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Abstract 

This thesis provides an artificial intelligence approach for the problem of resource allocation in time-

critical dynamic environments. Motivated by healthcare scenarios such as mass casualty incidents, we 

are concerned with making effective decisions about allocating to patients the limited resources of 

ambulances, doctors and other medical staff members, in real-time, under changing circumstances. 

We cover two distinct stages: the Ambulance stage (at the location of the incident) and the Hospital 

stage (where the patient requires treatment). Our work addresses both determining the best allocation 

and supporting decision making (for medical staff to explore possible options). Our approach uses 

local search with social welfare functions in order to find the best allocations, making use of a 

centralized tracking of patients and resources. We also clarify how sensing can assist in updating the 

central system with new information. A key concept in our solution is that of a policy that attempts to 

minimize cost and maximize utility. To confirm the value of our approach, we present a series of 

detailed simulations of ambulance and hospital scenarios, and compare algorithms with competing 

principles of allocation (e.g. sickest first) and societal preferences (e.g. egalitarian allotment). In all, 

we offer a novel direction for resource allocation that is principled and that offers quantifiable 

feedback for professionals who are engaged in making resource allocation decisions. 
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Chapter 1 

Introduction 

Within the field of artificial intelligence, an intelligent agent represents an entity that perceives and 

acts in an environment rationally in order to reach a certain goals or perform certain tasks; multiagent 

systems represents the system where these intelligent agents interact with each other [45]. Multiagent 

resource allocation takes resources and agents as input and outputs how the resources should be 

allocated to the agents. This thesis concerns multiagent resource allocation and proposes a framework 

for performing this task in dynamically changing environments where real-time decisions are 

required. 

Chevaleyre et al.’s survey of multiagent resource allocation (MARA) systems distinguishes 

between distributed and centralized approaches [8]. In this thesis, we propose a centralized solution, 

one that uses local search in order to discover preferred allocations. Chevaleyre et al.’s discussion of 

MARA clarifies that agents in need of resources will have preferences over what they receive; they 

also explain that determining the value of an allocation can be achieved by virtue of some kind of 

global utility function. 

In this thesis, we are interested in a particular kind of environment, one that can be characterized as 

follows: i) it has indivisible resources ii) the resources may either be shareable or unshareable iii) the 

multiagent system is cooperative; as a result agents are not attempting to deceive their peers iv) there 

is a very general characterization of agent preferences, which applies to all of the agents in the system 

(they all want to receive the best resource that improves their utility) but there may still be differing 

needs, amongst agents (for example, in a healthcare domain one agent may need a heart surgeon 

whereas another requires a brain surgeon) v) the preferences of users are in essence dictated by their 

current state: what agents in this state would require as resources vi) the environment is one in which 

the cost of a poor allocation is important to be modeling; this means that instead of introducing a 

utility function to maximize, we are more focused on reasoning with a cost function, to minimize vii) 

there is the challenge of coping with agents in need of resources for whom no resources have in fact 

been allocated viii) the environment is dynamically changing and the allocation solution must be 

computed in real-time. 

The design that we will propose in order to provide for resource allocation in environments such as 

these is characterized as one of solving a constraint satisfaction problem, cast in terms of conducting a 
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local search towards a solution. In Chapter 2 we elaborate on what needs to be specified when 

adopting this particular approach (including preferred search strategy, heuristic for selecting 

neighbouring solutions, options for restarting the search, etc.). While viewing the solution of 

constraint satisfaction under dynamic conditions as local search is not a novel depiction (see for 

instance [42]) what we are now proposing and illustrating is using this kind of artificial intelligence 

paradigm as the basis for resolving resource allocations. 

Since MARA problems require some kind of function to compare alternative solutions, what we 

outline in this thesis is an approach for clarifying the cost functions that will enable the allocation 

options to be compared. Towards this end, we propose that social welfare functions be used as the 

central metric. Chevaleyre et al. discuss the role that social welfare functions have played in the 

design of MARA systems; he also provides a nice survey of the different kinds of functions which 

may be introduced [8]. This discussion depicts these functions as useful in reflecting the preferences 

of agents, towards improved utility in environments such as auctions, with negotiation. In our system, 

as will be shown, we make the decision to employ social welfare functions in order to compare the 

differing costs of solutions. It will turn out to be the case that this metric is especially valuable for the 

kinds of applications in which we are interested. 

We have already characterized the kinds of environments we wish to model and in which our 

MARA proposal will operate. One particular application is that of healthcare. We were in fact 

motivated by trying to address how to assign ambulances to hospitals, especially when faced with 

critical, burdensome scenarios such as mass casualty incidents. But we wanted our solution to be 

sufficiently general that it could also handle the second phase of MARA within this context: assigning 

doctors to patients upon arrival at the hospital. We also imagined that our framework would be of 

value in other environments, such as allocating fire fighters to a new, massive fire (which would 

require the same kind of system characterization). Faced with a MARA challenge in a context like 

this, it occurred to us that what would also be important to offer as part of our design are additional 

elements: i) an articulation of the sensing that would occur in the environment that would enable the 

updating of parameter values ii) a characterization of when it would be possible to change the 

proposed allocation of resources (e.g. certainly before the actions to be performed by the resource 

have begun, a kind of buffering situation) iii) support for decision making by the humans who are 

interested in learning the proposed allocation of resources. 
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This then caused us to ensure, when designing our framework, that it could be implemented, 

thrown into simulated scenarios, in such a way that various graphs could be generated which would 

both i) confirm the value of our particular design, in comparison with less reasoned approaches to 

MARA ii) provide output of value to decision makers, in order for them to adjust certain parameter 

settings, in an effort to determine their best decision making strategies. 

This thesis devotes considerable effort to clarifying what decision makers can specify and can see 

outcomes for, as part of our decision making support within our overall framework. As will be 

explained in greater detail in Chapter 3, we allow for variation of i) preferred social welfare functions 

ii) preferred principles of allocation (e.g. sickest first vs. first come first served) iii) experimenting 

with different buffering times (for how long one can adjust the proposed initial allocation before it is 

locked in and no longer adjustable (the gains in solving quickly vs. the losses in ending up with less 

desirable allocations) iv) the effect of setting differing times for when to sense and thus to update the 

parameter values. 

In the chapters that follow we provide background information including competing approaches 

and related work that serves to inform our solution (Chapter 2), a description of our proposed model 

in detail, including its central algorithms (Chapter 3), a depiction of this model for the application of 

healthcare, outlining proposed parameters to model and their range of possible values, as well as 

useful domain-specific cost functions (Chapter 4), and a validation of this model in this specific 

context (Chapter 5) providing not only graphs which show the performance of our approach but also 

sample output that can be presented to decision makers in this context. In Chapter 6 we return to 

summarize our contributions and to discuss future directions. 

In all, we are offering a clear characterization of local search as a method for MARA, proposing 

the use of social welfare functions as the basis of computing and comparing costs. We illustrate the 

use of this framework in detail for the application of healthcare, highlighting what our design makes 

possible for decision makers. Through simulations, we are able to illustrate the effectiveness of the 

framework and thus its potential contribution for healthcare applications. Our final discussion 

clarifies the central components our design that makes it amenable to a variety of possible contexts, 

outlining as well what distinguishes it from other approaches. 
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Chapter 2 

Background 

In this chapter, in order to determine the requirements for our solution, we include a literature 

survey for some background information. Areas that will be covered include patient scheduling, 

decision support systems, resource allocation, and constraint satisfaction. Although there is overlap in 

the topics between the literatures, the sections have been divided into subtopics for ease of reading. 

Once we have presented our proposed approaches in detail (Chapters 3-5), we will return to provide 

additional compare and contrast (Section 6.2). 

2.1 Patient Scheduling 

Scheduling patients in a hospital can be carried out from many different approaches. These 

approaches include appointment exchanges [43], coordination mechanisms [13, 21], genetic 

algorithms [37, 49], and multi-agents [13, 21, 31, 33, 43], where some of them [13, 21, 43] are a 

combination of approaches. Simulations and experimentations are typically performed to show the 

benefit of the approach. 

Vermeulen et al.’s [43] paper discusses patient scheduling in a hospital that uses a multi-agent 

Pareto-improvement appointment exchanging algorithm (MPAEX) with the objective of minimizing 

completion times of all their patients. There are a few techniques used to reach their objective. The 

first is with the multi-agent system, where agents are either resource agents or patient agents. A 

resource agent represents medical professionals or medical equipment (e.g. examination room). In 

addition, resource agents include their constraints and their preferences. A patient agent simply 

represents the patient in the hospital and includes their needs as well as their preferences. Patient 

agents will have timeslots scheduled with the resource agents so that they can be treated. Scheduling 

the timeslots applies Pareto improvement technique, where a patient will be scheduled to a timeslot 

only if no other patient will become worse by that scheduling. It is important to note that activities 

performed in a hospital each has its own duration and each agent can only be part of one activity at a 

time. Moreover, the dynamic nature of hospitals causes activities to be added continuously depending 

on the arrival and departure of patients as well as resources. All these factors are taken into account 

using the MPAEX algorithm. Using the technique of appointment exchanging between agents, 

patients are initially assigned timeslots by corresponding with resource agents then the patient agents 

will continuously reschedule until exchanges can no longer be made. 
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Decker and Li’s [13] work also has a multi-agent solution but they use a Generalized Partial Global 

Planning (GPGP) approach. In this paper, agents represent the ancillary and nursing units of the 

hospital while the resources represent the patients. The units perform different tasks (e.g. blood test) 

on the patients. These tasks have a few considerations. The first is that tasks can have relationships 

between them, for example, completing a certain task before others. Next, tasks should not be 

redundant. Finally, depending on the task, a patient can be considered a non-shareable resource 

meaning it will not be able to be in two different ancillary units at the same time. The authors mention 

that cooperative agents are required in order to coordinate the tasks. Furthermore, agents will have 

comparable utility measures when determining the schedule. Schedules are creating through a bidding 

process. Each agent produces a local schedule and they bid for the time interval to complete their 

task. If the agent loses the bid then it will reschedule. If the agent wins the bid then it will execute the 

task. However, the winning agent may still be required to reschedule due to the dynamic nature of 

scheduling in a hospital. One of the reasons identified in this paper for scheduling is to minimize time 

for setup, which will minimize the amount of time a patient needs to stay. 

Coordination of multi-agent patient scheduling is similarly found in Kanaga, Darius, and 

Valarmathi’s [21] paper. This work has an auction based mechanism with three types of agents. The 

Common Agent registers the patient, sets the initial plan for treatment, and assigns a priority to the 

patient based on their health. Examples of a Common Agent include general physicians and hospital 

receptionists. The Resource Agent can be doctors, specialists, and hospital equipment (e.g. MRI 

machine). The doctors and specialists have their own beliefs, goals, availability, and preferences. The 

Patient Agent represents a patient with a treatment plan consisting of tasks to be completed at a 

certain time. Each patient will have preferences for resources and time slots. The patient’s health and 

priority level may change over their hospital visit. The authors describe an auction based mechanism 

where each Resource Agent is an auctioneer and each Patient Agent is a bidder. In order for a Patient 

Agent to minimize their waiting time they places bids to the Resource Agent for time slots. Once the 

auction is over, the bidders are informed who won the time slot. If a Patient Agent lost the auction 

and still needs the unavailable resource then the Resource Agent will trigger an auction when a time 

slot becomes available. Again, minimizing the patient’s waiting time will benefit their recovery. 

Similar to the other work, Paulussen et al. [33] discusses patients may needing to go through many 

different wards and units in the hospital to be able to receive examinations and treatments. A patients 

schedule in the hospital may change based on the changes to their health. Furthermore, schedules can 
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change due to tasks being added from being required or tasks being removed since they became 

obsolete. Resource and patient agents are mentioned for the multi-agent based approach. Patient 

agents will compete against each other for the limited resources in the hospital. Moreover, patient 

agents have a cost function that measures their health state progress, which takes into account the 

development of their health state. The patient’s goal is to be treated so that their health state increases. 

An opportunity cost arises from delaying treatment to a patient. Resource agents also have a cost 

function but it is measured in monetary costs. The paper identifies the goals of minimizing a patient’s 

stay at the hospital and minimizing the idle times for resources. To achieve this goal, a distributed 

approach is used to negotiate and reschedule. Patients try to decrease their opportunity costs by 

improving their initial schedule through negotiations. During the negotiation process, a patient agent 

will use a resource agent in order to try to obtain an earlier time slot from the other patient agents. 

Rescheduling of the time slots will occur only if the expected gains exceed the costs. 

In contrast to the previous papers, the work of Xiao, Osterweil, and Wang [49] use an evolutionary 

algorithm approach to schedule resources in the emergency department of a hospital. Patients require 

the hospital resources for treatment but these resources are limited. The authors discuss using an 

incremental resource scheduling method for rescheduling tasks that occur in a specific time-window. 

Finding a window that is the right size is important in order to avoid frequent rescheduling, high cost, 

and low accuracy. The paper identifies three types of scheduling constraints for an emergency 

department. These constraints are capability, availability, and step execution order. Certain 

components of the framework are described by the authors. The scheduler component relies on a 

genetic algorithm to construct the schedule. Rescheduling is determined by the rescheduling indicator 

component. The scheduling activity set constructor contains all the information needed for schedule 

decision making including activities that may occur in the near future. The request to perform an 

activity contains the type of resource required, the capability, and the minimum skill level. The 

resources are description includes their availability, capability, skill level, and productivity. The final 

component of the framework is the system execution component, which comprises of information 

needed for updates. 

The work of Priya, Anandhakumar, and Maheswari [37] also has a genetic algorithm for 

scheduling. The authors discuss using Radio Frequency Identification (RFID) tags on hospital 

equipment, medical staff, and patients to track where they currently are in the hospital. Moreover, 

their system will determine availability and whether they require service. When a patient arrives at 
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the hospital, they will be given a wristband that contains an RFID tag. Each patient’s RFID tag will 

store information about the patient including their medical files. The RFID system will use the 

information about the medical staff and equipment in order to schedule them to a patient. The RFID 

system will schedule patients so that the time between arrival and beginning of treatment will be 

minimized. The paper acknowledges that multiple patients can arrive at the hospital at the same time, 

which changes the objective to be minimizing the average set up time of these patients. Moreover, the 

system will schedule the appointment slots for each doctor to be continuous as to maximize 

utilization. The authors propose a dynamic scheduler using Nondominated Sorting Genetic Algorithm 

II (NSGA-II), an evolutionary algorithm, to find the optimal schedule. The algorithm ensures that a 

time slot will not be allocated to more than one patient and that the allocation will provide the patient 

with the appropriate resource. Scheduling in hospitals is discussed in Niemann and Eymann’s [31] 

paper. The approach is agent based with decision support systems. It will be covered in the following 

subsection. 

Summary: Various design decisions in this thesis are in agreement with the modeling performed in 

several of the references of this subsection, in particular having patients represented by agents and 

tracking central features of resources. We return to contrast our solution with these approaches in 

Section 6.2. 

2.2 Decision Support Systems 

Combining multi agent systems with decision support systems for scheduling in hospitals is 

included in the paper by Niemann and Eymann [31]. The authors discuss a hybrid approach, which 

allows a human to make the final decision based on the information provided by the fully automated 

system. The multi agent part of their approach uses active (e.g. medical staff and patients) and passive 

(e.g. medical equipment and rooms) software agents. It is necessary for these agents to be able to 

communicate with each other. The paper suggests personal digital assistants for a two-way 

communication between them. This informs agents about changes to schedules as well as the ability 

to delegate decisions about the schedule. Sensors and effectors are used to link the logical and real 

world. Rather than having each human agent manually logging their activities, the authors propose 

using either Radio Frequency Identification (RFID) or Wireless Local Area Network (WLAN) to 

monitor them. The system will infer whether the agent is active or idle. If the agent is active then it is 

cannot make another appointment. However, if the agent is idle then it is available for an 

appointment. Inferring the location of the agents is appropriate for the system since it only provides 
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suggestions and a human will be making the final decision. The paper mentions a layered architecture 

for scheduling. The bottom layer is called identification, which receives all the data from the 

incoming signals and sends appropriate information to the next layer. The context detection layer 

infers the position of the agent. Following this layer, the integration layer obtains the schedule and 

checks the validity by comparing the agent’s position with the position determined by the previous 

layer. If all the agents agree on the schedule then it is valid. However, if one of the agents determines 

that the schedule is invalid then they must send the information to the optimization layer. The 

optimization layer is the top layer and is responsible for fixing the schedule. The software agent will 

attempt to create a valid schedule that still follows the previous constraints. If the software agent 

cannot create a valid schedule and needs medical knowledge then the human agent will be responsible 

for making the schedule. The authors mention that the advantages of this hybrid system are that the 

automated system is able to check schedule validity quickly and only a human can analyze the entire 

situation. 

Taboada et al.’s work [40] discusses a decision support system for hospital emergency 

departments. The project will help directors of the emergency department make decisions about 

efficient resource use. The authors' work includes an agent based model and simulation. Agents are 

either active (e.g. patients and doctors) or passive (e.g. IT infrastructure or laboratories). State 

machines are used to model the agents, where a state is a collection of state variables. Depending on 

the kind of agent, state variables could include symptoms, location, level of experience, or 

communication skills. An agent can communicate to an individual or a group. The authors mention 

the various environments in the model, which includes admission, waiting rooms, and treatment 

zones. There are five levels to determine the priority given to the patients during the triage process, 

where level I is the highest and level V is the lowest. The paper describes that the simulations as well 

as the validation and verification of the model was done with the participation of a team of emergency 

department staff from the Hospital of Sabadell (Spain). The authors conclude the paper with 

experimental results from the simulation that showed a decrease of patient length of stay in the 

emergency department and a decrease in required number of physicians. 

The paper of Wong, O’Hare, and Sallis [48] use the critical decision method (CDM) to elicit 

information from ambulance dispatchers in Australia. Five ambulance dispatchers were interviewed 

with the intention of understanding their process and the appropriate information for decision support. 

Five goal states emerged after the interviews were transcribed, summarized, and analyzed. The goal 
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states are notification of emergency, maintain situation awareness, planning resource to task 

compatibility, speedy response and maintain history of development. Each goal state provided 

guidance on decision support in the naturalistic decision making (NDM) environments. 

Heimly and Nytro’s [18] work provides clinical guidelines for referrals given by primary care. 

Their study transpired in a Norwegian hospital using general practitioners with the intention of 

improving the quality of the referrals. These were electronic referrals that the general practitioners 

have already been using in their practices. When sending the patient to a specialist, the guidelines 

included in the referrals provided decision support. It is important to note that the general practitioner 

can choose whether or not to follow these guidelines. The paper identifies that the guidelines also 

helped the general practitioners determine whether or not a patient will be referred to a specialist. 

Summary: Our approach of considering sensing to inform resource allocation and supporting 

decision making by medical professionals fits well with the perspective of these authors. In Section 

6.2, we offer additional comparisons with this work. 

2.3 Mass Casualty Incidents 

Mass casualty incidents in the health care environment have been dealt with in previous papers. 

Doucette’s work [14, 15] described a hospital that uses an automatic scheduling system that would 

allocate resources, such as a doctor, to a patient. The strategy is to use preemption in order to meet the 

patient’s requirements. For example, a patient would need to be seen by a doctor within the first two 

time cycles. This could be described as a constraint satisfaction problem by having the patients as the 

variables and the doctors as the value in the domain. 

Branas, Sing, and Perron's work [5] also discusses mass casualty incidents. They focused on mass 

casualty incidents that occurred during a three year period in Maryland. Eight cases were described in 

that paper with various numbers of injured individuals, ambulance vehicles used, and hospitals 

involved. Their paper included some helpful knowledge that was applied to the example in this paper, 

including number of victims and hospitals. Moreover, Einav et al.'s work [16] provided other kinds of 

information regarding a mass casualty incident. Their work involved thirty three mass casualty 

incidents that occurred during a two year period in Israel. Unlike the work in [5], Einav et al.'s work 

[16] is less descriptive in each event that occurred but rather provides different kinds of statistical 

categories, including initial time for the ambulance and distance to the hospital, that were applied to 

the example of this paper. 
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In the literature regarding a health care environment, the measurement that describes the health of a 

person greatly varies between papers. Einav et al.'s work [16] took a discrete approach by stating that 

the victim's health is urgent, not urgent, or unknown. Work by Feeny et al. [17] had a continuous 

approach to a patient's health. As seen in Figure 2.1, which shows Table 3 from Feeny et al.’s work 

[17], the health is represented by a utility function where perfect health is at 1.00 to dead at 0.00. The 

utility function consumes a value from each attribute, where each level is used to describe the 

patient's health. The closer the value is to level 1, the better the individual’s health. For instance, the 

ability to see well from close and far distances would be a level 1 for the vision attribute and not 

being able to see at all would be a level 6. Patients with the same type of injury may have different 

health values based on less concrete attributes like emotion. 

These approaches have their strengths as well as weaknesses. For this example, discrete values are 

needed but the health of the individual should be known and should be categorized in a few health 

states. The American Hospital Association's work [1] has described four health states, which can be 

seen in Figure 2.2. In ascending severity order, they are good, fair, serious and critical. This work is 

in regards to releasing information about a patient's condition, therefore it is also simple and can be 

easily understood by those not in the health field. 

Once the health of an individual is known, there are many factors to be considered when assigning 

a hospital to them. Østerdal's work [32] states two interesting questions about these assignments. The 

first is the idea of a health state that is worse than being dead. The second deals with discriminating 

against age and whether it is valid. I did not deal with these issues in this paper but they can be 

addressed in future work. Weale’s work [44] also raised an interesting consideration about 

assignments. Weale discussed the problem of equity to determine whether assignments should be 

based on clinical need or productivity. When dealing with fairness, it is important to take a global 

view to determine whether a patient should be sent to a certain hospital. 
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Figure 2.1 – Table 3 from [17] 

 

 

Figure 2.2 – Health conditions from [1] 

So far the papers have only dealt with the injured individual in regards to the assignments. 

Chevaleyre et al.’s work [8] focuses on social welfare to give a global view of the scenario. This will 

be discussed in the next section.  

Summary: As in these papers, in our work we model patient health states in order to direct our 

resource allocation decisions. The approach that we use and its rationale are covered in Chapter 3-5. 

2.4 Resource Allocation 

Allocating resources can cover different domains and techniques. Some of the previous papers, 

including Priya, Anandhakumar, and Maheswari’s work [37], identified their scheduler as a solution 
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to the resource allocation problem. Meuleau et al.’s paper [27] solves resource allocation for planes 

by modeling the problem as a Markov decision process (MDP). Weng et al.’s [46] work covers 

resource allocation in a hospital’s emergency room department. The authors explore using linear 

along with nonlinear pricing models and attempt to solve this problem by maximizing in terms of 

profit. 

Chevaleyre et al.’s [8] work provides as a survey resource allocation. The paper describes the types 

of resources. Resources can be discrete (e.g. CT scanner) or continuous (e.g. energy to power a 

hospital). Some resources can be divided (e.g. cotton swabs) and others are indivisible (e.g. 

electrocardiography machine). In addition, resources should specify if they are shareable or not. For 

example, recovery rooms can be used by multiple patients or can be private, which makes it usable to 

only one patient and therefore will not be shareable. It is important to note that resources may change 

over time. Finally, resources should identify whether they are representing a single- (e.g. nurses) or 

multi- (e.g. bandages) unit setting. The paper also discusses allocation. A centralized approach to 

allocation has the final decision made by a single entity. In contrast, a distributed approach 

determines the allocation through local negotiations. Allocations can be decided by auction protocols 

or negotiation protocols. During negotiation, the agreement can be viewed from a local or global 

perspective. The local view only focuses on the individuals in the negotiations. The global view 

evaluates the entire allocation and the term social welfare is used a metric to determine the quality of 

the allocation. The allocations in social welfare depend on efficiency and fairness. An efficient 

allocation can be achieved with a technique called Pareto optimality, where it is impossible to 

improve an individual's allocation without worsening others. A fair allocation can be achieved with a 

technique called envy-free, where all the individuals are satisfied with their own allocation and would 

not prefer any other individual's allocation. Envy can be minimized by reducing the number of 

individuals who are envious or reducing the amount of envy the individuals have. Social welfare 

function relies on each individual’s utility to determine the social welfare. Each individual tries to 

maximize their utility and the social welfare is also intended to be maximized. An allocation is 

determined to be better than another by comparing the values determined by the social welfare 

function. The first social welfare function, seen in (1) is called the Utilitarian Social Welfare.  

SWu(P)∑          

This function sums the all the individual’s (A) utility (U) given the allocation (P). Note that this 

function is not affected by non-positive values for the utility. In contrast, the next social welfare 
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function is greatly affected by non-positive values. Nash Product, seen in (2) multiplies all the 

individual’s utility in the allocation. 

