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Abstract 

Baculoviruses are versatile viruses that can be used as biopestisides, or for the production of 

recombinant protein and vaccines. Baculoviruses have also been found to be able to transfer genes to 

mammalian cells. This finding opened the door for the application of baculovirus vectors in human 

gene therapy. However, the mass production of clinical grade baculovirus vectors is challenging. 

Downstream processing has now become the bottle-neck of the manufacturing process.  

In this work, an anion exchange chromatography-based process was investigated for the 

purification of recombinant baculovirus vectors using a novel hydrogel based membrane (Natrix 

Separations Ltd.). Crude recombinant baculovirus supernatant from infected insect cell cultures was 

first subjected to a clarification process consisting of centrifugation and filtration. The pH of the viral 

solution was adjusted and then passed through a fast protein liquid chromatography system consisting 

of the ion exchange membrane. After washing weakly bound impurities, the captured baculoviruses are 

recovered by an elution step. Overall, baculoviruses strongly associated with the membrane; however, 

this interaction which was much physical as it was chemical, could not be entirely reversed and 

baculovirus was lost in the process. Product purity has also been evaluated and up to 85 % of total 

protein reduction was determined. The significant losses of baculovirus observed have indicated major 

limitations in using this membrane for the purification of baculovirus. 
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Chapter 1 

Introduction 

Viral vectors have great potential to benefit human society through their versatile applications 

including agricultural pest control, recombinant protein production, vaccine production, and recent uses 

in gene transfer to mammalian cells for cancer therapy (Chen, Chen, Chang, Matsuura, & Hu, 2009). 

Given the potential of viral vectors, enormous efforts have been put into viral vector production, while 

downstream processing has gradually become a bottleneck in the process (Vicente, Mota, Peixoto, 

Alves, & Carrondo, 2011).  

Baculoviruses have, in particular, recently been recognized as a powerful tool for expressing 

foreign genes in mammalian cells (Hu, 2005). But so far, it is underrepresented in purification process 

research (Segura, Kamen, & Garnier, 2011). Thus, this study evaluates membranes as devices to purify 

baculovirus vectors. 

Membranes, as novel chromatographic media, present advantageous features such as lower 

pressure drop, less buffer consumption, and better scalability compared to traditional packed-bed 

chromatography. Successful development of virus purification through ion exchange membrane 

chromatography has been reported (Grein, Michalsky, Vega López, & Czermak, 2012; Vicente, Peixoto, 

Carrondo, & Alves, 2009; Wu, Soh, & Wang, 2007). A hydrogel-based anion exchange membrane 

(Natrix Quantum Q) was recently developed and its usefulness in virus purification was anticipated due 

to its large binding capacity and its ability to be used for direct capture of virus without a clarification 

step. This current study focuses on establishing a baculovirus purification process based on the Natrix 

Quantum Q anion exchange membranes.  
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 Hypotheses 

Given that: 

1. the baculovirus should possess sufficient negative charge at a pH that is higher than its isoelectric 

point (pH 5.4, Yang et al. 2009), to bind to the anion exchange membrane; and 

2. bound baculoviruses can be recovered from the membrane by either lowering the operating pH 

or strengthening the buffer’s ionic strength;  

the driving hypothesis of this work is that all traditional downstream processing steps can be 

eliminated and replaced by one step using a novel anion exchange membrane (Natrix Quantum Q). 

 Objectives 

1. Design a one-step baculovirus purification process using the Natrix Quantum Q membranes and 

a fast protein liquid chromatography system. 

2. Determine initial operating conditions allowing for virus capture, including loading solution pH 

and conductivity. 

3. Attempt to recover the captured baculovirus by lowering operating pH and introducing NaCl in 

elution buffer. 

4. Evaluate the feasibility of using this current membrane for anion exchange baculovirus 

purification by investigating irreversible binding, physical hindrance, and reliability of the 

current virus assay. 
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 Thesis organization 

Chapter 2 reviews the nature of the baculovirus and existing baculovirus purification techniques. 

Chapter 3 presents general materials and methods used throughout this work.  

Chapter 4 presents the investigation of binding conditions in terms of dilution factor and pH. 

Membrane breakthrough of the baculovirus was tested to evaluate binding efficacy. The eluting 

condition was estimated using a linear NaCl gradient experiment with a NaCl buffer. Further 

development of the process has been done using a step gradient approach. Membrane regeneration was 

also evaluated in this chapter. 

Chapter 5, a reverse-flow operation mode is investigated to overcome mass transfer hindrance 

through the membrane. 

Finally, Chapter 6 summarizes the results and conclusions and gives recommendations for future 

works related to this project. 
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Chapter 2 

Literature Review 

 Recombinant baculovirus (rBV) 

 
Figure 2-1 Diagram of baculovirus structure including envelope glycoprotein (gp64), and capsid protein (p39 and p87). 

Obtained copyright clearance from publisher (Rohrmann, 1992). 

 

Baculoviruses form a family of large double-stranded deoxyribonucleic acid (DNA) viruses 

whose hosts are mainly insects (Rohrmann, 1992). The structure of a budded baculovirus (Figure 2-1) 

consists of a protein coat that encapsulates its genome, surrounded by a membrane obtained from the 

host cell (Guarino, 2011). The gp64 proteins cover the apex region, and are responsible for cell 

membrane fusion during infection (Blissard & Wenz, 1992). A budded baculovirus is roughly 250 – 

300 nm in length and 30 – 60 nm in diameter (Guarino, 2011). With the development of an arsenal of 

molecular biology tools, uses of baculovirus have gone from agricultural pest control (McCutchen et 

al., 1991; Moscardi, 1999; Wood & Granados, 1991), recombinant protein production (Caron, 

Archambault, & Massie, 1990; Hensler & Agathos, 1994; Maiorella, Inlow, Shauger, & Harano, 1988; 

Envelope 

glycoprotein 

Baculovirus 

envelope 

Capsid protein 
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Wickham & Nemerow, 1993) to the expression of foreign genes in mammalian cells for gene therapy 

development (Boyce & Bucher, 1996; Carinhas et al., 2009; Hofmann, 1995; Kost & Condreay, 1999).  

 Baculovirus purification 

For most of the current applications, purification of baculovirus has not been required. However, 

with successful application of recombinant baculovirus in gene delivery to mammalian cells, and the 

prospect of curing human diseases by gene therapy through in vivo applications of baculovirus vectors, 

there has been growing attention to downstream processing (DSP). Over the past decade, challenges in 

recombinant baculovirus vector (rBV) based bioprocessing have shifted from upstream to DSP and 

point to a need for the development of robust, cost-effective and scalable processes to produce pure, 

efficient, and safe rBV for human gene therapy applications (Aucoin, Mena, & Kamen, 2010; 

Morenweiser, 2005; Roldão, Vicente, Peixoto, Carrondo, & Alves, 2011; Segura et al., 2011).  

2.2.1 Challenges and requirements 

The production of virus requires a simple, robust and cost-effective process for both upstream 

and downstream development that conforms to current Good Manufacturing Practices (cGMP) 

regulation (Lesch et al., 2011). To date, most research has focused on efficient production of rBV-

related bioproducts, virus-like particles and viral vectors (Ikonomou, Schneider, & Agathos, 2003; 

Negrete & Kotin, 2008; Shuler et al., 1990). Much less effort has been put into development of essential 

DSP for such complex biopharmaceutical particles leading to a major bottleneck in the path of final 

virus product creation (Vicente, Mota, et al., 2011). As viruses are distinct from therapeutic proteins in 

terms of size and molecular weight, current protein purification strategies are not always transferable 

to virus systems. Thus, the design and validation of DSP often requires a greater appreciation of the 

physical, chemical and biological characteristics of the virus (Morenweiser, 2005). The major purpose 

of a virus purification process is the removal of host cells and culture media derived contaminants, 
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during large-scale production of active viruses at high titres (Morenweiser, 2005). The appropriate 

design often relies on the nature of the viral particle, such as its isoelectric point, surface hydrophobicity, 

integrity of the viral envelope, stability under proposed process conditions, and hydrodynamic 

diameters (Negrete & Kotin, 2008). 

2.2.2 Ultracentrifugation 

For applications of recombinant baculovirus in vitro, harvested virus solutions are usually  

ready for use, and little to no purification is required (Aucoin et al., 2010). Ultracentrifugation is one 

of the earliest methods proposed for recovering virus. Viruses can be pulled out of solution by 

centrifuging at 96,000  g for three hours at 4°C (O’Reilly, Miller, & Luckow, 1993). The main 

drawbacks associated with this method include limited scalability and low recovery (Vicente, Peixoto, 

Mota, Carrondo, & Alves, 2011), extended processing time, potential to produce infectious aerosols 

(Segura et al., 2011), and formation of irreversible virus aggregation (Vicente, Mota, et al., 2011). 

2.2.3 Chromatography process 

Chromatography is a preferred technology for selective separation of bioproducts in industrial-

scale processes, as it offers excellent reproducibility and ensures final product quality in continuous 

operations. Current chromatography systems can be automated, minimizing human-associated 

procedures. Additionally, chromatography enables a closed-system process for virus purification, 

which favors sanitization and overall aseptic operation (Segura et al., 2011).  

Traditional chromatography processes are largely based on the use of packed beds of resin. A 

significant limitation associated with this technology is the column fouling caused by accumulation of 

colloidal loading material (Ghosh, 2002). Transport of target molecules to binding sites, which relies 

essentially on pore diffusion into the packing particles, can also be a major impediment. These 

limitations can lead to a lengthy process and increase elution buffer consumption. Other molecule 
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transport concerns include channeling and heterogeneity in axial and radial movement, as shown in 

Figure 2-2 (Ghosh, 2002). 

 

Figure 2-2. Comparison of solute transport in packed-bed chromatography and membrnae-based chromatography. Copyright 

clearance obtained from Elsevier (Ghosh, 2002). 

 

Novel membrane based chromatography techniques have been developed to overcome some of 

the problems associated with packed beads (Brandt, Goffe, Kessler, O’Connor, & Zale, 1988; Briefs & 

Kula, 1992; Champluvier & Kula, 1991). The most significant improvement brought by application of 

membrane processes lies in the transport of solutes to binding ligands, where convection becomes the 

dominating transfer mechanism instead of diffusion in the packed-bed chromatographic media. As a 

result, process time, buffer consumption, and pressure drop reduces, with a resultant increase in 

scalability and economy. Moreover, the ease in membrane manufacture also benefits optimization of 
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the process cost (Ghosh, 2002). Nevertheless, further developments are still in need for membrane 

based processes due to existing disadvantages, such as low binding capacities, inefficient membrane 

design, and irregular physical properties including pore size distribution, membrane thickness, and 

ligand density (Orr, Zhong, Moo-Young, & Chou, 2013).  

The design of chromatography processes for virus purification relies on surface characteristics 

of the virus particles and/or their size. Several chromatography-based strategies for baculovirus 

purification have been developed and are introduced next. 

 Affinity chromatography 

Affinity chromatography is a type of chromatography-based purification technology that utilizes 

the highly selective and reversible interactions between immobilized affinity ligands and target 

molecules in the mobile phase to separate species of interest from contaminants (Urh, Simpson, & Zhao, 

2009), as shown in Figure 2-3. However, to date, the only published work in baculovirus purification 

using affinity membranes was done by Chen et al. (2009). In the study, a Concanavalin A (Con A) 

functionalized membrane was used to separate the baculoviruses from insect cell culture. Con A is a 

type of lectin that binds glycoproteins containing D-mannopyranosyl or D-glucopyranosyl residues in 

the presence of Mn2+ and Ca2+
 (Andujar-Sánchez, Cámara-Artigas, & Jara-Pérez, 2003). In the structure 

of a baculovirus, the gp64 protein is the major envelope protein containing N-linked mannose which 

potentially binds to Con A. Here Chen et al. reported a 21.3 % recovery of the total virus the Con A 

functionalized membrane. The procedure also allowed for reduction of 99 % of protein impurities. 
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Figure 2-3 Schematic of the principle of binding and eluting using affinity mechanism. Only the target molecules possessing 

affinity specificity can couple with the affinity ligand. No interaction occurs between the contaminant and immobilized ligand. 

