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Abstract 
This study developed an informative model of a nasal cavity of a Neanderthal and 

Anatomically Modern Human (AMH) hybrid based on the morphological measurements and 

nonmetric features of nonhuman primate hybrids. This study examined morphometric 

measurements and nonmetric traits of the interior nasal cavity of two species of baboons (olive 

and yellow) and their first generation hybrids to determine how hybridization affects the internal 

anatomy of the nasal cavity. The nasal cavity was chosen because the nasal cavities of 

Neanderthals and AMH are recognized as uniquely different in size and shape.  

 This study found that functionally different regions within the baboon nasal cavity are 

altered in size and shape in response to hybridization. Changes in size and shape due to 

hybridization occurred in three regions, at the rhinion, choana, and mid-nasopharynx. In regions 

of more complex physiological function, the mid-bony cavity and the posterior nasopharynx, no 

size or shape response was observed, except a wider lateral recess. Males and females responded 

differently to hybridization; males showed heterosis and females showed heterosis in most areas, 

though dysgenesis in the inferior meatus. The opposing male and female trends may contribute to 

the greater sexual dimorphism observed in hybrids compared to parental taxa. 

 This study found that frequencies of nonmetric traits in the baboon hybrid nasal cavity 

were no different from frequencies in parental taxa, nor were regional frequency differences 

observed because anterior and posterior nonmetric traits occurred at the same frequency. 

However, males expressed a significantly higher frequency of nonmetric traits than females. 

 Assuming Neanderthal and AMH hybrid nasal cavities follow the trends observed in the 

baboon hybrid model, the Neanderthal and AMH hybrid nasal cavity would have a different 

shape and larger size at the rhinion, choana, and mid-nasopharynx, while the mid-bony cavity and 

posterior nasopharynx remained unchanged compared to parental taxa. However, because 

Neanderthals and AMH have been diverged for a longer time period, the traits of the nasal cavity 

may be very different in parental taxa due to adaptations to local conditions, which may result in 

hybrids with traits from one parent or the other. Further, an analysis of different hybridization 

scenarios between Neanderthals and AMH, based on observed hybridization in baboons and 

paleoanthropological evidence, suggests rapid gene swamping of the Neanderthal population by 

AMH during hybridization, as other authors have also concluded. 
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Chapter 1 

Introduction 

One of the most inspiring and beautiful documentaries about the diversity of “Life on Earth,” 

begins with Sir David Attenborough saying, “There are some four million different kinds of 

animals and plants in the world. Four million different solutions to the problems of staying alive.” 

Since the 1979 documentary, scientists have calculated more precisely that there is an estimate of 

7.7 million species of animals alone, of which only 12% or 953,434 have been described in the 

Catalogue of Life and the World Register of Marine Species (Mora et al., 2011). Humans are just 

one of these species that has developed and evolved since life began on earth ~3.5 billion years 

ago (Schopf, 1993).  

Anthropologists study the tiny branch on the tree of life that diverged from other primates 

a mere 5-6 million years ago (Page and Goodman, 2001), which includes modern humans and 

Neanderthals. Common media coverage would suggest that Neanderthals are extinct, but perhaps 

they did have a solution to staying alive even though their climate abruptly changed and their 

food sources disappeared (Magniez and Boulbes, 2013). Perhaps hybridization between 

Neanderthals and Anatomically Modern Humans (AMH) preserved some of the Neanderthal 

DNA within the hybrid descendants, so that Neadnerthal DNA is present in some of the humans 

living today. In Sir Attenborough’s words, “This is the story of how a few of them came to be as 

they are.”  

1.1 Evolutionary Theory of Hybridization 

What happens when two species or populations, that have been isolated for thousands of years 

and adapted to their specific environments, finally come back into geographic contact with one 

another? The outcome changes the evolutionary history of both populations: they compete with 

one another until they are able to reach a balance point or one species must migrate or find a new 

niche, risk extinction, or interbreed to create hybrids. Interbreeding can recombine the 

populations or result in the disappearance of one or the other species due to gene swamping, and 

many degrees in between. Naturalists have observed hybridization throughout the animal 

kingdom, including many species of primates (Arnold and Meyer, 2006; Zinner et al., 2011). 
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Hybridization, or interbreeding, is the crossing of genetically distinct taxa or groups that 

leads to viable hybrid offspring. Hybridization is not confined to the occurrence of crossing 

between species, but can occur between genetically isolated subspecies or previously 

reproductively isolated populations of the same species (Mallet, 2005; Ackermann, 2010). 

Admixture is “the production of new genetic combinations in hybrid populations through 

recombination” (Ackermann, 2010: 259). The process of hybridization can lead to introgression, 

or gene flow and genetic exchange, of genes from one parental taxon moving into the genomes of 

the other parental taxon, in one or both directions between parental taxa (Levin, 2002; Mallet, 

2005; Mallet, 2007).  

However, hybridization is a poorly understood, complex process in mammals. Though 

there are many observations of hybridization in the wild, confirmed by genetic analysis, 

understanding at the population level of what will happen to the taxa involved is still complicated 

by the numerous variables involved. Researchers have identified broad determinant variables, 

such as how long the re-encountering populations have been apart, how specialized they are to 

different environments, the population sizes, especially the number of each sex, and the selective 

pressures in the new hybrid zone (Haldane, 1922; Arnold, 1992; Barton, 2001; Levin, 2002; 

Holliday, 2008; Wolf et al., 2011; Charpentier et al., 2012). However, the outcome of a hybrid 

zone is still hard to predict in extant populations, let alone populations that existed tens of 

thousands of years ago. On the organismal level, the recombination of genomes to create unique 

combinations of alleles is only starting to be understood with relation to mutation rates, loci 

disequilibrium effects, and overall fitness (Wu, 2001). Researchers also struggle with relating 

hybrid phenotypes with genotypes, which means that there are no prescribed traits, particularly 

external, that researchers can look for in the wild to identify a hybrid. For example, Schillaci 

(Personal communication) only knew he was looking at wild macaque hybrids because they 

looked somehow different from the purebred populations. Similarly, hybrids between yellow and 

olive baboons in Amboseli, Kenya are identified primarily by their intermediate size and pelage 

on their heads and tails (Alberts and Altmann, 2001).  

Most studies of these interbreeding events in wild populations are either based on 

external phenotypes, such as pelage colour and shape or general body proportions (Alberts and 

Altmann, 2001; Aguiar et al., 2008), or based on nuclear or mitochondrial DNA used to detect the 

hybrids biochemically (Tagliaro et al., 1997; Evans et al., 2001; Wyner et al., 2002; Zinner et al., 

2009). However, soft tissue of Neanderthals and Pleistocene AMH are not preserved and ancient 

DNA is rare and difficult to work with (Pääbo et al., 2004; Gilbert et al., 2005; Smith et al., 2005; 

Willerslev and Cooper, 2005). Paleoanthropologists only have access to skeletal remains, yet 
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comparative studies of skeletal morphology of hybrids are rare, and have only been conducted on 

non-human extant primates (Ackermann et al., 2006; Ackermann and Bishop, 2009). 

1.2 Hybridization between Neanderthal and Anatomically Modern Human 

Anthropologists hold many views of recent human evolution, in particular, the involvement of 

Neanderthals in the ancestry of today’s humans (Section 2.2.1). One view, the Replacement or 

Out of Africa hypotheses, holds that AMH, who evolved in Africa, are the direct ancestors of 

contemporary modern humans in Europe and Asia, with little or no genetic exchange with 

Neanderthals (Stringer and Andrews, 1988; Stringer, 2008; Tattersall and Schwartz, 2008). 

Alternatively, Wolpoff, Hawks and others argue for the Multiregional hypothesis, which means 

that AMH and Neanderthal populations, as well as other yet-to-be discovered ancient human 

populations, in different geographic areas were all within the same species through continuous 

interbreeding to create modern humans across Europe and Asia (Wolpoff et al., 2004). A middle 

ground between the two above theories is Fred Smith’s Assimilation theory, which states that 

AMH migrated out of Africa into Eurasia where there was genetic exchange with some 

populations of Neanderthals, whose descendants then became modern humans (Smith et al., 

2005).  

The three above hypotheses have evolved from earlier explanations for the placement of 

Neanderthals in recent human evolution. Virchow initially dismissed the Neanderthal as 

pathological, but this hypothesis became less tenable as more skeletal remains with the same 

features were found across Europe (Drell, 2000). Researchers, in particular Boule and Keith, who 

are discussed in Section 2.2.4, believed that Neanderthals had established an alternative lineage 

from modern humans and were more closely related to apes than to contemporary humans 

(Catrmill and Smith, 2009: 295). Boule reconstructed the skeletal remains with bent knees and 

hunched back without an S-shape, emphasizing ape-like characteristics (Drell, 2000). However, 

Aleš Hrdlička believed that Neanderthals were direct ancestors to contemporary Europeans, who 

then left Europe to populate the rest of the world (Hrdlička, 1927; Cartmill and Smith, 2009: 

295). Weidenrich similarly hypothesized that Neanderthals were directly ancestral, though only in 

Europe and West Asia (Cartmill and Smith, 2009: 295). W.W. Howells, F. C. Howell, and S. 

Sergi hypothesized that modern humans evolved from some archaic human ancestor somewhere 

in the Old World, possibly the early, but not late “classic”, Neanderthals (Cartmill and Smith, 

2009: 295). 
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After years of debate and speculation, many researchers are beginning to converge on the 

idea that at least some Neanderthals and AMH interbred, creating hybrids. Interbreeding left 

genetic markers of the Neanderthal genome in living European and Asian populations of today 

(Green et al., 2010). Additionally, x-linked chromosome segments from Neanderthals have also 

been found in 9% of non-African populations (Yotova et al., 2011). The possible advantages of 

these genes have been explored and hypothesized, perhaps providing immunity to previously un-

encountered diseases in Europe for the immigrating AMH populations (Mendez et al., 2012).  

For interbreeding to have occurred between AMH and Neanderthals, several criteria must 

have been met: the dates of each population in the same location must overlap, each population 

must recognize the other as possible mates, and there are no pre- or post-zygotic barriers 

preventing the biological development of the hybrid. 

The dating of archaeological sites or remains at these sites have established that 

Neanderthals and AMH may have lived contemporaneously within the same geographic region 

for potentially almost 14,000 years in Europe. Dates determined by the evidence of AMH 

presence in Europe from the discovery of Aurignacian artifacts, associated with AMH, overlap 

with the dates in which Neanderthal skeletal remains are found (Mellars, 2006). The earliest 

radiometric dates of European archaeological sites that contain Aurignacian artifacts range from 

42,800 years ago in Bulgaria to 30,200 years ago in various locations in Europe (Cartmill and 

Smith, 2009: 458). Dating of the earliest skeletal remains of AMH in Europe range from 28,2000-

40,2000 years ago in Bulgaria (Bacho Kiro), Romania (Bordu Mare, Cioclovina, La Adam), 

Hungary (Görömböly-Tapolca, Istállós -kō), Austria (Miesslingtal), and the Czech Republic 

(Mladeč) (Ahern et al., 2013). The most recent skeletal remains classified as pure Neanderthal, as 

opposed to hybrid, have been dated to 28,000 +/- 400 years ago at Vindija and 29,195 +/- 965 

years ago at Mezmaiskaya (Smith et al., 1999; Ovchinnikov et al., 2000; Cartmill and Smith, 

2009: 347).  

Dates of potential range overlap in Europe have also been determined by the examination 

of DNA. By the examination of the decay of loci disequilibrium in the Neanderthal genome, it is 

estimated that hybridization occurred between 47,000-65,000 years ago (Sankararaman et al., 

2012; Mendez et al., 2012).  

Earlier dates of overlap exist in the Near East. The Skhūl-Qafzeh modern humans in 

Israel are estimated to have existed between 80,000-100,000 years ago (Cartmill and Smith, 2009: 

440), and moderns in general may have inhabited the Near East after at least 80,000 years ago or 

as early as 120,000 years ago (Cartmill and Smith, 2009; 444). Neanderthal remains in the Near 

East range from earliest, 265,000 years ago from Tabūn, to latest, 43,000-48,000 years ago from 
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the Wadi Amud (Cartmill and Smith, 2009: 350). Therefore, the ranges potentially overlapped for 

about 40,000-80,000 years.  

The date when Neanderthals and AMH separated from their last common ancestor greatly 

varies from 690,000 to 270,000 years ago. Krings et al. (1997) estimated a date of 550,000-

690,000 years ago for the date of divergence by analyzing Neanderthal mitochondrial DNA 

(mtDNA). Green et al. (2008) estimated a divergence date of 660,000 +/- 140,000 years by 

comparing Neanderthal and contemporary human mtDNA. By analyzing five Neanderthal 

mitochondrial genomes, Endicott et al. (2010) estimated a divergence date of 410,000-440,000 

years ago. Using Neanderthal nuclear DNA (nDNA), Green et al. (2010) estimated that 

Neanderthals and contemporary humans separated 270,000-440,000 years ago. Holiday (2008) 

suggests that even the earliest divergence times probably did not result in an inability of 

Neanderthals and AMH to successfully interbreed and produce viable offspring by comparing this 

scenario to other divergent mammalian species who produce viable hybrids. 

1.3 Identification of Hybridization from Skeletal Remains 

Neanderthals are only represented by skeletal remains, from which some ancient DNA has been 

extracted to determine common ancestry and possible reciprocal hybridization with AMH in 

nuclear DNA and mtDNA studies (Krings et al., 1997; Nordborg, 1998; Ovchinnikov et al., 2000; 

Scholz et al., 2000; Hawks and Wolpoff, 2001; Stringer, 2002; Currat and Excoffier, 2004; 

Pearson, 2004; Serre et al., 2004; Wall and Hammer, 2006; Hawks, 2008; Serre and Pääbo, 2008; 

Green et al., 2010; Currat and Excoffier, 2011; Yotova et al., 2011; Mendez et al., 2012; 

Sankararaman et al., 2012). However, ancient DNA does not preserve well, and only examined in 

a subset of the many skeletal remains of Neanderthal and AMH (Pääbo et al., 2004; Gilbert et al., 

2005; Smith et al., 2005; Willerslev and Cooper, 2005) (Section 2.2.3). Therefore, a model of 

hybridization from the skeletal remains is useful in the identification of hybrids in the fossil 

record. 

Over the last 40 years, researchers have attempted to answer the question of hybrid 

identification in regards to Neanderthals and AMH. From the type specimen of the species, 

Neanderthal 1, found in 1856 in Neander Valley, Germany, and other early Neanderthal 

specimens, anthropologists were able to establish the suite of traits that compile a “classic” 

Neanderthal. As stated by Hrdlička: 

They [Neanderthal traits] include a moderate stature, heavy build, and a good-sized, thick, 
oblong skull, with pronounced supraorbital torus, low forehead, low vault, protruding 
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occiput, large, full, upper maxilla, large nose, large teeth, and a large, heavy lower jaw with 
receding chin. (Hrdlička, 1927) 

The list of “classical” Neanderthal traits has been extended and refined since 1927 to include an 

‘inflated’ morphology of the infra-orbital plate, anteroinferior projection of glabella relative to the 

browridge, prognathic face, pronounced juxtamastoid eminence, occipital bun, small mastoid 

process, and large piriform (nasal) aperture (Dean et al., 1998; Hublin, 2002; Tattersall and 

Schwartz, 2008; Harvati et al., 2010). Anatomically Modern Humans are characterized with high 

neurocranial vaults with expanded parietals, occipital rounding, long and prominent mastoid 

processes, prominent chins, small dentition, and gracile skeletal structure (Trinkaus, 2005; 

Hublin, 2013). Ahern (2008) and many others have recently argued that some of these classic 

Neanderthal traits are not found exclusively in Neanderthals, but also appear in other populations. 

Ahern (2008) and Ahern et al. (2013) argue that these traits may be seen in the Upper Paleolithic 

AMH due to admixture from Neanderthals. 

After defining and quantifying species-specific, or derived, features, anthropologists can 

hypothesize about what features a hybrid would have. Some anthropologists propose a “mosaic” 

of features, in which, for example, a Neanderthal and AMH hybrid might contain a prominent 

chin (a feature of AMH) as well as lingual bridging of the mandibular foramen (a Neanderthal 

feature), a trait that has been observed in Oase 1 (Trinkaus et al., 2003). Indeed, most conceptions 

of Neanderthal and AMH morphology are based on a “mosaic” of features (Duarte et al., 1999; 

Tattersall and Schwartz, 1999; Wolpoff et al., 2001; Harvati et al., 2007; Soficaru et al., 2007). 

However, hybridization in primates also recognizes hybrids with “intermediate” morphology of 

features observed along a gradient, such as stocky build to gracile build (Alberts and Altmann, 

2001; Arnold and Meyer, 2006). Still other researchers propose that the hybrid would have 

features more of one or the other parental species, thus making hybridization invisible, concealed 

in the morphological diversity of the parental species (Jiggins and Mallet, 2000). Anthropologists 

have not come to a consensus on what features a hybrid of Neanderthals and AMH might have.  

However, a final group of researchers decided to look for specific features, which they 

call “anomalies” and can be congenital malformations, or rare nonmetric traits that occur at 

higher rates in hybrids compared to either parental species (Ackermann et al., 2006). Therefore, a 

higher frequency of nonmetric traits may indicate hybridization in that population. 
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1.4 Hybridization in the Baboon Nasal Cavity 

This study analyzed the hybrid nasal cavity from baboon skeletal remains. The morphology of 

internal structures in hybrids has never been studied and will have a different, possibly lesser, 

response to hybridization than external skeletal morphology (Bastir and Rosas, 2013). The nasal 

cavity also spans across the palate to the critically functioning areas of the sphenoid below the 

orbits, where a variety of strong stabilizing selective pressures act to maintain vision, respiration, 

and basal cranium structure. I hypothesized that the outcome of hybridization will alter the 

anterior region (bony palate) more because it is not surrounded by critically functioning areas, 

whereas the posterior region (nasopharynx) will remain unchanged.  

The nasal cavity is of particular interest in recent human evolution and hybridization 

because Neanderthal nasal cavities are remarkably different from AMH (Schwartz and Tattersall, 

1996; Dean et al., 1998). Rae et al. (2006; 2011) disproved the earlier view that the Neanderthal 

nasal cavity was an adaptation to the colder European climate. Climate variables, such as 

temperature and humidity, influence nasal cavity shape and size in modern humans, though in the 

opposite direction (smaller in colder, drier environments) compared to what is seen in 

Neanderthals (large nasal aperture in colder Europe) (Noback et al., 2011). If the shape and/or 

size of the nasal cavity are important adaptations to particular environmental variables or 

ecological interactions, other than temperature, alterations of the nasal cavity due to hybridization 

could have a dramatic impact on the hybrid fitness for better or worse. I also hypothesized that 

there will be a greater frequency of nonmetric traits in the hybrid nasal cavity, with higher 

frequencies in the anterior region compared to the posterior region, due to developmental 

instability caused by the interaction of specialized genes from different parental groups 

(Ackermann et al., 2006).  

Analogue species, Papio anubis, olive baboon, and P. cynocephalus, yellow baboon, 

were used to explore the morphological differences due to hybridization because Neanderthal and 

AMH hybrids cannot be analyzed directly. The baboons in the collection analyzed in this study 

have been pedigreed to understand their direct ancestry as olive, yellow, or both (hybrid). 

Therefore, any morphological differences or nonmetric traits found in the hybrid nasal cavity can 

be attributed to hybridization as Ackermann et al. (2006) concluded after analyzing the external 

features of baboon skulls from the same collection. 

 This thesis also analyzed the affect of hybridization on morphometric features. The nasal 

cavity was measured at various landmarks and then compared between the hybrids and parental 

baboons (olive and yellow) to identify size and shape difference associated with hybridization. 

Changes in size reflect alterations in energetic demands (Noback et al., 2011). Shape changes 
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indicate alterations in nasal cavity function (Noback et al., 2011). This is the first study, to the 

best of the author’s knowledge, to analyze the affect of hybridization on metric and nonmetric 

traits in the nasal cavity. 

1.5 Public Issues 

In addition to the academic interest in hybrids and evolutionary theory, there is also a concern 

about hybridization in the wild for the conservation of species (Detwiler et al., 2005; Nolte and 

Tautz, 2010). It is possible for hybridization to lead to the extinction of one of the parental species 

due to gene swamping (Seehausen, 2004; Detwiler et al., 2005). It is hypothesized that gene 

swamping may have caused the extinction of Neanderthals (Jolly, 2001; Cartmill and Smith, 

2013: 444-447; Zinner et al., 2009; Zinner et al., 2011; Smith, 2013). However, without 

hybridization and gene flow between small populations, the lack of genetic diversity makes it 

more difficult for a small population to overcome new diseases, environmental changes, or human 

disturbance. Conservationists must carefully assess how hybridization can be used as a tool to 

save species while minimizing the risk of extinction due to gene swamping. 

This study analyzes the skeletal remains of baboons that lived in a captive colony at a 

research centre where they were part of other genetic and dietary studies. There are ethical 

concerns when using non-human primates in research that solely benefits humans. The public 

should be aware of how these or any animals are being treated during and after research studies 

and researchers should attempt to find alternatives or be less invasive if possible. 

1.6 Objectives 

The main objective of this thesis is to model the effects of hybridization on the nasal cavity using 

Computed Tomography (CT) scans and visual inspection of the same baboon skeletal collection 

that was examined by Ackermann et al. (2006). Methodology and discussion for this thesis 

directly build from the Ackermann et al. (2006) study. Additional objectives include: 

Model of Hybridization in the Nasal Cavity: The metric and nonmetric models of hybridization 

in the nasal cavity, developed in Chapters 4 (metric) and 5 (nonmetric), are used to 

hypothesize features of the nasal cavity of a Neanderthal and AMH hybrid (Section 6.3). 

Model of Baboon and Pleistocene Hominin Hybrid Zones: The structure of the hybrid zone of 

yellow and olive baboons in Amboseli, Kenya, with an examination of current 

anthropological evidence, were used to hypothesize, the most parsimonious model of the 
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Neanderthal and AMH hybrid zone (Section 6.1, Section 6.2). This model accommodates 

currently known paleoanthropological evidence (Chapter 2, Chapter 3) and trends found 

from the model of hybridization in the baboon nasal cavity (Chapter 4, Chapter 5).  

Re-assess the Baboon Lateral Recess: The definition and function of the “lateral recess” in 

baboons is re-assessed after trends in the morphometric measurements and nonmetric traits 

due to hybridization in baboons are evaluated (Section 3.2.2, Section 4.4, Section 5.4). 

Identify and discuss public issues: a) Hybridization can lead to the rapid extinction of the 

smaller population and is a conservation concern for primates (Section 2.1.2, Chapter 6).  

b) Many ethical issues revolve around research with primates, including issues encountered 

during the development of this project (Section 3.1).  
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Chapter 2  

Background 

Though my project is examining baboon hybrids as a model for identifying Neanderthal and 

AMH hybrids, my experiment will not be useful unless it is placed into the context of hybrid 

evolutionary theory. The theory is particularly important for understanding if and how 

Neanderthals and AMH hybridized. This background is useful for understanding discussions in 

Section 6.1 and Section 6.2.  

In addition, researchers in paleoanthropology are divided by perceptions of Neanderthal 

and AMH hybrids, with debates about the existence and physical form of hybrids. In this chapter, 

I present evidence for hybridization as well as arguments against it, introducing the controversy in 

paleoanthropology and to explain why I am searching for morphological, metric and nonmetric, 

indicators of hybridization. 

2.1 Evolutionary Theory of Hybridization 

Hybridization, as an important evolutionary process, has gained recognition as researchers have 

observed more examples of hybrids in the wild and speculated about their existence and 

identification in the fossil record.  

The outcome of a hybridization event can be the creation of a new species from the 

hybrid population through reticulate evolution, the merging of the parental taxa, or reinforcement 

of the separation between the parental taxa (Mallet, 2005). Which outcome occurs depends on 

many variables in population ecology and genetics. From population ecology, we know that the 

outcome of two taxa re-encountering each other is determined by population size, effective 

population size (the number of fertile females), age distribution, sex ratio, and dispersal patterns. 

From genetics, we know that some important factors affecting the outcome of hybridizationare 

divergence between populations, adaptation to specific habitats, hybrid viability and hybrid 

fitness. Neither of the lists of variables in ecology or genetics form a complete list of variables 

that determine whether or not populations will hybridize and what outcome occurs due to 

hybridization. For simplification, researchers have distinguished types of hybrid zones: mosaic, 

intermediate, and bimodal, based on these variables and these are discussed in Section 2.1.1.  
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Hypotheses concerning the characteristics of the Neanderthal and AMH hybrid zone will 

be compared to the baboon hybrid zone in Chapter 6, and one scenario will be proposed as the 

most parsimonious with hybrid theory and archaeological evidence. 

Under certain circumstances, such as the immigration of a large invader population into a 

region where the local population is small, and the populations have developed trait specialization 

as an adaptation to their environments and they have a long history of species divergence, the 

process of hybridization can lead to the extinction of the small local population. Hybridization in 

wild populations is a major conservation issue as habitats are destroyed and fragmented by 

humans, forcing the diverged, small populations back into contact.  

In the discussion that follows, “hybrid” refers to the first generation cross between two 

genetically isolated populations, F1. When other hybrids are discussed, such as hybrid-hybrid 

crosses and backcrosses, the generation and genetic history is indicated. 

2.1.1 Evolutionary Theory 

The perceived importance of hybridization in influencing evolution has greatly changed in recent 

years. Previously, hybridization was only considered important in plant species, with limited 

applicability in animals (Arnold, 1992; Dowling and Secor, 1997).  

Pure species have of course their organs of reproduction in a perfect condition, yet when 
intercrossed they produce either few or no offspring. Hybrids, on the other hand, have their 
reproductive organs functionally impotent, as may be clearly seen in the state of the male 
element in both plants and animals. (Darwin, 1859) 

However, through observations in the wild, hybridization is beginning to be seen as a very 

influential process in animals as well (Mallet, 2005; Mallet, 2007; Shurtliff, 2013). Mallet (2005) 

reviewed the literature for hybridization in animals and found that out of 200 examined European 

mammalian species, 6% were known to hybridize. Primate taxa are also strongly influenced by 

hybridization (Arnold and Meyer, 2006; Detwiler et al., 2005; Zinner et al., 2011). Of all the 

primates that scientists currently recognize, >10% are known to hybridize (Arnold and Meyer, 

2006).  

Hybridization has been identified in wild primates across all major primate clades 

through genetic and observational studies, examples include: yellow and olive baboons (Phillips-

Conroy and Jolly, 1981; Samuels and Altmann, 1986; Jolly, 2001; Alberts and Altmann, 2001; 

Jolly et al., 2007; Zinner et al., 2009); gelada baboons and olive baboons (Dunbar and Dunbar, 

1974; Zinner et al., 2009); hamadryas and olive baboons (Phillips-Convoy and Jolly, 1981; 

Phillips-Convoy et al., 1992; Zinner et al., 2009); macaques (Tosi et al., 2000; Evans et al., 2001; 
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Schillaci and Froehlich, 2001; Tosi et al., 2003; Schillaci et al., 2007); howler monkeys (Cortés-

Ortiz et al., 2007; Agostini et al., 2008; Aguiar et al., 2008; Kelaita and Cortés-Ortiz, 2013), 

tamarins (Cheverud et al., 1993; Cropp et al., 1999; Kohn et al., 2001), marmoset (Tagliaro et al., 

1997), lemurs (Wyner et al., 2002; Gligor et al., 2009; Delmore et al., 2011; Delmore et al., 

2013); langurs (Choudhury, 2008; Denise et al., 2008); gibbons (Brockelman and Gittins, 1984; 

Reichard, 2009); orangutans (Xu and Arnason, 1996; Muir et al., 2000; Warren et al., 2001); 

bonobos and chimps (Kaessmann et al., 1999); gorillas (Ackermann and Bishop, 2009); and 

hominins (Arnold and Meyer, 2006; Holliday, 2003; Ackermann, 2010; Harvati et al., 2007; 

Zinner et al., 2011). 

Hybrids are often larger or smaller than the parental populations depending on the degree 

of divergence between the parental populations and the interactions between alleles, genes, and 

loci. Some anthropologists studying hybridization have attributed larger size with heterosis and 

smaller size with dysgenesis, though they do not link the size changes to hybrid fitness (Cheverud 

et al., 1993; Schillaci et al., 2005; Ackermann et al., 2006; Harvati et al., 2007). Schillaci et al. 

refer to heterosis as hybrid vigor in which “the hybrid phenotype exceeds the midpoint, i.e., 

midparental average, of the parental taxa” due to increased heterozygostity (2005: 342). Greater 

heterozygostiy occurs when there is a large difference in the gene frequencies of the two parental 

populations and when a specific allele has directional dominance (Schillaci et al., 2005). 

Dysgenesis occurs when “the hybrid phenotypic mean is less than the mean of the parental taxa” 

resulting from “hybridization between two taxa with different environmental adaptation and 

coadapted gene complexes” (Schillaci et al., 2005: 342). Ackermann et al. (2006: 2) share similar 

definitions of heterosis and dysgenesis as Schillaci et al. (2005) as well as the reasoning for why 

size changes occur. However, Harvati et al. focus only on size, and define heterosis as the 

“departures of the hybrids toward greater size … than expected based on the phenotypes of the 

parental taxa,” and dysgenesis as departures of the hybrids toward smaller size than expected 

based on the phenotypes of the parental taxa (2007: 733). This paper will follow these definitions 

of heterosis and dysgenesis. 

Hybrid Zones 

A hybrid zone is a geographic region within which isolated populations re-encounter each other 

and interbreed to produce hybrids (Nolte and Tautz, 2010). In the theoretical literature, there are 

several identified hybrid zone spatial structures: intermediate or clinal, mosaic or patchy, and 

bimodal. The underlying genetic compositions of individuals within the hybrid zone determine 

which spatial structure a particular hybrid zone exhibits (M’Gonigle and FitzJohn, 2009). In 
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studies of hybrid zones in the wild, descriptions of hybrids are intermediate, mosaic, or parental-

like (hybrids are similar to one parent or the other as in bimodal zones), referring to the 

phenotypes that can be observed by the researchers. The phenotypic descriptions somewhat 

correspond to the genetic descriptions of hybrid zones, though some researchers argue that the 

phenotypic observations can fall into other categories due to coarse sampling, which will be 

discussed (M’Gonigle and FitzJohn, 2009; Nolte and Tautz, 2010).  

First, an intermediate hybrid zone refers to a continuous gradient, or cline, of size and 

shape, or alleles, from one parental population to the other. Intermediate hybrid zones create a 

unimodal distribution where the intermediate phenotype is most common compared to 

phenotypes resembling one parent or the other (Jiggins and Mallet, 2000). For example, olive and 

yellow baboon hybrids are described as having intermediate diagnostic morphology between the 

parental taxa, in features such as pelage colour, hair growth, body size and the length and 

posturing of the tail (Alberts and Altmann, 2001; Arnold and Meyer, 2006). Specifically, olive 

baboons have a short (above the knee), thick tail while yellow baboons have a long (at least to 

back of knee), and thin tail. Hybrids are intermediate in length and thickness (Alberts and 

Altmann, 2001). 

Second, a mosaic hybrid zone refers to the spatially or temporally separated patches 

where parental taxa interbreed and each patch may result in a different dominant genetic 

combination (Dowling and Secore, 1997; Gaubert et al., 2005; Nosil et al., 2005; M’Gonigle and 

FitzJohn, 2009). The differences between patches are first established by founder effect and then 

reinforced by adaptive selection due to different environmental pressures in different patches and 

assortative mating (selection against the hybrid) or immigrant inviability (selection against the 

immigrant) within each patch (Barton, 2001; Nolte et al., 2005; M’Gonigle and FitzJohn, 2009). 

The other use of “mosaic” is to describe the combination of genotypes and phenotypes from both 

parental groups in the individual hybrids, so that they hybrid presents a few morphological traits 

from one parental group and a few traits from the other parental group (Dowling and Secor, 1997; 

Gaubert et al., 2005). Mosaic morphology has been observed in female howler monkey hybrids, 

which showed a pelage coloration pattern that is a combination between parental species, such as 

having some patches of fur that were the golden colour of Aloutta caraya and other patches that 

were the black colour of A. clamitans (Aguiar et al., 2008; Delmore et al., 2013). Potential 

Neanderthal and AMH hybrids are often described as having a mosaic of features from both 

parental groups (see Section 2.2.2). Because each patch in a spatially mosaic hybrid zone follows 

a different evolutionary path due to various selective pressures discussed above, morphologies 

that are a combination of parental morphologies can be observed in some patches, while 
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morphologies that resemble one parent or the other parent or intermediate morphologies are 

observed in other patches (M’Gonigle and FitzJohn, 2009). 

Third, hybrids are also found that have phenotypes more similar to one parent or the other 

in bimodal hybrid zones (Jiggins and Mallet, 2000). For example, hamadryas and olive baboons 

hybridize to produce hybrids that have phenotypes and genotypes more similar to one or the other 

parental species (Alberts and Altmann, 2001). Bimodal hybrid zones are very different from 

intermediate and mosaic hybrid zones. Bimodal hybrid zones are often characterized by positive 

assortative mating as a prezygotic barrier, so that each parental species will more often mate with 

a member of their own population or those hybrids who are similar to them, than mate with those 

who are different from them (Jiggins and Mallet, 2000). Therefore, females will mate with males 

of their own species or hybrids that resemble their own species rather than mate with a male from 

a different species or hybrids that resemble a different species. Bimodal hybrid zones often form 

when the parental species are more diverged and well adapted to their environments, resulting in 

hybrids that have lower fitness, due to the low probability that a recombination of chromosomes 

will create a hybrid that is more fit than the parents (Barton, 2001; Ackermann et al., 2006). 

Therefore, it is improbable that hybrid speciation will occur in bimodal hybrid zones, though 

introgression, gene flow from one population to another, may occur in one or both parental 

populations, increasing genetic diversity in the parental populations (Wu, 2001).  

Reticulate evolution is the formation of a new species from two or more species through 

interbreeding, or hybridization (Ackermann, 2010). In a phylogenetic tree, traditional depictions 

of species relationships present a node, representing the last common ancestor, in the past from 

which 2 species branch upward to present day. A phylogenetic tree based on reticulate evolution 

results in complex network-like connections between divergent species (Ackermann, 2010). In 

reticulate evolution, hybridization takes place many times throughout the history of the diverging 

taxa and may reoccur if the populations ever re-encounter one another. 

Heterozygote Advantage and Hybrid Fitness 

In an isolated population, over many generations, chance alone can lead a particular allele to 

fixation in that population. In an individual, assuming random mating in a population, the 

probability of having two of the same alleles (homozygote) at a given loci is 1/(2N), where N is 

population size. Therefore, smaller populations tend to have a greater number of homozygote 

individuals. This process is called genetic drift, and if uninterrupted over many generations, 

creates populations that only have one allele at a given loci and all individuals are homozygous. 

Due to genetic drift, populations prior to interbreeding have more homozygotes than a population 
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in a hybrid zone. Within a hybrid zone, alleles from a different population are reintroduced to the 

other population so that an allele at a particular loci is no longer fixed in the gene pool and there 

are more heterozygote individuals (different alleles at a particular loci).  

The increased allelic diversity in hybrid zones is particularly important for population 

fitness due to heterozygote advantage. Homozygotes can express deleterious alleles by having 

two of the same alleles (for example aa or AA) with a deleterious mutation (aa produces sickle 

cell anemia, AA are more vulnerable to malaria). Heterozygotes, on the other hand, can cover the 

expression of the deleterious allele by a dominant allele (Aa which covers sickle cell anemia, and 

gives some immunity to malaria). Because hybrid zones create heterozygote hybrids, hybrids may 

have greater fitness than the parental population due to heterozygote advantage (Aa, rather than 

aa or AA) (Ackermann, 2010). Increased heterozygosity in the hybrid populations has been 

related to heterosis, increased trait size (Schillaci et al., 2005; Ackermann et al., 2006). 

If the parental populations are not strongly diverged, a hybrid could receive unique 

advantageous allele combinations resulting in a greater diversity of phenotypes, from which some 

may be more beneficial in a new or altered environment (Barton, 2001). The more diverged the 

parental populations, the less probable that the allele combinations will be advantageous (Barton, 

2001). Extreme divergence of populations could occur during the fixation of different alleles, 

which occurs in inbred populations or long-term genetic drift. For hybrids to become established 

in the population, they must have greater or equal fitness to the parental taxa. Hybrids can have 

greater fitness if they acquire advantageous allele combinations from the parental taxa, or they 

have new mutations that increase fitness in the new environment, though advantageous mutations 

are very rare (Barton, 2001). Such an introduction of new advantageous allele combinations into 

the hybrid population, which restores alleles lost due to genetic drift or selection, results in greater 

fitness in the hybrids compared to the parental populations (Ackermann et al., 2006; Ackermann, 

2010).  

Because hybrids demonstrate novel combinations of alleles, which could potentially be 

well adapted to a new environment, hybrids may be a mechanism of saving genetic diversity 

between species. Nolte and Tautz (2010) call this mechanism of hybridization a creative 

evolutionary force. If the hybrids that are created after the initial re-contact between the parental 

taxa are able to survive in a habitat in which parental taxa cannot survive, and display 

reproductive isolation from parental taxa, or show assortative mating with other hybrids, the 

hybrids may have a greater range of phenotypes than the parental species (Nolte and Tautz, 

2010). This process of increasing genetic and phenotypic variation is called transgressive 

segregation (Seehausen, 2004; Nolte and Tautz, 2010). Forty-five of 58 (78%) studies of 
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hybridization in wild animals observed transgressive segregation based on an evaluation of 650 

phenotypic traits (Rieseberg et al., 1999). Charpentier et al. (2012) also observed transgressive 

segregation and greater genetic diversity in olive and yellow baboon hybrids. The greater range of 

genotypes and phenotypes gives hybrids an adaptive advantage over the parental species in novel 

environments because it is more probable that one of many phenotypes may be beneficial and 

selected for rather than one of fewer phenotypes (Seehausen, 2004). It may also be possible that 

females will preferentially mate with males of another species, interbreed, if a hybrid phenotype 

would survive better in an altered environment, as has been observed in toads (Pfennig, 2007). 

This mating selection would give hybrids a competitive advantage, higher fitness. If taken to the 

extreme conclusion, higher fitness in hybrids can result in reticulate evolution in which a new 

subspecies/species is formed from the hybrids. 

However, because the combination of alleles is random during hybridization and often 

novel, the resulting phenotypes have not undergone natural selection and may be disadvantageous 

(Barton, 2001). Combinations that are disadvantageous or break down coadapted gene complexes 

found in parental groups would lower the fitness of hybrids, which can result in dysgenesis, or 

reduction in the size of features (Ackermann et al., 2006; Ackerman, 2010). Hybridization is 

therefore similar to the introduction of novel alleles through mutation. Mutation can produce 

advantageous, neutral, or disadvantageous alleles, which can be lethal. However, deleterious 

mutations tend to be lethal than new allele combinations developed through hybridization (Jolly, 

2001). Disadvantageous combinations occur more often between populations that are diverged 

more and highly specialized to opposite environments. 

Gene swamping 

The effective population size of the two parental populations also influences hybrid outcomes 

(Zinner et al., 2011). Often, hybrid zones form because one parental population is “invading” or 

migrating into the territory of a resident or local population. If the effective population size is 

larger in the invading population compared to the local population, such as the migration of the 

larger AMH population into Europe where the smaller population of Neanderthals is local to the 

environment in Europe, introgression often occurs in one direction, into the local species (Zinner 

et al., 2011). Invading species then get an advantage because their gene pool is larger. Therefore, 

any alleles from the local population that enter into the invader population through hybridization 

and backcrosses are only a small percentage of all possible alleles in the invader population’s 

gene pool. This effectively dilutes the local alleles in the invader population. The alleles from the 

local population that introgress into the invader population have a lower probability of 
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disappearing due to genetic drift because they are now part of a larger growing population that 

has more allele types (Shurtliff, 2013). For the local population, however, the introgression of 

invader alleles through hybridization and backcrosses results in a much higher overall percentage 

of the invader alleles in the gene pool, assuming that the rate of backcrossing in the local 

population is equal to or greater than the rate of backcrossing in the invader population.  

This process is called gene swamping, introgressed alleles from the foreign population 

overwhelm the smaller gene pool of the local population (Seehausen, 2004; Detwiler et al., 2005). 