SWN(P)∏          

This function works best when all the utility values are non-positive. It is important to note that the 

value of the social welfare increases as the values of each utility function reach equality, where the 

large values decrease and the small values increase to the same middle value. Another advantage of 

using Nash product is that it is scale independent. The third social welfare function is the Egalitarian 

Social Welfare, seen in (3). 

SWe(P)Min {Ui(P) | i A}  

This function sets the social welfare as the lowest utility value in the allocation. Here the worst off 

individual sets the social welfare. In contrast, Elitist Social Welfare, seen in (4), sets social welfare 

as the highest utility value in the allocation. 

SWel(P)Max {Ui(P) | i A} 

The best off individual sets the social welfare. Rank dictator, seen in (5), is the final social 

welfare function discussed in the paper. 

SWk(P)(v↑p)k 

The social welfare is set to the k-th smallest utility value. This means that when k is 1 then social 

welfare is equivalent to Egalitarian Social Welfare and when k is the number of individuals then the 

social welfare is equivalent to Elitist Social Welfare. Furthermore, the social welfare could be the 

median rank dictator, which is when k is the rounded up whole number value of the number of 

individuals divided by two. Each social welfare function has its benefits and the appropriate approach 

should be used to determine the best possible allocation. 

Principles of allocation are discussed in a paper by Persad, Wertheimer, and Emanuel [34] focused 

on resource allocation for medical applications. There are four categories for eight simple principles. 

The first category is about treating people equally. Lottery and first-come-first-served (FCFS) are 

two principles in this category. The advantage of these principles is the equal opportunity of receiving 

the resource but the disadvantage is that these principles ignore other relevant factors. The second 

category of principles favors the worst off. The first principle in this category prioritizes the sickest 

first. An issue with this principle is that future health is not considered since an individual who is not 
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currently sick will be ignored but may become sick in the future. Youngest first is another principle 

in this category. The paper identifies a disadvantage of this prioritization is that it ignores other 

relevant factors. The next category of principles takes a utilitarian approach by maximizing total 

benefits. Saving the most lives is the first principle in the category and focuses on maximizing the 

lives saved. Prognosis is the second principle in the category and refers to maximizing total life-

years, which represents the remaining number of years in one’s life. The issue with these principles is 

that other relevant factors are ignored. The final category promotes and rewards social usefulness. 

Instrumental value allocation will prioritize individuals based on their agreement of future behavior. 

For example, promising to improve one’s health in order to receive the limited resource. On the 

contrary, reciprocity allocation prioritizes based on past behavior. The issue with this final category 

is that the prioritization is vulnerable to misuse. All eight simple principles have disadvantages but 

combining the principles may create better allocation systems. The paper identifies four multi-

principle allocation systems. The first system is called United Network for Organ Sharing (UNOS) 

points systems, which combines first-come-first-served, sickest-first, and youngest-first. This system 

is flexible by allowing a principle to have a greater influence than others. The next allocation system 

modifies the prognosis principle. Quality-adjusted life-years (QALY) allocation not only considers 

the quantity of life-years but also considers the quality. Similarly, the third allocation system is 

disability-adjusted life-years (DALY). Unlike QALY, DALY allocation includes the instrumental 

value principle. The final multi-principle allocation system is the complete lives system. This system 

combines youngest-first, prognosis, saving the most lives, lottery, and instrumental value principles. 

There is no algorithm for this allocation system and the authors mention that it should be thought of 

more as a framework. 

Summary: Social welfare and principles of allocation are central concepts in our proposed model and 

its validation, described in detail in Chapter 3-5. There are a variety of other approaches for 

multiagent resource allocation, against which we can compare and contrast our proposed local search 

approach; Section 6.2. 

2.5 Constraint Satisfaction Problems 

The constraint satisfaction problem is defined in Bessiere’s work [4] as a set of variable with 

values in the domain and a set of constraints that represents the relationship between the variables and 

their values. Satisfying all these constraints will result in the solution to a constraint satisfaction 

problem. In [38], hard constraints are described as constraints that cannot be violated and soft 
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constraints can be violated. When there is soft constraints in a problem then an evaluation function is 

used to measures its violation and solution tries to minimize these violations. A dynamic constraint 

satisfaction problem is described in [4], [12], and [42] as a sequence of constraint satisfaction 

problems, where each subsequent problem represents the restriction, addition of constraints, or 

relaxation, removal of constraints, based on the changes that occurred from the previous problem. The 

changes that occur from problem to problem represent new input, which changes the view of the 

problem and may cause inconsistency with the solution to the new problem [12]. 

With the problem changing, there will need to be multiple solutions and work by Rossi, van Beek, 

and Walsh [38] describes three techniques. The first is to reuse aspects of the old solution when 

computing the new solution. The second is reusing some of the previous reasoning process when 

generating a new solution. The final technique is preemption, which involves looking in advance for 

solutions based on likely changes. 

There are concerns when finding new solutions that [29], [38], and [42] identify. Minimizing the 

need to change a solution allows for robust solutions, which means the new solution may only need a 

minor alteration or none at all. If a modification to the solution is required, it is important to minimize 

the cost for the modification. Another concern is to minimize the reaction time by obtaining a new 

solution as quickly as possible. When dealing with these minimizations, it is essential to avoid 

choices not involved in the current problem, undoing choices not involved in the current problem, and 

ensure that local changes only affect the current problem. In Mittal and Falkenhainer’s work [29], 

they identify active variables to understand what needs to be changed and what can stay the same. 

Local search is discussed in [38] as an approach to solve constraint satisfaction problems. The idea 

is to start with an initial solution, assignment of values to variables (constraints may be violated). This 

solution will continuously evaluate neighbor solutions and select a solution that is an improvement 

until a stopping criterion is reached. Neighbor solution refers to a solution that is a variation to the 

current solution, which would be a different assignment in the solution. The neighborhood, the 

neighbors for the current solution, can vary. There are many methods in local search but in our work 

we focus on hill climbing, which constantly searches for a better solution until it reaches an 

identifiable peak. Hill climbing will select a new improved solution or it will be the best solution in 

the neighborhood. There are two approaches called best-improvement and first-improvement. Best-

improvement looks through every neighbor in the neighborhood and selects the best solution. First-

improvement looks through its neighbors in the neighborhood and selects the first solution that is 
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better than the current solution. As explained in Chapter 3 we adopt the first-improvement option. 

Local search continues to find better solutions until a terminating criterion is met, such as the best 

solution is found (all constraints satisfied) or the predetermined limit of number of iterations has been 

reached. Sometimes local search can reach local optima so to solve this random restarts can be used. 

Random restart creates a random initial state and repeats the local search algorithm a certain number 

of times. The best solution of the random restarts is returned as the solution. 

Summary: The multiagent resource allocation algorithms which constitute our proposed solution 

adopt a local search approach for resolving the inherent constraint satisfaction problem. Various 

terms and concepts clarified in this subsection will be part of our model and its validation. This is all 

covered in Chapter 3. 

2.6 Discussion 

Decisions were to be made to determine the necessary approach for our solution and this section 

briefly discusses these choices. In this work, local search is selected to solve the multiagent resource 

allocation problem in the emergency department environment. The reasoning for this approach is that 

we can use local search to make time critical real time decisions about allocating resources to 

patients. 

Moreover, Chevaleyre et al.’s [8] work can be used to create the best possible assignment of 

hospitals to patients in terms of fairness and efficiency. Selecting a social welfare to assign the 

resources to the patients depends greatly on the intentions. Each of the social welfare approaches has 

its own advantages and disadvantages. Utilitarian and Egalitarian social welfare can use any values so 

they are suitable choice for a global view of a mass casualty incident. Nash product would only be an 

appropriate social welfare function if there are only positive values. Elitist social welfare does not 

seem appropriate either because when a mass casualty incident occurs, having one victim with perfect 

health and everyone else with bad health is not ideal. Moreover, Rank Dictator social welfare function 

is dependent on the k value selected and would be better left for future work. 

Finally, work by Persad, Wertheimer, and Emanuel [34] discuss many different principles of 

allocation. The simple principles will be used in our work because there are numerous principles that 

have unique and interesting approaches to the way that they are allocated. Multi-principle allocation 

systems would be interesting to investigate as future work. 
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As will be discussed in Chapters 3-5, we not only develop a proposed approach for achieving 

resource allocation, we also offer a framework that can provide decision support for users interested 

in learning about the relative value of different possible allocations. We return to reflect on the value 

of our framework in comparison with related work in Chapter 6. 

While we discuss the advantages of our particular proposal for resource allocation for real-time, 

time-critical dynamic environments in general in Chapter 3, we also return to elaborate on the 

particular application to healthcare in Chapter 4, and proceed to clarify what we offer for patient 

scheduling and for handling mass casualty incidents, relative to other approaches, in Chapter 5. 
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Chapter 3 

Multiagent Resource Allocation as Local Search 

In this chapter, we outline our proposed approach for multiagent resource allocation using local 

search and social welfare functions. There are a number of central elements that comprise the 

calculations; there are also a variety of options for decision makers to view alternative calculations, 

based on preferences that are specified. We first clearly outline the core process of local search. 

Definitions: 

- an individual allocation is a specification of which resource is assigned to which agent in the 

system 

- a global allocation is a pairing of resources to agents for all agents in the system (in both 

cases, an agent may be allocated the null resource (nothing)) 

- an initial assignment is one that specifies the resources allocated to each agents, to begin the 

local search for better allocations 

- a swap between two individual allocations is where the resource assigned to a1 is allocated to 

a2 and the resource assigned to a2 is allocated to a1 

- a change for an individual allocation is where the resource assigned to a1 is different from 

the resource it had been assigned 

- a neighbour of an existing global allocation is one in which either a swap or a change 

distinguishes the second allocation from the first 

Algorithm: 

We decide to adopt a First Improvement Hill Climbing strategy. This means that once we begin 

with an initial proposed allocation we will select the first neighbor that is better (determined as 

described below) and we will stop once none of the neighbors are better than our proposed allocation. 

The search for a better solution requires a metric to determine whether the new proposed solution is 

an improvement. The metric we use for this determination is a specified social welfare function. In 

our approach, the initial solution will be determined randomly. A total number of random restarts is 

specified. This is the number of times the initial allocation is reset (randomly) and the search for a 

better solution is launched, until termination. The allocation that is best relative to our metric for 

assessing allocations, from all the attempts through all the random restarts, is output as the Proposed 

Allocation. 
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Input: Agents requiring resources, resources that are available, preferred social welfare function 

Output: Proposed global allocation of resources to agents 

Step 0: Set the total number of random restarts allowable 

Step 1: Specify an initial solution (random assignment of resources to agents) 

Step 2: Consider a neighboring solution (one identical to the initial solution which has either a swap 

or a change) and if this offers an improvement, set this to be the Proposed Allocation 

Step 3: Continue Step 2 until the stopping criteria is met (current solution has no neighbors that 

improve) 

Step 4: Repeat with a new initial allocation, as many times as specified in the number of random 

restarts allowed 

Step 5: The Proposed Allocation preferred over all the attempted searches for the solution (all random 

restarts) is output 

 

Further details on how an improvement of one solution over another is modeled are outlined below. 

As discussed in Chapter 1, we are interested in modeling the cost of a particular resource allocation 

and in thus preferring an allocation that offers a lower total cost. The total cost of an allocation is 

calculated as follows. 

Step 1: For each individual allocation, determine its cost (based on domain specific features that make 

this solution less desirable). 

Step 2: For the global allocation, determine its cost (based on domain specific global features that 

make this solution less desirable) 

Step 3: Use the specified social welfare function to compute the total costs in Step 1 (considering all 

individual allocations) and add this to the total cost calculated in Step 2 

 

In the chapter that follows, we clarify possible domain-specific cost functions, for the application 

of healthcare. The above outlines how what we refer to as the Initial phase of the resource allocation 

is determined. We are interested in environments that are dynamically changing and would like to 

support real-time decisions for providing resource allocations. To this end, we allow for what we refer 
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to as an Update phase. Here, parameter values and thus cost function values are changing over time. 

This then requires a proposal for the frequency with which these values are re-evaluated, what we will 

refer to as sensing. With changing evaluation of cost functions, then the current allocations can be 

adjusted further. The process is summarized as below. 

Step 1: Set the Sensing Frequency to be X time ticks. 

Step 2: At X time ticks after the last check, sense and update parameters. 

Step 3: Run the Allocation Algorithm as outlined above. 
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Chapter 4 

Local Search Multiagent Resource Allocation for Healthcare 

In this chapter, we outline in detail how our proposed resource allocation framework can be 

employed for a healthcare application. As discussed in Chapter 1, we want to be able to address two 

different but related scenarios that can both be characterized as resource allocation for healthcare: 

allocating patients to ambulances (destined for hospitals) and allocating patients to doctors. We had in 

mind scenarios such as mass casualty incidents, where an unexpected need for resources to be 

allocated to a large number of patients may be at play, and where decisions need to be made in real-

time, under dynamically changing conditions. We refer to the first stage as the Ambulance stage and 

the second stage as the Hospital stage. 

In order to develop some insight into what should be modeled in this healthcare domain (what 

properties of the patients, ambulances and hospitals) and from here to specify what should be 

integrated into appropriate domain-specific cost calculations, we first experimented with what we 

refer to as the Sufficient Ambulance stage. In this simplified scenario, we omit the consideration of 

null resources: each patient will receive an ambulance-hospital pair as its assigned resource (where 

the hospital indicates the destination of the patient). 

We also focused entirely on the initial allocation in this simplified scenario. By Initial Allocation 

we mean a determination of which agents should receive which resources, according to our proposed 

local search method (with social welfare as its cost metric), where the allocation remains fixed over 

time as the victims are transported to their hospital destinations. As we will explain further when we 

discuss the modeling of our full Ambulance and Hospital cases, we allow an Update phase there as 

well. This means that over time, in the Ambulance stage, the assignment of hospitals to victims may 

change and in the Hospital stage, the assignment of hospital resources to patients may evolve over 

time as well, before all the required tasks in the environment are complete. 

4.1 Sufficient Ambulance Stage 

4.1.1 Example Scenario for the Sufficient Ambulance Stage 

We introduce as an example the mass casualty incident of a major car accident on the highway of a 

city. Note that a preliminary description of our proposal for the Sufficient Ambulance stage appears 

in [39]. This city has 3 hospitals. The location of the mass casualty incident is in the general vicinity 
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of these 3 hospitals. Each hospital has its own attributes, including distance to location of mass 

casualty incident, capacity, available resources, and current number of patients. Naturally, if the 

current number of patients is greater than the capacity then it is over capacity. This situation is not 

ideal but can happen. 

Assuming all the ambulances arrive at the location of the event at the same time, they will fill their 

ambulance and leave to their assigned hospital. When the victim is put into an ambulance, there is a 

random chance that the EMS driver will be a skilled veteran or rookie. Also, the victim will have their 

own attributes besides the EMS driver that they received. Their attributes includes the severity of 

their injuries, the resources they need at the hospital, and the initial time needed to load them in the 

ambulance. Some patients will leave the location of the incident faster than others depending on how 

long it took to find the individual and place them into an ambulance. It is essential to understand that 

a mass casualty incident could occur anywhere in the city so the hospital with the most available 

resources may not be the closest, which is unfortunate for the severely injured victims. 

For this example (and most of our experimental results for Sufficient Ambulance) the number of 

people involved in the mass casualty incident is 30 people. It is assumed that there is a one-to-one 

relationship between the number of injured and available ambulances. Once the ambulance reaches 

the injured individual, they will assess the severity of the victim's injuries and bring them to the 

ambulance. The injured individuals may have some broken bones, minor cuts, or be unconscious so to 

categorize their severity the health conditions from [1] will be used (Section 2.3). Moreover, each 

victim will require a different amount of resources from the hospital depending on their injury. These 

resources include medical staff, equipment, and rooms. Each hospital will have its own distance to the 

mass casualty incident, where it is better to have the hospital be closer to the incident. The resources 

available in the hospital will not always meet the patient's requirements. This does happen in the real 

world, which causes delay in the patient receiving treatment. The patient that needs to wait is usually 

the healthiest. It is assumed that a healthier patient understands that they will likely have a lower 

priority than the patient with critical health. 

When the victim is inside the ambulance, the EMS driver will communicate with the central EMS 

department. This department will run the proposed local search algorithm on this situation and let the 

driver know which hospital is their destination. To make this decision, the department will use certain 

local search strategies and social welfare calculations. It should not be thought of as the EMS drivers 
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competing with each other for the best hospital but rather that they cooperate to find the best result for 

this situation. 

4.1.2 Constraint Satisfaction Perspective 

A constraint satisfaction problem is described as decision variables, which are assigned values in 

the domain, and a set of constraints [38]. The example in this section is an optimization problem – we 

would like all victims to receive the best possible healthcare, through the allocation of the resources – 

so the goal is to find a solution that optimizes an evaluation function (in our case this will be a cost 

function). The decision variables in this problem are the patients. Each one of the patients will be 

assigned a hospital; this provides a value for each variable. This must be done subject to a number of 

constraints, outlined below. There are many constraints with this problem but given that this example 

reflects the real world, returning the no solution is not an option. This is why all the constraints are 

soft and the cost function will be used to optimize the solution. 

There are three soft constraints that influence the cost function. The first soft constraint is the 

capacity of the hospital. If there are more patients assigned to a hospital than its capacity then the 

cost function should return an unfavorable result. The second soft constraint relates to the resources. 

If the hospital that the patient is assigned to has fewer resources than required then the cost function 

should return an unfavorable result. This is because this situation represents the patient having to wait 

at the hospital for the resources to become available. It does not cause the entire problem to fail but 

rather is an inconvenience to the healthier patients who will need to wait. The final soft constraint 

relates to the EMS driver driving the ambulance to the hospital. The calculation very much depends 

on the severity of the injured patient. One component of the total cost function should therefore be 

the cost of the drive. Preferred cost values are given to better health, closer hospitals, a skilled 

veteran driver, and less initial time. If the patient's severity is fair and the drive is far then a slightly 

unfavorable result is given but better EMS driver skill and initial wait time will improve this result. If 

the patient's severity is serious and the drive is far then a more unfavorable result is given but again 

the EMS driver skill and initial wait time will improve this result. Finally, if the patient's severity is 

critical and the drive is not close then the most unfavorable result is given but, like the previous times, 

the EMS driver skill and initial wait time will improve this result. 

This example has been described in such a way that optimization would require optimizing the total 

cost function. The total cost function is the combination of each patient's overall cost function, 

influenced by the capacities of the hospitals. The approach to combining each value will depend on 
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social welfare function used. The additional components for the total cost function will be explained 

after we provide more detail on the proposed modeling of the environment. 

4.1.3 Modeling 

Figure 4.1 summarizes the various concepts that we want to model and their parameters. This is 

depicted according to our implementation, in Java displayed in further detail Appendix A.  

When a victim is paired with a hospital, it is placed in the SingleSolution class. Calculating the cost 

for this assignment is now determined on the basis of our CostDrive function and also a 

CostResource function which will depend on the resources needed by the patient and the resources 

available at the hospital. If the victim's resources are not met then a penalty is imposed.  

 

 

Figure 4.1 – Class diagram of the problem 
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The Solution class contains the assignments of all the patients to a hospital. It can used to calculate 

the total cost by combining each individual overall cost. What should also be included at this point as 

part of the total cost is a capacity penalty producing a less favorable cost if the hospital is 

overcapacity. The search() algorithm (see Algorithm 4.1) performs a local search to assign patients to 

a hospital. This encapsulates our proposed approach in full, which embodies a hill climbing method, 

using a first-improvement approach for adjusting the solution. In our context, a neighboring solution 

is one which differs by a slight change in our current solution (either swapping hospitals between 

victims or changing hospitals for a victim). First-improvement will swap values as soon as a better 

neighbor is found and will continue until no better one is possible, resulting in the final proposed 

allocation. Note that a better solution is one that has a better total cost. 

The initialState() function determines the initial state for the problem. For exploration of Sufficient 

Ambulance, we considered three approaches for the initial state. The first is evenly distributing the 

victims to the hospitals. The next approach is assigning all the victims to the same (single) hospital. 

The final approach assigned the victims to a random hospital. In our validation, we experiment with 

these different methods for obtaining the initial solution and compare their performance (see 

Appendix A for details). 

The findNeighborhood() function is used to determine the possible neighborhood of the current 

state. This function uses the stopping criteria of no improvements in the neighborhood and has a first-

improvement strategy to move to the next neighbor. Swapping hospitals between victims or setting 

a new hospital for a victim may be introduced in order to improve the total cost. For example, 

suppose that Victim A is originally set for Hospital X, Victim B is set for Hospital Y, and no one is 

headed to Hospital Z. A swap between Victim A and Victim B would send Victim A to Hospital Y 

and Victim B to Hospital X. An example of a change would be for Victim A, which was originally set 

for Hospital X, to now head to Hospital Z. In the end, we would want to the display various results, 

including the total cost of the initial state, the final total cost, the number of neighbors found, the 

number of hospitals that are over capacity, the total number of patients that are over the capacity in 

each hospital, the number of patients waiting in hospitals for resources, the number of hospital swaps 

performed, the number of hospital changes performed. The final total cost that would arise if a 

different social welfare function were applied is also instructive to present. 
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Algorithm 4.1: Local search to assign patients to hospitals 

Input: Patients, Hospitals 

Output: Solution (assignments of resources to patients) 

Initialize solution = initialState(); 

loop until stopping criteria met do 

  for each singleSolution1 in solution 

    for each singleSolution2 in solution 

      if patient in singleSolution1 != patient in singleSolution2 then 

        if swapping hospitals between singleSolution1 and singleSolution2 is better than the current 

assignment then 

          A swap has occurred with a neighbor solution; 

          Go back to the loop; 

        else 
          Continue in the for loop; 

        end 

      else 
        for each hospital in hospitals 

          if changing this hospital to the singleSolution1 is better than the current assignment then 

            A change has occurred with a neighbor solution; 

            Go back to the loop; 

          else 
            Continue in the for loop; 

          end 

        end 

      end 

    end 

  end 

end 

return solution; 

 

4.1.4 Experimental Results 

The experimental results were produced by running the local search on 100 different generated 

scenarios. Appendix A displays these results in full. There were three different approaches to 

determine the initial state. Even distribution, single distribution, and random restarts (where the 

problem is attempted (in our case) three times and the best result is returned). In order to perform the 

local search that yields the proposed resource allocation, a choice for determining the initial state and 

a choice for the social welfare function must be made. In our experiments we focused on Utilitarian 

and Egalitarian social welfare. The choice of social welfare affects how the search proceeds, what 

swaps are made, what reallocations are done, etc. until the final allocation is produced. There are 
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therefore 6 options possible. From our experimental results we determine that using random restarts 

and a Utilitarian social welfare function is the best. 

4.1.5 Summary 

This preliminary exploration served to inform our final decisions for the parameters to be modeling 

and the cost functions to be using. As a result of these experiments we also decided to adopt the 

strategy of random restarts for setting initial allocations for our search. We also decided to use 

Utilitarian social welfare predominantly during our subsequent experiments, in order to view 

representative outcomes of our local search approach in full detail. We also acquired some insight 

into what elements to include into our cost functions and learned the value of considering alternative 

options when presenting information to users. Since time to completion for the runs was encouraging, 

we felt that this kind of system would be of value towards actual deployment. 

4.2 Ambulance and Hospital Stages 

This template numbers the headings in a legal numbering format. You may choose not to number 

headings, or to choose a different numbering style, perhaps A, B, C—1, 2, 3 –a), b), c) etc. The 

numbering style can be changed via the Home tab in the Styles section using the Multilevel List 

button. 

4.2.1 Example Scenario for the Ambulance and Hospital Stage 

We return again to our example of the mass casualty incident. We now begin to sketch solutions 

that go beyond what we have referred to as an initial allocation, coping with dynamic environments 

and required updates. We also remove some of the simplifications of the Sufficient Ambulance stage. 

When ambulances arrive at the incident, there may be fewer ambulances than there are victims. 

Either more ambulances are on the way or the victims will need to wait for the ambulances to return 

from dropping off a victim. This situation is not ideal for the victims but can happen in the real world. 

An ambulance can only take one victim at a time, which makes an unshareable resource. Note that 

victims can still share the hospital resource (sending multiple victims to the same destinations). While 

at the location of the incident, victims can change between ambulances for an initial period of time 

but once the ambulance begins to drive the victim will stay in the ambulance until it reaches a 

hospital. 
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The victim will be assessed of its injuries by the ambulance staff at the incident in order to 

determine its level of severity. Moreover, resources needed by the victim are evaluated during this 

assessment. In order to allocate a victim to an ambulance and hospital, the central EMS department 

will run local search on the situation. The EMS drivers will be informed of the victims who will 

receive an ambulance and the hospital that will be their destination. 

