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Abstract

The term “Integral Abutment Bridges” is used broadly all over the world these days. While
the expansion joints used in bridges were once a scientifically proved cure to the problem of
natural expansion and contraction, there are the excessive maintenance costs being
accumulated annually due to the deterioration of essential functions from deicing chemicals
and debris. This drawback triggered the advent of Integral Abutment Bridges. The
performance of Integral Abutment Bridges at almost no extra costs in seasonal and daily
cyclic contraction and expansion can be assessed as a monumental landmark of civil

engineering technologies with respect to the massive budget reductions.

However, since Integral Abutment Bridges are destined to expand or contract under the laws
of nature, the bridge design became more complicated and sophisticated in order to
complement the removal of expansion joints. That is why numerous researchers are attracted
to Integral Abutment Bridges with deep interests. Accordingly, in designing the piled
abutments of Integral bridges, it is essential to precisely predict the bridge’s behavior in
advance. In particular, the design requires the comprehensive understanding on the
mechanism of the soil-structure interaction, namely, the process regarding the nonlinear

responses of the soils behind the abutments and around the piles.

Researchers have been broadly carried out during the last several decades on the behavior of
piled bridge abutments. However, most of the studies have been analyzed with focus on
structural elements or soils, respectively for the static and dynamic loads such as thermal

variations and earthquake loads. In other words, structural researchers are mostly concerned
i



with the structural effect of temperature-induced displacements while geotechnical research
workers have been concentrating on the behavior of soils by the response of soil-structure

systems.

This presented research developed 3D numerical models with 3m, 4 m,5m, 6 m, 7 m, and 8
m-tall abutments in the bridge using the finite element analysis software MIDAS CIVIL that
simulate the behaviors of Integral Abutment Bridges to study the soil-structure interaction
mechanism. In addition, this work evaluated and validated the suitability to the limit of the
abutment height in Ontario’s recommendations for Integral Abutment Bridges by a parametric
study under the combined static loading conditions. In order to be a balanced research in
terms of a multidisciplinary study, this research analyzed key facts and issues related to soil-
structure interaction mechanisms with both structural and geotechnical concerns. Moreover,
the study established an explanatory diagram on soil-structure interaction mechanisms by

cyclic thermal movements in Integral Abutment Bridges.

Keywords: Integral Abutment Bridges; soil-structure interaction; soil-structure interaction

mechanisms; seasonal and daily cyclic contraction and expansion; cyclic thermal movements
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Chapter 1 Introduction
1.1 Background

The term “Integral Abutment Bridges” is used broadly all over the world in the field of civil
engineering. However, relying on the region and time frame, other terms such as integral
bridge, integral bridge abutments, joint-less bridge, rigid-frame bridge or U-frame bridge
have been emerging or are expected in use as a similar terminology (Horvath, 2000). The
concept of conventional bridges with a series of functions by devices including expansion
joints, roller supports, and abutment bearings to cope with cyclic thermal expansion and
contraction, creep and shrinkage, has been inducing high maintenance costs due to material
corrosion and deterioration by leakage of water containing salt or deicing chemicals through
the joints. Thus, according to producing an effect opposite to what was intended in
traditional bridges, Integral Abutment Bridges have become increasingly popular for limited

budgets (Arockiasamy et al., 2004; Shah, 2007; Krier, 2009; and Faraji et al., 2001).

In the United States, since the Teens Run Bridge built was built in 1938 near Eureka in
Gallia County, Ohio as the first integral bridge (Burke Jr, 2009), there are approximately
13000 integral abutment bridges, of which about 9000 are full integral abutment bridges,
around 4000 are semi-integral abutment bridges (Maruri & Petro, 2005; NYSDOT, 2005).
Meanwhile in Canada, several provinces along with Alberta, Quebec, Nova Scotia, and
Ontario have integral abutment bridges. Especially Ontario limits its integral bridge span to
less than 100 m and a 20-degree skew angle. They also recommend the abutment heights
more than 6m should not be considered for integral abutment design, unless it is used in

conjunction with the retained soil system. Ontario’s recommendations for integral bridges
1



are similar to those used by many US states. These feature a weak joint between the roadway
deck and approach slab and a single row of vertical steel H piles (Kunin & Alampalli, 1999;
Bakeer et al., 2005; and MTO, 1996). Moose Creek Bridge, one of the prefabricated bridges
using precast concrete wall units and deck elements for integral abutment bridges, was built

in 2004 in Ontario by the Ministry of Transportation of Ontario (Husain et al., 2005).

In the United States and Canada, overall the model of integral abutment bridges has
confirmed to be successful economically in both initial construction and maintenance costs
as well as satisfied technically in removing expansion joint problems. However, it does not
yet possess a perfect liberty from annual maintenance caused by the bump at bridge
approach slabs, decreasing a pavement ride quality for automobiles. Moreover, some
maintenance operations for cracks or settlements are required by the excess movements
during the winter and summer months. In order to increase the confidence in the design and
construction of Integral Abutment Bridges, it is urgent and crucial that a comprehensive and

exhaustive performance study be implemented (Horvath, 2000; Husain & Bagnariol, 2000).

1. 2 Research Motivation

Despite the successful performance of Integral Abutment Bridges, the literature indicates
that there are primarily three geotechnical uncertainties in their inherent nature
regarding their post-construction, in-service problems. It appears that the first one is
relative movement between the bridge abutments and adjacent retained soil caused by

the result of natural, seasonal thermal variations. The second one results from

2



interaction phenomena occurring in the pile-soil system between vertical piles beneath
the abutment wall and soil adjacent to them. The last one is the void created underneath

approach slabs by the settled soil. (Horvath, 2000; Faraji et al., 2001)

The motivation for this research has been unsurprisingly generated from a trial to tackle three
geotechnical uncertainties enumerated above in Integral Abutment Bridges. The leading

motive for this research can be described as follows.

The investigation of geotechnical uncertainties:
This research is a more soil-oriented task congruous to be solved by geotechnical researchers
because the major causes in post-construction, in-service problems for Integral Abutment

Bridges come down to geotechnical issues.

The multidisciplinary study:
This study is a worthwhile attempt since it should be performed based on the key concepts
and theories that civil engineers should know in both geotechnical and structural engineering

branches.

The appropriateness of a new and creative contribution to knowledge:

This work is naturally considered as a fresh and contributive activity in terms of the
development of knowledge due to evaluate and validate together with recommendations of
several states in the USA over the suitability of some Ontario’s recommendations through
the original modelling of Palladium Drive Integral Abutment Bridge in Ontario.
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1. 3 Research Scope and Objectives

The goal of this research is to evaluate and validate together with corresponding guidelines of
several states in the USA over the suitability of the limit of the abutment height in Ontario’s
recommendations to the design for Integral Abutment Bridges by a parametric study through
a 3D finite element numerical modelling.
(1) Comparisons to Ontario’s recommendations and those of several states in USA

- The limit of the abutment height and wingwall length

- The limit of bridge length and skew
(2) Approach in multidisciplinary study

- Including approach in structural engineering

- Including approach in geotechnical engineering

(3) Modelling including 3m, 4m, 5m, 6m, 7m, 8m-Tall Abutment Bridges

Including effects of the abutment height on the girder stress

Including effects of the abutment height on the abutment stress

Including effects of abutment height on the pile bending moment

Including effects of the abutment height on the pile stress

Including effects of the abutment height on the pile displacement
(4) Effects of the pile orientation (weak axis and strong axis)

(5) Effects of the soil stiffness (sand 1, sand 2, clay 1 and clay 2)

(6) Three dimensional finite element numerical modeling

(7) Constructing graphical analysis

The finite element code of MIDAS CIVIL (2013) was used in this study for the 3D numerical

modeling.



1. 4 Thesis Organization

This thesis is divided into five chapters including this introductory one.

Chapter 2 explores the primary concepts and theories, and the previous works by accredited
scholars and researchers through literature review.

Chapter 3 defines geometry data, material properties, limitations and assumptions for bridge
analysis

Chapter 4 presents and reviews the results of the parametric study.

Chapter 5 creates conclusions and recommendations for future research.



Chapter 2 Literature Review

2.1 Introduction

This chapter explores the primary concepts and theories, and the previous works by accredited
scholars and researchers regarding this research. The reason for doing so, as aforementioned
in Section 1.2, is that the study should be implemented based on the key concepts and theories
in both geotechnical and structural engineering branches. Therefore, a clear understanding on
related knowledge in this multidisciplinary approach should be preceded in order to be a

thorough, exhaustive, and in-depth work before full-fledged discussions are performed.

2.2 Integral Abutment Bridges (1ABs)

Figure 2.1 shows the structural elements of an integral abutment bridge including the bridge
system consisting of continuous deck-type superstructure, abutment, pile foundation, and the
approach system. The basic concept of integral abutment bridges is the use of integral stub-

type abutments supported on single rows of vertically driven flexible piles.

Bridge system

Approach system

Pavement Approach slab Superstructure Approach slab Pavemeni
L  § 1 L}
¢ L1
Sleeper
Slecper slab
skab Backfill Backfill
Approach slibs and sheeper

slabs are optional elements

Figure 2.1: Simplified geometry of an integral abutment bridge (Arsoy, 2000)
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2.3 The Problems of Integral Abutment Bridges

There are a number of limitations in the design of Integral Abutment Bridges owing to two
main problems. Although the IAB concept has confirmed to be economical and technically
successful in terms of eliminating expansion joint problems, it is not free from problems.
Bridges are susceptible due to a complex soil-structure interaction mechanism involving
relative movement between the bridge abutments and the backfill, and the piles and adjacent
soil. One of the two major problems observed with 1ABs is the development of lateral earth
pressures against the abutments. The other is the void development under approach slabs.

(Horvath, 2000).

2.4 Soil-Structure Interaction

Soil-Structure Interaction can be divided into soil-abutment interaction and soil-pile
interaction. Kim (2009) argues that the movement of the back-wall by expansion of the
superstructure is resisted by the back-fill behind the abutment and the soil around piles. The
soil imposes a compressive load on the backwall and abutment, resisting its displacement.
The passive pressure on the structure significantly increases by its displacement. A change in
backfill stiffness does not significantly affect IAB response. (Kim. 2009)

The lateral movement of piles is significantly affected by the soil stiffness around the piles.
The stiffness of the supporting soil depends on the soil type. A reduction of soil stiffness
causes an increase in horizontal displacement. Maximum horizontal displacement varies
significantly when the pile orientation is changed. Therefore, the piles are often installed with
their weak axis of bending parallel to the bridge centerline. (Arockiasamy et al. 2004;

Wasserman, 2007)



2.5 Temperature Effects

A change in temperature causes a material to change in length. This fundamental property of
materials is responsible for expansion and contraction of bridge superstructures. As the
temperature increases, the bridge expands. As the temperature cools down, the bridge will
contract to shorter. In conventional bridges, expansion joints exist between the superstructure
and the abutment to accommodate these displacements. On the contrary, in integral abutment
bridges, the expansion joints are eliminated and the superstructure is allowed to freely
displace the bridge abutments. In this way, the pile and the approach fill are subjected to
lateral loading and unloading due to the abutment displacements. The properties of the
structure materials substantially affect the bridge responses to temperature effects. The bridge
responses to the temperature loads are governed by many factors, such as types of soil
adjacent to abutment, abutment displacements including translations and rotations, piles types
and arrangements, and so on (Metzger, 1995; Bettinger, 2001; Arsoy et al., 2004; Shah, 2007,

Shehu, 2009).

2.6 Nonlinear Analysis of Integral Bridges: Finite-Element Model (Faraji et
al., 2001)

Falaji et al. (2001) illuminate several benefits of Integral abutment bridges (IABs), which are
cost reduction, decreased corrosion and degradation, better maintenance, and enhanced
capacity to seismic loading. However, the authors highlight the reaction of the soil-abutment
system and soil-foundation piles as a largest uncertainty. In order to examine that issue, they
created a full three dimensional finite-element model of IABs with three spans. They
represented that the nonlinear soil response adjoining with abutments and piles is symbolized

into the spring system behind abutments and next to supporting pile.
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Figure 22: Deformed Shape of FE Mesh after Thermal Loadiing (Deflections Exaggerated), (Faraji etal., 2001)

As shown in Figure 2.2, they found that one of the most significant factors affecting the
overall bridge behavior is the level of soil compaction behind the abutment wall. Thus, they

recommended that non-compaction back system is necessary in IAB design.

2.7 Performance of Abutment-Backfill System under Thermal Variations IN
INTEGRAL Bridges Built on Clay (Dicleli & Albhaisi, 2004)

In their study (2004), they indicate their interests for the maximum length limits and an
extremely comprehensive abutment-backfill system. As expressed in Figure 2.3, the authors
studied the performance of the abutment—backfill system under thermal variations through
modeling of a six span slab-on-steel-girder integral bridge. They describe palpably and tangibly
over the stiffness of the clay, widely using of stub abutments (less than 1.0 m below the deck soffit)
in North America, the orientation of the piles supporting the abutment, and the connecting method
between the abutment and the pile head.

In their study, they developed design guidelines to determine the maximum forces in integral

bridge abutments as a function of the displacements by thermal variations.



Continuous Deck

Integral
Abutment T
H-Pile Girder

Figure 2.3: Six span slal-on-steel-girder integral bridge used in their study (Dicleli & Albhaisi, 2004)

The main findings drawn from their study are as follows:

The stiffness of the clay substantially influences on the magnitude of the internal forces in
the abutment, which is required to decrease for improving its capacity.

Stub abutments are intensely required in integral bridges due to control the maximum
length limit of integral bridges.

Non-compacted backfill system is strongly recommended in the design of Integrated
Abutment Bridges.

The orientation of the piles supporting the abutment should be installed about their weak
axis of bending to secure additional capacity against the flexural forces.

The application of a pin joint between the abutment and the pile head has the validity
because of the reduction of the flexural demand on the abutment.

The variations in the abutment thickness within the dimensional limits (1-1.5 m), have

only a insignificant effect on the distribution and intensity of the backfill pressure.

In conclusion, this paper is considerably trustworthy for the further research since they

provide nonlinear modeling procedure in detail.
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Chapter 3 Numerical Modeling of Integral Abutment Bridge

3.1 Introduction

The bridge site is located along Palladium Drive Interchange over Hwy 417 in the western
suburb of Kanata, in Ottawa, Ontario as shown in Figure 3.1. The existing bridge, a two span

prestressed concrete girder bridge was built in 1993. Figures 3.1 and 3.2 show two satellite

views of Palladium Drive IAB with the length (73 m) and the width (20.4 m) (MTO, 1996).

Figure 3.2: Aerial View of Palladium Drive IAB (taken from Bing Maps)
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3.2 Limitations and Assumptions

Figure 3.3: Elevation View of Palladium Drive IAB (Husain & Bagnariol, 2000)
Palladium Drive IAB as shown in Figure 3.3 was chosen for this purpose due to a
symmetrical integral bridge with no skew to save calculation time and to effectively reflect
the abutment-backfill interaction effects under thermal variations by seasonal and daily
temperature changes. This pre-stressed concrete girder bridge has the bridge deck to be 73 m
long and 20.4 m wide with each span measuring 36.5 m, and each abutment supported by

steel H-shaped piles according to the Ministry of Transportation of Ontario (MTO, 1996) .

For effective accomplishments of the research goal and the parametric study, the foundation
soil is assumed to be either clay or sand. Accordingly, two different sand and clay stiffnesses
are included in the presented study. For medium-stiff and stiff clay, corresponding values of
the undrained shear strength (C,) 40, 80 kPa and the soil strain at 50% of ultimate soil
resistance (esp) 0.01, 0.006, and for medium dense and dense sand, corresponding values of
the coefficient of horizontal subgrade reaction, k, 6000, 12000 (kN/m®) which were adopted

from two references (Bowles, 1996; Reese et al, 2006), were used in this parametric study.
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Furthermore, for the model with various abutment heights, the abutments and corresponding
wingwalls are modified in 3 m, 4 m, 5 m, 6 m, 7m, and 8 m high, respectively. Thus, each

abutment is supported on a single row of 15 H-shaped piles, as shown in Figures 3.4 and 3.5.

Correspondingly, the length of H-shaped piles is revised in 17 m, 16 m, 15 m, 14 m, 13m, and
12 m long, respectively except that the top of the H-shaped piles was embedded 0.6 m into the
abutment wall, according to variations of the abutment heights enumerated above. The water

table is assumed to be at 1.1 m below its sub-road surface (- 6.9 m from the top of abutments).

3.3 Two Dimensional Geometry for 3D Modeling of Palladium Drive I1AB
| \

|
Road Deck
204m ‘ | [ 204m
Abutment Wall Abutment
_— wu\
Wing Wall Wlwws\‘\
| | [
A. Plan View
730m
36.5m ~— Parapet 36.5m |
50m 80m Cw/“/m 55m \ PC Girder |5.Cl'r|
Subroad Surface Pler i
200m f i !
| f——t—qﬂ:ﬂ m
150m \leg 131m HP.,/ 150m
10.
" Pile @1.0m 131m

B. Elevation View

Figure 3.4: Plan and Elevation Views of Palladium Drive I1AB
Figure 3.4 shows plan and elevation views of Palladium Drive IAB with 5-m-tall abutments
and 5.5 m vertical clearance. The length of PC piles supporting four piers is 10.5m except that

the top of the PC piles was embedded 0.4 m into the PC pile cap with 0.8 m thick.
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A. Plan View for H-shaped Piles
204 m——mMmM
17.85m———
8 Girders @2.55m = 17.85m
— 5.
4 Piers @g?n& 15.3m arapet
Pler Cap—__ %T —_—PC Girder
L O O T ] ]
55m N 55m

'\ PH SIlfa“

I A [1?‘:1 |
26m r8Ffm 26m
' !
13.1m
10.5m
Pile @1.02m

B. Section View for Center Piers

Figure 3.5: Plan View for H-shaped Piles and Section View for Center Piers

Figure 3.5.A indicates 15 H-shaped piles with spacing 1.275m embedded into the bottom of
each abutment in weak axial direction. Figure 3.6 expresses eight pre-stressed concrete
girders, its rigid-connected abutment, and its road deck including four traffic lanes with each

3.6 m wide. As shown in Figures 3.5 and 3.6, the bridge superstructure is a typical slab-on-

girder, with a 225 mm reinforced concrete deck that is assumed fully composite with eight
AASHTO (American Association of State Highway and Transportation Officials) Type IV
pre-stressed concrete girders. This bridge model was created in the bridge finite element

analysis software MIDAS CIVIL (2013).
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Figure 3.6: Views for PC Girders and Road Deck of the bridge (taken from Google Maps)
3.4 Configuration of Main Elements of Palladium Drive IAB Model
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AASHTO Type IV (Source: NCDOT Website) Composite girder

Figure 3.7: AASHTO Type IV PC Girder and Deck Slab

As shown in Figures 3.7 and 3.8, AASHTO Type IV pre-stressed concrete girder has 1371mm (4

feet 6 inch) deep, 508 mm (1 foot 8 inch) top wide, and 660.4 mm (2 feet 2 inch) bottom wide.
This girder and slab create composite action between them. The deck slab in the elements
exhibiting composite action has 0.225 m thick and 2.55m wide. Figure 3.9 displays that the

substructure in each side consists of 15 steel H-shaped piles, an abutment, and two wingwalls.
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Figure 3.8: Built-In Database for AASHTO Type IV PC Girder in MIDAS CIVIL
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Steel H-shaed Pile Abutment Wing Wall Sub-Structure

(HP 310*125) (Thickness: 1 m) (Thickness: 0.45 m) in Each Side

Figure 3.9: Configuration of 15 Steel H-shaped piles, an Abutment, and two Wingwalls
3.5 Material Properties

The material properties for soils used in this study were adopted from two References
(Bowles, 1996; Reese et al, 2006). Concrete components were modeled using homogeneous,
isotropic elements and are assumed linear-elastic. The non-linear behavior of the steel pile
was assumed to be elastic perfectly plastic. The material properties used in this study are

shown in Tables 3.1 and 3.2.