Obtained copyright from Elsevier (Denizli & Pişkin, 2001).  

 

Though total protein reduction was deemed satisfactory, the poor yield and the cost of using 

affinity chemistry (Klein, 2000) hampers the spreading of its use.  

 Size exclusion chromatography (SEC) 

 
Figure 2-4 Sample distribution across a size exclusion column over different courses of the process with corresponding 

concentration profile. Obtained copyright clearance from publisher (Striegel, Yau, Kirkland, & Bly, 2009). 

 



 

 10 

Size exclusion chromatography separates species based on their sizes, where different sized 

components penetrate the column at different retention times (Harrison, Todd, Rudge, & Petrides, 2003) 

(Figure 2-4). Transfiguracion et al. (2007) developed a baculovirus purification process based on SEC-

HPLC, using Sepharose CL-4B resin (Amersham Biosciences, Pistacaway, NJ). The recovery from the 

SEC was 24 % and western blot analysis revealed good selectivity for baculovirus in the recovered 

fractions. 

 Ion exchange chromatography (IEXc) 

Being the most frequently exploited chromatographic technique for separation and purification 

of charged biomolecules, successful applications of IEXc have expanded from proteins, polypeptides, 

nucleic acids (Bonnerjea, Oh, Hoare, & Dunnill, 1986), and plasmid DNA (Zhong et al., 2011) to 

baculovirus (Gerster et al., 2013; Grein et al., 2012; Vicente et al., 2009; Wu et al., 2007). 

 

Figure 2-5 Four phases associated with the anion exchange process: A) Negatively charged target material flows through the 

anion-exchange matrix with contaminants. B) Negatively charged macromolecules bind to the anion exchanger while 

contaminants flow through. C) Elution buffer competes in the electrostatic binding between bound material and ligands. D) 

Buffer ions displace the target molecule and screen the binding sites from the eluting molecule. 
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Figure 2-6 Four phases associated with cation exchange process: A) Positively charged target material flow through cation-

exchange matrix with contaminants. B) Positively charged macromolecules bind to Cation exchanger while contaminants flow 

through. C) Elution buffer competes in the electrostatic binding between bound material and ligands. D) Buffer ions displace 

the target molecule and screen the binding sites from the eluted molecule. 

 

Ion exchange chromatography depends on electrostatic interaction between target molecules and 

immobilized ion exchange ligands (Figure 2-5 and Figure 2-6). A typical ion exchange 

chromatographic process for baculovirus purification consists of three stages including virus capture, 

contaminant removal, and virus recovery. First, negatively (or positively) charged virus particles bind 

to anion (or cation) exchangers while impurities flow through the ligand matrix (Figure 2-5A and 2-

6A). Then a washing process removes weakly bound impurities (Figure 2-5B and 2-6B). Finally, bound 

viruses are recovered in an elution step using strong electrolytes (eg. NaCl) (Figure 2-5C, 2-5D and 

Figure 2-6C, 2-6D).
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For industrial chromatography applications, Langmuir isotherm is often used to describe the 

adsorption mechanism (Harrison et al., 2003): 

[CS]=
KeqStot[C]

1+Keq[C]
 

Where  

C  = dissolved substances 

CS  = substance bound to the binding sites 

Keq = reaction equilibrium constant 

Stot = the total binding site concentration. 

The applications of ion exchange chromatography for baculovirus purification is categorized into 

two types: anion exchange (Gerster et al., 2013; Grein et al., 2012; Vicente et al., 2009) and cation 

exchange (Barsoum, 1999; Wu et al., 2007). The chromatographic media for baculovirus purification 

includes resins (Barsoum, 1999; Vicente et al., 2009), membranes (Grein et al., 2012; Vicente et al., 

2009; Wu et al., 2007), and monolith (Gerster et al., 2013). Common ion exchange chemistries are 

sulfonic acid (S), diethylaminoethyl (DEAE), sulfopropyl (SP) and quaternary ammine (Q) and their 

applications for baculoviruses are summarized in Table 2-1. Sulfonic acid and sulfopropyl are strong 

cation exchangers. DEAE is a weak anion exchanger and Q is a strong anion exchanger. Given that 

baculovirus is negatively charged at physiological condition (~ pH 7), anion exchange is the preferred 

process for baculovirus purification (Segura et al., 2011).  

The majority of commercial membranes are based on organic support matrices, due to 

manufacturing economy and low non-specific binding of target molecules. Reinforced cellulose (RC) 

is commonly used for supporting material for ion exchange membranes. Another type of membrane 

support is synthetic organic polymers (eg. polyethersoulfone (PES) and polyethylene (PE)), featuring 

better physical properties than organic polymer support but presenting more non-specific adsorption to 

biomolecules (Orr et al., 2013). 
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A detailed review of current ion exchange applications in baculovirus purification is introduced 

next. 

 
Table 2-1 Summary of ion exchange media for baculovirus purification. 

 

 

 

 

Ion Exchange Media Ion Exchange Chemistry Pore size  Reference 

Resin  

(Sepharose,  

GE Healthcare ) 

Sulfopropyl (SP) n/a  (Barsoum, 1999) 

RC (Sartobind, Sartorius) Diethylaminoethyl (DEAE) > 3 μm  

(Vicente, Fáber, 

et al. 

2011) 

RC (Sartobind, Sartorius) DEAE > 3 μm  
(Vicente et al. 

2009) 

RC (Sartobind, Sartorius) Quaternary amine (Q)  > 3 μm  
(Grein et al., 

2012) 

PES (Mustang, Pall) Q  0.8 μm  
(Grein et al., 

2012) 

PE  

(Chromasorb, Millipore) 
Q  n/a  

(Grein et al., 

2012) 

RC (Sartobind, Sartorius) Sulfonic acid (S)  > 3 μm  (Wu et al., 2007) 

PES (Mustang, Pall) S 0.8 μm  (Wu et al., 2007) 
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2.2.3.3.1 Anion exchange chromatography (aIEXc) for baculovirus purification 

Vicente et al.(2009) reported a complete downstream process for baculovirus purification. DEAE 

was chosen as the anion exchange ligand for chromatographic process development, as it features best 

adsorption kinetics among the four ligands tested (Capto DEAE (GE Healthcare), Capto ViralQ (GE 

Healthcare) and UNOSphere Q (Bio-Rad, California, USA), and a sulfate group resin. The virus loading 

solution was prepared by diluting virus supernatant in Tris-HCl buffer at pH 8.0. The performance of 

DEAE based anion exchange membrane Sartobind D (Sartorious Stedim Biotech) was analyzed against 

the Capto DEAE resin packed bed. Three elution steps (48 mS/cm, 73 mS/cm, and 120 mS/cm) were 

used for recovering the virus. The results indicated the virus recovery was 20 % higher with the 

membrane process. The dynamic binding capacity at 10 % breakthrough for the DEAE membrane was 

determined at 8.5×108 Total Particles (TP)/cm2. With addition of 0.6 M NaCl Dulbecco’s phosphate-

buffered saline (D-PBS) buffer, up to 70 % of the captured virus can be recovered. The end product 

showed endotoxin level lower than 10 EU ml-1 with dsDNA concentrations of 2 μg per 109 TP.  

The application of strong anion exchange membranes to the baculovirus purification was also 

investigated (Grein et al., 2012). Cellulose-based (Sartobind Q, Sartorious, SQ), polyether-sulfone-

based (Mustang Q, Pall, MQ), and an ultra-high weight polyethylene-based (ChromaSorb, Millipore, 

CS) membranes were tested in the study. Each membrane was equilibrated with 20 mM Tris buffer at 

pH 6.5 and then loaded with 3 mL of virus supernatant. A wash step using 20mM Tris buffer was used 

before elution step consisted of 0.15 M NaCl and 0.5 M NaCl. The three membranes were capable to 

retain most of the original virus (98.4 %, 99.0 %, and 89.4 % by the MQ, SQ, and CS). Elution with 

0.15 M NaCl can only achieve minor virus recovery while 0.5 M NaCl recovered most of the virus with 

MQ and SQ membranes. This one-step anion exchange process also allowed for significant host cell 

protein reduction and DNA level reduction. 
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A recent baculovirus purification process using anion exchange monolith has been reported 

(Gerster et al., 2013). A strong (Q) and a weak (DEAE) monolith anion exchange devices were 

investigated in initial screening tests for further process development. Higher virus recovery (9.6 %) 

was observed with Q monolith. Virus loading solution was mixed with 200 mM NaCl for further linear 

gradient elution development and virus recovery increased to 26.0 % along with protein reduction up 

to 92.6 %.  

The recovery was further increased to 68.2 % by using 50 mM HEPES buffer and a step gradient elution 

process which allows for extended contact between the captured virus and elution buffer. The 

interference from hydrophobic species (eg. lipids) in the loading solution was also investigated by 

implementing an Epoxy column at upstream for elimination of lipid fouling which further increased 

virus recovery to 97.0 %. 

2.2.3.3.2 Cation exchange chromatography (cIEXc) 

Barsoum et al. (1997) investigated the performance of an SP Sepharose® Fast Flow Column 

(Catalog No. 17-0729-01; Amersham Pharmacia Biotech, Piscataway, NJ, USA) for baculovirus 

purification using cation exchange mechanism. Virus particles were prepared in conditioned media at 

pH 5.8. A gravity-driven loading process loaded 40 mL of virus solution into the column. Then 

phosphate buffered saline (PBS) at pH 7.4 was used for elution, followed by another elution step using 

0.5 M NaCl solution. Virus concentrations of 25-fold to 60-fold was routinely achieved, with virus 

recovery of up to 75 %. This study lacked the evaluation in product purity which rendered this process 

questionable for production of clinical-grade baculovirus. 
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Chapter 3 

Materials and Methods 

This chapter summarizes the material and methods commonly used in this study. Other methods 

and reagents, specifically modified for different experiments are described in the chapters where they 

are used. 

 Fast protein liquid chromatography 

Fast protein liquid chromatography is a type of high-performance chromatography originally 

introduced for high-resolution separation of biomacromolecules in 1982, with a variety of features 

including large loading capacity, biocompatible buffer systems, high flow rates, and compatibility with 

common chromatography modes (Sheehan & O’Sullivan, 2004). 

An ÄKTAprime FPLC system (GE Healthcare Canada, Mississauga, ON, Canada) was set up 

for the purification processes. The system comprises a digital control system, a pump, a fraction 

collector and a chart recorder, together with valves for buffer selection, sample injection, gradient 

formation and flow diversion (Figure 3-1). The pump delivers liquid with high precision over a wide 

flow rate range to ensure fast and reproducible purification. A switch valve and mixer are used for 

gradient formation and a pressure sensor prevents damage to columns. An eight-port buffer selection 

valve allows automated loading, washing, and eluting events to be programmed. Motorized valves 

ensure that buffer or sample selection, sample loading and fraction collection are performed 

automatically. The sensors provide on-line monitoring for UV (280nm), conductivity and pH for each 

run. The fractionator directs the flow to sample containers at programmable volumes. Fraction marks 

and fraction numbers are recorded during each run to allow for easy identification of fractions and 

peaks. 
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All of the experiments in this study have been operated at a flow rate of 4 mL/min over the course 

of the process, as suggested by the manufacturer. The membrane-permeating flow was collected in 16 

(OD) × 100 mm (L) disposable borosilicate glass tubes (Fisher Scientific Company, Ottawa, Canada). 

