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Abstract 

Stressors such as residential and industrial development and climate warming are escalating in 

North America, which increases stress to aquatic ecosystems. In the face of this, monitoring 

biologists must continually improve protocols for long-term monitoring programs in order to 

adequately characterize changes in biological communities. To address this need, this thesis 

has developed, applied, and assessed benthic algal biomonitoring protocols in lakes and rivers. 

In the Muskoka-Haliburton area of Ontario, benthic algal protocols were developed to assess 

effects of differences in shoreline development. In the South Nahanni River watershed, 

Northwest Territories, benthic algal biomonitoring protocols were developed to assess effects 

of two mining companies on rivers in an otherwise pristine ecosystem.  

In the Muskoka-Haliburton area I developed and evaluated bioassessment protocols based 

on benthic algae growing in the littoral zone of lakes to track effects of shoreline development. 

To do this, I sampled a suite of study sites (n = 28 in 2006, n = 29 in 2007) spanning a gradient 

of shoreline development (e.g., intact forests, cottages, marinas). The protocols were modified 

from protocols developed for rivers (Biggs and Kilroy, 2000), and five levels of assessment 

were completed for each site that differed in the amount of time, resources and expertise 

required. Level 1 comprised visual assessments of benthic algal cover. Level 2 involved 

biomass estimates (ash-free dry mass and chlorophyll-a). Level 3 included coarse-level 

taxonomic enumeration of benthic algal community composition (i.e., to major algal classes). 

Level 4 included quantification of pigment concentrations using High-Performance Liquid 

Chromatography (HPLC). Level 5 involved high-taxonomic resolution enumeration of diatom 

community composition (to species and sub-species levels). Uni- and multivariate analyses 

were used to assess relations between shoreline development, water chemistry and benthic 

algal metrics. Results of this study showed that Level 5 (diatom community composition) best 
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discriminated among shoreline development categories and, despite the higher technical skill 

and time required, was recommended for use as the most promising metric for Precambrian 

Shield lake nearshore biomonitoring with benthic algae. Photosynthetic pigment concentration 

(Level 4) showed modest potential as a biomonitoring tool, but further development is required 

for their use in monitoring protocols.  

The South Nahanni River watershed is remote with good water quality. However, activities 

conducted by two mining operations within the watershed potentially threaten the water quality 

and ecological integrity of downstream sites. Here, I conducted three studies. The first study 

examined physical and chemical conditions at river sites unaffected by human activities and 

how the conditions related to three algal metrics (benthic algal community composition, diatom 

community composition, and photosynthetic pigment concentration). To do this, I sampled 44 

reference sites (i.e., unaltered by human activities such as mining or other infrastructure) from 

across the South Nahanni River watershed in 2008 and 18 sites in 2009 (12 repeated from 

2008, 6 new). Multivariate analyses were utilized to assess patterns of variation in physical and 

chemical data and their relation to benthic algal community composition. Results showed that 

physical and chemical conditions differed distinctly between two ecoregions within the 

Nahanni Watershed (Selwyn Mountain and Nahanni-Hyland ecoregions). Patterns of variation 

in the benthic algal metrics corresponded well with gradients of physical and chemical 

variables. Diatom community composition discriminated best between the two ecoregions. 

Photosynthetic pigment concentration only discriminated between the ecoregions in 2009, 

showing some promise as a biological monitoring tool.  

The second study examined the extent that algal pigment versus taxonomic descriptors of 

algal community structure varied due to the Cantung mine along the Flat River in the South 
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Nahanni River watershed in order to evaluate the use of photosynthetic pigment concentration 

as a biomonitoring approach. To do this, I sampled 4 sites upstream and 6 sites adjacent to and 

downstream of the Cantung mine site and compared relations of water physico-chemical 

conditions with photosynthetic pigment concentration and taxonomic-based benthic algal 

community composition at the study sites. Patterns evident in ordinations by PCA and RDA 

identified that photosynthetic pigment concentrations varied along Flat River and were related 

to variance in physical and chemical variables. My analyses showed that there were substantial 

and often statistically significant differences in photosynthetic pigment concentration at non-

exposed sites located upstream of the mine versus exposed sites located adjacent to and 

downstream of the mine. Photosynthetic pigment concentrations were more strongly and 

consistently associated with physical and chemical conditions than the taxonomy-based data, 

suggesting pigment analysis is effective for detecting environmental degradation. Additionally, 

cost comparisons showed that the base analytical cost for in-house analysis of pigment was low 

($66.48/sample) and generally lower than traditional taxonomy-based assessments, making it a 

cost-effective alternative for biomonitoring protocols. 

In the third study, I developed Reference Condition Approach (RCA) models based on 

benthic algae for the South Nahanni River watershed. To do this, I sampled a suite of reference 

sites across the watershed in 2008 (n = 44) and 2009 (n = 18; 12 resampled from 2008 and n = 

6 new) and test sites (potentially affected) downstream of two mining companies (n=20 in 

2008 and n = 17 in 2009). The BEAST (BEnthic Assessment of SedimenT) model was used to 

develop the benthic algal RCA models for each of the three benthic algal metrics. All reference 

sites (unaffected by mining activities) from 2008 and 2009 were grouped into biologically 

similar assemblages. Only physical and chemical variables unaffected by mining activities 
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were used in developing the RCA model. The biological assemblages at test sites were 

compared to their predicted reference assemblage using non-metric Multimetric Dimensional 

Scaling Analysis (MDS) and assessed for impairment. Three probability ellipses were used to 

create four categories of impairment: Category 1: ≤ 90% (reference condition), Category 2: 90 

– 99% (possibly stressed), Category 3: 99 – 99.9% (stressed), Category 4: ≥ 99.9% (severely 

stressed). Patterns of downstream impairment were assessed and zones of influence were 

identified for each algal metric in each year. Assessments downstream showed that the RCA 

models identified reasonably consistent ‘zones’ of stress downstream of Cantung mine along 

Flat River. However, changes in photosynthetic pigment concentrations were more prominent 

compared to the other two metrics. Along Prairie Creek, only photosynthetic pigment 

concentrations identified sites outside of the reference condition directly downstream of the 

Prairie Creek mine. My results show that benthic algal RCA models (specifically 

photosynthetic pigment concentration models) show promise as biological monitoring tools, 

but should be tested in other ecosystems to assess the widespread utility of the method.  

I developed, applied and assessed benthic algal community compositions for Canadian lakes 

and rivers. I assessed a variety of algal metrics in different ecosystems and associated with 

differing stressors, and found that photosynthetic pigments were the most sensitive metric to 

differences in physical and chemical conditions downstream of the two mines. Conversely, 

diatoms were the most responsive metric to differences between ecoregions, and similarly to 

differences in shoreline development categories in Muskoka lakes. Photosynthetic pigment 

concentrations can be influenced differently by stressors such as light compared to other 

metrics or biological traits. Indeed, I found that differences in pigment concentrations were 

often associated with differences in turbidity and thus, light may play an important role in 
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pigment concentration in biological assessments. Despite this, pigments and the RCA approach 

show promise as a biomonitoring tool for detection of impairment, and should be further tested 

and refined based on studies in other watersheds.  
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Chapter 1 

General Introduction 

 
1.1 Freshwater biomonitoring potential 

Freshwater ecosystems provide a number of important services to humans, but are under 

increasing pressure due to human activities and climate warming. As the climate warms and 

urban, rural, and industrial development increases, aquatic ecosystems become increasingly 

affected by both natural processes and human influences. The intensity of the cumulative 

effects of both natural and anthropogenic stressors threatens to degrade water quality and 

ecological integrity of aquatic ecosystems (Chambers et al., 2001; Schindler & Smol, 2006). 

However, disentangling the effects of human activities and climate warming from natural 

variability is difficult (Clements et al., 1992, 2010). In the face of these pressures, improved 

long-term monitoring protocols are required to inform policies and practices that can safeguard 

against deterioration of water-quality and ecological integrity. 

My study was conducted to develop, assess, and apply methods for monitoring changes in 

water quality and ecological condition based on benthic algae in the nearshore zone of 

temperate-zone lakes and northern rivers. This study was located in two areas of Canada under 

intensifying, yet different, development pressures. The two study areas were used to assess the 

effects of residential development on water quality and ecological integrity of lakes in the 

Muskoka-Haliburton area (Ontario), and mining in rivers of the South Nahanni River 

watershed (NWT). The research in this thesis was performed in partnership with the Ontario 

Ministry of Environment and Parks Canada and so has great potential to be incorporated into 

policies and procedures for groups ranging from local communities to First Nations and 

governmental organizations.  
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1.2 Biomonitoring of temperate lakes  

One of the most widespread and major causes of water-quality and ecological impairment in 

lakes is cultural eutrophication, due to elevated nutrient loading. To date, monitoring programs 

in lakes have commonly focused on characterizing the chemical and biological conditions (e.g., 

water chemistry, chlorophyll-a concentration, phytoplankton and zooplankton metrics) at a 

central, open-water (or pelagic) location (King et al., 2006). For example, phosphorus 

concentrations are extensively used as indicators of lake trophic status and are highly 

correlated with phytoplankton biomass (Dillon & Rigler, 1974). Paleoecological studies have 

tracked shifts in diatom community composition, taken at central, open-water locations within 

lakes, to infer TP concentrations down-core using transfer functions (Hall & Smol, 1996). 

Human activities have increasingly encroached on the shorelines of lakes and so are likely to 

exert the greatest effects on the nearshore zone. However, there has been relatively little 

emphasis on monitoring conditions in the littoral zone of lakes, despite that the littoral zone is 

often the first to be influenced by human activities, and given that benthic algae often 

contribute importantly to primary production in lakes (Vadeboncoeur et al., 2001, 2003). Only 

in the last 10 years has the focus of lake monitoring begun to shift toward nearshore 

monitoring with the recognition that monitoring of periphyton could provide a more sensitive 

assessment and early warning of impending changes compared to phytoplankton and water 

chemistry from the pelagic zone of lakes (e.g., Lambert & Catto, 2008; Rosenberger et al., 

2008; Lambert et al., 2008).  

Periphyton communities, unlike phytoplankton, are not always correlated with open water 

TP concentration and often indicate a higher trophic status of the lake. Previous studies have 

suggested that periphyton receive pulses of nutrients from the surrounding land and assimilate 
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it before dilution via mixing with offshore waters (Cattaneo, 1987; Poulíčková et al., 2004). 

Changes in periphyton biomass and community composition associated with different 

gradients of shoreline development have been observed in lakes (Lambert & Catto, 2008; 

Lambert et al., 2008). For example, Rosenberger et al., (2008), studied algal communities 

along a gradient of shoreline development in oligotrophic lakes in the USA and found 

increased algal biomass and shifts in algal community composition to more nuisance forms of 

algae at more developed sites. Shifts observed in algal communities may be associated with 

changes in aesthetic appeal for recreational purposes, and also with the alteration of foodwebs 

and water quality (Rosenberger et al., 2008). Thus, nearshore monitoring of periphyton not 

only gives insights into the trophic status of the lake as a whole but provides a ‘report card’ of 

sorts for different levels of development and the degree of changes they cause.  

 
1.3 The Muskoka-Haliburton area of Ontario 

The Muskoka-Haliburton area is located in South-Central Ontario (Figure 1.1). It is an 

ecologically and economically important area. This area is located on the Canadian Shield, and 

many of the lakes are acid-sensitive and oligo- to mesotrophic. The lakes are subjected to 

multiple stressors including: climate variability, climate change, acidic deposition, pollution 

(e.g., Hg contamination), invasive species (e.g., Bythotrephes), and development (Dillon & 

Molot, 1996; Schindler et al., 1996; Schindler, 2001; Yan et al., 2001). The area is only 4% 

developed with settlements and agriculture/open fields, but with varying degrees of natural 

state and development around lakes (Tran, 2007). Therefore, increased development around 

these lakes may make effects of increasing contaminants more noticeable, especially when in 

conjunction with climate change.  
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1.4 Biomonitoring of northern rivers 

Freshwaters in northern Canada are increasingly subjected to human-caused changes, including 

industrial development, encroachment of expanding human populations and long-distance 

transport of contaminants (Schindler & Smol, 2006). Mining activities are expected to nearly 

double between 2011 and 2020 (The Conference Board of Canada, 2013). Some areas in 

northern Canada are naturally rich in metals, however, mining can mobilize metals in aquatic 

environments causing degradation of water quality and ecological integrity (Wrona et al., 

2006). The detection of effects of metal mining can be difficult, because studies are often 

initiated after pollution has occurred [Clements et al., 2000; Hill et al., 2000a; Clark & 

Clements, 2005; Rhea et al., 2006; Hall et al., 2012; Thomas et al., 2013 (Chapter 4 of this 

thesis)] and lack of knowledge of natural loading and variability impair determination of the 

effects of mining. Thus, it is important to adequately define reference conditions in order to 

understand the natural variability among sites and to effectively assess the effects of mining 

contamination at potentially affected test sites (Hawkins et al., 2010).  

Methods for river assessment are well established. Examples include CABIN protocols 

(Environment Canada [EC], 2011), NIWA benthic algal protocols (Biggs & Kilroy, 2000), and 

European river monitoring protocols (CEN, 2003, 2004); however, they are still evolving. 

Many study designs can be utilized to identify environmental impacts of industrial activities on 

surface waters, including control-impact (CI), before-after-control impact (BACI), gradient and 

reference condition approaches (RCA; Green, 1979; Underwood, 1994; Bailey et al., 2004). 

Each method takes a different approach to defining the conditions at reference sites (sites least 

disturbed by stressor of interest) ranging from using one or a few reference sites upstream of 

the stressor of interest (e.g., CI, BACI, gradient) to using many reference sites from adjacent 
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streams not exposed to stressor of interest (RCA). Despite the differences in each method, all 

methods compare reference sites to test sites (possibly exposed to the stressor of interest) 

typically using water chemistry or measures of biological communities or ecosystem function 

[e.g., Spencer et al., 2008; Bowman et al., 2010; Thomas et al., 2013 (Chapter 4)]. The benefit 

of the RCA model is that it uses many regional reference sites (typically from across a 

watershed) to adequately characterize the reference condition of an area (Reece & Richardson, 

1999; Rosenberg et al., 1999; Bowman et al., 2010). The RCA assumes that biological 

communities are primarily influenced by the surrounding physical and chemical conditions at 

each site. Thus, each reference site is also selected to be similar in physical and chemical 

conditions to the potentially affected ‘test’ sites (Hulbert, 1984; Reynoldson et al., 1997; 

Bailey et al., 2004). RCA models have been successfully developed for invertebrate 

communities across Canada (e.g., Reynoldson et al., 1997; Reynoldson et al., 2001; Bowman 

et al., 2010). However, few studies have developed models for benthic algal communities, and 

only one study (Bowman et al., 2010) developed a preliminary model for algal communities 

within the South Nahanni River watershed.  

 
1.5 The South Nahanni River watershed  

The South Nahanni River watershed (35 000 km2) is located in the southwest of the Northwest 

Territories (61°39', 125°34') and is a pristine, remote wilderness with high preservation value 

and cultural significance. A portion of the watershed was designated a National Park (Nahanni 

National Park Reserve; 30 050 km2) in 1976 and a UNESCO world heritage site in 1978 

(Figure 1.2). In 2012, a portion of the most northern extent of the watershed was designated as 

a National Park Reserve (Nááts’ihch’oh National Park Reserve; 4 850 km2). The South 

Nahanni River (540 km long) runs the length of the watershed (through the two national park 
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reserves) and was named a Canadian Heritage River in 1987. The South Nahanni River 

watershed is a headwater tributary for the Mackenzie River. It is underlain by Proterozoic 

formations of glaciomarine conglomerates and carbonates with major veins of heavy metals 

including lead, zinc and silver sulphides, and tungsten (CaWO4) (EC, 1991). Airborne 

contaminants are considered to be less influential within the watershed than those derived from 

land and water (EC, 1991).  

The watershed is located within the Taiga Cordillera, Taiga Plains, and Boreal Cordillera 

ecozones and includes diverse topography (e.g., canyons, karst features, mountains, plains, and 

plateaus) and vegetation (e.g., boreal forest and alpine tundra; EC, 1991). The western portion 

of the watershed is underlain primarily by shale and has the Logan Mountains and the Ragged 

Ranges, while the eastern portion is underlain primarily by carbonates and incorporates the 

Nahanni Karst and Ram plateaus (Caron et al., 2008). The hydrology within the watershed is 

influenced by many factors including snowmelt in late winter, and glacier melt, and 

precipitation in summer. Flows range from 55 – 1500 m3/s at Virginia Falls (EC, 1991; 

Halliwell & Catto, 2003). Peak flow occurs during spring snowmelt, and summer flows are 

heavily influenced by rain; thus rivers within the South Nahanni River watershed are prone to 

flash flooding. Although the South Nahanni River watershed is considered to be pristine, it is 

also considered to have great potential for mineral extraction (Falck & Wright, 2007; Caron et 

al., 2008). With industrial development projected to nearly double between 2011 and 2020 

(The Conference Board of Canada, 2013), there is concern about the continued ‘good 

ecological status’ of this watershed through time. Along with the potential for increased 

development within the borders of the South Nahanni River watershed, there are two 

established mining operations located within the watershed. There are concerns about effects of 
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these mines on the downstream water quality within the Nahanni National Park Reserve; thus 

studies have been conducted to assess water quality and biological integrity downstream of the 

two mines [e.g., Halliwell & Catto, 2003; Spencer et al., 2008; Bowman et al., 2010; Thomas 

et al., 2013 (Chapter 4)].  

North American Tungsten’s Cantung mine is a fully operating tungsten mine located along 

the Flat River (~200 km upstream of the confluence with the South Nahanni River) in the 

western portion of the South Nahanni River watershed (61°87', 128°13'; Figure 1.2). The Flat 

River is underlain primarily by shale (Caron et al., 2008). Tungsten is mined from a schelite 

(CaWO4) deposit. The Flat River is a 4th order stream at the mine site, with flow from hot 

springs and mineral springs along with fluctuating sediment loads resulting in high natural 

variability along the river (Halliwell & Catto, 2003). Flow at the mouth of the Flat River 

ranges from 247 – 900 m3/s (Halliwell & Catto, 2003). North American Tungsten began 

operations in the 1950s and remained fully operating until 1986, then reopened in 2001. Metal-

rich mine tailings and nutrient-rich sewage are pumped into a series of 3 tailings ponds. Most 

of the effluent is pumped into tailings pond 3 (Figure 1.3A). Leachate enters the Flat River 

immediately adjacent to, and up to several hundred meters downstream of, the tailings ponds. 

However, there is limited information on how leachate enters the river which complicates 

assessment of effects on water quality and biota (Spencer et al., 2008). Mining activities at 

North American Tungsten are associated with elevated concentrations of Al, As, Cr, Cu, Fe, 

Pb, Mn and W and shifts in biological communities downstream of the tailings ponds [Spencer 

et al., 2008; Bowman et al., 2010; Scrimgeour, 2013; Thomas et al., 2013 (Chapter 4)].  

Canadian Zinc Corporation has an advanced exploration mine (Prairie Creek mine) located 

along Prairie Creek (~45 km upstream of the confluence with the South Nahanni River) in the 
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eastern portion of the South Nahanni River watershed (61°33', 124°47'; Figure 1.2). Prairie 

Creek is underlain primarily by limestone and dolostone with mineralized veins containing 

zinc, lead, copper, and silver sulfides (Halliwell & Catto, 2003). Prairie Creek flows through 

canyons in the upper and lower reaches, which results in lower suspended sediments compared 

to other rivers in the South Nahanni River watershed (Halliwell & Catto, 2003). Measurements 

of flow taken from upstream of Virginia Falls ranges from 0.5 m3/s in the winter to 30 m3/s in 

the summer (EC, 1991). The Prairie Creek mine was started in the 1950’s with a mill complex 

and tailings ponds constructed in the 1980s. Due to financial difficulties, the mine shut down in 

1982 and was not re-started until 1991 when operation was taken over by Canadian Zinc 

Corporation which later began advanced exploration of Ag, Cu, Pb and Zn. All exfiltrate from 

exploration is pumped into a polishing pond; the overlying water from the polishing pond is 

drained into a catchment pond and then diverted directly into Prairie Creek via Harrison Creek 

(Figure 1.3B). Mining activities at Prairie Creek mine are associated with elevated 

concentrations of Al and Zn and shifts in biological communities such as macroinvertebrates 

and benthic algae adjacent to and downstream of the mine (Spencer et al., 2008; Bowman et 

al., 2010; Scrimgeour, 2013).  

 
1.6 The use of algal communities for biomonitoring 

Current monitoring programs for rivers and lakes typically rely on assessment of chemical 

and/or biological conditions. Measurements of water chemistry are easy to obtain; however, 

ability to detect long-term trends is limited by the spatial resolution and temporal frequency at 

which samples are collected. Water chemistry measurements do not provide direct information 

about changes occurring within the biotic communities. They also capture information over 

much shorter timescales compared to biota and thus may be less able to capture signals of 
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pulses of nutrients or contaminants that occur between sampling episodes. (Reavie et al., 2006; 

Lambert et al., 2008). Macroinvertebrates and fish communities are often used in 

biomonitoring programs, nevertheless they too have limitations. Fish move throughout their 

environment and thus may not reflect changes in physical and chemical conditions at the 

sampling site. They may not be plentiful in all ecosystems and thus sampling may be 

deleterious to the overall populations in an area. Fish also do not provide an early warning of 

possible impairment (Kilgour et al., 2007). Macroinvertebrates are more sedentary than fish; 

however, they do not necessarily track changes in all contaminants (e.g., nutrients; Resh, 

2008).  

Among the numerous aquatic ecosystem components that can be monitored (e.g., water 

chemistry, algae, macroinvertebrates, fish), benthic algae possess many features that 

predispose them to be effective sentinels of changes in water quality and ecological status of 

lakes and rivers caused by anthropogenic disturbances [(Reavie & Smol, 1998; Rott et al., 

1998; Hill et al., 2000b; Leland & Porter 2000; Thomas et al., 2011 (Chapter 2 of this thesis), 

2013 (Chapter 4)]. As primary producers, benthic algae play important roles in the structure 

and function of aquatic foodwebs (Sabater & Admiraal, 2005; Resh, 2008). Benthic algal 

communities are abundant, widespread, and diverse, and so require a relatively low amount of 

sampling effort during field collection to obtain useful ecological information (Biggs & Kilroy, 

2000; Resh, 2008). They can rapidly assimilate pulses of nutrients due to their rapid potential 

growth rate, and, due to their short generation time, can respond quickly to changes in climate 

and anthropogenic disturbances. For these reasons, benthic algae are considered to be early 

warning indicators of environmental and ecological change (Sabater & Admiraal, 2005). Also, 

benthic algal communities accrue in aquatic systems over time periods spanning several weeks 
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to months, and so can store information about influential events and changes for substantial 

periods of time. To better understand the cumulative effects of climate change and 

anthropogenic alteration on aquatic ecosystems, it is essential that monitoring programs 

measure biotic metrics that track changes in the structure and functioning of the biological 

communities in relation to shifting physical and chemical conditions. Despite these features 

that suggest benthic algal communities possess distinct advantages compared to other biota, 

they are not widely used in bioassessments of lake and river conditions. Monitoring lower 

trophic levels can be more cost-effective and can serve as surrogates for ecological status of 

higher trophic levels (Kilgour et al., 2005; Rhea et al., 2006). 

 
1.7 Objectives of study  

The overall objectives of this study were to develop and assess the use of benthic algae for 

biomonitoring of water quality and ecological integrity in selected Canadian lakes and rivers. 

To do this, several different levels of analyses (or metrics) of benthic algal communities (e.g., 

visual assessments, biomass assessments, taxonomic assessments, and the novel approach of 

pigment quantification) were assessed for effectiveness as biomonitoring tools. The research in 

this thesis was conducted in two different areas of Canada. In the Muskoka-Haliburton area of 

Ontario, effects of shoreline development were assessed on water quality and benthic algal 

communities in the nearshore zones of lakes. In the South Nahanni River watershed, NWT, 

effects of industrial development were assessed on the water quality and benthic algal 

communities in rivers downstream of two mines.  

In the Muskoka-Haliburton area of Ontario, we adapted and applied benthic algal 

biomonitoring protocols, developed originally in rivers, for use in the nearshore zone of lakes. 

The lakes possess generally good water quality (oligo- to meso-trophic), but recreational uses 
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and increasing shoreline development threaten to degrade environmental quality. Thus, 

development of effective nearshore biomonitoring protocols was considered a priority by the 

Ontario Ministry Of Environment (OMOE) for surveillance and protection of lakes with good 

water quality and recreational potential. The overall goal was to assess if benthic algal 

communities were affected by differences in shoreline development and if a range of benthic 

algal metrics could discriminate differences in sites located along a gradient of shoreline 

development in oligo- to meso-trophic Precambrian Shield lakes. Specifically, we examined 

and compared five levels of benthic algal bioassessment. Four of the levels were adapted from 

the National Institute of Water and Atmospheric research (NIWA) stream monitoring program 

(Biggs & Kilroy, 2000), and one, based on quantification of photosynthetic pigments by High-

Performance Liquid Chromatography (HPLC), is new to agency-based biomonitoring. The five 

levels differed in the amount of time, effort, and expertise required for field and laboratory 

procedures.  

In the South Nahanni River watershed, we used established benthic algal biomonitoring 

protocols for taxonomic assessments and HPLC analysis of algal pigments. The South Nahanni 

River watershed is considered to be pristine. However, two mining operations within the 

watershed pose a potential threat to downstream water quality within the Nahanni National 

Park Reserve. The goals of this study were to: 1) characterize the benthic algal communities at 

undisturbed reference sites across the watershed and their relationship with physical and 

chemical conditions of their surrounding environment; 2) assess the potential for the use of 

photosynthetic pigment concentration as a bioassessment tool compared to traditional 

taxonomic assessments; 3) develop a RCA model for benthic algal communities and apply it to 

assess if communities are altered, downstream of two mining companies.  
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1.8 Outline of the thesis 

This thesis began as a study in partnership with the OMOE to assess biomonitoring tools for 

detecting effects of nearshore development on benthic algal communities. From there, it 

expanded into a larger project in partnership with Parks Canada Agency to assess 

biomonitoring tools for detecting effects of mining on benthic algal communities using the 

RCA. The overall objectives of this thesis are to develop, apply, and assess benthic algal 

biomonitoring protocols for use in the nearshore zone of lakes and rivers in Canada. This was 

done by assessing different levels of analysis (e.g., visual assessments, taxonomic assessments, 

and the novel approach of pigment quantification) of benthic algal communities for 

effectiveness as biomonitoring tools.  

This thesis is divided into four ‘data chapters’ (chapter 2 – 5) which were prepared as 

independent articles for publication in scientific journals. Chapter 2 was published in the 

Journal of Lake and Reservoir Management (Thomas et al., 2011). Chapter 3 will be submitted 

to Hydrobiologia, after receiving feedback from the examination committee. Chapter 4 was 

published in Environmental Monitoring and Assessment in 2013 (Thomas et al., 2013), and 

Chapter 5 will be submitted to Freshwater Biology or Freshwater Science, after receiving 

feedback from the examination committee. The citation for each chapter is listed below: 

 
Chapter 2: Thomas KE, Kluke A, Hall RI, Paterson AM, Winter JG. 2011. Assessment of 

benthic algal biomonitoring protocols to evaluate effects of shoreline development on the 

nearshore zone of Precambrian Shield lakes in Ontario. Lake and Reservoir Management, 27, 

398-413. DOI 10.1080/07438141.211.633307. 
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Chapter 3: Thomas KE, Hall RI, Scrimgeour GJ. Relations between limnological conditions 

and composition of benthic algal communities in the South Nahanni River watershed, NWT 

(Canada): defining the reference condition. Hydrobiologia. In preparation. 

 
Chapter 4: Thomas KE, Hall RI, Scrimgeour GJ. 2013. Evaluating the use of algal pigments to 

assess the biological condition of streams. Environmental Assessment and Monitoring, 185(9), 

7895-7913. DOI 10.1007/s10661-013-3143-1. 

 
Chapter 5: Thomas KE, Hall RI, Scrimgeour GJ. Development of a benthic algal reference 

condition model to assess ecological integrity within the South Nahanni River watershed. 

Freshwater Biology or Freshwater Science. In preparation.  

 
In Chapter 2, a spatial survey of 28 sites in 2006 and 29 sites in 2007 within five lakes in the 

Muskoka-Haliburton area of Ontario was employed to develop and assess the ability of benthic 

algal bioassessment protocols to detect differences in shoreline development at sites within 

Precambrian-Shield lakes. In this chapter, I assessed 4 levels of benthic algal bioassessment. 

Level 1 involved visual descriptions of algal cover. Level 2 entailed biomass measurements 

(Chl-a, ash-free dry mass). Level 3 involved enumeration of algae to a coarse taxonomic level 

(i.e., the major algal classes). Level 4 involved quantification of photosynthetic pigments by 

High-Performance Liquid Chromatography (HPLC). Level 5 involved high taxonomic 

resolution enumeration of diatom communities. This chapter established a ‘best practice’ for 

benthic algal biomonitoring in Precambrian-Shield lakes. As well, the knowledge gained from 

this study is being used in an ongoing project on the bioassessment of cumulative effects on 

nearshore periphyton communities within the Muskoka River watershed. Chapter 2 was based 
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on the published paper; however minor changes were made to the terminology to be consistent 

throughout the thesis. Original water chemistry data is located in Appendix A. 

In Chapter 3 a double stratified random sampling design was used to select 44 reference 

sites in 2008 and 18 reference sites in 2009 (12 repeated sampling from 2008, 6 newly sampled 

in 2009) from across the South Nahanni River watershed, NWT that lack proximate human 

activities. In this chapter, the physical and chemical conditions across the watershed were 

assessed and related to the benthic algal communities. The merits of 3 levels of benthic algal 

communities (benthic algal community composition, diatom community composition, and 

photosynthetic pigment concentration) for bioassessment, specifically their relative sensitivity 

to the physical and chemical variables was also assessed. This study provided important 

baseline information about the benthic algal communities in light of increasing industrial 

development within the South Nahanni River watershed. Original water chemistry data is 

located in Appendix B. 

Chapter 4 used a gradient design to assess how benthic algal communities along a 10.5 km 

stretch of the Flat River, were affected by a fully-operating Tungsten mine (Cantung mine, 

NWT). This study compared the sensitivity of the more traditional benthic algal taxonomic 

assessments (to Class or Family level) with quantification of photosynthetic pigment 

concentration as a biomonitoring approach. The relative costs of each method were assessed 

and recommendations were made based on the relative merits of the methods. The results of 

this study will help establish quantification of photosynthetic pigment concentration as a viable 

biomonitoring tool for river monitoring downstream of metal mines in Canada. This chapter 

was based on the published paper; however, minor changes have been made to the terminology 

to be consistent throughout the thesis. 
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In Chapter 5, a double-stratified random sampling design, applied to the South Nahanni 

River watershed, was used to select 44 reference sites in 2008 and 18 reference sites in 2009 

(12 repeated sampling from 2008, 6 newly sampled in 2009). Reference sites were located 

upstream of two mining companies and in other streams located throughout the watershed. 

Reference sites were comparable to test sites downstream of 2 mining companies in the South 

Nahanni River watershed sites (n = 13 and n = 8 along Flat River and Prairie Creek 

respectively). Reference condition approach models were created for each of three algal 

metrics (benthic algal community composition, diatom community composition and 

photosynthetic pigment concentration) and used to evaluate the ecological health of streams 

downstream of the two mining companies. The three RCA models and resulting test site 

assessments were used to make comparisons of the ability of the three algal metrics to reflect 

changes in water chemistry. 

 
1.9 Major contributions of contributing authors 

Chapters Contributing Authors 

Chapter 2  

Idea and planning: KE Thomas, A Kluke, RI Hall, AM Paterson, JG Winter 

Field work: KE Thomas, A Kluke, RI Hall 

Laboratory analyses: KE Thomas, A Kluke, except water chemistry samples which 

were analyzed at the OMOE’s Dorset Environmental Science 

Center 

Data analysis and Figures: KE Thomas 

Writing: KE Thomas (body of the text), RI Hall, AM Paterson, JG 

Winter (comments and assistance with text) 

Chapter 3  

Idea and planning: KE Thomas, RI Hall, GJ Scrimgeour 

Field work: KE Thomas, GJ Scrimgeour 
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Chapters Contributing Authors 

Laboratory analyses: KE Thomas, except water chemistry samples which were 

analyzed at Environment Canada’s National Laboratory for 

Environmental Testing, Burlington, Ontario and physical data 

which was provided by Parks Canada Agency. 

Data analysis and Figures: KE Thomas 

Writing: KE Thomas (body of the text), RI Hall, GJ Scrimgeour 

(comments and assistance with text) 

Chapter 4  

Idea and planning: KE Thomas, RI Hall, GJ Scrimgeour 

Field work: KE Thomas, GJ Scrimgeour 

Laboratory analyses: KE Thomas, except water chemistry samples which were 

analyzed at Environment Canada’s National Laboratory for 

Environmental Testing, Burlington, Ontario and physical data 

which was provided by Parks Canada Agency. 

Data analysis and Figures: KE Thomas 

Writing: KE Thomas (body of the text), RI Hall, GJ Scrimgeour 

(comments and assistance with text) 

Chapter 5  

Idea and planning: KE Thomas, RI Hall, GJ Scrimgeour 

Field work: KE Thomas, GJ Scrimgeour 

Laboratory analyses: KE Thomas, except water chemistry samples which were 

analyzed at Environment Canada’s National Laboratory for 

Environmental Testing, Burlington, Ontario and physical data 

which was provided by Parks Canada Agency. 

Data analysis and Figures: KE Thomas 

Writing: KE Thomas (body of the text), RI Hall, GJ Scrimgeour 

(comments and assistance with text) 
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1.10 Figures 

 

Figure 1.1 Map showing the location of the study area in south-central Ontario and the 

approximate locations of the study sites (n = 29) in the 5 study lakes. 
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Figure 1.2 Location of study sites within the South Nahanni River watershed, Northwest 

Territories, Canada. A total of 44 reference sites (grey) were selected in 2008 and 18 reference 

sites (grey) in 2009 (12 repeated sampling from 2008; 6 newly sampled in 2009) and 20 test 

sites (black) were sampled between 2008 and 2009. Inserts show sites downstream of two 

mining companies, North American Tungsten (Cantung mine) and Canadian Zinc Corporation 

(Prairie Creek mine). 
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Figure 1.3 Mining companies located within the South Nahanni River watershed. A) North 

American Tungsten, Cantung mine located along Flat River showing location of site 0.01 km 

along Flat River, tailings ponds, mill and Flat River (Photo Dana Haggarty). B) Canadian Zinc 

Corporation, Prairie Creek mine located along Prairie Creek, showing location of confluence of 

Harrison Creek (HC) and Prairie Creek (PC), polishing and catchment ponds and mill. 
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Chapter 2 

Assessment of benthic algal biomonitoring protocols to evaluate effects of shoreline 

development on the nearshore zone of Precambrian Shield lakes in Ontario 

 

2.1 Overview 

 

We assessed the ability of benthic algal biomonitoring protocols, for use in the littoral zone of 

oligo- to meso-trophic Precambrian Shield lakes in south-central Ontario, to detect effects of 

differences in shoreline development. The study sites (n = 28 in Aug. 2006, n = 29 in Aug. 

2007) spanned a broad gradient of shoreline development (e.g., intact forest, cottages, marinas) 

but a modest gradient of nutrient concentration (3-22 µg/L TP). Each site was sampled for 

water chemistry (nutrients, ions, metals, pH) and 5 levels of benthic algal bioassessment, 

differing in the amount of time, resources and expertise required. Level 1 involved visual 

descriptions of algal cover. Level 2 involved biomass measurements (Chl-a, ash-free dry 

mass). Level 3 involved enumeration of algae to a coarse taxonomic level (i.e., to class or order 

level). Level 4 involved quantification of photosynthetic pigments by High-Performance 

Liquid Chromatography. Level 5 involved high taxonomic resolution enumeration of diatom 

communities. Multi- and uni-variate numerical analyses (e.g., PCA, ANOSIM, ANOVA) were 

used to assess relationships between measurements of shoreline development, water chemistry, 

and benthic algal metrics. Results identified that Level 5 was the most sensitive to track 

differences in the shoreline development among sites. For lakes on the Precambrian Shield, we 

suggest that benthic algal biomonitoring programs focus on Level 5, despite the higher 

requirements of time and technical skill/training. We further recommend that the other levels 

of bioassessment be explored further in other regions where broader gradients of shoreline 

development and lake trophic status exist.  
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2.2 Introduction 

As human development increases, so too does the need to improve scientific methods to detect 

and quantify degradation of water quality and ecological integrity. This study was designed in 

partnership with the Ontario Ministry of Environment (OMOE) to provide a scientific 

foundation for a long-term, nearshore biomonitoring program based on benthic algae. To date, 

monitoring programs in lakes have commonly focused on characterizing the chemical and 

biological conditions (e.g., water chemistry, chlorophyll-a concentration, phytoplankton and 

zooplankton metrics) at a central, open-water (or, pelagic) location (King et al., 2006). There 

has been relatively little emphasis on monitoring conditions in the littoral zone of lakes based 

on benthic algae, despite the fact that the littoral zone is often the first to receive influences of 

human activities and that benthic algae often contribute importantly to primary production in 

lakes (Vadeboncoeur et al., 2001, 2003).  

The ability to detect long-term trends in chemical water quality is often limited by the 

spatial resolution and temporal frequency of sample collection. For example, water samples are 

commonly collected at widely spaced intervals in time, such as monthly, annually, or even less 

frequently (Reavie et al., 2006). Furthermore, water chemistry samples do not provide direct 

information about changes occurring in biotic communities, though laws and policies that 

protect water quality are commonly based on the underlying principle that they will minimize 

undesirable biological changes (Loeb, 1994; Reavie et al., 2006; Lambert et al., 2008).  

Benthic algae (or, periphyton) are potentially useful biomonitors. They live attached to 

substrata in the littoral zone of water bodies (Graham & Wilcox, 2000), and they are abundant 

in most aquatic systems (Vadeboncoeur et al., 2001, 2003), a feature that ensures sufficient 

sample size can be obtained efficiently (Biggs & Kilroy, 2000; Resh, 2008). Benthic algae play 
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important roles in the structure and function of aquatic foodwebs (Resh, 2008), and they 

respond rapidly to environmental changes. Their taxa possess well-defined growth optima 

along environmental gradients, and they integrate water-quality information over useful time 

scales (weeks to months; Biggs & Kilroy, 2000; Lavoie et al., 2008a; Resh, 2008). Moreover, 

benthic algae are often the first biological group to intercept nutrients delivered from adjacent 

lands (Hansson, 1988) and, therefore, may respond quickly and sensitively to shoreline 

development. Importantly, biota can rapidly assimilate pulses of nutrients (e.g., after 

precipitation events) and maintain a “record” of their effects. In contrast, spot water chemistry 

measurements may be less likely to capture these signals, because waves and currents dilute 

pulsed nutrients with offshore waters. Thus, assessment of benthic algae in the littoral zone 

may provide an early warning of degradation due to human activities (Jacoby et al., 1991; 

Poulíčková et al., 2004). As presented below, long-term monitoring programs that collect and 

analyze benthic algae have the potential to complement many of the shortcomings of programs 

based on water sampling alone. 

The past 20 years have seen pronounced development of benthic algal biomonitoring 

protocols for use in rivers [e.g., Europe (Comité Européen de Normalisation - CEN, 2003, 

2004), New Zealand (National Institute of Water and Atmospheric Research - NIWA; Biggs & 

Kilroy, 2000) and the USA (Environmental Protection Agency - EPA; Stephenson & Bahls, 

1999). These protocols provide useful and sensitive measures of changes due to human 

activities in watersheds of rivers (Biggs & Kilroy, 2000). However, benthic algal 

biomonitoring protocols have not yet been widely adapted for use in lakes. A few studies have 

employed relatively crude levels of assessment, such as estimates of biomass [e.g., 

chlorophyll-a concentration (chl-a) and ash-free dry mass (AFDM)], but standardized 
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protocols have not yet been developed for lakes in Canada (King et al., 2006; Lambert & 

Cattaneo, 2008; Lambert et al., 2008; Rosenberger et al., 2008).  

Here, we adapted and applied benthic algal biomonitoring protocols, developed originally in 

rivers, for use in the nearshore zone of lakes located on the Precambrian Shield in south-central 

Ontario. The lakes possess generally good water quality (oligo- to meso-trophic), but 

recreational uses and increasing shoreline development threaten to degrade environmental 

quality. Thus, development of effective nearshore biomonitoring protocols was considered a 

priority by the OMOE for surveillance and protection of lakes with good water quality and 

recreational potential. Our overall goal was to assess if benthic algal communities were 

affected by differences in shoreline development and if a range of benthic algal metrics could 

discriminate differences in the algal communities along a gradient of shoreline development in 

oligo- to meso-trophic Precambrian Shield lakes. Specifically, we examined and compared 5 

different levels of benthic algal bioassessment, which are described in detail in the Methods 

section. Four of the levels were adapted from the NIWA stream monitoring program (Biggs & 

Kilroy, 2000), and one based on quantification of photosynthetic pigments by High-

Performance Liquid Chromatography (HPLC; Level 4, below) is new to agency-based 

biomonitoring. The 5 levels differed in the amount of time, effort and expertise required for 

field and laboratory procedures. The specific questions addressed were: do water chemistry 

variables measured in the nearshore region of lakes differ among sites due to differences in the 

amount of shoreline development; do nearshore benthic algal metrics differ due to differences 

in the amount of shoreline development; and which levels of bioassessment are most effective 

at discriminating these differences.  
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2.3Methods 

 

2.3.1 The five levels of benthic algal bioassessment 

 

Level 1 bioassessment (“rapid visual assessment”) characterized visual attributes (e.g., colour, 

texture, length of filaments, and thickness of mats) of the benthic algal mats, recorded as 

percent cover. Level 2 (“biomass assessment”) estimated biomass using rapid and routine 

methods to quantify Chl-a concentration and AFDM. Level 3 (“benthic algal community 

composition”) assessed benthic algal community composition to a coarse taxonomic level (e.g., 

class or order level, such as Bacillariophyta, Chroococcales, Nostocales). Level 4 

(“photosynthetic pigment concentration”) quantified concentrations and composition of 

photosynthetic pigments, and represents a relatively new, rapid, and time- and cost-effective 

method for benthic algal bioassessment. Level 5 (“diatom community composition”) 

determined community composition of diatom algae to the finest taxonomic level possible 

(e.g., species, sub-species or variety). 

 

2.3.2 Study sites 

 

Samples were collected from lakes located in the Muskoka-Haliburton region of Ontario, a 

region which has received seasonal recreational use for many decades (Figure 2.1). The lakes 

are situated on the Precambrian Shield and are acid-sensitive, soft water and oligo- to meso-

trophic in nature (Chapman & Putnam, 1984; Girard et al., 2006). Human development along 

the shorelines varied from minimal (forested and protected areas) to extensive (high-use 

resorts, golf courses and marinas; Table 2.1).  

A total of 28 sites were sampled along shorelines of 5 lakes (Dickie Lake, Lake Joseph, 

Lake Muskoka, Lake Rosseau, and Three Mile Lake; Figure 2.1) in August 2006 and 2007 

(with an additional site in 2007, n = 29). The sites were selected to span a range of type and 
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intensity of shoreline development. The type and amount of shoreline development, 

characterized along a 100-m long, 50-m wide riparian strip directly adjacent to the site, was 

recorded to assess the influence of terrestrial development on water chemistry and benthic algal 

metrics at each site. Each site was placed into 1 of 3 shoreline development categories: low 

(forested shoreline in pristine to sparsely-cottaged areas); medium (high density of cottages 

with developed shoreline; i.e., lawns, constructed beach or shoreline); or high (resorts, marinas, 

golf courses, and trailer parks; Table 2.1). Similar shoreline development categories have been 

applied successfully in biomonitoring studies (Lambert & Cattaneo, 2008; Lambert et al., 

2008; Rosenberger et al., 2008). These categories were used in multi- and uni-variate analyses 

of the data to assess if water chemistry variables and benthic algal metrics differed among the 

shoreline development categories. 

To assess possible differences in meteorological conditions between the sampling years 

(2006, 2007), seasonal and inter-annual variation in precipitation, temperature, and wind speed 

were compared relative to average climatic conditions (precipitation and temperature: 1939-

2006; wind speed: 1996-2005), using data from Muskoka Airport (Bracebridge, ON). The 

Muskoka-Haliburton area of Ontario experienced average to slightly above average 

temperatures during 2006 and 2007. Monthly precipitation was above average in July of 2006 

and 2007, while precipitation in August was half the normal amount in 2006 and average in 

2007 (Figure 2.2). Daytime (5:00 am to 9:00 pm) hourly wind speed data were compiled 

during June to August for the years 1996-2005, and the 90
th

 (19 km/hr) and 95
th

 (22 km/hr) 

percentiles were calculated. The total number of hours that wind speeds exceeded the 90
th

 and 

95
th

 percentiles was higher during the sampling period in 2007 (29 hrs, 11 hrs, respectively) 

than in 2006 (3 hrs, 0 hrs, respectively). However, the number of times wind speeds exceeded 
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the 90
th

 and 95
th

 percentiles did not differ markedly between the study years during the two-

week period prior to field sampling (14 hrs, 4 hrs in 2006 versus 12 hrs, 1 hr in 2007, 

respectively). 

 

2.3.3 Sample collection  

 

At each site, samples were collected for analysis of water chemistry and benthic algae along a 

9-m long transect positioned parallel to the shoreline at 40-60-cm water depth. Each transect 

was divided into 9 contiguous 1-m diameter circular plots in order to capture the variation 

within a site (or, transect; Figure 2.3).  

 

2.3.3.1 Water chemistry and environmental variables 

 

At each site, water samples (1 L) were collected from all 9 of the plots along a transect and 

pooled into a 9 L “site composite” sample. Water from the composite samples was filtered 

through an 80-µm Nitex mesh to remove zooplankton and other large particles, and then 

analyzed for a suite of chemical variables by the OMOE’s Dorset Environmental Science 

Center following standard methods (OMOE, 1983; Janhurst, 1994). Water chemistry variables 

included concentrations of ions (Ca
2+

, Cl
-
, K

+
, Mg

2+
, Na

+
, SO4

2-
), nutrients 

(ammonium/ammonia, nitrate/nitrite, TKN, and TP), reactive silicate (SiO3
2-

), dissolved 

organic carbon (DOC), metals (Al, Ba, Fe, Pb, Mn, Sr, and Zn), and colour, Gran alkalinity, 

pH, and conductivity. To assess if nearshore water chemistry conditions tracked differences in 

shoreline development or were strongly influenced by offshore waters, selected variables were 

compared between nearshore and offshore sites of each lake (data from pelagic sites was 

provided by OMOE). The light extinction coefficient of photosynthetically active radiation 

(Kdpar) was estimated in 2007 only using an Apogee Instruments Quantum meter (Model 
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QMSS-SUN). Three measurements of PAR were recorded at approximately 5-depth intervals 

per site and were used to calculate Kdpar following methods outlined in Wiklund et al., (2010).  

 

2.3.3.2 Benthic algal sampling 

 

Level 1 bioassessment (rapid visual assessment) was conducted at all 9 contiguous 1-m 

diameter plots along each transect. In contrast, samples for Levels 2-5 were collected at every 

second plot along the 9-m transect (plots 1, 3, 5, 7 and 9; Figure 2.3). We sampled benthic 

algae from cobbles or boulders wherever possible to reduce noise due to confounding influence 

of different substrate types. Sand substrates were sampled for analysis at 9 sites where cobbles 

and boulders were not present (2 sites at Three Mile Lake, 3 sites at Lake Rosseau, 2 sites at 

Lake Muskoka and 2 sites at Lake Joseph). Benthic algal samples were removed and collected 

from rock and cobble substrates using a 2.6-cm internal diameter syringe sampler fitted with a 

toothbrush head (used to dislodge the algae from the substrate) and an attached second syringe 

was used to obtain the dislodged algal slurry (Lobe, 1981). For the 9 sites that lacked cobbles 

or boulders, benthic algae were collected from sand using an inverted Petri dish (surface area = 

25-cm
2
) and spatula to obtain the top sediments (< 1-cm). At each plot within a transect (i.e., 

plots 1, 3, 5, 7, and 9; Figure 2.3), three “replicate samples” were obtained from distinct areas 

of the plot (i.e., from either three cobbles or three different sand samples) and were pooled into 

one 500 mL bottle. This comprised one “plot sample.” At each site, these plot samples (five 

plots per transect) were diluted to a volume of 350 mL with distilled water. An aliquot of 20 

mL was removed from each plot sample and pooled to create one site composite sample for 

each site (100 mL/site). Collection of algal samples for levels 2-5 bioassessment required 

approximately 1 h in the field. 
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2.3.3.3 Level 1: Rapid visual assessment 

 

Rapid visual assessments were carried out by modifying protocols developed by NIWA for 

monitoring streams in New Zealand (Biggs & Kilroy, 2000). Laminated charts of benthic algal 

growth forms and colour (from Biggs & Kilroy, 2000) were taken into the field and used for 

rapid identification of benthic algal growth types based on visual appearance (colour, texture, 

filament length, mat thickness). Data for Level 1 were recorded as percent cover. Collection of 

the rapid visual assessment data required approximately 15 min at each site.  

 

2.3.3.4 Level 2: Biomass assessment 

Samples for determination of Chl-a concentration and AFDM of the benthic mats were 

obtained in 2007 by combining sub-samples (50 mL) from each of the five plot samples at a 

site into one composite sample (250 mL). These samples were then filtered onto GF/F glass 

fiber filters for Chl-a determination and onto pre-ashed and pre-weighed GF/C glass fiber 

filters for determination of AFDM. The filters were wrapped individually in aluminum foil and 

stored at -20 °C until analyzed. Analysis of Chl-a was performed by the OMOE, Dorset 

Environmental Science Center, while the AFDM samples were analyzed at the University of 

Waterloo, following standard protocols (Stainton et al., 1977; Biggs & Kilroy 2000). 