Gene swamping can lead to outbreeding depression in the local population because the foreign 

invader alleles in its gene pool may not be as well adapted to the local environment (Seehausen, 

2004; Detwiler et al., 2005). Gene swamping has also been referred to as “genetic assimilation,” 

“contamination,” “infection,” “genetic deterioration,” “genetic pollution,” “genetic takeover,” and 

“genetic aggression” (Rhymer and Simberloff, 1996).  

Therefore, there is a real risk of extinction of the smaller population, replaced by either 

the invader or the hybrid (Rhymer and Simberloff, 1996; Mooney and Cleland, 2001; Levin, 

2002; Wolf et al., 2011). Wolf et al. (2011) modeled in plants that such replacement and 

extinction could take place in as few as five generations. Detwiler et al. (2005) explore the 

conservation consequences of hybridization in Cercopithecine monkeys, concerned with the risk 

of extinction of endangered species, which are rare and have small populations, making them 

vulnerable to gene swamping during reticular events. It is possible that gene swamping took place 

between Neanderthals and AMH, resulting in the extinction of pure Neanderthal genotypes and 

the introgression of Neanderthal genes into the AMH gene pool (see Section 6.2) (Jolly, 2001; 

Cartmill and Smith, 2009). 

Conversely, invaders can exhibit “immigrant inviability” in which immigrants are 

selected against due to reproductive barriers between invaders and native species (Nosil et al., 

2005). In this case, the local population has the adaptive advantage in the environment and has 

higher fitness than the invading population and any hybrids that may be born. In the extreme, 

invaders, and possibly hybrids, would eventually die out, leaving the local population genetically 

unchanged. 

Haldane’s Rule 

Hybrids can be constrained by Haldane’s rule, that the heterogametic sex will be missing or 

sterile in the hybrid population (Haldane, 1922). In mammals, the heterogametic sex is male 

(XY), which means that males are often missing in the hybrid populations. The explanation for 

Haldane’s rule is the same as the explanation for sex-linked disorders, for example colour-
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blindness, muscle dystrophy, and hemophilia. The dominance theory states that if the inherited X 

chromosome in the male contains a harmful recessive allele that cannot be hidden by a dominant 

allele, as it may be in females by the second X chromosome, the recessive phenotype is expressed 

and can often lead to sterility or inviability in the male (Turelli and Orr, 1995). Haldane’s rule is 

observed in many mammal taxa (Shurtliff, 2013), and in many primates (Zinner et al., 2011), 

such as in howler monkeys (Cortes-Ortiz et al., 2007; Aguiar et al., 2008), and gelada and olive 

baboon hybrids (Jolly et al., 1997).   

 

Wu (2001) states that to understand the outcome of re-encounters between diverged 

species, researchers must understand the ecology, genetics and reproductive biology of the 

populations. These factors determine which scenario hybrids and parental species take: extinction, 

speciation, or further divergence. In the fossil record, researchers have only a limited 

understanding of the ecological relationship of the parental species to other species. Any 

information about the ecology of ancient populations is obtained from associated faunal and floral 

remains found with the species in an archaeological context, such as bones of food remains, other 

animal remains, pollen, or lake and ice cores and other paleoecological techniques to recreate 

ancient environments. Nor do researchers often have access to many different individuals from 

the same population to understand phenotypic and genetic variation, especially since preserved 

ancient DNA is rare. Hominin reproductive biology is mostly speculative, based upon our own 

reproduction as modern H. sapiens or other modern nonhuman primates, although dispersal 

patterns and intragroup or intergroup relationships can never be proven definitively.  

2.1.2 Public Issue: Conservation Challenges in Hybrid Zones  

Through habitat destruction and fragmentation, humans may inadvertently be creating or altering 

hybrid zones. Many researchers (Bullini, 1994; Rhymer and Simberloff, 1996; Dowling and 

Secore, 1997; Bynum, 2002; Levin, 2002; Detwiler et al., 2005) recognized human disturbances 

as a general driver for the creation and destruction of hybrid zones in mammals and specifically 

primates. For example, the hybrid zone between olive and yellow baboons in Amboseli, Kenya 

was only identified in 1982 though periodic censuses had been taken since the 1960s (Maples and 

McKern, 1967; Samuels and Altmann, 1986). Samuels and Altmann (1986) observed male olive 

baboons immigrating to more southern populations of yellow baboons and successfully mating to 

create mixed hybrid populations. The males may have begun moving south due to habitat 

destruction in the original olive baboon territory (Samuels and Altmann, 1991). Alberts and 

Altmann (2001) suggest that interactions with humans around Mt. Kilimanjaro were the impetus 
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for male olive baboons to emigrate and end up in yellow territory. They also suggest that if 

negative interactions between olive baboons and humans continue, the local population of olive 

baboons might go extinct and the hybrid zone will no longer receive new immigrants with olive 

genotypes. Eventually, the genes that have introgressed from olive into the yellow population in 

Amboseli will become a smaller percentage of a hybrid’s genotype until little trace of the 

contemporary hybridization would exist (Alberts and Altmann, 2001).  

Similarly, in East Asia, each peninsula is home to several unique species of macaque, 

with hybrid zones on the borderland of the parental species territory (Watanabe et al., 1991; 

Evans et al., 2001; Bynum, 2002). Watanabe et al. (1991) suggested that hybridization in 

macaques might be occurring due to disturbances and loss of habitat by humans, forcing 

populations to migrate and create overlapping territories. Bynum (2002) specifically identifies the 

construction of the Tawaeli-Toboli road, a major highway through macaque territory, as a 

significant factor in future hybridization interactions between two macaque species. Cortés-Ortiz 

et al. (2003) also hypothesized that human fragmentation of neotropical forests led to the 

formation of hybrid zones between howler monkeys.  

Of course, hybrid zones also occur naturally, though some researchers believe that the 

incidence of hybrid zone creation may be greater due to human disturbance (Dowling and Secor, 

1997; Bynum, 2002). Human disturbance has a potentially severe implication for endangered 

species. Gene swamping and extinction of rare, endangered species occurs more often in 

fragmented or smaller habitats, artificially created by humans (Levin, 2002; Detwiler et al., 

2005). This is a public issue of which humans are contributing to the creation of hybrid zones and 

potential extinction of the smaller parental population.  

The issue is made more complicated when countries allocate public funds to protect 

endangered species, regulated through legislature such as the Endangered Species Act in the 

United States. The Endangered Species Act currently has no established policy for hybrids 

(Levin, 2002). Should hybrids be protected, such as in cases of human interference through the 

introduction of an abundant related subspecies or species to hybridize with the endangered 

species? Is the endangered species still that species or is it now part of the more common species?  

These questions are particularly controversial when conservationists decide to hybridize 

an endangered species with a more abundant related species in order to increase the genetic 

diversity of the endangered species. For example, when the Florida panther began showing 

dramatic population declines, partially due to male infertility caused by inbreeding and low 

genetic diversity, conservationists decided to introduce the Texas puma, a related subspecies, into 

the range of the Florida panther. The two subspecies readily interbred creating viable hybrids, 
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which began to increase the number of panthers in Florida, though it could be argued that the 

hybridization “compromises the Florida panther’s very identity as a distinct subspecies” (Levin, 

2002: 4-5).  

Smaller populations that are endangered tend to have increasingly more homozygote 

individuals as potential mates become more related to each other, which occurred in the Florida 

panthers (Levin, 2002). As discussed earlier, homozygosity at loci allow deleterious recessive 

mutations to be expressed, lowering the fitness of populations with many homozygote 

individuals. Homozygosity also decreases the genetic diversity in the populations as alleles 

become fixed due to genetic drift or assortative mating. Lower diversity also lowers the resilience 

of the population to diseases or environmental disturbances. For example, monocultures, such as 

the production of rice in China, are an extreme example of low genetic diversity, where all 

individuals are genetically identical. One of the most persuasive arguments against monocultures 

is that the lack of diversity makes the entire production of corn vulnerable to a new disease, but 

when crop diversity is embraced, rates of disease lower, and yields increase (Zhu et al., 2000). 

Hybridization increases the number of heterozygote individuals in the population (Ackermann, 

2010). Therefore, the deleterious recessive alleles are hidden to create a population with higher 

fitness, due to heterozygote advantage (Barton, 2001; Ackermann, 2010). Also, hybridization 

increases genetic diversity, so if a disease attacks the population, it may kill off some of the 

population, but not necessarily the entire population because some individuals have different 

allele combinations or mutations (Wu, 2001; Seehausen, 2004). Hybridization may sometimes be 

preferred as a conservation mechanism to save species at the risk of gene swamping leading to the 

extinction of the small, endangered population (Levin, 2002). 

The public, the tax payers, should be aware of how their money is being spent for 

endangered and hybridized species. If we want to continue conservation efforts to save the many 

endangered primate species, our closest relatives, we need to take into account these additional 

complex ecological interactions caused by hybridization. 

2.2 Identification of hybrids in the fossil record 

Unfortunately, most of the examples of phenotypic differences between parental populations and 

hybrids are observed on external phenotypes of living animals or in genetic analysis. Very few 

studies have been conducted on skeletal material of extant primate species, the interest of this 

thesis (Ackermann et al., 2006; Ackermann and Bishop, 2009), though it is the skeletal material 

that is examined in the fossil record and used to identify potential hybrids.  
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Anthropologists can identify hybrids in the fossil record from morphological analysis of 

the skeletal remains or molecular analysis of ancient DNA. In the sections that follow, skeletal 

and genetic evidence for and against Neanderthal and AMH hybridization is presented, and it is 

concluded that hybridization, to some extent, occurred.  

These two methods, skeletal and genetic, are fallible and have shortcomings that have led 

to debates in the literature about the evidence of hybridization, as discussed in Sections 2.2.2 and 

2.2.3. 

However, technological issues may not be the most contentious issue in hybrid 

identification. The other major component that must be discussed is the group of assumptions in 

which different researchers with particular paradigms apply to the analysis of fossils. Particularly 

in the Neanderthal and AMH taxonomic relationship, two paradigms are at odds with one another 

(Section 2.2.1). A paradigm is a way of understanding and evaluating the world that are often 

passed along an academic lineage from teacher to student (Campbell and Rice, 2011). They are 

unable to meet in common ground due to different initial, uncompromising assumptions 

(Willermet and Clark, 1995; Smith and Harrold, 1997; Campbell and Rice, 2011).  

2.2.1 Paradigms in Paleoanthropology 

The two paradigms, the Multiregional paradigm and the Replacement, or Out of Africa, 

paradigm, primarily differ in the assumptions of species designation, ability to interbreed, and 

place in recent human evolution as ancestral or sister taxa. Paleoanthropology in general is 

dominated by two paradigms based on speciation concepts: the lumpers and the splitters. 

Lumpers tend to group many different specimens into a single species, and splitters tend to 

categorize the same specimens into many different species (Campbell and Rice, 2011). Generally, 

the Multiregional scholars would be considered lumpers, while the Replacement scholars would 

be considered splitters (Campbell and Rice, 2011).  

Multiregional scholars consider Neanderthals and AMH as the same species, but different 

subspecies, while Replacement scholars view Neanderthals as a different species from AMH. 

These species classifications have arguably biased concepts about interbreeding. Multiregional 

scholars hypothesized that Neanderthals and AMH interbred to create hybrids that are the 

ancestors of contemporary humans. Replacement scholars hypothesize that interbreeding did not 

occur between Neanderthals and AMH or interbreeding is negligible, therefore Neanderthals 

cannot be ancestral to contemporary humans, but are an extinct branch on the evolutionary tree 

(Klein, 2000; Wolpoff et al., 2004; Smith et al., 2005; Stringer, 2008; Tattersall and Schwartz, 

2008; Cartmill and Smith, 2009). Some researchers have escaped the paradigmatic thinking to 
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establish other intermediate hypotheses, such as the Assimilation model in which Neanderthals 

and AMH interbred to some extent and are the ancestors of contemporary humans (Smith et al., 

2005, Cartmill and Smith, 2009; Smith, 2013).  

The continuous debate between the paradigms often stagnates research and collaboration. 

Willermet and Clark (1995) have assessed that scholars from both paradigms have only analyzed 

11% of the total dataset that paleoanthropology has generated. This means that the hypotheses 

generated by both paradigms have been essentially based upon fundamentally different evidence 

that is selected by scholars to support their own theory (Willermet and Clark, 1995), using 

circular logic. Smith and Harrold (1997) have also found substantial differences between the 

Replacement and Multiregional views such as differences in definitions, what evidence is 

analyzed, and which features are emphasized in the analysis. However, Smith and Harrold (1997) 

propose a more accurate and less polarized view of the paradigm debates that “this dispute is not 

a clash between incommensurable paradigms, but rather reflects a potential spectrum of views 

between two poles” (1995: 134), which would include Assimilation as an intermediate theory 

between Replacement and Multiregional paradigms. The academic paradigm divide is perhaps a 

greater challenge to research than the limitations of technology and theory.  

Discussion of the paradigms is crucial for understanding how the different groups of 

anthropologists interpret data. Particularly when examining recent human evolution, the public 

and academic images of a Neanderthal have influenced these interpretations. The Replacement 

scholars often have an impression of Neanderthals as intelligent and cultured, but not as 

intelligent and culturally complex as AMH (Smith, 2013). This impression developed from 

century-old images of Neanderthals as brutish, ape-like, devolved cavemen that cannot possibly 

be the ancestor to sophisticated contemporary humans (Drell, 2000). The evidence they collect 

often reflects this view of Neanderthals as non-human, a different species, and unable to 

interbreed with AMH (Willermet and Clark, 1995). The Multiregional and Assimilasionist image 

depicts a cultured, intelligent, complex human-like ancestor that has some superficial features that 

make them appear different, but do not alter behaviour significantly from AMH (Drell, 2000). 

The evidence they collect often reflects potential hybridization and similarities to AMH and 

contemporary humans (Willermet and Clark, 1995). Section 2.2.4 examines the social influences 

on research, using archaeology as an example, which I think tends to influence scholars of both 

paradigms. 
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2.2.2 Evidence from Skeletal Remains  

The overwhelming academic perception of a hybrid in the fossil record is a specimen displaying a 

mosaic of features from both parents or intermediate features between both parents (see Harvati et 

al., 2007). As discussed in Section 2.1.1, extant hybrids exhibit a variety of morphologies that can 

be mosaic, intermediate, or more similar to one or the other parent depending on the genetic 

divergence and specialized adaptation of the parent species. The assumption of mosaic features in 

hominin fossils is therefore not entirely supported, though researchers continue to use this mental 

construct to identify potential hybrids in the archaeological record. In addition, the initial 

assumptions of the paradigms, Multiregional, Replacement, and Assimilation, can bias a 

researcher’s interpretation of a specimen. Within paradigm thinking, any evidence is fit into a 

larger conceptual framework (Willermet and Clark, 1995). Thereby, the evidence cannot exist in 

the scholar’s mind without being placed in the context of paradigmatic thinking (Willermet and 

Clark, 1995). For example, Laitman et al. (1996) accuse “lumpers”, specifically Wolpoff, of 

paradigmatic thinking: 

This group, often called "lumpers," is primarily comprised of those who view Neanderthals 
as falling within the range of variation represented by diverse modern human populations 
(27 [Wolpoff, 1996]). Given their predilection, it becomes a priori impossible for them to 
view Neanderthals as ever being sufficiently different so as to exhibit highly derived 
respiratory anatomy or specialized respiratory or vocal behaviors. If they are us, then they 
cannot be fundamentally different. Observations on the difference between Neanderthals 
and extant populations are routinely dismissed as being within the range of "human" 
variation. (Laitman et al., 1996: 10544) 

Therefore, because Multiregional and Assimilation scholars have hypothesized that hybrids or 

transitional forms existed, they will interpret skeletal remains as possible hybrids. Replacement 

scholars do not believe introgression occurred and therefore do not expect to find any hybrids in 

the fossil record.  

 For example, in 1998, João Mauríco and Pedro Souto found the skeletal remains of a 

child’s left hand and forearm in Lagar Velho, Portugal (Duarte et al. 1999; Zilhão and Trinkaus, 

2002). Further excavation in 1998 and 1999 revealed that the skeleton was an Upper Paleolithic 

child who had been buried about 24,500-25,000 years ago. Typically, skeletal remains found 

during this time period have been associated with AMH because it is believed that Neanderthals 

as a pure species disappeared in Europe about 28,000 years ago to 41,000 years ago depending on 

location (Cartmill and Smith, 2009: 347). 

Duarte et al. (1999) found a mosaic of features in the Upper Paleolithic skeletal remains 

with AMH traits, such as the development of a strong chin, as well as Neanderthal traits, such as 

hyperarctic, or cold-adapted, body proportions, molar formation, and features of the mandible and 
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temporal bones (Zilhão and Trinkaus, 2002). Due to the mosaic of features, they hypothesized 

that the Lagar Velho 1 skeleton was a descendant of a hybridized population between 

Neanderthals and AMH. They concluded from the skeletal evidence that Neanderthals and AMH 

must have interbred (Duarte et al., 1999; Zilhão and Trinkaus, 2002). Tattersall and Schwartz 

(1999) argued against the hybridization argument. Tattersall and Schwartz (1999) reviewed 

Duarte et al. (1999) and derived a new conclusion, that the child was not a hybrid skeleton, but 

had features that are within the variation for early H. sapiens. They claim that what Duarte et al. 

(1999) identified as hyperarctic body proportions associated with Neanderthals is within the 

expectations of a robust AMH child. Additionally, the traits that Duarte et al. (1999) claimed to 

be Neanderthal, such as molar formation and mandibular traits, were reassessed by Tattersall and 

Schwartz (1999) to be typical of AMH. Replacement scholars also suggested that the hyperarctic 

body proportions may not be associated with Neanderthals, but is an adaptation of AMH to colder 

climates, parallel evolution (Stringer, 2001; Cartmill and Smith, 2009). 

To support the hybrid position, scholars compared the limb/body proportions of the Lagar 

Velho 1 skeleton to other AMHs, but found that no other AMH has cold-adapted limb 

proportions, but present tropical adaptations (Zilhão and Trinkaus, 2002; Cartmill and Smith, 

2009). Nor are the limb proportions in the Lagar Velho 1 skeleton the result of nutritional 

influences (Zilhão and Trinkaus, 2002; Cartmill and Smith, 2009). Therefore, they conclude that 

the limb proportions are indicative of admixture when most of the other traits are those of AMH 

(Duarte et al., 1999; Zilhão and Trinkaus, 2002) 

Since the claim of admixture in Lagar Velho 1, the paradigms maintained the division 

between Multiregional and Replacement. The Multiregional and Assimilation scholars both cite 

Duarte et al. (1999) or Zilhão and Trinkaus (2002) as evidence of Neanderthal and AMH 

hybridization (Wolpoff et al. 2004; Smith et al. 2005). Zilhão and Trinkaus state, “Those who had 

taken hard-line positions against any Neandertal-modern human continuity rejected the 

interpretation (of evidence for admixture) without serious consideration” (2002: 26). They also 

state that Tattersall and Schwartz (1999) misunderstood the evidence, accusing them of misuse of 

terminology, lack of biomechanical understanding, and misquoting sources, dramatic accusations 

(Zilhão and Trinkaus, 2002: 26).  

In contrast, Stringer (2008), a Replacement scholar, cites Duarte et al. (1999) as an 

example of evidence that the Multiregionalists depend on, but concludes that the skeleton in 

question is a robust AMH with shorter limbs as a short-term cold adaptation in AMH, the same 

conclusions as Tattersall and Schwartz (1999). Klein, a Replacement scholar, also cites Duarte et 

al. (1999), but remarks that “the anatomical indications are at best ambiguous, and few experts 
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recognize any hybrids” (2003: 1526), implying that this paper is anomalous in the literature. I also 

wonder whom Klein recognizes as experts and whom he excludes from expertise status, since 

many, not a “few”, of the Multiregional and Assimilation scholars who were not directly involved 

with the study do recognize this skeleton as a hybrid.  

Though the two investigations disagree about the ancestry of the Lagar Velho skeleton, 

they both share a conceptualization of a hybrid. Duarte et al. (1999) classify a hybrid as having 

intermediate features between either parental species or a combination of features from both 

parental species, a mosaic. Tattersall and Schwartz (1999) agree that this classification of a hybrid 

may exist in the initial cross between two species, the first and second generations. However, 

Tattersall and Schwartz (1999) differ from Duarte et al. (1999) in that Duarte et al. (1999) 

proposed that the Lagar Velho child was a member of a hybridized population that hybridized 

thousands of years earlier. Tattersall and Schwartz (1999) proposed that the hybrid would not 

exhibit such distinct features 200 generations after the initial interbreeding, though they do not 

suggest what such a hybrid would look like.  

If this skeleton really is a hybrid many generations after the initial cross, then it would be 

expected that other primate hybrids would show the same mosaic of features, though such a study 

has not yet been conducted. The study presented in this thesis is a start, but it only presents a 

model of the first generation of baboon hybrids, which will help in the identification of only the 

first generation of Neanderthal and AMH hybrids. 

A more recent example of potential hybrid population comes from the Les Rois pre-

Gravettian, or Aurignacian, human sample (Ramirez Rozzi et al., 2009; Ahern et al., 2013). The 

evidence for admixture comes from two mandibles and teeth from Les Rois. One mandible and 

several isolated teeth are considered to be AMH because morphometric measurements of the teeth 

are more similar to other AMH samples. The other mandible, with cutmarks, and several isolated 

teeth are attributed to a Neanderthal because large dental size, perikymata numbers on the teeth, 

and the nonmetric traits, such as the distal accessory ridge on the canines, and the presence of 

subvertical grooves at the anterior fovea, were more similar to other Neanderthals. Ramirez Rozzi 

et al. (2009) have hypothesized three different scenarios to account for the evidence: 1) the 

Neanderthal child mandible was left over from consumption and/or used symbolically by AMH 

and only AMH made Aurignacian tools; 2) the population at Les Rois was made up of both AMH 

and Neanderthals who both made Aurignacian tools (possible hybridization); 3) the population at 

Les Rois was composed of all AMH that still presented plesiomorphic characters shared with 

Neanderthals and AMH variation is greater than previously thought. 
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Trinkaus has expanded on Duarte et al. (1999) and continued to propose a mosaic 

hypothesis for the form a Neanderthal and AMH hybrid. Trinkaus (2005) describes the Herto and 

Qafzeh-Skhul remains, identified as early AMH from Africa, as having a “mosaic of archaic 

African and modern human features.” Oase 2 provides an additional example with “parietal bones 

that exhibit the marked curvature of modern humans but a frontal bone that is exceptionally long 

and flat” (Trinkaus, 2007: 7368). Trinkaus (2005) also describes the bridging of the mandibular 

foramena, a Neanderthal trait, in Oase 1, considered a modern human by most authors due to all 

other derived traits. In addition, Trinkaus (2007) identified that ~18% of AMH, such as Brno 2, 

Cro-Magnon 3, Dolní Věstonice 11, Pavlov 1, and Předmostí 1, 2, and 7, have occipital buns, a 

Neanderthal derived trait. Trinkaus argues that the addition of these Neanderthal traits in a mosaic 

of features of early AMH from Africa is an indication of admixture between the two populations.  

In order to evaluate the ancestry of Mladeč 5 and 6, Wolpoff et al. (2001) compared the 

presence of nonmetric traits in Mladeč 5 and 6 to Homo erectus from Java (Ngandong 1, 4, 5, 6, 

9, 10, and 11), early AMH in the Levant (Skhul 4, 5, and 9, Qafzeh 6 and 9, Singa), early AMH in 

Africa (Jebel Irhoud 1 and 2, Laetoli 18, Omo 1 and 2), European Neanderthals (Spy 2, La 

Chapelle, La Ferrassie, and Guattari), and an early AMH in Australia (WLH-50). Wolpoff et al. 

(2001) found that Mladeč 5 and 6 contained about equal amounts of nonmetric traits specific to 

early AMH and Neanderthals, concluding that Mladeč 5 and 6 have AMH and Neanderthal 

ancestry. Wolpoff et al.’s (2001) conclusions should be taken with caution. Bräuer et al. (2004) 

propose that Wolpoff et al. (2001) chose specimens that would support their hypothesis, such as a 

more robust Australian specimen rather than other available specimens that are more gracile. 

Bräuer et al. (2004) also suggests that more features could have been analyzed, and those that 

were analyzed are subject to interobserver error and create a phylogeny that contradicts other 

morphological and genetic data.  

 Ackermann took a different view. Unlike Trinkaus and Wolpoff and colleagues, 

Ackermann et al. (2006) did not specify that the nonmetric traits must be derived from ancestral 

forms, but instead emphasized that some types of nonmetric traits are more prevalent when there 

is genetic stress (such as inbreeding or hybridization), which creates developmental disturbances. 

Ackermann (2010) even argues against the concept of nonmetric ancestral traits as hybridization 

indicators because these nonmetric traits could also be interpreted as retained traits from the last 

common ancestor. To test the developmental disturbance hypothesis, Ackermann et al. (2006) 

used baboons as analogue species and found a higher frequency of nonmetric traits, not 

necessarily an ancestral form, in hybrid baboons compared to parental populations. In gorilla 

skeletal remains, Ackermann and Bishop (2009) found malar sutures, which are sutures on the 
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zygomatic bone, and 2 cases of sutures dividing the parietal bones, as well as anomalous dentition 

in the form of supernumerary teeth, and rotated molars.  

Ackermann (2010) argues that the Lagar Velho 1, Peş̧tera Muierii, and Oase 2 remains, 

which others have argued are hybrids (Trinkaus, 2005; Soficaru et al., 2006), are difficult to 

assess because the size of the population, from which these specimens belong, are too small to 

statistically conclude morphological relationships. Ackermann (2010) also identified possible 

hybrids in the fossil record, such as the Krapina Neanderthals, because they display a high rate 

(36%) of rotated third molars compared to other Neanderthals and AMH (6%), indicating 

hybridization between Neanderthals and some yet unidentified archaic human. She also found 

that Skhul 4, considered an AMH, has rotated premolars (P4), and Skhul 5, considered an AMH, 

displays craniofacial asymmetry, an indicator of developmental instability. Qafzeh 6, 8, and 9, 

considered AMH, have dental crowding and Qafzeh 11, considered AMH, has a rotated left 

premolar (P4). Amud 1, considered a Neanderthal, has a reduced right molar (M3), which is highly 

unusual in other Neanderthals. Oase 2, considered an AMH, shows the opposite and has very 

large third molars. Therefore, changes in developmental timing must also be considered in 

hybridization identification. Ackermann, nor any other scholar that the author knows of, has 

analyzed the nasal cavity for nonmetric traits that could form from developmental instability 

resulting from hybridization, which is the subject of this thesis along with metric analysis. 

Harvati et al. (2007) has come the closest to a comprehensive analysis of a hybrid in the 

fossil record by evaluating the mosaic hypothesis (from Trinkaus, Wolpoff, Duarte and their 

colleagues), the developmental instability nonmetric trait hypothesis (Ackermann), and size 

differences (Cheverud et al., 1993; Schillaci et al., 2005; Ackermann et al., 2006) in Cioclovina, a 

possible hybrid between Neanderthals and AMH. Like Wolpoff et al. (2001) above, Harvati et al. 

(2007) also compared the specimen of interest (Cioclovina) to AMH (from Africa, Levant, and 

Europe), and Neanderthals (from Europe). Harvati et al. (2007) concluded that Cioclovina is not a 

hybrid based on the hybrid models presented in each hypothesis. Cioclovina does not have a 

mosaic of features from Neanderthals and AMH, but all features fall into the range of AMH and 

contemporary humans. Cioclovina does not show any rare nonmetric traits, specifically sutural 

traits. Cioclovina does not show either heterosis or dysgenesis in centroid size (the square root of 

the sum of the squared distances of all landmark to the centroid of the object), though no groups 

differed in this measure. However, heterosis and dysgenesis can occur in hybrids, but on different 

features, as Ackermann et al. (2006) found in baboon hybrids. Therefore, by combining the 

distances of all landmarks to the centroid, the variable heterosis and dysgenesis of different 

features may be hidden.  
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Such an analysis of future skeletal remains should be conducted similarly to Harvati et al. 

(2007) by taking into account the current hypotheses of hybridization. However, hypotheses of 

hybrid form will continue changing in the future and methods of identification from skeletal 

remains must change as well. Combining the different morphological and genetic methods may 

produce the most comprehensive picture of human evolution (Gaubert et al., 2005; Kelaita and 

Cortés-Ortiz, 2013), and overcome the assumptions of the paradigms. Such analyses also prompt 

collaboration between different fields and different paradigms, which should thereby increase the 

11% of shared data interpretation within paleoanthropology (Willermet and Clark, 1995). 

2.2.3 Evidence from Ancient DNA  

The second form of evidence for hybridization in modern paleoanthropology is based on ancient 

DNA (aDNA). Many aDNA studies have already been alluded to above; however, they merit 

their own section due to their high status as the conclusive, objective “truth” in 

paleoanthropology. DNA studies are considered unbiased and removed from the active subjective 

interpretations of morphology and artifacts. The DNA analysis has altered the debate of whether 

hybridization occurred between Neanderthals and AMH. Overall, the DNA evidence indicates 

that at least some minimal hybridization did occur, thereby justifying my search for 

morphological indicators of hybridization. 

In this section, I will demonstrate how these studies are not as objective as they first seem 

due to the numerous assumptions that must be made to make a conclusive statement, assumptions 

such as mutation rates, random mating, demographic variables such as populations size, fertility, 

death, or migration rates. Though technology will continue to improve, allowing us to be more 

confident in the aDNA results, currently, the assumptions made by aDNA studies have led to 

several methodological issues that ought to caution readers. I will also outline several instances in 

which long-standing arguments were reassessed and even swayed by the new aDNA evidence, 

specifically the pivotal articles Krings et al. (1997) and Green et al. (2010). 

First, I will analyze the assumptions of DNA studies in general, and then I will analyze 

the assumptions and methodological issues of aDNA. The technological revolution that allowed 

DNA to be segmented, replicated, and examined pair by pair has, among some incredible 

advancements in research and medicine, led to the development of the phylogenetic species 

concept based on the differences of DNA sequences between taxa. In an oversimplified 

explanation, if the DNA sequences of two taxa (A and B) differ by only 1 pair, while the DNA 

sequences of two different taxa (C and D) differ by 5 pairs, the tenant of the phylogenetic species 

concept would conclude that taxa A and B are more similar to each other than taxa C and D are 
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similar to each other (Kimbel, 1991; Jolly, 2001). However, even to make such a seemingly 

simple conclusion, the researcher must consider what the implications are for choosing a 

particular part of DNA (technology is progressing to allow us to analyze longer and longer 

sequences, but there still must be a functional reason to do so), or choosing an outgroup to 

compare the differences between taxa (for example, taxon E is more distant from A, B, C, and D; 

for example, if A, B, C, and D are different primate populations, E could be a rodent).  

 Though the main purpose of phylogenetic studies tends to be the creation of phylogenetic 

trees, depicting which taxa are related to other taxa, geneticists often also calculate the general 

date of divergence between taxa. They are able to do this by assuming that the greater difference 

between pairs in a DNA segment, the longer the taxa have been separated. Researchers then 

assume a constant substitution rate, specifically the rate that neutral mutations enter the genome, 

by which they can then multiply the number of differences to estimate when species divergence 

occurred from the last common ancestor. This process depends on the “molecular clock” which 

estimates that the substitution rates for a specific clade remains constant for each generation or 

each year regardless of population size (Bromham and Penny, 2003; Pulquério and Nichols, 

2007). However, in many cases, assuming a constant rate of mutation is not accurate. Indeed, 

there is evidence of mutation rates differing in different clades, differences during time periods 

(for example, it is estimated that since the Neanderthal and AMH common ancestor, mutation 

rates increased by 20 times in H. sapiens), or different rates in mitochondrial DNA (mtDNA) and 

nuclear DNA (nDNA) within the same taxon, or different rates at different locations within 

mtDNA (Pulquério and Nichols, 2007; Endicott et al., 2009). Much of the controversy about the 

molecular clock in human evolution is the difference between the dates of divergence generated 

by the molecular clock methods and by the fossil record (Bromham and Penny, 2003; Endicott et 

al., 2009). Of course, dating using chemical ratios, as in radiocarbon dating, and relative dating 

based on artifacts and geological layers also have problems and inaccuracies that cannot 

necessarily confirm or refute the molecular clock dates. 

Such dating inconsistencies have been speculated from site mixing, calibration, 

contamination, or what sample is used for dating. For example, many sites, including late 

Neanderthal and early AMH sites in Europe, have shown mixing of layers. Therefore, the 

principles of geology, such as the oldest layer is below newer layers, cannot be applied. 

Ovchinnikov et al. (2000) had such a site, Mezmaiskaya Cave, where the remains of a 

Neanderthal infant were found. Instead of trusting the approximate dates of the soil and rocks 

around the specimen (~45,000 years ago), they used a radiocarbon accelerator using the bone 

collagen of the specimen itself, providing what they consider a more accurate date for the 
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specimen (~29,195 years ago). Unfortunately, many studies relying on radiocarbon dating may be 

flawed. The recent date for the specimen (~29,195 years ago) was since found to be caused by a 

contamination issue by modern carbon (Skinner et al., 2005). Skinner et al. (2005) analyzed non-

hominin teeth in each archaeological layer using electron spin resonance (ESR) and presented a 

date of ~40,000 years ago for the same specimen. Subsequent radiocarbon dating of the same 

specimen presented a date of ~39,700 years (Pinhasi et al., 2011). Levels of carbon in the 

atmosphere during the last 50,000 years has been recalibrated based on a deep sea sediment core 

and validated by oxygen isotope ratios from an independent dating of ice cores from Greenland 

(Mellars, 2006). These recalibrated dates make sites older than we have previously estimated, 

which may greatly affect interpretation of the Neanderthal and AMH interactions in Europe 

because temporally overlapping sites may no longer have existed contemporaneously (Mellars, 

2006). Cartmill and Smith (2009) suggest that the dates of AMH and Neanderthals may both be 

recalibrated similarly so that the AMH and Neanderthal ranges overlapped for the same amount 

of time, but earlier. These discrepancies create greater gulfs between molecular clock methods 

and radiocarbon methods of dating. 

 For aDNA in particular, there are issues of retrieving the often degraded DNA from 

remains without contaminating the sample. Conditions for the preservation of DNA are very 

difficult to obtain. DNA is naturally broken down by enzymes when cell compartments break 

down after the organism dies, then it may be subjected to waves of bacteria, fungi, and insects 

(Pääbo et al., 2004). Researchers attempt to test and control for preservation by adhering to a set 

of guidelines (Cooper and Poinar, 2000; Gilbert et al., 2005). Researchers check other remains 

from the same area for preservation as well as contamination. They search for other biomolecules, 

such as collagen, which would indicate good sample preservation. Researchers are also cautious if 

they observe long segments of DNA fragments or other unexpected molecular behaviour from 

DNA because it indicates that the DNA degraded to some degree (Cooper and Poinar, 2000; 

Gilbert et al., 2005). Smith et al. (2001) is also concerned with the environmental conditions of 

the sites where the remains are found. For example, the cold temperatures in Mezmaiskaya Cave 

created a great environment for preservation, from which Ovchinnkov et al. (2000) recovered 

ancient DNA from Neanderthal remains. Smith et al. (2001) analyzed 39 Neanderthal cave sites, 

and found only 9 sites that would have the temperature and environmental conditions, such as air 

and soil humidity, soil pH, and phosphorus content of the soil, for DNA preservation 

(Ovchinnikov reply to Smith et al. 2001). Even in ideal circumstances, such as rapid desiccation 

of tissue after death, for example, the method of preservation in Ötzi, the iceman, or when DNA 

is absorbed into a mineral matrix, the DNA will still slowly continue to degrade. If retrieved 
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before complete desiccation, polymerase chain reaction (PCR) may amplify the damaged DNA 

segment to obtain large enough samples to study (Pääbo et al., 2004). However, by extracting the 

DNA from the sample, bringing it to a lab and analyzing it, researchers might introduce 

contaminants, which can compromise the results. 

 Researchers attempt to control for contamination of ancient DNA samples with modern 

DNA. The cautionary tale for researchers to be particular conscious of potential contamination in 

ancient DNA comes from the misattribution of “dinosaur” DNA that was re-analyzed as a Y-

chromosome from modern humans (Zischler et al., 1995; Green et al., 2000). In general, 

guidelines for working with ancient DNA recommend researchers to: i) isolate aDNA samples 

from other projects; ii) use negative control extractions (sample without DNA) and 

amplifications; iii) reproduce results from multiple PCRs and extractions; iv) clone products to 

assess damage, contamination, and amplification errors; v) replicate results by independent 

research groups; vi) quantify the starting templates in the reaction (quantifying the amount of 

original DNA extracted) (Cooper and Poinar, 2000; Gilbert et al., 2005). For research with 

Neanderthals and AMH, in particular, extra caution must be taken due to the similarities between 

genomes. Green et al. (2009) advocate the creation of a library of all possible contaminants in a 

laboratory, as well as a library of each individual sampled in order to decipher fixed differences in 

the Neanderthal genome and contemporary humans. While such libraries are created, Green et al. 

(2009) have proposed additional guidelines for working with aDNA:  

Interim approaches based on mtDNA differences between Neandertals and current humans, 
detection of male contamination through Y chromosomal sequences, and repeated 
sequencing from the same fossil to detect autosomal contamination. (Green et al., 2009: 
2494) 

These precautions are essential for understanding the implications of DNA analysis, especially in 

studies comparing ancient Neanderthal or AMH data to contemporary humans, where the DNA is 

very similar (Krings et al., 1997; Ovchinnikov et al., 2000; Green et al., 2010). 

 To understand the subsequent issues associated with aDNA, it would be useful to employ 

specific examples from paleoanthropology. There are two major periods of genetic investigation 

around the Neanderthal question: the era of mitochondrial (mt) DNA since 1997, followed by the 

first publication of nuclear DNA (nDNA) in 2010. mtDNA provides supportive evidence for the 

Replacement paradigm, but the nDNA provides supportive evidence for the Multiregional and 

Assimilation paradigm. When the evidence supported the presupposed paradigm, the scholars of 

that paradigm celebrated, while scholars of other paradigms developed alternative hypotheses and 

pointed out methodological flaws. However, the evidence from nDNA has led to a surprising 
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theoretical shift by a primary scholar of the Replacement paradigm, transitioning the debate from 

whether or not hybridization occurred, to the extent that it occurred and affected the genome of 

AMH. 

Between 1997 and 2010, genetic evidence in paleoanthropology primarily referred to 

ancient mtDNA. Because mtDNA is inherited from mother to offspring, it was hypothesized that 

if Neanderthals interbred with AMH, then some lineages of contemporary humans, where the 

ranges of Neanderthals and AMH overlapped, would have inherited Neanderthal mtDNA (Serre 

and Pääbo, 2008). In 1991, Krings and colleagues began working on the extraction, amplification, 

and sequencing of the first Neanderthal mtDNA from the right humerus of Neandertal 1, the 1856 

Neanderthal from Germany. In 1997, Krings et al. (1997) published the pivotal study that 

sequenced a segment of the Neanderthal mtDNA and compared the sequence to contemporary 

humans. They concluded that “the Neandertal sequence falls outside the variation of modern 

humans… this suggests that Neandertals went extinct without contributing mtDNA to modern 

humans” (Krings et al., 1997: 19).  

The conclusions of Krings et al. (1997) set off a wave of publications in response. The 

Multiregional and Assimilation scholars argued that thousands of years after interbreeding took 

place, there was selection or genetic drift against the Neanderthal mtDNA lineages after 

interbreeding, both of which would erase the signature of Neanderthal mtDNA in living humans, 

but still recognizes the possibility of interbreeding (Nordborg, 1998; Pearson, 2004; Trinkaus, 

2005; Hawks, 2008). They also argue that the sample size of ancient Neanderthal and AMH 

mtDNA is too small to determine if any lineage has survived (Nordborg, 1998). Concluding 

population level implications from a small sample of the population (in the case of Krings et al. 