The fractions were collected in 10 mL aliquots, each collected throughout the course of the purification, 

and sealed with Parafilm® M (American National Can, USA) and then stored at 4 °C for future use. 

Various process lengths are investigated in the study and will be specified in the sections where 

they occur. 

 

Figure 3-1 Diagram of the Äktaprime FPLC system (GE Healthcare Bio-Sciences, 2009). B: base elution buffer; V1: loading, 

washing, and equilibration buffer valve; SW: base buffer switch; P: pump; M: mixer; V2: sample loading valve; UV: UV 

absorbance sensor; C: conductivity sensor; pH: optional pH sensor; F: fractionator; W: waste reservior. The arrows indicates 

dead-end flow direction. 

  

Membrane 
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 Reverse-flow operation 

 
Figure 3-2 Partial view of the flow path across a 50 mm Natrix Quantum Q anion exchange membrane in different operations 

during baculovirus purification process: a) loading process with normal flow: upstream virus solution moves into the 

membrane device from the inlet and exits at the outlet. b) eluting process with reverse-flow: upstream elution buffer moves 

into the membrane from the outlet and exits at the inlet. c) elution process with normal flow: upstream elution buffer moves 

into the membrane from the inlet and exits at the outlet. Dot pattern fill represents the relative virus titre in various phases. 

A reverse-flow operation is used in study, shown as Figure 3-2b. Compared to normal flow 

loading (Figure 3-2a) and normal flow elution (Figure 3-2c), where baculovirus can potentially blocked 

at near surface region of the membrane and is not able to be recovered using dead-end flow elution, 
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reverse flow is hypothesized as it is capable of recovering the trapped virus particles. Reverse-flow 

elution introduces NaCl buffer from the opposite side of the virus-blocking surface, releases virus from 

electrostatic interaction and carries the virus particles into permeating flow. 

 Production of baculovirus 

Cell cultures of Spodoptera frugiperda Sf9 cells were routinely maintained in Gibco® SFF-

900™ III serum-free media (Life Technologies Inc., Burlington, ON, Canada) at 27 °C and used for 

amplifying an in-house baculovirus stock. A 500 mL insect cell culture was infected at a density of 1 

million cells/mL, with a multiplicity of infection (MOI) of 1 using the in-house virus stock and 

harvested when the cell viability reduced to 80 %. The culture was then centrifuged at 2500  g for 15 

minutes at room temperature using an Eppendorf Centrifuge 5804 R (Eppendorf Canada, Mississauga, 

ON, Canada). The supernatant was removed and filtered using a filtration system with 0.2 μm PES 

membrane (VWR International, Mississauga, ON, Canada) in a biosafety cabinet and stored at 4°C for 

future use. 

 Buffer preparation 

The different buffers used in the purification processes are shown in Table 3-1. HEPES powder 

and sodium chloride powder were purchased from Bio-Rad Laboratories Ltd., (Mississauga, ON, 

Canada). HCl solution was purchased from Thermo Fisher Scientific Inc., (Mississauga, ON, Canada) 

(Thermo Fisher Scientific Inc., Mississauga, ON, Canada). The solution’s pH was measured using a 

Fisher Scientific™ accumet™ Excel XL20 pH meter (Thermo Fisher Scientific Inc., Mississauga, ON, 

Canada). The buffers were filtered through a 50 mm diameter 0.2 μm GELMAN Laboratory vent filter 

(Pall Canada Ltd., Mississauga, ON, Canada) for sterilization and removal of solids waste and stored 

in one-litre Pyrex® round media storage bottles (VWR International, Mississauga, ON, Canada) at 

room temperature. Before each purification trial, an aliquot was taken from each buffer stock to prepare 
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a single-use buffer solution and filtered again with a 32 mm diameter 0.2 μm pore size Acrodisc® 

Syringe Filter with Supor® Membrane (Pall Canada Ltd., Mississauga, ON, Canada) for temporary 

sterilization. 

Table 3-1 Buffer types and compositions used for the anion exchange baculovirus purification processes using 50 mm Natrix 

Quantum Q anion exchange membranes. 

Buffer Type Composition 

Equilibration 30 mM HEPES, 200 mM NaCl, pH 6.9 

Wash #1 30 mM HEPES, 200 mM NaCl, pH 6.9 

Wash #2 30 mM HEPES, 200 mM NaCl, pH 6.0 

Elution Base 30 mM HEPES, 1500 mM NaCl, pH 6.0 

 

 Virus stock treatment 

Successful baculovirus capture has been reported through the dilution of baculovirus supernatant 

in physiological buffers at pH 7.2 (Gerster et al., 2013). Here, the virus supernatant’s pH and 

conductivity was adjusted by adding the equilibration buffer at various dilution factors. The diluted 

virus solution was again put through a 32 mm diameter 0.2 μm pore size Acrodisc® Syringe Filter with 

Supor® Membrane (Pall Canada Ltd., Mississauga, ON, Canada), for removal of virus aggregates, and 

stored in a 15 mL Nalgene™ Conical-Bottom Centrifuge Tube (Thermo Fisher Scientific Inc., 

Mississauga, ON, Canada) at room temperature. 

 Dilution factor 

Dilution factors that applied to initial virus supernatant are calculated based on Equation 3-1:  

DF=
Vtot

V0

 (Equation 3-1)  

 

Where  

DF = dilution factor 
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Vtot  = volume of loading solution (mL)  

V0  = volume of the initial virus supernatant (mL) 

 Anion exchange membrane 

50 mm Natrix Quantum Q anion exchange hydrogel membranes (50 mm in diameter, with 

crosslinking percentage ranged from 9 % to 12 %) (Natrix Separations Inc., Burlington, ON, Canada) 

were used in this study. The functional anion exchange ligand is 3-acrylamidopropyl-

trimethylammonium chloride (ATPAC) providing cationic quaternary ammonium structure (Zhong et 

al., 2011). The 50 mm disk has a membrane volume of 0.75 mL (Natrix Separations, 2008).  

 Virus quantitation 

Quantitation of the baculovirus is of great importance in evaluating process performance and 

assessing reproducibility.  

3.8.1 Flow cytometry 

The sample concentration for flow cytometry analysis should be 105 to 2 × 107 particles/mL. 

As described by Shen et al. (2002), samples were analyzed based on a cumulative count over 30 seconds. 

The detection limit of the FACS Calibur Flow Cytometer is 1000 particles/second (BD Bioscience, 

2007), to prevent coincidence between individual particles. Thus, appropriate dilution was necessary 

to retain the counts below 3 × 104 particles/mL.  

A methanol free paraformaldehyde solution (Thermo Fisher Scientific Inc., Mississauga, ON, 

Canada), 16 % (w/v), was first diluted to 2 % (v/v) using PBS for the ease of liquid handling for the 

following steps. Diluted samples were fixed by adding 2 % (v/v) formaldehyde to a final concentration 

of 0.04 % (v/v) and storing at 4 °C for 1 hour. 
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The formaldehyde incubated samples were freeze-thawed by freezing at -80 °C in a VWR® 

Symphony™ Ultra-Low Temperature Freezer and thawing at 37.5 °C for 10 minutes in a 20-well 

VWR® Digital Dry Block Heater with 0.2 μm PES membrane (VWR International, Mississauga, ON, 

Canada). A 10 % (v/v) Triton-X 100 (Bio-Rad Laboratories Ltd., Mississauga, ON, Canada) stock 

solution was further added to each of the samples to a final concentration of 0.1 % (v/v).  

A stock SYBR® Green I Nucleic Acid Gel Stain, 10,000 X Concentrate in DMSO (Life 

Technologies Inc., Burlington, ON, Canada) reagent was diluted in the PBS buffer to 50-fold dilution 

and stored at -20°C. Samples were incubated with Triton-X 100 for 5 min before adding SYBR Green 

I solution to a final concentration of 0.2 % (v/v). Samples were transferred to a 20-well VWR® Digital 

Dry Block Heater with 0.2 μm PES membrane (VWR International, Mississauga, ON, Canada) and 

incubated at 80 °C for 10 minutes. Samples were cooled on ice for 5 minutes prior to passing then 

through the flow cytometer.  

Flow-Set™ Pro 3 μm (nomial diameter) polystyrene fluorospheres (Beckman Coulter Canada, 

Missisauga, ON, Canada) at 1 × 106 fluorospheres/mL (nominal concentration) were used for day-to-

day instrument calibration. The fluorosphere emits fluorescence between 515-800 nm when excited at 

488 nm (Beckman Coulter, 2011). 

The determination of virus quantity using flow cytometry assay relies on the conversion of 

detected particle to a true viral titre, using fluorescent beads as a standard reference. The count of 

viruses is firstly differentiated from background noises using a gating strategy based on a positive and 

negative control. Then the noise-corrected virus count was converted to an actual virus titre by  

Virus titre (viral paricles mL⁄ )=
N+-N-

Ns

×DF×cs (Equation 3-2) 

Where  

N+  = detected particle number that appeared in the virus particle region  
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N− = number of particles from a negative control that appeared in the virus particle region  

Ns  = number of detected particles using the fluorescent bead standards 

DF = dilution factor of virus samples  

cs  = dilution-factor corrected concentration of fluorescent bead standards (particles/mL) 

The results obtained from flow cytometry are highly reproducible. However the accuracy of the 

quantitation relies heavily on proper resolution of virus particles and distinct differentiation from 

background noises. 

3.8.2 Real time quantitative polymerase chain reaction (RT-qPCR) 

The protocol used for quantifying baculovirus using real time PCR was based on the paper by 

George et al. (2012). 

The standard plasmid used in this protocol is a single plasmid containing Ie-1 and Gp-64 

sequences. Triton-X 100 treatment was done by adding in Triton-X 100 solution to desired final 

concentration of 0.1% (v/v). The freeze-thaw cycle was done by storing the samples in a -80 °C freezer 

for 30 min and then thawing them at room temperature. The reaction for each analysis consisted of 2 

μL of the sample, 10 μL of 2 × Power SYBR® Green PCR Master Mix (Applied Biosystems, 

Burlington, ON, Canada), a forward and a reverse GP-64 protein segment targeted primer at a 

concentration of 900 nM each, and UltraPure™ DNase/RNase-Free Distilled Water (Life Technologies 

Inc., Burlington, ON, Canada) for a final volume of 20 μL  for each well in a MicroAmp Fast Optical 

96-well Reaction Plates (Applied Biosystems, Burlington, ON, Canada). Then the amplification cycles 

were carried out as follows: 10 min at 95 °C, 45 denaturing cycles at 95 °C for 30 s and 

annealing/extension at 60 °C for 30 s. Data obtained from the reaction plate were transferred to and 

analyzed by StepOneTM Software v2.0.  
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 Virus breakthrough and recovery 

Virus loss during the loading and wash processes was defined as virus breakthrough.  

Virus breakthrough and virus recovery were calculated according to (Equation 3-3): 

 

%Breakthrough (or %Recovery)=
∑ ci×Vi

n
i=1

c0×V0

×100% (Equation 3-3) 

Where  

ci = virus titre in fraction (particles/mL)  

Vi = volume of the fractions (mL) 

c0 = virus titre of the virus loading solution (particles/mL) 

V0 = volume of virus loading solution (mL) 

n  = number of fractions collected in each step 

 

 Protein analysis 

Because of the sample concentration ranges, buffer compatibility, and instrument availability 

associated with this study, the BCA assay is the method of choice for protein quantification. 