 

2.3.3.5 Level 3: Benthic algal community composition  

 

The samples for benthic algal community composition were prepared by sub-sampling 1.5 mL 

of well-mixed composite sample from each site into an Utermöhl chamber and diluting to 3 mL 

with deionized water. The benthic algae were allowed to settle for 24 h and were enumerated 

using an inverted microscope at 400x magnification. Approximately 300 organisms per sample 

were counted to a coarse taxonomic level (e.g., class and order such as, Bacillariophyta, 
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Chroococcales, Nostocales, Oedogoniales, Desmidiales) following nomenclature of Prescott 

(1951) and Wehr & Sheath (2003). Single-celled algae and cells in colonies were tallied as 

individual cells, while filaments consisting of multiple cells were tallied as one organism or 

“count,” following methods of Biggs & Kilroy (2000). Counts were completed rapidly (within 

1-2 h) with a relatively low level of initial training (e.g., 1-3 d). 

 

2.3.3.6 Level 4: Photosynthetic pigment concentration 

Samples for the analysis of photosynthetic pigment concentration were obtained by combining 

sub-samples (50 mL) from each of the five plot samples at a site into one composite sample 

(250 mL). The samples were then filtered onto GF/F glass fiber filters, wrapped in aluminum 

foil, and stored at -20°C until analysis at the University of Waterloo. Filtered samples for 

HPLC analysis were extracted in a mixture of acetone:methanol:water (80:15:5 by volume) for 

24 h in the dark at -20°C. Samples were then filtered (0.22 µm PTFE syringe filter) to remove 

the filter paper and other impurities, dried under inert gas (N2) and re-eluted in injection 

solution consisting of an acetone:ion pairing reagent:methanol solution (70:25:5 by volume). 

The Ion-Pairing Reagent (IPR) solution consisted of 0.75 g tetrabutylammonium acetate and 

7.7 g ammonium acetate in 100 mL of water. The re-eluted samples (500 μL) were injected 

into a Waters HPLC, which ran on a reverse-phase procedure following the methods of Leavitt 

et al., (1989) as modified from Mantoura & Lleywellyn (1983), with a Waters 2998 PhotoDiod 

Array (PDA) detector, Waters 2475 Multi λ fluorescence detector, and a Symmetry C18 

column (3.5 µm, 4.6 x 75 mm). The separation of the pigments was through a gradient delivery 

of mobile phase A and B [mobile phase A: methanol and IPR (90:10 by volume); mobile phase 

B: methanol and acetone (73:27 by volume)]. The column was equilibrated and calibrated for 

10 minutes prior to the first sample injection of each run. Sudan II, calibration solution and a 
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geranium sample standard were analyzed at the beginning and end of each run to account for 

any noise or shift in the pigment peaks during the run. Sudan II was also run as an internal 

standard in each sample of algal pigments to account for any dilution and injection errors 

(Leavitt & Findlay, 1994). Pigments were identified by comparing the spectral characteristics 

of each pigment to standards from Jeffery et al., (1997), as well as by the chromatographic 

mobility of the pigments (i.e., elution time; Leavitt et al., 1989). Data were expressed as 

nMoles of pigment per cm
2
 of substrate. 

 

2.3.3.7 Level 5: Diatom community composition  

 

The diatom community composition consisted of counting benthic diatom algae to the finest 

possible level (e.g., species, subspecies or variety). Diatoms were chosen in accordance with 

established NIWA protocols (Biggs & Kilroy, 2000). Also, prepared microscope slides for 

diatom enumeration preserve for many decades or longer, and so provide a useful archive for 

long-term monitoring programs (Smol & Stoermer, 2010). Samples for high-resolution diatom 

counts were prepared by measuring 15 mL of each sample preserved with Lugol’s solution into 

individual test tubes, allowing the algae and other materials to settle to the bottom for 24 h 

before removing two-thirds of the supernatant and replacing it with de-ionized water. This 

sequence of settling for 24 h, followed by removal of supernatant and replacement with de-

ionized water, was repeated until all the Lugol’s preservative was removed. The samples were 

then oxidized using 30% hydrogen peroxide at room temperature for 1 week. Acid residues 

were removed by rinsing repeatedly with deionized water after diatom valves were allowed to 

settle for 24 h, until a neutral pH was reached. The resulting cleaned slurries of diatoms in 

water were dried onto circular coverslips and mounted onto microscope slides with Naphrax 

mounting medium. Approximately 300-500 diatom valves were counted per sample using a 
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compound light microscope at 1000x magnification (Zeiss Axioskop 2Plus, numerical aperture 

= 1.30). Taxonomic identifications relied upon Krammer & Lange-Bertalot (1986-1991) and 

Lavoie et al., (2008b). Data were expressed as taxon relative (%) abundances of the total 

diatom sum. Diatom analyses required 2-5 h per sample, and a relatively high level of initial 

training (~1 mo). 

 

2.3.4 Numerical analyses 

Principal Components Analysis (PCA) of the water chemistry data was used to explore the 

main patterns of differences in chemical conditions among the study sites. Analysis of 

Similarities (ANOSIM) tests were used to: 1) determine if water chemistry conditions differed 

significantly among the shoreline development categories, and 2) determine if water chemistry 

conditions differed among the study lakes where each site was located (i.e., Dickie Lake, Lakes 

Rosseau, Joseph and Muskoka, and Three Mile Lake). All ANOSIM tests were performed 

using the software PRIMER version 6. Prior to analysis, all non-normal water chemistry data 

were ln(x+1) transformed. As well, prior to ANOSIM tests, water chemistry variables were 

standardized and then matrices were calculated based on Euclidean distances. Separate 

numerical and statistical analyses were carried out for the 2006 and 2007 field seasons. PCA 

ordinations were performed using CANOCO version 4.5 software.  

Paired t-tests were performed on selected water chemistry variables to assess if nearshore 

and offshore conditions differed in the lakes. For the paired t-tests, nearshore values were 

obtained by averaging the values for all nearshore sites within each lake (i.e., Dickie Lake, 

Lakes Joseph, Rosseau and Muskoka, and Three Mile Lake). Three Mile Lake consists of 2 

distinct embayments (Main basin and Hammell’s Bay) that differ in offshore water chemistry 

conditions, and consequently the embayments were considered as distinct sites in the paired t-
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tests. To compare with the nearshore data collected in August of 2006 and 2007, available data 

from the end of July to the end of August were averaged from the offshore sites in both study 

years. However, water chemistry data were collected only in the spring of 2006 or 2007 at 

offshore sites of Lakes Joseph, Rosseau, and Muskoka (Lake Muskoka = 2006 and Lakes 

Joseph and Rosseau = 2007), and we used these data for those sites. 

Benthic algal bioassessment levels 1, 3, 4 and 5 were analyzed using PCA ordinations to 

explore the main patterns of difference in community composition among sites. PCA 

ordinations were performed using CANOCO 4.5. One-way ANOSIM tests of significance were 

used to determine if community composition differed significantly among shoreline 

development categories. The one-way ANOSIM analyses were based on Bray-Curtis similarity 

matrices calculated using PRIMER version 6. Prior to all analyses, the biological data were 

square-root (Levels 1, 3, and 5) or ln(x+1) (Level 4) transformed to down-weight the influence 

of the most abundant taxa and to equalize variances. Analyses of the high taxonomic resolution 

algal counts used only taxa with ≥ 1% relative abundance in at least 1 sample. For all lakes, 

separate analyses were performed using data from 2006 and 2007.  

In addition to the multivariate analyses described above, mat thickness, a metric arising 

from the rapid visual benthic algal assessment (Level 1), was analyzed independently across all 

plot samples using a Chi-squared Goodness of Fit test. The purpose was to assess if the 

frequency of visually determined benthic algal mat thickness categories (Thick: > 3 mm, 

Medium: 0.5-3 mm, Thin: < 0.5 mm) differed among shoreline development categories. Mat 

thickness was used because a previous study had indicated that it was affected by differences in 

shoreline development (Lambert & Cattaneo, 2008). The Chi-squared test was performed using 

the software SPSS version 16.0. 
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Level 2 data (Chl-a and AFDM) were analyzed to test if biomass of benthic algal mats 

differed among the shoreline development categories. Chl-a and AFDM datasets were 

analyzed using one-way ANOVA tests on log(x+1) transformed data. Bonferroni post-hoc tests 

were used to determine which of the shoreline development categories differed significantly in 

mean Chl-a content. For all statistical tests, significance was assessed at alpha = 0.1. 

 

2.4 Results  

 

2.4.1 Water chemistry 

 

Ordination by PCA showed that water chemistry conditions did not differ markedly among the 

three different shoreline development categories in either of the study years (2006, 2007; 

Figure 2.4). Axis 1 of the PCA ordination for 2006 captured 96.4% of the total variation and 

separated study sites mainly due to differences in concentrations of ions, alkalinity, and pH. 

The second axis captured 1.4% of the variation and separated sites along a gradient of water 

colour and concentrations of DOC, nutrients (i.e., nitrate/nitrite, TKN, TP), Fe, and Mn. 

Despite the high proportion of variance explained by the first 2 PCA axes (97.8%), sample 

scores were not well separated according to the different shoreline development categories. 

Similar patterns were apparent in a comparable analysis of water chemistry data from 2007, 

though axes 1 and 2 explained different amounts of variation compared to 2006 (Figure 2.4). In 

2007, measurements of Kdpar were made, and the PCA ordination identified strong correlation 

of Kdpar with DOC concentration.  

Interestingly, one-way ANOSIM tests identified that water chemistry conditions differed 

significantly among the five study lakes (Global R = 0.57, p-value < 0.01), but did not differ 

significantly among the three categories of shoreline development (Global R = -0.02, p-value = 

0.57; Table 2.2). These findings were consistent in both study years (2006, 2007). Paired t-tests 
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of select water chemistry variables from nearshore and offshore sites confirmed these findings 

(Table 2.3). While water chemistry variables such as alkalinity, conductivity, DOC, and TKN 

did not differ significantly between nearshore and offshore sites, they were consistently lower 

or higher between the locations (i.e., −t value or +t value respectively) in both study years. 

Measures of pH were significantly different between nearshore and offshore sites in both study 

years, however, in 2006 the nearshore sites had lower pH and in 2007 they had higher pH than 

offshore sites. Concentrations of TP and SiO3 were significantly different between nearshore 

and offshore sites in one of the two study years, but not consistently between years.  

  

2.4.2 Level 1: Rapid visual assessment 

 

In both study years, percent cover estimates from rapid visual assessment of benthic algal 

cover did not discriminate effectively among the 3 categories of shoreline development, as 

assessed by PCA ordination (Figure 2.5). Axis 1 of the PCA ordination from 2006 captured 

41.0% of the total variation and separated study sites with relatively high cover of medium 

algal mats (positioned to the left) from those with relatively high cover of thin mats, colonies, 

and filaments (positioned to the right). The second axis captured 18.3% of the variation and 

separated sites with predominantly thick algal mats from all other sites. Despite the high 

amount of variation explained (59.3%), sample scores were not well separated according to the 

different shoreline development categories. Similar patterns recurred in the PCA ordination 

plot based on visual assessment in 2007. One-way ANOSIM tests of the rapid visual 

assessment data confirmed these results by identifying that differences among the shoreline 

development categories were not statistically significant during 2006 or 2007, except for the 

comparison of high and low shoreline development categories in 2006 only (p < 0.1; Table 
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2.4). Thus, the distribution of algal growth forms among plot samples at the study sites does 

not form a coherent, interpretable pattern along the gradient of shoreline development. 

Chi-square goodness of fit tests identified that the frequency distribution of thickness 

categories of algal mats, based on rapid visual assessment, differed significantly among the 

shoreline development categories (2006: Chi-square = 36.29, p = 2.53 x 10
-7

, d.f. = 4; 2007: 

Chi-square = 67.70 , p = 6.93 x 10
-14

, d.f. = 4). However, the patterns of difference did not 

appear to provide a useful basis for discriminating the shoreline development categories in both 

study years (Figure 2.6). In 2006, ‘thin’ mats (< 0.5 mm) were more frequent at sites in the low 

shoreline development category than at sites in the medium and high shoreline development 

categories, ‘medium’ mats (0.5-3 mm) were most frequent at sites in the medium shoreline 

development category, and ‘thick’ mats (> 3 mm) were most common at sites with high 

shoreline development. In 2007, the ‘thin’ and ‘medium’ mats followed a similar trend as in 

2006, however, the ‘thick’ mats were absent from the high shoreline development category. 

Only thin algal mats exhibited a consistent frequency distribution among the shoreline 

development categories in both study years, and they were most abundant at sites with low 

shoreline development but also moderately abundant at sites with high shoreline development. 

Thus, the distribution of mat thickness types did not form a coherent, interpretable pattern 

along the gradient of shoreline development in either study year. 

 

2.4.3 Level 2: Biomass assessment 

Estimates of benthic algal biomass were obtained in August of 2007 as AFDM and Chl-a. 

AFDM did not differ significantly among the shoreline development categories (AFDM; one-

way ANOVA: F = 0.45, p = 0.64, d.f. = 2, 26). Chl-a did differ significantly among the 

shoreline development categories (Chl-a: one-way ANOVA: F = 6.38, p < 0.01, d.f. = 2, 26), 
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but did not show an interpretable pattern along a gradient of shoreline development. 

Specifically, Chl-a concentrations differed significantly between sites in low- versus medium-

shoreline development categories and between sites in medium- versus high-shoreline 

development categories, based on Bonferroni post-hoc tests (p < 0.05), but not between sites in 

low- versus high- shoreline development categories (p = 1.0).  

  

2.4.4 Level 3: Benthic algal community composition 

 

Sample scores were not well separated according to the 3 shoreline development categories in 

a PCA ordination of the benthic algal community composition data from 2006 (Figure 2.7). 

Axis 1 captured 71.0% of the total variation and separated sites with high relative abundance of 

diatoms (positioned to the right) from those dominated by cyanobacteria (Chroococcales; 

positioned to the left). The second axis captured 14.1% of the total variation and identified sites 

with high relative abundance of cyanobacteria (Nostocales, Oscillatoriales; positioned high on 

axis 2) and green algae (Oedogoniales and Zygnematales). Similar patterns were evident in the 

PCA ordination plot based on the data obtained in 2007, but sample scores based on the 2007 

data were able to discriminate to some extent among the shoreline development categories 

(Figure 2.7). Specifically, sample scores from sites with high shoreline development were 

positioned low on axis 2, and generally were separated from sites in the other shoreline 

development categories and associated with lower abundance of Nostocales and higher 

abundance of Zygnematales. Accordingly, one-way ANOSIM tests identified that benthic algal 

community composition did not differ significantly among the shoreline development 

categories in 2006, but did differ significantly in 2007 (Table 2.4). In 2007, community 

composition differed significantly between the high- and low-shoreline development categories 
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and between the medium- and low-shoreline development categories, but not between the 

medium- and high-shoreline development categories.  

 

2.4.5 Level 4: Photosynthetic pigment concentration 

 

Samples collected in 2007 were analyzed for concentration and composition of photosynthetic 

pigments. Ordination of the data by PCA showed considerable overlap of sample scores from 

sites in the different shoreline development categories, mainly because sample scores from 

sites with low shoreline development were dispersed throughout the ordination space (Figure 

2.8). Sites with high- and medium-shoreline development were generally well separated. Axis 

1 of the PCA ordination explained 48.3% of the total variance and captured mainly a gradient 

of concentrations of all pigments except those from cyanobacteria. Sites with low pigment 

concentrations (many of the sites with high shoreline development and some of the low 

shoreline development sites) were positioned to the left along axis 1, whereas sites with high 

pigment concentrations (many of the sites with medium shoreline development and some of the 

low shoreline development sites) were positioned to the right. Axis 2 captured 21.1% of the 

variance, and sites with high concentrations of cyanobacterial pigments (i.e., myxoxanthophyll 

and aphanizophyll) were positioned high on axis 2. A one-way ANOSIM test identified that 

composition and concentration of pigments differed significantly between the sites in the high 

shoreline development category and those in the low- and medium-shoreline development 

categories (p < 0.1; Table 2.4).  

 

2.4.6 Level 5: Diatom community composition 

 

Compared to the other levels of benthic algal bioassessment, PCA ordination of the diatom 

community composition data resulted in better separation of site scores according to their 



   

 

38 

 

shoreline development categories, both for 2006 and 2007 (Figure 2.9). Despite a moderate 

amount of overlap, sites with high shoreline development were generally positioned to the right 

along PCA axis 1 in 2006, whereas sites with medium- to low-shoreline development were 

positioned to the left. Sites with high shoreline development tended to possess high relative 

abundance of Achnanthes hungarica, Aulacoseira ambigua, Navicula notha, Nitzschia palea, 

and Staurosirella pinnata, among others. Sites with low shoreline development tended to 

possess high relative abundance of Anomoeoneis vitrea, Cymbella descripta, Cymbella laevis, 

and Fragilaria crotonensis, among others. A PCA ordination of the 2007 data showed similar 

patterns. Diatom community composition was distinctive in Three Mile Lake (positioned to the 

right along PCA axis 1) due to high relative abundance of taxa belonging to Achnanthes, 

Fragilaria, Staurosira, and Staurosirella, and in Dickie Lake (positioned high on axis 2 in 

2006 and low on axis 2 in 2007) due to high relative abundance of taxa belonging to Eunotia 

and Nitzschia. One-way ANOSIM tests identified that community composition, based on high 

taxonomic resolution diatom counts, differed significantly between sites with low shoreline 

development and those with medium- and high-shoreline development, for both study years (p 

< 0.1; Table 2.4).  

 

2.5 Discussion 

 

Nearshore water chemistry conditions did not differ among the shoreline development 

categories. Instead, our results show that nearshore water chemistry conditions closely matched 

those at offshore locations and consistently distinguished differences among lakes. In contrast, 

benthic algal assessment at Level 5 (high taxonomic resolution diatom counts) could detect 

differences in the benthic algal communities among shoreline development categories in these 

oligo- to meso-trophic Precambrian Shield lakes, especially between highly developed (resorts, 
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golf courses, marinas) and relatively undeveloped shorelines (forested, sparse seasonal 

cottages). This finding is consistent with other studies which have shown that the abundance 

and community composition of benthic algae reflect shoreline development, whereas snapshot 

samples of nearshore water quality are strongly influenced by exchange with open water 

conditions (Lambert et al., 2008; Rosenberger et al., 2008).  

It is well known that increases in nutrient supplies can result in shifts in algal community 

composition from diatoms to those dominated by green algae and cyanobacteria, via 

degradation of water quality and changes to food webs (Rosenberger et al., 2008). 

Consequently, we anticipated that all five levels of benthic algal bioassessment would be able 

to track, to varying degrees, differences in the benthic algal communities due to differences in 

shoreline development among sites in this study, which included lakes that range from oligo- 

to meso-trophic. Interestingly, biomass assessment and coarse taxonomic level assessment 

(rapid algal counts) did not provide data of sufficient sensitivity to discriminate among the 

shoreline development categories, and results were inconsistent between the study years. 

Lambert & Cattaneo (2008) suggested that the thickness of algal mats and biomass 

measurements (i.e., Chl-a content) can be used to discriminate between developed and 

undeveloped shorelines, but our results suggest that these metrics are not sufficiently sensitive 

for use in oligo- to meso-trophic lakes, at least not based on the gradient of shoreline 

development typical of Precambrian Shield lakes in South-Central Ontario. The thickness of 

algal mat cover showed modest potential. For example, in 2006, thin mats were most frequent 

at sites with low shoreline development, medium mats were most common at sites in the low- 

and medium- shoreline development categories, and thick mats were most common at sites in 

the high shoreline development category and absent from the low shoreline development 
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category - a pattern consistent with the gradient of nutrient availability. However, this pattern 

was not repeated in 2007, and the lack of a consistent inter-annual trend in mat thickness along 

the gradient of shoreline development categories makes it a problematic metric to rely on for a 

provincial biomonitoring program. The sampling season of 2007 was characterized by a higher 

frequency of strong winds compared to 2006, with 29 hours exceeding the 90
th

 percentile of 

daytime wind speeds for the 1996-2005 decadal dataset and 11 hours exceeding the 95
th

 

percentile in 2007 compared to 3 hours and 0 hours in 2006. Also, more rain fell in 2007 

(comparable to the long-term average) than in 2006 (half the long-term average). The higher 

amount of wind and rain in 2007 suggest more storms and associated wave action in that year. 

Stronger wave action in 2007 could have resulted in the preferential removal of the thickest 

algal mats, but this factor alone likely cannot account for differences observed between 2006 

and 2007 in frequency distributions of the algal mat thickness types, because the frequency of 

thick mats increased in 2007 (relative to 2006) at sites in the low shoreline development 

category but decreased at sites in the high shoreline development category.  

Based on findings by Rosenberger et al., (2008), we anticipated that benthic algal 

community composition data (Level 3) and photosynthetic pigment concentration (Level 4) 

would be able to provide complementary, cost-effective and informative bioassessment of 

effects of shoreline development. However, we show here that rapid benthic algal counts could 

only discriminate between sites in high- and low-shoreline development categories in one of 

the two study years. The use of rapid algal counts, therefore, did not appear to provide a 

practical approach for a regional-scale biomonitoring program to identify environmental and 

ecological differences due to human activities along the nearshore zone of lakes. However, this 

finding may be influenced by the relatively modest range of lake trophic status and shoreline 
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development across the study sites. Thus, while rapid benthic algal counts did not appear to 

work well along a gradient of shoreline development in the oligo- to meso-trophic, P-limited 

lakes of our study (Molot & Dillon, 1991) that are affected mainly by summer recreational 

activities, it may prove useful in lakes that span a broader gradient of shoreline development, 

trophic status and water quality. Consequently, we suggest that similar studies should be 

undertaken in other regions to explore this level of bioassessment.  

Photosynthetic pigment concentrations (Level 4) were able to discriminate between sites in 

the high shoreline development category from those in medium- and low-shoreline 

development categories, despite that sites with moderate shoreline development had the highest 

concentrations of pigments and sites with high shoreline development had comparably lower 

pigment concentrations. Generally, human recreational activities are associated with increasing 

nutrient supply and elevated algal production. In our study, however, many of the sites with 

high shoreline development were located near marinas and resorts (highly exposed areas), 

where wave action from the strong winds of 2007, boat traffic and contact by swimmers with 

benthic surfaces may elevate benthic algal loss rates (similar to the decrease in algal mat 

thickness observed in 2007). Regardless of the mechanisms accounting for the observed 

patterns, pigment analysis appears to have limited ability to discriminate among shoreline 

development categories in these oligo- to meso-trophic lakes. As with Level 3 assessment, we 

suggest further studies explore the potential of pigment analyses in meso- to eu-trophic lakes.  

In our study, the level of bioassessment that employed the highest degree of taxonomic 

resolution (i.e., Level 5) was able to discriminate, for the most part, differences in benthic algal 

communities among shoreline development categories. Many studies have utilized diatoms to 

track limnological changes due to eutrophication in lakes (i.e., Hall & Smol, 1996; Quinlan et 
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al., 2008) and for biomonitoring of river water quality (i.e., Reavie & Smol 1998; Winter & 

Duthie 2000; Winter et al., 2003; Lavoie et al., 2008a), but diatoms appear to be rarely used for 

biomonitoring of shoreline conditions in lakes. Our results promote the use diatom community 

composition as a tool for littoral-zone biomonitoring in Precambrian Shield lakes with high 

water quality. Collection of diatom samples and preparation for analysis using a light 

microscope is routine, and high taxonomic resolution can be achieved (species or sub-species 

level) and appears to provide the most sensitive and robust ability to discriminate among the 

shoreline development categories. Moreover, microscope slides with diatom samples preserve 

a permanent archive that can be used by long-term monitoring programs for many decades to 

centuries for environmental-change detection. The clear distinction between diatom 

community composition at sites in the high- and low-shoreline development categories within 

a lake system demonstrates that they can provide a useful biomonitoring tool, despite the 

greater training and analytical effort required. Diatom community composition was the only 

level of bioassessment that provided consistent and statistically significant discrimination 

among the shoreline development categories in both study years, despite marked differences in 

the amount of wind and, presumably, wave action in August of 2006 and 2007 - a feature 

which allows us to recommend it for long-term monitoring programs. 

A larger study with more sites and lakes situated along a broader gradient of lake trophic 

status and shoreline development is warranted to confirm the usefulness of benthic algal 

assessments in lakes, in particular to assess the ability of the easier and cheaper rapid 

assessment techniques (Levels 1-4) to discriminate eutrophic conditions. Increased sample size 

would also allow for the potential identification of indicator taxa of the different shoreline 

development categories as well as the use of a reference condition approach (RCA) which 
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could provide a more practical approach to studying development along shorelines (Bailey et 

al., 2004).  

Overall, benthic algae have promising attributes to contribute to long-term lake monitoring 

programs. We recommend that future provincial biomonitoring protocols assessing effects of 

shoreline development on Precambrian Shield lakes include diatom community composition 

analysis (Level 5). For lakes with high water quality and recreational value, we recommend 

Level 5 despite the higher amount of technical skill and time required compared to the other 

levels, because it provides the strongest ability to detect differences in the benthic algal 

communities among shoreline development categories, and it is the only level of bioassessment 

that can discriminate between sites in medium- and low-shoreline development categories as 

well as those with high- and low-shoreline development.  
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2.6 Figures 

 

  
 

Figure 2.1 Map showing the location of the study area in south-central Ontario and the 

approximate locations of the study sites (n = 29) in the 5 study lakes. 
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Figure 2.2 Bar graph of temperature and precipitation monthly average values for long term averages: 1939-2006 (dotted line), and 

2006 (black) and 2007 (grey) averages from the Muskoka airport (Bracebridge, ON), provided by the Ontario Ministry of 

Environment, 2006 (black) and 2007 (grey).
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Figure 2.3 Schematic diagram to illustrate the sampling design at each study site, including the 

different types of benthic algal samples that were collected and the position of the nine 1 m 

diameter sampling plots along a 9 m long transect at each sample site. Rapid visual assessment 

(Level 1) and samples (1 L) for water chemistry were collected from all of the 9 plots. The 

water samples were pooled to make a site composite sample. Samples for biomass, pigment 

and taxonomic analyses (Level 2-5 bioassessments) were collected at 5 of the plots (indicated 

as open circles; plots numbered 1, 3, 5, 7, 9). These samples were obtained from 3 replicate 

samples (individual cobbles or sediment samples) that were pooled from each of the 5 plots. 

Subsamples (20 mL) from each of the 5 plot samples were then pooled to make a site 

composite sample (100 mL), as described in the Methods. 
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Figure 2.4 Principal Components Analysis (PCA) plots of the limnological data from each of the study sites in 2006 (left, n = 28) and 

2007 (right, n = 29). Site scores are coded according to 1 of the 3 shoreline development categories (High = black, Medium = grey, 

Low = white). Vectors represent direction of variation in the chemical variables. Values of water chemistry variables are provided in 

Appendix A, Tables 2.1 and 2.2. 
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Figure 2.5 Principal Components Analysis (PCA) plots of the rapid visual assessment (Level 1) data from each of the study sites in 

2006 (left, n = 28) and 2007 (right, n = 29). Site scores are coded according to 1 of the 3 shoreline development categories (High = 

black, Medium = grey, Low = white). A double circle (large black circle with smaller grey circle inset) represents a group of sites 

belonging to multiple shoreline development categories but plotting in the same place in ordination space. Vectors display directions 

of variation in the percent cover of the rapid visual assessment categories of benthic algal growth (TMB = thin mat brown; TMG = 

thin mat green; MMB = medium mat brown; MMG = medium mat green; THMB = thick mat brown; THMG = thick mat green) 
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Figure 2.6 Bar charts showing frequency distributions of the type of benthic algal mats [Thick mat (> 3 mm) = black, Medium mat 

(0.5-3 mm) = grey, Thin mat (< 0.5 mm) = white] in each of the plots in 2006 (left, n = 252) and 2007 (right, n = 261) along transects 

across the 3 shoreline development categories. 
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Figure 2.7 Principal Components Analysis (PCA) plots of the benthic algal community 

composition (Level 3) from each of the study sites in 2006 (top, n = 28) and 2007 (bottom, n = 

29). Each site is coded according to 1 of the 3 shoreline development categories (High = black, 

Medium = grey, Low = white). Vectors display directions of variation in the relative 

abundance of algal taxa enumerated at each site. 
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Figure 2.8 Principal Components Analysis (PCA) plots of the photosynthetic pigment 

concentrations (Level 4) obtained in 2007 only (n = 28). Each site is coded according to 1 of 

the 3 shoreline development categories (High = black, Medium = grey, Low = white). Vectors 

display directions of variation in the concentrations of the different photosynthetic pigments. 
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Figure 2.9 Principal Component Analysis (PCA) plots of sample and species scores in 2006 

(upper graphs, n = 28) and 2007 (lower graphs, n = 29) based on diatom community 

composition. Each site is coded according to 1 of the 3 shoreline development categories (High 

= black, Medium = grey, Low = white). Taxa are presented as numbers and their corresponding 

names are presented in Appendix A, Table 2.3. 
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2.7 Tables 

Table 2.1: Selected shoreline development characteristics of the 29 study sites in the Muskoka-

Halliburton district of south-central Ontario. Descriptions of shoreline development categories 

are provided in the Methods. 

Site Name Development Category Shoreline Description Lake  

HMB-2 High Marina & Resort Joseph 

TML-1 High Trailer Park within 50m Three Mile 

CLE-1 High Resort Rosseau 

CLE-2 High Resort & Boat House Rosseau 

RSH-3 High Marina & Cottages Rosseau 

COX-2 High Golf course & resort Joseph 

COX-3 High Marina & road Joseph 

COX-4 High Resort & Construction Joseph 

TMH-1 Medium Cottages Three Mile 

TML-2 Medium Cottages Three Mile 

MON-1 Medium Cottages Muskoka 

MBA-5 Medium Marina & Cottages Muskoka 

CLE-3 Medium Cottages Rosseau 

RSH-4 Medium Cottage / Construction Rosseau 

RSH-5 Medium Cottages Rosseau 

DKL-1 Medium Cottages Dickie 

DKL-2 Medium Cottages Dickie 

HMB-4 Low Forest & Exposed Rock Joseph 

TMH-2 Low Forested / Cottages Three Mile 

MON-2 Low Shrubs Muskoka 

MON-3 Low Forested Muskoka 

MBA-4 Low Forested Muskoka 

CLE-4 Low Forested / Cottages Rosseau 

RSH-6 Low Forested / Cottages Rosseau 

RSH-7 Low Forested / Cottages Rosseau 

DKL-3 Low Forested / Cottages Dickie 

EAS-1 Low Conservation Area Muskoka 

EAS-2 Low Conservation Area Muskoka 

EAS-3 Low Conservation Area Muskoka 
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Table 2.2 Results (R statistic and p-values) obtained from one-way ANOSIM tests of water 

chemistry data obtained from the nearshore sites in 2006 (n = 28) and 2007 (n = 29) from the 

study lakes (n = 5) in south-central Ontario. The ANOSIM tests were used to assess if water 

chemistry conditions differed among the 3 shoreline development categories and among the 5 

different lakes. For all comparisons, 9999 permutations were performed for Monte-Carlo tests 

of significance. Values in bold text indicate comparisons that resulted in significant differences 

at alpha = 0.1. Values of water chemistry variables are provided in Appendix A, Tables 2.1 and 

2.2. 

 2006 2007 

Groups R statistic p-value R statistic p-value 

Pairwise tests: Shoreline development categories 

High, Medium −0.02 0.47 0.07 0.17 

High, Low −0.04 0.59 0.08 0.14 

Medium, Low −0.02 0.48 0.02 0.30 

Pairwise tests: Lakes 

Three Mile, Rosseau 1.00 < 0.01 0.98 < 0.01 

Three Mile, Joseph 0.71 0.02 0.60 < 0.01 

Three Mile, Dickie  1.00 0.03 1.00 0.03 

Three Mile, Muskoka 0.29 0.08 0.29 0.05 

Rosseau, Joseph 0.98 < 0.01 0.79 < 0.01 

Rosseau, Dickie 1.00 < 0.01 0.10 < 0.01 

Rosseau, Muskoka 0.12 0.06 0.49 < 0.01 

Joseph, Dickie 1.00 0.02 0.76 0.04 

Joseph, Muskoka 0.31 0.03 0.20 0.08 

Dickie, Muskoka 0.42 0.06 0.39 0.07 

 

Table 2.3 Results of paired-samples t-tests to assess if water chemistry conditions differ 

between nearshore and offshore sites in the study lakes (n = 4 in 2006, n = 5 in 2007). Results 

are presented for select variables obtained in 2006 and 2007. Values in bold text indicate 

comparisons that resulted in significant (alpha = 0.1) differences. 

 2006 2007 

 t p-value t p-value 

Alkalinity 1.28 0.29 0.91 0.42 

Conductivity 1.16 0.33 0.85 0.45 

pH −3.64 0.04 2.30 0.08 

DOC −0.15 0.89 −0.49 0.65 

TKN 0.68 0.54 1.58 0.19 

TP −2.36 0.10 −0.85 0.44 

SiO3 −2.26 0.11 −3.53 0.02 
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Table 2.4 Results (R statistic and p-values) obtained from one-way ANOSIM tests of levels 1, 

3, 4 and 5 benthic algal bioassessment. The overall test assessed if benthic algal metrics 

differed among the 3 shoreline development categories (n = 28 sites in 2006, n = 29 sites in 

2007). Results are shown for all pairwise comparisons between the shoreline development 

categories. For all comparisons, 9999 permutations were performed for Monte-Carlo tests of 

significance. Values in bold text indicate comparisons that resulted in significant difference at 

alpha = 0.1. 

  Levels 

 Level 1: Rapid 

Visual 

Assessment 

Level 3: Benthic 

Algal 

Community 

Composition 

Level 4: 

Photosynthetic 

Pigment 

Concentration 

Level 5:Diatom 

Community 

Composition 

 Year 2006 2007 2006 2007 2007 2006 2007 

Global R 

statistic 

0.06 0.01 0.01 0.26 0.01 0.11 0.16 

p-value 0.14 0.34 0.40 < 0.01 0.06 0.04 < 0.01 

High, 

Low 

R 

statistic 

0.12 0.02 0.06 0.36 0.12 0.20 0.28 

p-value 0.07 0.30 0.19 < 0.01 0.09 0.02 < 0.01 

High, 

Medium 

R 

statistic 

-0.01 0.02 -0.09 0.05 0.15 0.03 -0.02 

p-value 0.49 0.33 0.92 0.22 0.04 0.33 0.50 

Medium, 

Low 

R 

statistic 

0.04 0.01 0.02 0.30 0.02 0.09 0.17 

p-value 0.21 0.38 0.29 < 0.01 0.33 0.10 0.02 
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Chapter 3 

Relations between limnological conditions and composition of benthic algal communities 

in the South Nahanni River watershed, NWT (Canada): defining the reference condition. 

 

3.1 Overview 

Aquatic ecosystems in northern Canada are threatened by rapid climate warming and increased 

industrial activities such as mining. Monitoring studies are needed to assess the natural 

variability of baseline conditions in order to effectively assess effects of human activities. We 

examined physical and chemical conditions and their relations to benthic algal communities in 

rivers across the South Nahanni River watershed, NWT, in 2008 and 2009. We also assessed 

the ability of different benthic algal metrics (benthic algal community composition, diatom 

community composition and pigment concentrations) to track differences in physical and 

chemical conditions among ecoregions. Multivariate analyses (principal components analysis, 

ANOSIM tests) identified that chemical variables differed significantly (P < 0.05) between the 

ecoregions in the South Nahanni River watershed and highlighted the importance of bedrock 

geology in influencing chemical variables in different ecoregions (Selwyn Mountain ecoregion, 

Nahanni-Hyland ecoregions). Multivariate analyses (ANOSIM tests, correspondence analysis 

and canonical correspondence analysis) of benthic algal metrics (benthic algal community 

composition, diatom community composition, and photosynthetic pigment concentrations) 

showed that these metrics also differed significantly (p < 0.05) and were associated with 

differences in physical and chemical variables between ecoregions. These relations were 

consistent in both 2008 and 2009 data. The results of this study can improve future monitoring 

programs by effective selection of reference sites in the diverse landscape of the South 

Nahanni River watershed.  
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3.2 Introduction 

Defining reference conditions is a central precursor to identifying environmental effects of 

anthropogenic activities. Aquatic ecosystems in northern Canada are often remote from human 

activities, but rapid climate warming and northward expansion of industrial activities threaten 

to degrade water quality and ecological integrity (Schindler & Smol, 2006). Climate warming 

is projected to be greater in the north than the global average (Kattsov et al., 2005). Warming is 

expected to lengthen growing seasons, increase evaporative water losses, alter river 

hydrographs towards more pluvial regimes (from more nival regimes), increase water 

temperatures, alter water chemistry, and increase productivity (Prowse et al., 2006, 2011; 

Schindler & Smol, 2006; Wrona et al., 2006). In aquatic ecosystems, these changes are 

expected to alter composition, richness, and diversity of biotic communities and trophic 

interactions (Secretariat of the Convention on Biological Diversity, 2003).  

In addition to climate warming, freshwaters in northern Canada are increasingly subjected 

to other human-caused changes including industrial development, encroachment of expanding 

human populations, and long-distance transport of contaminants (Schindler & Smol, 2006). 

Increases in mining activities are of particular concern, as outputs from mining activities in 

northern Canada are expected to almost double in the next decade (The Conference Board of 

Canada, 2013). Although some regions are naturally rich in minerals, increased mobilization of 

metals and nutrients by industrial activities can impair downstream aquatic ecosystems (Wrona 

et al., 2006). Pollution from metal mining can degrade water quality and modify biological 

communities, but detection of the effects has proven difficult because studies are often initiated 

only after industrial development has begun [Clements et al., 2000; Hill et al., 2000a; Clark & 

Clements, 2005; Rhea et al., 2006; Hall et al., 2012; Thomas et al., 2013 (Chapter 4)]. Also, 
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natural loads of contaminants can be high and vary both spatially and temporally, a feature that 

challenges the ability of monitoring programs to determine the relative roles of natural and 

human processes (Clements et al., 1992, 2010). In particular, the lack of knowledge of baseline 

(or, pre-impact) conditions and natural variability reduces our ability to quantify impairment 

due to industrial activities (e.g., Hall et al., 2012). Consequently, there is an increasing need to 

generate knowledge of baseline physical and chemical conditions, and biological communities 

in remote northern ecosystems before the magnitude of climate warming and industrial 

development escalate further. Indeed, many studies recognize the need to obtain information 

for many regional reference sites (currently unaffected by anthropogenic activities) for use in 

assessing potentially effected sites (Hughes et al., 1986; Reynoldson et al., 1997; Bowman & 

Somers, 2005). This need is driven, at least in part, by recognition that the structure and 

function of biological communities in pristine northern ecosystems are sensitive to changes in 

physical and chemical conditions (Wrona et al., 2006).  

Among the numerous components that can be monitored (e.g., water chemistry, algae, 

macroinvertebrates, fish), benthic algae possess many features that predispose them to provide 

effective monitoring of changes in water quality and ecological status of lakes and rivers 

caused by anthropogenic disturbances [Reavie & Smol, 1998; Rott et al., 1998; Hill et al., 

2000b; Leland & Porter 2000; Thomas et al., 2011 (Chapter 2), 2013 (Chapter 4)]. As primary 

producers, benthic algae play influential roles in the structure and function of aquatic foodwebs 

(Sabater & Admiraal, 2005; Resh 2008). Benthic algal communities are abundant, widespread, 

and diverse, and so require a relatively low sampling effort during field collection to obtain 

high content of ecological information (Biggs & Kilroy, 2000; Resh, 2008). They can rapidly 

assimilate pulses of nutrients due to their rapid potential growth rate and short generation time, 
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and thus can respond quickly to changes in climate and anthropogenic disturbances. For these 

reasons, benthic algae are considered to be early warning indicators of environmental and 

ecological change (Sabater & Admiraal, 2005). Also, benthic algal communities accrue in 

aquatic ecosystems over time periods spanning several weeks to months, and so can store 

information about influential events and changes during these timescales. Spot water-chemistry 

samples, in contrast, capture information over much shorter timescales, and so may be less able 

to capture signals of pulses of nutrients or contaminants that occur between sampling episodes. 

To better understand the cumulative effects of climate change and anthropogenic alteration on 

aquatic ecosystems, it is imperative that monitoring programs measure biotic metrics that track 

changes in the structure and functioning of the biological communities in relation to shifting 

physical and chemical conditions (Dubé et al., 2013). Despite these features, which suggest 

that benthic algal communities possess distinct advantages compared to other biota, they have 

not been as widely used in bioassessments of stream conditions (e.g., Reynoldson et al., 1997; 

Rosenberg et al., 1999; Clements et al., 2000; Sylvestre et al., 2005; Clements et al., 2010). In 

fact, use of fish and benthic macroinvertebratres is more common than algae, likely due, at 

least in part, to the cultural significance of fish and interest in their main food source.  

The South Nahanni River watershed (37 000 km
2
) in southwestern NWT (61

o
39’N, 

125
o
34’W) is a remote wilderness area with high preservation value and cultural significance. 

Despite its protection within two National Park Reserves, mining development within the 

watershed and climate change are causing concerns about degradation of river water quality 

and ecological integrity. The Nahanni National Park Reserve was established in 1976 and 

became a UNESCO World Heritage Site in 1978. The adjacent Nááts’ihch’oh National Park 

Reserve was established in 2012 (Figure 3.1). The South Nahanni River watershed is located 
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within the Taiga Cordillera and Taiga Plains and Boreal Cordillera Ecozones with diverse 

topography (e.g., canyons, karst features, mineral springs, mountains, plains, and plateaus) and 

vegetation (e.g., boreal forests, alpine tundra; Environment Canada [EC], 1991). The watershed 

is known for the abundance of pristine or nearly pristine rivers within its boundaries (EC, 

1991; Halliwell & Catto, 2003). The South Nahanni River (540 km long) transects this 

watershed and was established as a Canadian Heritage River in 1987. Because of the presence 

of deposits of metals, current mining and future mining within the watershed pose potential 

threats to downstream water quality within the two National Park Reserves and are causing 

concerns about the effect of mining activities within the watershed [e.g., Spencer et al., 2008; 

Bowman et al., 2010; Scrimgeour 2013; Thomas et al., 2013 (Chapter 4)]. Although this 

watershed is remote, the projected global increase in temperature, and associated hydrological 

shifts, raise further concerns (Schindler & Smol, 2006; Wrona et al., 2006).  

The overall objective of this study is to assess the patterns of variation in physical and 

chemical conditions across the South Nahanni River watershed at spatially dispersed sampling 

sites unaffected by direct human activities and their relations with benthic algal community 

composition (44 and 18 sites in 2008 and 2009 respectively; Figure 3.1). Addressing this 

objective required several steps. To assess variation in benthic algal community composition, 

we analyzed three benthic algal metrics (benthic algal community composition, diatom 

community composition, and photosynthetic pigment concentrations). These metrics have been 

shown to provide useful information to track changes in community composition within river 

and lake ecosystems [Rott et al., 1998; Hill et al., 2000b; Hirst et al., 2002; Rosenberger et al., 

2008; Spencer et al., 2008; Bowman et al., 2010; Thomas et al., 2011 (Chapter 2), 2013 

(Chapter 4)], and they were selected to assess the level of effort and expertise needed to track 
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biotic differences among sites. Finally, we explored relations between the benthic algal metrics 

and physical and chemical variables to improve understanding of controls on benthic algal 

communities in streams of the South Nahanni River watershed unaffected by direct human 

activities. It is intended that this information will be utilized by ongoing and future 

biomonitoring programs to quantify changes caused by human activities and climatic changes. 

Two previous studies reported differences in chemical conditions and community composition 

of benthic algae, macroinvertebrates and fish downstream of two mining developments, but 

they did not undertake a comprehensive examination of reference communities across the 

entire watershed (Spencer et al., 2008; Bowman et al., 2010). Natural variability in physical 

and chemical variables can introduce unwanted noise in biological monitoring data used to 

assess changes due to anthropogenic activities. Understanding what physical and chemical 

processes are associated with shifts in biological communities can help to disentangle natural 

variability from the effects of anthropogenic influences.  

 

3.3 Methods 

3.3.1 Study area 

The South Nahanni River watershed forms part of the headwaters of the Mackenzie River, 

connecting via the Liard River. The watershed is underlain by Proterozoic glaciomarine 

conglomerates, early Paleozoic formations, late Devonian to Jurassic formations, and 

Cretaceous granitic rock formations. The watershed contains economic deposits of lead, zinc, 

silver, and tungsten (EC, 1991). Due to the location and nature of the bedrock and landscape, 

airborne contaminants are considered to be less influential than those derived from the land and 

water within the watershed (EC, 1991).  
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The landscape across the South Nahanni River watershed is diverse with the rugged snow-

capped, glaciated terrain of the Selwyn Mountain ecoregion in the northwest and the lower 

summits of the Nahanni Plateau, Sibbeston Lake Plain and Hyland Highland ecoregions 

(referred to hereafter as the Nahanni-Hyland ecoregions) to the south and east (Figure 3.1). The 

Selwyn Mountain ecoregion is part of the Selwyn and Mackenzie mountain ranges and is 

characterized by mean summer temperatures of 9.5 °C. It is primarily underlain by a mixture of 

shale and plutonic suites. The Nahanni-Hyland ecoregions are characterized by mean summer 

temperatures of 9 °C – 10 °C. They are underlain primarily by shale and limestone/dolostone 

(Ecological Stratification Working Group, 1996; Caron et al., 2008). Due to the diversity in 

terrain, the hydrology within the South Nahanni River watershed is influenced by multiple 

factors (e.g., snowmelt during late-winter and spring, glacier melt and precipitation during the 

summer). Flow rates along the South Nahanni River at Virginia Falls range from 55 to 150 

m
3
/s (EC, 1991; Halliwell & Catto 2003). Peak flows along the rivers occur during snowmelt 

in early to mid-June. During summer, flows are influenced strongly by precipitation events.  

For this study, 44 sites were selected in 2008 and 18 sites in 2009 (12 repeated sampling 

from 2008; 6 newly sampled in 2009) based on a double stratified random sampling design 

(Figure 3.1). The two strata used were stream order (3
rd

 to 6
th

 order streams) and % ice cover 

(or % glacier cover in the sub-watershed; removing those sites with >40% ice cover) because 

these strata are well known to influence physical and chemical stream conditions. By 

stratifying samples according to stream order and % ice cover, we aimed to detect variability in 

chemical characteristics and benthic algal communities due to other factors operating across 

the watershed. Firstly, potential sampling sites were randomly identified that fell into the 3
rd

 to 

6
th

 order stream-categories. Then, those sites with >40% ice cover within the catchment were 
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removed. This led to the identification of 140 potential sampling sites. Not all sites were 

sampled due to a lack of safe helicopter landing sites, lower flow than expected along Flat 

River and Prairie Creek, or wildfires that did not allow safe passage to the stream site. All sites 

were selected from undisturbed areas of the South Nahanni River watershed to determine 

benthic algal community structure and physical and chemical conditions at stream and river 

sites with no direct human influence (e.g., no source of contaminants adjacent to or upstream). 

The sites were sampled early to mid-August in 2008 and 2009. No sites downstream of mining 

operations were used in this analysis (Figure 3.1). Multiple sites were sampled along Caribou 

River, Cathedral Creek, Clearwater Creek, Flat River, Flood Creek, Prairie Creek, Little 

Nahanni River, and Mary River. Sites along the same stream were located greater than 2 km 

apart with multiple 1
st
 to 3

rd
 order streams joining between sampling locations, and were, 

therefore, treated as independent from each other.  

To assess meteorological conditions during this study and inter-annual differences between 

the two study years, we compared monthly (May - September) precipitation and mean air 

temperature for the two study years (2008, 2009) with corresponding long-term monthly 

averages (May - September: 1997 & 2001 - 2007) based on Environment Canada’s 

meteorological data collected at the Rabbit Kettle station (Climate ID: 2203342) within the 

Nahanni National Park Reserve.  

 

3.3.2 Field and laboratory methods 

3.3.2.1 Physical and chemical analysis 

Stream sites were remote and therefore accessed by helicopter. At each stream site, water 

samples (2 L) for chemical analysis were collected at a midstream location and at 

approximately 30-cm depth. Samples were stored in the dark and kept cool until transported to 
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a temporary field laboratory for processing at the end of each sampling day. At the temporary 

field laboratory, all water samples were filtered through an 80-µm mesh to remove large 

particles before being processed for analysis of total concentrations of 34 metals (Ag, Al, As, 

B, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mn, Mo, Nb, Ni, Pb, Pt, Rb, Sb, Se, Sn, 

Sr, Tl, U, V, W, Y, Zn) and nutrients [dissolved inorganic carbon (DIC; filtered through a 0.45-

µm cellulose acetate filter), dissolved organic carbon (DOC; filtered through a 0.45-µm 

cellulose acetate filter), nitrate + nitrite (NO2+NO3), total nitrogen (TN), and total phosphorus 

(TP; preserved with 30% H2SO4)]. Metals were analyzed using inductively coupled plasma 

mass spectrometry. Concentrations of DOC and DIC were analyzed using an UV-persulfate 

TOC analyzer, and samples for NO2+NO3, NH3, TN, and TP were analyzed using an 

automated continuous-segmented-flow analyzer at Environment Canada’s National Laboratory 

for Environmental Testing, Burlington, Ontario (EC, 1994). At each site, we also measured 

conductivity and pH (using a YSI model 650 meter), turbidity (using a LaMotte model 2020e 

turbidity meter), and water velocity and depth (mean of 5 - 10 measures; using a Marsh 

McBirney flow mate).  

A suite of physical variables were available for each site, which included quantitative, 

categorical, and binary data (Appendix B, Table 3.1). Variables such as canopy cover, habitat 

type, macrophyte coverage (visual estimation of abundance), riparian vegetation, and percent 

gravel and cobble within the river bed were visually estimated following protocols described 

by EC (2011). Wetted widths were measured with a Bushnell range finder (± 0.5 m). Elevation 

was measured using a Garmin GPS. Variables such as stream order and bedrock were derived 

from GIS layers. The full list of physical variables used in this is located in Appendix B, Table 

3.1.  
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Metals concentrations were compared to the Canadian Council of Ministers of the 

Environment’s Canadian Environmental Quality Guidelines for the Protection of Aquatic Life 

(CCME Guidelines; CCME, 2003). Guidelines for concentrations of metals such as Cd, Cu, Ni, 

and Pb were calculated using an average water hardness value derived from reference site 

measurements taken in 2006 across the South Nahanni River watershed (172.3 mg/L CaCO3; 

Monique Dubé, EP Total, Calgary, Alberta, unpublished data). These measurements were used 

because we did not record water hardness during our 2008 to 2009 field surveys.  

