The reverse mode 4.485 11.13 18.16 25.22 35.06 52.71 66.17 88.68 108.1 129.2
Algorithm 5.1.1 5.174 9.474 15.38 18.58 23.94 28.13 32.05 39.60 43.75 49.03

k 550 600 650 700 750 800 850 900 950 1000
The reverse mode 137.4 168.3 173.7 222.3 227.3 220.0 259.0 272.4 338.7 310.3
Algorithm 5.1.1 53.04 64.82 66.76 73.63 75.43 86.01 90.87 95.80 105.7 114.5

Table 5.4: Running time (second) – PS problems : n = 20, k = 50, · · · , 1000

The test results on space and running time are also plotted in Figure 5.2. From the
graph we can see that the improvements are significant.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8 Performance Test − Maximum Tape Length

k (Number of Iterations)

M
a

x
im

u
m

 T
a

p
e

 L
e

n
g

th

Structured Algorithm

Reverse Mode

(a) Maximum tape length

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400
Performance Test − Running Time

k (Number of Iterations)

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

)

Structured Algorithm

Reverse Mode

(b) Running time

Figure 5.2: Performace comparison on the DS problems with n = 20, k = 50, · · · , 1000

54

5.3 Concluding Remarks

By examination of our computational results, we see that the improvement regarding the
space requirement is huge. Although theory predicts the work required for the reverse mode
and the S-2 algorithm is the same, numerical experiments show that the S-2 Algorithm
performs much better. One reason is the S-2 Algorithm has higher memory locality —
computations are done within a smaller piece of memory, which saves the time for searching
and accessing the data.

A drawback of S-2 Algorithm is it needs the user to manually identify the structures,
i.e., provide the computer code of the sub-functions F1, · · · , Fp, F̄ . Hence it is not as
“user-friendly” as the traditional reverse mode or the directed edge separator method.

55

Chapter 6

Conclusions and Future Work

Our experiments and analysis indicate that separation of nonlinear systems with use of
directed edge separators can significantly reduce space requirement and computing time.
Continued research and development along these lines is recommended:

• Fat computational graphs pose challenges to our current separator locating schemes.
More research is needed here.

• We have not focused on the expense of locating the edge separators. Note that
this operation need only to be computed once for a nonlinear system, this cost is
amortized over many iterations. Nevertheless, research on efficiency of locating edge
separators is required.

• The amortization remarks above assume that the structure of F is invariant with x.
This is not always the case. Consider the following simple example:

f(x) =

{
0 x < 0

f0(x) x ≥ 0

where f0 is an extremely complicated function. Then one can expect computational
graphs of f(−1) and f(1) are totally different. Research is required regarding struc-
tures that vary with x.

• The implementation of a directed-edge-separator-method software package is recom-
mended.

56

APPENDICES

57

Appendix A

Sparsest Cut

For an undirected graph G, its sparsest cut Es(G1, G2) is define to be

Es(G1, G2) = arg min
E(G1,G2)

|E(G1, G2)|
min (|G1|, |G2|)

where |E(G1, G2)| is number of edges crossing two subgraphs G1 and G2, |G| denotes
number of nodes in graph G [1].

Definition of sparsest cut fits our requirements for cutsets very well. This problem
was well studied and there are already several approximate algorithm, which used linear
programming/semidefinite programming techniques. However among these known algo-
rithms, the best one is of O(n2) running time [1], which is still too slow in this application
to be useful in practice (recall: n ∼ number of fundamental operations). As mentioned
before, sometimes we run out of fast memory while using automatic differentiation. This
means the computational graph’s size is of the scale of a PC’s memory. A quadratic algo-
rithm is absolutely not acceptable even if constant is small. So we then turn to seek other
approximation algorithms, with linear or near linear running time.

58

Appendix B

Generation of Computational Graphs

B.1 A computational graph view of AD

Automatic Differentiation (AD) is a joint field of computer science and applied mathemat-
ics, focusing on numerical differentiation of nonlinear functions. Its remarkable advantages
on speed and accuracy, especially for certain types of functions, make AD widely used in
financial applications, optimization algorithms, and other scientific computing problems.
AD has experienced fast growth in the recent 20 years, during which many improvements
and new techniques have been developed, including sparsity techniques[15, 25, 36], struc-
ture detection, etc.