(1997), 1 Neanderthal, 2051 contemporary humans, and 59 chimpanzees) is an inherent problem 

with aDNA studies (Gilbert et al., 2005). Serre et al. estimated that “under the model of constant 

population size, about 50 early modern human remains would need to be studied to exclude a 

Neandertal mtDNA contribution of 10%” (2004: 316). However, Arnold and Meyer (2006) argue 

that the mtDNA evidence does not conclusively reject hybridization because nuclear introgression 

can occur between taxa without mtDNA introgression, as observed in chimpanzee subspecies and 

between chimpanzees and bonobos. The Multiregionalists and Assimilationists also argue against 

the conclusions from the mtDNA studies because they place more objective weight on the 

skeletal and archaeological evidence, citing the inherent difficulties of ancient DNA studies 

(Trinkaus, 2007; Churchill and Smith, 2000): “Despite paleogenetic evidence to the contrary, 

consideration of certain morphological details evident in the last Neandertals and the earliest 

modern humans in Europe suggests that this coexistence also entailed a significant degree of 
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genetic exchange as well” (Churchill and Smith, 2000: 106). Therefore, they argue that 

interbreeding still took place, but that the mtDNA evidence does not capture this signature of 

interbreeding. 

Meanwhile, further mtDNA studies were being published, confirming the findings of 

Krings et al. (1997). Ovshinnikov et al. (2000) published the second sequence of Neanderthal 

mtDNA from two ribs of an infant Neanderthal from Mezmaiskaya Cave. Compared to mtDNA 

from 5,846 contemporary humans, Ovchinnikov et al. concluded, “Their [Neandertal 1 and the 

Mezmaiskaya infant] mtDNA types have not contributed to the modern human mtDNA pool. 

Comparison with modern populations provides no evidence for the multiregional hypothesis of 

modern human evolution” (2000: 490). Schmitz et al. (2002) sequenced mtDNA from a 

Neanderthal specimen from Neander Valley (NN1) which was similar (1-4 pairwise differences) 

to previously published sequences of Neanderthal mtDNA. Caramelli et al. (2003) sequenced the 

same region of mtDNA that Krings et al. (1997) sequenced, but this time in two AMH (Paglicci-

25 and Paglicci-12), finding the AMH mtDNA to be very similar to contemporary humans, but 

diverged from the available Neanderthal sequences. Serre et al. (2004) analyzed four additional 

Neanderthals (Vindija 77, Vindija 80, Engis 2, and La Chapelle-aux-Saints) and five additional 

AMH (Mladeč 25c, Mladeč 2, Cro-Magnon, Abri Pataud, and La Madeleine), but found 

Neanderthal-like sequences, based on previous studies, only in the Neanderthals, not the AMH. 

Green et al. (2008) sequenced the first complete mtDNA of a Neanderthal (Vindija 33.16) and 

came to the same conclusions as earlier studies and estimated a small effective population size for 

Neanderthals. Then Briggs et al. (2009) published the entire mtDNA sequences of 5 additional 

Neanderthals (Vindija 33.25, Feldhofer 1 (also known as Neandertal 1), Feldhofer 2, Sidron 1253, 

and Mezmaiskaya 1) and concluded that the effective population size of Neanderthals must have 

been less than 3500 females. Ancient DNA evidence seemed to strongly support the Replacement 

model, for which Replacement scholars were quite excited (Tattersall and Schwartz, 1999; 

Stringer, 2008; Tattersall and Schwartz, 2008). 

 However, the weight of evidence shifted with the publication of Green et al. (2010). 

Green et al. (2010) sequenced segments from three Neanderthal nuclear DNA samples (Vindija 

33.16; Vindija 33.25 and Vindija 33.26) to create a draft of the Neanderthal genome, and then 

compared Neanderthal nDNA to a small sample of modern humans from Europe (n=1), Asia 

(n=2), and Africa (n=2). They concluded that 1-4% of the genomes of contemporary Europeans 

and Asians are derived from Neanderthals, indicating that at least minimal inbreeding between 

Neanderthals and AMH occurred. This DNA evidence supported the Assimilation model and the 

modern Multiregional model. “I jumped up and down when the Neandertal genome came out,” 
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said Fred Smith (Bower, 2012: 24) because Green et al. (2010) provides evidence that supports 

his model, the Assimilation model, which proposed significant interbreeding between 

Neanderthalls and AMH. While Hawks (2012) recognizes that the 1-4% of the genome may be 

caused by polymorphisms between Neanderthals and AMH that existed in both genomes prior to 

their divergence or result from linkage disequilibrium (Eriksson and Manica, 2012), Hawks 

(2012) also believes that not all of the genome similarities can be explained without introgression. 

Yotova et al. (2011) supports the findings of Green et al. (2010) by discovering that 9% of non-

African populations have Neanderthal ancestry in X- chromosomes. 

The response of the Replacement paradigm was varied. Schwartz and Tattersall (2010) 

dismissed the evidence as uncorroborated, placing more weight on the skeletal evidence to 

support their model: 

Whether or not this conclusion will stand as more data come in, it is most likely on the 
basis of current knowledge both of the fossil record and of the effects of hybridization on 
morphology that H. neanderthalensis made no identifiable morphological contribution to 
any known fossil (or modern) population of H. sapiens. (Schwartz and Tattersall, 2010: 
118) 

However, many researchers, such as Trinkaus and Smith, would argue that transitional forms, or 

hybrids, between Neanderthals and AMH exist (see Section 2.2.2). In 2011, in a section about the 

genetic evidence for hybridization in a broad review of recent human origins, Tattersall cites the 

mtDNA evidence (Serre and Pääbo, 2008) as proof that interbreeding did not occur, as “there was 

clearly no biologically significant genetic interchange” (2011: 49). Tattersall (2011) does not 

acknowledge the Green et al. (2010) article when discussing Neanderthal introgression, even 

though the 2010 article (Schwartz and Tattersall, 2010), quoted above, makes it clear that he was 

familiar with the nuclear DNA evidence from Green et al. (2010).  

One Replacement scholar, Chris Stringer, altered his view after the publication of Green 

et al. (2010). Prior to Green et al. (2010), he hypothesized that there was no interbreeding 

between Neanderthals and AMH (Stringer, 2008), but after Green et al. (2010), he incorporated 

into his hypothesis that there may have been some interbreeding (Stringer, 2012). Stringer added 

that the extent of interbreeding is limited and does not significantly affect or alter the genome of 

AMH nor contemporary humans, differentiating his view from the Assimilation model (Stringer, 

2012). Stringer’s modified view is known as the Mostly Out of Africa model, originally 

developed by Relethford (2001) and is very similar to the model developed by Templeton (2002) 

(Bower, 2012). However, these models (Relethford, 2001; Templeton, 2002) are specific to 

genetic evidence, while the Assimilation model accommodates evidence from any method and 
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was the first to propose interbreeding between Neanderthals and AMH with a strong influence 

from Africa (Smith et al., 1989).  

 Combining the results of the mtDNA and nDNA, Neanderthals and AMH probably did 

interbreed to some extent. Mason and Short (2011) attempted to unite the DNA evidence by 

suggesting that male Neanderthals must have mated with female AMH in order to introduce 

Neanderthal nDNA, but not maternally inherited mtDNA into the genomes of contemporary 

humans. This mating pattern may be consistent with hybrid zone theories, in particular 

heterozygote advantage, which suggests that females will chose mates from a different population 

when they enter a new habitat and disassortative mating may potentially give hybrid offspring 

advantageous alleles (Seehausen, 2004; Pfennig, 2007). For example, it is possible that 

Neanderthals contributed immunity to Northern diseases to the immigrating population, AMH, 

which would increase fitness (Mendez et al., 2012).  

2.2.4 Archaeological Evidence  

The archaeological record preserves the material culture of the Neanderthals and AMH. Binford’s 

middle range theory and Spaulding’s view of archaeology classifies archaeologists as 

ethnographers of the past, interpreting culture from artifacts (Lyman, 2007). The paradigms differ 

in how they perceive culture in Neanderthals and AMH from artifacts, interpreting Neanderthals 

as either less or equally sophisticated and complex as AMH culture. Beneath this perception lies 

the assumption that mate selection is dependent upon recognition of the other taxa as similar 

enough to mate, both physically and culturally. Therefore, if Neanderthals had a culture and 

intelligence that AMH could relate to and if AMH viewed Neanderthals as physically similar, and 

vice versa, Neanderthals and AMH would recognize each other as potential mates, leading to 

hybridization. Mate recognition is the central argument to the species concept of Recognition 

(Kimbel, 1991; Tattersall, 1991). Unfortunately, culture, intelligence, and mating preferences are 

very difficult to impossible to quantify from the incomplete archaeological record.  

While interpreting the archaeological record, scholars can be biased by subconscious 

preconceived assumptions of Neanderthal intelligence based on their paradigm alignment. In 

particular, the Replacement scholars have a preconception of Neanderthal culture as too simplistic 

and Neanderthal skeletons as too archaic and distinct to be recent human ancestor. The paradigm 

thinking removes the possibility of Neanderthals interbreeding with AMH to become ancestors of 

contemporary humans (Willermet and Clark, 1995). They are rejecting hybridization due to 

paradigm thinking established by historical academic and public perceptions of Neanderthals. 

Paradigm thinking also permeates into preconceptions held by Multiregional scholars, who view 
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Neanderthals as intellectual and cultural equals to AMH and as not so distinct that mating would 

not occur. For a Multiregional scholar, it would be logical that Neanderthals and AMH interbred, 

just as throughout history, human populations interbred with foreigners. 

Paradigm Thinking in Archaeology 

Archaeologists interested in interbreeding between Neanderthals and AMH focus on two 

temporal periods in Europe, the Middle and Upper Paleolithic, when Neanderthals and AMH may 

have come into contact. The Middle Paleolithic occurred from ~ 250,000 years ago to, 

conservatively, ~40,000-50,000 years ago (Klein, 2000) or 28,000-41,000 years ago in central 

Europe (Churchill and Smith, 2000; Cartmill and Smith, 2009), depending on the sites being 

dated. The Middle Paleolithic was followed by and, to some extent, overlapped with the Upper 

Paleolithic which occurred between 50,000 or 30,000 years ago to ~10,000 years ago (Klein, 

2000).  

The Middle Paleolithic stone tool assemblage, called the Mousterian assemblage, is 

associated in the archaeological record with Neanderthals in Europe. Neanderthals are assumed to 

be the toolmakers because Neanderthal skeletal remains have been found alongside Mousterian 

tools and Neanderthals were also the only known hominins in Europe at this time (Klein, 2000; 

Smith et al., 2005). The Mousterian tools are considered more advanced and varied compared to 

the assemblage that existed earlier in association with Homo erectus, the Acheulean assemblage 

(Klein, 2000). The archaeological record shows that at start of the Upper Paleolithic, a new 

assemblage appeared, the Aurignacian. The Aurignacian is associated with AMH because it 

coincides with the timing of migration out of Africa and is found with AMH remains. Compared 

to the Aurignacian assemblage, the Mousterian assemblage is considered to be more homogenous 

and less complex (Klein 2000; Klein 2003). 

In Africa, the Replacement scholars report that H. sapiens experienced a major leap in 

mental capacity between 50,000-70,000 years ago, the start of the Late Stone Age (Klein, 2000; 

Klein, 2003; Bower, 2012). Prior to this leap, H. sapiens tool assemblage in Africa resembled the 

Mousterian tools, but after the leap, the tool assemblage was more varied and geographically 

distinct, becoming the Aurignacian assemblage in Europe when H. sapiens migrated (Klein, 

2000; Klein, 2003). The Replacement advocates, as well as many unassociated scholars, propose 

a rapid replacement of the Mousterian assemblage by the Aurignacian assemblage after 40,000-

50,000 years ago, the same time period that AMH migrated to Europe (Klein, 2000) (See Sextion 

1.2 for alternative estimates of dates for AMH arrival in Europe). The Replacement scholars 

extend the implications that only AMH are associated with the Aurignacian assemblage, making 
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the claim that only AMH had the mental capacity to create a more complex assemblage with a 

greater variety of tool types, different materials for the creation of tools, and the beginnings of art 

(Klein, 2000; Klein, 2003). The Replacement scholars propose that the Neanderthals lacked the 

mental capacity to create the more complex tool assemblage (Klein, 2000; Klein, 2003; Wolpoff 

et al., 2004).  

Other scholars have disputed the leap in mental capacity. Instead of a sudden change in 

technology, scholars have found evidence of a gradual shift in Africa over 30,000 years between 

the Mousterian-like artifacts in the Middle Stone Age, or the Middle Paleolithic in Europe, to the 

more complex Aurignacian-like assemblage of the Late Stone Age, or Upper Paleolithic in 

Europe (McBreaty and Brooks, 2000; Cartmill and Smith, 2009). Indeed, stone points from the 

more complex assemblage began appearing in Europe and Africa prior to when researchers 

believe AMH moved into Europe. Therefore, Neanderthals would have been making these 

complex tools in Europe (Lazuén, 2012). The Middle Stone Age technology was also found in 

association with AMH. McBreaty and Brooks (2000) argue that a leap in mental capacity did not 

occur because the physical adaptations in skull structure occurred long before the Late Stone Age 

technology developed. Therefore, the transition was probably not the result of a leap in mental 

capacity. However, if AMH in Africa were using tools similar to those used by Neanderthals 

during the Middle Stone Age, or the Middle Paleolithic, then it is possible that the argument that 

Neanderthals lacked the mental capacity to create more complex tools is inaccurate. 

Preconceptions of Neanderthals 

Anthropologists, like all people who are exposed to the general media, may hold preconceived 

notions about human ancestors. The Replacement scholars may hold preconceived notions of 

Neanderthal and AMH intelligence. Multiregionalist scholars, view Neanderthals as intellectual 

and cultural equals to AMH. The notion that Neanderthals lacked mental capability may stem 

from depictions of Neanderthals in the popular media that exclude Neanderthals from the 

definition of human. These depictions often show the Neanderthals as brutish, non-human, ape-

like creatures, which developed rapidly after the initial discoveries of Neanderthals (Drell, 2000; 

Sommers, 2006). These preconceptions in both paradigms influence how scholars interpret 

archaeological evidence. 

After the publication of Charles Darwin’s On the Origin of Species in 1859, Neanderthals 

became the first recognized fossil ancestor, though its place in human ancestry was contested. 

Evolutionary theory at the time hypothesized the existence of a missing link that contained 

human-like features, in particular a large brain, and ape-like features in the general body form. 
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The Neanderthal’s image adopted the intermediate features that researchers hypothesized (Moser 

1998: 136). The first image of a Neanderthal to the public depicts a brutish Neanderthal and 

appeared in 1873 in Harper’s Weekly based on a skeleton from Neander Valley with the 

accompanying text: “A more ferocious-looking, gorilla-like human being can hardly be 

imagined” (Moser, 1998: 137; Drell, 2000: 9) (Figure 1a). In 1886, Maximim Lohest 

reconstructed a Neanderthal based on the Spy 1 Neanderthal anatomy, which he and Julien 

Fraipont interpreted to have been ape-like, walking with bent knees (Trinkaus and Shipman, 

1993; Drell, 2000) (Figure 1b).  In 1909, anatomist Marcellin Boule and illustrator Frantisek 

Kupka reinterpreted the image of the Neanderthal as even more ape-like with a hunched, 

awkward walk (Figure 1c). Boule provides support for this view by using his authority as an 

anatomist, by rigorously examining and documenting the La Chapelle-aux-Saints Neanderthal 

skeleton to create what he believed to be a scientific portrayal (Drell, 2000; Sommer, 2006). 

Boule compared the skeleton to apes and humans, but emphasized the ape-like features, resulting 

in a reconstruction of strong prognathism, a thrust forward head, and a hunched back of an ape 

rather than an upright bipedal spine, moderate prognathism, and modern-like head balance over 

the spine (Drell, 2000: 6).  

Boule considered Neanderthals a missing link, but not a direct ancestor to contemporary 

humans (Drell, 2000; Sommer, 2006). In the illustration of the La Chapelle-aux-Saints 

Neanderthal, which has been reprinted many times and remains iconic today, Boule presents a 

view of Neanderthals as the cultural “other,” developing a rift between “us” (contemporary 

humans) and “them” (Neanderthals) (Sommer, 2006).  

His [Boule’s] conclusions were to influence the image of Neanderthals more than any 
previous deductions; they were scientific, detailed, rigorous and methodologically 
unimpeachable, but also building upon earlier work. Boule described each part of the 
skeleton systematically and compared it to other Neanderthal material, apes and humans. 
(Drell, 2000: 6). 

Yet, the well-known image of Boule’s Neanderthal is a brutal creature hunched around a cliff, 

waiting to attack with his primitive club. Because Boule believed that he had scientifically 

examined the skeleton, though it is apparent now that his reconstructions were flawed, this image 

was considered an accurate representation that continued to influence scientists’ understanding of 

Neanderthals (Drell, 2000: 9). However, this Neanderthal image is of “an evolutionary failure: a 

brutish, club-bearing caveman” (Sommer, 2006: 231), which has no claim as a direct ancestor of 

modern humans. 
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The image in the minds of Multiregional and Assimilation scholars portrays Neanderthals 

with modern human-like intelligence, fully capable of being human ancestors. This image 

appeared about half a century after Neanderthals were originally discovered. In 1911 (Figure 1d) 

Sir Arthur Keith commissioned a drawing with artist Amadée Forestier of the same La Chapelle-

aux-Saints skeleton in response to Boule’s depiction in 1909 (Sommer, 2006; Moser, 1998). 

Keith advocated a human-like rather than an ape-like Neanderthal in order to depict Neanderthals 

as the ancestors to the oldest AMH skeleton then known, the Galley Hill Man (Sommer, 2006). 

The drawing, entitled ‘Not in the “Gorilla” stage,’ in response to Boule’s interpretation, portrays a 

modern human-like ancestor: a groomed, clothed, and adorned pensive man sitting in his cave by 

a fire and using a stone tool to work bone after a presumably successful hunt (Drell, 2000; 

Sommer, 2006: 230). However, at the time, there was no evidence to depict this skeleton with the 

cultural artifacts shown in the drawing. This image is just as biased as Boule’s, but in the opposite 

direction.   

In part, the images and paradigms are influenced by concepts of human uniqueness. Since 

Linnaeus, scientists have been trying to draw a line between humans and animals, often focusing 

on culture, measures of intelligence, language capability, and, biologically, relative brain size 

(Cartmill, 1990). Scientists have a tendency to consider humans special and unique from other 

animals. Therefore, “the stories that we tell about human origins, even if they are true stories, are 

myths; and the general point of those stories is explaining – and legitimating – human control and 

domination of nature” (Cartmill, 1990: 178). Many lines have been drawn separating modern 

humans from pre-modern humans, early human lineage from other ape lineages, and humans 

from animals. 

During the last century, the definition of human was challenged by new fossil findings, 

such as the australopithecines, and first members of the genus Homo. Scientists placed 

australopithecines in the lineage of modern humans because they had the unique trait of 

bipedalism, separating them from other apes.  

The distinction between Australopithecus and Homo, is cranial capacity, a proxy for brain 

size, though not the ability to make tools (Cartmill and Smith, 2009). “It is tempting to think that 

stone tools are the exclusive hallmark of the genus Homo, but that proposition cannot be 

demonstrated by the archaeological record” (Cartmill and Smith, 2009: 265). Scientists have now 

witnessed tool use in a variety of species of monkeys, apes, birds, and more. Primatologists and 

others who study the complex structures of animal life, have found that, in the words of Jane 

Goodall from her TED talk, “There isn't a sharp line dividing humans from the rest of the animal 
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kingdom. It's a very wuzzy line. It's getting wuzzier all the time as we find animals doing things 

that we, in our arrogance, used to think was just human.”  

Prior to the 1970s, the groups now known as Homo heidelbergensis, Homo sapiens, and 

Neanderthals were considered the same species, archaic Homo sapiens. They were grouped in the 

same species designation as contemporary humans because they shared an average brain-size 

with contemporary humans. However, they were termed “archaic” because they still displayed 

primitive-looking cranial morphology (Cartmill and Smith, 2009: 292-293).  

The differences in anatomy and technology classified Neanderthals as dissimilar to 

modern humans (being the people who produce agriculture, build cities, and explore space), 

which, anatomically, the AMH were considered to be. Neanderthals became an “other” to which 

modern humans can be compared (Sommer, 2006: 209). Some researchers have argued that H. 

sapiens are the only “symbolic” species, as seen in their complex artifacts, and therefore are more 

intelligent than Neanderthals (Holliday, 2008). Intelligence may be a prezygotic isolating 

mechanism that prevented mate recognition between AMH and Neanderthals (Holliday, 2008). If 

it were shown that Neanderthals have equally complex tools and symbolic cultures, would their 

placement within human history move over the line to accompany modern humans, oe will thye 

always be the cultural “other”? 

Neanderthal Culture 

Multiregional and Assimilation paradigms view Neanderthals as containing the mental capacity 

for complex culture and technology. These paradigms propose that the Aurignacian technology 

may have been made by both Neanderthals and AMH, because there was a transition from 

Mousterian technology to Aurignacian technology by region (Wolpoff et al., 2004; Smith et al., 

2005). They argue that there is no evidence of precursors to Aurignacian tools outside of Europe, 

and that the Aurignacian assemblage varies geographically, following Mousterian regional 

differences (Smith et al., 2005). The archaeological site, Arcy-sur-Cure, which dates 40,000-

38,000 years ago, contains a unique assemblage of tools, Châtelperron, which are considered 

evidence of the transition to a more advanced and varied technology. These tools that are both 

Mousterian- and Aurignacian-like, also known as transitional tools, were found in association 

with Neanderthal remains at Arcy-sur-Cure (Churchill and Smith, 2000; Klein, 2000; Smith et al., 

2005). Two hypotheses explain this transition: the influence of AMH culture on Neanderthals, 

who may have the mental capacity to copy more complex and specialized technology, but not to 

conceptualize it themselves (Klein, 2000); or Neanderthals developed Aurignacian assemblages 

independently from any external influence (Smith et al., 2005). Transitional tools between the 
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Middle and Upper Paleolithic have been identified in the fossil record since the late 19th century 

(Tartar, 2012). There is little evidence to conclude which hypothesis was more probable because 

Aurignacian assemblages are often not found in association with any skeletal remains. When they 

are found with skeletal remains, artifacts are often found with isolated teeth, which are difficult to 

assign to one species or the other (Churchill and Smith, 2000; Smith et al., 2005; Svoboda, 2005; 

Bailey et al., 2009).  

Other Neanderthal culture has also been discovered at Neanderthal sites. At Arcy-sur-

Cure, Neanderthals made personal ornamentation and built permanent structures (Churchill and 

Smith, 2000; Klein, 2000; Smith et al., 2005). They cared for their sick and injured, which let 

them survive after teeth were lost and heal after traumatic injuries (Hublin, 2009). In addition, 

evidence from pollen associated with flowers and found with Neanderthal remains even 

suggested that Neanderthals held burials for their dead (Solecki, 1971). Speculatively, 

Neanderthals may have had a form of language because they have the FOXP2 gene, which is 

essential to speech, and appropriate anatomical adaptations (Krause et al., 2007). 

 The archaeological evidence about the sophistication of Neanderthal culture is 

inconclusive. Though there is evidence of culture, presented above, a lot of additional evidence 

has effectively been retracted. For example, the new dating of the personal ornamentations, 

including an ivory ring, that were found at Arcy-sur-Cure, no longer fall within the Middle 

Paleolithic, but are probably from the “Proto-Aurignacian” level above, about 35,000 years before 

present and associated with AMH (Mellars, 2010). However, this proposition has been countered 

by Caron et al. (2011). Experimental archaeology has found that the famous Mousterian “flute” 

made of a cave bear femur is probably the result of carnivore activity, though the debate between 

Neanderthal manufacture or carnivore activity continues (Morely, 2006; Tuniz et al., 2012).  

Attempting to identify cultural sophistication from artifacts is a very difficult task that 

will probably never be conclusive. Even if the two groups, Neanderthals and AMH, recognize the 

other as physically similar, and they have overlapping territories, culture may still be an effective 

barrier to reproduction because they may not recognize the other as a potential mate. It would be 

much more difficult for hybrids to occur in such a context. However, interpretation of artifacts is 

influenced by the preconceived assumptions, from century old images, about Neanderthal 

intelligence associated with the paradigm under which that particular scholar was educated and 

continues to analyze evidence. The cultural potential for hybridization is influenced strongly by 

paradigm thinking, which may be behind the conclusions that Neanderthals could or could not be 

the ancestors of contemporary humans from the inconclusive, incomplete archaeological record. 
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2.2.5 Summary 

This chapter summarized the theory behind the outcome after divergent populations come back 

into contact. Depending on a variety of ecological and demographic factors, populations can go 

extinct, fuse, create new species, or remain genetically isolated. These outcomes have become a 

conservation concern for small primate populations that are forced into contact due to habitat 

destruction and fragmentation by humans. The implications of this theory for Neanderthals and 

AMH will be discussed in Chapter 6. 

 Forms of evidence for Neanderthal and AMH hybridization have also been analyzed. 

Skeletal and genetic evidence has been interpreted as evidence both for and against hybridization, 

though the latest genetic evidence most strongly supports hybridization. Despite this evidence, 

researchers associated with opposite paradigms disagree about the cultural potential for 

hybridization, assuming that Neanderthals are or are not intelligent and sophisticated enough to 

be the ancestors of contemporary humans based on the archaeological evidence. I can justify the 

purpose of conducting research to identify trends associated with hybridization through the 

skeletal and genetic evidence, though I may never be able to convince Replacement scholars that 

hybrids may have existed because such a possibility lies outside of their paradigm thinking. By 

explaining the reasoning behind the interpretation of archaeological evidence, I hope to have 

convinced the reader that hybridization was possible and that the reason for my research is 

substantiated. 
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Chapter 3  

Research Design 

This project employed an analysis of the nasal cavity in analogue species (olive and yellow 

baboons) to identify morphological, metric and nonmetric, indicators of hybridization. These 

indicators were applied to the fossil record to identify potential hybrids between Neanderthals and 

AMH. The choice of studying baboons is discussed in Section 3.1 and the choice of analyzing the 

internal nasal cavity is discussed in Section 3.2. 

3.1 Selection of Analogue Species: Olive and Yellow Baboons 

It is not possible to perform a direct analysis of morphometric traits in Neanderthal and AMH 

hybrids because researchers currently have no way to verify which specimens are hybrids. Any 

traits discovered on a Middle to Upper Paleolithic specimen thought to be a hybrid can also be 

argued to be at the extreme end of variability for either species, as Tattersall and Schwartz (1999) 

stated in response to Duarte et al. (1999). It is also not possible to analyze the skeletons of 

contemporary H. sapiens because all humans living today are the same species, therefore hybrids 

today do not exist. It would be interesting to study the skeletons of offspring from parents who 

are both adapted to different environments, such as cold to hot adapted, or high altitude to sea 

level adapted, humid to dry adapted, etc. However, such collections are rare and the research may 

be hindered by the politics surrounding race, and ownership of human remains.  

Because the species of interest cannot be examined directly, a model of similar species 

and their hybrids was used to understand morphological changes in hybrids. For this study, 

baboons, specifically olive baboons (Papio anubis), yellow baboons (Papio cynocephalus), and 

their first generation hybrids (Papio anubis x Papio cynocephalus), were used as analogue 

species for Neanderthals, AMH, and their hybrids.  

Due to similar genetics, anatomy, and physiology, baboons are often used as an analogue 

species for hominins. Baboon DNA sequence is very similar to humans (Caccone and Powell, 

1989), as well as the sequence of genes in the DNA (Rogers and Hixson, 1997), and the 

placement of loci on chromosomes (Rogers and Hixson, 1997). The divergence of baboons and 

modern humans, when the last common ancestor lived, was relatively recent. The hominid clade 

leading to humans and chimpanzees split from the catarrhine clade, the old world monkeys, 25 

million years ago compared to 5-6 million years ago when the clade leading to modern humans 
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split from the clade leading to modern chimpanzees (Page and Goodman, 2001). To put this in 

perspective, the last common ancestor between all primates existed 55.8-50.3 million years ago, 

and the last common ancestor between all placental mammals lived about 64.85 million years ago 

(O’Leary et al., 2013). 

3.1.1 Public Issue 

Non-human primates are often used as analogue species to examine a wide variety of research 

questions, from genetics and diseases to possible hominid behaviour and social structure, which 

cannot be analyzed directly in modern humans due to logistical and ethical limitations. Studying 

non-human primates also faces ethical issues such as the physical or mental harm to intelligent 

primates in order to conduct research. Often these types of studies are justified with the argument 

that the research will ultimately save x number of human lives. Fortunately, in recent years, there 

has been a movement to scrutinize research involving non-human primates and to provide care in 

primate sanctuaries after the experiments are completed, rather than euthanasia (Carlsson et al., 

2004; Drummond, 2009).  

Many primatologists also travel to wild populations of primates to observe their ecology 

and behaviours (for baboons Maples and McKern, 1967; Dunbar and Dunbar, 1974; Phillips-

Conroy and Jolly, 1981; Samuels and Altmann, 1986; Alberts and Altmann, 2001; Charpentier et 

al., 2012). In order to avoid human interaction, researchers decide to tediously collect and analyze 

DNA from feces rather than the more easily studied form of blood or tissue, such as in Tung et al. 

(2008). Research from wild populations provides valuable insights into human ancestry and the 

evolutionary development of behaviours, communication, residence patterns and other cultural 

traits that living humans have today. Research on wild populations and primates in protected 

sanctuaries also benefit the primates directly, leading to the protection of their habitats (Detwiler 

et al., 2005). Though this form of research also has its ethical issues, such as how or when 

humans should intervene to save a primate population. For example, should a researcher give 

medicine or food to the animals they are studying? Is advocating for long-term conservation 

essentially the same intervention as giving immediate relief of disease or food shortages that may 

have also been caused by humans? Should primate conservation be a greater priority than the 

needs and cultures of the people who occupy the same territory as primates, including poachers or 

farmers who kill them? These are public issues that primatologists turned conservationists and 

activists struggle with. These are also issues that had to be faced in this study because baboon 

skeletal remains were used. 
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3.1.2 Study Sample 

The baboons analyzed in this thesis led relatively normal baboon lives at the Southwest National 

Primate Research Centre (SNPRC) in San Antonio, Texas. The baboons lived in captive colonies, 

allowing them to interact with one another with little human interference within a large fenced off 

area (Joganic J, Personal communication). When the animals died of natural causes, the remains 

were cleaned and curated by Jessica Joganic at the Department of Anatomy and Neurobiology at 

Washington University (Ackermann et al., 2006; Johanic J, Personal communication).  

 This study is analyzing the same skull collection as Ackermann et al. (2006) and will be 

compared to Ackermann et al. (2006) throughout. 

This baboon collection is extremely valuable as it is the only collection that the author 

knows of which contains both parental species and hybrids along with seven generations of 

pedigree and genetic information. The original yellow and olive populations were captured from 

the wild from southern and western Kenya more than 30 years ago (Maples and McKern, 1967; 

Newman et al., 2004). Because they were wild caught, the populations probably experienced 

founder effect when they entered the captive colony, which created a genetic bottleneck resulting 

in less genetic diversity. Acknowledging this founder effect, this study cautiously interprets the 

results in a model of limited genetic diversity. Researchers maintained a purebred population and 

controlled inbreeding by housing one breeding male with 10-30 females. Only one male was 

housed with the females to ensure pedigrees and record the parents of each offspring. However, 

when purebred populations began to shrink, increasing inbreeding and decreasing heterozygosity 

in the population, the researchers decided that admixing between olive and yellow baboons was 

preferred over inbreeding to maintain a healthy population. Researchers know the pedigrees and 

% admixture of the olive x yellow hybrids (Mahaney MC, Personal communication). Only by 

knowing the pedigree of the baboons, is it possible to associate specific traits with known hybrids. 

However, this created a scenario of artificial mating selection, where the researchers chose 

the male that would be housed with the females rather than the females choosing the males or the 

males competing for access to the females. Thus, sexual selection was removed from the 

population conditions. This has implications for the interpretation of male and female differences, 

especially sexual dimorphism, as discussed in Chapter 4. 

Many museum collections do not have information on pedigrees because the specimens 

were wild caught and thus family histories were unknown, or it was not considered important to 

distinguish between species or knowledge of interbreeding was unknown at the time of capture. 

Hopefully, the identification of traits related to both parental species and hybrids, as presented in 

this study and in Ackermann et al. (2006), will help museum curators correctly identify their 
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specimens whose species and/or collection location is unknown. Indeed, Ackermann and Bishop 

(2009) applied this concept to museum specimens of gorillas to identify eastern and western 

species and their hybrids, with the assumption that hybrids had a higher frequency of nonmetric 

traits. From the location the specimens were obtained and through analysis of traits, they were 

able to identify a hybrid zone in gorillas (Ackermann and Bishop, 2009). 

3.1.3 Species Concepts 

Evolutionary History 

Baboon hybrids share a similar evolutionary history as Neanderthal and AMH hybrids. The two 

species of baboons in this study, Papio anubis (olive) and P. cynocephalus (yellow) diverged 

from each other about 160,000 years ago based on mitochondrial genetic evidence (Jolly et al., 

1997; Jolly, 2001; Newman et al., 2004). Anthropologists estimate that Neanderthals and AMH 

diverged 410,000-440,000 years ago (Endicott et al., 2010), or 270,000-440,000 years ago (Green 

et al., 2010). Holliday (2008) hypothesized that Neanderthals and AMH were not diverged long 

enough that viable hybrids could not be produced because their divergence time is conservatively 

half as long ago as the split between Thomson’s gazelles and red-footed gazelles, which shows 

the most rapid onset of postzygotic isolating mechanisms currently known. Though the 

divergence time differs for the two clades, the baboon species and the Neanderthals and AMH 

populations would have had enough time to adapt to their environments through natural selection, 

creating unique features. These are the features that may be altered during hybridization, such as 

differences in shape, size, and frequency of metric and nonmetric traits in this study.  

However, divergence time was not long enough, or divergent selection was not strong 

enough to create major barriers to reproduction when the olive and yellow baboon species re-

encountered one another in Amboseli, Kenya. Researchers were fortunate to record the 

development of the first hybrid zone between olive and yellow baboons with the migration of the 

first male olive baboon into a yellow baboon group 50 years ago (Maples and McKern, 1967; 

Samuels and Altmann, 1986; Jolly, 2001). These and other studies of the Amboseli hybrid zone 

will be discussed in Section 6.1. 

Similarly, Neanderthal and AMH territories may have overlapped for about 14,000 years 

(see Section 1.2), which would have given Neanderthals and AMH an opportunity to interbreed 

(Cartmill and Smith, 2009; Smith et al., 1999). However, it is not known when the Neanderthal 

and AMH hybrid zone began or how it functioned, which is hypothesized in Section 6.2. 

Species Classification 
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Taxonomists examining the genus Papio, baboons, have compared the debate of how to classify baboon 

species or subspecies with how to classify Neanderthals and AMH (Jolly, 2001). Are olive and yellow 

baboons distinct species due to unique adaptations to different environments though they cannot interbreed, 

and therefore classified as P. anubis and P. cynocephaus respectively? Or are olive baboons and yellow 

baboons the same species because they can interbreed, and therefore be classified as P. papio anubis and P. 

papio cynocephalus respectively? Some taxonomists consider them different species (Samuels and 

Altmann, 1986; Samuels and Altmann, 1991; Detwiler et al., 2005; Arnold and Meyer, 2006), while others 

consider them subspecies (Zinner et al., 2009). Jolly (2001) avoids the species or subspecies debate by 

classifying these baboon populations as “allotaxa:” “phylogenetically close, but well-differentiated and 

diagnosable, geographically replacing forms whose ranges do not overlap, but are either disjunct, adjoining, 

or separated by comparatively narrow zones in which characters are clinally distributed” (Jolly, 2001: 

193-194), “morphologically diagnosable, yet not reproductively isolated” (Jolly, 2001: 177). 

Similarly, paleoanthropologists have debated classifying Neanderthals and AMH as 

different species, Homo neanderthalensis and Homo sapiens, implying that interbreeding has not 

taken place, or as subspecies of the same species, H. sapiens neanderthalensis and H. sapiens 

sapiens respectively, implying that hybridization could take place. These classification questions 

have been asked of Neanderthals and AMH since their initial discovery (Sollas, 1908; Hrdlička, 

1927; Stringer, 2002; Wolpoff et al., 2004; Smith et al., 2005; Tattersall and Schwartz, 2008; 

Stringer, 2008; Ahern, 2008). Therefore, it is worth questioning the definition of species.  

Species Concepts 

Several definitions of species concepts were offered in Chapter 2 during the analysis of skeletal 

remains, ancient DNA, and artifacts. Often, the definition of species in the literature implies a 

degree or ability of species to interbreed, referred to as the “biological species concept”. Mayr’s 

(1942: 120) definition of the biological species concept is often evoked: “species are groups of 

actually or potentially interbreeding natural populations, which are reproductively isolated from 

other such groups,” emphasizing reproductive isolation. In terms of AMH and Neanderthals, if 

they are labeled as different species, then, according to the biological species concept, they could 

not breed. However, there are many examples of populations that humans have labeled as species 

that do interbreed, such as the two howler monkeys Alouatta guariba climatins and Alouatta 

caraya (Agostini et al., 2008; Aguiar et al., 2008).  

The genetics of the olive, yellow, and hybrid populations were studied to deduce both long-

term isolation, (Newman et al., 2004) and past hybridization events that influence current 

distributions (Zinner et al., 2009). Using genetic differences to classify species into related 
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ancestral clades invokes the phylogenetic species concept. Studies using phylogenetics are 

considered the gold standard for understanding how species are related through evolution. 

A species exists whether or not we are able to detect its diagnostic character(s), but in order 
for the species category to be useful in evolutionary analyses of any kind, two species must 
differ from one another in at least one intrinsic, diagnostic attribute (phenotypic or 
genotypic). (Kimbel, 1991) 

Therefore, the phylogenetic species concept leaves open the opportunity for interbreeding, but is 

still able to distinguish the parental populations.  

Since both species definitions [biological and phylogenetic] use the same basic attributes of 
populations (pheno- and zygostructure), merely differing in how to weight them, we should 
focus on describing these attributes, and shelve indefinitely the largely bogus ‘species 
problem.’ (Jolly, 2001: 193) 

I tend to agree with Jolly: arguing about whether or not a population falls within a species, 

subspecies, allotaxa, etc., is not particularly useful ecologically. Species concepts are human 

constructs of nature, attempting to systematically divide nature into smaller components. 

However, natural populations often break these rules, for which different species concepts would 

define them differently. “The question regarding the appropriate taxonomic level is more a matter 

of philosophy, depending largely on the underlying species concept” (Zinner et al., 2009: 84).  

 If a population is defined as a species by one concept, it does not mean that it meets the 

assumptions of any other concept. In the fossil record, scientists can only really classify extinct 

populations by identifying morphological differences on the skeletal remains. According to the 

morphological species concept, morphological differences between populations would make them 

different species (Arnold and Meyers, 2006). As explained in Section 2.2.2, Neanderthals and 

AMH have many different morphological features that let anthropologists readily identify a 

cranium as Neanderthal or AMH, which would make them different species according to the 

morphological species concept. However, we currently do not have enough DNA evidence for the 

two populations to classify Neanderthals and AMH using the phylogenetic species concept. Nor 

are we able to observe interbreeding events that would classify them as the same species in the 

biological species concept. However, if they are separate species according to the morphological 

species concept, it does not mean that they necessarily cannot interbreed, a conclusion that some 

authors jump to, such as: 

Yet although it is important to recognize that the numerous autapomorphies of H.#
neanderthalensis#[morphological!species!concept]!not only preclude it from the ancestry 
of any other known hominid species, but also presumably from any successful and 
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biologically significant hybridization with them [biological species concept]. (Schwartz 
and Tattersall, 2010: 100-101). 

As I have throughout this paper, and following the example of Cartmill and Smith (2009), I will 

continue to refer to the populations as Neanderthals and Anatomically Modern Humans (AMH), 

referring to the shared anatomy of this population with contemporary humans. 

Implication of Species Designation 

There is an interpretative implication for this thesis in using the same species concept to compare 

the baboons with Neanderthals and AMH. If yellow and olive baboons are at the same taxonomic 

level as Neanderthals and AMH, then the comparison between the two is more valid. If baboons 

are separate subspecies while Neanderthals and AMH are different species, then applying baboon 

trends to recent modern humans will result in an underestimation of hybrid changes. This source 

of potential error in the thesis cannot be presently removed because there are currently no species 

concepts that would be able to make such judgments about the relative taxonomic positions of 

baboons to recent modern humans. Because baboons diverged over a shorter time period (160,000 

years (Newman et al., 2004)) than Neanderthals and AMH (410,000-440,000 years ago (Endicott 

et al., 2010), or 270,000-440,000 years ago (Green et al., 2010)), it is possible that any baboon 

trends applied to recent modern humans will be an underestimate. An underestimation is 

preferable for this study than an overestimation of morphological differences in hybrids. 