 

3.3.2.2 Benthic algae 

Benthic algal samples were collected from the upper surface of cobbles collected from the 

stream bed. Sampling was restricted to one type of substrate (cobbles) in order to reduce 

variation due to different substrate types (Biggs & Kilroy, 2000). Separate benthic algal 

samples were collected for each type of metric (e.g., benthic algal community composition, 

diatom community composition, and pigment concentrations). Each sample was collected by 

removing benthic algae from 5 to 10 cobbles using a syringe sampler [as described in Thomas 

et al., 2013 (Chapter 4)] and combining the material to make one sample with a known surface 

area of 26.5 to 53.1 cm
2
. Samples were stored in the dark and kept cool until further processing 

at the end of each day at the field base. Benthic algal samples for quantification of 

photosynthetic pigments by HPLC were filtered onto Whatman GFF filters (0.7 µm), wrapped 

in aluminum foil and frozen until analysis at the University of Waterloo. Benthic algal samples 

for taxonomic analyses were preserved using Lugol’s iodine and transported to the University 

of Waterloo for further analysis.  
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3.3.2.3 Benthic algal community composition 

Sub-samples of 2 mL of well-mixed sample were placed into Utermöhl chambers and allowed 

to settle for 24 h. An inverted microscope (1000 x magnification) was used to identify a total of 

300 units of algae to class (e.g., Bacillariophyceae) or family (e.g., Chrococcaceae, 

Oscillatoriaceae) level following the nomenclature of Prescott (1951) and Wehr & Sheath 

(2003). Relative abundances were calculated by dividing the number of units enumerated per 

taxonomic group by the total number of units enumerated in the sample and multiplying by 

100.  

 

3.3.2.4 Diatom community composition 

Sub-samples of 15 mL of well-mixed samples were placed into individual test tubes and 

allowed to settle for 24 h. The supernatant was then removed and replaced with deionized 

water and allowed to settle for 24 h. This was repeated until most of the Lugol’s solution was 

removed. The samples were then oxidized by addition of 30% hydrogen peroxide to remove 

organic material. Samples were allowed to react with the hydrogen peroxide for one week at 

room temperature. Acid residues were removed by repeatedly siphoning off two-thirds of the 

supernatant, diluting the remaining supernatant with deionized water and allowing the mixture 

to settle for 24 hours. These steps were repeated until the solution reached a pH comparable to 

that of the deionized water. The resulting cleaned diatom slurries were then dried onto glass 

coverslips and mounted onto microscope slides using Naphrax mounting medium. A total of 

300 to 500 diatom valves were identified and counted using a compound light microscope at 

1000x magnification (Zeiss Axioskop 2Plus, numerical aperture = 1.30). Taxonomic 

identifications followed Krammer & Lange-Bertalot (1986-1991) and Lavoie et al., (2008). 
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Only species contributing greater than 1% abundance in at least one sample were included in 

numerical analyses. 

 

3.3.2.5 Photosynthetic pigment concentration 

For quantification of photosynthetic pigments, samples (Whatman GFF filters with the algae) 

were extracted in a mixture of acetone:methanol:water (80:15:5 by volume) for 24 h at -20 ºC. 

Once extracted, the samples were filtered through a 0.22-µm polytetrafluoroethylene (PTFE) 

syringe-filter to remove large particles and other impurities. The filtrate was then dried in the 

dark under inert gas (N2). Once dried, the pigments were re-eluted in 500 µL of injection 

solution [acetone:ion-pairing reagent:methanol; 70:25:5 by volume (ion-pairing reagent = 

0.75g tetrabutylammonium acetate and 7.7g ammonium acetate )] and analyzed using a Waters 

HPLC in reverse-phase with a Symmetry C18 column (3.5-µm bead diameter, column 

dimensions = 4.6 x 75 mm), following the methods of Leavitt et al., (1989) as modified from 

Mantoura & Lleywellyn (1983).  

Each sample was analyzed individually using a gradient delivery of two mobile phases to 

separate the pigments within the sample. Mobile phase A consisted of methanol:IPR (90:10 by 

volume), and mobile phase B consisted of methanol:acetone (73:27 by volume). Sudan II was 

used as an external standard (at the beginning and end of a group of samples) and as an internal 

standard added to each sample to account for dilution and injection errors. Pigment samples 

from Geranium plants were placed at the start and end of each batch of samples to account for 

shifts in chromatographic mobility of individual pigments. Pigment signatures were measured 

by a Waters 2998 PDA detector and a Waters 2475 Multi λ Fluorescence detector. Pigments 

were subsequently identified using chromatographic mobility (Leavitt et al., 1989) and spectral 
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characteristics (Jeffrey et al., 1997). Concentrations of all pigments were expressed as µg/cm
2
 

(mass per unit area of cobble surface).  

 

3.3.3 Numerical Analyses  

3.3.3.1 Physical and chemical data 

Box plots were created to assess patterns of variation between ecoregions. Principal 

Components Analysis (PCA) was used to assess patterns of spatial variability in physical and 

chemical variables among sites. We completed the analyses on the data from 2008 and 2009 

separately. The chemical variables were assumed to be the primary influences of biological 

communities, driven by variations in physical variables. We reduced the number of physical 

variables to include only those variables that explained important amounts of variation in water 

chemistry variables. To do this, individual Redundancy Analyses (RDA’s) were run with a 

single physical variable at a time, and Monte Carlo permutation tests (with 999 random 

permutations) were used to identify physical variables that accounted for significant amounts 

of variance in water chemistry samples (α = 0.05). Only those variables that were significant 

along the first axis were retained for further analysis. All statistically significant variables were 

then used in a series of RDA’s and the variables with highest Variance Inflation Factors 

(VIF’s) were sequentially removed until all VIF’s were ≤ 20. Using this method, subsets of 

physical variables were selected for further use in PCAs as supplemental data. For the PCA 

ordinations, the scaling focused on inter-sample distances and the variables were centered and 

standardized.  

Exploratory ordinations by PCA demonstrated striking differences in chemical and physical 

characteristics between the main ecoregions of the watershed (Selwyn Mountain ecoregion and 

the Nahanni-Hyland ecoregions). To describe patterns in these relations, we subsequently 
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coded sites according to their ecoregion to assess how conditions varied. One-way analysis of 

similarities (ANOSIM) tests (2008, 2009) were run on all the chemical data to determine if 

chemical conditions differed significantly between sites in the Selwyn Mountain ecoregion 

versus those in the Nahanni-Hyland ecoregions. All the physical and chemical variables were 

normalized (variables had their mean subtracted then divided by the standard deviation) prior 

to one-way ANOSIM tests in order to equalize variances before calculation of Euclidean 

distances. For each one-way ANOSIM test, 9999 computations were completed (Clark and 

Warwick 2001). One-way analysis of variance (ANOVA) tests were used to determine if 

concentrations of individual physical and chemical variables differed significantly between the 

two ecoregions. Separate tests were performed on data obtained in 2008 and 2009.  

Prior to numerical analyses, all quantitative physical and chemical variables were assessed 

for normality using Kolmogorov-Smirnov tests of normality (α = 0.05). All non-normal 

variables were transformed. Variables measured as percent were square-root transformed. Most 

other variables with non-normal distributions were ln(x+b)-transformed, where b = half the 

minimum non-zero value among sites. Binary and categorical variables were not transformed, 

nor were air and water temperature, measures of precipitation (total, snowfall, rainfall), 

latitude, longitude, pH, and Julian day. Some water chemistry variables (e.g., Ag, Bi, Cs, NH3) 

had values below detection limits. For water chemistry variables that had values missing at < 

15% of the sites, values were randomly generated between 0 and the detection limit and these 

variables were kept for further analysis (i.e., Cs, Tl, Pb). Variables with values below detection 

limits at > 15% of the sites were removed from further analysis (i.e., NH3, Ag, Bi, and Nb).  

 

 

 

 



70 
 

3.3.3.2 Benthic algal metrics 

Detrended Correspondence Analysis (DCA) was used to determine if unimodal or linear 

models were best suited for the data obtained from the three different benthic algal metrics 

(benthic algal community composition, diatom community composition and pigment 

concentrations). The DCA was run with detrending by linear segments. Gradient lengths of 1.5 

to 2.2 standard deviation units were found for benthic algal metrics in both 2008 and 2009. 

Since unimodal methods (Correspondence Analysis (CA), Canonical Correspondence Analysis 

(CCA)) are considered to be a robust method for percentage data with gradient lengths ≥ 1.5 

SD (Birks, 2010), we used CA to assess patterns of variation in community structure and CCA 

to assess their associations with physical and chemical variables. As with PCA, the physical 

variables were included in the CCA ordinations as supplementary data. Because the number of 

physical and chemical variables exceeded the number of sites, we needed to reduce the number 

of variables used in the CCA ordinations. To do this, individual CCAs were run with a single 

variable at a time, and Monte Carlo permutation tests (with 999 random permutations) were 

run to identify the variables that accounted for significant directions of variance in the benthic 

algal metrics (at α = 0.05). Only those variables which were significant along the first axis 

were included in further CCAs. Then, a series of CCA ordinations were run starting with one 

that included all the significant chemical variables. The variable with the highest Variance 

Inflation Factor (VIF) above 20 was eliminated. This was repeated until all remaining variables 

had VIFs ≤ 20. Using this method, subsets of chemical and supplemental physical variables 

were selected for CCA ordinations of benthic algal community composition, diatom 

community composition, and pigment concentrations, separately for both study years 

(Appendix B, Table 3.1). Prior to all ordinations that involved the physical variables (PCAs 
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and CCAs), categorical environmental variables (e.g., stream order, sediment type and 

ecoregions) were converted to dummy variables. Sites 40, 48, 53 and 73 were outliers based on 

analyses of the pigment data and were removed from all analyses (CA, CCA, ANOSIM and 

SIMPER) in order to readily observe trends in the data.  

One-way ANOSIM tests were performed on data from each of the three benthic algal 

metrics (benthic algal community composition, diatom community composition, and pigment 

concentrations) to determine if they identify differences in benthic algal communities between 

sites in the Selwyn Mountain ecoregion versus the Nahanni-Hyland ecoregions. For the 

ANOSIM tests that resulted in significant differences, Similarities of Percentages (SIMPER) 

analyses were used to identify the main taxa (benthic algal families or classes, diatom taxa or 

pigments) that contributed to the differences between the Selwyn Mountain and Nahanni-

Hyland ecoregions. The main taxa accounting for differences between the ecoregions were 

identified as those that contributed > 2% to the average within-group similarity and >2% to the 

average between-group dissimilarity, following the criteria of Sokal et al., (2008). One-way 

ANOSIM tests and SIMPER analyses involving the benthic algal metrics were based on Bray-

Curtis similarity coefficients. P-values were computed for each test by comparing the 

distribution of within- and across-group rank Bray-Curtis similarities (9999 computations) to 

the initial rank similarity, as reported by the global R value (Clarke & Gorley; 2006, Clarke & 

Warwick, 2001).  

Two analyses were performed to determine the strength of the three metrics in 

differentiating between the two ecoregions. Mahalanobis or generalized distances were 

calculated between the two sets of reference sites for each algal metric to determine the 

dissimilarity between the two ecoregions (Legendre & Legendre, 1998). RELATE analyses 
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were used to determine if sample scores for all combinations of algal metrics (i.e., benthic algal 

community composition and diatom community composition; benthic algal community 

composition and photosynthetic pigment concentrations; diatom community composition and 

photosynthetic pigment concentration) shared similar structure (i.e., were correlated). All 

analyses (Mahalanobis distances and RELATE analyses) were performed separately for 2008 

and 2009. RELATE analyses used spearman ranked-correlation tests with 999 random 

permutations to determine correlations between sites using data matrices (Bray-Curtis matrices 

for biological data, Euclidean distances for environmental data; Clark and Warwick 2001).  

For the above numerical analyses (CA, CCA, ANOSIM, SIMPER, Mahalanobis distances, 

and RELATE), benthic algal community composition data and diatom community composition 

data (percent abundances) were square-root transformed to down-weight the influence of the 

most abundant taxa, whereas pigment concentrations were log(x+1) transformed to equalize 

variances. The ANOSIM tests and SIMPER analyses were performed using the software 

PRIMER version 6 (Clark & Gorley, 2006). Ordinations by PCA, CA and CCA were 

performed using CANOCO version 4.5 software (ter Braak & Šmilauer, 2002). Kolmogorov-

Smirnov tests, Mahalanobis distances, and one-way ANOVA tests were performed using the 

software SPSS version 11. Statistical tests were considered significant if p ≤ 0.05 and 

marginally significant if 0.1 ≤ p > 0.05.  

 

3.4 Results 

3.4.1 Meteorological conditions 

In 2008, mean monthly air temperature was at or just below the long-term average from June 

through September and monthly precipitation was below the long-term average during July, 

August, and September (Figure 3.2). Precipitation in July 2008 was nearly double that of July 
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2009. In 2009, mean monthly air temperature was at or above the long-term average from May 

to September, while precipitation was approximately equal to the long-term average for every 

month, except for July when precipitation was about 25 mm below the long-term average. The 

warmer and dryer conditions in July 2009 coincided with higher incidence of fires within the 

watershed compared to 2008.  

 

3.4.2 Physical and chemical analyses 

Sites within the South Nahanni River watershed were characterized by broad ranges of nutrient 

concentrations, conductivity and turbidity, and by relatively high concentrations of metals. 

Ranges of TP (0.5 - 13.5 µg/L), TN (43 - 349 µg/L), NO2+NO3 (12 - 217 µg/L), DIC (1.1 - 56 

mg/L) and DOC (0.5 - 6 mg/L) were considerable over the course of the two study years. The 

upper ranges of some metal concentrations exceeded the CCME guidelines for aquatic life in 

both years (e.g., Al, Cd, Cu, Fe, Se, and Zn). The metals Ni and W exceeded the guideline in 

2008 only. The pH ranged from 4.9 to 9.1 across the watershed with an average value of 8.4. 

Conductivity ranged from 45 to 411 µS/cm, and turbidity ranged from 0.9 to 21 NTU. 

Sites within the Selwyn Mountain ecoregion had median concentrations of some metals that 

were 1.3- to 9.6-fold higher than sites within the Nahanni-Hyland ecoregions (e.g., Al, As, Be, 

Cd, Co, Fe, Mn, Ni, W, Zn; Table 3.1). Box plots of metals showed that for most metals there 

was overlap in the interquartile ranges (middle 50% of the data) between ecoregions, however 

that concentrations were often higher and had greater range in the Selwyn Mountain ecoregion 

compared to the Nahanni-Hyland ecoregion, while concentrations of TP did not differ between 

ecoregions (Figure 3.3 & 3.4). The Selwyn Mountain ecoregion was also characterized by 1.7-

fold greater median slope and altitude, and 168- fold higher median percent ice coverage 

(Table 3.2). Box plots of physical variables showed that although the interquartile ranges for 
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percent intrusive and sedimentary bedrocks overlapped between ecoregions, the Selwyn 

Mountain ecoregion typically had higher amounts of intrusive bedrock and less sedimentary 

bedrock compared to Nahanni-Hyland ecoregions (Figure 3.5). The Nahanni-Hyland 

ecoregions had 1.3- to 3.9-fold higher median concentrations of dissolved carbon (DIC, DOC), 

NO2NO3 and TN, and 1.4- to 3.6-fold higher median concentrations of some metals (e.g., Ba, 

Cr, Mo, Pb, Sr, U, V) (Table 3.1). Box plots of nutrients such as TN, NO2NO3 and DIC, and 

pH, conductivity and turbidity show that the interquartile ranges between the ecoregions only 

overlap for turbidity, but that values were consistently higher in the Nahanni-Hyland 

ecoregions than the Selwyn Mountain ecoregion (Figure 3.4). The Nahanni-Hyland ecoregions 

was also characterized by 3.0-fold larger median drainage area, 1.9-fold larger median 

perimeter of upstream drainage area, 1.6-fold higher median percent forest cover, and 1.4 to 

1.7-fold larger median bankfull and wetted stream widths than the Selwyn Mountain ecoregion 

(Table 3.2). Boxplots of physical chemical variables showed that although interquartile ranges 

overlap for drainage areas, perimeters of upstream drainage areas, bankfull widths and 

maximum velocities, values were consistently higher in the Nahanni-Hyland ecoregions 

compared to Selwyn Mountain ecoregion (Figure 3.5). Several physical and chemical variables 

differed significantly (One-way ANOSIM: p ≤ 0.05) between ecoregions in both years (2008: 

DIC, TN, NO2NO3, Ba, Mo, Rb, Se, Sr, U, V, Zn, pH, conductivity, altitude, percent gravel, 

percent forest cover, percent ice cover, perimeter, slope, stream density, stream order, pools; 

2009: DIC, TN, NO2NO3, As, B, Ba, Cd, Ce, Co, Cs, La, Li, Mn, Mo, Ni, Se, Sr, U, W, Zn, 

pH, conductivity, altitude, bankfull minus wetted width, drainage area, percent boulder, percent 

forest cover, percent ice cover, vegetation, slope, wetted width, stream order, macrophytes, 

embededness). Some other physical and chemical variables differed marginally significantly 
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(One-way ANOVA tests: 0.1 ≤ p > 0.05) between ecoregions in both years (2008: Sb, 

deciduous trees, grasses/ferns; 2009: max depth, perimeter, stream density). 

Chemical conditions of the streams differ significantly between the two ecoregions in both 

study years (One-way ANOSIM: 2008: Global R = 0.167, p < 0.01; 2009: Global R = 0.533, p 

< 0.01). Ordination by PCA revealed that sample scores based on physical and chemical 

conditions differed between river sites of the Selwyn Mountain and Nahanni-Hyland 

ecoregions (Figure 3.6). Eigenvalues for the 1
st
 and 2

nd
 axes were 0.419 and 0.197 in 2008 and 

0.472 and 0.151 in 2009, explaining 61.6% and 62.3% of the total variation among sites, 

respectively. In 2008 and 2009, sites within the Selwyn Mountain ecoregion were 

characterized by relatively higher concentrations of several metals including, Al, As, Ce, Co, 

Cs, Cu, Li, Ni, Mn, and W, and TP. These chemical variables were associated with relatively 

higher slopes, stream densities, percent ice, latitudes, percent intrusive bedrock, June mean 

temperature, and percent pools and straight runs. In 2008 and 2009, the Nahanni-Hyland 

ecoregions were characterized by higher concentrations of some metals including B, Ba, Mo, 

Sb, Se, Sr, U, and V and nutrients including DIC, NO2NO3, TN and conductivity and pH. 

These chemical variables were associated with higher drainage areas, bankfull and wetted 

widths, percent sedimentary bedrock, percent forested land cover, and total rain, precipitation 

and snow. Although there were many similarities in chemical variables between years, there 

were also some differences. For example, in both 2008 and 2009 sites with high turbidity 

(primarily within the Selwyn Mountain ecoregion) had relatively high TP concentration but 

relatively low TN, NO2NO3 and pH. In 2008, Cu and Pb were positively correlated with metals 

such as Cd, Li, Ni, and Zn, but in 2009 they were not. In 2008, percent intrusive bedrock and 

percent sedimentary bedrock were the most closely correlated with PCA axis 1. In 2009, 
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percent intrusive and sedimentary bedrock did not account for a significant amount of variation 

along PCA axis 1, however the patterns in other physical and chemical variables remained 

similar to 2008.  

 

3.4.3 Benthic algal metrics 

3.4.3.1 Benthic algal community composition 

Based on taxonomic analysis of benthic algae, communities at stream sites within the South 

Nahanni River watershed consisted mainly of diatoms (2008: 5 - 99%, 2009: 27 - 99%), 

cyanobacteria (2008: 0 - 71%, 2009: 0 - 23%) and green algae and charophytes (2008: 0 - 12%, 

2009: 0 - 56%). Ordination by CA showed differences in composition of benthic algal 

communities between the Selwyn Mountain and Nahanni-Hyland ecoregions (Figure 3.7). 

There was overlap between sites in each ecoregion in 2008, however, sites within the Selwyn 

Mountain ecoregion generally plotted to the right along axis 1, associated with higher relative 

abundance of Oedogoniaceae, Oscillatoriaceae, Phormidiaceae, Scenedemaceae, and 

Zygnemataceae. Sites within the Nahanni-Hyland ecoregions generally were positioned further 

to the left along axis 1, associated with higher relative abundance of Bacillariophyceae, 

Desmidiaceae, and Euglena species. Despite fewer sites sampled in 2009, generally similar 

patterns of benthic algal community composition were observed in both years but with greater 

separation between the ecoregions. Consistent with results of ordination by CA, ANOSIM tests 

identified that benthic algal communities differed significantly between the two ecoregions 

(2008: Global R = 0.272, p < 0.01; 2009: Global R = 0.382, p = < 0.01). Based on results of a 

SIMPER analysis, Oscillatoriaceae and Phormidiaceae were identified as indicator families of 

the Selwyn Mountain ecoregion in 2008, and Merismopediaceae and Oscillatoriaceae were 

identified as indicator families of the Selwyn Mountain ecoregion in 2009. However, none of 
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the algal families met criteria as indicator taxa for the Nahanni-Hyland ecoregions in either 

year (Table 3.3).  

 

3.4.3.2 Diatom community composition 

Diatom communities within the South Nahanni River watershed were dominated by 

Achnanthidium minutissimum (2008: 0.4 - 88%, 2009: 11 - 94%), Hannaea arcus (2008: 0 - 

94%, 2009: 0 - 54%), Gomphonema micropus (2008: 0 - 83%, 2009: 0.6 - 25%), Fragilaria 

capucina var. gracilis (2008: 0 - 65%, 2009: 0 - 9%), and Diatoma tenuis (2008: 0 - 23%, 

2009: 0.4 - 30 %). Based in ordinations by CA of the 2008 data, sample scores from several 

sites in the Nahanni-Hyland ecoregions were positioned low along axes 1 and 2 relative to sites 

from the Selwyn Mountain ecoregion, although there was considerable overlap among sample 

scores from the two ecoregions (Figure 3.8). Separation of sample scores was greater between 

the ecoregions in 2009, when fewer sites were sampled. In 2008 and 2009, sites from Selwyn 

Mountain ecoregion had higher relative abundance of taxa belonging to Encyonema, Eunotia, 

Fragilaria, Nitzschia, Planothidium, Staurosirella, and Sellaphora, whereas sites in the 

Nahanni-Hyland ecoregions had higher relative abundance of Gomphonema taxa. One-way 

ANOSIM tests demonstrated that diatom community composition differs significantly between 

the two ecoregions (2008: Global R = 0.194, p < 0.01; 2009: Global R = 0.551 p < 0.01). 

Based on SIMPER analysis, F. capucina var. gracilis was identified as an indicator for the 

Selwyn Mountain ecoregion in 2008, and E. minutum, E. silesiacum, F. capucina var. gracilis, 

N. palea and S. parvus were indicator taxa in 2009. For the Nahanni-Hyland ecoregions, G. 

species 1 (Appendix B, Figure 3.1) and S. ulna were identified as indicator taxa in 2008, and 

Cymbella affinis and G. species 1 were indicator taxa in 2009 (Table 3.3).  
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3.4.3.3 Photosynthetic pigment concentration 

Photosynthetic pigment concentrations in the samples from the South Nahanni River watershed 

were dominated by chlorophyll-a (2008: 0.002 - 0.6 µg pigment/cm
2
, 2009: 0 - 0.3 µg 

pigment/cm
2
), fucoxanthin (2008: 0 - 0.3 µg pigment/cm

2
, 2009: 0 - 0.2 µg pigment/cm

2
), 

chlorophyll-b (2008 & 2009: 0 - 0.2 µg pigment/cm
2
), chlorophyll-a’ (2008: 0 - 0.1 µg 

pigment/cm
2
, 2009: 0 - 0.2 µg pigment/cm

2
), aphanizophyll (2008 & 2009: 0 - 0.1 µg 

pigment/cm
2
), and lutein-zeaxanthin (2008 & 2009: 0 - 0.1 µg pigment/cm

2
). In 2008, there 

was extensive overlap between the ecoregions, and differences could not be discerned (Figure 

3.9). Overlap of sample scores remained considerable in 2009 for the two ecoregions. 

However, sites from the Selwyn Mountain ecoregion tended to cluster towards the right along 

axis 1, associated with relatively higher concentrations of aphanizophyll, chlorophyll-a, 

chlorophyll-c2, fucoxanthin, and myxoxanthophyll. Sites from the Nahanni-Hyland ecoregions 

were characterized by higher concentrations of alloxanthin, β-carotene, and phaeophytin-a than 

most sites from the Selwyn Mountain ecoregion. In 2008, abundance and composition of 

pigments did not differ significantly between the ecoregions (one-way ANOSIM test, Global R 

= 0.048, p = 0.111). However, in 2009 abundance and composition of pigments differed 

significantly between the ecoregions (one-way ANOSIM test, R = 0.295, p < 0.01). Results of 

the SIMPER analysis showed that in 2008, chlorophyll-a’ was an indicator pigment for stream 

sites with the Selwyn Mountain ecoregion, and fucoxanthin was an indicator pigment for 

stream sites within the Nahanni-Hyland ecoregions. In 2009, aphanizophyll, chlorophyll-a’ and 

phaeophytin-b were indicator pigments for stream sites in the Selwyn Mountain ecoregion, and 

β-carotene was the only indicator pigment of the Nahanni-Hyland ecoregions.  
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3.4.4 Relations between benthic algal metrics and physical and chemical conditions 

3.4.4.1 Benthic algal community composition 

Ordination by CCA was used to assess relations between benthic algal community composition 

and variations in physical and chemical conditions among sites. Eigenvalues along the first and 

second axes were 0.183 and 0.107 in 2008, respectively, and 0.118 and 0.075 in 2009 (Figure 

3.10). They explained 29.0% and 19.3% of the total variation among sites in 2008 and 2009, 

respectively.  

The relative positions of the sample scores remained similar in the CA ordination of the 

benthic algal community composition data (Figure 3.7) and the corresponding CCA of the 

benthic algal community composition data and water chemistry variables (Figure 3.10), 

indicating that the measured chemical variables captured important gradients of variation in the 

algal communities among sites. Consistent with this, species-environment correlations were 

high for CCA axes 1 and 2 (0.94 and 0.0.89, 0.82 and 0.79, for axis 1 and 2 in 2008 and 2009 

respectively). Sample scores for sites in the Selwyn Mountain ecoregion were located primarily 

in the right half of the ordination, characterized by higher percent abundance of filamentous 

and colonial cyanobacteria (e.g., Oscillatoriaceae, Phormidiaceae, Merismopodiaceae and 

Microcystaceae), and green algae and charophytes (Zygnematales, Chaetophoraceae, 

Odedogonales, Ulotrichales) and higher concentrations of TP and metals (e.g., As, Cu, Fe, Ni, 

W, Zn), steeper slope, higher proportions of intrusive bedrock and ice, and higher mean June 

temperature. They were generally well separated from the sample scores for sites in the 

Nahanni-Hyland ecoregions, which were positioned mainly in the left half of the CCA 

ordinations. Sites in the Nahanni-Hyland ecoregions were characterized by higher percent 

abundance of Bacillariophyta, Desmidaceae, Euglenoids, and Nostocaceae (2009 only) and 
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higher concentrations of TN, NO2+NO3, DIC, higher conductivity, and pH, higher 

concentrations of metals such as Sr, Mo, and U, higher percentage of sedimentary bedrock and 

forest cover, and larger bank-full width, and maximum flow velocity.  

  

3.4.4.2 Diatom community composition 

Ordination by CCA of diatom taxon relative abundances and the physical and chemical data 

captured 37.6% (λ1 = 0.243, λ2 = 0.133) and 35.2% (λ1 = 0.22, λ2 = 0.131) of the total among-

site variation in 2008 and 2009, respectively (Figure 3.11). The relationships between the 

distribution of diatom taxa and physical and chemical variables were consistent between years. 

Indeed, the relative positions of sample scores remained fairly consistent between the CCA and 

corresponding CA, suggesting the supplied environmental variables explain variations in 

diatom community composition among the sites (species-environmental correlations: 0.97 and 

89, 0.99 and 0.95 for axis 1 and 2 in 2008 and 2009 respectively) (Figures 3.8, 3.10). The 

majority of the sites within the Selwyn Mountain ecoregion were positioned toward the upper 

right portion of the CCA diagrams in 2008 & 2009 and were characterized by relatively higher 

abundance of several taxa belonging to the genera Eunotia, Encyonema, Fragilaria, Nitzschia, 

Planothidium, and Sellaphora, among others. These taxa were typically Species in the Selwyn 

Mountain ecoregion (located toward the upper right portion of the ordination) were associated 

with higher concentrations of TP, higher turbidity, percentages of ice, latitude, depth, stream 

density and macrophyte presence, and steeper slope. A few sites within the Selwyn mountain 

ecoregion were located in the upper left portion of the CCA ordination in 2008. These sites 

possessed higher relative abundance of Cyclotella comensis than all other sites, and were 

associated with lower concentrations of TP, turbidity, and metals. In contrast, species in the 

Nahanni-Hyland ecoregions were positioned toward the lower left portion of the ordinations in 
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2008 & 2009, and were characterized primarily by higher relative abundance of taxa in the 

genus Gomphonema. Communities at these sites were typically associated with higher 

concentrations of NO2+NO3, DIC, and higher conductivity, pH, flow velocity, bank-full and 

wetted widths, percent boulder, larger drainage areas, and higher percentage of forest cover.  

 

3.4.4.3 Photosynthetic pigment concentration 

Ordination by CCA of pigment and physical and chemical data captured 22.7% (λ1 = 0.165, λ2 

= 0.062) and 25.3% (λ1 = 0.177, λ2 = 0.076) of the total variation in 2008 and 2009, 

respectively (Figure 3.12). In contrast to the CA ordinations, there were distinct differences 

between ecoregions when pigment data were constrained by chemical variables. Species-

environmental correlations were lowest in each respective year compared to benthic algal and 

diatom community composition (species environmental correlations: 0.92 and 0.94, 0.76 and 

0.63 for axis 1 and 2 in 2008 and 2009 respectively). Based on the data from 2008, sites 

located within the Selwyn Mountain ecoregion had higher relative abundances of pigments 

such as β-carotene, chlorophyll-a, echinenone, and myxoxanthophyll associated with higher 

concentrations of metals such as W and Zn, higher amounts of macrophytes, pools, average 

velocities, and percent intrusive bedrock. Sites located within the Nahanni-Hyland ecoregions 

had higher relative abundances of diatoxanthin, diadinoxanthin, fucoxanthin, and phaeophytin-

a, associated with higher concentrations of metals (e.g., Be and Sr), turbidity, TN, NO2NO3, 

higher amounts of percent cobble, conifers, and grasses/ferns. In 2009, sites along the left side 

of axis 1 were mainly located within the Nahanni-Hyland ecoregions and had higher relative 

concentrations of pigments such as alloxanthin, okenone, β-carotene, and phaeophytin-a, 

associated with lower concentrations of metals Li and Zn. Sites to the right along axis 1 tended 

to occur within the Selwyn Mountains ecoregion and had higher relative concentrations of 
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aphanizophyll, chlorophyll-c2, chlorophyll-a, chlorophyll-a’, and myxoxanthophyll, associated 

with higher concentrations of Li and Zn, and higher % gravel.  

 

3.4.5 Comparison of algal metrics 

Diatom community composition was greatest with Mahalanobis distances of 2204.2 and 

20843.0 for 2008 and 2009, respectively. Mahalanobis distances for benthic algal community 

composition (6.3 and 160.1 for 2008 and 2009 respectively) and photosynthetic pigment 

concentrations (3.9 and 301.2 for 2008 and 2009 respectively) were both lower than diatom 

community composition distances. RELATE analyses were used to identify which groups 

shared more similar structures (or were correlated). Results of RELATE analyses showed that 

benthic algal community composition was significantly correlated to diatom community 

composition in 2008 (Rho = 0.269, p < 0.01), whereas photosynthetic pigment concentrations 

structure were not (Rho = 0.07, p = 0.13). In 2009 the opposite was true, where photosynthetic 

pigment concentration was significantly correlated to diatom community composition (Rho = 

0.253, p = 0.05) and benthic algal community composition was not (Rho = 0.024, p = 0.41). 

This was consistent with the Mahalanobis distance results in that benthic algal community 

composition had a larger Mahalanobis distance in 2008 compared to photosynthetic pigment 

concentration and vise-versa in 2009. RELATE analyses of benthic algal community 

composition and photosynthetic pigment concentration showed that they did not share similar 

structure in either 2008 or 2009 (Rho = 0.05, p = 0.18 in 2008; Rho = 0.15, p = 0.14 in 2009).  

 

3.5 Discussion 

How we define reference conditions is central to identifying human impacts in aquatic 

ecosystems and to understand the natural variability among sites (Hawkins et al., 2010). Our 
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study sampled sites that were relatively unaffected by human influences (no adjacent or 

upstream activity) and thus allowed us to explore natural factors regulating physical and 

chemical conditions and benthic algal communities. This study shows that even in the absence 

of upstream human disturbances, the physical and chemical conditions vary widely among the 

reference stream sites within the South Nahanni River watershed. Ecoregions have been 

proposed as an a priori way to group study sites; a concept that assumes that catchment 

characteristics strongly influence aquatic ecology (Hynes, 1975; Johnson, 1999; Hawkins et al., 

2000; Johnson, 2000). Physical and chemical conditions differ distinctly between the 

ecoregions in our study sites. Many physical variables appear to influence the differences 

between chemical conditions and biological communities in different ecoregions including: 

bedrock geology (% sedimentary, % intrusive), landcover (% ice, % forest), slope, and latitude. 

Previous studies have found that differences in biological groups can be associated with 

physical and chemical differences among sites such as geology, vegetation, landforms, and 

nutrients (e.g., Leland, 1995; Johnson, 1999; Johnson 2000; Leland & Porter, 2000, Neff & 

Jackson, 2011). In the absence of anthropogenic land use, bedrock geology can be a significant 

contributor to differences in water chemistry and biological communities (Leland, 1995; 

Leland & Porter, 2000). In our study, differences in geology (percent intrusive and percent 

sedimentary bedrock) were highly correlated with PCA axis 1. The bedrock found within the 

southeast of the watershed (Nahanni-Hyland ecoregions) is comprised primarily of 

limestone/dolostone and shale, while the bedrock found within the northwest of the watershed 

(Selwyn Mountain ecoregion) is comprised primarily of shale and cretaceous plutons (Caron et 

al., 2008). These underlying differences in bedrock are associated with differences in 

concentrations of nutrients and metals among sites. For example, the Selwyn Mountain 
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ecoregion is characterized by higher concentrations of metals such as Al, As, Be, Co, Mn, Ni, 

W, and Zn and TP and the Nahanni-Hyland ecoregions are characterized by higher 

concentrations of nutrients such as TN, NO2NO3, and DIC and pH. Typically, TN and TP are 

correlated; however in our study TN and TP were uncorrelated in both 2008 and 2009. 

Previous studies in the South Nahanni River watershed had found that TP appeared to be 

correlated with turbidity suggesting that it was associated with suspended sediments in the 

water column and possibly unavailable for biological regulation [Scrimgeour, 2013; Thomas et 

al., 2013 (Chapter 4)].  

Algal metrics differ significantly between the two ecoregions and are closely associated 

with gradients of nutrients, metals, and physical conditions in the adjacent watershed. Other 

studies have assessed relationships of benthic algae to chemical and physical variables at 

varying scales and found that natural differences in watershed characteristics (e.g., ecoregion, 

geology, conductivity, and vegetation) explain much of the variability in these communities 

(Briggs, 1990; Leland, 1995; Leland & Porter, 2000; Antoniades et al., 2009; Tornés et al., 

2012). Algae are also known to be sensitive to changes in nutrient concentrations (Resh, 2008). 

In fact, differences in nutrients across the South Nahanni River watershed (i.e., TN, NO2NO3, 

and DIC/DOC in Nahanni-Hyland ecoregions and TP in Selwyn Mountain ecoregion) are 

associated with differences in benthic algal communities. The goal of every basic monitoring 

program is to select sites representative of the possible ‘reference’ biological communities 

present for best comparison with possibly affected test sites. Moreover, the RCA assumes that 

biological communities are influenced by the physical and chemical conditions of the 

surrounding environment (Reynoldson et al., 1997; Bailey et al., 2004). This study shows that 

the benthic algal communities in the South Nahanni River watershed are influenced by the 
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physical and chemical conditions of their surrounding environment and thus the algal metrics 

show promise for use in an RCA monitoring design in this area. These important differences in 

biological communities and their associations with physical and chemical variables can also be 

used to help guide how reference sites should be selected in future studies within the South 

Nahanni River watershed. 

The main characteristics of lasting monitoring programs include: 1) inexpensive programs 

that will survive budget cuts; 2) simple programs that can be carried out by multiple personnel 

without compromising quality of data, and 3) measurements taken must be sensitive to changes 

in the surrounding environment (Schindler, 1987). Benthic algal community composition and 

diatom community composition metrics have both been used in algal river monitoring studies 

[Winter & Duthie, 2000; Lavoie et al., 2006; Spencer et al., 2008; Bowman et al., 2010; 

Thomas et al., 2013 (Chapter 4)]. However, they do require a large investment in time and 

money for taxonomic identification of the algal taxa. Photosynthetic pigment concentrations on 

the other hand is a relatively new metric for algal river monitoring, but is more time- and cost-

effective [Thomas et al., 2013 (Chapter 4)]. Schindler (1987) pointed out that measures of 

ecosystem function were often not sufficiently sensitive to detect the early signs of perturbation 

by anthropogenic stressors, whereas measures of community composition were often the most 

sensitive indicators of ecosystem change. In our study, we show that diatom community 

composition is the most sensitive metric to differences in water physical and chemical 

conditions between the two ecoregions, and photosynthetic pigment concentrations (measure of 

ecosystem function) shows promise as an algal biomonitoring metric as it is comparable with 

benthic algal community composition (a commonly used algal metric), similar to previous 

studies conducted within the South Nahanni River watershed [Thomas et al., 2013 (Chapter 4)] 
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 Many studies have employed the use of coarse taxonomic biological assessments (e.g., 

Spencer et al., 2008; Bowman et al., 2010), diatom assessments (e.g., Reavie & Smol, 1997; 

Winter et al., 2003), and photosynthetic pigments [(e.g., Dorigo et al., 2004, 2007; Thomas et 

al., 2013 (Chapter 4)] in river monitoring studies. While all of these types of assessment 

require a high amount of technical training [Resh, 2008; Thomas et al., 2013 (Chapter 4)], 

either in taxonomic identifications (coarse taxonomic assessments, diatom assessments) or in 

analytical techniques for a HPLC (photosynthetic pigments), they are all routine methods and 

high quality data (i.e., resulting in reproducible results) can be achieved. Additionally, the 

metrics used in this study (benthic algal community composition, diatom community 

composition, and photosynthetic pigment concentration) have unique merits that make them 

viable options for river biomonitoring. Benthic algal community composition to a coarse level 

taxonomy is comparably rapid [Thomas et al., 2011 (Chapter 2)]. For diatom community 

composition, diatom samples are preserved on permanent microscope slides for future use in 

biological monitoring studies. Photosynthetic pigment concentration provides a relatively 

course level of taxonomic resolution (e.g., division) compared to taxonomic assessments of 

benthic algal communities (e.g., division to species). They can also be influenced by factors 

such as light supply, nutrients storage, and different algal taxa producing different quantities of 

pigments per cell. Thus, pigment data do not necessarily equate to relative abundances (Hill, 

1996). However, despite the weaker ability of pigments to discriminate between ecoregions, 

Thomas et al., (2013; Chapter 4) have shown that they are a cost-effective method that 

provides comparable data to algal community composition. In our study, we have shown that 

all three of these metrics are sensitive to differences in physical and chemical conditions across 

the South Nahanni River watershed in one or both of our study years. However, further studies 
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need to assess if all these metrics are sensitive to even small differences in physical and 

chemical conditions downstream of mining operations when compared to reference sites (e.g., 

regional reference sites as part of a RCA study, or upstream sites as part of a gradient type 

design).  

Benthic algal community structure can vary among years due to factors such as weather, 

grazing pressure, competition, and succession patterns (Hill, 1996). Our study was conducted 

over two years which had different meteorological conditions. In spring 2009, precipitation 

was approximately half the amount in the previous year. Lower precipitation combined with 

higher temperatures in 2009 could have resulted in lower discharge within the river system and 

thus a higher concentration of solutes in the water. As we show in Thomas et al., (2013; 

Chapter 4), many water chemistry variables were higher in concentration in 2009 compared to 

2008 and benthic algal communities showed more distinct alterations in response to possible 

stressors in 2009 compared to 2008. Despite the temporal variation, our study found that 

relationships between algal metrics (with the exception of photosynthetic pigments) and 

physical and chemical variables were consistent between years. The close correspondence 

between algal metrics and physical and chemical conditions means that benthic algae have the 

potential to be able to infer water chemistry conditions, and thus can be used to track 

ecological changes. The data provided in this study are valuable at the present, and in the 

future, with other stressors such as climate change (Schindler and Smol, 2006) and long-range 

N-deposition (Chambers et al., 2001) becoming more influential in these remote locations.  

 Bioassessments require adequate characterization of natural variability to effectively assess 

the degree of alteration by human activities at test sites (Hawkins et al., 2010). Study designs 

need to describe natural variability to adequately describe community composition at 
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unaffected reference sites in order to be able to detect subtle changes in biological communities 

at test sites due to human activities and other stressors. A variety of methods have emerged 

from stream assessments [e.g., Control-Impact (CI), Before-After-Control-Impact (BACI), 

Gradient and Reference Condition Approach (RCA)] which characterize the variability in the 

reference condition in different ways. Control-Impact and BACI designs often use only one 

control site to compare to potentially impacted sites (e.g., Spencer et al., 2008). Gradient 

designs compare multiple upstream sites to multiple downstream sites, where each site is 

considered as a replicate [e.g., Rott et al., 1998; Thomas et al., 2013 (Chapter 4)]. Monitoring 

methods such as BACI, CI and gradient designs have been criticized for their inability to 

adequately characterize the reference condition against which degradation is quantified, as well 

as their inability to avoid pseudoreplication within rivers (Hurlbert, 1984; Cooper & Barmuta, 

1993; Downes et al., 2002). Many alternative methods have been proposed including the RCA. 

Reference condition approach designs compare many reference sites that are similar in 

physiographic features (e.g., catchment size, stream order, surrounding vegetation, bedrock, 

particle size) to test sites. Each of the reference sites are replicates and typically collected 

across an entire watershed (e.g., Reece & Richardson, 1999; Rosenberg et al., 1999; Bowman 

et al., 2010). Regardless of the type of assessment conducted, reference sites need to share 

similar physical and chemical characteristics with test sites in order for researchers to assume 

the biological communities would be the same in reference condition (Hulbert, 1984; 

Reynoldson et al., 1997; Bailey et al., 2004). Our study provides the reference sites for an RCA 

approach and highlights the importance of differences between ecoregions on physical and 

chemical conditions and benthic algal communities, and the influence this can have on site 

selection within this watershed. Previous studies conducted within the South Nahanni River 
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watershed utilized CI, gradient, and RCA designs to identify environmental impacts of mining 

developments on biological communities [Spencer et al., 2008; Bowman et al., 2010; Thomas 

et al., 2013 (Chapter 4)]. Of these studies, only Bowman et al., (2010) used regional reference 

sites from across the watershed. They used an RCA design to assess stream condition 

downstream of the two mining companies within the watershed.  

Despite the promising attributes of the RCA model, there are some problems with the RCA 

that need to be overcome. The RCA is designed to identify physical attributes that best 

discriminate between groups of biological communities (or reference sites) and then use these 

physical variables to identify group affiliation of potential test sites. Given the stark contrasts 

in benthic algal communities between ecoregions, the RCA should be able to effectively group 

reference sites based on benthic algal data appropriately within the South Nahanni River 

watershed and consequently assign test sites to appropriate reference groupings. However, 

since the RCA typically uses a posteriori methods of grouping reference sites (e.g., hierarchal 

clustering of sites based on biological community composition) the RCA has the potential to 

group reference sites differently. Our study can help disentangle reference groupings within the 

South Nahanni River watershed. The natural, inherent differences in limnological conditions 

and benthic algal communities between the ecoregions in the South Nahanni River watershed 

can potentially cause problems for the design and application of an environmental monitoring 

program. Selection of reference sites from a different ecoregion than where the test sites are 

located for example can lead to misinterpretation of results and incorrect assessments. 

Assessment of spatial variation among reference sites in algal communities and their relations 

with physical and chemical conditions could strengthen the studies employed by others in the 

past and studies that may occur in the future by providing confirmation of suitable reference 
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site selection. Using an RCA study design in northern systems could be problematic as 

northern ecosystems are often remote, requiring helicopter assistance to access study sites. This 

study could aid in reducing costs associated with RCA designs because it shows that the 

selection of representative reference sites need only occur within each ecoregion and not from 

across the entire watershed.  

 
 



91 
 

3.6 Figures 

 

Figure 3.1 Map showing the South Nahanni River watershed and the locations of sites 

sampled during August of two years (2008, 2009). Sites are coded according to ecoregion: 

Selwyn Mountain ecoregion sites are white circles, Nahanni-Hyland ecoregions sites are solid 

black circles. Grey shaded areas of the map indicate the area protected by the Náátsá'ihch'oh 

and Nahanni National Park Reserves. Mine symbols represent the two mining companies 

within the South Nahanni River watershed. 
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Figure 3.2 Long-term averages (May - September: 1997 & 2001 – 2007; dashed line) overlaying monthly averages (May - 

September) for each year (2008: black bars, 2009: white bars) of mean temperature and total precipitation data calculated from 

Environment Canada meteorological data collected from Rabbit Kettle, NWT station within the Nahanni National Park Reserve. 
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Figure 3.3 Box plots of selected metal concentrations in the Selwyn and Nahanni-Hyland 

ecoregions. 
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Figure 3.4 Box plots of selected nutrient concentrations and ions in the Selwyn and Nahanni-

Hyland ecoregions. 
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Figure 3.5 Box plots of selected physical variables in the Selwyn and Nahanni-Hyland 

ecoregions. 
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Figure 3.6 Principal components analysis (PCA) ordination plots based on water chemistry data obtained in 2008 (top panel) and 

2009 (bottom panel). Panel A) displays the site scores, B) vectors for the water chemistry variables (active variables), and C) vectors 

for the physical variables (supplementary variables). Black circles with solid ellipses encircling them are study sites within the 

Nahanni-Hyland ecoregions, white circles with dashed ellipses encircling them are study sites within the Selwyn Mountain ecoregion.
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Figure 3.7 Correspondence analysis (CA) of the benthic algal community composition data 

obtained from the study sites in 2008 (top panel) and 2009 (bottom panel). Black circles with 

solid ellipses encircling them are study sites within the Nahanni-Hyland ecoregions, white 

circles with dashed ellipses encircling them are study sites within the Selwyn Mountain 

ecoregion. Open triangles in the right-hand graphs (top and bottom panels) represent taxon 

scores. 
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Figure 3.8 Correspondence analysis (CA) of the benthic diatom community composition data 

obtained from the study sites in 2008 (top panel) and 2009 (bottom panel). Black circles with 

solid ellipses encircling them are study sites within the Nahanni-Hyland ecoregions, white 

circles with dashed ellipses encircling them are study sites within the Selwyn Mountain 

ecoregion. Open triangles in the right-hand graphs (top and bottom panels) represent taxon 

scores. Corresponding diatom taxon names for the number codes presented in panel b (2008 & 

2009) are located in Appendix B, Table 3.2. 
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Figure 3.9 Correspondence analysis (CA) of the pigment concentration data obtained from the 

study sites in 2008 (top panel) and 2009 (bottom panel). Black circles with solid ellipses 

encircling them are study sites within the Nahanni-Hyland ecoregions, white circles with 

dashed ellipses encircling them are study sites within the Selwyn Mountain ecoregion. Open 

triangles in the right-hand graphs (top and bottom panels) represent taxon scores. 
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Figure 3.10 Canonical correspondence analysis (CCA) of the benthic algal community composition data (relative abundances) 

obtained from the study sites in 2008 (top panel) and 2009 (bottom panel) constrained to chemical variables (active environmental 

variables; solid vectors) and physical variables (supplemental environmental variables; dashed vectors). Panel A) displays the site 

scores; Black circles with solid ellipses encircling them are study sites within the Nahanni-Hyland ecoregions, white circles with 
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dashed ellipses encircling them are study sites within the Selwyn Mountain ecoregion. Panel B) displays the taxon scores. Panel C) 

displays the vectors for the chemical variables (active environmental variables; solid vectors) and physical variables (supplemental 

environmental variables; dashed vectors). 
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Figure 3.11 Canonical correspondence analysis (CCA) of the benthic diatom community composition data (relative abundances) 

obtained from the study sites in 2008 (top panel) and 2009 (bottom panel) constrained to chemical variables (active environmental 

variables; solid vectors) and physical variables (supplemental environmental variables; dashed vectors). Panel A) displays the site 

scores; Black circles with solid ellipses encircling them are study sites within the Nahanni-Hyland ecoregions, white circles with 

dashed ellipses encircling them are study sites within the Selwyn Mountain ecoregion. Panel B) displays the taxon scores; 
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corresponding diatom taxon names for the number codes presented in panel b (2008 & 2009) are located in Appendix B, Table 3.2. 

Panel C) displays the vectors for the chemical variables (active environmental variables; solid vectors) and physical variables 

(supplemental environmental variables; dashed vectors). 
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Figure 3.12 Canonical correspondence analysis (CCA) of the pigment concentration data (relative abundances) obtained from the 

study sites in 2008 (top panel) and 2009 (bottom panel) constrained to chemical variables (active environmental variables; solid 

vectors) and physical variables (supplemental environmental variables; dashed vectors). Panel A) displays the site scores; Black 

circles with solid ellipses encircling them are study sites within the Nahanni-Hyland ecoregions, white circles with dashed ellipses 

encircling them are study sites within the Selwyn Mountain ecoregion. Panel B) displays the taxon scores. Panel C) displays the 
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vectors for the chemical variables (active environmental variables; solid vectors) and physical variables (supplemental environmental 

variables; dashed vectors).  
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3.7 Tables 

Table 3.1 Values of selected chemical variables for each of the study sites. For river sites 

sampled in both 2008 and 2009 values for each year are reported respectively. The ecoregion 

for each site is provided because physical and chemical conditions differ between Selwyn 

Mountain Ecoregion (SM) and the Nahanni-Hyland ecoregions (NH).  