Since this scenario is dynamic, another set of allocations will be made after a certain period of time 

(i.e. what we refer to the Update phase). Though a solution may be appropriate for a current situation, 

the health of an injured individual can change suddenly causing the problem to change and requiring 

a new solution, which is mentioned in Rossi, van Beek, and Walsh's work [38]. During this time 

many events can happen such as new ambulances arriving at the incident and a change in the victim’s 

severity. (Future work could address additional considerations, such as a sudden road block while 

driving to a hospital changing the expected arrival time). This relates to the works of [4], [12], and 

[42] where restrictions or relaxations are applied to the problem based on the changes that occurred 

since the previous problem. Information about the scenario needs to be up to date in order to have a 

best possible allocation. Determining with what frequency to update and reset the allocation will be 

mentioned as part of our discussion of the decision support. In our discussion of this example scenario 

we will assume that this will be at every time step. 

As the first stage (Ambulance) ends, the second stage (Hospital) picks up right where the other left 

off and includes a lot of overlap with the first. When the injured individuals reach the emergency 

room of the hospital, they must be allocated resources. In our work, we use a reuse-previous-solution 

approach, as mentioned in work by Rossi, van Beek, and Walsh [38]. Once in the hospital, the injured 

individuals become patients and the multiagent resource allocation definition changes. The agents are 

all the patients in the hospital with medical staff making their decisions. It is important to note that the 

attributes being modeled and their current values are transferred from when the patient was in the 

ambulance. A new attribute for the patient will be the procedure that they require. The procedure will 

be performed by the resources, which includes the doctors, nurses, other medical staff, equipment, 

and rooms. Each resource can perform a procedure with a certain skill. A patient is assigned a 

resource by the central EMS department, which runs a local search on the situation. Since this 

scenario is dynamic, another set of allocations will be made after a certain amount of time. During 

this time, patients require different resources, new patients may arrive, and resources can become 

available. This constitutes the provision for Update at the Hospital stage. 
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In comparison to the previous Ambulance stage, resources, such as medical staff, are bundled 

together, may not be shared, and must be allocated to the patient until completion. (During the first 

few moments of allocation, we do allow a patient and resource to be reallocated). There is also the 

issue of communication that the previous scenario did not need to address. Communication was 

reliable in the previous scenario but in this scenario communication between medical staff may not 

always be possible. For example, during a surgery some of the doctors will not be available for 

communication. In addition, the room, medical equipment, and medical staff involved in the 

procedure may not be available for negotiating and changing resources. During this time, when plans 

are modified then this plan should not change, which relates to Mittal and Falkenhainer’s work [29] 

about active variables. For example, completing a cast on the third floor should not change the plan of 

surgery taking place in the first floor. 

4.2.2 Parameter Modeling 

We spent considerable effort in trying to characterize what parameters should be modeled in this 

particular domain. The set of parameters and their possible ranges of values are provided in Tables 

4.1, 4.2, and 4.3 below for the Ambulance stage. 

We envisaged using these parameter values as part of our cost function calculations and thus for 

the core set of attributes in each table, we consistently mapped these to values that were largely on par 

with each other. We return to discuss possible experimentation with alternate parameter values, in 

Section 6.3. An example of calculating the total cost functions using these parameters is provided in 

Appendix B. 

Table 4.1 – Victim Attributes (Ambulance Stage) 

Attribute Possible Values 

Resources  Low (1) 

 Medium (2) 

 High (3) 

Severity  Critical (1) 

 Serious (2) 

 Fair (3) 

 Good (4) 

Initial Time Integer Value 

 Less than 10 (1) 

 Between 10 and 15 (2) 

 Between 15 and 20 (3) 

 Between 20 and 30 (4) 
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 Greater than 30 (5) 

Availability  Available (0) 

 Unavailable (1) 

Lottery Integer value from 0 to N – 1, where N is the number of victims 

Fcfs Integer value from 0 to N – 1, where N is the number of victims 

Sickest first Integer value from 0 to N – 1, where N is the number of victims 

Youngest first Integer value from 0 to N – 1, where N is the number of victims 

Lives saved Integer value from 0 to N – 1, where N is the number of victims 

Prognosis Integer value from 0 to N – 1, where N is the number of victims 

Instrumental Integer value from 0 to N – 1, where N is the number of victims 

Reciprocity Integer value from 0 to N – 1, where N is the number of victims 

Age Integer value 

Survival percentage Integer value from 0 to 100 

Expected years Integer value 

ID Integer value 

 

Table 4.2 – Ambulance Attributes (Ambulance Stage) 

Attribute Possible Values 

Driver Type  Basic (1) 

 Experienced (2) 

Initial Time Integer Value 

 Less than 10 (1) 

 Between 10 and 15 (2) 

 Between 15 and 20 (3) 

 Between 20 and 30 (4) 

 Greater than 30 (5) 

Availability  Available (0) 

 Unavailable (1) 

Longitude Integer Value 

Latitude Integer Value 

Driving Boolean Value 

ID Integer value 

 

Table 4.3 – Hospital Attributes (Ambulance Stage) 

Attribute Possible Values 

Resources  Low (1) 
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 Medium (2) 

 High (3) 

Capacity Integer Value 

 Low – 8 new victims (1) 

 Medium – 12 new victims (2) 

 High – 15 new victims (3) 

Current Number of Patients Integer Value 

Arrived Patients Integer Value 

Distance Integer Value 

 Close – Less than or equal to 3 (1) 

 Medium – Less than or equal to 8 but greater than 3 (2) 

 Far – Greater than 8 (3) 

Longitude Integer Value 

Latitude Integer Value 

ID Integer Value 

 

First of all, the severity of the patients is an important parameter and for this we decided upon a 

solution that emulates that of [1], distinguishing good, fair, serious, and critical. Note that InitialTime 

represents time from the beginning of the incident until the victim is left in the ambulance. The 

Availability attribute describes whether the victim has been given resources (unavailable) or not. 

Various parameters are also modeled in order to model the patient when considering various 

principles of allocation (like Youngest First). Age is included for this reason. The Survival Percentage 

is intended to reflect the likelihood of surviving based on age and severity, with Expected Years 

representing the number of years a victim is expected to live, after the incident, based on Survival 

Percentage. Parameters connected with Principles of Allocation (like Sickest First) are intended to 

represent how this victim stands in the ranking among all patients, when applying that principle. 

Further discussion of Principles of Allocation appears in Section 4.3.1. Note as well that ambulances 

are non-shareable resources (one patient per ambulance) whereas Hospitals are shareable. Various 

parameters help to represent location and whether the ambulance is en route to a hospital or not. In 

our Implementation (Chapter 5) we use Manhattan distance in order to calculate the distance 

parameter of the Hospital class. 

A few additional notes are important. There are two distinct challenges in developing the 

characterization outlined here. The first is to include parameters that are good choices for effectively 

modeling what should be influencing the resource allocation decisions. The second is to determine 
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how to set the possible range of values for each of these parameters. This is an important 

consideration. The cost functions that drive the decisions about which allocations will be preferred 

will be adding together costs that derive from different considerations (of the patients, ambulances 

and hospitals). As can be seen in the details provided in Tables 4.1, 4.2, and 4.3, we made an effort to 

put differing parameters into similar ranges of possible values. We illustrate the interplay of 

parameter values for cost calculations later in this thesis (Appendix B). 

There was another decision made with respect to parameter values, one that was influenced by our 

desire to be able to perform quick calculations, to make rapid determinations of possible allocations. 

Here we mapped various ranges of possible values into a single determining value (for example 

hospital distances) and ensured finite discrete values. Rossi, Van Beek, and Walsh’s [38] work 

describes how efficiency may be limited in practice if these considerations are not made. 

Once we settled on the parameters to be modeled, we then needed to propose specific combinations 

of considerations as the cost functions that would drive the determination of the preferred allocations. 

The particular cost functions that we propose are outlined below. While motivated by insights from 

our Sufficient Ambulance stage, these cost function also go beyond, to introduce new elements. In 

particular, the cost functions for Ambulance and Hospital stages are distinct. 

We begin with a clarification of what we modeled for the Ambulance stage. We then move on to 

discuss the cost calculations for the Hospital stage. While many of the parameters that are modeled 

and combined and several of the key concepts that have cost considerations are raised in the 

calculations of both Ambulance and Hospital stages, there are some additional elements introduced 

for the Hospital scenario that we will pause to clarify in full detail. Note that these additional 

considerations cause us to generate some additional kinds of graphs when validating our approach as 

well, for Hospital vs. Ambulance stages, discussed in greater detail in Chapter 5. 

4.2.3 Ambulance Stage 

We first clarify what is proposed for the Ambulance stage. The parameters that are modeled and 

their ranges of values are as in Tables 4.1, 4.2, and 4.3. 

Our local search algorithm will settle on the allocation that minimizes the total cost. Algorithm 4.2 

below shows the different components of this total cost calculation for the Ambulance stage: i) a cost 

arising from the individual allocations for each of the victims (SingleSolution costs) aggregated 

according to the specific social welfare function selected as part of the input ii) a cost arising from the 
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ambulances namely a penalty applied each time a victim receives no ambulance iii) a cost arising 

from the hospitals namely a penalty for being over or under capacity (with the former being a greater 

cost). 

Algorithm 4.2: totalCostAmbulance() 

Input: Each assignment of victims to ambulances and hospitals (singleSolution), Hospitals, 

Ambulances, Social welfare function 

Output: Final cost based on social welfare 

if social welfare is Nash Product then 

  totalCost = 1; 

else 

  totalCost = 0; 

end 

for each singleSolution 

  cost = singleSolution.calculateCostAmbulance(); 

  Combine cost to the totalCost according to the social welfare function; 

end 

for each ambulance in Ambulances 

  cost = 0; 

  if null ambulance then 

   cost = AMBULANCEPENALTY; 

  end 

  Add cost to the totalCost; 

end 

for each hospital in hospitals 

  cost = 0; 

  if hospital is over capacity then 

    cost = number of victims over capacity * HOSPITALOVERCAPACITYPENALTY; 

  else 

    cost = number of victims under capacity * HOSPITALUNDERCAPACITYPENALTY; 

  end 

  Add cost to the totalCost; 

end 

return totalCost; 

 

The cost function used within each individual allocation is displayed below: 

 
                                                                     

                                                                    

 

The central elements of this cost function are i) cost of allocating a resource based on the drive ii) 

cost of victim waiting for the resource and iii) cost of allocating the resource based on the victim’s 

resource needs. We will explain the PrincipleRankingCost in Section 4.3.1, as we explore some of the 

options that we make available to decision makers interested in learning about possible allocations. 
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The three component cost functions are further clarified as below: 

 

The CostDrive function can be seen below where hdist represents the hospital distance from the 

victim to the hospital, maxVictim represents the best possible severity, vicSev represents the victim’s 

severity level, maxType represents the best possible skill type for an ambulance driver, ambType 

represents the ambulance driver type, and noAmbulanceDriveCost is a cost for this victim not 

receiving an ambulance. The reason for these values is to ensure that a victim of severity 1 (the most 

critical kind of victim) not receiving a resource returns a higher cost than a victim of severity 4 not 

receiving a resource. For example, suppose there are two victims with severity 1 and severity 2 that 

are close distance to the hospital and two ambulances of differing skills. There will be a lower cost of 

assigning the victim with a worse severity to a better skilled ambulance and assigning the victim of 

severity 2 with the ambulance of lower skill. In addition, if there was only one ambulance then 

assigning the victim with a severity of 1 to the resource results in a lower cost. 

 

          {
        (                                     (                  ))                      

                                              
 

 

Cost of wait has upper (5) and lower (1) values as indicated in Tables 4.1 and 4.2 (Initial Time). 

The CostRes function can be seen below where hRes represents the hospital resources, vRes 

represents the resources that the victim requests, LOWRC represents a low resource cost, MEDRC 

represents a medium resource cost, and HIGHRC represents a high resource cost. The reasoning for 

these returned values is to have a low costs for resources being met but at the same time minimizing 

the difference between the resource requested by the victim and available from the hospital. 
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4.2.4 Hospital Stage 

For the Hospital stage several of the parameters and parameter values carry over from the 

Ambulance stage, such as PatientSeverity. The relevant tables are Tables 4.4 and 4.5. 
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Table 4.4 – Patient Attributes (Hospital Stage) 

Attribute Possible Values 

Procedure  Procedure A (1) 

 Procedure B (2) 

 Procedure C (3) 

 Procedure D (4) 

 Procedure E (5) 

 Procedure F (6) 

Severity  Critical (1) 

 Serious (2) 

 Fair (3) 

 Good (4) 

 Discharge Patient (5) 

Initial Time Integer Value 

 Less than 10 (1) 

 Between 10 and 15 (2) 

 Between 15 and 20 (3) 

 Between 20 and 30 (4) 

 Greater than 30 (5) 

Availability  Available (0) 

 Unavailable (1) 

Lottery Integer value from 0 to N – 1, where N is the number of patients 

Fcfs Integer value from 0 to N – 1, where N is the number of patients 

Sickest first Integer value from 0 to N – 1, where N is the number of patients 

Youngest first Integer value from 0 to N – 1, where N is the number of patients 

Lives saved Integer value from 0 to N – 1, where N is the number of patients 

Prognosis Integer value from 0 to N – 1, where N is the number of patients 

Instrumental Integer value from 0 to N – 1, where N is the number of patients 

Reciprocity Integer value from 0 to N – 1, where N is the number of patients 

Age Integer value 

Survival percentage Integer value from 0 to 100 

Expected years Integer value 

ID Integer value 

 

Table 4.5 – Resource Attributes (Hospital Stage) 

Attribute Possible Values 

Type  Type A (1) 

 Type B (2) 
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 Type C (3) 

 Type D (4) 

 Type E (5) 

 Type F (6) 

Capability  Capability A (1) 

 Capability B (2) 

 Capability C (3) 

 Capability D (4) 

 Capability E (5) 

Skill  Low (1) 

 Medium (2) 

 High (3) 

Initial Time Integer Value 

 Less than 10 (1) 

 Between 10 and 15 (2) 

 Between 15 and 20 (3) 

 Between 20 and 30 (4) 

 Greater than 30 (5) 

Availability  Available (0) 

 Unavailable (1) 

ID Integer value 

 

We paused to reflect on what would be best to model, once the victim arrives at the hospital, in 

need of resources. We first of all decided what procedure a patient needs. We then decided that a 

patient should be able to acquire a bundle of possible resources (e.g. doctor, nurse, equipment, room). 

We also considered this to be a non-shareable resource. As another important consideration, we 

thought about how best to model the scenario as time progresses. As mentioned, we wanted to allow 

for Update allocations. 

In the Ambulance scenario, what we were allowing was to have an ambulance en route to one 

hospital be sent along to a different hospital instead, en route (based on the proposed allocation of 

(ambulance, hospital) per victim the value of which is updated at each time step, as sensing 

introduces new parameter values). Note that we defer the discussion of sensing to Section 4.3, as part 

of our clarification of Decision Support. 

In modeling hospital resources, therefore, we decided we need to model a new entity, Resources. 

This is non-shareable as it represents the medical staff members and equipment that can only be 

allocated to one patient at a time. Per Table 4.5, the attributes in this class are integers that are used to 

describe the resource. Each resource has a type that is used to describe the medical staff members and 
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equipment. There are six types with differing capabilities of performing the five procedures needed 

by the patients. These procedures are performed with a certain skill. Skills are represented by integers 

as high (3), medium (2), or low (1). A higher skill is desired as a resource will only be met if the skill 

is medium or high. As in the real world a procedure can be performed with less skill but it is not 

desired. The skill of a resource performing a procedure can be seen in the table below (Table 4.6). 

Type A (1), Type B (2), and Type C (3) represents a basic room with a certain set of doctors and 

nurses. Type D (4), Type E (5), and Type F (6) represents an advanced room with a certain set of 

doctors and nurses. The difference between a basic and advanced room is that an advanced room will 

have better medical equipment. Although it may seem that a more advanced room leads to a better 

performed procedure, this is not always the case. For example, a patient requiring Procedure D to be 

performed may think that resource Type F is the best choice but would be better off taking resource 

Type C since it has a better skill. Similarly to the Patient class there are initialTime and availability. 

The initialTime attribute represents the idle time for the resource and having the same time categories 

as the Patient class. It is better for the resource to not be idling for a long period of time. The 

availability attribute represents whether this resource has been allocated to a patient. 

 

Table 4.6 – Skill of resource performing procedure 

 Procedure Procedure A Procedure B Procedure C Procedure D Procedure E 

Resource  

Type A Low Low Low Medium Medium 

Type B Medium Medium Low Low Low 

Type C Medium High Medium High Low 

Type D Medium Medium Low Low Medium 

Type E High Medium Medium High Medium 

Type F Medium High High Medium High 

 

As mentioned above, the cost calculations for this stage continue to model similar considerations as 

those in the Ambulance stage and also introduce a few new elements, as clarified below. The total 

cost function is now as shown in Algorithm 4.3. There are no longer additional costs due to 

Ambulances or Hospitals but instead due to Resources. Any victims unable to secure a resource will 

generate an additional burden on the total cost. 
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Algorithm 4.3: totalCostHospital() 

Input: Each assignment of patients to resources (singleSolution), Resources, Social welfare function 

Output: Final cost based on social welfare 

if social welfare is Nash Product then 

  totalCost = 1; 

else 

  totalCost = 0; 

end 

for each singleSolution 

  cost = singleSolution.calculateCostHospital(); 

  Combine cost to the totalCost according to the social welfare function; 

end 

for each resource in Resources 

  cost = 0; 

  if null resource then 

   cost = RESOURCEPENALTY; 

  end 

  Add cost to the totalCost; 

end 

return totalCost; 

 

The SingleSolution cost for this stage is computed according to the formula below: 

 
                                                                  

                                                          
                  

 

As before, we defer the discussion of PrincipleRankingCost to Section 4.3. There is a resource cost 

once more (CostPatRes) but in this case a resource assigned is more costly if a patient with high 

severity does not receive resources. The CostPatResSkill component allows a greater cost if the 

resource assigned to the patient is at a lower skill level and the PatientWait component introduces 

larger costs when patients have had to wait longer before securing a resource. 

 

The functions above are explained in detail as follows: 

 

The CostPatRes function can be seen below where maxPatient represents the best possible severity, 

patSev represents the patient’s severity level, maxType represents the best possible resource type, 

resType represents the resource type, and noResourceCost is a cost for this patient not receiving a 

resource. The reason for these values is to ensure that a victim of severity 1 not receiving a resource 

returns a higher cost than a victim of severity 4 not receiving a resource. For example, there are two 

patients with severity 1 and severity 2 and two resources of differing types. There will be a lower cost 
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of assigning the patient with a worse severity with a better type resource and assigning the patient of 

severity 2 with the worse resource. In addition, if there was only one resource then assigning the 

patient with a severity of 1 to the resource will result in a lower cost. 

 
          

 {
                                                                                                  

                                        
 

 

Cost of wait has upper (5) and lower (1) values as indicated in Tables 4.4 and 4.5. The 

CostPatResSkill function can be seen below where skillOfResource represents the skill of the 

resource (if resource is null then the value of -1) and a constant PRSKILLCOST. The reasoning for 

these returned values is to return a better value (lower number) for the resource performing a better 

skilled procedure on the patient. 

 
                                            

 

4.3 Decision Support 

We are interested in developing a corrector system in a health care environment. The proposed 

system acts as a decision support system that will help medical staff members make appropriate 

decisions for their patients. If their decision will lead to a suboptimal result then the system will alert 

the user about the incorrect decision and recommend a decision that will lead to an optimal result. Of 

course, if the user’s decision is optimal then the system will just confirm that they should continue in 

the direction that they are going. It will be the responsibility of the medical staff to make the final 

decision given the recommendation of the system. 

A design approach was used to develop this system with the main intention of use by an emergency 

department. The individuals intended to use the system are first of all doctors, emergency medical 

services (EMS) drivers, and any other medical staff member. Given the nature of ambulances and 

hospitals, the system should be able to handle the dynamic environment. This means that the system 

should keep track of the changing environment since the current solution may only be appropriate for 

the current situation. 

The goal of the system is to recommend optimal allocations of resources to the patients. These 

resources can be ambulances, hospitals, medical staff, or medical equipment. In the real world, 

resources may be limited and can sometimes be unavailable. Using a local search, the system tries to 
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find an optimal solution to the situation. The allocation value will be used to evaluate the solution. 

Social welfare and principles of allocation are an important factor for the policy. 

Decision making in the emergency department are affected by numerous factors. These decisions 

are made in a stressful situation and during a short period of time. The better the decision made, the 

better the result is for the patient. Motivation for designing this system is to help medical staff 

members in their decision, which will allow patients to recover as well as possible. Medical 

professionals would most likely be specifying their preferred allocation to the system running in 

decision support mode, to see whether these are optimal. 

Another set of users that are important to support are administrative individuals in the emergency 

department. These users would be interested in determining the best policy to implement into the 

system by analyzing different scenarios in order to conclude the best fit. Therefore they would be 

most likely to specify their preferred social welfare function to the system in order to determine 

whether they want to remain with that choice. 

Our algorithms for resource allocation are designed to output proposed allocations of resources. 

But we envision also operating in a kind of Decision Mode, whereby users can request to view 

particular information, especially to learn about how competing choices would compare, if chosen to 

drive the resource allocation algorithm. 

In the subsections that follow, we clarify some of the choices that we allow our decision makers to 

specify, in order to view the resulting resource allocation or to compare the outcome from two 

differing specifications. In Chapter 5, we devote particular effort to providing a valuable toolkit for 

decision makers to view the output from competing preferences for the input parameters. 

4.3.1 The Concept of a Policy 

Our design for MARA using local search and social welfare functions is intended to provide for 

decision makers some latitude to view alternate solutions and the allocation values they will generate 

(the costs, which should be minimized). Towards this end, we have provided as part of our design 

what we refer to as the specification of a policy: a combination of a preferred social welfare function 

and a preferred principle of allocation, to be respected within the allocation algorithm. 

The social welfare functions that we experimented with as part of our validation included: 

Utilitarian, Egalitarian and Nash product. The principles of allocation available to explore were 

selected from the list provided in [34] and included: lottery, first come first served (FCFS), sickest 
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first, youngest first, saving the most lives (we refer to as lives saved), prognosis, instrumental value 

(we refer to as instrumental), and reciprocity. 

We note here that our framework is general enough to support differing application areas. While in 

this section we describe what we supported for ambulance and hospital scenarios for the healthcare 

domain, there are intuitive counterparts that could be introduced for other application areas. For 

example, if trying to specify a preferred principle for forest fighting, one could select options such as 

most-injured (instead of sickest first) and saving the most trees (lives saved). We discuss this path for 

future research further in Section 6.3. 

The costs that arise with a particular allocation will differ, depending on the social welfare function 

that is specified. This arises, for example, from the loop within (Algorithm 4.2) where the costs from 

each SingleSolution for a particular victim are combined based on what the social welfare function 

dictates. 

There are two distinct uses examining principles of allocation, when determining possible 

allocations. The first is to consider this as an alternative method for deciding the final allocation: one 

that will not be based on local search but that will, instead, be developed by examining each patient, 

in turn, deciding which resource should be assigned to that patient based on its ranking from the 

specified principle. The second is as part of the decision maker's specified preferences e.g. Utilitarian 

social welfare but also Youngest First. 

4.3.1.1 Clarifying Example: Local Search vs. Principle of Allocation 

An example will serve to explain the first usage: what kind of resource allocation would be 

proposed, if the algorithm were based entirely on a particular principle of allocation. 

As an overview, the principle approach takes a look at the individual that is being allocated a 

resource and does not appreciate that if this individual takes a slightly worse resource for them then 

another individual can end up with a better resource in such a way that the collection of agents will 

improve the global utility. In our local search based approach we begin with an initial suggestion for 

an allocation and continuously change the allocation to improve the global utility (i.e. minimizing the 

total cost). This important distinction between these two options for MARA will be apparent in the 

discussion that follows. 
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Below we clarify an appropriate allocation of resources for our Ambulance stage. In this small 

example, there are 4 victims: v1, v2, v3 and v4. Their order in terms of severity (most severe to least 

severe) is v3, v2, v1 and v4. Their order of arrival (first to last arrival) however is v2, v4, v1, v3. 

Suppose there are two ambulances, a1 and a2 and three hospitals h1, h2 and h3. We will populate 

these resources with certain parameter values from Appendix B as follows: a1 has a skilled driver, a2 

has a skilled driver, a3 has a less skilled driver; h1 is close with high resources, h2 is close with low 

resources, h3 is far with low resources. 

To decide an allocation based simply on principle, the allocations that are proposed in these cases 

turn out to be (v1, a3, h3), (v2, a2, h2), (v3, a1, h1), (v4, null, null) for sickest first and (v1, a3, h3), 

(v2, a1, h1), (v3, null, null), (v4, a2, h2) for first come first served. It is important to note that no local 

search is being done here. There is therefore no centralized reasoning about what is best for the 

society. Each victim, in turn is allocated the resource that is best, based on their ranking according to 

the principle of allocation (where "best" is determined through the cost functions). 