Therefore, this study is conservative in applying the effects of hybridization on the nasal cavity of 

baboons to Neanderthals and AMH. 

3.2 The Nasal Cavity 

This study focuses on the hybrid morphology of internal structures, specifically the nasal cavity. 

The nasal cavity consists of two areas in a dry specimen: the bony cavity and the nasopharynx. 

The bony cavity is defined as the anterior portion below the anterosuperior margin of the nasals to 

the posterior margin of the hard palate, or the posterior opening called the choana. Posterior to the 

posterior margin of the hard palate is the nasopharynx (Jone, 2001; Mlynski et al., 2001; Noback 

et al., 2011) (Figure 2). 

3.2.1 Neanderthal Nasal Cavity 

The nasal cavity is of particular interest because the Neanderthal nasal cavity has been recognized 

as particularly different from AMH nasal cavity. The traits are so opposing and possibly 

environmentally adaptive that there may be developmental instability when the genes from both 
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parental populations attempt to regulate the same region. Alternatively, the hybrid may exhibit the 

traits of only one parent rather than an intermediary or mosaic nasal cavity that might 

compromise function, such as airflow, warming and humidifying air.  

For example, Morgan et al. (1991) determined that air mixes in the anterior third of the 

nasal cavity, or the anterior bony cavity. The nasopharynx does not play a role in airflow other 

than to direct the airflow downwards towards the lungs. Noback et al. (2011) found further 

functional differences between the bony cavity, which is responsible for warming the incoming 

air, and the nasopharynx, which is responsible for humidifying. Further, the nasal cavity functions 

in olfaction; sensation of chemicals, such as ammonia; immunology since the nasal cavity 

contains immunoglobulin’s; mucociliary clearance to remove foreign objects such as pathogens; 

and filtration of particles larger than 30 µm (Mygind and Dahl, 1998; Jone, 2001). The functional 

differences within the nasal cavity make it an interesting and complex area to study in a hybrid 

whose parental populations had very different nasal cavity shapes and sizes, such as in 

Neanderthals and AMH. 

Preservation of Nasal Cavities 

Unfortunately, the nasal cavity is rarely preserved, though the unique Neanderthal morphology 

has been confirmed in the few Neanderthals that have complete or nearly complete nasal cavities: 

Gibraltar, La Ferraissie 1, La Chappelle-aux-Saints, Forbes’ Quarry Neanderthal FQ1, Shanidar 

1, Saccopastore 1, Engis 2, Pech de l’Azé, Roc de Marsal, St. Césair (used in comparative studies 

by: Schwartz and Tattersall, 1996; Franciscus, 1999; Friess et al., 2002; Bruner and Manzi, 2008; 

Schwartz et al., 2008; Rae et al., 2011). Most authors agree that the Neanderthal nasal cavity is 

generally large, with a wide anterior nasal aperture described very early in the literature (Sollas, 

1908) that sets them morphologically apart from Pleistocene AMH and modern humans. 

Neanderthal Nasal Cavity Comparison to AMH 

A lot of focus has been placed on the anterior nasal cavity, just within the anterior nasal aperture. 

The internal ridge in Neanderthals, posterior to the anterior nasal aperture, is described as having 

vertically oriented “conchal crest”, rather than a horizontally oriented conchal crest as seen in 

Pleistocene AMH and modern H. sapiens, which forms a “medial projection” about a third of the 

way superior to the palate that bulges medially into the nasal cavity (Engis, Gibraltar, Krapina, La 

Chapelle-aux-Saints, La Ferrassie, La Quina, Pech de l’Azé ́, Roc de Marsal, Subalyuk) (For 

photographs of this feature, see Schwartz and Tattersall, 1996; and Schwartz et al., 2008). 

Schwartz et al. (2008) concluded that the medial projection is a growth of the maxillary frontal 
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process in Neanderthals. Franciscus (1999), however, referred to the medial projection as “crista 

turbinalis,” according to Gower, which occurs in about 10% of living modern humans in Europe, 

Asia, or Africa, and in 65% of examined Neanderthals that have preserved nasal cavities. In 

Neanderthal specimens that were not subject to reconstruction, which can alter the nasal region, 

the conchal crests were slanted or horizontal as they are in modern humans (Franciscus, 1999), 

not vertical, as Schwartz and Tattersall (1996) described. The conchal crest anatomy has been 

used to make inferences about the inferior nasal conchae, such as unusual bulging and movement 

back into the nasal cavity, though no Neanderthal inferior conchae have been found (Schwartz 

and Tattersall, 1996; Schwartz et al., 2008).  

The posterior nasal cavity in Neanderthals has been described as both wider than 

Pleistocene AMH and modern humans with swelling from the lateral wall (Schwartz and 

Tattersall, 1996) and narrower than Pleistocene AMH, though not different from modern humans 

(Franciscus, 1999). As an aside, Schwartz and Tattersall have consistently argued in the literature 

for a separate species designation for Neanderthals without hybridization (see Section 2.2) while 

Franciscus has consistently considered Neanderthals to be within the variation of H. sapiens 

(Franciscus, 1999; Franciscus, 2003). This debate is yet another manifestation of the paradigm 

divide in paleoanthropology. 

Another example of an unique Neanderthal trait from the nasal cavity that has since been 

found not to be unique is the bi-level nasal floor. The bi-level nasal floor has often been cited as a 

distinctive Neanderthal trait, compared to the sloping or level nasal floor found in early modern 

humans. Wu et al. (2012) found that amongst a sample of archaic Homo (Sangiran!4,!Chaoxian!
1,!Xujiayao!1,!and!Chang=!yang!1),!three!of!the!four!had!bi=level!nasal!floors.!Wu!et!al.!(2012)!
concludes!that!the!bi=level!floor!is!not!distinctive!in!Neanderthals. 

Studies have also hypothesized that growth rates for various traits are different in 

Neanderthals compared to modern humans, basing age estimation on teeth (Williams, 2013). The 

nasal cavity is no exception. It has been hypothesized that the bony palate grows at a faster rate, 

but for a shorter duration in Neanderthals due to the late closure of the premaxillry suture, and the 

wide nasal aperture can be explained by an extended period of growth compared to modern 

humans (Maureille and Bar, 1999; Williams, 2013). Developmental timing, duration of growth, 

and growth rates are the characteristics that can substantially change in response to hybridization 

due to contradictory genes attempting to regulate the same area (Ackermann et al., 2010). 

Conclusions Drawn from Neanderthal Nasal Cavity 
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From the morphological differences between Neanderthals and AMH, authors have hypothesized 

potential physiological implications. Laitman et al. (1996) suggest that the large anterior nasal 

cavity and paranasal sinuses are evidence that Neanderthals depended more heavily on nasal 

respiration than oral, which would lead to differences in their range of sound production. Laitman 

et al. (1996) also suggest that the large maxillary sinuses play a part in warming and humidifying 

cold, dry air, implying cold-climate adaptation. Franciscus (1999) finds these hypotheses 

problematic due to the contradictory or scarce skeletal evidence for these claims, as pointed out 

above.  

Cold adaptation has since been attributed to Neanderthal features beyond the nasal cavity 

and paranasal sinuses by many authors, including the example from Duarte et al. (1999) in 

Section 2.2.2 that Neanderthal body proportions are hyperarctic (Churchill, 1998; Friess et al., 

2002; Hublin, 2002; Steegmann et al., 2002). Not to imply that all of the features cited above as 

cold-adapted are disputed, but focusing on the nasal cavity and paranasal sinuses, many authors 

are now questioning the underlying assumption of cold-adaptation. If the Neanderthal nasal cavity 

and maxillary sinuses were associated to cold climate, we would expect smaller, not larger, 

maxillary sinuses and narrower and taller anterior nasal apertures, as experimental studies suggest 

(Rae et al., 2003; Rae et al., 2006; Marquez and Laitman, 2008; Noback et al., 2011; Rae et al., 

2011).  

For example, Rae et al. (2006) found that in an experimental study in which rats were 

reared in environments with different temperatures, the ones raised in colder environments had 

smaller maxillary sinuses, and nasal cavities. Other hypotheses have been proposed, such as 

larger paranasal sinuses and broader nasal cavity are the result of the pronounced prognathism in 

Neanderthal faces, suggesting that the paranasal sinuses and nasal cavity were not under selection 

(Holton and Franciscus, 2008). Larger sinuses and nasal cavities in Neanderthals may not be 

understood until the function of the paranasal sinuses is understood (Blaney, 1990).  

3.2.2 Baboon Nasal Cavity 

Unfortunately, the maxillary sinuses cannot be analyzed in the baboon model because baboons 

[Papio], unlike Neanderthals and AMH, do not have maxillary sinuses. Instead, baboons exhibit a 

pneumatization of maxillae extending laterally in the nasal cavity, named the lateral recess (Lund, 

1988; Koppe and Ohkawa, 1999; Rae and Koppe, 2003; Rossie, 2006). This differentiation 

between Neanderthals and baboons gives this thesis an opportunity to contribute to the literature 

on the lateral recess. Section 4.4 and Section 5.4 discuss the affect of hybridization and sex on the 

lateral recess. 
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Lateral Recess 

Morphometric definitions of the lateral recess are varied and not consistent in the literature (Rae 

and Koppe, 2003). Lund (1988) suggested that the lateral recess begins at the plane of the root of 

the canine and extends to the back of the nasal cavity. Koppe and Ohkawa (1999: 80) defined the 

lateral recess as beginning at the 3rd molar and extending into a “small” lateral recess that bulges 

into the medioinferior walls of the orbit. An early study of airflow through baboons by Parta et al. 

(1959), labeled the anterior limit of lateral recess around the same location, the 3rd molar, as 

Koppe and Ohkawa. Parta et al. (1959) also found that it was a unique functional area of high 

turbulence and long residence time.  

Through preliminary examination of the baboon CT scans, the definition presented by 

Koppe and Ohkawa seems to be more applicable. During initial assessment of the baboon CT 

scans, I have also observed significant expansion of the lateral nasal walls occurring posterior of 

the choana. Further discussion of the definition of the lateral recess appears in Section 4.4. If this 

definition is accepted, developmental similarity may exist between the lateral recess and the 

maxillary recess, which also begins at the 3rd molar then expands into a sinus moving posteriorly 

(Rossie, 2006).  

However, the relationship between the maxillary sinus and lateral recess is uncertain in 

literature. One hypothesis is that baboons, and all cercopithecoids, lost or repressed the maxillary 

sinus, which was subsequently replaced by the lateral recess (Rae and Koppe, 2003; Rae, 2008; 

Rossie, 2008). Indeed, the term lateral “recess” can potentially be adding to the misconception 

because recess traditionally refers to the space during ontogenesis, the folding of the embryonic 

cartilage, which later develops into the sinus (Rossie, 2006). Specifically, the space that develops 

into the maxillary sinus is called recessus lateralis during development, which divides into the 

recessus maxillaris and recessus frontalis to develop into the maxillary sinus and frontal sinus, 

respectively (Rossie, 2006). Rae and Koppe (2003) even argue that the term “lateral recess” be 

abandoned because it has been used to denote very different regions in the nasal cavity: the 

inferior recess next to the canine roots, the space beneath the attachment of the inferior nasal 

conchae to the walls of the middle nasal cavity, or, most problematically, the maxillary sinus.  

It is difficult to determine the relative functions of the maxillary sinus and the lateral 

recess because it is not yet understood what the purpose of the paranasal sinuses are and why 

some groups have them while others do not (Blaney, 1990). For example, it is believed that 

macaques developed maxillary sinuses after separating from the last common ancestor that they 

share with baboons in Cercopithecoidea, which had lost maxillary sinuses (Rae and Koppe, 

2003). However, as of yet, there seems to be no obvious environmental or ecological explanation 
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for macaques to have developed a sinus (Rae and Koppe, 2003; Rae, 2008). Koppe and Nagai 

(1997) concluded that the maxillary sinus in macaques does not serve a structural purpose, such 

as reducing weight or maximizing strength for mastication, but serves some, as of yet, unclear 

purpose in air conditioning or respiration. Rae (2008) hypothesizes that a selective pressure may 

have acted on a separate trait that also influences maxillary sinus development, or a 

developmental constraint appeared in the last common ancestor. Subsequently, the selective 

pressure or the developmental constraints were removed in macaques.  

This study will contribute to the literature on the lateral recess by adding sex and taxa 

differences in Papio to help better understand the variation in the morphology of the lateral 

recess. 

3.2.3 Experimental Hypotheses 

Generally, studies of internal structures and their relationship with external changes are rare in the 

literature. Studying Neanderthals, Bookstein et al. (1999) discovered that the internal structure of 

the frontal bone is conserved in the hominin line though the external anatomy dramatically 

changes with the expansion and/or reduction of the supraorbital torus/ridge, frontal eminence, and 

frontal height. This conclusion implies that internal and external structures of the same bone are 

performing different functions and are therefore subjected to different selective pressures. It also 

implies that internal structures, in this case the interior frontal bone which comes into contact 

with the vessels that supply the brain, are more conserved due to their more critical role in 

survival. If the internal anatomy changes in a suboptimal way, which is more often the result of 

most mutations or new gene combinations, brain function might be compromised. Therefore, I 

hypothesize that internal structures may be more stable during development because they are 

more critical for fitness. 

However, can this hypothesis be applied to other internal structures such as the nasal 

cavity?  

Metric Analysis 

Ackermann et al. (2006) found that different regions of the baboon skull show heterosis while 

other regions show dysgenesis, resulting in a change in skull shape in the hybrid baboon. 

Dysgenesis only occurred at the zygomatics, while other cranial traits demonstrated heterosis. 

Ackermann et al. (2006) found significant heterosis between the nasion and the posterior nasal 

spine (almost parallel to the choana) and between the nasion and the bregma. Therefore, I 

hypothesize that height and length of the choana may show heterosis internally.  
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Ackermann et al. (2006) did not find significant length differences between taxa in the 

anterior area of the nasal cavity. However, Bastir and Rosas (2013), studying the nasal cavity in 

humans, found that the anterior nasal cavity size is correlated with the size of the facial region of 

the external maxillae. Bastir and Rosas (2013) also found that the posterior (choana) and the 

anterior openings of nasal cavity act as independent units and therefore respond differently to 

external size differences.  

Because the posterior region did not correlate to alterations of the external maxillae, I 

hypothesize that the posterior nasal cavity may be more conservative and resistant to genetic 

changes than the anterior nasal cavity. Ackermann et al. (2006) did not detect regional differences 

in the nasal cavity, though this is probably due to sparse sampling in this area. However, 

Ackermann et al. (2006) did acknowledge that there are qualitative changes in this area, such as a 

“boxy” appearance. Morphometric analysis of the nasal cavity is presented in Chapter 4. 

Nonmetric Analysis 

In addition to morphometric features, the nasal cavity also exhibits a variety of nonmetric traits or 

morphologies. Nonmetric traits in the nasal cavity include deviated septum and intrusion of 

dentition from the alveolus. Further traits were identified during the study and are presented in 

Chapter 5.  

I hypothesize that nonmetric trait variability should have less functional impact on the 

external anatomy compared to the internal anatomy. For example, an abscess around the roots of 

a molar contained in the alveolus can cause pain and sensitivity while eating. However, if the 

roots of that molar enter the nasal cavity, a nonmetric trait, the severity of the pathology increases 

because the abscess also enters the nasal cavity, spreading the infection to the soft tissues. Severe 

dental abscesses in humans can lead to infection of the sinuses and soft tissue which can become 

widespread, deep or necrotizing (flesh-eating), leading to death (Wong, 1999).  

Certain nonmetric traits in the nasal cavity are common in people living today. For 

example, Holton et al. (2012) reported a high incidence of deviated septums in European and 

African populations, of which nearly all of the 70 human subjects exhibited some degree of 

deviation. Jone (2001) also found that 30% of humans have concha bullosa, in which one of the 

middle nasal conchae is enlarged. Stallman et al. (2004) found that patients with concha bullosa 

often have an associated deviated septum, but that having concha bullosa does not increase 

chances of nasal inflammation. Therefore, I expect baboons to show a similar high frequency of 

deviated septum regardless of taxa. 
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Similary, I expect baboons will have low frequencies of nonmetric traits that are also rare 

in humans, except in hybrids. For example, ectopic teeth occur at a rate of 1% in humans and they 

are extremely rare in the nasal cavity (de Oliveira et al., 2008). The ectopic tooth is the nonmetric 

trait, but pathologies can result from it if certain circumstances occur. Cysts or minerals can form 

around ectopic teeth that can cause midline deviations. These cysts, dermoids, epidermoids, 

ecephaloceles, or gliomas, provide pressure in fetal and infant nasal cavities, resulting in 

malformations that can block the nasal passage or lead to inflammation (Schlosser et al., 2002). 

Chen et al. (2009) found that airflow is significantly affected by the presence of a deviated 

septum, which can potentially impair warming, filtering, and olfactory functions. 

The etymology of these nonmetric traits is not entirely clear, though they are often 

congenital.  

Nonmetric Traits in Baboons 

Ackermann et al. (2006) focused on anomalies that are generally not associated with additional 

pathologies. They found higher frequencies of nonmetric traits, what they refer to as anomalies, in 

hybrid baboons compared to parental species. From the variety of traits examined in the skull, 

only 5 traits were significant: zygomaxillary suture formation, retention of metopic suture, tooth 

crowding, supernumerary teeth, and robusticity of the snout region creating a “boxy” appearance. 

Ackerman et al. (2006) hypothesized that these traits were significantly more frequent in hybrids 

because: 

We expect their hybrids to display other qualitative morphological signatures of 
evolutionary distinctiveness, caused by small differences in the rate or timing of 
development in the parental populations, the subsequent failure of specific developmental 
interactions in their hybrids and resultant developmental instability, or other epigenetic 
phenomena. (Ackermann et al., 2006: 11) 

Because this study is using the same collection, such changes in developmental timing 

and genetic interactions could also affect the hybrid baboon nasal cavity. However, if internal 

structures are more developmentally stable, as hypothesized at the beginning of Section 3.2.3, 

then the frequency of nonmetric traits should not differ between the hybrids and the parental 

species. Alternatively, if I do find that the nasal cavities are significantly different in the hybrids 

compared to either parental species, then examination of internal structures may be a robust 

indicator of hybridization as Ackermann et al. (2006) concluded for external anomalies.  

I also hypothesize that there may be a difference in the frequency of morphometric traits 

in the anterior and posterior nasal cavities due to the different functions that each area performs. 

Ackermann et al. (2006) found heterosis at the level of the orbits in the frontal bone and the 
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zygomatic bones. The nasal cavity spans from the bony palate into the plane of the eye orbit and 

thus might reveal more subtle changes in this region of the skull that Ackermann et al. (2006) did 

not detect.  
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Chapter 4  

Morphometric Analysis 

Size and shape of skeletal features are determined by a combination of genetic and environmental 

factors (Section 3.2). This controls for many environmental factors because the specimens 

originate from a controlled captive colony where environmental influences were similar for all 

animals. Therefore, this study of morphometric analysis is designed to explore the genetic factors. 

Measurements of morphometric traits are taken to examine the concepts of heterosis, which will 

result in larger measurements of the nasal cavity in hybrids, and dysgenesis, which will result in 

smaller measurements of the nasal cavity in hybrids. Heterosis and dysgenesis in hybrids occur in 

comparison to measurements in the parental populations.   

I hypothesized that measurements of the anterior nasal cavity (bony cavity) will show 

heterosis and a greater difference between the hybrids and the parental species compared to the 

posterior nasal cavity (nasopharynx). In the posterior nasal cavity, I hypothesized that generally, 

as compared to the anterior region, the posterior region will be more resistant to size and shape 

changes in order to conserve critical functions of this area. Due to Akermann et al.’s (2006) 

measurements from the nasion that indicated heterosis, I also expect that the choana will have 

height and width heterosis in the hybrid. 

This chapter presents the rationale for the methods and details all the steps for 

morphometric analysis, including statistical methods within its own section (4.2). At the end of 

Section 4.2, abbreviations and notation for the statistical analysis are defined. The results are 

presented in Section 4.3, organized by each type of analysis repeated for each group of baboons 

tested. Section 4.4 summarizes the main conclusions from the results and places them in context 

of nasal cavity physiology in baboons. The morphometric results are referenced again in Section 

6.3 in order to relate the baboon nasal cavity model to a potential Neanderthal and AMH hybrid 

nasal cavity. 

4.1 Methods 

In this project, I assess the morphometric differences of the nasal cavity using computed 

tomography (CT) scans on the parental baboon species, olive (Papio anubis) and yellow (P. 

cynocephalus) baboons, and the first generation hybrid (P. anubis x cynocephalus). All baboon 

skulls are from the SNRPC collection at Washington University (see Section 3.1.2). The sample 
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of olive baboons (n=79) contained 52 females and 27 males. The 52 females are a subset of the 

total olive baboon skulls in the collection, while the 27 males were all of the olive males in the 

collection. The sample of yellow baboons (n=5) contained 4 females and only 1 male, which were 

the only yellow baboon skulls available the collection. The sample of hybrids (n=54) contained 

41 females and 13 males, which were all the hybrid skulls available from the collection.  

The cleaned and dried skulls were CT scanned at the Center for Clinical Imaging 

Research (CCIR) at Washington University. All CT scans have a resolution of 512 x 512 pixels 

and a slice thickness of 0.75 mm or smaller, suitable for measuring at the mm level. 

Because volume can act as a general indication of overall differences between the three 

baboon groups, I measured the volume of the nasal cavity for each specimen from coronally 

sliced CT scans using the imaging software OsiriX (Rosset et al., 2004). Volume is calculated as 

the addition of all the voxels within the segmented region of interest (ROI) in each slice. A voxel 

is defined as the area of a pixel within the CT image multiplied by the thickness of the scan. The 

area of a pixel, , is obtained from the scanner resolution matrix, M, and the display field of 

view, d. Let M(i,:), equal the ith row in matrix M and M(:,j), equal the jth column in matrix M.  

Segmentation indicates to OsiriX the number of voxels within the nasal cavity on each scan. Each 

CT scan of the nasal cavity was manually segmented by the author over three months, selecting 

each pixel to be included in the final ROI of the nasal cavity and the analyzed slices.  

For the purposes of this study, the first scan of nasal cavity was defined as the 

anterosuperior margin of the nasals, at which point the nasal cavity is enclosed by the maxillae on 

the sides, the maxillary palatine process from below, and the nasals from above. Segmentation 

continued through to the posterior margin of the palate, the choana. Posterior to the choana, the 

palate no longer encases the nasal cavity inferiorly. Therefore, I established an artificial inferior 

margin located tangential to the inferior aspect of the attachment of the inferior nasal conchae to 

the nasal walls at the posterior margin of the palate. This artificial inferior margin was used to 

segment the remaining scans of the nasal cavity. The final scan of the nasal cavity was established 

as the last scan before the space occupying the orbital fissure descends from the orbit and enters 

into the nasal cavity space. Through the inferior orbital fissure, the infraorbital artery and the 

zygomatic branch of the maxillary nerve pass on their way through the infraorbital canal and out 

of the infraorbital foramina. The area of segmentation of the nasal cavity is shown in Figure 3i, ii. 

d2 
A= 

M(i,:)×M(:,j) 
Equation 1 
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In each CT scan, the nasal cavity was outlined during segmentation. Therefore, internal 

nasal cavity bones, inferior nasal conchae, vomer, and ethmoid, were not distinguished from the 

internal nasal cavity space. This methodology is derived from Holton et al. (2013) in which the 

nasal cavity and maxillary sinuses were segmented in the CT scans of living human subjects. 

I was also interested in more detailed shape differences between the three baboon groups. 

Therefore, the nasal cavity was sampled at five coronally sectioned CT scans for each specimen. 

Figure 3 shows the location of the slices within the nasal cavity. The first measured slice was the 

first CT scan of the nasal cavity segmentation, and has already been defined above. The third 

slice measured was the last slice containing the posterior margin of the bony palate, the choana. 

The area between the first and third slices is the bony cavity (Noback et al., 2011). The second 

slice is located midway between the first and third slices, the midbony cavity. The fifth slice, the 

posterior nasopharynx, is the last slice in the nasal cavity segmentation and has already been 

defined above. The area between the third and fifth slices is the nasopharynx. The fourth slice is 

midway between the third and fifth slices, mid-nasopharynx.  

Landmarks were located on each of the five slices in order to approximate nasal cavity 

shape. These landmarks were used to generate groups of linear distances that can approximate the 

form of a specimen and be used in univariate statistics or multivariate statistics (Lele and 

Richtsmeier, 2001: 17). This study used traditional type landmarks and constructed landmarks or 

semi-landmarks. Traditional landmarks are defined as “precisely delineated points corresponding 

to the location of features of some biological significance” (Lele and Richtsmeier, 2001: 19-20), 

such as nasal crest. Constructed landmarks are defined as “points corresponding to locations that 

are defined using a combination of traditional landmarks and geometric information” (Lele and 

Richtsmeier, 2001: 22-24), such as the width of the nasal cavity tangential to the nasal crest. 

Landmarks and linear distance measurements are defined in Table 1 and shown in Figure 3. 

4.2 Morphometric Statistical Analysis 

The data in this study is composed of linear measurements, for example, from the rhinion to the 

nasal crest, as well as total area of each slice, and volume of the entire nasal cavity.  

4.2.1 Clustering Methods 

To illustrate group differences, clustering methods were used, principle components analysis 

(PCA) (Zelditch et al., 2004: 155-179) and canonical discriminant analysis (CDA) (Zelditch et al., 

2004: 155-179).  
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PCAs were employed to determine the combination of measurements that best explains 

the variation between individual specimens and potentially observe group differentiation 

assuming that species designation was not known a priori (Zelditch et al., 2004: 155-179). 

However, because the baboons used in this study have known pedigrees, taxon designation was 

known a priori. Therefore, CDAs were used to identify which combination of measurements best 

differentiates known groups, the parental and hybrid groups (Zelditch et al., 2004: 155-179). 

CDA maximizes the differences between groups, rather than between individuals as PCA does. 

CDA therefore maximizes the ratio of between group differences to within group differences 

when creating the canonical scores.  

PCAs and CDAs were performed in R (R, 2013). PCA employed the standard R 

functions cov(), to calculate the covariance matrix, and prcomp() to calculate the standard 

deviations, eigenvalues, and proportion of variance explained for each principal component. CDA 

employed the function lda() from the package “MASS” (Ripley et al., 2013) which returns the 

percentage of separation between groups achieved by each discriminant function, the coefficient 

of discrimination for each measurement, and the canonical scores for each specimen calculated 

from the discriminant functions (Coghlan, 2013). 

4.2.2 Statistical Tests 

To test the differences between groups, multivariate, Wilk’s Λ in multivariate analysis of variance 

(MANOVA) (Zeldith et al, 2004: 209-223) and univariate, analysis of variance (ANOVA) 

(Samuels and Witmer, 2003: 463-475), statistics were used followed by various forms of t-tests 

(independent samples student t-test (Samuels and Witmer, 2003: 234-238) and Welch’s t-test 

(Samuels and Witmer, 2003: 227) and the post hoc test, Dunnett’s C (Dunnett, 1980).  

MANOVA, ANOVA, and Dunnett’s C post hoc tests were analyzed in SPSS (IBM, 

2010) and were used to statistically analyze one measurement at a time to determine which 

measurements influenced group differences.  

4.2.3 Preprocessing data 

Prior to statistical analysis, the data were preprocessed. Because volume is a summary of complex 

3-dimensional data into a single number measured in cubic units (Lele and Richtsmeier, 2001: 

18), volume comparisons between parental and hybrid groups can be treated similarly to linear 

distance measurements. To make the volumetric values comparable to the other linear 

measurements and less statistically dominating, volume was cube rooted to represent it in a linear 

model. Similarly, slice areas, computed as squared centimeters, were square rooted so they could 

be comparable to linear measurements.  
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4.2.4 Testing Assumptions 

Levene’s test for homogeneity and Shapiro-Wilk test for normality, were used to test assumptions 

for further analysis (Levene, 1960; Razali and Wah, 2011). Levene’s tests and Shapiro-Wilk tests 

were performed in SPSS (IBM, 2010).  

Levene’s test, summarized in Table 2, revealed that many variables do not have 

homogeneity of variance. Therefore, tests strictly assuming homogeneity were not performed.  

The Shapiro-Wilk normality tests, summarized in Table 3 and Table 4, were used to 

evaluate if the feature fits a normal distribution. Shapiro-Wilk is considered the most powerful 

test of normality currently available, however, the power is very low for testing small samples 

sizes, such as the yellow baboons (Razali and Wah, 2011). Several features were found to not 

follow a normal distribution for one of the three groups (olive, hybrid, and yellow) (Table 3). 

Non-sensitive parametric tests were employed for this study because not all of the groups for any 

feature showed deviance from the normal distribution.  

Shapiro-Wilk was also performed on all taxa combined (Table 4). In addition, quantile-

quantile (Q-Q) plots were analyzed for normal distribution of each feature, though no Q-Q plot 

showed substantial deviation from the expected normal values (Figure 4). 

Box plots of the nasal cavity illustrate variance and distribution for each of the 45 

features of the nasal in Figure 5. 

4.2.5 Notation 

This section presents notation used in the statistical analyses in Section 4.3.  

Statistical notation 

p: p-value: the probability, computed under the condition that the null hypothesis is true, of the 

test statistic being at least as extreme as the value of the test statistic that was actually 

obtained (Samuels and Witmer, 2003: 238) 

α: the threshold value of the test; if the p ≤ α, the null hypothesis is rejected (Samuels and 

Witmer, 2003: 238) 

αB: the Bonfferoni corrected threshold value of the test to accommodate greater uncertainty of 

additional tests based on the significance of a previous test while maintaining family-wise 

significance level 

n: the number of specimens in a sample 

nB: the number of additional tests that will be performed, in Bonfferoni adjustment 
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d.f.: degrees of freedom: the number of specimens in a sample, n minus the number of defined 

variables; typically n-1 unless otherwise defined (Zelditch et al., 2004: 414) 

χ2: test statistic for the chi-square distribution 

t: test statistic for the student’s t-distribution 

µM: mean of male group 

µF:  mean of female group 

sd: standard deviation: calculation of data variance within a group 

4.3 Results 

This section presents results in the logical order of procedure, so that tests logically follow the 

result of the previous test. First, Wilk’s Λ MANOVA found broad differences between the three 

baboon groups, olive, hybrid, and yellow, as well as between males and females (Section 4.3.1). 

Sexual dimorphism was then tested directly using index of sexual dimorphism developed by 

Simpson et al. (1960) and Welch’s t-test (Section 4.3.2). In Section 4.3.3, sexual dimorphism is 

corrected for in the data. 

PCA was then used to cluster the data by finding individual differences, prior to and after 

the correction for sexual dimorphism (Section 4.3.4). PCA was analyzed in males only, females 

only, all groups prior to the correction for sexual dimorphism, and groups with males and females 

combined after the correction. None of the PCAs clustered the groups particularly well by taxa, 

though males and females were clearly separated in the analysis of all the groups, indicating 

sexual dimorphism, prior to the correction for sexual dimorphism. 

CDA was used to cluster the data by maximizing group differences, prior to and after the 

correction for sexual dimorphism (Section 4.3.5). CDA was analyzed in males only (with and 

without solitary yellow male), females only, all groups prior to correction, and groups with males 

and females combined after the correction. All groups were separated by taxa using CDA with no 

to moderate overlap of group distributions. Sexual dimorphism was also observed with clear 

separation of males and females in the CDA of all the groups prior to the correction for sexual 

dimorphism. 

Hypothesis testing then compared all of the baboon groups to test the significance of the 

observed separation (Section 4.3.6). 

Abbreviations and notation for statistical analysis are in Section 4.2.5. 
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4.3.1 Differences by Taxa and Sex 

In order to get an initial impression of parental and hybrid group differences, a Wilk’s Λ 

MANOVA was performed on the 45 measurements found in Table 5. MANOVA was used to test 

the hypothesis that the differences in shape between the parental groups and the hybrid group are 

not due to chance alone (Zelditch et al., 2004: 58). Wilk’s Λ multivariate test was chosen because 

it can be applied to more than two groups (Zelditch et al., 2004: 58).  

Wilk’s Λ concluded that across olive, yellow, and hybrid groups, shape differences are 

not due to chance alone (α = 0.05, d.f. = 88, χ2 = 0.328, p = 0.011). However, Wilk’s Λ test also 

found significant differences in shape across sex (male or female) alone (α = 0.05, d.f. = 44, χ2 = 

0.237, p < 0.005), indicating that these baboon samples exhibit considerable sexual dimorphism, 

as Ackermann et al. (2006) found in the external baboon skull measurements of the same 

specimens.  

4.3.2 Sexual dimorphism 

Two tests were used to analyze sexual dimorphism correctly, the index of sexual dimorphism and 

Welch’s t-test. The results contradicted one another, though Wilk’s Λ MANOVA and, later, the 

PCA and CDA in Sections (4.3.4, and 4.3.5) visually confirmed sexual dimorphism. Comparisons 

of methods, ISD and Welch’s t-test, are discussed in Section 4.4. 

Index of Sexual Dimorphism 

Sexual dimorphism was first analyzed using the method developed by Simpson et al. (1960) and 

utilized by Phillips-Conroy and Jolly (1981) to analyze the degree of sexual dimorphism in 

hamadryas baboons, olive baboons and their hybrids.  

For each group, olives and hybrids, an index of sexual dimorphism, ISD, was calculated:  

Yellow baboons were not analyzed due to small sample size. Then a 90% confidence interval for 

ISD was calculated, derived from the 95% confidence intervals for males and for females. To 

calculate the lower and upper limit of the 90% confidence interval for ISD, LISD, UISD, 

respectively: let LM and LF equal the lower limit of the 95% confidence interval for the male 

group and female group, respectively; and let UM and UF equal the upper limit of the 95% 

confidence interval for the male group and female group, respectively:  

µM 
ISD = 

µF 
Equation 2 
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Sexual dimorphism between the groups is considered significant if the 90% confidence intervals 

do not overlap (Simpson et al., 1960).  

Figure 6 illustrates the confidence intervals between olive baboons and hybrids for this 

study. Because the confidence intervals for all of the measurements were overlapping, no features 

were found to be sexually dimorphic using this method. Phillips-Conroy and Jolly (1981) also did 

not find significant differences using this method. However, this result contradicts the MANOVA 

in Section 4.3.1 that indicated sexual dimorphism. 

Student t-tests and Welch’s t-test 

A second set of tests was conducted to analyze sexual dimorphism between groups. A Bonfferoni 

adjustment was applied to the family-wise α, where α = 0.05 and nB = 45, making the level of 

significance threshold, αB, smaller to accommodate greater uncertainty of additional tests based 

on the significance of MANOVA (Section 4.3.1) (Samuels and Witmer, 2003): 

Therefore, αB = 0.0011 for the remaining tests in this section.  

In student t-tests between male and female olive baboons, 18 of the 45 measurements of 

the nasal cavity were found to be significantly different, with males having larger measurements 

in all 18 features (Table 5). In hybrid baboons, 32 of 45 of the nasal cavity measurements were 

found to be significantly different between male and female hybrid baboons, with males having 

larger measurements in all 32 features. 

The degree of sexual dimorphism, DSD,  

was then compared between olive and hybrid baboons to test the hypothesis that hybrids have a 

greater degree of sexual dimorphism using Welch’s t-test. Welch’s t-test is designed to compare 

two populations with unequal sample sizes and unequal variances, (see Table 2 for results from 

Levene’s test). The mean, µW, for each group, 

LM 
LISD = 

UF 
Equation 3 

UM 
UISD = 

LF 
Equation 4 

α 
αB  = 

nB 
Equation 5 

DSD = µM - µF Equation 6 
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and standard deviations for each group, sd,  

 Equation 8 

 
must be calculated to calculate the test statistic, t: 

where sdW is  

 Equation 10 

and degrees of freedom, d.f.W, 

 Equation 11 

Of the 45 features of the nasal cavity, 17 had significantly different degrees of sexual dimorphism 

between olive and hybrid baboons, with hybrids having a larger degree of sexual dimorphism in 

15 of the 17 significant features, and olives having a larger degree of sexual dimorphism in 1 of 

the 17 features, the height to width ratio in slice 2 (Table 5). 

One feature, the height from the artificial inferior margin to the alae of the vomer in slice 4 

(defined in Table 1 and illustrated in Figure 3), was significant for Welch’s t-test, though not 

significant for the independent samples student t-tests, because the difference between olive 

males and females is slightly positive (males are larger), and the difference between hybrid males 

and females is slightly negative (females are larger).  

Figure 7a visually summarizes the significantly sexually dimorphic features and areas of 

the nasal cavity. 

4.3.3 Correction for Sexual Dimorphism 

Because significant sexual dimorphism was found in Wilk’s Λ MANOVA, and the Welch’s t-test, 

the variable of sex was removed from the data through a correction for sexual dimorphism. 

µW = µM - µF Equation 7 

µolive - µhybrid 
t = 

sdW 
Equation 9 
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Sexual dimorphism transformed the male data, where xa is the original male value obtained from 

the original measurements, xb is the new adjusted male value, µF is the female mean, and µM is the 

male mean:  

xb = xa + (µF - µM) Equation 12 

The correction for sexual dimorphism was performed separately for each taxa, olives, yellows, 

and hybrids. This correction has been applied in other studies to remove the influence of male and 

female differences across different groups (Cheverud et al., 1993; Kohn et al., 2001; Ackermann 

et al., 2006).  

4.3.4 Principle Components Analysis 

PCA was performed to determine if any combination of measurements might organically 

organize the specimens into the correct groups (parental and hybrid groups) by finding the 

greatest difference between individual specimens (Zelditch et al., 2004).  

PCA was applied to 31 of 45 measurements of the nasal cavity. The 14 measurements 

that were removed give estimates of total nasal cavity measurements (volume, areas, height to 

width ratios, length of nasal cavity, bony cavity and nasopharynx), where as this study is 

interested in the detailed analysis of the measurements within the five CT scans.  

PCA rotation recombines the morphometric traits into generated variables called 

principle components (PC). Each specimen receives a PC score, or a new value combined from 

different weights of the original values, corresponding to each PC. Scores from two PCs, where, 

for example, PC 1 corresponds to the x-axis, and PC 2 corresponds to the y-axis, can be graphed 

together on bioplots with vectors showing the weight of each original morphometric measurement 

and the contribution of that trait to the PC (Zelditch et al., 2004).  

A loading, or weight is the contribution from the original measurement to a particular PC, 

and changes for each PC. Loadings that are greater than 2.5 or less than -2.5 separate influential 

vectors from vectors that contribute little to the PC. Only these vectors are labeled on the biplots.  

PCA in Males 

Male olives, male yellow, and male hybrids were clustered according to PCA (Table 6). Together, 

the first four principle components explain 61.3% of the variation between samples, with each 

subsequent PC explaining less than 7% of the variation in the data as seen in the scree plot 

(Figure 8a). Eigenvalues for the first four principle components are also quite low: 1.2, 0.8, 0.5, 

and 0.4, respectively. 
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PC 1 explains 25.7% of the variation between samples. Male olives and male hybrids are 

moderately separated along this axis, with much overlap between the groups. The yellow male 

was not separated from any other group. PC 2 explains an additional 16.0% of variation between 

samples, though it visually does not separate the groups (Figure 8a). PC 3 and PC 4 explained an 

additional 11.4% and 8.2%, respectively (Figure 8b). However, they visually do not separate the 

groups any further.  

According to the Kaiser criterion, which states that eigenvalues below 1 do not 

significantly contribute to explaining the sample variance, PC 2, PC 3, and PC 4 do not contribute 

to the understanding of group separation (Kaiser, 1960). Therefore, PC 1 should be the only PC 

explaining significant variation in the data. 

There is minimal separation of males using PCA. 

PCA in Females 

Female olives, female yellows, and female hybrids were also clustered using PCA (Figure 9). 

Similar results were observed for females as for males. Together, the first four principle 

components explain 50.8% of the variation between samples, with each subsequent PC explaining 

less than 8% of the variation in the data as seen in the scree plot (Figure 9a). The eigenvalues for 

the first three principle components are also small: 0.8, 0.5, and 0.4. 

PC 1 explains 24.2% of the variation and separated female olives on the right and female 

hybrids on the left, though separation is minimal and female yellows are not separated at all. PC 2 

explains 15.7%, but does not visually separate the groups. PC 3 explains an additional 10.9% 

though does not further separate the groups (Figure 9b).  