Site Ecoregion TN 

(µg/L) 

TP 

(µg/L) 

NO2NO3 

(µg/L) 

DIC 

(mg/L) 

Cu 

(µg/L) 

Fe 

(µg/L) 

Pb 

(µg/L) 

W 

(µg/L) 

Zn 

(µg/L) 

 

CCME 

Guideline     3.8 300 NA 1.0 30 

 

SM - 

mean 99.6 3.3 54.1 16.4 1.5 121.4 0.08 0.3 45.1 

 

SM - 

standard 

deviation 50.7 2.7 49.5 9.9 2.6 155.6 0.1 0.6 104.9 

3 SM 64 2.8 12 16.1 1.6 82 0.001 0.04 25.6 

4 SM 89 2.8 22 4.9 10.3 479 0.07 0.3 191 

5 SM 64 2.0 37 1.1 9.8 324 0.2 0.01 552 

6 SM 64 3.4 37 1.7 5.0 111 0.06 3.0 65.7 

7 SM 89 2.8 56 5.1 0.8 41.3 0.05 0.2 18.5 

8 SM 121 1.8 102 34.0 0.3 3.7 <0.005 0.03 1.0 

9 SM 113 1.5 96 25.7 0.3 49 0.01 0.6 26 

10 SM 82 5.1 48 17.6 1.6 435 0.1 0.1 72.9 

13 SM 83 4.2 27 22.7 1.5 124 0.03 0.6 85.2 

14 SM 116 3.1 76 16.4 2.9 26.2 0.03 0.1 42.1 

15 SM 
66, 

110 

2.3, 

3.6 20, 22 

16.4, 

18.2 

0.4, 

0.4 

48.3, 

30.4 

0.02, 

0.03 

0.05, 

0.5 

12.1, 

8.1 

16 SM 
65, 

116 

2.8, 

4.4 15, 14 

13.6, 

13.7 

0.4, 

0.4 

72.1, 

72.4 

0.03, 

0.07 

0.4, 

0.4 

18.4, 

17.4 

17 SM 43, 61 

2.9, 

3.4 17, 17 

11.7, 

12 

0.4, 

0.5 

89.8, 

88.9 

0.03, 

0.05 

0.2, 

0.5 

13.9, 

11.9 

20 SM 191 0.8 157 36.4 0.1 7.5 <0.005 0.1 1.8 

22 SM 144 1.1 115 30.8 0.3 7.3 0.005 0.1 5.1 

23 SM 146 1.9 108 29.9 0.3 8.3 <0.005 0.03 2.3 

25 SM 93 3.2 38 4.9 0.9 28.7 0.01 0.3 15.7 

36 SM 222 1.6 198 31.3 0.2 103 0.008 0.01 2.6 

37 SM 255 1.7 142 29.8 0.1 36.4 0.02 0.1 4.4 

40 SM 65, 72 4, 10.6 26, 27 

11.2, 

10 

0.3, 

0.6 

123, 

413 

0.09, 

0.4 

0.3, 

0.2 

3.6, 

2.9 

42 SM 74 3.7 15 4.9 0.3 114 0.1 0.03 2.1 

77 SM 73 1.9 47 14.9 1.2 11.6 0.05 0.04 44.2 

78 SM 98 1.8 46 14 0.7 9.5 0.07 0.2 47.7 

79 SM 58 2.1 17 16.6 0.4 34.4 0.03 0.3 11.5 

80 SM 51 13.5 15 7.7 0.7 548 0.6 0.1 3.2 
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Site Ecoregion TN 

(µg/L) 

TP 

(µg/L) 

NO2NO3 

(µg/L) 

DIC 

(mg/L) 

Cu 

(µg/L) 

Fe 

(µg/L) 

Pb 

(µg/L) 

W 

(µg/L) 

Zn 

(µg/L) 

 

NH - 

mean 205.5 3.0 142.9 36.1 1.5 108.3 0.1 0.03 13.2 

 

NH - 

standard 

deviation 49.1 2.3 49.9 9.9 5.6 165.5 0.3 0.04 28.1 

21 NH 349 1.5 113 34.1 0.3 12.2 0.01 0.1 2.6 

34 NH 139 3.8 43 7.4 0.6 170 0.05 0.1 1.6 

35 NH 198 1.0 166 35.1 0.2 12.5 <0.005 0.02 1.6 

48 NH 157 3.8 41 27.6 0.5 104 0.1 0.02 2.7 

49 NH 123 6.7 54 35.4 1.2 488 0.1 0.02 48.4 

50 NH 190 4.6 63 7.4 0.9 334 0.1 0.02 31.6 

51 NH 144 3.6 77 39.3 0.8 261 0.07 0.01 12.9 

52 NH 254 2.5 217 39.2 0.2 24.5 0.02 0.01 1.9 

53 NH 210 2.6 114 55.5 0.7 9.3 0.05 0.01 135 

54 NH 188 12.0 117 55.0 1.4 756 0.3 0.03 80.6 

55 NH 
227, 

240 

3.4, 

2.2 191, 179 

36, 

33.2 

0.3, 

0.3 

96.9, 

59.3 

0.07, 

0.06 

0.004, 

0.2 

2.7, 

1.5 

56 NH 
325, 

277 

3.4, 

3.4 210, 192 

34.7, 

31.2 

0.5, 

0.7 

50.4, 

84.9 

0.04, 

0.1 

0.01, 

0.2 

1.1, 

2.5 

57 NH 
219, 

236 

3.2, 

2.5 194, 183 

30.4, 

30.2 

0.2, 

0.3 

44, 

33.4 

0.03, 

0.3 

0.02, 

0.08 

1.3, 

3.0 

58 NH 213 2.3 192 28.4 0.3 204 0.1 0.01 3.1 

59 NH 247 1.7 217 35.1 0.4 19.6 0.02 0.002 0.7 

60 NH 
207, 

229 

2.6, 

1.9 182, 165 

33.5, 

31.8 

0.05, 

0.05 

55.2, 

68.8 

0.04, 

0.04 

0.007, 

0.07 

1.5, 

0.8 

61 NH 179 2.3 110 38.4 0.3 6.8 0.07 0.01 0.6 

62 NH 
162, 

170 

1.1, 

1.4 133, 116 

42.4, 

40.8 

0.3, 

0.3 4.8, 5 

0.006, 

0.03 

0.04, 

0.05 

2.7, 

2.4 

63 NH 163 1.0 141 43.5 0.2 8.1 0.01 0.01 4.7 

64 NH 
162, 

181 

2.2, 

0.6 144, 125 

43.7, 

42.8 

0.2, 

0.2 6.7, 5 

0.01, 

0.04 

0.002, 

0.03 

3.9, 

3.1 

65 NH 153 8.3 88 45.6 1.2 355 0.3 0.01 45.6 

71 NH 
224, 

195 

1.6, 

1.9 162, 139 

43.1, 

41.4 

0.5, 

0.5 

3.8, 

9.5 

0.02, 

0.1 

0.004, 

0.02 

3.4, 

4.3 

73 NH 
203, 

193 1, 0.5 166, 142 

42.6, 

41.4 

0.2, 

32.8 

3.6, 

50.5 

0.01, 

1.9 

0.002, 

0.09 

3.0, 

4.2 

81 NH 215 5.1 176 31.0 0.2 74.2 0.2 0.03 1.1 

82 NH 211 4.6 164 33.2 0.5 152 0.1 0.1 2.9 
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Table 3.2 Values of selected physical variables for each of the study sites. For river sites 

sampled in both 2008 and 2009 values for each year are reported respectively. The ecoregion 

for each site is provided because physical and chemical conditions differ between Selwyn 

Mountain Ecoregion (SM) and the Nahanni-Hyland ecoregions (NH).  

Site Ecoregion Altitude 

(m above  

Sea Level) 

Drainage 

Area 

(km2) 

Forest 

(%) 

Ice 

(%) 

Intrusive 

Bedrock 

(%) 

Sedimentary 

Bedrock 

(%) 

 

 SM - mean 3329.8 370.2 20.6 21.7 7.6 92.0 

 SM - standard deviation 468.6 518.9 7.1 14.1 16.1 16.1 

3 SM 3648 140.5 25.2 5.9 0 100 

4 SM 3648 1336.5 29.7 2.1 7 93 

5 SM 3648 25.3 19.3 10.9 10 90 

6 SM 3609 53.5 21.3 23.6 60 40 

7 SM 3484 107.2 21.9 23.2 60 40 

8 SM 3464 153.6 15.9 15.2 0 100 

9 SM 3740 257.7 8.6 33.5 0 100 

10 SM 3349 254.9 20.8 19.6 1 99 

13 SM 2559 2682.1 37.8 7.1 0 91 

14 SM 2920 121.3 25.7 21.8 0 100 

15 SM 3310 612.3 19.1 23.8 4 96 

16 SM 3625 301.4 14.0 31.2 8 92 

17 SM 3714 192.8 14.3 37.2 13 87 

20 SM 2214 405.4 32.8 2.5 0 100 

22 SM 2086 580.7 26.3 8.7 0 100 

23 SM 3805 27.8 13.5 5.7 0 100 

25 SM 2719 305.2 21.2 4.5 34 66 

36 SM 3474 457.0 24.8 6.9 0 100 

37 SM 3120 189.0 30.4 5.3 0 100 

40 SM 3655 120.9 16.6 38.6 0 100 

42 SM 3773 60.1 6.8 55.7 0 100 

77 SM 2916 502.3 24.7 23.5 0 100 

78 SM 3041 422.3 24.5 25.0 0 100 

79 SM 3051 111.7 24.3 23.8 0 100 

80 SM 3687 87.1 14.1 43.0 0 100 

 NH - mean 2273.8 812.2 37.6 0.8 2.9 97.1 

 NH - standard deviation 694.5 762.1 0.8 1.3 12.1 12.2 

21 NH 2017 198.8 34.3 0.3 11 89 

34 NH 1876 579.8 26.6 0.6 69 31 

35 NH 2076 304.8 28.1 1.8 0 100 

48 NH 2946 457.0 73.2 0 0 100 

49 NH 1975 2220.0 74.6 0 9 91 

50 NH 1509 3591.7 70.3 2 6 94 

51 NH 1866 765.4 64.4 0 0 100 

52 NH 1866 276.9 52.2 1.3 0 100 
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Table 3.3 List of the ‘indicator’ taxa, as determined from use of Similarities percentage 

(SIMPER) analysis, that best accounted for differences in the three algal metrics between the 

two ecoregions (Selwyn Mountain, Nahanni-Hyland). See Methods for further details.  

Benthic algal metric Year Ecoregion 

  Selwyn Mountain 

ecoregion 

Nahanni-Hyland 

ecoregions 

Benthic algal community 

composition 

2008 Oscillatoriaceae, 

Phormidiaceae 

None 

2009 Merismopediaceae, 

Oscillatoriaceae 

None 

Diatom community 

composition 

2008 E. minutum , F. c. gracilis, , 

F. c. rumpens 
G. species 1, S. ulna 

2009 E. silesiacum, F. c. gracilis C. affinis, G. species 1 

Photosynthetic pigment 

concentration 

2008 Chlorophyl-a’ Fucoxanthin 

2009 Aphanizophyll, Chlorophyl-

a’, Phaeophytin-b 
β-carotene 

 

Site Ecoregion Altitude 

(m above  

Sea Level) 

Drainage 

Area 

(km2) 

Forest 

(%) 

Ice 

(%) 

Intrusive 

Bedrock 

(%) 

Sedimentary 

Bedrock 

(%) 

 

53 NH 1965 408.5 76.5 0 0 100 

54 NH 1204 810.4 76.5 0 0 100 

55 NH 1446 2286.7 35.6 1.5 0 100 

56 NH 1981 615.7 38.6 0.01 0 100 

57 NH 2601 999.0 22.8 3.3 0 100 

58 NH 3011 652.8 23.8 5.0 0 100 

59 NH 2040 580.9 36.8 0 0 100 

60 NH 600 827.1 32.5 0.1 0 100 

61 NH 3431 173.4 11.4 0.2 0 100 

62 NH 3182 274.7 19.3 0.2 0 100 

63 NH 3080 297.8 20.2 0.2 0 100 

64 NH 3038 307.2 20.8 0.1 0 100 

65 NH 1939 1282.6 81.0 3 0 100 

71 NH 3002 414.8 21.9 0.1 0 100 

73 NH 2900 460.0 23.2 0.1 0 100 

81 NH 2221 140.5 27.2 2.7 0 100 

82 NH 1400 1109.9 33.5 0.06 0 100 
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Chapter 4 

Evaluating the use of algal pigments to assess the biological condition of streams 

4.1 Overview 

Assessments of stream condition using benthic algal communities have traditionally relied on 

taxonomy-based approaches to compare community structure at sites exposed to a stressor 

versus reference sites. Taxonomy-based methods require high levels of training and are 

relatively time-consuming and expensive. We examined the utility of assessing stream 

biological condition using algal pigments. We used gradient and control-impact study designs 

in 2008 and 2009 to compare the extent that algal pigments versus taxonomic descriptors of 

algal community structure varied along a 10.5-km stretch of the Flat River (South Nahanni 

River watershed, NWT, Canada) encompassing a gradient of nutrients and metals at sites 

upstream, adjacent to and downstream of a northern metals mine. We also calculated costs to 

quantify algal pigments relative to taxonomy-based methods. Multivariate analyses (ANOSIM 

tests, redundancy analysis) identified that pigment concentrations from benthic algal samples 

differed significantly (P < 0.05) between non-exposed and exposed river sites and were related 

to variations in water physical and chemical conditions. By contrast, community composition 

determined from taxonomy-based enumeration to the Class and Family levels did not differ 

significantly between non-exposed and exposed sites, and relations with water physical and 

chemical conditions were weaker and inconsistent between the study years. In-house costs to 

quantify algal pigments were lower than commercial rates to describe community structure 

using taxonomy. Thus, our data suggests that analysis of benthic algal pigments represents a 

viable and cost-effective bio-monitoring method for assessing anthropogenic effects on stream 

condition that merits further evaluation. 
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4.2. Introduction 

Developing cost-effective tools to quantify degradation of aquatic ecosystems by 

environmental stressors is a central challenge to monitoring biologists (Walker et al., 2003; 

King et al., 2006). In lotic systems, monitoring programs typically rely on taxonomy-based 

assessments that describe the community structure of benthic algae, benthic 

macroinvertebrates, and/or fish (e.g., Stevenson & Bahls, 1999; Biggs & Kilroy, 2000; Walker 

et al., 2003; Kilgour et al., 2007). Algae have been acknowledged as promising indicators for 

detection of metal and nutrient enrichment, but they remain infrequently adopted within 

monitoring programs compared to fish and macroinvertebrates (Dubé et al., 1997; Chambers et 

al., 2001; Kilgour et al., 2005, 2007). In Canada, for example, monitoring of environmental 

effects is mandatory for the mining sector and typically includes monitoring of benthic 

macroinvertebrate and fish communities (e.g., Kilgour et al., 2007; Spencer et al., 2008). These 

biota vary in their responsiveness to differences in physical and chemical conditions of the 

surrounding aquatic habitat. Both fish and macroinvertebrates are thought to integrate the 

conditions of lower trophic levels and, therefore, be representative of the overall ecological 

integrity of stream ecosystems. However, there are limitations to monitoring fish and 

macroinvertebrate communities (e.g., due to their mobility, monitoring data may not reflect 

conditions of the site where they were collected; Resh, 2008). In addition, monitoring lower 

trophic levels can be more cost-effective and can serve as surrogates for ecological status of 

higher trophic levels (Kilgour et al., 2005; Rhea et al., 2006). 

Assessments of river health based on benthic algae typically involve comparisons of 

community structure among sites based on taxonomic identifications at the family, genus or 
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species levels (Reavie & Smol, 1998; Rott et al., 1998; Winter & Duthie, 1998; Hill et al., 

2000a). Despite the use of sub-sampling procedures that reduce the number of cells that are 

used to describe the community, taxonomic descriptions of community structure require high 

levels of training, and are time-consuming and moderately expensive. Alternatively, variation 

in the structure of algal communities can be assessed using algal pigments since variation in 

the abundance and composition of algal groups coincides with changes in concentrations of 

algal pigments (e.g., Leavitt & Hodgson, 2001; Lauridsen et al., 2011). Algal pigments provide 

a potentially more cost- and time-effective method of assessing algal community structure and 

function to monitoring biologists and have been shown to respond to a diversity of 

anthropogenic stressors. In fact, algal pigments have been used as an indication of shifts in 

algal communities in paleolimnological studies, nearshore benthic algal biomonitoring studies 

in lakes, studies of river phytoplankton, and studies of diffuse-source agricultural pollution in 

European rivers. Only a few studies have used pigments to assess shifts in the structure of algal 

communities in response to development of lake shorelines (Thomas et al., 2011; Chapter 2), 

eutrophication (Hall et al., 1997), mining (Sabater et al., 2003), or responses to herbicides 

(Guasch & Sabater, 1998; Dorigo et al., 2004, 2007). To our knowledge, no study has 

evaluated the use of a suite of algal pigments to assess environmental impacts in Canadian 

rivers, including those associated with hard-rock mining operations. Despite recognition of 

high-throughput potential of pigment analysis by HPLC and well characterized taxon-pigment 

associations, the extent to which algal pigments represent a potentially effective and cost-

saving alternative to taxonomy-based river monitoring approaches remains poorly known.  

The primary objective of our study was to evaluate the use of algal pigments as a bio-

assessment and bio-monitoring approach. We addressed this goal using a gradient and control-
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impact study design in a river that received metal-rich discharge (Spencer et al., 2008) from a 

tungsten mine in Northwest Territories, Canada. We compared relations of water physical and 

chemical conditions with pigment and taxonomy-based (to Class/Family level) descriptors of 

benthic algal communities at 10 sites located upstream and downstream of the mine in 2008 

and 2009. Our intent was to evaluate the use of algal pigments as a bio-monitoring approach 

rather than completing a broad-scale application of the method to assess site condition. Two 

previous studies reported taxonomy-based assessments that detected differences in the benthic 

algal communities (composition and biomass) corresponding to differences in chemical 

stressors (i.e., metals and nutrients) adjacent to the tungsten mine (Spencer et al., 2008; 

Bowman et al., 2010). Thus, we predicted that algal community structure and pigments would 

vary among sites located upstream and downstream of the main tailings pond, because there is 

a sufficiently large range in potential chemical stressors associated with the mine effluent to 

alter the composition of benthic algal communities and potentially their pigment signatures. 

Algal pigments could be an alternative to traditional taxonomy-based assessment and 

monitoring methods if: i) variance in pigments is strongly related to chemical stressors (e.g., 

nutrients and metals) and ii) these relations are concordant with variance and relations between 

taxonomy-based descriptions of algal community structure and chemical stressors. Finally, we 

calculated in-house and commercial costs to quantify algal pigments using high performance 

liquid chromatography (HPLC) and compared these with costs to assess site condition using 

traditional algal taxonomy approaches. Low algal pigment analytical costs and positive 

relations between variance in concentrations of algal pigments and water physical and 

chemical variables would further suggest that algal pigments provide a viable cost-effective 

alternative to taxonomy-based assessment and monitoring approaches. 
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4.3 Methods 

4.3.1 Study area and study sites 

This study centered on the Flat River, which is located within the South Nahanni River 

watershed. Portions of both rivers lie within the Nahanni National Park Reserve in western 

Northwest Territories, Canada. The Flat River is underlain predominantly by shale, limestone, 

dolostone and sandstone bedrock, which contains commercially viable metals including 

tungsten in the form of a schelite (CaWO4) deposit. The Flat River watershed contains boreal 

forests, alpine tundra, shrubland and bog (Halliwell & Catto, 2003).  

The North American Tungsten Cantung mine (61⁰ 57’, 128⁰ 13’) is located within the 

upper portion of the Flat River and is a fourth-order river at this site (Figure 4.1A). Metal-rich 

mine tailings and nutrient-rich sewage from the mine site are pumped into a series of three 

tailings ponds (Figure 4.1B). The majority of tailings are currently deposited into Tailings 

Pond 3. A small portion of leachate from this tailings pond enters the Flat River immediately 

adjacent to the mine site, and mining activities are associated with elevated concentrations of 

aluminum, arsenic, chromium, copper, iron, lead, manganese, and tungsten downstream of the 

mine site (e.g., Spencer et al., 2008). Although leachate from the tailings pond likely enters the 

Flat River along a distance of several hundred meters, we defined the 10 study sites based on 

their proximity to Tailings Pond 3. Sites located 2 to 7 km upstream of Tailings Pond 3 were 

defined as non-exposed sites and sites located 1 km upstream to 3.5 km downstream of 

Tailings Pond 3 were defined as exposed sites (Figure 4.1A). The site located 1 km upstream 

of Tailings Pond 3 was included in the exposed-site category, because it was located adjacent 

to an old, reclaimed tailings pond and a floodplain where mine tailings had previously been 

deposited. The 10.5-km study reach does not receive appreciable inputs from tributaries and a 
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few small 1
st
 and 3

rd
 order streams enter the study reach. Average water velocities along the 

Flat River ranged from 0.44 to 1.08 (cm/s) at the time of sampling and were not considerably 

different between years (Table 4.1).  

Meteorological data collected by Environment Canada at the Rabbit Kettle, NWT station 

within the Nahanni National Park Reserve (Climate ID: 2203342), approximately 50 km west 

of the mine, were used to assess differences in meterological conditions between the study 

years. Comparisons were based on monthly mean temperature and monthly total precipitation 

during the summer (May to August).  

 

4.3.2 Water physical and chemical analysis 

At each site, conductivity, dissolved oxygen concentration, and pH were measured using a YSI 

model 650 meter, and turbidity was measured using a LaMotte model 2020e turbidity meter. 

Water velocity and depth were measured using a Marsh McBirney flow mate. Wetted widths 

were measured with a Bushnell range finder (± 0.5 m). We visually estimated percent gravel 

and cobble within the river bed, following protocols described by Environment Canada (2011).  

Water samples for chemical analyses were collected from the midstream of flow at 

approximately 30-cm depth. Samples were stored in the dark in a cooler during transport to the 

field-base for processing. At the field-base, water samples were sub-sampled and analyzed for 

concentrations of 34 metals (Ag, Al, As, B, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, 

Mn, Mo, Nb, Ni, Pb, Pt, Rb, Sb, Se, Sn, Sr, Tl, U, V, W, Y, and Zn), and nutrients [ammonia + 

ammonium (NH3+NH4), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), 

nitrate+nitrite (NO2+NO3), total phosphorus (TP), and total nitrogen (TN)]. Concentrations of 

metals were determined using inductively coupled plasma mass spectrometry. Samples for 

DIC/DOC were analyzed using an UV-persulfate TOC analyzer, and samples for NH3+NH4, 
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NO2+NO3, TN, and TP measurements were analyzed using an automated continuous 

segmented flow analyzer. All samples were analyzed for nutrients and metals at Environment 

Canada’s National Laboratory for Environmental Testing, Burlington, Ontario, following 

standard methods (Environment Canada [EC], 1994).  

The Canadian Council of Ministers of the Environment’s Canadian Environmental Quality 

Guidelines (CCME Guidelines; CCME, 2003) were used to assess if the metal concentrations 

along Flat River exceeded thresholds for the protection of aquatic life. The CCME guidelines 

for metals such as Cd and Pb were calculated using an average hardness value collected from 

Flat River in fall 2006 (Hardness = 112.93 mg/L CaCO3; Monique Dubé, EP Total, Calgary, 

Alberta, unpublished data). 

 

4.3.3 Collection of benthic algal samples 

Benthic algae were collected from the upper surfaces of cobbles (maximum width and length = 

10 to 15 cm) from one large riffle area (25 to 75 m long) at each site where mean water depths 

and velocities ranged from 0.14 to 0.45 m and from 0.44 to 1.08 m/s respectively. Benthic algal 

samples were collected from August 2
nd

 to 13
th

 in 2008 and from August 7
th

 to 14
th

 in 2009, 

using a modified syringe sampler (Lobe, 1981; Biggs & Kilroy, 2000). Cobbles were removed 

from the riverbed and placed on the river bank for 5 to 10 minutes to allow partial drying of the 

algal mat. The modified syringe was then placed on the cobble, and the plunger fitted with a 

toothbrush head, was placed into the syringe and was rigorously rotated against the cobble 

surface to dislodge the biofilm. The brush plunger was then removed from the cobble and the 

material on the brush was rinsed into a 100 mL plastic container.  

 At each site, separate algal samples were collected for photosynthetic pigment 

concentration and benthic algal community composition analysis. Each sample consisted of 
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scrapings from five to ten cobbles using the syringe sampler, which were combined into one 

bottle each for photosynthetic pigment concentration and benthic algal community composition 

analysis. Thus, each bottle contained 5 to 10 scrapings (1 from each of the 5 to 10 rocks) that 

represented a total surface area of 26.5 to 53.1 cm
2
. Samples were stored in the dark in a cooler 

in the field until transported to the field-base for processing. For photosynthetic pigment 

concentration, samples were filtered onto Whatman GFF filters (0.7 μm) and frozen until 

analyzed by HPLC at the University of Waterloo. Samples for benthic algal community 

composition were preserved with Lugol’s solution until enumerated at the University of 

Waterloo.  

 

4.3.4 Photosynthetic pigment concentration 

Pigments were extracted from each sample for 24 hours at -20⁰C in a solution of 

acetone:methanol:water (80:15:5, by volume). Once extracted, the solution was filtered 

through a 0.22-µm polytetrafluoroethylene (PTFE) syringe filter to remove large particles and 

other impurities. The filtrate was then dried under inert gas (N2) and re-eluted in 500 µL of 

injection solution (acetone:ion pairing reagent:methanol; 70:25:5, by volume) prior to analysis 

using a Waters HPLC reverse-phase system with a Symmetry C18 column (3.5 µm) following 

the methods of Leavitt et al., (1989) as modified from Mantoura & Lleywellyn (1983). A 

gradient delivery of 2 mobile phases was used to separate the pigment compounds. Mobile 

phase A consisted of methanol:ion pairing reagent (90:10, by volume) and mobile phase B 

consisted of methanol:acetone (73:27, by volume). Ion pairing reagent solution consisted of 

0.75g tetrabutylammonium acetate and 7.7g ammonium acetate. Sudan II was used as an 

external standard, positioned as the first and last sample for each batch of samples processed 

through the HPLC. Since Sudan II has carotenoid-like absorption characteristics and 
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consistently elutes positioned between aphanizophyll and myxoxanthophyll in the 

chromatograph, it was also used as an internal standard added to each sample to account for 

dilution and injection errors (Leavitt & Findlay, 1994). Geranium samples were also positioned 

near the beginning and end of each batch to account for shifts in retention time of pigments 

during the run time. Pigments were measured using a Waters 2998 PDA detector and a Waters 

2475 Multi λ Fluorescence detector. Pigments were identified using the chromatographic 

mobility (Leavitt et al., 1989) and spectral characteristics, following information provided by 

Jeffrey et al., (1997). Standards for algal pigments (including: fucoxanthin, lutein, zeaxanthin, 

diadinoxanthin, echinenone, chlorophyll-c3, myxoxanthophyll, phaeophytin-a, chlorophyll-a, 

chlorophyll-b, β-carotene, and a mixed pigment standard) were used to calibrate the HPLC 

machine prior to analysis. These standards were ordered from DHI Lab Products, Horsholm, 

Denmark. Concentrations of pigments were expressed as µg pigment/cm
2
.  

Photosynthetic pigments are produced by all algae and some pigments are taxonomically 

diagnostic. Chlorophyll-a (chl-a) and β-carotene are produced by all algae and are used to 

estimate total algal biomass (e.g., Clausen & Biggs, 1997). Preliminary analyses showed that 

benthic algal communities from the Flat River contained detectable levels of a suite of 

pigments including: alloxanthin (cryptophytes – 2009 only), aphanizophyll (N-fixing 

cyanobacteria), β-carotene (all algae), chl-a (all algae), chlorophyll-b (chl-b; green algae), 

chlorophyll-c2 (chl-c2; diatoms and chrysophytes), diadinoxanthin (diatoms and chrysophytes 

- 2009 only), echinenone (cyanobacteria), fucoxanthin (diatoms and chrysophytes), 

myxoxanthophyll (colonial cyanobacteria), and okenone (purple sulfur bacteria – 2009 only). 

Lutein/zeaxanthin (green algae and cyanobacteria, respectively) were expressed as one pigment 

as our system was unable to separate them. Many degradation products of chl-a 
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(chlorophyllide-a – 2008 only, phaeophytin-a – 2009 only) and chl-b (phaeophytin-b) were 

also detected including isomers of chl-a (chlorophyll-a´). 

 

4.3.5 Benthic algal community composition 

Samples for benthic algal community composition were prepared by subsampling 2 mL of 

well-mixed sample into an Utermöhl chamber. The samples were diluted with deionized water 

to 3 mL and allowed to settle for 24 hr. Approximately 300 cells of algae per sample were 

enumerated to Class (i.e., Bacillariophyceae, Chrysophyceae) or Family (i.e., Chaetophoraceae, 

Chroococcaceae, Closteriaceae, Desmidiaceae, Hydrodictyaceae, Oedogoniaceae, 

Oscillatoriaceae, Merismopediaceae, Microcystaceae, Nostocaceae, Rivulariaceae, and 

Zygnemataceae), following the nomenclature of Prescott (1951) and Wehr and Sheath (2003). 

Single-celled algae and each cell within a colony were counted as individual units, while entire 

filaments consisting of multiple cells were counted as one unit. We performed analyses on the 

benthic algal community composition data expressed both as taxon relative abundances 

(expressed as percentages), cell density (number of algal units/cm
2
), and as biovolume 

(µm
3
/cm

2
). Preliminary analyses showed that comparable results were obtained for all three 

types of data, but patterns were less apparent and statistical test results were weaker when 

based on the data expressed as cell density and biovolume. Thus, to reduce redundancy in this 

paper, we present analyses based on relative abundances of algal cells only.  

 

4.3.6 Numerical analyses 

We described spatial variation in concentrations of metals, nutrients, photosynthetic pigment 

concentration and benthic algal community composition data by plotting their concentrations 

versus distance upstream or downstream of the main tailings pond (Tailings Pond 3). Because 
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rainfall in 2008 exceeded that of 2009, we explored spatial patterns in water physical and 

chemical conditions, photosynthetic pigment concentration and benthic algal community 

composition separately for each year.  

Detrended correspondence analysis (DCA) was used to calculate gradient lengths for each 

algal metric separately. Since gradient lengths were < 1.5 SD units, linear ordination methods 

were used to determine general trends in the data (Birks, 2010). Principal components analyses 

(PCA) were used to explore the differences among sites in water chemistry, photosynthetic 

pigment concentration and benthic algal community composition data for both 2008 and 2009. 

Ordination by redundancy analysis (RDA) was subsequently used to explore relations between 

photosynthetic pigment concentrations and water physical and chemical conditions, and 

between benthic algal community composition and water physical and chemical conditions. 

Our primary interest was to define the relations between biota and water physical and chemical 

conditions; however, these relations may not necessarily reflect direct causal effects of the 

water physical and chemical conditions.  

Gradient and upstream-downstream designs can be problematic if physical and chemical 

characteristics at one site influence that at other sites (i.e., when there is spatial dependence). 

We used Pearson correlations to test for spatial autocorrelations in physical and chemical 

characteristics of sites. For these analyses, we systematically ordered data from Site 1 to Site 

10 and then created a separate column of data by spatially lagging data at Sites 1 to 10 by one 

site. This creates a data matrix where values at sites 1 to 9 are compared to data at sites 2 to 10 

(i.e., spatial lag of one site). We tested for spatial autocorrelations in select physical and 

chemical variables that we had identified as being important in explaining variance in algal 

community structure (i.e., DIC, NO2+NO3, TN, TP, pH, DO, turbidity, Al, Cd, Cu, Fe, Mn, W, 
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average and maximum depth, average and maximum velocity, wetted widths, and percent 

gravel and cobble).  

Because the number of environmental variables exceeded the number of sites, we reduced 

the number of environmental variables (metals and nutrients) used in the RDA analyses. This 

was achieved by completing a series of preliminary RDA ordinations with a single 

environmental variable at a time and retaining the top nine variables that accounted for the 

greatest amount of variation along the first ordination axis. We further reduced the number of 

variables by selectively eliminating those that were the most highly correlated (r > 0.80) until 

the variance inflation factors (VIF’s) were below 20 for all variables. These methods were 

performed separately for each biological metric and each study year. Using this approach, 

subsets of water physical and chemical variables were selected for RDAs based on pigment 

concentrations and taxonomy-based data separately, for both 2008 and 2009. The variables 

DOC, NO2+NO3, turbidity, Cd, Pb, W, and Zn were retained for the RDA of pigment 

concentrations in 2008, whereas analyses of pigment concentrations collected in 2009 were 

based on NO2+NO3, TP, pH, Cu, Mn, and W. For RDAs with the taxonomy-based data, DIC, 

DOC, TN, TP, conductivity, turbidity, Mn, and Zn were retained for 2008, and DIC, 

NO2+NO3, TN, TP, pH, Cu, and W were retained for 2009.  

One-way Analysis of Similarities (ANOSIM) tests were used to determine if physical and 

chemical water conditions differed significantly between non-exposed and exposed sites. 

ANOSIM tests were also used to determine if composition of benthic algae (based on pigment 

concentrations or taxonomy-based data) differed significantly between non-exposed and 

exposed sites. We also used one-way Analysis of Variances (ANOVA) tests to determine if 

concentrations of individual water physical and chemical variables and individual pigments 
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differed significantly between non-exposed and exposed sites. Statistical tests were considered 

significant if p < 0.05, and marginally significant for 0.10 ≥ p < 0.05.  

RELATE analyses were used to determine if sample scores for photosynthetic pigment 

concentration and sample scores for water physical and chemical variables at each site shared 

similar structure (i.e., were correlated). Similarly, RELATE analyses were performed to 

determine if sample scores for benthic algal community composition data and sample scores 

for water physical and chemical variables at each site shared similar structure. Also, RELATE 

analyses were performed to assess if sample scores for photosynthetic pigment concentration 

and sample scores for benthic algal community composition data at each site shared similar 

structure. RELATE analyses were performed separately for 2008 and 2009. RELATE analyses 

used Spearman ranked correlation tests with 999 random permutations to determine 

correlations between sites using data matrices (Bray-Curtis matrices for biological data, 

Euclidean distances for environmental data; Clark & Warwick, 2001).  

Prior to ordinations and one-way ANOVA tests, water physical and chemical data were 

tested for normality using Shapiro-Wilks tests. All non-normal variables were ln(x+b)-

transformed, where b = 0.5 x the minimum non-zero value. Prior to one-way ANOSIM tests 

and RELATE analyses, all water physical and chemical data were normalized (variables had 

their mean subtracted and then were divided by the standard deviation) in order to equalize 

variances for calculation of Euclidean distances (Clark & Warwick, 2001). Photosynthetic 

pigment concentration data were transformed using a log(x+1)-transformation, and benthic 

algal community composition data were square-root transformed prior to running PCA and 

RDA ordinations, one-way ANOSIM tests, one-way ANOVA tests and RELATE analyses to 

down-weight the most abundant species and equalize variances. The one-way ANOSIM tests 
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and RELATE analyses of photosynthetic pigment concentration and benthic algal community 

composition data were based on Bray-Curtis similarity matrices. All one-way ANOSIM tests 

and RELATE analyses were performed using the software PRIMER version 6 (Clark & 

Gorley, 2006). PCA and RDA ordinations were performed using CANOCO version 4.5 

software (ter Braak & Šmilauer, 2002). Shapiro-Wilks and one-way ANOVA tests were 

performed using the software IBM SPSS statistics 20. 

 

4.4 Results 

4.4.1 Water physical and chemical conditions  

On average, the total metal concentration was 1.8-fold higher at the exposed sites compared to 

the non-exposed sites. Of the metal and nutrient variables that were elevated at exposed sites 

(e.g., Al, Cd, Fe, Mn, W, TN, and NO2+NO3), average concentrations (2008 to 2009) were 1.4 

– 2.1-fold higher than at the non-exposed sites. For most sites, concentrations of several metals 

(e.g., Al, Cu, Fe, Mn, W), nutrients (e.g., TP), turbidity, and flow velocity were higher in 2009 

than 2008, while water levels were lower in 2009 compared to 2008 (Table 4.1, Figure 4.2). 

These differences coincided with a warmer drier summer in 2009 compared to 2008. One-way 

ANOSIM tests showed that water physical and chemical conditions differed significantly 

between non-exposed and exposed sites in 2008 (global R = 0.39, p = 0.03) and with marginal 

significance in 2009 (global R = 0.24, p = 0.08).  

One-way ANOVA tests showed that concentrations of Cu, Fe, Zn, and DIC were marginally 

significant to significantly higher at exposed sites compared to non-exposed sites in 2009 only 

(Cu: F = 7.5, p = 0.03; Fe: F = 7.0, p = 0.03; Zn: F = 3.4, p = 0.10; DIC: F = 4.9, p = 0.06; 

Figure 4.2). Concentrations of Mn, W and NO2+NO3 were marginally significant to 

significantly higher at exposed compared to non-exposed sites in both study years (Mn – 2008: 
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F = 14.7, p = 0.01; Mn – 2009: F = 9.3, p = 0.02; W – 2008: F = 28.7, p < 0.01; W – 2009: F = 

5.4, p = 0.05; NO2+NO3 – 2008, F = 7.5, p = 0.03, NO2+NO3 – 2009: F = 3.8, p = 0.09). All 

other water physical and chemical variables did not differ significantly between exposed and 

non-exposed sites.  

Some metals exceeded CCME guidelines at both non-exposed and exposed sites. 

Concentrations of Cd (2009) and W (2008 and 2009) exceeded CCME guidelines at the 

exposed sites, but not at the non-exposed sites (CCME guidelines: Cd = 0.037 µg/L; W = 1.0 

µg/L). Concentrations of iron exceeded guidelines at all non-exposed and exposed sites in 

2009, but not at any sites in 2008 (CCME guideline: Fe = 300.0 µg/L). 

Sites along Flat River were located in riffle-run habitats that were similar in terms of water 

depths and velocities (Table 4.1). Wetted widths ranged between 9.6 to 29.6 m (2008) and 9.8 

to 31.2 m (2009). Average depths ranged from 14.4 to 44.6 cm in 2008, and 17.1 to 30.0 cm in 

2009. Average velocity ranged from 0.47 to 0.82 cm/s (2008) and 0.44 to 1.08 cm/s (2009), 

and % cobble and gravel ranged from 29 to 64 % (2008) and 20 to 66 % (2009).  

Pearson correlation analyses showed statistically significant (p < 0.05) positive serial 

correlations in only 7 of 20 variables (DIC, Cu, Fe, Mn, W, Wetted Widths, % cobble). Of 

these, only two showed evidence of positive correlation in both 2008 and 2009 (Mn & W). 

These analyses revealed, at most, only modest evidence of spatial autocorrelation among sites 

in 2008 and 2009, with high levels of inter-annual variability. 

 

4.4.2 Comparison of taxonomy- and pigment-based analysis of benthic algal communities 

Based on benthic algal community composition analyses, benthic algal communities in the Flat 

River were dominated by diatoms and chrysophytes (14 – 92%), cyanobacteria (2 – 76%), and, 

to a lesser extent, by green algae and charophytes (0 – 20%; Figure 4.3). Non-exposed sites 
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were dominated by diatoms and chrysophytes (20 – 92%) or colonial cyanobacteria (2 – 59%). 

Abundance of filamentous cyanobacteria increased markedly (30 - 76%) adjacent to the mine 

(-1 km to 0.01 km from Tailings Pond 3). Exposed sites further downstream (1 – 3.5 km 

downstream of Tailings Pond 3) were dominated by diatoms and chrysophytes (42 –76%; 

Figure 4.3).  

Analysis of photosynthetic pigment concentration showed communities at non-exposed 

sites along the Flat River to have variable concentrations of fucoxanthin, chl-c2, and 

diadinoxanthin (diatoms and chrysophytes), and chl-a (all algae; Figure 4.4). However, 

concentrations of aphanizophyll (N-fixing cyanobacteria), echinenone (cyanobacteria), 

myxoxanthophyll (colonial cyanobacteria), and lutein/zeaxanthin (green algae and 

cyanobacteria) increased at the sites adjacent to and downstream of the mine in both years. 

Concentrations of Chl-c2, diadinoxanthin and fucoxanthin increased further downstream (1 to 

3 km downstream of Tailings Pond 3).  

 

4.4.2.1 Photosynthetic pigment concentration 

Concentrations of algal pigments varied appreciably among sites and between years, and were 

generally 1.5 to 17-fold higher in 2009 than in 2008 (Figure 4.4). These patterns coincided 

with 2- to 5-fold increases in concentrations of Al, Cu, Fe and total phosphorus in 2009 

compared to 2008 (Figure 4.2). Indeed, one-way ANOSIM tests showed that the composition 

and abundance of algal pigments differed significantly between non-exposed sites and exposed 

sites in 2009 (global R = 0.54, p = 0.01), but not in 2008 (global R = 0.04, p = 0.31). In 2009, 

concentrations of chl-a and β-carotene (all algae), aphanizophyll (N-fixing cyanobacteria), 

myxoxanthophyll (colonial cyanobacteria) and lutein/zeaxanthin (green algae and 

cyanobacteria) were 1.3 to 11.9-fold higher at exposed sites compared to non-exposed sites 
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(Figure 4.4). Based on one-way ANOVA tests, concentrations of aphanizophyll and 

phaeophytin-b (chl-b derivative) at the six exposed sites exceeded values at the four non-

exposed sites in 2008 (aphanizophyll: F = 4.3, p = 0.07; phaeophytin-b: F = 4.7, p = 0.06). In 

2009, concentrations of aphanizophyll, β-carotene, lutein/zeaxanthin, and phaeophytin-a (chl-a 

derivative) were higher at the exposed sites than the non-exposed sites (aphanizophyll: F = 

11.9, p = 0.01; β-carotene: F = 7.8, p = 0.02; lutein/zeaxanthin: F = 3.5, p = 0.10; phaeophytin-

a: F = 3.8, p = 0.09). All other pigments did not differ significantly between non-exposed and 

exposed sites in 2008 or 2009.  

Ordination by PCA was used to characterize variation in photosynthetic pigment 

concentrations among sites. For the 2008 data, eigenvalues for the first and second PCA axes 

were 0.77 and 0.10 respectively, explaining 87% of the total variation in pigment abundances 

among sites. In 2009, they were 0.65 and 0.21 respectively, explaining 86% of the total 

variation among sites (Figure 4.5). Sample scores for non-exposed and exposed sites occupied 

distinct positions in PCA space in 2009. In 2008, there was some overlap among the sample 

scores for the non-exposed sites and those for the exposed sites furthest downstream. These 

findings were consistent with the results of the multivariate ANOSIM tests, which showed 

significant difference in photosynthetic pigment composition between exposed and non-

exposed sites in 2009 but not in 2008. In 2008, sites closest to the mine (-1 km to 1 km) were 

characterized by higher concentrations of β-carotene, echinenone and myxoxanthophyll 

relative to sites upstream and further downstream (2 to 3.5 km). Sites 2 to 3.5 km downstream 

plotted alongside the upstream sites (-3 & -7 km) and were characterized by lower 

concentrations of all pigments. Upstream sites (e.g., -2 km) were characterized by higher 

concentrations of chlorophyll-b, fucoxanthan and phaeophytin-b relative to all other sites. In 
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2009, sites adjacent to the mine (-1 km and 0.01 km) were characterized by relatively higher 

concentrations of chlorophyll-a, echinenone and myxoxanthophyll compared to all other sites. 

Sites further downstream (1 to 3.5 km) were characterized by relatively higher concentrations 

of chlorophyll-c2, diadinoxanthin, fucoxanthin, and phaeophytin-a, and upstream (non-

exposed) sites were characterized by relatively lower concentrations of all pigments (with the 

exception of okenone which was present at low concentration at site -4.5 km) compared to 

other sites.  

We used RDA to characterize relationships between pigment concentrations and physical 

and chemical variables (Figure 4.6). For the 2008 dataset, eigenvalues for the first and second 

axes were 0.54 and 0.15 respectively, accounting for 69% of the total variation in 

photosynthetic pigment concentration among sites. In 2009, eigenvalues for the first and 

second axes were 0.36 and 0.22 respectively, accounting for 58% of the total among-site 

variation. There was clear separation of non-exposed and exposed sites in 2009 (similar to 

PCA ordinations). However in 2008, separation of non-exposed and exposed sites was less 

clear with little to no separation of sites immediately adjacent to the mine from sites upstream 

and further downstream. Apparent in the RDA ordinations is that relations between 

photosynthetic pigment concentration and water physical and chemical data differed between 

exposed and non-exposed sites in the Flat River. Concentrations of pigments and water 

physical and chemical variables at non-exposed sites were lower than that at downstream sites 

in both years, with the exception of the site 2 km upstream from Tailings Pond 3 in 2008, 

which was associated with high concentrations of several pigments [e.g., aphanizophyll (N-

fixing cyanobacteria), chl-b (green algae) and fucoxanthin (chrysophytes and diatoms)] and Zn 

(Figure 4.6). Additionally, in 2009 concentrations of okenone (purple sulfur bacteria) were 
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highest at the non-exposed sites compared to exposed sites. At exposed sites closest to the 

mine (-1 to 1 km), increased concentrations of β-carotene and chl-a (all algae), echinenone 

(cyanobacteria), and myxoxanthophyll (colonial cyanobacteria) were positively related to 

increased concentrations of NO2+NO3 and DIC. However, photosynthetic pigment 

concentration and associated water physical and chemical variables at exposed sites located 1 

to 3.5 km downstream varied between years. In 2008, these exposed sites were associated with 

relatively low concentrations of pigments and water chemistry variables (with the exception of 

DOC in 2008). In 2009, the exposed sites were associated with relatively high concentrations 

of pigments [e.g., chl-c2, chl-b, diadinoxanthin (diatoms and chrysophytes) and fucoxanthin], 

TP, several metals (e.g., Al, Cu, Fe, Mn, W), and pH.  

Although there were some differences in photosynthetic pigment concentration between 

years, the same general trend of increased concentrations of β-carotene and chl-a (all algae), 

echinenone (cyanobacteria) and myxoxanthophyll (colonial cyanobacteria) along with 

increased concentrations of DIC and NO2+NO3 at sites closest to the mine was apparent in 

both years (Figure 4.6). RELATE analysis was used to determine the correlation of sample 

scores between photosynthetic pigment concentration and water chemistry data. In both years, 

these two data sets were marginally significantly correlated (2008: Rho = 0.25, p = 0.08; 2009: 

Rho = 0.20, p = 0.10). 

 

4.4.2.2 Benthic algal community composition 

The PCA ordination of benthic algal community composition data from 2009 captured 73% of 

the total variation (λ1 = 0.39, λ2 = 0.34), but showed very little separation of sample scores 

from the non-exposed and exposed sites (Figure 4.7). Similarly, the RDA ordination of the 

2008 data captured 71% of the total variation (λ1 = 0.59, λ2 = 0.12), with considerable overlap 
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of the sample scores from non-exposed and exposed sites (Figure 4.8). Consistent with these 

patterns, one-way ANOSIM tests revealed that non-exposed and exposed sites did not differ 

significantly using the benthic algal community composition data from 2008 and 2009 (2008: 

R = -0.01, p = 0.42; 2009: 0.10, p = 0.23). In 2009 only, there was minimal separation of sites 

adjacent to the mine (-1 to 0.01 km) from all other sites. Exposed sites were characterized by 

relatively high abundances of Oscillatoriaceae, Nostocaceae, and Ulotrichaceae, which 

corresponded with HPLC analysis showing relatively high concentrations of cyanobacterial 

pigments at these sites (Figures 4.5 & 4.6).  

The RDA ordinations of benthic algal community composition data from 2009 captured 

51% of the total among-site variation (λ1 = 0.29, λ2 = 0.22), and showed even less separation of 

sample scores from non-exposed and exposed sites than the 2009 PCA ordination (Figure 4.8). 

The 2008 RDA ordination captured 54% of the total among site variation (λ1 = 0.33, λ2 = 0.21), 

and showed a greater separation of sites at -1 km and 2 km along the Flat River from all other 

sites. Relations between benthic algal communities and environmental conditions were variable 

between study years when using the taxonomy-based data (Figure 4.8). In 2008, for example, 

high relative abundances of Merismodpediaceae, Microcystaceae, and Chrococcaceae were 

associated with relatively high concentrations of TN and turbidity. However, in 2009 these taxa 

were associated with relatively low concentrations of nutrients, low pH and high 

concentrations of Cu and W. Abundance of Bacillariophyceae and Zygnemataceae was 

associated with higher concentrations of TP in both years. Also, Site 5, which is located 1 km 

upstream of the mine, was characterized by relatively high abundance of Hydordictyaceae in 

2008, and high relative abundance of Oscillatoriaceae, Nostocaceae, and Ulotrichaceae in 

2009. Although there were different types of algae present at this site between years, the algae 
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were consistently associated with DIC and NO2+NO3 in both years. Thus, the photosynthetic 

pigment concentration data appeared to capture more consistent biota-environmental relations 

during the two years of the study compared to the benthic algal community composition 

assessment. Consistent with this finding, results of RELATE analysis showed no statistically 

significant correlation between sample scores from benthic algal community composition data 

and water physical and chemical concentrations in either study year (2008 Rho = -0.23, p = 

0.96; 2009 Rho = -0.01, p = 0.51). In addition, results of RELATE analysis showed a 

marginally statistically significant correlation between sample scores from benthic algal 

community composition data and photosynthetic pigment concentration in 2009 (Rho = 0.24, p 

= 0.07), but not in 2008 (Rho = -0.03, p = 0.54). Also, the direction of the correlation differed 

between the two study years. 

