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Abstract 

The growing threat of drug- resistant Staphylococcus aureus (S. aureus) infections 

mandates the need to develop novel, effective and alternative antibacterial 

therapeutics. Despite infection prevention and control measures, methicillin 

resistant S. aureus (MRSA)-associated deaths reached 11,285 in 2011 in the USA 

(CDC, 2013).  To counteract the threat of drug resistant S. aureus, we sought to 

construct and characterize a novel therapeutic based on the display of lytic 

antibacterial enzymes, termed endolysins. These endolysins were displayed on the 

surface of a specific bacterial virus, bacteriophage (phage), to generate lytic 

antibacterial nanoparticles. Endolysins are encoded individually by a variety of 

double-stranded DNA phage and act to direct host lysis and escape. These lytic 

enzymes confer a high degree of host specificity that could potentially substitute 

for, or be combined with, antibiotics in the treatment of gram-positive drug 

resistant bacterial infections such as MRSA. 

In this study, modular domains of the phage-encoded endolysin K enzyme, 

specific to S. aureus, were displayed on the capsid surface of phage lambda () 

via fusion with the λ major head (capsid) protein, gpD. The constructs of 

displayed endolysins were prepared in various combinations to maximize the 

functional display of gpD::X fusions on the phage. Phage lysates were generated, 

collected and purified and lysis was investigated by adding to fresh lawns of 

MRSA, vancomycin resistant S. aureus (VRSA) and bovine S. aureus. Phage 

preparations did not readily confer cell lysis, likely due to poor incorporation of 
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the fusions onto the functional phage capsid. We purified the fusion proteins 

(gpD::X) and tested them for their lytic activity. We noted that the activity of the 

gpD::LysK protein was not impaired by the fusion and demonstrated lysis on live 

and dead (autoclaved) bovine S. aureus. In contrast to gpD::LysK, the 

gpD::CHAP protein fusion, expressing only the CHAP catalytic domain of 

endolysin K showed variable results in the lysis assays that we performed. In the 

zymogram assay, gpD::CHAP did not elicit any observable lysis on live bovine S. 

aureus cells, but did effectively lyse dead cells of the same S. aureus species; 

however, it was highly lytic in the inhibition assay on bovine S. aureus. The 

CHAP::gpD protein fusion, which is the CHAP domain fused to the N terminus of 

gpD only showed its ability to inhibit bovine S. aureus growth on the inhibition 

assay. 

The fusion of endolysin K or its CHAP domain to gpD protein does not seem to 

interfere with lytic activity, but may result in recalcitrant gpD fusions that 

compromise the ability to efficiently decorate the phage capsid. Suggestions for 

improved fusion capsid integration are discussed.   
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Chapter 1:  Literature Review  

Staphylococcus aureus 

S. aureus is a Gram-positive bacterium that possesses a thick outer 

peptidoglycan layer and lacks the outer membrane possessed by its Gram-

negative counterparts (Szweda et al., 2012). This murein layer (Figure 1) is 

comprised of amino sugars termed N-acetylglucosamine and N-acetlymuramic 

acids that make up the glycan chains and teichoic acids that function as 

peptidoglycan cross-linking regulators or protein recognition and binding sites; 

on the surface, they may serve as pathogenic epitopes, ligands or environment 

communicators (Szweda et al., 2012; Navarre and Schneewind, 1999).   

Figure 1. Peptidoglycan Units. The peptidoglycan is made up of several different units of 

sugars and amino acids. Five units of L-Gly (3) act as a cross bridge between peptide bonds (2) 

branching off the amino sugars (1).  
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S. aureus is a commensal microorganism that naturally inhabits the skin, nares 

and internal membranes of humans and animals without eliciting any harmful 

effects under normal conditions (Kluytmans et al., 1997; Lowy, 1998). The 

bacterium is known to colonize 30-50% of healthy adults where 10-20% of the 

colonized individuals demonstrate persistent colonization (Lowy, 1998). 

However, the bacterium is likely to impart infections in healthy individuals and 

can be particularly detrimental for immunocompromised individuals.  In 

Canada, S. aureus-mediated infections ranked first among other pathogenic 

bacterial strains in 2011, with a prevalence of 18.2% (Canadian Antimicrobial 

Resistance Alliance, 2011).  

Staphylococcal-mediated diseases vary from acute infections of the skin, to 

chronic and/or systemic infections upon entrance into the blood, bones and lungs 

(Kiedrowski & Horswill, 2011). The lethal diseases associated with 

staphylococcal infections include sepsis, endocarditis, and toxic shock syndrome 

(Lowy, 1998). In addition, S. aureus develops a complicated and stronger 

pathogenicity with the acquisition and development of resistance to antibiotics. 

Drug resistance is driven by its strong predisposition to mutagenesis and the 

acquisition of resistance genes by horizontal gene transfer. This has resulted in 

the isolation of several strains capable to resist one or a combination of 

antibiotics—methicillin resistant S. aureus (MRSA), vancomycin resistant S. 

aureus (VRSA) and multiple drug resistant S. aureus (MDRSA) ( Lowy, 1998). 

The first celbenin (methicillin)-resistant S. aureus strain was identified and 

isolated in 1961 (Knox, 1961) and its burden on hospital acquired infections is 
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noteworthy. Most recent data show that MRSA infections represent 4.3% of 

total infections among other non-drug resistant bacterial strains in Canada, 

indicating that they impose a severe threat (Canadian Antimicrobial Resistance 

Alliance, 2011). 

In order to understand the mechanisms behind S. aureus drug resistance it is 

important to first understand the processes of various antibiotics and their 

antibacterial properties. Beta-lactams, aminoglycosides, macrolides, 

tetracyclines and glycopeptides antibiotics lyse or inhibit growth of antibiotic-

susceptible staphylococcal cells by interfering with peptidoglycan synthesis or 

other cell survival mechanisms. Peptidoglycan synthesis is inhibited by 

penicillin and its derivatives that recognize and bind to the cytoplasmic 

penicillin-binding protein (PBP), thereby inhibiting the binding of D-alanine 

(monomers used in peptidoglycan chain precursors) to existing pentaglycine 

chains (Figure 1; chains 2 &3) (Hiramatsu, 1998). Other antibiotics including  

aminoglycosides, macrolides and tetracyclines inhibit the vital process of protein 

synthesis by binding to the cytoplasmic ribosomes of the bacterium (Hiramatsu, 

1998). Alternatively, glycopeptides including vancomycin and teicoplanin 

inhibit transglycosylation in S. aureus by binding to the termini of the newly 

formed D-alanyl-D-alanine peptides (Hiramatsu, 1998; Hiramatsu, 2001).  

Prior to the discovery of antibiotics, approximately 80% of S. aureus infections 

were deemed fatal (Skinner & Keefer, 1941) and susceptible S. aureus strains 

developed resistance to penicillin only two years after its discovery in 1940 

(Lowy, 2003).  The insusceptibility of isolated S. aureus strains to penicillin has 



 

4 

 

led to the discovery and introduction of methicillin in 1961. However, shortly 

after its introduction, resistant cases of methicillin-resistant S. aureus were also 

discovered (Lowy, 2003). S. aureus acquired resistance to beta-lactams through 

the incorporation of the foreign mecA gene that encodes a mutated PBP, termed 

PBP2’ into its genome (Hartman and Tomasz, 1984; Ito et al., 1999). PBP2’ 

exhibits low binding affinity for beta-lactams and renders peptidoglycan 

synthesis insensitive to the added methicillin in MRSA samples (Hartman and 

Tomasz, 1984).  

Following the emergence of MRSA strains (Ruef, 2004) vancomycin became 

the last resort for antibiotic treatment modality. However, the extensive usage of 

vancomycin has since led to either reduced or complete loss of vancomycin 

susceptibility of S. aureus strains, termed Vancomycin Intermediate S. aureus 

(VISA) (Ruef, 2004) and vancomycin resistant S. aureus (VRSA), respectively. 

VISA was first identified from a clinical specimen in Japan in 1997 (Chang et 

al., 2003), whereas the first complete VRSA strain was identified five years later 

in the US (Weigel, 2003). Some isolates of VRSA were also resistant to beta-

lactam antibiotics, thus making these isolates multi drug resistant (Weigel, 

2003). Intermediate S. aureus strains were since identified to harbour mutations 

in several regulatory loci: walRK, clpP, graRS, and vraSR genes (Shoji et al., 

2011). graRS and vraSR genes encode cell wall synthesis regulatory proteins 

that confer vancomycin intermediate resistance in Mu50 VRSA strains 

(Hiramatsu, 2001; Cui et al., 2000). Mutations in walRK, clpP, graRS, and 

vraSR genes upregulate the synthesis of the peptidoglycan to produce an 
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abnormally thick cell wall, thereby hindering effective vancomycin penetration 

into the cell (Hiramatsu, 2001). Genetic studies of VRSA have also revealed 

foreign genetic material encoding the vanA gene that is responsible for the 

mutation from D-alanyl-D-alanine to D-alanyl-D-lactate chain, thereby 

rendering vancomycin ineffective against the mutated disaccharide (Weigel, 

2003).   

The treatment costs of S. aureus infections vary based on the drug susceptibility 

of the infecting strain, rising significantly with reduced drug susceptibility.  For 

instance, in the US, where a 6 months treatment regimen for methicillin-

sensitive S. aureus infection may cost approximately $16,000, an otherwise 

identical MRSA infection treatment would be more than double this cost at 

about $36,000 (Filice et al., 2010). In addition to the increase in treatment costs, 

antimicrobial resistance has led to prolonged hospital stays and an increase in 

morbidity and mortality rates. There are currently very few antibacterials present 

in the market for a number of common antibiotic resistant strains (Infectious 

Diseases Society of America Report, 2004). As some strains could be resistant 

to multiple common antibiotics, there are few therapeutic options left to treat 

these multidrug resistant infections, and those that are available tend to be 

expensive, toxic to the patient and less effective in treatment (Center for Disease 

Prevention and Control, 2013). In conclusion, the threat of antimicrobial 

resistance is very high and there is strong and urgent need to develop novel 

antibacterial agents.  
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Lysins as Antibacterial agents 

As the treatment of microbial infections proves to be increasingly difficult with 

the increasing incidence of antibiotic-resistant strains (Lowy et al., 2003), a 

promising alternative antibacterial strategy includes the exploitation of phage 

and phage-encoded enzymes in the development of novel antibacterial 

therapeutics. Enzymes that hydrolyze the peptidoglycan layer of their bacterial 

host are termed lysins, and they are gaining worldwide attention as naturally 

occurring, exploitable antibacterials (Rodríguez-Rubio et al., 2012; Szweda et 

al., 2012). From these peptidoglycan hydrolases, a class of highly lytic lysins 

encoded by phage are encoded and naturally expressed by dsDNA phage as a 

means of host escape at the end of their infectious cycles (Borysowski et al., 

2006; Loessner, 2005). The first discovered lysins were virolysin and phage 

associated lysins (PAL), which were found to be secreted from phage-infected, 

gram-positive S. aureus cells (Ralston et al., 1957, Sonstein et al., 1971).  

Although not all phage are “lytic” by classification, all known dsDNA phage are 

capable of a lytic lifecycle at the end of which, they must lyse the host cell in 

order to release new phage progeny. This lytic activity is controlled by the 

expression of two enzymes, holin and lysin (termed endolysin when phage-

encoded), during the late gene expression period of the phage as a highly time-

controlled process. During specific  conditions such as high phage density, the 

holin, which is basically a monomer or a single subunit is proposed to assemble 

into pore-forming oligomers or multiple subunits in the cell membrane that in a 

precisely timed manner, depolarize the membrane. This depolarization event 
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then enables the endolysins to egress from the cytoplasm to the periplasm where 

they may hydrolyse their substrate target, the peptidoglycan layer, and lyse the 

cell (Sonstein et al., 1971; Ralston et al., 1957; Loessner, 2005).   

Endolysins are categorized by their targeted peptidoglycan bond substrates and 

catalytic activity. Lysozymes, for example, are muramidases that act upon 

linked N-acetylglucosamine and N-acetlymuramic acid bonds. In contrast, 

endopeptidases catalyze peptide bonds and  amidases hydrolyze amide bonds 

that link the sugars and peptides in the peptidoglycan layer  (Fischetti, 2005; 

Loessner, 2005). The external application of endolysins to lyse bacteria is highly 

specific, but generally only effective in lysing Gram-positives due to the absence 

of outer membrane of the cell that in Gram-negatives protects against endolysin 

access to the peptidoglycan (Loessner et al., 2005). Endolysins offer promising 

antibacterial alternatives, particularly against antibiotic resistant strains, as they 

target different sites than antibiotics to confer cell lysis.  Phage-based enzymes 

are proving effective in the treatment of infections in mucosal membranes and 

blood of animal models.  Fischetti (2005) describes that the advantages of phage 

lytic enzymes over antibiotics are their high specificity in lysing the target cells 

without affecting the natural microflora. For instance lytic enzymes derived 

from S. aureus phage only lyse S. aureus strains (Szweda et al., 2012). 