In Table 3.1, notations are as follows:

Yunsat (Unsaturated unit weight), ysa: (Saturated unit weight), v, (Water unit weight),

v' (Submerged unit weight), ¢' (Effective stress friction angle), K, (Coefficient of earth
pressure at rest), e (Void ratio in soils), Gs (Specific gravity of soil solids), yq (Dry unit
weight), eso (Soil strain at 50% of ultimate soil resistance), C, (Undrained shear strength), and

k (Coefficient of horizontal subgrade reaction).

17



Table 3.1: Material Properties for Soils

Sand 1 Sand 2 Clay 1 Clay 2
Soil Type
Medium-Dense Dense Medium-stiff Stiff
Yunsat (KN/m?) 19 20 18 19
Ysar (KN/MP) 20 21 19 20
Y (KN/MY) 9.81 9.81 9.81 9.81
' (kKN/m°) 10.19 11.19 9.19 10.19
¢' (deg) 32 38
Ko 0.47 0.38 0.63 0.61
€5 0.01 0.006
C. (kPa) 40 80
k (KN/m?) 6,000 12,000 4,500 9,500
Table 3.2: Material Properties for Structure
e Strengthﬁ 2 Young's |\/|06dU|US2 Pissrs Rl Cogfficient of the romal eXparsion
f'e, (MPa=10"Nin) | E, (MPa=10" Nim’) 0, (1/°C)
PC Girder 50 3.02E+04 0.167 1.00E-05
Diaphragm 50 3.02E+04 0.167 1.00E-05
Deck Slab 40 2.T8E+04 0.167 1.00E-05
Adutment & Wing wall 40 278E+04 0.167 1.00E-05
Piers & Pier Cap 50 3.02E+04 0.167 1.00E-05
PC Piles & Cap, Footing 50 3.02E+04 0.167 1.00E-05
Steel H-shaped Piles 400* 2.00E+05 03 1.20E-05

* Minimum Yield Strength
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3.6 Loads

3.6.1 Ambient Temperature Load
This study utilizes the AASHTO LRFD (2012) recommended design temperature range of
0°F to 80°F (-18°C to 27°C) for concrete structures in cold climates as shown Table 3.3. Each
reference temperature of 5 °C (Summer) and 0 °C (Winter) was assumed. The assumed
reference temperature translates to a temperature rise (expansion) of + 22 degree and -18
degree fall (contraction).

Table 3.3: A Temperature Ranges (AASHTO LRFD, 2012)

Climate Steel or Aluminum Concrete Wood
Moderate 0° to 120°F 10° to 80°F 10° to 75°F
Cold -30° to 120°F 0° to 80°F 0° to 75°F

3.6.2 Temperature Gradient
The superstructure temperature gradient contributes considerably to superstructure stresses in

IABs and is included in this study by using AASHTO LRFD (2012) as shown in Figure 3.10.

1
[ P T
A |
| — Steel Girder o o S 5
Depth of l : ’ gl;:.;'ctures Zone T, ( F) C Tz( F) C
hicture : 1 94 12.2 14 -10
T I 2 46 7.8 12 -11.1
‘I } 3 41 5 11 -11.7
T 4 38 3.3 9 -12.8

Figure 3.10: Vertical temperature gradient (AASHTO LRFD, 2012)

The vertical temperature gradient in concrete and steel superstructures with concrete decks

was used as a zone 3 considering the interstate border as shown in Figures 3.10 and 3.11.
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Figure 3.11: Solar Radiation Zones for the United States (AASHTO LRFD, 2012)

3.6.3 Earth Pressure

As stated in Chapter 2, passive earth pressure is the biggest as shown Figure 3.12. However,

the earth pressure at rest was applied in this study for the normal condition.

Earth pressure, oy

b
Passive pressure, rrrj -————————— —
|
|
|
|
|
Al-Tesl PIESSUre, o), I
I
|
— = ——— —»| Active pressure, o I
© Wallik |, AL, AL, . Wall tilt
7 H *

Figure 3.12: Variation of the magnitude of lateral earth pressure with wall tilt (Das, 2010)

The coefficient of earth pressure at rest Kg is normally determined by the following empirical
relationship (Jaky, 1944).

Ko = 1—sin ¢ (3-1)
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3.6.4 Parapet Load
The elements of parapet were not developed in the model. Accordingly, as shown Figure 3.13,

the parapet load is applied on both longitudinal edge nodes of the bridge deck as 10 KN/m.

.=y

Figure 3.13: Parapet load (applied 10 kN/m)

3.6.5 Static Combination Load

In this study, to simulate real conditions in 1ABs, the static combination load was used as follows.

Load combination 1 (LCB 1) creates expansion. LCB 1 includes the following:

Self-Weight + Parapet Load + Earth Pressure at rest + Temperature Load (positive) + Temperature Gradient

Load combination 2 (LCB 2) creates contraction. LCB 2 includes the following:

Self-Weight + Parapet Load + Earth Pressure at rest + Temperature Load (negative) + Temperature Gradient
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3.7 Compared Standards to Ontario’s recommendations for 1ABs

Tables 3.4 and 3.5 contrast the limit of the abutment height, wingwall length, span length, and skew

in Canada and USA. Ontario’s recommendations for integral bridges are similar to those used by
many US states in in terms of span length and skew whereas Ontario’s are one and a half times
more than those of US states with regard to the abutment height. Thus, this study evaluates six types

of abutments with a height (3m, 4m, 5m, 6m, 7m, and 8m) for comparison.

Table 3.4: The limit of Abutment Height in Canada and USA
(Modified from Conboy & Stoothoff, 2005)

Provinces or States Abutment Height Wingwall Length Note
Meters (feet) Meters (feet)
Connecticut 2.44 (8) -

Maine 3.66 (12) 3.05 (10) Exclusion from
Massachusetts 3.96 (13) 3.05 (10) application if used
New Hampshire - - in conjunction with

Vermont 3.96 (13) 3.05 (10) the retained soil system

Ontario 6.0 (19.7) 7(23.0)

Table 3.5: The limit of Span Length and Skew in Canada and USA

(Modified from Conboy & Stoothoff, 2005)

Span Length
Provinces or States Skew
Steel Concrete Angle (Degrees)
Meters (feet) Meters (feet)
Connecticut - - 20
Maine 70.0 (200) 100.6 (330) 30
Massachusetts 100.6 (330) 179.8 (590) 30
New Hampshire 91.4 (300) 182.9 (600) -
Vermont 100.6 (330) 179.8 (590) 20
Ontario 100.0 (328) 100.0 (328) 20
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3.8 Dimensions, Spacing, and Complete Images Figuration for Bridge Components

Figures 3.14 through 3.17 display dimensions, spacing, and complete images for bridge

components used in this study. Further details for AASHTO Type IV pre-stressed concrete

girder shown in Figure 3.14 are expressed in Figure 3.8.

Name Configureration Dimensions and Spacing

Height: 1.371 m

Width (Top): 0.508 m
Width (Bottom): 0.6604 m
PC Girder Spacing (Trav.): 8@1.275 m
Trav.: Traverse Direction

(Refer to Figure 3.8 for further details)

Height: 1.371 m
Width (Top): 1.0 m
Width (Bottom): 1.0 m
Spacing: 0 m

(Only one on Pier Cap)

Diaphragm

Thickness: 0.225 m
Width (Long.): 73.0 m
Width (Trav.): 20.4 m
Deck Slab
Long.: Longitudinal Direction
Trav.: Traverse Direction

Figure 3.14: Dimensions and Spacing for Bridge Components (A)
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Name Configureration Dimensions and Spacing

Height: 5.0 m (For 5m-Tall Abutment)
Width (Trav.): 20.4 m

Thickness: 1.0 m

Abutment Spacing (Long.): 2@73.0 m (Center to Center)
Long.: Longitudinal Direction

Trav.: Traverse Direction

Height (Left)*: 3.0 m (For 5m-Tall Abutment)
Height: (Right)*: 5.0 m (For 5m-Tall Abutment)
Width (Top): 5.0 m

Width (Bottom): 1.5 m

Thickness: 0.45 m

Spacing: 19.95 mat Each Abutment

Wingwall (Center to Center, Symmetrical)

*: Variable depending on Abutment Hight,
Abutment Height 3m: 1 m (Left), 3 m (Right)
Abutment Height 4m: 2 m (Left), 4 m (Right)
Abutment Height 6m: 4 m (Left), 6 m (Right)
Abutment Height 7m: 5 m (Left), 7 m (Right)
Abutment Height 8m: 6 m (Left), 8 m (Right)

Height: 5.129 m
Pier Diameter: 1.0 m
Spacing: 4@2.55 m [

Height: 1.4 m (1.2 m at tapered ends)
Width (Top): 1.2 m

Width (Bottom): 1.2 m

Length: 20.4 m

Spacing: 0 m

(Only one on Piers)

Pier Cap

Figure 3.15: Dimensions and Spacing for Bridge Components (B)
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Name

Configureration

Dimensions and Spacing

PC Piles

Length: 10.5 m (Except Embedded 0.4 m into the Pile

Cap)
Diameter: 0.45 m

Spacing (Long.): 5@1.0 m
Spacing (Trav.): 20@1.02 m

Long.: Longitudinal Direction
Trav.: Traverse Direction

PC Pile Cap

Thickness: 0.8 m
Width (Long.): 5.2 m

Width (Trav.): 20.58 m

Long.: Longitudinal Direction
Trav.: Traverse Direction

Footing

~

Thickness: 0.7 m
Width (Long.): 5.0 m

Width (Trav.): 20.38 m

Long.: Longitudinal Direction
Trav.: Traverse Direction

Steel H-shaped
Piles

]

Height: 0.312 m

Width (Top): 0.312 m

Width (Bottom): 0.312 m

Thickness (Web): 0.0174 m

Thickness (Flange): 0.0174 m

Length*: 15.0 m (For 5 m-Tall Abutment,
Except Embedded 0.6 m)

Spacing (Trav.): 15@1.275 m

(Symmetrical at Each Abutment)

Trav.: Traverse Direction

* : Variable depending on Abutment Hight,

Abutment Height 3m:
Abutment Height 4m:
Abutment Height 6m:
Abutment Height 7m:
Abutment Height 8m:

17 m (Except Embedded 0.6 m)
16 m (Except Embedded 0.6 m)
14 m (Except Embedded 0.6 m)
13 m (Except Embedded 0.6 m)
12 m (Except Embedded 0.6 m)

Figure 3.16: Dimensions and Spacing for Bridge Components (C)




A. Plan View of 5 m-Tall Abutment Bridge Model

B. Front Elevation View of 5 m-Tall Abutment Bridge Model

FINREIRRE DN ...l

i |
HH
i
| |

C. Side Elevation View and Perspective View of 5 m-Tall Abutment Bridge Model

Figure 3.17: Panorama of 5 m-Tall Abutment Bridge Model
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3.9 Variations of Abutment Height in Palladium Drive IAB Model

Figures 3.18 and 3.19 show the models with 3 m, 4 m, 5 m, 6 m, 7m, and 8 m-tall abutment,

respectively. As described in Figure 3.15, wingwalls were modified in high according to

abutment height, respectively.

Abutment Height Isometric View

3 m-Tall Abutment

(H pile: 17 m long)

4 m-Tall Abutment

(H pile: 16 mlong)

5 m-Tall Abutment

(H pile: 15 m long)

Figure 3.18: Completed Geometry of 3 m, 4m, 5m Tall Models
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Abutment Height Isometric View

6 m-Tall Abutment

(H pile: 14 mlong)

7 m-Tall Abutment

(H pile: 13 mlong)

8 m-Tall Abutment

(H pile: 12 mlong)

Figure 3.19: Completed Geometry of 6 m, 7m, 8m Tall Models
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Chapter 4 Parametric Study Results and Reviews

4.1 Introduction
This chapter lays out the results from the parametric study performed using the 3D numerical
models mentioned in Chapter 3. The results of the parametric study are illustrated colorfully
to exactly represent to the prediction of IAB behavior. Seven important matters are as in the
following sections: (1) Girder Stress, (2) Abutment Stress, (3) Pile Moment, (4) Pile Stress,

and (5) Pile Displacement, (6) Soil-Abutment Interaction, and (7) Soil-Pile Interaction.

4.2 Girder Stress

Figures 4.1 and 4.2, show the maximum combined girder stress induced by expansion or

contraction cases.

—Components
Part |Total |
(" Sax ( Ssy ( Ssz
(" Sby (" Sbz (& Combined
Combined(Axial +Moment)
¢ Maximum | 1 t4z o
 1(y,+2) ——
" 2(4y,+2)
" 3(+y,2)
" 4(-y,-2)

i: -1.4456e+004

Girder Stress (Weak-axis)

LCB1 (Expansion Cases)

-14460 KN/m?

Figure 4.1: Girder Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
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In Figure 4.1,
where Sax: Axial stress in the element's local x-direction (Local x-direction: element’s axial direction)

Ssy: Shear stress in the element's local y-direction

Ssz: Shear stress in the element’s local z-direction

Sby: Normal stress resulting from the moment (Mz) about the element's local z-axis

Sbz: Normal stress resulting from the moment (My) about the element's local y-axis

Combined: Combined stress (Combined stress: Sax + Shy + Shz)

Maximum (Axial+Moment): Combined stress representing the absolute largest among
combined stresses at 1, 2, 3 and 4 (the location 1, 2, 3 and 4
shown in the Section Shape of the Section Data window)

1(-y,*+z): combined stress at 1

2(+y,+2): combined stress at 2

3(+y,-z): combined stress at 3

4(-y,-z): combined stress at 4

The noticeable difference between expansion and contraction cases is the magnitude of
compressive stress generated at both ends of bridge girder. Expansion creates higher compressive
(-) stress at both ends of girder than contraction does. On the other hand, contraction produces

higher tensile (+) stress in the middle of the span than expansion does in Figures 4.1 and 4.2.

K(: .1.6411e+004

Girder Stress (Weak-axis)

LCB2 (Contraction Cases)

-16410 kKN/m?

Figure 4.2: Girder Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)
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Figure 4.2 expresses that the higher compressive stress in contraction cases occurs on the piers

compared with expansion cases. Figures 4.3 through 4.6 and Tables 4.1 through 4.4 show the

maximum combined girder stress with regard to: (1) abutment height; (2) soil types; (3) pile
orientation, for both expansion and contraction cases.
The abutment height has a negative influence on the maximum combined girder stress, as

discovered from Figures 4.3 and 4.4 and Tables 4.1 and 4.2. As the abutment height increases

in strong axial direction there is up to a 3 % reduction (6m-Tall Abutment: 97 %) in the
maximum combined girder stress by expansion cases whereas the maximum combined girder
stress in strong axial direction under contraction cases shows up to an 10.1 % attenuation

along with the rise of the abutment height (Tables 4.1a and 4.2a).

In weak axial direction, as the abutment height increases there is up to a 4.6 % reduction (6m-
Tall Abutment: 95.4 %) in the maximum combined girder stress by expansion cases whereas
the maximum combined girder stress with weak axial direction under contraction cases shows

up to an 11 % drop along with the rise of the abutment height (Tables 4.1a and 4.2a).

In addition, pile orientation has a bit of influence on the maximum combined girder stress

between 3m and 6m due to the difference of weak and strong axis bending.

Table 4.1: Values of Girder Stress by abutment height & pile orientation in LCB 1 (Expansion)

Girder Stress: LCB1 (Expansion Cases) Unit: kN/m? (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 1.487E+04 1.513E+04
4 m 1.451E+04 1.462E+04
5m 1.441E+04 1.446E+04
6m 1.442E+04 1.443E+04
7m 1.445E+04 1.445E+04
8m 1.450E+04 1.449E+04
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Table 4.1a: Reduction Rate in Girder Stress by abutment height & pile orientation in LCB 1 (Expansion)

Reduction Rate in Girder Stress: LCB1 (Expansion Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis

3m 100.0% 100.0%

4 m 97.6%0 96.6%

5m 96.9% 95.6%

6m 97.0% 95.4%

7m 97.2% 95.5%

8m 97.5% 95.8%

Table 4.2: Values of Girder Stress by abutment height & pile orientation in LCB 2 (Contraction)

Girder Stress: LCB2 (Contraction Cases) Unit: kN/m? (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 1.728E+04 1.749E+04
4m 1.674E+04 1.689E+04
5m 1.631E+04 1.641E+04
6m 1.599E+04 1.605E+04
7m 1.573E+04 1.577E+04
8m 1.554E+04 1.556E+04

Table 4.2a: Reduction Rate in Girder Stress by abutment height & pile orientation in LCB 2 (Contraction)

Reduction Rate in Girder Stress: LCB2 (Contraction Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis

3m 100.0% 100.0%

4m 96.9% 96.6%0

5m 94.4% 93.8%

6 m 92.5% 91.8%

7m 91.0% 90.2%

8 m 89.9% 89.0%
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In addition, as exposed in Tables 4.1b and 4.2b, the pile orientation has a bit of influence on

the maximum combined girder stress in both expansion and contraction cases due to the

difference of weak and strong axis bending.