Qualitative analysis of the sample was done through gel electrophoresis and silver staining. 

3.10.1 Micro BCA assay 

The micro BCA assay relies on the formation of an intense purple complex with Cu+  by 

initiating a BCA reaction between proteins and alkaline Cu2+.  This water-soluble compound has a 

strong absorbance at 562 nm that is linearly associated with protein concentration.   
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 Sample preparation and measurement 

A commercially available Micro BCA™ Protein Assay Kit (Thermo Fisher Scientific Inc., 

Mississauga, ON, Canada) was used. A protein standard made with serial dilution to bovine serum 

albumin containing 0.9 % saline and 0.05 % sodium azide (Thermo Fisher Scientific Inc., Mississauga, 

ON, Canada) was prepared for generating a calibration curve for further total protein calculations. 

Samples from the purification processes were diluted in PBS buffer at proper ratios to be compatible 

with the linear range of the calibration curve, 0 – 200 μg/mL. Then reagents were mixed with the 

samples in a 96-well plate and heated at 37 °C for 2 hours to conduct the reaction. The final mixture 

was subjected to a plate reader at 562 nm for absorbance data collection. Blank samples containing 

diluting buffers were quantified as well to correct interfering absorbance from the buffers. 

The absorbance value from the PBS blank was subtracted from the absorbance values of the 

protein standards, and a calibration curve was generated by a polynomial correlation between the 

absorbance and protein concentration of the standard samples using Microsoft® Excel software. Then, 

a buffer blank correction was also done to the process samples by subtracting the absorbance of the 

corresponding process buffer from the samples. Finally, the protein concentrations of the samples were 

calculated the polynomial approximation equation based on standard samples (sample calculation given 

in Appendix C). 

3.10.2 SDS-PAGE and silver staining 

For qualitative analysis of sample protein, electrophoresis technique is often used to differentiate 

mixture of various proteins in order to investigate detailed compositions. The underlying mechanism 

of this technique is the migration of protein when subjected to an electric field through pores within a 

polyacrylamide gel matrix and the difference in migration rates of various protein species due to 

specific characteristics, including size, charge and shape (Gallagher, 2006).  
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Prior to electrophoresis procedure, protein samples were subjected to denaturing treatment 

described by Laemmli (1970). Polyacrylamide gel with 15 wells at 15 % cross-linking was made 

according to Table 3-2 using a set of Mini-PROTEAN Tetra Cell Casting Modules (Bio-Rad 

Laboratories Ltd., Mississauga, ON, Canada). The gel consisted of two layers: a stacking layer, having 

lower percentage of 4 % (v/v), with a height of roughly 1.5 cm, which is responsible for compressing 

the sample to a narrow band before entering the “resolving layer”; and a resolving layer, which 

differentiates the compressed protein samples with regard to their sizes such that, at the end of 

electrophoresis multiple bands appear at different location in the gel. After the reaction mixture is 

injected into the glass casts, it is left at room temperature for 45 minutes to allow for polymerization. 

The experimental set-up for SDS-PAGE was based on a Mini-PROTEAN® Tetra Cell (Bio-Rad 

Laboratories Ltd., Mississauga, ON, Canada). The samples were mixed with 5 X Protein Loading 

Buffer (Fermentas, now Thermo Fisher Scientific Inc., Mississauga, ON, Canada) and β-

mercaptoethanol (Sigma-Aldrich Canada Co., Oakville, ON, Canada). The mixture was then heated at 

95 °C for 5 min using a 20-well VWR® Digital Dry Block Heater (VWR International, Mississauga, 

ON, Canada) in a fume hood. At this stage, 20 μL of denatured sample was loaded into each well in the 

stacking layer of the gel in a fume hood. 0.7 μL of PageRuler Unstained Protein Ladder (Thermo Fisher 

Scientific Inc., Mississauga, ON, Canada) was added to the two ends as a protein standard for 

determination of the sample’s molecular weight. Then the electrophoresis was driven by a PowerPac™ 

Power Supply system (Bio-Rad Laboratories Ltd., Mississauga, ON, Canada) at 150 V for 1hour and 

10 minutes. 
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Table 3-2 Recipe for making polyacrylamide gel for SDS-PAGE. All the chemicals were purchased from Bio-Rad 

Laboratories Ltd. (Missisauga, ON, Canada).  

Materials 
Quantity for 2 pieces of gel 

4 % stacking gel 15 % resolving gel 

Deionized water 3.05 mL 5.1 mL 

1.5 M Tris-HCl, pH 8.8 n/a 3.75 mL 

0.5 M Tris-HCl, pH 6.8 1.25 mL n/a 

10 % (w/v) SDS 50 μL 150 μL 

30% Acrylamide/Bis-acrylamide  0.665 mL 7.5 mL 

10 % (w/v) Ammonium Persulfate (APS) 50 μL 150 μL 

Tetramethylethylenediamine (TEMED) 5 μL 15 μL 

 

The resultant gel removed from the electrophoresis assembly was soaked in a fixing buffer (30 % 

(v/v) ethanol and 10 % (v/v) acetic acid) (Thermo Fisher Scientific Inc., Mississauga, ON, Canada) for 

3 times 5 minutes each on a rocker table and followed with two 5-minute washes with 30 % (v/v) 

ethanol. The gel was then rehydrated in DI water for 20 minutes. Removal of background was done by 

soaking the gel for 2 minutes and 15 seconds in 2.5mM Na2S2O3 (Sigma-Aldrich Canada Co., Oakville, 

ON, Canada) solution. After 10 minutes washing with DI water, the gel was soaked in a 20 % (w/v) 

AgNO3 (Sigma-Aldrich Canada Co., Oakville, ON, Canada) solution for 20 minutes, on a rocker table. 

The gel was washed with DI water afterwards, and soaked in a developing reagent (3 g Na2CO3 (Sigma-

Aldrich Canada Co., Oakville, ON, Canada), 115.625 µL 16 % (w/v) HCHO (Thermo Fisher Scientific 

Inc., Mississauga, ON, Canada), 800µL Na2S2O3 and 100 mL DI water to visualize protein bands. The 

developed gel was dried with glass paper and scanned for future analysis. 

3.10.3 Western blotting 

Western blot, a method for detecting specific proteins from sample mixture, based on 

immunological mechanisms, is extensively used as an analytical method in biotechnological works. It 
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is reported that western blot can be used for determination of baculoviruss with an antibody specific to 

gp64 envelop protein (Transfiguracion, Mena, Aucoin, & Kamen, 2011). Therefore, this mechanism is 

useful for validation of virus purification process development. The fundamental of this method relies 

on the specific binding of antibodies to a specific protein within the sample. The exposure of a sample 

to the specific molecular probe was done through a process termed “blotting”, which refers to 

transferring protein to microporous membranes. 

 

Figure 3-3 Membrane blotting assembly. Copyright clearance obtained from Elsevier (Kurien & Scofield, 2006). 

 

Following a SDS-PAGE procedure, the resultant gel was washed in DI water 3 times for 5 min 

and the soaked in DI water. The resolved protein sample was transferred using a Trans-Blot® SD Semi-

Dry Transfer Cell (Bio-Rad Laboratories Ltd., Missisauga, ON, Canada) at 20 V for 1 hour, with the 

assembly shown in Figure 3-3. The blotted PVDF membrane was then removed from the apparatus and 

incubated in Bløk Noise-Cancelling Reagent (EMD Millipore Corporation, Billerica, MA, USA) 

overnight at 4 °C. Then, 2 µL of Anti-Baculovirus Envelope gp64 Protein Purified (eBioscience, Inc., 

San Diego, CA, USA) was 1000 times diluted in Bløk Noise-Cancelling Reagent. Next, 5 µL of Goat 

Anti-Mouse IgG Antibody, HRP conjugate (EMD Millipore Corporation, Billerica, MA, USA), which 

is the secondary antibody, was 5000 times diluted in Tris-buffered saline (TBS) (Bio-Rad Laboratories 
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Ltd., Missisauga, ON, Canada). The incubated membrane was soaked in an anti-gp64 antibody solution 

for 1 hour, on a rocking table, and then washed in TBS-Tween 20 (TBST) for 3 times 5 min each. 

Afterwards, the membrane was incubated in the secondary antibody solution for 1 hour. Afterwards, 

the membrane was washed 3 times 5 min each in TBST and 5 min in TBS. The imaging analysis was 

done using a BIS 303 PC bio-imaging system (DNR Bio-Imaging Systems Ltd., Jerusalem, Israel) with 

Luminata Forte Western HRP substrate (EMD Millipore Corporation, Billerica, MA, USA). The 

exposure time for the imaging process was set at 1 min 30 sec ( with gain 25). 

 Statistical analysis 

Comparison analysis between mean values of sample sets were carried out using t-test analyses. 

The test statistic t0 obtained using (Equation 3-4) (Montgomery, 2009): 

t0=
y̅

1
-y̅

2

Sp√
1
n1

+
1
n2

  
(Equation 3-4) 

Where  

𝑦̅ = sample means  

n = sample sizes  

Sp = an estimate of the common variance given by 

Sp
2=

(n1-1)S1
2+(n2-1)S2

2

n1+n2-2
 (Equation 3-5) 

where S1
2 and S2

2 are the variances of two individual samples. 

A 90 % confidence interval was used for comparative analysis. By comparing t0 to the t 

distribution with n1+n2-2 degrees of freedom, the difference between the two samples can be tested. 
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 Experimental conditions summary 

Table 3-3 Experiment summary. 

Operation mode 
Feed volume  

(mL) 

Dilution 

factor 

Loading 

conductivity 

(mS/cm) 

Loading 

pH 

Elution 

volume 

(mL) 

Elution NaCl 

concentration  

(M) 

Elution pH 

Dead-end 20 2 4.56 6.9 40 
0.2, 0.3, 0.4,  

and 1.0 
6.0 

Dead-end 20 3 3.49 6.9 40 
0.2, 0.3, 0.4,  

and 1.0 
6.0 

Dead-end 20 4 2.56 6.9 40 
0.2, 0.3, 0.4,  

and 1.0 
6.0 

Dead-end 20 5 15.3 6.9 40 0.2 – 1.5 6.0 

Dead-end 20 5 15.3 6.9 80 
0.2, 0.33, 0.59, 

0.85, and 1.5 
6.0 

Dead-end loading 

with  

reverse-flow elution 

20 5 15.3 6.9 80 0.2 – 1.5 6.0 

Dead-end loading  

with  

reverse-flow elution 

20 5 15.3 6.9 80 
0.2, 0.33, 0.59, 

0.85, and 1.5 
6.0 
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Chapter 4 

Purification of Baculovirus Through Linear Gradient Elution Using 

a Novel Strong Anion (Q) Exchange Membrane 

 Overview 

The investigation into the performance of the Natrix Quantum Q anion exchange membrane 

(Natrix Separations Inc., Burlington, ON, Canada) started with exploration in the effects of anion 

electrolyte concentrations on virus breakthrough and recovery. The process was broken down into four 

steps: 1) virus loading: the virus solution is driven through the membrane and contacts the anion 

exchange ligand, allowing capture of the baculovirus from solution; 2) membrane washing: the loading 

solution was removed by flushing the membrane with a wash buffer; 3) pH conditioning: the pH was 

adjusted by a second wash buffer at a lower pH; 4) elution: a strong electrolyte-containing buffer was 

applied to the membrane for virus recovery, as the high concentration electrolytes competes with virus-

ligand binding, substitutes virus particles from the binding sites, and screens the free virus particles 

from the anion exchanger. 