Resistance to endolysins are less likely due to the co-existence of phage with 

their specific bacterial host as phage must co-evolve with their bacterial hosts to 

ensure their sustainability (Fischetti, 2005; Borysowski et al., 2006). Several 

endolysins also possess two catalytic domains that hydrolyze different bonds in 
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the cellular peptidoglycan, again reducing the incidence of resistance (Szweda et 

al., 2012).  Finally, to enhance their therapeutic activity and to avoid the 

development of resistance, antibiotics may be also used in combinatorial 

strategies with endolysins to treat bacterial infections (Szweda et al., 2012). In a 

study by Schmelcher et al. (2012), LysK from phage K and Lysostaphin, a 

staphylococcal endopeptidase, functioned synergistically and effectively in 

clearing staphylococci infections in cattle. 

Endolysin K:  The fairly recently discovered endolysin K (LysK), isolated from 

S. aureus cells infected with phage K, was found to be highly effective in lysing 

live gram-positive staphylococci cells, including antibiotic resistant strains 

(O`Flaherty et al., 2005). LysK crude extract was found to be highly efficient in 

killing 99% of MRSA cells within an hour (O`Flaherty et al., 2005). In addition 

to MRSA, LysK was also effective in lysing vancomycin and teicoplanin-

resistant S. aureus strains (O`Flaherty et al., 2005).  

Sequence studies and protein deletion analysis have revealed that LysK, a 54 

kDa protein encoded by two open reading frames, is comprised of three 

domains: 1) an N-terminus CHAP (cysteine and histidine-dependent amino 

hydrolase) domain; 2) a C-terminal SH3 (SRC Homology 3) domain; and 3) a 

central catalytic amidase-2 domain flanked by the N- and C- termini (O’Flaherty 

et al., 2004; Loessner et al., 2005; Horgan et al., 2009; Figure 2). From deletion 

studies, upon removing the amidase-2 and SH3 domains, the endopeptidase-

encoding CHAP catalytic domain remained active in cleaving the bond between 

the D-alanine in the stem peptide and glycine in the cross bridge peptide, thus 
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degrading the layered peptidoglycan (Becker et al., 2009; Horgan et al., 2009; 

Figure 3). Amidase-2 was also observed to catalyze the bond between the N-

acetylmuramic acid and L-alanine of the stem peptide in live staphylococci cells 

(Becker et al., 2009). In contrast, the C-terminal SH3 domain was found to serve 

solely as a specificity domain that binds the endolysin to its substrate via 

teichoic acids in the peptidoglycan (Becker et al., 2009; Loessner et al., 2005; 

Horgan et al., 2009).  

 

 

Figure 2. LysK domains.  
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Figure 3. Peptidoglycan cut sites.  Cut site 1 (dashed line) is recognized by amidase-2 of LysK, 

while cut site 2 (dashed line) is recognized by CHAP endopeptidase of LysK.  

Currently, the only peptidoglycan hydrolase that is commercially available is the 

extensively studied Lysostaphin lysin which is native to Staphylococcus 

simulans (Becker et al., 2008), but can be used as a competitive defense 

mechanism against S. aureus (Schindler and Schuhardt, 1964). Lysostaphin is a 

peptidase that cleaves the bond between the glycine and alanine in S. aureus 

peptidoglycan (Browder et al., 1965). Since the identification of LysK as an 

endolysin with a wide virulent and drug resistant S. aureus host range 

(O’Flaherty et al., 2005), several studies have been performed to study LysK 

physiochemical properties. The biological stability of an enzyme being 

considered for antimicrobial applications is particularly important as stability 

directly affects the action of the enzyme. Low molecular weight additives such 

as glycerol or sucrose were found to increase LysK stability by 100 times 

(Filatova et al., 2010). The addition of such low weight molecular additives 

enable LysK to maintain 100% of its activity for up to a month at room 
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temperature, which is remarkable and very uncommon for most enzymes 

(Filatova et al., 2010).  Other cofactors like the addition of divalent cations, 

Ca
2+

, also increase LysK stability when added.  

Several attributes of LysK potentiate its exploitation as a valuable and long-

lived antibacterial in the treatment of S. aureus, including: 1) It can work in 

combination with antibiotics/other antimicrobials to clear infections; 2) It 

possesses two catalytic domains, which increase its catalytic activity and reduce 

likelihood of host resistance; 3) Its binding sites are highly conserved, further 

reducing the likelihood of bacterial resistance; and 4) Its activity may be 

enhanced by increasing its stability with low cost and abundant cofactors such as 

glycerol and calcium ions.  

Phage display  

The presentation of foreign functional peptides on phage surfaces is a process 

known as phage display and possesses a rich recent history of biotechnological 

applications (Bratkovic, 2009).  Phage display is the process by which a foreign 

gene is fused to a structural phage gene that usually encodes a native resident 

protein on the phage surface. The translational fusion results in the co-

expression of the foreign gene with the native resident phage gene (Bratkovic, 

2009).  Two types of phage have been extensively used to display foreign 

proteins.  

Filamentous M13 and fd phage, which are non-lytic, were the first and most 

extensively employed phage to display proteins fused to their minor and major 
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coat proteins (III and VIII) (McCafferty et al., 1991; Fuh et al., 2000). However, 

there are several disadvantages and limitations to the filamentous phage system 

which include: 1) The exclusion of highly hydrophilic proteins/peptide fusions 

as the fused proteins must assemble in the hydrophobic inner membrane of the 

cell prior to phage assembly; 2) The exclusion of toxic protein fusions as 

filamentous phage infections are not lytic, but rather “bud” from the viable 

infected cell; and 3) The strong limitation on the low number of possible 

expressed fusions per phage (Bratkovic, 2009; Gupta et al., 2003).  

In contrast, phage display systems offered by lytic dsDNA phage such as phage 

λ, T4, and T7, permit capsid assembly inside the host prior to cell lysis, thus 

eliminating the need for foreign proteins to cross the cell wall. In addition all 

three systems offer fusion potential in the order of several hundred per phage 

(Bratkovic, 2009).   

The first documented use of λ in phage display was performed by Maruyama et 

al., (1994) who fused E. coli β-galactosidase and plant agglutinin fusions to the 

λ major tail protein, gpV. The gpV protein of 28.5 kDa, was truncated to a 

mutant protein of 18.8 kDa that lacks its C-terminal but still retained host 

infectivity (Casjens & Hendrix, 1974; Maruyama et al., 1994). Protein V, which 

is encoded by gene V, forms a hexamer of 32 copies in the noncontractile λ tail 

(Maruyama et al., 1994). Dunn (1995) displayed a target site for cyclic AMP 

(cAMP) on the C terminal of gpV, where the displayed cAMP site was 

recognized by the added kinase yielding in phosphorylation of the phage 

particles, indicating successful functional display of the target site. Despite the 
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successful exploitation of gpV for phage display, the display copy number was 

very limited and led to the eventual discovery and exploitation of the λ gpD 

display candidate. 

The λ capsid is comprised of two major capsid proteins, gpE and gpD, encoded 

by λ genes E and D, respectively, and each with 405-420 copies per phage 

(Bratkovic, 2009; Casjens and Hendrix, 1974, Figure 4).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4. Phage λ capsid. The λ capsid is described as icosaherdal (20 faces) with a total of 
between 405-420 copies of the major capsid protein gpD.  Protein gpD (yellow) forms trimers in 

the capsid surface, while gpE (blue) forms hexamers at roughly the same incorporation number 

per phage. 
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Protein gpD is 11.4 kDa in size and has a function in the assembly and 

stabilization of the phage prohead, initially formed by hexamers of gpE, upon 

the packaging of phage dsDNA (Sternberg and Hoess, 1995; Sternberg and 

Weisberg, 1977; Mikawa et al., 1996). Microscopic analysis of the phage capsid 

identified easily accessible and protruding domains of the trimer protein gpD 

(Sternberg and Hoess, 1995). It was also discovered that gene D deficiency can 

be complemented by the expression of D in trans (Sternberg and Weisberg, 

1977).  These findings led to wide exploitation of D::X translational fusions as a 

tool to express proteins and peptides of interest on the surface of the phage λ 

capsid (Mikawa et al., 1996). The proteins fused to the capsid D protein can be 

expressed without interfering with the capsid assembly of the phage, thus 

producing phage capsids that display functional recombinant proteins (Mikawa 

et al., 1996) (Figure 5).  Gupta et al., (2003) described a successful phage λ 

display system that displayed various peptides and full length proteins fused to 

the C-terminal end of the D capsid protein and found that phage λ had a 

maximum of 420 fused particles per phage capsid, which was significantly 

higher than the widely used M13 phage that can only incorporate a handful of 

fusions (Casjens & Hendrix, 1974; Gupta et al., 2003). 

The application of phage display in biotechnology has grown remarkably over 

the years to generate protein expression libraries, nanowires for microcircuitry  

applications, sensors for food and water borne pathogens in outbreaks and 

bioterrorism attacks, insecticides and antibacterial therapeutics to just name a 

few (Vilchez et al., 2004; Petty et al., 2007; Bratkovic, 2009). However, despite 
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a plethora of applications, the ability to control the expression of the fusion has 

until very recently, remained crude at best, while essential toward the best 

functionality of a construct. Hayes et al., (2010) demonstrated a system whereby 

fusion was controlled by plasmid carrying fusion inserts under the regulation of 

a temperature-sensitive repressor, and applied this approach to the expression of 

porcine Circovirus 2 peptides that elicited immunogenic reaction in pigs. More 

recently, Nicastro et al. (2013) demonstrated a highly tuneable phage display 

system. Using a D::eGFP fusion, we employed the λ cI[Ts]857 temperature-

sensitive repressor to regulate expression of D::eGFP fusions. Temperature 

sensitive repressor λcI[Ts]857 –mediated production of the gpD::eGFP fusion 

was combined with a second level of control using amber suppressor allele-

mediated suppression. The passaged λ Dam15 phage generated a wide variety of 

decoration permutations of D::eGFP protein fusions displayed on the λ capsid, 

by changing the temperature and the suppressor genetic background of the host. 

The ability to control decoration can be essential to mitigate negative decoration 

or incorporation effects generated by steric hindrance of protruding fusions, or 

to control avidity in important ligand interactions. 
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Figure 5. Schematic of λ wild type major capsid protein D(A) and D fusion (gpD::X) (B). 

Endolysin and it domains fusions linked to the N and C-termini of protein D (as depicted by X, 

in Figure 5B).  Linker length is 10 amino acids.  

Dimension 1: CI[Ts]857 repressor regulation of D::X fusion expression 

The first dimension of decorative control in the phage λ display system was 

imparted by the λ temperature sensitive repressor CI857, encoded on the 

pPL451 plasmid below (Figure 6; Love et al., 1996). Gene expression in 

pPL451 is turned off at low temperatures where the CI857 repressor is fully 

active and thus fully capable of blocking expression from the strong  pL and pR 

promoters that drive expression of downstream gene(s) of interest. Upon shifting 

temperature to ~ 37° C or higher, CI857 is inactivated and can no longer prevent 

expression from pR and pL promoters, and gene expression ensues (Love et al., 

1996; Valdez-Cruz et al., 2010). 

 

 

 

Linker 

 

Linker 
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Figure 6. pPL451 map. pPL451 is a cloning vector. pPL451 carries the Ap selection marker. 

Cloned genes are inserted in MCS. Expression of genes in MCS is regulated by λ promoters (pR-

right promoter and pL- left promoter).   

 

Dimension 2:  Amber stop codon suppressor alleles 

A nonsense mutation, mutation from encoding a glutamine to an amber stop 

codon (TAG) was located in Dam15 allele of the λimm21Dam15 phage that 

serves as the infecting phage for tuneable decoration. The Dam15 mutation 

forms a stop codon at the 68
th

 residue of the Dam15 allele that results in a 

truncated gpD derivative when expressed in a wild type (nonsuppressor; Sup-) 

strain.  When λimm21Dam15 infects a Sup-
 
strain it is incapable of producing a 

functional gpD due to the early termination of translation of protein D and as 
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such, the phage cannot properly assemble and is unviable (Herskowitz, 1973; 

Nicastro et al., 2013). In contrast to its unsuccessful growth on Sup-
 
cells, 

λimm21Dam15 phage is able to grow on suppressor positive (Sup
+
) mutant 

strains of Escherichia coli (E. coli) (notably SupD and SupE) that contain 

tRNAs that read through the stop codon and instead of terminating translation, 

insert a particular amino acid instead, thereby producing full length gpD alleles 

with varying functionality compared to the wild type pristine sequence (Table 

1). SupE inserts a glutamine at the 68
th

 position of Dam15 upon its translation, 

restoring its pristine sequence, while SupD inserts a serine at this site and 

severely compromises the allele’s functionality (Herskowitz, 1973; Nicastro et 

al., 2013).  

Table 1. Suppressor Negative and Positive strains. 

 

 

 

 

 

 Cell Strain 

 Sup- SupD SupE 

Genotype Amber stop 

codon 

Serine 

substitution 
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substitution 

Phenotype Truncated gpD Serine 
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Protein 

Produced 

Truncated (68 

a.a) 

Full (110 a.a) Full (110 a.a) 
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Figure 7. Dam15 Amber stop codon non-suppression and suppression in different host 

strains.    