As a change in the pile orientation follows from strong axial direction to weak axial direction,
the maximum combined girder stress slightly increases in expansion cases. However, if the
abutment height exceeds 6 m, the maximum combined girder stress decreases adversely when
an alteration in the pile orientation from strong axial direction to weak axial direction occurs,

as shown in Tables 4.1 and 4.1b. This indicates that a variation in pile orientation has not an

influence on the maximum combined girder stress due to the increase of the self-weight and

stiffness of the abutment if the abutment height surpasses 6 m.

On the other hand, if a change in the pile orientation follows from strong axial direction to
weak axial direction, the maximum combined girder stress slightly increases in contraction
cases. However, as the abutment height increase, the effects of a change in the pile orientation
declines since the increase rate of the maximum combined girder stress decreases by gradual

steps as exposed in Tables 4.2 and 4.2b. As is in the expansion cases, this also shows that a

variation in pile orientation has not an influence on the maximum combined girder stress due

to the increase of the self-weight and stiffness of the abutment if the abutment height rises.

Overall, in both expansion and contraction cases, there is a very distinct difference in terms of

the trend on the maximum combined girder stress.
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The trend on the maximum combined girder stress in expansion cases decrease and then
slightly increases as the abutment height increase while the maximum combined girder stress

in contraction cases steadily decreased when the abutment height rises.

Table 4.1b: Variation Rate in Girder Stress by abutment height & pile orientation in LCB 1 (Expansion)

Variation Rate in Girder Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
am 100.0% 101.7%

4m 100.0% 100.8%

5m 100.0% 100.3%

6m 100.0% 100.1%

7m 100.0% 100.0%

8m 100.0% 99.9%

Table 4.2b: Variation Rate in Girder Stress by abutment height & pile orientation in LCB 2 (Contraction)

Variation Rate in Girder Stress: LCB2 (Contraction Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis

am 100.0% 101.2%

4m 100.0% 100.9%

5m 100.0% 100.6%

6m 100.0% 100.4%

7m 100.0% 100.3%

8m 100.0% 100.1%
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Figure 4.3: Girder Stress by abutment height and pile orientation in LCB 1 (Expansion)
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Figure 4.4: Girder Stress by abutment height and pile orientation in LCB 2 (Contraction)
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The maximum combined girder stress obtained by soil types displays a similar trend for expansion

and contraction cases as shown in Figures 4.5 and 4.6 , and Tables 4.3 through 4.4a.

As exposed in Tables 4.3 and 4.3a, when the soil stiffness from sand 1 to sand 2 increases in the

strong axial direction, there is a 1.2 % reduction in the maximum combined girder stress by
expansion cases. Similarly, the maximum combined girder stress in the weak axial direction is
reduced by 1.4 % with the rise of the soil stiffness from sand 1 to sand 2 under expansion cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction
there is a 3.0 % reduction in the maximum combined girder stress by expansion cases. In the same

way, the maximum combined girder stress in the weak axial direction is reduced by 3.8 % with the

rise of the soil stiffness from clay 1 to clay 2 under expansion cases as uncovered in Table 4.3a.

Table 4.3: Values of Girder Stress by soil types & pile orientation in LCB 1 (Expansion)

Girder Stress: LCB1 (Expansion Cases) Unit: KN/m? (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 1.4410E+04 1.4460E+04
Sand 2 1.4240E+04 1.4260E+04
Clay 1 1.5110E+04 1.5380E+04
Clay 2 1.4650E+04 1.4800E+04

Table 4.3a: Reduction Rate in Girder Stress by soil types & pile orientation in LCB 1 (Expansion)

Reduction Rate in Girder Stress: LCB1 (Expansion Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 98.8% 98.6%
Clay 1 100.0% 100.0%
Clay 2 97.0% 96.2%
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As shown in Tables 4.4 and 4.4a, when the soil stiffness from sand 1 to sand 2 increases in the

strong axial direction, there is a 1.5 % reduction in the maximum combined girder stress by
contraction cases. Similarly, the maximum combined girder stress in the weak axial direction is
reduced by 1.6 % with the rise of the soil stiffness from sand 1 to sand 2 under contraction cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction
there is a 2.1 % reduction in the maximum combined girder stress by contraction cases. In the same

way, the maximum combined girder stress in the weak axial direction is reduced by 2.5 % with the

rise of the soil stiffness from clay 1 to clay 2 under contraction cases as uncovered in Table 4.4a.

Table 4.4: Values of Girder Stress by soil types & pile orientation in LCB 2 (Contraction)

Girder Stress: LCB2 (Contraction Cases) Unit: kN/m? (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 1.6310E+04 1.6410E+04
Sand 2 1.6070E+04 1.6150E+04
Clay 1 1.6770E+04 1.7020E+04
Clay 2 1.6420E+04 1.6600E+04

Table 4.4a: Reduction Rate in Girder Stress by soil types & pile orientation in LCB 2 (Contraction)

Reduction Rate in Girder Stress: LCB2 (Contraction Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 98.5% 98.4%
Clay 1 100.0% 100.0%
Clay 2 97.9% 97.5%
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In addition, the pile orientation has a bit of influence on the maximum combined girder stress
in both expansion and contraction cases as a change in the pile orientation follows from

strong axial direction to weak axial direction in soils of all types.

As shown in Tables 4.3b and 4.4b, the maximum combined girder stress has a similar trend

for expansion and contraction cases. However, the maximum combined girder stress in the

abutment with clayed soils is affected more than in that with sandy soils.

Table 4.3b: Increase Rate in Girder Stress by soil types & pile orientation in LCB 1 (Expansion)

Increase Rate in Girder Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.3%

Sand 2 100.0% 100.1%

Clay 1 100.0% 101.8%

Clay 2 100.0% 101.0%

Table 4.4b: Increase Rate in Girder Stress by soil types & pile orientation in LCB 2 (Contraction)

Increase Rate in Girder Stress: LCB2 (Contraction Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.6%
Sand 2 100.0% 100.5%
Clay 1 100.0% 101.5%
Clay 2 100.0% 101.1%
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Figure 4.5: Girder Stress by soil types and pile orientation in LCB 1 (Expansion)
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Figure 4.6: Girder Stress by soil types and pile orientation in LCB 2 (Contraction)

39



4.3 Abutment Stress

Figure 4.7 expresses the maximum principal stress on the top of abutment induced by
expansion. The noticeable difference between expansion and contraction cases is detected in

the rotated abutment as shown in Figures 4.7 and 4.12. In this sense, the manner of abutment

movement is predominantly rotation about their bottom although there is a horizontal

dislocation as well.
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Figure 4.7: Abutment Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)

Figures 4.8 through 4.11 represent cutting line diagrams for the distribution of the maximum

principal stress on the top of abutment induced by expansion. Figure 4.9 shows the distribution of
abutment stress at center vertically cutting line from Figure 4.8. As exposed in_Figure 4.10, the
diagram of abutment stress at top horizontally cutting line is symmetrical within the width (20.4 m)
of abutment. Similarly, the distribution of the maximum principal stress weakened at the bottom of

abutment has perfect bilateral symmetry as shown in Figure 4.11.
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Figure 4.8: Distribution and Cutting Lines of Abutment Stress in 5Sm-Tall Abutment by LCB 1 (Expansion)
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Figure 4.9: Diagram of Abutment Stress at Center Vertically Cutting Line from Figure 4.8
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Figure 4.10: Diagram of Abutment Stress at Top Horizontally Cutting Line from Figure 4.8
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The maximum principal stress are greatest at the top of each abutment as predicted.

Figures 4.7 and 4.12 express a symmetrical stress of both-side concrete abutments at the

abutment-girder connection in both expansion and contraction cases. The present study

evaluated Sig-Max (Maximum Principal Stress) in the concrete region.
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Figures 4.13 through 4.16 also represent cutting line diagrams for the distribution of the maximum

principal stress on the top of abutment induced by contraction. Figure 4.14 shows the distribution of
abutment stress at center vertically cutting line from Figure 4.13. As exposed in_Figure 4.15, the
diagram of abutment stress at top horizontally cutting line is symmetrical within the width (20.4 m)
of abutment. Similarly, the distribution of the maximum principal stress weakened at the bottom of
abutment has perfect bilateral symmetry as shown in Figure 4.16.

As exposed in_Figures 4.15 and 4.16, the maximum principal stress in abutment is biggest at both

sides of abutment. This indicates that the maximum principal stress in abutment is affected

substantially by the girder.
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Figure4.13: Distribution and Cutting Lines of Abutment Stressin 5m-Tall Abutment by LCB 2 (Contraction)
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Figures 4.17 through 4.20 show the concrete stress at the abutment-girder connection with

regard to: (1) abutment height, (2) soil types, and (3) pile orientation, for both expansion
and contraction cases.
The abutment stress increases meaningfully as the abutment height increases as shown

Figures 4.16 and 4.17, contrary to the case of girder stress.

The abutment height has a positive influence on the abutment stress, as discovered from

Figures 4.16 and 4.17 and Tables 4.5a and 4.6a. As the abutment height increases in strong

axial direction there is up to a 6.1 % increase (5m-Tall Abutment: 106.1 %) in the maximum
principal abutment stress by expansion cases whereas the maximum principal abutment stress
in strong axial direction under contraction cases shows up to an 83.4 % increase along with

the rise of the abutment height (Tables 4.5a and 4.6a).

In weak axial direction, there is up to a 11.3 % increase (5m and 6m-Tall Abutment: 111.3 %) in the
maximum principal abutment stress by expansion cases when the abutment height increases. On the
other hand, the maximum principal abutment stress with weak axial direction under contraction

cases shows up to an 103 % surge along with the rise of the abutment height (Tables 4.5a and 4.6a).

Table 4.5: Values of Abutment Stress by abutment height & pile orientation in LCB 1 (Expansion)

Abutment Stress: LCB1 (Expansion Cases) Unit: KN/m? (Absolute Value)

Abutment Height Strong-axis Weak-axis
3m 1.583E+04 1.495E+04
4 m 1.666E+04 1.628E+04
5m 1.680E+04 1.664E+04
6m 1.670E+04 1.664E+04
7m 1.651E+04 1.651E+04
8m 1.631E+04 1.633E+04
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Table 4.5a Increase Rate in Abutment Stress by abutment height & pile orientation in LCB 1 (Expansion)

Increase Rate in Abutment Stress: LCB1 (Expansion Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis

3m 100.0% 100.0%
4m 105.2% 108.9%
5m 106.1% 111.3%
6m 105.5% 111.3%
7m 104.3% 110.4%
8m 103.0% 109.2%

Table 4.6: Values of Abutment Stress by abutment height & pile orientation in LCB 2 (Contraction)

Abutment Stress: LCB2 (Contraction Cases) Unit: KN/m? (Absolute Value)

Abutment Height Strong-axis Weak-axis
3m 5.446E+03 4.883E+03
4m 6.928E+03 6.522E+03
5m 8.046E+03 7.782E+03
6m 8.873E+03 8.703E+03
7m 9.498E+03 9.385E+03
8m 9.987E+03 9.911E+03

Table 4.6a: Increase Rate in Abutment Stress by abutment height & pile orientation in LCB 2 (Contraction)

Increase Rate in Abutment Stress: LCB2 (Contraction Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis

3m 100.0% 100.0%
4m 127.2% 133.6%
5m 147.7% 159.4%
6m 162.9% 178.2%
m 174.4% 192.2%
8m 183.4% 203.0%
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In addition, as exposed in Tables 4.5b and 4.6b, the pile orientation has a bit of influence on

the maximum principal abutment stress in both expansion and contraction cases due to the

difference of weak and strong axis bending.

As a change in the pile orientation follows from strong axial direction to weak axial direction,
the maximum principal abutment stress slightly decreases in expansion cases. However, if the
abutment height exceeds 6 m, the maximum principal abutment stress decreases less when an
alteration in the pile orientation from strong axial direction to weak axial direction occurs, as

shown in Tables 4.5 and 4.5b. This indicates that a variation in pile orientation has not an

influence on the maximum principal abutment stress due to the increase of the self-weight and

stiffness of the abutment if the abutment height surpasses 6 m.

On the other hand, if a change in the pile orientation follows from strong axial direction to
weak axial direction, the maximum principal abutment stress more decreases in contraction
cases. However, as the abutment height increase, the effects of a change in the pile orientation
declines since the increase rate of the maximum principal abutment stress decreases by

gradual steps as exposed in Tables 4.6 and 4.6b. As is in the expansion cases, this also shows

that a variation in pile orientation has not an influence on the maximum principal abutment
stress due to the increase of the self-weight and stiffness of the abutment if the abutment

height rises.

Overall, in both expansion and contraction cases, there is a very distinct difference in terms of

the trend on the maximum principal abutment stress.
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The trend on the maximum principal abutment stress in expansion cases shows a decreasing
tendency after increasing. On the other hand, the maximum principal abutment stress in

contraction cases steadily increases when the abutment height rises.

Table 4.5b: Variation Rate in Abutment Stress by abutment height & pile orientation in LCB 1 (Expansion)

Variation Rate in Abutment Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 94.4%
4m 100.0% 97.7%
5m 100.0% 99.0%
6m 100.0% 99.6%
7m 100.0% 100.0%
8m 100.0% 100.1%

Table4.6b: Variation Rate in Abutment Stress by abutment height & pile orientation in LCB 2 (Contraction)

Variation Rate in Abutment Stress: LCB2 (Contraction Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 89.7%
4m 100.0% 94.1%
5m 100.0% 96.7%
6m 100.0% 98.1%
7m 100.0% 98.8%
8m 100.0% 99.2%
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Figure 4. 17: Abutment Stress by abutment height and pile orientation in LCB 1 (Expansion)
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Figure 4.18: Abutment Stress by abutment height and pile orientation in LCB 2 (Contraction)
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The maximum principal abutment stress obtained by soil types displays a similar trend for

expansion and contraction cases as shown in Figures 4.18 and 4.19 , and Tables 4.7 through 4.8b.

As exposed in Tables 4.7 and 4.7a, when the soil stiffness from sand 1 to sand 2 increases in the
strong axial direction, there is a 2.9 % increase in the maximum principal abutment stress by
expansion cases. Similarly, the maximum principal abutment stress in the weak axial direction is
added by 3.5 % with the rise of the soil stiffness from sand 1 to sand 2 under expansion cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial
direction there is an 11.0 % increase in the maximum principal abutment stress by expansion
cases. In the same way, the maximum principal abutment stress in the weak axial direction is
increased by 14.6 % with the rise of the soil stiffness from clay 1 to clay 2 under expansion
cases as uncovered in Table 4.7a.

As shown in Tables 4.8 and 4.8a, when the soil stiffness from sand 1 to sand 2 increases in the

strong axial direction, there is a 1.1 % increase in the maximum principal abutment stress by
contraction cases. Similarly, the maximum principal abutment stress in the weak axial direction is
reduced by 2.2 % with the rise of the soil stiffness from sand 1 to sand 2 under contraction cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial
direction there is an 8.2 % increase in the maximum principal abutment stress by contraction
cases. In the same way, the maximum principal abutment stress in the weak axial direction is
increased by 12.9 % with the rise of the soil stiffness from clay 1 to clay 2 under contraction
cases as uncovered in Table 4.8a.

In addition, the pile orientation has a bit of influence on the maximum principal abutment
stress in both expansion and contraction cases as a change in the pile orientation follows from

strong axial direction to weak axial direction in soils of all types.
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As shown in Tables 4.7b and 4.8b, the maximum principal abutment stress has a similar trend

for expansion and contraction cases. However, the maximum combined girder stress in the

abutment with clayed soils is affected more than in that with sandy soils.

