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Abstract 

Phosphorus, a mineral nutrient, is an essential element in aquatic systems. It is only available for 

biological activity in the form of orthophosphate and soluble restrictive phosphate. Eutrophication, 

caused by nutrient enrichment, is a problem in many freshwater systems, which results in increased 

algal blooms, anoxic conditions, and consequently, biodiversity loss and ecosystem failure. Low 

dissolved oxygen levels trigger the release of sediment bound phosphorus, which reinforces 

eutrophication. Nutrients in aquatic systems are provided by point and non-point sources and these 

sources can be affected by several factors, including population, land-use, and climate change. There 

are many long-term historical phosphorus studies on rivers, but there are very few that are conducted 

on the Grand River watershed and none that look at factors that might be driving the phosphorus 

loadings.  

The Grand River watershed, located in Ontario, Canada, is a highly agricultural watershed 

with a growing population of approximately one million. It has experienced eutrophication, which has 

led to excessive production of cyanobacteria and regions of hypoxia. In this study, historical 

phosphorus concentration data (Total Phosphorus, Soluble Reactive Phosphorus, and Particulate 

Phosphorus) in five sites along the Grand River were analyzed temporally and spatially from 1965 to 

2010 in the upper, middle, and lower parts of the watershed. The Particulate Phosphorus was 

calculated by subtracting SRP from TP. Several other data such as climate, land-use, geology, and 

population were also explored and considered as possible factors that may have influenced the trends 

over time. 

TP, SRP, and PP average flow weighted concentrations and fluxes were calculated in 2-6 

year intervals. SRP load was higher prior to the early 1970’s, declined in the 1970’s, was more stable 

in the 1980’s and 1990’s, and increased in the 2000’s. The initial decrease in SRP in the early 1970’s 

was likely due to the phosphorus ban in detergents in 1973 that was implemented over several years. 

The constant SRP loadings in the 1980’s and 1990’s, despite population and urban development 

growth, may have been due to upgrades in waste water treatment plants during that time period. The 

recent increase in phosphorus in more recent years coincides with a large increase in the number of 

livestock in the 2000’s and population growth. SRP and PP loads increase from upstream to 

downstream regions are likely due to nutrient accumulation by the river. The higher loads and 
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concentrations of SRP in the CGR is expected because the region is highly urbanized and contains 

most of the tile drainage in the watershed.  
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Chapter 1 

Introduction 

Rivers are a major resource of drinking water, are ecologically and economically important, and a-re 

ecosystems where major biogeochemical cycling occurs (Conley et al, 2009; Fu et al., 2003; Peterson 

et al., 2001). In many parts of the world a supply of clean water is scarce and this is becoming the 

case in Canada as well. Among the issues is eutrophication, the increase in algal blooms caused by 

excess nutrient export, such as phosphorus in phosphorus-limited freshwater systems (Schindler, 

1974). In lakes, when algal blooms die and settle down to the hypolimnetic zone, they are 

decomposed by aerobic bacteria that utilize and exhaust the dissolved oxygen levels in the water 

column which consequently leads to declines in fish populations (Vollenwieder, 1968; Beeton, 1965; 

Kemp and Boynton, 2000). Anoxia, or the absence of oxygen, causes changes to biogeochemical 

cycling by leading to hydrogen sulfide and inorganic phosphorus release from sediments (Cowan and 

Boynton, 1996; Fenchel and Blackburn, 1979). The addition of nutrients to the upper water column 

via upwelling reinforces further eutrophication (Hagy et al., 2004). Major eutrophication and changes 

to nutrient biogeochemical cycling has been observed in lakes and reservoirs caused by natural and 

anthropogenic disturbances such as land use changes, increases in agricultural activity, climate 

change, population increase (Vollenweider, 1968; Vitousek et al., 2009; Liu et al., 2012; Jeppesen et 

al., 2005).  

Phosphorus, a dynamic and biologically active element, is usually quantified in aquatic 

systems by the particulate (Particulate Phosphorus, PP), dissolved (Soluble Reactive Phosphorus, 

SRP) and the sum of these fractions (Total Phosphorus, TP). Phosphate (PO43-), the dissolved ion, a 

fraction of SRP, can be sorbed to particles and during cycling can be released from the particulates 

into the water column. Phosphate is also formed by the enzymatic hydrolysis of dissolved and 

particulate organic phosphorus by the activity of microorganisms (Correll, 1998). The phosphate ion, 

dissolved and particulate, is the only form of phosphorus that is assimilated by biological activity 

such as bacteria, phytoplankton, and macrophytes (Correll, 1998). As it is in high demand in 

phosphorus-limited systems, the concentration of phosphate is usually low (Schindler, 1974). When 

deposited, particulate phosphorus may be utilized by filter feeders, bacteria, and fungi, ultimately 

releasing orthophosphate back into the water (Correll, 1998). Particulate phosphorus thus contributes 

to the total bioavailable phosphorus in rivers, which can then be assimilated by phytoplankton 

(Edmond et al., 1981; Correll, 1998; Correll et al., 1999; Bennett et al., 2001), therefore it was 
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considered in this study. Extraction of inorganic phosphorus from rocks, which is commonly used in 

fertilizer, has increased since the 1950’s (Tilman et al., 2002), but began to decrease in Canada after 

the 1980’s (Korol, 2002). Globally, phosphorus export from fertilizer is 14.2 Tg of P·y−1 and manure 

is 9.6 Tg of P·y−1 and their application collectively exceeds the phosphorus uptake by crops 

(MacDonald et al., 2011). Human feces and urine accounted for 30-50% phosphorus and detergents 

accounted for 50-70% phosphorus, in wastewater discharge (EPA, 1976). More recently, an average 

person produces approximately between 0.750 and 0.9 kg P person-1 yr-1 of which approximately 20% 

to 50% is captured by secondary treatment of sewage (CRC, 2005; Kristensen, 2002; Glennie et al., 

2002).  

 

 

Figure 1. Simple conceptual model of phosphorus sources and sinks (Schofield, 2012). 

 

In the 1960’s phosphorus from laundry detergents contributed heavily to phosphorus inputs to 

rivers from WWTP discharge (Maki et al., 1984). In response to eutrophication caused by high 

phosphorus levels, heavy focus was directed towards reducing those inputs. The Great Lakes Water 

Quality Agreement of 1972 required all municipal WWTP with discharge of over 3800 m3/L to limit 
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the annual TP average in their effluent to 0.1 mg/L (Dolan, 1993). The Canadian government became 

committed towards reducing phosphorus in detergent to 8.7% in 1970 and reduced it further to 2.2%  

in 1972 (Maki et al., 1984; Schindler, 1974).  

More recently, there has been a growing concern over the ecological health of the Grand 

River, located in southern Ontario, as population and urban development continues to increase 

(Cooke, 2011). This river is a paradigm for studying the effects of a number of elements, such as 

fertilizer runoff from agricultural lands and point source discharges from urban areas as population, 

urban development, animal farming, and extreme climate increases (Figure 4-6). Given that land-use, 

population, and climate patterns have changed over time, it is vital to examine the historical trends of 

phosphorus loads in the Grand River watershed and to connect these changes in anthropogenic 

activity to changes in phosphorus export. The Grand River is a culturally important river because of 

tourism and fisheries, with highly cultivated lands extending from the central to the lowest region of 

the catchment and with an increasing population in the central regions (Cooke, 2011). It is also Lake 

Erie’s largest Canadian tributary, providing 40% of the phosphorus load within its eastern basin 

(Sandra Cooke, personal communication). The TP in eastern Lake Erie has been on the rise since 

1995 (Charlton and Milne, 2004), and in 2002 it experienced the highest spring TP loadings since the 

1970’s (Rockwell et al, 2005). As a result of these critically high TP loadings in Eastern Lake Erie, it 

is crucial to gain a better understanding of the historical nutrient dynamics patterns and causes in the 

Grand River watershed. 