The virus loss during loading and wash steps are evaluated. Virus recovery is investigated using 

two operation modes: 1. Linear gradient NaCl elution, where the elution buffer’s NaCl concentration 

is increasing over a certain range during the process; 2. Step gradient NaCl elution, where the elution 

buffer’s NaCl concentration having stepwise increase over certain levels. 
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 Results and discussion 

4.2.1 Pilot loading and recovery study 

 Virus breakthrough at various loading conductivities 

The anion exchange separation process depends on the successful binding interaction between 

negatively charged baculovirus and positively charged binding ligands. As this mechanism involves 

electrostatic interaction, the conductivity (ionic strength) of the virus solution plays a profound role in 

the binding process, because the free electrolyte ions can interact with binding ligands, screening the 

charged virus particles from the anion exchangers. A set of baculovirus loading solutions were prepared 

by diluting clarified virus supernatant in the equilibration buffer with dilution factors 2, 3, and 4. The 

conductivity of these solutions were determined and given in Table 4-1. 

Table 4-1 Dilution factors and the corresponding solution conductivity 

Dilution factor applied to stock virus solution Solution conductivity (mS/cm) 

2 X 4.56 

3 X 3.49 

4 X 2.89 

 

The breakthrough results from the loading solutions were determined using the flow cytometric 

method. The minimal virus titres (accounted for less than ~ 0.5% of the viruses in loading solution) in 

the permeating flow suggested that most of the viruses were successfully captured by the anion 

exchange media, also indicating the limited effect of various loading conductivities on virus 

breakthrough at the given operating condition.  

 Virus recovery 

The recovery of bound baculoviruses in ion exchange process is also subjected to the loading 

conductivity. When a small amount of free electrolyte ions is present in the virus loading solution, viral 
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particles are likely to be captured by multiple binding ligands when they are being transported through 

the anion exchange membrane, forming strong electrostatic bonds with the ligands. This potential 

multiple-binding mechanism hinders the virus recovery, as it requires much stronger anions to break 

the bonds. This rationale motivated further study on the virus recoveries from loading solutions at 

various conductivities, to determine the loading conductivity which satisfies both low breakthrough and 

instant virus recovery.  

 
Figure 4-1 Virus recoveries from anion exchange purifications using different loading conductivities. 

 

The virus loaded membranes from the previous experiments were eluted by buffer solutions with 

200 mM, 300 mM, 400 mM, and 1 M NaCl to investigate how loading conductivity affect the virus 

recovery. The recovered virus titres at each salt stage were combined to reveal the total virus recovery. 

Based on further flow cytometry virus quantification, the average virus recovery of all these four trials 

was below 10 % (Figure 4-1).  
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One possible reason accounting for this unusual low yield was that the NaCl eluting solution 

failed to provide enough negative charged ions to replace the bound viruses. Increasing the salt’s 

concentration can potentially address the issue. However, highly concentrated NaCl solution not only 

hampers the viruses’ protein structure, but is also not compatible with the membrane material according 

to manufacturer’s instruction. 

While the approach to break the virus-ligand binding using high NaCl concentration seemed not 

practical, there is still a possible method to address the issue with lower salt content. If the binding 

strength can be lowered when viruses are being captured in the anion exchange media, then the amount 

of ions and charges to break the bond is accordingly decreased. High virus recoveries have recently 

reported in anion exchange process using loading conductivity around 15 mS/cm (Gerster et al., 2013). 

Therefore, sodium chloride was used to prepare the buffers. Using a dilution factor of 5, the loading 

solution conductivity can be appropriately adjusted to around 15.3 mS/cm and had been used for all of 

the following trials. 

4.2.2 Linear gradient NaCl operation 

 Linear gradient elution 

To identify the initial NaCl concentration ranges that favor virus recovery, a process with linearly 

increasing NaCl concentrations was established. The concentrations of NaCl in the flow path was 

adjusted by a solenoid valve that controls the time the wash buffer and NaCl buffer were connected to 

the system. The times were based on a programmed method. For example, for 10s during a process, 

given a NaCl concentration set at 30 %, the solenoid valve allows the wash buffer to enter the system 

for 7 seconds and then switches to the NaCl buffer for 3 seconds. As the flow enters the mixer, the two 

portions of buffer inside the flow path are homogenized before they pass through the membrane. 
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 Purification process 

20 mL of 5  diluted virus stock was used as a loading solution (as suggested in Vicente et al., 

(2009). Then 20 mL of wash buffer was passed through the membrane to remove any residual loading 

solution. The elution phase started at conductivity of 17.2 mS/cm and gradually reached 100.2 mS/cm 

over 40 mL. The corresponding sodium chloride concentration varied from 200 mM to 1500 mM. UV 

absorbance and conductivity profiles are presented in Figure 4-2. 

4.2.2.2.1 Equilibrating the membrane 

As seen in the profile (Figure 4-2), the UV absorbance and conductivity curves formed a stable 

baseline near zero, reflecting the equilibration buffer flow in the system. The membranes were provided 

in a dry condition; therefore appropriate wetting was needed for the hydrogel base developing its pore 

structure (eg. pore sizes and macropore interconnections) (Zhong et al., 2011). The conductivity during 

wetting stabilized at 17.3 mS/cm.  

4.2.2.2.2 Loading virus 

After 30 mL of equilibration, virus capture was initiated by pumping the virus-loading solution 

through the anion exchange membrane. An increase in UV absorbance occurred, in the phase between 

35 to 55 mL, (in Figure 4-2) because of the significant protein content in the virus solution.  

4.2.2.2.3 Wash 

Starting from 55mL of operation, a two-stage wash process started to remove any remaining 

loading solution and adjust the membrane pH for elution. Wash buffer #1 (30 mM/200 mM NaCl/pH 

6.9) was first connected to the flow path to remove any unbound material associated with the loading 

step. Then, wash buffer #2 (30 mM/200 mM NaCl/pH 6.0) entered the system for a pre-treatment such 

that the macro environment’s pH would favor virus eluting.  
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4.2.2.2.4 Elution 

Recovery of the captured virus particles was achieved by passing the NaCl buffer through the 

membrane, allowing electrolyte ions to reach the anion exchangers and compete with bound viruses. 

As described in the previous section, the NaCl concentration of the buffer flow was increasing over the 

course of the elution from 200 mM (17.3 mS/cm) to 1.5 M NaCl (100.2 mS/cm). 
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Figure 4-2 UV absorbance and conductivity profile and virus yield. 20 mL 5X diluted virus loading solution followed by 20 mL wash and 40 mL elution with NaCl concentration 

increasing from 0.2 M to 1.5 M using a 50 mM Natrix Quantum Q anion exchange membrane and Äktaprime FPLC system, exported from PrimeView™ 5.0 (GE Health Care, 

Mississauga, ON, Canada). Data points represent virus recovery (n=2) in individual fractions collected over the course of the process, obtained using BD FACSCalibur flow cytometry, 

CellQuest Pro and Flowjo software. 
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 Loading conductivity 

The conductivity of the loading solution was adjusted to 15.4 mS/cm, which was close to those 

in published data (Gerster et al., 2013; Vicente et al., 2008). 

 Virus breakthrough 

In terms of evaluating the feasibility, a question must be asked: is the membrane able to capture 

viruses from contaminants? To answer this, virus breakthrough was determined by quantifying the virus 

in the flow-through samples during the loading and wash steps. The results showed that a total of 0.34 

±  0.13 % (n=2) of the loaded virus was lost during the loading and washing steps with host 

contaminant protein. Compared to generally reported virus breakthrough, which varies from 1% to 10% 

(Gerster et al., 2013; Grein et al., 2012; Vicente et al., 2009), the low virus breakthrough using the 

current membrane indicated remarkable selectivity towards the baculovirus.  

 Virus recovery 

As shown in Figure 4-2, the total virus recovery in the four elution fractions was 2.21 %. When 

looking at virus recoveries from individual fractions, fraction #6 reported the highest virus recovery 

(1.33 ± 0.12 %, n=2), followed by fractions #7 and #8 with 0.53 ± 0.10 % (n=2) and 0.19 ± 0.06 % 

(n=2), respectively. 
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Figure 4-3 Virus recovery (n=2) versus average NaCl concentration over the course of fraction 5 (200 mM to 330 mM), 

fraction 6 (330 mM to 680 mM NaCl), fraction 7 (680 mM to 1000 mM NaCl) and fraction 8 (1000 mM to 1500 mM NaCl) 

in elution step of 20mL 5X diluted virus loading purification with linear gradient elution using 50mm Natrix Quantum Q anion 

exchange membrane and Äktaprime FPLC system. 

 

To correlate NaCl concentrations with the effect of virus recovery, the NaCl concentration ranges 

of the four elution fractions were identified: 200 to 330 mM NaCl (17 – 28 mS/cm), 330 to 680 mM 

NaCl (28 – 55 mS/cm), 680 mM to 1 M NaCl (55 – 72 mS/cm), and 1 to 1.5 M NaCl (72 – 100 mS/cm). 

It was expected that stronger NaCl concentrations would result in higher virus recovery, as the higher 

NaCl concentrations would present enhanced competition to the virus-exchanger interaction. Instead, 

the profile showed in Figure 4-3 indicates that virus recovery improved when the NaCl concentration 

increased from 200 mM to 680 mM NaCl and declined when the buffer’s NaCl became more 

concentrated, indicating the higher ionic strength did not promote virus recovery. 
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4.2.3 Step gradient NaCl operation 

To further investigate this system, a step gradient NaCl elution method was also conducted. 

 Step gradient elution 

The idea of building up step gradient NaCl elution is to maximize the contact time of the 

membrane with the NaCl concentrations that favors virus recovery. Therefore, in contrast to linear 

gradient elution where the eluting buffer’s NaCl concentration increased gradually, the step gradient 

resulted in stepwise changes in buffer NaCl concentration for certain stages.  

 Purification process 

Figure 4-4 summarizes the process profile for this trial. 30 mL of equilibration buffer passed the 

membrane to equilibrate the anion exchange media. Then 20 mL of 5X diluted virus solution were run 

through the membrane. Conductivity dropped throughout the loading process as the ionic strength of 

the virus loading solution was lower than that of the equilibration buffer. Two-stage washing with 10 

mL wash buffer # 1 and 10 mL of wash buffer # 2 cleared the membrane of any residual supernatant 

solution, as indicated by the declining portion of UV absorbance following the loading process.  
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Figure 4-4 Online UV absorbance and conductivity profile of 20 mL 5X diluted virus loading purification with 20 mL wash and 80 mL step gradient elution at 330 mM NaCl, 590 

mM NaCl, 850 mM NaCl, and 1500 mM NaCl using a 50mM Natrix Quantum Q anion exchange membrane and Äktaprime FPLC system, exported from PrimeView™ 5.0 (GE 

Health Care, Mississauga, ON, Canada). Data points represent virus recovery (n=2) in pooled fractions during loading and wash, 330 mM NaCl elution step, 590 mM elution step, 

850 mM elution step and 1500 mM NaCl, respectively, obtained using BD FACSCalibur flow cytometry, CellQuest Pro and Flowjo software. 
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Based on linear gradient elution studies, four elution steps were determined at NaCl 

concentrations of 330 mM (28 mS/cm), 590 mM (49 mS/cm), 850 mM (64 mS/cm) and 1.5 M NaCl 

(100 mS/cm). The step-like conductivity curve reflects the stepwise changes in NaCl concentration. 

The length of each step was extended to 25 bed volumes (20 mL), producing an overall process length 

of 100 bed volumes (80 mL).  

 Virus loss in loading and wash 

The total quantity virus recovered during the loading and wash steps was 2.24 %. The anion 

exchange media showed consistency in successful virus binding and maintained strong interaction with 

the virus during wash conditions. 