Table 4.7: VValues of Abutment Stress by soil types & pile orientation in LCB 1 (Expansion)

Abutment Stress: LCB1 (Expansion Cases) Unit: KN/m’ (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 1.6800E+04 1.6640E+04
Sand 2 1.7280E+04 1.7220E+04
Clay 1 1.4400E+04 1.3480E+04
Clay 2 1.5990E+04 1.5450E+04

Table 4.7a Increase Rate in Abutment Stress by soil types & pile orientation in LCB 1 (Expansion)

Increase Rate in Abutment Stress: LCB1 (Expansion Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 102.9% 103.5%
Clay 1 100.0% 100.0%
Clay 2 111.0% 114.6%

Table 4.7b Reduction Rate in Abutment Stress by soil types & pile orientation in LCB 1 (Expansion)

Reduction Rate in Abutment Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 99.0%
Sand 2 100.0% 99.7%
Clay 1 100.0% 93.6%
Clay 2 100.0% 96.6%
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Table 4.8: Values of Abutment Stress by soil types & pile orientation in LCB 2 (Contraction)

Abutment Stress: LCB2 (Contraction Cases) Unit: KN/m’ (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 8.0460E+03 7.7820E+03
Sand 2 8.1380E+03 7.9530E+03
Clay 1 7.1490E+03 6.3740E+03
Clay 2 7.7380E+03 7.1950E+03

Table 4.8a Increase Rate in Abutment Stress by soil types & pile orientation in LCB 2 (Contraction)

Increase Rate in Abutment Stress: LCB2 (Contraction Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 101.1% 102.2%
Clay 1 100.0% 100.0%
Clay 2 108.2% 112.9%

Table 4.8b Reduction Rate in Abutment Stress by soil types & pile orientation in LCB 2 (Contraction)

Reduction Rate in Abutment Stress: LCB2 (Contraction Cases) Reference: Strong Axis

Soil Types Strong-axis Weak-axis
Sand 1 100.0% 96.7%
Sand 2 100.0% 97.7%
Clay 1 100.0% 89.2%
Clay 2 100.0% 93.0%
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Figure 4.19: Abutment Stress by soil types and pile orientation in LCB 1 (Expansion)
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Figure 4.20: Abutment Stress by soil types and pile orientation in LCB 2 (Contraction)
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4.4 Pile Moment

Figures 4.21 and 4.22 indicate the maximum pile bending moment induced by both expansion

and contraction. Steel H-shaped piles were embedded 0.6 m into the abutment. Thus, the
maximum pile bending moment occurs at the pile-abutment connection that there is the
bottom of abutment in both expansion and contraction cases. The noticeable difference
between expansion and contraction cases does not discover in the pile moment. The
contraction creates a slightly higher pile bending moment at the pile-abutment connection than the

expansion does.
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Figure 4.21: Pile Moment in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
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Figure 4.22: Pile Moment in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

As noticed from Figures 4.23 and 4.24, the abutment height has a significant influence on pile

moment in the strong axial orientation since there is up to an 83.4 % reduction (6m-Tall
Abutment: 17.6 %) in pile moment when the abutment height increases for expansion cases
while up to a 48.5 % reduction (8m-Tall Abutment: 51.5 %) is discovered in contraction cases.
On the other hand, the weak axial orientation also has a negative influence, up to a 66.4 % reduction
(8m-Tall Abutment: 33.6 %) on the pile moment when the abutment height increases under the
expansion cases. There is a 71.5 % reduction (8m-Tall Abutment: 28.5 %) on pile moment in

contraction case when the abutment height increases.
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Table 4.9: Values of Pile Moment by abutment height & pile orientation in LCB 1 (Expansion)

Pile Moment: LCB1 (Expansion Cases) Unit: KN-m (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 2.501E+02 7.498E+00
4m 1.501E+02 5.461E+00
5m 8.254E+01 4.154E+00
6m 4.397E+01 3.321E+00
7m 4.417E+01 2.813E+00
8m 5.082E+01 2.521E+00

Table 4.9a: Reduction Rate in Pile Moment by abutment height & pile orientation in LCB 1 (Expansion)

Reduction Rate in Pile Moment: LCB1 (Expansion Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%
4m 60.0% 72.8%
5m 33.0% 55.4%
6m 17.6% 44.3%
m 17.7% 37.5%
8m 20.3% 33.6%

Table 4.10: Values of Pile Moment by abutment height & pile orientation in LCB 2 (Contraction)

Pile Moment: LCB2 (Contraction Cases) Unit: KN-m (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 1.692E+02 7.575E+00
4m 1.643E+02 5.631E+00
5m 1.471E+02 4.319E+00
6m 1.263E+02 3.383E+00
7m 1.060E+02 2.692E+00
8m 8.719E+01 2.160E+00
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Table 4.10a: Reduction Rate in Pile Moment by abutment height & pile orientation in LCB 2 (Contraction)

Reduction Rate in Pile Moment: LCB2 (Contraction Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%
4m 97.1% 74.3%
5m 86.9% 57.0%
6 m 74.6% 44.7%
7m 62.6% 35.5%
8m 51.5% 28.5%

Table 4.9b: Variation Rate in Pile Moment by abutment height & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Moment: LCB1 (Expansion Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 3.0%
4m 100.0% 3.6%
5m 100.0% 5.0%
6m 100.0% 7.6%
7m 100.0% 6.4%
8m 100.0% 5.0%

Table 4.10b: Variation Rate in Pile Moment by abutment height & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Moment: LCB2 (Contraction Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 4.5%
4m 100.0% 3.4%
5m 100.0% 2.9%
6m 100.0% 2.7%
7m 100.0% 2.5%
8m 100.0% 2.5%
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Figure 4.23: Pile Moment by abutment height and pile orientation in LCB 1 (Expansion)
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Figure 4.24: Pile Moment by abutment height and pile orientation in LCB 2 (Contraction)
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As exposed in Tables 4.11 and 4.11a, when the soil stiffness from sand 1 to sand 2 increases in the

strong axial direction, there is a 28.8 % reduction in the maximum pile bending moment by
expansion cases. Similarly, the maximum pile bending moment in the weak axial direction is added
by 13.6 % with the rise of the soil stiffness from sand 1 to sand 2 under expansion cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial
direction there is a 17.8 % decrease in the maximum pile bending moment by expansion cases.
On the contrary, the maximum pile bending moment in the weak axial direction is increased by 32.0 %
with the rise of the soil stiffness from clay 1 to clay 2 under expansion cases as uncovered in Table 4.11a.

As shown in Tables 4.12 and 4.12a, when the soil stiffness from sand 1 to sand 2 increases in the

strong axial direction, there is a 10 % increase in the maximum pile bending moment by contraction
cases. Similarly, the maximum pile bending moment in the weak axial direction is increased by
12.3 % with the rise of the soil stiffness from sand 1 to sand 2 under contraction cases.

On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there
is a 9.8 % increase in the maximum pile bending moment by contraction cases. In the same way, the
maximum pile bending moment in the weak axial direction is increased by 31.6 % with the rise of the
soil stiffness from clay 1 to clay 2 under contraction cases as uncovered in Table 4.12a.

In addition, the pile orientation has a significant influence on the maximum pile bending
moment in both expansion and contraction cases as a change in the pile orientation follows
from strong axial direction to weak axial direction in soils of all types.

As shown in Tables 4.11b and 4.12b, the maximum pile bending moment has an opposing trend for

expansion and contraction cases in the strong axial direction. As observed in Figures 4.25 and 4.26, if a

change in the pile orientation follows from strong axial direction to weak axial direction, the maximum

pile bending moment abruptly decreases in both the expansion and contraction cases.
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Table 4.11: Values of Pile Moment by soil types & pile orientation in LCB 1 (Expansion)

Pile Moment: LCB1 (Expansion Cases) Unit: kN-m (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 8.2540E+01 4.1540E+00
Sand 2 5.8730E+01 4,7200E+00
Clay 1 1.3580E+02 2.7930E+00
Clay 2 1.1160E+02 3.6880E+00

Table 4.11a: Variation Rate in Pile Moment by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Moment: LCB1 (Expansion Cases) Reference: Sand 1, Clay 1

Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 71.2% 113.6%
Clay 1 100.0% 100.0%
Clay 2 82.2% 132.0%

Table 4.11b Variation Rate in Pile Moment by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Moment: LCB1 (Expansion Cases) Reference: Strong Axis

Soil Types Strong-axis Weak-axis
Sand 1 100.0% 5.0%
Sand 2 100.0% 8.0%
Clay 1 100.0% 2.1%
Clay 2 100.0% 3.3%
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Table 4.12: Values of Pile Moment by soil types & pile orientation in LCB 2 (Contraction)

Pile Moment: LCB2 (Contraction Cases) Unit: KN-m (Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 1.4710E+02 4.3190E+00
Sand 2 1.6180E+02 4.8500E+00
Clay 1 1.3460E+02 2.9070E+00
Clay 2 1.4780E+02 3.8260E+00

Table 4.12a: Variation Rate in Pile Moment by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Moment: LCB2 (Contraction Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 110.0% 112.3%
Clay 1 100.0% 100.0%
Clay 2 109.8% 131.6%

Table 4.12b Variation Rate in Pile Moment by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Moment: LCB2 (Contraction Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 2.9%
Sand 2 100.0% 3.0%
Clay 1 100.0% 2.2%
Clay 2 100.0% 2.6%
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Figure 4.25: Pile Moment by soil types and pile orientation in LCB 1 (Expansion)
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Figure 4.26: Pile Moment by soil types and pile orientation in LCB 2 (Contraction)
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4.5 Pile Stress

Figures 4.27 and 4.29 indicate the maximum combined pile stress induced by both expansion

and contraction. As expected, since Steel H-shaped piles were embedded 0.6 m into the

abutment, the maximum pile stress occurs at the pile-abutment connection that there is the

bottom of abutment in both expansion and contraction cases. The noticeable difference

between expansion and contraction cases does not discover in pile stress. The contraction

creates a slightly higher pile stress at the pile-abutment connection than the expansion does.
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Figure 4.27: Pile Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
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Figures 4.28 and 4.30 display the variation of the maximum combined pile stress including that the

maximum pile stress occurs at the pile-abutment connection in both expansion and contraction.
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Figure 4.28: Pile Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
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Figure 4.29: Pile Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)
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Figure 4.30: Pile Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

As observed from Figures 4.31 and 4.32, the abutment height has a significant influence on

the pile stress in weak axis orientation contrary to the case of pile moment, since there is up to
an 81.4% reduction (8m-Tall Abutment: 18.6 %) in the pile stress when the abutment height
increases for expansion cases while up to a 33.7 % reduction (8m-Tall Abutment: 66.3 %) is
detected in contraction cases. On the other hand, the strong axis orientation has a slightly
lower influence on the pile stress than the weak axis orientation when the abutment height
increases, since there is up to a 64.1 % reduction (8m-Tall Abutment: 35.9 %) in the pile
stress when the abutment height increases for expansion cases while up to a 33.3 % reduction
(8m-Tall Abutment: 66.7 %) is detected in contraction cases.

In addition, as exposed in Tables 4.13b and 4.14b, the pile orientation has a substantially

positive influence on the maximum combined pile stress in both expansion and contraction

cases due to the difference of weak and strong axis bending.
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Table 4.13: Values of Pile Stress by abutment height & pile orientation in LCB 1 (Expansion)

Pile Stress: LCB1 (Expansion Cases) Unit: KkN/m? (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 1.788E+05 3.822E+05

4m 1.208E+05 2.636E+05

5m 8.158E+04 1.764E+05

6 m 5.570E+04 1.118E+05

7m 5.677E+04 6.472E+04

8m 6.418E+04 7.094E+04

Table 4.13a: Reduction Rate in Pile Stress by abutment height & pile orientation in LCB 1 (Expansion)

Reduction Rate in Pile Stress: LCB1 (Expansion Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%
4m 67.6% 69.0%
5m 45.6% 46.2%
6m 31.2% 29.3%
7m 31.8% 16.9%
8m 35.9% 18.6%

Table 4.14: Values of Pile Stress by abutment height & pile orientation in LCB 2 (Contraction)

Pile Stress: LCB2 (Contraction Cases) Unit: KN/m? (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 1.294E+05 2.104E+05
4m 1.263E+05 2.158E+05
5m 1.168E+05 2.007E+05
6m 1.059E+05 1.798E+05
7m 9.562E+04 1.591E+05
8m 8.634E+04 1.396E+05
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Table 4.14a: Reduction Rate in Pile Stress by abutment height & pile orientation in LCB 2 (Contraction)

Reduction Rate in Pile Stress: LCB2 (Contraction Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%

4m 97.6% 102.6%

5m 90.3% 95.4%

6m 81.8% 85.5%

7m 73.9% 75.6%

8m 66.7% 66.3%

Table 4.13b: Variation Rate in Pile Stress by abutment height & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 213.8%
4m 100.0% 218.2%
5m 100.0% 216.2%
6m 100.0% 200.7%
7m 100.0% 114.0%
8m 100.0% 110.5%

Table 4.14b: Variation Rate in Pile Stress by abutment height & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Stress: LCB2 (Contraction Cases) Reference: Strong Axis

Abutment Height Strong-axis Weak-axis
3m 100.0% 162.6%
4m 100.0% 170.9%
5m 100.0% 171.8%
6m 100.0% 169.8%
m 100.0% 166.4%
8m 100.0% 161.7%
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Figure 4.31: Pile Stress by abutment height and pile orientation in LCB 1 (Expansion)
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Figure 4.32: Pile Stress by abutment height and pile orientation in LCB 2 (Contraction)
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As shown in Figures 4.33 and 4.34, there is an opposite tendency between expansion and

contraction cases. In expansion cases, the soil stiffness has a negative influence on the
maximum pile stress while the maximum pile stress increases when the soil stiffness increases

in contraction cases as exposed in Tables 4.15a and 4.16a.

Table 4.15: Values of Pile Stress by soil types & pile orientation in LCB 1 (Expansion)

Pile Stress: LCB1 (Expansion Cases) Unit: KN/m? (Absolute Value)

Soil Types Strong-axis Weak-axis
Sand 1 8.1580E+04 1.7640E+05
Sand 2 6.9050E+04 1.5470E+05
Clay 1 1.0970E+05 2.1900E+05
Clay 2 9.7490E+04 2.0760E+05

Table 4.15a: Variation Rate in Pile Stress by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Stress: LCB1 (Expansion Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%

Sand 2 84.6% 87.7%

Clay 1 100.0% 100.0%

Clay 2 88.9% 94.8%

Table 4.15b: Variation Rate in Pile Stress by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Stress: LCB1 (Expansion Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 216.2%
Sand 2 100.0% 224.0%
Clay 1 100.0% 199.6%
Clay 2 100.0% 212.9%
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Table 4.16: Values of Pile Stress by soil types & pile orientation in LCB 2 (Contraction)

Pile Stress: LCB2 (Contraction Cases) Unit: KN/m? (Absolute Value)

Soil Types Strong-axis Weak-axis
Sand 1 1.1680E+05 2.0070E+05
Sand 2 1.2640E+05 2.2040E+05
Clay 1 1.0740E+05 1.8200E+05
Clay 2 1.1650E+05 2.0440E+05

Table 4.16a: Variation Rate in Pile Stress by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Stress: LCB2 (Contraction Cases) Reference: Sand 1, Clay 1

Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 108.2% 109.8%
Clay 1 100.0% 100.0%
Clay 2 108.5% 112.3%

Table 4.16b: Variation Rate in Pile Stress by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Stress: LCB2 (Contraction Cases) Reference: Strong Axis

Soil Types Strong-axis Weak-axis
Sand 1 100.0% 171.8%
Sand 2 100.0% 174.4%
Clay 1 100.0% 169.5%
Clay 2 100.0% 175.5%
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Figure 4.33: Pile Stress by soil types and pile orientation in LCB 1 (Expansion)
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Figure 4.34: Pile Stress by soil types and pile orientation in LCB 2 (Contraction)
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4.6 Pile Displacement

Figures 4.35 and 4.36 indicate the maximum pile head displacement induced by both

expansion and contraction cases. As expected, the maximum pile displacement occurs at the

pile head, the end of pile embedded 0.6 m into the abutment in expansion cases. However, in

contraction cases, the maximum pile displacement does not occur at the pile head. The

maximum pile displacement occurs at 0.3 m below the bottom of the abutment in contraction

cases but it will be displayed later in Figure 4.55.
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Figure 4.35: Pile Head Displacement in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
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Figure 4.38: Pile Displacement in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

As shown from Figures 4.39 and 4.40, the abutment height has a significant influence on the

pile head displacement in the weak axis orientation, since there is up to a 79 % reduction (8m-
Tall Abutment: 21.0 %) in the pile head displacement when the abutment height increases for
expansion cases while up to a 68.5 % reduction (8m-Tall Abutment: 31.5 %) is detected in
contraction cases. On the other hand, the strong axis orientation has a slightly lower or higher
influence on the pile head displacement than the weak axis orientation when the abutment
height increases, since there is up to a 76.6 % reduction (8m-Tall Abutment: 23.4 %) in the
pile head displacement when the abutment height increases for expansion cases while up to a

89.5 % reduction (8m-Tall Abutment: 10.5 %) is detected in contraction cases.
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Table 4.17: VValues of Pile Head Displacerment by abutment height & pile orientation in LCB 1 (Expansion)

Pile Head Displacement: LCB1 (Expansion Cases) Unit: m (Absolute Value)
Abutment Height Strong-axis Weak-axis
3m 7.005E-03 7.656E-03
4m 5.355E-03 5.770E-03
5m 4.057E-03 4.296E-03
6 m 3.044E-03 3.162E-03
7m 2.250E-03 2.290E-03
8m 1.641E-03 1.606E-03

Table4.17a: Reduction Rate in Pile Head Displacement by abutment height & pile orientation in LCB 1 (Exqpansion)

Reduction Rate in Pile Head Displacement: LCB1 (Expansion Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%
4m 76.4% 75.4%
5m 57.9% 56.1%
6m 43.5% 41.3%
m 32.1% 29.9%
8m 23.4% 21.0%

Table 4.18: Values of Pile Head Displacement by abutment height & pile orientation in LCB 2 (Contraction)

Pile Head Displacement: LCB2 (Contraction Cases) Unit: m (Absolute Value)

Abutment Height Strong-axis Weak-axis
3m 1.595E-03 1.130E-03
4m 6.689E-04 2.383E-04
5m 2.291E-04 3.409E-04
6m 2.341E-05 4.306E-04
7m 1.818E-04 4.180E-04
8m 1.668E-04 3.556E-04
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Table4185: Reduction Rate of Pile Head Displacementby abutrment heightt & pile orientation in LLCB 2 (Contraction)

Reduction Rate in Pile Head Displacement; LCB2 (Contraction Cases) Reference: 3 m
Abutment Height Strong-axis Weak-axis
3m 100.0% 100.0%
4m 41.9% 21.1%
om 14.4% 30.2%
6m 1.5% 38.1%
m 11.4% 37.0%
8m 10.5% 31.5%

Table4.17b: Reduction Rate in Pile Head Displacement by abutrment height & pile orientation in LCB 1 (Exgpansion)

Variation Rate in Pile Head Displacement: LCB1 (Expansion Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 109.3%
4m 100.0% 107.7%
5m 100.0% 105.9%
6m 100.0% 103.9%
m 100.0% 101.8%
8m 100.0% 97.9%

Table4.180: Reduction Rate of Pile Head Displacerment by abutrment height & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Head Displacement: LCB2 (Contraction Cases) Reference: Strong Axis
Abutment Height Strong-axis Weak-axis
3m 100.0% 70.8%
4m 100.0% 35.6%
5m 100.0% 148.8%
6m 100.0% 1839.4%
7m 100.0% 229.9%
8m 100.0% 213.2%
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Figure 4.39: Pile Head Displacement by abutment height and pile orientation in LCB 1 (Expansion)
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As shown in Figures 4.41 and 4.42, the difference of the soil stiffness has a negative influence

on the pile head displacement when the soil stiffness increases in both expansion and
contraction cases. As a result, the reduction in pile head displacement according to a growth
of the abutment height is attributed to a weakened mobility by its augmented self-weight and
an enlarged soil passive pressure by its increased surface area in the taller abutment.