Although there are many long term studies that have demonstrated how phosphorus is 

influenced by different factors temporally and spatially (Jeppesen et al., 2005; Billen et al., 2007; Parr 

and Mason; 2003; Duan et al., 2007; Li et al., 2006; Ovalle et al., 2013; Tao et al., 2010; Zhang et al., 

2013) there are no long-term phosphorus studies on the Grand River watershed that examine 

phosphorus loadings as well as their drivers. A previous study by Hood (2012), investigated the long 

term phosphorus concentration trends in the Grand River, however, the study did not analyze loadings 

and used arithmetic instead of flow weighted concentrations. Using arithmetic concentrations can 

raise potential problems for instances where concentration in the river might have been overestimated 

during high flow events or underestimated during low flow conditions (Meal et al., 2011). It may be 

difficult to fit best management practices for large rivers within highly urban and agricultural 

watersheds such as the Grand River Watershed (Hood, 2012). This is due to best management 

practices being partial towards smaller less complicated watersheds that do not consider the temporal 
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dynamics of nutrients or the difference in landscape throughout the watershed (Brannan et al., 2000; 

Gitau et al., 2006; Garen et al., 2005).  

In this study information and data from several sources including the Provincial Water 

Quality Monitoring Network (PWQMN), the Canadian Water Survey, and Grand River Conservation 

Authority (GRCA), were analyzed in order to better understand the trends in nutrient concentrations 

and fluxes and potential contributing factors. The phosphorus data was collected for 28 sites, but only 

five sites were analyzed in this study due to their location, large sample number, and coverage over 

the years. Although the sampling dates back to 1965, this was not the case for all of the sites that were 

monitored including some of the sites analyzed here. Spatial and temporal trends of land-use, climate, 

agriculture, and development were examined in order to identify possible causes of the phosphorus 

patterns observed.  

The objective of this study is to analyze the historical trends in phosphorus loadings in the Grand 

River basin and the impact of changing environmental and anthropogenic factors on the trends. Flow 

weighted concentrations and loads of different forms of phosphorus are examined over the past 46 

years from 1965 to 2010 in 3 regions of the watershed. I hypothesized that the land-use, climate, and 

population changes and variability over the years and across the whole watershed would drive 

phosphorus loadings accordingly (Howarth et al., 1996); and that loads and concentrations would 

increase from upstream to downstream regions due to more urban land use but the load would also be 

higher due to the cumulative effect of rivers (Vannote et al., 1980). More specifically, the phosphorus 

ban in detergents in the early 1970’s should have lowered the SRP loadings from WWTP discharges 

in the Grand River watershed. After that drop in SRP load and concentration, it should have increased 

with population growth (point source) and intensified animal farming (non-point source). Fertilizer 

application accounts for a large portion of the PP load to rivers (Stadelmann et al., 2002), therefore 

we would expect PP trends in loadings and concentrations correlate with the trends in fertilizer use. 

Historically, PP loadings would have been expected to be high in the 1960’s and 1970’s and decrease 

in the 1980’s due to less fertilizer use. In addition, recent increases in temperature would have likely 

caused high runoff and consequently an increase in both SRP and PP. 
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Chapter 2 

Materials and Methods 

2.1 Study Area 

The Grand River, a seventh order river, constitutes the largest tributary river flowing into the north 

side of Lake Erie and has one of the biggest watersheds in Southern Ontario. It comprises 10% of the 

total Lake Erie drainage area (Nelson et al., 2004) with an average annual discharge of 62 m3 s-1, 

draining an area of approximately 6800 km2 and a length of 300 km (table 2 & 5). It is one of the two 

major tributaries draining into Lake Erie (Singer, 2003). The Grand River has a population of 

approximately 1 million people, half of which reside in the region of Waterloo (Table 3, Fig 4). The 

watershed is situated in a landscape that has been shaped by the last glacial period, resulting in highly 

variable soil and topography (Jyrkama & Sykes, 2007). Agricultural land constitutes 71% of the 

basin, followed by 12 % wetland, 7% forested, and 5% urban land (Table 4). There are 29 sewage 

treatment plants across the watershed, ranging mostly from traditional secondary treatment 

(degradation of biological content of sewage) to advanced tertiary treatment (nutrient removal and 

improvement of water quality) (Table 3). Approximately 80% of the population is serviced by 

conventional or advanced wastewater treatment while 20% is receives septic system treatment 

(Cooke, 2006). About 66% of the population serviced by WWTPs are serviced by secondary 

treatment and the remaining third by tertiary treatment (GRCA, 2008). The secondary and tertiary 

treatments may be adequate in sewage phosphorus removal and may not contribute to overall 

eutrophication as much but they may also not capture all of the phosphorus in sewage as population 

grows. The Grand River watershed has eight different tributaries and is divided into three distinct 

regions that are organized by geology and land use (Fig 8). 

The catchment contains Paleozoic limestone and shale overlain by calcite rich glacial drift. 

The basin geology is mainly silt and clay tills on top of permeable limestone with outwash sand, 

kame, and gravel deposits (Rott et al., 1998). Landforms formed during the last ice retreat event, 

12500 to 15000 years ago, and subsequent erosion produced the characteristics observed in the 

landscape within the Grand River watershed (Holysh et al., 2000; Nelson et al., 2004). The upper part 

of the watershed is characterized by till plains, providing the region with low permeability and 

varying elevation (Holysh et al., 2000). The soil is poorly drained, and as a result, the land requires 

tilling for agriculture (Nelson et al., 2004). The Quaternary geology combined with the extensive 
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agricultural activity in this region heavily contributes to runoff. Two of the four major reservoirs, 

Conestoga and Belwood Lake, capture most of the runoff, and according to Cooke & Loomer (2011), 

the water in terms of phosphorus and dissolved oxygen is of better quality in the upper reaches than 

the lower reaches which will be verified in this study.  

The central region of the Grand River is characterized by highly permeable sand and gravel 

kame and moraines with high variability in elevation, and large groundwater reserves used as a 

drinking water supply (Nelson et al., 2004). The western part of this region is very arable and has 

extensive tile drainages (Cooke, 2011) (Fig 10). Water quality in this region is considered fair at best, 

as it comprises the major urban cities, wastewater treatment plants, and intensive agriculture, which 

severely degrade the water quality in this region (Cooke & Loomer, 201l). Nutrient-rich sites are 

usually found to be downstream of urban development or intensive agriculture (Cooke, 2006). In 

those regions, high levels of phosphorus contribute to prolific aquatic plant growth and consequently 

to lower levels of dissolved oxygen.  

The lower region of the Grand River (LGR) extends across lacustrine clay deposits and lower 

elevation variability (Holysh et al., 2000), supporting agriculture and generating significant runoff 

(Nelson et al., 2004). The surface water quality in terms of nutrients in this part of the watershed is 

generally not as poor as the central regions, however, quality still tends to be relatively marginal 

(Cooke & Loomer, 2011). In the LGR, the phoosphorus concentration always exceeded the provincial 

Water Quality Objective of 0.03 mg/L from 2003-2008, approaching 10 times the objective in the 

spring (Cooke, 2010). This appears to be due to the geology and land use practices. The geology sets 

boundaries of the type of water quality one would expect in a specific region while land use alteration 

contributes to the overall condition of the river (Cooke, 2011). For example, subbasins characterized 

by clay and till plains usually have the highest nutrient loads. The lower reaches of the Grand River 

tend to progressively deteriorate as it travels from upstream to downstream due to cumulative impact 

and river impoundments which make the lower reaches of the river have a lake-like behavior (Cooke, 

2006). 