We now continue the example in order to make clear the difference between this kind of algorithm 

for allocating resources and one that would rely instead on local search. Consider our same 4 victims. 

Running our algorithm in this case would follow the following steps: 

Step 0: decide how many random restarts are allowed (say 3). 

Step 1: initialize a solution, from a random selection 

A possible allocation would be as below: 

(v1, a2, h2), (v2, null, null), (v3, a1, h1), (v4, a3, h3) 

Step 2: examine possible neighbors to cycle towards the proposed global allocation 

We sketch some hypothetical neighbors here, for illustration: 

(v1, a2, h2), (v2, a1, h1), (v3, null, null), (v4, a3, h3) 

(v1, null, null), (v2, a2, h2), (v3, a1, h1), (v4, a3, h3) 

(v1, a1, h2), (v2, null, null), (v3, a2, h1), (v4, a3, h3) 

The best neighbor would be (v1, null, null), (v2, a2, h2), (v3, a1, h1), (v4, a3, h3) (since v1’s health 

is less severe than that of v2 or v3) making it the new current solution. Examining the neighbors of 

the current solution would determine that (v1, a3, h3), (v2, a2, h2), (v3, a1, h1), (v4, null, null) will be 
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the new current solution. Another cycle of examining the neighbors of the current solution would 

determine that (v1, a2, h3), (v2, a3, h2), (v3, a1, h1), (v4, null, null) will be the new current solution.  

After examining the neighbors of the current solution we determine that this current solution is the 

best. We notice that this solution is a neighbor of the sickest first solution as v1 and v2 swapping 

ambulances. The idea is that v2 will worsen its cost by taking a less skilled ambulance driver but the 

cost improvement from v1 receiving a better ambulance driver will cause a better total cost for the 

global allocation. 

In this case, a solution that looks good for the entire society at once is being proposed (in 

comparison to the principles of allocation scenario that allowed each victim to claim the best 

resource, in turn). 

While the medical professionals who are using our proposed system are allowed to specify a social 

welfare function, they may want to also respect a kind of principle of allocation within the allocation 

algorithm. Our framework allows for this. For example, Utilitarian Youngest First would ensure that 

when the total cost of a set of SingleSolution allocations is determined, it will be calculated on the 

basis of the Utilitarian welfare function. But when the cost of the individual allocation for a particular 

patient is examined, allocations which do not offer better resources to younger patients will incur an 

additional penalty. This is handled by expanding our proposed cost function (Section 4.2.3 and 4.2.4) 

to also integrate a principle component, as follows: during the local search the PrincipleRankingCost 

will be a value other than 0. For each victim, the PrincipleRankingCost will be their ranking 

according to the principle. For example, being the third sickest would add a penalty 2 if using the 

sickest first principle. This will allow the search to explore different neighbors (due to the different 

cost) than if PrincipleRankingCost is 0 (which it is with the no principle policy). 

4.3.1.2 Clarifying Example: Policy Calculations 

What we now refer to as a policy approach is a duo of social welfare function and principle of 

allocation, with the allowance for no principle to be specified at all, where the additional cost (the 

PrincipleCostPenalty) of being at odds with the preference of the principle will simply not occur, as 

part of the calculation for an individual allocation. 

At this point a full example of the social welfare function, principle of allocation duo in action 

would be instructive. 
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Table 4.7 – Assignments and Assignment Values Based on Sickest First 

Assignments Based on Sickest First 

Assignments and Assignment Values Principle Egalitarian Utilitarian Nash 

Product 

Patient X-Resource A = 2 

Patient Y-Resource B = 2 

Patient Z-Resource C = 2 

No 

Principle 

2 6 8 

Patient X-Resource A = 2 + 0 = 2 

Patient Y-Resource B = 2 + 1 = 3 

Patient Z-Resource C = 2 + 2 = 4 

Sickest 

First 

4 9 24 

Patient X-Resource A = 2 + 2 = 4 

Patient Y-Resource B = 2 + 1 = 3 

Patient Z-Resource C = 2 + 0 = 2 

FCFS 4 9 24 

 

Table 4.8 – Assignments and Assignment Values Based on First Come First Served 

Assignments Based on First Come First Served 

Assignments and Assignment Values Principle Egalitarian Utilitarian Nash 

Product 

Patient X-Resource C = 3 

Patient Y-Resource B = 2 

Patient Z-Resource A = 1 

No 

Principle 

3 6 6 

Patient X-Resource C = 3 + 0 = 3 

Patient Y-Resource B = 2 + 1 = 3 

Patient Z-Resource A = 1 + 2 = 3 

Sickest 

First 

3 9 27 

Patient X-Resource C = 3 + 2 = 5 

Patient Y-Resource B = 2 + 1 = 3 

Patient Z-Resource A = 1 + 0 = 1 

FCFS 5 9 15 

 

In this simplified example, there are 3 patients and 3 resources. To simplify the example we 

assume that Resource A is best for all patients, Resource B is second best for all patients, and 

Resource C is third best for all patients. Patient X is the sickest, arrived third, and requires Resource 

A. Patient Y is the second sickest, arrived second, and requires Resource B so if they receive 

Resource A then it would be better. Patient Z is the third sickest, arrived first, and requires Resource 
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C so if they receive Resource A or Resource B then it would be better. For this simplified example, 

we will first assume that if no principle is specified the allocation is the same regardless of social 

welfare function. 

We are interested in clarifying what happens if the user also has a preferred principle of allocation. 

For example, if the user prefers sickest first then they would expect the following allocation: (X, A), 

(Y, B), (Z, C). 

Earlier, we outlined two individual allocation cost functions, CostAmbulance and CostHospital. 

For the purposes of this example we will consider a generic cost function for individual allocations 

(what we refer to as the assignment value), one that first of all assigns an initial value based on 

whether the patient resource pairing matches the expected pairing. It simply adds in 2 if the resource 

assigned is the resource they required, adds in 1 if the resource assigned is better than the resource 

that they required, and adds in 3 if the resource assigned is worse than the resource that they required. 

We also add in a principle cost penalty discussed below. Note that this simplification ignores many of 

the attributes and factors in the situation. Likewise the totalCost function used in this example will 

also be a generic one, one that combines, over all patients the individual allocation values according 

to a social welfare function (what we call the evaluation function) but that does not include extra 

ambulance, hospital, or resource costs. Since there are as many resources as patients there are no 

additional ambulance and hospital costs to consider (per Algorithm 4.2). The total cost function 

generates what we call the allocation value. 

Above we include two tables based on allocation by sickest first and allocation by first come first 

serve. Each table includes the assignment values and the allocation values. The allocation values 

specify whether a principle is used and the social welfare function used in the evaluation function. In 

each table the left half shows assignments and assignment values. The second and third sections 

clarify how the principle cost penalty adjusts the calculation (adding an extra cost according to the 

rank of the patient per the principle). Consider for example, using the principle sickest first for Patient 

X will add 0 to their assignment value, Patient Y will add 1 to their assignment value, and Patient Z 

will add 2 to their assignment value. When no principle is used then the assignment value does not 

change. 

The right side of each table shows comparison values that a user may want displayed. If, for 

example, a user is interested in sickest first principle the Table 4.7 would be displayed. The user 

could specify their preferred social welfare function, for example Utilitarian, and could then see how 
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different specified principles, for example FCFS, would result in differing total allocation values. 

This may help determine the ideal principle of allocation. In order for a user to decide which principle 

they might want to adopt, they can look at two tables simultaneously. This is purpose of the no 

principle choice in the Principle column. For example, if someone who prefers Egalitarian social 

welfare examining Table 4.7 and Table 4.8 would see that sickest first is a better choice of principle. 

Note that the values in the right side of the tables are calculated by applying the social welfare 

function combination rule to the values indicated on the left side of the table. 

It is important to note that this was a simplified and somewhat artificial example. When users 

specify a preferred policy (social welfare function and principle of allocation) the selected principle 

of allocation will influence the principle cost penalty and thus the single solution cost, while the 

social welfare function will influence the combination of single solution values within the total cost 

calculations. As a result the assignment values and allocation values will tend to be different with 

each differing policy choice. 

4.3.2 Sensing and Time Buffers 

In this subsection, we clarify two additional specifications that decision makers can provide (which 

also enable further graphs to be generated that inform decision makers about the influence of setting 

these parameters differently). 

We are operating in dynamically changing environments. As a result, we will need to reassess the 

value of some of the parameter values, with a certain periodicity. We generalize this consideration in 

the discussion below as deciding how many "time steps" to wait before a sensing action takes place, 

which then allows for updated parameter values to dictate the selection of the proposed allocation, 

when running our local search algorithm. 

The notion of a Time Buffer is introduced into our modeling of the domain, to allow a period of 

time to elapse before the initial allocation of victims to (ambulances, hospitals) (in the Ambulance 

stage) or patients to resource bundles (in the Hospital stage) is set. For the Ambulance stage, the 

buffer allows for time before an ambulance leaves the site of the incident to exchange ambulances 

and victims. This will be beneficial if a new victim is found at the incident or if a victim that did not 

receive a resource becomes more severely injured. For the Hospital stage, the buffer allow for an 

exchange of patients and resources before a procedure has gone beyond a critical point in the 
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procedure. For example, resources or patients can be exchanged during the preparation before a 

surgery but it would not make sense to perform a swap once the surgery has begun. 

4.4 Corrector System 

While we have provided a full description of our proposed decision support, in this section we 

reflect on the usage of a system designed to follow this solution, by medical professionals and 

administration, we term this the corrector system. Note that our solution provides good results for the 

running time, which is important for the corrector system; this is discussed in Chapter 5. 

4.4.1 Scenarios 

Before describing the corrector system, we will identify real world situations that would benefit 

from the system. Suppose that a car accident on a major highway has resulted in five injured 

individuals. Each individual has their own injury severity and their own requirements to be treated. 

EMS drivers arrive at the scene of the incident and begin to assess the injured individual. After 

examining the situation, they make a decision about which hospital the ambulance should set as their 

destination. Each hospital has its own distance from the location of the accident. Moreover, the 

hospitals have unique attributes for their resources. Once in the ambulance, the EMS driver will 

identify the situation to the system and state their decision for the hospital as well as their intended 

route. The system will evaluate the situation and recommend a better choice if it exists. The EMS 

driver can choose to accept the recommendation or ignore it. Either way, the EMS driver will clarify 

the decision to the system. This solution provided by the system will be influenced by the policy of 

the system. The policy takes into consideration social welfare and principles of allocation. During the 

ambulance ride to the hospital, the system can be beneficial in the situation where the severity of a 

patient worsens and the currently assigned hospital is no longer appropriate. Even after the patient 

arrives at the hospital, the system will still be useful. The corrector system will provide 

recommendations whether the patient arrives in the ambulance, through their own means, or are 

already admitted in the hospital. Patients require a medical resource (e.g. medical staff and 

equipment) in a timely matter for their treatment. The system will alert the appropriately qualified 

available medical staff to treat the patient and will mention the resources available. The system will 

alert the medical staff member if they are about to make a suboptimal decision during treatment. An 

example of a suboptimal decision is the medical staff allocating a resource that would have been 
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better allocated to another patient. Again, the system will recommend a better choice, if it exists, that 

the medical staff member can choose to accept or ignore. 

4.4.2 The System 

The corrector system will model each situation as a constraint satisfaction problem (CSP). The 

search continues until it reaches a stopping criterion. Since medical staff is required to make 

treatment decisions quickly, the stopping criteria will probably be predetermined based on time. It is 

important to note the dynamic nature of the health care environment. To handle this property it can 

beneficial to set the initial assignment in the local search to be the previous solution. Moreover, the 

system will need to be able to monitor all the patients and resources. 

Similar to some of the surveyed literature [13, 21, 31, 33, 40, 43], the corrector system will be a 

multi-agent system. Patient agents are allocated active resource agents (e.g. medical staff) and passive 

resource agents (e.g. medical equipment). Monitoring these could be achieved using RFID. Patients 

will be given their RFID once they reach the ambulance and hospital. The information stored will 

contain their medical records including their current health and treatment requirements. Resources 

will have their RFID while they are working. The information stored about them includes their 

availability, capability, and skill level. WLAN or GPS (Global Positioning System) can monitor the 

ambulances away from the hospital. 

Some techniques from telemedicine [25] could be used to help monitoring. Video and audio 

communication placed in the hospital will provide a clearer availability than inferring with the RFID. 

A centralized approach is applied to the system for communication. We refer to the individuals who 

monitor the communication links and update the system accordingly as medical watchers. RFID will 

also update the system but can delegate to the medical watchers to ensure accuracy. For ambulance 

drivers, direct communication takes place between the drivers and the medical watcher. Ambulance 

drivers will tell the medical watchers information about their patient while assessing and loading the 

patient into the ambulance. The medical watcher will input the information to the system and provide 

the result to the ambulance driver. This allows the EMS workers to focus on the patient rather than 

dealing with the input. It will be the responsibility of the medical watchers to update the system with 

the final decision made by the medical staff member.  

Updating the system happens at fixed time intervals and when events occur. Events happen for 

many reasons from the patients to the resources. The first reason relates to the patient arriving and 
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leaving the hospital or ambulance. Moreover, a patient’s health changing is another event. An event is 

considered when the medical staff member differs from the allocation specified by the system. 

Expected events do occur to medical staff members when their shift begins or ends.  

The final kind of event is for medical equipment. Medical equipment could be removed, broken or 

retired, as well as added, fixed or new. Seeing the dynamic nature of this system shows the 

importance of focusing on time buffers when allocating the resources. Allocations use the time 

buffers to focus on the near future as well. For example, an ambulance driver is taking a patient to a 

hospital, where the resources will be reserved for that patient. Those resources will be available for 

the patient upon their arrival. In addition, the system will only include available resources when 

determining a solution. For example, a surgeon and the resources in the middle of performing a five 

hour surgery should not be included when determining the allocation since they are unavailable. 

4.4.3 Discussion 

The corrector system has its benefits and limitations. Helping the medical staff make decisions 

about allocating resources to patients is one of the main purposes of the system. The system can 

consider many different possible allocations and quickly compare them according to the policy. A 

disadvantage to the system, which is inherited by emergency situations, is that time becomes a factor. 

The system may need to return the best result seen so far instead of the optimal result because patient 

is in critical health; this issue is explained further in Section 6.3. An important consideration about the 

time needed for the system is that the system provides decision support, which means the medical 

professional already has their course of action in mind and has the final say in the decision. An 

obvious limitation in the system is the lack of implementation based on medical staff 

recommendations. Discussing with medical professionals provides a better insight to the requirements 

of the system since subjectivity is significant in many areas of the system.  

The policy, principle of allocation and social welfare, in the system can greatly change the 

recommendation made. Moreover, the patient’s utility function and modeling the situation as a CSP 

can affect the system. It is important to identify which attributes about the patient are more relevant 

and how much these attributes affect the patient. While we have devoted considerable – all not to 

selecting an appropriate set of parameters to model, we realize that further investigations are possible 

as future work. Implementing a prototype and experimenting with actual medical data would be 

instructive. Experimentation could cover other areas of local search, such as other algorithms and 

heuristics, or allocation through other methods, such as MDPs and machine learning.  
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The system would initially assume that the data given about the patients and resources is accurate. 

However, a patient’s health may be incorrectly assessed. Even further work can involve investigating 

how to handle noise error. Our work did not fully investigate the way to alert the medical staff of their 

suboptimal decision. A simple approach would be through their smartphone. The sensors used to 

monitor the patients and resources can be investigated further in future work. The work of Liao, Fox, 

and Kautz [24] could be helpful for monitoring since it discusses how learning patterns from GPS 

traces can be used to determine a person’s activities and location. In the corrector system, this 

technology can be used to better determine a medical staff member’s availability. Cryptography, as 

covered in Li et al.’s work [23], is another part of sensor data that should be considered for the 

corrector system.  

Another area of future work would be considering how the system would change the policy based 

on the user’s final decision. This leads to the question of whether the system should learn from the 

user or should the user learn from the system. Furthermore, there is the question of whether should 

the system be fully automated or should a human always be part of the system. Our stance is that a 

human should always have the final decision. 
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Chapter 5 

Implementation Output for the Healthcare Domain 

In this chapter we show output from an implementation of our proposed local search multiagent 

resource allocation framework, for the healthcare domain. The parameters and parameter values 

discussed in Chapter 4 are at play, as well as the domain-specific cost functions that were described. 

For our validation we randomly generate 100 runs, where the patients’ and the resources’ attributes 

are determined randomly for each run. This includes variations to attributes such as severity. For the 

Ambulance stage, we simulated 30 victims, 20 ambulances, and 3 hospitals. For the Hospital stage, 

we simulated 10 patients and 6 resources. 

For the graphs that follow, we need to select values for all the penalties that exist within our 

proposed cost function calculations. These values are set below. For Ambulance stage: LOWRC (2), 

MEDRC (4), HIGHRC (10), AMBULANCEPENALTY (2), HOSPITALOVERCAPACITY (10), 

HOSPITALUNDERCAPACITY (1), and noAmbulanceDriveCost (18). For Hospital stage: 

PRSKILLCOST (5), RESOURCEPENALTY (2), and noResourceCost (29). We also set all of the 

weights in the CostAmbulance and CostHospital function to be 1. 

In this chapter, we in fact present a series of graphs. One use of graphs is to provide output which 

assists decision makers in specifying the required input values. We are offering a valuable toolkit and 

have devoted effort to considering what kinds of graphs may be useful to display. Decision makers 

need to specify: a) preferred social welfare function b) preferred principle of allocation (either as part 

of their specified policy or to see the performance of a MARA approach based alone principle of 

allocation) (note: that no principle is an option) c) interval for sensing d) length of Buffer Time. We 

begin with a series of graphs that showcase the Ambulance stage. We first discuss graphs which 

provide feedback on the relative differences between different social welfare functions and for each 

social welfare function, the differences between distinct principles of allocation. We also present 

graphs which assist the decision maker in setting the time interval for sensing and the length of the 

Buffer Time (the period before the initial allocation is locked in). 

From here, we move on to a series of graphs to showcase the Hospital stage. Here we also integrate 

some graphs to demonstrate our proposed algorithm on a per patient basis as part of our presentation 

of the output for MARA at the hospital. 
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After this discussion, in order to summarize, we will reflect on what these graphs, together, provide 

for decision makers. We will also briefly discuss the inherent value of our proposed local search 

approach for MARA (in comparison with approaches that rely solely on principles of allocation). 

We showcase in this chapter some of the central output that we produced, during implementation. 

(We use the label VA for graphs validating the Ambulance stage and VH for graphs validating the 

Hospital stage).Additional graphs are included in Appendix G. 

5.1 Random Restarts Decisions 

Before we begin, we introduce a series of graphs that examine alternative values for the number of 

random restarts to be used in our local search approach, done for the Ambulance stage. This 

discussion is grounded in the context of a Utilitarian social welfare function (graphs for other social 

welfare functions are displayed in our Extra Validation Appendix, Appendix G). 

In the first set of graphs (Figure VA-1 (a), (b), (c), and (d)) we explore the effect of different 

numbers of random restarts, illustrated for the case where the social welfare functions is utilitarian. In 

these figures the y-axis represents the allocation value and the x-axis represents the approach taken. 

Note that there are slightly different ranges on each y-axis. All of the policy values are better than 

those for principles of allocation. It can be seen that as the number of random restarts increases, the 

results are more favorable. Moreover, all the policy approaches seem to be very even. These graphs 

might help a system designer how many random restarts to use. The accompanying table (Table VA-

1) displays the average running time (computed over the 100 runs) for each MARA approach. 

Looking at the policy based choices all of these approaches take less than 1 second. This shows that 

having 100 random restarts is still a viable approach since the result can be determined quickly. For 

the remainder of this section we will consistently set the number of random restarts used in our policy 

based approach to 100.  



 

 53 

 
Figure VA-1a – Ambulance: Initial Utilitarian Allocation Value Principle Approach 
 

 
Figure VA-1b – Ambulance: Initial Utilitarian Allocation Value Policy Approach with RR=1 

480

500

520

540

560

580

600

Utilitarian Value (Principle Approach) 

523.2

523.3

523.4

523.5

523.6

523.7

523.8

523.9

524

524.1

524.2

Utilitarian Value (Policy Approach with RR=1) 



 

 54 

 
Figure VA-1c – Ambulance: Initial Utilitarian Allocation Value Policy Approach with RR=10 

 

 

 
Figure VA-1d – Ambulance: Initial Utilitarian Allocation Value Policy Approach with RR=100 

521.2

521.25

521.3

521.35

521.4

521.45

521.5

Utilitarian Value (Policy Approach with RR=10) 

521.015

521.02

521.025

521.03

521.035

521.04

521.045

521.05

521.055

521.06

521.065

Utilitarian Value (Policy Approach with RR=100) 



 

 55 

 

Table VA-1 – Ambulance: Average running time taken (in seconds) to complete an approach 

Time Taken in 

Seconds 

Principle Policy (RR=1) Policy (RR=10) Policy (RR=100) 

NO PRINCIPLE  0.0103660245 0.0915518492 0.9432083402 

LOTTERY 0.0000803813 0.0100910939 0.0886819532 0.9202452037 

FCFS 0.0000766149 0.0101563647 0.0880714489 0.9157133440 

SICKEST FIRST 0.0000769943 0.0098438841 0.0891756518 0.9204586427 

YOUNGEST 

FIRST 

0.0000772686 0.0102546375 0.0888247954 0.9198152098 

LIVES SAVED 0.0000650985 0.0098165237 0.0900167434 0.9310053305 

PROGNOSIS 0.0000661255 0.0102069968 0.0929409075 0.9463240459 

INSTRUMENTAL 0.0000768955 0.0105187661 0.0908367448 0.9412969757 

RECIPROCITY 0.0000827859 0.0105653830 0.0915415193 0.9479914408 

5.2 Output of Value to Decision Makers 

We now move on to examine graphs which may assist decision makers in specifying social welfare 

functions and principles of allocation; the graphs also serve the purpose of demonstrating the relative 

value of the two primary approaches to MARA (principle based and policy based). As mentioned, we 

will return to deepen our discussion of the relative differences of these two approaches in Section 5.3. 

5.2.1 Ambulance Stage Output 

Figure VA-2 (a) and (d) provide additional valuable information for the decision maker. In these 

figures the y-axis represents the number of victims and the x-axis represents the approach taken. 

These figures are stacked bar graphs which categorizes by victims’ severity and availability. This 

helps identify certain aspects of the allocation such as, for example, the number of victims with 

severity 2 that have been allocated a resource. To get a better idea of Figure VA-2 (a) we will look at 

the first bar, which is the lottery principle approach. For the 20 victims that have been allocated a 

resource there are 5.02 victims with severity 1, 4.82 victims with severity 2, 5.2 victims with severity 

3, and 4.96 victims with severity 4. For the 10 victims without a resource (available) there are 2.58 

victims with severity 1, 2.46 victims with severity 2, 2.51 victims with severity 3, and 2.45 victims 

with severity 4. The sickest first principle ensures that all the victims of severity 1 have a resource 

and continues with this strategy until no more resources available, which causes many victims with 
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severity 4 to not have resources. The lives saved and prognosis principles seem to have an opposite 

strategy as there are a lot of victims of severity 4 with resources and a lot of victims of severity 1 

without resources. The decision maker will need to consider both the cost of the allocation and how 

patients of different severities are handled in order to decide how to specify their preferences. Figure 

VA-2 (d) shows the difference between the policy based approaches. Under utilitarian social welfare 

these are fairly comparable. We will now move on to consider other social welfare functions. 

 
Figure VA-2a – Ambulance: Initial Allocation (Utilitarian Principle Approach) 
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Figure VA-2d – Ambulance: Initial Allocation (Utilitarian Policy Approach with RR=100) 
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severity 1 without resources but there are few severity 4 victims with resources. In Figure VA-4 (d), 

we can that several of the policy based approaches, for example the no principle policy, perform only 

slightly worse than sickest first principle for attending to severity 1 victims but do far better in 

tending to the severity 4 victims as well. 