Automatic differentiation can differentiate a function given its source code. There are
two main modes of AD, forward mode and reverse mode. When forward mode is applied,
the derivative and the value of the function are calculated simultaneously. When the
evaluation of function reaches its end, the derivative is automatically obtained, (which is
the reason this method is called automatic differentiation).

AD is different from finite difference, the traditional numerical differentiation, because
AD essentially uses chain rule instead of numerical estimation. AD is also different from
symbolic differentiation since AD computes numerically not algebraically.

Compared to symbolic computation, AD is much more practical, especially when the
candidate function is provided in the form of computer code. In this case it is almost impos-
sible to retrieve the expression of the derivative. While compared to finite difference, AD is
much more efficient when the candidate function is sparse, or has high-dimension input and
low-dimension output. Moreover AD is more accurate: it does not introduce any trunca-
tion error. To illustrate this we can consider a very common example, the derivative-based

59

algorithm for single objective value optimization, in which all above conditions are true.
In this problem AD will notably outperforms the other two when calculating gradients.

B.1.1 Basic Ideas

The evaluation of any function can be broken down into a series of basic operations. AD
differentiates each basic operation symbolically, calculates the actual value of derivatives
using the expression obtained, put them together using chain rule, and then obtains the
final derivative of output variables with respect to input variables. Consider the following
simple example:

Example B.1.1. AD computation for f : R 7→ R

z = f(x) = x+ sinx (B.1)

If break it down into basic operations, this system is equivalent to:{
y = sinx
z = x+ y

It can also be represented using a graph, where each node corresponds to a variable, and
edges correspond to basic operations:

The differentiation of basic operations is easy. In this case they are the following:{ ∂y
∂x

= cosx
∂z
∂x

= ∂z
∂y

= 1

Since there are only very limited types of basic operations, their symbolic expressions
are usually stored in AD packages. They are ready to be plugged in with actual numbers.
Suppose we want to obtain the gradient at x = 2, automatic differentiation will keep
an addition attribute deriv, which store the derivative of current variable with respect to
input variable x (dyi

dx
), on corresponding node, together with the value. At the end of

the calculation the value of deriv corresponding to output variable z would be the overall
objective derivative dz

dx
since the current variable yi = z. The steps of forward mode is

illustrated by Figure. B.1.1.

Reverse mode can reach the same result as well. It also keeps an extra attribute deriv
in each node to help calculate the derivative. However reverse mode differs from forward

60

x

y=sinx

z=x+y

+

sin

+

Figure B.1: The computational graph of Example. B.1.1

x=2
deriv=1

y=sin2
deriv=cos2

z
deriv

+

sin

+

x=2
deriv=1

y
deriv

z
deriv

+

sin

+

x=2
deriv=1

y=sin2
deriv=cos2

z=2+sin2
deriv=1+sin2

+

sin

+

Figure B.2: Forward mode computation of Example. B.1.1

61

x=2

y=sin2

z=2+sin2

+

sin

+

x=2

y

z

+

sin

+

x=2

y=sin2

z

+

sin

+

(a) Phase 1: calculation of values

x=2
deriv=1+cos2

y=sin2
deriv=1

z=2+sin2
deriv=1

+

sin

+

x=2

y=sin2

z=2+sin2
deriv=1

+

sin

+

x=2

y=sin2
deriv=1

z=2+sin2
deriv=1

+

sin

+

(b) Phase 2: calculation of deriv

Figure B.3: Reverse mode computation of Example. B.1.1

62

mode in the sense that deriv stores dz
dyi

, the derivate of output variable zwith respect to
the current variable yi. Another difference is the calculation of deriv is performed after the
calculation of values. On the contrary in forward mode these calculations are performed
simultaneously:

To run reverse mode stage 2, the record of calculation in stage 1 is mandatory. In this
example the record is the computational graph generated at the end of stage1. In practice
instead of the visual computational graph, a list of historical values and operations (which
is equivalent to the graph) is generated as the record. Conventionally we call this list the
tape of the computation. In stage 1, the computation starts from the beginning of the
tape, and stops at the end of the tape, hence we say there is one forward sweep. In stage
2 the calculation starts in the other direction from the end of the tape, and stops at the
beginning. Similarly we say there is one reserve sweep involved.