2.2 Material 

Nutrient data were obtained from the Provincial Water Quality Monitoring Network (PWQMN) 

(Aaron Todd, personal communication). The PWQMN a network of Ontario Conservation 

Authorities, the Ministry of Environment (MOE), Ontario parks, and local municipalities formed to 
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monitor water quality parameters and make it available for free. The water quality monitoring in the 

Grand River began in 1965, covering 400 sites in Ontario, 28 of which are within the Grand River 

watershed. The 28 sites cover data between 23 and 48 years between 1965 and 2012. The Grand 

River Conservation Authority (GRCA) collects eight samples per year per site from March to 

November, while the samples are analyzed in the MOE. Prior to 1996, 12 samples were collected 

every year, one for each month. Some sites were sampled more frequently than others, with some 

sites consisting of several samples per month and others consisting of less than 1 sample per month. 

Site 16018403502 (3502) is collected more frequently by the MOE to get a better estimate of the 

loading to Lake Erie (Fig 8) (Cooke, 2006). Furthermore, there was less winter data and more 

summer data indicating a bias towards summer sampling. For all nutrients, the upper reaches have 

less data over the years than the middle and lower reaches. To increase accuracy, I increased the 

number of samples and years sampled by combining two sites in the upper and the central regions of 

the watershed. Each of the two sites were close to one another and did not have major water control 

infrastructure or tributaries in between. In the lower reaches, the site I chose had two different 

PWQMN identification numbers before and after 1980, therefore the two datasets were combined to 

give a longer time frame. 

Lastly, there were several outliers in the dataset, which were likely typos or recording errors. 

Many values appeared to be enlarged by a factor of 1000 while others were either negative or were a 

much larger number than the surrounding values. The outliers were either excluded, corrected by 

dividing by a factor of 1000, or made a positive value in cases where it was most obvious. This study 

investigates data from 1965 to 2011 at 5 sites (Fig 8) within the Grand River, located in the upper, 

middle, and lower parts of the basin (Fig 7). The three regions were constructed based on their 

geographical location as well as the location of the sites chosen. The nutrients TP and SRP were 

selected based on their relevance to the health of aquatic ecosystems. Particulate Phosphorus (PP) was 

calculated by subtracting SRP from TP. Because the TP used in this data analysis was not filtered, the 

TP concentration refers to the total dissolved phosphorus and mostly an unknown part of particulate 

phosphorus (Meybeck, 1982). For the sake of simplicity, here we are assuming that TP is PP plus 

SRP. 

The concentration data were then used as input to the Flux32 software, to calculate flux 

(concentration x discharge). Flux32 is a software designed for estimating loadings of water quality 

constituents at a site over a time period in a tributary or river (Walker, 1999). This model was 
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obtained from the US Army Corps of Engineers (David Soballe, Personal communication). Grab-

sample nutrient concentrations for at least one year, corresponding flow measurements (daily or 

instantaneous), and a complete flow record (mean daily flows) is required. Flux32 maps the flow over 

concentration relationship from the sample data and the entire flow data and uses the preferred 

algorithm to calculate a load for a single parameter at a site over a time period. This provides an 

estimate of total mass transport, flow, and associated errors for the whole period of study. Flux32 also 

has the ability to classify the data into groups based on flow, date, and/or season to reduce bias 

(Walker, 1999). Flux32 was used to calculate fluxes over two, five, or six years in the Grand River. 

The Flux32 calculated the load from the FWMC (Flow Weighted Mean Concentration) and flow for 2 

to 6 year time spans. FWMC is the fraction of total load over total flow and it is more representative 

than arithmetic concentrations because concentrations are strongly influenced by stream flow (Meal 

et al., 2011). Therefore, normalizing concentrations for flow removes any variations that might 

indicate a trend in results when it is actually due to correlations with flow. This method was chosen 

specifically for the Grand River watershed because there was a weak positive relationship between 

concentration and discharge. The equation for calculating the FWMC is as follows: 

 

����=1�(��∗��)1�(��) 

    Where qi = flow in the ith sample 

               ci = concentration in the ith sample 

 

The FWMC represents the total load divided by the total discharge over a time period. The 

ratio of PP to SRP was calculated by dividing the PP flux by the SRP for a specific time period for 

the different regions. 

Daily river discharge data was retrieved from the Water Survey of Canada’s hydrometric 

archive, a publicly accessible online data (Environment Canada, 2012), and GRCA (Stephanie 

Shifflett, personal communication). The flow station closest to the sampling sites was used to 

calculate load. For the site located at the mouth of the Grand River, Dunville, flow data was available 

from 2009-2010 only. As a result, two stations upstream of the site, York and Mackenzie, were used 

to estimate the total flow for the LGR from 1974-2008. Combining the two upstream flows from 

2009-2010 yielded higher flows than observed in 2009-2010 in site of the LGR. Using a proportional 
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correction approach (estimated over actual multiplied by 100%), it was determined that the actual 

flow was approximately 86% of the estimated flow. Using the t-test, it was found that there was no 

significant difference between the estimated and corrected values and the actual values from 2009-

2010, therefore, this method was used to extrapolate the flows for the years prior to 2009.  

Climate data, obtained from the GRCA, were completed by filling in gaps at some stations 

using data from other nearby climate stations. Daily temperature (°C) and total precipitation (mm) 

data is available from 1950 to 2005 at 21 stations within the watershed. The averages of the minimum 

and maximum temperatures were calculated for each day.  

A population census was obtained from Statistics Canada for the counties within the 

watershed. The population within the watershed boundaries was calculated by estimating the portion 

of the counties within the basin then multiplying the total population by the percentage within the 

watershed. If there was a city within the watershed with a known population, the population was 

subtracted before estimating the county population within the basin. This approach is fairly accurate 

considering the largest populations are within the largest cities in the center of the basin: Kitchener, 

Waterloo, Cambridge, and Brantford. 

 

Table 1. Summary of Data used for this thesis project and their sources, contacts, and the year of the 

data.   
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2.3 Regions 

The three areas chosen for this study were constructed based on the location of the sites chosen in 

each of the regions (Fig 7). This was implemented so each region could be better represented by the 

sites analyzed in this study. The three regions are named Upper Grand River (UGR), Central Grand 

River (CGR), and Lower Grand River (LGR). Using GIS layers and other data (Tables 2-5), 

characteristics were developed for each of the regions. 

The UGR is characterized by 70% agriculture, 25% forest and wetland, and 5% urbanized 

land. Within this region, the Grand River flows for approximately 35 km, and has an average 

discharge of 5.5 m3/s and an elevation of 530-475 m.a.s.l. The UGR has an area of 585 km2, 

comprising 9% of the total Grand River watershed. The population density in the UGR is 113 

people/km2, with a population of approximately 66000. This region has smaller and fewer WWTP 

with a total capacity of 1726 m3/day. Slope erosion, which is the % area of land that is undergoing 

erosion, accounts for 0.05% of the land in this region. The sites in the UGR have a PWQMN 

identification number of 16018409002 (9002) and 16018403902 (3902). 