 

 
Figure VA-3a – Ambulance: Initial Egalitarian Allocation Value Principle Approach 
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Figure VA-3d – Ambulance: Initial Egalitarian Allocation Value Policy Approach with RR=100 

 

 

 
Figure VA-4a – Ambulance: Initial Allocation (Egalitarian Principle Approach) 
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Figure VA-4d – Ambulance: Initial Allocation (Egalitarian Policy Approach with RR=100) 
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Figure VA-5a – Ambulance: Initial Nash Product Allocation Value Principle Approach 
 

 
Figure VA-5d – Ambulance: Initial Nash Product Allocation Value Policy Approach with 

RR=100 
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Figure VA-6a – Ambulance: Initial Allocation (Nash Product Principle Approach) 
 

 
Figure VA-6d – Ambulance: Initial Allocation (Nash Product Policy Approach with RR=100) 
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So far the graphs that we have shown (Figures VA-1, VA-3, and VA-5) focus on displaying the 

total cost of an allocation (averaged over several runs) during the Initial phase of the Ambulance 

stage. Basically, which victims are going into which ambulances and to which hospitals has been 

decided. As time progresses two important events occur. The first is sensing, which may update 

parameter values and suggest a reallocation. For example, an ambulance headed for a particular 

hospital may be reassigned to a different hospital, if that allocation improves the cost. The other event 

that occurs is that the task of delivering the victim to the hospital may end, causing the ambulance to 

return to the site of the mass casualty incident to tend to new victims, who are then moved along to 

their assigned hospitals. The ideal is of course to make sure that all victims arrive at hospitals 

promptly, with the costs incurred for doing so kept low, overall (over the entire time period). 

The first set of graphs examines how the global allocation value evolves, over time. After each 

time step, the value of the allocation is determined. Recall that this is a total cost calculation and thus 

how all the victims are doing is considered. The Cumulative Allocation value refers to the sum of the 

allocation value computed after each time step. Figure VA-7 (b) shows how the allocation value 

adjusts over time. The No-Policy curve serves to show the result of using our local search approach 

(where policies with principles have somewhat similar behaviors and are displayed in Appendix G); 

the remaining curves show the performance of MARA based on principles of allocation alone. We 

first see that No Policy and Sickest First have relatively lower cost values than the alternative choices. 

In Figure VA-8 (b) the Y-axis tracks how many of the runs out of the 100 that constitute the 

simulations have yet to be completed while the X-axis tracks the time. It is desirable to have fewer 

simulations still running: this means that all the victims have reached their hospitals. In Figure VA-8 

(b) we see that No Principle fares the best; Sickest First is second best and the rest are not as strong. It 

is important to look at these results in the context of a tracking of the Cumulative Allocation value 

(Figure VA-10 (c)). Here we see that all of the policy approaches are superior: they have a lower total 

cost, after all the simulations have been completed. In particular, No Principle is better than Sickest 

First. 

A decision maker could now view all the results regarding the allocation values and the number of 

simulations completed, over time, together with the cumulative allocation values in order to decide 

which options are preferable. 
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Figure VA-7b – Ambulance: Allocation Value over Time 
 

 
Figure VA-8b – Ambulance: Simulations over Time 
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Figure VA-10c – Ambulance: Cumulative Allocation Value 
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Figure VA-11a – Ambulance: Allocation Value over Time (Sensing=2) 
 

 
Figure VA-11b – Ambulance: Allocation Value over Time (Sensing=3) 
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Figure VA-15a – Ambulance: Allocation Value over Time (Sensing=1, Buffer=2) 

 

 
Figure VA-15b – Ambulance: Allocation Value over Time (Sensing=2, Buffer=2) 
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5.2.2 Hospital Stage Output 

In this section we will show several graphs which are counterparts to the ones we showed in 

section 5.2.1 but this time for the Hospital stage. Note that it is important to do so because the 

Hospital stage uses a different total cost function and therefore the outcomes (both the allocation 

values and the comparisons) may be different. There are also some graphs in this section that are 

unique to the Hospital stage. In particular, some graphs will be tracking allocation value per patient 

(over time or cumulative). 

The motivation to using these graphs is due to the difference between these stages. In the 

Ambulance stage, when a victim is done using their resource, then they no longer need any more 

resources. In contrast, in the Hospital stage, when a patient is done using their resource they may not 

be discharged from the hospital and now require another resource. How we model the stopping point 

is as follows: when a good severity (severity 4) patient is done with its final resource then that patient 

will have a discharge severity (severity 5) and will be discharged from the hospital since the patient 

no longer requires a resource. 

As specified in the Ambulance stage, the first set of graphs that we will take a look at is the initial 

allocation Utilitarian values. Figure VH-1 (a) is the principle of allocation approach and Figure VH-1 

(d) is the policy approach with 100 random restarts. Note that Table VH-1 shows that the average 

running time (computed over the 100 runs) is still less than 1 second, which makes using 100 random 

restarts a viable option. In the similar pattern seen in the Ambulance stage, the sickest first principle 

has the best allocation value for the principle approaches and that all of the policy approaches have a 

better allocation value than the principle approaches. Looking at Figures VH-2 (a) and (d) (stacked 

bar graphs which categorizes by patients’ severity and availability for the principle and policy 

approaches) we note that the sickest first principle approach has been allocated the same as each of 

the policy approaches. This emphasizes that even though the same people for each severity level may 

be allocated a resource for the sickest first principle that the policy approaches allocates better 

globally such that there is a lower cost. 

 Since we decided in the Ambulance stage that we will focus on the Utilitarian social welfare 

function, the initial results for the Egalitarian and Nash Product have been moved to Appendix G. For 

the Egalitarian social welfare, sickest first principle and the no principle policy had the best initial 

Egalitarian value. For the Nash Product social welfare, all of the policy approaches were better than 

the sickest first principle (the best principle approach).  
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Figure VH-1a – Hospital: Initial Utilitarian Allocation Value Principle Approach 
 

 
Figure VH-1d – Hospital: Initial Utilitarian Allocation Value Policy Approach with RR=100 
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Table VH-1 – Hospital: Average running time taken (in seconds) to complete an approach 

Time Taken in 

Seconds 

Principle Policy (RR=1) Policy (RR=10) Policy (RR=100) 

NO PRINCIPLE  0.0000870500 0.0007913941 0.0088430344 

LOTTERY 0.0000254660 0.0000939770 0.0008013762 0.0082970964 

FCFS 0.0000270702 0.0000918721 0.0008216661 0.0083063418 

SICKEST FIRST 0.0000286201 0.0001014557 0.0008000462 0.0082534549 

YOUNGEST 

FIRST 

0.0000281481 0.0000955142 0.0007882111 0.0083499577 

LIVES SAVED 0.0000266811 0.0000891293 0.0008557270 0.0084598489 

PROGNOSIS 0.0000261644 0.0000895918 0.0008609128 0.0084844697 

INSTRUMENTAL 0.0000277368 0.0000897608 0.0008873067 0.0085190218 

RECIPROCITY 0.0000276602 0.0000881949 0.0008600963 0.0085009070 

 

 
Figure VH-2a – Hospital: Initial Allocation (Utilitarian Principle Approach) 
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Figure VH-2d – Hospital: Initial Allocation (Utilitarian Policy Approach with RR=100) 
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best performance is one which achieves lower values and reaches these values earlier over time 

(Figure VH-8 (b)). When comparing the allocation values of a no principle policy approach with the 

principle of allocation approaches the differences are noticeable. No principle policy and sickest first 

principle tend to be the best approaches during the first few time steps. After the initial time steps, the 

sickest first principle and no principle policy have the worst allocation values during the middle time 

steps. Eventually the allocation values will be best again for sickest first principle and no principle 

policy until no more simulations are performed and the allocation values are 0 since every patient has 

been discharged from the hospital. From these results, it seems that the sickest first principle is most 

similar to the policy approaches. The no principle policy approach tends to be better than the sickest 

first principle for most of the time. While this is positive, we should consider the other graphs before 

claiming that the policy approaches are the best. 

Looking at Figure VH-8 (b), when comparing the no principle policy approach with the principle 

of allocation approaches the variations are more noticeable. The numbers tend to be fairly similar 

during the early time steps but no principle policy and sickest first principle have the fewest 

simulations running during the middle time steps. This leads to these approaches completing all their 

simulations before the others. All the policy approaches and the sickest first principle approach 

complete all their simulations at the 30th time step. This is followed by the lottery, youngest first, 

lives saved and prognosis principles completing all their simulations at the 36th time step. The 

remaining principles complete all their simulations at the 38th time step. 
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Figure VH-7b – Hospital: Allocation Value over Time 

 

 
Figure VH-8b – Hospital: Simulations over Time 

 

In the graphs that follow, we examine what will happen to patients over time. Decision makers 

should prefer choices where there are fewer patients in the hospital and also where all patients are 

finished with their resources earlier. What we see in Figure VH-9 (b) is the following. For prognosis 

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Allocation Value vs. Time 

NO PRINCIPLE Policy

LOTTERY Principle

FCFS Principle

SICKEST FIRST Principle

YOUNGEST FIRST Principle

LIVES SAVED Principle

PROGNOSIS Principle

INSTRUMENTAL Principle

RECIPROCITY Principle

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Simulations vs. Time 

NO PRINCIPLE Policy

LOTTERY Principle

FCFS Principle

SICKEST FIRST Principle

YOUNGEST FIRST Principle

LIVES SAVED Principle

PROGNOSIS Principle

INSTRUMENTAL Principle

RECIPROCITY Principle



 

 74 

and lives saved principles, the severity 4 patients are given priority and therefore will leave the 

hospital after receiving their resources (in a relatively short period of time), however, this leaves the 

severity 1 patients waiting longer to be handled and discharged from the hospital. On the other hand, 

the no principle policy and the sickest principle will begin with more patients remaining in the 

hospital (they are handling more severe patients who require more time to end their consumption of 

their resources); however these strategies benefit because the time point at which they have 

completed processing all of their patients is earlier. 

 

 
Figure VH-9b – Hospital: Number of Patient at the Hospital over Time 

 

In Figure VH-10 (b), we are examining the allocation value per patient over time. The most 

dramatic pattern that we observe here is that the no principle policy and sickest first principle reach a 

value of 0 at time point 29 while the other approaches maintain a higher overall cost. The drop in the 

cost at this time point (and initially lower costs) will make up for having a higher cost during the 

middle time points. It is also important for the decision makers to evaluate the cumulative allocation 

value per patient, which adds the allocation value per patient for each time step (in Figure VH-10 (c)). 

Even though sickest first is the best of the principles, all of the policy approaches are considerably 

better. 
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Figure VH-10b – Hospital: Allocation Value per Patient over Time 

  

Figure VH-10c – Hospital: Cumulative Allocation Value per Patient 

 

We conclude with a look at choices for sensing frequency and time buffer values. As stated in the 

previous stage, these graphs will assist decision makers in setting these values. The next figures take a 

look at the allocation value per patient over time, where Figure VH-14 (a) senses every 2 time steps 

while Figure VH-14 (b) senses every 3 time steps. Again, we see that sensing less frequently causes a 

longer amount of time, which will increase the costs and create more of a staircase look to these 

graphs. 
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The last series of graphs for the Hospital stage examines possible choices for the length of Buffer 

Time. Examining the allocation value per patient over time, Figure VH-18 (a) has buffer of 1 time 

steps and senses every time step while Figure VH-18 (b) has the same buffer length but senses every 

two time steps. We first compare Figure VH-18 (a) with Figure VH-10 (b) (which senses every time 

step but does not have a Buffer Time). Because one has to wait with a Buffer Time the amount of 

time until you've completed the simulation increases which means the overall allocation time also 

increases. Comparing Figure VH-18 (a) with Figure VH-18 (b) we see the effects of sensing every 

other time step: a staircase approach which was evident in the previous set of graphs. 

Figure VH-14a – Hospital: Allocation Value per Patient over Time (Sensing=2) 
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 Figure VH-14b – Hospital: Allocation Value per Patient over Time (Sensing=3) 
 

Figure VH-18a – Hospital: Allocation Value per Patient over Time (Sensing=1, Buffer=1) 
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Figure VH-18b – Hospital: Allocation Value per Patient over Time (Sensing=2, Buffer=1) 

5.2.3 Additional Output of Value 

Appendix D shows output from a Local Search for Ambulance and Hospital Stages. It illustrates 

the kind of output that can be tracked by a system designer or presented to a decision maker.  In so 

doing, we can view how each new neighbor that is being considered in the local search appears, along 

with how the allocation values change, to result in appropriate swaps or changes. Appendix F in turn 

shows some of the attribute values that can be displayed when presenting the results. In Decision 

Support mode, a decision maker may propose a particular user preference. When final proposed 

allocation values are determined, the user may view the relative difference between what our 

algorithms suggest and what the user was considering. Appendix C illustrates the kind of output that 

can be generated at this stage. In order to view the effect of different stopping criteria (number of 

random restarts) some sample output is offered in Appendix E. This would be useful to display to a 

system designer. 

5.3 Summary 

We have devoted considerable discussion to the usefulness of the implementation for decision 

makers. We point out that these users in the domain of application of healthcare are ones who will 

have to ultimately make the final decisions, themselves, and as such a general impression of the value 
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of our methods will be most important to them. A visualization of how patients categorized by 

severity are allocated is especially valuable to help a user understand how the resources are allocated. 

The policy concept allows for users to view particular combinations of preferences and their relative 

differences. We return to discuss some avenues for future work with the experimentation within 

Section 6.3. 

The second primary usage of the graphs displayed in this chapter is to demonstrate the value of our 

local search approach. There are several graphs were comparisons between policy based approaches 

and principle based approaches are apparent. The relative value of the policy approach compared to 

using principles of allocation is best viewed by examining the output from using no-principle, 

compared to any of the selected principles. We observe that how the weights of different factors were 

set in our cost functions might be an influence. If, for instance, we set a higher weight for the 

PrincipleCostPenalty, the differences might be more dramatic. We discuss this further in Section 6.3. 

While the sickest first principle often produced effective performance our policy based approach 

consistently offered at least equal or better performance as well. In Section 4.3.1.1, we shed some 

light on why improvements should arise with the use of local search. In this chapter, we have also 

discussed the value of examining graphs that display what happens to patients at different severity 

levels together with graphs which track total cost (allocation value).  
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Chapter 6 

Conclusion, Discussion and Future Work 

In this chapter, we summarize some of the key accomplishments of this thesis, discuss several 

valuable directions for future research, and provide final reflection on the value of our work in 

comparison with competing approaches. 

6.1 Contributions 

This thesis outlines a particular solution for multiagent resource allocation for time critical dynamic 

environments that enables real-time decision making. We begin by listing some of the individual 

contributions of this research. 

Multiagent resource allocation 

 Outlined in full a solution based on local search which is capable of 

o Coping with time-critical, real-time decisions 

 Demonstrated through effective times for completing allocations 

 Achieved in part through not using continuous values – i.e. categorizing 

different attributes (e.g. waiting times in terms of being between in a range of 

possible values) helped to speed up search 

o Coping with dynamic environments 

 Through solutions developed for sensing and updating (to go beyond the current 

state) 

o Integrating effective solutions for swaps and restarts in the search 

 Opting for a first improvement approach to find neighbors (i.e. not going 

through all possible neighbors) to speed up processing and to allow more 

random restarts, avoiding local minima 

o Empirically determining the best number of restarts to incorporate (i.e. used 100 restarts 

since the cost of doing so in time was minimal) 

 Mapped out how to integrate local search and social welfare consideration 
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o Examined a number of distinct social welfare functions 

o Outlined how to calculate global costs/utilities sensitive to social welfare to drive local 

search decisions 

Decision Making Support for Resource Allocation 

 Integrated into our proposal for resource allocation a mode of operation where users can acquire 

quantifiable feedback about alternative choices for the allocation decisions (e.g. social welfare 

preferences) 

 Allowed for various metrics to be displayed for decision support 

Parameter Values for Modeling the Allocation Problems 

 Proposed an integration of sensing for updating parameter values 

Validation of the Proposed Resource Allocation Framework 

 Detailed simulations for both Allocation and Decision Making modes 

 Decisions for how to model and map out values, what to compare, etc. 

 

We also present below a series of contributions for the specific healthcare application of handling 

mass casualty incidents, which has been the focus of our attention throughout this thesis. 

 Modeled a mass casualty incident 

o Able to explore resource allocation in the emergency department environment when 

the resources are limited 

o Solved by local search to determine the best allocation according to the policy 

o Solutions took very little time, which is essential for emergency departments since 

they are time critical 

o Explored the Ambulance and Hospital stages 

 Modeled the dynamic nature of the emergency department 

o Allocation are updated according to the current situation 

o Resources will be reallocated as the situation changes 
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o Simulations of the Ambulance stage until every victim reached the hospital and the 

Hospital stage until every patient has been discharged from the hospital 

 Social welfare functions and principles of allocation offered many approaches to allocate the 

required resources to the patients 

o Provides comparisons and reasoning for allocations 

o Useful for validation purposes 

o Valuable for hospital administrators to evaluate the approaches and simulate 

situations in order to analyze the results 

 Decision support for the medical staff members to help make their allocation decisions 

o Confirms that the allocation is best or provides a better alternative as a comparison 

o Medical staff member make these decisions in stressful situation and in a short 

amount of time so the alternative solution could be a decision that they would have 

made if they had more time 

 Provided the building blocks to create a corrector system for ambulances and hospitals which 

maps out how to engage the framework outlined in this thesis within a real environment, with 

actual medical professionals, patients, ambulances. 

6.2 Discussion and Related Work 

In this section, we return to clarify how our proposed approach for MARA is well suited for 

applications that have certain characteristics, as listed in Chapter 1. We then move on to compare our 

approach with that of other researchers. 

The application that we chose to be the centerpiece of this thesis is that of healthcare, examining 

both an Ambulance and Hospital stage. We clarify here how this particular application has all the 

characteristics that we described as desirable for our particular investigation of multiagent resource 

allocation. The resources that we model are indivisible (i.e. patients will not be given a fraction of an 

ambulance or a doctor). Some of our resources are shareable (e.g. the same hospital can be used as the 

destination of two different ambulances) whereas others are not shareable (e.g. each ambulance 

transports only one victim). The multiagent system is cooperative: we have discussed hospital 

administrators as one possible decision making group, and view the needs of all parties in the 
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environment as being provided transparently and honestly. Agent preferences, for us, are dictated by 

their current state; their needs for resources are set by their location, their severity and their injuries. 

Differing patients can have different resource requirements when reaching the hospital, still. As 

illustrated in our example in Section 4.3.1.1, each patient prefers a resource that will provide the best 

possible care, still. We have indeed settled on a goal of minimizing the cost of allocating resources in 

a poor fashion. As illustrated in the setting used for our implementation and discussed in the text, 

some victims or patients may be without a resource at any given point in time. Dynamic adjustments 

to allocations are supported, and a refresh of parameter values occurs with some frequency. 

In Chapter 2, we discussed alternative models for patient scheduling, drawn from artificial 

intelligence literature. Compared to other approaches for handling patients in healthcare scenarios we 

develop a framework Ambulance and Hospital stages at the same time. Other research more typically 

handles the Hospital stage alone [13, 21, 31, 33, 43]. What is also distinct about our approaches is the 

fact that most of the competing models do not consider the influence of principles of allocation and 

thus do not guide the solution based on the decision maker’s preference with respect to such 

principles. 

In Chapter 4, we discussed our aim of trying to effectively model the Ambulance and Hospital 

stages where MARA concerns arise and presented our proposed parameters, parameter values and 

cost functions. The challenge of effectively modeling healthcare scenarios for artificial intelligence 

systems is one that was also faced by Cohen et al. [9]. That work was concerned with reasoning about 

when to interact with doctors in order to tend to patients and included a focus on properly modeling 

bother and bother cost. The doctors and patients also needed to be modeled and in this case the 

options of high, medium or low skill, and high, medium or low severity were chosen. Our proposed 

user modeling offers a richer set of options here and also includes additional modeling characteristics 

in terms of procedures and resource capabilities. 

6.2.1 Contrast with Other MARA Approaches 

Our approach to MARA can be characterized as centralized, with provision for domain-specific 

cost functions, and employing local search for solutions, minimizing total cost according to social 

welfare. 

VC Auction [20] research is somewhat relevant to ours. In these auctions, if the parties have 

sufficient money, they can submit bids which determine who gets which resource, along with a paid 
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cost which compensates who fails to get a resource. This is provably optimal: true valuations for bids 

are elicited and utilitarian social welfare can be maximized. The solution is NP hard to compute, so 

approximations are needed. Since our problems are small, we may be able to perform the 

computations precisely but there are primary differences from the applications we are most interested 

in. For one, the concept of paying money makes less sense to introduce in our eminently cooperative 

environment. 

Paulussen et al.'s work [33] is relevant to ours in that it comments on resource allocation in 

healthcare settings. This work is focused on preemption and in particular on addressing possible 

cyclical requests for resources, considering opportunity costs. We allow some swapping of resources 

when first trying to settle on the proposed allocation but then consider that after a certain time buffer, 

the resources allocated are fixed. We do this to provide a more simplified view, so that we can focus 

instead on investigating the relative value of our local search approach compared to solutions directed 

according to principles of allocation. 

As mentioned in Chapter 2, the work of Doucette is also relevant in considering healthcare 

applications for MARA [14, 15]. In that work, the cost function is based on a single swap and asking 

whether this will improve the solution. Our cost function has additional components that are 

considered. As it is centralized, there is full information. 

A number of artificial intelligence researchers have explored how to address dynamically changing 

environments, for resource allocation. This is the central consideration of the work of Pinhey, 

Doucette, and Cohen [35], which is inspired by the work of Doucette [14, 15] to also account for 

dynamic task arrivals. In contrast with our work, this research adopts a decentralized approach and is 

focused on reasoning about which parties are best to assume a current task, taking into account the 

bother that will be generated. A major focus of that research is also on how best to coordinate 

requests for resources using proxy agents, allowing preemptions when it is expected that agents who 

have lost resources can still complete acceptable, alternate plans. The way that dynamic arrivals are 

handled is to re-evaluate resource needs with each new time tick. In our work, we reason about how 

to set our initial time buffer, before locking in resources and continuing with that particular allocation. 

Other research investigating dynamic resource allocation is also focused on a decentralized, 

distributed solution. Macarthur et al.’s [26] paper focuses on task allocation where agents can form 

coalitions to finish a task. Finding the optimal number of agents to form a coalition is different from 

our approach, since we assume that a bundle of requested resources is assigned. Chapman et al.’s [7] 
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paper takes a game-theoretic approach to dynamic task allocation. This is in contrast to our work, 

which is more cooperative and where the assembly of teams is simply a part of the bundle requests 

that are defined. 

The best way to view our particular stance on multiagent resource allocation is that we seek to 

clarify how local search can be used to determine the allocations, when social welfare functions are 

employed to drive the utility calculations and where minimizing costs is desired. We adopt this 

particular view of MARA in order to then facilitate the provision of output that may assist decision 

makers in environments such as healthcare. Not only do we run algorithms to present proposed final 

allocations, but also we outline how various competing preferences can be input, to show 

comparisons. Introducing the concept of a cost function and the modeling of total cost enables us to 

drill down to various domain-specific important considerations, to include them in our modeling and 

thus to have them influence the allocations that are proposed. 

6.3 Future Work 

There are several valuable avenues for future research which may extend our current model and its 

application to existing topic areas. 

6.3.1 Hyper-heuristics for Policy Specification 

We mention the possibility of introducing hyper-heuristics [6] as a way of offloading the 

requirement of specifying a policy as part of the input to decision making. For future work, one 

direction could be to use hyper-heuristics in order to select the most appropriate policy. Since 

allocation values change considerably based on the social welfare function, we would likely ask the 

decision maker to continue to specify the social welfare function; hyper-heuristics would help in 

identifying the preferred principle of allocation. Another use of hyper-heuristics is for heuristic 

generation. If we were to employ this direction, this could assist in setting the weights of the 

assignment values as part of the total cost evaluation function. 

6.3.2 Modeling Other Dynamic Parameter Values 

Earlier we suggested that our modeling of the environment could be extended to include items like 

roadblocks that affect ambulance travel. For future work, we could extend our current proposed 

modeling for both ambulance and hospital scenarios to consider a more extensive set of parameters 

which might influence our allocation decisions. 
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6.3.3 Extensions to Sensing 

There are various ways in which we could extend our current proposal for sensing. One issue is 

dealing with noise in the sensor readings. Another is to continue to learn about when it is best to do 

the sensing or where the sensors should be placed. We could benefit from ongoing research such as 

[36] that is already focused on effective placing of sensors in hospital settings. 

6.3.4 Other Domains 

Other domains for multiagent resource allocation would benefit from our approach. Two domains, 

for example, include firefighting [41] and natural disasters. These domains would be time-critical and 

require real-time decisions. 

A Firefighter application describes a few fires occur throughout an area (forests, homes, etc.). The 

areas on fire require resources to stop the spread and to extinguish the fire. These resources include 

fire trucks, firefighters, and equipment. The cost for that area will increase as the fire increases. The 

cost of the area will also be determined by the distance and priority of the area. Stages include initial 

fire alarm, new fires discovered, and changes in fire. 

A Natural Disaster application describes resources that are needed by the victims of a natural 

disaster. The victims are in groups of various sizes (stuck in their homes, offices, schools, etc.). 

Resources include food, water, first aid, and clothes. The cost of each group will be determined by the 

resources they want and were allocated. Stages include initial disaster, new disaster, and changes to 

the group. 