 

4.4.3 Costs to quantify photosynthetic pigment concentrations 

We estimated the cost per sample for our laboratory at University of Waterloo to quantify algal 

pigments in a benthic algal sample from a river site using a high performance liquid 

chromatography (HPLC) system by including costs of supplies, labour and the purchase, 

maintenance, servicing, and replacement of the HPLC (Table 2). Supplies included all 

consumable solvents, filters, and other materials. Labour costs were estimated based on a full-

time dedicated HPLC technician assuming an annual salary (including benefits) of $70 000 per 

year and a throughput of 1500 samples per year. Maintenance and servicing costs assumed 

expenses of $15 000 per year to replace lamps, columns and an annual service visit. 

Replacement costs were estimated based on a purchase-price of $80 000 and a 20-year lifespan 

for the HPLC system. Using these major cost components, the base cost of analyzing an 

individual sample for algal pigments was calculated to be $66.84. We then compared this base 
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cost for pigment analysis by HPLC to commercial rates to quantify algal community structure 

using taxonomy-based approaches ($180.00 – 250.00/sample) and pigment analysis ($125.00 – 

175.00/sample). Overall, the base costs for pigment analysis using in-house HPLC is 

approximately half that of a commercial rate and nearly one-third the cost for the commercial 

rate of taxonomy-based assessment.  

 

4.5 Discussion 

We used gradient and control-impact (upstream-downstream) study designs to evaluate 

whether algal pigments could be used as an alternative to traditional taxonomy-based 

approaches for assessing stream condition. We quantified algal community structure using both 

algal pigments and traditional taxonomic descriptors of taxon relative abundance at the Class 

and Family level, and then tested for relationships between both measures of community 

structure with longitudinal variance in water physical and chemical concentrations created by 

the release of metal- and nutrient-rich discharge to the Flat River. A prerequisite to the use of 

algal pigments as a potential bio-indicator is that they are time- and cost-effective for sampling 

and analysis, and responsive to gradients in water physical and chemical concentrations, 

including potential chemical stressors (e.g., metals and nutrients). Patterns evident in 

ordinations by PCA and RDA identified that concentrations of algal pigments varied across the 

longitudinal gradient and were related to variance in water physical and chemical 

concentrations. Additionally, our control-impact comparisons showed substantial, and often 

statistically significant, differences in concentrations of algal pigments at non-exposed sites 

located upstream of the mine versus exposed sites located adjacent to and downstream of the 

mine.  
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Our analyses, based on RDA ordinations, showed that algal pigments were sensitive to 

differences in concentrations of metals and nutrients among sites. Previous studies have shown 

that metals such as cadmium and zinc can result in differences in algal communities including 

decreased biomass, decreased density of diatoms, community shifts from dominance by 

diatoms to green algae and cyanobacteria, and shifts from sensitive to tolerant species (Genter 

et al., 1987; Gold et al., 2003; Morin et al., 2008). Increased concentrations of nutrients such as 

dissolved inorganic nitrogen can result in increased biomass (Chambers et al., 2006). In our 

study, based on pigment analysis we found increased biomass of all algae (as β-carotene and 

chl-a) and cyanobacteria (echinenone and myxoxanthophyll) associated with elevated 

concentrations of NO2+NO3 and DIC at the sites closest to the mine site (-1 km to 1 km). 

Biomass was also lowest at the non-exposed sites. These observed patterns are concurrent with 

results of two other studies that used benthic algae and benthic macroinvertebrates to assess 

impacts of the North American Tungsten Cantung mine on the Flat River (Spencer et al., 2008; 

Bowman et al., 2010). Of note, these studies identified increased biomass (in the form of 

chlorophyll-a) of the overall algal mat, and abundance of cyanobacteria in benthic algal 

communities near the mine, similar to our findings based on pigment analysis. In our study, the 

pigment data were more strongly and consistently associated with water physical and chemical 

conditions than the taxonomy-based data, suggesting pigment analysis is more informative of 

environmental conditions. For example, RELATE analyses showed consistent and marginally 

significant associations between photosynthetic pigment concentration and water physical and 

chemical conditions in both years. In contrast, benthic algal community composition data 

showed positive associations between some algal taxa and nutrient and metal concentrations in 

one year but negative associations in the other year. Also, patterns of photosynthetic pigment 
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concentration and benthic algal community data were correlated in only one of the two study 

years (2009). Consequently, benthic algal community composition assessment does not appear 

to provide consistent assessment of environmental conditions among years. 

Analysis of algal pigments provides a coarser level of taxonomic resolution (typically 

division to subdivision level, but can be coarser than division level) than can be achieved by 

taxonomic analyses (typically division to species). Thus, a potential concern for the use of 

algal pigments as a biomonitor is that photosynthetic pigment concentrations may be capable 

of detecting only relatively coarse levels of changes in community composition. Contrary to 

this expectation, our results suggest that analysis of photosynthetic pigment concentration 

outperforms benthic algal community composition. For example, the PCA and RDA based on 

the photosynthetic pigment concentration explained 87% (2008 - PCA) and 86% (2009 - PCA), 

and 69% (2008 - RDA) and 58% (2009 - RDA) of the variation among sites, which was higher 

than variation explained by taxonomy-based assessment (71% in 2008, 73% in 2009 - PCA; 

54% in 2008, 51% in 2009 - RDA). Importantly, the PCA and RDA based on the algal 

pigments showed greater separation of non-exposed and exposed sites compared to the PCA 

and RDA using taxonomy-based data. Consequently, our results suggest that algal pigments 

track variations in environmental conditions of rivers at least as effectively, if not more so, than 

traditional taxonomy-based assessments. 

Monitoring biologists apply a suite of study designs to identify environmental impacts of 

industrial activities on surface waters, including control-impact (CI), before-after-control 

impact (BACI), gradient, and reference condition approaches (RCA; Green, 1979; Underwood, 

1994; Bailey et al., 2004). We used a gradient design to assess the use of photosynthetic 

pigments as a biomonitoring tool. Since rivers are continua of river water and biological 
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communities, this type of study design has raised concerns about pseudoreplication (Cooper & 

Barmuta, 1993). We tested for spatial dependence by completing correlation analyses of 

spatially lagged data. These analyses showed that sites along the Flat River were, at worse, 

only moderately autocorrelated (7 of 20 variables tested over 2 years showed evidence of first 

order spatial correlation). Moreover, only 2 of these variables showed evidence of 

autocorrelation in both study years, highlighting the interannual variability in autocorrelation 

results. Despite challenges related to spatial autocorrelation, gradient and control impact 

designs are pervasive and are approved approaches within the environmental-effects 

monitoring guidelines in Canada (EC, 2012). While reference condition approaches are clearly 

valuable, they may not be economically feasible in some locations, especially in many northern 

settings where the remote nature of the sites requires helicopter access, often at costs of 

$10,000 to $15,000 per day. Results from upstream-downstream designs can be comparable to 

that using reference condition approaches based on sampling of sites. Bowman et al., (2010) 

used the reference condition approach, sampling reference sites from independent streams 

rather than an upstream-downstream design to assess impairment. Interestingly, conclusions 

related to impairment at the North American Tungsten Cantung mine site presented by 

Bowman et al., (2010) were similar to those of Spencer et al., (2008) despite differences in 

study designs (i.e., gradient, control-impact and RCA). For example, both studies found 

increased algal biomass and cyanobacteria at the sites closest to the mine, an observation that 

we also documented. Moreover, Bowman et al., (2010) did not detect statistically significant 

differences in community composition at exposed and non-exposed sites in multivariate 

ordination space, similar to our results using benthic algal community composition data.  



135 

 

The reference condition approach (Bailey et al., 2004) is becoming increasingly used to 

detect ecological impairment in Canada, and when combined with process studies, to provide a 

mechanistic understanding of plausible cause-effect relationships (Reynoldson et al., 1997; 

Bowman et al., 2005; Scrimgeour et al., 2008; Bowman et al., 2010; White et al., 2011). RCA 

uses clustering analysis, discriminate function analysis, and ordination to compare potentially 

exposed test sites to an appropriate subset of reference sites using physical, chemical, and 

biological data. The ecological condition of test sites is assessed by evaluating the extent to 

which their community composition differs from that at sites identified as un-impacted and in 

the reference condition (Reynoldson et al., 1997; Bailey et al., 2004; Bowman et al., 2005). 

The RCA is thought to offer a powerful alternative to other study designs as it captures the 

variation present within the reference condition using each reference site as a replicate, 

compared to designs such as CI and BACI whose replicates typically consist of multiple 

measurements at each site (Reynoldson et al., 1997; Bailey et al., 2012).  

A potential cause of concern in use of algal pigments within reference condition designs is 

that factors other than those that are influenced by the stressors of concerns may alter algal 

pigment fingerprints. For example, algal pigments can be influenced by factors such as light, 

temperature, and grazing pressure. Thus, interpretations based on pigment data should be made 

with caution and attention to possible confounding factors. For example, phytoplankton will 

produce higher concentrations of carotenoid accessory pigments in high light environments in 

order to reduce photoinhibition. Additional research is required to better understand how 

variance in concentrations of algal pigments might be influenced by chemical stressors due to 

anthropogenic activities versus those that reflect natural variance in water physical and 

chemical concentrations (Hill, 1996). However, in our study the discharge from the mine did 
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not greatly alter water clarity, and hence light attenuation. Thus, results from our study suggest 

algal pigments may serve as a good surrogate and alternative endpoints for monitoring and 

assessment.  

We evaluated the use of algal pigments to serve as a cost-effective bio-indicator through 

multiple yet indirect lines of evidence. This approach included: i) establishing relations 

between photosynthetic pigment concentration and water physical and chemical conditions, ii) 

comparing these relationships to those between relative abundances of algal cells at the Class 

and Family level and water physical and chemical conditions, and iii) quantifying costs to 

identify algal pigment signatures. Our cost comparisons showed that the base analytical costs 

for in-house analysis of pigments were low ($66.48/sample). Additionally, the commercial cost 

of analyzing of a pigment sample is generally lower than the commercial cost of taxonomy-

based assessments, making them a reliable, cost-effective alternative to traditional taxonomic-

based assessments. However, our study centered on one type of human activity, the effects of 

mining at one river, and the broad application of pigment analysis for biomonitoring of river 

condition in response to other types of human activities remains untested. Our study supports a 

growing body of evidence that algal communities are highly sensitive to metal enrichment 

(e.g., Peterson et al., 1984; Macfie et al., 1994; Gensemer et al., 1999; Cervantes et al., 2001; 

Pinto et al., 2003; Küpper et al., 2002). Because industrial effluents are a mixture of many 

potential chemical stressors, identifying causal relations between shifts in biological 

communities and industrial effluents will require experimentation. This is required to better 

establish causal linkages between shifts in algal pigment signatures and chemical stressors 

present in metal-mine effluents. Further studies are also needed to compare environmental 

assessments using algal pigments with those using other biological endpoints, such as 
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taxonomic counts of benthic algae or macroinvertebrates, to better determine the relative 

sensitivity of algal pigments versus other biological endpoints for detection of ecological 

impairment. 
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4.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Location of study sites along the Flat River in the South Nahanni Watershed, 

Northwest Territories, Canada (A) and an aerial view showing the location of the tailings pond 

at the North American Tungsten Cantung Mine adjacent to the Flat River (B) (Photo Dana 

Haggarty). Each of the 10 study sites shown in plot A are defined based on its proximity to 

Tailings Pond 3 which receives metal- and nutrient-rich effluent from the mine site. The green 

shaded regions in the upper plot are the boundaries of the National Parks (Nahanni and 

Nááts'ihch'oh National Park Reserves). 
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Figure 4.2 Longitudinal variation in concentrations of metals and nutrients in the Flat River in 

2008 (closed circle) and 2009 (open circle). Turbidity is represented by closed and open 

triangles for 2008 and 2009, respectively. All sites are expressed as a distance upstream 

(negative) and downstream (positive) of Tailings Pond 3 (closest site = 0.01 km; identified as 

vertical arrows along the x-axes). Sites defined as exposed are enclosed in a grey box, while 

those defined as non-exposed are not. 
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Figure 4.3 Longitudinal variation in percent abundance of selected benthic algal taxa based on 

analyses at the Class and Family level in the Flat River in 2008 (closed circle) and 2009 (open 

circle). All sites are expressed as distances upstream (negative) and downstream (positive) of 

Tailings Pond 3 (closest site = 0.01 km; identified as vertical arrows along the x-axes). Sites 

defined as exposed are enclosed in a grey box, while those defined as non-exposed are not. 
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 Figure 4.4 Longitudinal variation in concentrations of selected algal pigments in the Flat 

River in 2008 (closed circle) and 2009 (open circle). All sites are expressed as distances 

upstream (negative) and downstream (positive) of Tailings Pond 3 (closest site = 0.01 km; 

identified as vertical arrows along the x-axes). Sites defined as exposed are enclosed in a grey 

box, while those defined as non-exposed are not. 
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Figure 4.5 Principal components analysis ordination biplots showing distributions of 

photosynthetic pigment concentrations in the Flat River in 2008 (A – B) and 2009 (C – D). 

Each site is labeled according to their distance along Flat River and coded according to their 

category (i.e., non-exposed sites = white, exposed sites = black). Ellipses were drawn around 

sample scores for the non-exposed (solid line) and exposed (dashed line) sites. Arrows indicate 

the eigenvectors for the corresponding concentrations of pigments. 
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Figure 4.6 Redundancy analysis ordination biplots showing distributions of photosynthetic pigment concentrations and environmental 

variables in the Flat River in 2008 (A – C) and 2009 (D – F). Each site is labeled according to their distance along Flat River and 

coded according to their category (i.e., non-exposed sites = white, exposed sites = black). Ellipses were drawn around sample scores 

for the non-exposed (solid line) and exposed (dashed line) sites. Arrows indicate the eigenvectors for the corresponding concentrations 

of environmental variables and pigments. 
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Figure 4.7 Principal components analysis ordination biplots showing distribution of benthic 

algal community composition (Class and Family level) based on relative abundance benthic 

algal counts from the Flat River in 2008 (A – B) and 2009 (C – D). Each site is labeled 

according to their distance along Flat River and coded according to their category (i.e., non-

exposed sites = white, exposed sites = black). Ellipses were drawn around sample scores for 

the non-exposed (solid line) and exposed (dashed line) sites. Arrows indicate the eigenvectors 

for the corresponding benthic algal taxa. 
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Figure 4.8 Redundancy analysis ordination biplots showing distribution of benthic algal community compositions (Class and Family 

level), based on relative abundance benthic algal counts, and environmental variables from the Flat River in 2008 (A – C) and 2009 (D 

– F). Each site is labeled according to their distance along Flat River and coded according to their category (i.e., non-exposed sites = 

white, exposed sites = black). Ellipses were drawn around sample scores for the non-exposed (solid line) and exposed (dashed line) 

sites. Arrows indicate the eigenvectors for the corresponding concentrations of environmental variables and benthic algal taxa. 
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4.7 Tables 

Table 4.1 Locations and physical attributes of study sites in the Flat River, Northwest Territories, Canada. Reference sites are located 

upstream of the mine site whereas exposed sites are located adjacent to the mine site, or downstream of the main tailings pond. All 

physical descriptors are based on mean values measured at each site in each year. NTU = nephelometric turbidity units. See Methods 

for descriptions of study sites. Site distances with negative values are located upstream of the tailings pond whereas positive values are 

located adjacent to and downstream of the tailings pond.  

 

 

Site 

number 

Site location 

(km upstream 

or downstream 

of tailings 

pond) 

Site 

type 

Physical descriptors 

Wetted width 

(m) 

Average 

Water depth 

(cm) 

Average 

Water velocity 

(cm/s) 

Percent cobble 

and gravel 

Dissolved 

oxygen 

(mg/L) 

pH Turbidity 

(NTU) 

   2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 

1 -7 Ref. 19.4 16.0 19.1 30.0 0.53 0.67 29 32 10.9 12.0 8.2 8.2 1.6 18.5 

2 -4.5 Ref. 9.6 13.2 22.7 17.6 0.54 1.08 53 34 11.5 9.6 8.1 8.0 5.2 14.7 

3 -3 Ref. 17.0 13.4 19.1 23.0 0.47 0.64 37 20 11.1 9.8 8.1 7.9 1.1 21.5 

4 -2 Ref. 17.6 14.6 44.6 27.5 0.82 0.67 43 20 11.9 9.6 8.0 8.1 4.6 13.6 

5 -1 Exp. 14.4 9.8 26.6 20.2 0.52 0.77 43 63 11.7 10.8 7.6 8.0 3.0 10.2 

6 0.01 Exp. 17.6 12.8 31.7 17.1 0.57 0.54 64 83 11.9 10.9 8.2 8.1 5.6 13.4 

7 1 Exp. 21.4 14.6 25.9 29.3 0.54 0.44 47 33 12.8 9.6 8.1 8.5 5.7 15.1 

8 2 Exp. 26.2 26.2 14.4 26.3 0.51 0.51 55 30 11.4 9.7 8.0 8.4 0.1 16.0 

9 3 Exp. 27.0 23.6 29.7 25.4 0.65 0.69 45 66 11.7 12.7 7.7 8.2 2.8 17.0 

10 3.5 Exp. 29.6 31.2 25.9 24.7 0.52 0.47 56 50 11.9 9.9 7.9 8.2 2.6 15.9 
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Table 4.2 Total sample cost and itemized cost components to quantify algal pigment 

concentrations using a high performance liquid chromatographer (HPLC). Costs are in 

Canadian dollars. Labour costs are based on a full time technician at an annual salary of 

$70,000, including benefits, to complete sample preparation, and process and coordinate all 

activities related to running, maintaining and servicing the HPLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cost 

item 

Activity description and major costs components Cost ($) 

1 Sample collection, extraction and preparation (GF/F 

glass fiber, extraction solution, filtration/purification 

equipment, N2 gas and injection solution). 

6.00 

2 Characterizing the algal pigment with the HPLC (Mobile 

phase A & B, inserts for vials) 

1.50 

3 Per-sample costs associated with annual maintenance 

and servicing of the HPLC. Annual costs = $15,000 year 

/ 1500 samples analyzed each year. 

10.00 

4 Per-sample costs associated with the purchase of the 

HPLC (Purchase price = $80,000 / 20 years = $4000 

year. Per-sample cost = $4000 year / 1500 samples 

analyzed each year. 

2.67 

5 Technician to run and maintain the HPLC. Annual cost = 

$70,000 / 1500 samples analyzed each year. 

46.67 

 Total costs per sample 66.84 
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Chapter 5 

Development of a benthic algal reference condition model to assess ecological integrity 

within the South Nahanni River watershed 

5.1 Overview  

Monitoring biologists are continually striving to improve monitoring protocols in order to 

effectively assess alteration of water quality and biological communities due to contaminants. 

We developed benthic algal RCA models for the South Nahanni River watershed, NWT. For 

this, we sampled a suite of least disturbed sites across the watershed in 2008 (n = 44) and 2009 

(n = 18; 12 resampled from 2008 and 6 new) and test sites (potentially affected) downstream of 

two mining companies (n = 20 in 2008 and n = 18 in 2009). Benthic algal communities were 

assessed using three metrics: 1) benthic algal community composition (coarse taxonomic 

resolution counts), 2) diatom community composition (high-taxonomic resolution counts) and 

3) photosynthetic pigment concentrations. The BEAST (BEnthic Assessment of SedimenT) 

model was used to develop the benthic algal RCA models. Patterns of impairment downstream 

of the two mines (Cantung mine along Flat River and Prairie Creek mine along Prairie Creek) 

were assessed and zones of influence were identified for each algal metric in each year. Results 

showed that the three models identified reasonably consistent ‘zones’ of stress downstream of 

Cantung mine along Flat River. However, changes in photosynthetic pigment concentration 

were more sensitive compared to the other two metrics. Along Prairie Creek, only 

photosynthetic pigment concentration identified sites outside of the reference condition directly 

downstream of the Prairie Creek mine. Our results show that benthic algal RCA models 

(specifically photosynthetic pigment concentration models) show promise as biological 

monitoring tools.  
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5.2 Introduction  

Rivers of northern Canada are increasingly threatened by industrial development and climate 

change (Prowse et al., 2006; Schindler & Smol, 2006; Wrona, 2006; Prowse et al., 2011). 

Industrial development such as mining in Canada’s north is anticipated to nearly double 

between 2011 and 2020 (The Conference Board of Canada, 2013). In the face of these 

pressures, improved long-term monitoring protocols are required to inform policies and 

practices that can safeguard against deterioration of water-quality and ecological integrity. 

Monitoring of streams and rivers in northern Canada consists primarily of the collection of 

water chemistry variables, macroinvertebrates and fish. Among the numerous biota that can be 

monitored, benthic algae possess many features that predispose them to provide effective 

monitoring of mining activities in rivers [Spencer et al., 2008; Bowman et al., 2010; Thomas et 

al., 2013 (Chapter 4)]. It has also been recognized that monitoring lower trophic levels could 

reflect changes at higher levels (e.g., macroinvertebrates and fish communities; Kilgour et al., 

2005, 2007). Monitoring protocols for sampling benthic algae in rivers have been developed in 

Europe (CEN; CEN, 2003, 2004), New Zealand (NIWA; Biggs & Kilroy, 2000), and the USA 

(US EPA; Stevenson & Bahls, 1999). In Canada, benthic algae have been utilized in studies of 

streams and rivers in southern, temperate regions (Reavie & Smol, 1998, Winter & Duthie, 

2000; Lavoie et al., 2006), but standardized benthic algal monitoring protocols have not yet 

been evaluated for northern Canadian rivers.  

Environmental effects monitoring (EEM) is mandatory for metal mines in Canada under the 

metal mining effluent regulations (Environment Canada [EC], 2012). Study designs 

recommended for EEM include control-impact (CI) and reference condition approach (RCA). 

The benefit of the RCA model is that it uses many regional reference sites to characterize the 
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reference condition. Each reference site is an individual site selected from across a large area 

(typically a watershed) in order to adequately characterize the reference conditions in the area 

(Reece & Richardson, 1999; Rosenberg et al., 1999; Bowman et al., 2010). The RCA assumes 

that the biological communities at sites are primarily influenced by the physical and chemical 

conditions at each site. Thus, each reference site is also selected to be similar in physical and 

chemical conditions to the potentially affected ‘test’ sites (Hulbert, 1984; Reynoldson et al., 

1997; Bailey et al., 2004). RCA models have been successfully developed for invertebrate 

communities across Canada (e.g., Reynoldson et al., 1997; Reynoldson et al., 2001; Bowman 

et al., 2010). However, few studies have developed models for benthic algal communities, and 

only one study (Bowman et al., 2010) developed a preliminary model for algal communities 

within the South Nahanni River watershed.  

The South Nahanni River watershed has a high preservation value and cultural significance. 

However, deposits of metals within the watershed have led to current and future mining 

operations that may threaten downstream water quality and ecological integrity. There are 

currently two mine operations within the watershed. Previous studies have assessed the effects 

of these mines on biological communities (i.e., fish, macroinvertebrates, and benthic algae) and 

water quality downstream of the mines [Spencer et al., 2008; Bowman et al., 2010; 

Scrimgeour, 2013; Thomas et al., 2013 (Chapter 4)]. Two of these studies found alteration of 

benthic algal community composition downstream of the two mining sites [Spencer et al., 

2008; Thomas et al., 2013 (Chapter 4)]. Only one study developed a preliminary RCA model 

based on fish, macroinvertebrate, and benthic algae (Bowman et al., 2010). This study did not 

find significant differences in benthic algal community composition downstream of the mine 

sites. However, the study sampled a smaller number of reference sites than our study. Here, we 
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develop a more comprehensive RCA model based on composition of benthic algal 

communities within the South Nahanni River watershed. With the larger number of reference 

sites in our study, the resulting RCA models are predicted to have better ability to detect 

impairment. We collected water chemistry and benthic algal samples from 44 reference sites in 

2008 and 18 reference sites in 2009 from across the South Nahanni River watershed. We 

analyzed three benthic algal metrics (benthic algal community composition, diatom community 

composition and photosynthetic pigment concentrations) which have been shown to provide 

useful information to track changes in river and lake conditions in this and other regions [Rott 

et al., 1998; Hill et al., 2000b; Hirst et al., 2002; Rosenberger et al., 2008; Spencer et al., 2008; 

Bowman et al., 2010; Thomas et al., 2011 (Chapter 2), 2013 (Chapter 4)]. The objectives of 

this study were three-fold: 1) using the data collected, we developed RCA models for each 

algal metric (benthic algal community composition, diatom community composition and 

photosynthetic pigment concentrations) to evaluate the ecological health of stream sites 

downstream of two mining companies, 2) we used the models to determine potential zones of 

influence of each mine, 3) the three RCA models and resulting test-site assessments were used 

to make comparisons of the ability of the three algal metrics to reflect changes in water 

chemistry.  

 

5.3 Methods 

5.3.1 Study sites  

The South Nahanni River watershed is located in southwestern Northwest Territories. The 

watershed is characterized by subarctic climate including mean air temperatures of 9°C during 

summer and -19.5°C during winter (EC, 1991). As part of the Mackenzie Mountains Ragged 

Ranges, the elevation in South Nahanni River watershed ranges from less than 1372 m above 
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sea level to approximately 2770 m above sea level. The watershed is underlain by Proterozoic 

glaciomarine conglomerates, early Paleozoic formations, late Devonian to Jurassic formations, 

and Cretaceous granitic rock formations (Halliwell & Catto, 2003). The west portion of the 

watershed is underlain primarily by shale and has the ragged, snow-capped mountains of the 

Logan Mountains and the Ragged Ranges, while the east is underlain primarily by carbonates 

and incorporates the Nahanni Karst and Ram plateaus (Caron et al., 2008). The geological 

formations are naturally abundant in deposits of tungsten, lead, zinc, silver, and gold, which 

has resulted in mining claims throughout the watershed including an operational tungsten mine 

on Flat River (North American Tungsten, Cantung Mine) and an advanced lead, silver, and 

zinc exploration mine on Prairie Creek (Canadian Zinc Corporation, Prairie Creek Mine) 

(Scrimgeour, 2013).  

For this study, a total of 44 sites were selected in 2008 and 18 sites in 2009 (12 repeated 

sampling from 2008; 6 newly sampled in 2009) based on a double-stratified random-sampling 

design (Figure 5.1). The two strata used were stream order and percent ice cover, because they 

are well known to influence physical and chemical stream conditions. By stratifying samples 

according to stream order and % ice cover, we aimed to minimize effects of stream order and 

percent ice cover in order to better detect variability in chemical characteristics and benthic 

algal communities due to other factors operating across the watershed. Firstly, potential 

sampling sites were randomly identified that fell into the 3
rd

 to 6
th

 order stream category. Then, 

those sites with >40% ice cover were removed. This led to the identification of 140 potential 

sampling sites. Not all sites were sampled due to unsafe helicopter landing sites, lower flow 

than expected along Flat River and Prairie Creek, or wildfires that did not allow safe passage to 

the stream site. All reference sites were selected from undisturbed areas of the South Nahanni 
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River watershed to determine benthic algal community structure and physical and chemical 

conditions at stream and river sites having no direct human influence (e.g., no source of 

contaminants adjacent to or upstream). Multiple reference sites were sampled along Caribou 

River, Cathedral Creek, Clearwater Creek, Flat River, Flood Creek, Prairie Creek, Little 

Nahanni River, and Mary River. However, these sites were located greater than 2 km apart 

with multiple confluences of 1
st
 to 3

rd
 order streams between sampling locations, and were, 

therefore, considered independent from each other.  

A total of 39 test sites (21 in 2008 and 18 in 2009) were sampled between August 2
nd

 and 

13
th

 in 2008 and between August 7
th

 and 14
th

 in 2009 (Figure 5.1).The test sites were located 

downstream of two mines within the watershed (North American Tungsten – Cantung Mine 

and Canadian Zinc Corporation – Prairie Creek Mine). At the time of sampling, the Cantung 

Mine was an operational tungsten mine located along the Flat River in the west of the 

watershed at the Northwest Territories – Yukon border (61° 57’, 128° 13’; Figure 5.1). Flat 

River is located in the Selwyn Mountain ecoregion and is underlain primarily by shale (Caron 

et al., 2008). Tailings rich in heavy metals from mine processing and nutrients from sewage are 

pumped into a series of three tailings ponds (Figure 5.2A). The majority of tailings were 

deposited into Tailings pond 3 at the time of sampling. A small amount of leachate from the 

tailings ponds enters the Flat River immediately adjacent to the mine site and likely enters the 

Flat River along a distance of several hundred meters. Thus, we defined the 12 test sites along 

Flat River based on their proximity to Tailings Pond 3. Mining activities along Flat River have 

been associated with elevated concentrations of Al, As, Cr, Cu, Fe, Pb, Mn, and W 

downstream of the mine site (e.g., Spencer et al., 2008).  
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The Prairie Creek Mine is an advanced lead, silver and zinc exploration mine located along 

Prairie Creek in the east portion of the watershed (61° 33’, 124° 47’; Figure 5.1). Prairie Creek 

is located in the Nahanni Plateau ecoregion and is underlain primarily by limestone and 

dolostone bedrock with veins of zinc, lead, copper, and silver mineralization (Caron et al., 

2008). Metal-enriched water is pumped into a series of settling ponds which eventually drain 

into Prairie Creek via Harrison Creek at the time of sampling (Figure 5.2B). Similarly, 

nutrient-rich sewage effluent drains from a settling tank directly into Prairie Creek via Harrison 

Creek. Unlike the Cantung Mine, leachate from the settling ponds at the Prairie Creek Mine 

enter Prairie Creek via Harrison Creek with minimal amounts entering downstream of the 

confluence of the two creeks. Thus, we defined the 8 test sites along Prairie Creek based on 

their proximity to the confluence of Prairie Creek and Harrison Creek. Mining activities along 

Prairie Creek have been associated with elevated concentrations of heavy metals such as Al 

and Zn downstream of the mine site (e.g., Spencer et al., 2008).  

 

5.3.2 Field and laboratory methods 

5.3.2.1 Physical and chemical data 

At each site, water samples (2L) for chemical analyses were collected from the midstream of 

flow at approximately 30-cm depth. Samples were stored in the dark and kept cool until 

transported to a temporary field laboratory for processing. At the temporary field laboratory, all 

water samples were first filtered through an 80-µm mesh to remove large debris, and then sub-

sampled and processed for analysis of concentrations of total metals (Ag, Al, As, B, Ba, Bi, 

Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mn, Mo, Nb, Ni, Pb, Pt, Rb, Sb, Se, Sn, Sr, Tl, U, V, 

W, Y, Zn), nutrients [dissolved inorganic carbon (DIC; filtered through a 0.45-µm cellulose 

acetate filter), dissolved organic carbon (DOC; filtered through a 0.45-µm cellulose acetate 
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filter), nitrite + nitrate (NO2+NO3), total nitrogen (TN), and total phosphorus (TP; preserved 

with 30% H2SO4)]. Metals were analyzed using inductively coupled plasma mass 

spectrometry. Concentrations of DOC and DIC were analyzed using an UV-persulfate TOC 

analyzer, and samples for NO2+NO3, TN, and TP measurements were analyzed using an 

automated continuous segmented flow analyzer at Environment Canada’s National Laboratory 

for Environmental Testing, Burlington, Ontario (EC, 1994). Measurements of conductivity and 

pH were taken at each site using a YSI model 650 meter, while measurements of turbidity were 

taken at each site using a LaMotte model 2020e turbidity meter. Water velocity and depth were 

measured using a Marsh McBirney flow mate.  

Physical variables included quantitative, categorical and binary data encompassing the 

physical characteristics of the streams and riparian habitats at the sites (Appendix C, Table 

5.1). Variables such as canopy cover, habitat types, macrophyte coverage, riparian vegetation, 

substrate size, and percent gravel and cobble within the river bed were determined using 

protocols described by Environment Canada (2011). Bankfull and wetted widths were 

measured with a Bushnell range finder (± 0.5 m) or with a tape measure. Variables describing 

basin morphology, climate, land cover, and bedrock geology were derived from landscape-

scale GIS data (geo-spatial databases including: digital elevation model [www.geobase.ca], 

stream network [www.geobase.ca], climate 

[http://sis.agr.gc.ca/cansis/nsdb/ecostrat/district/climate.html], and bedrock geology 

[http://www.lib/uwo.ca/madgic/geospatial/can_geo1860_1997_data.htm]. For full description 

of variables and how they were measured see Appendix C, Table 5.1.  
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5.3.2.2 Benthic algal sampling 

Benthic algal samples were collected from the upper surface of 5 to 10 cobbles at each site. 

Sampling was restricted to cobbles in order to reduce within-site and among-site variation due 

to the confounding influence of different substrate types (Biggs & Kilroy, 2000). Separate 

benthic algal samples were collected for each type of metric including taxonomic metrics 

(benthic algal community composition and diatom community composition) and quantification 

of photosynthetic pigment concentration. Each sample was collected by removing benthic 

algae from cobbles using a syringe sampler (as described in Thomas et al., 2013; Chapter 4) 

and combining the material from the 5 to 10 cobbles to make one composite sample 

representing a measured surface area (range = 26.5 to 53.1 cm
2
). Samples were stored in the 

dark and kept cool until further processing. Benthic algal samples for quantification of 

photosynthetic pigments by HPLC were filtered onto Whatman GFF filters (0.7 µm), wrapped 

in aluminum foil and frozen until analysis at the University of Waterloo. Benthic algal samples 

for taxonomic analyses were preserved using Lugol’s preservative and transported to the 

University of Waterloo for further analysis.  

 

5.3.2.3 Benthic algal community composition 

The samples for determination of benthic algal community composition were processed by 

sub-sampling 2 mL of well mixed sample and placing it into Utermöhl chambers. These 

samples were allowed to settle for 24 hours before algal cells were identified and enumerated 

using an inverted microscope (at 1000 x magnification). Approximately 300 units of algae 

were identified to Class (e.g., Bacillariophyceae) or Family (e.g., Chrococcaceae, 

Oscillatoriaceae) level following the nomenclature of Prescott (1951) and Wher & Sheath 

(2003). The relative abundances of each type of algae were calculated by dividing the number 
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of units enumerated per taxonomic group by the total number of units enumerated in the 

sample and multiplying by 100.  

 

5.3.2.4 Diatom community composition 

The samples for determination of diatom community composition (percent composition) were 

assessed by sub-sampling 15 mL of well-mixed sample into individual test tubes which were 

allowed to settle for 24 hours. The supernatant was removed from the sample and replaced 

with deionized water and allowed to settle for another 24 hours. This method for rinsing 

samples was repeated until most of the Lugol’s solution was removed from the samples. Upon 

removal of Lugol’s solution the supernatant was again removed and the samples were oxidized 

by the addition of 30% hydrogen peroxide to remove organic material. Samples were left at 

room temperature for one week to allow sufficient time for reaction of hydrogen peroxide and 

organic matter. Then, acid residues were removed by repeated siphoning of the supernatant, 

dilution with deionized water and settling for 24 hours until the solution reached a pH 

comparable to the deionized water. This resulted in cleaned slurries of diatom cells, which 

were dried onto glass coverslips and mounted onto microscope slides using Naphrax mounting 

medium. At least 300 diatom values per sample were identified and enumerated using a 

compound light microscope at 1000x magnification (Zeiss Axioskop 2Plus, numerical aperture 

= 1.30). Taxonomic identifications followed the nomenclature of Krammer & Lange-Bertalot 

(1986 – 1991) and Lavoie et al., (2008b). Only species contributing greater than 1% abundance 

in at least one sample were included in the numerical analyses.  
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5.3.2.5 Photosynthetic pigment concentration 

We extracted photosynthetic pigments from samples in a mixture of acetone:methanol:water 

(80:15:5 by volume) for 24 hours at -20°C. Once extracted, the supernatant was filtered 

through a 0.22 µm polytetrafluoroethylene (PTFE) syringe filter to remove large particles and 

other impurities. The filtrate was then dried under inert (N2) gas to remove all water and 

extraction solution. The dried pigments were re-eluted in 500 µL of injection solution 

consisting of acetone:ion-pairing reagent: methanol (70:25:5 by volume). Ion-pairing reagent 

(IPR) consisted of 0.75 g tetrabutylammonium acetate and 7.7 g ammonium acetate. A Waters 

HPLC, reverse-phase system with a symmetry C18 column (3.5 µm, 4.6 x 75mm) was used to 

separate pigments following the methods of Leavitt et al., (1989), modified from Mantoura & 

Lleywellyn (1983). Pigments were separated using a gradient delivery of Mobile Phase A, 

consisting of methanol:IPR (90:10 by volume) and Mobile Phase B, consisting of 

methanol:acetone (73:27 by volume). Sudan II was used as an external standard at the 

beginning and end of each run to account for changes in chromatographic mobility and as an 

internal standard to account for dilution and injection errors. Pigments were extracted from a 

sample of geranium leaves and were placed at the beginning and end of each run to account for 

the chromatographic mobility of individual pigments during the run. Pigment signatures were 

measured by a Waters 2998 PDA detector and a Waters 2475 multi λ fluorescence detector. 

Identification of pigment signatures was based on chromatographic mobility (Leavitt et al., 

1989) and spectral characteristics (Jeffrey et al., 1997). Pigments were expressed as µg/cm
2
 

(i.e., mass per unit area of cobble surface). 
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5.3.3 Numerical analyses 

5.3.3.1 RCA model development 

The RCA has been developed as an assessment tool based on the assumption that biological 

communities can be predicted from the physical chemical characteristics of their surrounding 

environment. To this effect, the RCA involves characterization of the physical attributes and 

biological communities at a number of relatively undisturbed reference sites to characterize the 

range of variation in reference conditions. These references sites are assumed to be influenced 

by their surrounding physical and chemical characteristics. The first step in the RCA is to use 

hierarchical agglomerative cluster analysis (along with non-metric Multi-Dimensional Scaling 

Analysis [MDS] ordination and statistical tests) to group reference sites that possess similar 

biological assemblages. The second step is to identify the physical attributes (not affected by 

stressor of interest) that best discriminate between the sites with similar biological 

assemblages. This is accomplished using Discriminant Function Analysis (DFA). The resultant 

model then uses the selected environmental variables to predict which reference assemblages 

are most appropriate for each test site to be compared with, again using DFA. These reference 

assemblages represent the range of expected natural variability for the test site, assuming it was 

not affected by anthropogenic stress (Sylvestre et al., 2005). The third step in the RCA is to 

compare biological communities at a potentially affected ‘test’ site to their predicted reference 

assemblages using ordination techniques (MDS ordination). In the MDS ordination, 

combinations of three axes are used to assess the position of the test site relative to the 

expected reference communities. The closer the sites are in ordination space, the more similar 

they are (and vice-versa). The difference between the expected reference communities and the 

community at each test site indicates the degree of anthropogenic stress (Sylvestre et al., 2005). 
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The status of each test site was assessed using confidence ellipses. If a test site falls within the 

90% confidence ellipse for the reference sites it is considered to be in “reference condition”. If 

it falls between the 90% and 99% confidence ellipses it is considered to be “possibly stressed”. 

If it falls between the 99% and 99.9% confidence ellipse it is considered to be “stressed”, and if 

it falls outside the 99.9% confidence ellipse it is considered to be “severely stressed” 

(Reynoldson et al., 1997; Bailey et al., 2004; Sylvestre et al., 2005). Additionally, we added 

two extra ellipses (80% and 85%) to identify sites which were close to possibly stressed in 

order to aid in interpretation of sites that were identified as in reference condition but were 

bounded by otherwise stressed sites. Sites between 80 and 85% ellipses were recorded as 

‘reference condition*’ and sites between 85 and 90% ellipses were recorded as ‘reference 

condition**’. If a site was predicted to two assemblages with roughly equal probability, it was 

tested with both assemblages and results were recorded using both assessments. 

For the first step of the RCA design (grouping of reference sites into biologically similar 

assemblages), hierarchical agglomerative clustering and MDS ordinations were used to 

discriminate reference site assemblages that had similar composition of benthic algal 

communities, and to identify outliers. One-way ANOSIM tests (with 9999 permutations) were 

used to determine if community composition differed significantly among the assemblages 

identified by hierarchical agglomerative cluster analysis and MDS ordinations. The second step 

of the RCA design involved identifying the physical variables that best discriminated between 

the groups of reference assemblages, followed by predicting test site assemblage affiliation. 

This step was performed using DFA to produce predictive models. In a first step, backward 

selection was used to identify a subset of environmental variables that discriminated among 

reference site assemblages. Then, environmental variables were added and removed until the 
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best combination of environmental variables was found (i.e., the combination that produced the 

strongest model). The performance of the models (how often a site would be reclassified into 

the proper assemblage) was determined by a jackknifed (cross-validated) classification matrix 

in which the site to be tested was removed prior to model development and then tested for 

correct classification (Sylvestre et al., 2005). Once the model that best discriminated between 

reference assemblages was created, it was used to predict assemblage membership of each test 

site (i.e., the probability of belonging to each assemblage). The assemblage with the highest 

probability of membership for each test site was used to assess the test site for impairment. 

Test sites that were predicted equally to more than one reference assemblage were compared to 

both assemblages and both findings were incorporated into the results.   

Test sites were assessed for impairment by plotting each individual test site with their 

associated reference assemblages using MDS ordinations. Biplot ordinations were 

subsequently created using the first three axes of the MDS ordinations (i.e., axis 1 & 2, axis 1 

& 3 and axis 2 & 3). Individual assessments were carried out for each test site and the 

associated reference assemblages. Probability ellipses of site scores were created in each biplot 

for test site assessment. Test sites were assessed based on where they plotted relative to the 

confidence ellipses. If a test site fell on top of an ellipse, it was recorded as both categories 

(e.g., possibly stressed – stressed).  

The above methods were carried out individually for each biological metric (benthic algal 

community composition, diatom community composition and pigment concentration). Metrics 

based on relative abundance data (benthic algal community composition and diatom 

community composition) were square-root transformed prior to all analyses to down-weight 

the influence of the most abundant taxa. Pigment concentrations were log(x+1) transformed to 
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equalize variances. Cluster analyses, MDS ordinations and ANOSIM tests were performed 

using the software PRIMER version 6 (Clark & Gorley, 2006). Discriminant function analyses 

were performed using the software SYSTAT version 11 (SYSTAT Software Inc. 2004).  

In order to delineate zones of influence of each mine site on nutrient and metal 

concentrations of the river water and subsequently to use those zones to assess against the 

benthic algal-derived assessment of impairment, PCA ordinations of nutrient and metal 

concentrations at sites along Flat Rivera and Prairie Creek were run separately and for each 

year. PCA Axis 1 scores were extracted and plotted against distance along each creek. From 

this, zones of changes in Axis 1 scores were used to determine zones of influence of the mine. 

All water chemistry values (except pH) were tested for normality prior to analysis and 

transformed accordingly using ln(x+b) transformations, where b was half the smallest non-zero 

value. The PCA ordinations were performed using CANOCO 4.5.  

 

5.4 Results 

5.4.1 Development of RCA model 

5.4.1.1 Cluster analysis and ordination 

The cluster analysis of benthic algal community composition showed that reference sites 

formed three distinct assemblage types consisting of between 11 and 32 sites (Figure 5.3). 

Similarly, ordination by MDS of the benthic algal communities showed that the three clusters 

of sites occupied distinct areas along the first two axes (Figure 5.4A). Along the 1
st
 axis, sites 

differed according to differing relative abundances of diatoms and filamentous algae. Along 

the 2
nd

 axis, sites differed in relative abundance of colonial cyanobacteria and 

desmid/chrysophyte assemblages (Figure 5.4A; Table 5.1). Sites characterized by assemblage 1 

were positioned to the right along axis one, and possessed higher relative abundance of 
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filamentous algae (e.g., Zygnemataceae, Oscillatoriaceae and Phormidiaceae), colonial 

cyanobacteria (e.g., Merismopedia) and lower relative abundance of diatoms 

(Bacillariophyceae). Sites characterized by Assemblage 1 were also associated with the highest 

altitude, longitude, percent cobble substrate and lowest bankfull width (Table 5.1). Sites within 

assemblages 2 and 3 were positioned to the left along axis 1 and had higher relative abundance 

of diatoms (Bacillariophyceae) compared to assemblage 1. Sites within assemblage 2 differed 

from those within assemblage 3 due to higher relative abundance of colonial cyanobacteria 

such as Chroococcus and Microcystaceae than sites within assemblage 2 (but roughly the same 

amount as assemblage 1). Sites within assemblage 2 also had higher relative abundance of 

filamentous algae such as Oscillatoriaceae and Phormidiaceae than those within assemblage 3 

(but less than assemblage 1). Sites within assemblage 2 were associated with the highest 

amount of percent ice cover and bankfull width compared with sites with the other 

assemblages. Assemblage 3 differed from assemblage 2 in that it had a higher relative 

abundance of Merismopedia compared to assemblage 2 (but less than assemblage 1; Table 

5.1). Assemblage 3 had the lowest altitude, longitude and percent ice cover and highest stream 

order and percent forest cover. Based on results of an ANOSIM test, composition of all 3 

assemblage types differed significantly (p < 0.01).  

Diatom community composition differed distinctly among the reference sites based on 

ordination and cluster analysis and formed three distinct assemblages consisting of between 13 

and 25 sites (Figure 5.3B; Figure 5.4B). Assemblages appeared to differentiate along two main 

gradients. Along the 1
st
 axis, assemblage 1 was separated from assemblages 2 and 3 and were 

characterized by higher relative abundances of Cyclotella, Fragilaria, Hannaea and Navicula, 

whereas assemblages 2 and 3 were characterized by higher relative abundances of 
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Achnanthidium, Brachysira, Encyonopsis and Navicula. Along the second axis, assemblage 2 

was separated from assemblage 3 associated with higher relative abundances of Encyonema, 

Eucocconeis and Fragilaria and lower relative abundances of Gomphonema (Figure 5.4B; 

Table 5.1). More specifically, sites with assemblage 1 were characterized by higher relative 

abundances of Hannaea arcus (56%) compared to assemblages 2 and 3. Sites with assemblage 

1 were associated with the lowest altitude of all three assemblages and highest percent forest 

cover (Table 5.1). Sites with assemblage 2 and 3 were characterized by higher relative 

abundances of Achnanthidium minutissimum compared to sites with assemblage 1. Sites with 

assemblage 3 were also characterized by the highest relative abundances of Gomphonema 

parvulum var. micropus (12.5%), Gomphonema olivaceum (3.4%) and Gomphonema unknown 

(3.0%) compared to those with assemblages 1 and 2 (Table 5.1). Sites with assemblage 2 were 

associated with the highest altitude, longitude and percent ice, while sites with assemblage 3 

had the lowest longitude and percent ice cover and highest bankfull width. Assemblage 1 had 

the highest relative abundance of Hannaea arcus (56.4%) and Fragilaria capucina var. gracilis 

(6.6%), while assemblage 2 had the highest relative abundances of Fragilaria capucina var. 

vaucheria (9.1%), Diatom tenuis (8.2%) and Encyonema minutum (1.9%; Table 5.1). 

Community compositions differed significantly among all three assemblages (p < 0.01), based 

on an ANOSIM test.   

For the pigment concentration data, sites were clustered into 4 assemblages based on cluster 

analysis and confirmed by MDS ordination which showed sites grouping into four distinct 

assemblages consisting of between 4 and 24 sites (Figure 5.3C; Figure 5.4C). Three of the 4 

assemblage types separated along axis 1, along a single gradient from lowest pigment 

concentrations in assemblage 3 to highest pigment concentrations in assemblage 2 with 
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intermediate pigment concentrations in assemblage 1 (Figure 5.4C, Table 5.1). Sites in 

Assemblages 1 through 3 differed in their environmental variables with assemblage 1 having 

the lowest altitude, longitude and bankfull width and having the highest percent forest, percent 

cobble and stream order. Sites in Assemblage 2 had the highest altitude, longitude, percent ice 

and bankfull width, while assemblage 3 had the lowest stream order, percent forest and percent 

ice cover (Table 5.1). Sites in assemblage 4 were located along a second gradient and were 

distinctly different from all other sites. These sites were characterized by high concentrations 

of phaeophytin-a and phaeophytin-b (Table 5.1). Sites with assemblage 4 were characterized 

by the lowest altitude, longitude and percent ice and the highest stream order and bankfull 

width among all four assemblages. An ANOSIM test identified that all assemblages differ 

significantly from each other (p < 0.01). Because assemblage 4 only consisted of 4 sites, it was 

eliminated from further analyses.  

The assemblages created for the benthic algal community composition and diatom 

community composition data roughly coincided with the two major ecoregions (Selwyn 

Mountain ecoregion and Nahanni-Hyland ecoregions) across the watershed (Appendix C, 

Figure 5.1A-G). Assemblages 1 and 2 included mostly sites located within the Selwyn 

Mountain ecoregion (61 – 78%). Assemblage 3 for the benthic algal community composition 

data included sites primarily located within the Nahanni-Hyland ecoregion (70%), however 

about half of the reference sites with assemblage 3 of the diatom community composition were 

located in each ecoregion. The assemblages for pigment concentration data were located 

approximately equally in each ecoregion (Appendix C, Figure 5.1H-J). For all algal metrics, 

assemblage 2 contained the highest amount of reference sites along Flat River (3, 3, 2; benthic 

algal community composition, diatom community composition and pigment concentrations, 
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respectively), while assemblage 3 contained the highest amount of reference sites along Prairie 

Creek (5, 5, 3 benthic algal community composition, diatom community composition and 

pigment concentrations, respectively).   

 

5.4.1.2 Discriminant function analysis 

Discriminant function analysis found that 20 variables successfully discriminated among the 

three benthic algal community composition assemblages (Appendix C, Table 5.2). This model 

had an overall classification success of 75% using cross-validation methods. Classification 

success was best for assemblage 3 (78% of the sites correctly classified). Classification success 

for assemblages 1 was only slightly lower than for assemblage 2 (i.e., 69% of the sites for 

assemblage 1 and 73% of the sites for assemblage 2 were correctly classified). This model 

primarily predicted Flat River test sites to assemblage 1 & 2 and Prairie Creek test sites to 

assemblage 3 (Appendix C, Table 5.3). 

Twenty-one physical variables were found to successfully discriminate among the 3 

reference site assemblages for diatom community composition using DFA (Appendix C, Table 

5.2). Overall, this model predicted 70% of the sites correctly using cross-validation methods. 