The CGR land cover is constituted of 69% agriculture, 19% forest and wetland, and 12% 

urban land. The length of the river spans over 110 km through an area of 3167 km2 with an elevation 

of 547-310 m.a.s.l and a discharge of 41 m3/s. The CGR population density (170 people/km2) is the 

highest among the three regions, as it contains the three major cities, Kitchener, Waterloo, and 

Cambridge. This region has the largest WWTPs with a total capacity of 339 x 103 m3/day. The slope 

in this region is 110m with 0.63% slope erosion. The CGR sites have the PWQMN identification 

numbers 16018401002 (1002) and 16018401102 (1102). 

Agriculture makes up 72% of the LGR land cover, whereas wetlands and forests make up 

19% of the land cover, and urban land-use makes up 9%. The river in this region runs for 138 km and 

has an elevation of 310-170 m.a.s.l. The population density is 122 people/km2 and a total WWTP 

capacity of 112 x 103. The area of this region is 3015 km2 with 1.13% slope erosion. One location was 

chosen to be analyzed for this region which had two site number 16018403583 (3583) and 

16018403502 (3502) over the years.  

Due to the large number and variability in time and space in the dataset available for analysis, 

we looked at selected sites over the entire period of the data collection to gain better understanding of 

the nutrient trends over time. Five sites in the three regions in the watershed were analyzed in detail. 
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The UGR is represented by sites 9002 and 3902 located at 0 and 13 km from the headwaters 

respectively. Sites 1002 and 1102 at 127 and 131 km from the headwaters, respectively, are 

downstream of major treatment plants and represent the CGR. The major WWTP are in Kitchener, 

Waterloo, Cambridge, and Guelph (Fig 8; Table 3).  The LGR is represented by sites 3502 and 3583, 

located at approximately 255 km form the headwaters (Fig 8; Table 2). There is also a large WWTP 

in the LGR located at Brantford. Comparisons between the different regions will give us an 

understanding of the changes in the nutrient trends and dynamics within the Grand River over time. 

Different anthropogenic and environmental factors will be examined to aid in determining the causes 

in the shifts in phosphorus patterns. The temporal patterns in fluxes of TP, SRP and PP were 

evaluated in the UGR, CGR, and LGR sites from the years 1977 to 2010 (missing 1978 and 1994), 

1965 to 2009, and 1974 to 2010, respectively, to understand spatio-temporal patterns. 
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Chapter 3 

Results 

3.1 Temporal Trends 

Total Phosphorus 

TP, SRP, and PP loads were high prior to the 1970’s, decreased in the 1970’s, and increased in the 

2000’s (Fig. 2). For example, faster decreases can be seen during some period and there is an 

increasing trend in more recent periods. The CGR and LGR sites show an increasing trend in the 

period of 2005-2009. Of the three stations, the TP average flux was highest in the LGR until 2005-

2009, when the CGR recorded the highest flux value (520 tons/year) among the 3 regions. The 

average TP flux decrease from 1975 to 2005 was greater in the LGR (278 tons/year) than the CGR 

(204 tons/year). In the UGR the decrease in the average flux from 1975-2009 was lower (0.53 

tons/year) than the decrease in the downstream regions. 

Upper Grand River Sites: In the years 1977 and 1979, the average TP flux and concentration 

values were 8.35 tons/year and 0.050 mg/l, respectively. The TP increased in 1980-1984 (average 

flux: 13 tons/year, average concentration: 0.076 mg/l). In 1985-1989, the average flux decreased to 

6.78 tons/year and the average concentration to 0.0389 mg/l. There was another large decline, from 

1990-1994 (average flux: 5.84 tons/year, average concentration: 0.034 mg/l) to 1995-1999 (flux: 3.77 

tons/year, concentration: 0.023 mg/l). A spike in the trend appears in 2000-2004 (average flux: 10.6 

tons/year, average concentration: 0.061 mg/l) followed by a decrease in the period 2005-2009 

(average flux: 7.82 tons/year, average concentration: 0.040 mg/l). 

Central Grand River Sites: In the CGR, there was an increase in average TP concentration 

and flux from 1965-1969 to 1970-1974. The average concentration increased from 0.226 mg/l to 

0.362 mg/l, while average flux increased from 262 tons/year to 421 tons/year. This increase was 

followed by a sharp decline from 1970-1974 (average flux: 421 tons/year, average concentration: 

0.362 mg/l) until 1985-1989 (flux: 169 tons/year, concentration: 0.126 mg/l). Another increase 

appeared in 1990-1994 (average flux: 302 tons/year, average concentration: 0.223 mg/l). In 1995-

1999, TP values decreased (average flux: 110 tons/year, average concentration: 0.093). Between 2000 

and 2009, TP average flux and concentration increased by 340 tons/year and 0.198 mg/l, respectively. 
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Lower Grand River Site: TP average flux in the LGR decreased from 1975-1979 (496 

tons/year) to 2000-2004 (218 tons/year). The decrease in average flux slowed down between 1985-

1989 (365 tons/year) and 1990-1994 (361 tons/year). TP average concentration increased 3 times over 

the 31 years, in 1980-1984 (0.284 mg/l), 1990-1994 (0.181 mg/l), and 2005-2010 (0.158 mg/l). Over 

the years, the overall average flux and concentration decreased by approximately 151 tons/year and 

0.067 mg/l, respectively.  

 

Soluble Reactive Phosphorus  

The SRP declined over time until the more recent years (2005-2010). Unlike TP and PP, the SRP 

average flux and concentration increased in all of the 3 regions. The average flux was highest in the 

LGR until 2005-2009 where the CGR had the highest flux value (139 tons/year) among the 3 regions. 

The SRP flux decrease from 1975 to 2005 was higher in the LGR (35 tons/year) than the CGR (30 

tons/year). On the contrary, the PP flux in the UGR increased from 1975 to 2005 (1.67 tons/year). 

Upper Grand River Sites: In the UGR the TP average flux and concentration values in 1977 

and 1979 were 5.816 tons/year and 0.035 mg/l, respectively. The UGR TP increased in 1980-1984 

(average flux: 10.5 tons/year, average concentration: 0.062 mg/l). In 1985-1989, the average flux 

plummeted to 5.30 tons/year and the average concentration to 0.030 mg/l. Following the steep drop, 

the TP suddenly decreased again from 1990-1994 (average flux: 4.44 tons/year, average 

concentration: 0.026 mg/l) to 1995-1999 (average flux: 2.61 tons/year, average concentration: 0.016 

mg/l). In 2000-2004 the SRP peaked again (average flux: 6.67 tons/year, average concentration: 0.037 

mg/l) followed by a further smaller increase in 2005-2009 (average flux: 7.49 tons/year, average 

concentration: 0.38 mg/l). 

Central Grand River Sites: In the CGR, there was an increase in SRP average concentration 

and average flux from 1965-1969 to 1970-1974. The average concentration increased from 0.133 

mg/l to 0.154 mg/l, while average flux only increased from 177 tons/year to 178 tons/year. There was 

a sharp decrease in 1975-1979 (average flux: 79.7 tons/year, average concentration: 0.061 mg/l). The 

SRP increased gradually from 1980-1984 (average flux: 76.9 tons/kg, average concentration: 0.062 

mg/l) to 1990-1994 (average flux: 88.8 tons/year, average concentration: 0.066 mg/l). Another dip 

appeared in 1995-1999 (average flux: 37.1 tons/year, average concentration: 0.031 mg/l). Between 
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2000 and 2009, TP average flux and concentration increased by 89.3 tons/year and 0.051 mg/l, 

respectively.  