In this study, we used phage λimm21Dam15 capsid as a scaffold to display 

endolysin K and its domains derivatives as fusions to the λ major capsid protein, 

gpD employing the genetic control of the two genetic elements described above. 

The decorated phage with endolysin K and its domains were assayed for their 

ability to serve as lytic nanoparticles when added to susceptible S. aureus strains 

under a variety of conditions.  The display of active functional proteins on phage 

λ capsids holds several advantages over the large—scale production of 

recombinant proteins. This is particularly evident with respect to the reduced 

cost of production compared to recombinant proteins, since cloning and 

passaging of phage on host strains is much simpler and offers superior efficiency 

(Beghetto & Gargano, 2011). In addition, phage can remain stable at both room 

temperature and at 4° C when supplied with divalent cations, glycerol and 

neutral pH for long term stability (Filatova et al., 2010; Beghetto & Gargano, 

2011) and as such offer great potential as therapeutics in less developed 

countries. 
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It is worth to mention that the phage λ that will be used in this study to display 

gpD::LysK and its domains fusions is only used as a scaffold to present LysK 

and its domains to the clinically relevant S. aureus strains. Phage λ will not be 

able to infect S. aureus strains due to specificity constraints (tail proteins on 

phage λ can not recognize attachment sites on S. aureus peptidoglycan) (Fig. 8).   

  

Figure 8 Schematic of λ Phage  

A. Phage λ capsid B. Phage λ tail   

  

A. 

B. 
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Chapter 2: Rationale, Objectives and Hypothesis 

Rationale  

The process of displaying foreign proteins on phage is a much more rapid 

process than expressing and purifying soluble proteins from bacterial expression 

hosts.  Insoluble proteins that were produced as inclusion bodies in the 

cytoplasm of host cells were soluble when displayed on phage. The display of 

foreign fusion proteins to major capsid protein D enables the display of 405-420 

fusions which is much higher display efficiency compared to other display 

systems. In general, the display of fusion proteins is a cost efficient procedure 

since it doesn’t require sophisticated instrumentation or material. Phage can be 

freeze dried when trehalose or sucrose were added to them, also the 

transportation of phage lysates is feasible since phage preparations can remain 

stable for 5-6 months at room temperature. The successful display of 

functionally lytic LysK and its domains for targeting S. aureus strains will open 

the doors for displaying other lysins that are specific for the lysis of other gram 

positive strains, hence developing phage cocktails that display various lysins 

targeting various gram-positive species. The unavailability of new classes of 

antibiotics to fight antibiotic resistant strains, the side effects and side reactions 

that are associated with antibiotic use and toxicity of antibiotics mandate the 

need to develop new unexploited and effective antibacterials.  
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Objectives 

The objectives of this work are outlined below: 

 To design and construct a system for phage λ particle-based display of 

endolysin K and its various domains on the surface of phage λ. This 

objective involves the fusion of LysK domains to the gpD capsid protein via 

exploitation of either amino or carboxy terminal fusions.  

 To characterize the phage display constructs created for resultant phage 

viability and hence, functionality of gpD fusions. This objective includes 

assessing the ability of D::X fusions to complement the Dam15 mutation and 

to assess the optimal conditions for complementation and decoration. 

 To assess the lytic capabilities of phage display products on various strains 

of S. aureus. This objective involves the qualitative and quantitative 

assessment of gpD::X protein fusions and decorated phage as lytic 

antimicrobial agents of MRSA, VRSA and bovine S. aureus. 

 To purify and characterize gpD::X endolysin proteins and assay their activity 

when not integrated in the phage capsid. 

Hypothesis  

The fusion of lytic and specificity domains of LysK to amino- and/or carboxy- 

terminal ends of the gpD capsid protein will produce functionally lytic particles 

against clinically relevant S. aureus strains.  
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Chapter 3: Materials and Methods 

Growth media  

Luria Bertani (LB) broth (Becton Dickinson, Mississauga, Canada): Rich 

broth for growth of bacterial cultures. Tryptone 10 g, yeast extract 5 g and NaCl 

10 g per L of ddH2O. Broth was then autoclaved for 30 min to sterilize and 

antibiotics were added as necessary to cooling medium. Antibiotic 

concentrations: ampicillin (Ap) 100 μg/mL; kanamycin (Kn) 50 μg/mL and 

chloramphenicol (Cm) 20 μg/mL.  Antiobiotics were added from concentrated 

stock solutions, Ap in H2O; Kn in H2O; Cm in ethanol. Stock antibiotic 

solutions of Ap and Kn were stored at -20
o 
C. 

Luria Bertani (LB) agar (Becton Dickinson, Mississauga, Canada):  Main 

solid media that was used to plate bacterial cultures. Tryptone 10 g, yeast extract 

5 g, Sodium Chloride 10 g and agar 15 g per L of ddH2O. After autoclaving for 

45 min to sterilize, plates were prepared by pouring approximately 35 mL of 

cooling agar into sterile Petri plates (Fisher Brand, Ottawa, Canada). Antibiotics 

were added as necessary: Ap, 100 μg/mL, Kn, 50 μg/mL, Cm, 20 μg/mL to 

cooling media before pouring then plates were left overnight at room 

temperature (RT).  

Brain Heart Infusion (BHI) broth (Becton Dickinson, Mississauga, Canada): 

Very rich liquid broth growth medium used to culture S. aureus.  BHI from 

solids 3.5 g, peptic digest of animal tissue 15 g, pancreatic digest of casein 10 g, 
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dextrose 2 g, NaCl 5 g and disodium phosphate 2.5 g per 1 L of ddH2O. Media 

was autoclaved for 30 min to sterilize then stored at 37 °C. 

Brain Heart Infusion (BHI) agar (Becton Dickson, Mississauga, Canada): 

Main solid media that was specifically used to plate S. aureus cultures.  Brain 

Heart infusion from solids 8 g, Peptic digest of animal tissue 5 g, Pancreatic 

digest of Casein 10 g, Dextrose 2.5g, Sodium Chloride 5 g, Disodium Phosphate 

2.5 g and agar 13.5 per 1 L of ddH2O. After autoclaving for 45 min to sterilize, 

plates were prepared by pouring approximately 35 mL of cooling agar into 

sterile Petri plates (Fisher Brand, Ottawa, Canada). Antibiotics were added as 

necessary, Ap 100 μg/mL, Kn 50 μg/mL, Cm 20 μg/mL to cooling media before 

pouring then plates were left overnight at RT. 

Top Agar: Used to resuspend phage and cells on top of solidified media plates. 

Tryptone 10 g, yeast extract 5 g, Sodium Chloride 5 g and agar 7 g per 1 L of 

ddH2O. After proper mixing, media was poured into bottles to be sterilized by 

autoclaving for 30 min. Media was stored in sterile media bottles at 50° C.  

Super Optimal Broth (SOC): Used as recovery media for electroporated cells. 

Preparation is similar to LB broth media with the addition of tryptone 10 g, 

MgCl2 1 M and glucose 1M. Media was autoclaved for 30 min to sterilize, then 

stored at 37° C. 
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Buffers 

TN buffer:  Tris NaCl buffer used to provide a suitable pH to dilute and passage 

phage. Tris base (Fisher Bioreagents, Ottawa, Canada) 0.01 M, Sodium Chloride 

(Fisher Bioreagents, Ottawa, Canada) 0.1 M, pH adjusted to 7.8 with HCl 

(Fisher Brand, Ottawa, Canada). Buffer was autoclaved for 30 min to sterilize 

and stored at RT. 

TN (TN + EDTA) buffer: Used to conduct phage EDTA sensitivity assays as 

mutant phage capsids have been shown to be unstable in presence of EDTA. 

Tris base 0.01 M, Sodium Chloride 0.1M, 10.0 mM EDTA (Fisher Bioreagents, 

Ottawa, Canada) pH adjusted to 7.8 with HCl. Buffer was autoclaved for 30 min 

to sterilize and stored at RT. 

 1X TAE Buffer: Used as buffer that provides ions and suitable pH to separate 

DNA fragments by size by gel electrophoresis. 50X TAE (Fisher Bioreagents, 

Ottawa, Canada) was diluted in ddH2O for a total volume of 30 L and stored at 

RT. 

10% Laemmli Running Buffer: Used as buffer that provides ions and suitable 

pH to separate protein by size by SDS-PAGE. Tris base 30 g, Glycine (EMD, 

Frankfurter, Germany) 144 g, SDS 10 g per 1 L of ddH2O. A 1X dilution of 

Laemmli running buffer was prepared prior to running the gel.  

Laemmli Loading Dye Buffer (Bio-Rad, Mississauga, Canada): Used as 

loading buffer to visualize protein samples running in SDS-PAGE gel. 50 µL of 

β-mercaptoethanol was added to 950 µL of Laemmli sample buffer (Bio-Rad, 
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Mississauga, Canada) to a final concentration of 710 mM. Loading buffer was 

added at a 1:1 ratio of buffer to protein.  

Dialysis Buffer: Used as an exchange buffer to dialyze proteins in elution 

buffer. 20 mM Tris base, 20 mM NaCl, 5 mM CaCl2 (Fisher Brand, Ottawa, 

Canada) and 50% glycerol (EMD, Frankfurter, Germany). 20 mL of 1 M Tris 

base, 20 mL of 1 M NaCl, 5 mL of CaCl2 and 500 mL of glycerol were mixed in 

1 L of ddH2O. Buffer was autoclaved for 30 min to sterilize and stored at RT.   

Additional solutions and reagents: 

Polyethylene Glycol (PEG) 8000 (Fisher Brand, Ottawa, Canada): Used to 

precipitate phage lysates by binding to them. 20 g PEG and 14.6 g NaCl were 

dissolved in 100 mL of ddH2O. After mixing, the solution was filter sterilized 

with AcroVac Filter Unit, 0.2 μm PES membrane (VWR International, 

Mississauga, Canada).  

 

Isopropyl β-D-1-thiogalactopyranoside (IPTG; Fisher Bioreagents, Ottawa, 

Canada): Used to induce protein expression in pET30a+ expression vector. 

IPTG powder 2.38 g (Sigma, Oakville, Canada) was dissolved in 100 mL of 

ddH2O to make a 100 mM IPTG solution. The solution was filter sterilized and 

stored at -20° C.  

 

Sodium Dodecyl sulfate (SDS; Bio-rad, Mississauga, Canada): Used to 

denature and unfold proteins, providing a negative charge to polypeptides. 20% 

SDS was used to denature and apply same charge per unit length to proteins 
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analyzed by electrophoresis. 10 g SDS was dissolved in 40 mL of ddH2O and 

aliquots of 1 mL were stored at -20° C.  

  

10% Ammonium persulfate (APS; Bio-Rad, Mississauga, Canada): Used to 

generate free radicals and catalyze the gel polymerization reaction. 1 g was 

dissolved in 10 mL of ddH2O. Aliquots of 100 mL were stored at -20° C. 

Antibiotic Preparations 

Ampicillin (Ap): Stock solution was prepared at a concentration of 100 mg/mL 

by dissolving ampicillin trihydrate powder (MP Biomedicals, Montreal, Quebec, 

Canada) into ddH2O and storing at -20
° 
C. 

Kanamycin (Kn): Stock solution was prepared at a concentration of 50 mg/mL 

by dissolving kanamycin monosulfate powder (MP Biomedicals, Montreal, 

Quebec, Canada) into ddH2O and storing at -20
° 
C. 

Chloramphenicol (Cm): Stock solution was prepared at a concentration of 20 

mg/mL by dissolving chloramphenicol powder (MP Biomedicals, Montreal, 

Quebec, Canada) into 95% ethanol and storing at -20
° 
C.  

Gel Preparations 

 

0.8% DNA Agarose Gel: Used to run and visualize DNA samples. Agarose gel 

was prepared by dissolving 0.8 g of ultrapure agarose (Fisher Bioreagents, 

Ottawa, Canada) into 100 mL of 1X TAE buffer. The agarose was dissolved by 

microwaving the solution for 45-60 s. 5 µL of ethidium bromide (EtBr; Bio-rad, 
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Mississauga, Canada) was added to the cooling agar prior to pouring into the gel 

cast. 

 
SDS-Polyacrylamide Gel (SDS-PAGE): Used to run and visualize protein samples. The SDS 

gel is comprised of 2 parts: the resolving and the stacking gel.  

 

Reagent Resolving gel 12.5% Stacking Gel 6% 

30:0.8% w/v 

acrylamide:bisacrylamide 

(Bio-Rad, Mississauga, 

Canada) 

3.1 mL  1 mL 

1.0M Tris_HCl pH 8.8 3 mL 630 μL 

20% SDS  38 μL 25 μL 

dH2O 1.3 mL 3.6 mL 

10% APS 36 μL 25 μL 

TEMED 5 μL 5 μL 

 

Strains and Plasmids: Strains of bacteria, phage and plasmids used in this 

research are shown and described in Table 2. 