 Virus recovery 

Based on the discussion in the previous linear gradient study, the NaCl concentration range of 

330 mM – 660 mM NaCl, which resulted in the highest recover, was differentiated into two levels: 330 

mM and 590 mM. Further NaCl steps were determined at 850 mM and 1.5 M NaCl. The quantitation 

by flow cytometry indicated an overall recovery of 8.11 ± 0.68 % (n=2).  

There have been studies showing virus recovery from 60 % to 80 % (Gerster et al., 2013; Grein 

et al., 2012; Vicente et al., 2009) using anion exchange processes, the low virus recovery from the 

current process needs extensive review. To ensure that those losses were real, a significant study 

surrounding the quantification of the virus was undertaken (Appendix A). 

 Protein analysis 

The samples were also subjected to total protein assays and electrophoresis analysis, to further 

reveal the process’ performance. The samples were prepared in duplicate for Micro BCA assay. The 

total protein shows that the total protein content in the virus loading solution was 9567 ± 22 μg (n=2). 
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A total of 8180 ± 100 μg (n=2) protein was removed through the loading and wash processes. The 

total protein in the 330 mM NaCl elution fraction was 117 ± 8 μg (n=2) while other elution fractions’ 

protein levels were below the detection limit. 

The SDS-PAGE results showed that the flow-through samples have a strong band between 60 

and 70 kDa but a gp64 protein band is not identifiable in the western blot results, which implied that 

the baculovirus major gp64 protein was not at significant level in the flow-through ( Loading 1, Loading 

2, Wash 1, and Wash 2) (Figure 4-5).  

 
Figure 4-5 A: Silver stained gel after SDS-PAGE, loaded with molecular weight marker (lane 1 and 7), virus loading solution 

(lane 2), loading fractions ( lane 3 and 4), wash fractions (lane 5 and 6), 330 mM, 590 mM, 850 mM, and 1.5 M NaCl Elutions 

(lane 8 – 11). B: Western blot of virus loading solution and flow-through. C: Western blot of virus loading solution, 330 mM, 

590 mM, 850 mM, and 1.5 M NaCl Elutions. The arrows indicate the location of gp64 protein. 

 

The 330 mM NaCl elution lane, compared to the virus solution sample, has a consistent p74 

envelope protein  (Faulkner, Kuzio, Williams, & Wilson, 1997) band and a weaker impurity band 

between 60 and 70 kDa, compared to virus solution, while a gp64 protein band became distinct above 

the 60 kDa marker. Further identification of the gp64 band was done by western blot. Figure 4-5 B and 

C showed the existence of gp64 envelope proteins in the virus loading solution and 10 % elution, while 
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the loading permeates did not contain this protein. Though the 30 % elution sample has faint bands in 

silver staining, due to the low protein concentration in the sample, western blot did not resolve an 

observable gp64 band. 

4.2.4 Membrane cleaning at extreme conditions 

Given the low recovery from the current purification process, a membrane cleaning process was 

investigated to resolve the virus binding issue with this membrane. High NaCl concentrations and low 

pHs are often used for membrane cleaning procedures. The surface charge of the baculovirus’ average 

protein is positive at pH 5.0. 3 M NaCl is the highest concentration compatible with the membrane 

material. The cleaning buffer was to ensure least binding interaction between the bound viruses and the 

membrane ligand and provide strongest electrostatic competitors. Therefore, the 50 mm Natrix 

Quantum Q anion exchange membrane used in the step gradient elution study was subjected to a 

cleaning process with a cleaning buffer, consisting of 3 M NaCl and 30 mM HEPES at pH 5.0.  

 Cleaning process 

30 mL of the cleaning buffer was passed through the used membrane from the step gradient 

operation at a flow rate of 1 mL/min to ensure sufficient contact time between the buffer and the 

membrane. 

Virus titration has been done to the fractions collected over the course of the process and the 

results are summarized in Figure 4-6. The fraction-by-fraction virus recovery was declining during the 

process from 3.75 ± 0.47 % (n=2) to 0.13 ± 0.04 % (n=2), respectively. The total recovery from this 

cleaning process was 6.80 % ± 1.35 % (n=2). Recall that the step-gradient recovered ~ 8.11 % of the 

bound viruses, there was still ~ 85 % of the loaded viruses remaining in the membrane. 
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Figure 4-6 Virus titration from fractions collected during the cleaning process using flow cytometric assay. Fractions were 

collected 5mL each. Error bars indicate standard error for n=2.  

 

It has been reported that anion exchange media (membrane or monolith) can be regenerated with 

1.5 M NaCl at most (Gerster et al., 2013; Vicente et al., 2009). At the current cleaning conditions of 3 

M NaCl and pH 5.0, any electrostatic binding should be overcome. However, most of viruses were not 

able to be recovered. Further investigation into the recovery issue is needed regarding the potential 

physical hindrance using the Natrix Quantum Q membranes.  
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Chapter 5 

Reverse-Flow Elution Operations for the Process Development of 

Baculovirus Purification using a Novel Strong Anion Exchange 

Membrane Chromatography 

 Overview 

Investigation of the potential transport hindrance of viral particles during the process was carried 

out by evaluating virus yields using a reverse-flow elution method. If transport hindrance is associated 

with the baculovirus particles during the current process, the captured viruses are assumed to be trapped 

at the near-surface region of the membrane and their transport towards deeper section of the membrane 

is limited. To recover these particles, the buffer flow is reversed such that NaCl buffer enters the 

membrane at the outlet and exits at the inlet. It is expected that the reverse-flow elution will boost virus 

recovery.  
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 Materials and methods 

5.2.1 Reverse-flow 

Given that the current chromatography system’s flow direction cannot be changed automatically, 

to achieve reverse-flow elution, the membrane was manually reinstalled in a bottom-up position as 

shown in Figure 3-2b. Five-fold dilution was applied to the virus supernatant solution by adding the 

equilibration buffer. Viruses were captured while passing through the membrane by anion exchange 

ligands. The remaining supernatant solution in the membrane was cleaned by a two-stage wash step 

using wash buffer #1, consisting of 30 mM HEPES and 200 mM NaCl at pH 6.9 and wash buffer #2 

consisting of 30 mM HEPES and 200 mM NaCl at pH 6.0.  

At the end of washing process, the system was paused and the membrane was disconnected from 

the flow path to re-install in the bottom-up position. Then the process was resumed to start the elution 

process. The membrane position was kept as reversed throughout the rest of the process. 

 Results and discussion 

5.3.1 Linear gradient reverse-flow elution 

 Purification process 

The online monitoring profile is summarized in Figure 5-1. Membrane equilibration was done 

with consumption of 36 mL of equilibration buffer prior to virus loading. Starting from the 36 mL 

volume mark in the upper x axis, the UV absorbance curve rose as the protein content became abundant 

in the permeating flow, when the virus solution was being passed through the membrane until a 

maximum was reached, at 56 mL.  
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The increase in UV absorbance corresponded to the volume of loading solution, which was 20 

mL. Then UV absorbance began to decline as the wash steps were initiated and gradually removed the 

remaining contaminant protein in the membrane. After the membrane was washed with roughly 25 mL 

of wash buffer, UV absorbance reached a baseline indicating minimal protein content in the 

downstream flow. Then the operation was paused and the membrane was disconnected from the flow 

path and reinstalled in the position shown in Figure 3-2b, to allow the upstream buffer flow to permeate 

the membrane from its outlet to inlet. Conductivity increased because of the linear gradient that was 

being applied for the elution. A local peak appeared in the UV absorbance during the initial portion of 

the conductivity increase suggests protein being removed from the membrane. 

 Effect of reverse-flow 

The influence of modifying the flow direction across the membrane was evaluated in terms of 

virus recovery. The virus titre of the fractions collected after flow reversion is shown as bar charts in 

Figure 5-1. As only the procedure for elution was modified from the normal flow operation, the loading 

process presented consistent minimal virus loss (3.60 % ± 0.85 %, n=2). Similar to normal flow 

gradient elution, a local recovery peak occurred in the first 0 % - 10 % conductivity increase of the 

process, which corresponds to a sodium chloride concentration range of 200 mM to 330 mM. The 

recovery of the corresponding fraction was 21 ± 1 % (n=2).  
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Figure 5-1 UV absorbance and conductivity profile of 20mL 5X diluted virus loading purification process operated with reverse-flow linear gradient NaCl elution from 200mM to 

1500mM NaCl over a length of 80mL at flow rate of 4mL/min using 50mM Natrix Quantum Q anion exchange membrane with Äktaprime FPLC system exported from PrimeView™ 

5.0 (GE Health Care, Mississauga, ON, Canada). Data points reflect virus recovery (n=2) in pooled fraction during loading and wash, and individual fractions during elution, obtained 

using BD FACSCalibur flow cytometry, CellQuest Pro and Flowjo software. 
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The overall process recovery was identified as 59 % ± 14 % (n=2), showing a substantial 

enhancement in recovery compared to the recovery from normal flow linear elution (2 %). The 

recoveries were higher over the entire process comparing to those from the normal flow operation 

(Figure 5-2). Moreover, the recovery is also significantly higher than that achieved in the cleaning 

process. This finding further demonstrated that the virus recovery issue was a result of “fouling” 

(external accumulation) towards baculoviruses rather than irreversible or extremely strong binding. 

 
Figure 5-2 “Reverse” represents virus yield achieved in linear gradient NaCl elution during salt ranges  of 200 mM NaCl to 

330 mM NaCl, 330 mM NaCl to 680 mM NaCl, 680 mM NaCl to 1000 mM NaCl and 1000 mM NaCl to 1500 mM NaCl, 

respectively, from 20 mL 5 X diluted virus loading purification process using reverse-flow linear gradient elution process. 

“Normal” represents virus yield achieved in linear gradient NaCl elution during salt ranges of 200 mM NaCl to 330 mM NaCl, 

330 mM NaCl to 680 mM NaCl, 680 mM NaCl to 1000 mM NaCl and 1000 mM NaCl to 1500 mM NaCl respectively from 

the 20 mL 5X diluted virus loading purification process using normal flow linear gradient elution process.Step gradient elution 

with reverse-flow operation. Error bars indicate standard error for n=2. 
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5.3.2 Step gradient elution 

 Purification process 

The membrane was firstly installed in a normal flow position, as shown in Figure 3-2a. 30 mL 

of equilibration buffer was driven through the membrane by the ÄKTAPrimeTM plus (GE Healthcare, 

Mississauga, ON, Canada) chromatography system. The process profile is shown in Figure 5-3. The 

UV absorbance and conductivity remained stable throughout this step. The virus loading was initiated 

as the virus solution flew through the membrane along with an increase in UV absorbance and a slight 

reduction in flow conductivity (17.3 mS/cm to 15 mS/cm). The UV absorbance indicated abundant 

protein content in the downstream. After 20 mL of virus solution was loaded, the wash buffer was 

introduced through the membrane for cleaning. The decline in UV absorbance reflected the decrease in 

protein concentration in the buffer flow with the progress of the wash process until the absorbance 

reached its initial baseline. Then the operation was paused and the membrane was disconnected and 

reinstalled in a bottom-up position.  
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Figure 5-3 UV absorbance and conductivity profile exported by PrimeView 5.0 from 20 mL 5 X diluted virus loading purification process operated with reverse-flow step gradient 

elution using 50 mm Natrix Quantum Q anion exchange membrane and ÄKTAPrime FPLC system. Data points reflect virus recovery from pooled fractions during loading and wash, 

330 mM NaCl elution, 590 mM NaCl elution, 850 mM NaCl elution and 1500 mM NaCl elution, respectively (n=2). 
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A step gradient with pre-established NaCl levels of 330 mM NaCl, 590 mM NaCl, 850 mM NaCl, 

and 1500 mM NaCl was used in the reverse-flow elution. The conductivity curve reflected the stepwise 

increase in NaCl concentration. Another UV increase, but one with a much smaller magnitude, appeared 

during the initial portion of the 330 mM NaCl elution step, implying protein species in the permeating 

flow. Then the UV curve kept declining until the end of the process. An aliquot was taken from each 

sample and subjected to flow cytometric virus quantitation (Figure 5-3). 