There seems to be minimal ability of the PCA to separate females. 

PCA in Males and Females Prior to Correction for Sexual Dimorphism 

Male olives, female olives, male hybrids, female hybrids, male yellow, and female yellows were 

clustered using PCA before applying the correction for sexual dimorphism (Figure 10). 

Cumulatively, PC 1 and PC 2 explain 60.7% of variation in the data with each subsequent PC 

explaining less than 7% of the variation in the data as seen in the scree plot (Figure 10a). The 

eigenvalue of PC 1 is quite large: 3.2. The eigenvalue of PC 2 is small: 0.7. 

PC 1 explains 51.5% of the variation in the samples and separates the samples into males 

on the right and females on the left (Figure 10b). PC 2 explains 9.2% of the variation though no 

pattern of group separation was detected.  
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PCA reinforces the earlier results from MANOVA and Welch’s t-test, that the nasal 

cavity is sexually dimorphic in baboons. 

PCA in Males and Females Combined After Correction for Sexual Dimorphism 

For each taxa, males and females were combined after the correction for sexual dimorphism was 

applied. Therefore, PCA was applied to 3 groups: olive, hybrid, and yellow baboons. 

Cumulatively, PC 1, PC 2, and PC 3 explain 46.9% of variation in the data with each subsequent 

PC explaining less than 8% of the variation in the data as seen in the scree plot (Figure 11a). The 

eigenvalues of the first three PCs were similar again small: 0.8, 0.5, and 0.3, respectively. 

PC 1 explains 22.6% of sample variation, PC 2 explains 15.2% (Figure 11a), and PC 3 

explains 9.1% (Figure 11b).  

No patterns of group separation were detected in the first three principal components, 

with The sexual dimorphism correction removed the trend seen in PC 1 of the PCA prior to the 

correction (Figure 10), which separated males and females. This result appears more similar to 

the PCA of all the males (Figure 8) and the PCA of all the females (Figure 9). 

Summary of PCA 

Neither the PCA prior nor after the sexual dimorphism correction were very useful in explaining 

differences between the parental and hybrid groups. As expected of a biological morphometric 

sample, many of the measurements have high covariance, making it difficult for the PCA to 

construct specific variables from a combination of measurements that influence the differences 

between specimens. Unfortunately, the rotations provided by the PCAs also do not explain a large 

amount of the variation in the sample (male comparison: 61.3%, female comparison: 50.8%, 

before correction: 60.7%, after correction: 46.9%). In addition, expected clustering of the known 

taxa were not observed to a great extent in any of the PCAs.  

4.3.5 Canonical Discriminant Analysis 

CDA analyzes which combinations or rotations of measurements explain the differences between 

known groups, the parental and hybrid groups. CDA was applied to the same 31 features that 

were analyzed in PCA. 

CDA creates rotations that maximize differences between each cluster it creates, rather 

than rotations based on differences between individuals as in PCA (Zelditch et al., 2004). The 

new axes, called the canonical discriminant functions (CD), are scaled to accommodate the 

patterns of within-group variance identified by CDA. Like the PCA, new scores are assigned to 

each specimen based on the CDs. These are plotted to visualize group clustering. 
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Clustering locations are discussed as above or below 0, as a visually reference on the 

CDA graphs.  

CDA in Males 

Male olives, male hybrids and the male yellow were clustered using CDA (Figure 12a). CD 1 

substantially separated the three groups with yellow on the left, olive in the middle and hybrid on 

the right. CD 2 further separated yellow below 0 and olive and hybrids around 0. The histograms 

of CD 1 and CD 2 present an alternative view of the separations (Figure 12b).  

CDA was performed again on males, but without the yellow male (Figure 13). The 

number of canonical discriminant functions that can be calculated equals the number of groups 

minus 1. Therefore, only 1 CD was created when analyzing olive and hybrid males (Figure 13). 

To be able to see all of the scores, the CD 1 scores were distributed along the y-axis in the order 

of the specimens. The y-axis does not have any bearing on interpretation of this CDA.  

CD 1 neatly separates male olives on the left and male hybrids on the right (Figure 13a), 

as confirmed by the histogram of CD 1 (Figure 13b). 

CDA in Females 

CDA was also performed on female olives, female yellows, and female hybrids.  

CD 1 separated the three groups with olive on the left, hybrids in the middle and yellows 

on the right. CD 2 further separated female yellows, which appear at the top of the graph, while 

olive and hybrid females appear around 0 (Figure 14a).  

The histograms of CD 1 and CD 2 show that there is still substantial overlap between 

groups (Figure 14b). 

PCA in Males and Females Prior to Correction for Sexual Dimorphism 

The CDA performed before sexual dimorphism correction analyzed six baboon groups divided by 

species designation and sex (female olive, male olive, female hybrid, male hybrid, female yellow, 

male yellow).  

The first and second discriminant functions were analyzed because together they explain 

95.29% (87.99% by first discriminant function, 7.3% by second discriminant function) of the 

separation between groups. The remaining discriminant functions add negligible information 

about group differences (3rd: 3.28%, 4th: 1.42%) and were therefore not analyzed further.  

The plot of the first two discriminant functions reveals two main groupings CD 1 with 

female olives, female hybrids, and female yellows grouped together on the left and male olives, 
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and male hybrids grouped together on the right (Figure 15a). This pattern is also seen in the 

stacked histogram in Figure 15b. 

Similar to the PCA analysis, the CDA reveals strong sexual dimorphism that overpowers 

species differences.  

Unlike the PCA, however, the y-axis, CD 2, seems to somewhat separate the hybrids 

(with values greater than 0) and the olives (with values less than 0). However, the histogram of 

CD 2 shows that there is still a lot of overlapping between parental and hybrid groups. 

PCA in Males and Females After Correction for Sexual Dimorphism 

CDA was performed again after sexual dimorphism was corrected for, shown in Figure 16. The 

same 31 features were analyzed. However, the groups were reduced to 3, combining males and 

females together into their species designations (olive, hybrid, and yellow). Therefore, only 2 

discriminant functions were generated.  

Along CD 1, olives are moderately separated from hybrids and yellow, which have values 

greater than 0. Along CD 2, olives and hybrids are not separated, though yellows seem to cluster 

alone in the upper right corner.  

If the sample size were bigger, perhaps yellow baboons would be more strongly 

distinguished. These patterns are verified in the histograms (Figure 16b). 

Based on the loadings, several features stand out as influencing taxa separation. 

Specifically, the first discriminant function is strongly influenced by a combination of the width 

of the middle meatus in slice 1 (loading: -3.26), the width of the inferior margin in slice 4 (-2.99), 

the height of the right inferior nasal concha in slice 1 (2.25), the width of the lateral recess in slice 

5 (-2.03), the height from the nasal crest in slice 2 (1.90), and the height of the left inferior nasal 

concha in slice 2 (-1.78).  

The second discriminant function is influenced by the height of the right inferior nasal 

concha in slice 3 (-3.59), and the height of the right inferior nasal concha in slice 2 (1.87). 

Opposite loading signs indicate that the variables are contrasted (Coghlan, 2013), and therefore 

might be more strongly associated with one group or the other.  

Summary of CDA 

CDA successfully separated the baboon groups with no or minimal overlap between the group 

distributions. The strongest separation was observed between the male baboon groups. The 

female groups were moderately separated with some overlap of group distributions. Comparing 
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males and females, it seems as though the differences between males are driving the significant 

difference in degree of sexual dimorphism (Section 4.3.2). 

 The greatest influence on group separation when all six baboon groups were compared 

was size difference between males and females, or sexual dimorphism. Prior to the correction, 

CDA separated sex, but only minimally separated groups. Correction for sexual dimorphism 

successfully separated taxa with minimal overlap. 

 However, neither in PCA nor CDA was significance tested. Therefore, multivariate and 

univariate techniques were employed in Section 4.3.6. 

4.3.6 Hypothesis Testing 

Hypothesis testing compared baboon groups to discover if any traits are significantly different. 

Each trait is then analyzed for size, and in comparison between traits, shape can be analyzed 

between baboon groups. 

 Male olive and male hybrid baboon traits were compared using an independent samples 

student t-test. Male hybrids have heterosis and shape differences throughout the nasal cavity. 

Independent Samples Student t-test between Olive and Hybrid Males 

An independent samples student t-test for males was conducted to analyze the mean differences 

between morphometric traits in male olives and male hybrids (Table 6). Of the 45 features 

analyzed, 16 were significant at α = 0.05. The significant features are highlighted in Figure 7b. 

Male hybrids were larger than male olives for all 16 traits, including overall volume, indicating 

heterosis at these locations.  

Of the 16 features, 10 are attributed to the anterior bony cavity, including area and all 

traits but the ratio of height to width. Therefore, the anterior bony cavity was significantly larger 

in male hybrids, indicating heterosis, but shape was not affected.  

Shape difference was observed at the choana, mid-nasopharynx, and posterior 

nasopharynx. The larger area of the choana in hybrids is influenced by the greater height from the 

nasal crest at the choana in hybrids. The greater area of the mid-nasopharynx in hybrids is also 

influenced by greater height (height at inferior margin). The width of the lateral recess was also 

greater in hybrids at the posterior margin of the nasopharynx, though the area of the slice was not 

affected.  

Therefore, size and shape of the nasal cavity in males are affected by hybridization, 

achieved through heterosis. 

ANOVA and Dunnett’s C tests between Olive, Hybrid, and Yellow Females 
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The one-way ANOVA and subsequent post-hoc Dunnett’s C tests revealed a similar trend 

between female olives, female hybrids, and female yellows (Table 7). Not all of variables show 

homogeneity of variance, (Levene’s test, results in Table 2) and most, but not all, variables are 

normally distributed (Kolmogrov-Smimov and Shapiro-Wilk tests of normality, results shown in 

Table 3 and Table 4). Therefore, the Dunnett’s C was an appropriate post-hoc test that compares 

multiple groups to each other (Dunnett, 1980).  

Of the 45 traits analyzed, 19 traits were significant at α = 0.05. Of the 19 traits, the 

Dunnett’s C tests identified pairwise differences in 12 traits. Greater mean values for female 

hybrids were identified in 7 of the 12 traits, demonstrating heterosis, and greater mean values for 

female olives in 5 of the 12 traits, demonstrating dysgenesis (Figure 7c).  

Heterosis in female hybrids was demonstrated in the areas of the anterior nasal cavity, 

choana, and mid-nasopharynx. Throughout the nasal cavity, the anterior bony cavity, the choana, 

the mid- and posterior nasopharynx, female hybrids have a narrower inferior meatus, indicating 

heterosis. Therefore, shape and size have been altered in female hybrids. 

Therefore, size and shape also influence females during hybridization, though it is 

achieved through both heterosis and dysgenesis. 

Hypothesis Testing in Combined Olive, Hybrid, and Yellow Baboons 

After analyzing the traits of the nasal cavity in each sex, males and females were combined into 

three groups: olive, hybrid, and yellow baboons. The traits were then analyzed hierarchically, 

from a multivariate analysis including all traits across the three baboon groups using Wilk’s Λ, 

then an analysis of each trait in a series of ANOVAs, followed by the Dunnett’s C post hoc tests 

for any significant ANOVA traits to find significant pairwise comparisons.  

MANOVA in Olive, Hybrid, and Yellow Baboons 

A MANOVA was performed after the sexual dimorphism correction was applied to the male 

specimen values, removing any confounding effects of sexual dimorphism on size and shape 

differences. This MANOVA tests the hypothesis that the nasal cavity shape is different between 

the three groups (olive, hybrid, and yellow).  

Using Wilk’s Λ, it was found that the nasal cavity size and shape of the parental and 

hybrid groups is significantly different (α = 0.05, d.f. = 88, χ2 = 1.509, p = 0.011).  

ANOVA and Dunnett’s C in Olive, Hybrid, and Yellow Baboons 

To determine which features of the nasal cavity are driving the size and shape differences 

between parental and hybrid groups, ANOVAs were performed on all of the 45 measurements. Of 
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the 45 measurements, five showed significant differences between parental and hybrid groups at 

αB = 0.0011 (Table 8).  

Each of these traits was then analyzed using the Dunnett’s C post-hoc test. Figure 7d 

visually summarizes these statistics by highlighting the significant measurements and colour-

coded by the group with the largest measurement for that variable. 

Of the five traits identified as significant by ANOVA, two did no show pairwise 

differences: the height to width ratio at the choana and the width of the inferior margin of the 

mid-nasopharynx. An ANOVA can be significant for a trait, but not be significant in the post hoc 

tests because the post hoc tests have a lower significance threshold than ANOVA.  

The Dunnett’s C tests identified three measurements that were significantly different 

between the three groups (Table 8). Hybrids were wider at the nasal crest and in the inferior 

meatus in the anterior bony cavity, demonstrating heterosis. Hybrids also had a greater height to 

width ratio at the mid-nasopharynx because hybrids were taller, but narrower at the inferior 

margin, showing a shape change in this area. 

Summary of Hypothesis Testing 

The hypothesis tests comparing all males, and all females both revealed regional heterosis and 

shape differences throughout the nasal cavity in hybrids compared to parental taxa. The female 

hybrids also had significant dysgenesis of the inferior meatus. 

However, only two traits were found to be significantly larger in the combined hybrid 

group, the width of the inferior meatus and width at the nasal crest in the anterior nasal cavity. 

The all male and all female results were hidden when males and females were combined in 

groups, even though sexual dimorphism, primarily size, was removed. Therefore, male and 

female hybrids respond differently to hybridization not only in size, but also in shape. 

4.3.7 Intra-observer Error 

 Consistency of the linear measurements was tested with intra-observer error. After 

repeatedly measuring all of the morphometric measurements of the nasal cavity used for this 

study of a single specimen (W984) at five different times, the standard deviation for all 

measurements was less than 0.1 mm, except for two measurements, width at nasal crest in mid-

bony cavity, and width at alae of vomer of the posterior nasopharynx, which were less than 1 cm 

(Table 9). The standard deviation from the error is only larger than the sample standard deviation 

in these two variables, neither of which is statistically significant between sex or taxa. 
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4.4 Conclusions 

I hypothesized that height and length of the posterior bony cavity, the choana, may show some 

heterosis internally and that the posterior nasal cavity, generally may be more conservative and 

resistant changes than the anterior nasal cavity. Therefore, I expected greater alterations of size 

and shape in the anterior dimensions.  

Posterior Region 

The results were surprising in that the hybrid posterior region, from the choana through the 

nasopharynx, exhibited many size and shape differences, both in heterosis and dysgenesis. Instead 

of being a highly conserved and unchanging area as hypothesized, this region is instead a 

dynamically changing area with different responses at different measurements. Measurements of 

the posterior region were not consistent within the hybrid group because males showed a different 

pattern than females. Males became wider inferiorly, while females became narrower compared 

to parental taxa. The differences in this area are so great that the PCA rotations were primarily 

differentiating the individual specimens through measurements of the nasopharynx width in 

conjunction with the anterior bony cavity. The opposing responses in males and females may also 

explain the greater sexual dimorphism compared to the parental taxa. 

Specifically, the posterior nasopharynx seems to be a region of evolutionary 

conservation. This section of the nasopharynx expands beneath the orbits and is contained 

laterally by the sphenoid. Selection for shape or size change in the functionally simple 

nasopharynx may not alter the structures responsible for sight or basicranium stabilization, among 

many other critical functions. In this study, the posterior nasopharynx was not different between 

the taxa. The only linear measurement in the posterior nasopharynx that showed significant 

heterosis in hybrids was the width of the lateral recess. 

I suspect that the changes are related to physiological function, though not in the way I 

originally hypothesized. The mid-nasopharynx is mainly responsible for the redirection of air 

during respiration (Morgan et al., 2001). Perhaps, due to the more simplified function of the mid-

nasopharynx, the exact shape was not as critical to respiration and was less strictly regulated by 

genes, allowing new allele combinations to form in the hybrids. Ultimately, natural selection 

would establish which combinations provide the greater fitness advantage or the size and shape of 

the nasopharynx might be neutral, resulting from adaptations elsewhere. However, size and shape 

may be constrained by extremes so that they do not affect fitness.  

Climate influences may also influence size and shape of the nasal cavity. In a study of the 

nasal cavity and maxillary sinuses in two different species of macaques, each adapted to a 
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different temperature environment, the choanal width was associated with colder environments 

(Marquez and Laitman, 2008).  

Anterior Region 

Although my hypothesis expected greater differences in the anterior bony cavity, I observed 

regional differences within the nasal cavity beyond simply anterior (bony cavity) versus posterior 

(nasopharynx). As expected the anterior region of the hybrids, at the rhinion, exhibited greater 

inferior width in the overall species comparison, indicating a change in shape in hybrids. Male 

and female hybrids showed overall heterosis, while female hybrids also show shape change in the 

inferior meatus of the anterior bony cavity.  

However, the mid-bony cavity revealed no difference between any of the taxa, though 

there was a difference between males and females, which will be addressed below. Unexpectedly, 

it seems as though this is the region of greatest functional significance in the nasal cavity, where 

the size and shape are conserved even between the parental taxa. It is the bony cavity, specifically 

the area where air turbulence slows while flowing through the nasal conchae, that is responsible 

for more critical functions such as the warming, humidifying and filtering of the incoming air 

 (Mygind and Dahl, 1998; Jone, 2001; Noback et al., 2011). The greatest turbulence occurs in the 

anterior third of the nasal cavity, then slows, which would correspond to the mid-bony cavity as 

defined in this study (Morgan et al., 1991). Therefore, shared ancestry or convergent adaptive 

selection may have optimized the mid-nasopharynx in the yellow and olive baboons, which was 

maintained in the hybrids. 

Differences in Size and Shape 

Though I discussed shape and size differences when reviewing the conclusions of the posterior 

and anterior nasal cavity, the distinction between shape and size is functionally important. 

Noback et al. (2011) found that size is correlated with energetics, to allow greater volumes of air 

through the nasal cavity during inspiration, while shape has functional significance for 

physiology, such as warming and humidifying the air.  

Heterosis in the nasal cavity may give hybrids an advantage in energetics by increasing 

the space through which air can pass. However, Bastir and Rosas (2013) caution against 

concluding too much from the skeletal anatomy because subtle changes in the soft tissue can 

strongly influence respiration. Charpentier et al. (2012) referenced a submitted article in which 

the authors observed greater consortship (mate guarding) in hybrid males within a yellow and 

olive baboon colony, which will result in a greater number of hybrid offspring and higher hybrid 
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fitness. Future studies might attempt to examine hybrid respiration in more detail, such as 

respiratory volume or respiratory rate, to determine if the greater size in the nasal cavity of 

hybrids gives them energetic advantage.  

Shape changes in the first one third of the bony cavity, such as a wider inferior meatus at 

the rhinion, may reflect differences in airflow. Morgan et al. (1991) found that the first one third 

of the bony cavity has the greatest airflow velocity and is the location where air streams are 

separated and sent to various locations for processing. Hybrids may exhibit further physiological 

changes, suggested for future studies.  

Lateral Recess 

According to Lund (1988) the lateral recess begins at the plane of the root of the canine and 

extends to the back of the nasal cavity. I believe that Lund’s definition includes the inferior 

meatus or perhaps the cavities created by the canines that sometimes extend back into the nasal 

cavity, which was observed in a number of baboon specimens in this study. However, within the 

bony cavity, I did not observe any areas that expanded more laterally than any other area along 

the lateral nasal walls of the bony cavity.  

The lateral expansions that I did observe began posterior to the choana, into the 

nasopharynx. This observation best matches the definition of lateral recess by Koppe and Ohkawa 

(1999: 80): the lateral recess begins at the third molar (M3) and extends into a “small” lateral 

recess that bulges into the medioinferior walls of the orbit. This bulging into the orbits was 

observed on the skull and in CT scans in 44% of all specimens with different degrees of 

expansion, though there was no difference between taxa, discussed in Chapter 5.  

The width of the lateral recess is greater in hybrids when comparing all males or all 

females. This observation is very interesting in comparison to my argument above about the 

conservation of the posterior nasopharynx in order to maintain physiological function outside of 

the nasal cavity. The lateral recess, which expands laterally into the walls of the orbits, does not 

follow this trend, which may indicate a different function of the area. Whether this is of 

advantage or disadvantage to the hybrids cannot be determined from the current study. Future 

work should explore the physiology of this area. 

Differences in Sex 

The strongest influence on the nasal cavity was sex, which had to be corrected for in order to see 

differences in taxa. For nearly all the measurements, males, regardless of taxa, were larger.  
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 Hybrid males and females also present different shape responses to hybridization in the 

nasal cavity, after difference in size is removed by the correction for sexual dimorphism. It would 

be valuable to study baboon ontogeny and developmental timing of different traits to discern the 

reasoning behind shape differences between males and females. 

One remarkable similarity between males and females is the similarity in nasopharynx 

length (from choana to posterior nasopharynx), but they differ in bony cavity (anterior bony 

cavity to choana) length. Therefore, it is the bony cavity length that is greater in males. Though I 

concluded above that the mid-nasopharynx has the evolutionary experiment with freedom to 

different shapes and sizes, perhaps length is an important function to maintain. Future research 

should explore the different morphologies.  

Many studies have found that the basicranium responds to facial size and vice versa 

(Lieberman et al., 2000; Bastir et al., 2010). Because the hybrid males are much larger and longer 

in the bony cavity, future studies might also consider exploring different aspects of the 

basicranium in order to possibly detect structural compensation. 

Sexual Dimorphism 

Both hybrid and olive taxa had significant differences between males and females, sexual 

dimorphism, at most morphometric features. Significant sexual dimorphism was expected and has 

been found in many primates, including baboons, in the literature (Phillips-Conroy and Jolly, 

1981; Leigh and Cheverud, 1991; Mitani et al., 1996; Ackermann et al., 2006; Schillaci et al., 

2007).  

However, when comparing sexual dimorphism between hybrids and olives, the two 

methods employed contradicted each other, the index of sexual dimorphism and the degree of 

sexual dimorphism. The index of sexual dimorphism method, also used by Phillips-Conroy and 

Jolly (1981), revealed no differences in the degree of sexual dimorphism for any trait. If the 

confidence intervals do not overlap, the test suggests that the groups have significantly different 

degrees of sexual dimorphism. However, this test does not quantify the difference between the 

90% confidence intervals between olive and hybrid baboons. 

However, I also developed my own method of identifying differences in the degree of 

sexual dimorphism. This method begins with student t-tests to test for initial sexual dimorphism 

in olives and in hybrids, followed by a Welch’s t-test that compares the differences between olive 

males and olive females to the difference between hybrid males and hybrid females for each trait. 

The Welch’s t-test is designed to compare differences between groups. The main advantage of the 
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Welch’s t-test is that the analysis outputs a test statistic and p-value, which allows the researcher 

to establish different significant threshold levels.  

Other methods, MANOVA, PCAs, CDAs, and even simple bargraphs, all identified 

significant or dramatic differences between sex. It is less probable that these methods and the 

Welch’s t-tests are all incorrect, especially when so many other studies have also found sexual 

dimorphism in primates, including baboons. Therefore, this study favors the results from the 

Welch’s t-test rather than the Simpsons et al. (1960) method. (See Section 4.3.2 for calculations). 

I conclude that hybrids had a greater degree of sexual dimorphism compared to olives in 

nearly all morphometric traits. If hybrids were isolated as a population, having a greater 

difference between males and females would indicate greater sexual selection and mate 

competition (Mitani et al., 1996). However, hybrids, olives, and yellows live sympatrically, 

within the same region. Therefore, if hybrids have greater sexual dimorphism and have larger 

overall size found in this study and Ackermann et al. (2006), male hybrids now have an 

advantage in a more competitive environment, which is discussed further in Section 6.1. 

However, conclusions about sexual selection are made cautiously because the sample 

population is captive (Phillips-Conroy and Jolly, 1981). Male baboons were artificially selected 

by researchers to mate with females rather than female mate selection or male-male competition, 

so sexual selection would not have been reinforced in the captive populations. Therefore, hybrids 

may have different features of sexual dimorphism in the wild than in captivity.  

Summary 

In conclusion, the model of the nasal cavity used in this study successfully identified differences 

between hybrids and parental taxa. The nasal cavity displayed unique regional differences, 

reflecting different physiological functions that revealed evolutionary constraints in the mid-bony 

cavity, and posterior nasopharynx, and morphological flexibility to respond to differences in the 

anterior bony cavity, choana, and mid-nasopharynx. Greater sexual dimorphism in hybrids along 

with larger size and shape differences may reflect greater sexual selection and hybrid advantage. 

Discussion about how this model might be useful for the identification of Neanderthal and AMH 

hybrids is in Chapter 6. 

4.5 Study Limitations 

Unfortunately, this study was severely limited by the small sample size of yellow baboons. Wild 

yellow and olive hybrid zones exhibit characteristics of an intermediate hybrid zone, it would 

have been ideal to be able to compare hybrids more extensively to both parental taxa. 



 

80 

Unfortunately, the colony no longer houses any purebred yellow baboons due to generations of 

regulated breeding that attempted to minimize heterozygote deficit due to inbreeding (Mahaney 

MC, Personal communication). 

 A single yellow male also potentially compromised the sexual dimorphism correction in 

Section 4.3.3. Because there is only one male yellow baboon, the sample mean was not reflective 

of the population mean. Fortunately, only a single data point in the study, the yellow male, is 

affected and it was not used in most statistical analyses.  

Measurements for this study were taken between one landmark to another as defined in 

Table 1. However, these linear measurements were not made between each landmark to create a 

coordinate system to model the nasal cavity. If the methods were altered to create a coordinate 

system, more detailed morphometric statistical analysis and visualizations, such as 

reconstructions, overlays, superimpositions, or warping, could have been applied to the nasal 

cavity model (Lele and Reichtsmeier, 2001). Though this study was able to analyze shape and 

size differences using linear statistics, which other studies have successfully used (Spoor and 

Zonneveld, 1995; Spoor et al., 2003; Ackermann et al., 2006), the advantage of the coordinate 

system provides the opportunity to explore the data more extensively.  

In addition, the linear measurements were not tested for inter-observer error. Because the 

measurements were designed for this study, definitions should be corroborated through an 

interobserver study. 

The sample sizes for this study were large, except for the yellow baboons. However, it 

would be difficult to apply the techniques used in this study to fossil species with small sample 

sizes, often n - 1. It may be applied to Neanderthals and AMH because researchers have 

discovered many remains that we are able to estimate population parameters. However, 

population estimates are still difficult to obtain in Neanderthals and AMH because the specimens 

are often fragmentary, and therefore all measurements cannot be calculated, and the remains 

researchers have found are spread across Europe in subpopulations and through time. Therefore, I 

caution that such models are most useful only at a population level understanding of a taxa in 

order to recognize outlier individuals with heterosis or dysgenesis. 

This study is also simplified to examine first generation hybrids, though hybrid zones are 

often very complicated in the wild with multiple generations of hybrids, backcrosses, and 

purebred individuals living sympatrically (Barton, 2001). The collection examined in this study 

also contains skulls of backcrosses with olive baboons, which should be considered for analysis in 

the future. Analysis of backcrosses and many generations later is particularly important to inform 

the debate between Duarte et al. (1999) and Tattersall and Schwartz (1999), who disagreed on the 
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traits of a Neanderthal and AMH hybrid that lived in a population that had hybridized many 

generations before. 
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 Chapter 5  

Nonmetric Analysis 

Nonmetric traits are often congenital or developmental. Scoring nonmetric traits has been useful 

in tracing family lines, since family members often have the same variation of a nonmetric trait 

due to inheritance (Brasili et al., 1999). Nonmetric traits have also been useful in identifying 

different taxa, such as the occipital bun or supraorbital torus to identify Neanderthals. 

 Nonmetric traits can be inherited or result from developmental stress, possibly due to the 

merging of unrelated genomes during hybridization, including those involved in developmental 

timing. The developmental stress affects the timing of growth from fetus to adulthood, causing 

extra bone growth in hyperstoic features or failures to fuse in hypostoic features (Buikstra and 

Ubelaker, 1994).  

In the baboon skulls, Ackermann et al. (2006) examined both hyperstoic, such as 

supernumerary teeth extrasutural bones or sutures, and hypostoic features, such as residual 

metopic sutures. They also examined additional features that do not fit nicely into either 

hyperstoic or hypostoic, such as rotated molars or tooth crowding. Ackermann et al. (2006) found 

that a higher percentage of nonmetric traits on external features of the skull is correlated with 

hybridization. If the hypothesis in Ackermann et al. (2006) holds true for internal structures of the 

nasal cavity, then hybrids will show significantly higher frequencies of nonmetric traits in the 

nasal cavity compared to the parental species.  

However, I hypothesized that internal physiology of the nasal cavity is more sensitive to 

changes in structure compared to external anatomy, including variation in nonmetric traits. In 

addition, due to the physiological differences between the bony cavity and the nasopharynx, I 

hypothesized that because of its location closer to the critical areas of the major vessels, 

basicranium, and structures of the eye, the nasopharynx will have no difference in frequency of 

nonmetric traits between the parental baboon groups and the hybrid group. Thus, because the 

bony cavity has less stringent genetic controls, more nonmetric traits might form in hybrids due to 

developmental instability and increased developmental stress. 

5.1 Methods 

During the segmentation process, nonmetric traits were visually identified in the nasal cavity 

from the CT scans. A list was kept of each such trait encountered, with the discovery of ten 
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different traits in baboon nasal cavities: tooth roots that enter the nasal cavity, ectopic teeth in the 

nasal cavity, deviated septum, divided greater palatine canals, spur on greater palatine canals, 

bony growth within greater palatine canals, bony growth within lacrimal canals, relative size of 

the lateral recess, the attachment of the inferior nasal conchae at slice 3, and the presence of the 

alae of the vomer in slice 4. The last two traits in the list, the attachment of the inferior nasal 

conchae at slice 3, and the presence of the alae of the vomer in slice 4, were only observable on 

the CT scans.  

All other traits are observable on the skulls and on the CT scans. Each specimen (n=175) 

was then re-examined on the CT scans and a subset of 65 specimens across the taxa, both males 

and females, out of the 175 specimens were examined on the dry skulls to determine the presence 

or absence of all ten traits. Only a subset of specimens was analyzed on the skulls due to time 

constraints. 

Ackermann et al. (2006) found that hybrids had higher frequencies of nonmetric traits in 

the dentition and the sutures, specifically supernumerary teeth, tooth crowding, zygomaxillary 

suture abnormalities, extreme facial size/robustness, and residual metopic suture. However, 

Ackermann et al. (2006) also searched for other external traits, such as ossicles at lambda and 

asterion, bregmatic bones, coronal ossicles, epipteric bones, and parietal-notch bones, but they 

were not present. Ackerman and Bishop (2009) found extra sutures in the zygomaxillary region, 

ossicles in the zygomaxillary region, supernumerary teeth, rotated teeth, anterior dental crowding, 

and posterior dental crowding in suspected gorilla hybrids from various museum collections. 

However, ossicles at lambda and asterion, bregmatic bones, coronal ossicles, epipteric bones, and 

parietal notch bones were not present (Ackermann and Bishop, 2009). As with Ackermann and 

colleagues, I examined many potential nonmetric traits in the nasal cavity because it was not 

certain which or any nonmetric traits would indicate hybridization. 

Visual analysis of the dry skulls revealed that several traits seen on the CT scan were not 

nonmetric traits. For example, what looked like bony obstructions in the lacrimal canals and the 

greater palatine canals on the CT scans were found to be dried tissue that had not been thoroughly 

cleaned off the skull. Therefore, these traits were removed from the analysis. This illustrates the 

value of examining the physical skulls in addition to the CT scans. 

Likewise, re-analysis of the specimens using the CT scans showed that a trait identified 

on the skull could not be reliably located in the scan. The division of the greater palatine canal 

extended inferiorly in some specimens to create a spur on the palate. However, even in specimens 

that were identified on the skull as having spurs, the spurs were difficult to locate and quantify on 
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the CT scans. In addition, this trait did not directly involve the nasal cavity. Therefore, this trait 

was removed from the analysis. 

The final seven nonmetric traits that were compared between parental species and hybrids 

are defined in Table 10. To quantify the nonmetric traits between baboon groups, a system of 

scoring was designed with higher scores indicating the presence of the trait or that the trait is 

larger or obstructs the nasal cavity. A score of 0 to indicates that the trait was not present (Table 

10). Figure 17 illustrates examples of each nonmetric trait in the various forms identified, and 

labeled with the associated score. 

5.2 Nonmetric Statistical Analysis 

The list of nonmetric traits creates categorical data. Therefore, data analysis required the use of 

non-parametric statistics such as the Fisher’s Exact test (Samuel and Witmer, 2003: 422-431). 

The Fisher’s Exact test is appropriate in this situation where the counts can be very small, 

especially when comparing the yellow baboons. It was originally designed to be applied to 

contingency tables of 2x2. A contingency table gives the percent per cell by dividing the count for 

that cell by the total count for the column and multiplying by 100. To complete a Fisher’s Exact 

test, the categories must be transformed into frequency data in an r × k contingency table, where r 

refers to the number of rows (for this study: scores), and k refers to the number of columns 

(baboon groups) (Table 11). In each test, two groups were compared at a time: olive to yellow, 

parental (olive and yellow) to hybrid, male parental to male hybrid, female parental to female 

hybrid, and all females to all males. All tests were performed at α=0.05. 

The statistical tests were performed to test the hypotheses: 1) the frequency of nonmetric 

traits in hybrids is different from the frequency of nonmetric traits in the parental species, and 2) 

there is a difference between the frequencies of nonmetric traits between males and females.  

5.3 Results 

Analysis of the nonmetric traits in the nasal cavity was conducted using a series of Fisher’s Exact 

tests. Frequencies of each score value for each nonmetric trait are presented in bargraphs in 

Figure 18. The two parental groups, olive and yellow baboons, were tested for a difference in the 

frequency of each identified trait. Of the seven traits, none were found to be significantly different 

between the parental groups (Table 11). Therefore, in the remaining tests, the olive and yellow 

baboon groups were combined into one group, the parental group, to be compared against the 

hybrid group. 
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The frequencies of each nonmetric trait were then examined between: parental and hybrid 

groups, male parental and male hybrids, and female parental and female hybrids. None of the 

nonmetric traits occurred at significantly different frequencies between the parental and hybrid 

groups (Table 11).  

Next, the specimens were divided into males and females and tested for each trait. 

Between the male parental group and the male hybrid group, no significant differences in trait 

frequency were found for any nonmetric trait (Table 11). Similarly, between the female parental 

group and the female hybrid group, no significant differences in trait frequency were found for 

any nonmetric trait at α=0.05 (Table 11).  

However, there were several features, deviated septum, lateral recess, and attachment of 

inferior nasal conchae by the choana, that would be significant at α=0.10.  

First, the deviated septum tends to be more deviated in male hybrids compared to male 

parental baboons (p=0.10). This trend is hidden in the test comparing all parental baboons to all 

hybrid baboons due to the influence of females (p=0.644). 

Second, the lateral recess of hybrids protrudes further into the walls of the orbits 

compared to parental baboons with p=0.075. This result is consistent with the wider lateral recess 

found in the hybrids (Section 4.3.6).  

Third, the inferior nasal conchae are attached by the choana more frequently in female 

parental baboons compared to female hybrids at p=0.073. This trait could also be examined as a 

metric trait by measuring the location of the posterior margin of the inferior nasal conchae in 

comparison to other features, such as the posterior margin of the palate (choana), which was 

examined here. 

In several tests, there were no counts for a particular score, which has implications for 

how the Fisher’s Exact test functions. For the ectopic teeth, three tests had values of 0 for both 

groups: score 3 between olive and yellow; score 2 between male parental and male hybrid; scores 

3 and 4 between female parental and female hybrid. Neither the male parental nor male hybrids 

had scores of 3, severe, for the deviated septum. These values are marked with an asterix in Table 

11. The Fisher’s Exact test cannot calculate a statistic if all the observed values in a row are 0. 

Therefore, these rows were removed from analysis and the Fisher’s Exact test continued at a 

lower degree of freedom. 

A final test regrouped the specimens into a) olive, hybrid, and yellow females, and b) 

olive, hybrid, and yellow males. These Fisher’s Exact tests found that 6 of the 7 tested nonmetric 

traits, tooth roots in the nasal cavity, ectopic teeth, deviated septum, lateral recess in orbit, 

attachment of inferior nasal conchae in slice 3, and the presence of the alae of the vomer in slice 
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4, were significantly different between males and females, with males having higher frequencies 

at α=0.05 (Table 11). Therefore, there is a sexual bias towards males in the frequency of 

nonmetric traits.  

5.4 Conclusions 

From Ackermann et al.’s (2006) work, and because the nasal cavity is functionally divided, I 

expected that hybrids might have a higher percentage of nonmetric traits in the anterior, but not 

posterior nasal cavity. However, as hypothesized, this study did not find any significant 

differences between taxa, and hybrids had the same percentage of nonmetric traits in the anterior 

nasal cavity, which includes tooth roots, ectopic teeth, deviated septum, and division of greater 

palatine canal, or the posterior nasal cavity, which includes the lateral recess in the orbits, the 

attachment of the inferior nasal conchae at the choana, and the presence of the alae of the vomer 

near the middle of the nasopharynx.  

 In hybrids, three traits were found in higher frequencies, and significant at α=0.10, but 

not at α=0.05: greater deviation of the septum, unattached inferior nasal conchae at the choana, 

and greater bulging of the lateral recess into the nasal cavity.  

Roots of Teeth in Nasal Cavity 

Because Ackermann et al.’s (2006) studies found dentition to be a significant indicator of 

hybridization, I included two nonmetric traits related to the impact of dentition on the nasal 

cavity: tooth roots in the nasal cavity, and ectopic teeth in the nasal cavity.  

There was no difference in the frequency of the roots entering the nasal cavity between 

taxa, though there is between sex. Overall, 25% (43 of 171) of all specimens had at least one root 

enter the nasal cavity. Abscesses entering into the nasal cavity occurred in 47% (20 of 43) of 

cases of roots entering the nasal cavity. The large quantity of associated abscesses possibly 

formed due to the diet containing more sugars given to the baboons in the captive colony. The 

pathological occurrence of abscesses is more frequent in males and might reflect female 

behavioural differences, such as selective eating or processing that would reduce dental 

pathology, or possibly some physiological or structural advantage that prevents dental 

pathologies.  

Ectopic Teeth 

Ectopic teeth, which are rare (1% in modern humans) and extremely rare in the nasal complex, 

most commonly form due to problems during embryological development (Castillo, 1994; de 
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Oliveira et al., 2008; Ramanojam et al., 2013). The ectopic teeth can become encased by cysts, or 

covered by salts to create a rhinolith, and may be accompanied by pain, such as throbbing in the 

region, localized pain, or headaches, and other symptoms, such as nasal discharge, epistaxis, 

deformity of the external nose, or deviated septum, or be asymptomatic (Şenkal et al., 2006; de 

Oliveira et al., 2008; Ramanojam et al., 2013). In clinical cases, the ectopic tooth is almost always 

removed surgically, even when asymptomatic, in order to prevent future infections and 

complications (Şenkal et al., 2006; de Oliveira et al., 2008; Ramanojam et al., 2013).  

I hypothesized that the occurrence of ectopic teeth would be similar to the occurrence of 

supernumerary teeth found by Ackermann et al. (2006). Ectopic teeth often are supernumerary 

teeth, but they fail to erupt and remain in the nasal cavity or become malformed in the nasal 

cavity. Ackermann et al. (2006) found supernumerary teeth in 8% (14/169) in all taxa, of which 

25% (10/40) were hybrids; of which 4.5% (1/22) were female hybrids, and 50% (9/18) were male 

hybrids. Though no baboon taxon showed a greater frequency of ectopic teeth in the nasal cavity 

than any other, the overall frequency (8%) matches with Ackermann et al.’s (2006) study 10%, 

though it is much greater than the <1% occurrence in humans (de Oliveira et al., 2008). It is 

possible that the high frequency may be a result of captivity, though rates of ectopic teeth would 

need to be recorded in the wild for confirmation. 

Deviated Septum 

Some degree of a deviated septum was observed in 44% of all the specimens. However, there was 

no difference in rates between taxa and the high rate is not surprising because high rates are also 

recorded in humans (Holton et al., 2012). Holton et al. (2012) found that nearly all of their human 

subjects exhibited some degree of deviated septum.  