 

 

 

 

 

 



 

29 

 

 

Table 2. Bacteria, Phage and Plasmids 

Designation Relevant Properties Source  

Phage   

λF7 λimm21Dam15cIts Lederberg (1951) 

λF7-D::LysK λF7 expressing LysK on 

capsid surface 

This study 

λF7-D::CHAP λF7 expressing CHAP 

on capsid surface as C-

terminal gpD fusion 

This study 

λF7-CHAP::D λF7 expressing CHAP 

on capsid surface as N-

terminal gpD fusion 

This study  

λF7-D::SH3 λF7 expressing SH3 on 

capsid surface 

This study  

λF7-CHAP::D::SH3 λF7 expressing CHAP 

and SH3 on capsid 

surface 

This study  

λF7-D::Bind λF7 expressing Bind on 

capsid surface 

This study 

Bacterial Strains    

BB4 supF58 supE44 

HsdR514 galK2galT22 

trpR55 metB1 

tonADE(lac)U169 

Agilent Technologies, 

Inc. 

W3101 F-, galT22, λ-, IN(rrnD-

rrnE)1, rph-1 

CGSC #4467, 

Bachmann (1972) 

W3101 supD F-, galT22, λ-, IN(rrnD-

rrnE)1, rph-1, 

uvrC279::Tn10, 

serU132(AS), 

Nicastro et al. (2013) 
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W3101 supE F-, galT22, λ-, IN(rrnD-

rrnE)1, rph-1, 

crcA280::Tn10, 

glnV44(AS), 

Nicastro et al. (2013) 

JM109 endA1 glnV44 thi-1 

relA1 gyrA96 recA1 

mcrB
+
 Δ(lac-proAB) 

e14- [F' traD36 

proAB
+
 lacI

q
 lacZΔM15] 

hsdR17(rK
-
mK

+
) 

New England Biolabs 

# E4107S, Whitby, 

Canada 

DH5α F-, Δ(argF-lac)169, 

ϕ80dlacZ58(M15), 

ΔphoA8, glnV44(AS), λ-, 

deoR481, rfbC1, gyrA96 

(NalR), recA1, endA1, 

thi-1, hsdR17 

CGSC #12384 

Rosetta  F
- 
ompT hsdSB (rB 

– 
mB) 

gal dcm lacY1pRARE6 

(Cm
R
) 

 

Mu50 hVRSA, heterogeneous 

vancomycin resistant 

Staphylococcus aureus 

ATCC #700699, 

Manassas, Virginia, 

USA 

DPC5246 bovine Staphylococcus 

aureus 

Gift from Teagasc 

Food Research 

Centre, Ireland 

DPC5645 MRSA, methicillin 

resistant Staphylococcus 

aureus 

Gift from Teagasc 

Food Research 

Centre, Ireland 

Plasmids    

pPL451 PL-cI857-tm Love et al. (1996) 

pKS2 (pPL451 gpD) PL-cI857-D Nicastro et al. (2013)  

pKS1(pPL451 

gpD::eGFP) 

PL-cI857-D::eGFP Nicastro et al. (2013) 

pEF-1 (pPL451 

D::lysk) 

pM-cI857-pL-cI857-pL- 

D::lysk-tL 

This study  

pEF-2 (pPL451 pM-cI857-pL-cI857-pL- This study  

http://www.neb.ca/detail.php?id=E4107
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D::CHAP) D::CHAP-tL  

pEF-3 (pPL451 

CHAP::D) 

pM-cI857-pL-cI857-pL- 

CHAP::D-tL 

This study  

pEF-4 (pPL451 

D::bind) 

pM-cI857-pL-cI857-pL- 

D::Bind-tL 

This study  

pEF-5 (pPL451 

D::SH3) 

pM-cI857-pL-cI857-pL- 

D::SH3-tL 

This study  

pEF-6 (pPL451 

CHAP::D::SH3) 

pM-cI857-pL-cI857-pL- 

CHAP::D::SH3-tL 

This study  

pOG-1 (pET30a+ 

D::lysk) 
pT7-His::D::lysk This study 

pOG-2 (pET30a+ 

D::CHAP) 

pT7-His::D::CHAP This study 

pOG-3 (pET30a+ 

CHAP::D) 

pT7-His::CHAP::D This study 

pOG-4 (pET30a+ 

D::Bind) 

pT7-His::D::Bind This study 

pOG-5 (pET30a+ 

D::SH3) 

pT7-His::D::SH3 This study  

pOG-6 (pET30a+ 

CHAP::D::SH3) 

pT7-

His::CHAP::D::SH3 

This study 
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Figure 9. Different constructs of LysK and its domains fused to gpD. A. full length LysK 

lysine fused to C terminus of gpD B. Amidase-2 catalytic domain and SH3 specificity domain 

fused to C terminus of gpD C. CHAP catalytic domain fused to C terminus of gpD D. CHAP 

catalytic domain fused to N terminus of gpD E. CHAP catalytic domain fused to N terminus of 

gpD while SH3 specificity domain fused to C terminus of gpD.  
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Methods 

Construction of pPL451 plasmids: D::lysk and its derivatives were 

synthesized (GenScript Inc., New Jersey, USA) and cloned into pPL451 at the 

BamHI and HindIII restriction enzyme sites of the multiple cloning site (MCS). 

Preparation of Electrocompetent E. coli cells: Electrocompetent cells need to 

be grown to certain number of cells and washed several times with ice cold 

water to remove all charged particles that could interfere with the 

electroporator’s electric pulse. A 1:100 dilution of fresh ON culture  at OD600 = 

~2.0 was prepared and incubated at 37° C with shaking  at 200 RPM for 3-4 h, 

or until OD600 = 0.4-0.5. The culture was then incubated on ice for 10 min before 

spinning down cells at 4K RPM for 10 min at 4° C. Cells were resuspended in 

20 mL of ice chilled sterile ddH2O, spun down and resuspended in half volume 

(10 mL) ddH2O, before being spun down and resuspended in a final volume of 

0.5-1.0 mL. Cells were then either electroporated immediately, or stored for 

future electroporation in 10% glycerol at -80° C.  

Electroporation: Electric pulse opens pores in the cell membrane that will 

enable plasmid to enter the cells. A plasmid solution of 500-700 ng was added to 

50-90 μL of electrocompetent cells and incubated on ice for 10 min. The 

mixture was then added to electroporation cuvettes and pulsed at 1000 V in an 

Electroporator 2510 (Eppendorf, Mississauga, Canada). Electroporated cells 

were immediately resuspended in 1 mL of fresh SOC media and incubated for 1 

h at 37° C, 50 RPM. Cells were then centrifuged at 13K g for 5 min; the pellet 
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was then resuspended in 200 μL of SOC media and plated on selection plates 

with antibiotics. Plates were then incubated overnight at 37° C.  

Plate Lysate Preparation and Purification: Cells harbouring plasmids were 

grown overnight at 30° C, 200 RPM. A 1:100 dilution was prepared from the 

overnight culture and cells were grown at 30° C to OD600 0.4-0.5. Cells were 

then induced for 2 h at 37° C-40° C before plating with 10
-1 

-10
-3

 PFU/mL λF7 

lysate and 3 mL of Top agar on LB + Ap plates. A 10
4 
fold dilution of a 1 X 10

10
 

PFU/mL lysate of λF7 lysate was added to 300 µL of fresh overnight culture of 

BB4 cells, 3 mL of Top agar and plated on LB plates. Plates were incubated 

over night at 37˚ C. To plates showing adequate semi-complete lysis pattern, 10 

mL of sterile TN buffer was added and incubated for 4-24 h at 4˚ C. Top agar 

was scraped and the buffer was collected into conical tubes with 50 µL of 

chloroform added. Lysates were incubated on ice for 10 min. Lysates were 

centrifuged at 14K RPM for 40 min (Avanti J-E Beckman Coulter, Mississauga, 

Canada) to remove the Top agar and cellular debris. Lysate was further purified 

by passaging through 0.45 μm polyethersulfone filter membrane (VWR, 

Mississauga, Canada) then stored at 4° C.  

Precipitation of Lysates: PEG binds to phage particles and precipitates them 

while centrifuging. PEG stock solution was added to phage lysate at 1:4 ratio. 

The mixture was then incubated on ice for 30 min before centrifuging for 40 min 

at 11K RPM at 4
o
 C. The supernatant was poured out and the pellet was spun 

again 2-3X to completely dry it. The phage pellet was then resuspended in 1 mL 

of TN buffer and stored at 4° C. 
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Plate Overlay Lysate Titration: This assay was performed to quantify phage, 

by way of plaque forming units, in the freshly prepared lysates. Phage lysates 

were plated on double suppressor strain BB4 as a 100% plating control. Each 

plaque grown corresponds to one phage particle allowing for phage to be 

quantified relative to the ideal BB4 host for propagation. All serial dilutions of 

prepared lysates were prepared in TN buffer. 300 µL of fresh overnight culture 

of BB4 and 3 mL of top agar were plated on LB plates. Next, 10 uL of each 

lysate dilution was added to the solidified top agar overlay.  Plates were then 

incubated overnight at 37˚ C and plaques were counted. 

Assessing ability of gpD::endolysin fusions to complement gpD deficiency in 

λF7 capsid assembly:  A complementation assay was employed to assess how 

efficiently gpD::X fusions could complement for the gpD genetic deficiency of 

λF7, thereby enabling phage DNA compaction and capsid assembly. A 1:100
 

dilution of  fresh overnight culture of W3101 Sup- [pPL451_insert] and SupD 

[pPL451_insert] were prepared and grown at 30° C, 200 RPM for 3-4 h or to 

A600=0.4-0.6.  Next, 300 uL of each culture was incubated for 2 h with no 

shaking at induction temperatures 30˚ , 35˚, 37˚, and 39-40˚ C. Aliquots were 

next plated on LB + Ap plates with 3 mL of top agar overlay. Serial dilutions of 

λF7 were prepared in TN buffer. The λF7 dilutions were then plated on the 

solidified Top agar and then incubated overnight at the induction temperatures.  

Phage Lysis Assays: This assay was performed to assay the ability of displayed 

phage to elicit lytic activity against bovine S. aureus strains. A 30 μL aliquot of 

fresh overnight culture of bovine S. aureus was plated on brain heart infusion 
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plates with 3 mL of Top agar. Standardized displayed lysates of 10
6 

- 10
7
 

PFU/mL were added to the plate overlay. Next, 10 μL of TN buffer and CHCl3 

(chloroform) were added to plates as negative and positive controls, 

respectively. Plates were then incubated overnight at 37° C.  

EDTA Phage Sensitivity Assays: This assay was performed to test the stability 

of the displayed proteins on the phage capsid. Lysates from Sup- W3101 and the 

SupD derivative were standardized to 10
7 

- 10
8 

PFU/mL. One set of lysates was 

treated in TN buffer + EDTA for 21 min at room temperature, and then diluted 

to 10
-6

-10
-7

/10
-7

-10
-8

. Lysates were then mixed with 300 μL of fresh overnight 

culture of BB4 indicator cells and incubated at 37° C on LB plates. Lysates 

treated only with TN buffer served as control. These dilutions were also plated 

with BB4 indicator cells on LB plates. All plates were then incubated overnight 

at 37° C.  

Plasmid Extraction: This common procedure that is known as miniprep was 

performed for small scale isolation of plasmids from cells. Plasmid pPL451 

constructs growing in 10 mL of fresh overnight culture grown at 37˚ C, 200 

RPM in LB + Ap were extracted using a Plasmid Mini Kit I (Omega Bio-Tek, 

Norcross, USA) according to supplier instructions. The kit is based on alkaline 

precipitation of episomal DNA. Plasmid DNA was eluted with 80-100 µL of 

DNase/RNase free molecular grade water (Hyclone, Ottawa, Canada). DNA 

concentration was determined using a Nanodrop 2000 spectrophotometer at A260 

(Thermo Fisher Scientific, Ottawa, Canada). 
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Plasmid Digests: This assay was conducted to digest and move out DNA 

segments from plasmids for subsequent cloning experiments. Digestion 

reactions were set up using 1 μg of pPL451 or pET30a+ plasmid DNA, 10 IU of 

each of BamHI HF and HindIII HF restriction enzymes (New England Biolabs 

Whitby, Canada), 1X NEB buffer 4 and DNase/RNase free molecular grade 

water (Hyclone, Ottawa, Canada). A negative control digest reaction was run 

with constructs without inserts. All digest samples were incubated in 37° C 

water bath for 1-3 h.  

Purification of DNA fragments: Gel Electrophoresis was used to visualize 

EtBr-DNA complexes. DNA fragments from DNA digests were run against a 1 

Kb DNA ladder (New England Biolabs, Whitby, Canada) on a 0.8% agarose gel 

with 2 μL EtBr (Fisher Bioreagents, Ottawa, Canada) at 100 V for 1 h. Gel was 

then observed under Spectroline UV Transilluminator (Thermo Fisher 

Scientific, Ottawa, Canada). DNA fragments possessing genes of interest were 

identified based on their correct size. Individual bands were cut from the gel and 

purified using Omega Gel Extraction Kit (Omega-Bio-Tek, Norcross, USA). 