As the reverse-flow operation was conducted at the beginning of the elution process, the loading 

and wash procedures remained unchanged and similar to those in previous trials. They showed high 

virus capture efficiency, which agreed with existing results. A virus loss of 2.79 ± 0.35 % (n=2) was 

determined from the pooled fractions of loading and wash processes.  

 Effect of reverse flow 

 
Figure 5-4 “Reverse” represents virus yield achieved in elution step at salt levels of 330 mM, 590 mM, 850 mM and 1500 

mM NaCl, respectively, from 20 mL 5 X diluted virus loading purification process using reverse-flow elution process. 

“Normal” represents virus yield achieved in the elution step at salt levels of 330 mM, 590 mM, 850 mM and 1500 mM NaCl, 

respectively, from 20 mL 5 X diluted virus-loading purification process using normal flow elution process. Error bars indicate 

standard error for n=2. 
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The highest recovery was obtained with an elution of 330 mM NaCl (51 % ± 2 %). At 590 mM 

NaCl, the recovery was 13 % ± 4 %. At 850 mM NaCl and 1.5M NaCl, 4 % ± 4 % and 3 % ± 2 % 

were recovered. Compared to normal flow elution results, as shown in Figure 5-4, virus recovery was 

significantly improved by reversing the flow through the membrane cartridge.   

 Effect of step gradient 

 
Figure 5-5 Comparison of recoveries at different NaCl levels from linear gradient and step gradient operations (n=2). The 

recoveries of linear gradient correspond to the fractions collected at salt ranges of 200 – 330 mM, 3330 – 680 mM, 680 – 850 

mM, and 850 – 1500 mM. Error bars indicate standard error for n=2. 

 

Through the step gradient operation, the process yield improved to 73 ± 8 % (p > 0.10). As 

shown in Figure 5-5, the virus recovered with 330 mM NaCl in step gradient operation increased 1.8 
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 Protein analysis 

The samples collected from the reverse-flow process were analyzed using Micro BCA assay, 

SDS-PAGE, silver staining, and western blot. The total protein assay showed that 6412 ± 7 µg of 

protein was removed when the viruses were being loaded onto the membrane. The wash process further 

removed 1462 ± 71 μg of proteins, together with the loading permeate representing 84 % of the total 

protein in the virus loading solution (9200 ± 19 µg). The 330 mM elution contained 182 ± 6 µg of 

protein, which accounted for 2 % of the total protein in the virus loading solution. The fractions 

collected in higher NaCl concentrations (590 mM, 850 mM, and 1.5M) were below the detection limit. 

 
Figure 5-6 Silver-stained SDS-PAGE gel loaded with (from left to right): molecular weight marker (lane 1), virus loading 

solution (lane 2), loading and wash fractions pool (lane 3), 330 mM NaCl elution fractions pool (lane 4), 590 mM NaCl elution 

fractions pool (lane 5), 850 mM NaCl elution fractions pool (lane 6), and 1.5 M NaCl elution fractions pool (lane 7). 
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gp64 protein. Compared to the 330 mM NaCl elution from the normal flow operation, the elution 

process with reversed flow direction reduced impurity compositions in the eluent, as shown in the 

reduction of protein bands in the 330 mM NaCl. The protein compositions in the fractions collected at 

higher salt concentrations were below the detecting limit. 
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Chapter 6 

Conclusions and Recommendations 

 Conclusions 

The Natrix Quantum Q anion exchange membranes are not applicable for the purification of 

baculovirus using regular direct-flow chromatography. There is major physical hindrance that prevents 

the baculovirus from transferring through the membrane.  

This baculovirus-retaining issue can be overcome by introducing buffer flow from the opposite 

side of the surface where baculovirus was retained. The virus recovery significantly increased when 

reverse-flow elution was applied for linear gradient elution. The same NaCl steps from the normal flow 

step gradient operation were applied in the reverse-flow step gradient process. Virus recovery was 

further improved using the step NaCl gradient elution, which led to a final virus recovery of ~73%.  

The protein level of the original virus solution was reduced as 85 % of the initial protein was 

removed, while baculovirus proteins were well conserved. 
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 Recommendations 

1. Attempt process design with cross flow operation. Given the infeasibility using dead-end 

operation mode, cross flow operation can potentially circumvent the physical hindrance issue, as 

cross flow did not necessarily require the target molecule to transport through the entire 

membrane matrix.  

2. Determine binding capacity using free membrane material. The binding capacity and dynamics 

can be evaluated using free membrane material with stirred cell device and batch adsorption 

operation. 

3. Investigate the activity of purified virus. In addition to virus recovery, the activity of recovered 

virus is important for future applications. Various infectious assays including TCID50 and plaque 

assays can be used for evaluation of infectious virus recovery. 

4. Evaluate the DNA levels before and after purification. Free DNA species is another major source 

of contaminant in the initial virus solution. The suspended DNA levels can be determined using 

SYBR Green I at 488 nm excitation and 528 nm emission wavelength (Grein et al., 2012).  



59 

References 

Andujar-Sánchez, M., Cámara-Artigas, A., & Jara-Pérez, V. (2003). Purification of angiotensin I 

converting enzyme from pig lung using concanavalin-A sepharose chromatography. Journal of 

chromatography. B, Analytical technologies in the biomedical and life sciences, 783(1), 247–252. 

Aucoin, M. G., Mena, J. A., & Kamen, A. A. (2010). Bioprocessing of baculovirus vectors: a review. 

Current Gene Therapy, 10(3), 174–186. 

Barsoum, J. (1999). Concentration of recombinant baculovirus by cation-exchange chromatography. 

BioTechniques, 26(5), 834–6, 838, 840. 

Barsoum, J., Brown, R., McKee, M., & Boyce, F. M. (1997). Efficient transduction of mammalian cells 

by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Human Gene 

Therapy, 8(17), 2011–2018. 

BD Bioscience. (2007). BD FACSCalibur Flow Cytometry System Technical Specifications. 

Beckman Coulter. (2011). Flow-Set Pro Fluorospheres, 1–3. 

Blissard, G. W., & Wenz, J. R. (1992). Baculovirus gp64 envelope glycoprotein is sufficient to mediate 

pH-dependent membrane fusion. Journal of Virology, 66(11), 6829–6835. 

Bonnerjea, J., Oh, S., Hoare, M., & Dunnill, P. (1986). Protein Purification: The Right Step at the Right 

Time. Bio/Technology, 4(11), 954–958. 

Boyce, F. M., & Bucher, N. L. (1996). Baculovirus-mediated gene transfer into mammalian cells. 

Proceedings of the National Academy of Sciences, 93(6), 2348–2352. 

Brandt, S., Goffe, R. A., Kessler, S. B., O’Connor, J. L., & Zale, S. E. (1988). Membrane-Based 

Affinity Technology for Commercial Scale Purifications. Bio/Technology, 6(7), 779–782. 

Briefs, K.-G., & Kula, M.-R. (1992). Fast protein chromatography on analytical and preparative scale 

using modified microporous membranes. Chemical Engineering Science, 47(1), 141–149. 

Brussaard, C. P. D., Marie, D., & Bratbak, G. (2000). Flow cytometric detection of viruses. Journal of 

Virological Methods, 85(1-2), 175–182. 

Carinhas, N., Bernal, V., Yokomizo, A. Y., Carrondo, M. J. T., Oliveira, R., & Alves, P. M. (2009). 

Baculovirus production for gene therapy: the role of cell density, multiplicity of infection and 

medium exchange. Applied Microbiology and Biotechnology, 81(6), 1041–1049. 

Caron, A. W., Archambault, J., & Massie, B. (1990). High-level recombinant protein production in 

bioreactors using the baculovirus-insect cell expression system. Biotechnology and 

Bioengineering, 36(11), 1133–1140. 



 

 60 

Champluvier, B., & Kula, M.-R. (1991). Microfiltration membranes as pseudo-affinity adsorbents: 

modification and comparison with gel beads. Journal of Chromatography A, 539(2), 315–325. 

Chen, G.-Y., Chen, C.-Y., Chang, M. D.-T., Matsuura, Y., & Hu, Y.-C. (2009). Concanavalin A affinity 

chromatography for efficient baculovirus purification. Biotechnology Progress, 25(6), 1669–1677. 

Denizli, A., & Pişkin, E. (2001). Dye-ligand affinity systems. Journal of Biochemical and Biophysical 

Methods, 49(1-3), 391–416. 

Faulkner, P., Kuzio, J., Williams, G. V, & Wilson, J. A. (1997). Analysis of p74, a PDV envelope 

protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in 

vivo. The Journal of general virology, 78 ( Pt 12, 3091–3100. 

Gallagher, S. R. (2006). One-dimensional SDS gel electrophoresis of proteins. Current Protocols in 

Molecular Biology / edited by Frederick M. Ausubel ... [et al.], Chapter 10, Unit 10.2A. 

GE Healthcare Bio-Sciences. (2009). ÄKTAprimeTM plus Operating Instructions (p. 59). Uppsala: GE 

Healthcare. 

Gerster, P., Kopecky, E.-M., Hammerschmidt, N., Klausberger, M., Krammer, F., Grabherr, R., … 

Jungbauer, A. (2013). Purification of infective baculoviruses by monoliths. Journal of 

chromatography. A, 1290(null), 36–45. 

Ghosh, R. (2002). Protein separation using membrane chromatography: opportunities and challenges. 

Journal of Chromatography. A, 952(1-2), 13–27. 

Grein, T. A., Michalsky, R., Vega López, M., & Czermak, P. (2012). Purification of a recombinant 

baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane 

chromatography. Journal of Virological Methods, 183(2), 117–124. 

Guarino, L. (2011). Baculoviruses. In eLS. Chichester: John Wiley & Sons, Ltd. 

Harrison, R. G., Todd, P., Rudge, S. R., & Petrides, D. P. (2003). Bioseparations Science and 

Engineering. New York: Oxford University Press. 

Hensler, W. T., & Agathos, S. N. (1994). Evaluation of monitoring approaches and effects of culture 

conditions on recombinant protein production in baculovirus-infected insect cells. Cytotechnology, 

15(1-3), 177–186. 

Hofmann, C. (1995). Efficient Gene Transfer Into Human Hepatocytes by Baculovirus Vectors. 

Proceedings of the National Academy of Sciences, 92(22), 10099–10103. 

Hu, Y. (2005). Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta 

Pharmacologica Sinica, 26(4), 405–416. 



 

 61 

Ikonomou, L., Schneider, Y.-J., & Agathos, S. N. (2003). Insect cell culture for industrial production 

of recombinant proteins. Applied Microbiology and Biotechnology, 62(1), 1–20. 

doi:10.1007/s00253-003-1223-9 

Jorio, H., Tran, R., Meghrous, J., Bourget, L., & Kamen, A. (2006). Analysis of baculovirus aggregates 

using flow cytometry. Journal of Virological Methods, 134(1-2), 8–14. 

Klein, E. (2000). Affinity membranes: a 10-year review. Journal of Membrane Science, 179(1-2), 1–

27. 

Kost, T. A., & Condreay, J. P. (1999). Recombinant baculoviruses as expression vectors for insect and 

mammalian cells. Current Opinion in Biotechnology, 10(5), 428–433. 