Classification success for assemblages 1 and 2 were 62% and 67%, respectively. This model 

primarily predicted Flat River test sites to assemblages 1 & 2 and Prairie Creek test sites to 

assemblage 3 (Appendix C, Table 5.3).  

Twenty-five variables successfully discriminated among the 3 assemblages of reference 

sites for pigment concentrations using DFA (Appendix C, Table 5.2). This model predicted 

73% of the sites correctly. Classification success varied slightly across all assemblages (i.e., 

assemblages 1, 2 and 3 correctly classified 79%, 64% and 75% of the sites). This model 

primarily predicted Flat River and Prairie Creek test sites to assemblage 3 in 2008, Flat River 
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test sites to assemblage 2 in 2009 and Prairie Creek test sites to all three assemblages in 2009 

(Appendix C, Table 5.3).  

 

5.4.2 Assessment of test sites 

5.4.2.1 Water physical and chemical data 

Concentrations of various metals along Flat River consistently increased adjacent to and 

downstream of Tailings Pond 3 (Figure 5.5). Concentrations of metals were elevated at 

downstream sites compared to upstream sites until 2 to 4 km downstream, where they began to 

decline back toward reference condition. Around 9 km along Flat River, concentrations of 

metals began to increase again and were often elevated as much or more than at sites located 

directly adjacent to the mine. Concentrations of TP along Flat River varied between 0.003 – 

0.004 mg/L at sites -1 to 4 km along Flat River in 2008 (Figure 5.5). In 2009, there was a slight 

increase from 2 to 4 km along Flat River, however concentrations were still within the range of 

upstream reference sites. In both study years, TP increased from 9 to 90 km along Flat River, 

until approximately double the concentration of upstream sites. Turbidity and TP followed the 

same trend. Nitrogen and carbon (TN, NO2NO3 and DIC) concentrations, on the other hand, 

had an increasing trend along the entire length of Flat River. Despite this, they did increase 

above reference concentrations directly adjacent to the mine site. The PCA axis 1 scores 

identified three zones along Flat River. Zone 1 consisted of the reference sites from -8 to -2 km 

along Flat River. Zone 2 consisted of sites directly adjacent to the mine from -1 to 6 km along 

Flat River where the direct influence of the mine was observed. Zone 3 included downstream 

sites from 8 to 90 km along Flat River where water chemistry concentrations appeared to 

increase above concentrations at all other sites (Figure 5.5).  
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Elevated concentrations of metals along Prairie Creek were localized around the confluence 

of Harrison Creek and Prairie Creek (within 2 km of the confluence; Figure 5.6). 

Concentrations of metals returned to reference concentrations a few kilometers below the 

confluence of the two rivers. Concentrations of phosphorus did not appear to be influenced by 

the mine in 2008, but in 2009 there was an increase in concentrations of TP directly at the 

confluence of Harrison Creek and Prairie Creek (0.31 km), after which it declined back to 

reference concentrations (Figure 5.6). Both TN and NO2NO3 showed a general increasing trend 

along the entirety of Prairie Creek in both 2008 and 2009. PCA Axis 1 scores identified three 

zones along Prairie Creek. Zone 1 included all the reference sites from -23 to -0.5 km along 

Prairie Creek. Zone 2 included sites directly adjacent to the confluence of Prairie Creek and 

Harrison Creek from 0.2 to 1.5 km along Prairie Creek where the primary influence of the 

mine is observed. Zone 3 consisted of sites from 4 to 10 km along Prairie Creek where sites 

returned to reference concentrations (Figure 5.6).  

 

5.4.2.2 Benthic algal community composition 

Based on the RCA, benthic algal community composition identified that sites along Flat River 

downstream of the Cantung mine were possibly stressed to severely stressed within zone 1 

from -1 to 0.01 km (directly adjacent to the mining site). Sites in zone 1 from 1 to 2 km 

downstream were in reference condition (Table 5.2; Appendix C, Figure 5.2A and B). From 3 

to 6 km downstream, sites were assessed to be in reference**/possibly stressed to stressed 

condition. Then, in zone 2, from 8 km to 90 km (downstream of where two 3
rd

 order stream 

enters the Flat River) sites ranged from reference condition to severely stressed and stressed 

conditions for the remainder of the stretch of river. Only in 2008 did sites return toward 

reference/possibly stressed conditions at 90 km downstream.  
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Benthic algal community composition along Prairie Creek was in reference condition the 

entire length downstream of the confluence of Harrison Creek and Prairie Creek (Table 5.2; 

Appendix C, Figure 5.3A and B). Only 3 sites were the exception to this (5 to 7 km 

downstream), however, these sites were bounded by sites in reference status and were 

predicted to different reference assemblages than all other sites along Prairie Creek (Appendix 

C, Table 5.3).  

 

5.4.2.3 Diatom community composition 

Diatom community composition showed similar trends to benthic algal community 

composition in the lower reaches of Flat River in both 2008 and 2009. Diatom communities in 

2008 were assessed to be in reference condition from -1 to 2 km along Flat River (zone 2). In 

2009, they were stressed in zone 1 between -1 to 0.01 km along Flat River, then in reference 

condition at 1 km and back to stressed at 2 km along Flat River. Although the communities 

appeared to be in reference condition at 1 km, that site was bounded by stressed communities 

at 0.01 and 2 km along Flat River. Sites located in zone 1 (3 to 6 km downstream) were 

possibly stressed to stressed and sites within zone 2 (8 to 20 km downstream) ranged from 

being in reference condition to stressed returning to a possibly-stressed state at 20 km 

downstream (Table 5.2; Appendix C, Figure 5.2C and D).  

Diatom community composition along Prairie Creek was in reference condition the entire 

length downstream of the confluence of Harrison Creek and Prairie Creek (Table 5.2; 

Appendix C, Figure 5.3C and D). 
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5.4.2.4 Photosynthetic pigment concentration 

Photosynthetic pigment concentration identified the largest area of influence within zone 1 

along Flat River, extending from -1 km to 2 km downstream of the Cantung mine. From 3 to 4 

km downstream, sites were primarily in reference condition with the exception of 4 km 

downstream in 2009, which was stressed to severely stressed (Table 5.2; Appendix C, Figure 

5.2E and F). From 6 km (zone 1) to 20 km (zone 2), the majority of sites were in varying states 

of stress (possibly stressed, stressed and severely stressed).   

Along Prairie Creek, photosynthetic pigment analysis identified a zone of influence from 0 

km to 1.5 km downstream of the confluence of Harrison Creek and Prairie Creek 

corresponding to zone 1 defined by the site scores of PCA Axis 1 for water chemistry variables 

(Table 5.2; Appendix C, Figure 5.3E and F). From 4 km to 10 km downstream, sites were 

mostly in reference condition to possibly-stressed conditions.  

 

5.4.2.5 Overall trends  

Flat River 

Algal metrics identified that sites were variably stressed along Flat River, but showed similar 

patterns of stress adjacent to and downstream of the tailings ponds (Table 5.2; Appendix C, 

Figure 5.2). All algal metrics (with the exception of the diatom community compositions in 

2008) showed possibly stressed to stressed communities from -1 km to 0.01 km along Flat 

River in both study years. From 2 km downstream to 20 km downstream, algal metrics varied 

in their assessment of stress. Communities generally appeared to return to a state of reference 

condition or possibly-stressed state in a stretch ranging from 3 km to 6 km downstream of the 

mine. Then, from 8 to 20 km downstream of the mine the communities deviated from reference 
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again, coinciding with the entrance of two 3
rd

 order streams and with increases in 

concentrations of metals and nutrients in the lower part of Flat River (Figures 5.5).  

Prairie Creek 

Benthic algal community composition and diatom community composition showed sites 

throughout Prairie Creek to be primarily within reference condition (Table 5.2; Appendix C, 

Figure 5.3). Photosynthetic pigment concentration identified the zone of influence to be within 

1.5 km of the mine in 2008 and within 0.5 km in 2009. The rest of the way downstream 

appeared to be mostly in reference condition or possibly-stressed conditions in both years.  

 

5.5 Discussion 

For effective monitoring studies, it is important to select appropriate biota. Biological 

communities typically used for river monitoring include fish, macroinvertebrates, and algae. 

Fish are the most widely used biological group as they are considered to have recreational and 

economic value and to be important for their ecosystem and they have long generation times. 

However, fish are mobile in their environments and, thus, may not accurately reflect the 

conditions at the site where they were sampled (Resh, 2008). Fish also may not be sufficiently 

abundant or present in some northern ecosystems. For example, in the South Nahanni River 

watershed, Spencer et al., (2008) recommended that fish not be used for monitoring due to 

their low populations. Macroinvertebrates have many positive attributes that make them 

attractive endpoints, including their widespread distribution, diverse communities, limited 

mobility and long generation times. However, macroinvertebrates are considered difficult to 

identify and can have poor response levels to contaminants such as nutrients compared to algal 

communities (Resh, 2008). Algae are the least used endpoint of the three, despite their positive 

attributes such as being widespread and diverse, their low mobility and short generation times 
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that allow for the integration of changes in pollution over shorter periods of time compared to 

macroinvertebrates and fish. However, algae have their own challenges including their 

heterogeneous nature (i.e., microhabitat differences in algal community structure), and the 

expertise needed to identify them (Resh, 2008). Many studies use multiple biotic groups and 

some have recommended the use of macroinvertebrates and algae together, because 

macroinvertebrates typically respond strongly to metal contamination and algae to nutrients 

(e.g., Spencer et al., 2008). Benthic algae are also generally thought to be early-warning 

indicator organisms, because they are so intricately linked with their surrounding environments 

(Resh, 2008).  

Developing cost-effective monitoring protocols are essential for northern latitudes where 

costs to assess impairment are high. We developed and compared a RCA model using three 

measures of algal community structure (benthic algal community composition, diatom 

community composition and photosynthetic pigment concentrations) to assess alternative 

endpoints. Results showed that algal metrics identified zones of stress downstream of the two 

mines, coinciding with zones defined using water chemistry. However, results varied among 

metrics. Along Flat River there were three zones of change in algal communities. All three 

zones were very similar among algal metrics, however changes in photosynthetic pigment 

concentration were more pronounced compared to the other metrics and better reflected 

changes in water chemistry. Photosynthetic pigment concentration identified two zones of 

change along Prairie Creek (0 to 1.5 km along Prairie Creek was Stressed; 1.5 to 10 km along 

Prairie Creek was mostly possibly stressed), while the other two metrics indicated that sites 

were within reference condition along Prairie Creek. A RCA model based on benthic 

macroinvertebrates within the South Nahanni River watershed showed that macroinvertebrate 



173 
 

communities were possibly stressed from 0.01 to 3 km along Flat River and possibly stressed 

from 0 to 2 km along Prairie Creek in 2009 only (Scrimgeour, 2013). Despite the identification 

of similar zones directly adjacent to and downstream of the mines along Flat River and Prairie 

Creek, the results contrast with our study where we identified influences of the mines further 

downstream along Flat River using all three algal metrics and along Prairie Creek using 

photosynthetic pigment concentration in both 2008 and 2009. This would suggest that the algal 

metrics are more sensitive than macroinvertebrate communities, possibly reflecting changes in 

nutrient concentrations as identified in Thomas et al., (2013; Chapter 4).  

In chapter 3 of this thesis, we showed that benthic algal communities varied between 

ecoregions. Diatom community composition data appeared to reflect differences in physical 

and chemical variables between ecoregions best, and photosynthetic pigment concentrations 

appeared to be the least sensitive of the benthic algal metrics. Consequently, we expected the 

diatom community composition metric to respond most sensitively to fluctuations in nutrient 

and metal concentrations downstream of the two mines, and that photosynthetic pigment 

concentration would be less sensitive. Three previous studies have been conducted in the South 

Nahanni River watershed to assess river health using benthic algae. Two of the studies found 

changes in benthic algal communities near the Cantung mine along Flat River and the Prairie 

Creek Mine along Prairie Creek. The study conducted by Thomas et al., (2013; Chapter 4) used 

similar sites to this study, except that instead of using a RCA model approach they used 

upstream-downstream comparisons of benthic algal community composition and pigment 

concentration to assess impairment of downstream communities and also to assess relative 

performance of the two metrics as monitoring tools. They found that photosynthetic pigment 

concentration showed changes in algal communities along Flat River. Spencer et al., (2008) 
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assessed benthic algal communities (chlorophyll-a, diatoms, diversity and richness of algae and 

number of cells/sample) and found changes in algal communities downstream of both mines. 

They attributed decreases in specific species of diatoms (e.g., Achnanthes minutissimum) at the 

near-field site with increased metal concentrations (Spencer et al., 2008). Consequently, we 

expected to see changes in all our metrics outside of the reference condition adjacent to and 

downstream of both metal mines. While all our metrics reflected changes in water chemistry 

adjacent to and downstream of the mine, there was some variability among and between 

metrics. Diatom community composition appeared to be the least sensitive metric as it was 

inconsistently sensitive to differences in water chemistry directly adjacent to and downstream 

of tailings pond 3. My results showed that algal pigment concentrations mirrored the benthic 

algal community composition results along Flat River, and in fact were more pronounced, but 

were the only metric reflecting fluctuations in contaminants along Prairie Creek. These results 

were consistent with a previous study along Flat River which showed photosynthetic pigment 

concentration to mirror fluctuations in contaminants more strongly than benthic algal 

community composition (Thomas et al., 2013; Chapter 4). Although photosynthetic pigment 

concentration was the least responsive to differences in limnological conditions among 

reference sites, they may be the most sensitive to effects of mining activities. In Thomas et al., 

(2013; Chapter 4), algal pigment concentrations differed along with differences in nutrients and 

turbidity adjacent to and downstream of the mine sites. Algal pigments are sensitive to 

differences in light and thus, light (represented here by turbidity) may play an important role in 

the use of algal pigments as a biomonitoring and bioassessment tool. Prior to implementation 

in monitoring programs, mesocosm experiments should be conducted to better understand the 

influence of metal and nutrient concentrations on pigment concentration.  
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Bioassessments require adequate characterization of natural variability and grouping of 

reference sites to effectively assess the degree of alteration by human activities at test sites 

(Hawkins et al., 2010). There are two main factors to consider in selecting reference sites: 1) 

the adequate representation of geographically distinct areas and 2) the minimum number of 

reference sites to adequately make comparisons. Reference sites should represent all possible 

reference biological communities for reliable comparison with possibly affected biological 

communities at test sites. In this study, we sampled a broad range of sites from across the 

watershed. When we separated these sites into biologically similar assemblages for each 

metric, we identified 3 to 4 assemblages for each biological metric measured. Each of these 

assemblages was biologically distinct with minimal overlap between assemblages based on 

hierarchical cluster analysis and MDS ordination. In Chapter 2 of this thesis significant 

differences in all algal metrics were found between two major ecoregions. The RCA should be 

able to effectively group reference sites based on benthic algal data appropriately within the 

South Nahanni River watershed given the stark contrasts in benthic algal communities between 

the ecoregions. However, the RCA has the potential to 1) group reference sites inappropriately 

and 2) assign group membership of test sites incorrectly. Following the methods of the RCA, 

sites along the Flat River were typically grouped in the same assemblages (1 & 2 for benthic 

algal community composition and diatom community composition) and Prairie Creek sites 

were typically grouped into assemblage 3. However, the natural, inherent differences in 

limnological conditions between ecoregions in the South Nahanni River watershed were not 

observed as distinctly in the benthic algal communities, thus the natural inherent differences in 

biological communities appear to have led to differences in the design and application of a 

RCA in the South Nahanni River watershed where sites are grouped a posteriori and perhaps 
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future application of a RCA approach could incorporate a priori grouping of reference sites. 

For the development of a preliminary RCA model, it is recommended that no less than 25 

reference sites be used (Bailey et al., 2004, Sylvestre et al., 2005). A previous study (Bowman 

et al., (2010) used a RCA design, based on biovolume of benthic algae, to assess stream health. 

Contrary to our study, they found sites to be within reference condition at all their sites along 

Flat River. Differences in results between our study and the study by Bowman et al., (2010) 

could be attributed to differences in the models developed. While Bowman et al., (2010) 

developed a RCA model based on biovolume of benthic algae, it was a preliminary model and 

the test sites along Flat River were only compared to 4 to 7 reference sites. Using so few 

reference sites can result in inaccurate test-site assessments. Other studies have recommended 

10 to 15 reference sites per assemblage as a minimum for comparison with test sites (Bailey et 

al., 2004, Sylvestre et al., 2005). Thus, if there are sites which are clustered into assemblages of 

less than 10 to 15 sites, they are typically not used in the RCA model. In our study, we found 

one residual assemblage (assemblage 4 of photosynthetic pigment concentration metric) which 

was biologically distinct from all other assemblages (as determined by cluster analysis and 

MDS ordination) and was thus removed from further analyses. Interestingly, Bowman et al., 

(2010) compared test sites along Prairie Creek to > 10 reference sites and found similar results 

to our study in that test sites were within reference condition downstream of the Prairie Creek 

mine sites based on benthic algal community compositions. Thus, when an appropriate amount 

of reference sites are used, assessments appear to be consistent. Therefore, results should be 

interpreted with caution when less than 10 reference sites are used to compare to a test 

community.   
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Conclusions about assessment of downstream sites along Flat River are potentially 

confounded by the influence of inflowing lower-order streams along its path. All the algal 

metrics used in this study consistently showed a potential zone of influence from inflowing 

streams at approximately 8 to 90 km along Flat River where sites were variably stressed. The 

assessment of ‘stressed’ conditions among algal metrics in this stretch of the Flat River 

coincided with increases in concentrations of contaminants (Figure 5.5). This suggests that the 

influence of external factors on river algal communities along this stretch of Flat River were 

important. There are two 3
rd

 order rivers which enter Flat River 6 - 9 km downstream of 

Tailings Pond 3. There are also springs (warm and hot, alkaline mineral springs) located along 

Flat River just downstream of the mine which could influence water chemistry (Caron et al., 

2008). Concordantly, assessment of select metal and nutrient variables along Flat River 

showed elevated concentrations in many variables 8 - 10 km downstream of Tailings Pond 3 

(Figure 5.5). No previous studies conducted along Flat River have assessed natural variability 

along Flat River in relation to benthic algal assessments of river health [e.g., Spencer et al., 

2008; Bowman et al., 2010; Thomas et al., 2013 (Chapter 4)]. In fact, apart from Thomas et al., 

(2013; Chapter 4), these studies have not assessed the gradient of contaminants downstream of 

the mine. One study (Scrimgeour, 2013) assessed the gradient downstream of Cantung mine 

using benthic macroinvertebrate communities to assess river health. However, the benthic 

macroinvertebrates did not appear to be influenced by fluctuations in nutrient and metal 

concentrations along this portion of Flat River. These results highlight the possible 

implications of not considering natural variability along Flat River when assessing algal 

communities. Consequently, when using benthic algal communities to assess river health 
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downstream of the Cantung mine, it is possible that reliable results can only be obtained within 

8 km of the mine site. 

The RCA design often incorporates study sites sampled over multiple years into the creation 

of the reference model (e.g., Reynoldson et al., 2001; Sylvestre et al., 2005). However, there is 

concern about the effect of inter-annual variability and the long term effects of climate change 

on reference communities. One study assessed the effects of inter-annual variability on both 

reference and test sites and found that reference sites were predicted to the same assemblages 

and had the same assessment (in reference condition) in both years studied (Sylvestre et al., 

2005). They found that some of their test sites were grouped into the same reference 

assemblages while some were not. They attributed these differences to slight difference in 

habitat characteristics measured each year (e.g., channel width, depth etc.). However, despite 

these differences they found that the majority of their test sites (5/7) resulted in the same 

assessment between years (Sylvestre et al., 2005). In our study, we sampled a large set of sites 

(44 = reference, 20 = test) in 2008 and a smaller subset of sites (18 = reference, 18 = test) in 

2009. We found that benthic algal community composition and diatom community 

composition models predicted test sites relatively similarly to assemblages in both years. 

However, prediction of test site assemblages for the photosynthetic pigment concentration 

metric was variable and test sites along Flat River and Prairie Creek were not assigned to 

assemblages in a predictable way. Although there were some differences between predictions 

of test sites to different reference assemblages in 2008 and 2009, all algal metrics had similar 

patterns (i.e., zones of change) along Flat River in both study years. Patterns of sensitivity 

appeared to be relatively similar (benthic algal community composition) or slightly greater 

(diatom community composition and photosynthetic pigment concentration) in 2009 than 
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2008. This finding is similar to a finding by Thomas et al., (2013; Chapter 4) which attributed 

the differences between years to variation in meteorological conditions.  Bailey et al., (2012) 

found that the starting community plays an important role in long-term assessment of a site. 

They suggest that it is important to characterize the reference condition in each assessment 

year in order to re-calibrate the RCA model each year to reduce any associate error rates. 

However, they did not indicate how many reference sites should be re-sampled (i.e., a 

subsample or all of the reference sites). When working in remote northern landscapes it may 

not be economically feasible to re-sample the number of reference sites required for an RCA 

model each year and so the cost of running an effective RCA may be a limiting factor to its 

implementation. Further, more comprehensive, long-term studies need to be conducted to 

assess multi-year change and the effects of climate change on RCA development and its 

subsequent suitability as a monitoring tool in remote northern ecosystems in Canada. 
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5.6 Figures

 

Figure 5.1 Location of study sites within the South Nahanni River watershed, Northwest 

Territories, Canada. A total of 44 reference sites (grey) were selected in 2008 and 18 reference 

sites (grey) in 2009 (12 repeated sampling from 2008; 6 newly sampled in 2009) and 20 test 

sites (black) were sampled between 2008 and 2009. Inserts show sites downstream of two 

mining companies, North American Tungsten (Cantung mine) and Canadian Zinc Corporation 

(Prairie Creek mine). 
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Figure 5.2 Mining companies located within the South Nahanni River watershed. A) North 

American Tungsten, Cantung mine located along Flat River showing location of site 0.01 km 

along Flat River, tailings ponds, mill and Flat River (Photo Dana Haggarty). B) Canadian Zinc 

Corporation, Prairie Creek mine located along Prairie Creek, showing location of confluence of 

Harrison Creek (HC) and Prairie Creek (PC), polishing and catchment ponds and mill. 
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Figure 5.3 Cluster dendrograms of biological assemblages for each algal metric among the 

reference sites. Panels A is benthic algal community composition, B is diatom community 

composition and C is photosynthetic pigment concentration. Assemblage 1 = light grey 

triangles, Assemblage 2 = dark grey circles, Assemblage 3 = black squares. 

A 

B 

C 



 

183 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 MDS ordinations of biological assemblages for each algal metric among the 

reference sites. Panel A is benthic algal community composition, B is diatom community 

composition and C is photosynthetic pigment concentration. Assemblage 1 = light grey 

triangles, Assemblage 2 = dark grey circles, Assemblage 3 = black squares. 
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Figure 5.5 Concentrations of selected nutrients, metals and physical variables along Flat River 

both upstream (white circles) and adjacent to/downstream (black circles) of the mining site in 

2008 and 2009. The shaded box indicates the all sites downstream of the mine. The arrow 

indicates the position of Tailings Pond 3. PCA axis 1 scores for 2008 and 2009 are also 

displayed. Vertical lines delineate boundaries of each zone of mining influence (R = reference, 

Z1 = zone 1, and Z2 = zone 2). 
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Figure 5.6 Concentrations of selected nutrients, metals and physical variables along Prairie 

Creek both upstream (white circles) and adjacent to/downstream (black circles) of the mining 

site in 2008 and 2009. The shaded box indicates the all sites downstream of the mine. The 

arrow indicates the position of Tailings Pond 3. PCA axis 1 scores for 2008 and 2009 are also 

displayed. Vertical lines delineate boundaries of each zone of mining influence (R = reference, 

Z1 = zone 1, and Z2 = zone 2). 
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5.8 Tables 

Table 5.1 Average values of physical variables and biological communities among all 

assemblages for each benthic algal metric (Benthic algal community composition, diatom 

community composition, and photosynthetic pigment concentration). 

Benthic Algal Community Composition 

 Assemblage 

Environmental Variables 1 2 3 

Altitude (m above sea level) 3240.2 2916.6 2540.3 

Longitude (decimal) -127.8 -127.5 -126.0 

Stream Order 4.2 4.4 4.5 

% Cobble 43.9 40.6 42.3 

% Forest 24.0 21.3 33.9 

% Ice 19.0 22.8 3.8 

Bankfull Width (m) 22.3 66.5 56.0 

    

Biological Communities    

Bacillariophyceae 27.8 74.9 78.7 

Chaetophoraceae 7.7 6.0 0.6 

Chroococcus 1.2 1.6 0.6 

Chrysophyceae 0.6 2.0 0.0 

Desmidiaceae 0.02 0.0 0.0 

Euglena 0.0 0.1 0.1 

Hydrodictyaceae 0.0 0.0 0.0 

Merismopediaceae 30.7 4.5 16.0 

Microcystaceae 2.4 2.3 1.4 

Nostocaceae 0.4 0.1 0.1 

Oedogoniaceae 0.1 0.1 0.0 

Oscillatoriaceae 17.1 4.3 1.5 

Phormidiaceae 11.8 4.1 1.0 

Rivulariaceae 0.0 0.0 0.0 

Scenedesmaceae 0.04 0.0 0.0 

Ulotrichaceae 0.2 0.2 0.0 

Zygnemataceae 3.0 0.6 0.1 

Diatom Community Composition 

 Assemblage 

Environmental Variables 1 2 3 

Altitude (m above sea level) 2482.4 3187.3 2548.6 

Longitude (decimal) -126.8 -127.3 -125.9 

Stream Order 4.5 4.4 4.5 

% Cobble 48.6 38.5 40.8 

% Forest 32.9 29.0 29.5 

% Ice 5.1 23.7 3.2 

Bankfull Width (m) 50.3 44.3 64.7 
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Biological Communities    

Achnanthidium minutissimum 9.4 46.4 60.8 

Encyonema minutum 0.3 1.9 0.1 

Encyonema silesiacum 0.4 1.4 0.0 

Diatoma tenuis 4.3 8.2 5.2 

Hannaea arcus 56.4 6.2 4.7 

Fragilaria capucina var. gracilis 6.6 4.9 0.8 

Fragilaria capucina subsp. rumpens 1.0 2.2 2.7 

Fragilaria capucina var. vaucheria 6.6 9.1 1.4 

Staurosirella pinnata 0.0 1.3 0.0 

Gomphonema  parvulum var. 

micropus 7.0 4.1 12.5 

Gomphonema olivaceum 1.6 2.4 3.4 

Gomphonema unknown 3.0 0.2 3.7 

Synedra ulna 1.2 3.7 0.8 

Photosynthetic Pigment Composition 

 Assemblage 

Environmental 

Variables 

1 2 3 4 

Altitude (m above 

sea level) 

2559.9 2900.9 2830.4 2062.3 

Longitude 

(decimal) 

-125.9 -127.5 -126.8 -125.7 

Stream Order 4.6 4.4 4.3 5.3 

% Cobble 48.6 38.4 40.8 47.5 

% Forest 32.0 31.8 28.5 31.0 

% Ice 10.7 20.5 6.4 1.9 

Bankfull Width 

(m) 

43.7 58.6 54.2 74.3 

     

Biological 

Communities 

    

α-carotene 0 0.000758 0 0.000393 

β-carotene 0.003243005 0.015057 0.000968 0.006012 

Alloxanthin 0 0.000238 0 0 

Aphanizophyll 0.00097256 0.027213 0 0 

Chlorophyll_a  0.065046722 0.246556 0.009537 0.015959 

Chlorophyll_a’ 0.01464848 0.050377 0.000686 0.000482 

Chlorophyll_b  0.001052396 0.027741 0 0 

Chlorophyll_c2 0.010251231 0.014251 0.000154 0.000147 

Chlorophyllide_a 0.009254477 0.014223 0.00039 0 

Diadinoxanthin 0.00064143 0.00164 0.0000247 0 

Diatoxanthin 0 0.00071 0 0 

Echinenone 0.000857286 0.00031 0.0000357 0 

Fucoxanthin 0.040371952 0.097011 0.001362 0.004282 

Lutein 0.002746729 0.02088 0.0000941 0.001615 
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Myxoxanthin 0.002278047 0.004727 0 0 

Okenone 0.0000198 0.001322 0 0.002355 

Phaeophytin_a 0.004507753 0.083258 0 0.081214 

Phaeophytin_b 0 0.016725 0 0.027323 
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Table 5.2 Results of RCA assessment of 2008 and 2009 test sites along Flat River and Prairie 

Creek for each algal metric (Benthic algal community composition, diatom community 

composition, and pigment concentration). 

 Distance 

From 

Tailings 

Pond 

2008 2009 

Site (km) Benthic 

Algae 

Diatoms Pigments Benthic 

Algae 

Diatoms Pigments 

Flat River 

NNP-

1 

-1 Possibly 

Stressed 

Reference Possibly 

Stressed - 

Stressed 

Stressed Stressed Reference 

** - 

Severely 

Stressed 

NNP-

38 

0.01 Severely 

Stressed 

Reference Reference Possibly 

Stressed 

Stressed Stressed 

NNP-

39 

1 Reference 

** 

Reference Possibly 

Stressed 

Reference 

* 

Reference Possibly 

Stressed 

– 

Severely 

Stressed 

NNP-

2 

2 Reference 

** 

Stressed Severely 

Stressed 

Reference Reference * Severely 

Stressed 

NNP-

32 

3 Stressed Possibly 

Stressed 

Reference Reference 

** – 

Possibly 

Stressed 

Possibly 

Stressed 

Reference 

* - 

Reference 

** 

NNP-

31 

4 Possibly 

Stressed – 

Stressed 

Stressed Reference 

* - 

Reference 

** 

Possibly 

Stressed 

Reference ** Stressed 

– 

Severely 

Stressed 

NNP-

19 

6 Reference  Possibly 

Stressed 

Stressed NA NA NA 

NNP-

30 

8 Possibly 

Stressed 

Reference 

* 

Severely 

Stressed 

Possibly 

Stressed 

Stressed Severely 

Stressed 

NNP-

29 

10 Possibly 

Stressed 

Reference 

* 

Possibly 

Stressed 

Severely 

Stressed 

Possibly 

Stressed 

Possibly 

Stressed 

NNP-

28 

13 Severely 

Stressed 

Stressed Possibly 

Stressed 

Stressed Reference * Reference 

NNP-

27 

16 Possibly 

Stressed 

Reference 

- Possibly 

Stressed 

Stressed Stressed Reference Possibly 

Stressed - 

Severely 

Stressed 

NNP- 20 Reference Possibly Severely Stressed Possibly Stressed 
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 Distance 

From 

Tailings 

Pond 

2008 2009 

Site (km) Benthic 

Algae 

Diatoms Pigments Benthic 

Algae 

Diatoms Pigments 

26 Stressed Stressed Stressed 

NNP-

33 

90 Possibly 

Stressed 

Reference 

*  - 

Possibly 

Stressed 

Reference 

** 

NA NA NA 

Prairie Creek 

NNP-

43 

0 Reference Reference NA Reference Reference Stressed 

NNP-

46 

0.5 Reference Reference Severely 

Stressed 

Reference Reference Stressed 

NNP-

44 

1 Reference Reference NA Reference Reference Reference 

* - 

Stressed 

NNP-

45 

1.5 Reference Reference Stressed Reference 

** 

Reference Reference 

* 

NNP-

70 

4 Reference Reference Reference 

– Severely 

Stressed  

Reference Reference Possibly 

Stressed 

NNP-

69 

5 Possibly 

Stressed 

Reference Reference Possibly 

Stressed 

Reference Possibly 

Stressed 

NNP-

68 

7 Stressed Reference Possibly 

Stressed – 

Stressed 

Reference 

** 

Reference * Possibly 

Stressed 

NNP-

67 

10 Reference Reference Severely 

Stressed 

NA NA NA 
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Chapter 6 

Synthesis and Recommendations 

Freshwaters in North America are increasingly subjected to a variety of stressors from human 

development (including industrial and residential) and climate change (Schindler & Smol, 

2006). In the face of these stressors, it is imperative that studies improve protocols for 

implementation by monitoring biologists for long-term monitoring programs in order to 

effectively track alteration of biological communities (Walker et al., 2003; King et al., 2006). 

For rivers, many studies utilize fish and macroinvertebrate communities as sources of 

biomonitoring data to assess water quality and ecological integrity. For lakes, concentrations of 

TP are also used due to their relationship with phytoplankton in the open water (pelagic) zone 

(Dillon & Rigler, 1974). Benthic algae are less-utilized, but possess numerous features that 

predispose them to provide effective monitoring of changes in water quality and ecological 

status of lakes and rivers caused by anthropogenic disturbances [Reavie & Smol, 1998; Rott et 

al., 1998; Hill et al., 2000b; Leland & Porter, 2000; Thomas et al., 2011 (Chapter 2), 2013 

(Chapter 4)]. As demonstrated in this thesis, based on development and assessment of multiple 

algal metrics (different levels of taxonomic resolution and quantification of photosynthetic 

pigments) in lakes within the Muskoka-Haliburton area of south-central Ontario and in stream 

and river sites within the South Nahanni River watershed, benthic algae are able to effectively 

indicate changes in community composition and water quality. Below, I provide a synthesis of 

the key findings as a basis for presenting recommendations for application of benthic algal 

biomonitoring protocols in long-term monitoring programs and for future research priorities. 

In the Muskoka-Haliburton area, where there is generally good water quality and low to 

moderate levels of shoreline development, we found that the highest taxonomic resolution 
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benthic algal metric (diatom community composition) discriminated best among shoreline 

development categories. Photosynthetic pigment concentration showed modest potential and 

should be explored further over larger trophic gradients. All other metrics (visual assessments, 

biomass assessments and benthic algal community composition) did not sufficiently 

discriminate among categories for widespread application as provincial biomonitoring metrics. 

Despite the higher cost in time and training required for diatom community composition 

analysis, we recommend this metric for future monitoring purposes as it provides a sufficient 

amount of detail to track changes in shoreline development in lakes of this region. 

Estimates of diatom community composition, based on percent abundance data, were able to 

discriminate between nearshore lake sites categorized as having low and high shoreline 

development. But, they could not discriminate sites in the medium category from those in the 

low and high categories. It could be that larger sample sizes may provide the added power 

required to discriminate between categories of shoreline development. However, the diatom 

community composition metric appears to have detection limits and can only discriminate the 

highest from the lowest shoreline development categories in Precambrian Shield lakes. 

Nevertheless, this may still be a useful level of discrimination for management of shoreline 

development as managers are able to effectively identify sites where human activities are altering 

biological communities and can target them for further study or for implementation of remediation 

efforts along the nearshore (e.g., best management practices). Alternatively, human disturbances are 

relatively low in the Muskoka-Haliburton region and so only two categories (lowest and 

highest development) can be discriminated effectively. In other regions where human activities 

span broader gradients, three or more shoreline development categories may be discriminated, 

but more research is needed to discover the limits of detection. Starker contrasts between, and 

better definition of shoreline-development categories could aid in the discrimination of 
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categories among metrics and may result in the identification of other useful metrics (e.g., 

benthic algal community composition, biomass). In areas where there is a larger gradient of 

shoreline development, it would be advisable to test cruder, more cost-effective measures of 

benthic algal communities (e.g., benthic algal community composition and biomass) to 

determine the ideal metric to incorporate into monitoring protocols. Thus, a broader gradient of 

trophic status of lakes is needed to get a sense of the wider applicability of these methods to 

lakes other than those in the Precambrian Shield. Studies could also be conducted over longer 

time-series to assess if the metrics can detect changes over time.  

In the South Nahanni River watershed, three metrics were used to assess benthic algal 

communities. Taxonomic metrics included a low taxonomy approach (benthic algal community 

composition) and a high taxonomy approach (diatom community composition). Quantification 

of photosynthetic pigment concentration was the third metric used. Comparisons were made 

among the different algal metrics between ecoregions to assess shifts of algae relative to 

physical and chemical variables. The algal metrics were also assessed for their ability to 

measure changes at sites downstream of two metal mining companies using two methods 

(upstream-downstream and RCA models).  

The spatial survey of reference sites showed that diatom community composition was the 

most effective metric at tracking major differences in physical and chemical conditions 

between the two ecoregions. Benthic algal community composition and photosynthetic 

pigment concentration metrics did not achieve this very well. Diatom community composition 

was the highest resolution taxonomy used in the study and thus may be more sensitive to 

changes in physical and chemical variables. Benthic algal community composition and 

photosynthetic pigment concentration metrics tracked differences in physical and chemical 
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conditions between ecoregions in 2009 corresponding with higher concentrations of nutrients 

and metals and thus a more stark contrast between ecoregions compared to 2008. Thus, they 

did show promise in tracking differences in physical and chemical variables across the 

watershed, however, when differences are not as large they may lose the ability to discriminate 

as effectively between ecoregions. These metrics are a lower taxonomic resolution compared to 

diatom community composition and so may not be as sensitive to changes across the 

watershed. They also could be influenced by other factors such as grazing and light. 

Despite the fact that analysis of photosynthetic pigment concentrations provides the lowest 

level of taxonomic analysis and was the worst at discriminating between ecoregions, it was the 

most sensitive metric to changes in physical and chemical conditions downstream of the two 

mining companies. Conversely, diatom community composition was the best metric at 

discriminating between ecoregions and the least sensitive metric for assessing changes in 

physical and chemical conditions downstream of the two mines. Photosynthetic pigment 

concentrations were comparable (or more sensitive) than taxonomic-based assessments in 

assessing test sites using both an upstream-downstream and an RCA model approach. Using 

both methods (upstream-downstream and RCA models), photosynthetic pigment concentration 

defined a zone of influence that corresponded with elevations of nutrient and metal 

concentrations in the river waters. Diatom communities have been shown to be sensitive to 

metal contamination, whereas overall benthic algal community composition reflects major 

changes in the communities and could reflect shifts from diatom-dominated communities to 

cyanobacterial-dominated communities due to increases in nutrient concentrations. Also, 

photosynthetic pigments are sensitive to changes in light, and in this study, changes at sites 

close to the mine site were found to be correlated with turbidity. Differences observed in 
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assessments between photosynthetic pigment concentrations and the other metrics (benthic 

algal community composition and diatom community composition) could reflect the higher 

sensitivity of photosynthetic pigment concentrations to variations in light environment 

(measured here as turbidity). Thus, differences in the relative abilities of algal metrics to assess 

test sites could be influenced differently by concentrations of metals and nutrients or 

differences in light. Since the RCA assumes that biological communities are influenced by 

surrounding physical and chemical conditions, the weaker ability of photosynthetic pigment 

concentration to detect differences among reference sites may affect the application of the 

RCA. Further understanding of the influences on photosynthetic pigment concentration and the 

effect on biological assessments of contaminants are needed. Mesocosm experiments should be 

conducted to help in understand how physical and chemical variables affect pigment 

concentrations in relation to mining activities.  

In the face of increasing anthropogenic influences and climate change, monitoring biologists 

are challenged to develop cost-effective tools to quantify degradation of aquatic ecosystems in 

monitoring programs (Walker et al., 2003; King et al., 2006). Many methods have been 

developed to assess changes in water quality and ecological integrity using biological 

communities including control-impact (CI), before-after-control impact (BACI), gradient, and 

RCA (Green, 1979; Underwood, 1994; Bailey et al., 2004). However, some of these methods 

(e.g., CI and gradient) have come under scrutiny due to concerns of pseudoreplication (Cooper 

& Barmuta, 1993). Despite these differences and concerns, we found agreement of results from 

our upstream-downstream and RCA study designs. Both study designs detected changes in 

algal communities downstream of the Cantung mine along Flat River. We found that 

photosynthetic pigment concentration was more sensitive than benthic algal community 



196 
 

composition using both study methods. Despite the concordance between methods in test site 

assessments, we did find that the results from the RCA approach were more pronounced than 

the upstream-downstream approach using both metrics. Spencer et al., (2008) used a CI study 

design to assess conditions at a near-field and far-field site; using this method they also found 

changes in the benthic algal communities downstream of the Cantung mine. Thus, it appears 

that these methods produce similar results. The best method to use for assessing downstream 

impairment may depend on the question being asked by the monitoring biologist. For example, 

RCA models are informative when we want to assess if the test site is impaired; however, other 

study designs need to be implemented in order to determine how a test site is impaired. It may 

also depend on budgetary constraints. For example, RCA model development requires more 

reference sites from a wider area compared to a gradient of CI design and thus could be more 

expensive to conduct on a regular basis, specifically in remote northern areas.  

RCA study designs have been used extensively to create benthic macroinvertebrate models 

and have been integrated into the environmental effects monitoring for metal mining effluent 

regulations (Environment Canada 2012). However, only one other study has developed a 

preliminary RCA model using benthic algae and thus, the use of an algal-based RCA model is 

in its infancy (Bowman et al., 2010). Our results indicate that the RCA models appear to be 

more sensitive (indicating larger differences in biological communities) compared to our 

upstream-downstream study. For example, in 2008, benthic algal community composition 

using the upstream-downstream approach appears to not deviate significantly from reference 

sites. But when using the RCA model, test sites adjacent to and downstream of the mine are 

not within reference condition. RCA models use many regional reference sites to assess one 

test site and, thus, may have more power to detect differences compared to upstream-
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downstream approaches. However, the RCA may also introduce more variability among 

reference sites. The RCA model is an initial assessment tool for managers to determine if more 

in-depth investigations are needed at sites possibly affected by mining activities.  

There are many methods used for biomonitoring in river ecosystems. Predictive models 

include both multimetric (e.g., IBI, Karr 1981; RBP, Plafkin et al., 1989) and multivariate (e.g., 

RIVPACS, Wright et al., 1993; AUSRIVAS, Simpson and Norris, 2000; ANNA, Linke et al., 

2005; BEAST, Reynoldson et al., 1997) approaches. Predictive models are used to determine if 

a site is affected by potential stressors, but they are not able to diagnose how a biological 

community is impaired (how it is different from reference), or the potential cause of 

impairment. Metric-based assessments such as traits assessments are able to provide the link 

between biological response and environmental variables (Culp et al., 2010). However, traits or 

metrics in multimetric models can have correlation among metrics. There are positive and 

negative attributes to each type of bioassessment methods. Some studies have suggested 

concurrent use of different method types. For example, Bowman and Somers (2006) created 

the Test Site Approach (TSA) using a combination of multimetric and multivariate methods in 

a new statistical method. Alternatively, a predictive method may be used initially to determine 

if a test site is impaired, and is then followed up with a metric approach to identify causative 

agents.  

This thesis has developed, applied and assessed benthic algal metrics for river 

biomonitoring in the South Nahanni River watershed. We have shown that metrics were 

sensitive, to varying degrees, to changes in water physical and chemical conditions across the 

watershed (between ecoregions) and downstream of two mining companies. We have shown 

that there is great potential in the use of algal metrics using an RCA approach. We have also 
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shown that there is great potential in the use of photosynthetic pigment concentration as a 

bioassessment tool. However, there was variability among metrics using the RCA approach 

and within each metric that needs to be better understood prior to widespread implementation 

of the methods. For example, although general patterns were discernible along Flat River, 

assessments were variable downstream and were influenced by incoming streams limiting the 

ability of the RCA to detect impairment beyond 8 km downstream of Cantung mine. 

Conversely, patterns along Prairie Creek were less variable and easier to interpret. Thus, prior 

to further implementation of algal based RCA models, development of models in other 

ecosystems should be conducted to assess the relative ability to assess stream condition. Metal 

mining in the South Nahanni River watershed is expected to increase in the coming years. 

RCA models could be developed for sites along rivers where mining companies will develop in 

the future, incorporating data from this study into the model development. As well, continued 

assessments downstream of Prairie Creek mine could be conducted to assess if test sites 

become more stressed when the mine becomes a fully operating lead-zinc-silver mine.  
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Appendix A - Chapter 2 

Assessment of benthic algal biomonitoring protocols to evaluate effects of shoreline development on the nearshore zone of 

Precambrian Shield lakes in Ontario 

Appendix A, Table 2.1 Selected nutrient and ion characteristics obtained at each of the 29 nearshore study sites in the Muskoka-

Haliburton district of south-central Ontario. The Site Names are presented in Figure 2.1 and Table 2.1 

Site Name TP 

µg/L 

TKN 

µg /L 

NO3
-
  

µg /L 

NH4
+
  

µg /L 

SO4
2-

  

mg/L 

DOC  

mg/L 

COND µS/cm pH 

 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 

HMB-2 3.4 4.5 252.0 205.0 6.0 8.0 30.0 12.0 6.8 6.7 3.1 2.6 61.2 62.8 6.0 6.4 

TML-1 18.2 25.8 484.0 493.0 4.0 2.0 108.0 78.0 4.7 4.6 6.9 5.9 67.2 71.4 6.6 7.3 

CLE-1 6.9 5.0 322.0 287.0 16.0 16.0 32.0 28.0 5.9 5.7 4.1 3.6 53.8 54.6 6.5 7.0 

CLE-2 4.6 7.7 260.0 283.0 16.0 14.0 30.0 28.0 5.9 6.0 4.0 3.5 53.4 54.6 6.5 7.1 

RSH-3 5.9 7.5 248.0 258.0 18.0 24.0 32.0 10.0 6.1 6.1 3.5 3.3 55.8 53.6 6.6 7.1 

COX-2 3.1 4.1 197.0 251.0 2.0 2.0 18.0 16.0 6.8 6.6 3.0 3.1 62.8 63.8 6.5 7.0 

COX-3 12.6 4.8 205.0 250.0 2.0 2.0 20.0 12.0 6.8 6.3 2.9 3.1 63.0 64.2 6.5 7.1 

COX-4 3.5 4.7 207.0 208.0 16.0 10.0 22.0 14.0 6.7 7.2 2.9 3.0 68.0 68.2 6.5 7.0 

TMH-1 11.6 14.0 382.0 347.0 2.0 2.0 74.0 44.0 5.3 4.8 4.9 5.2 65.8 68.8 6.2 7.1 

TML-2 18.4 24.4 475.0 495.0 4.0 12.0 102.0 68.0 4.8 4.7 6.5 5.8 68.8 72.2 6.6 7.3 

MON-1 5.5 5.9 299.0 269.0 18.0 30.0 32.0 26.0 5.7 5.7 4.4 4.2 54.0 56.2 6.5 6.9 

MBA-5 7.1 7.3 301.0 279.0 4.0 2.0 28.0 18.0 6.2 6.3 4.3 4.6 80.6 81.6 6.9 7.1 

CLE-3 4.8 5.3 292.0 267.0 12.0 16.0 26.0 24.0 6.0 5.7 3.5 3.4 53.0 53.8 6.6 7.0 

RSH-4 4.2 5.2 240.0 244.0 16.0 32.0 30.0 10.0 6.2 6.1 2.9 3.5 54.8 64.0 6.6 6.4 

RSH-5 4.1 4.9 233.0 533.0 16.0 28.0 30.0 162.0 6.1 6.1 2.8 3.6 54.8 54.4 6.6 7.2 

DKL-1 4.9 5.2 258.0 296.0 2.0 4.0 30.0 8.0 5.4 5.2 4.3 6.1 42.4 39.6 5.8 6.7 

DKL-2 5.0 6.2 249.0 283.0 2.0 6.0 22.0 8.0 5.5 5.4 4.0 6.2 41.8 54.2 5.8 7.0 

HMB-4 4.3 3.9 273.0 249.0 8.0 8.0 30.0 14.0 6.7 6.8 2.6 2.8 61.0 39.6 6.0 6.3 

TMH-2 11.9 12.2 374.0 333.0 2.0 2.0 66.0 44.0 5.1 4.8 4.9 5.1 66.2 69.2 6.2 7.2 

MON-2 4.6 5.6 328.0 287.0 18.0 30.0 28.0 32.0 5.9 5.5 4.4 4.1 53.6 55.8 6.5 6.9 

MON-3 4.8 5.7 287.0 286.0 18.0 30.0 30.0 24.0 5.8 5.7 5.0 3.9 54.0 55.8 6.1 7.0 

MBA-4 22.1 7.7 316.0 295.0 4.0 2.0 38.0 18.0 6.1 6.3 4.3 4.5 81.2 82.2 6.9 7.2 

CLE-4 4.4 5.0 247.0 208.0 14.0 16.0 24.0 18.0 5.9 5.9 4.3 3.5 53.8 53.8 6.6 7.1 

RSH-6 5.0 4.5 231.0 263.0 18.0 24.0 28.0 24.0 6.2 5.9 2.5 3.6 55.0 54.0 6.7 7.0 
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Appendix A, Table 2.2 Selected metal values obtained at each of the 29 nearshore study sites in the Muskoka-Haliburton district of 

south-central Ontario. The Site Names are presented in Figure 2.1 and Table 2.1. Metal concentrations that were below detection 

limits were represented as ND.  