Protocol was followed exactly as supplied. Inserts were eluted with 30-50 μL of 

DNase/RNase free molecular grade water. Concentration of inserts was 

determined using a Nanodrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Ottawa, Canada). In contrast to insert DNA preparation, digested 

vector pET30a+ DNA was purified using a PCR Cycle Pure Kit (Omega Bio-

Tek, Norcross, USA) as per supplier instructions.   
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DNA cloning: This procedure was used to construct new customized plasmids 

carrying the genes of interest for expression. Ligase enzyme forms a bond 

between terminal ends of each of the insert and plasmid. Ligation reactions were 

set up with 200 ng of vector and insert was added in a minimal volume at a 1:3 

ratio, along with 1X of ligase buffer, 1.5 μL of T4 DNA ligase (New England 

Biolabs, Whitby, Canada) and DNase/RNase free molecular grade water. In all 

cases, a negative control reaction was carried out without added insert. Ligation 

reactions were incubated overnight at 16 - 25° C.  

Cell transformation, selection and clone screening: Electrocompetent cells 

were prepared as described above. A 10 μL of ligation reaction was added to 90 

μL of electrocompetent cells. The ligation- cell mixture was then added into 

electroporation cuvettes and mixture was electroporated at 1000 V. A 1 mL of 

SOC broth was added to electroporated mixture and incubated at 37° C, 50 RPM 

for 1-1.5 h. To collect all cells, ligation-cell mixture was then centrifuged at 10K 

g for 5 min to pellet the cells. Cell pellet was then resuspended in 200 μL of LB 

broth, plated on LB + Kn plates and incubated at 37 °C ON. Random single 

colonies were picked up from overnight grown plates and cultured overnight in 

LB + Kn broth at 37° C, 200 RPM. The plasmids were then extracted using 

Plasmid Mini Kit and concentrations were determined. Next, 500-700 ng of 

extracted plasmid was digested with HindIII_HF and BamHI_HF for 

experimental plasmids and with HindIII_HF and KpnI for LysK positive control 

plasmid construct. Digests were then run on a 0.8% agarose gel (described 
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earlier). Plasmids carrying the fragment of interest were identified by restriction 

digest pattern analysis.   

Insert DNA sequencing: A 200-300 ng sample of selected clones 

demonstrating proper digestion patterning were prepared in 7 μL of 

DNase/RNase free molecular grade water and submitted to TCAG sequencing 

facility (The Center for Applied Genomics, Toronto, Canada).  

Assessment of Protein Expression: Rosetta cells harbouring constructed 

pET30a+ plasmids and Rosetta strains with pET30a+ only and with no plasmid 

were grown overnight shaking at 37° C, 200 RPM in LB + Kn broth. The next 

day, 1:100 dilutions were made from fresh overnight cultures and were grown at 

37° C, 200 RPM for 6-8 h or until OD600= 0.8. Cells were then induced with 1 

mM IPTG and grown for 1-2 h or until OD600= 1-1.2. Cells were then 

centrifuged at 4K RPM for 10 min, washed three times with ice cold sterile 

water and then the pellet was stored at -80° C. A mechanical cell disruption 

procedure was performed to extract the expressed proteins from the cells. 

Rosetta cell pellets harbouring constructed pET30a+ plasmids were resuspended 

in 1 mL of ice cold sterile water. Cells were then sonicated (mechanical cell 

disruption) three times for 45 s at setting frequency of 4.5, in 2 min intervals. 

Next, lysates were centrifuged at 13K PM at 4° C for 10 min. Protein crude 

extracts were stored at -20° C.  
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BCA Pierce Protein Assay: This assay was conducted to determine the 

concentration of the extracted proteins. The protein concentration of the crude 

extracts was assayed by a Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific, Ottawa, Canada) according to the manufacturer’s instructions and 

samples were interpolated against a BSA standard protein curve from 500-1250 

μg/μL.    

His60 Nickel (Ni) Gravity Column Extraction: LysK and its domain 

constructs were purified from the cell’s background proteins by passing the 

protein crude lysates through Ni columns. His tagged proteins from crude 

lysates were purified using a His60 Ni Gravity Column Purification Kit 

(Clontech, Mountain View, USA) according to manufacturer’s instructions.  

Zymogram Lysis Assay with Standardized proteins: This assay is performed 

to test the lysis activity of the extracted proteins. A 30 μL sample of fresh 

culture of bovine S. aureus was plated with 3 mL of Top agar on BHI plates. A 

100 μg aliquot of protein crude lysates was then added to the solidified Top agar 

before incubating plates overnight at 37° C.  Plates were examined the next day 

for lysis by observing a clearing zone where the protein lysate was added. Buffer 

used for protein lysates incubation was used a negative control.  

SDS Gels of Column Purified Samples: A 200 μg sample of purified protein 

was run for 20 min at 60 V, then for 2-2.5 h at 100 V, separating proteins by 

SDS-PAGE. EZ run Rec protein ladder (Thermo Fisher Scientific, Ottawa, 

Canada) was run along the samples for size determination of separated proteins. 
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Gels were then incubated for 5 min in 25% isopropanol and 8% acetic acid to fix 

proteins. Gels were then washed 3 times in ddH2O water and stained overnight 

with gel code staining solution (Thermo Fisher Scientific, Ottawa, Canada).  

Protein Dialysis: This procedure was performed to exchange the buffer in 

protein samples with buffer containing cofactors that enhance the activity of 

LysK catalytic domains. Protein samples were placed in a device that possesses 

a cellulose membrane. The device was then placed in a conical tube filled with 

1.75 mL-45 mL dialysis buffer. The conical tube was incubated for 6 h at 4° C 

with one time exchange of dialysis buffer at 3 h.  

Inhibitory Concentration Assays: These assays was performed to check the 

inhibitory concentrations of LysK and its derivatives antibacterial constructs 

required to kill a standardized number of bovine S. aureus strains. Protein crude 

lysates were standardized to 7.5 μg, 15 μg, and 37.5 μg. A 1:100 dilution of 

fresh overnight culture of bovine S. aureus was prepared and incubated at 37° C 

and 200 RPM for 1-2 h or until OD575 = 0.1. 1:10 and 1:100 serial dilutions of 

the bacterial culture of 10
8 

CFU were prepared in ultrapure ddH2O and added to 

each of the 5 concentrations of protein crude lysates and incubated at 37 °C for 1 

h. After incubation, 3 mL of Top agar was added to the protein- cell mixture and 

then plated on BHI plates and incubated ON at 37° C. Negative control samples 

or untreated samples were cells added to ultrapure ddH2O and plated. CFU 

counts were scored the following day and surviving cells was divided by 

untreated cells to determine the efficiency of plating.  
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Chapter 4: Results 

Complementation of  Dam15 and gpDQ68S alleles by gpD::X endolysin-

capsid fusions. 

We exploited the packaging requirements of phage  to determine the ability of 

our fusions to be incorporated and stabilize the capsid to generate viable phage 

progeny. The phage imm21Dam15 mutant encodes a truncated and inactive 

form of the gpD protein necessary for packaging of the full length 48.5 kb phage 

genome.  In the E. coli nonsuppressor W3101 strain (Sup-), gpD is not formed 

and the phage λDam15 mutant is incapable of plaque formation (growth). As 

such, inducible D::lysk derivatives can be assessed in this strain for their ability 

to complement the Dam15 deficiency in trans compared to growth of the phage 

on a suppressor strain, BB4 (supE supF), that suppresses the Dam15 mutation 

and imparts translation of the pristine gpDwt sequence. The ability of D 

expressed from plasmid pPL451 to complement the Dam15 deficiency of the 

infecting phage increased, as the inducing temperature increased. The CI857 

repressor is temperature-labile and loses activity exponentially at temperatures 

above 37
o 

C. Therefore, at 30
o 

C the repressor efficiently blocks expression of 

the D::eGFP fusion preventing complementation of the Dam15 mutation. 

However, as the temperature is raised and CI857 loses activity, expression 

increases, resulting in improved complementation of the Dam15 mutation, and 

phage packaging and viability. We assessed complementation of D::lysk fusions 

in a variety of arrangements and components under fully repressed, partially 

derepressed and fully induced conditions and observed that the Dwt positive 
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control, as expected, was able to fully complement Dam15 at the 37
o
 C ideal 

inducing temperature (Table 3). This plasmid served as the positive control for 

complementation. The plasmid expressing D::eGFP was previously shown to 

complement the Dam15 mutation and as expected showed full complementation 

at 37° C. In contrast, the temperature-inducible plasmid backbone (pPL451) is 

devoid of D, serving as the negative control, and as expected, could not restore 

viability at any temperature. Within these controlled parameters we next sought 

to determine the ability of our D::X constructs integrated into this expression 

system, to complement for the Dam15 mutation, thereby directly assessing the 

ability of gpD to maintain functionality in the fusion.  

As expected, all fusions provided minimal complementation under repressed 

(30
o
 C) conditions, posting plating efficiencies that are likely due to genetic 

reversions of Dam15. Surprisingly, however, under induced conditions all the 

D::X fusions repeatedly performed poorly in complementation assays only 

improving viability from less than 100 to 500-fold compared to the negative 

control. In contrast, the positive control restored viability by greater than 10
5
 

fold. The worst performer of the experimental fusions was the CHAP::D::SH3 

construct, which possessed fusions to both the amino (CHAP domain) and 

carboxy (SH3) termini of gpD, and restored viability only 10-fold compared to 

repressed conditions, and 100-fold compared to the negative control. In 

isolation, fusion to N- versus C-terminal did not appear consequential as 

CHAP::D (N-terminal) and D::CHAP offered similar restoration to the Dam15 

phage under induced conditions. Based on repressed temperature viabilities of 
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all constructs, leakage of the promoter under repressed conditions appears likely. 

We did try to further improve repressor activity by conducting plating assays at 

25
o 

C. No plaques were visible at this temperature indicating full repression, but 

confluence of bacteria on the plate was low at high phage, indicative of cell 

killing.  
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Table 3. Complementation of the infecting λ Dam15 mutation by inducible D::X genetic 

fusion constructs in a non-suppressor strain. 

1 W3101 strains harbour pPL451_X plasmids. pPL451 plasmids place downstream control of 
cloned gene(s) under the temperature-sensitive CI857 repressor.  As temperature increases, 

CI857 activity is lost and gene expression increases. 

2 Plating efficiency of F7 (λimm21Dam15) on indicated strain/condition compared to that on 
BB4 (Sup+) that was used as 100% control. E.o.p’s are calculated as a ratio of experimental 

PFU/PFU on BB4 at that same temperature. E.o.ps are averages based on a minimum of two 

trials. 

3 Dwt is wild type gpD 

nd, not done  

np, no plating 

 

 

 

 

 

Inducible 

Gene(s)
 Plasmid

1  Efficiency of Plating 

(e.o.p)
2 

 

  
25° C 30° C 35° C 37° C 

N/A None np <2.3 X 10
-7

 <6.1 X 10
-7

 <5.0 X 10
-7

 

None pPL451 np <7.7 X 10
-8

 <6.0 X 10
-7 

<3.7 X 10
-7

 

D::eGFP pKS1 nd 7.5 X 10
-6

 2.0 X 10
−5

 0.02 

D::CHAP pEF-2 np 2.0 X 10
-6

 5.4 X 10
-5

 1.0 X 10
-4

 

CHAP::D pEF-3 np
 

8.0 X 10
-6

 2.8 X 10
-5

 1.4 X 10
-4

 

D::SH3 PEF-5 np 1.6 X 10
-5

 5.6 X 10
-5

 5.0 X 10
-5

 

CHAP::D::SH3 pEF-6 np 4.6 X 10
-6

 3.0 X 10
-5

 3.9 X 10
-5

 

D::Bind pEF-4 np 7.0 X 10
-6

 8.7 X 10
-5

 1.1 X 10
-4

 

D::LysK pEF-1 np 1.6 X 10
-6

 6.8 X 10
-5

 6.8 X 10
-5

 

Dwt
3 pPL451_D np 6.7 X 10

-6
 6.2 X 10

-4
 8.0 X 10

-1
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In the attempt to overcome the observed recalcitrance of our fusions’ 

incorporation into the phage capsid, we next investigated whether the D::X 

fusions could effectively complement the λDam15 mutation in a suppressor 

strain derivative. SupD is a W3101 isogenic derivative that imparts the insertion 

of a serine residue at the 68
th
 position instead of the programmed stop encoded 

by the Dam15 mutation, thereby circumventing the premature stop and protein 

truncation. SupD confers a gpDQ68S allele that offers poor capsid functionality, 

but was previously shown to maximize fusion incorporation of gpD::eGFP when 

combined in vivo. We assessed the ability of the (strain) gpDQ68S / D::X 

(plasmid) combination to complement λDam15, indicating the degree of D-

mediated stability of the resultant phage (Table 4).   
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Table 4. Complementation of the infecting λ Dam15 mutation by inducible D::X constructs 

in a suppressor strain. 

1 W3101 strains harbour pPL451_X plasmids. The pPL451 plasmids place downstream control 

of cloned gene(s) under the temperature-sensitive CI857 repressor.  As temperature increases, 

CI857 activity is lost and gene expression increases.  

2 SupD strains harbour pPL451_X plasmids. All efficiencies were compared to that on BB4, an 

E. coli strain with two suppressor mutations that allows 100% plating of λF7. E.o.p was 

calculated by determining the ratio of plaques forming units (PFU/PFU) of experimental strain 

and BB4 at either of the experimental temperatures. E.o.p’s are the average based on a minimum 

of two trials. 