Lower Grand River Sites: SRP average flux and concentration patterns were not similar to 

those of TP and PP. SRP average flux in the LGR increased from 1975-1979 (93.9 tons/year) to 

1985-1989 (124 tons/year). It then decreased gradually until 2000-2004 (58.5 tons/year). In contrast, 

the average concentration increased from 1975-1979 (0.043 mg/l) to 1980-1984 (0.064 mg/l). It 

dropped to 0.054 mg/l in 1985-1989 and gradually decreased to 0.05 mg/l. The average concentration 

dropped further to 0.032 mg/l in 2000-2004. Both the flux and concentration increased in 2005-2010 

(average flux: 116 tons/year, average concentration: 0.053 mg/l). 

 

Particulate Phosphorus  

PP average concentration and flux trends were similar to the TP trends and showed a general decline 

over time and an increasing trend in more recent years in the CGR and LGR (Fig 2). PP average flux 

was highest in the LGR until 2000-2009 where the CGR average flux was highest (380 tons/year) 

among the 3 regions. The TP average flux decreased from 1975 to 2005 was higher in the LGR (243 

tons/year) than the CGR (175 tons/year). In the UGR the PP average flux decrease from 1975 to 2010 

was lower (2.210 tons/year) than the decrease in the downstream regions. Upper Grand River Sites: 

PP flux and concentration decreased slightly from 1977-1979 (average flux: 2.536 tons/year, average 

concentration: 0.0152 mg/l) to 1980-1984 (average flux: 2.519 tons/year, average concentration: 

0.0147 mg/l). It dropped to a flux of 1.480 tons/year and a concentration of 0.0085 mg/l in 1985-

1989. It steadily decreased until a rise (average flux: 3.913 tons/year, average concentration: 0.0231 

mg/l) in 2000-2004. In 2005-2009, the average flux plummeted to 0.326 tons/year and the 

concentration to 0.002 mg/l.  

Central Grand River Sites: In the CGR, there was an increase in TP average concentration 

and flux from 1965-1969 to 1975-1979. The average concentration increased from 0.093 mg/l to 

0.233 mg/l, while average flux increased from 85 tons/year. This increase was followed by a sharp 

decline in 1980-1984 (average flux: 138 tons/year, average concentration: 0.362 mg/l) and decreased 

further in 1985-1989 (average flux: 169 tons/year, average concentration: 0.062 mg/l). In 1990-1995, 

the constant decrease was interrupted by an increased in PP (average flux: 213 tons/year, average 

concentration: 0.157 mg/l). PP values decreased again in 1995-1999 (average flux: 73 tons/year, 
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average concentration: 0.062 mg/l). After 2000, PP average flux and concentration escalated, 

increasing from 2000-2004 to 2005-2009 by 250 tons/year and 0.147 mg/l, respectively.  

Lower Grand River Sites: PP average flux in the LGR decreased from 1975-1979 (402 

tons/year) to 2000-2004 (159 tons/year). The average flux increased from 1985-1989 (245 tons/year) 
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Figure 2. TP, SRP, and PP average FWMCs and average loads in the three regions of the Grand 

River; UGR (1977-2010), CGR (1965-2009), and LGR (1974-2010) displayed over time. Note: 

Missing years in UGR (1978, 1994). 

 

to 1990-1994 (254 tons/year). PP average concentration showed an increase 3 times over the 35 years, 

in 1980-1984 (0.220 mg/l), 1990-1994 (0.127 mg/l), and 2005-2010 (0.105 mg/l). Over the years, the 

overall average flux and concentration decreased by approximately 173 tons/year and 0.077 mg/l, 

respectively. 

 

Particulate Phosphorus:Soluble Reactive Phosphorus Flux Ratio 

The PP:SRP increased from the 1960’s then decreased in the 1980’s  (Fig 3). However, in the CGR 

the PP:SRP ratio increased from 1965-2010. In the UGR, PP:SRP average flux ratio decreased from 

1977-1979 (0.44) to 1980-1984 (0.24). The ratio then increased to 0.59 in 2000-2004. It then dropped 

to 0.04 in 2005-2009. From 1977-1979 to 2005-2010, the PP:SRP ratio declined by 0.39 and from 

1977-1979 to 2000-2004 it increased by 0.15. 
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Figure 3. PP:SRP average flux ratio in the Grand River in the UGR, CGR, and LGR from 1977-

2010, 1965-2009, and 1974-2010, respectively. Note: There are missing years in the flow 

corresponding concentrations for the UGR (1978, 1994). 

 

PP:SRP average flux ratio in the CGR increased from 1965-1969 (0.48) to 1975-1979 (3.82). 

It proceeded to decrease until 1985-1989 (0.96), increased in 1990-1994 (2.39), decreased in 1995-

1999 (1.97), and increased to 2005-2009 (1.98). In the CGR, the PP:SRP average flux ratio from 

1965-1969 to 2005-2009 increased by 2.26 and from 1975-1979 to 2005-2009 decreased by 1.084. 

From 1975-1979 to 1985-1989, the LGR flux PP:SRP ratio decreased from 4.28 to 1.95, 

respectively. Overall, the ratio decreased from 1975-1979 to 2005-2010 by a factor of 2.3. It 

increased in 1990-1994 (2.36) and 2000-2004 (2.72). 

3.2 Spatial Trends 

Between 1978 and 2010, TP load increased from the UGR to the LGR until 2005 (Fig 2). TP flow-

weighted average concentration shows a different trend than the load trend where it is higher in the 

CGR than the LGR during more time periods. The concentration in the CGR (0.294 mg/l) is higher 

than the LGR (0.225 mg/l) in 1975-1979. This is reversed from 1980-1984 to 1984-1989, where the 

LGR average concentration is higher than the CGR. In 1990-1994, the CGR average concentration 

(0.223 mg/l) was higher than the LGR average concentration (0.181 mg/l). The average concentration 
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in the LGR (0.132 mg/l) exceeded that of the CGR (0.093 mg/l) in 1995-1999. Between 2000-2004 

and 2005-2009, the CGR average concentrations increased again and were higher than those of the 

LGR average concentrations, especially in 2005-2009.  

Similar to TP load, SRP average flux increased from the UGR to the LGR until 2005-2009 

where the CGR (139 kg/year) had a higher average concentration than the LGR (116 kg/year). When 

compared to TP average concentrations between CGR and LGR, SRP average concentration varies a 

lot more between the two regions. The SRP average concentration in the LGR was higher than the 

CGR in 1980-1984 and 1995-1999. Prior to 1980, the SRP average concentration was 0.061 mg/l in 

the CGR and 0.043 in the LGR. After 1980, the LGR average concentration was 0.064 mg/l while the 

CGR average concentration was slightly lower with a concentration of 0.063 mg/l. Initially, the 

average concentration in the CGR was higher than the LGR but became less obvious from 1985-1989 

to 1990-1994. In 1995-1999, the LGR average concentration (0.05 mg/l) was higher than the CGR 

(0.031 mg/l). From 2000-2004 to 2005-2010, the CGR had higher average concentration values than 

the LGR but was more noticeable in the more recent years with value of 0.053 mg/l in the LGR and 

0.091 mg/l in the CGR.  

When comparing the PP average load and concentration values between the CGR and LGR, it 

followed the same trend as the TP load increase from the UGR to the LGR until 2005 (Fig 1). Similar 

to TP, PP average concentration had a different trend than the average load trend where it is higher in 

the CGR than the LGR during more time intervals. The average concentration in the CGR (0.233 

mg/l) is higher than in the LGR (0.182 mg/l) in 1975-1979. From 1980-1984 to 1984-1989, the LGR 

average concentration becomes higher than the CGR average concentration. In 1990-1994, the CGR 

average concentration (0.157 mg/l) was higher than the LGR average concentration (0.127 mg/l). In 

1995-1999 the average concentration in the LGR (0.083 mg/l) exceeded that of the CGR (0.062 

mg/l). Between 2000-2004 and 2005-2009, the CGR average concentrations increased again and were 

higher than those of the LGR concentrations but the difference between the sites were higher in the 

later years. 