Obviously no reverse sweep is needed in forward mode. As a result it is not necessary
to generate the tape in forward mode, which is only used in reverse sweep. This implies
forward mode saves space compared to reverse mode. The space reduction can be consid-
erably large especially when calculating for complicated functions, because the size of the
tape is proportional to the number of operations performed. However reverse mode over
performs forward mode in speed in certain cases, in particular, for candidate functions
F : Rn 7→ Rm where n > m.

B.1.2 Computational Cost Analysis

To see the computational cost of forward mode and reverse mode for functions F : Rn 7→
Rm where n > m, first consider the following simple example with n = 2 and m = 1:

Example B.1.2. AD computation for F : R2 7→ R

z = F
(x1
x2

) = x1 · x2 + sinx1 (B.2)

If break it down into basic operations, this system is equivalent to: The differentiation
of basic operations is easy. In this case they are the following:

y1 = x1 · x2
y2 = sinx1
z = y1 + y2

It can also be represented using a graph as shown in Figure. B.4.

63

x1 x2

y1=x1x2 y2=sinx1

z=y1+y2

× sin
×

+ +

Figure B.4: The computational graph of Example. B.1.2

Forward Mode

Suppose we want to obtain the gradient at x1 = 2, x2 = 3, if using forward mode, then to

get the gradient OF =

[∂F
∂x1
∂F
∂x2

]
we need to apply forward sweep twice. By setting deriv at x1

to be ∂x1

∂x1
= 1 and at x2 to be ∂x2

∂x1
= 0, in later computation deriv of an arbitrary variable

yi will be updated by chain rule so that its value is ∂yi
∂x1

. At the end of computation yi = z

and we can extract deriv from node to get ∂z
∂x1

as shown in Figure. B.5.

Similarly a second forward sweep can be applied to obtain ∂z
∂x2

. Before the computation

we need to set deriv at x1 to be ∂x1

∂x2
= 0 and deriv at x2 to be ∂x2

∂x2
= 1 as shown in Figure.

B.6.

Combine the results from the two forward sweeps we can get the gradient:

OF =

[∂F
∂x1
∂F
∂x2

]
=

[
3 + cos 2

2

]

Reverse Mode

The reverse mode needs a forward sweep first to construct the tape as shown in Figure.
B.7.

64

x1=2
deriv=1

x2=3
deriv=0

y1 y2

z

× sin

×

+ +

x1=2
deriv=1

x2=3
deriv=0

y1=6
deriv=3

y2

z

× sin

+ +

x1=2
deriv=1

x2=3
deriv=0

y1=6
deriv=3

y2=sin2
deriv=cos2

z

× sin

+ +

x1=2
deriv=1

x2=3
deriv=0

y1=6
deriv=3

y2=sin2
deriv=cos2

z=6+sin2
deriv=3+cos2

× sin

+ +

× × ×

Figure B.5: Forward mode of Example. B.1.2: first sweep for ∂z
∂x1

x1=2
deriv=0

x2=3
deriv=1

y1 y2

z

× sin

×

+ +

x1=2
deriv=0

x2=3
deriv=1

y1=6
deriv=2

y2

z

× sin

+ +

x1=2
deriv=0

x2=3
deriv=1

y1=6
deriv=2

y2=sin2
deriv=0

z

× sin

+ +

x1=2
deriv=0

x2=3
deriv=1

y1=6
deriv=2

y2=sin2
deriv=0

z=6+sin2
deriv=2

× sin

+ +

× × ×

Figure B.6: Forward mode of Example. B.1.2: second sweep for ∂z
∂x2

x1=2 x2=3

y1 y2

z

× sin

×

+ +

x1=2 x2=3

y1=6 y2

z

× sin

+ +

x1=2 x2=3

y1=6 y2=sin2

z

× sin

+ +

x1=2 x2=3

y1=6 y2=sin2

z=6+sin2

× sin

+ +

× × ×

Figure B.7: Reverse mode of Example. B.1.2: calculation of values

65

x1=2 x2=3

y1=6 y2=sin2

z=6+sin2
deriv=1

× sin

×

+ +

x1=2 x2=3

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

x1=2
deriv=3+cos2 x2=3

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

x1=2
deriv=3+cos2

x2=3
deriv=2

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

× × ×

Figure B.8: Reverse mode of Example. B.1.2: calculation of deriv

Only one reverse sweep is needed since there is only one output variable z. The value of
deriv at variable z should be set to 1 before starting the computation as shown in Figure.
B.8.