If we are exploring other domains as future work we would need to ensure that our algorithm is 

sufficiently general in order for it to operate in these domains. We would also want to run simulations 

to confirm the value of our approach. In different domains, decision makers may want to see 

additional information when displaying the graphs. We may also need to either extend or adjust the 

set of principles of allocation that we used. For example, sickest first may need to be construed to “in 

most danger” for the above two domains. 

6.3.5 Other Experiments 

We could run additional simulations as part of our validation. For example, we could experiment 

with a much larger number of victims, in scenarios with very limited or extensive available resources. 

In might be interesting to also consider trying to handle new patients who have arrived, independent 



 

 87 

of the mass casualty incident. We could also run experiments to address overcapacity by allowing less 

critical patients to move to different hospitals. Another scenario to explore further is where there are 

actually sufficient resources for patients in the hospital. Finally we could code up other social welfare 

functions (e.g. Rank Dictator, Elitist) in order to analyze the value of these options. 

6.3.5.1 Alternate weights and parameter values 

Different weights for cost function components would be instructive to explore. This may lead to 

more dramatic comparisons between the two competing approaches. For example, assigning a larger 

penalty for the PrincipleCostPenalty parameter could reflect a greater significance for this component 

and would adjust the plots. Experimenting with different profiles of parameter values (e.g. scenarios 

with a large proportion of severity 1 patients) would be instructive. 

6.3.6 Analysis of Experimental Conditions 

In our validation various parameter values were set randomly. For future work it would be useful to 

determine whether certain specific values end up contributing significantly to the results that are 

obtained. Mitchell et al. [28] have observed that testing with randomly generated values at times 

presents a challenging distribution of instances, in other words one that would make it difficult for the 

local search to successfully complete in a relatively short period of time. It would be useful to 

conduct analysis to identify these cases. 

6.3.7 Cost Functions 

Another new direction would be to model and reason with different kinds of cost. For example, the 

cost of bothering doctors is useful to consider as seen in Cohen et al.’s work [9]. This would assist in 

modeling overutilization of resources in order to improve our own performance. 

6.3.8 Preemption 

At the moment we allow various swaps and changes for our resource allocation. Researchers such 

as Doucette [15] have examined the issue of preemption more extensively. Considering more 

sophisticated preemption and how to measure its cost might be a valuable path for future work. 

6.3.9 Buffer Times 

It may be possible to model the amount of time where the resources would still be able to be 

reallocated more effectively, by using learning to acquire a better understanding of how the 
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emergency departments in hospitals currently operate [47]. We could then experiment with the 

suggested values for the time buffering and analyze results in order to determine how best to set the 

time buffers. 

6.3.10 Expanding Decision Support 

For future research it would be valuable to explore what kind of user interface would be best for 

the decision support offered to our user. If we were to construct a user interface, this would then 

allow us to conduct user studies of our corrector system. 

6.3.11 Robust Allocations 

With the framework that we have developed, it would be valuable to begin to learn how to avoid 

brittle allocations, to try to make them more robust. Robust allocations would ensure minimal 

changes when reallocating new resources. This provides for less instability in the allocation, 

improving the flow and thus the efficiency of the allocation process. It would also be valuable to 

identify those circumstances that make allocations more brittle in order to avoid them. 

6.3.12 Multiagent Planning for Resource Allocation 

We have done an initial exploration of a multiagent planning approach to resource allocation. In 

this scenario each agent has a plan that is merged together and some individuals may have their plans 

altered. In contrast with the model used by Cox and Durfee [10], we would propose to integrate the 

use of social welfare functions and principles of allocation. This would suggest an entirely new 

direction for resolving resource allocation, which could be compared to our current approach. 

6.3.13 MDPs and Other Machine Learning Approaches 

Another entirely new path would be to consider using MDPs, evolutionary algorithms, or other 

machine learning approaches in place of the local search used in our proposal. We could for instance 

try to compare the results from our framework with those from these alternative designs. This could 

include comparisons of timing, accuracy, and memory requirements. 

6.3.14 Alternative Local Search Methods 

Future work can investigate other search paradigms such as tabu search or simulated annealing in 

order to compare these with our hill climbing first-improvement approach. We would compare the 

different running times and effectiveness of these approaches. We expect to discover various trade-
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offs between time and accuracy improvements. Another direction would to use a SAT solver [3, 22] 

to determine the solution in place of local search. One concern would be the time required, because in 

domains such as healthcare quick responses are needed. 

6.4 Closing Remarks 

In all, we have presented a framework for multiagent resource allocation in dynamic, time-critical 

environments that is helpful for applications such as healthcare. We have demonstrated that a local 

search approach for CSPs can work well, through a series of simulations, and have also clarified 

where decision support can be provided. Compared to other researchers examining the problem of 

patient scheduling, we focus on a centralized approach and in the handling of emergency scenarios, as 

well incorporating social welfare functions; we also contrast with designs that are based on machine 

learning. In tune with current research on decision support for medical applications, we allow for 

varying inputs and ensure that humans are making the final decisions. We have also outlined a 

number of opportunities for future research in order to see the ongoing potential of our proposed 

approach. 
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Appendix A 

Sufficient Ambulance Details and Results 

We employed a cost function for this initial exploration where high costs were preferred. In this 

Appendix, we provide details on how we modelled and implemented the Sufficient Ambulance stage. 

In particular we present our proposed cost functions and then display various results from 

implementation. 

A.1 Cost Functions 

 

In Algorithm A.1, we see the total cost function that we would like to optimize. (This is a counter-

intuitive use of the word cost; a high value represents a favorable outcome). There are two 

components to calculate the total cost in the Sufficient Ambulance stage. The first is a cost arising 

from the hospitals namely a penalty for being overcapacity. For the penalty of being over capacity, 

we will be subtracting a CAPACITYPENALTY (set to -15 in our implementation) for each patient 

over capacity in a hospital. The second is a cost arising from the individual allocations for each of the 

victims (SingleSolution costs) aggregated according to the specific social welfare function selected as 

part of the input. This cost is referred to as calculateCost function, which depends on the 

calculateCostDrive and calculateCostResource functions. 

 

Algorithm A.1: Calculating the total cost 

Input: Each assignment of patients to hospitals (singleSolution), Hospitals, Social welfare function 

Output: Final cost based on Utilitarian or Egalitarian social welfare 

Initialize totalCost = 0; 

for each singleSolution 

  cost = cost of the singleSolution; 

  Combine cost to the totalCost according to the social welfare function; 

end 

for each hospital in hospitals 

  cost = 0; 

  if hospital is over capacity then 

   cost = number of patients over capacity * CAPACITYPENALTY; 

  end 

  Add cost to the totalCost; 

end 

return totalCost; 

 

                                                       
 

The calculateCostDrive function is shown below. This cost will depend on the distance to the 
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hospital as well as the victim's severity, initial time, and the ambulance driver. To summarize the 

function, if the victim's severity is critical and the drive is not close then value is given by the EMS 

driver skill plus initial time subtracted by HIGHCOST (15 in our implementation). If the victim's 

severity is serious and the drive is far then value is given by the EMS driver skill plus initial time 

subtracted by MEDIUMCOST (which we set to 10). If the victim's severity is fair, the drive is far, and 

the driver is a rookie then value is given by the EMS driver skill plus initial time subtracted by 

LOWCOST (which we set to 5). Otherwise, the value of the severity is multiplied by the distance to 

the hospital then adding the values for the ambulance driver and the initial time before the ambulance 

left.  

The calculateCostResource function will return better results if the victim’s resource needs are met. 

If the hospital’s resource is greater than or equal to the victim needs then the overall cost is the 

difference between the values of the resources. However, if the hospital’s resource is worse than the 

victim needs then there will be a penalty, which is called NEGPENALTY (set to -20 in our 

implementation). 
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A.2 Modeling and Implementation  

 

To implement this problem, we decided to program in the Java programming language. Figure 4.1 

in Section 4.1.3 includes the important sections of a class diagram for this problem. These will serve 

to clarify the proposed modeling for the Sufficient Ambulance stage. 

The Victim class represents the injured individual in the mass casualty incident. Four integers are 

used to describe a victim. Resources represent the resources needed for a victim, which will be high, 

medium, or low. The lower the resources needed, the higher the value. Severity represents the 

condition of the victim, which will be good, fair, serious, or critical. The lower severity of the victim 

causes a higher value. Driver represents the skill of the EMS driver, which is either a skilled veteran 

or a rookie (e.g. in our implementation, skilled has a value of 2 and rookie has a value of 1). Finally, 

initialTime represents the time from the beginning of the incident until the victim left in the 
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ambulance. We decided to model initialTime as one of the set of possible time ranges (e.g. in our 

implementation we use less than ten minutes, between ten and fifteen minutes, between fifteen to 

twenty minutes, between twenty to thirty minutes, or greater than thirty minutes); the usage of these 

discrete values assist in performing the local search efficiently. The less time initially, the better the 

value. 

The Hospital class represents a hospital in the domain of the problem.  Four integers are used to 

describe a hospital. Resources represent the resources available for a hospital, which will be high, 

medium, or low. The more resources available at the hospital cause the higher value. Capacity 

represents the amount of patients the hospital can accept before becoming full. A hospital can be over 

the capacity, which is similar to the real world. The assumption for capacity is to ignore the patients 

already in the hospital and just present the number of patients that the hospital can still accept. There 

are three possible values to set for the capacity. The first is a high capacity (which in our 

implementation represents 15 new patients). The next is a medium capacity (which represents 12 new 

patients). The final is a low capacity (which represents 8 new patients). It is better to have a larger 

amount for new patients. Distance represents the distance from the mass casualty incident to the 

hospital, which will be close, medium, or far. The closer the distance from the incident to the hospital 

causes the higher value. Finally, currentPatients represents the current patients at the hospital. Having 

the current number of patients be less than or equal to the capacity is beneficial. This is determined by 

using the function diffCapacity(), which returns capacity subtracted by the current number of patients 

in that hospital. Whenever a patient is added or removed from a hospital the addPatient() and 

removePatient() functions are used to change the currentPatients value. 

As mentioned in Section 4.1.3, the SingleSolution class is the pairing of a victim with a hospital 

and the Solution class represents all of the assignments of victims to hospitals. Details for 

determining the costs are mentioned in Section A.1. Moreover, details about the local search for the 

Sufficient Ambulance stage are discussed in Section 4.1.3. 

The Problem class is the main class. This is where hospitals and victims are initialized using 

initHospitals() and initVictims(). As stated previously, the number of patients is 30 and the number of 

hospitals is 3 for most of experimental results. A random number generator is used to determine the 

values for the victims and hospitals based on their possible values. Due to the random generator, some 

of the soft constraints may never be satisfied. To have consistent results between the local search 

strategies, a seed is used for the random number generator. 
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A.3 Experimental Results 

 

The experimental results were produced by running the local search on 100 different generated 

scenarios, where each scenario had 30 victims and 3 hospitals. Given that the random generator used 

a seed, the same 100 scenarios were run for each approach used. There are 6 approaches based on the 

social welfare and initial state. There are two options for the social welfare, which are Utilitarian and 

Egalitarian. There are three options for the initial state, which are even, single, and random. 

 

 
Figure A.1 – Total cost graph 

 

 Figure A.1 shows the total cost based on the approach take. As explained, the cost represents 

the value of the victims receiving the resources (recall that a high cost is desirable). The graph shows 

the total cost of the initial state, the social welfare used in the approach, and the social welfare of the 

other approach. In Figure A.1, the first three bars in each group used the Utilitarian approach and the 

last three bars in each group used the Egalitarian approach, to drive the calculations in Algorithm 4.1 

(in Section 4.1.3), resulting in the proposed final allocation. To further expand on this, the first three 

bars in the initial section show the initial value calculated with the Utilitarian social welfare function, 

the first three bars in the Utilitarian section show the final value calculated with the Utilitarian social 

welfare function (i.e. the sum of the cost of each victim-hospital assignment (calculateCost Function) 

that falls out of the proposed final allocation), and the first three bars in the Egalitarian section show 
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the final value calculated with the Egalitarian social welfare function (i.e. the worst off value selected 

from what falls out of the proposed final allocation) (when running Utilitarian methods to perform the 

local search). Moreover, the last three bars in the initial section show the initial value calculated with 

the Egalitarian social welfare function, the last three bars in the Utilitarian section show the final 

value calculated with the Utilitarian social welfare function (when running Egalitarian methods to 

perform the local search), and the last three bars in the Egalitarian section show the final value 

calculated with the Egalitarian social welfare function. The initial cost is only positive for even 

distribution (Utilitarian) and random distribution (Utilitarian). After running the local search in the 

Utilitarian approach, all the Utilitarian results even out by only differing by 4 with random 

distribution (Utilitarian) having the highest total cost. Looking at the Egalitarian results, the single 

distribution (Egalitarian) has the most but it is important to note that these values are from running the 

Egalitarian and they are clearly less than the Utilitarian results. The results from the Egalitarian 

approach seem to be very even with single distribution (Egalitarian) as the best score. However, the 

difference between first and last is less than 3. Based on total cost of both approaches, it seems even 

distribution (Utilitarian) is a good choice. 

 
Figure A.2 – Constraints graph 

 

 Figure A.2 shows a graph based on the soft constraints. It maps the extent to which hospitals 

are over capacity, the total victims over capacity, and victim resources are not met. Here, a high 

number reflects a lower overall value to the victim, which is undesirable. The positive note from this 
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graph is that on average less than 2 victims are over capacity and less than 3 victims do not have their 

resources met. This ensures that the hospitals are efficiently treating their patients. However, Table 

A.1 displays a different note with a table that represents the worst run. This table shows that the total 

capacity can be as high as 13, for the Utilitarian approaches, and the number of victims that did not 

have their resources met also is 13, for single distribution (Egalitarian). This result could just be a bad 

run where each hospital had low resources available and low capacity. It is a reasonable situation 

since even distribution (Egalitarian) had all three hospitals over the capacity. Table A.1 also includes 

the maximum number of iterations performed during the search. Both even distribution approaches 

have the least amount of maximum iterations. 

 Figure A.3 shows a graph based on the number of iterations. Iteration can either be swapping 

a hospital between victims or a victim being assigned another hospital. Note that here, a lower 

number of iterations provides value to the victims, as long as the allocation selected is one where the 

result’s total cost is desirable. Single distribution approaches have the most iteration because of the 

initial state having all the victims in the same hospital. This results in many new assignments of 

victims to another hospital. In contrast the other distributions tend to swap hospitals between patients 

more often on average. Note that here, a lower number provides value to the victims, as long as the 

allocation selected is one where the result’s total cost is desirable. Based on the experimental results, 

it seems that random distribution (Utilitarian) is the best approach for utilitarian. This is due to its 

high total cost, few constraints broken and least amount of iterations. Single distribution (Egalitarian) 

approach is the best for the egalitarian. Even though the maximum number of iterations is high and 

constraints statistics are average, the total costs are the best for both kinds of social welfare. It is 

important to note that random distribution (Utilitarian) had a very good result for the egalitarian and 

therefore should be considered best approach overall. Some results not displayed in the graphs were 

obtained using single distribution (Utilitarian) in three other scenarios. They included 20 patients with 

2 hospitals, 40 patients with 4 hospitals, and 50 patients with 5 hospitals as well as 30 patients with 3 

hospitals. The scenario with 20 patients had the best total cost per iterations but more experimentation 

is needed for these scenarios. We note as well that, through all our experiments, the time taken to 

complete the runs of the scenarios were all quite low (e.g. on the order of 172 milliseconds for 100 

scenarios tested with EDU). We therefore are encouraged that this algorithm may be of value towards 

real deployment (where various values required such as skill of the EMS driver would already be pre-

stored). 
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Table A.1 – Maximum results table 

 Max 

Iterations 

Max Hospitals 

Over Capacity 

Max Total 

Capacity 

Max Victim 

Resources Not Met 

Even distribution (Utilitarian) 36 2 13 11 

Single distribution (Utilitarian) 79 1 13 11 

Average random (Utilitarian) 37 1 13 11 

Even distribution (Egalitarian) 12 3 6 11 

Single distribution (Egalitarian) 65 1 6 13 

Average random (Egalitarian) 14 2 6 12 

 

 
Figure A.3 – Iterations graph 

 

A.4 Summary 

 

We have been able to show how to take examples of mass casualty incidents and convert them to 

constraint satisfaction problems. The implementation of this problem into the Java programming 

language allowed this problem to be solved using a local search. The results of a local search will 

vary based on the implementation, which lead to experimenting with different approaches. Adding a 

global view provided an interesting consideration when assigning a patient to a hospital. Overall, the 

random distribution (Utilitarian) approach seemed to have the best results. 
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Appendix B 

A Look at the Cost Calculations 

In this appendix, we discuss in further detail the range of possible values for an allocation (i.e. the 

total costs that could be incurred). We use as an example the Utilitarian social welfare function. We 

do so both to clarify how ranges of parameter values were chosen when we modeled the Ambulance 

and Hospital phases (Section 4.2) and to help the reader understand some of the values displayed on 

the axis of our graphs, in the Implementation Output Chapter (Chapter 5).  

The penalty values will be set as follows: LOWRC (2), HIGHRC (10), noAmbulanceDriveCost 

(18). 

The allocation value (i.e. the total cost of the allocation, computed per Algorithm 4.2) is derived on 

the basis of adding the costs incurred from each SingleSolution allocation (i.e. what each victim 

receives as its resource (ambulance, hospital pair) and its cost (per the CostAmbulance Function)). 

We will sketch this sum computed over 30 victims, 20 ambulances, and 3 hospitals (the number used 

in our implementation (see chapter 5)) for the Initial phase. The total cost also adds in some possible 

penalties for ambulance (adding up costs incurred for each ambulance) and hospital (adding up costs 

incurred for each hospital). The range of possible values for the total cost turns out to be [364,970]. 

This can be determined as follows. 

In order to see the possible values, it is useful to view the parameters listed in Tables 4.1, 4.2, and 

4.3 and their indicated upper and lower bounds for values. Each SingleSolution allocation 

(determined on the basis of the CostAmbulance Function) is at least as follows: cost of drive turns 

out to be at least 2, cost of victim wait is at least 1, cost of resource is at least 2 so that the cost for this 

single solution overall is at least 5. When a resource is null, the SingleSolution allocation is as 

follows: cost of drive turns out to be at least 14, cost of victim wait is at least 1, cost of resource is at 

least 10 so that the cost for this single solution overall is at least 25. 

Cost of wait has upper and lower values as indicated in the tables. Cost of drive is determined by 

the CostDrive Function which adds together (minimum values per the tables indicated in parentheses) 

1 + hdist (1) + (maxVictim - vicSev) * (maxType - ambType) (where maxType - ambType = (2-2) 

so this expression is at min 0) + (maxType * (vicSev -1)) (where vicSev – 1 = (1-1) so this expression 

is at min 0) is at least 2 for cost of drive (1 + 1). Cost of resource is determined by the CostRes 
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Function, which returns (minimum values per the tables indicated in parentheses) hRes – vRes (where 

hRes = vRes so this expression is at min 0) + LOWRC is at least 2. 

Each SingleSolution allocation (determined on the basis of the CostAmbulance Function) is at 

most as follows: cost of drive turns out to be at most 17, cost of victim wait is at most 5, cost of 

resource is at most 10 so that the cost for this single solution overall is at most 32. This value occurs 

when a resource is null. When a resource is not null, the SingleSolution allocation is as follows: cost 

of drive turns out to be at most 13, cost of victim wait is at most 5, cost of resource is at most 6 so 

that the cost for this single solution overall is at most 24. 

Cost of wait has upper and lower values as indicated in Tables 4.1, 4.2, and 4.3. Cost of drive is 

determined by the CostDrive Function which adds together (maximum values per Tables 4.1, 4.2, and 

4.3 indicated in parentheses) 

noAmbulanceDriveCost – vicSev (18 – 1) is at most 17 for cost of drive. Cost of resource is 

determined by the CostRes Function, which returns HIGHRC is at most10. 

For the 30 victims, each assignment value can range from 5 to 32 meaning that when using the 

Utilitarian social welfare function (which adds all the individual allocation values) the minimum is 

150 and the maximum is 960. We can tighten the upper limit since we know that 20 of the victims 

receive a resource (since there are 20 ambulances (which are not shareable)). With these victims 

receiving the highest cost resources, the maximum becomes 800. This also allows for a tighter lower 

limit taking into account that 10 victims will not receive a resource. The minimum will become 340. 

Each ambulance is allocated to a victim. If the ambulance is a null ambulance then it means that 

there is a victim did not receive an ambulance. A cost of 2 is incurred for each ambulance that is a 

null ambulance. Since there are 20 ambulances for the 30 victims, the cost would be 20. 

Each hospital incurs a cost based its capacity, which can either be 8, 12, or 15 (as indicated by 

Table 4.3). A hospital incurs a cost of 10 for each victim over capacity and a cost of 1 for each victim 

under capacity.  Since the 20 ambulances are driving to 3 hospitals, the minimum cost is 4 and 

maximum is 150. 

Note that Figure VA-1 (a), which plots allocation values that arose from simulating an ambulance 

environment ended up with various options each roughly incurring a total cost between 520 and 590; 

this is within the maximal possible range demonstrated above, 340 and 800. 
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Appendix C 

Decision Support for Ambulance and Hospital Stages 

This section provides an example of decision support by showing the available resources being 

assigned to patients and the resulting allocation value. There are two solutions used to represent a 

possible system and user allocation. Each stage provides an example of patients and resources 

(including their attribute values (where the value for each principle of allocation attribute represents 

that patient’s rank in the set of patients)), as well as the allocation and the allocation value for the 

system and user recommended allocations. The percentage change is calculated for these two 

solutions. 

Ambulance Stage Decision Support 

The values for the attributes were generated from Test 90 of the Ambulance stage with 30 victims, 

20 ambulances, 3 hospitals, and at time step 0. The allocation values were generated using Utilitarian 

social welfare and no principle policy. The system allocation used local search with 100 random 

restarts with Utilitarian social welfare and no principle policy. The user recommended allocation used 

the principle of allocation approach using prognosis as the principle. 