Site Name TP 

µg/L 

TKN 

µg /L 

NO3
-
  

µg /L 

NH4
+
  

µg /L 

SO4
2-

  

mg/L 

DOC  

mg/L 

COND µS/cm pH 

 2006 2007 2006 2007 2006 2007 2006 2007  2006 2007 2006 2007 2006 2007 2006 

RSH-7 N/A 4.5 N/A 255.0 N/A 28.0 N/A 8.0 N/A 6.1 N/A 3.4 N/A 55.0 N/A 7.1 

DKL-3 5.6 4.7 273.0 272.0 2.0 4.0 24.0 8.0 5.5 5.2 4.0 6.1 41.8 40.0 5.9 6.4 

EAS-1 4.4 6.6 247.0 239.0 18.0 46.0 38.0 18.0 6.1 5.5 3.8 4.4 55.2 53.8 6.5 6.9 

EAS-2 6.6 6.5 261.0 258.0 12.0 52.0 30.0 18.0 5.9 5.7 4.2 4.6 59.6 53.2 6.5 7.0 

EAS-3 4.9 5.9 245.0 235.0 18.0 48.0 34.0 16.0 5.9 5.7 4.2 4.2 55.8 54.0 6.5 6.9 

Site Name Al 

µg/L 

Ba 

µg /L 

Cd 

µg /L 

Cu 

µg /L 

Fe 

µg /L 

Mn 

µg /L 

Sr 

µg /L 

Zn 

µg /L 

 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 

HMB-2 10.0 6.4 8.7 9.0 0.1 1.0 1.5 0.5 19.0 13.2 2.3 2.3 40.2 43.4 1.7 1.9 

TML-1 19.2 83.4 4.7 6.9 0.2 1.0 0.5 0.8 84.4 179.0 16.2 22.5 35.5 37.1 0.5 0.9 

CLE-1 26.4 26.3 10.7 10.7 0.04 0.9 0.6 0.4 35.2 28.6 4.1 2.3 31.3 31.3 2.0 2.1 

CLE-2 13.7 47.4 10.0 11.3 0.2 1.3 0.2 0.7 13.2 67.1 2.9 10.5 30.3 31.5 1.2 2.6 

RSH-3 23.9 31.4 11.0 10.9 ND 0.7 0.4 1.0 75.5 63.6 6.5 5.7 31.8 1.5 11.0 2.5 

COX-2 7.3 11.7 9.2 9.3 0.0 1.2 0.7 0.6 13.3 16.6 4.0 4.0 40.1 41.4 1.2 1.6 

COX-3 16.2 16.1 9.2 9.3 ND 1.0 0.8 0.4 19.5 26.8 4.3 4.7 40.2 41.3 1.3 1.8 

COX-4 23.7 11.5 14.5 9.7 ND 1.5 0.5 0.6 26.3 20.0 5.1 6.4 41.9 43.7 1.0 2.0 

TMH-1 14.4 43.7 9.7 11.5 ND 1.1 0.7 0.7 41.6 107.0 12.9 27.3 32.6 34.4 1.0 0.7 

TML-2 19.5 52.5 7.2 6.2 0.1 0.6 0.7 0.3 82.3 147.0 19.2 23.1 35.5 35.8 0.5 1.0 

MON-1 15.1 22.8 14.7 14.0 ND 1.3 1.0 0.9 45.4 43.1 6.9 5.5 30.6 29.8 1.6 1.2 

MBA-5 3.9 5.8 14.0 13.9 ND 0.6 0.7 1.1 33.8 38.9 13.3 12.5 44.9 45.2 0.4 1.3 

CLE-3 16.1 17.7 10.0 10.4 ND 1.2 0.8 0.4 18.5 14.4 3.1 1.9 30.6 31.1 1.4 1.7 

RSH-4 17.2 15.0 10.5 10.8 ND 0.7 0.7 0.9 30.7 15.2 4.5 3.0 30.4 30.5 1.2 2.7 

RSH-5 16.5 15.3 10.6 10.6 0.2 0.9 0.6 0.8 38.9 13.8 4.5 3.2 30.3 30.0 1.5 3.9 

DKL-1 23.0 27.3 14.7 14.2 ND 0.7 0.4 1.0 55.5 57.0 25.1 29.3 26.0 25.8 4.3 4.1 

DKL-2 23.7 30.5 0.01 14.5 ND 0.8 0.7 0.9 62.5 60.0 25.9 27.6 25.6 25.6 4.3 4.4 

HMB-4 4.1 6.0 8.6 9.0 0.2 0.7 1.2 1.1 8.7 4.4 1.8 1.3 39.9 40.7 1.1 2.1 

TMH-2 15.3 20.5 9.9 11.0 0.2 1.1 0.9 0.3 46.9 65.9 13.6 22.4 33.0 34.7 0.6 0.3 
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Appendix A, Table 2.3 List of diatom taxon names for Level 5: High taxonomic resolution benthic algal counts. Taxon numbers are 

presented in Figure 2.9. 

Taxon Number 
Taxon Name 

Number of 

Occurrences 

Mean 

Relative 

Abundance 

Maximum 

Relative 

Abundance 

2006 2007 2006 2007 2006 2007 2006 2007 
1 1 Achnanthes bioretii Germain 10 1 0.27 0.06 1.76 1.78 

2 NA Achnanthes curtissima Carter 14 NA 0.25 NA 1.23 NA 

3 2 Achnanthes didyma Hustedt 7 11 0.15 0.36 1.33 3.17 

4 3 Achnanthes exigua Grunow  5 8 0.23 0.15 3.54 1.13 

5 4 Achnanthes hungarica (Grunow) Grunow  16 10 1.66 0.49 19.07 5.91 

NA 5 Achnanthes levanderi Hustedt 2 NA 0.09 NA 2.27 NA 

6 NA Achnanthes marginulata Grunow  8 NA 0.16 NA 1.08 NA 

7 6 Achnanthes pusilla(Grunow) De Toni 15 19 0.49 0.52 2.06 2.84 

8 NA Achnanthes saccula Carter  16 NA 0.37 NA 1.15 NA 

9 7 
Achnanthidium minutissimum Czarnecki [Achnanthes minutissima Kützing 

1833] 
28 29 33.85 43.14 53.52 66.14 

10 8 
Adlafina sp. [A. cf. bryophila (Petersen) Moser et al.] (Navicula bryophila 

Petersen) 
27 23 5.29 3.04 36.79 36.13 

MON-2 14.8 23.0 14.4 14.2 ND 0.9 0.8 0.7 34.9 36.9 6.4 5.9 30.4 30.3 1.4 1.9 

MON-3 12.0 21.1 14.3 14.2 0.3 1.1 1.1 0.4 38.6 35.1 6.1 5.0 30.4 30.2 0.7 1.9 

Site Name Al 

µg/L 

Ba 

µg /L 

Cd 

µg /L 

Cu 

µg /L 

Fe 

µg /L 

Mn 

µg /L 

Sr 

µg /L 

Zn 

µg /L 

 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 

MBA-4 3.0 6.6 14.1 13.6 ND 0.7 0.4 1.2 36.6 37.4 15.3 12.0 45.3 45.2 1.2 1.5 

CLE-4 14.0 19.2 0.0 10.6 ND 1.0 0.7 0.6 14.5 19.7 3.1 2.4 30.9 31.3 1.2 7.2 

RSH-6 16.5 20.4 10.6 10.5 0.2 1.0 0.6 0.5 38.9 30.0 4.5 2.6 30.3 30.8 1.5 1.7 

RSH-7 NA 16.0 NA 10.7 NA 0.5 NA 0.5 NA 23.7 NA 4.6 NA 30.0 NA 2.0 

DKL-3 23.9 22.5 14.7 13.4 0.02 0.5 0.7 0.3 65.8 45.1 36.3 22.6 26.0 25.4 4.0 3.9 

EAS-1 13.3 17.4 14.0 14.3 ND 1.2 1.0 0.2 16.8 20.0 3.6 3.4 29.7 28.9 1.9 3.3 

EAS-2 20.5 14.2 14.3 14.2 0.1 1.0 0.3 0.2 44.7 25.5 7.0 3.8 30.8 29.1 1.3 1.6 

EAS-3 13.8 14.3 14.1 14.3 ND 1.3 0.8 0.4 16.8 18.6 4.0 3.0 30.3 29.3 1.1 2.0 
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Taxon Number Taxon Name 
Number of 

Occurrences 

Mean 

Relative 

Abundance 

Maximum 

Relative 

Abundance 
NA 9 Amphora inariensis Krammer NA 8 NA 0.14 NA 1.19 

NA 10 Amphora veneta Kützing NA 3 NA 0.07 NA 1.14 

11 NA Asterionella formosa Hassall 10 NA 0.22 NA 1.18 NA 

12 11 Aulacoseira ambigua(Grunow) Simonsen 14 8 0.63 0.51 5.71 4.66 

13 12 Brachysira brebissonii Ross [Anomoeoneis brachysira (Bréisson) Grunow] 22 23 1.79 1.24 11.01 5.84 

14 13 Brachysira styriaca (Grunow) Ross [Anomoeoneis styriaca (Grunow) Hustedt] 7 22 0.38 0.61 3.58 3.09 

15 14 Brachysira vitrea (Grunow) Ross [Anomoeoneis vitrea (Grunow) Ross] 27 29 9.23 11.72 26.49 33.60 

16 NA Calonies bacillum (Grunow) Cleve 3 NA 0.12 NA 2.36 NA 

NA 15 Cocconeis placentula var. placentula Ehrenberg NA 5 NA 0.18 NA 3.56 

17 NA Cocconeis placentula var. raphid Ehrenberg 10 NA 0.19 NA 1.41 NA 

NA 16 Cyclostephanos dubius (Fricke) Round NA 1 NA 0.09 NA 2.63 

18 NA 
Cyclotella bodanica var. lemanica Grunow in Schneider (O. Müller ex 

Schröter) Bachmann 
20 NA 0.63 NA 4.44 NA 

19 NA Cyclotella distinguenda Hustedt 17 NA 0.39 NA 2.27 NA 

20 17 Cyclotella ocellata Pantocsek 5 9 0.16 0.13 1.65 1.01 

21 18 Cyclotella pseudostelligera Hustedt 27 13 1.21 0.27 2.56 1.98 

22 19 Cyclotella stelligera Cleve & Grunow  7 17 0.27 0.34 5.56 1.86 

23 NA Cymbella cistula (Ehrenberg) Kirchner 10 NA 0.16 NA 1.06 NA 

24 20 Cymbella descripta(Hustedt) Krammer & Lange-Bertalot 26 29 3.70 4.81 10.00 12.50 

25 21 Cymbella hillardii (Grunow) Cleve 8 8 0.18 0.15 1.10 1.16 

26 22 Cymbella laevis Naegeli  18 14 2.05 1.56 11.70 13.71 

27 23 
Encyonema minutum (Hilse ex Rabenhorst) Mann (Cymbella minuta Hilse ex 

Rabenhorst) 
10 12 0.23 0.32 1.58 2.38 

28 24 Encyonema neogracile Krammer [Cymbella gracilis ((Ehrenberg) Kützing)] 28 27 2.61 1.87 15.98 10.02 

29 25 Encyonema silesiacum (Bleisch) Mann (Cymbella silesiaca Bleisch) 25 27 1.27 1.38 3.91 18.25 

NA 26 
Encyonopsis cesatii (Rabenhorst) Krammer [Cymbella cesatii (Rabenhorst) 

Grunow] 
NA 9 NA 0.32 NA 2.94 

NA 27 
Eolimna subminuscula(Mangium) Moser, Lange-Bertalot and Metzeltin 

(Navicula subminuscula Manguin) 
NA 17 NA 0.82 NA 7.56 

30 NA Epithemia adnata(Kützing) Brébisson 3 NA 0.10 NA 1.62 NA 

31 28 Eucocconeis flexella (Kützing) Cleve 15 8 0.86 0.17 4.08 1.52 

32 29 Eunotia bilunaris(Ehrenberg) Mills 7 1 0.16 0.06 1.48 1.64 

33 NA Eunotia minor (Kützing) Grunow  14 NA 0.63 NA 4.94 NA 
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Taxon Number Taxon Name 
Number of 

Occurrences 

Mean 

Relative 

Abundance 

Maximum 

Relative 

Abundance 
34 30 Eunotia pectinalis var. pectinalis Rabenhorst 12 6 0.74 0.19 6.45 2.65 

NA 31 Eunotia praerupta Ehrenberg NA 1 NA 0.04 NA 1.17 

35 32 Eunotia subarcuatoides Alles, Nörpel & Lange-Bertalot 9 10 0.60 0.17 5.08 1.03 

NA 33 Fragilaria capucina Desmazières NA 8 NA 0.26 NA 2.17 

36 34 Fragilaria capucina var. capucina Desmazières 15 6 0.30 0.41 2.11 5.12 

37 NA Fragilaria capucina var. mesolepta(Rabenhorst) Rabenhorst 10 NA 0.20 NA 2.11 NA 

38 35 Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot 9 21 0.17 0.60 1.06 3.12 

39 36 Fragilaria crotonensis Kitton 25 9 1.66 0.34 5.86 2.46 

NA 37 Fragilaria tenera (W. Smith) Lange-Bertalot NA 1 NA 0.04 NA 1.29 

40 38 
Frustulia amphipleuroides (Grunow) Cleve-Euler [Frustulia rhomboids var. 

amphipleuroides (Grunow) De Toni] 
14 18 0.78 0.41 5.79 1.55 

41 39 Gomphonema acuminatum Ehrenberg 13 4 0.38 0.10 2.42 1.50 

42 40 Gomphonema angustum Agardh 7 16 0.21 0.48 3.59 2.20 

NA 41 Gomphonema anoenum Lange-Bertalot NA 2 NA 0.14 NA 3.61 

43 NA Gomphonema clavatum Ehrenberg 27 NA 1.75 NA 13.54 NA 

44 42 Gomphonema clevei Fricke 1 17 0.04 0.34 1.06 2.40 

NA 43 Gomphonema girdle view NA 2 NA 0.07 NA 1.17 

45 44 Gomphonema gracile Ehrenberg 18 9 0.53 0.21 2.63 1.55 

NA 45 Gomphonema parvulum (Krützing) Krützing NA 4 NA 0.07 NA 1.03 

NA 46 Gomphonema truncatum Ehrenberg NA 5 NA 0.08 NA 1.00 

46 NA Gyrosigma acuminatum (Kützing) Rabenhorst 1 NA 0.06 NA 1.57 NA 

NA 47 
Karayevia clevei (Grunow) Round and Bukhtiyarova(Achnanthes clevei 

Grunow) 
NA 2 NA 0.12 NA 2.97 

47 NA Karayevia laterostrata (Hustedt) Kingston (Achnanthes laterostrata Hustedt) 1 NA 0.04 NA 1.23 NA 

48 NA Navicula angusta Grunow 8 NA 0.25 NA 1.52 NA 

NA 48 Navicula cincta (Ehrenberg) Ralfs  NA 3 NA 0.07 NA 1.12 

49 NA Navicula concentrica Carter 4 NA 0.12 NA 1.17 NA 

50 49 Navicula cryptocephala Kützing 7 10 0.51 0.30 7.81 2.83 

51 50 Navicula cryptotenella Lange-Bertalot 18 20 0.76 0.84 3.31 3.88 

52 51 Navicula halophila(Grunow) Cleve 13 2 0.20 0.14 1.23 3.56 

53 52 Navicula notha Wallace 27 29 6.14 5.50 15.14 20.79 

54 53 Navicula radiosa Kützing 25 15 1.02 0.34 3.05 1.70 

NA 54 Navicula rhynchocephala Kützing NA 3 NA 0.07 NA 1.51 
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Taxon Number Taxon Name 
Number of 

Occurrences 

Mean 

Relative 

Abundance 

Maximum 

Relative 

Abundance 
NA 55 Navicula submuralis Hustedt NA 1 NA 0.08 NA 2.34 

55 NA Neidium ampliatum (Ehrenberg) Kirchner 6 NA 0.12 NA 1.10 NA 

56 56 Nitzschia amphibia Grunow 13 3 0.35 0.06 1.69 1.01 

57 57 Nitzschia palea(Kützing) W. Smith 28 26 3.26 1.79 11.61 7.06 

58 58 Nitzschia radicula Hustedt 9 25 0.17 1.54 1.80 11.49 

NA 59 Nitzschia vitrea Norman NA 2 NA 0.04 NA 1.08 

59 NA Pinnularia subrostrata(A. Cleve) Cleve-Euler 2 NA 0.11 NA 2.73 NA 

60 NA 
Placoneis placentula(Ehrenberg) Heinzerling [Navicula placentula 

(Ehrenberg) Kützing] 
8 NA 0.19 NA 1.33 NA 

61 NA 
Planothidium biporomum (Hohn et Hellerman) Lange-Bertalot [Achnanthes 

lanceolata ssp. biporoma (Hohn et Hellerman) Lange-Bertalot] 
1 NA 0.04 NA 1.15 NA 

NA 60 
Planothidium lanceolatum (Brébisson ex Kützing) Round and Bukhtiyarova 

[Achnanthes lanceolata (Brébisson) Grunow] 
NA 0.16 NA 0.16 NA 1.97 

62 NA 
Psammothidium bioretii (Germain) Bukhtiyarova et Round (Achnanthes 

bioretii Germain)  
12 NA 0.42 NA 3.09 NA 

NA 61 
Psammothidium subatomoides (Hustedt) Bukhtiyarova and Round 

[Achnanthes subatomoides (Hustedt) Lange-Bertalot et Archibald] 
NA 4 NA 0.13 NA 2.27 

NA 62 
Pseudostaurosira parasitica (W. Smith) Morales [Fragilaria parasitica 

(Smith) Grunow] 
NA 9 NA 0.17 NA 1.57 

63 63 Rhopalodia gibba(Ehrenberg) O. Müller 4 3 0.11 0.07 1.41 1.24 

NA 64 Sellaphora pupula (Kützing) Mereschkowksy (Navicula pupula Kützing) NA 10 NA 0.18 NA 1.21 

NA 65 Sellaphora stroemii (Hustedt) H. Kobayasi (Navicula stroemii Hustedt) NA 4 NA 0.12 NA 1.46 

64 66 
Staurosira construens Ehrenberg [Fragilaria construens (Ehrenberg) 

Grunow] 
2 7 0.05 0.29 1.06 5.86 

NA 67 
Staurosira construens var. venter (Ehrenberg) Hamilton [Fragilaria 

construens var. venter (Ehrenberg) Grunow et van Heurck] 
NA 13 NA 1.37 NA 16.14 

65 68 
Staurosirella pinnata (Ehrenberg) Williams and Round (Fragilaria pinnata 

Ehrenberg) 
14 18 2.67 1.65 30.54 18.50 

66 69 Stenopterobia curvula(W. Smith) Krammer 16 12 0.81 0.40 6.72 3.10 

NA 70 Stephanodiscus minutulus (Krützing) Cleve & Möller NA 4 NA 0.08 NA 1.19 

67 NA Synedra ulna Ehrenberg 1 NA 0.05 NA 1.32 NA 

68 71 Tabellaria flocculosa(Roth) Kützing 28 28 3.13 3.04 12.58 16.23 

69 NA Tabellaria quadriseptata Knudson 12 NA 0.33 NA 2.04 NA 

70 72 Tryblionella angustata W. Smith [Nitzschia angustata (W. Smith) Grunow] 17 6 0.34 0.10 2.20 1.61 
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Appendix B - Chapter 3 

Relations between limnological conditions and composition of benthic algal communities in the South Nahanni River watershed, 

NWT (Canada): defining the reference condition 

 

Appendix B, Table 3.1 Physical and chemical variables measured at each site in 2008 and 2009. Black circles indicate variables 

selected for use in ordinations.  

Variable Units 

Overall Benthic 

Algal Taxonomy 
Diatom Taxonomy 

Pigment 

Concentrations 

2008 2009 2008 2009 2008 2009 

Physical Variables 

Julian Day Quantitative  ●     

Latitude Quantitative (Hours, Minutes, Seconds)  ●  ● ●   

Longitude Quantitative (Hours, Minutes, Seconds) ●  ●  ●  

Altitude Quantitative (m) ●    ●  

Stream Order Categorical (Strahler)       

Ecoregion Categorical (1 – 2; 1-Selwyn mountain 

ecoregion, 2-Nahanni-Hyland ecoregions) 

● ● ● ●  ● 

Bedrock Quantitative (Percentage)       

Boulders Quantitative (Percentage)    ●   

Cobbles Quantitative (Percentage)     ●  

Gravel Quantitative (Percentage)     ● ● 

Pebbles Quantitative (Percentage)       

Sand Quantitative (Percentage)       

Silt & Clay Quantitative (Percentage)       

Bankfull – Wetted Quantitative (cm) ●   ●   

Bankfull Width Quantitative (m) ●  ● ●   

Wetted Width Quantitative (m)   ● ● ●  

Intrusive Bedrock Quantitative (Percentage) ● ●   ●  

Sedimentary Bedrock Quantitative (Percentage) ●      
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Variable Units 

Overall Benthic 

Algal Taxonomy 
Diatom Taxonomy 

Pigment 

Concentrations 

2008 2009 2008 2009 2008 2009 

Average Depth Quantitative (cm)   ●    

Maximum Depth Quantitative (cm)       

Streamside Vegetation Categorical (1 – 4; 1-ferns/grasses, 2-

shrubs, 3- deciduous trees, 4-coniferous 

trees) 

    ●  

Drainage Area Quantitative (km
2
)   ● ● ●  

Presence of Pools, 

Rapids, Riffles, Runs 

Binary (presence – absence)     ●  

Forest Cover Quantitative (Percentage) ● ● ● ●   

Ice Cover Quantitative (Percentage) ●  ●    

Macrophyte coverage Quantitative (Percentage)    ● ●  

Perimeter of Upstream 

Drainage Area 

Quantitative (km)       

Presence of Coniferous 

Trees, Deciduous 

Trees, Grasses & Ferns, 

Shrubs  

Binary (presence – absence)     ●  

Sinuosity (The ratio of 

distance measured 

along a watercourse 

between two points, 

divided by the straight 

line distance between 

the same two points.) 

m of stream within a 2 km linear distance of 

stream 

    ●  

Slope Quantitative (m/m) ● ● ●    

Stream Density Quantitative (m stream/km
2
 drainage area)    ●   

Secondarily Dominant 

Sediment Size 

Categorical (0 – 9)       

Dominant Sediment Categorical (0 – 9)       
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Variable Units 

Overall Benthic 

Algal Taxonomy 
Diatom Taxonomy 

Pigment 

Concentrations 

2008 2009 2008 2009 2008 2009 

Size 

Sediment 

Embeddedness [a 

measure of how 

entrenched coarse 

substrate (e.g., gravel, 

cobbles and boulders) 

are in finer substrates 

(e.g., silt and clay)]. 

Categorical (1 – 5; 1 = completely 

embedded, 5 = unembedded) 

    ●  

Sediment Surrounding 

Material 

Categorical (0 – 9)       

Average Velocity Quantitative (m/s)   ●  ●  

Maximum Velocity Quantitative (m/s)  ● ● ● ●  

Median Particle Size 

(Wolman) 

Quantitative (cm)       

Geometric Mean 

Particle Size (Wolman) 

Quantitative (cm)       

Canopy Cover Quantitative (percentage)       

June Min Temperature Quantitative  (°C)       

June Max Temperature Quantitative (°C)       

June Mean 

Temperature 

Quantitative (°C) ● ●   ●  

Jan Min Temperature Quantitative (°C)       

Jan Max Temperature Quantitative (°C)       

Jan Mean Temperature Quantitative (°C)   ●    

June Rain Quantitative (mm)       

June Snow Quantitative (mm)   ●    

June Precipitation Quantitative (mm)       

Jan Rain Quantitative (mm) ●      
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Variable Units 

Overall Benthic 

Algal Taxonomy 
Diatom Taxonomy 

Pigment 

Concentrations 

2008 2009 2008 2009 2008 2009 

Jan Snow Quantitative (mm)       

Jan Precipitation Quantitative (mm)       

Total Snow Quantitative (mm)       

Total Rain Quantitative (mm) ●      

Total Precipitation Quantitative (mm)   ●    

Chemical Variables 

NO2NO3  ● ● ● ● ●  

DOC     ● ●  

DIC  ●  ●    

TN  ●    ●  

TP  ●  ●    

pH  ●  ● ●   

Conductivity  ●  ● ● ●  

Turbidity    ●    

Al      ●  

As  ●  ●    

B  ●  ●    

Ba  ●   ● ●  

Be        

Cd        

Ce     ●   

Co      ●  

Cr    ●    

Cs        

Cu  ●  ●    

Fe  ●      

Ga  ●      

La  ●  ●    

Li       ● 
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Variable Units 

Overall Benthic 

Algal Taxonomy 
Diatom Taxonomy 

Pigment 

Concentrations 

2008 2009 2008 2009 2008 2009 

Mn        

Mo  ●      

Ni  ●  ● ●   

Pb  ●  ● ●   

Rb  ●  ●  ●  

Sb    ●    

Se  ●  ●  ●  

Sr  ●  ● ● ●  

Tl        

U        

V  ●    ●  

W  ●  ● ● ●  

Y        

Zn   ●   ● ● 
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Appendix B, Table 3.2 List of diatom taxon names for each sample in 2008 and 2009.  
 

Taxon Number 
Taxon Name 

2008 2009 

1 1 
Achnanthidium minutissimum (Kützing) Czarnecki [Achnanthes minutissima 
Kützing 1833] 

2 2 
Achnanthidium pyrenaicum (Hustedt) H. Kobayasi (Achnanthes biasolettiana 
Grunow) 

3 3 Brachysira vitrea (Grunow) Ross [Anomoeoneis vitrea (Grunow) Ross] 
4 4 Cocconeis placentula var. placentula Ehrenberg 
5 NA Cyclotella comensis Grunow 
6 NA Cyclotella ocellata Pantocsek 
7 7 Cyclotella rossii Håkansson 
8 8 Cymbella affinis Kützing 

NA 9 Denticula kuetzingii Grunow 
10 10 Diatoma tenuis Agardh 

11 11 
Encyonema minutum (Hilse ex Rabenhorst) Mann (Cymbella minuta Hilse ex 
Rabenhorst) 

12 12 Encyonema reichardtii Krammer 
13 13 Encyonema silesiacum (Bleisch) Mann (Cymbella silesiaca Bleisch) 

14 14 
Encyonopsis microcephala (Grunow) Krammer (Cymbella microcephala 
Grunow) 

15 15 Eucocconeis flexella (Kützing) Meister [Achnanthes flexella (Krützing) Brun 
16 NA Eunotia subarcuatoides Alles, Nörpel & Lange-Bertalot 
17 NA Fragilaria capucina Desmazières 

18 18 
Fragilaria capucina subsp. rumpens (Kützinng) Lange-Bertalot [Fragilaria 
capucina var. rumpens (Kützing) Lange-Bertalot ex Bukhtiyarova] 

19 19 Fragilaria capucina var. gracilis (Oestrup) Hustedt 
20 20 Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot 
NA 21 Fragilaria construens (Ehrenberg) Grunow 
22 22 Fragilaria crotonensis Kitton 
23 23 Gomphoneis clevei Fricke (Gomphonema clevei Fricke) 
24 24 Gomphonema affine Krützing 
NA 25 Gomphonema angustatum (Krützing) Rabenhorst 
26 26 Gomphonema minutum (Agardh) Agardh 
27 27 Gomphonema olivaceum (Hornemann) Brébisson 

28 28 
Gomphonema parvulum var. micropus (Kützing) Cleve (Gomphonema 
micropus Krützing) 

29 29 Hannaea arcus (Ehrenerg) Patrick [Fragilaria arcus (Ehrenberg) Cleve] 
30 30 Meridion circulare (Greville) Agardh 
NA 31 Navicula cryptocephala Kützing 
32 32 Navicula cryptotenella Lange-Bertalot 
33 NA Navicula notha Wallace 
34 34 Nitzschia capitellata Hustedt 
35 35 Nitzschia palea (Kützing) W. Smith 

36 NA 
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot 
[Achnanthes lanceolata (Brébisson) Grunow] 

37 37 
Reimeria sinuata (Gregory) Kociolek and Stoermer (Cymbella sinuata 
Gregory) 

38 38 Sellaphora stroemii (Hustedt) H. Kobayasi (Navicula stroemii Hustedt) 
39 39 Staurosira venter (Ehrenberg) Kobayasi [Fragilaria construens var. venter 
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Taxon Number Taxon Name 
(Ehrenberg) Grunow et van Heurck] 

40 40 
Staurosirella leptostauron var. dubia (Grunow) [Fragilaria leptostauron var. 
dubia (Grunow) Hustedt] 

41 41 
Staurosirella pinnata (Ehrenberg) Williams and Round (Fragilaria pinnata 
Ehrenberg) 

42 42 Stephanodiscus parvus Stoermer and Håkansson 
43 43 Synedra ulna Ehrenberg 
44 NA Unknown Achnanthes in girdleband view 
NA 45 Unknown Cymbella 
46 46 Unknown Gomphonema 
47 NA Unknown Navicula 
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Appendix B, Table 3.3 Water chemistry data for the South Nahanni River water sites sampled in 2008 

Site NO3NO2 NH3 DOC DIC Ag Al As B Ba Be Bi Cd 

 

mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-1-08 0.042 0.013 1.3 13.2 0.001 22.3 0.53 1.3 29.7 0.003 0.008 0.014 

NNP-2-08 0.039 0.013 1.4 12.8 < 0.001 66.3 1.22 6.4 29.8 0.007 0.037 0.016 

NNP-3-08 0.012 0.008 2.1 16.1 0.002 95.8 0.18 0.9 106 0.012 < 0.001 0.327 

NNP-4-08 0.022 < 0.005 2.1 4.9 0.007 1370 0.39 6.9 36.4 0.15 0.001 1.71 

NNP-5-08 0.037 0.005 1.5 1.1 0.003 4660 0.09 1.8 26.6 0.711 < 0.001 1.2 

NNP-6-08 0.037 < 0.005 0.9 1.7 0.002 1290 3.07 29.9 10.8 0.251 < 0.001 0.276 

NNP-7-08 0.056 < 0.005 1.2 5.1 0.001 194 1.83 19.4 8.42 0.04 0.004 0.176 

NNP-8-08 0.102 < 0.005 1.2 34 0.001 22.3 0.07 2.8 37.7 0.003 < 0.001 0.009 

NNP-9-08 0.096 < 0.005 1.2 25.7 < 0.001 37.6 0.09 2.9 28.8 0.003 < 0.001 0.172 

NNP-10-08 0.048 0.005 1.3 17.6 0.001 670 0.51 2.2 46.6 0.043 0.008 0.273 

NNP-11-08 0.018 0.009 1.1 8.9 < 0.001 26.7 0.54 1.1 23.4 0.004 0.004 0.012 

NNP-12-08 0.031 0.007 1.1 12 < 0.001 44.4 0.61 1.2 28.2 0.004 0.004 0.015 

NNP-13-08 0.027 < 0.005 1.8 22.7 0.002 244 0.19 2.6 83.2 0.037 0.003 0.655 

NNP-14-08 0.076 < 0.005 1.1 16.4 < 0.001 533 0.46 7.4 30.5 0.107 0.001 0.108 

NNP-15-08 0.02 0.006 1.3 16.4 < 0.001 19.9 0.57 1.8 17 0.003 0.001 0.095 

NNP-16-08 0.015 0.005 1.2 13.6 < 0.001 37.3 0.72 1.7 20.2 0.003 0.007 0.161 

NNP-17-08 0.017 0.006 1.1 11.7 < 0.001 15 0.82 1.7 21.5 0.002 0.003 0.151 

NNP-18-08 0.017 0.009 0.9 10.3 < 0.001 30.5 0.55 1.2 23.9 0.004 0.002 0.012 

NNP-19-08 0.03 0.007 1 11.9 < 0.001 54.8 1.95 7 23 0.006 0.042 0.011 

NNP-20-08 0.157 < 0.005 1.5 36.4 < 0.001 4.1 0.1 1.9 42.5 0.001 0.004 0.04 

NNP-21-08 0.113 < 0.005 1.9 34.1 < 0.001 9.1 0.37 4.2 55.3 0.003 0.014 0.088 

NNP-22-08 0.115 < 0.005 1.3 30.8 < 0.001 10 0.28 2.6 78.7 0.001 0.002 0.085 

NNP-23-08 0.108 < 0.005 1.1 29.9 < 0.001 13.3 0.32 1.7 73.7 0.005 0.002 0.046 

NNP-24-08 0.094 < 0.005 0.8 14.7 0.005 969 2.61 3.5 48.3 0.069 0.122 0.159 

NNP-25-08 0.038 0.007 1.8 4.9 0.001 53.8 0.8 4.6 9.87 0.03 0.004 0.042 

NNP-26-08 0.055 < 0.005 0.8 12.6 0.002 197 1.47 7.8 29.8 0.028 0.06 0.033 
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Site NO3NO2 NH3 DOC DIC Ag Al As B Ba Be Bi Cd 

 

mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-27-08 0.052 < 0.005 0.9 12.3 0.001 149 1.36 6.7 27.6 0.028 0.029 0.028 

NNP-28-08 0.048 < 0.005 0.8 11.5 0.001 154 1.42 6.1 26.6 0.03 0.033 0.03 

NNP-29-08 0.04 < 0.005 1 10.4 0.001 126 1.46 6.3 25.1 0.031 0.02 0.027 

NNP-30-08 0.029 0.007 0.8 12.1 < 0.001 61.7 1.75 7.7 26.8 0.006 0.031 0.014 

NNP-31-08 0.028 0.008 0.9 11.6 < 0.001 74.3 1.41 9.6 30.6 0.007 0.024 0.017 

NNP-32-08 0.025 0.009 2.1 11.5 0.001 88.3 1.57 9.1 29.1 0.009 0.034 0.017 

NNP-33-08 0.046 0.005 1.4 20.2 0.001 118 0.76 5.3 42.2 0.018 0.016 0.062 

NNP-34-08 0.043 0.009 3.1 7.4 0.001 76 1.13 4.4 7.74 0.012 0.003 0.011 

NNP-35-08 0.166 0.005 1.1 35.1 < 0.001 9.1 0.28 1.6 70 0.004 < 0.001 0.018 

NNP-36-08 0.198 0.008 0.8 31.3 < 0.001 64.8 0.09 2.5 17 0.016 < 0.001 0.023 

NNP-37-08 0.142 0.005 0.8 29.8 < 0.001 26 0.15 1.3 26.3 0.004 0.007 0.047 

NNP-38-08 0.04 0.009 0.9 12.4 0.002 42.7 0.63 1.7 29.8 0.005 0.033 0.016 

NNP-39-08 0.037 0.009 1 12 0.002 111 1.22 3.3 28.8 0.01 0.101 0.022 

NNP-40-08 0.026 0.01 1.1 11.2 0.001 58.8 0.66 1.3 28.6 0.005 0.009 0.021 

NNP-41-08 0.01 0.012 0.8 4.8 0.001 68.1 0.73 0.7 8.69 0.008 0.005 0.007 

NNP-42-08 0.015 0.013 1.7 4.9 < 0.001 67.9 0.7 0.7 8.82 0.007 0.008 0.007 

NNP-43-08 0.171 0.005 1.3 42.2 0.002 5.7 0.28 9.4 77.8 0.001 < 0.001 0.072 

NNP-44-08 0.161 0.005 1.3 41.5 0.001 7.2 0.24 9.4 79.5 0.002 < 0.001 0.029 

NNP-45-08 0.161 0.005 2.7 41.3 0.001 15.6 0.27 9.4 80.2 0.003 < 0.001 0.031 

NNP-46-08 0.172 0.005 2.9 42.9 < 0.001 6.5 0.28 9.3 77.5 0.002 0.002 0.084 

NNP-47-08 0.158 0.005 1.8 41 < 0.001 6.1 0.24 8.9 80.2 0.002 < 0.001 0.023 

NNP-48-08 0.041 0.01 6.3 27.6 0.001 19.3 0.25 5.2 174 0.004 0.002 0.057 

NNP-49-08 0.054 0.007 2.1 35.4 0.007 184 0.61 4.7 82 0.021 0.001 0.898 

NNP-50-08 0.063 0.007 0.5 7.4 0.003 137 0.48 5.3 83.4 0.016 0.001 0.607 

NNP-51-08 0.077 0.007 4.3 39.3 0.002 135 0.25 11.5 103 0.016 0.002 0.169 

NNP-52-08 0.217 < 0.005 4 39.2 < 0.001 16.9 0.68 1 28.7 0.002 < 0.001 0.037 

NNP-53-08 0.114 0.005 3.6 55.5 0.001 5.5 0.25 6.2 93.8 0.002 < 0.001 1.25 

NNP-54-08 0.117 0.006 4.6 55 0.006 326 0.6 13.5 99.3 0.021 0.006 0.772 
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Site NO3NO2 NH3 DOC DIC Ag Al As B Ba Be Bi Cd 

 

mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-55-08 0.191 0.006 2.9 36 0.001 61.1 0.15 4.3 42.1 0.005 0.007 0.04 

NNP-56-08 0.21 0.005 3 34.7 0.002 30 0.19 8 78.4 0.004 0.001 0.017 

NNP-57-08 0.194 0.005 0.5 30.9 < 0.001 38.8 0.07 2.3 17.4 0.007 0.001 0.014 

NNP-58-08 0.192 0.005 2.3 28.4 < 0.001 78.8 0.07 1.9 12.2 0.024 < 0.001 0.025 

NNP-59-08 0.217 0.005 1.4 35.1 0.002 13.9 0.16 7.3 77.8 0.002 < 0.001 0.012 

NNP-60-08 0.182 0.007 3.8 33.5 0.001 34.1 0.16 5.7 68.1 0.004 < 0.001 0.012 

NNP-61-08 0.11 0.006 2.7 38.4 < 0.001 6.5 0.1 7.2 73.7 0.001 < 0.001 0.012 

NNP-62-08 0.133 0.005 0.9 42.4 < 0.001 4 0.11 7.5 76.9 0.001 < 0.001 0.023 

NNP-63-08 0.141 < 0.005 1.6 43.5 < 0.001 4.8 0.1 7.6 79.2 0.001 < 0.001 0.034 

NNP-64-08 0.144 0.005 2.7 43.7 < 0.001 4.3 0.12 7.4 78.9 0.001 < 0.001 0.033 

NNP-65-08 0.088 0.006 3.9 45.6 0.009 121 0.73 16.6 140 0.016 0.002 0.473 

NNP-66-08 0.195 < 0.005 2.6 38.1 < 0.001 17.2 0.23 6.1 77.3 0.002 < 0.001 0.021 

NNP-67-08 0.184 < 0.005 1.1 39.9 < 0.001 4 0.23 7.3 77.1 0.001 < 0.001 0.024 

NNP-68-08 0.183 < 0.005 1.1 43.4 0.001 3.8 0.25 8.4 79.2 0.001 < 0.001 0.026 

NNP-69-08 0.171 0.005 1.7 42.6 < 0.001 4.9 0.24 9 80.1 0.002 < 0.001 0.033 

NNP-70-08 0.175 < 0.005 1.4 43.8 < 0.001 5.4 0.24 9.1 78.6 0.001 0.001 0.031 

NNP-71-08 0.162 < 0.005 1.1 43.1 < 0.001 4.7 0.14 8.9 81.2 0.002 < 0.001 0.03 

NNP-72-08 0.164 < 0.005 2.9 43.2 < 0.001 3.7 0.14 8.8 80.9 0.002 < 0.001 0.026 

NNP-73-08 0.166 0.005 1.7 42.6 < 0.001 3 0.14 8.7 79.6 0.001 < 0.001 0.023 

 

Appendix B, Table 3.3, continued 

Site Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-1-08 0.072 0.126 0.054 0.049 0.26 57.1 0.007 0.064 2.3 5.34 0.556 0.002 

NNP-2-08 0.089 0.137 0.071 0.116 0.37 174 0.023 0.062 5.5 16 0.63 0.015 

NNP-3-08 0.044 0.376 0.022 0.012 1.55 82 0.002 0.033 1.3 18.4 0.691 < 0.001 
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Site Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-4-08 2.11 12.1 0.177 0.126 10.3 479 0.037 1.21 10 280 0.39 0.001 

NNP-5-08 5.17 59 0.144 0.224 9.78 324 0.058 2.74 36.2 381 0.029 < 0.001 

NNP-6-08 3.14 7.07 0.148 2.68 4.96 111 0.057 2.12 12.3 71.9 1 0.002 

NNP-7-08 0.304 0.977 0.06 0.514 0.78 41.3 0.013 0.214 2.7 15.8 1.23 0.002 

NNP-8-08 0.014 0.023 0.076 0.024 0.25 3.7 0.002 0.007 1.7 0.15 0.991 < 0.001 

NNP-9-08 0.016 0.653 0.085 0.009 0.27 49 0.007 0.008 2.8 13.2 0.628 < 0.001 

NNP-10-08 0.496 6.22 0.185 0.043 1.6 435 0.027 0.249 6.2 25.6 1.02 0.004 

NNP-11-08 0.035 0.112 0.055 0.078 0.26 53.7 0.008 0.02 2 3.76 0.437 0.002 

NNP-12-08 0.113 0.159 0.081 0.06 0.29 89.4 0.012 0.093 2.4 5.67 0.552 0.002 

NNP-13-08 0.159 2.01 0.059 0.017 1.45 124 0.007 0.067 6 47.9 0.994 0.001 

NNP-14-08 13.5 12.4 0.075 0.117 2.87 26.2 0.16 9.35 15 178 1.14 < 0.001 

NNP-15-08 0.054 0.07 0.032 0.047 0.41 48.3 0.005 0.046 3.3 2.9 0.854 < 0.001 

NNP-16-08 0.056 0.09 0.04 0.042 0.37 72.1 0.006 0.031 2.4 5.79 1.2 0.001 

NNP-17-08 0.078 0.082 0.047 0.064 0.35 89.8 0.005 0.043 2.3 4.85 0.934 0.001 

NNP-18-08 0.095 0.158 0.052 0.062 0.26 53.7 0.007 0.09 2.3 5.33 0.488 0.002 

NNP-19-08 0.071 0.089 0.066 0.181 0.29 122 0.023 0.049 5.9 9.8 0.555 0.014 

NNP-20-08 0.007 0.012 0.049 0.007 0.13 7.5 0.004 0.006 1.2 0.26 2.22 < 0.001 

NNP-21-08 0.082 0.027 0.089 0.016 0.3 12.2 0.007 0.095 3 0.59 3.78 0.002 

NNP-22-08 0.01 0.025 0.041 0.009 0.25 7.3 0.004 0.009 1.9 0.37 2.05 < 0.001 

NNP-23-08 0.135 0.023 0.033 0.009 0.25 8.3 0.005 0.169 1.8 0.39 1.84 < 0.001 

NNP-24-08 1.04 0.674 0.706 0.425 0.96 855 0.326 0.553 6.4 20.5 2.79 0.341 

NNP-25-08 0.317 0.752 0.041 0.068 0.91 28.7 0.032 0.427 8.6 5.42 0.825 0.003 

NNP-26-08 0.962 0.735 0.218 0.156 0.62 274 0.059 0.848 6.5 13.3 0.813 0.026 

NNP-27-08 0.998 0.78 0.163 0.142 0.53 198 0.05 0.954 6.1 13.4 0.755 0.021 

NNP-28-08 1.13 0.886 0.153 0.15 0.58 205 0.05 1.09 6.3 15.3 0.497 0.02 

NNP-29-08 1.14 0.924 0.112 0.171 0.47 156 0.04 1.15 6.6 14.9 0.491 0.018 

NNP-30-08 0.072 0.105 0.072 0.203 0.3 124 0.025 0.051 6.5 9.52 0.547 0.019 

NNP-31-08 0.101 0.136 0.06 0.275 0.36 166 0.03 0.078 8.2 15.9 0.639 0.023 
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Site Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-32-08 0.105 0.131 0.077 0.248 0.38 192 0.035 0.072 7.7 16.4 0.615 0.025 

NNP-33-08 0.312 0.23 0.079 0.051 0.62 117 0.017 0.258 7.8 6.58 1.43 0.006 

NNP-34-08 0.632 0.092 0.076 0.028 0.55 170 0.026 0.623 3.5 6.43 2.08 0.02 

NNP-35-08 0.144 0.035 0.051 0.008 0.16 12.5 0.005 0.164 1.2 0.26 1.98 < 0.001 

NNP-36-08 0.036 0.706 0.038 0.006 0.21 103 0.004 0.017 3.1 11.4 3.37 < 0.001 

NNP-37-08 0.131 0.034 0.078 0.014 0.14 36.4 0.012 0.126 1 0.51 1.56 0.003 

NNP-38-08 0.077 0.154 0.079 0.062 0.39 175 0.013 0.061 2.6 16.8 0.503 0.003 

NNP-39-08 0.135 0.159 0.103 0.112 0.44 229 0.038 0.083 3.5 17 0.519 0.031 

NNP-40-08 0.108 0.16 0.095 0.069 0.31 123 0.016 0.078 2.3 6.56 0.489 0.004 

NNP-41-08 0.137 0.202 0.103 0.11 0.36 113 0.017 0.1 1.8 5.62 0.071 0.006 

NNP-42-08 0.103 0.196 0.102 0.115 0.34 114 0.017 0.053 1.8 5.55 0.076 0.006 

NNP-43-08 0.009 0.021 0.092 < 0.005 0.39 9.9 0.004 0.006 2.9 0.46 3.31 < 0.001 

NNP-44-08 0.115 0.015 0.088 0.005 0.33 9.2 0.005 0.081 2.9 0.22 3.37 < 0.001 

NNP-45-08 0.065 0.027 0.099 0.008 0.31 29 0.007 0.04 3 0.67 3.38 < 0.001 

NNP-46-08 0.01 0.018 0.083 0.006 0.35 11.2 0.003 0.006 3 0.31 3.29 < 0.001 

NNP-47-08 0.018 0.015 0.106 < 0.005 0.28 8.6 0.004 0.016 2.8 0.17 3.29 < 0.001 

NNP-48-08 0.078 0.043 0.07 0.005 0.53 104 0.004 0.055 1.5 3.15 2.01 0.001 

NNP-49-08 0.144 1.54 0.21 0.046 1.17 488 0.025 0.066 4.9 23.6 3.65 0.002 

NNP-50-08 0.108 0.929 0.156 0.03 0.93 334 0.017 0.05 4.6 13.6 3.29 0.002 

NNP-51-08 0.167 1.28 0.099 0.018 0.82 261 0.016 0.109 3.8 33.6 1.93 0.004 

NNP-52-08 0.037 0.034 0.081 0.006 0.24 24.5 0.006 0.019 1.6 0.65 0.364 0.002 

NNP-53-08 0.017 0.054 0.054 < 0.005 0.7 9.3 0.002 0.014 2.7 1.13 13.7 < 0.001 

NNP-54-08 0.51 0.595 0.502 0.111 1.41 756 0.093 0.253 9.4 15.2 13 0.052 

NNP-55-08 0.092 0.109 0.134 0.017 0.32 96.9 0.02 0.057 2.4 2.1 2.27 0.002 

NNP-56-08 0.043 0.037 0.134 0.014 0.54 50.4 0.017 0.037 3.4 0.82 4.62 < 0.001 

NNP-57-08 0.05 0.216 0.057 0.005 0.15 44 0.006 0.029 2.1 3.59 1.53 < 0.001 

NNP-58-08 0.092 1.37 0.057 0.006 0.29 204 0.007 0.044 3.4 23.6 2.08 < 0.001 

NNP-59-08 0.006 0.022 0.098 0.008 0.41 19.6 0.014 0.005 2.8 0.35 4.62 < 0.001 
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Site Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-60-08 0.03 0.049 0.148 0.014 0.5 55.2 0.019 0.024 3.4 1.07 3.5 0.001 

NNP-61-08 0.079 0.013 0.093 < 0.005 0.25 6.8 0.005 0.052 1.7 0.3 3.1 < 0.001 

NNP-62-08 0.009 0.018 0.089 < 0.005 0.25 4.8 0.003 0.008 2 0.19 3.93 < 0.001 

NNP-63-08 0.007 0.014 0.094 < 0.005 0.23 8.1 0.004 0.005 2.1 0.22 3.9 < 0.001 

NNP-64-08 0.006 0.013 0.09 < 0.005 0.23 6.7 0.003 0.005 2 0.18 3.94 < 0.001 

NNP-65-08 0.289 0.673 0.214 0.046 1.15 355 0.029 0.171 6.5 18.6 12 0.005 

NNP-66-08 0.029 0.031 0.1 0.008 0.29 34 0.008 0.015 2.1 0.62 2.83 < 0.001 

NNP-67-08 0.007 0.014 0.085 < 0.005 0.27 6.1 0.004 0.005 2.4 0.14 3.11 < 0.001 

NNP-68-08 0.006 0.014 0.083 < 0.005 0.29 5.1 0.004 0.004 2.7 0.15 3.46 < 0.001 

NNP-69-08 0.006 0.017 0.087 < 0.005 0.29 5.8 0.003 0.005 2.9 0.17 3.69 < 0.001 

NNP-70-08 0.007 0.014 0.087 < 0.005 0.28 7.6 0.004 0.006 2.9 0.18 3.44 < 0.001 

NNP-71-08 0.009 0.013 0.092 < 0.005 0.53 3.8 0.003 0.009 2.5 0.11 3.52 < 0.001 

NNP-72-08 0.031 0.013 0.098 < 0.005 0.26 3.9 0.004 0.032 2.6 0.11 3.46 < 0.001 

NNP-73-08 0.004 0.011 0.086 < 0.005 0.24 3.6 0.003 0.003 2.6 0.09 3.4 < 0.001 

 

Appendix B, Table 3.3, continued 

Site Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-1-08 2.25 0.11 < 0.001 0.57 0.05 0.16 < 0.005 69.3 0.001 0.668 0.078 0.641 

NNP-2-08 1.87 0.058 < 0.001 1.01 0.048 0.09 0.005 64.9 0.002 0.701 0.13 1.06 

NNP-3-08 12.7 0.01 < 0.001 0.29 0.154 0.87 < 0.005 111 0.003 0.569 0.047 0.035 

NNP-4-08 67.7 0.069 < 0.001 0.65 0.07 0.63 < 0.005 87.4 0.007 0.587 0.152 0.284 

NNP-5-08 153 0.188 < 0.001 0.61 0.029 0.39 < 0.005 78.5 0.004 0.329 0.043 0.013 

NNP-6-08 35 0.057 < 0.001 1.39 0.106 0.24 < 0.005 35.7 0.008 4.18 0.102 3.03 

NNP-7-08 6.38 0.053 < 0.001 0.78 0.153 0.39 < 0.005 58.7 0.005 2.11 0.167 0.173 

NNP-8-08 0.19 < 0.005 < 0.001 0.8 0.035 0.11 < 0.005 202 < 0.001 0.745 0.08 0.025 

NNP-9-08 7.04 0.014 < 0.001 0.18 0.055 0.38 < 0.005 190 0.002 1.13 0.087 0.632 
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Site Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-10-08 25 0.106 < 0.001 0.79 0.099 0.67 < 0.005 127 0.006 1.31 0.211 0.066 