Table 4.19: Values of Pile Head Displacement by soil types & pile orientation in LCB 1 (Expansion)

Pile Head Displacement: LCB1 (Expansion Cases) Unit: m(Absolute Value)
Soil Types Strong-axis Weak-axis
Sand 1 4.0570E-03 4.2960E-03
Sand 2 3.4110E-03 3.5150E-03
Clay 1 7.3450E-03 8.6080E-03
Clay 2 5.1780E-03 5.9290E-03

Table4.19a: Variation Rate in Pile Head Displacement by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Head Displacement: LCB1 (Expansion Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 84.1% 81.8%
Clay 1 100.0% 100.0%
Clay 2 70.5% 68.9%

Table 4.19b: Variation Rate in Pile Head Displacement by soil types & pile orientation in LCB 1 (Expansion)

Variation Rate in Pile Head Displacement: LCB1 (Expansion Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 105.9%
Sand 2 100.0% 103.0%
Clay 1 100.0% 117.2%
Clay 2 100.0% 114.5%
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Table 4.20: Values of Pile Head Displacement by soil types & pile orientation in LCB 2 (Contraction)

Pile Head Displacement: LCB2 (Contraction Cases) Unit: m(Absolute Value)

Soil Types Strong-axis Weak-axis
Sand 1 2.2910E-04 3.4090E-04
Sand 2 2.4100E-04 2.1310E-04
Clay 1 1.1360E-03 2.2200E-03
Clay 2 4.0210E-04 1.1550E-03

Table 4.20a: Variation Rate in Pile Head Displacerment by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Head Displacement: LCB2 (Contraction Cases) Reference: Sand 1, Clay 1
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 100.0%
Sand 2 105.2% 62.5%
Clay 1 100.0% 100.0%
Clay 2 35.4% 52.0%

Table 4.20b: Variation Rate in Pile Head Displacement by soil types & pile orientation in LCB 2 (Contraction)

Variation Rate in Pile Head Displacement: LCB2 (Contraction Cases) Reference: Strong Axis
Soil Types Strong-axis Weak-axis
Sand 1 100.0% 148.8%
Sand 2 100.0% 88.4%
Clay 1 100.0% 195.4%
Clay 2 100.0% 281.2%
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Figure 4.41: Pile Displacement by soil types and pile orientation in LCB 1 (Expansion)
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Figure 4.42: Pile Displacement by soil types and pile orientation in LCB 2 (Contraction)
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4.7 Soil Abutment Interaction

As shown in Figure 4.43, the soil springs for integral abutments were created according to
MIDAS CIVIL CODE (2013). The input data for 5 m-tall abutment without a strip footing
was entered as displayed in Table 4.21. The input data for 3 m, 4 m, 6 m, 7 m, 8 m-tall
abutments was applied with only those for sand 1 in both strong and weak axial directions to

avoid excessive computation time in this study.
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Figure 4.43: Procedure for Creating of Soil Springs on Abutments
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Table 4.21: Input Data for 5 m-Tall Abutment

Abutment Height (H) 5m
Geometry Data Abutment Width (B) 19.5m
Deck Length (L) 73 m
Sand 1: 0.59
) ) Sand 2: 0.45
Void Ratio €) Clay 1: 0.76
Soil Parameter Clay 2: 0.59
Specific Gravity (Gs) 2.65
Cycle factor (fcyc): 2
] Differential Deck Temperature 25
Thermal Extension
a: Thermal expansion coefficient of deck 1.00E-05

The interaction between the abutment wall and backfill soil has a hyperbolic relationship as
experimentally observed, and verified with finite element analysis by other researchers. Thus,
nonlinear springs for abutment were created by the lateral stress-displacement relationship for
the abutment backfill of Integral Abutment Bridges in the bridge finite element analysis
software MIDAS CIVIL.
The stiffness per unit area for abutment in the software MIDAS CIVIL is calculated using the
method established by Broms (1971).
Stiffness per unit area:
Ks=3.5 Geg/ [Hx(B/H)*’] (4-1)

Geq=Patm 600 feye F (€) (p/ Parm)” (2.5Hx 0.001/A) *°  for 75x10° <A/H<0.025

p’=1.5 vy (H/2) — u =1.5g%pgx(H/2)

pa=Gs pw / (1+€)

Where:

foe 1 Cycle Factor (=2)
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Geq: Equivalent shear modulus of the backfill

F (e) void ratio function: %2
Patm: Atmospheric pressure (100000 N/m?)

e: void ratio (=0.59)

B: width of the bridge (=19.5 m, except wingwall thickness)
H: full height of the abutment (=5 m)

L: Deck Length (=73 m)

ax ATXL
4

yrin: Unit weight of backfill (=19 kN/m3)

A: lateral displacement A=

Gs: Specific gravity of soils (=2.65)

pw : Density of water (=1000 N/m®)

u: Average pore pressure (=0)

g: Gravity acceleration (=9.806 m/sec?)

Table 4.22: Soil stiffness for 5 m-Tall Abutment with Sand1

Node |~ Type =X Stiffness (KN/m) | -1
10052 Comp.-only 272.12
10053 Comp.-only 272.12
10136 Comp.-only 272.12
10137 Comp.-only 272.12
12316 Comp.-only 272.12
12389 Comp.-only 272.12
15611 Comp.-only 272.12
15684 Comp.-only 272.12
10057 Comp.-only 544.25
10058 Comp.-only 544.25
10131 Comp.-only 544.25
10132 Comp.-only 544.25
10142 Comp.-only 544.25
10143 Comp.-only 544.25
10230 Comp.-only 544.25
10231 Comp.-only 544.25
10240 Comp.-only 544.25
10241 Comp.-only 544.25
10332 Comp.-only 544.25
10333 Comp.-only 544.25
10342 Comp.-only 544.25
10343 Comp.-only 544.25
10438 Comp.-only 544.25
10439 Comp.-only 544.25
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Table 4.22 shows the soil stiffness calculated for 5 m-Tall Abutment with Sand1 and Weak-

AXxis. For two abutments, 1584 soil springs was created.

4.8 Soil Pile Interaction

As shown Figure 4.44 and 4.45, the soil springs for H piles and PC piles were created

according to MIDAS CIVIL CODE (2013). Table 4.23 shows the input data for H piles and

PC piles in 5 m-Tall Abutment with SandL1.
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Figure 4.45: Procedure for Creating of Soil Springs on PC Piles
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Table 4.23: Input Data for Soil Springs on H Piles and PC Piles with Sand1

Input Data for Soil Springs on H Piles and PC Piles with Sand1 H Pile PC Pile
Ground Level (2) Om -6.9m
Geometry Data —
Pile Diameter(D) 0.31m 0.45m
3m-Tall: 12.83
4 mTall: 12.51
Unit Weight of Soil(y) kN/m’ > m-Tall: 12.14 10.19
nit Weight of Soil(y) kN/m 6 m-Tall: 11.73 |
7mTall: 11.25
Soil Parameter 8 m-Tall: 10.68
Earth Pressure Coeff. at rest(Ky) 0.47 0.47
Coeff. of Subgrade Reaction(Ky,) KN/m’® 6000 6000
Internal Friction Angle (®) 32 32
Initial Soil Modulus(k1) KN/m’ 16290 16290

Table 4.24: Input Data for Soil Springs on H Piles and PC Piles with Sand2

Input Data for Soil Springs on H Piles and PC Piles with Sand2 H Pile PC Pile
Ground Level (2) 0m -6.9m
Geometry Data —

Pile Diameter(D) 0.31m 0.45m

Unit Weight of Soil(y) kN/m’ 12.95 11.19

Earth Pressure Coeff. at rest(Ky) 0.38 0.38

Soil Parameter | Coeff. of Subgrade Reaction(K,) kN/m’ 12000 12000

Internal Friction Angle (®) 38 38
Initial Soil Modulus(k1) kN/m® 33930 33930

For sand, the soil stiffnesses for piles in the software MIDAS CIVIL are calculated using the
method established by Reese et al (1974). The ultimate resistance of sand varies from a value

determined by equation (4-2) at shallow depths to a value determined by equation (4-3) at

large depths.

X< Xi

Pu:A7/X [C1+Cz+C3—C4]
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1 = [KoX tang " sing]/[tan(s- ¢ ) cosa]
Co= [tang/ tan(p- ¢ )] [D+X tan S tana]
c3= KoX tang (tang’ sin - tana)

cs= KiD

X > X

Pu=AD [cs5 + Cg] (4-3)
cs = Ka 7 X(tan®g-1)

ce = Ko VX tan ¢ 'tan* B
Where:

P,: Ultimate resistance per unit length

A : Empirical adjustment factor, which accounts for differences in static and cyclic behavior

7 : Total Unit weight of soil

X : Depth below soil surface
Ko : coefficient of earth pressure at rest
¢’ : Angle of internal friction of sand
p . 45°+ ¢'2
a: @'l2
Ka: Rankine minimum active earth pressure coefficient
D: Pile diameter
Y,=3D/80
Pm=(B/A) Py
A, B: Non-dimensional empirical adjustment factors to account for difference in static and cyclic behavior
Ym=D/60
Yi=[ Prl(kaX Yin) Y117
P =k XYy
N=[Pn(Yu" Ym)]/[Ym (Pu~Pm)]
ki= Initial soil modulus
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Figure 4.46: Characteristic shape of a family of p-y curves for static and cyclic loading in sand (Reese et al, 2006)
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Figure 4.47: Values of coefficients A, B for static and cyclic loading in sand (Reese et al, 2006)

The soil stiffnesses calculated for H piles and PC piles with 5 m-tall abutment in both strong
and weak-axis are as shown in Table 4.25.

For the lateral springs (p- y curves), 18,360 non-linear springs (multi-linear springs) were
created. For the vertical springs (tangent springs, f-z curves) and point springs (tip springs, g-

z curves), 9,180 linear springs were generated as shown in Figure 4.48.

88



Table 4.25: Soil stiffnesses calculated for Soil Springs on H Piles and PC Piles with Sand1

Node Type SDz (kN/m)| Multi-Linear Type | by (kN) cx (m) cy (kN) dx (m) dy (kN) ex (m) ey (kN) x (m) fy (kN)
1 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
1 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
1 Linear 574.4681 Unsymmetric 0 0 0 0 0 0 0 0 0
2 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
2 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
2 Linear 574.4681 Unsymmetric 0 0 0 0 0 0 0 0 0
3 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
3 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
3 Linear 574.4681 Unsymmetric 0 0 0 0 0 0 0 0 0
4 Multi- Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
4 Multi- Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
4 Linear 574.4681 Unsymmetric 0 0 0 0 0 0 0 0 0
5 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
5 Multi-Linear 0 Symmetric 96.7 0.01 123.16 0.02 197.05 0.03 197.05 0.04 197.05
5 Linear 574.4681 Unsymmetric 0 0 0 0 0 0 0 0 0
6 Multi-Linear 0 Symmetric 142.42 0.01 154.32 0.01 246.91 0.02 246.91 0.02 246.91
6 Multi-Linear 0 Symmetric 142.42 0.01 154.32 0.01 246.91 0.02 246.91 0.02 246.91
6 Linear 395.7447 Unsymmetric 0 0 0 0 0 0 0 0 0

l F. Av
H, A
e —
k,,
K, % e E\l
= _lateral
‘- springs
wvartical -_J\f\f\_{:
springs "--h% i
g point

—_— Spring
kt‘l

Figure 4.48: Design of Soil-Pile System (Greimann et al., 1987)

Table 4.26: Input Data for Soil Springs on H Piles and PC Piles with Clayl

Input Data for Soil Springs on H Piles and PC Piles with Clay1 H Pile PC Pile
Ground Level (2) 0m -6.9m
Geometry Data —

Pile Diameter(D) 031 m 0.45m

Unit Weight of Soil(y) kN/m’ 1119 9.19

Earth Pressure Coeff. at rest(Ky) 0.63 0.63

Soil Parameter | Coeff. of Subgrade Reaction(Ky) kN/m’ 4500 4500

Undrained shear strength, Cu (kPa) 40 40
Soil Strain es 0.01 0.01
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Table 4.27: Input Data for Soil Springs on H Piles and PC Piles with Clay2

Input Data for Soil Springs on H Piles and PC Piles with Clay2 H Pile PC Pile
Ground Level (2 0m -6.9m
Geometry Data —

Pile Diameter(D) 031m 0.45m

Unit Weight of Soil(y) kN/m’ 12.14 10.19

Earth Pressure Coeff. at rest(Kp) 0.61 0.61

Soil Parameter | Coeff. of Subgrade Reaction(K) kN/m’ 9500 9500

Undrained shear strength, Cu (kPa) 80 80
Soil Strain ex 0.006 0.006

For clay, the stiffnesses for piles in the software MIDAS CIVIL are calculated using the

method established by Matlock (1970). The ultimate resistance ( P,) of stiff clay increases

from 3 C,to 9 C, as the depth X increases from 0 to Xr.

P,=DI[3Ci+7x +JCGuX/D] for X < Xg

P,=9GiD for X

Where:
Pu: Ultimate resistance per unit length
7 Total Unit weight of soil
X: Depth below soil surface

D: Pile diameter

Cu Undrained shear strength

> Xg

J: Dimensionless empirical constant (0.25 for stiff clay)

Xgr: Depth below soil surface to bottom of reduced resistance zone

Xg=6D /["X/Cu +J]
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Table 4.28: Soil stiffnesses calculated for Soil Springs on H Piles and PC Piles with Clayl

Node Type SDz (kN/m) | Multi-Linear Type | by (kN) cx (m) cy (kN) dx (m) dy (kKN) ex (m) ey (kN) fx (m) fy (kN)
1 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
1 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
1 Linear 321.4286 Unsymmetric 0 0 0 0 0 0 0 0 0
2 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
2 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
2 Linear 321.4286 Unsymmetric 0 0 0 0 0 0 0 0 0
3 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
3 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
3 Linear 321.4286 Unsymmetric 0 0 0 0 0 0 0 0 0
4 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
4 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
4 Linear 321.4286 Unsymmetric 0 0 0 0 0 0 0 0 0
5 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
5 Multi-Linear 0 Symmetric 3.89 0.01 8.1 0.03 11.66 0.09 16.2 0.11 16.2
5 Linear 321.4286 Unsymmetric 0 0 0 0 0 0 0 0 0
6 Multi-Linear 0 Symmetric 2.68 0.01 5.58 0.02 8.04 0.06 11.16 0.08 11.16
6 Multi-Linear 0 Symmetric 2.68 0.01 5.58 0.02 8.04 0.06 11.16 0.08 11.16
6 Linear 221.4286 Unsymmetric 0 0 0 0 0 0 0 0 0

4.9 Summary and In-depth Reviews
This section summarizes and reviews the results of the parametric study. The reviews
progress in the following subsections: (1) Girder Stress, (2) Abutment Stress, (3) Pile Moment,

(4) Pile Stress, and (5) Pile Displacement, (6) Soil-Structure Interaction.

4.9.1 Girder Stress

As shown in Figure 4.49, the expansion creates higher compressive stress at both ends of the
girder than the contraction does. On the contrary, the contraction produces larger compressive
stress at the middle of the edge girder due to the stress concentration than the expansion does.
Similarly, the contraction generates higher tensile (+) stress in the middle of the span than the
expansion (Figure 4.51).

The abutment height has some negative influence on the maximum combined girder stress in weak axial
direction, since there is up to a 4.6 % reduction in the bottom girder stress in expansion cases when the
abutment height increases whereas girder bottom stress show an 11 % drop in contraction cases (Tables

4.1aand 4.2a).
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Figures 4.49 and 4.50 express the stress variations at the left end of the edge girder under both

expansion and contraction cases. The maximum combined compressive stress at the left end

of the edge girder in expansion cases is higher than in contraction.
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Figure 4.49: Stress Variations at the left end of the edge girder by LCB 1 or LCB 2
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Beam Stress at a Node (12632) in Expansion | Beam Stress at a Node (12632) in Contraction
-10770 kN/m? (Compressive Stress) -4338 kN/m?(Compressive Stress)

A. Beam Stress Diagram in LCB 1 B. Beam Stress Diagram LCB 2

Figure 4.50: Compared Stress Values at the left end of the edge girder by LCB 1 or LCB 2
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Figure 4.51: Stress Variation at the middle of the edge girder by LCB 1 or LCB 2

In weak axial direction, the maximum combined girder stress increases up to 6.4 % in clayed
soils more than in sand. In addition, pile orientation has a bit of influence for the girder stress
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between 3m and 6m and has an effect with clayed soils due to the difference of weak and
strong axis bending.
Overall, the maximum combined girder stress decreases slightly by the increase of the

abutment height and increases a little more in contraction cases and clayed soils.

4.9.2 Abutment Stress

Figure 4.52 indicates the maximum principal stress generated in the element (12083) on the
top of the abutment. At the same time, the manner of abutment movement is predominantly
rotation about their bottom although there is a horizontal dislocation as well. The total

horizontal displacements are greatest at the top of each abutment as predicted.
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Figure 4.52: Abutment Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

The abutment stress (the maximum principal stress) increases meaningfully as the abutment

height increases (Figures 4.17 and 4.18), contrary to the case of girder stress.
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On the other hand, the soil types and the difference of weak and strong axis bending have not

an influence on the abutment stress.
Overall, the abutment stress increases expressively by the increase of the abutment height and

remains unaffected by the soil types and the difference of weak and strong axis bending.

49.3 Pile Moment

As shown in Figures 4.22 and 4.53, the maximum pile bending moment occurs at the pile-

abutment connection (Node: 10066, Element: 9785) that there is the bottom of abutment in

both expansion and contraction cases.
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Figure 4.53: Maximum Pile Moment generated at the pile-abutment connection by LCB 2 (Contraction)

The abutment height has a negative and significant influence on the pile moment in strong
axis orientation since there is up to an 83.4 % reduction in the pile moment when the
abutment height increases for expansion cases while up to a 48.5 % reduction is discovered in

contraction cases.

However, the weak axis orientation has not an influence on the pile moment when the

abutment height increases (Figures 4.23 and 4.24).
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The difference of the soil stiffness has not an influence on the pile moment in weak axis

orientation. Only strong axis orientation has an influence on the pile moment when the soil

stiffness increases (Figures 4.25 and 4.26).

Overall, the abutment height has a negative and significant influence on the pile moment in
strong axis orientation. However, the weak axis orientation has not an influence on pile

moment with the increase of the abutment height.

49.4 Pile Stress

As revealed in Figures 4.27 and 4.54, the maximum pile stress occurs at the pile-abutment

connection (Node: 10066, Element: 9785) that there is the bottom of abutment in both expansion

and contraction cases, since steel H-shaped piles were embedded 0.6 m into the abutment.
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Figure 4. 54: Maximum Pile Stress generated at the pile-abutment connection by LCB 2 (Contraction)
The abutment height has a negative and significant influence on the pile stress in the weak
axis orientation contrary to the case of the pile moment, since there is up to an 81.4 %

reduction in pile stress for expansion cases while up to a 33.7 % reduction in contraction

cases.
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The strong axis orientation has a slightly lower influence on the pile stress than the weak axis
orientation when the abutment height increases. The difference of the soil stiffness has not an
influence on the pile stress in contraction cases. Only in expansion cases, the soil stiffness has
a negative influence on pile stress when the soil stiffness increases.