Victims 

ID Values 

1 severity=2, resources=3, initialTime=0, availability=0, lottery=19, fcfs=18, sickestFirst=6, 

youngestFirst=21, livesSaved=21, prognosis=21, instrumental=11, reciprocity=18, 

age=56, survivalPerctentage=39, expectedYears=19 

2 severity=3, resources=1, initialTime=0, availability=0, lottery=3, fcfs=25, sickestFirst=21, 

youngestFirst=14, livesSaved=12, prognosis=12, instrumental=23, reciprocity=25, 

age=41, survivalPerctentage=68, expectedYears=34 

3 severity=3, resources=1, initialTime=0, availability=0, lottery=12, fcfs=1, sickestFirst=20, 

youngestFirst=22, livesSaved=14, prognosis=14, instrumental=3, reciprocity=1, age=58, 

survivalPerctentage=63, expectedYears=31 

4 severity=4, resources=2, initialTime=0, availability=0, lottery=11, fcfs=11, 

sickestFirst=25, youngestFirst=25, livesSaved=1, prognosis=1, instrumental=12, 

reciprocity=11, age=65, survivalPerctentage=91, expectedYears=45 

5 severity=1, resources=1, initialTime=0, availability=0, lottery=24, fcfs=23, sickestFirst=3, 
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youngestFirst=23, livesSaved=28, prognosis=28, instrumental=17, reciprocity=23, 

age=61, survivalPerctentage=16, expectedYears=8 

6 severity=4, resources=2, initialTime=0, availability=0, lottery=0, fcfs=14, sickestFirst=26, 

youngestFirst=19, livesSaved=7, prognosis=7, instrumental=25, reciprocity=14, age=49, 

survivalPerctentage=73, expectedYears=36 

7 severity=1, resources=1, initialTime=0, availability=0, lottery=10, fcfs=28, sickestFirst=4, 

youngestFirst=26, livesSaved=26, prognosis=26, instrumental=16, reciprocity=28, 

age=66, survivalPerctentage=24, expectedYears=12 

8 severity=3, resources=2, initialTime=0, availability=0, lottery=14, fcfs=29, 

sickestFirst=19, youngestFirst=3, livesSaved=5, prognosis=5, instrumental=19, 

reciprocity=29, age=24, survivalPerctentage=77, expectedYears=38 

9 severity=4, resources=1, initialTime=0, availability=0, lottery=25, fcfs=4, sickestFirst=27, 

youngestFirst=17, livesSaved=9, prognosis=9, instrumental=26, reciprocity=4, age=46, 

survivalPerctentage=72, expectedYears=36 

10 severity=1, resources=3, initialTime=0, availability=0, lottery=8, fcfs=6, sickestFirst=1, 

youngestFirst=7, livesSaved=24, prognosis=24, instrumental=24, reciprocity=6, age=28, 

survivalPerctentage=34, expectedYears=17 

11 severity=4, resources=3, initialTime=0, availability=0, lottery=21, fcfs=21, 

sickestFirst=23, youngestFirst=9, livesSaved=2, prognosis=2, instrumental=5, 

reciprocity=21, age=29, survivalPerctentage=87, expectedYears=43 

12 severity=3, resources=3, initialTime=0, availability=0, lottery=6, fcfs=22, sickestFirst=15, 

youngestFirst=13, livesSaved=13, prognosis=13, instrumental=0, reciprocity=22, age=36, 

survivalPerctentage=65, expectedYears=32 

13 severity=3, resources=2, initialTime=0, availability=0, lottery=20, fcfs=5, sickestFirst=17, 

youngestFirst=27, livesSaved=16, prognosis=16, instrumental=13, reciprocity=5, age=66, 

survivalPerctentage=56, expectedYears=28 

14 severity=2, resources=2, initialTime=0, availability=0, lottery=26, fcfs=10, sickestFirst=8, 

youngestFirst=29, livesSaved=20, prognosis=20, instrumental=20, reciprocity=10, 

age=69, survivalPerctentage=41, expectedYears=20 

15 severity=1, resources=2, initialTime=0, availability=0, lottery=13, fcfs=2, sickestFirst=2, 

youngestFirst=24, livesSaved=29, prognosis=29, instrumental=2, reciprocity=2, age=63, 
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survivalPerctentage=12, expectedYears=6 

16 severity=3, resources=3, initialTime=0, availability=0, lottery=2, fcfs=26, sickestFirst=16, 

youngestFirst=1, livesSaved=15, prognosis=15, instrumental=4, reciprocity=26, age=23, 

survivalPerctentage=59, expectedYears=29 

17 severity=4, resources=2, initialTime=0, availability=0, lottery=29, fcfs=9, sickestFirst=24, 

youngestFirst=0, livesSaved=3, prognosis=3, instrumental=1, reciprocity=9, age=21, 

survivalPerctentage=78, expectedYears=39 

18 severity=4, resources=1, initialTime=0, availability=0, lottery=18, fcfs=16, 

sickestFirst=29, youngestFirst=8, livesSaved=0, prognosis=0, instrumental=27, 

reciprocity=16, age=28, survivalPerctentage=97, expectedYears=48 

19 severity=2, resources=2, initialTime=0, availability=0, lottery=9, fcfs=19, sickestFirst=9, 

youngestFirst=28, livesSaved=18, prognosis=18, instrumental=6, reciprocity=19, age=67, 

survivalPerctentage=51, expectedYears=25 

20 severity=3, resources=1, initialTime=0, availability=0, lottery=1, fcfs=27, sickestFirst=22, 

youngestFirst=2, livesSaved=6, prognosis=6, instrumental=8, reciprocity=27, age=23, 

survivalPerctentage=75, expectedYears=37 

21 severity=2, resources=1, initialTime=0, availability=0, lottery=17, fcfs=15, 

sickestFirst=11, youngestFirst=5, livesSaved=19, prognosis=19, instrumental=9, 

reciprocity=15, age=27, survivalPerctentage=42, expectedYears=21 

22 severity=3, resources=3, initialTime=0, availability=0, lottery=22, fcfs=8, sickestFirst=13, 

youngestFirst=16, livesSaved=11, prognosis=11, instrumental=15, reciprocity=8, age=44, 

survivalPerctentage=69, expectedYears=34 

23 severity=2, resources=2, initialTime=0, availability=0, lottery=7, fcfs=20, sickestFirst=10, 

youngestFirst=4, livesSaved=25, prognosis=25, instrumental=10, reciprocity=20, age=25, 

survivalPerctentage=33, expectedYears=16 

24 severity=2, resources=1, initialTime=0, availability=0, lottery=15, fcfs=24, 

sickestFirst=12, youngestFirst=11, livesSaved=23, prognosis=23, instrumental=7, 

reciprocity=24, age=36, survivalPerctentage=36, expectedYears=18 

25 severity=2, resources=3, initialTime=0, availability=0, lottery=4, fcfs=0, sickestFirst=5, 

youngestFirst=18, livesSaved=22, prognosis=22, instrumental=29, reciprocity=0, age=48, 

survivalPerctentage=38, expectedYears=19 
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26 severity=3, resources=3, initialTime=0, availability=0, lottery=27, fcfs=12, 

sickestFirst=14, youngestFirst=12, livesSaved=10, prognosis=10, instrumental=18, 

reciprocity=12, age=36, survivalPerctentage=71, expectedYears=35 

27 severity=2, resources=2, initialTime=0, availability=0, lottery=16, fcfs=7, sickestFirst=7, 

youngestFirst=15, livesSaved=17, prognosis=17, instrumental=22, reciprocity=7, age=44, 

survivalPerctentage=52, expectedYears=26 

28 severity=3, resources=2, initialTime=0, availability=0, lottery=28, fcfs=17, 

sickestFirst=18, youngestFirst=10, livesSaved=8, prognosis=8, instrumental=28, 

reciprocity=17, age=34, survivalPerctentage=72, expectedYears=36 

29 severity=4, resources=1, initialTime=0, availability=0, lottery=5, fcfs=13, sickestFirst=28, 

youngestFirst=20, livesSaved=4, prognosis=4, instrumental=21, reciprocity=13, age=54, 

survivalPerctentage=78, expectedYears=39 

30 severity=1, resources=3, initialTime=0, availability=0, lottery=23, fcfs=3, sickestFirst=0, 

youngestFirst=6, livesSaved=27, prognosis=27, instrumental=14, reciprocity=3, age=28, 

survivalPerctentage=18, expectedYears=9 

 

Ambulance 

ID Values 

34 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

35 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

36 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

37 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

38 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

39 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

40 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

41 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

42 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

43 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

44 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

45 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

46 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

47 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 
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48 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

49 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

50 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

51 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

52 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

53 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

 

Hospital 

ID Values 

31 resources=1, currentPatients=0, capacity=8, distance=2, longitude=3, latitude=-4 

32 resources=2, currentPatients=0, capacity=12, distance=1, longitude=-3, latitude=0 

33 resources=2, currentPatients=0, capacity=12, distance=2, longitude=1, latitude=4 

 

System allocation – allocation value = 525 

Patient ID Ambulance ID Hospital ID 

1 36 33 

2 44 31 

3 45 31 

4 Null Resource Null Resource 

5 34 31 

6 Null Resource Null Resource 

7 37 32 

8 50 32 

9 Null Resource Null Resource 

10 53 32 

11 Null Resource Null Resource 

12 Null Resource Null Resource 

13 27 32 

14 35 32 

15 38 32 

16 Null Resource Null Resource 

17 Null Resource Null Resource 
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18 Null Resource Null Resource 

19 39 32 

20 51 31 

21 52 31 

22 Null Resource Null Resource 

23 40 32 

24 43 31 

25 47 32 

26 Null Resource Null Resource 

27 48 32 

28 41 32 

29 42 31 

30 49 32 

 

User allocation – allocation value = 588 

Patient ID Ambulance ID Hospital ID 

1 Null Resource Null Resource 

2 53 31 

3 45 31 

4 35 32 

5 Null Resource Null Resource 

6 41 32 

7 Null Resource Null Resource 

8 39 32 

9 42 31 

10 Null Resource Null Resource 

11 36 32 

12 44 32 

13 48 32 

14 Null Resource Null Resource 

15 Null Resource Null Resource 
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16 46 32 

17 37 32 

18 34 31 

19 51 33 

20 40 31 

21 52 31 

22 49 32 

23 Null Resource Null Resource 

24 Null Resource Null Resource 

25 Null Resource Null Resource 

26 47 32 

27 50 32 

28 43 32 

29 38 31 

30 Null Resource Null Resource 

 

Percentage Change between system allocation and user allocation = ((525-588)/525)*100 = -12.00% 

 

Hospital Stage Decision Support 

The values for the attributes were generated from Test 0 of the Hospital stage with 10 patients, 6 

resources, and at time step 0. The allocation values were generated using Utilitarian social welfare 

and no principle policy. The system allocation used local search with 100 random restarts with 

Utilitarian social welfare and no principle policy. The user recommended allocation used the principle 

of allocation approach using prognosis as the principle. 

Patients 

ID Values 

1 severity=2, resources=1, initialTime=0, availability=0, lottery=0, fcfs=7, sickestFirst=4, 

youngestFirst=2, livesSaved=6, prognosis=6, instrumental=6, reciprocity=7, age=43, 

survivalPerctentage=45, expectedYears=22 

2 severity=2, resources=2, initialTime=0, availability=0, lottery=1, fcfs=8, sickestFirst=3, 

youngestFirst=9, livesSaved=5, prognosis=5, instrumental=1, reciprocity=8, age=69, 

survivalPerctentage=48, expectedYears=24 
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3 severity=2, resources=3, initialTime=0, availability=0, lottery=8, fcfs=0, sickestFirst=2, 

youngestFirst=7, livesSaved=7, prognosis=7, instrumental=3, reciprocity=0, age=61, 

survivalPerctentage=41, expectedYears=20 

4 severity=3, resources=2, initialTime=0, availability=0, lottery=3, fcfs=3, sickestFirst=5, 

youngestFirst=1, livesSaved=4, prognosis=4, instrumental=4, reciprocity=3, age=28, 

survivalPerctentage=62, expectedYears=31 

5 severity=4, resources=3, initialTime=0, availability=0, lottery=5, fcfs=6, sickestFirst=8, 

youngestFirst=8, livesSaved=2, prognosis=2, instrumental=0, reciprocity=6, age=65, 

survivalPerctentage=81, expectedYears=40 

6 severity=4, resources=1, initialTime=0, availability=0, lottery=7, fcfs=1, sickestFirst=9, 

youngestFirst=4, livesSaved=1, prognosis=1, instrumental=8, reciprocity=1, age=50, 

survivalPerctentage=88, expectedYears=44 

7 severity=4, resources=3, initialTime=0, availability=0, lottery=9, fcfs=2, sickestFirst=7, 

youngestFirst=5, livesSaved=0, prognosis=0, instrumental=7, reciprocity=2, age=56, 

survivalPerctentage=89, expectedYears=44 

8 severity=1, resources=3, initialTime=0, availability=0, lottery=4, fcfs=9, sickestFirst=0, 

youngestFirst=0, livesSaved=8, prognosis=8, instrumental=9, reciprocity=9, age=23, 

survivalPerctentage=29, expectedYears=14 

9 severity=4, resources=4, initialTime=0, availability=0, lottery=6, fcfs=5, sickestFirst=6, 

youngestFirst=3, livesSaved=3, prognosis=3, instrumental=5, reciprocity=5, age=43, 

survivalPerctentage=74, expectedYears=37 

10 severity=1, resources=1, initialTime=0, availability=0, lottery=2, fcfs=4, sickestFirst=1, 

youngestFirst=6, livesSaved=9, prognosis=9, instrumental=2, reciprocity=4, age=58, 

survivalPerctentage=16, expectedYears=8 

 

Resources 

ID Values 

11 type=2, initialTime=0, availability=0  

12 type=5, initialTime=0, availability=0 

13 type=1, initialTime=0, availability=0 

14 type=2, initialTime=0, availability=0 

15 type=3, initialTime=0, availability=0 
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16 type=3, initialTime=0, availability=0 

 

System allocation – allocation value = 289 

Patient ID Resource ID 

1 11 

2 14 

3 15 

4 13 

5 Null Resource 

6 Null Resource 

7 Null Resource 

8 16 

9 Null Resource 

10 12 

 

User allocation – allocation value = 336 

Patient ID Resource ID 

1 Null Resource 

2 13 

3 Null Resource 

4 14 

5 16 

6 15 

7 12 

8 Null Resource 

9 11 

10 Null Resource 

 

Percentage Change between system allocation and user allocation = ((289-336)/289)*100 = -16.26% 
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Appendix D 

Trace of Local Search for Ambulance and Hospital Stages 

This section provides a trace during the local search. The local search uses 100 random restarts and 

the trace represents an allocation that had the best allocation value at the end of the local search. Each 

stage provides an example of patients and resources (including their attribute values (where the value 

for each principle of allocation attribute represents that patient’s rank in the set of patients)). The 

initial assignment of resources and patients is shown along with the allocation value. Each new 

assignment represents the better neighbor selected during the local search. The final assignment 

represents the solution as none of the neighbors are better than the current solution. 

Trace Ambulance Stage 

The Ambulance stage example has 15 victims, 10 ambulances, 3 hospitals, and at time step 0. The 

allocation values were generated using Utilitarian social welfare and no principle policy. 

 

Victims 

ID Values 

1 severity=3, resources=1, initialTime=0, availability=0, lottery=5, fcfs=0, sickestFirst=9, 

youngestFirst=2, livesSaved=4, prognosis=4, instrumental=0, reciprocity=0, age=33, 

survivalPerctentage=65, expectedYears=32 

2 severity=4, resources=2, initialTime=0, availability=0, lottery=14, fcfs=7, sickestFirst=13, 

youngestFirst=5, livesSaved=0, prognosis=0, instrumental=10, reciprocity=7, age=50, 

survivalPerctentage=88, expectedYears=44 

3 severity=1, resources=2, initialTime=0, availability=0, lottery=1, fcfs=9, sickestFirst=0, 

youngestFirst=10, livesSaved=13, prognosis=13, instrumental=11, reciprocity=9, age=63, 

survivalPerctentage=20, expectedYears=10 

4 severity=3, resources=1, initialTime=0, availability=0, lottery=12, fcfs=1, sickestFirst=10, 

youngestFirst=8, livesSaved=8, prognosis=8, instrumental=8, reciprocity=1, age=60, 

survivalPerctentage=54, expectedYears=27 

5 severity=3, resources=3, initialTime=0, availability=0, lottery=11, fcfs=12, sickestFirst=6, 

youngestFirst=12, livesSaved=7, prognosis=7, instrumental=3, reciprocity=12, age=66, 

survivalPerctentage=57, expectedYears=28 
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6 severity=2, resources=2, initialTime=0, availability=0, lottery=7, fcfs=5, sickestFirst=3, 

youngestFirst=0, livesSaved=12, prognosis=12, instrumental=6, reciprocity=5, age=26, 

survivalPerctentage=40, expectedYears=20 

7 severity=3, resources=3, initialTime=0, availability=0, lottery=10, fcfs=14, sickestFirst=7, 

youngestFirst=13, livesSaved=5, prognosis=5, instrumental=4, reciprocity=14, age=67, 

survivalPerctentage=64, expectedYears=32 

8 severity=1, resources=2, initialTime=0, availability=0, lottery=4, fcfs=13, sickestFirst=1, 

youngestFirst=7, livesSaved=14, prognosis=14, instrumental=14, reciprocity=13, age=58, 

survivalPerctentage=18, expectedYears=9 

9 severity=3, resources=2, initialTime=0, availability=0, lottery=0, fcfs=4, sickestFirst=8, 

youngestFirst=6, livesSaved=3, prognosis=3, instrumental=5, reciprocity=4, age=51, 

survivalPerctentage=68, expectedYears=34 

10 severity=4, resources=2, initialTime=0, availability=0, lottery=6, fcfs=2, sickestFirst=12, 

youngestFirst=3, livesSaved=2, prognosis=2, instrumental=12, reciprocity=2, age=34, 

survivalPerctentage=79, expectedYears=39 

11 severity=2, resources=2, initialTime=0, availability=0, lottery=2, fcfs=3, sickestFirst=2, 

youngestFirst=4, livesSaved=10, prognosis=10, instrumental=13, reciprocity=3, age=43, 

survivalPerctentage=45, expectedYears=22 

12 severity=2, resources=2, initialTime=0, availability=0, lottery=9, fcfs=6, sickestFirst=4, 

youngestFirst=14, livesSaved=9, prognosis=9, instrumental=1, reciprocity=6, age=69, 

survivalPerctentage=48, expectedYears=24 

13 severity=2, resources=2, initialTime=0, availability=0, lottery=13, fcfs=8, sickestFirst=5, 

youngestFirst=9, livesSaved=11, prognosis=11, instrumental=2, reciprocity=8, age=61, 

survivalPerctentage=41, expectedYears=20 

14 severity=3, resources=1, initialTime=0, availability=0, lottery=3, fcfs=11, sickestFirst=11, 

youngestFirst=1, livesSaved=6, prognosis=6, instrumental=7, reciprocity=11, age=28, 

survivalPerctentage=62, expectedYears=31 

15 severity=4, resources=1, initialTime=0, availability=0, lottery=8, fcfs=10, sickestFirst=14, 

youngestFirst=11, livesSaved=1, prognosis=1, instrumental=9, reciprocity=10, age=65, 

survivalPerctentage=81, expectedYears=40 
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Ambulance 

ID Values 

19 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

20 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

21 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

22 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

23 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

24 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

25 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

26 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

27 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

28 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

 

Hospital 

ID Values 

16 resources=3, currentPatients=0, capacity=15, distance=2, longitude=-2, latitude=4 

17 resources=2, currentPatients=0, capacity=12, distance=3, longitude=-4, latitude=4 

18 resources=1, currentPatients=0, capacity=15, distance=1, longitude=3, latitude=0 

 

Allocation Value: 312.0  
 

Allocation Value: 311.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 

7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 24 16 
 

8 24 17 

10 19 17 
 

10 19 17 

3 Null Resource Null Resource 
 

3 Null Resource Null Resource 

9 28 18 
 

9 28 18 

11 23 17 
 

11 23 17 

5 27 17 
 

5 27 17 

4 Null Resource Null Resource 
 

4 Null Resource Null Resource 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 16 
 

13 22 16 

2 26 16 
 

2 26 16 

14 25 18 
 

14 25 18 
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Allocation Value: 310.0 
 

Allocation Value: 305.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 

7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 23 17 
 

8 23 17 

10 19 17 
 

10 Null Resource Null Resource 

3 Null Resource Null Resource 
 

3 19 16 

9 28 18 
 

9 28 18 

11 24 17 
 

11 24 17 

5 27 17 
 

5 27 17 

4 Null Resource Null Resource 
 

4 Null Resource Null Resource 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 16 
 

13 22 16 

2 26 16 
 

2 26 16 

14 25 18 
 

14 25 18 
 

Allocation Value: 304.0 
 

Allocation Value: 303.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 

7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 23 17 
 

8 23 17 

10 Null Resource Null Resource 
 

10 Null Resource Null Resource 

3 19 17 
 

3 19 17 

9 28 18 
 

9 28 16 

11 24 17 
 

11 24 17 

5 27 17 
 

5 27 17 

4 Null Resource Null Resource 
 

4 Null Resource Null Resource 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 16 
 

13 22 16 

2 26 16 
 

2 26 16 

14 25 18 
 

14 25 18 
 

Allocation Value: 301.0 
 

Allocation Value: 300.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 
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7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 23 17 
 

8 23 17 

10 Null Resource Null Resource 
 

10 Null Resource Null Resource 

3 27 17 
 

3 27 17 

9 28 16 
 

9 28 17 

11 24 17 
 

11 24 17 

5 19 17 
 

5 19 17 

4 Null Resource Null Resource 
 

4 Null Resource Null Resource 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 16 
 

13 22 16 

2 26 16 
 

2 26 16 

14 25 18 
 

14 25 18 
 

Allocation Value: 299.0 
 

Allocation Value: 296.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 

7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 23 17 
 

8 23 17 

10 Null Resource Null Resource 
 

10 Null Resource Null Resource 

3 27 17 
 

3 27 17 

9 Null Resource Null Resource 
 

9 19 17 

11 24 17 
 

11 24 17 

5 19 17 
 

5 Null Resource Null Resource 

4 28 18 
 

4 28 18 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 16 
 

13 22 16 

2 26 16 
 

2 26 16 

14 25 18 
 

14 25 18 
 

Allocation Value: 295.0 
 

Allocation Value: 292.0 

Victim Ambulance Hospital 
 

Victim Ambulance Hospital 

7 Null Resource Null Resource 
 

7 Null Resource Null Resource 

8 23 17 
 

8 23 17 

10 Null Resource Null Resource 
 

10 Null Resource Null Resource 
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3 27 17 
 

3 27 17 

9 19 17 
 

9 19 17 

11 24 17 
 

11 24 17 

5 Null Resource Null Resource 
 

5 26 16 

4 28 18 
 

4 28 18 

1 20 18 
 

1 20 18 

6 21 17 
 

6 21 17 

12 Null Resource Null Resource 
 

12 Null Resource Null Resource 

15 Null Resource Null Resource 
 

15 Null Resource Null Resource 

13 22 17 
 

13 22 17 

2 26 16 
 

2 Null Resource Null Resource 

14 25 18 
 

14 25 18 
 

Trace Hospital Stage 

The values for the attributes were generated from Test 0 of the Hospital stage with 10 patients, 6 

resources, and at time step 0. The allocation values were generated using Utilitarian social welfare 

and no principle policy. 

Patients 

ID Values 

1 severity=2, resources=1, initialTime=0, availability=0, lottery=0, fcfs=7, sickestFirst=4, 

youngestFirst=2, livesSaved=6, prognosis=6, instrumental=6, reciprocity=7, age=43, 

survivalPerctentage=45, expectedYears=22 

2 severity=2, resources=2, initialTime=0, availability=0, lottery=1, fcfs=8, sickestFirst=3, 

youngestFirst=9, livesSaved=5, prognosis=5, instrumental=1, reciprocity=8, age=69, 

survivalPerctentage=48, expectedYears=24 

3 severity=2, resources=3, initialTime=0, availability=0, lottery=8, fcfs=0, sickestFirst=2, 

youngestFirst=7, livesSaved=7, prognosis=7, instrumental=3, reciprocity=0, age=61, 

survivalPerctentage=41, expectedYears=20 

4 severity=3, resources=2, initialTime=0, availability=0, lottery=3, fcfs=3, sickestFirst=5, 

youngestFirst=1, livesSaved=4, prognosis=4, instrumental=4, reciprocity=3, age=28, 

survivalPerctentage=62, expectedYears=31 

5 severity=4, resources=3, initialTime=0, availability=0, lottery=5, fcfs=6, sickestFirst=8, 

youngestFirst=8, livesSaved=2, prognosis=2, instrumental=0, reciprocity=6, age=65, 

survivalPerctentage=81, expectedYears=40 
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6 severity=4, resources=1, initialTime=0, availability=0, lottery=7, fcfs=1, sickestFirst=9, 

youngestFirst=4, livesSaved=1, prognosis=1, instrumental=8, reciprocity=1, age=50, 

survivalPerctentage=88, expectedYears=44 

7 severity=4, resources=3, initialTime=0, availability=0, lottery=9, fcfs=2, sickestFirst=7, 

youngestFirst=5, livesSaved=0, prognosis=0, instrumental=7, reciprocity=2, age=56, 

survivalPerctentage=89, expectedYears=44 

8 severity=1, resources=3, initialTime=0, availability=0, lottery=4, fcfs=9, sickestFirst=0, 

youngestFirst=0, livesSaved=8, prognosis=8, instrumental=9, reciprocity=9, age=23, 

survivalPerctentage=29, expectedYears=14 

9 severity=4, resources=4, initialTime=0, availability=0, lottery=6, fcfs=5, sickestFirst=6, 

youngestFirst=3, livesSaved=3, prognosis=3, instrumental=5, reciprocity=5, age=43, 

survivalPerctentage=74, expectedYears=37 

10 severity=1, resources=1, initialTime=0, availability=0, lottery=2, fcfs=4, sickestFirst=1, 

youngestFirst=6, livesSaved=9, prognosis=9, instrumental=2, reciprocity=4, age=58, 

survivalPerctentage=16, expectedYears=8 

 

Resources 

ID Values 

11 type=2, initialTime=0, availability=0  

12 type=5, initialTime=0, availability=0 

13 type=1, initialTime=0, availability=0 

14 type=2, initialTime=0, availability=0 

15 type=3, initialTime=0, availability=0 

16 type=3, initialTime=0, availability=0 

 

 

Allocation Value: 308  Allocation Value: 306  Allocation Value: 305  Allocation Value: 304 

Patient Resource  Patient Resource  Patient Resource  Patient Resource 

1 12  1 12  1 15  1 15 

2 16  2 16  2 16  2 16 

3 15  3 13  3 13  3 13 

4 
Null 
Resource 

 
4 

Null 
Resource 

 
4 

Null 
Resource 

 
4 

Null 
Resource 

5 11  5 11  5 11  5 11 
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6 
Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

7 
Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

8 13 
 

8 15 
 

8 12 
 

8 
Null 
Resource 

9 14  9 14  9 14  9 14 

10 
Null 
Resource 

 
10 

Null 
Resource 

 
10 

Null 
Resource 

 
10 12 

 

Allocation Value: 302  Allocation Value: 298  Allocation Value: 297  Allocation Value: 294 

Patient Resource  Patient Resource  Patient Resource  Patient Resource 

1 15  1 15  1 15  1 15 

2 16  2 16  2 14  2 14 

3 
Null 
Resource 

 
3 

Null 
Resource 

 
3 

Null 
Resource 

 
3 13 

4 
Null 
Resource 

 
4 

Null 
Resource 

 
4 

Null 
Resource 

 
4 

Null 
Resource 

5 11  5 11  5 11  5 11 

6 
Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

7 
Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

8 13  8 14  8 16  8 16 

9 14 
 

9 13 
 

9 13 
 

9 
Null 
Resource 

10 12  10 12  10 12  10 12 
 

Allocation Value: 292  Allocation Value: 291  Allocation Value: 290  Allocation Value: 289 

Patient Resource  Patient Resource  Patient Resource  Patient Resource 

1 15  1 11  1 11  1 11 

2 14  2 14  2 14  2 14 

3 11  3 15  3 15  3 15 

4 
Null 
Resource 

 
4 

Null 
Resource 

 
4 

Null 
Resource 

 
4 13 

5 13 
 

5 13 
 

5 
Null 
Resource 

 
5 

Null 
Resource 

6 
Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

 
6 

Null 
Resource 

7 
Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

 
7 

Null 
Resource 

8 16  8 16  8 16  8 16 
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9 
Null 
Resource 

 
9 

Null 
Resource 

 
9 13 

 
9 

Null 
Resource 

10 12  10 12  10 12  10 12 
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Appendix E 

Example of Implementing Different Random Restart Values for 

Local Search 

This section provides an example of the different allocation using different stopping criteria during 

the local search. There are two solutions used to represent 10 and 1 random restart. The values for the 

attributes (where the value for each principle of allocation attribute represents that patient’s rank in 

the set of patients) were generated from Test 90 of the Ambulance stage with 30 victims, 20 

ambulances, 3 hospitals, and at time step 0. The allocation values were generated using Utilitarian 

social welfare and no principle policy.  