The gradient can be extracted from deriv of input variables x1 and x2. The final result

is OF =

[∂F
∂x1
∂F
∂x2

]
=

[
3 + cos 2

2

]
, which is identical to that from forward mode.

Cost Analysis

Consider an arbitrary nonlinear function F : Rn 7→ Rm. If forward mode (FM) is used
to calculate the Jacobian matrix, then number of forward sweeps (FS) required is n. The
amount of computation for each forward sweep is proportion to that needed to evaluate F
is: ω(FS(F)) ∝ ω(F). Hence the overall all computational cost is:

ω(FM(F)) = n · ω(FS(F)) ∝ n · ω(F) (B.3)

One may notice this method has the same cost as finite difference. Besides no estimation
is introduced hence this method is more accurate.

For the same function F , reverse mode (RM) needs one forward sweep to construct
tape and m reverse sweeps (RS) to calculate Jacobian matrix. Similar to forward sweep,
reverse sweep goes through entire computation once: ω(RS(F)) ∝ ω(F). Hence we have:

ω(RM(F)) = n · ω(RS(F)) ∝ m · ω(F) (B.4)

66

Since the cost is proportional to m, not n. The cost can be greatly reduced using
reverse mode when n � m. Furthermore, reverse mode has machine level precision like
forward mode. However reverse mode need to record down the tape, which can be large
for complicated computations. The main purpose of my work is to reduce the space
requirement of reverse mode, and in some cases improve the efficiency at the same time.

B.2 Vector mode of AD

In scalar mode of AD, in the computational graph each node corresponds to a scalar. On
contrary, vector mode allows a node to contain a vector or a matrix. In vector mode, since
each node holds more information, the length of tape can be much shorter to store for a
same computation. Meanwhile number of sweeps required can be reduced for both forward
and reverse mode. Consider previous function in Example. B.1.2:

Example B.2.1. AD computation for F : R2 7→ R

z = F
(x1
x2

) = x1 · x2 + sinx1 (B.5)

Notice its basic operations form is:
y1 = x1 · x2
y2 = sinx1
z = y1 + y2

The process of forward mode can be described using Figure. B.9.

In vector mode, all dependent variables can be combined into one node, the very first
node on the computational graph. Using vector mode the deriv attribute of an arbitrary
node yi would record ∂yi

∂x
, its derivative with respect to all depend variables. Notice ∂yi

∂x

might not be a scalar. It can be a scalar, a vector, a matrix, or a higher dimension matrix,
depending on the size of x and yi. In forward mode, deriv at x is initialized to be the
identity matrix I ∈ Rn×n, where n = 2 in the above example.

The changes of reverse mode are similar to those of forward mode. Like in scalar
mode, it needs a forward sweep first to construct the tape, followed by a reverse sweep to
compute the gradient. In the reverse sweep, for an arbitrary node yi, its deriv records ∂z

∂yi
,

the derivative of z with respect to the current node yi. The derivative computation starts
at z, at which the deriv attribute is initialized to be the identity matrix I ∈ Rm×m:

67

y1 y2

z

× sin

×

+ +

y1 y2

z

× sin

+ +

y1=6
deriv=[3,2]T

y2=sin2
deriv=[cos2,0]T

z

× sin

+ +

y1=6
deriv=[3,2]T

y2=sin2
deriv=[cos2,0]T

z=6+sin2
deriv=[3+cos2,2]T

× sin

+ +

× × ×

x1 x2

 2 3

1 0

0 1

T
x

deriv

x1=2
deriv=[1,0]T

x2=3
deriv=[0,1]T

 2 3

1 0

0 1

T
x

deriv

x1=2
deriv=[1,0]T

x2=3
deriv=[0,1]T

 2 3

1 0

0 1

T
x

deriv

x1=2
deriv=[1,0]T

x2=3
deriv=[0,1]T

 2 3

1 0

0 1

T
x

deriv

Figure B.9: Vector Mode: Foward mode of Example. B.2.1

Cost Analysis

Compared to scalar mode, vector mode in general reduces number of sweeps required. For
an arbitrary function F : Rn 7→ Rm, for forward mode only one forward sweep is required,
while n forward sweeps are required in scalar mode. For reverse mode, only one forward
sweep and one reverse sweep are required in vector mode, while one forward sweep and
m reverse sweep are required in scalar mode. Notice that though the number of sweeps
is reduced, the overall computation cost remains the same, because each sweep in vector
mode involves matrix operations, which cancel out the effect of fewer sweeps. However,
in practice, vector mode is much more efficient in matrix-friendly environment (i.e. MAT-
LAB), because in these environments matrix operations are automatically optimized. It
also makes the implementation of AD and the tape more neat and understandable. My
work are mostly done under ADMAT-2.0, a MATLAB based AD package. All programs
are written in vector mode if not particularly mentioned.

B.3 A Brief Introduction to ADMAT

ADMAT is a Matlab based software which use automatic differentiation idea to compute
functions’ derivatives, Jacobian matrix, Hessian matrix fast and accurately. While doing
computation, there are two modes: forward mode and reverse mode. Two modes’ perfor-

68

y1 y2

z

× sin

×

+ +

y1 y2

z

× sin

+ +

y1=6 y2=sin2

z

× sin

+ +

y1=6 y2=sin2

z=6+sin2

× sin

+ +

× × ×

x1 x2

 2 3
T

x

x1=2 x2=3 x1=2 x2=3 x1=2 x2=3

 2 3
T

x 2 3
T

x 2 3
T

x

(a) Phase 1: calculation of values

x1=2 x2=3

y1=6 y2=sin2

z=6+sin2
deriv=1

× sin

×

+ +

x1=2 x2=3

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

x1=2
deriv=3+cos2

x2=3
deriv=2

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

× ×

x1=2
deriv=3+cos2

x2=3
deriv=2

y1=6
deriv=1

y2=sin2
deriv=1

z=6+sin2
deriv=1

× sin

+ +

×

 2 3
T

x 2 3
T

x 2 3
T

x

 2 3

3 cos 2 2

T

T

x

deriv

(b) Phase 2: calculation of deriv

Figure B.10: Vector mode of reverse mode computation of Example. B.2.1

69

mance depends on structure of Jacobian matrix, however for most functions a combination
of forward and backward mode works best. A crucial difference between two modes is
backward mode needs to record whole computation while forward mode does not. In AD-
MAT, a global variable ‘tape’ will be created and updated as the record of all executed
computations when reverse mode is used.

In matlab, ‘tape’ is a big vector of ‘struct’s, an user defined data type. We call these
‘struct’s cells. Usually each cell corresponds to one basic operation, i.e., plus, times, sin,
etc.. Cells in tape are ordered according to the execution time of their respective operations.
Each cell owns several child blocks recording type of operation, input cell, constants, and
other related information.

B.4 Tape to Graph

To construct the computational graph from a tape, basically one needs to read cells one by
one. Typicaly, one cell will be converted into one node. There are also some exceptions,
one type of them affects computational graph a lot. In ADMAT, vector operations are also
treated as basic operations, i.e., x1 + x2 where x1, x2 ∈ R10. This operation only occupies
one cell in tape, however in the fundamental computational graph it should correspond
to 10 output nodes and 20 newly added edges. We are now trying to adjust weights
to balance this shape shift, i.e., give these 2 edges heavier weights before applying Ford
Fulkerson algorithm.

B.5 Compensation to Condensed Nodes

In fundamental computational graph, we treat each node the same. But in real computa-
tional graphs there might be condensed nodes, making it not reasonable. To compensate
the distortion, we introduce concept computation intensity to each node. In chaper 3.1
diving graph evenly in fact is in terms of work. Consider equation (2.7), we want ω(F1)
and ω(F2) roughly equal. Therefore if we correctly define computational intensity/work I
to each node for the condensed computational graph, then we want a cut such that two
subgraphs’ computational intensity are roughly the same.

The compensation idea is simple. Originally when evaluating depth for nodes, we try to
find length of shortest path from it to any end-node. Here we make a small modification:
we still try to find length of shortest path, but redefine length of a path to be sum of its

70

nodes’ computational intensity. All later procedures, i.e. evaluation of edges’ weights and
Ford Fulkerson algorithm, remain the same.