3 Plaques were extremely small and pinpoint and accurate counting was not possible, although at 

high concentrations, lysis was observed.  

4 Dwt wild type gpD 

np, no plating 

 

 

 

 

 

Inducible Genes      Plasmid
1
 Efficiency of Plating (e.o.p)

2
 

 
25 °C 30 °C

3 
35 °C 37 °C 

None pPL451 np <7.14X10
-8

 <1.61X10
-8

 <1.63X10
-7

 

D::CHAP pEF-2 np <2.32X10
-1

 2.01X10
-1

 2.02X10
-1

 

CHAP::D pEF-3 np <2.74X10
-1

 1.99X10
-1

 2.05X10
-1

 

D::SH3 pEF-5 np <3.94X10
-1

 2.01X10
-1

 2.56X10
-1

 

CHAP::D::SH3 pEF-6 np <4.14X10
-1

 1.49X10
-1

 2.20X10
-1

 

D::Bind pEF-4 np <5.06X10
-1

 2.31X10
-1

 2.81X10
-1

 

D::LysK pEF-1 np <2.39X10
-1

 2.56X10
-1

 1.97X10
-2

 

Dwt
4 pPL451_D np <5.45X10

-1
 3.70X10

-1
 1.0 
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The SupD strain carrying the pPL451 (D-) plasmid was unable to suppress the 

Dam15 mutation at all tested temperatures due to the poor functionality of the 

gpDQ68S allele and the absence of D::X complementation. In contrast, the 

positive control plasmid expressing D was able to fully complement Dam15 at 

the fully derepressed temperature of 37° C, increasing phage viability by more 

than 10
4
-fold compared to the fully repressed temperature of 25

o 
C, where no 

plating was evident despite a weaker cell lawn, indicative of cell killing. 

Interestingly, at 30
o 

C, evidence of lysis was obvious, but plaques were pinpoint 

and so small that lysis could only be detected when phage were plated at 

extremely high concentrations. Individual plaques could not be discerned at 

higher dilutions, making accurate e.o.p. calculations at these temperatures 

impossible. This finding indicates that some viable phage progeny are being 

assembled at even 30
o
 C, but burst sizes are so small that individual plaques are 

not even visible. We scored plaques of this phenotype as negative, due to the 

inability to visually quantify, considering successful complementation as the 

ability to increase burst size to generate visible plaques. Upon shifting to 35
o
 C, 

plaques were now discernible and plating efficiency was almost full for the 

positive Dwt control and complete at the fully derepressed temperature of 37
o
 C.  

All of the D::X fusion plasmids behaved similarly to that of the positive control. 

No Dam15 plaques were visible at the fully repressed 25
o 

C temperature and 

again, while lysis was evident even at 30
o 

C, individual plaques were not 

discernible until 35
o
 C, where D::X is partially derepressed. Under fully induced 

conditions, all D::X fusion complemented phage plated with relatively equal 
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efficiency at about a fifth to a quarter of the full efficiency seen on gpD
+
 cells.  

These data indicate that the expression of all D::X fusions could, to some extent, 

complement and enhance suppression of Dam15.  

Stability of phage displaying endolysin-capsid fusions.  

We previously noted that gpD::eGFP decorated phage, either alone, or in 

combination with the gpDQ68S allele were more unstable in neutral solution 

(Nicastro et al., 2013). To ensure and assess the stability of phage displaying 

gpD::X endolysin capsid fusions we assayed the ability of resultant phage to 

tolerate EDTA. EDTA is a chelator of divalent cations and Mg
2+

 chelation 

would result in relaxation of phage DNA and added pressure on the phage 

capsid, busting structurally unstably phage. Phage displaying endolysin and its 

derivatives fusions were incubated with EDTA buffer following the 

standardized protocol, then assessed for degree of phage bursting as a result of 

Mg
2+

 chelation, by testing phage viability (Table 5).  
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Table 5. EDTA sensitivity of fusion phage grown in absence and presence of the gpDQ68S 

allele. 

Plasmid
1 

Fraction Stability of EDTA-treated Phage
2 

 Sup-  SupD Sup- / SupD 

Dwt 0.63 ± 0.28 -  -  

D::eGFP
 0.36 ± 0.15 0.59 ± 0.23 0.60 

D::CHAP 0.96 ± 0.53 1.0
 
± 0.94

 
0.41 

CHAP::D 0.76 ± 0.02 0.48 ± 0.86 0.39 

D::SH3 0.58 ± 0.11 0.85 ± 0.02 0.76 

CHAP::D::SH3 0.90 ± 0.25 1.3 ± 0.11 0.60 

D::Bind 1.9 ± 0.41 1.7 ± 0.59 1.1 

D::LysK 0.96 ± 0.40 2.9 ± 1.20 0.28 

None 
 0.85

3
 0.81  1.0

 

1 pPL451 derivative (temperature-inducible plasmids).  

2 W3101, λimm21Dam15 phage grown on W3101 cells harbouring plasmids at optimal 37o C 

and e.o.p. represents EDTA-treated divided by untreated control. All stabilities are based on 

averages and have been repeated at least twice. 

3 λDam15 here cannot grow on the Sup- strain and was grown on BB4 strain (Sup+ strain that 

restores the gpD pristine sequence). 
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Phage λDam15 was not severely impaired by EDTA, but did not demonstrate 

full stability, likely due to the low level of suppression by the SupE strain that 

cannot fully decorate and stabilize the capsid. Similar limited stability was noted 

for the control, gpDwt complemented phage that exhibited mild viability 

impairment following EDTA treatment that was slightly improved in the 

presence of the gpDQ68S allele. As a reference, we show phage decorated by 

gpD::eGFP via both Sup- and SupD strains where decoration by gpD::eGFP 

alone is notably most sensitive, and 64% more stable in combination with the 

gpDQ68S allele.  

The gpD::endolysin fusions ranged slightly in conferred stability with D::SH3 

phage showing the greatest sensitivity. Interestingly, the full LysK (gpD::LysK) 

also possessing SH3 and fused in the same orientation to the C-terminal of D, 

showed very little impairment in either strain. The CHAP::D fusion phage 

indicated an interesting profile that was unlike all other fusions tested, in that the 

presence of this fusion’s reduction of phage viability was 66% greater when 

combined with the gpDQ68S allele. In contrast, all other fusions, and even 

gpDwt itself, reduced EDTA sensitivity when combined with the gpDQ68S 

allele. Given the impacts of SH3 C-terminal fusion and N-terminal CHAP fusion 

on phage viability, it was surprising to find that the CHAP::D::SH3 allele that 

possesses both of these fusions did not have any noticeable effect on phage 

sensitivity to EDTA, in solo and improved stability in combination with the 

gpDQ68S allele.  
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Variability between trials of some of the gpD::X endolysin fusion constructs 

was very large when assembled in combination with the gpDQ68S allele. The 

gpD::LysK, CHAP::gpD::SH3 and gpD::CHAP expressing phage varied 

remarkably in their sensitivity to EDTA, despite further repeated trials, varying 

from greater-than-wildtype stability to remarkably EDTA-sensitive. While e.o.p. 

assays are subject to considerable variability between assays, variance of this 

degree suggests a valid cause for the variability. This may be due to the presence 

of dual populations of phage that are formed during assembly of phage arising 

by the arrangement of trimers in the capsid.  

Assessing the ability of endolysin-displaying phage to lyse S. aureus strains. 

We next sought to determine whether our constructed gpD::X endolysin-

decorated phage can confer lysis of various S. aureus strains for which the 

Phage K endolysin (LysK) is specific. We tested the lytic activity of the phage 

displaying endolysin and its derivative fusions on the λimm21Dam15 phage 

capsid; each was generated in isolation on the Sup- (gpD-), SupD (gpDQ68S) or 

SupE (Dwt) strains (Table 6).  Due to the limited upper concentrations that could 

be generated by some of our lysate preparations, we standardized our phage 

lysates to 10
7
-10

8 
PFU/mL to appropriately compare their effect on target cell 

lysis. To assess lysis, phage preparations were added to a confluent lawn of 

clinically relevant strains of S. aureus, including MRSA, VRSA and bovine S. 

aureus. As this work represents the first attempt to construct a phage-based 

endolytic particle, a positive control for phage display lysis does not yet exist. 

As a comparator and a basis against which to qualitatively score lysis via each 



 

53 

 

phage preparation, we employed chloroform as a positive control. As negative 

controls we employed the phage suspension buffer medium as a medium control 

and λDam15 phage prepared via complementation by plasmid Dwt as the phage 

display control.  
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Table 6. Assaying endolysin-displaying phage lysis of S. aureus strains. 

1Original Sup- and SupD lysates were standardized to108 PFU/mL and SupE to 107 PFU/mL 
before testing. 

2 Lytic activity was measured by adding 105 of SupE and 106 of Sup- and SupD phage to a lawn 

overlay of target cells and scored according to CHCl3 lysis, used as a complete lysis positive 

control. 

 

 

gpD::X Fusion Original Lysate Titer PFU/mL
1 

Lysis Activity on S. 

aureus
2 

 Sup- SupD SupE MRSA VRSA Bov. SA 

None (Buffer) N/A N/A N/A — — — 

D::CHAP 3.4 X 10
9
 3.1 X 10

9
 N/A — — — 

CHAP::D 9.0 X 10
9
 2.5 X 10

9
 2.1 X 10

9
 — — — 

D::SH3 7.5 X 10
9
 1.4 X 10

8
 1.8 X 10

9
 — — — 

CHAP::D::SH3 6.0 X 10
8
 1.4 X 10

9
 4.0 X 10

7
 — — — 

D::Bind 1.4 X 10
9
 1.6 X 10

8
 1.2 X 10

9
 — — — 

D::LysK 5.4 X 10
8
 3.3X 10

8
 6.8 X 10

8
 — — — 

Dwt 7.5 X 10
9
 7.5 X 10

9
 2.6 x 10

8
 — — — 

CHCl3 N/A N/A N/A +++ +++ +++ 
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As expected, none of the negative controls lysed any of the tested S. aureus 

strains at the standardized or unstandardized concentrations. And, surprisingly, 

we did not observe any notable lysis for any of the gpD::endolysin fusion phage. 

We did expect to see lysis with the phage displaying the catalytic domain 

fusions such as gpD::CHAP, CHAP::gpD, catalytic domains and specificity 

domains such as gpD::Bind and CHAP::gpD::SH3 and the fully displayed 

endolysin gpD::LysK, but lysis was not evident in any of the administered 

displayed phage constructs. Phage displaying D::SH3 also displayed no lytic 

activity, as expected, since the domain SH3 only encodes the specificity domain. 

We also tested displayed phage generated from SupD (gpDQ68S) and SupE 

(gpDwt) suppressor strain backgrounds to try and address the possibility that the 

lack of phage activity might be due to poor incorporation in the absence of 

gpDwt or another wild-type length allele and improve incorporation. However, as 

with Sup- phage preparations, lysis was also not observed for phage derived 

from any of the suppressor strains. At this point, we reasoned that the lack of 

observed lysis may be due to either inadequate expression of fusions per phage, 

too few phage, or loss of lytic functionality of LysK lytic domains upon fusion 

with gpD, or a combination thereof. 

Assessing the functionality of isolated gpD::X endolysin fusion derivatives. 

Upon noting that endolysin-displaying phage were not functional in lysing the 

desired S. aureus target strains, we asked whether the isolated gpD::X endolysin 

fusions themselves possessed lytic activity in the absence of the phage or phage 

capsid. To initiate this investigation each D::X fusion sequence was first cloned 
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into the high efficiency expression vector pET30a+ to express, purify and test 

the cloned fusion inserts for lytic functionality. All fusion inserts were excised 

from their parent (pPL451) inducible vectors and successfully cloned into the 

MCS of pET30a+ His-tagged high efficiency expression vector. The resultant 

chimeric vectors were analyzed and confirmed by endonuclease digestion, and 

size of the insert following agarose gel electrophoresis (AGE; Figure 7).   

  

Figure 10. Cloned endolysin D::X fusions into the high efficiency His-tagged expression 

vector, pET30a+. Successful cloning of D::lysk and the other domains into expression vector 

pET30a+ MCS. The band sizes are labelled next to their respective bands. The expression 

vector, pET30a+, was digested with restriction enzymes (BamHI and HindIII) to facilitate the 

ligation of the D::X endolysin fusions which were also digested with the same enzymes to 

produce compatible ends. Inserts and their expected band sizes are: D::CHAP, 921 bp, 

CHAP::D, 921 bp, D::SH3, 888 bp, D::Bind, 1275 bp, CHAP::D::SH3, 1,476 bp and D::lysK, 

1,878 bp.  
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The pET30a+ vector, a plasmid of 5,397 bp, was cut with the same restriction 

endonucleases as that of the inserts and was prepared and analyzed alongside the 

experimental clone indicating, in each case, a lack of any additional bands as 

was seen upon digestion of each endolysin D::X plasmid clone. As a positive 

control for subsequent experiments, lysK (encoding wild type LysK), was also 

cloned and analyzed in the same manner (Figure 8).  