There was a slight difference between the occurrence of deviated septum between male 

parental and male hybrids, though not significant. Male hybrids exhibit more deviation than male 

parental baboons. This may be an indication of hybridization in males due to developmental 

instability. 

The occurrence of the concha bolussa, in which one inferior nasal concha is larger than 

the other, is associated with septal deviation (Stallman et al., 2004). Though concha bolussa was 

not recorded, I suspect that this was one of the primary reasons for septal deviation and should be 

investigated in the future. Trauma can also cause a deviated septum though a history of trauma for 

each specimen would be needed to determine if trauma was the cause. 

Greater Palatine Canal 
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The division of the greater palatine canal had an overall frequency of 33% and was also not found 

to be significantly different between taxa. In literature on human nonmetric traits and baboon 

nonmetric traits, there is no mention of such a division in the greater palatine canal. Certainly 

further studies of this trait in more extensive collections are recommended to discern the 

occurrence of this trait.  

Lateral Recess in the Orbits 

The visual expansion of the lateral recess occurred in 44% of specimens. Further discussion of the 

lateral recess is given in Section 4.4.  

A difference was observed in the degree of expansion of the lateral recess. The lateral 

recess of hybrids protrudes further into the walls of the orbits compared to parental baboons with 

p=0.075. The morphometric measurement of the lateral recess was taken anterior to the orbits, 

while the nonmetric trait for the lateral recess was observed in the orbits. Koppe and Ohkawa 

(1999) labeled the lateral expansion in the orbits the “small” lateral recess, which was 

differentiated form the general lateral recess posterior to the third molar and in the nasopharynx. 

The observation of expansion in both of these areas in hybrids supports the two definitions of the 

lateral recess. Future research should test if there is correlation between the two types of lateral 

recess, or continuity connecting them as the same structure. 

 Future studies should also morphometrically measure this trait as morphometric traits are 

generally much more accurate in recording these types of size differences, lowering inter- and 

intra-observer error. 

This study provides a new perspective on the occurrence of the lateral recess in baboons. 

There is a wide range of expression of this trait, though it is not present in the majority of 

individuals. In order to identify the purpose of the lateral recess, future studies should further 

examine potential respiratory differences in individuals with the lateral recess in the orbits, 

posterior to the 3rd molar, and those without. 

Inferior Nasal Conchae Attachment 

The attachment of the inferior nasal conchae at the choana occurred more often in females than in 

males. I suspect that this observation may not be a true nonmetric trait, but a morphometric side 

affect of the difference in length of the bony cavity in males and females, as discussed in Section 

4.3.6.  

The male inferior nasal conchae extend beyond the choana into the nasopharynx though 

the female inferior nasal conchae attaches before or at the choana. Because the inferior nasal 
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conchae affect airflow, the airflow between males and females might be different as well. Future 

studies should analyze the physiological functions of this morphological observation. 

Similar implications might be applied to female parental and female hybrid baboons. The 

inferior nasal conchae is attached by slice 3 more frequently in female parental baboons 

compared to female hybrids at p=0.073. Again, this observation may be an affect of bony cavity 

length differences, which were significantly different between female taxa (Section 4.3.6). 

Anterior Location of Alae 

Similarily, I suspect that the presence of the alae of the vomer is caused by length differences 

between males and females. As described in Chapter 4, the bony cavity is longer in males, though 

the nasopharynx is the same length. Therefore, the midpoint of the nasopharynx in males (slice 4) 

is shifted more anteriorly, making it seem as though the alae of the vomer begins more 

posteriorly. Future studies might examine whether the total anatomy of the nasal cavity is not 

changing, or if the vomer is similar between males and females, but the length of the nasal cavity 

alters the location of the alae. 

Summary of Nonmetric Traits 

Overall, males demonstrated a greater frequency of all nonmetric traits. This trend is also seen in 

some human traits, such as auditory exostosis, parietal notch bones, and asterionic bones, though 

certainly not in all (Brasili et al., 1999; Hanihara and Ishida, 2001). The male biased occurrence 

of nonmetric traits is also considered variable depending upon the population being studied 

(Brasili et al., 1999; Hanihara and Ishida, 2001). Therefore, the male bias in baboons is an 

anomaly for all the traits tested and deserves future study. 

Ackerman et al. (2006) also examined the same baboon collection that was used in this 

study and found a greater frequency of nonmetric traits in the external skull of hybrids. Because 

the rate of nonmetric traits did not significantly differ between taxa, nonmetric traits of the nasal 

cavity cannot help in the identification of hybrids in the fossil record. There were no differences 

in the frequency of nonmetric traits in the nasal cavity indicating that the developmental timing of 

the nasal cavity may not be disturbed, though Ackermann et al. (2006) cites developmental 

instability as the cause for a greater frequency of nonmetric traits on the external morphology of 

hybrids.  

Therefore, there may be less selectively neutral traits in the nasal cavity compared to 

other locations of the skull, or I may have selected nonmetric traits that are not useful in hybrid 

identification.  
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Chapter 6  

Implication of Baboon Hybridization for Pleistocene Hominins 

In this chapter, the baboon hybrid model of the nasal cavity and hybrid zone is used to infer the 

form of the nasal cavity in Neanderthal and AMH hybrids and a Neanderthal and AMH hybrid 

zone. I examined the baboon hybrid zone and assessed the independent variables important in 

determining the outcome of hybridization. The model of the baboon hybrid zone then served as a 

comparison to a potential hybrid zone between Neanderthals and AMH. Considering the available 

skeletal, genetic, and archaeological evidence, I hypothesized that hybridization occurred between 

Neanderthals and AMH, followed by the gene swamping of Neanderthal genes by AMH genes, 

leaving only a small introgression marker of Neanderthal nDNA in contemporary human 

genomes. Finally, I applied the baboon hybrid nasal cavity model to propose a hypothesized 

Neanderthal and AMH hybrid nasal cavity.  

6.1 Olive and Yellow Baboon Hybrid Zone 

The baboon model of the hybrid zone provides insight into which factors influence the formation 

and maintenance of hybrid zones, and what genetic and morphological evidence is helpful in 

identifying characteristics of hybrid zones. Unfortunately, the Neanderthal and AMH populations 

cannot be directly observed in a hybrid zone, but a hypothesized hybrid zone between 

Neanderthals and AMH can be proposed after understanding the baboon hybrid zone. The 

literature describes the hybrid zone between yellow and olive baboons in Amboseli, Kenya as 

unimodal intermediate, with an invader population (olive baboons) immigrating into the territory 

of yellow baboons.  

Samuels and Altmann (1986) describe some of the first hybrids in Amboseli. Samuels 

and Altmann (1986) discovered juvenile hybrids in the groups of yellow baboons that they were 

studying. They suspected that these juveniles were the offspring of female yellows and male 

olives because they were “yellow in colouration, but had anubis[olive]-like features (e.g. stocky 

builds and anubis-shaped tails and faces)” (Samuels and Altmann, 1986: 133).  

Alberts and Altmann (2001) later formulized the process of identifying hybrids in the 

field by observing specific “intermediate” traits, such as intermediate body shape, hair length, 

head shape, tail length and thickness, and tail bend. These traits are scored from 0 (pure yellow) 

to 2 (pure olive), where 1 is intermediate, 0.5 is “more yellow” and 1.5 is “more olive”. This 
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system of identification of phenotypic characters is designed to capture a unimodal distribution, 

which is what was observed in July 2000, though it was skewed towards yellow: 77% yellow 

(scores of 0-025), 10% ambiguous (0.26-0.49), 13% hybrid (0.5-1.54) and less than 0.5% anubis 

(1.5-2). Alberts and Altmann (2001) hypothesized that the ambiguous phenotypes were hybrids 

with distant olive ancestors, perhaps one grandparent, or are yellow outliers. Alberts and Altmann 

(2001) also contrasted the yellow and olive hybrid zone with the more bimodally distributed 

hamadryas and olive hybrid zone, in which the phenotypes tend to present as either hamadryas-

like or olive-like, with no “intermediate” phenotypes. 

The baboon population in Amboseli is predominantly composed of yellow baboons, 

though the percentage of hybrids, both phenotypically and genetically, continues to rise (Alberts 

and Altmann, 2001; Tung et al., 2008). Alberts and Altmann (2001) reviewed demographic trends 

and found that births of hybrids increased from 0% in the 1960s and 1970s, to 10% in the 1990s. 

Tung et al. (2008) analyzed the genetics of baboons in Amboseli from 1968 to 2004 and found 

that olive genetic ancestry in the population has increased from 0% in 1968-1979, to 12.8% in 

1980s, to 25.1% in 1990s, and to 31.3% in 2000-2004.  

The rise in olive ancestry is the result of successful hybridization followed by those 

hybrids successfully mating with yellows and other hybrids. The greater percentage of hybrids in 

the population, the greater percentage of olive-ancestry, and the successful hybridization might 

indicate hybrid advantage. Hybrid fertility and high hybrid fitness have been observed in 

Amboseli. In the 1960s and 1970s, no hybrid births were recorded. Samuels and Altmann (1986) 

recorded the first births of hybrids by an olive male and a female yellow. From observations of 

copulation, the olive male probably fathered five conceptions (two of which survived the first 

year of life). Alberts and Altmann (2001) found evidence of male hybrids emigrating from their 

natal groups earlier than their purebred yellow counterparts. Early dispersal has been linked with 

the timing of other important reproductive events, such as age of maturation and the first mate-

guarding episode (Tung et al., 2008). Indeed, Charpentier et al. (2012) cited a submitted study 

that has observed olive-like male hybrids participating in more mate-guarding events, which are 

associated with successful reproduction and higher fitness. Charpentier et al. (2012) also observed 

transgressive segregation, greater genetic diversity in olive and yellow baboon hybrids, which 

gives hybrids an advantage in novel or changing environments and in circumstances in which 

new pathologies might exist. 

It is remarkable how much genetic and phenotypic change has occurred in Amboseli 

considering that Alberts and Altmann (2001) observed only five purebred male olives and eleven 

male olive and yellow hybrids immigrate into Amboseli since 1971. Therefore, all of the first 
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generation (F1) hybrids were derived from a male olive and female yellow. This observation is 

not surprising because in both yellow and olive baboons, it is the male that disperses from the 

natal group.  

However, the evidence from the mitochondrial DNA (mtDNA) is more complicated. 

Newman et al. (2004) were not able to differentiate loci from mtDNA that were sampled from 

three yellow baboons from the hybrid zone in Kenya, six olive baboons from the hybrid zone in 

Kenya, and four olive baboons near the hybrid zone in Kenya. Newman et al. (2004) hypothesize 

that the mtDNA is not differentiable because the mtDNA contains traces of past hybridization 

(not related to the contemporary hybrid zone documented by Samuels and Altman (1986)) 

between olive and yellow baboons. However, it is uncertain which taxon had the original mtDNA 

that has since spread to olive and yellow baboons around the hybrid zone. This past hybridization 

event would have created the contemporary yellow baboon population in Kenya (Newman et al., 

2004).  

The baboons that Newman et al. (2004) sampled and labeled as from the hybrid zone in 

Kenya are from the SNPRC colony (the same used in this study) and are more accurately 

described as the descendants of the wild-caught baboons from Kenya. There is a contradiction in 

how the colony founders are classified. Newman et al. (2004) suggest that the baboons are 

yellows and olives from the hybrid zone, which implies that their populations may have 

experienced recent introgression. However, Dr. Mahaney at SNPRC (Personal communication) 

informed me that the founders of the colony were pure yellow and pure olive, and were wild-

caught prior to known hybrid zones between olive and yellow baboons. Either way, Newman et 

al.’s (2004) study would still show evidence of a past hybridization event, and suggests that 

hybrid zones are not stable over time. 

In Amboseli, the hybrid zone between yellow and olive baboons is also not stable. 

Alberts and Altmann (2001) hypothesize that if immigration of male olives ceases due to the local 

extinction of the natal populations around Mt. Kilimanjaro, the olive genes that have introgressed 

into the yellow population in Amboseli will become a decreasing percentage of any individual 

hybrid’s genotype in successive generations until little trace of hybridization remains. This would 

occur because the yellow genes would gene swamp the introgressed olive genes if the supply of 

olive genes stopped. Tung et al. (2008) may have documented the beginning of this process 

because hybrids in 2000-2004 have a smaller percentage of olive genes compared to hybrids in 

1968-1979. They explain this conflicting evidence by hypothesizing that hybrid males have a 

selective advantage over yellow and olive males, while there has also been a decrease in the 

immigration of olive males. If hybrid males did have the highest fitness, the hybrid zone would be 
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maintained at a study state with intermediate level of olive ancestry, while the hybrids 

backcrossed with yellows or mated with other hybrids. In addition, fewer olive males are 

dispersing into yellow territory, so that the overall percentage of olive genes in the Amboseli gene 

pool remains steady, but new hybrids have a smaller proportion.  

Knowing the form of the hybrid zone (unimodal, bimodal, mosaic) and the variables that 

determine how the hybrid zone changes, it is possible to deduce the general morphology of the 

hybrid, in this case, a gradient of intermediate morphologies. The language used to describe 

yellow and olive hybrids in Tung et al. (2008) and Charpentier et al. (2012) returned to the use of 

the term “anubis-like,” or olive-like, hybrids, originally used by Samuels and Altmann (1986). 

The term “anubis-like” is used to refer both to the phenotype (Charpentier et al., 2012) and the 

genotype (Tung et al., 2008). The authors have never explicitly described the “anubis-like” 

features, and I find it interesting that no hybrids have been described as “cynocephalus (yellow)-

like.”  

Perhaps, this is a historical precedent. Since the population was originally pure yellow, 

any new phenotype or genotype introduced by olive males would look more olive-like. However, 

from the recent descriptions, I am uncertain how or if the gradient of phenotypes described by 

Alberts and Altmann (2001) has changed through time. Of course, Charpentier et al. (2012) and 

Tung et al. (2008) were not attempting to study phenotype variation in hybrids, which I am 

interested in because I want to find a morphological indicator of hybridization. However, the 

difference in the application of the hybrid terminology (yellow-like, olive-like), mirrors the 

literature on hybrids between Neanderthals and AMH. Authors describe mosaic, intermediate, 

and features more like one or the other parent in potential Neanderthal and AMH hybrids (Section 

2.2.2). However, the morphology of a hybrid is somewhat dependent on the type of hybrid zones 

and how those zones are created (Section 2.1.1). The hybrid morphology is also dependent on the 

form and function of the two parental taxa, as shown in Chapters 4 and 5. Therefore, it would be 

useful if a more precise terminology for describing hybrids could be developed to compare hybrid 

zones and the resultant hybrid morphology. 

In summary, the main features of the Amboseli hybrid zone between olive and yellow 

baboons are as followed. The hybrid zone is unimodal with intermediate genotypes and 

phenotypes observed in the hybrids. The population genetics are changing over time with a 

greater percentage of olive genetic ancestry in the baboon population due to the immigration of 

male olives and the success of hybrids in mating. However, if the olive males cease immigrating, 

due to the destruction of their natal habitat and extinction of natal groups, the average percentage 
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of olive ancestry in each individual’s genome will begin to decrease over generations. This would 

create a genetic scenario of mostly yellow genes with a small percentage of olive genes. 

6.2 Hybrid Zones of Neanderthal and Anatomically Modern Human 

From Wu’s (2001) work, we know that demographic features of the populations, ecological 

interaction, and reproductive biology and behaviour influence hybrid zones. These variables are 

difficult to determine in populations that cannot be observed directly, only inferred from 

archaeological sites. However, there is some evidence from skeletal morphology, genetics, and 

archaeology that can be used to hypothesize a potential hybrid zone between Neanderthals and 

AMH. The model of the hybrid zone between yellow and olive baboons helps to fill in the gaps in 

the archaeological record by comparing the evidence between the baboons and the Pleistocene 

hominins. 

6.2.1 Neanderthal Population Variables 

The first important variable that influences hybrid zones and hybrid viability is divergence. 

Divergence between populations refers to the great number of differences in genotype and 

phenotype due to specialized adaptations since the last common ancestor. Greater divergence is 

indicated by a greater number of differences. When the populations re-encounter each other, 

greater divergence between them may result in greater developmental instability due to 

incompatible allele combinations because the genes were specialized for a specific environment. 

Incompatible allele combinations can cause changes in developmental timing that alter the shape 

and size of nonmetric traits and overall structures (Ackermann et al., 2006; Ackermann, 2010). 

Severe developmental problems act as postzygotic barriers that prevent the hybrid from surviving 

and reinforce taxa divergence. Less divergence increases the likelihood that hybridization will 

generate unique advantageous allele combinations in the hybrid, giving the hybrid an advantage 

in a new environment (Barton, 2001).  

Many researchers have used the molecular clock, which assumes a steady rate of 

mutations in the DNA over time, to estimate the divergence time of Neanderthal and AMH. 

Estimates for the divergence time of Neanderthals and AMH range between 500,000 to 270,000 

years ago, depending on which segments and type of DNA are being analyzed and other 

assumptions in the applications of the molecular clock (Krings et al., 2000; Ovchinnikov et al., 

2000; Endicott et al., 2010; Green et al., 2010) (Section 2.2.3). Such a long divergence time and 

the migration of Neanderthal ancestors northward would have allowed each population to develop 

adaptive traits specific to those environments, which is hypothesized to be the method that led to 
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the development of the “classic” Neanderthal traits (Dean et al., 1998; Hublin, 2002; Harvati et 

al., 2010).  

Species divergence is an important factor in hybrid viability, however, time apart does 

not necessarily determine to what extent the two groups diverged in terms of behaviour or 

ecology. Similarities in nDNA and mtDNA evidence suggest strong similarity between the 

Neanderthal and AMH groups as sister taxa at the species or subspecies level. Researchers have 

also identified unique differences in mtDNA that allow them to distinguish one population from 

the other (Krings et al., 1997; Ovchinnikov et al., 2000; Scholz et al., 2000; Serre et al., 2004; 

Serre and Pääbo, 2008; Green et al., 2010). Further, Holliday (2008) suggests that hybrids 

between Neanderthals and AMH would be viable because the divergence time is less than half of 

the divergence time between the two species that have the earliest known postzygotic barriers. 

In comparison to the baboon model, olive and yellow genotypes and phenotypes are very 

similar, probably more similar than they were between Neanderthals and AMH. Olive and yellow 

baboons can successfully hybridize in hybrid zones, with viable offspring to maintain gene 

introgression into the yellow population. A different nonhuman model with more distant 

divergent times may be a better model for Neanderthal and AMH hybrids. A comparable hybrid 

zone with an equal divergent time would be difficult to find. This is one of the unique traits of the 

hybrid zone between Neanderthals and AMH, because of the advanced ability for Pleistocene 

humans to migrate long distances, the two populations came back into contact. Other populations 

that have equivalent divergent times may be geographically separate and would not be able to 

naturally re-encounter each other in the wild. 

The next demographic characteristics important in the establishment and maintenance of 

a hybrid zone are population size and density. These variables contribute to determining the 

extent of gene flow between populations and potential gene swamping. Larger populations tend to 

have more diversity and larger gene pools, which gives them more resilience to new alleles added 

through immigration (Shurtliff, 2013). Therefore, new alleles from another population will 

consist of only a small percentage of the gene pool and may not replace the alleles already 

established at high percentages. Smaller populations are more at risk of genetic drift and gene 

swamping, thus losing their unique alleles in the enlarged gene pool that includes the alleles from 

the larger population as well (Detwiler et al., 2005; Shurtliff, 2013).  

From the archaeological record, researchers believe that Neanderthals had smaller group 

sizes compared to AMH. Smaller group sizes are hypothesized because large remains of tortoises 

and shellfish are found at Neanderthal archaeological sites, implying that Neanderthal populations 

were small enough not to apply strong hunting pressures against prey species (Klein, 2000). 
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Greater hunting pressure selectively removes the preferred prey type, which in the case of 

tortoises and shellfish, larger is preferred. In contrast, smaller tortoise and shellfish were found at 

the AMH sites, implying larger AMH group sizes with greater hunting pressure on prey animals 

(Klein, 2000). Archaeologists also argue that AMH had greater population growth and expansion 

because the technology associated with AMH, Aurignacian lithic industry, became more diverse 

and rapidly spread across Europe (Klein, 2000). There are also more Aurignacian sites closer 

together, with high site density, implying larger AMH populations and growth (Svoboda, 2005). 

Mellars and French (2011) estimated a smaller Neanderthal population size because there were 

much fewer Mousterian and Châtelperrion tools and smaller occupation areas associated with 

Neanderthals, than the many Aurignacian tools and large occupation areas associated with AMH 

(Smith, 2013). These demographic characters are broad generalizations for Neanderthals and 

AMH across Europe.  

When populations interacted locally, I suspect that group sizes varied widely between 

Neanderthals and AMH. Some interactions may have been between some small Neanderthal 

groups and large AMH groups, or vice versa, and medium group sizes. Researchers often 

examine different demographic scenarios to take into account the local variability and uncertainty 

of the many assumptions, such as migration rates, population sizes, birth rates, and death rates, to 

estimate rates of introgression (Currat and Excoffier, 2011; Sørenson, 2011). Sørenson (2011) 

modeled possible population sizes of Neanderthals and AMH between 260,000 years ago to 

present, varying overall fertility, temperature, and geographic location, divided as Northern, 

Middle, and Southern Europe. Sørenson calibrated the model by including climate variation, 

which effected migration rates, birth rates and death rates due to various pressures associated with 

living in a very cold environment such as starvation, cold-exposure, predator deaths during glacial 

periods. His model estimate that between 35,000-30,000 years ago, AMH populations would have 

been equal to Neanderthal populations (around 5,000 individuals in Southern Europe), though 

AMH continued to expand after entering Europe ~40,000 to 34,000 years ago, while Neanderthal 

populations suddenly declined (Ahern et al., 2013). Recognizing low diversity of mtDNA in 

sampled Neanderthals, Briggs et al. (2009) estimated that Neanderthals must have had a small 

effective population size, related to the number of fertile females, around 1,476 females, 

throughout their existence in Europe. In total, researchers estimate that at any time, there were 

about 5,000 Neanderthals of all age and sex categories with a population density of less than 

0.025 individuals/km2 (Briggs et al., 2006; Sørenson, 2011). 

In the baboon model, yellow baboons have the larger population size, while there are 

only a few (16 known) olive or hybrid immigrants. The median size of baboon groups in 
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Amboseli is 39 baboons, composed of seven adult males, two subadult males, twelve adult 

females, nine juveniles, and eight yearlings/infants (Samuels and Altmann, 1991). Combining all 

eleven baboon groups recorded, there were 138 adult females out of 223 baboons (1.62 adult 

females for each adult male), with a density of 1.15 baboons/km2. Therefore, if the baboon and 

hominin population sizes were standardized, yellow baboons have a greater proportion of females 

compared to Neanderthals (yellow baboons with migrants: 138/223 * 100 = 62% females, 

Neanderthals: 1,476/5,000 * 100 = 30% females). A higher proportion of females can give an 

allele in that population a lower chance of disappearing due to genetic drift, and thus gene 

swamping. The small overall population size and small effective population size in Neanderthals 

leaves them vulnerable to gene swamping (Alberts and Altmann, 2001; Detwiler et al., 2005). 

According to Sørenson’s (2011) model, in Southern Europe around 30,000 years ago, the 

immigrant AMH population was greater than the local Neanderthal populations. These 

demographic conditions suggest that AMH may have had invader advantage through larger 

populations. On a grand scale of the entire Neanderthal and AMH population gene pool in 

Europe, Neanderthal genes would make up only a small fraction and have little effect on 

phenotypes. If the two populations were to interbreed on this scale, and hybrids had hybrid fitness 

equal to at least one parent species, introgression would take place in both directions, called 

reciprocal hybridization, and hybrids would assimilate into the populations (Huxel, 1999; Wirtz, 

1999). If the populations were of equal size, interbreeding might eventually result in the merging 

of the two taxa into one with equal ancestry from both Neanderthals and AMH, resulting in 

reticulate evolution.  

However, because Neanderthals have a smaller overall population, they are at risk of 

gene swamping and extinction (Huxel, 1999; Seehausen, 2004; Detwiler et al., 2005; Wolf et al., 

2001). Over generations, as the hybrids mate with purebred Neanderthals and purebred AMH, 

more AMH backcrosses would be born assuming random mating, because AMH populations are 

larger. Eventually, as the percentage of AMH alleles continue to increase in the gene pool, 

decreasing the percentage of Neanderthal alleles, and thus gene swamping the Neanderthal 

alleles, pure-form Neanderthals would become extinct. Only a small amount of Neanderthal DNA 

would have introgressed into the largely phenotypic AMH population through the backcrosses 

carrying some Neanderthal DNA into the AMH gene pool (Jolly, 2001; Cartmill and Smith, 2013: 

444-447; Zinner et al., 2009; Zinner et al., 2011; Smith, 2013).  

However, even in models of low immigrant density and slightly higher immigrant fitness, 

genetic displacement occurs rapidly (Huxel, 1999). This scenario is illustrated in baboons by the 

increasing percentage of olive ancestry in an originally yellow population. Even though the 
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yellow population is larger, olive alleles, originating from the immigration of only five purebred 

males and eleven male olive and yellow hybrids (low immigrant density) who successfully mated 

(high immigrant fitness), entered the yellow gene pool at high rates (Alberts and Altmann, 2001; 

Tung et al., 2008).  

6.2.2 Most Parsimonious Introgression Scenario 

If Neanderthals have a smaller population size than AMH, as hypothesized above, and 

interbreeding occurred in both directions, with hybrids having equal or greater fitness than 

parental taxa, eventually, the new gene pool of the post-hybridization population would consist 

primarily of AMH alleles and a few Neanderthal alleles. Eventually, the pure-form of 

Neanderthals would go extinct, as would the pure-form of AMH, though this is less noticeable 

since most of the alleles would still be AMH and many phenotypes may still resemble the original 

AMH form. The Neanderthal alleles that would survive in the long-term would be those that are 

advantageous or are hidden in a recessive form and are thus not being selected against (Jolly, 

2001).  

In the long term, this scenario would result in predictable evidence in the morphological, 

genetic and archaeological data. Evidence that would support the scenario of gene swamping 

would be the sudden disappearance of the Neanderthal phenotypes in the fossil record, replaced 

by AMH populations carrying traces of Neanderthal DNA. Contemporary human populations, 

descendants of the hybridized population, should have both Neanderthal and AMH mtDNA to 

reflect maternal lineages due to the introgression of both male and female Neanderthal genes into 

AMH. The archaeological record would show similar replacement of Mousterian to Aurignacian 

industries (Klein, 2000), or Neanderthal acculturation and adoption of AMH technology (Smith et 

al., 2005; Hublin, 2013).  

 There would be a transitional period during hybridization, when F1 hybrids with 50% 

Neanderthal and 50% AMH alleles would exist along side pure Neanderthals, pure AMH, and 

backcrosses to both parental taxa and crosses between hybrids. Hybrids may initially show 

intermediate traits, then become more and more AMH-like as each individual over the 

generations has less Neanderthal ancestry. The hybrids with intermediate traits would only exist 

in the fossil record for a relatively short time period, before gene swamping would eliminate most 

of the Neanderthal phenotypes (Jolly, 2001). The only Nenaderthal genotypes that would remain 

in the AMH population would be adaptively beneficial or linked to a trait that is adaptively 

beneficial, such as the haplotype at STAT2, which is functionally important in immunity, and in 

contemporary humans, may be derived from Neanderthal introgression (Mendez et al., 2001). For 
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example, if male olive baboons stop migrating into the yellow and hybrid baboon population, the 

yellow and hybrid baboons will fuse into one taxon, and due to the greater number of yellow 

baboons, result in yellow-type baboons with some unexpressed or very little expressed olive 

DNA (Tung et al., 2008).  

The morphological change can take place very quickly, as was observed over only three 

decades during which only five purebred olive males and eleven hybrid males entered the yellow 

population, which now consists of 33.2% of baboons with recent olive ancestry (Alberts and 

Altmann, 2001). Wolf et al. (2001) found that extinction of the smaller, local population often 

takes place in less than five generations. The likelihood of finding hybrid skeletal morphology 

that existed for only several centuries, to be very generous, will be extremely small when the 

archaeological record discerns between several hundred years at best. However, if such a skeleton 

is ever found, perhaps the model of the baboon hybrid nasal cavity produced in this study may be 

helpful in identifying a hybrid. 

6.2.3 Supporting and Contradictory Evidence 

The currently available skeletal, genetic, and archaeological evidence can be interpreted to 

support the above scenario.  

Many researchers agree that the pure-form of Neanderthals died out during the Upper 

Paleolithic (Smith et al., 1999; Finlayson et al., 2006; Mellars, 2006). However, some 

Neanderthal derived traits, autapomorphies, may have survived in Upper Paleolithic AMH (Smith 

et al., 2005; Ahern, 2008; Wu et al., 2012). In particular, Neanderthal traits such as the anterior 

mastoid tubercle, asymmetrical mandibular notch, horizontal-oval mandibular foramen, occipital 

bun, retromolar space, suprainiac fossa and large occipitomastoid crest, were found to occur at the 

same frequency in Neanderthals as in Upper Paleolithic AMH, which can be interpreted as 

evidence for admixture (Ahern, 2008). Researchers have also identified “transitional” forms 

between Neanderthal and AMH (Duarte et al., 1999; Zilhão and Trinkaus, 2002; Trinkaus, 2005; 

Soficaru et al., 2006; Trinkaus, 2007; Ramirez Rozzi et al., 2009) (Section 2.2.2), which would 

indicate admixture. However, these traits are widely debated, and some authors assert that AMH 

do not have these traits in any form outside of normal variation (Tattersall and Schwartz, 1999; 

Harvati et al., 2007; Stringer, 2008; Hublin, 2013).  

The genetic evidence presented by the nDNA and X-chromosomes suggest admixture 

(Mendez et al., 2001; Green et al., 2010; Yotova et al., 2011). Currently, no Neanderthal mtDNA 

has been found in contemporary humans (Krings et al., 1997; Ovchinnikov et al., 2000; Scholz et 

al., 2000; Stringer, 2002; Serre et al., 2004; Hawks, 2008; Serre and Pääbo, 2008). 
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Anthropologists argue that Neanderthal mtDNA may have introgressed into the AMH population, 

but later a selective sweep against those lineages of mtDNA occurred, removing the Neanderthal 

mtDNA from the population (Nordborg, 1998), or there may not have been enough samples of 

Neanderthal mtDNA to locate the lineages that survived. 

The “transitional” tool assemblage may indicate contact and sharing of technology 

between Neanderthals and AMH, regardless of who was the original creator of this assemblage, 

which establishes the parameters for hybridization (Wolpoff et al., 2004; Smith et al., 2005). To 

more definitively confirm this scenario, researchers would need to find sites with the mixture of 

Neanderthal, AMH, and hybrid remains, and possibly a mixture of lithic industries. Such sites 

would be very rare in the archaeological record. 

6.2.4 Alternative Scenarios 

Alternatively, researchers hypothesize that Neanderthal mtDNA never introgressed into AMH 

populations, either because no hybridization occurred, or hybrid offspring of female Neanderthals 

did not survive or exist. 

If no hybridization occurred, “transitional” morphologies would be interpreted as more 

extreme forms of AMH (Tattersall and Schwartz, 1999; Harvati et al., 2007; Stringer, 2008; 

Hublin, 2013). The mtDNA would support a sole AMH ancestry, while the results of nDNA 

could be explained as linkage disequilibrium rather than admixture (Eriksson and Manica, 2012), 

or an as yet, uncorroborated study in the literature (Klein, 2003). The tools made by Neanderthals, 

even if they became more advanced such as the Châtelperrion, would have been independent 

from the Aurignacian of the AMH (Klein, 2000; Klein, 2003; Hublin, 2013). 

Although unlikely, it is also possible that only Neanderthal males mated with AMH 

females, thereby introducing Neanderthal nDNA, but the mtDNA would always be AMH, which 

supports the current mtDNA and nDNA genetic evidence (Wirtz, 1999; Mason and Short, 2011). 

The mtDNA would be introduced through male introgression through a variety of scenarios, one 

of which may be that there were a small number of available AMH males to mate with, in which 

case the AMH females would accept Neanderthal males as mates (Wirtz, 1999). Wirtz (1999) 

surveyed the literature and found that interbreeding usually occurs between the females of a rare 

species and the males of a common species, but not vice versa, due to females often preferring 

mates more similar to themselves, such as in the same culture or species. But in circumstances 

when females cannot access males similar to themselves, they may find mates in less similar 

males (Wirtz, 1999), as observed in toads (Pfennig, 2007).  
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I suspect that a variety of scenarios occurred at a small scale in different regions, such as 

admixture of male and female Neanderthals and AMH followed by gene swamping and 

Neanderthal extinction (the most parsimonious scenario), no hybridization, or only introgression 

of Neanderthal male genes into AMH populations. There are many other scenarios that are not 

discussed here.  

The most parsimonious scenario, with supporting evidence, corroborates the Assimilation 

model, which suggests that Upper Paleolithic AMH would express traits that are overwhelmingly 

African with some persistence of Neanderthal regional features (Smith et al., 1989; Smith et al., 

2005; Ahern et al., 2013). I think that it is either only a matter of more sampling until Neanderthal 

mtDNA is found in contemporary humans, or a selective sweep has occurred after introgression, 

which erased the Neanderthal mtDNA from human lineages (Nordborg, 1998).  

6.3 Nasal Cavity of Neanderthal and Anatomically Modern Human Hybrid 

The study of the hybrid baboon nasal cavity can speculate on the shape and size of a Neanderthal 

and AMH hybrid nasal cavity.  

Specifically, this model can apply to the first generation of hybrids. The features of 

hybrids after the first generation display different degrees of heterosis or dysgenesis, as 

Ackermann et al. (2006) found in the external features of backcrossed baboons skulls, though 

backcrosses were not examined in this study. In particular, nonmetric traits may only be present 

in the earlier generations of hybrids. Because nonmetric traits are neutral and tend not to affect 

physiology, after many generations, they could eventually be removed from the population by 

genetic drift (Jolly, 2001). This explanation may explain why Upper Paleolithic AMHs in Europe 

do not show Neanderthal autapomorphies (Hublin, 2013). Therefore, this baboon model can only 

suggest the morphological patterns in the first generation of hybrids. 

This study illustrates that in the first generation of baboon hybrids, the nasal cavity 

responded to hybridization differently in each region within the nasal cavity. The areas of most 

dynamic change in the baboons were the anterior bony cavity, the choana and the mid-

nasopharynx. The area that did not differ between the hybrids and the parental taxa was the 

middle bony cavity. The area that appeared more similar to one parental taxon than the other was 

the posterior nasopharynx.  

I suggest that first generation Neanderthal and AMH hybrids might have shown a similar 

pattern as observed in hybrid baboons. Currently, no middle bony cavity of a Neanderthal has 

been found. Due to the functional importance of this section, it is possible that structures in this 
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region may be conserved from the last common ancestor and would be similar in Neanderthals 

and AMH, as observed in olive and yellow baboons. Then, applying the hybrid baboon model, the 

mid-bony cavity may be unchanged in the Neanderthal and AMH hybrid. It would be useful to 

compare the nasal cavities from many different hominin fossils to discover if this area is 

conserved. As a proxy, the nasal cavities of extant non-human primates can be examined, though 

it must be with caution because the structure of the nasal cavity changes in response to changes in 

the external maxillae. Extant nonhuman primates have specialized dentition and prognathism that 

also affect nasal cavity shape. Similarity, it would be useful to note how much variation in the 

mid-bony cavity is observed in contemporary humans from various populations to begin setting 

an expectation of variance for the study of earlier hominins. 

The anterior nasal cavity may show heterosis as it did in olive and yellow hybrids, 

possibly accompanied by a shape change. Neanderthal and AMH anterior nasal cavities have 

been documented as unique in size and shape and potentially specialized to different 

environments (though not to temperature). These adaptations are extreme compared to the much 

more subtle differences between baboon taxa. Hamadryas and olive hybrids may provide better 

insight into more extreme adaptations to different environments and could be investigated in 

future studies.  

The width of the inferior meatus in the anterior bony cavity was the only trait that was 

significantly different between parental populations in olive and yellow baboons. The hybrid 

morphology responded with heterosis in that trait (though statistically insignificant), significant 

heterosis of the anterior nasal cavity (larger area), and significant shape change. However, when 

yellow and olive baboons displayed different shapes in the nasopharynx, yellow hybrids had a 

more oblong mid-nasopharynx, the hybrids adopted the olive shape instead of the yellow shape. 

Therefore, in significantly different areas such as the anterior bony cavity between Neanderthals 

and AMH, I suspect that the features may show heterosis and shape change in Neanderthal and 

AMH hybrids or take on the features of one or the other parental taxa. Further investigation in 

more divergent populations that hybridize would be useful in determining which of these 

outcomes is more probable. 

The choanae of Neanderthal and AMH hybrids may possibly have heterosis and shape 

change as they did in baboon hybrids. The choana has relatively simple physiological functions 

that do not require extreme constraints on form to function properly and thus may be able to 

function with different sizes and shapes without negative consequences. A larger choana, a result 

of heterosis, may even be beneficial in hybrids by increasing airflow (Noback et al., 2011). 
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This baboon model of the nasal cavity, and the skull in general (Ackermann et al., 2006), 

describes the expected features of a hybrid, which do not correspond to the mosaic model in the 

Neanderthal and AMH hybridization literature. The general mosaic concept proposed by many 

authors discussed in Section 2.2.2, such as Duarte et al. (1999), Tattersall and Schwartz (1999), 

and Trinkaus (2005; 2007), suggests that a hybrid would have a combination of traits from both 

AMH and Neanderthals. However, the baboon model of hybrids suggests that most features will 

show heterosis or dysgenesis and the areas that are significantly different between populations, 

such as the nasopharynx shape in baboons or, potentially, the anterior bony cavity in 

Neanderthals and AMH, will present with the trait of one or the other parental group. Generations 

beyond F1 may show different patterns.  

Ackermann et al. (2006) found that nonmetric traits were more frequent in baboon 

hybrids and proposed that nonmetric traits could be used as an indicator for hybridization in the 

fossil record. Unlike the usefulness of nonmetric traits on the external skull for identifying 

hybridization in baboons and possibly between Neanderthals and AMH (Ackermann et al., 2006), 

frequencies of nonmetric traits in the nasal cavity may not assist in the identification of a hybrid 

because none of the nonmetric traits examined were more frequent in the baboon hybrids.  

To address the issue of the frequency of nonmetric traits multiple generations after 

hybridization, Ahern (2008) compared nonmetric traits of Neanderthal and Upper Paleolithic 

AMH (from a time period after potential interbreeding) to nonmetric traits of pre-contact Native 

Americans and contemporary descendants of Native Americans and Europeans. He found that 

differences in trait frequency were no different between Native Americans to Europeans and 

Neanderthals to Upper Paleolithic AMH. This observation implies that Neanderthal features 

persist into the Upper Paleolithic AMH due to admixture. Which traits that would be retained into 

later populations would need to be determined based on their adaptive advantage or linkage to 

other traits that are advantageous.  

This model of a Neanderthal and AMH hybrid is based upon work in baboons. Much 

further analysis with other extant non-human primates and careful examination of the 

Neanderthal and AMH skeletal remains is required to determine the accuracy of this model.  

Therefore, though there is still much research to be done on the nasal cavity in other 

extant primates, different contemporary human populations, and past populations, the hybrid 

baboon nasal cavity model can help researchers to hypothesize the features of a Neanderthal and 

AMH hybrid. 
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6.4 Transitional Forms 

Scientific and religious interpretations of recent evolution vary dramatically. One main point of 

contention is the observation in the fossil record that there are no or few transitional forms 

between species. Explained another way, the fossil record is comprised of long periods of the 

existence of a particular species assemblage, then a sudden disappearance of that species 

assemblage, replaced by new, and morphologically distinct species. Scientists and creationists 

both recognize this phenomenon, but they disagree about what this evidence might mean for 

explaining evolutionary theory. 

Creationists are skeptical of scientists because creationists believe that the known fossil 

evidence only shows species stasis over thousands of years, what they call data, “Where there are 

good data, we see no evolution. Where the data are scanty, evolutionists can tell a story” (Morris, 

1996). The debate between creationists and scientists occurs “where the data are scanty.” The 

creationist view is that “the lack of transitions between species in the fossil record is what would 

be expected if life was created [opposed to evolved]” (Institute for Creation Research (ICR), 

2014). 