If length of a path is defined in this way, edges with roughly same total intensity on
two sides will have the biggest depth and lowest weights. These nodes will be likely to lie
in the cut, to divide the graph equally in terms of I. Though no numerical experiment is
done yet, we believe this idea is valid.

B.6 The Method to Identify the Intermediate Vari-

ables

If the global approach is used to locate the edge separators, to identifiy the intermedi-
ate variables is trivial. Simply investigate all the edges going across subgraphs, and the
intermediate variables will be the tail nodes of these edges.

If the online approach is used, to identify the intermediate variables is tricky. Since in
online approach the graph is never complete, the technique in the global approach is not
applicable.

Before the method is formally described, let us first review how the normal computa-
tions are done in computers. During the computations of functions, variables are created
and destroyed. Each variable has a life time – it is created at some point time, and is
destroyed later. It depends on specific functions, but usually a big portion of variables
have short life time – they are of temporary use, and hence destroyed shortly after being
created. Each variable is destroyed only when it is no longer needed for later computa-
tions. Notice that this process is handled automatically by the computer, implying that
according to the computer code the computer is able to determine whether a variable is
needed again or not in later computations.

As indicated in the previous sections, AD keeps two copies for each variable: 1) the
original copy and 2) the copy in the tape. Similar to normal computations, the original
copies are created and destroyed automatically. We only need to track the intermediate
variables in the tape. The original copy of a variable is destroyed only when it will not
be used again in later computations. Therefore every time the original copy of a variable
is destroyed, we can place a ‘non-intermediate flag’ on the associated copy in the tape,
and those variables without such flags are the intermediate variable. Since AD uses user-
defined classes for the storage and the computations of the original copies of the variables,
by inserting the ‘place-flag operation’ into the destructors of the user-defined classes, the
intermediate/non-intermediate variables in the tape can be tracked automatically.

71

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. o(
√

log n) approximation to sparsest
cut in Õ(n2) time. SIAM J. Comput., 39(5):1748–1771, jan 2010.

[2] Brett M. Averick, Jorge J. Moré, Christian H. Bischof, Alan Carle, and Andreas
Griewank. Computing large sparse Jacobian matrices using automatic differentiation.
SIAM J. Sci. Comput., 15(2):285–294, 1994.

[3] Christian H. Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge J. Moré. Comput-
ing gradients in large-scale optimization using automatic differentiation. INFORMS
J. Computing, 9:185–194, 1997.

[4] Christian H. Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR
2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science
& Engineering, 3(3):18–32, 1996.

[5] Christian H. Bischof and Mohammad R. Haghighat. Hierarchical approaches to au-
tomatic differentiation. In Martin Berz, Christian Bischof, George Corliss, and An-
dreas Griewank, editors, Computational Differentiation: Techniques, Applications,
and Tools, pages 83–94. SIAM, Philadelphia, PA, 1996.

[6] Christian H. Bischof, Peyvand M. Khademi, A. Bouaricha, and Alan Carle. Effi-
cient computation of gradients and Jacobians by dynamic exploitation of sparsity in
automatic differentiation. Optimization Methods and Software, 7:1–39, 1997.

[7] Christian H. Bischof, Lucas Roh, and Andrew Mauer. ADIC — An extensible auto-
matic differentiation tool for ANSI-C. Software–Practice and Experience, 27(12):1427–
1456, 1997.

[8] H. Martin Bücker and A. Rasch. Modeling the performance of interface contraction.
ACM Transactions on Mathematical Software, 29(4):440–457, 2003.

72

[9] Luca Capriotti and Michael B. Giles. Algorithmic differentiation: Adjoint greeks made
easy. Computational Finance, 2011.

[10] Thomas F. Coleman and Jin-Yi Cai. The cyclic coloring problem and estimation of
sparse Hessian matrices. SIAM J. Alg. Disc. Meth., 7(2):221–235, 1986.

[11] Thomas F. Coleman and Gudbjorn F. Jonsson. The efficient computation of structured
gradients using automatic differentiation. SIAM Journal on Scientific Computing,
20(4):1430–1437, 1999.