Overall, the abutment height has a negative and significant influence on the pile stress in the
weak axis orientation contrary to the case of pile moment. The difference of the soil stiffness

has a small influence on the pile stress.

4.9.5 Pile Displacement

As exposed in Figures 4.35, 4.36, and 4.55, the maximum pile displacement occurs at the pile

head, the end of pile embedded 0.6 m into the abutment in expansion cases. However, in the
contraction cases, the maximum pile displacement does not occur at the pile head. The
maximum pile displacement occurs at 0.3 m (Node: 9958) below the bottom of abutment in

the contraction cases as demonstrated in Figure 4.55.
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Figure 4.55: Maximum Pile Displacement generated by LCB 2 (Contraction)
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In consequence, the abutment height has a negative and significant influence on the pile
displacement in the weak axis orientation, since there is up to a 79 % reduction in the pile
displacement when the abutment height increases for expansion cases while up to a 68.5 %
reduction is detected in contraction cases. On the other hand, the strong axis orientation has a
slightly lower or higher influence on the pile displacement than the weak axis orientation when the
abutment height increases, since there is up to a 76.6 % reduction in pile displacement when the
abutment height increases for expansion cases while up to a 89.5 % reduction is detected in
contraction cases. The increase of the soil stiffness has a negative influence on the pile head
displacement in both expansion and contraction cases.

Overall, the abutment height has a negative and significant influence on the pile displacement in
the weak axis orientation. The difference of the soil stiffness has not an influence on the pile
displacement. The increase of the soil stiffness has a negative influence on the pile displacement
in both expansion and contraction cases. As a result, the reduction in the pile head displacement
according to a growth of the abutment height is attributed to a weakened mobility by its
augmented self-weight and an enlarged soil passive pressure by its increased surface area in the

taller abutment.

4.9.6 Soil-Structure Interaction

The soil springs for integral abutments and piles were created according to MIDAS CIVIL CODE (2013). Forthe
soil stiffness of two abutments, 1584 soil springs were created in 5 m-all abutment with sand1 and weak-axis. The
soil springs for H piles and PC piles in 5 m-tall abutment with sand1 and weak-axis are as follows. For the lateral
springs (p- y curves), 18,360 non-linear springs (multi-linear springs) were created. For the vertical springs (tangent

springs, f-z curves) and point springs (tip springs, g-z curves), 9,180 linear springs were generated.
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decreases. Thus, the spring quantity varies depending on the length of H piles and the

Figure 4.56: Soil Springs applied on Abutments and Piles

Table 4.29, the springs applied on models in this study are introduced through

abutment surface area. However, the length of PC piles has a fixed size.

Table 4.29: Springs Applied on Models with sand1 in this study

. Spring Quantity . . H Pile PC Pile
Abutment Height EA) Springs Applied on Models Length (m) | Length (m)
Abument Springs 992 i Linear - 9480
- + :
am |—Lateral Springs 18960 5 % Comp/Tens : 992 17 105
Tangent Springs 9350 - £ Muki-Linear : 18960
Tip Springs 130
Abument Springs 1288 5% Linear: 9330
4m Lateral Sprl_ngs 18660 +#- 32 Comp/Tens : 1288 16 10.5
Tangent Springs 9200 +- % Multi-Linear : 18660
Tip Springs 130
Abument Springs 1584 i L 9180
" + near :
5m |—Lateral Springs 18360 - % Comp/Tens : 1584 15 105
Tangent Springs 9050 4 % Muti-Linear : 18360
Tip Springs 130
Abument Springs 1880 2% Linear:9030
6m Lateral Sprl_ngs 18060 L _§_ Comp/Tens - 1880 14 105
Tangent Springs 8900 - § Multi-Linear : 18060
Tip Springs 130
Abument Springs 2176 i i Linear : 8880
2m Lateral Spri_ngs 17760 +- £ Comp/Tens : 2176 13 105
Tangent Springs 8750 < i Mutti-Linear : 17760
Tip Springs 130
Abument Sprlngs 2472 5% Linear: 8730
8m Lateral Sprl_ngs 17460 5 é Comp/Tens : 2472 12 105
Tangent Springs 8600 +- % Multi-Linear : 17460
Tip Springs 130
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Figure4.57 represents soil-structure interaction mechanisms under cyclic thermal movements. The
retained soil wedge behind each abutment moves downward and toward the abutment during the
annual winter contraction. The void is then created under the approach slab by the settled soil. As a
result, the lateral earth pressure increases due to the retracted position of the abutment. Finally this

helps lead to eventual Ultimate Limit State failure of abutments. (Horvath, 2000; Faraji et al., 2001)

Cyclic Thermal

BackFill Structure Cyclic Deformations of the Bridge
Movements

1. Initial
Stage

2. Expansion
Stage

3. Contraction
Stage
(Attacks of
Soil Wedges)

4. Expansion
Stage
(Increased
Leteral Earth
Pressure)

5. Long-Term
Stage
(Retracted
Position)

= il = 'W__[[m-.,_g__m'. —— .

Figure 4.57: Soil-Structure Interaction Mechanisms under Cyclic Thermal Movements
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Chapter 5 Conclusions and Future Research

5.1 Overview

The presented study was performed to evaluate and validate together with recommendations
of several states in the USA over the suitability of the limit of the abutment height in
Ontario’s recommendations to the design for Integral Abutment Bridges through the original
modelling of Palladium Drive Integral Abutment Bridge in Ontario.

The primary results of the parametric study are as follows.

- The girder stress decreases slightly by the increase of the abutment height and increase a
little more in the contraction cases and clayed soils.

- The abutment stress increases expressively by the increase of the abutment height and
remains unaffected by soil types and the difference of weak and strong axis bending.

- Theabutment height has a negative and significant influence on the pile moment in the strong axis orientation.
The weak axis orientation has not an influence on the pile moment with the increase of the abutment height.

- The abutment height has a negative and significant influence on the pile stress in the weak
axis orientation contrary to the case of the pile moment. The difference of the soil stiffness
has not an influence on the pile stress.

- The abutment height has a negative and significant influence on pile displacement in weak axis
orientation. The difference of the soil stiffness has not an influence on pile stress.

- The increase of the soil stiffness has a negative influence on pile displacement in both
expansion and contraction cases.

- The strong axis orientation has a higher influence on the pile moment compared to the
weak axis orientation whereas the weak axis orientation has a larger influence on the pile

stress than the strong axis orientation.
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5.2 Conclusions

The conclusions drawn from this parametric study are as in the following.

(1) In terms of the maximum combined girder stress, the increase of the abutment height has a
reduction effect on the girder stress until 6 m-tall abutment in expansion cases (Figure 4.3).
(2) The maximum combined girder stress is influenced negatively by the increase of the soil

stiffness (Figures 4.5 & 4.6).

(3) The abutment stress is affected positively until 6 m-tall abutment in expansion cases by
the increase of the abutment height (Figure 4.17).

(4) The pile moment is influenced negatively by the increase of the abutment height until 6 m-
tall abutment (Figure 4.23).

(5) The pile stress is influenced negatively by the increase of the abutment height until 6 m-tall abutment
in the strong axis orientation and until 7 m-tall abutment in the weak axis orientation (Figure 4.31).

(6) The pile head displacement is influenced negatively by the increase of the abutment height until 6 m-
tall abutment in strong axis orientation and until 4 m-tall abutment in weak axis orientation (Figure 4.40).
(7) The increase of the soil stiffness has no effect on the pile moment in weak axis orientation.
Girder stress and pile displacement are influenced negatively by the increase of the soil

stiffness. (Figures 4.5, 4.6, 4.41, and 4.42).

(8) The strong axis orientation has a higher influence on the pile moment compared to the
weak axis orientation whereas the weak axis orientation has a larger influence on the pile

stress than the strong axis orientation (Figures 4.23, 4.24, 4.33, and 4.34).

(9) Overall, the limit of the abutment height (6 m) in Ontario compared to several states in
USA, are assessed to be appropriate since the inflection point generally occurs at 6 m tall as

shown in Figures 4.2, 4.17, 4.23, and 4.31.
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5.3 Recommendations for future research

The following recommendations are made by the results achieved in this study

Future studies are required including seismic analyses.

Future studies are required including more than 3 spans in Integral Abutment Bridges.

Future studies are required including bump effects regarding problems of approach slab.

Future studies are required including the effects of wingwall length on bridge performances.

Future studies are required including the best location of the construction joint in integral
abutments.

* Future studies are required including the best location of the construction joint in integral
abutments.

« Future studies are required including the effects of properties of diverse soils on bridge

performances.
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Appendix

Table of Analysis Results

1. The Effects depending on Abutment Height

1.1. Girder Stress (Pile Orientation: Strong-Axis, Expansion Case)

1.2. Girder Stress (Pile Orientation: Strong-Axis, Contraction Case)

1.3. Girder Stress (Pile Orientation: Weak-Axis, Expansion Case)

1.4. Girder Stress (Pile Orientation: Weak-Axis, Contraction Case)

1.5. Abutment Stress (Pile Orientation: Strong-Axis, Expansion Case)

1.6. Abutment Stress (Pile Orientation: Strong-Axis, Contraction Case)

1.7. Abutment Stress (Pile Orientation: Weak-Axis, Expansion Case)

1.8. Abutment Stress (Pile Orientation: Weak-Axis, Contraction Case)

1.9. Pile Moment (Pile Orientation: Strong-Axis, Expansion Case)

1.10. Pile Moment (Pile Orientation: Strong-Axis, Contraction Case)

1.11. Pile Moment (Pile Orientation: Weak-Axis, Expansion Case)

1.12. Pile Moment (Pile Orientation: Weak-Axis, Contraction Case)

1.13. Pile Stress (Pile Orientation: Strong-Axis, Expansion Case)

1.14. Pile Stress (Pile Orientation: Strong-Axis, Contraction Case)

1.15. Pile Stress (Pile Orientation: Weak-Axis, Expansion Case)

1.16. Pile Stress (Pile Orientation: Weak-Axis, Contraction Case)

1.17. Pile Head Displacement (Pile Orientation: Strong-Axis, Expansion Case)
1.18. Pile Head Displacement (Pile Orientation: Strong-Axis, Contraction Case)
1.19. Pile Head Displacement (Pile Orientation: Weak-Axis, Expansion Case)

1.20. Pile Head Displacement (Pile Orientation: Weak-Axis, Contraction Case)
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2. The Effects depending on Soil Types

2.1. Girder Stress (Pile Orientation: Strong-Axis, Expansion Case)

2.2. Girder Stress (Pile Orientation: Strong-Axis, Contraction Case)

2.3. Girder Stress (Pile Orientation: Weak-Axis, Expansion Case)

2.4. Girder Stress (Pile Orientation: Weak-Axis, Contraction Case)

2.5. Abutment Stress (Pile Orientation: Strong-Axis, Expansion Case)

2.6. Abutment Stress (Pile Orientation: Strong-Axis, Contraction Case)

2.7. Abutment Stress (Pile Orientation: Weak-Axis, Expansion Case)

2.8. Abutment Stress (Pile Orientation: Weak-Axis, Contraction Case)

2.9. Pile Moment (Pile Orientation: Strong-Axis, Expansion Case)

2.10. Pile Moment (Pile Orientation: Strong-Axis, Contraction Case)

2.11. Pile Moment (Pile Orientation: Weak-Axis, Expansion Case)

2.12. Pile Moment (Pile Orientation: Weak-Axis, Contraction Case)

2.13. Pile Stress (Pile Orientation: Strong-Axis, Expansion Case)

2.14. Pile Stress (Pile Orientation: Strong-Axis, Contraction Case)

2.15. Pile Stress (Pile Orientation: Weak-Axis, Expansion Case)

2.16. Pile Stress (Pile Orientation: Weak-Axis, Contraction Case)

2.17. Pile Head Displacement (Pile Orientation: Strong-Axis, Expansion Case)
2.18. Pile Head Displacement (Pile Orientation: Strong-Axis, Contraction Case)
2.19. Pile Head Displacement (Pile Orientation: Weak-Axis, Expansion Case)

2.20. Pile Head Displacement (Pile Orientation: Weak-Axis, Contraction Case)
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1. The Effects depending on Abutment Height

1.1. Girder Stress (Pile Orientation: Strong-Axis, Expansion Case)

Girder Stress (strong-axis)

LCB1 (Expansion Case) Unit: KN/m?
3m-Tall -14870
4 m-Tall -14510
5 m-Tall -14410
6 m-Tall -14420
7 m-Tall -14450
8 m-Tall -14500
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1. The Effects depending on Abutment Height

1.2. Girder Stress (Pile Orientation: Strong-Axis, Contraction Case)

Girder Stress (strong-axis)
LCB2 (Contraction Case) Unit: kKN/m?
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1. The Effects depending on Abutment Height

1.3. Girder Stress (Pile Orientation: Weak-Axis, Expansion Case)

Girder Stress (weak-axis)

LCB1 (Expansion Case) Unit: kN/m?
3m-Tall -15130
4 m-Tall -14620
5 m-Tall -14460
6 m-Tall -14430
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8 m-Tall -14490
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Abutment

Girder Stress (weak-axis) Unit: KN/m?
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Abutment

Girder Stress (weak-axis) Unit: kN/m’
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1. The Effects depending on Abutment Height

1.4. Girder Stress (Pile Orientation: Weak-Axis, Contraction Case)

Girder Stress (weak-axis)
LCB2 (Contraction Case) Unit: kKN/m?
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Girder Stress (weak-axis) Unit: KN/m?
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1. The Effects depending on Abutment Height

1.5. Abutment Stress (Pile Orientation: Strong-Axis, Expansion Case)

Abutment Stress (strong-axis)

LCB1 (Expansion Case) Unit: KN/m?
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5m-Tall 16800
6 m-Tall 16700
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8 m-Tall 16310
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1. The Effects depending on Abutment Height

1.6. Abutment Stress (Pile Orientation: Strong-Axis, Contraction Case)

Abutment Stress (strong-axis)
LCB2 (Contraction Case) Unit: KN/m’
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5m-Tall 8046
6 m-Tall 8873
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8 m-Tall 9987
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1. The Effects depending on Abutment Height

1.7. Abutment Stress (Pile Orientation: Weak-Axis, Expansion Case)

Abutment Stress (weak-axis)

LCB1 (Expansion Case) Unit: KN/m?
3m-Tall 14950
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5m-Tall 16640
6 m-Tall 16640
7 m-Tall 16510
8 m-Tall 16330
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1. The Effects depending on Abutment Height

1.8. Abutment Stress (Pile Orientation: Weak-Axis, Contraction Case)

Abutment Stress (weak-axis)
LCB2 (Contraction Case) Unit: kN/m’
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5m-Tall 7782
6 m-Tall 8703
7 m-Tall 9385
8 m-Tall 9911

138



Abutment

Abutment Stress (weak-axis) Unit: KN/m?

LCB2 (Contraction) 4.883E+03

3 m-Tall

MIDAS/Civil
POST-PROCESSOR

PLN 5STS/PLT STIRS

SIG-MRX TOP

4_SS3ZEZe+003
4_38275a+003
3_88236a+003
3_.38153a+003
2_88130a+003
2.38108a+003
1.88085&+003
1.38022a+003
8.73732a+002
=.7IZEIe+00%
0. 00000e+000
—6.21451a+00Z

SCALE FACTOR=
7. 6814E4001

CB: LCB2

ELEMENT

MARX : 12025

MIN : 12027

FILE: 622 3m San~

UNIT: KN/m®

DRTE: 12/10/2013
VIEW-DIRECTION

b

¥:-0.612

Z: 0.500

Abutment

Abutment Stress (weak-axis) Unit: KN/m?

LCB2 (Contraction) 6.522E+03

4 m-Tall

MIDAS/Civil
POST-FROCESSCR

PLN 5TS/PLT SIR3
5IG-MRX TOP

-S222%e+003
BEE3B=+003
21047Te+003
55457=+003
BSB€€e+003
2427 €e+003
S58€85e+003
2308 4e+003
27504=+003

€.15132e+002

0.00000=+000
—€.SZ2€00e+002

(SR TR SR U T Y

SCALE FACTOR=
9.4497E4+001

CB: LCB2

ELEMENT

MREX : 12023

MIN : 12081

FILE: 6RR 4m San~

UNIT: KN/m®

DATE: 12/12/2013
VIEW-DIRECTION

ot

X:-0.612

Z: 0.500

139




Abutment

Abutment Stress (weak-axis) Unit: kKN/m?

LCB2 (Contraction)

7.782E+03

5 m-Tall

MIDAS/Civil

POST-FROCESSOR
FLN 5TS/PLT SIRS

SIG-MRX TOP

T7.78146@+003
7.01293a+003
&.244%2a+003
5_4TE0S@+003
4.70757a+003
3.53510a+003
®.17063@+003
Z.40216a+003
1.63365a+003
8.E2218a+002
0.00000a+000
—5.71724&+002

SCALE FACTOR=
1.1435E+002

CB: LCB2

ELEMENT

MRX @ 12083

MIN = 12077

FILE: &RA 5m San~

UNIT: kN/m*®

DRTE: 12/11/2013
VIEW-DIRECTION

o

Z: 0.500

Abutment

Abutment Stress (weak-axis) Unit: kN/m’

LCB2 (Contraction)

8.703E+03

6 m-Tall

L
-3

S
t y

o
'{".
)
{
i
Y]
[}
=
NN
L]
Ly
a8
N

iy

n.s

MIDAS/Civil
POST-FROCESSCR

PLN 3T5/PLT 5TIR3
SIG-MRX TOF

B.70314e+003
7.84287e+003
€_S9B25%=+003
E.12232e+003
5.26202=+003
4.4017€e+003
2.5414%e+003
2.EB8121=+003
1.82094=+003
5. E0EE2e+002
0.00000e+000
-7.5988%=+002

SCALE FACTCR=

1.3331E+002
CB: LCB2
ELEMENT

MRY : 12025
MIN : 11805

FILE: 6AR ém San~

UNIT: kN/m®

DATE: 12/11/2013
VIEW-DIRECTION

R

Z: 0.500

140




Abutment

Abutment Stress (weak-axis) Unit: kN/m’

LCB2 (Contraction) 9.385E+03

7 m-Tall

MIDAS/Civil
POST-PROCESSOR

PLN S5T5/PLT STIRS

SIG-MRX TOP

8.368457=+0023
B.45035=+003
7.51574=+003
€_58113=+003
5.€4€5Ze+003
4.71151e+003
3.77730e+0023
2.0842€%e+0023
1.50B0B8=+003
§.734€4e+002
0.00000=+000
—B.85758=+002

SCALE FACTOR=
1.4727E+002

CB: LCB2

ELEMENT

MR¥ : 12025

MIN : 11805

FILE: 6R& Tm 3an~

UNIT: kN/m®

DATE: 12/11/2013
VIEW-DIRECTICH

X:-0.662 ‘\ff

Z: 0.55%9

Abutment

Abutment Stress (weak-axis) Unit: KN/m?