 

Figure 11. Cloned lysK in a high efficiency His-tagged expression vector. The lysK gene was 

successfully cloned into pET30+ with a fragment size of 1,486 bp. The positive control, lysK, 

and pET30a+ were digested with KpnI and HindIII restriction enzymes to produce compatible 
ends for ligation.  
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Total protein was extracted from induced cultures of each clone to preliminarily 

assess functionality of all fusion proteins in regards to lysing and killing target S. 

aureus cells. First, a standardized amount of each crude protein lysate was added 

to a fresh lawn of live and dead (autoclaved) bovine S. aureus, MRSA and 

VRSA to assess the lytic activity of each protein fusion (Figure 9; Table 7). 

 
Figure 12. Zymogram lysis assay with standardized gpD::X endolysin protein challenge. 
Left plate= dead (autoclaved), right plate= live. A. gpD::Bind, B. gpD::CHAP, C. gpD::SH3, 

D. CHAP::gpD::SH3, E. CHAP::gpD, F. gpD::LysK, G. LysK, H. pET30a+, I. Chloroform. A 

total crude protein lysate of 100 μg was added to fresh bovine S. aureus. Lysis assay was 

repeated three times with identical results. Arrows indicate detected lysis spot.  
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Table 7. Endolysin gpD::X fusion protein lytic activity on bovine S. aureus. 

gpD::X Fusion Protein
1 

Lytic Activity
2 

 Live cells Dead cells 
 

None (Buffer)  — — 

LysK ++ ++ 

gpD::LysK +++ ++ 

gpD::CHAP __ ++ 

CHAP::gpD — — 

gpD::SH3 — — 

CHAP::gpD::SH3 — — 

gpD::Bind — — 

CHCl3 +++ __ 

1 Total protein added was100 μg  

2 Includes at least 3 repeated tests on bovine S. aureus. 

 

Wild type LysK, serving as the positive control, exhibited strong lysis on both 

live and dead (autoclaved) bovine S. aureus cells. Chloroform CHCl3 was used 

as a comparator in this assay as well, exhibiting lysis on only live cells of bovine 

S. aureus, as expected, but no effect on dead cells. Chloroform did not show any 

lytic activity on dead bovine S. aureus cell lawn as it disrupts the bacterial cell 

membrane by permeabilizing it and since bacterial cells undergo a physiological 

change of the membrane through disruption of cell membrane when subjected to 

high temperature and pressure, chloroform would deem inactive in lysing cells 

(Manning & Kuehn, 2011). From the experimental gpD::X endolysin fusion 

proteins, only gpD::LysK exhibited lytic activity on both live and dead S. aureus 
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cells, whereas gpD::CHAP exhibited activity on dead S. aureus cells only, in all 

cases, lytic activity was detected within 3 h after incubation.  None of the other 

protein fusions showed any noticeable lytic activity on either living or dead 

bovine S. aureus.  

To more quantitatively determine the lytic activity of LysK endolysin and the 

derivative gpD::X fusions, we performed inhibitory concentration assays on 

bovine S. aureus in order to assess the concentration ranges within which, the 

endolysin fusions could prevent growth of target cells. Protein was added at 

standardized levels to bovine S. aureus and ascertained for cell killing ability 

(Figure 10; Table 8). As expected, the parent expression plasmid pET30a+ 

(negative control) showed no lytic activity at all tested concentrations. In 

contrast, purified LysK (positive control) exhibited a powerful killing effect, 

reducing viable cell titers by >10
3
-fold at all applied doses, compared to the 

plasmid control. Interestingly, LysK was out-competed by the gpD::CHAP. In 

general, constructs harbouring the catalytic CHAP domain (gpD::CHAP, 

CHAP::gpD and gpD::LysK) exhibited varying degrees of lytic activity, with 

the exception of CHAP::gpD::SH3 that offered no lytic activity, likely due to 

compromised folding of the protein. Similarly, no killing or even enhancement 

of lytic activity was observed by gpD::Bind, nor by the non-catalytic specificity 

gpD::SH3 domain fusion, as was expected. The gpD::CHAP  

fusion exhibited the strongest killing activity that was 10
4 

fold greater than the  

plasmid negative control, followed by gpD::LysK fusion that offered the second 

greatest killing profile that although 100-fold greater than the control, was more 
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than 100-fold lower than gpD::CHAP and 10+-fold lower than wild type, LysK. 

Interestingly, CHAP::gpD imparted the lowest killing activity, offering 10
3 

lower lytic activity than its conformational counterpart, gpD::CHAP. Finally, as 

expected, the specificity domain gpD::SH3, did not elicit any lytic activity at all 

tested concentrations. 
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Table 8. Inhibition of target cell growth by gpD::X protein lysates on bovine S. aureus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Values slightly greater than 100% were still listed as 1.0. Experiment was repeated at least 

twice.   

 

 

 

 

Protein Lysate Protein Addition (μg)  

 7.5 15  37.5  

pET30a+  1.0* 1.0 4.5 X 10
-1

 

D::CHAP <1.9 X 10
-5

 <1.9 X 10
-5

 <1.9 X 10
-5

 

CHAP::D 4.7 X 10
-2

 3.1 X 10
-2

 2.0 X 10
-2

 

D::SH3 1.0* 1.0 1.0 

CHAP::D::SH3 1.0 1.0 1.0 

D::Bind 1.0 1.0 1.0 

D::LysK 3.8 X 10
-4

 <1.9 X 10
-5

 <1.9 X 10
-5

 

LysK 2.1 X 10
-4

 <1.9 X 10
-5

 3.8 X 10
-5
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Figure 13. Antimicrobial activity of LysK gpD::X fusions on S. aureus. All gpD::X 

endolysin fusion proteins were purified via a His60 Nickel column and tested each lysate for and 

the presence of His-tagged gpD::LysK, gpD::CHAP, CHAP::gpD, gpD::Bind, 
CHAP::gpD::SH3, gpD::SH3  or LysK protein by SDS-PAGE gels (Figure 11A-G). In each 

case, pET30a+ served as the negative control. In all protein purifications, the primary species is 

identified. Cell protein contamination occurred to varying degrees in preparations, with poorest 

purification and greatest fractional contamination obvious for CHAP::gpD::SH3. This finding 

may be due to the poor translation of this protein, subjecting it to proteolytic degradation. It is 

worthy to note that gpD::SH3, gpD::Bind and CHAP::gpD::SH3 lines overlap.  
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Figure 14. SDS-PAGE images of purified gpD::X endolysin fusions. A. CHAP::D, B. LysK, 

C. D::CHAP, D. D::LysK, E. D::Bind, F. D::SH3, G. CHAP::D::SH3. Each figure contains 

protein molecular weight marker (ladder), 4 μg of the purified protein and whole Rosetta cell 

lysate without plasmid (cell’s native proteins). A. CHAP::D band migrated closely to slightly 

higher than the expected size of 35 kDa. B. LysK band migrated slightly higher than the 

expected size of 56 kDa. C. D::CHAP band migrated slightly higher than the expected size of 35 

kDa. D. D::LysK band migrated higher than the expected size of 69 kDa. E. D::Bind band 

migrated very closely to the expected size of 48 kDa. F. D::SH3 band migrated higher than the 

expect band size of 33 kDa and finally, G. CHAP::D::SH3 band migrated slightly higher than 

the expected band size of 55 kDa. 
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Chapter 5: Discussion 

While other surface display systems have been developed such as microbial cell 

systems in E. coli, yeast cell systems like Saccharomyces cerevisiae and 

eukaryotic cell systems like human embryonic kidney cells, the use of phage for 

surface peptide display remains the preferred approach (van Bloois et al., 2011; 

Lee et al., 2003; Kondo & Ueda, 2004; Ho & Pastan, 2009).  The main 

advantages of phage display include the abilities to express a vast variety of 

fusions on the different phage elements and flexibility in designing phage 

screening assays (Willats, 2002). The display of proteins on phage λ capsid also 

eliminates the need for large-scale production and purification of recombinant 

proteins which is often a costly and tedious procedure. As a primary candidate 

for lytic phage display, λ is capable of incorporating up to 405-420 copies of the 

major capsid protein (gpD), the major capsid protein that has been extensively 

exploited for the display of foreign proteins (Nicastro et al., 2013, Nicastro et 

al., in press, Casjens & Hendrix, 1974). The trimeric nature of gpD enables a 

dual display fusion on its N and C termini, hence maximizing the number of 

displayed proteins (Nicastro et al., 2013; Sternberg and Hoess, 1995).  Recently, 

Nicastro et al. (2013) developed a phage λ system by exploiting a dual genetic 

control mechanism to display foreign proteins on phage λ capsid in a variable 

manner. The degree of decoration of foreign proteins on the phage capsid is 

controlled by both temperature-sensitive regulation of expression of the fusion 

in conjunction with variable functionality of gpD alleles generated by various 

engineered host strains. The level of decoration on the phage capsid can be 
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effectively controlled through the modification and regulation of the two 

controllable elements.  

In this study, we sought to design, construct and characterize -based display 

particles by way of generating translational fusions to the C-terminal and/or N-

terminal of gpD. We constructed and assessed the lytic activity of different 

fusion arrangements of LysK and its domains on the decorated phage capsid, or 

as purified gpD::X domain (gpD::LysK, gpD::CHAP, CHAP::gpD, gpD::Bind, 

gpD::SH3, CHAP::gpD::SH3) proteins. From the published applications of 

phage λ display to date, there are no studies to our knowledge that report the 

display of functional lytic proteins on λ capsid for antimicrobial purposes. While 

some of the constructs were able to complement for the Dam15 mutation in Sup-
 

cells, this complementation was generally 10
4
-fold lower than that of Dwt at 

induced temperatures. This is most likely explained by the poor formation of 

gpD homotrimers, which is a prerequisite for proper capsid formation as not all 

fusions are well tolerated. Termed “recalcitrant” such fusions prevent protein 

oligomerization and the formation of gpD trimers during phage assembly and 

therefore display fewer D-fusion proteins. Hayes et al. (2010) in their 

construction of a circovirus vaccine, fused four immunodominant regions of the 

porcine circovirus capsid to the C-terminal of gpD (D-CAP), a second with GFP 

(D-GFP) and a third with SPA tag protein (D-SPA). While the D-GFP and D-

CAP fusions could be expressed constitutively without compromising the 

viability of the host, D-SPA expression reduced the viability of the cell by >50-

fold thus not all fusions are well tolerated.  
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By controlling the level of fusion protein production, particularly by 

supplementing with supplemental gpD allele(s), recalcitrance may be overcome, 

leading to the use of isogenic SupD that generates the gpDQ68S allele (serine) 

to supplement endolysin gpD::X complementation. As the gpDQ68S allele 

possesses poor functionality, Dam15 mutants plated on this strain tend to form 

pin point plaques that cannot be seen in isolation, allowing for any 

complementation on this strain to be visualized and quantified by increasing 

plaque size. The physical representation of the plaques in SupD backgrounds 

changed from pin point plaques at lower temperatures to clear and larger sized 

plaques at higher temperatures where expression of the gpD::X was greatest. 

This finding suggests that the substitution of glutamine in the wild type gpD 

sequence with the smaller (105.1 Da) serine that is biochemically similar as a 

polar neutral amino acid is highly ineffective in the suppression of the Dam15 

allele.  In the absence of complementing D allele expression effectively, the 

burst size associated with the lytic infection produces very few particles per 

host, thereby forming pin point plaques. Possible reasons for the dramatic effect 

of the serine substitution at residue 68 of gpD include interference in gpD 

trimerization and/or compromised interaction with gpE hexamers, although 

previous findings indicate that gpD N-terminus is located closer to the 3-fold 

axis of the gpD trimer (Yang et al. 2000) and may be involved with interacting 

with gpE. Our lab previously showed that phage decorated by the gpDQ68S 

allele are also about the third the size of wild type phage and highly unstable, 
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suggesting that the incorporation of this allele into the capsid is much lower than 

gpDwt (Nicastro et al., 2013).  

The lowest level of complementation was observed for the CHAP::D::SH3 

fusion. In addition to recalcitrance that plagued all endolysin fusion constructs, 

the lack of complementation for this construct may additionally be attributed to 

the size of the resultant protein. Yang et al., (2000), concluded that the fusion of 

large proteins to the termini of gpD decreased the complementation and hence 

viability of decorated phage particles. In line with this inference, we similarly 

noted poor complementation by the gpD::LysK fusion, which is even larger (621 

a.a, ~ 68 kDa), suggesting that size does play a role in limiting decoration and 

viability. Gupta et al. (2003) found that a peptide of 72 a.a (~7.9 kDa) had 350 

copies incorporated on the phage capsid in comparison to a 231 a.a (~ 25 kDa) 

peptide that had 154 incorporations, hence suggesting that as peptide length 

increases its display efficiency decreases. The display of lytic proteins on the λ 

capsid is clearly far more complicated than the display of short peptides used for 

eliciting humoural responses or screening libraries. One of the limitations that 

could render LysK and its domains inactive on λ capsid may in fact be the 

improper folding of large proteins such as D::LysK.  