[12] Thomas F. Coleman, Fadil Santosa, and Arun Verma. Semi-automatic differentiation.
In Jeff Borggaard, John Burns, Eugene Cliff, and Scott Schreck, editors, Computa-
tional Methods for Optimal Design and Control, volume 24 of Progress in Systems and
Control Theory, pages 113–126. Birkhuser Boston, 1998.

[13] Thomas F. Coleman, Fadil Santosa, and Arun Verma. Efficient calculation of Jacobian
and adjoint vector products in wave propagational inverse problem using automatic
differentiation. J. Comp. Phys., 157:234–255, 2000.

[14] Thomas F. Coleman and Arun Verma. Structure and efficient Jacobian calculation.
In Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors,
Computational Differentiation: Techniques, Applications, and Tools, pages 149–159.
SIAM, Philadelphia, PA, 1996.

[15] Thomas F. Coleman and Arun Verma. The efficient computation of sparse Jacobian
matrices using automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–1233,
1998.

[16] Thomas F. Coleman and Arun Verma. Structure and efficient Hessian calculation. In
Ya-Xiang Yuan, editor, Proceedings of the 1996 International Conference on Nonlinear
Programming, pages 57–72. Kluwer Academic Publishers, 1998.

[17] Thomas F. Coleman and Arun Verma. ADMIT-1: Automatic differentiation and
MATLAB interface toolbox. ACM Transactions on Mathematical Software, 26(1):150–
175, 2000.

[18] Thomas F. Coleman and Xin Xiong. New graph approaches to the determination of
Jacobian and Hessian matrices, and Newton steps, via automatic differentiation (in
preparation).

73

[19] Thomas F. Coleman and Wei Xu. Fast (structured) Newton computations. SIAM
Journal on Scientific Computing, 31(2):1175–1191, 2008.

[20] Thomas F. Coleman and Wei Xu. The efficient evaluation of structured gradients
(and underdetermined Jacobian matrices) by automatic differentiation, 2013.

[21] Alexander W. Dowling, Sree R. R. Vetukuri, and Lorenz T. Biegler. Large-scale
optimization strategies for pressure swing adsorption cycle synthesis. AIChE Journal,
58(12):3777–3791, 2012.

[22] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[23] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your
jacobian? graph coloring for computing derivatives. SIAM Review, 47(4):629–705,
2005.

[24] Assefaw Hadish Gebremedhin, Arijit Tarafdar, Fredrik Manne, and Alex Pothen. New
acyclic and star coloring algorithms with applications to Hessian computation. SIAM
Journal on Scientific Computing, 29(3):1042–1072, 2007.

[25] Andreas Griewank. Direct calculation of Newton steps without accumulating Jaco-
bians. In Thomas F. Coleman and Yuying Li, editors, Large-Scale Numerical Opti-
mization, pages 115–137. SIAM, Philadelphia, Penn., 1990.

[26] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[27] Andreas Griewank and George F. Corliss, editors. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. SIAM, Philadelphia, PA, 1991.

[28] Andreas Griewank, David Juedes, and Jean Utke. A package for the automatic differ-
entiation of algorithms written in C/C++. User manual. Technical report, Institute of
Scientific Computing, Technical University of Dresden, Dresden, Germany, 1996. this
version of the manual is superceded by http://www.math.tu-dresden.de/~adol-c/

adolc110.ps.

[29] A.K.M. Shahadat Hossain and Trond Steihaug. Computing a sparse Jacobian matrix
by rows and columns. Optimization Methods and Software, 10:33–48, 1998.

74

http://www.math.tu-dresden.de/~adol-c/adolc110.ps
http://www.math.tu-dresden.de/~adol-c/adolc110.ps

[30] Shahadat Hossain and Trond Steihaug. Sparsity issues in the computation of Jaco-
bian matrices. In Teo Mora, editor, Proceedings of the International Symposium on
Symbolic and Algebraic Computing (ISSAC), pages 123–130, New York, NY, 2002.
ACM.

[31] Cayuga Research Inc. ADMAT-2.0 Users Guide. http://www.cayugaresearch.com/,
2009.