NNP-11-08 2.2 0.041 0.001 0.42 0.052 0.18 < 0.005 61.7 0.001 0.44 0.087 0.03 

NNP-12-08 2.25 0.059 < 0.001 0.51 0.051 0.18 < 0.005 72.2 0.001 0.684 0.121 0.242 

NNP-13-08 20.9 0.028 < 0.001 0.48 0.163 1.53 < 0.005 132 0.006 2.16 0.126 0.63 

NNP-14-08 50.6 0.029 < 0.001 1.04 0.037 0.49 < 0.005 101 0.002 1.77 0.267 0.135 

NNP-15-08 2.06 0.02 < 0.001 0.66 0.125 0.28 < 0.005 101 0.003 0.782 0.214 0.053 

NNP-16-08 3.14 0.029 < 0.001 0.39 0.174 0.33 < 0.005 71.9 0.004 0.91 0.29 0.377 

NNP-17-08 2.54 0.025 < 0.001 0.42 0.159 0.31 < 0.005 68.4 0.004 0.689 0.214 0.174 

NNP-18-08 2.47 0.036 < 0.001 0.44 0.049 0.18 < 0.005 72 0.001 0.617 0.083 0.113 

NNP-19-08 1.14 0.051 < 0.001 0.94 0.05 0.11 < 0.005 57.4 0.003 0.706 0.133 0.661 

NNP-20-08 1.11 < 0.005 0.001 0.9 0.186 0.93 < 0.005 137 0.002 5.37 0.116 0.093 

NNP-21-08 0.68 0.013 < 0.001 1.12 0.229 0.77 < 0.005 104 0.003 3.09 1.5 0.058 

NNP-22-08 1.79 0.005 < 0.001 0.9 0.24 0.85 < 0.005 156 0.004 3.53 0.119 0.085 

NNP-23-08 1.24 < 0.005 < 0.001 1.1 0.128 0.54 < 0.005 155 0.004 3.34 0.12 0.031 

NNP-24-08 4.44 0.485 < 0.001 4.98 0.265 0.99 0.072 96.3 0.03 2.31 2.69 0.323 

NNP-25-08 8.79 0.014 < 0.001 1.2 0.07 < 0.05 < 0.005 40.9 0.002 0.731 0.184 0.292 

NNP-26-08 5.38 0.185 < 0.001 1.36 0.076 0.25 0.006 73.8 0.004 1.02 0.515 0.58 

NNP-27-08 5.73 0.131 < 0.001 1.23 0.065 0.24 0.007 72.9 0.003 0.775 0.362 0.456 

NNP-28-08 6.19 0.128 < 0.001 1.11 0.057 0.16 < 0.005 70.4 0.003 0.669 0.332 0.458 

NNP-29-08 6.49 0.096 < 0.001 1.07 0.052 0.14 < 0.005 71.3 0.003 0.678 0.242 0.473 

NNP-30-08 1.3 0.061 < 0.001 1.03 0.052 0.13 0.005 60.2 0.003 0.745 0.14 0.609 

NNP-31-08 1.64 0.066 < 0.001 1.15 0.048 0.15 0.006 62.1 0.004 0.742 0.186 0.768 

NNP-32-08 1.61 0.079 < 0.001 1.17 0.052 0.14 0.008 60.9 0.004 0.696 0.183 0.917 

NNP-33-08 4.15 0.07 < 0.001 1.49 0.136 0.37 < 0.005 130 0.006 1.93 0.298 0.425 

NNP-34-08 1.25 0.049 < 0.001 0.97 0.066 < 0.05 < 0.005 33.8 0.003 1.12 0.273 0.046 

NNP-35-08 0.95 < 0.005 < 0.001 0.52 0.216 0.62 < 0.005 112 0.002 3.78 0.106 0.018 

NNP-36-08 1.92 0.008 < 0.001 0.68 0.18 1.01 < 0.005 138 0.003 4.82 0.107 0.01 

NNP-37-08 1.27 0.023 < 0.001 1.05 0.209 0.67 < 0.005 99.6 0.003 4.68 0.13 0.05 
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Site Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-38-08 2.16 0.067 < 0.001 0.63 0.048 0.15 < 0.005 67.2 0.002 0.589 0.118 0.476 

NNP-39-08 1.84 0.116 < 0.001 1.07 0.048 0.15 0.007 62.1 0.005 0.635 0.207 0.924 

NNP-40-08 2.23 0.092 < 0.001 0.57 0.049 0.16 < 0.005 67.9 0.002 0.591 0.132 0.278 

NNP-41-08 2.56 0.1 < 0.001 0.53 0.025 < 0.05 < 0.005 48.5 0.002 0.102 0.079 0.06 

NNP-42-08 2.48 0.104 < 0.001 0.52 0.026 0.05 < 0.005 48.9 0.001 0.105 0.074 0.025 

NNP-43-08 1.42 0.535 < 0.001 0.31 1.02 1.3 < 0.005 314 0.011 5.3 0.444 0.012 

NNP-44-08 1.32 0.12 < 0.001 0.3 0.281 1.2 < 0.005 314 0.011 4.79 0.471 0.01 

NNP-45-08 1.27 0.099 < 0.001 0.31 0.221 1.2 < 0.005 319 0.01 4.67 0.49 0.008 

NNP-46-08 1.45 0.331 < 0.001 0.34 0.543 1.32 < 0.005 315 0.012 5.87 0.428 0.064 

NNP-47-08 1.2 0.024 < 0.001 0.28 0.152 1.19 < 0.005 311 0.008 4.42 0.487 0.008 

NNP-48-08 1.63 0.133 < 0.001 0.35 0.167 0.81 < 0.005 80.1 0.005 0.901 0.212 0.018 

NNP-49-08 15.3 0.146 < 0.001 0.91 0.355 0.93 < 0.005 183 0.032 2.2 1.85 0.015 

NNP-50-08 11.1 0.123 < 0.001 0.78 0.293 0.78 0.007 191 0.018 2.09 0.949 0.018 

NNP-51-08 7.85 0.067 < 0.001 0.56 0.193 0.43 < 0.005 205 0.014 1.76 0.299 0.008 

NNP-52-08 0.28 0.017 < 0.001 0.34 0.052 0.13 < 0.005 134 < 0.001 0.831 0.174 0.005 

NNP-53-08 40.5 0.005 < 0.001 0.24 0.64 2.72 < 0.005 345 0.038 13.5 1.2 0.012 

NNP-54-08 31.1 0.319 < 0.001 1.05 0.713 2.66 0.005 361 0.052 14.1 2.12 0.026 

NNP-55-08 0.97 0.067 < 0.001 0.37 0.149 0.74 < 0.005 417 0.037 2.78 0.365 0.004 

NNP-56-08 0.65 0.041 < 0.001 0.27 0.131 1.25 < 0.005 1610 0.003 3.44 0.696 0.014 

NNP-57-08 0.98 0.031 < 0.001 0.39 0.11 0.48 < 0.005 110 0.002 2.25 0.102 0.022 

NNP-58-08 2.59 0.102 < 0.001 0.52 0.143 0.6 < 0.005 105 0.003 3.17 0.139 0.006 

NNP-59-08 0.55 0.015 < 0.001 0.22 0.126 1.17 < 0.005 1620 0.002 3.46 0.671 0.002 

NNP-60-08 0.67 0.036 < 0.001 0.24 0.112 1.06 < 0.005 974 0.002 2.7 0.641 0.007 

NNP-61-08 0.54 0.007 < 0.001 0.2 0.072 0.79 < 0.005 223 0.005 2.71 0.546 0.009 

NNP-62-08 1.31 0.006 < 0.001 0.22 0.116 1.1 < 0.005 265 0.007 4.66 0.505 0.039 

NNP-63-08 1.44 0.01 < 0.001 0.24 0.126 1.21 < 0.005 259 0.007 5.12 0.479 0.007 

NNP-64-08 1.36 0.011 < 0.001 0.25 0.131 1.22 < 0.005 254 0.007 5.1 0.464 0.002 

NNP-65-08 18.5 0.25 < 0.001 0.66 0.486 2.23 < 0.005 213 0.05 6.68 1.62 0.01 



240 
 

Site Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP-66-08 0.92 0.045 < 0.001 0.28 0.166 0.92 < 0.005 268 0.01 4.25 0.39 0.005 

NNP-67-08 0.97 0.055 < 0.001 0.25 0.196 1.05 < 0.005 261 0.008 4.71 0.36 0.004 

NNP-68-08 1.12 0.052 < 0.001 0.26 0.209 1.18 < 0.005 296 0.009 5.03 0.397 0.019 

NNP-69-08 1.25 0.03 < 0.001 0.28 0.219 1.25 < 0.005 319 0.009 5.24 0.424 0.004 

NNP-70-08 1.19 0.045 < 0.001 0.28 0.221 1.25 < 0.005 317 0.009 4.9 0.442 0.006 

NNP-71-08 1.22 0.02 < 0.001 0.26 0.124 1.23 < 0.005 308 0.009 4.53 0.499 0.004 

NNP-72-08 1.19 0.009 < 0.001 0.26 0.128 1.23 < 0.005 313 0.008 4.52 0.507 0.002 

NNP-73-08 1.12 0.014 < 0.001 0.26 0.125 1.18 < 0.005 306 0.008 4.47 0.46 0.002 

 

Appendix B, Table 3.3, continued 

Site Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L (°C) 

 

µS/cm mg/L NTU 

NNP-1-08 0.05 2.2 0.084 0.0031 7.32 7.60 118.00 11.70 2.96 

NNP-2-08 0.048 1.69 0.068 0.0033 7.75 8.00 109.00 11.42 0.14 

NNP-3-08 0.185 25.6 0.064 0.0028 8.34 8.04 135.00 12.20 0.79 

NNP-4-08 3.3 191 0.089 0.0028 10.31 7.61 141.00 11.30 3.91 

NNP-5-08 13.1 552 0.064 0.002 10.86 4.87 196.00 10.64 0.99 

NNP-6-08 2.13 65.7 0.064 0.0034 5.11 6.31 45.00 11.40 1.10 

NNP-7-08 0.308 18.5 0.089 0.0028 6.51 7.35 45.00 11.90 1.80 

NNP-8-08 0.033 0.97 0.121 0.0018 6.97 8.55 200.00 12.20 1.86 

NNP-9-08 0.16 26 0.113 0.0015 11.12 8.36 163.00 11.07 1.17 

NNP-10-08 1.98 72.9 0.082 0.0051 8.63 8.26 165.00 12.80 2.48 

NNP-11-08 0.022 2.38 0.064 0.0031 10.20 8.17 107.00 10.90 1.62 

NNP-12-08 0.073 2.09 0.062 0.0036 10.21 8.11 137.00 11.10 1.12 

NNP-13-08 0.621 85.2 0.083 0.0042 5.15 8.39 217.00 13.20 1.70 

NNP-14-08 5.94 42.1 0.116 0.0031 4.93 8.12 199.00 13.00 1.67 
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Site Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L (°C) 

 

µS/cm mg/L NTU 

NNP-15-08 0.055 12.1 0.066 0.0023 10.10 8.20 147.00 12.10 0.59 

NNP-16-08 0.043 18.4 0.065 0.0028 9.73 8.10 101.00 11.60 0.77 

NNP-17-08 0.049 13.9 0.043 0.0029 11.55 8.26 190.00 10.90 0.68 

NNP-18-08 0.065 2.25 0.049 0.0024 10.10 8.05 133.00 11.50 5.22 

NNP-19-08 0.041 1.11 0.077 0.0027 8.40 7.95 114.00 11.80 3.71 

NNP-20-08 0.018 1.82 0.191 0.0008 8.90 8.29 155.00 12.30 0.89 

NNP-21-08 0.116 2.61 0.349 0.0015 8.90 8.17 169.00 12.10 0.73 

NNP-22-08 0.023 5.08 0.144 0.0011 9.40 8.35 229.00 12.20 0.64 

NNP-23-08 0.142 2.33 0.146 0.0019 9.80 8.46 212.00 12.30 0.88 

NNP-24-08 0.383 13.6 0.117 0.0149 8.18 8.10 114.00 13.50 46.00 

NNP-25-08 0.211 15.7 0.093 0.0032 8.40 8.20 119.00 13.20 2.30 

NNP-26-08 0.46 4.04 0.102 0.006 6.91 7.86 125.00 12.80 148.00 

NNP-27-08 0.52 4.26 0.071 0.0056 7.56 7.84 114.00 12.90 8.77 

NNP-28-08 0.564 4.79 0.066 0.0049 8.05 7.98 124.00 12.70 13.10 

NNP-29-08 0.542 5.64 0.089 0.0044 9.10 7.97 117.00 12.30 6.40 

NNP-30-08 0.04 1.38 0.061 0.0032 9.51 8.22 121.00 12.40 2.55 

NNP-31-08 0.052 1.71 0.062 0.0035 10.50 7.94 122.00 11.90 2.60 

NNP-32-08 0.053 1.7 0.064 0.0039 11.70 7.65 132.00 11.70 2.83 

NNP-33-08 0.234 5.93 0.098 0.0032 11.70 8.65 181.00 12.10 4.59 

NNP-34-08 0.425 1.59 0.139 0.0038 13.20 7.71 56.00 11.60 2.19 

NNP-35-08 0.142 1.58 0.198 0.001 11.40 8.70 285.00 12.30 0.73 

NNP-36-08 0.138 2.59 0.222 0.0016 12.20 8.42 192.00 11.50 0.82 

NNP-37-08 0.108 4.36 0.255 0.0017 11.00 8.45 251.00 11.90 0.09 

NNP-38-08 0.047 2.19 0.158 0.0033 8.24 8.23 126.00 11.90 5.60 

NNP-39-08 0.056 2.46 0.072 0.0039 8.70 8.10 124.00 12.80 5.72 

NNP-40-08 0.066 3.56 0.065 0.004 9.81 8.03 123.00 11.86 4.61 

NNP-41-08 0.057 2.09 0.047 0.004 10.70 7.91 74.00 12.50 7.34 
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Site Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L (°C) 

 

µS/cm mg/L NTU 

NNP-42-08 0.038 2.1 0.074 0.0037 10.80 7.93 74.00 11.80 5.06 

NNP-43-08 0.022 39.8 0.211 0.0016 10.60 8.48 137.00 12.30 2.40 

NNP-44-08 0.076 10.8 0.2 0.002 10.60 8.46 308.00 12.40 2.92 

NNP-45-08 0.063 7.37 0.196 0.0019 10.60 8.54 306.00 12.30 1.76 

NNP-46-08 0.023 58.2 0.214 0.002 10.80 8.50 191.00 12.60 2.72 

NNP-47-08 0.03 3.43 0.186 0.002 11.60 8.43 312.00 12.40 1.89 

NNP-48-08 0.076 2.66 0.157 0.0038 12.40 8.51 189.00 12.20 1.64 

NNP-49-08 0.52 48.4 0.123 0.0067 14.60 8.50 217.00 12.10 7.48 

NNP-50-08 0.367 31.6 0.19 0.0046 13.90 8.46 287.00 12.40 6.43 

NNP-51-08 0.317 12.9 0.144 0.0036 12.50 8.41 325.00 12.40 5.31 

NNP-52-08 0.036 1.87 0.254 0.0025 8.21 8.40 211.00 13.00 2.14 

NNP-53-08 0.097 135 0.21 0.0026 8.20 8.37 358.00 13.00 1.83 

NNP-54-08 0.35 80.6 0.188 0.012 12.30 8.50 441.00 12.30 21.00 

NNP-55-08 0.077 2.74 0.227 0.0034 14.80 8.51 194.00 12.10 7.40 

NNP-56-08 0.056 1.14 0.325 0.0034 16.80 8.55 309.00 11.40 2.44 

NNP-57-08 0.059 1.32 0.219 0.0032 8.70 8.43 122.00 13.40 3.20 

NNP-58-08 0.232 3.09 0.213 0.0023 7.35 8.37 221.00 13.70 3.69 

NNP-59-08 0.031 0.68 0.247 0.0017 13.00 8.49 284.00 12.20 1.94 

NNP-60-08 0.045 1.52 0.207 0.0026 13.90 8.51 229.00 12.10 2.81 

NNP-61-08 0.062 0.63 0.179 0.0023 11.23 8.52 265.00 12.50 1.57 

NNP-62-08 0.026 2.68 0.162 0.0011 13.70 8.44 335.00 11.60 0.27 

NNP-63-08 0.021 4.72 0.163 0.001 13.10 8.47 337.00 11.80 0.68 

NNP-64-08 0.022 3.9 0.162 0.0022 13.80 8.54 344.00 11.80 2.11 

NNP-65-08 0.327 45.6 0.153 0.0083 9.87 8.40 326.00 13.40 11.90 

NNP-66-08 0.03 3.08 0.246 0.0029 11.50 8.57 284.00 13.50 2.99 

NNP-67-08 0.019 5.66 0.242 0.0024 10.60 8.53 297.00 13.20 1.05 

NNP-68-08 0.019 6.39 0.219 0.0023 10.60 8.54 319.00 13.10 0.62 
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Site Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L (°C) 

 

µS/cm mg/L NTU 

NNP-69-08 0.028 6.7 0.211 0.0024 11.10 8.52 330.00 13.00 0.63 

NNP-70-08 0.021 7.13 0.209 0.0024 11.78 8.50 334.00 12.63 0.48 

NNP-71-08 0.028 3.43 0.224 0.0016 12.24 8.54 330.00 12.38 0.42 

NNP-72-08 0.037 3.25 0.196 0.0014 12.29 8.55 330.00 12.33 0.45 

NNP-73-08 0.019 2.95 0.203 0.001 12.20 8.51 327.00 12.40 0.42 

 

Appendix B, Table 3.4 Water chemistry variables for South Nahanni River water sites sampled in 2009 

Sample Ids NO3NO2 NH3NH4 DOC DIC Ag Al As B Ba Be Bi Cd 

 

mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP1-09 0.03 0.008 0.5 10.9 0.004 216 1.58 1.8 27.9 0.017 0.039 0.019 

NNP2-09 0.024 0.011 0.5 9.9 0.007 424 2.94 5.8 27.9 0.029 0.131 0.041 

NNP11-09 0.015 0.008 0.5 6.7 0.004 340 2.13 1.4 19.7 0.026 0.049 0.015 

NNP12-09 0.027 0.006 0.5 9.9 0.003 232 1.64 1.8 24.8 0.018 0.031 0.02 

NNP15-09 0.022 0.01 0.9 18.2 < 0.001 9.5 0.62 3.1 18.9 0.002 0.004 0.082 

NNP16-09 0.014 0.019 0.8 13.7 0.001 17.3 0.8 2.7 22.9 0.003 0.003 0.155 

NNP17-09 0.017 0.007 0.8 12 0.001 19.2 0.93 2 24.2 0.002 0.007 0.139 

NNP18-09 0.019 0.009 0.5 8.6 0.003 256 1.72 1.5 21.5 0.018 0.036 0.018 

NNP26-09 0.052 0.005 0.5 11.6 0.015 865 2.52 7.4 31.2 0.066 0.507 0.052 

NNP27-09 0.055 0.006 0.4 10.8 0.008 567 2.49 6.6 26.1 0.049 0.127 0.041 

NNP28-09 0.048 < 0.005 0.4 10.3 0.006 478 2.38 6.4 24.5 0.044 0.084 0.032 

NNP29-09 0.044 0.007 0.5 9.3 0.006 451 2.45 5.7 23.1 0.047 0.07 0.038 

NNP30-09 0.036 0.005 0.9 10.1 0.003 259 2.87 5.9 23.8 0.02 0.091 0.018 

NNP31-09 0.026 < 0.005 0.5 10.2 0.007 404 2.88 10.4 29.6 0.032 0.102 0.084 

NNP32-09 0.028 0.005 0.5 9.4 0.005 374 2.93 7.7 26.5 0.028 0.239 0.025 

NNP38-09 0.037 0.006 0.6 11.2 0.003 187 1.46 2.1 28.7 0.016 0.034 0.038 

NNP39-09 0.026 0.007 0.5 10.4 0.005 307 2.31 3.1 27.8 0.023 0.084 0.019 
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Sample Ids NO3NO2 NH3NH4 DOC DIC Ag Al As B Ba Be Bi Cd 

 

mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP40-09 0.027 0.008 0.5 10 0.003 219 1.6 1.1 25.2 0.018 0.029 0.018 

NNP43-09 0.141 0.005 1.2 41.8 < 0.001 18.1 0.25 10 76.1 0.003 0.006 0.046 

NNP44-09 0.146 < 0.005 1.2 43.4 < 0.001 12 0.25 10.1 74.4 0.003 0.001 0.041 

NNP45-09 0.149 < 0.005 1.4 40.2 0.001 13 0.26 9.7 74 0.003 < 0.001 0.034 

NNP46-09 0.138 < 0.005 1.2 39.8 0.001 16 0.26 10 76.5 0.003 0.002 0.034 

NNP47-09 0.135 < 0.005 1.2 41 0.001 18.2 0.22 10.2 76.7 0.002 0.002 0.024 

NNP55-09 0.179 < 0.005 1 33.2 0.001 39.4 0.14 4.5 39.8 0.003 0.001 0.016 

NNP56-09 0.192 < 0.005 1.5 31.2 0.003 52.5 0.19 7.8 66 0.004 0.005 0.026 

NNP57-09 0.183 < 0.005 0.6 30.2 < 0.001 24.7 0.08 2.9 18.9 0.006 0.002 0.032 

NNP60-09 0.165 < 0.005 1.2 31.8 < 0.001 45.1 0.17 5.9 64.8 0.004 0.001 0.012 

NNP62-09 0.116 < 0.005 1 40.8 < 0.001 3.9 0.12 7.9 74.3 0.001 < 0.001 0.023 

NNP64-09 0.125 < 0.005 1.1 42.8 < 0.001 4.6 0.13 8.4 77.3 0.002 < 0.001 0.031 

NNP66-09 0.16 < 0.005 1 35.8 0.001 53.3 0.23 6.8 70.1 0.005 0.001 0.022 

NNP68-09 0.152 < 0.005 1.3 42.2 < 0.001 12.4 0.23 9.2 75.5 0.003 < 0.001 0.028 

NNP69-09 0.15 < 0.005 1.2 43 0.001 7.9 0.25 9.8 74.1 0.002 < 0.001 0.031 

NNP70-09 0.151 < 0.005 1.2 43.2 < 0.001 8.1 0.24 8.8 72.5 0.002 0.001 0.031 

NNP71-09 0.139 < 0.005 1.2 41.4 < 0.001 7.3 0.15 10.3 73.5 0.002 < 0.001 0.027 

NNP72-09 0.138 0.006 1.2 42.2 < 0.001 8.4 0.16 8.9 75.8 0.003 < 0.001 0.023 

NNP73-09 0.142 < 0.005 1.2 41.4 0.003 9.5 0.17 10.1 74.9 0.002 0.001 0.03 

NNP76-09 0.021 0.007 0.6 9.3 0.003 221 1.62 1.2 23.7 0.019 0.039 0.029 

NNP77-09 0.047 < 0.005 2.3 14.9 < 0.001 198 0.6 0.3 25.2 0.038 < 0.001 0.5 

NNP78-09 0.046 < 0.005 0.8 14 < 0.001 94.5 0.27 0.5 19.1 0.008 0.001 0.579 

NNP79-09 0.017 < 0.005 0.8 16.6 < 0.001 8.8 0.61 2.4 19.9 0.002 0.002 0.1 

NNP80-09 0.015 0.005 0.5 7.7 0.003 298 1.94 1.2 23.7 0.022 0.035 0.02 

NNP81-09 0.176 < 0.005 0.7 31 0.001 43.1 0.11 2.5 21.1 0.006 0.003 0.014 

NNP82-09 0.164 < 0.005 1.2 33.2 0.002 98.1 0.23 6.8 63.5 0.008 0.001 0.032 
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Appendix B, Table 3.4, continued 

Sample Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP1-09 0.326 0.305 0.285 0.144 0.58 396 0.056 0.179 2.5 10.3 0.426 0.027 

NNP2-09 0.453 0.368 0.409 0.319 1.11 673 0.152 0.24 5.8 25.6 0.482 0.138 

NNP11-09 0.527 0.496 0.47 0.222 0.8 647 0.092 0.251 2.4 13.5 0.241 0.039 

NNP12-09 0.365 0.345 0.31 0.163 0.59 430 0.061 0.194 2.5 11.1 0.372 0.03 

NNP15-09 0.027 0.029 0.033 0.06 0.43 30.4 0.005 0.027 3.9 2.47 0.904 0.001 

NNP16-09 0.054 0.06 0.041 0.043 0.39 72.4 0.007 0.032 2.4 4.51 1.32 0.001 

NNP17-09 0.069 0.081 0.048 0.064 0.51 88.9 0.007 0.038 2.2 5.93 0.98 0.002 

NNP18-09 0.427 0.464 0.336 0.169 0.69 466 0.068 0.239 2.5 14.1 0.34 0.032 

NNP26-09 2.34 1.03 1.13 0.381 2.11 1380 0.264 1.5 7.2 23.9 0.589 0.104 

NNP27-09 1.86 0.852 0.671 0.262 1.17 875 0.179 1.36 6.5 20.2 0.526 0.091 

NNP28-09 1.38 0.862 0.541 0.235 0.97 723 0.153 0.982 6.5 20.3 0.405 0.085 

NNP29-09 1.37 0.908 0.505 0.248 0.91 682 0.148 1.03 6.4 20 0.396 0.085 

NNP30-09 0.328 0.218 0.243 0.282 0.61 406 0.094 0.174 6.1 15 0.448 0.087 

NNP31-09 0.412 0.365 0.431 0.43 1.17 608 0.142 0.216 8.4 25.3 0.547 0.137 

NNP32-09 0.449 0.316 0.318 0.384 0.91 618 0.14 0.233 7.2 25.3 0.472 0.131 

NNP38-09 0.305 0.327 0.256 0.132 0.62 462 0.054 0.164 2.8 26.8 0.409 0.023 

NNP39-09 0.402 0.329 0.314 0.23 0.78 567 0.104 0.213 3.9 25.8 0.444 0.091 

NNP40-09 0.342 0.34 0.297 0.15 0.62 413 0.059 0.182 2.6 10.6 0.376 0.025 

NNP43-09 0.438 0.039 0.085 0.016 0.38 27.2 0.011 0.376 2.7 0.85 2.88 < 0.001 

NNP44-09 0.029 0.018 0.125 0.007 0.37 23.9 0.005 0.017 2.7 0.68 3.07 < 0.001 

NNP45-09 0.029 0.024 0.169 0.009 0.87 25.6 0.006 0.015 2.7 0.77 3.06 < 0.001 

NNP46-09 0.05 0.027 0.095 0.015 0.34 29.4 0.007 0.029 2.7 0.81 2.91 < 0.001 

NNP47-09 0.023 0.023 0.093 0.012 0.31 26.9 0.007 0.016 2.7 0.65 2.9 < 0.001 

NNP55-09 0.216 0.043 0.104 0.017 0.32 59.3 0.017 0.186 2.2 0.97 2.35 < 0.001 

NNP56-09 0.047 0.054 0.186 0.017 0.73 84.9 0.022 0.032 2.7 1.75 4.13 < 0.001 

NNP57-09 0.035 0.228 0.068 0.005 0.28 33.4 0.006 0.018 1.7 4.2 1.76 < 0.001 
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Sample Ce Co Cr Cs Cu Fe Ga La Li Mn Mo Nb 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP60-09 0.046 0.052 0.159 0.019 0.49 68.8 0.021 0.04 3.1 1.32 3.38 0.001 

NNP62-09 0.007 0.01 0.092 < 0.005 0.25 5 0.003 0.006 1.9 0.17 3.9 < 0.001 

NNP64-09 0.023 0.011 0.082 0.006 0.24 5 0.004 0.016 1.9 0.13 3.83 < 0.001 

NNP66-09 0.103 0.058 0.277 0.025 1.01 102 0.021 0.055 1.9 1.93 2.33 0.002 

NNP68-09 0.133 0.023 0.179 0.01 1.11 21.7 0.007 0.099 2.7 0.53 3.2 < 0.001 

NNP69-09 0.017 0.018 0.124 0.009 0.5 10.7 0.004 0.014 2.8 0.27 3.53 < 0.001 

NNP70-09 0.013 0.016 0.129 0.005 0.9 12.9 0.004 0.008 2.8 0.36 3.13 < 0.001 

NNP71-09 0.009 0.014 0.094 0.006 0.57 9.5 0.004 0.006 2.6 0.28 2.75 < 0.001 

NNP72-09 0.019 0.015 0.091 0.005 0.81 7.4 0.004 0.017 2.5 0.27 3.09 < 0.001 

NNP73-09 0.036 0.036 3.68 0.008 32.8 50.5 0.005 0.022 2.5 0.38 3.46 < 0.001 

NNP76-09 0.361 0.422 0.32 0.151 0.66 412 0.059 0.201 2.5 12.7 0.363 0.026 

NNP77-09 13.7 3.33 0.041 0.067 1.16 11.6 0.134 10.7 4.8 45 0.405 < 0.001 

NNP78-09 0.18 0.575 0.021 0.034 0.68 9.5 0.006 0.136 2.7 14 0.346 < 0.001 

NNP79-09 0.039 0.027 0.025 0.045 0.36 34.4 0.004 0.036 3.2 2.31 0.985 < 0.001 

NNP80-09 0.5 0.487 0.38 0.202 0.74 548 0.08 0.245 2.4 16.4 0.323 0.034 

NNP81-09 0.107 0.151 0.094 0.013 0.23 74.2 0.012 0.073 1.9 3.3 1.69 < 0.001 

NNP82-09 0.083 0.095 0.227 0.032 0.53 152 0.035 0.045 3.5 2.93 3.51 0.006 

 

Appendix B, Table 3.4, continued 

Sample  Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP1-09 2.3 0.406 < 0.001 0.98 0.049 0.14 0.015 65.1 0.005 0.534 0.253 0.506 

NNP2-09 1.83 1.07 < 0.001 2.33 0.059 0.1 0.044 54.7 0.014 0.572 0.615 2.02 

NNP11-09 2.48 0.638 < 0.001 1.1 0.047 0.1 0.007 50.8 0.008 0.299 0.335 0.839 

NNP12-09 2.57 0.966 < 0.001 0.96 0.048 0.13 0.006 64.2 0.005 0.464 0.259 0.365 

NNP15-09 1.55 0.031 < 0.001 0.92 0.135 0.28 0.009 116 0.004 0.788 0.168 0.463 
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Sample  Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP16-09 2.92 0.066 < 0.001 0.49 0.202 0.36 0.016 76.6 0.006 0.839 0.302 0.398 

NNP17-09 2.34 0.05 < 0.001 0.47 0.182 0.34 < 0.005 75.5 0.004 0.722 0.18 0.479 

NNP18-09 2.52 0.566 < 0.001 0.94 0.047 0.12 0.016 64.2 0.006 0.454 0.28 0.473 

NNP26-09 5.29 1.15 < 0.001 2.47 0.095 0.21 0.018 66.5 0.015 0.895 1.79 1.76 

NNP27-09 5.19 0.64 < 0.001 2.03 0.073 0.21 0.016 67 0.011 0.686 0.997 0.676 

NNP28-09 5.42 0.493 < 0.001 1.79 0.061 0.14 0.016 65.5 0.01 0.579 0.791 0.607 

NNP29-09 5.83 0.473 < 0.001 1.76 0.057 0.13 0.014 66.1 0.01 0.575 0.732 0.471 

NNP30-09 1.34 0.327 < 0.001 1.7 0.052 0.09 0.018 52.9 0.009 0.636 0.379 0.692 

NNP31-09 2.06 1.16 < 0.001 2.42 0.074 0.11 0.053 56 0.012 0.642 0.612 1.28 

NNP32-09 1.71 0.474 < 0.001 2.27 0.047 0.09 0.028 51.5 0.013 0.579 0.529 1.78 

NNP38-09 2.29 3.52 < 0.001 0.95 0.054 0.13 0.05 64.6 0.005 0.551 0.221 0.743 

NNP39-09 1.78 0.487 < 0.001 1.75 0.05 0.11 0.023 58.1 0.009 0.627 0.416 0.945 

NNP40-09 2.3 0.41 < 0.001 0.93 0.051 0.12 0.005 63.5 0.004 0.495 0.228 0.182 

NNP43-09 1.33 0.156 < 0.001 0.33 0.696 1.02 < 0.005 342 0.011 4.29 0.449 0.103 

NNP44-09 1.3 0.114 < 0.001 0.27 0.335 1.08 < 0.005 337 0.011 4.34 0.416 0.071 

NNP45-09 1.2 0.161 < 0.001 0.28 0.259 1.04 < 0.005 334 0.009 4.14 0.418 0.039 

NNP46-09 1.18 0.104 < 0.001 0.33 0.368 1.01 < 0.005 340 0.01 3.99 0.469 0.309 

NNP47-09 1.16 0.036 < 0.001 0.32 0.132 0.99 < 0.005 344 0.01 3.72 0.474 0.081 

NNP55-09 0.73 0.06 < 0.001 0.33 0.136 0.73 < 0.005 512 0.029 2.59 0.317 0.167 

NNP56-09 0.79 0.122 < 0.001 0.26 0.121 1 0.127 1520 0.003 2.91 0.7 0.155 

NNP57-09 1 0.251 < 0.001 0.37 0.116 0.56 0.017 123 0.004 2.41 0.098 0.082 

NNP60-09 0.63 0.042 < 0.001 0.25 0.111 0.97 < 0.005 984 0.002 2.54 0.632 0.075 

NNP62-09 1.23 0.028 0.001 0.21 0.112 1.01 < 0.005 256 0.007 4.34 0.453 0.048 

NNP64-09 1.24 0.038 < 0.001 0.23 0.126 1.14 < 0.005 248 0.007 4.67 0.413 0.03 

NNP66-09 0.91 0.155 < 0.001 0.38 0.156 0.73 < 0.005 249 0.011 3.52 0.439 0.034 

NNP68-09 1.18 0.131 < 0.001 0.28 0.238 1.04 < 0.005 317 0.011 4.58 0.417 0.12 

NNP69-09 1.23 0.055 < 0.001 0.27 0.244 1.07 < 0.005 337 0.009 4.66 0.398 0.03 

NNP70-09 1.22 0.138 < 0.001 0.27 0.248 1.04 0.005 339 0.01 4.26 0.41 0.129 
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Sample  Ni Pb Pt Rb Sb Se Sn Sr Tl U V W 

 

µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

NNP71-09 1.1 0.096 < 0.001 0.27 0.105 0.95 < 0.005 370 0.011 3.38 0.521 0.021 

NNP72-09 1.12 0.045 < 0.001 0.25 0.117 1 0.035 328 0.008 3.84 0.446 0.027 

NNP73-09 1.33 1.93 < 0.001 0.26 0.124 0.98 0.13 331 0.009 3.85 0.458 0.085 

NNP76-09 2.44 0.436 < 0.001 0.9 0.053 0.13 0.023 62.5 0.005 0.47 0.241 0.353 

NNP77-09 22.5 0.047 < 0.001 0.63 0.052 0.44 < 0.005 170 0.003 1.02 0.07 0.036 

NNP78-09 9.32 0.066 < 0.001 0.65 0.048 0.38 0.015 167 0.002 0.963 0.032 0.234 

NNP79-09 1.86 0.029 < 0.001 0.72 0.151 0.32 0.008 103 0.003 0.795 0.173 0.245 

NNP80-09 2.25 0.597 0.001 1.04 0.058 0.13 0.005 52.3 0.005 0.379 0.299 0.101 

NNP81-09 0.87 0.153 < 0.001 0.39 0.118 0.54 < 0.005 132 0.002 2.37 0.156 0.03 

NNP82-09 2 0.089 < 0.001 0.38 0.118 1.04 < 0.005 972 0.005 2.74 0.721 0.095 

 

Appendix B, Table 3.4, continued 

Sample Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L °C 

 

µS/cm mg/L NTU 

NNP1-09 0.109 2.98 0.059 0.0099 9.10 7.98 103.00 10.80 10.20 

NNP2-09 0.142 4.53 0.078 0.0138 10.20 8.39 109.00 9.70 16.00 

NNP11-09 0.135 3.48 0.066 0.0161 10.10 8.24 77.00 12.00 18.50 

NNP12-09 0.115 3.14 0.056 0.0107 9.10 7.92 114.00 9.80 21.50 

NNP15-09 0.025 8.12 0.11 0.0036 10.90 8.31 163.00 10.90 5.70 

NNP16-09 0.046 17.4 0.116 0.0044 11.00 8.36 77.00 10.90 4.92 

NNP17-09 0.038 11.9 0.061 0.0034 10.20 8.29 142.00 11.80 0.50 

NNP18-09 0.14 3.32 0.072 0.0124 9.30 8.03 100.00 9.60 14.70 

NNP26-09 0.776 7.64 0.09 0.0434 7.10 8.27 110.00 12.60 73.30 

NNP27-09 0.67 5.94 0.108 0.0318 6.90 8.26 110.00 12.40 37.40 

NNP28-09 0.555 5.39 0.096 0.0295 7.00 8.31 107.00 12.20 32.70 

NNP29-09 0.585 6.13 0.089 0.0234 7.20 8.34 110.00 12.20 29.40 
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Sample Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L °C 

 

µS/cm mg/L NTU 

NNP30-09 0.11 2.5 0.074 0.0102 7.70 8.38 147.00 12.80 16.50 

NNP31-09 0.138 7.09 0.066 0.0112 9.60 8.24 100.00 9.90 15.90 

NNP32-09 0.138 3.54 0.086 0.0125 8.60 8.23 100.00 12.70 17.20 

NNP38-09 0.102 4.03 0.091 0.0091 8.80 8.11 116.00 10.90 13.40 

NNP39-09 0.125 2.89 0.072 0.0115 10.60 8.46 120.00 9.60 15.10 

NNP40-09 0.112 2.91 0.072 0.0106 9.60 8.07 116.00 10.10 13.60 

NNP43-09 0.198 20 0.204 0.0038 11.60 8.85 325.00 12.10 5.38 

NNP44-09 0.043 11.9 0.217 0.0027 8.60 8.92 232.00 14.10 29.00 

NNP45-09 0.036 8.72 0.214 0.0021 7.50 8.89 280.00 14.10 2.10 

NNP46-09 0.049 10.2 0.197 0.0031 11.40 8.89 306.00 12.10 6.90 

NNP47-09 0.031 3.64 0.208 0.0027 12.00 8.83 300.00 12.00 5.44 

NNP55-09 0.111 1.49 0.24 0.0022 13.10 9.14 258.00 12.80 3.83 

NNP56-09 0.063 2.48 0.277 0.0034 9.80 8.78 230.00 13.60 4.60 

NNP57-09 0.044 3.02 0.236 0.0025 6.80 8.86 211.00 13.10 5.01 

NNP60-09 0.054 0.81 0.229 0.0019 13.50 8.77 226.00 12.30 3.61 

NNP62-09 0.018 2.44 0.17 0.0014 12.40 8.78 122.00 12.00 2.20 

NNP64-09 0.032 3.13 0.181 0.0006 11.20 8.92 307.00 12.70 2.80 

NNP66-09 0.082 4.56 0.225 0.0037 10.90 8.82 256.00 15.08 5.36 

NNP68-09 0.073 7.53 0.218 0.0021 6.70 8.79 272.00 13.40 6.60 

NNP69-09 0.027 7.3 0.22 0.001 6.60 8.90 276.00 14.10 5.20 

NNP70-09 0.023 8.42 0.203 0.0013 4.80 8.92 337.00 14.70 1.30 

NNP71-09 0.025 4.29 0.195 0.0019 9.90 8.94 286.00 13.60 2.10 

NNP72-09 0.039 3.6 0.2 0.0018 10.30 8.87 200.00 13.30 2.40 

NNP73-09 0.043 22 0.193 0.0005 9.10 8.70 283.00 13.80 3.70 

NNP76-09 0.118 3.85 0.059 0.0109 10.10 8.14 109.00 10.40 15.60 

NNP77-09 4.27 44.2 0.073 0.0019 8.50 8.27 123.00 11.50 1.20 

NNP78-09 0.214 47.7 0.098 0.0018 9.00 8.46 155.00 11.60 0.90 
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Sample Y Zn TN TP Temp pH 

Specific 

Conductance DO Turbidity 

 

µg/L µg/L mg/L mg/L °C 

 

µS/cm mg/L NTU 

NNP79-09 0.027 11.5 0.058 0.0021 11.20 8.46 161.00 10.70 0.90 

NNP80-09 0.122 3.18 0.051 0.0135 10.60 8.13 88.00 12.30 18.20 

NNP81-09 0.08 1.1 0.215 0.0051 8.10 8.85 221.00 13.10 12.60 

NNP82-09 0.073 2.87 0.211 0.0046 11.80 8.84 235.00 12.50 3.81 
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Appendix B, Figure 3.1 Images of Gomphonema Species 1 in valve view (A) and girdleband 
view (B).  

 

A B
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Appendix C - Chapter 5 

Development of a benthic algal reference condition model to assess ecological integrity 

within the South Nahanni River watershed 

Appendix D, Table 5.1 Physical variables measured at each site in 2008 and 2009. 
Variable type Description and Units 
 Julian Day 

Ecoregion (1 – 2; 1-Selwyn mountain 
ecoregion, 2-Nahanni-Hyland ecoregion) 

Drainage area Latitude (Hours, Minutes, Seconds)  
Longitude (Hours, Minutes, Seconds) 
Altitude (m) 
Stream Order (Strahler) 
Drainage Area (km2) 
Perimeter of Upstream Drainage Area (km) 

Land cover and bedrock geology Intrusive Bedrock (Percentage) 
Sedimentary Bedrock (Percentage) 
Forest Cover (Percentage) 
Ice Cover (Percentage) 

Channel and site Boulders (Percentage) 
Cobbles (Percentage) 
Gravel (Percentage) 
Pebbles (Percentage) 
Sand (Percentage) 
Silt & Clay (Percentage) 
Bankfull – Wetted (cm) 
Bankfull Width (m) 
Wetted Width (m) 
Average Depth (cm) 
Maximum Depth (cm) 
Streamside Vegetation (1 – 4; 1-ferns/grasses, 
2-shrubs, 3- deciduous trees, 4-coniferous trees) 
Presence of Pools, Rapids, Riffles, Runs 
(presence – absence) 
Macrophyte coverage (Percentage) 
Presence of Coniferous Trees, Deciduous Trees, 
Grasses & Ferns, Shrubs (presence – absence) 
Sinuosity (The ratio of distance measured along 
a watercourse between two points, divided by 
the straight line distance between the same two 
points.) (m of stream within a 2 km linear 
distance of stream) 
Slope (m/m) 
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Stream Density (m stream/km2 drainage area) 
Dominant Sediment Size (0 – 9) 
Secondarily Dominant Sediment Size (0 – 9) 
Sediment Embeddedness [a measure of how 
entrenched coarse substrate (e.g., gravel, 
cobbles and boulders) are in finer substrates 
(e.g., silt and clay)]. (1 – 5; 1 = completely 
embedded, 5 = unembedded) 
Sediment Surrounding Material (0 – 9) 
Average Velocity (m/s) 
Maximum Velocity (m/s) 
Median Particle Size (Wolman) (cm) 
Geometric Mean Particle Size (Wolman) (cm) 
Canopy Cover (percentage) 

Climate June Min Temperature (°C) 
June Max Temperature (°C) 
June Mean Temperature (°C) 
Jan Min Temperature (°C) 
Jan Max Temperature (°C) 
Jan Mean Temperature (°C) 
June Rain (mm) 
June Snow (mm) 
June Precipitation (mm) 
Jan Rain (mm) 
Jan Snow (mm) 
Jan Precipitation (mm) 
Total Snow (mm) 
Total Rain (mm) 
Total Precipitation (mm) 
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Appendix C, Table 5.2 List of physical variables included in the discriminant model for each 

biological metric for the 2008-2009 models.  

 Physical Variables Included in Discriminant Model 
Benthic Algal Community 
Composition 

Stream Order, % Boulder, % Cobble, % Gravel, % Pebble, % 
Sand, Bankfull-Wetted, % Intrusive, % Sedimentary, Average 
Depth, Drainage Area, Pools, Rapids, Straight Run, % Forest, 
% Ice, Perimeter, January Snow, Deciduous, Sinuosity 

Diatom Community 
Composition 

Latitude, Longitude, Altitude, Stream Order, % Cobble, % 
Gravel, % Pebble, % Sand, Average Depth, Maximum Depth, 
Drainage Area, Rapids, Straight Run, % Forest, % Ice, 
Macrophyte, Perimeter, Density, 2nd Dominant Substrate, 
Bankfull, D50Wolman 

Photosynthetic Pigment 
Concentration 

Julian Day, Longitude, Altitude, % Cobble, % Gravel, % 
Pebble, Average Depth, Vegetation, Drainage Area, Pools, 
Rapids, % Forest, Macrophyte, Perimeter, January Rain, June 
Rain, Total Rain, Conifers, Deciduous, Shrubs, Sinuosity, 
Slope, Substrate, Average Velocity, Bankfull 
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Appendix C, Table 5.3 Probability of assemblage membership of test sites downstream of 

Cantung mine and Prairie Creek mine sites in 2008 and 2009 for each algal metric. 

 Probability of Assemblage Membership – benthic algal community compositions 
2008 2009 

Sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

1 0.004 0.991 0.004 1 0.0 0.999 0.001 
2 0.0 1.0 0.0 2 0.0 0.748 0.252 
19 0.774 0.184 0.041 NA NA NA NA 
26 0.840 0.159 0.0 26 0.0 1.0 0.0 
27 0.0 0.919 0.081 27 0.027 0.951 0.022 
28 0.0 0.875 0.125 28 0.0 0.994 0.006 
29 0.0 0.998 0.002 29 0.0 0.998 0.002 
30 0.163 0.803 0.034 30 0.0 0.978 0.022 
31 0.0 0.975 0.024 31 0.043 0.024 0.933 
32 0.001 0.789 0.210 32 0.045 0.953 0.001 
33 0.992 0.008 0.0 NA NA NA NA 
38 0.0 0.991 0.009 38 0.0 0.644 0.356 
39 0.001 0.882 0.117 39 0.0 0.704 0.296 
43 0.0 0.003 0.997 43 0.001 0.004 0.959 
44 0.004 0.008 0.989 44 0.0 0.003 0.997 
45 0.0 0.001 0.999 45 0.023 0.01 0.967 
46 0.001 0.124 0.875 46 0.002 0.002 0.996 
66 0.715 0.001 0.285 66 0.052 0.022 0.926 
67 0.003 0.010 0.987 NA NA NA NA 
68 0.022 0.907 0.070 68 0.0 0.032 0.968 
69 0.933 0.001 0.066 69 0.0 0.0 1.0 
70 0.018 0.159 0.823 70 0.0 0.032 0.968 

 Probability of Assemblage Membership – diatom community compositions 
2008 2009 

Sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

1 0.140 0.764 0.097 1 0.828 0.172 0.0 
2 1.0 0.0 0.0 2 0.006 0.991 0.003 
19 0.097 0.793 0.111 NA NA NA NA 
26 0.999 0.001 0.0 26 0.428 0.231 0.341 
27 0.553 0.003 0.443 27 0.025 0.847 0.127 
28 0.002 0.005 0.993 28 0.019 0.032 0.949 
29 0.081 0.581 0.339 29 0.0 0.026 0.974 
30 0.039 0.941 0.021 30 0.992 0.0 0.008 
31 0.021 0.903 0.077 31 0.031 0.969 0.0 
32 0.077 0.966 0.026 32 0.689 0.311 0.0 
33 0.0 0.335 0.665 NA NA NA NA 
38 0.006 0.994 0.0 38 1.0 0.0 0.0 
39 0.044 0.526 0.430 39 0.001 0.997 0.001 
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43 0.016 0.003 0.981 43 0.120 0.011 0.869 
44 0.001 0.001 0.998 44 0.007 0.0 0.993 
45 0.011 0.0 0.989 45 0.0 0.0 1.0 
46 0.001 0.001 0.999 46 0.217 0.0 0.783 
66 0.0 0.0 1.0 66 0.0 0.0 1.0 
67 0.074 0.0 0.926 NA NA NA NA 
68 0.0 0.0 1.0 68 0.0 0.0 1.0 
69 0.0 0.002 0.998 69 0.006 0.0 0.994 
70 0.001 0.001 0.998 70 0.0 0.0 1.0 

 Probability of Assemblage Membership – photosynthetic pigment concentration 
2008 2009 

Sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

sites Assemblage 
1 

Assemblage 
2 

Assemblage 
3 

1 0.002 0.470 0.528 1 0.444 0.556 0.0 
2 0.002 0.790 0.208 2 0.0 0.003 0.997 
19 0.0 0.0 1.0 NA NA NA NA 
26 0.0 0.0 1.0 26 0.001 0.993 0.006 
27 0.0 0.0 1.0 27 0.002 0.409 0.589 
28 0.0 0.0 1.0 28 0.0 0.985 0.015 
29 0.0 0.0 1.0 29 0.001 0.983 0.016 
30 0.004 0.0 0.996 30 0.0 0.0 1.0 
31 0.0 0.0 1.0 31 1.0 0.0 0.0 
32 0.0 0.0 1.0 32 0.007 0.992 0.0 
33 1.0 0.0 0.0 NA NA NA NA 
38 1.0 0.0 0.0 38 0.762 0.216 0.022 
39 0.0 0.002 0.998 39 0.0 0.425 0.575 
43 NA NA NA 43 0.932 0.05 0.018 
44 NA NA NA 44 0.001 0.507 0.492 
45 0.0 0.001 0.999 45 0.06 0.544 0.397 
46 0.053 0.032 0.915 46 0.027 0.006 0.967 
66 1.0 0.0 0.0 66 1.0 0.0 0.0 
67 0.061 0.889 0.05 NA NA NA NA 
68 0.0 0.0 1.0 68 1.0 0.0 0.0 
69 0.004 0.003 0.993 69 0.973 0.014 0.013 
70 0.0 0.487 0.513 70 1.0 0.0 0.0 
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Appendix C, Figure 5.1 Locations of reference sites in each assemblage (A, D, G = Assemblage 1 – light grey triangles; B, E, H = 

Assemblage 2 – dark grey circles; C, F, I = Assemblage 3 – black squares) within the South Nahanni River watershed.  
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Appendix C, Figure 5.2 Test site assessments downstream of North American Tungsten along Flat River. Each test site is coded for 

their level of stress (white = reference condition; varying shades of grey = reference *, reference **, possibly stressed and stressed; 

black = severely stressed; sites in between levels of stress (e.g., possibly stressed – stressed) re represented by combinations of the two 

(e.g., light grey and dark grey).  
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Appendix C, Figure 5.3 Test site assessments downstream of Canadian Zinc Corporation along Prairie Creek. Each test site is coded 

for their level of stress (white = reference condition; varying shades of grey = reference *, reference **, possibly stressed and stressed; 

black = severely stressed; sites in between levels of stress (e.g., possibly stressed – stressed) re represented by combinations of the two 

(e.g., light grey and dark grey).  
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