LCB2 (Contraction) 9.911E+03

8 m-Tall

MIDAS/Ciwvil
POST-PROCESSOR

PLN STS/FLT SIRS

5IG-MRX TOF

$.91103=+003
B.920€3=+0023
7.93023=+003
€.93583=+0023
5.945943=+003
4.935503=+003
3.9EBE3=+003
2.97823=+003
1.98783=+0023
§.5974233=+002
0.00000=+000
-9 _H3IAETe+002

SCALE FACTOR=

1.4996E+002
CB: LCB2
ELEMENT

12025

11855

FILE: 6R4 8m San~

UNIT: kN/m*®

DATE: 1271172013
WVIEW-DIRECTICH

141




1. The Effects depending on Abutment Height

1.9. Pile Moment (Pile Orientation: Strong-Axis, Expansion Case)

Pile Moment (strong-axis)

LCB1 (Expansion Case) Unit: KN-m
3m-Tall -250.1
4 m-Tall -150.1
5m-Tall -82.54
6 m-Tall 43.97
7 m-Tall 44.17
8 m-Tall 50.82
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1. The Effects depending on Abutment Height

1.10. Pile Moment (Pile Orientation: Strong-Axis, Contraction Case)

Pile Moment (strong-axis)

LCB2 (Contraction Case) Unit: KN-m
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8 m-Tall -87.19
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1. The Effects depending on Abutment Height

1.11. Pile Moment (Pile Orientation: Weak-Axis, Expansion Case)

Pile Moment (weak-axis)

LCB1 (Expansion Case) Unit: KN m
3m-Tall -7.498
4 m-Tall -5.461
5m-Tall -4.154
6 m-Tall -3.321
7 m-Tall -2.813
8 m-Tall -2.521
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1. The Effects depending on Abutment Height

1.12. Pile Moment (Pile Orientation: Weak-Axis, Contraction Case)

Pile Moment (weak-axis)

LCB2 (Contraction Case) Unit: KN m
3m-Tall -7.575
4 m-Tall -5.631
5m-Tall -4.319
6 m-Tall -3.383
7 m-Tall -2.692
8 m-Tall -2.16
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1. The Effects depending on Abutment Height

1.13. Pile Stress (Pile Orientation: Strong-Axis, Expansion Case)

Pile Stress (strong-axis)
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1. The Effects depending on Abutment Height

1.14. Pile Stress (Pile Orientation: Strong-Axis, Contraction Case)

Pile Stress (strong-axis)
LCB2 (Contraction Case) Unit: KN/m’
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5m-Tall -116800
6 m-Tall -105900
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8 m-Tall -86340
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Pile Stress (strong-axis) Unit: kKN/m”
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1. The Effects depending on Abutment Height

1.15. Pile Stress (Pile Orientation: Weak-Axis, Expansion Case)

Pile Stress (weak-axis)

LCB1 (Expansion Case) Unit: KN/m?
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1. The Effects depending on Abutment Height

1.16. Pile Stress (Pile Orientation: Weak-Axis, Contraction Case)

Pile Stress (weak-axis)
LCB2 (Contraction Case) Unit: kN/m’
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5 m-Tall -200700
6 m-Tall -179800
7 m-Tall -159100
8 m-Tall -139600
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1. The Effects depending on Abutment Height

1.17. Pile Head Displacement (Pile Orientation: Strong-Axis, Expansion Case)

Pile Head Displacement (strong-axis)
LCB1 (Expansion Case) Unit: m
3mTall -0.007005
4 m-Tall -0.005355
5m-Tall -0.004057
6 m-Tall -0.003044
7 m-Tall -0.00225
8 m-Tall -0.001641
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1. The Effects depending on Abutment Height

1.18. Pile Head Displacement (Pile Orientation: Strong-Axis, Contraction Case)

Pile Head Displacement (strong-axis)
LCB2 (Contraction Case) Unit: m
3mTall 0.001595
4 m-Tall 0.0006689
5m-Tall 0.0002291
6 m-Tall 0.00002341
7 m-Tall -0.0001818
8 m-Tall -0.0001668
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1. The Effects depending on Abutment Height

1.19. Pile Head Displacement (Pile Orientation: Weak-Axis, Expansion Case)

Pile Head Displacement (weak-axis)
LCB1 (Expansion Case) Unit: m
3m-Tall -0.007656
4 m-Tall -0.00577
5m-Tall -0.004296
6 m-Tall -0.003162
7 m-Tall -0.00229
8 m-Tall -0.001606
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Pile Head Displacement (weak-axis) Unit: m
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1. The Effects depending on Abutment Height

1.20. Pile Head Displacement (Pile Orientation: Weak-Axis, Contraction Case)

Pile Head Displacement (weak-axis)
LCB2 (Contraction Case) Unit: m
3m-Tall 0.00113
4 m-Tall 0.0002383
5m-Tall -0.0003409
6 m-Tall -0.0004306
7 m-Tall -0.000418
8 m-Tall -0.0003556
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2. The Effects depending on Soil Types

2.1. Girder Stress (Pile Orientation: Strong-Axis, Expansion Case)

Girder Stress (strong-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 -14410
Sand 2 -14240
Clay 1 -15110
Clay 2 -14650

190



Abutment

Girder Stress (strong-axis) Unit: KN/m?

LCB1 (Expansion)

-1.441E+04

Sand 1

lq‘&(: -1.4414e+004

MIDRS/Civil
POST-FROCESSOR
BERZM STRESS

COMBINED

5.5747%e+003
-121Z26e+003
2.26772e+003
-00000e+000
—1.43534e+003
—3.25288e+003
-5.14641e+003
-£.95555e+003
—B8.85348e+003
-1.07070e+004
-1_25605e+004
-1_44141e+004

S

=1}

SCALE FACTCR=
1.R129F4NN2

CB: LCEL

MRX : 15550

MIN : 12473

FILE: &AL 5m San~

TNIT: kN/m®

DATE: 12/12/2013
VIEW-DIEECTION

‘»._t_*’

Abutment

Girder Stress (strong-axis) Unit: KN/m?

LCB1 (Expansion)

-1.424E+04

Sand 2

-1.4247 e+004

MIDAS/Civil
POST-PROCESSOR
BEXM STRES3S

COMBINED

5.88107a+003
4.05128a+003
2.2214%e+0032
0.00000e+000
—-1.4Z803a+003
—3_2E6788a+003
-%_0S7ETe+003
—6.32746a+003
—&_75723a+003
—-1.0%3870a+004
-1.F4168e+004
—1.4Z4€8a+004

SCALE FRACTOR=
1.6548E+002

CB: LCBl

MRE @ 12442

MIN : 12479

FILE: 6RR 5m San~
UNIT: kN/m®

DATE: 12/12/2013
VIEW-DIRECTION

‘s__t-'

191




Abutment

Girder Stress (strong-axis) Unit: KN/m’
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2. The Effects depending on Soil Types

2.2. Girder Stress (Pile Orientation: Strong-Axis, Contraction Case)

Girder Stress (strong-axis)
LCB2 (Contraction Case) Unit: KN/m’

Sand 1 -16310
Sand 2 -16070
Clay 1 -16770
Clay 2 -16420
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2. The Effects depending on Soil Types

2.3. Girder Stress (Pile Orientation: Weak-Axis, Expansion Case)

Girder Stress (weak-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 -14460
Sand 2 -14260
Clay 1 -15380
Clay 2 -14800
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2. The Effects depending on Soil Types

2.4. Girder Stress (Pile Orientation: Weak-Axis, Contraction Case)

Girder Stress (weak-axis)
LCB2 (Contraction Case) Unit: KN/m’

Sand 1 -16410
Sand 2 -16150
Clay 1 -17020
Clay 2 -16600
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2. The Effects depending on Soil Types

2.5. Abutment Stress (Pile Orientation: Strong-Axis, Expansion Case)

Abutment Stress (strong-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 16800
Sand 2 17280
Clay 1 14400
Clay 2 15990

202



Abutment

Abutment Stress (strong-axis) Unit: KN/m?

LCB1 (Expansion) 1.680E+04

Sand 1

MIDAS/Civil
POST-FROCESSOR

PLN 5T5/FLT 5TRS

SIG-MRX TOP

1._€79€6€e+004
1.49566e+004
1.31166=+004
1.1276Ee+004
9.43€57«+003
7.59€55e+003
5.75652e+003
3.91£53+003
2.07€51e+003
0.00000e+000
-1.60352e+003
-3.44353=+0023

SCALE FACTOR=
8.2236E+001

CB: LCBl1

ELEMENT

MEX : 12083

MIN : 12027

FILE: &AR 5m San~

UNIT: kN/m*

DATE: 12/11/2013
VIEW-DIRECTION

¥:-0.612

-

Z: 0.500

Abutment

Abutment Stress (strong-axis) Unit: KN/m?

LCB1 (Expansion) 1.728E+04

Sand 2

MIDAS/Civil
POST-PROCESSOR

PLN 5TS/FLT STRS
SIG-MRX TOP

-T2830a+004
-233947a+004
-25065a+004
-16182a+004
-T2938a+002
-24173a+002
-95347a+002
-06522&+003
-17655a+003
-00000a+000
55555+003
-4E8T80a+003

WHOMER-TDHHHE

SCRLE FACTOR=
T.9R5AF+NNT

CB: LCB1

ELEMENT

MRY : 12025

MIN : 12081

FILE: #A% 5m San~

UNIT: kN/m®

DATE: 12/12/2013
VIEW-DIRECTICON

b

Z: 0.500

203




1.440E+04

MIDAS/Civil
FOST-FROCESSOR
FLN 5T5/FLT 5TRS3

SIG-MRX TOP

4402 Ec+004
2B135e+004
12244=+004
€3535e+003
04E2Be+003
45722e+003
BEALSe+003
27508e+003
€3001e+003
00000e+000
48813e=+003
07720e+003

1
1
1
g
B
&
4
a
1
o]
-1
—a

FACTOR:

SCLLE

9.9370E+001

1LCB1

CB

12083
12027

MIN

FILE: 6RA 5m Cla~
UNIT: kN/m*

1l2y12/2013

DATE

VIEW-DIRECTION

Abutment Stress (strong-axis) Unit: kN/m?

LCB1 (Expansion)

Awmvaaaugsawanssaeﬂ
7 il
ST

EE S FErE AR
‘!ﬁ“ﬂﬁﬂiﬂﬁiﬁﬂiﬂﬂi‘

S
N
AT

i

)

0\\.\\\\.‘\\_\\_\

Abutment Stress (strong-axis) Unit: kN/m’

1.599E+04

MIDAS/Ciwvil
POST-FROCESSOR
PLN 5TS/PLI STES

1.53875e+004
1.4231%e+004
1.24763e+004
1.07206e+004
5.36503e+003
7.20342e+003
5.45381e+003
3.63820e+003
1.3425%e+003
0.00000e+000
-1.56863e+003
-3.32424+003

SIG-MAX TOP

SCALE FACTOR:

A.R4AOOF+NN1

LCB1

12083
12027

MIN

FILE: 6RA 5m Cla~
UNIT: kN/m*

12/12/2013

DATE

VIEW-DIEECTION

LCB1 (Expansion)

i TR
i

AT
A

T
.ﬂ“““““h\s\\\\h\\\

T

T
;wﬁmﬂaagsa‘

T

el

JTR

Abutment

Clay 1

Abutment

Clay 2

204




2. The Effects depending on Soil Types

2.6. Abutment Stress (Pile Orientation: Strong-Axis, Contraction Case)

Abutment Stress (strong-axis)
LCB2 (Contraction Case) Unit: kN/m?

Sand 1 8046
Sand 2 8138
Clay 1 7149
Clay 2 7738
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2. The Effects depending on Soil Types

2.7. Abutment Stress (Pile Orientation: Weak-Axis, Expansion Case)

Abutment Stress (weak-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 16640
Sand 2 17220
Clay 1 13480
Clay 2 15450
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2. The Effects depending on Soil Types

2.8. Abutment Stress (Pile Orientation: Weak-Axis, Contraction Case)

Abutment Stress (weak-axis)
LCB2 (Contraction Case) Unit: KN/m’

Sand 1 7782
Sand 2 7953
Clay 1 6374
Clay 2 7195
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2. The Effects depending on Soil Types

2.9. Pile Moment (Pile Orientation: Strong-Axis, Expansion Case)

Pile Moment (strong-axis)
LCB1 (Expansion Case) Unit: kN-m

Sand 1 -82.54
Sand 2 -58.73
Clay 1 -135.8
Clay 2 -111.6
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Pile Moment (strong-axis) Unit: KN-m
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2. The Effects depending on Soil Types

2.10. Pile Moment (Pile Orientation: Strong-Axis, Contraction Case)

Pile Moment (strong-axis)
LCB2 (Contraction Case) Unit: KN-m

Sand 1 -147.1
Sand 2 -161.8
Clay 1 -134.6
Clay 2 -147.8
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2. The Effects depending on Soil Types

2.11. Pile Moment (Pile Orientation: Weak-Axis, Expansion Case)

Pile Moment (weak-axis)
LCB1 (Expansion Case) Unit: KN m

Sand 1 -4.154
Sand 2 -4.72
Clay 1 -2.793
Clay 2 -3.688
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2. The Effects depending on Soil Types

2.12. Pile Moment (Pile Orientation: Weak-Axis, Contraction Case)

Pile Moment (weak-axis)
LCB2 (Contraction Case) Unit: KN m

Sand 1 -4.319
Sand 2 -4.85
Clay 1 -2.907
Clay 2 -3.826
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2. The Effects depending on Soil Types

2.13. Pile Stress (Pile Orientation: Strong-Axis, Expansion Case)

Pile Stress (strong-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 -81580
Sand 2 -69050
Clay 1 -109700
Clay 2 -97490
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2. The Effects depending on Soil Types

2.14. Pile Stress (Pile Orientation: Strong-Axis, Contraction Case)

Pile Stress (strong-axis)
LCB2 (Contraction Case) Unit: kN/m?

Sand 1 -116800
Sand 2 -126400
Clay 1 -107400
Clay 2 -116500
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Pile Stress (strong-axis) Unit: kN/m’
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2. The Effects depending on Soil Types

2.15. Pile Stress (Pile Orientation: Weak-Axis, Expansion Case)

Pile Stress (weak-axis)
LCB1 (Expansion Case) Unit: KN/m?

Sand 1 -176400
Sand 2 -154700
Clay 1 -219000
Clay 2 -207600
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2. The Effects depending on Soil Types

2.16. Pile Stress (Pile Orientation: Weak-Axis, Contraction Case)

Pile Stress (weak-axis)
LCB2 (Contraction Case) Unit: kN/m’
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2. The Effects depending on Soil Types

2.17. Pile Head Displacement (Pile Orientation: Strong-Axis, Expansion Case)

Pile Head Displacement (strong-axis)
LCB1 (Expansion Case) Unit: m

Sand 1 -0.004057
Sand 2 -0.003411
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Clay 2 -0.005178
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2. The Effects depending on Soil Types

2.18. Pile Head Displacement (Pile Orientation: Strong-Axis, Contraction Case)

Pile Head Displacement (strong-axis)
LCB2 (Contraction Case) Unit: m
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Sand 2 0.000241
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2. The Effects depending on Soil Types

2.19. Pile Head Displacement (Pile Orientation: Weak-Axis, Expansion Case)

Pile Head Displacement (weak-axis)
LCB1 (Expansion Case) Unit: m

Sand 1 -0.004296
Sand 2 -0.003515
Clay 1 -0.008608
Clay 2 -0.005929
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2. The Effects depending on Soil Types

2.20. Pile Head Displacement (Pile Orientation: Weak-Axis, Contraction Case)

Pile Head Displacement (weak-axis)
LCB2 (Contraction Case) Unit: m

Sand 1 -0.0003409
Sand 2 -0.0002131
Clay 1 -0.00222

Clay 2 -0.001155
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	γ' (Submerged unit weight), ϕ' (Effective stress friction angle), K0 (Coefficient of earth pressure at rest), e (Void ratio in soils), Gs (Specific gravity of soil solids), γd (Dry unit weight), e50 (Soil strain at 50% of ultimate soil resistance), Cu...
	Table 3.1: Material Properties for Soils
	Table 3.2: Material Properties for Structure


	3.6 Loads
	3.6.1 Ambient Temperature Load
	This study utilizes the AASHTO LRFD (2012) recommended design temperature range of 0ºF to 80ºF (-18ºC to 27ºC) for concrete structures in cold climates as shown Table 3.3. Each reference temperature of 5 ºC (Summer) and 0 ºC (Winter) was assumed. The ...
	Table 3.3: A Temperature Ranges (AASHTO LRFD, 2012)


	3.6.2 Temperature Gradient
	The superstructure temperature gradient contributes considerably to superstructure stresses in IABs and is included in this study by using AASHTO LRFD (2012) as shown in Figure 3.10.
	Figure 3.10: Vertical temperature gradient (AASHTO LRFD, 2012)

	The vertical temperature gradient in concrete and steel superstructures with concrete decks was used as a zone 3 considering the interstate border as shown in Figures 3.10 and 3.11.
	Figure 3.11: Solar Radiation Zones for the United States (AASHTO LRFD, 2012)


	3.6.3 Earth Pressure
	As stated in Chapter 2, passive earth pressure is the biggest as shown Figure 3.12. However, the earth pressure at rest was applied in this study for the normal condition.
	Figure 3.12: Variation of the magnitude of lateral earth pressure with wall tilt (Das, 2010)

	The coefficient of earth pressure at rest  K0 is normally determined by the following empirical relationship (Jaky, 1944).