[32] David E. Keyes, Paul D. Hovland, Lois C. McInnes, and Widodo Samyono. Using au-
tomatic differentiation for second-order matrix-free methods in PDE-constrained op-
timization. In George Corliss, Christèle Faure, Andreas Griewank, Laurent Hascoët,
and Uwe Naumann, editors, Automatic Differentiation of Algorithms: From Simu-
lation to Optimization, Computer and Information Science, chapter 3, pages 35–50.
Springer, New York, NY, 2002.

[33] Claire Lauvernet, Laurent Hascot, Franois-Xavier Dimet, and Frdric Baret. Using
automatic differentiation to study the sensitivity of a crop model. In Shaun Forth,
Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors, Recent Advances
in Algorithmic Differentiation, volume 87 of Lecture Notes in Computational Science
and Engineering, pages 59–69. Springer Berlin Heidelberg, 2012.

[34] Johannes Lotz, Uwe Naumann, and Jrn Ungermann. Hierarchical algorithmic differ-
entiation a case study. In Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and
Andrea Walther, editors, Recent Advances in Algorithmic Differentiation, volume 87
of Lecture Notes in Computational Science and Engineering, pages 187–196. Springer
Berlin Heidelberg, 2012.

[35] Azamat Mametjanov, Boyana Norris, Xiaoyan Zeng, Beth Drewniak, Jean Utke, Mihai
Anitescu, and Paul Hovland. Applying automatic differentiation to the community
land model. In Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea
Walther, editors, Recent Advances in Algorithmic Differentiation, volume 87 of Lec-
ture Notes in Computational Science and Engineering, pages 47–57. Springer Berlin
Heidelberg, 2012.

[36] P. M. Pardalos and Andreas Griewank. Some bounds on the complexity of gradients,
jacobians, and hessians, 1993.

[37] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120
of Lecture Notes in Computer Science. Springer, Berlin, 1981.

75

http://www.cayugaresearch.com/

[38] DanielR. Reynolds and Ravi Samtaney. Sparse jacobian construction for mapped grid
visco-resistive magnetohydrodynamics. In Shaun Forth, Paul Hovland, Eric Phipps,
Jean Utke, and Andrea Walther, editors, Recent Advances in Algorithmic Differenti-
ation, volume 87 of Lecture Notes in Computational Science and Engineering, pages
11–21. Springer Berlin Heidelberg, 2012.

[39] E. M. Tadjouddine. Vertex-ordering algorithms for automatic differentiation of com-
puter codes. The Computer Journal, 51(6):688–699, 2008.

[40] Wei Xu and Thomas F. Coleman. Efficient (partial) determination of derivative matri-
ces via automatic differentiation (to appear in SIAM journal on Scientific Computing,
2012).

76

	Title Page
	List of Tables
	List of Figures
	Introduction
	Overview
	Structure of the Thesis

	Automatic Differentiation
	Introduction
	Automatic Differentiation and The Edge Separator
	Automatic Differentiation and Multiple Edge Separators

	On Finding Edge Separators to Increase Efficiency in the Application of Automatic Differentiation
	Introduction
	Weighted Minimum Separator
	Natural Order Edge Separator
	Multiple Edge Separators
	Experiments
	Thin Computational Graphs
	Fat Computational Graphs

	Accelerating the Calculation of the Jacobian matrix

	A Combination of Sparsity Techniques and Edge Separator Method
	Introduction
	A Brief Review of Sparsity Techniques
	Example Problems with Hidden Structure
	Dynamic System Problem
	Partial Separability Problem

	Pseudo-Code for Calculating the Extended Jacobian Matrix JE
	Global Approach and Online Approach
	Edge Separators Locating Methods in the Numerical Experiments
	Sparsity Techniques in Numerical Experiments

	Computational Results
	The Dynamic System Problems
	The Partial Separability Problems

	Concluding Remarks

	The Special Case: the Structure of the Function is Provided
	Introduction
	Cost Analysis

	Computational Results
	The Dynamic System Problem
	The Partial Separability Problem

	Concluding Remarks

	Conclusions and Future Work
	APPENDICES
	Sparsest Cut
	Generation of Computational Graphs
	A computational graph view of AD
	Basic Ideas
	Computational Cost Analysis

	Vector mode of AD
	A Brief Introduction to ADMAT
	Tape to Graph
	Compensation to Condensed Nodes
	The Method to Identify the Intermediate Variables

	References