PP:SRP average flux ratio was higher in the LGR than the CGR from 1975-1979 to 1985-

1989 and in 2000-2004 (Fig 3). The difference in the ratios was highest in 1980-1984 with a ratio of 

3.82 in the CGR and a ratio of 4.28 in the LGR. The ratio of PP:SRP flux was lowest in the 1990-

1994 with the CGR and LGR have ratios of 2.40 and 2.36, respectively. 
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Chapter 4 

Discussion 

4.1 Past to Present 

Generally, TP and SRP concentrations and fluxes were high prior to the 1970’s, decreased 

during the 1970’s, experienced less variation in the 1980’s and 1990’s, and started increasing after 

2000 (Fig 2). The Grand River and tributaries experienced stress from rising phosphorous loading in 

the late 1960’s and early 1970’s from domestic and agricultural sources (Cooke, 2006; Fig 4&5). The 

decline in SRP in the 1970’s likely resulted from the introduction of the ban in phosphate containing 

laundry detergents and the upgrades of WWTPs. Although the phosphate ban legislation was 

established in 1972, it was implemented over several years, hence the reason we are seeing a 

continued decline over the following years. Smaller SRP declines were observed in the 1980’s and 

1990’s despite continued population growth (Fig 4). This may be due to increased awareness and use 

of best management practices by farmers, as well as WWTP upgrades in the 1980’s and again in the 

1990’s. The latter occurred in the largest WWTP’s in the basin, Waterloo, Kitchener, Cambridge, and 

Brantford, located in the central and lower reaches of the watershed (Fig 8). All WWTPs, except 

Cambridge, were built prior to the commencement of the PWQMQ program. The Waterloo, 

Kitchener, and Brantford plants are secondary treatment plants and were upgraded to improve 

dechlorination and aeration in 1987, 1989, and 2008, respectively (City of Kitchener, personal 

communication; Kelly Hagan, personal communication). The fairly large tertiary WWTP of 

Cambridge was built in 1978, however, this is not reflected in a noticeable decline in SRP around that 

time. This may be due to the steady increases in animal farming and population over the years. PP 

concentration and flux decreased after 1980 and continued to decrease in the 1990’s which may have 

been caused by the decrease in chemical fertilizer application over time (Fig 5). A possible factor that 

might have influenced those trends could be the legacy effect of historical fertilizer application 

(Woltemade, 2000; van Bochove et al., 2011). Similarly, a preliminary analysis of phosphorus 

analyzed during the period of 1981 to 2001 by the GRCA identifies a decrease in TP concentrations. 

This was attributed to successful planning and upgrades of WWTP’s and best management practices 

by farmers and residents of the watershed which have helped improve the water quality during that 

time period (Cooke, 2006).  



 

 20 

In the more recent years (between 2000 and 2010), there appears to be an increase in both the 

PP and SRP concentrations and loadings in the Grand River watershed. Although use of phosphate 

based fertilizer has been decreasing over the years, animal farming has intensified (Fig 5) which can 

supply the river with more SRP from manure (Spires and Miller, 1978). Agricultural lands are prone 

to runoff and the soils may still contain fertilizer phosphorous that was applied years prior. Increased 

development and land-use changes may have promoted PP export from the soils (Woltemade, 2000; 

Howarth et al. 2002). The reason we may be seeing an increase in TP in more recent years may be 

because animal manure provides more TP than chemical fertilizers globally, making phosphorus from 

manure a major driver in the global nutrient cycling (Bouwman et al., 2009; Galloway et al., 2010). In 

a study by van Bochove et al. (2011), the central and upper parts of the Grand River were found to 

have higher phosphorus loadings in more recent years due to phosphorus desorption in soil. We 

speculate that the widespread historical fertilizer application in the Grand River enriched the soils to 

levels that are now at high risk of PP desorption, which may have caused the elevated phosphorus 

loads observed in the Grand River after 2000.  

Furthermore, temperature increased over time and precipitation increased from the 1970’s to 

the 1990’s. This could have had a substantial impact on the nutrient dynamics. Freshwater systems 

are vulnerable to climate change, which can impact the water quality of aquatic ecosystems. Increased 

temperature and increased winter rainfall in some European rivers have increased the nutrient export 

from agricultural fields into rivers (Weyhenmeyer et al., 1999, 2005; George et al., 2004).  

Other long-term studies on watersheds in the Lake Erie basin have found similar patterns of 

SRP loads decreasing in the 1970’s and increasing in the 2000’s. In the highly agricultural rivers of 

Ohio, the Sandusky and Maumee showed a decline in SRP in the 1970’s and an increase in the 1990’s 

and 2000’s (Daloğ lu et al., 2012). Using results from SWAT modeling, it was identified that the 

increased precipitation, changes in fertilizer application methods, and best management practices that 

increase phosphorus in stratified soil were contributing to the increased SRP from the mid 1990’s 

until 2010. A smaller urbanized Lake Erie watershed, Cuyahoga River, also shows a similar trend of 

increasing TP and SRP in the 2000’s, where the increase in TP was associated with storm events and 

the increase in SRP was associated with dry events (Yuan et al., 2013). It was also pointed out that TP 

and SRP loadings were extraordinarily high in the early 1980’s. This is consistent with our results, 

which also show high PP levels in the 1980’s. Another long-term study on the Yangtze River in 
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China has also shown an increasing trend in SRP in some of its tributaries in more recent years 

presumably due to urban and industrial development (Liu et al., 2003). 

A study by Hood (2012) shows a decrease in TP and SRP concentrations in the Grand River 

from 1965-2009. This puzzling incongruence could be explained by the difference in the methods 

used to analyze the datasets. For example, in Hood (2012) arithmetic concentrations were used 

instead of flow weighted concentrations. This would have skewed results towards lower values due to 

a sampling bias towards higher flow events (Fig 7) because the concentrations were not normalized 

for flow. In this study, the outliers and typos were also not excluded and hence may have altered the 

TP and SRP concentration patterns.  

The ratio of PP:SRP in all the regions decreased in the 1980’s (Fig 3), which corresponds 

with the time when chemical fertilizer use began to decrease. Generally, the PP:SRP ratio decreased 

from the 1970’s to the 2000’s and is supported by a more aggressive decline in PP than SRP. This 

denotes that PP in runoff may have decreased over this time period accordingly with decreasing 

fertilizer use. The CGR and LGR PP:SRP ratio seem to have a slight increasing trend in the 2000’s. 

This could have been caused by the shift in sampling methods that target higher precipitation events, 

which can lead to more particulate nutrients in runoff. Furthermore, considering the more intense 

increase in animal farming in the more recent years, there should be a decreasing rather than an 

increasing trend in more recent years. On the other hand, the increasing ratio could be an indication of 

phosphorus desorption in soil, resulting in increased phosphorus in runoff from the central region 

since it has extremely fertile soil and an extensive tile drainage network (Fig 10). It has been shown 

that tile drainages tend to increase SRP and PP transport in high flow events but the SRP export may 

continue to be high in successive flow events due to desorption from soil (Gentry et al., 2007; Gächter 

et al., 2004). Further work is required to pinpoint whether the PP:SRP ratio is indeed increasing. This 

can be done by looking at yearly ratios rather than 5 year intervals and running a statistical analysis 

on the data to see whether the increase is significant. 