	3.6.4 Parapet Load
	The elements of parapet were not developed in the model. Accordingly, as shown Figure 3.13, the parapet load is applied on both longitudinal edge nodes of the bridge deck as 10 kN/m.
	Figure 3.13: Parapet load (applied 10 kN/m)


	3.6.5 Static Combination Load
	Load combination 1 (LCB 1) creates expansion. LCB 1 includes the following:
	Self-Weight + Parapet Load + Earth Pressure at rest + Temperature Load (positive) + Temperature Gradient
	Load combination 2 (LCB 2) creates contraction. LCB 2 includes the following:
	Self-Weight + Parapet Load + Earth Pressure at rest + Temperature Load (negative) + Temperature Gradient


	3.7 Compared Standards to Ontario’s recommendations for IABs
	Tables 3.4 and 3.5 contrast the limit of the abutment height, wingwall length, span length, and skew in Canada and USA. Ontario’s recommendations for integral bridges are similar to those used by many US states in in terms of span length and skew wher...
	Table 3.4: The limit of Abutment Height in Canada and USA
	Table 3.5: The limit of Span Length and Skew in Canada and USA


	3.8 Dimensions, Spacing, and Complete Images Figuration for Bridge Components
	Figures 3.14 through 3.17 display dimensions, spacing, and complete images for bridge components used in this study. Further details for AASHTO Type IV pre-stressed concrete girder shown in Figure 3.14 are expressed in Figure 3.8.
	Figure 3.14: Dimensions and Spacing for Bridge Components (A)
	Figure 3.15: Dimensions and Spacing for Bridge Components (B)


	3.9 Variations of Abutment Height in Palladium Drive IAB Model
	Figures 3.18 and 3.19 show the models with 3 m, 4 m, 5 m, 6 m, 7m, and 8 m-tall abutment, respectively.  As described in Figure 3.15,  wingwalls were modified in high according to abutment height, respectively.
	Figure 3.18: Completed Geometry of 3 m, 4m, 5m Tall Models
	Figure 3.19: Completed Geometry of 6 m, 7m, 8m Tall Models



	Chapter 4 Parametric Study Results and Reviews
	4.1 Introduction
	This chapter lays out the results from the parametric study performed using the 3D numerical models mentioned in Chapter 3. The results of the parametric study are illustrated colorfully to exactly represent to the prediction of IAB behavior. Seven im...

	4.2 Girder Stress
	Figures 4.1 and 4.2, show the maximum combined girder stress induced by expansion or contraction cases.
	Figure 4.2 expresses that the higher compressive stress in contraction cases occurs on the piers compared with expansion cases. Figures 4.3 through 4.6 and Tables 4.1 through 4.4 show the maximum combined girder stress with regard to: (1) abutment hei...
	In addition, as exposed in Tables 4.1b and 4.2b, the pile orientation has a bit of influence on the maximum combined girder stress in both expansion and contraction cases due to the difference of weak and strong axis bending.
	As a change in the pile orientation follows from strong axial direction to weak axial direction, the maximum combined girder stress slightly increases in expansion cases. However, if the abutment height exceeds 6 m, the maximum combined girder stress ...
	On the other hand, if a change in the pile orientation follows from strong axial direction to weak axial direction, the maximum combined girder stress slightly increases in contraction cases. However, as the abutment height increase, the effects of a ...
	The trend on the maximum combined girder stress in expansion cases decrease and then slightly increases as the abutment height increase while the maximum combined girder stress in contraction cases steadily decreased when the abutment height rises.
	Figure 4.3: Girder Stress by abutment height and pile orientation in LCB 1 (Expansion)

	The maximum combined girder stress obtained by soil types displays a similar trend for expansion and contraction cases as shown in Figures 4.5 and 4.6 , and Tables 4.3 through 4.4a.
	As exposed in Tables 4.3 and  4.3a,  when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 1.2 % reduction in the maximum combined girder stress by expansion cases.  Similarly, the maximum combined girder st...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is a 3.0 % reduction in the maximum combined girder stress by expansion cases. In the same way, the maximum combined girder stress in the weak...
	As shown in Tables 4.4 and  4.4a,  when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 1.5 % reduction in the maximum combined girder stress by contraction cases.  Similarly, the maximum combined girder st...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is a 2.1 % reduction in the maximum combined girder stress by contraction cases. In the same way, the maximum combined girder stress in the we...
	In addition, the pile orientation has a bit of influence on the maximum combined girder stress in both expansion and contraction cases as a change in the pile orientation follows from strong axial direction to weak axial direction in soils of all types.
	As shown in Tables 4.3b and 4.4b, the maximum combined girder stress has a similar trend for expansion and contraction cases. However, the maximum combined girder stress in the abutment with clayed soils is affected more than in that with sandy soils.
	Table 4.3b: Increase Rate in Girder Stress by soil types & pile orientation in LCB 1 (Expansion)
	Figure 4.5: Girder Stress by soil types and pile orientation in LCB 1 (Expansion)


	4.3 Abutment Stress
	Figure 4.7 expresses the maximum principal stress on the top of abutment induced by expansion. The noticeable difference between expansion and contraction cases is detected in the rotated abutment as shown in Figures 4.7 and 4.12. In this sense, the m...
	The maximum principal stress are greatest at the top of each abutment as predicted.
	Figures 4.7 and 4.12 express a symmetrical stress of both-side concrete abutments at the abutment-girder connection in both expansion and contraction cases. The present study evaluated Sig-Max (Maximum Principal Stress) in the concrete region.
	Figure 4.12: Abutment Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)
	Figure 4.13: Distribution and Cutting Lines of Abutment Stress in 5m-Tall Abutment by LCB 2 (Contraction)
	Figure 4.14: Diagram of Abutment Stress at Center Vertically Cutting Line from Figure 4.13
	Figure 4.15: Diagram of Abutment Stress at Top Horizontally Cutting Line from Figure 4.13
	Figure 4.16: Diagram of Abutment Stress at Bottom Horizontally Cutting Line from Figure 4.13

	Figures 4.17 through 4.20 show the concrete stress at the abutment-girder connection with regard to: (1) abutment height, (2) soil types, and (3) pile orientation, for both expansion and contraction cases.
	The abutment stress increases meaningfully as the abutment height increases as shown Figures 4.16 and 4.17, contrary to the case of girder stress.
	In addition, as exposed in Tables 4.5b and 4.6b, the pile orientation has a bit of influence on the maximum principal abutment stress in both expansion and contraction cases due to the difference of weak and strong axis bending.
	As a change in the pile orientation follows from strong axial direction to weak axial direction, the maximum principal abutment stress slightly decreases in expansion cases. However, if the abutment height exceeds 6 m, the maximum principal abutment s...
	On the other hand, if a change in the pile orientation follows from strong axial direction to weak axial direction, the maximum principal abutment stress more decreases in contraction cases. However, as the abutment height increase, the effects of a c...
	Overall, in both expansion and contraction cases, there is a very distinct difference in terms of the trend on the maximum principal abutment stress.
	The trend on the maximum principal abutment stress in expansion cases shows a decreasing tendency after increasing. On the other hand, the maximum principal abutment stress in contraction cases steadily increases when the abutment height rises.
	Figure 4. 17: Abutment Stress by abutment height and pile orientation in LCB 1 (Expansion)
	Figure 4.18: Abutment Stress by abutment height and pile orientation in LCB 2 (Contraction)

	The maximum principal abutment stress obtained by soil types displays a similar trend for expansion and contraction cases as shown in Figures 4.18 and 4.19 , and Tables 4.7 through 4.8b.
	As exposed in Tables 4.7 and  4.7a,  when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 2.9 % increase in the maximum principal abutment stress by expansion cases. Similarly, the maximum principal abutmen...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is an 11.0 % increase in the maximum principal abutment stress by expansion cases. In the same way, the maximum principal abutment stress in t...
	As shown in Tables 4.8 and  4.8a,  when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 1.1 % increase in the maximum principal abutment stress by contraction cases.  Similarly, the maximum principal abutme...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is an 8.2 % increase in the maximum principal abutment stress by contraction cases. In the same way, the maximum principal abutment stress in ...
	In addition, the pile orientation has a bit of influence on the maximum principal abutment stress in both expansion and contraction cases as a change in the pile orientation follows from strong axial direction to weak axial direction in soils of all t...
	As shown in Tables 4.7b and 4.8b, the maximum principal abutment stress has a similar trend for expansion and contraction cases. However, the maximum combined girder stress in the abutment with clayed soils is affected more than in that with sandy so...
	Figure 4.19: Abutment Stress by soil types and pile orientation in LCB 1 (Expansion)


	4.4 Pile Moment
	Figures 4.21 and 4.22 indicate the maximum pile bending moment induced by both expansion and contraction. Steel H-shaped piles were embedded 0.6 m into the abutment. Thus, the maximum pile bending moment occurs at the pile-abutment connection that the...
	Figure 4.21: Pile Moment in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 1 (Expansion)
	Figure 4.22: Pile Moment in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

	As noticed from Figures 4.23 and 4.24, the abutment height has a significant influence on pile moment in the strong axial orientation since there is up to an 83.4 % reduction (6m-Tall Abutment: 17.6 %) in pile moment when the abutment height increases...
	As exposed in Tables 4.11 and  4.11a,  when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 28.8 % reduction in the maximum pile bending moment by expansion cases. Similarly, the maximum pile bending moment...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is a 17.8 % decrease in the maximum pile bending moment by expansion cases. On the contrary, the maximum pile bending moment in the weak axial...
	As shown in Tables 4.12 and  4.12a, when the soil stiffness from sand 1 to sand 2 increases in the strong axial direction, there is a 10 % increase in the maximum pile bending moment by contraction cases. Similarly, the maximum pile bending moment in ...
	On the other hand, as the soil stiffness from clay 1 to clay 2 increases in the strong axial direction there is a 9.8 % increase in the maximum pile bending moment by contraction cases. In the same way, the maximum pile bending moment in the weak axia...
	In addition, the pile orientation has a significant influence on the maximum pile bending moment in both expansion and contraction cases as a change in the pile orientation follows from strong axial direction to weak axial direction in soils of all ty...
	As shown in Tables 4.11b and 4.12b, the maximum pile bending moment has an opposing trend for expansion and contraction cases in the strong axial direction. As observed in Figures 4.25 and 4.26, if a change in the pile orientation follows from strong...

	4.5 Pile Stress
	Figures 4.27 and 4.29 indicate the maximum combined pile stress induced by both expansion and contraction. As expected, since Steel H-shaped piles were embedded 0.6 m into the abutment, the maximum pile stress occurs at the pile-abutment connection th...
	Figures 4.28 and 4.30 display the variation of the maximum combined pile stress including that the maximum pile stress occurs at the pile-abutment connection in both expansion and contraction.
	As observed from Figures 4.31 and 4.32, the abutment height has a significant influence on the pile stress in weak axis orientation contrary to the case of pile moment, since there is up to an 81.4% reduction (8m-Tall Abutment: 18.6 %) in the pile str...
	In addition, as exposed in Tables 4.13b and 4.14b, the pile orientation has a substantially positive influence on the maximum combined pile stress in both expansion and contraction cases due to the difference of weak and strong axis bending.
	As shown in Figures 4.33 and 4.34, there is an opposite tendency between expansion and contraction cases. In expansion cases, the soil stiffness has a negative influence on the maximum pile stress while the maximum pile stress increases when the soil ...

	4.6 Pile Displacement
	Figures 4.35 and 4.36 indicate the maximum pile head displacement induced by both expansion and contraction cases. As expected, the maximum pile displacement occurs at the pile head, the end of pile embedded 0.6 m into the abutment in expansion cases....
	Figure 4.39: Pile Head Displacement by abutment height and pile orientation in LCB 1 (Expansion)


	4.7 Soil Abutment Interaction
	As shown in Figure 4.43, the soil springs for integral abutments were created according to MIDAS CIVIL CODE (2013). The input data for 5 m–tall abutment without a strip footing was entered as displayed in Table 4.21. The input data for 3 m, 4 m, 6 m, ...
	Stiffness per unit area:

	4.8 Soil Pile Interaction
	As shown Figure 4.44 and 4.45, the soil springs for H piles and PC piles were created according to MIDAS CIVIL CODE (2013). Table 4.23 shows the input data for H piles and PC piles in 5 m-Tall Abutment with Sand1.
	For sand, the soil stiffnesses for piles in the software MIDAS CIVIL are calculated using the method established by Reese et al (1974). The ultimate resistance of sand varies from a value determined by equation (4-2) at shallow depths to a value deter...
	The soil stiffnesses calculated for H piles and PC piles with 5 m-tall abutment in both strong and weak-axis are as shown in Table 4.25.
	For the lateral springs (p- y curves), 18,360 non-linear springs (multi-linear springs) were created.  For the vertical springs (tangent springs, f-z curves) and point springs (tip springs, q-z curves), 9,180 linear springs were generated as shown in ...
	For clay, the stiffnesses for piles in the software MIDAS CIVIL are calculated using the method established by Matlock (1970). The ultimate resistance (  Pu) of stiff clay increases from 3 Cu to 9 Cu as the depth X increases from 0 to XR.

	4.9 Summary and In-depth Reviews
	This section summarizes and reviews the results of the parametric study.  The reviews progress in the following subsections: (1) Girder Stress, (2) Abutment Stress, (3) Pile Moment, (4) Pile Stress, and (5) Pile Displacement, (6) Soil-Structure Intera...
	4.9.1 Girder Stress
	As shown in Figure 4.49, the expansion creates higher compressive stress at both ends of the girder than the contraction does. On the contrary, the contraction produces larger compressive stress at the middle of the edge girder due to the stress conce...
	Similarly, the contraction generates higher tensile (+) stress in the middle of the span than the expansion (Figure 4.51).
	The abutment height has some negative influence on the maximum combined girder stress in weak axial direction, since there is up to a 4.6 % reduction in the bottom girder stress in expansion cases when the abutment height increases whereas girder bott...

	4.9.2 Abutment Stress
	Figure 4.52: Abutment Stress in 5m-Tall Abutment with Sand 1 & Weak-Axis by LCB 2 (Contraction)

	4.9.3 Pile Moment
	Figure 4.53: Maximum Pile Moment generated at the pile-abutment connection by LCB 2 (Contraction)

	4.9.4 Pile Stress
	Figure 4. 54: Maximum Pile Stress generated at the pile-abutment connection by LCB 2 (Contraction)

	4.9.5 Pile Displacement
	Figure 4.55: Maximum Pile Displacement generated by LCB 2 (Contraction)
	Overall, the abutment height has a negative and significant influence on the pile displacement in the weak axis orientation. The difference of the soil stiffness has not an influence on the pile displacement. The increase of the soil stiffness has a n...

	4.9.6 Soil-Structure Interaction
	Figure 4.56: Soil Springs applied on Abutments and Piles
	As shown in Table 4.29, the springs applied on models in this study are introduced through iterative processes. According to the increase of the abutment height, the length of H piles decreases. Thus, the spring quantity varies depending on the length...
	Table 4.29: Springs Applied on Models with sand1 in this study

	Figure4.57 represents soil-structure interaction mechanisms under cyclic thermal movements. The retained soil wedge behind each abutment moves downward and toward the abutment during the annual winter contraction. The void is then created under the ap...



	Chapter 5 Conclusions and Future Research
	5.1 Overview
	The presented study was performed to evaluate and validate together with recommendations of several states in the USA over the suitability of the limit of the abutment height in Ontario’s recommendations to the design for Integral Abutment Bridges thr...
	The primary results of the parametric study are as follows.
	- The girder stress decreases slightly by the increase of the abutment height and increase a little more in the contraction cases and clayed soils.
	- The abutment stress increases expressively by the increase of the abutment height and remains unaffected by soil types and the difference of weak and strong axis bending.
	- The abutment height has a negative and significant influence on the pile moment in the strong axis orientation. The weak axis orientation has not an influence on the pile moment with the increase of the abutment height.
	- The abutment height has a negative and significant influence on the pile stress in the weak axis orientation contrary to the case of the pile moment. The difference of the soil stiffness has not an influence on the pile stress.
	-  The abutment height has a negative and significant influence on pile displacement in weak axis orientation. The difference of the soil stiffness has not an influence on pile stress.
	- The increase of the soil stiffness has a negative influence on pile displacement in both   expansion and contraction cases.
	- The strong axis orientation has a higher influence on the pile moment compared to the weak axis orientation whereas the weak axis orientation has a larger influence on the pile stress than the strong axis orientation.

	5.2 Conclusions
	The conclusions drawn from this parametric study are as in the following.
	(1) In terms of the maximum combined girder stress, the increase of the abutment height has a reduction effect on the girder stress until 6 m-tall abutment in expansion cases (Figure 4.3).
	(2) The maximum combined girder stress is influenced negatively by the increase of the soil stiffness (Figures 4.5 & 4.6).
	(3) The abutment stress is affected positively until 6 m-tall abutment in expansion cases by the increase of the abutment height (Figure 4.17).
	(4) The pile moment is influenced negatively by the increase of the abutment height until 6 m-tall abutment (Figure 4.23).
	(5) The pile stress is influenced negatively by the increase of the abutment height until 6 m-tall abutment in the strong axis orientation and until 7 m-tall abutment in the weak axis orientation (Figure 4.31).
	(6) The pile head displacement is influenced negatively by the increase of the abutment height until 6 m-tall abutment in strong axis orientation and until 4 m-tall abutment in weak axis orientation (Figure 4.40).
	(7) The increase of the soil stiffness has no effect on the pile moment in weak axis orientation. Girder stress and pile displacement are influenced negatively by the increase of the soil stiffness. (Figures 4.5, 4.6, 4.41, and 4.42).
	(8) The strong axis orientation has a higher influence on the pile moment compared to the weak axis orientation whereas the weak axis orientation has a larger influence on the pile stress than the strong axis orientation (Figures 4.23, 4.24, 4.33, and...
	(9) Overall, the limit of the abutment height (6 m) in Ontario compared to several states in USA, are assessed to be appropriate since the inflection point generally occurs at 6 m tall as shown in Figures 4.2, 4.17, 4.23, and 4.31.

	5.3 Recommendations for future research
	The following recommendations are made by the results achieved in this study
	•  Future studies are required including seismic analyses.
	•  Future studies are required including more than 3 spans in Integral Abutment Bridges.
	•  Future studies are required including bump effects regarding problems of approach slab.
	•  Future studies are required including the effects of wingwall length on bridge performances.
	•  Future studies are required including the best location of the construction joint in integral abutments.
	•  Future studies are required including the best location of the construction joint in integral abutments.  
	•  Future studies are required including the effects of properties  of diverse soils on bridge performances.  
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