Scientists have developed two general theories about how evolution occurs. Darwin 

proposed gradualism, “the principle that species have been evolved by very small steps” (Darwin, 

1859). Gradualism explained the lack of transitional forms in the fossil record: 

The sudden appearance of new and distinct forms of life in our geological formations 
supports at first sight the belief in abrupt development [creationist theory]. But the value of 
this evidence depends entirely on the perfection of the geological record, in relation to 
periods remote in the history of the world. If the record is as fragmentary as many 
geologists strenuously assert, there is nothing strange in new forms appearing as if 
suddenly developed. (Darwin, 1859) 

Darwin proposed that transitional forms are not seen because there are still many gaps in the 

fossil record. Instead of relying on the fossil record for evidence of species evolution, Darwin 

referred to embryological development. “The embryo is thus left almost unaffected, and serves as 

a record of the past condition of the species” (Darwin, 1859). Modern scientists have found that 

Darwin’s explanation is not quite true. His explanation reflects another theory being developed 

contemporaneously by Ernest Haeckel, “ontogeny recapitulates phylogeny” or the growth and 

development of an individual organism passes through the various evolutionary stages of that 

organism (Gould, 1977). Now, it is recognized that similarities in developmental stages may 

support a common ancestry between many different organisms, but not that there is a 

development between primitive to advanced or movement between stages. 
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Gould and Eldridge proposed a different explanation for the lack of transitional forms, 

punctuated equilibrium. They viewed stasis not as the absence of evolution, but as data in its own 

right.  

“[P]aleontologists never wrote papers on the absence of change in lineages before 
punctuated equilibrium granted the subject some theoretical space. And, even worse, as 
paleontologists didn't discuss stasis, most evolutionary biologists assumed continual 
change as a norm, and didn't even know that stability dominates the fossil record.” (Gould 
and Eldridge, 1993: 223)  

They proposed that there were no gaps in the fossil record, but that speciation events occur so 

rapidly that the likelihood of detecting these changes in the fossil record would be difficult. “The 

punctuated equilibrium model depicts evolution as long periods of no evolutionary change 

followed by rapid periods of change” (Saylo et al., 2011).  

 The results of this thesis also suggest that speciation, through hybridization, reticulate 

evolution or gene swamping, occurs rapidly as well. After one generation of crosses between 

yellow and olive baboons, the baboon nasal cavity was distinctly different in the hybrids 

compared to the parental groups. If crossing continued, as is the current case in Amboseli, a new 

morphology would exist in that population, developed over only several decades. If the 

environment remained stable in Amboseli, and no new hybridizations occurred, the new species 

formed by the cross between yellow and olive could persist relatively unchanged for thousands of 

years. The probability of finding fossils that existed in the small time period of several decades is 

infinitesimal compared to finding a fossil of a species in stasis that existed for thousands of years.  

 Transitional forms are rarely found in the fossil record not because they do not exist as 

creationists propose, or that the changes are so miniscule between each evolutionary step as 

Darwin proposed, but that the transition occurs rapidly. The “lack of transitions” is the result of 

the probability of preservation and finding the transitional forms that existed for only a short 

amount of time. 
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Chapter 7  

Conclusions 

A model of a hybrid in which to compare potential Neanderthal and AMH hybrid skeletal 

morphology is lacking in paleoanthropology. Researchers refer to hybrids as having a mosaic of 

features from both parental taxa, though the few studies of hybrid external skeletal morphology in 

comparative species, (baboons: Ackermann et al., 2006; gorillas: Ackermann and Bishop, 2008), 

suggest that hybrids tend to show heterosis or dysgenesis at different measurements of the skull, 

not necessarily a mosaic of features.  

This study examined morphometric measurements and nonmetric traits of the interior 

nasal cavity of two species of baboons (olive and yellow) and their first generation hybrids to 

determine how hybridization affects the internal anatomy of the nasal cavity. The nasal cavity 

was chosen because the nasal cavity in Neanderthals and AMH are recognized as uniquely 

different in size and shape. Therefore, hybrids would not be able to take a form that is the same in 

both taxa, but would need to change in shape and or size, or adopt the form of only one parental 

taxon. The nasal cavity is also a critically functioning area for any mammal, as it is responsible 

for respiration, olfaction, and disease prevention, in addition to other functions.  

The collection used for this study was composed of pedigreed olive, yellow, and olive 

and yellow hybrid baboon skulls in the physical dry form and as computed tomography (CT) 

scans. The morphmetric measurements were evaluated using clustering methods (PCAs and 

CDAs), and hypothesis testing (Wilk’s Λ MANOVAs, index of sexual dimorphism, Welch’s t-

tests, ANOVAs, Dunnett’s Cs, and independent samples student t-tests). The nonmetric traits 

were analyzed using Fisher’s exact tests. I found that there are significant size and shape 

differences in the hybrid nasal cavity compared to the parental baboon groups, but no difference 

in the occurrence of nonmetric traits. 

The regions that differed morphometrically between hybrids and parental baboons 

occurred throughout the nasal cavity and were related to physiological function. The greatest 

shape and size differences occurred in regions of relatively simple function, where air currents are 

redirected to the next location, such as the anterior bony cavity at the rhinion, the choana, and the 

mid-nasopharynx. Little or no shape or size change occurred in regions that have more complex 

functions, where air is humidified, warmed, and filtered, such as the mid-bony cavity. The 

posterior nasopharynx also showed little shape or size change, though it performs little air 
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conditioning. I hypothesize that the posterior nasopharynx was little changed in the hybrid 

because the area interacts with components of the basicranium, digestive tract, and organs of 

vision. There are possibly more selective pressures from these other functions that constrain the 

size and shape of the posterior nasopharynx. 

The nasal cavity of male hybrids followed a different trend in response to hybridization 

compared to the female hybrids, possibly due to differences in the timing of development during 

ontogeny. In female hybrids, the nasal cavity tended to narrow inferiorly, an expression of 

dysgenesis. In male hybrids, the nasal cavity widened, indicating heterosis. Males may have an 

energetic or physiological advantage due to the greater size of the inferior meatus, which directs 

the most airflow. Hybrids also show greater sexual dimorphism compared to olive baboons, 

possibly also giving male baboons an advantage in mate guarding due to greater size. 

The occurrence of nonmetric traits was not significantly different between taxa (olive, 

yellow, or hybrid baboons) or regions of the nasal cavity at the 95% significance level. However, 

at a lower significance level (90%), several traits were significantly different between taxa: 

greater septal deviation in male hybrids, more protruding lateral recess into the orbits in hybrids, 

and the extension of the inferior nasal conchae into the nasopharynx in female hybrids. 

Physiological significance could not be determined from the current study, though future studies 

may explore the physiology and ontogeny of the taxa to determine if hybrids may have higher 

fitness than the parental taxa as hypothesized.  

The hybrid baboon model of the nasal cavity, and the recorded hybrid zone between olive 

and yellow baboons were used to hypothesize the form of a Neanderthal and AMH hybrid nasal 

cavity, and the structure of a hybrid zone between Neanderthals and AMH.  

Based on the hybrid baboon model, I hypothesized that the regions of most size and 

shape change in Neanderthal and AMH hybrid nasal cavity may occur at the anterior bony cavity, 

the choana, and the mid-nasopharynx. In particular, the anterior bony cavity, the piriform 

aperture, of a Neanderthal and AMH hybrid may adopt the form of one or the other parental taxon 

because the Neanderthal and AMH anterior nasal cavities have been recorded as unique in both 

size and shape. As observed in the hybrid baboon model, I hypothesized that the mid-bony cavity 

and the posterior nasopharynx may be unchanged between the hybrid and both parental taxa, or 

the hybrid would assume the trait from one parental taxon. 

The baboon model of the hybrid zone provides insight into which factors influence the 

formation and maintenance of hybrid zones, and what genetic and morphological evidence 

indicates features of the hybrid zone. From the examination of existing morphological, genetic, 

and archaeological data of Neanderthal and AMH populations, supplemented with an 
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understanding of the baboon hybrid zone, several scenarios using hybrid zones were hypothesized 

to explain how the two populations may have interacted. It was concluded that the most 

parsimonious hybrid scenario would be reciprocal hybridization between male and female 

Neanderthal and AMH populations. Because AMH populations were probably larger than 

Neanderthal populations, the Neanderthal population may have experienced gene swamping. The 

resulting population many generations later would be composed of hybrids that contain mostly 

AMH genes, with a small percentage of Neanderthal genes. Neanderthals and AMH, in their pure 

genetic forms, would have both gone extinct in Europe.  

Further research should be dedicated to comparative models of the affect of hybridization 

on skeletal morphology, as well as what size and shape changes may mean physiologically. As 

research continues, it seems that the evidence supports the Assimilation model, which argues that 

some hybridization occurred between Neanderthals and AMH. This and future studies may help 

with the identification of these hybrids in the fossil record.  
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Table 1 Definitions of the 45 features of the nasal cavity analyzed in this study.  

! Measurement! Definition!

Vol! Volume!(cm3)53! Total!volume!of!segmented!nasal!cavity,!transformed!

by!cube5rooting!!

1A! Area!slice!1!(cm2)52! Area!of!segmentation!in!Slice!1,!transformed!by!

square5rooting!

2A! Area!slice!2!(cm2)52! Area!of!segmentation!in!Slice!2,!transformed!by!

square5rooting!

3A! Area!slice!3!(cm2)52! Area!of!segmentation!in!Slice!3,!transformed!by!

square5rooting!

4A! Area!slice!4!(cm2)52! Area!of!segmentation!in!Slice!4,!transformed!by!

square5rooting!

5A! Area!slice!5!(cm2)52! Area!of!segmentation!in!Slice!5,!transformed!by!

square5rooting!

BCL! Bony!cavity!length!(cm)! Distance!between!Slice!1!and!Slice!3!

NCL! Total!nasal!cavity!length!

(cm)!

Distance!between!Slice!1!and!Slice!5!

NpL! Nasopharynx!length!(cm)! Distance!between!Slice!3!and!Slice!5!

! Slice!1! !

1Hnc! Height!at!nasal!crest!(cm)! Vertical!measurement!from!the!centre!of!the!nasal!

crest!to!the!roof!of!the!nasal!cavity!

1Himr! Height!of!right!inferior!

meatus!(cm)!

Maximum!vertical!height!from!the!hard!palate!(floor!of!

the!nasal!cavity)!lateral!to!the!right!inferior!concha!

1Himl! Height!of!left!inferior!

meatus!(cm)!

Maximum!vertical!height!from!the!hard!palate!(floor!of!

the!nasal!cavity)!lateral!to!the!left!inferior!concha!

1Hicr! Height!of!right!inferior!

conchae!(cm)!

Minimum!vertical!height!from!the!hard!palate!(floor!of!

the!nasal!cavity)!to!the!most!inferior!portion!of!the!

right!inferior!concha!

1Hicl! Height!of!left!inferior!

conchae!(cm)!

Minimum!vertical!height!from!the!hard!palate!(floor!of!

the!nasal!cavity)!to!the!most!inferior!portion!of!the!

lefts!inferior!concha!

! ! !
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Table&1&(continued)& !
! Measurement! Definition!
1Wnc! Width!at!nasal!crest!(cm)! Maximum!width!tangential!to!the!superior!portion!of!

the!nasal!crest!
1Wim! Width!of!inferior!meatus!

(cm)!
Maximum!width!below!the!inferior!conchae!

1Wic! Width!between!inferior!
conchae!(cm)!

Minimum!width!between!the!inferior!conchae!

1Wm
m!

Width!of!middle!meatus!
(cm)!

Maximum!width!above!the!inferior!conchae!

1R! (Height!at!nasal!
crest/Width!of!inferior!
meatus)!!

Ratio!of!height!to!width!

! Slice!2! !
2Hnc! Height!at!nasal!crest!!(cm)! Vertical!measurement!from!the!centre!of!the!nasal!

crest!to!the!roof!of!the!nasal!cavity!
2Hicr! Height!of!right!inferior!

conchae!(cm)!
Minimum!vertical!height!from!the!hard!palate!(floor!of!
the!nasal!cavity)!to!the!most!inferior!portion!of!the!
right!inferior!concha!

2Hicl! Height!of!left!inferior!
conchae!(cm)!

Minimum!vertical!height!from!the!hard!palate!(floor!of!
the!nasal!cavity)!to!the!most!inferior!portion!of!the!
lefts!inferior!concha!

2Wnc! Width!at!nasal!crest!(cm)! Maximum!width!tangential!to!the!superior!portion!of!
the!nasal!crest!

2Wm
m!

Width!of!middle!meatus!
(cm)!

Maximum!width!of!the!upper!half!of!the!middle!meatus!

2Wic! Width!between!inferior!
conchae!(cm)!

Minimum!width!between!the!inferior!conchae!

2R! (Height!at!nasal!
crest/Width!at!nasal!crest)!!

Ratio!of!height!to!width!

! Slice!3! !
3Hnc! Height!at!nasal!crest!(cm)! Vertical!measurement!from!the!centre!of!the!nasal!

crest!to!the!roof!of!the!nasal!cavity!
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Table&1&(continued)& !
! Measurement! Definition!
3Wnc! Width!at!nasal!crest!(cm)! Maximum!width!tangential!to!the!superior!portion!of!

the!nasal!crest!
3Wic! Width!between!inferior!

conchae!(cm)!
Minimum!width!between!the!inferior!conchae!

! ! !
! ! !
Table&1&(continued)! &

! Measurement! Definition!
3Hicr! Height!of!right!inferior!

conchae!(cm)!
Minimum!vertical!height!from!the!hard!palate!(floor!of!
the!nasal!cavity)!to!the!most!inferior!portion!of!the!
right!inferior!concha!–!estimated!based!on!the!position!
of!the!inferior!conchae!in!anterior!or!posterior!slices!if!
not!yet!attached!at!slice!3!

3Hicl! Height!of!left!inferior!
conchae!(cm)!

Minimum!vertical!height!from!the!hard!palate!(floor!of!
the!nasal!cavity)!to!the!most!inferior!portion!of!the!
lefts!inferior!concha!5!estimated!based!on!the!position!
of!the!inferior!conchae!in!anterior!or!posterior!slices!if!
not!yet!attached!at!slice!3!

3Wm
m!

Width!of!middle!meatus!
(cm)!

Maximum!width!above!the!inferior!conchae!

3R! (Height!at!nasal!
crest/Width!at!nasal!crest)!

Ratio!of!height!to!width!

! Slice!4! !
4Him! Height!at!inferior!margin!

(cm)!
Vertical!measurement!from!the!centre!of!the!artificial!
inferior!margin!of!the!region!of!interest!(in!line!with!
the!attachment!of!the!inferior!conchae!to!the!nasal!
walls!anteriorly)!to!the!roof!of!the!nasal!cavity!

4Wim! Width!of!inferior!margin!
(cm)!

Width!of!the!artificial!inferior!margin!of!the!region!of!
interest!

& !
& !
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Table&1&(continued)& !
! Measurement! Definition!
4Wav! Width!at!alae!of!vomer!(cm)! Width!tangential!to!the!superior!aspect!of!the!alae!of!

the!vomer!(if!present)!
4Hima
v!

Height!at!inferior!margin!to!
alae!of!vomer!(cm)!

Vertical!measurement!from!the!artificial!inferior!
margin!of!the!region!of!interest!to!the!line!tangential!to!
the!superior!aspect!of!the!alae!of!the!vomer!(if!
present)!

4Wlr! Width!of!lateral!recess!(cm)! Maximum!width!within!the!middle!meatus!!
4R! (Height!at!inferior!

margin/Width!of!inferior!
margin)!

Ratio!of!height!to!width!

! Slice!5! !
5Him! Height!at!inferior!margin!

(cm)!
Vertical!measurement!from!the!centre!of!the!artificial!
inferior!margin!of!the!region!of!interest!(in!line!with!
the!attachment!of!the!inferior!conchae!to!the!nasal!
walls!anteriorly)!to!the!roof!of!the!nasal!cavity!

5Wim! Width!of!inferior!margin!
(cm)!

Width!of!the!artificial!inferior!margin!of!the!region!of!
interest!

5Wav! Width!at!alae!of!vomer!(cm)! Width!tangential!to!the!superior!aspect!of!the!alae!of!
the!vomer!(if!present)!

5Hima
v!

Height!at!inferior!margin!to!
alae!of!vomer!(cm)!

Vertical!measurement!from!the!artificial!inferior!
margin!of!the!region!of!interest!to!the!line!tangential!to!
the!superior!aspect!of!the!alae!of!the!vomer!(if!
present)!

5Wlr! Width!of!lateral!recess!(cm)! Maximum!width!within!the!middle!meatus!!
5R! (Height!at!inferior!

margin/Width!of!inferior!
margin)!

Ratio!of!height!to!width!
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Table 2 Levene’s test for homogeneity of variance, α=0.05, for the 45 features of the nasal cavity. 

Significant p-values are bolded, indicating that those features do not have homogeneity of variance. 

Variable Levene’s F p (d.f.1,2=5,132) 

Volume (cm3)-3 2.271 0.051 

Area slice 1 (cm2)-2 9.055 0 

Area slice 2 (cm2)-2 3.137 0.01 

Area slice 3 (cm2)-2 1.766 0.124 

Area slice 4 (cm2)-2 2.218 0.056 

Area slice 5 (cm2)-2 2.087 0.071 

Bony cavity length (cm) 2.229 0.055 

Total nasal cavity length (cm) 1.68 0.144 

Nasopharynx length (cm) 3.642 0.004 

Slice 1   

Height at nasal crest (cm) 2.574 0.029 

Height of right inferior meatus (cm) 2.36 0.044 

Height of left inferior meatus (cm) 7.18 0 

Height of right inferior conchae (cm) 2.296 0.049 

Height of left inferior conchae (cm) 8.158 0 

Width at nasal crest (cm) 0.68 0.639 

Width of inferior meatus (cm) 1.85 0.107 

Width between inferior conchae (cm) 7.052 0 

Width of middle meatus (cm) 5.184 0 

(Height at nasal crest/Width of inferior meatus)  2.328 

 

0.046 

Slice 2   

Height at nasal crest  (cm) 1.715 0.135 

Height of right inferior conchae (cm) 1.444 0.213 

Height of left inferior conchae (cm) 0.525 0.757 

Width at nasal crest (cm) 3.964 0.002 

Width of middle meatus (cm) 2.034 0.078 
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Table 2 (continued)   

Variable Levene’s F p (d.f.1,2=5,132) 

Width between inferior conchae (cm) 6.512 0 

(Height at nasal crest/Width at nasal crest)  2.956 0.015 

Slice 3   

Height at nasal crest (cm) 1.572 0.172 

Width at nasal crest (cm) 2.422 0.039 

Width between inferior conchae (cm) 1.778 0.122 

Height of right inferior conchae (cm) 0.809 0.545 

Height of left inferior conchae (cm) 0.674 0.644 

Width of middle meatus (cm) 1.422 0.22 

(Height at nasal crest/Width at nasal crest) 2.545 0.031 

Slice 4   

Height at inferior margin (cm) 1.171 0.327 

Width of inferior margin (cm) 2.97 0.014 

Width at alae of vomer (cm) 0.875 0.5 

Height at inferior margin to alae of vomer (cm) 3.058 0.012 

Width of lateral recess  (cm) 0.653 0.66 

(Height at inferior margin/Width of inferior margin) 1.641 0.153 

Slice 5   

Height at inferior margin (cm) 2.392 0.041 

Width of inferior margin (cm) 1.172 0.326 

Width at alae of vomer (cm) 2.052 0.075 

Height at inferior margin to alae of vomer (cm) 1.944 0.091 

Width of lateral recess (cm) 4.171 0.001 

(Height at inferior margin/Width of inferior margin) 1.347 0.248 
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Table 3 Shapiro-Wilk normality tests, α = 0.05, for the 45 features of the nasal cavity for 

male and female combined taxa after the correction for sexual dimorphism. Significant p-

values are bolded, indicating that those features are not normally distributed. 

 
 

 Shapiro-Wilk 

Variable Group W p 
Olive (d.f .= 79) .981 .286 
Hybrid (d.f. = 54) .978 .427 

Volume (cm3)-3 

Yellow (d.f. = 5) .932 .607 
Olive (d.f .= 79) .974 .110 
Hybrid (d.f. = 54) .954 .037 

Area slice 1 (cm2)-2 

Yellow (d.f. = 5) .949 .732 
Olive (d.f .= 79) .983 .386 
Hybrid (d.f. = 54) .950 .025 

Area slice 2 (cm2)-2 

Yellow (d.f. = 5) .823 .123 
Olive (d.f .= 79) .970 .063 
Hybrid (d.f. = 54) .982 .584 

Area slice 3 (cm2)-2 

Yellow (d.f. = 5) .952 .752 
Olive (d.f .= 79) .988 .701 
Hybrid (d.f. = 54) .992 .974 

Area slice 4 (cm2)-2 

Yellow (d.f. = 5) .986 .962 
Olive (d.f .= 79) .985 .464 
Hybrid (d.f. = 54) .946 .017 

Area slice 5 (cm2)-2 

Yellow (d.f. = 5) .913 .488 
Olive (d.f .= 79) .866 .000 
Hybrid (d.f. = 54) .980 .514 

Bony cavity length (cm) 

Yellow (d.f. = 5) .940 .664 
Olive (d.f .= 79) .830 .000 
Hybrid (d.f. = 54) .985 .717 

Total nasal cavity length (cm) 

Yellow (d.f. = 5) .996 .997 
Olive (d.f .= 79) .975 .132 
Hybrid (d.f. = 54) .983 .627 

Nasopharynx length (cm) 

Yellow (d.f. = 5) .940 .663 
Slice 1    

Olive (d.f .= 79) .836 .000 
Hybrid (d.f. = 54) .930 .004 

Height at nasal crest (cm) 

Yellow (d.f. = 5) .930 .599 
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Table 3 (continued)  Shapiro-Wilk 
Variable Group W p 

Olive (d.f .= 79) .944 .002 
Hybrid (d.f. = 54) .796 .000 

Height of right inferior meatus (cm) 

Yellow (d.f. = 5) .977 .919 
Olive (d.f .= 79) .975 .116 
Hybrid (d.f. = 54) .826 .000 

Height of left inferior meatus (cm) 

Yellow (d.f. = 5) .989 .977 
Olive (d.f .= 79) .977 .171 
Hybrid (d.f. = 54) .969 .169 

Height of right inferior conchae (cm) 

Yellow (d.f. = 5) .979 .931 
Olive (d.f .= 79) .987 .630 
Hybrid (d.f. = 54) .847 .000 

Height of left inferior conchae (cm) 

Yellow (d.f. = 5) .977 .919 
Olive (d.f .= 79) .845 .000 
Hybrid (d.f. = 54) .906 .000 

Width at nasal crest (cm) 

Yellow (d.f. = 5) .890 .357 
Olive (d.f .= 79) .915 .000 
Hybrid (d.f. = 54) .978 .401 

Width of inferior meatus (cm) 

Yellow (d.f. = 5) .894 .379 
Olive (d.f .= 79) .984 .442 
Hybrid (d.f. = 54) .985 .730 

Width between inferior conchae (cm) 

Yellow (d.f. = 5) .942 .677 
Olive (d.f .= 79) .983 .356 
Hybrid (d.f. = 54) .977 .389 

Width of middle meatus (cm) 

Yellow (d.f. = 5) .909 .463 
Olive (d.f .= 79) .866 .000 
Hybrid (d.f. = 54) .936 .006 

(Height at nasal crest/Width of inferior meatus) 

Yellow (d.f. = 5) .882 .320 
Slice 2    

Olive (d.f .= 79) .948 .003 
Hybrid (d.f. = 54) .982 .575 

Height at nasal crest  (cm) 

Yellow (d.f. = 5) .934 .625 
Olive (d.f .= 79) .967 .039 
Hybrid (d.f. = 54) .992 .967 

Height of right inferior conchae (cm) 

Yellow (d.f. = 5) .920 .527 
Olive (d.f .= 79) .948 .003 
Hybrid (d.f. = 54) .987 .831 

Height of left inferior conchae (cm) 

Yellow (d.f. = 5) .840 .165 
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Table 3 (continued)  Shapiro-Wilk 
Variable Group W p 

Olive (d.f .= 79) .830 .000 
Hybrid (d.f. = 54) .939 .009 

Width at nasal crest (cm) 

Yellow (d.f. = 5) .957 .786 
Olive (d.f .= 79) .920 .000 
Hybrid (d.f. = 54) .931 .004 

Width of middle meatus (cm) 

Yellow (d.f. = 5) .949 .728 
Olive (d.f .= 79) .989 .754 
Hybrid (d.f. = 54) .956 .047 

Width between inferior conchae (cm) 

Yellow (d.f. = 5) .778 .053 
Olive (d.f .= 79) .339 .000 
Hybrid (d.f. = 54) .962 .085 

(Height at nasal crest/Width at nasal crest) 

Yellow (d.f. = 5) .910 .467 
Slice 3    

Olive (d.f .= 79) .972 .076 
Hybrid (d.f. = 54) .955 .043 

Height at nasal crest (cm) 

Yellow (d.f. = 5) .939 .662 
Olive (d.f .= 79) .966 .032 
Hybrid (d.f. = 54) .949 .023 

Width at nasal crest (cm) 

Yellow (d.f. = 5) .907 .450 
Olive (d.f .= 79) .979 .234 
Hybrid (d.f. = 54) .994 .994 

Width between inferior conchae (cm) 

Yellow (d.f. = 5) .897 .391 
Olive (d.f .= 79) .983 .399 
Hybrid (d.f. = 54) .819 .000 

Height of right inferior conchae (cm) 

Yellow (d.f. = 5) .924 .553 
Olive (d.f .= 79) .986 .565 
Hybrid (d.f. = 54) .990 .940 

Height of left inferior conchae (cm) 

Yellow (d.f. = 5) .930 .596 
Olive (d.f .= 79) .939 .001 
Hybrid (d.f. = 54) .986 .781 

Width of middle meatus (cm) 

Yellow (d.f. = 5) .873 .279 
Olive (d.f .= 79) .988 .663 
Hybrid (d.f. = 54) .940 .009 

(Height at nasal crest/Width at nasal crest) 

Yellow (d.f. = 5) .874 .281 
Slice 4    

Olive (d.f .= 79) .976 .139 
Hybrid (d.f. = 54) .942 .011 

Height at inferior margin (cm) 

Yellow (d.f. = 5) .908 .454 
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Table 3 (continued)  Shapiro-Wilk 
Variable Group W p 

Olive (d.f .= 79) .991 .834 
Hybrid (d.f. = 54) .975 .319 

Width of inferior margin (cm) 

Yellow (d.f. = 5) .929 .587 
Olive (d.f .= 79) .984 .443 
Hybrid (d.f. = 54) .977 .370 

Width at alae of vomer (cm) 

Yellow (d.f. = 5) .911 .471 
Olive (d.f .= 79) .976 .146 
Hybrid (d.f. = 54) .978 .406 

Height at inferior margin to alae of vomer (cm) 

Yellow (d.f. = 5) .884 .327 
Olive (d.f .= 79) .932 .000 
Hybrid (d.f. = 54) .966 .126 

Width of lateral recess (cm) 

Yellow (d.f. = 5) .851 .196 
Olive (d.f .= 79) .917 .000 
Hybrid (d.f. = 54) .968 .155 

(Height at inferior margin/Width of inferior margin) 

Yellow (d.f. = 5) .976 .912 
Slice 5    

Olive (d.f .= 79) .984 .442 
Hybrid (d.f. = 54) .984 .704 

Height at inferior margin (cm) 

Yellow (d.f. = 5) .915 .497 
Olive (d.f .= 79) .979 .206 
Hybrid (d.f. = 54) .979 .443 

Width of inferior margin (cm) 

Yellow (d.f. = 5) .905 .440 
Olive (d.f .= 79) .985 .476 
Hybrid (d.f. = 54) .978 .422 

Width at alae of vomer (cm) 

Yellow (d.f. = 5) .991 .985 
Olive (d.f .= 79) .977 .156 
Hybrid (d.f. = 54) .980 .513 

Height at inferior margin to alae of vomer (cm) 

Yellow (d.f. = 5) .941 .673 
Olive (d.f .= 79) .968 .047 
Hybrid (d.f. = 54) .969 .180 

Width of lateral recess (cm) 

Yellow (d.f. = 5) .907 .452 
Olive (d.f .= 79) .904 .000 
Hybrid (d.f. = 54) .966 .126 

(Height at inferior margin/Width of inferior margin) 

Yellow (d.f. = 5) .861 .232 
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Table 4 Shapiro-Wilk normality tests, α = 0.05, for the 45 features of the nasal cavity with all 

specimen combined after the correction for sexual dimorphism. Significant p-values are bolded, 

indicating that those features are not normally distributed. 

 Shapiro-Wilk  

Variable W p (d.f.=138) 

Volume (cm3)-3 .980 .044 

Area slice 1 (cm2)-2 .952 .000 

Area slice 2 (cm2)-2 .979 .032 

Area slice 3 (cm2)-2 .985 .136 

Area slice 4 (cm2)-2 .996 .961 

Area slice 5 (cm2)-2 .984 .100 

Bony cavity length (cm) .929 .000 

Total nasal cavity length (cm) .888 .000 

Nasopharynx length (cm) .984 .120 

Slice 1   

Height at nasal crest (cm) .886 .000 

Height of right inferior meatus (cm) .837 .000 

Height of left inferior meatus (cm) .866 .000 

Height of right inferior conchae (cm) .987 .239 

Height of left inferior conchae (cm) .902 .000 

Width at nasal crest (cm) .897 .000 

Width of inferior meatus (cm) .952 .000 

Width between inferior conchae (cm) .996 .948 

Width of middle meatus (cm) .987 .215 

(Height at nasal crest/Width of inferior meatus)  .865 .000 

Slice 2   

Height at nasal crest  (cm) .981 .055 

Table 4 (continued)   
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 Shapiro-Wilk  

Variable W p (d.f.=138) 

Height of right inferior conchae (cm) .983 .087 

Height of left inferior conchae (cm) .981 .054 

Width at nasal crest (cm) .866 .000 

Width of middle meatus (cm) .952 .000 

Width between inferior conchae (cm) .981 .049 

(Height at nasal crest/Width at nasal crest)  .337 .000 

Slice 3   

Height at nasal crest (cm) .959 .000 

Width at nasal crest (cm) .974 .009 

Width between inferior conchae (cm) .991 .500 

Height of right inferior conchae (cm) .901 .000 

Height of left inferior conchae (cm) .989 .357 

Width of middle meatus (cm) .958 .000 

(Height at nasal crest/Width at nasal crest) .967 .002 

Slice 4   

Height at inferior margin (cm) .968 .003 

Width of inferior margin (cm) .993 .708 

Width at alae of vomer (cm) .991 .498 

Height at inferior margin to alae of vomer (cm) .989 .320 

Width of lateral recess (cm) .970 .003 

(Height at inferior margin/Width of inferior margin) .943 .000 

Slice 5   

Height at inferior margin (cm) .994 .796 

Width of inferior margin (cm) .986 .181 

Table 4 (continued)   



141 

 Shapiro-Wilk  

Variable W p (d.f.=138) 

Width at alae of vomer (cm) .993 .739 

Height at inferior margin to alae of vomer (cm) .990 .399 

Width of lateral recess (cm) .974 .010 

(Height at inferior margin/Width of inferior margin) .956 .000 
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Table 5 Independent samples student t-tests, α=0.0011, between olive males and females, independent samples student t-tests, α=0.0011, between 

hybrid males and females for the 45 features of the nasal cavity. Significant p-values are bolded, indicating that the feature demonstrates sexual 

dimorphism in that trait. Welch’s t-test, α=0.0011, between the difference between olive males and females compared to the difference between 

hybrid males and females for the 45 nasal features of the nasal cavity. Significant p-values are bolded. The taxon with a greater degree of sexual 

dimorphism is listed in the final column. Results are illustrated in Figure 7a. 

!

 

Olive 

M (n=27) 

Olive F 

(n=52) 

Sex 

Dim 

Hybrid M 

(n=13) 

Hybrid F 

(n=41) Sex Dim 

Olive  

M - F 

Hybrid 

M - F 

Olive-

Hybrid 

Degree of Sexual 

Dimorphism 

 mean S mean s p mean s mean s p mean  mean s p Greater  

Vol 4.17 0.17 3.22 1.78 0.0001 4.33 0.27 3.27 0.15 9.8E-42 0.95 1.07 0.03 2.9E-05 hybrid 

1A 2.60 0.17 1.93 1.41 0.0004 2.89 0.38 2.01 0.15 7.9E-16 0.66 0.88 0.03 6.8E-16 hybrid 

2A 3.34 0.23 2.57 1.62 0.0004 3.47 0.33 2.65 0.15 1.1E-17 0.77 0.82 0.03 0.037 not sig 

3A 3.49 0.21 2.72 1.62 0.0003 3.71 0.20 2.82 0.15 1.3E-48 0.78 0.89 0.03 2.2E-05 hybrid 

4A 2.80 0.17 2.21 1.46 0.002 2.96 0.18 2.31 0.13 3.4E-33 0.59 0.64 0.02 0.013 not sig 

5A 2.68 0.13 2.09 1.45 0.002 2.77 0.18 2.14 0.12 4.6E-32 0.59 0.63 0.02 0.022 not sig 

BCL 5.57 0.63 4.46 2.13 0.0003 5.62 0.55 4.31 0.29 5.5E-16 1.11 1.31 0.04 9.9E-07 hybrid 

NCL 6.76 0.66 5.34 2.26 2.0E-5 6.90 0.40 5.27 0.27 9.0E-40 1.42 1.63 0.04 1.6E-07 hybrid 

NpL 1.19 0.24 0.88 0.76 0.004 1.28 0.41 0.96 0.23 0.004 0.31 0.32 0.02 0.27 not sig 

Slice 1               

1Hnc 2.37 0.17 1.82 1.36 0.002 2.58 0.32 1.83 0.14 8.8E-17 0.55 0.75 0.02 1.6E-17 hybrid 

1Himr 0.99 0.21 0.70 0.79 0.007 1.31 0.58 0.84 0.29 0.003 0.29 0.47 0.03 0 not sig 

1Himl 1.00 0.24 0.75 0.84 0.02 1.38 0.71 0.83 0.21 0.003 0.25 0.55 0.03 0 not sig 
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Table 5 (continued) 

 

Olive 

M (n=27) 

Olive F 

(n=52) 

Sex 

Dim 

Hybrid M 

(n=13) 

Hybrid F 

(n=41) 

Sex Dim Olive  

M - F 

Hybrid 

M - F 

Olive-

Hybrid 

Degree of Sexual 

Dimorphism 

 mean S mean s p mean s mean s p mean  mean s P Greater  

1Hicr 0.98 0.20 0.66 0.75 0.002 1.18 0.25 0.76 0.13 3.5E-09 0.32 0.42 0.02 2.0E-11 Hybrid 

1Hicl 0.99 0.20 0.71 0.86 0.01 1.26 0.48 0.79 0.16 0.0002 0.28 0.48 0.02 1.9E-17 Hybrid 

1Wnc 3.11 0.45 2.11 1.54 1.0E-5 3.50 0.61 2.56 0.60 8.9E-07 1.00 0.94 0.04 0.037 not sig 

1Wim 3.30 0.50 2.51 1.59 0.001 3.70 0.55 2.82 0.32 2.7E-08 0.78 0.88 0.03 0.002 not sig 

1Wic 2.09 0.35 1.51 1.26 0.001 2.37 0.45 1.55 0.20 1.3E-10 0.58 0.82 0.03 1.4E-18 hybrid 

1Wm

m 

2.54 0.28 1.88 1.42 0.001 2.76 0.34 1.87 0.16 2.5E-19 0.66 0.89 0.03 6.4E-18 hybrid 

1R 0.74 0.14 0.75 0.85 0.46 0.71 0.13 0.65 0.08 0.07 -0.01 0.06 0.01 0 not sig 

Slice 2                

2Hnc 2.83 0.32 2.15 1.56 0.001 2.95 0.21 2.23 0.24 1.8E-24 0.68 0.71 0.03 0.10 not sig 

2Hicr 2.83 0.28 2.01 1.42 3.0E-5 2.87 0.34 2.06 0.26 3.7E-15 0.82 0.80 0.03 0.29 not sig 

2Hicl 2.83 0.25 2.02 1.36 2.0E-5 2.92 0.26 2.08 0.26 1.0E-23 0.81 0.84 0.02 0.074 not sig 

2Wnc 3.36 0.78 3.00 1.74 0.107 3.52 0.64 3.15 0.30 0.02 0.35 0.37 0.04 0.34 not sig 

2Wm

m 

4.02 0.36 3.16 1.76 0.0004 4.26 0.45 3.30 0.23 1.7E-13 0.86 0.96 0.03 0.0013 not sig 

2Wic 2.31 0.40 1.98 1.51 0.07 2.41 0.64 2.03 0.25 0.02 0.33 0.39 0.04 0.06 not sig 

2R 1.02 0.97 0.73 0.90 0.09 0.86 0.16 0.72 0.13 0.001 0.30 0.14 0.03 1.3E-09 olive 

Slice 3                

3Hnc 3.62 0.28 3.02 1.85 0.01 3.97 0.49 3.16 0.29 8.9E-09 0.60 0.81 0.04 7.6E-10 hybrid 
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Table 5 (continued) 

 

Olive 

M (n=27) 

Olive F 

(n=52) 

Sex 

Dim 

Hybrid M 

(n=13) 

Hybrid F 

(n=41) 

Sex Dim Olive  

M - F 

Hybrid 

M - F 

Olive-

Hybrid 

Degree of Sexual 

Dimorphism 

 mean S mean s p mean s mean s p mean  mean s P Greater  

3Wnc 2.38 0.33 2.07 1.38 0.06 2.43 0.33 2.06 0.17 0.0001 0.31 0.37 0.03 0.015 not sig 

3Wic 1.97 0.31 1.78 1.28 0.15 2.12 0.21 1.76 0.23 5.2E-08 0.19 0.37 0.02 2.6E-14 hybrid 

3Hicr 1.37 0.20 1.05 0.88 0.006 1.46 0.16 1.11 0.27 8.3E-09 0.32 0.35 0.02 0.060 not sig 

3Hicl 1.38 0.21 1.06 0.90 0.006 1.45 0.19 1.08 0.17 3.3E-10 0.33 0.36 0.02 0.022 not sig 

3Wm

m 

4.10 0.41 2.98 1.59 1.0E-6 4.24 0.34 3.16 0.38 2.2E-22 1.13 1.08 0.03 0.080 not sig 

3R 1.55 0.26 1.47 1.34 0.34 1.67 0.33 1.55 0.23 0.11 0.08 0.12 0.03 0.04 hybrid 

Slice 4                

4Him 2.91 0.30 2.60 1.70 0.10 3.18 0.49 2.75 0.39 0.002 0.31 0.42 0.03 0 not sig 

4Wim 2.13 0.22 1.82 1.40 0.06 2.23 0.22 1.77 0.12 5.1E-13 0.31 0.46 0.02 2.3E-11 hybrid 

4Wav 2.86 0.62 1.81 1.26 4.0E-7 3.24 0.45 2.06 0.59 4.0E-14 1.05 1.18 0.03 2.4E-05 hybrid 

4 

Himav 

1.70 0.48 1.64 1.22 0.37 1.48 0.64 1.58 0.39 0.29 0.06 -0.11 0.03 3.0E-07  

4Wlr 3.42 0.42 2.70 1.59 0.001 3.53 0.33 2.81 0.33 7.3E-12 0.72 0.72 0.03 0.45 not sig 

4R 1.39 0.23 1.45 1.21 0.36 1.45 0.31 1.57 0.26 0.10 -0.06 -0.12 0.02 0.01 not sig 

Slice 5                

5Him 3.21 0.42 2.69 1.70 0.02 3.38 0.65 2.84 0.45 0.003 0.52 0.54 0.04 0.26 not sig 

5Wim 2.18 0.26 1.85 1.37 0.046 2.21 0.31 1.83 0.20 0.00001 0.33 0.38 0.03 0.025 not sig 
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Table 5 (continued) 

 

Olive 

M (n=27) 

Olive F 

(n=52) 

Sex 

Dim 

Hybrid M 

(n=13) 

Hybrid F 

(n=41) 

Sex Dim Olive  

M - F 

Hybrid 

M - F 

Olive-

Hybrid 

Degree of Sexual 

Dimorphism 

 mean S mean s p mean s mean s p mean  mean s P Greater  

5Wav 2.75 0.31 1.75 1.32 1.0E-7 2.72 0.50 1.79 0.41 9.3E-10 1.00 0.93 0.03 0.012 not sig 

5 

Himav 

1.77 0.31 1.54 1.22 0.10 1.85 0.50 1.60 0.29 0.042 0.23 0.25 0.03 0.23 not sig 

5Wlr 3.01 0.11 2.39 1.58 0.003 3.15 0.32 2.40 0.21 2.3E-15 0.62 0.75 0.03 3.4E-06 hybrid 

5R 1.50 0.32 1.48 1.24 0.46 1.58 0.45 1.57 0.31 0.49 0.02 0.00 0.03 0.27 not sig 
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Table 6 Independent samples student t-tests, α=0.05, between olive males and hybrid males of 

the 45 features of the nasal cavity. Significant p-values are bolded. The last column lists the larger 

taxon for significant features. Results are illustrated in Figure 7b.  