The effects of seasonality have been observed to be major in watersheds where climate, 

eutrophication, and land-use practices vary from season to season (Alberts et al., 1978). For many 

agricultural watersheds in the northeastern US, approximately half of the annual precipitation ends up 

in the river. The sources and impacts of the stream flow may vary among seasons. During the winters, 

subsurface discharge under fully recharged hydrological conditions may dominate stream flow. While 

during the summers, deeper subsurface discharge may control the stream flow (Pionke et al., 1999). 
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SRP concentrations were found to be twice as high in the summer than the winter in highly 

agricultural watersheds in Pennsylvania (Gburek and Heald, 1974). More than 60% of the exported 

SRP took place in the spring from February to April as a result of high flows due to ice melt. In 

another study on the mixed land-use Mahatango Creek in Pennsylvania, the maximum SRP loads 

were observed between September and December while PP concentration and flux values were 

highest during storm events. In a study by Richards et al., (2008), a 30 year trend analysis in seven 

Lake Erie tributaries identified that rivers experienced the greatest SRP decrease in the summer and 

fall seasons, while greatest SRP increases were associated with the spring season. Similarly, seasonal 

characteristics that can alter phosphorus concentration and load values may apply to the Grand River 

watershed, as it is in a similar geographical location and it is also a highly agricultural basin with a 

fair amount of urbanization. It has also been observed, the Grand River water quality deteriorates as it 

passes through the city of Waterloo located in the central reaches due to the impact of non-point 

agricultural sources in spring runoff (Cooke, 2011). Therefore, a seasonal analysis is required to 

further explore the causes of these trends. 

4.2 Upstream to Downstream 

TP and SRP increases from the higher reaches to the lower reaches. In the 1970’s, after the ban of 

phosphorus in detergents, the most prominent decrease in SRP occurred in the CGR (Fig 2). This 

suggests that the WWTP effluents have a larger impact on the dissolved component of the riverine 

phosphorus. Riverine SRP is usually derived from urban effluents and agricultural land with tile 

drainages (Meybeck, 1982; Mason et al., 1990; Xue et al., 1998). This is consistent with our findings 

of highest concentration in the CGR, since the CGR has the highest population density and the largest 

WWTP capacity among the 3 regions (Table 3; Fig 4). This region also has most of the tile drainages 

in the watershed (Fig 10). In comparison, Cooke (2006) reports similar trends of arithmetic 

phosphorus concentrations from 2000 to 2004, where they are lower in the upper region and have 

higher dissolved oxygen concentrations, therefore having the best water quality in the watershed. 

Hood (2012) observed a similar trend of increasing phosphorus concentrations from upstream to 

downstream reaches in the Grand River basin. A long term study by Duan et al., (2007) also 

demonstrated increasing nutrient loads from a less urbanized region to a more urbanized one, which is 

associated with increasing urban and industrial development as well as the accumulation of nutrients 

as it flows downstream.  
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The phosphorus (TP & SRP) concentrations in the CGR and LGR were generally similar, but 

the CGR values were sometimes higher. This can be supported by the fact that the central region is 

more populated and urbanized than the other regions and is continuing to expand (Table 3). PP and 

SRP loads were generally higher in the LGR than the CGR. The general increase in loads with 

distance downstream suggest phosphorus loads are collected and accumulated from various sources in 

the upstream regions as seen in several other watersheds (Alexander et al., 2007, Duan et al., 2011). 

While PP usually constitutes 95% of the TP naturally carried by rivers (Meybeck, 1982), the Grand 

River PP constitutes between 63-81 % of the TP in the LGR. A study on two agricultural watersheds 

in Sweden identified that the percentage of PP in the Phosphorus load was 35-66 % (Kronvang, 

1992). The PP:SRP ratio decreases farther upstream with the TP comprising 49-79% PP in the CGR 

(Fig 3). The increase in the percentage of PP in TP from CGR to LGR can be explained by several 

factors including higher soil erosion and clay and silt dominated geology in the lower region. 

Although the Grand River has an overall low erosion risk (van Bochove et al., 2011), soil erosion 

increases downstream (Table 5), most likely caused by the higher urbanization and land disturbances 

in the lower reaches. Erosion increases when there is land disturbance, high flow, and a lack of soil 

erosion management leading to higher sediment export to streams (Wolman, 1964; Clark & Woolcok, 

2000). This likely makes the river in those regions more susceptible to phosphorus enrichment due to 

phosphorus mobilization in the soil (Sharpley et al., 1990), which ultimately increases nutrient 

delivery to streams. The CGR and the LGR, where PP:SRP ratio tends to be much higher have more 

slope erosion and the lower reaches are clay dominated, which may provide the river with suspended 

sediments when land is altered and erosion is enhanced (Gumbs & Lindsay, 1982).  

The CGR also has the highest population density, largest WWTP capacity, and it is more 

urbanized than the UGR and LGR. This may explain why we notice more nutrient supply in the CGR. 

Groundwater recharge increases at the end of the central region and the beginning of the lower region, 

below the city of Cambridge (Sandra Cooke, personal communication; Holysh; 2000). This would 

play an important role as a dilution effect for the phosphorus concentrations in the LGR. In the more 

recent years, the CGR has had higher TP and SRP values than the LGR could be due to the 

intensification of animal agriculture in the central region in more recent years, but this needs to be 

confirmed by looking at cropland area change over the years. In Goolsby (2000), the highly 

agricultural Mississippi River basin also experienced an increase in downstream nutrients due to a 

cumulative effect. Thus, the high SRP and PP loads in the CGR and LGR may also be due to the 

cumulative effect of phosphorus loads from the upstream sources.  
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In 1982, a Basin Study was conducted, which recommended several steps to improve water 

quality in the Grand River (GRCA, 2014). The Guelph WWTP was upgraded, which improved water 

quality in the Speed tributary where the WWTP is located (CGR). There are also several WWTP 

upgrades and improvements in the Waterloo and Kitchener cities planned for the future. Lastly, the 

Rural Water Quality program was developed in 2001 to help farmers maintain the quality of the river 

water running through their farms (GRCA, 2014). 

Since anthropogenic non-point inputs of phosphorus from croplands are associated with soil 

erosion and runoff, soil erosion may influence the PP:SRP ratio as well as the TP fluxes in streams 

(Liu et al., 2000). Many studies in the literature have identified that phosphorus flux is significantly 

impacted by extensive agriculture practices, which may leave soils vulnerable to erosion and exposes 

the soil phosphorus to runoff (Boomer et al., 2012; Powers et al., 2013; Coulter et al., 2004). 

However, it is still unclear whether agriculture has increased over the years since we are seeing an 

increase in animal agriculture but a decrease in fertilizer use over time. The PP decrease in UGR in 

the 2000’s may not be significant since values are substantially lower than the values in the more 

downstream regions. The more or less stable loads and concentrations over the years in the UGR, 

suggest that population and land alterations are the major factors contributing to the changes in the 

phosphorus loads in the Grand River watershed. 