 

Victims 

ID Values 

1 severity=2, resources=3, initialTime=0, availability=0, lottery=19, fcfs=18, sickestFirst=6, 

youngestFirst=21, livesSaved=21, prognosis=21, instrumental=11, reciprocity=18, 

age=56, survivalPerctentage=39, expectedYears=19 

2 severity=3, resources=1, initialTime=0, availability=0, lottery=3, fcfs=25, sickestFirst=21, 

youngestFirst=14, livesSaved=12, prognosis=12, instrumental=23, reciprocity=25, 

age=41, survivalPerctentage=68, expectedYears=34 

3 severity=3, resources=1, initialTime=0, availability=0, lottery=12, fcfs=1, sickestFirst=20, 

youngestFirst=22, livesSaved=14, prognosis=14, instrumental=3, reciprocity=1, age=58, 

survivalPerctentage=63, expectedYears=31 

4 severity=4, resources=2, initialTime=0, availability=0, lottery=11, fcfs=11, 

sickestFirst=25, youngestFirst=25, livesSaved=1, prognosis=1, instrumental=12, 

reciprocity=11, age=65, survivalPerctentage=91, expectedYears=45 

5 severity=1, resources=1, initialTime=0, availability=0, lottery=24, fcfs=23, sickestFirst=3, 

youngestFirst=23, livesSaved=28, prognosis=28, instrumental=17, reciprocity=23, 

age=61, survivalPerctentage=16, expectedYears=8 

6 severity=4, resources=2, initialTime=0, availability=0, lottery=0, fcfs=14, sickestFirst=26, 

youngestFirst=19, livesSaved=7, prognosis=7, instrumental=25, reciprocity=14, age=49, 

survivalPerctentage=73, expectedYears=36 
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7 severity=1, resources=1, initialTime=0, availability=0, lottery=10, fcfs=28, sickestFirst=4, 

youngestFirst=26, livesSaved=26, prognosis=26, instrumental=16, reciprocity=28, 

age=66, survivalPerctentage=24, expectedYears=12 

8 severity=3, resources=2, initialTime=0, availability=0, lottery=14, fcfs=29, 

sickestFirst=19, youngestFirst=3, livesSaved=5, prognosis=5, instrumental=19, 

reciprocity=29, age=24, survivalPerctentage=77, expectedYears=38 

9 severity=4, resources=1, initialTime=0, availability=0, lottery=25, fcfs=4, sickestFirst=27, 

youngestFirst=17, livesSaved=9, prognosis=9, instrumental=26, reciprocity=4, age=46, 

survivalPerctentage=72, expectedYears=36 

10 severity=1, resources=3, initialTime=0, availability=0, lottery=8, fcfs=6, sickestFirst=1, 

youngestFirst=7, livesSaved=24, prognosis=24, instrumental=24, reciprocity=6, age=28, 

survivalPerctentage=34, expectedYears=17 

11 severity=4, resources=3, initialTime=0, availability=0, lottery=21, fcfs=21, 

sickestFirst=23, youngestFirst=9, livesSaved=2, prognosis=2, instrumental=5, 

reciprocity=21, age=29, survivalPerctentage=87, expectedYears=43 

12 severity=3, resources=3, initialTime=0, availability=0, lottery=6, fcfs=22, sickestFirst=15, 

youngestFirst=13, livesSaved=13, prognosis=13, instrumental=0, reciprocity=22, age=36, 

survivalPerctentage=65, expectedYears=32 

13 severity=3, resources=2, initialTime=0, availability=0, lottery=20, fcfs=5, sickestFirst=17, 

youngestFirst=27, livesSaved=16, prognosis=16, instrumental=13, reciprocity=5, age=66, 

survivalPerctentage=56, expectedYears=28 

14 severity=2, resources=2, initialTime=0, availability=0, lottery=26, fcfs=10, sickestFirst=8, 

youngestFirst=29, livesSaved=20, prognosis=20, instrumental=20, reciprocity=10, 

age=69, survivalPerctentage=41, expectedYears=20 

15 severity=1, resources=2, initialTime=0, availability=0, lottery=13, fcfs=2, sickestFirst=2, 

youngestFirst=24, livesSaved=29, prognosis=29, instrumental=2, reciprocity=2, age=63, 

survivalPerctentage=12, expectedYears=6 

16 severity=3, resources=3, initialTime=0, availability=0, lottery=2, fcfs=26, sickestFirst=16, 

youngestFirst=1, livesSaved=15, prognosis=15, instrumental=4, reciprocity=26, age=23, 

survivalPerctentage=59, expectedYears=29 

17 severity=4, resources=2, initialTime=0, availability=0, lottery=29, fcfs=9, sickestFirst=24, 



 

 122 

youngestFirst=0, livesSaved=3, prognosis=3, instrumental=1, reciprocity=9, age=21, 

survivalPerctentage=78, expectedYears=39 

18 severity=4, resources=1, initialTime=0, availability=0, lottery=18, fcfs=16, 

sickestFirst=29, youngestFirst=8, livesSaved=0, prognosis=0, instrumental=27, 

reciprocity=16, age=28, survivalPerctentage=97, expectedYears=48 

19 severity=2, resources=2, initialTime=0, availability=0, lottery=9, fcfs=19, sickestFirst=9, 

youngestFirst=28, livesSaved=18, prognosis=18, instrumental=6, reciprocity=19, age=67, 

survivalPerctentage=51, expectedYears=25 

20 severity=3, resources=1, initialTime=0, availability=0, lottery=1, fcfs=27, sickestFirst=22, 

youngestFirst=2, livesSaved=6, prognosis=6, instrumental=8, reciprocity=27, age=23, 

survivalPerctentage=75, expectedYears=37 

21 severity=2, resources=1, initialTime=0, availability=0, lottery=17, fcfs=15, 

sickestFirst=11, youngestFirst=5, livesSaved=19, prognosis=19, instrumental=9, 

reciprocity=15, age=27, survivalPerctentage=42, expectedYears=21 

22 severity=3, resources=3, initialTime=0, availability=0, lottery=22, fcfs=8, sickestFirst=13, 

youngestFirst=16, livesSaved=11, prognosis=11, instrumental=15, reciprocity=8, age=44, 

survivalPerctentage=69, expectedYears=34 

23 severity=2, resources=2, initialTime=0, availability=0, lottery=7, fcfs=20, sickestFirst=10, 

youngestFirst=4, livesSaved=25, prognosis=25, instrumental=10, reciprocity=20, age=25, 

survivalPerctentage=33, expectedYears=16 

24 severity=2, resources=1, initialTime=0, availability=0, lottery=15, fcfs=24, 

sickestFirst=12, youngestFirst=11, livesSaved=23, prognosis=23, instrumental=7, 

reciprocity=24, age=36, survivalPerctentage=36, expectedYears=18 

25 severity=2, resources=3, initialTime=0, availability=0, lottery=4, fcfs=0, sickestFirst=5, 

youngestFirst=18, livesSaved=22, prognosis=22, instrumental=29, reciprocity=0, age=48, 

survivalPerctentage=38, expectedYears=19 

26 severity=3, resources=3, initialTime=0, availability=0, lottery=27, fcfs=12, 

sickestFirst=14, youngestFirst=12, livesSaved=10, prognosis=10, instrumental=18, 

reciprocity=12, age=36, survivalPerctentage=71, expectedYears=35 

27 severity=2, resources=2, initialTime=0, availability=0, lottery=16, fcfs=7, sickestFirst=7, 

youngestFirst=15, livesSaved=17, prognosis=17, instrumental=22, reciprocity=7, age=44, 
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survivalPerctentage=52, expectedYears=26 

28 severity=3, resources=2, initialTime=0, availability=0, lottery=28, fcfs=17, 

sickestFirst=18, youngestFirst=10, livesSaved=8, prognosis=8, instrumental=28, 

reciprocity=17, age=34, survivalPerctentage=72, expectedYears=36 

29 severity=4, resources=1, initialTime=0, availability=0, lottery=5, fcfs=13, sickestFirst=28, 

youngestFirst=20, livesSaved=4, prognosis=4, instrumental=21, reciprocity=13, age=54, 

survivalPerctentage=78, expectedYears=39 

30 severity=1, resources=3, initialTime=0, availability=0, lottery=23, fcfs=3, sickestFirst=0, 

youngestFirst=6, livesSaved=27, prognosis=27, instrumental=14, reciprocity=3, age=28, 

survivalPerctentage=18, expectedYears=9 

 

Ambulance 

ID Values 

34 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

35 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

36 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

37 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

38 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

39 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

40 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

41 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

42 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

43 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

44 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

45 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

46 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

47 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

48 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

49 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

50 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

51 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

52 driver=1, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 
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53 driver=2, initialTime=0, availability=0, longitude=0, latitude=0, driving=false 

 

Hospital 

ID Values 

31 resources=1, currentPatients=0, capacity=8, distance=2, longitude=3, latitude=-4 

32 resources=2, currentPatients=0, capacity=12, distance=1, longitude=-3, latitude=0 

33 resources=2, currentPatients=0, capacity=12, distance=2, longitude=1, latitude=4 

 

Random restart = 10 – allocation value = 525 

Patient ID Ambulance ID Hospital ID 

1 36 33 

2 44 31 

3 45 31 

4 Null Resource Null Resource 

5 34 31 

6 Null Resource Null Resource 

7 37 32 

8 50 32 

9 Null Resource Null Resource 

10 53 32 

11 Null Resource Null Resource 

12 Null Resource Null Resource 

13 27 32 

14 35 32 

15 38 32 

16 Null Resource Null Resource 

17 Null Resource Null Resource 

18 Null Resource Null Resource 

19 39 32 

20 51 31 

21 52 31 

22 Null Resource Null Resource 
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23 40 32 

24 43 31 

25 47 32 

26 Null Resource Null Resource 

27 48 32 

28 41 32 

29 42 31 

30 49 32 

 

Random restart = 1 – allocation value = 526 

Patient ID Ambulance ID Hospital ID 

1 43 32 

2 51 31 

3 44 32 

4 Null Resource Null Resource 

5 40 31 

6 48 33 

7 36 31 

8 35 32 

9 Null Resource Null Resource 

10 37 33 

11 Null Resource Null Resource 

12 Null Resource Null Resource 

13 50 32 

14 38 33 

15 39 32 

16 Null Resource Null Resource 

17 Null Resource Null Resource 

18 Null Resource Null Resource 

19 46 32 

20 45 31 
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21 47 32 

22 Null Resource Null Resource 

23 52 32 

24 49 31 

25 42 32 

26 Null Resource Null Resource 

27 34 32 

28 41 32 

29 Null Resource Null Resource 

30 53 32 
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Appendix F 

Display Results of Local Search in Ambulance and Hospital Stages 

This section provides some of the attributes that may be returned when displaying the results. Note 

that the allocations can also be displayed.  

Display Results of Ambulance Stage 

These values were generated from performing the local search using Utilitarian social welfare and 

no principle policy on Test 90 of the Ambulance stage with 30 patients, 20 ambulances, 3 hospitals, 

100 random restarts, and at time step 0. 

Time 0 

#Patients Available 10 

#Patients 30 

#Ambulances Available 0 

# Ambulances 20 

# Ambulances Driving To Incident 0 

# Current Patient in Hospital ID 31 7 

# Capacity in Hospital ID 31 8 

# Current Patient in Hospital ID 32 12 

# Capacity in Hospital ID 32 12 

# Current Patient in Hospital ID 33 1 

# Capacity in Hospital ID 33 12 

#Patients with Severity 1 Available 0 

#Patients with Severity 1 Unavailable 5 

#Patients with Severity 2 Available 0 

#Patients with Severity 2 Unavailable 8 

#Patients with Severity 3 Available 4 

#Patients with Severity 3 Unavailable 6 

#Patients with Severity 4 Available 6 

#Patients with Severity 4 Unavailable 1 

#Resources Not Used 0 
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#Patients without Resources 10 

#Patients with Resources Not Met 11 

Counter 44 

Swaps 11 

Changes 32 

Final Time of Best Allocation 9398333 

Total Time Taken 828445737 

Tcost-Utiliarian 525 

Tcost-Egalitarian 58 

Tcost-Nash 2.96462086370774E+35 

 

Display Results of Hospital Stage 

These values were generated from performing the local search using Utilitarian social welfare and 

no principle policy on Test 0 of the Hospital stage with 10 patients, 6 resources, 100 random restarts, 

and at time step 0. 

Time 0 

#Patients Available 4 

#Patients 10 

#Resources Available 0 

#Resources 6 

#Patients with Severity 1 Available 0 

#Patients with Severity 1 Unavailable 2 

#Patients with Severity 2 Available 0 

#Patients with Severity 2 Unavailable 3 

#Patients with Severity 3 Available 0 

#Patients with Severity 3 Unavailable 1 

#Patients with Severity 4 Available 4 

#Patients with Severity 4 Unavailable 0 

#Resources Not Used 0 

#Patients without Resources 4 

#Patients with Resources Not Met 5 
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Counter 12 

Swaps 6 

Changes 5 

Final Time of Best Allocation 5803736 

Total Time Taken 68876560 

Tcost-Utiliarian 289 

Tcost-Egalitarian 44 

Tcost-Nash 178102046453768 
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Appendix G 

Extra Validation 

This appendix displays additional output that was produced for both the Ambulance and Hospital 

stages. 

G.1 Ambulance Stage 

 

Initial Utilitarian Allocation of Resource Categorized by Severity 

 

 

Figure VA-2b – Ambulance: Initial Allocation (Utilitarian Policy Approach with RR=1) 

 

Figure VA-2c – Ambulance: Initial Allocation (Utilitarian Policy Approach with RR=10) 
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Initial Egalitarian Allocation Values 

 

Figure VA-3b – Ambulance: Initial Egalitarian Allocation Value Policy Approach with RR=1 

 

Figure VA-3c – Ambulance: Initial Egalitarian Allocation Value Policy Approach with RR=10 
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Initial Egalitarian Allocation of Resource Categorized by Severity 

 

Figure VA-4b – Ambulance: Initial Allocation (Egalitarian Policy Approach with RR=1) 

.  

Figure VA-4c – Ambulance: Initial Allocation (Egalitarian Policy Approach with RR=10) 

Initial Nash Product Allocation Values 

 

Figure VA-5b – Ambulance: Initial Nash Product Allocation Value Policy Approach with RR=1 
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Figure VA-5c – Ambulance: Initial Nash Product Allocation Value Policy Approach with 

RR=10 

 

Initial Nash Product Allocation of Resource Categorized by Severity 

 

 

Figure VA-6b – Ambulance: Initial Allocation (Nash Product Policy Approach with RR=1) 
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Figure VA-6c – Ambulance: Initial Allocation (Nash Product Policy Approach with RR=10) 

Utilitarian Social Welfare over Time (No buffer time and sensing every time step) 

 

Figure VA-7a – Ambulance: Allocation Value over Time (Policy Approach) 

 

Figure VA-8a – Ambulance: Simulations over Time (Policy Approach) 
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Figure VA-9a – Ambulance: Number of Victims not at the Hospital over Time (Policy 

Approach) 

 

Figure VA-9b – Ambulance: Number of Victims not at the Hospital over Time (Principle 

Approach) 

 

Figure VA-10a – Ambulance: Cumulative Allocation Value over Time (Policy Approach) 
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Figure VA-10b – Ambulance: Cumulative Allocation Value over Time (Principle Approach) 

 

Utilitarian Social Welfare over Time (No buffer time and sensing every 2
nd

 and 3rd time step) 

 

Figure VA-12a – Ambulance: Simulations over Time (Sensing=2) 

 

Figure VA-12b – Ambulance: Simulations over Time (Sensing=3) 
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Figure VA-13a – Ambulance: Number of Victims not at the Hospital over Time (Principle 

Approach) (Sensing=2) 

 

Figure VA-13b – Ambulance: Number of Victims not at the Hospital over Time (Principle 

Approach) (Sensing=3) 

 

Figure VA-14a – Ambulance: Cumulative Allocation Value over Time (Principle Approach) 

(Sensing=2) 
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Figure VA-14b – Ambulance: Cumulative Allocation Value over Time (Principle Approach) 

(Sensing=3) 

 

Figure VA-14c – Ambulance: Cumulative Allocation Value (Sensing=2) 

 

Figure VA-14d – Ambulance: Cumulative Allocation Value (Sensing=3) 
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Utilitarian Social Welfare over Time (Buffer time is 2 time steps and sensing every 1st, 2nd, and 

3rd time step) 

 

Figure VA-15c – Ambulance: Allocation Value over Time (Sensing=3, Buffer=2) 

 

Figure VA-16a – Ambulance: Simulations over Time (Sensing=1, Buffer=2) 

 

Figure VA-16b – Ambulance: Simulations over Time (Sensing=2, Buffer=2) 
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Figure VA-16c – Ambulance: Simulations over Time (Sensing=3, Buffer=2) 

 

Figure VA-17a – Ambulance: Number of Victims not at the Hospital over Time (Sensing=1, 

Buffer=2) 

 

Figure VA-17b – Ambulance: Number of Victims not at the Hospital over Time (Sensing=2, 

Buffer=2) 
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Figure VA-17c – Ambulance: Number of Victims not at the Hospital over Time (Sensing=3, 

Buffer=2) 

 

Figure VA-18a – Ambulance: Cumulative Allocation Value over Time (Sensing=1, Buffer=2) 

 

Figure VA-18b – Ambulance: Cumulative Allocation Value over Time (Sensing=2, Buffer=2) 
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Figure VA-18c – Ambulance: Cumulative Allocation Value over Time (Sensing=3, Buffer=2) 

 

Figure VA-18d – Ambulance: Cumulative Allocation Value (Sensing=1, Buffer=2) 

 

Figure VA-18e – Ambulance: Cumulative Allocation Value (Sensing=2, Buffer=2) 
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Figure VA-18f – Ambulance: Cumulative Allocation Value (Sensing=3, Buffer=2) 

 

G.2 Hospital Stage 

 

Initial Utilitarian Allocation Values 

 

Figure VH-1b – Hospital: Initial Utilitarian Allocation Value Policy Approach with RR=1 

 

Figure VH-1c – Hospital: Initial Utilitarian Allocation Value Policy Approach with RR=10 
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Initial Utilitarian Allocation of Resource Categorized by Severity 

 

Figure VH-2b – Hospital: Initial Allocation (Utilitarian Policy Approach with RR=1) 

 

Figure VH-2c – Hospital: Initial Allocation (Utilitarian Policy Approach with RR=10) 

Initial Egalitarian Allocation Values 

 

Figure VH-3a – Hospital: Initial Egalitarian Allocation Value Principle Approach 
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Figure VH-3b – Hospital: Initial Egalitarian Allocation Value Policy Approach with RR=1 

 

Figure VH-3c – Hospital: Initial Egalitarian Allocation Value Policy Approach with RR=10 

 

Figure VH-3d – Hospital: Initial Egalitarian Allocation Value Policy Approach with RR=100 
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Initial Egalitarian Allocation of Resource Categorized by Severity 

 

Figure VH-4a – Hospital: Initial Allocation (Egalitarian Principle Approach) 

 

Figure VH-4b – Hospital: Initial Allocation (Egalitarian Policy Approach with RR=1) 
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Figure VH-4c – Hospital: Initial Allocation (Egalitarian Policy Approach with RR=10) 

 

Figure VH-4d – Hospital: Initial Allocation (Egalitarian Policy Approach with RR=100) 

Initial Nash Product Allocation Values 

 

Figure VH-5a – Hospital: Initial Nash Product Allocation Value Principle Approach 
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Figure VH-5b – Hospital: Initial Nash Product Allocation Value Policy Approach with RR=1 

 

Figure VH-5c – Hospital: Initial Nash Product Allocation Value Policy Approach with RR=10 

 

Figure VH-5d – Hospital: Initial Nash Product Allocation Value Policy Approach with RR=100 
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Initial Nash Product Allocation of Resource Categorized by Severity 

 

Figure VH-6a – Hospital: Initial Allocation (Nash Product Principle Approach) 

 

 

Figure VH-6b – Hospital: Initial Allocation (Nash Product Policy Approach with R=1) 
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Figure VH-6c – Hospital: Initial Allocation (Nash Product Policy Approach with R=10) 

 

 

Figure VH-6d – Hospital: Initial Allocation (Nash Product Policy Approach with R=100) 
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Utilitarian Social Welfare over Time (No buffer time and sensing every time step) 

 

Figure VH-7a – Hospital: Allocation Value over Time (Policy Approach) 

 

Figure VH-8a – Hospital: Simulations over Time (Policy Approach) 

 

Figure VH-9a – Hospital: Number of Patient at the Hospital over Time (Policy Approach) 
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Figure VH-10a – Hospital: Allocation Value per Patient over Time (Policy Approach) 

Utilitarian Social Welfare over Time (No buffer time and sensing every 2nd and 3rd time step) 

 

Figure VH-11a – Hospital: Allocation Value over Time (Sensing=2) 

 

Figure VH-11b – Hospital: Allocation Value over Time (Sensing=3) 
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Figure VH-12a – Hospital: Simulations over Time (Sensing=2) 

 

Figure VH-12b – Hospital: Simulations over Time (Sensing=3) 

 

Figure VH-13a – Hospital: Number of Patient at the Hospital over Time (Sensing=2) 
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Figure VH-13b – Hospital: Number of Patient at the Hospital over Time (Sensing=3) 

 

Figure VH-14c – Hospital: Number of Patient at the Hospital over Time (Sensing=2) 

 

Figure VH-14d – Hospital: Number of Patient at the Hospital over Time (Sensing=3) 
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Utilitarian Social Welfare over Time (Buffer time is 1 time steps and sensing every 1st, 2nd, and 

3rd time step) 

 

Figure VH-15a – Hospital: Allocation Value over Time (Sensing=1, Buffer=1) 

 

Figure VH-15b – Hospital: Allocation Value over Time (Sensing=2, Buffer=1) 
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Figure VH-15c – Hospital: Allocation Value over Time (Sensing=3, Buffer=1) 

 

Figure VH-16a – Hospital: Simulations over Time (Sensing=1, Buffer=1) 

 

Figure VH-16b – Hospital: Simulations over Time (Sensing=2, Buffer=1) 
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Figure VH-16c – Hospital: Simulations over Time (Sensing=3, Buffer=1) 

 

Figure VH-17a – Hospital: Number of Patient at the Hospital over Time (Sensing=1, Buffer=1) 

 

Figure VH-17b – Hospital: Number of Patient at the Hospital over Time (Sensing=2, Buffer=1) 
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Figure VH-17c – Hospital: Number of Patient at the Hospital over Time (Sensing=3, Buffer=1) 

 

Figure VH-18c – Hospital: Allocation Value per Patient over Time (Sensing=3, Buffer=1) 

 

Figure VH-18d – Hospital: Allocation Value per Patient (Sensing=1, Buffer=1) 
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Figure VH-18e – Hospital: Allocation Value per Patient (Sensing=2, Buffer=1) 

 

Figure VH-18f – Hospital: Allocation Value per Patient (Sensing=3, Buffer=1) 

 