 
Male Olive 
(n=27) Male Hybrid (n=13) 

Independent student t-test with unequal 
sample sizes  
(d.f.= 38) (α=0.05) 

 mean s mean s t p Larger group 
Vol 4.17 0.17 4.33 0.27 2.39 0.02 hybrid 
1A 2.60 0.17 2.89 0.38 3.36 0.00 hybrid 
2A 3.34 0.23 3.47 0.33 1.51 0.14  
3A 3.49 0.21 3.71 0.20 3.08 0.00 hybrid 
4A 2.80 0.17 2.96 0.18 2.66 0.01 hybrid 
5A 2.68 0.13 2.77 0.18 1.80 0.08  
BCL 5.57 0.63 5.62 0.55 0.25 0.81  
NCL 6.76 0.66 6.90 0.40 0.70 0.49  
NpL 1.19 0.24 1.28 0.41 0.89 0.38  
Slice 1        
1Hnc 2.37 0.17 2.58 0.32 2.75 0.01 hybrid 
1Himr 0.99 0.21 1.31 0.58 2.57 0.01 hybrid 
1Himl 1.00 0.24 1.38 0.71 2.54 0.02 hybrid 
1Hicr 0.98 0.20 1.18 0.25 2.72 0.01 hybrid 
1Hicl 0.99 0.20 1.26 0.48 2.55 0.01 hybrid 
1Wnc 3.11 0.45 3.50 0.61 2.28 0.03 hybrid 
1Wim 3.30 0.50 3.70 0.55 2.34 0.02 hybrid 
1Wic 2.09 0.35 2.37 0.45 2.18 0.04 hybrid 
1Wmm 2.54 0.28 2.76 0.34 2.19 0.03 hybrid 
1R 0.74 0.14 0.71 0.13 0.58 0.57  
Slice 2        
2Hnc 2.83 0.32 2.95 0.21 1.21 0.23  
2Hicr 2.83 0.28 2.87 0.34 0.35 0.73  
2Hicl 2.83 0.25 2.92 0.26 1.03 0.31  
2Wnc 3.36 0.78 3.52 0.64 0.66 0.51  
2Wmm 4.02 0.36 4.26 0.45 1.82 0.08  
2Wic 2.31 0.40 2.41 0.64 0.63 0.53  
2R 1.02 0.97 0.86 0.16 0.60 0.55  
Slice 3        
3Hnc 3.62 0.28 3.97 0.49 2.90 0.01 hybrid 
3Wnc 2.38 0.33 2.43 0.33 0.46 0.65  
3Wic 1.97 0.31 2.12 0.21 1.56 0.13  
3Hicr 1.37 0.20 1.46 0.16 1.29 0.20  
3Hicl 1.38 0.21 1.45 0.19 0.92 0.36  
3Wmm 4.10 0.41 4.24 0.34 1.03 0.31  
3R 1.55 0.26 1.67 0.33 1.23 0.23  



!

147 

Table 6 (continued)      

 
Male Olive 
(n=27) Male Hybrid (n=13) 

Independent student t-test with unequal 
sample sizes  
(d.f.= 38) (α=0.05) 

 mean s mean s t p Larger group 
Slice 4        
4Him 2.91 0.30 3.18 0.49 2.14 0.04 hybrid 
4Wim 2.13 0.22 2.23 0.22 1.43 0.16  
4Wav 2.86 0.62 3.24 0.45 1.95 0.06  
4Himav 1.70 0.48 1.48 0.64 1.25 0.22  
4Wlr 3.42 0.42 3.53 0.33 0.84 0.41  
4R 1.39 0.23 1.45 0.31 0.68 0.50  
Slice 5        
5Him 3.21 0.42 3.38 0.65 0.97 0.34  
5Wim 2.18 0.26 2.21 0.31 0.30 0.77  
5Wav 2.75 0.31 2.72 0.50 0.25 0.81  
5Himav 1.77 0.31 1.85 0.50 0.59 0.56  
5Wlr 3.01 0.11 3.15 0.32 2.09 0.04 hybrid 
5R 1.50 0.32 1.58 0.45 0.59 0.56  
!
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Table 7 ANOVA tests, α=0.05, between olive females, hybrid females, and yellow females of 

each of the 45 features of the nasal cavity. Significant p-values are bolded. Significant pairwise 

comparisons identified by Dunnett’s C are listed and of these, the larger taxon for that feature is 

given. In the column “Dunnett’s C,” “none” means that the trait was significant at ANOVA, but 

has no psignificant pairwise comparison. Results are illustrated in Figure 7c. 

 
Female Olive 
(n=52) 

Female Hybrid 
(n=41) 

Female 
Yellow (n=4) ANOVA  

Dunnett's 
C 

Larger 
group 

 mean  s mean  s mean s p  Significant Taxa 
Vol 3.22 0.15 3.27 0.15 3.10 0.19 0.082 Olive and 

Hybrid 
Hybrid 

1A 1.93 0.12 2.01 0.15 1.90 0.18 0.018 Olive and 
Hybrid 

Hybrid 

2A 2.57 0.17 2.65 0.15 2.63 0.19 0.051   
3A 2.72 0.19 2.82 0.15 2.71 0.32 0.024 Olive and 

Hybrid 
Hybrid 

4A 2.21 0.19 2.31 0.13 2.25 0.21 0.017 Olive and 
Hybrid 

Hybrid 

5A 2.09 0.17 2.14 0.12 2.03 0.09 0.224   
BCL 4.46 0.39 4.31 0.29 3.91 0.13 0.003 none  
NCL 5.34 0.35 5.27 0.27 4.73 0.20 0.002 none  
NpL 0.88 0.20 0.96 0.23 0.83 0.31 0.171   
Slice 1          
1Hnc 1.82 0.27 1.83 0.14 1.78 0.05 0.915   
1Himr 0.70 0.24 0.84 0.29 0.66 0.18 0.031 none  
1Himl 0.75 0.21 0.83 0.21 0.61 0.22 0.045 Olive and 

Hybrid 
Hybrid 

1Hicr 0.66 0.16 0.76 0.13 0.70 0.12 0.011 Olive and 
Hybrid 

Hybrid 

1Hicl 0.71 0.16 0.79 0.16 0.70 0.11 0.074   
1Wnc 2.11 0.75 2.56 0.60 2.38 0.49 0.007 none  

1Wim 2.51 0.39 2.82 0.32 2.49 0.51 <0.005 Olive and 
Yellow 

Olive 

1Wic 1.51 0.22 1.55 0.20 1.49 0.29 0.614   
1Wmm 1.88 0.16 1.87 0.16 1.80 0.21 0.696   
1R 0.75 0.20 0.65 0.08 0.74 0.19 0.017 Olive and 

Yellow 
Olive 

Slice 2          
2Hnc 2.15 0.24 2.23 0.24 2.29 0.16 0.166   
2Hicr 2.01 0.23 2.06 0.26 2.08 0.32 0.58   
2Hicl 2.02 0.22 2.08 0.26 2.00 0.29 0.541   
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Table 7 (continued)        

 
Female Olive 
(n=52) 

Female Hybrid 
(n=41) 

Female 
Yellow (n=4) ANOVA  

Dunnett's 
C 

Larger 
group 

 mean  s mean  s mean s p   
2Wnc 3.00 0.36 3.15 0.30 3.00 0.03 0.092   
2Wmm 3.16 0.29 3.30 0.23 3.24 0.29 0.053   
2Wic 1.98 0.26 2.03 0.25 1.99 0.26 0.646   
2R 0.73 0.13 0.72 0.13 0.76 0.05 0.782   
Slice 3          
3Hnc 3.02 0.26 3.16 0.29 3.27 0.42 0.027 none  
3Wnc 3Wn

c 

3Wnc 3Wnc 3Wnc 3Wn

c 

3Wn

c 

3Wnc 3Wnc 3Wnc 

3Wnc 2.07 0.20 2.06 0.17 1.79 0.20 0.016 Olive and 
Hybrid 

Olive 

3Wic 1.78 0.22 1.76 0.23 1.64 0.30 0.456   

3Hicr 1.05 0.17 1.11 0.27 0.91 0.14 0.132   
3Hicl 1.06 0.18 1.08 0.17 0.94 0.12 0.274   
3Wmm 2.98 0.52 3.16 0.38 2.96 0.72 0.192   
3R 1.47 0.19 1.55 0.23 1.87 0.47 0.002 Olive and 

Hybrid 
Hybrid 

Slice 4          
4Him 2.60 0.40 2.75 0.39 2.94 0.40 0.094   
4Wim 1.82 0.17 1.77 0.12 1.53 0.22 0.001 Olive and 

Hybrid 
Olive 

4Wav 1.81 0.58 2.06 0.59 2.07 0.43 0.115   
4Himav 1.64 0.45 1.58 0.39 1.48 0.13 0.653   
4Wlr 2.70 0.36 2.81 0.33 2.65 0.50 0.27   
4R 1.45 0.31 1.57 0.26 1.97 0.52 0.002 none  
Slice 5          
5Him 2.69 0.39 2.84 0.45 3.03 0.40 0.12   
5Wim 1.85 0.23 1.83 0.20 1.51 0.21 0.015 Olive and 

Hybrid 
Olive 

5Wav 1.75 0.46 1.79 0.41 1.50 0.28 0.443   
5Himav 1.54 0.35 1.60 0.29 1.66 0.24 0.62   
5Wlr 2.39 0.20 2.40 0.21 2.13 0.21 0.035 Olive and 

Hybrid 
Hybrid 

5R 1.48 0.33 1.57 0.31 2.03 0.38 0.006 none  
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Table&8!ANOVA!tests,!α=0.0011,!between!olive,!hybrid,!and!yellow!baboons!(males!
+females)! of! each! of! the! 45! features! of! the! nasal! cavity.! The! significant! pairwise!
comparisons! identified!by!Dunnett’s!C!are! listed!and!of! these,! the! larger! taxon! for!
that! feature! is! given.!Results!are! illustrated! in!Figure!7d.!This! test!was!performed!
after!the!correction!for!sexual!dimorphism.!

 Olive (n=79) Yellow (n=5) Hybrid (n=54) ANOVA  Dunnett’s C   

Variable mean  s mean  s mean  s p Sig taxa Largest  

Vol 3.22 0.16 3.10 0.20 3.27 0.18 0.068   

1A 1.93 0.14 1.90 0.15 2.01 0.23 0.036   

2A 2.57 0.19 2.63 0.15 2.65 0.21 0.054   

3A 2.72 0.20 2.71 0.32 2.82 0.16 0.007   

4A 2.21 0.18 2.25 0.18 2.31 0.14 0.003   

5A 2.09 0.16 2.03 0.08 2.14 0.14 0.129   

BCL 4.46 0.48 3.91 0.19 4.31 0.37 0.007   

NCL 5.34 0.48 4.73 0.39 5.27 0.31 0.007   

NpL 0.88 0.21 0.83 0.28 0.96 0.28 0.141   

Slice 1          

1Hnc 1.82 0.24 1.78 0.04 1.83 0.20 0.895   

1Himr 0.70 0.23 0.66 0.16 0.84 0.38 0.022   

1Himl 0.75 0.22 0.61 0.20 0.83 0.39 0.117   

1Hicr 0.66 0.18 0.70 0.12 0.76 0.16 0.008   

1Hicl 0.71 0.17 0.70 0.11 0.79 0.27 0.128   

1Wnc 2.11 0.65 2.38 0.30 2.56 0.60 <0.001 olive and 
hybrid 

hybrid 

1Wim 2.51 0.43 2.49 0.45 2.82 0.38 <0.001 olive and 
hybrid 

hybrid 

1Wic 1.51 0.27 1.49 0.20 1.55 0.28 0.654   

1Wmm 1.88 0.21 1.80 0.10 1.87 0.22 0.755   

1R 0.75 0.18 0.74 0.16 0.65 0.09 0.002   

Slice 2          

2Hnc 2.15 0.27 2.29 0.08 2.23 0.23 0.109   

2Hicr 2.01 0.24 2.08 0.23 2.06 0.28 0.508   

2Hicl 2.02 0.23 2.00 0.22 2.08 0.26 0.432   

2Wnc 3.00 0.53 3.00 0.03 3.15 0.41 0.209   

2Wmm 3.16 0.31 3.24 0.24 3.30 0.29 0.041   
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Table 8 (continued)        
 Olive (n=79) Yellow (n=5) Hybrid (n=54) ANOVA Dunnett’s C  
Variable mean  s mean  s mean  s p Sig taxa Largest  

2Wic 1.98 0.31 1.99 0.08 2.03 0.37 0.705   

2R 0.73 0.57 0.76 0.03 0.72 0.13 0.975   

Slice 3          

3Hnc 3.02 0.27 3.27 0.29 3.16 0.34 0.013   

3Wnc 2.07 0.25 1.79 0.24 2.06 0.22 0.035   

Variable mean  s mean  s mean  s p Sig taxa Largest  

3Wic 1.78 0.25 1.64 0.31 1.76 0.22 0.413   

3Hicr 1.05 0.18 0.91 0.29 1.11 0.24 0.057   

3Hicl 1.06 0.19 0.94 0.24 1.08 0.17 0.214   

3Wmm 2.98 0.49 2.96 0.73 3.16 0.36 0.076   

3R 1.47 0.21 1.87 0.41 1.55 0.26 0.001 none  

Slice 4          

4Him 2.60 0.38 2.94 0.38 2.75 0.41 0.031   

4Wim 1.82 0.19 1.53 0.19 1.77 0.15 0.001 none  

4Wav 1.81 0.59 2.07 0.48 2.06 0.56 0.044   

4Himav 1.64 0.46 1.48 0.29 1.58 0.45 0.607   

4Wlr 2.70 0.38 2.65 0.50 2.81 0.33 0.177   

4R 1.45 0.28 1.97 0.48 1.57 0.27 <0.001 olive and 
hybrid 

hybrid 

Slice 5          

5Him 2.69 0.39 3.03 0.38 2.84 0.50 0.074   

5Wim 1.85 0.24 1.51 0.19 1.83 0.23 0.01   

5Wav 1.75 0.41 1.50 0.45 1.79 0.42 0.326   

5Himav 1.54 0.34 1.66 0.40 1.60 0.33 0.545   

5Wlr 2.39 0.17 2.13 0.21 2.40 0.24 0.013   

5R 1.48 0.32 2.03 0.38 1.57 0.35 0.002   

!
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Table 9 The intra-observer standard deviation and range of +/- 1 standard deviation for each 

variable. The level of measurement accuracy is also noted. 

Variable SD 
Range of +/-1 
standard deviation  Measurement accuracy  

Volume (cm3)-3 0 8.930E-16 <0.005 (cm3)-3 
Area slice 1 (cm2)-2 0 2.783E-09 <0.005 (cm2)-2 
Area slice 2 (cm2)-2 0 5.757E-10 <0.005 (cm2)-2 
Area slice 3 (cm2)-2 0 4.178E-10 <0.005 (cm2)-2 
Area slice 4 (cm2)-2 0 1.154E-08 <0.005 (cm2)-2 
Area slice 5 (cm2)-2 0 5.212E-08 <0.005 (cm2)-2 
Bony cavity length (cm)  0 0 <0.005 (cm) 
Total nasal cavity length (cm) 0 0 <0.005 (cm) 
Nasopharynx length (cm) 0 0 <0.005 (cm) 

Slice 1    
Slice 1 Height at nasal crest (cm)  0.021 0.041 <0.05 (cm) 
Slice 1 Height of right inferior meatus 
(cm) 0.035 0.069 <0.1 (cm) 
Slice 1 Height of left inferior meatus 
(cm) 0.021 0.041 <0.05 (cm) 
Slice 1 Height of right inferior conchae 
(cm) 0.017 0.033 <0.05 (cm) 
Slice 1 Height of left inferior conchae 
(cm) 0.019 0.038 <0.05 (cm) 
Slice 1 Width at nasal crest (cm) 0.029 0.058 <0.1 (cm) 
Slice 1 Width of inferior meatus (cm) 0.022 0.045 <0.05 (cm) 
Slice 1 Width between inferior conchae 
(cm) 0.022 0.045 <0.05 (cm) 
Slice 1 Width of middle meatus (cm) 0.008 0.017 <0.025 (cm) 

Slice 2    
Slice 2 Height at nasal crest (cm) 0.136 0.272 <0.5 (cm) 
Slice 2 Height of right inferior conchae 
(cm) 0.014 0.028 <0.05 (cm) 
Slice 2 Height of left inferior conchae 
(cm) 0.015 0.030 <0.05 (cm) 
Slice 2 Width at nasal crest (cm) 0.074 0.148 <0.25 (cm) 
Slice 2 Width of middle meatus (cm) 0.037 0.073 <0.1 (cm) 
Slice 2 Width between inferior conchae 
(cm) 0.024 0.047 <0.05 (cm) 

Slice 3    
Slice 3 Height at nasal crest (cm) 0.132 0.264 <0.5 (cm) 
Slice 3 Width at nasal crest (cm) 0.026 0.051 <0.1 (cm) 
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Table 9 (continued)    

Variable SD 
Range of +/-1 
standard deviation  Measurement accuracy  

Slice 3 Width between inferior conchae 
(cm)  0.022 0.044 <0.05 (cm) 
Slice 3 Height of right inferior conchae 
(cm) 0.042 0.083 <0.1 (cm) 
Slice 3 Height of left inferior conchae 
(cm) 0.045 0.089 <0.1 (cm) 
Slice 3 Width of middle meatus (cm) 0.052 0.103 <0.25 (cm) 
Slice 4    
Slice 4 Height at inferior margin (cm) 0.089 0.177 <0.25 (cm) 
Slice 4 Width of inferior margin (cm) 0.009 0.019 <0.025 (cm) 
Slice 4 Width at alae of vomer (cm) 0.332 0.665 <1 (cm) 
Slice 4 Height at inferior margin to alae 
of vomer (cm) 0.036 0.072 <0.1 (cm) 
Slice 4 Width of lateral recess (cm) 0.009 0.018 <0.025 (cm) 

Slice 5    
Slice 5 Height at inferior margin (cm) 0.082 0.163 <0.25 (cm) 
Slice 5 Width of inferior margin (cm) 0.013 0.026 <0.05 (cm) 
Slice 5 Width at alae of vomer (cm) 0.378 0.755 <1 (cm) 
Slice 5 Height at inferior margin to alae 
of vomer (cm) 0.075 0.150 <0.25 (cm) 
Slice 5 Width of lateral recess (cm) 0.027 0.053 <0.1 (cm) 
!
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Table 10 The definition of the scores for each nonmetric trait. Figure 18 illustrates each trait. 

Nonmetric Trait Score Definition 

0 No roots penetrate nasal cavity 

1 1 or 2 roots penetrate nasal cavity 

Dentition: Roots 

 

2 3+ roots penetrate nasal cavity 

0 none 

1 1 tooth with no interference with nasal 

cavity 

2 1 tooth with severe impact on nasal 

cavity 

3 2+ teeth with no interference with nasal 

cavity 

Dentition: Ectopic Teeth 

4 2+ teeth with severe impact on nasal 

cavity 

0 No deviated septum 

1 Minor deviated septum 

2 Moderate deviated septum 

Deviated Septum  

*scores derived from Sinha and Maheshwari 

(1963) 

3 Severe deviated septum 

0 No division 

1 One side divided 

Divided Greater Palatine Canal 

2 Both sides divided 

0 Flat orbits 

1 Moderate curvature at lateral recess in 

orbits 

Lateral Recess in Orbit 

2 Large curvature at lateral recess in 

orbits 

0 Attached Attachment of Inferior Nasal Conchae in 

slice 3 1 Not attached 

0 Present Presence of alae of vomer in slice 4 

1 Not Present 

!
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Table 11 Observed and expected values, in parentheses, for each score and baboon group are 

listed in the contingency table. Results of Fisher’s Exact test, α=0.05, on each nonmetric trait for 

different combinations of taxa are also given. Significant p-values are bolded. a) Roots, b) 

Ectopic Teeth, c) Deviated Septum d) Division of Greater Palatine Canals e) Lateral Recess in 

Orbits f) Attached Inferior Nasal Conchae in Slice 3 g) Presence of alae of vomer in Slice 4 

* were not included in the Fisher’s Exact test calculation 

a) Roots      
Score  Olive  Yellow  Total χ2 p 
0 76 (75.3) 3 (3.7) 79 4.304 0.145 
1 23 (22.9) 1(1.1) 24   
2 2(2.9) 1(0.1) 3   
Total 101 5 106   
 Parental Hybrid Total   
0 79(79.3) 49(48.7) 128 4.031 0.123 
1 24(21.1) 10(12.9) 34   
2 3(5.6) 6(3.4) 9   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 27(27.1) 12(11.9) 39 0.793 0.78 
1 13(12.5) 5(5.5) 18   
2 1 1 2   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 52(51.7) 37(37.3) 89 3.096 0.212 
1 11(9.3) 5(6.7) 16   
2 2(4.1) 5(2.9) 7   
Total 65 47 112   
 All  

Female 
All Male Total   

0 89(83.8) 39(44.2) 128 6.289 0.04 
1 16(22.3) 18(11.7) 34   
2 7(5.9) 2(3.1) 9   
Total 112 59 171   
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Table 11 (continued)     
b) Ectopic Teeth     
Score  Olive  Yellow  Total χ2 P 
0 91(90.5) 4(4.5) 95 3.892 0.428 
1 7(7.6) 1(0.4) 8   
2 1(1) 0(0) 1   
3 0* 0* 0   
4 2(1.9) 0(0.1) 2   
Total 101 5 106   
 Parental Hybrid Total   
0 95(95.5) 59(58.5) 154 2.901 0.635 
1 8(74.) 4(4.6) 12   
2 1(1.2) 1(0.8) 2   
3 0(0.6) 1(0.4) 1   
4 2(1.2) 0(0.8) 2   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 31(32.0) 15(14.0) 46 3.066 0.411 
1 8(6.9) 2(3.1) 10   
2 0* 0* 0   
3 0(0.7) 1(0.3) 1   
4 2(1.4) 0(0.6) 2   
Total 41 18 59   
 Female Parental Female Hybrid Total   
0 64(62.7) 44(45.3) 108 2.733 0.319 
1 0(1.2) 2(0.8) 2   
2 1(1.2) 1(0.8) 2   
3 0* 0* 0   
4 0* 0* 0   
Total 65 47 112   
 All Female All Male Total   
0 108 (100.9) 46(53.2) 154 18.822 6.3E-5 
1 2(7.9) 10(4.2) 12   
2 2(1.3) 0(0.7) 2   
3 0(0.7) 1(0.3) 1   
4 0(1.3) 2(0.7) 2   
Total 112 59 171   
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Table 11 (continued)     
c) Deviated Septum     
Score  Olive  Yellow  Total χ2 P 
0 59(59.1) 3(2.9) 62 1.698 0.7 
1 25(25.7) 2(1.3) 27   
2 15(14.2) 0(0.7) 15   
3 2(1.9) 0(0.1) 2   
Total 101 5 106   
 Parental Hybrid Total   
0 62(59.5) 34(36.5) 96 1.787 0.644 
1 27(29.1) 20(17.9) 47   
2 15(16.1) 11(9.9) 26   
3 2(1.2) 0(0.8) 2   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 21(17.4) 4(7.6) 25 4.491 0.10 
1 12(14.6) 9(6.4) 21   
2 8(9.0) 5(4.0) 13   
3 0* *0 0   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 41(41.2) 30(29.8) 71 1.240 0.829 
1 15(15.1) 11(10.9) 26   
2 7(7.5) 6(5.5) 13   
3 2(1.2) 0(0.8) 2   
Total 41 30 112   
 All  

Female 
All Male Total   

0 71(62.9) 25(33.1) 96 8.6 0.023 
1 26(30.8) 21(16.2) 47   
2 13(17.0) 13(9.0) 26   
3 2(1.3) 0(0.7) 2   
Total 112 59 171   
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Table 11 (continued) 
d) Divided Greater Palatine Canals 
Score  Olive  Yellow  Total χ2 P 
0 67(67.7) 4(3.3) 71 2.374 0.307 
1 26(24.8) 0(1.2) 26   
2 8(8.6) 1(0.4) 9   
Total 101 5 106   
 Parental Hybrid Total   
0 71(70.7) 43(43.3) 114 2.366 0.315 
1 26(23.6) 12(14.4) 38   
2 9(11.8) 10(7.2) 19   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 28(28.5) 13(12.5) 41 0.199 1.00 
1 10(9.7) 4(4.3) 14   
2 3(2.8) 1(1.2) 4   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 43 (42.4) 30(30.6) 73 2.694 0.259 
1 16(13.9) 8(10.1) 24   
2 6(8.7) 9(6.3) 15   
Total 41 30 112   
 All  

Female 
All Male Total   

0 73(74.7) 41(39.3) 114 1.650 0.456 
1 24(24.9) 14(13.1) 38   
2 15(12.4) 4(6.6) 19   
Total 112 59 171   
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Table 11 (continued) 
e) Lateral Recess in Orbits 
Score  Olive  Yellow  Total χ2 P 
0 60(61.0) 4(3.0) 64 0.635 0.741 
1 35(34.3) 1(1.7) 36   
2 6(5.7) 0(0.3) 6   
Total 101 5 106   
 Parental Hybrid Total   
0 64(58.9) 31(36.1) 95 5.195 0.075 
1 36(37.1) 24(22.8) 60   
2 6(9.9) 10(6.1) 16   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 16(13.9) 4(6.1) 20 2.304 0.342 
1 22(22.9) 11(10.1) 33   
2 3(4.2) 3(1.8) 6   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 48(43.5) 27(31.5) 75 4.642 0.103 
1 14(15.7) 13(11.3) 27   
2 3(5.8) 7(4.2) 10   
Total 41 30 112   
 All  

Female 
All Male Total   

0 75(62.2) 20(32.8) 95 18.693 6.3E-5 
1 27(39.3) 33(20.7) 60   
2 10(10.5) 6(5.5) 16   
Total 112 59 171   
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Table 11 (continued) 
f) Attachment of Inferior Conchae in Slice 3 
Score  Olive  Yellow  Total χ2 p 
0 63(64.8) 5(3.2) 68 2.932 0.157 
1 38(36.2) 0(1.8) 38   
Total 101 5 106   
 Parental Hybrid Total   
0 68(71.3) 47(43.7) 115 1.217 0.315 
1 38(34.7) 18(21.3) 56   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 23(20.8) 7(9.2) 30 1.482 0.267 
1 18(20.2) 11(8.8) 29   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 45(49.3) 40(35.) 85 3.758 0.073 
1 20(15.7) 7(11.3) 27   
Total 41 30 112   
 All  

Female 
All Male Total   

0 85(75.3) 30(39.7) 115 11.006 0.001 
1 27(36.7) 29(19.3) 56   
Total 112 59 171   
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Table 11 (continued) 
g) Presence of Alae of Vomer in Slice 4 
Score  Olive  Yellow  Total χ2 p 
0 91(91.5) 5(4.5) 96 0.547 1.00 
1 10(9.5) 0(0.5) 10   
Total 101 5 106   
 Parental Hybrid Total   
0 96(96.1) 59(58.9) 155 0.002 1.00 
1 10(9.9) 6(6.1) 16   
Total 106 65 171   
 Male Parental Male Hybrid Total   
0 34(33.4) 14(14.6) 48 0.219 0.721 
1 7(7.6) 4(3.4) 11   
Total 41 18 59   
 Female 

Parental 
Female 
Hybrid 

Total   

0 62(62.1) 45(44.9) 107 0.008 1.00 
1 3(2.9) 2(2.1) 5   
Total 41 30 112   
 All  

Female 
All Male Total   

0 107(101.5) 48(53.5) 155 9.161 0.004 
1 5(10.5) 11(5.5) 16   
Total 112 59 171   
!
!
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Figure 1 Neanderthal depictions; a) ‘The Neanderthal Man’ pubished in Harper’s Weekly, 1873, p. 
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3UHYLRXV�SDJH��SJ�����
Figure 2�0DMRU�IHDWXUHV�RI�WKH�QDVDO�FDYLW\�DUH�ODEHOHG�ZLWKLQ�D��'�UHFRQVWUXFWLRQ�IURP�&7�VFDQV�RI�D�
PDOH�ROLYH�VSHFLPHQ��D��FRURQDO�VHFWLRQ�RI�WKH�DQWHULRU�ERQ\�FDYLW\��E��FRURQDO�VHFWLRQ�RI�WKH�QDVRSKDU�
\Q[��F��VDJLWWDO�VHFWLRQ�RI�QDVDO�FDYLW\�

)ROORZLQJ�SDJH��SJ�����
Figure 3 L��7KH�ORFDWLRQ�RI�WKH�¿YH�DQDO\]HG�DQG�VHJPHQWHG�&7�VOLFHV��LL��DQ�H[DPSOH�RI�¿YH�VOLFHV�IURP�
WKH�&7�VFDQV�RI�D�PDOH�ROLYH�VSHFLPHQ�ZLWK�WKH�PHDVXUHPHQWV�XVHG�LQ�WKLV�VWXG\�ODEHOHG��WKH�ODEHOV�FRU�
UHVSRQG�WR�7DEOH����LLL��D�PRGHO�RI�QDVDO�FDYLW\�YROXPH�DQG�WKH�¿YH�VOLFHV�EDVHG�RQ�WKH�DYHUDJH�YDOXHV�RI�
PDOH�ROLYH�EDERRQV��ODEHOV�FRUUHVSRQG�WR�7DEOH����%OXH�JXLGHOLQHV�GHPRQVWUDWH�WKH�UHODWLYH�ORFDWLRQV�RI�
WKH�¿YH�VFDQV�WR�HDFK�RWKHU�
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Figure 6�7KH�SORWV�RI�WKH�LQGH[�RI�VH[XDO�GLPRUSKLVP��,6'��VKRZ�RYHUODSSLQJ�����FRQ¿GHQFH�LQWHU�
YDOV�IRU�HDFK�RI�WKH����WUDLWV�IRU�ROLYH�DQG�K\EULG�EDERRQV��/DEHOV�IRU�HDFK�SORW�FRUUHVSRQG�WR�7DEOH����
�)LJXUH�FRQWLQXHG�RQ�SDJH�����
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3UHYLRXV�SDJH��SJ�����
Figure 7�1DVDO�FDYLW\�PRGHOV�UHSUHVHQWLQJ�VLJQL¿FDQW�IHDWXUHV�RI�LQWHUHVW�LQ�WKH�QDVDO�FDYLW\��D��
6LJQL¿FDQW�IHDWXUHV�IRU�WKH�GHJUHH�RI�VH[XDO�GLPRUSKLVP�EHWZHHQ�ROLYH�DQG�K\EULG�EDERRQV��VWDWLVWLFDO�
UHVXOWV�DUH�OLVWHG�LQ�7DEOH����E��6LJQL¿FDQW�IHDWXUHV�WKDW�GLIIHUHG�EHWZHHQ�PDOH�ROLYH�DQG�PDOH�K\EULG�
EDERRQV��VWDWLVWLFDO�UHVXOWV�DUH�OLVWHG�LQ�7DEOH����F��6LJQL¿FDQW�IHDWXUHV�WKDW�GLIIHUHG�EHWZHHQ�IHPDOH�
ROLYH��IHPDOH�K\EULG��DQG�IHPDOH�\HOORZ�EDERRQV��VWDWLVWLFDO�UHVXOWV�DUH�OLVWHG�LQ�7DEOH����G��6LJQL¿FDQW�
IHDWXUHV�WKDW�GLIIHUHG�EHWZHHQ�ROLYH��K\EULG��DQG�\HOORZ�EDERRQV��PDOHV�DQG�IHPDOHV�FRPELQHG�LQ�
HDFK�WD[RQ��DIWHU�WKH�GDWD�ZHUH�FRUUHFWHG�IRU�VH[XDO�GLPRUSKLVP��6WDWLVWLFDO�UHVXOWV�DUH�OLVWHG�LQ�7DEOH�
���%DFNJURXQG�VKDSHV�RI�WKH�QDVDO�FDYLW\�RI�HDFK�RI�WKH�¿YH�VOLFHV�UHSUHVHQW�FDOFXODWHG�DUHDV��7UDLWV�
DUH�IRXQG�WR�EH�VLJQL¿FDQW�LI�FRORXUHG�EOXH��K\EULG�KDV�VLJQL¿FDQWO\�ODUJHU�YDOXHV���JUHHQ��ROLYH�KDV�
VLJQL¿FDQWO\�ODUJHU�YDOXHV���RU�PDJHQWD��IRXQG�VLJQL¿FDQW�LQ�WKH�$129$��EXW�QRW�LQ�SRVW�KRF�SDLUZLVH�
FRPSDULVRQV���*UD\�LQGLFDWHV�WKDW�QR�VLJQL¿FDQFH�ZDV�IRXQG�IRU�WKDW�WUDLW��$GGLWLRQDO�WUDLWV�WKDW�FRXOG�
QRW�EH�LOOXVWUDWHG��OHQJWKV�DQG�UDWLRV��DUH�OLVWHG�ZLWK�VWDWLVWLFDO�UHVXOWV�LQ�7DEOHV����������DQG���
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3UHYLRXV�SDJH��SJ�����
Figure 12�D��7KH�FDQRQLFDO�VFRUH�SORW�RI�&'$�RI�PDOH�EDERRQV�VXFFHVVIXOO\�VHSDUDWHG�WD[D�DORQJ�&'����
ZLWK�\HOORZ�WR�WKH�OHIW��WKHQ�ROLYH��WKHQ�K\EULG�RQ�WKH�ULJKW��DQG�DORQJ�&'���ZLWK�ROLYH�DQG�K\EULGV�QHDU�
WKH�WRS�DQG�\HOORZ�QHDU�WKH�ERWWRP��E��+LVWRJUDPV�RI�HDFK�JURXS�IRU�&'���DQG�&'���VLPLODUO\�VKRZ�
VHSDUDWLRQ�EHWZHHQ�JURXSV�ZLWK�VRPH�RYHUODS��

)ROORZLQJ�SDJH��SJ�����
Figure 13�D��7KH�FDQRQLFDO�VFRUH�SORW�RI�&'$�RI�PDOH�EDERRQV��QRW�LQFOXGLQJ�WKH�VLQJOH�PDOH�\HOORZ��
VXFFHVVIXOO\�VHSDUDWHG�WD[D�DORQJ�&'���ZLWK�ROLYH�WR�WKH�OHIW�DQG�K\EULG�WR�WKH�ULJKW��7KHUH�LV�QR�&'���
EHFDXVH�RQO\�WZR�JURXSV�ZHUH�DQDO\]HG�DQG�WKH�QXPEHU�RI�FDQRQLFDO�GLVFULPLQDQW�IXQFWLRQV�WKDW�FDQ�EH�
FDOFXODWHG�LV�HTXDO�WR�WKH�QXPEHU�RI�JURXSV�PLQXV����7KH�&'���VFRUHV�ZHUH�GLVWULEXWHG�DORQJ�WKH�\�D[LV�
EDVHG�RQ�VSHFLPHQ�,'�QXPEHU�LQ�RUGHU�WR�VHH�DOO�RI�WKH�VFRUHV��7KH�\�D[LV�VKRXOG��WKHUHIRUH��QRW�EH�
XVHG�LQ�WKH�LQWHUSUHWDWLRQ�RI�WKLV�&'$��E��+LVWRJUDPV�RI�HDFK�JURXS�IRU�&'���VLPLODUO\�VKRZ�VHSDUDWLRQ�
EHWZHHQ�JURXSV�ZLWK�VRPH�RYHUODS�
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3UHYLRXV�SDJH��SJ�����
Figure 14�D��7KH�FDQRQLFDO�VFRUH�SORW�RI�&'$�RI�IHPDOH�EDERRQV�VXFFHVVIXOO\�VHSDUDWHG�WD[D�DORQJ�
&'���ZLWK�ROLYH�WR�WKH�OHIW�DQG�K\EULG�WR�WKH�ULJKW��DQG�DORQJ�&'��ZLWK�\HOORZ�JURXSLQJ�JUHDWHU�WKDQ����
ZKLOH�ROLYH�DQG�K\EULGV�UHPDLQ�FHQWHUHG�DURXQG����E��7KRXJK�WKH�JURXSV�VHSDUDWH��WKH�RYHUODS�EHWZHHQ�
WD[D�LV�PRUH�REYLRXV�LQ�WKH�KLVWRJUDPV�RI�&'���DQG�&'���

Figure 15�D��7KH�FDQRQLFDO�VFRUH�SORW�RI�&'$�RI�DOO�EDERRQV�SULRU�WR�WKH�FRUUHFWLRQ�IRU�VH[XDO�GLPRU�
SKLVP�VXFFHVVIXOO\�VHSDUDWHG�VH[�DORQJ�&'����ZLWK�PDOHV�WR�WKH�OHIW�DQG�IHPDOHV�RQ�WKH�ULJKW��DQG�VHS�
DUDWHG�WD[D�DORQJ�&'���ZLWK�\HOORZ�DQG�K\EULGV�JUHDWHU�WKDQ���DQG�ROLYHV�OHVV�WKDQ����0RVW�VHSDUDWLRQ�
REVHUYHG�LV�GXH�WR�VH[�DORQJ�&'����ZKHUH�PDOHV�DQG�IHPDOHV�DUH�VXEVWDQWLDOO\�VHSDUDWHG�DV�VKRZQ�LQ�WKH�
KLVWRJUDPV��E��7KH�KLVWRJUDPV�RI�&'���VKRZ�RQO\�PLQLPDO�VHSDUDWLRQ�EHWZHHQ�WD[D���)LJXUH�FRQWLQXHG�
on page 187)
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3UHYLRXV�SDJH��SJ�����
Figure 16�D��7KH�FDQRQLFDO�VFRUH�SORW�RI�&'$�RI�DOO�EDERRQV�DIWHU�WKH�FRUUHFWLRQ�IRU�VH[XDO�GLPRUSKLVP�
VXFFHVVIXOO\�VHSDUDWHG�WD[D�DORQJ�&'����ZLWK�ROLYH�WR�WKH�OHIW�DQG�K\EULG�DQG�\HOORZ�WR�WKH�ULJKW��&'���
VHSDUDWHG�\HOORZ��ZLWK�VFRUHV�JUHDWHU�WKDQ����IURP�ROLYH�DQG�K\EULG�ZLWK�VFRUHV�FHQWHUHG�DURXQG����E��
7KH�KLVWRJUDPV�RI�&'���DQG�&'���PRUH�FOHDUO\�VKRZ�RYHUODS�EHWZHHQ�JURXSV�

)ROORZLQJ�SDJH��SJ�����
Figure 17 Photos and CT scans of examples of the seven analyzed nonmetric traits; features and 
variability of the trait are circled in red. Corresponding scoring is found inTable 10. a) Root of 
molar entered the nasal cavity; b) ectopic teeth in the nasal cavity: le! has a score of 1, exam-
ple on the right shows greater nasal cavity obstruction by the ectopic tooth with a score of 2; c) 
deviated septum: le! is moderate with a score of 2, right is severe with a score of 3; d) division 
of the greater palatine canals: le! has no division with a score of 0, right has division in both 
canals with a score of 2. e) "e size of the lateral recess in the orbit: le! is #at with a score of 0, 
middle is moderate with a score of 1, right is large with a score of 2; f) le! shows the attached 
inferior nasal conchae in slice 3 with a score of 0, right shows unattached inferior nasal conchae 
in slice 3 with a score of 1; g) le! shows the presence of the alae of the vomer in slice 4 with a 
score of 0, right shows the absence of the alae of the vomer in slice 4 with a score of 1.
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Figure 18 Bar graphs of the scores of each nonmetric trait for hybrid females, hybrid males, 
yellow females, yellow males, olive females, and olive males. Related statistical tests are 
presented in Table 11.