As predicted, prior to the 1970’s, the high SRP and PP fluxes and concentrations were 

correlated with high SRP from WWTP discharges and high fertilizer application, respectively. After 

the ban in detergent phosphates in the 1970’s, the SRP load and concentration decreased. As 

expected, this decrease was more prevalent in the central part of the Grand River where most 

urbanization is found. The PP decreased in the 1980’s, in correspondence with the decrease in 

fertilizer use which began after the year 1980. In the 2000’s both SRP and PP increased. The increase 

in SRP correlated with a large increase in livestock numbers but the constant increase in population 

could also be a factor. Large population is also the reason we see higher loads and concentrations in 

the CGR where most of the urban development and large WWTPs are. PP increase in more recent 

years may be due to increased PP in runoff from phosphorus desorption in the soil due to increased 

land alteration and a legacy effect of fertilizer. Generally, SRP loads seem to have been controlled by 

point sources from WWTP’s in the 1960’s and 1970’s while recently it seems to have shifted to non-

point sources from animal manure. Historically, non-point fertilizer application might have controlled 

the PP loads in the Grand River but more recently, other factors such as land use may be affecting it 
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as well. Higher SRP loads and concentrations are observed in the CGR due to the high population and 

urbanization. While SRP and PP loads increase from upstream to downstream due to nutrient 

accumulation, the increase in PP concentration in the LGR can be attributed to its clay-dominated 

basin. 
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Chapter 5 

Conclusion 

Phosphorus loadings were examined in this thesis to gain a better understanding of what has occurred 

in the Grand River watershed historically. Long-term historical nutrient data available through the 

PWQMN were examined from 1965 to 2010 to identify any indications of changing phosphorus loads 

spatially and temporally. TP, SRP, and PP were analyzed as all three nutrients are important in 

determining the fate of the water quality in the Grand River. Other environmental and physical 

attributes in the Grand River amassed from different sources were also examined in anticipation of 

identifying possible factors that may be driving the patterns that were observed. 

Increases in animal farming, population, land cover alteration and decrease in fertilizer are 

observed in the Grand River watershed over the years. These changes over time may have affected 

the biogeochemistry of the river temporally. Generally, TP, SRP, and PP had about three distinct time 

periods where changes were observed over time. SRP loads were high before the phosphorus ban in 

detergents in 1973, they decreased in the 1970’s after the ban; in the 1980’s they stayed more or less 

stable despite the constant increase in population which may have been due to improvements to 

WWTPs; and in the 2000’s the loads started to increase again which could have been due to 

increasing population and a distinct increase in animal farming. PP loads were high prior to the late 

1970’s due to high fertilizer application, the loads then began to decrease in the 1980’s which may 

correspond to the declines in fertilizer application after 1980; they also seems to be on an increasing 

trend in the 2000’s which may be due to land alteration and a legacy effect of intensive historical 

fertilizer application. The PP:SRP ratio was high prior to the mid 1970’s because there was more PP 

from fertilizer and less SRP from WWTPs, it decreased in the 1980’s which may have been caused by 

the decline of fertilizer application after 1980, and in more recent years it seems to be increasing but 

we cannot confirm this until more statistical tests are done for it. Daloğ lu et al., (2012) found that 

two watersheds in the Lake Erie basin have experienced an increase in phosphorus loads from 2000 to 

2010, which corresponded with an increase in extreme storms events. Seasonal variation is an 

essential factor in phosphorus dynamics and it should be examined in greater detail to determine 

whether or not seasonal phosphorus trends have shifted over the years and what implications this 

change may have on the concentration and load patterns.  
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Spatial patterns observed were as predicted. TP, SRP, and PP concentrations and loads 

increase from upstream regions to downstream regions. This can be explained by the differences in 

land-use and geology between the three parts of the watershed as well as the accumulation of 

nutrients and sediments by the river as it travels downstream from the headwaters. The highest TP 

and SRP loads and concentrations fluctuated between the CGR and the LGR which is expected since 

the largest WWTP and most tile drainages are located in the middle of the watershed but the LGR 

receives nutrient accumulated from the upper reaches. The LGR had higher PP loads due to a more 

clay-dominated basin. 

This thesis contributes to the understanding of the impact of land use and climate change on 

an important nutrient that contributed to water quality degradation. It is the first detailed long term 

analysis carried out on phosphorus in the Grand River which is home to almost a million people and 

is culturally and economically important. This study provides a historical framework in which to 

assess ongoing efforts to restore water quality in the watershed and prevent it from further 

exacerbation. 
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Appendix A 

Tables 

 

 

Table 2. Characteristics of the three regions in the Grand River watershed, the UGR, CGR, and the 

LGR. 

Region Area (km2) %  Area Main Stem Length (km) % Urban Land-use  
UGR 585 9 35 4 
CGR 3167 47 110 56 
LGR 3015 45 138 40 
Total 6767 100 283 100 

 

Table 3. Population and WWTP characteristics in the three regions of the Grand River Watershed, 

the UGR, CGR, and the LGR. 

Region Pop. Density 
(people/km2) 

Number of 
WWTP Population Served Total Capacity 

(m3/day) 
UGR 113 2 2889 1.73E+03 
CGR 170 13 420404 3.29E+05 
LGR 122 14 103184 1.10E+05 
Total   29 526477 4.41E+05 

 

Table 4. Percent land-use in the three regions of the Grand River Watershed, the UGR, CGR, and the 

LGR for the year 2007.  

Land Cover UGR CGR LGR 
Agriculture 70 69 72 

Urban 5 12 9 
Wetland 22 12 10 
Forest 3 7 8 
Total 100 100 100 
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Table 5. UGR, CGR, and LGR characteristics. 

Region 
Station 

numbers 
Data 

coverage 
 

Gaps 
Elevation 
(m.a.s.l) 

Slope Erosion 
(km2) 

% Slope 
Erosion 

UGR 9002, 3902 1977-2010 1978, 1994 530-475 0.29 0.04957265 

CGR 1002, 1102 1965-2009  475-310 20 0.631512472 
LGR 3502, 3583 1974-2010   310-170 34 1.127694859 

 

Table 6. Abbreviation used in this thesis and their definitions. 

Abbreviation  Antonym 
TP Total Unfiltered Phosphorus 

SRP Soluble Reactive Phosphorus  
PP Particulate Phosphorus 

WWTP Wastewater Treatment Plant 
GRCA Grand River Conservation Authority 

PWQMN Provincial Water Quality Monitoring Network 
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Appendix B 

Figures 

 

 

Figure 4. Census population in the Grand River watershed from 1981-2011 in 5 year intervals. Each 

region’s population is a percentage of the counties within that watershed. The exception is the middle 

region where the major cities lie and their populations were included separately from their associated 

counties.  
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Figure 5. Phosphate fertilizer sales in Ontario from 1972-2006 and total number of farmed animals 

(Cows, pigs, and chickens) number in 5 year intervals years from 1971-2006. Source: z- 1972-2002 

(Korol, 2002), 2003-06 (CFIS, 2011); total livestock number (Statistics Canada, retrieved on May 

16th 2012 from (http://odesi1.scholarsportal.info.proxy.lib.uwaterloo.ca/webview/) 
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Figure 6. Temperature and total precipitation of a single station in the western basin of the Grand 

River, over 5-6 year time periods from 1965-2009. This station was chosen to represent the 

temperature and precipitation in the whole watershed because it was far from any cities where 

anthropogenic warming may influence the results.  

 



 

 33 

 

Figure 7. Flow corresponding concentrations and daily flow averages, samples in the three regions of 

the Grand River from 1975-2009 displayed on a time scale of 5 year intervals. Note: There are 

missing years in the flow corresponding concentrations for the UGR (1978, 1994). 
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Figure 8. The Grand River watershed and the regions we explored for the long-term nutrient trend. 

The black dots are the sites analyzed in this project. 
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Figure 9. Grand River watershed map with sites, major cities, and major tributaries. 
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Figure 10. Tile drainage areas in the Grand River watershed. 
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