The CHAP::gpD::SH3 construct also represents the first evidence to our 

knowledge of attempting to exploit both the amino and carboxy termini of each 

gpD in tandem. Vaccaro et al., (2006) were able to fuse scFv anti-CEA, which is 

a fairly large protein of 33.6 kDa (Rodenburg et al., 1998), to either of the N and 

C termini of gpD, but not in tandem.  It is likely that the CHAP::gpD::SH3 dual 
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fusion interferes with gpD folding and imparts very poor structural functionality. 

This inference is further supported by the finding that the purified protein also 

showed no lytic activity, suggesting that both gpD and the CHAP domain were 

non-functional. Pavoni et al., (2013) tested the ability to fuse anti-CEA scFv and 

GFP to gpD termini and express each simultaneously, similarly finding that this 

yielded unstable fusions which soon released the fused GFP from λ capsid. 

Although the C terminus construct had more fusions of scFv than the N 

terminus, only few plaques were generated indicating a reduced viability with 

the gpD dual termini fusions. It was also observed that there was a competition 

between the display of fusions on gpD termini and phage particle formation and 

more than often it was favoured to produce more phage particles with truncated 

fusion proteins than unstable phage λ capsids. This could explain why our dual 

fusion construct CHAP::gpD::SH3 generally had poor complementation. Pavoni 

et al., (2013) further studied and developed the λ display system of gpD fusions 

and were able to enhance the viability of plaques bearing C termini fusions of 

gpD by introducing amber mutants through BB4 (Sup
+
) host strain.   

We noted that the SupD (Sup
+
) background strain when used for decoration of 

phage by gpD::X was more efficient in yielding functional gpD::LysK and its 

domains than on the Sup- strain. Previous studies similarly reported that low 

yields and decreased phage viability are associated with greater expression of 

capsid-fusion protein, although at the time they could not be sure that this 

observation was due to impaired capsid assembly (Mikawa et al. 1996; 

Maruyama et al. 1994).  This finding is also in accordance with Nicastro et al. 
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(2013) who noted that the decorative capacity of gpD::eGFP on the phage 

surface was highest in combination with the gpDQ68S allele.  They propose that 

the gpDQ68S allele stabilizes the gpD::eGFP fusion, and while neither 

possesses full gpD functionality (compared to Dwt), collaboratively, gpDQ68S-

gpD::eGFP- gpDQ68S, or gpD::eGFP- gpDQ68S-gpD::eGFP intragenic (within 

gene) complementation is better incorporated than either allele alone (Nicastro 

et al. 2012). 

With respect to stability, we found that fusions that would introduce larger 

protein constructs into the phage, such as CHAP::gpD::SH3, gpD::Bind, and 

gpD::LysK seem to be more stable than the smaller protein constructs like 

gpD::CHAP, CHAP::gpD and gpD::SH3. In combination with the 

complementation data, this is likely due to the fact that these fusions are not 

readily integrated into the phage capsid in the first place and as such carry only 

the supplemental gpDQ68S allele. Conversely, the combination of the gpD::X 

fusion with the gpDQ68S allele may in fact stabilize the capsid more than either 

alleles can accomplish on their own, resulting in greater resistance to EDTA. Of 

great interest, is the consistent variability in EDTA sensitivity that was observed 

for gpD::LysK, CHAP::gpD and gpD::CHAP decorated phage. We propose that 

this is due to the high degree of structural instability in the phage. Nicastro et al. 

(2013) noted that SupD fusions of gpD::eGFP had a great degree of variability 

in size and stability, proposing that this was due to an “all-or none” phenomenon 

of decoration when gpDQ68S was combined with the gpD::eGFP fusion. While 

assembled, phage may be adequately resistant to EDTA, structural instability 
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may lead to a disassembly from the phage, resulting in a domino effect, 

rendering the phage highly susceptible to EDTA and capsid bursting. As a 

result, EDTA sensitivity may be variable over time due to the presence of both 

decorated and undecorated populations.  

We found that all phage decorated by gpD::LysK and LysK domains showed no 

lytic activity on bovine S. aureus, MRSA or VRSA. This was not too surprising 

as complementation was dramatically hindered by recalcitrance, imparting poor 

decoration of endolysin and its domains on the phage capsid. While we were 

hopeful, that some SupD-hosted phage would exhibit lysis on target cells, since 

it did appear to readily complement several of the D::X fusions, we noted no 

lytic activity of gpD::LysK and its domains decorated phage on S. aureus. The 

most likely explanation is that we are not adequately decorating the phage, and 

due to limited complementation, are not purifying displayed phage in adequate 

concentration. Another possible explanation is steric hindrance or size 

constraints. The thick peptidoglycan layer of S. aureus must be completely 

penetrated in order to lyse and kill the target cell. A highly decorated phage may 

range in the area of several hundred nm in diameter (Nicastro et al., 2013) and 

as such may not be able to adequately reach the deep amide bonds in the 

peptidoglycan layer despite effective hydrolysis of surface substrates.  

Proper protein folding of integrated fusions in the phage capsid may also be 

compromised upon incorporation. Hayes et al. (2010) found that although they 

were able to integrate their porcine vaccine constructs into a λ display particle 

(LDP), LDP-D-GFP and LDP-D-SPA did not induce a useful antibody response 
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in vivo. Finally, it is possible that given the low complementation rate we were 

actually selecting for truncated fusions to incorporate into the phage head. 

Vaccaro et al., (2006) observed that one to five percent of plaques generated by 

C-terminal fusions were mutants possessing point mutations causing either 

frameshift or premature stop signals within the scFv gene, which suggests a 

powerful selection against the inefficient display of the antibody as a C-terminal 

fusion and the inhibitory effect on the assembly of viable phage. 

To determine whether the gpD::X endolysin fusion proteins were themselves 

disrupted for lytic activity, we purified the fusion proteins and assessed lytic 

activity on the S. aureus strains. In contrast to phage lysis assays, we noted that 

gpD::LsyK protein fusion, like LysK, exhibited detectable lytic activity on both 

live and dead bovine S. aureus. This finding indicates that the gpD fusion to the 

N-terminal catalytic domain does not hinder CHAP activity. Interestingly, 

gpD::CHAP on the other hand, showed lysis on killed S. aureus only, indicating 

either that lytic activity is only possible on live cells in the presence of the 

attachment (SH3 domain), or the combination of cysteine and histidine 

dependent amino hydrolase (CHAP) and amidase-2 (Bind) domains are required 

to impart this phenotype; this is a new finding.  

Mattiacio et al., (2011) found that a soluble peptide, gp140, was able to induce 

higher HIV-1 Env-binding antibody titers than the gp140 decorated on phage λ, 

thus restating the hurdles that Zanghi et al., (2005) and Hayes et al., (2010) 

faced for recalcitrance of the displayed proteins on phage λ capsids. The number 

of gp140 displayed fusions was 30 copies and that was far less than the expected 
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number of 405-420 copies that corresponds to the number of gpD copies on the 

phage λ capsid (Mattiacio et al., 2011). The possibility of displaying very few 

fusions on phage λ capsid may explain the undetectable lytic activity that we 

have observed in our phage constructs. In addition, Yang et al., (2000) found 

that gpD exists as a monomer in solution, in which they explained why gpD::X 

fusions exhibited greater functionality in solution than on the phage head. This 

inference agrees well with our qualitative and quantitative bovine S. aureus 

inhibition assays that showed variable protein gpD::LysK and gpD::CHAP lytic 

activities in contrast to the decorated phage particles. Although we did originally 

expect to observe lysis by CHAP::gpD::SH3 and CHAP::gpD constructs, it is 

possible that the fusion disrupted the folding of the CHAP domain. Pavoni et al. 

(2013) similarly found that eGFP fusion to the N terminal of gpD resulted in 

improper folding of eGFP hence jeopardizing its activity. Vaccaro et al. (2006) 

additionally found that incorporation of N terminal fusions to gpD was 38% 

lower than C terminal fusions (Vaccaro et al., 2006). MRSA and VRSA were 

not efficiently lysed by any of the protein fusions; this is in agreement with the 

findings of Horgan et al., (2009) and O’Flaherty et al., (2005) who both found 

that LysK exhibited weak lytic activity on these strains with maximal lytic affect 

seen on bovine S. aureus.  

We did not observe any lytic activity for the purified protein fusions on bovine 

S. aureus, MRSA and VRSA. This could be due to the composition of the 

protein buffer suspension that may have played an important role in reducing the 

functionality of the eluted protein fusions.  Fenton et al., (2011) observed that a 
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300 mM concentration of NaCl tremendously decreased the activity of CHAP 

peptidase. Our elution buffer necessary for eluting off of Nickel column was 

similarly composed of 300 mM of NaCl that may have further compromised 

activity. The presence of high imidazole concentrations (300 mM) may have 

also interfered with protein activity by forming aggregates (Sharma et al., 1992). 

Finally, the 6xHis tag sequence to the N-terminal of fused protein has been 

shown to interfere with protein folding (Hefti et al., 2001);  this may have 

altered the folding, reducing catalytic activity of the CHAP domain.  

We performed growth inhibition assays as a more sensitive and quantitative 

approach to assess the antibacterial activity of gpD::X protein fusions. The 

results of these assays generally agreed with the qualitative zymogram test 

results, showing that gpD::LysK, gpD::CHAP and positive control, LysK all had 

varying degrees of lytic activity on bovine S. aureus. The results from the 

zymogram and inhibition assays confirm that CHAP peptidase is able to 

effectively cleave the peptidoglycan bonds of bovine S. aureus as a soluble 

monomer, suggesting again that the lytic activity of each of gpD::LysK and 

gpD::CHAP is likely compromised when displayed on phage λ capsid. The 

finding that CHAP::gpD exhibited milder antibacterial activity in the inhibition 

assay, but not in the crude protein lysate zymogram assay, may be explained by 

increased sensitivity of the former assay.  

The lytic activity of the CHAP peptidase that was observed in each of the crude 

lysates of gpD::LysK, gpD::CHAP and CHAP::gpD constructs can be backed up 

by extensive studies that were performed on it. A more recent published study 
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demonstrated the strong ability of LysK peptidase domain, CHAP, to eliminate 

biofilms caused by bovine S. aureus strains (Fenton et al., 2010). The biofilms 

were eliminated within 4 h following treatment and never grew back (Fenton et 

al., 2010). CHAP peptidase was observed to be more lytic protein than the 

amidase catalytic domain (Fig. 2), and that would explain why our gpD::Bind 

construct did not elicit any lytic activities on any of the staphylococcal strains 

tested.  

As expected, gpD::SH3 construct, which is the peptidoglycan cell wall binding 

domain, did not show any lytic activity in either of the lysis assays  performed. 

This agrees with the results of Becker et al. (2009) who did not observe any lytic 

clearing by purified SH3 domain. However, they did note that when SH3 was 

fused to CHAP domain (removed Bind domain), the lytic activity was 

comparable to wild type LysK activity. Our construct, CHAP::gpD::SH3 

similarly resembles this construct, but the presence of gpD separating these two 

domains completely abrogated lytic activity (in addition to severely 

compromising gpD functionality), suggesting that misfolding or steric hindrance 

may have interfered with the catalytic activity of CHAP in the 

CHAP::gpD::SH3 construct.  
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Future Directions 

Mosaic display of complemented gpD and gpD::X fusions is an approach that 

Zanghi et al., (2005) showed to enhance the incorporations of fusions on λ 

capsid and hence functionality. Here we have tested incorporation of fusions, 

supplemented by gpDQ68S. Other alleles, such as gpDwt or gpDQ68Y alleles 

that confer far greater functionality may be preferable to improve incorporation. 

Recalcitrance may also be resolved by reducing expression of the D::X fusions 

during phage production by growing up the cells at a lower temperature (35
o
 C). 

Spacer size may also play an important role in improving gpD functionality and 

incorporation of fusions into the capsid, since it has been previously noted that a 

spacer increase from 10 to 92 a.a. can increases protein activity by 10-fold (Lee 

et al., 2003; Strauss & Gӧtz, 1996). 
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Conclusion 

In this study, we attempted to display phage K, endolysin K on the capsid of 

phage λ through translational fusions to the major capsid protein gpD. Fusion 

proteins were subject to strong recalcitrance and resultant phage display 

particles did not elicit any lytic activity on the tested clinically relevant S. aureus 

strains. The inactivity of the displayed fusions may be attributed to poor 

incorporation of fusions, steric hindrance or misfolding of proteins, or any 

combination thereof. Although some of our constructs were attempts to be dual 

fusions of gpD, literature and our findings suggest that fusion to the C terminal 

of gpD is a far better fusion in producing functionally lytic proteins (as seen in 

our soluble protein constructs). We further showed that the fusion of gpD to 

endolysin K (LysK) and CHAP does not dramatically interfere with CHAP 

catalytic activity as gpD::LysK, gpD::CHAP and CHAP::gpD showed variable 

antibacterial activities. Our findings disprove the original hypothesis, but answer 

essential questions and provide important new information toward improving 

gpD::LysK phage display and resolving protein fusion recalcitrance. Although 

this study is preliminary in designing and characterizing lytic proteins on phage 

λ capsid, it offers the promise that by enhancing the display of fusion proteins 

on phage capsid, functionally lytic decorated phage particles can be generated.  
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