Kurien, B. T., & Scofield, R. H. (2006). Western blotting. Methods (San Diego, Calif.), 38(4), 283–

293. 

Laemmli, U. K. U. (1970). Cleavage of Structural Proteins during the Assembly of the Head of 

Bacteriophage T4. Nature, 227(5259), 680–685. 

Lesch, H. P., Makkonen, K.-E., Laitinen, A., Määttä, A.-M., Närvänen, O., Airenne, K. J., & Ylä-

Herttuala, S. (2011). Requirements for baculoviruses for clinical gene therapy applications. 

Journal of Invertebrate Pathology, 107, S106–S112. 

Maiorella, B., Inlow, D., Shauger, A., & Harano, D. (1988). Large-Scale Insect Cell-Culture for 

Recombinant Protein Production. Bio/Technology, 6(12), 1406–1410. 

McCutchen, B. F., Choudary, P. V., Crenshaw, R., Maddox, D., Kamita, S. G., Palekar, N., … Maeda, 

S. (1991). Development of a Recombinant Baculovirus Expressing an Insect-Selective 

Neurotoxin: Potential for Pest Control. Bio/Technology, 9(9), 848–852. 

Montgomery, D. C. (2009). Chapter 2 Simple Comparative Experiments. In Design and Analysis of 

Experiments (7th editio., pp. 23–59). Hoboken, NJ: Wiley. 

Morenweiser, R. (2005). Downstream processing of viral vectors and vaccines. Gene Therapy, 12, 

S103–S110. 

Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual 

review of entomology, 44, 257–289. doi:10.1146/annurev.ento.44.1.257 

Natrix Separations. (2008). 50mm Syringe Column Q NX1100 Information Sheet (p. 2). 

Negrete, A., & Kotin, R. M. (2008). Strategies for manufacturing recombinant adeno-associated virus 

vectors for gene therapy applications exploiting baculovirus technology. Briefings in Functional 

Genomics & Proteomics, 7(4), 303–311. 



 

 62 

O’Reilly, D. R., Miller, L. K., & Luckow, V. A. (1993). Baculovirus Expression Vectors: A Laboratory 

Manual (p. 347). Oxford University Press. 

Orr, V., Zhong, L., Moo-Young, M., & Chou, C. P. (2013). Recent advances in bioprocessing 

application of membrane chromatography. Biotechnology advances, 31(4), 450–465. 

Rohrmann, G. F. (1992). Baculovirus structural proteins. Journal of General Virology, 73(4), 749–761. 

Roldão, A., Oliveira, R., Carrondo, M. J. T., & Alves, P. M. (2009). Error assessment in recombinant 

baculovirus titration: evaluation of different methods. Journal of Virological Methods, 159(1), 

69–80. 

Roldão, A., Vicente, T., Peixoto, C., Carrondo, M. J. T., & Alves, P. M. (2011). Quality control and 

analytical methods for baculovirus-based products. Journal of Invertebrate Pathology, 107, S94–

S105. 

Segura, M. M., Kamen, A. A., & Garnier, A. (2011). Overview of current scalable methods for 

purification of viral vectors. Methods in Molecular Biology (Clifton, N.J.), 737, 89–116. 

Sheehan, D., & O’Sullivan, S. (2004). Fast Protein Liquid Chromatography. In P. Cutler (Ed.), Protein 

Purification Protocols SE - 27 (Vol. 244, pp. 253–258). Humana Press. 

Shen, C. F. C., Meghrous, J., & Kamen, A. (2002). Quantitation of baculovirus particles by flow 

cytometry. Journal of Virological Methods, 105(2), 321–330. 

Shuler, M. L., Cho, T., Wickham, T., Ogonah, O., Kool, M., Hammer, D. A., … Wood, H. A. (1990). 

Bioreactor Development for Production of Viral Pesticides or Heterologous Proteins in Insect Cell 

Cultures. Annals of the New York Academy of Sciences, 589(1 Biochemical E), 399–422. 

Striegel, A. M., Yau, W. W., Kirkland, J. J., & Bly, D. D. (2009). Retention. In Modern Size-Exclusion 

Liquid Chromatography (pp. 18–48). John Wiley & Sons, Inc. 

Transfiguracion, J., Jorio, H., Meghrous, J., Jacob, D., & Kamen, A. (2007). High yield purification of 

functional baculovirus vectors by size exclusion chromatography. Journal of Virological Methods, 

142(1-2), 21–28. 

Transfiguracion, J., Mena, J. A., Aucoin, M. G., & Kamen, A. A. (2011). Development and validation 

of a HPLC method for the quantification of baculovirus particles. Journal of chromatography. B, 

Analytical Technologies in the Biomedical and Life Sciences, 879(1), 61–68. 

Urh, M., Simpson, D., & Zhao, K. (2009). Affinity chromatography: general methods. Methods in 

Enzymology, 463, 417–438. 



 

 63 

Vicente, T., Fáber, R., Alves, P. M., Carrondo, M. J. T., & Mota, J. P. B. (2011). Impact of ligand 

density on the optimization of ion-exchange membrane chromatography for viral vector 

purification. Biotechnology and Bioengineering, 108(6), 1347–1359. 

Vicente, T., Mota, J. P. B., Peixoto, C., Alves, P. M., & Carrondo, M. J. T. (2011). Rational design and 

optimization of downstream processes of virus particles for biopharmaceutical applications: 

Current advances. Biotechnology Advances, 29(6), 869–878. 

Vicente, T., Peixoto, C., Carrondo, M. J. T., & Alves, P. M. (2009). Purification of recombinant 

baculoviruses for gene therapy using membrane processes. Gene therapy, 16(6), 766–75. 

Vicente, T., Peixoto, C., Mota, J. P. B., Carrondo, M. J. T., & Alves, P. M. (2011). Optimizing 

Downstream Processing of Enveloped Viruses. Genetic Engineering & Biotechnology News, 

31(2), 34–35. 

Vicente, T., Sousa, M. F. Q., Peixoto, C., Mota, J. P. B., Alves, P. M., & Carrondo, M. J. T. (2008). 

Anion-exchange membrane chromatography for purification of rotavirus-like particles. Journal 

of Membrane Science, 311(1-2), 270–283. 

Wickham, T. J., & Nemerow, G. R. (1993). Optimization of growth methods and recombinant protein 

production in BTI-Tn-5B1-4 insect cells using the baculovirus expression system. Biotechnology 

Progress, 9(1), 25–30. 

Wood, H. A., & Granados, R. R. (1991). Genetically engineered baculoviruses as agents for pest control. 

Annual Review of Microbiology, 45, 69–87. 

Wu, C., Soh, K. Y., & Wang, S. (2007). Ion-exchange membrane chromatography method for rapid 

and efficient purification of recombinant baculovirus and baculovirus gp64 protein. Human Gene 

Therapy, 18(7), 665–672. 

Yang, Y., Lo, S.-L., Yang, J., Yang, J., Goh, S. S. L., Wu, C., … Wang, S. (2009). Polyethylenimine 

coating to produce serum-resistant baculoviral vectors for in vivo gene delivery. Biomaterials, 

30(29), 5767–5774. 

Zhong, L., Scharer, J., Moo-Young, M., Fenner, D., Crossley, L., Honeyman, C. H., … Chou, C. P. 

(2011). Potential application of hydrogel-based strong anion-exchange membrane for plasmid 

DNA purification. Journal of chromatography. B, Analytical Technologies in the Biomedical and 

Life sciences, 879(9-10), 564–572. 

 



 

 64 

Appendix A  

Calibration and Optimization of BD FACSCalibur Flow Cytometer 

for In-House Virus Quantitation 

A.1 Overview 

Flow cytometric virus assays offer a labor-saving, low-variability, and process-efficient way to 

generate reliable virus titration results (Roldão, Oliveira, Carrondo, & Alves, 2009). A specific flow 

cytometric method for baculovirus quantitation has been published by Shen et al. (2002). This latter 

method, however, was developed using an EPICS XL-MCL flow cytometer (Beckman Coulter, Miami, 

FL) with EXPO™ 32 software, which brings into question how generic is the protocol? Can this method 

be used with other instruments? In this thesis, the method developed by Shen et al. is used, but particles 

are analyzed using a BD FACSCalibur Flow Cytometer (BD Biosciences, Mississauga, ON, Canada). 
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A.2 Materials and methods 

A.2.1 Flow cytometry 

Baculovirus samples were analyzed using a FACSCalibur Flow Cytometer (BD Biosciences, 

Mississauga, ON, Canada) equipped with a 15 milli watt 488 nm argon-ion laser.   

A.2.1.1 Standardization reagent 

Flow-Set™ Pro 3 μm (nomial diameter) Fluorospheres (Beckman Coulter Canada, Missisauga, 

ON, Canada) were used for day-to-day instrument calibration. The fluorosphere emits fluorescence 

between 515-800 nm when excited at 488 nm. 

A.2.1.2 Flow cytometry analysis 

Samples were treated for SYBR Green I staining and then transferred to 5 mL non-sterile 

disposable BD Falcon™ Polystyrene Round-Bottom Tubes (BD Biosciences, Mississauga, ON, 

Canada) and analyzed using the flow cytometer (BD Biosciences, Mississauga, ON, Canada). All the 

samples were prepared in duplicate and measured for 30 s at a flow rate of 12 μL/min. The instrument 

settings were optimized for consistent quantitation and appropriate resolution, as described in the 

following section. Flow cytmetry readings were collected using CellQuest Pro (BD Biosciences, 

Mississauga, ON, Canada), and subsequently processed and analyzed using Flowjo (Treestar Inc., 

Ashland, OR, United States). 
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Figure A-1 Data processing of flow cytometer. The laser strikes single partcles to generate emissions at different wavelenghts. 

The emitted lights are directed by bypass band filters into corresponding detectors and coverted into voltage pulses. Then data 

processor transforms the voltage signals into digital values and plots the particles as a point with its singal values. 

A.3 Results and discussion 

A.3.1 Instrument parameters 

Instrument settings are critical for the successful application of flow cytometry to virus detection. 

When a particle is interrogated by the instrument, a number of signals are collected from it, including 

forward-scatter (FSC), side-scatter (SSC), and laser channels (FL1, FL2, and FL3) (Figure A-1). These 

parameters are discussed in this section. 
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A.3.1.1 Scatters 

When the laser beam strikes a cell, two kinds of scatters are detected by the sensors  

(Figure A-2A): forward scatter, which correlates to the relative size of the particle, and side scatter, 

which refers to granularity or density of the particle. When dealing with viruses, there is little to no 

forward scatters; however, there is a significant amount of side scatter (Figure A-2B).7This side scatter 

can sometimes be a unique identification of different viruses (Brussaard, Marie, & Bratbak, 2000). 

 
Figure A-2 A. Forward scatter and side scatter generated from a typical cell. B. Forward scatter and side scatter from a 

baculovirus. 

 

A.3.1.2 Fluorescence 

When a fluorochrome absorbs light at certain wavelengths, it is excited and emits fluorescence. 

The SYBR® green I fluorescent dye used in virus detection emits fluorescence at 520 nm when it binds 

to DNA and is excited at 488 nm. The emission is collected in the FL1 channel (through a 530 nm 

bandpass filter). 

A.3.1.3 Threshold and voltage 

When a sensor receives a light signal, it generates a pulse based on the light intensity and time 

and converts this pulse into an electric voltage, which will be processed by the electronics system. The 

electric voltage can be linearly amplified by increasing the detector amplifying voltage.  
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To eliminate unwanted low voltage noises, the system uses thresholds to screen any possible 

interference. Basically, any particles, generating signals that below the major threshold, are excluded 

from data acquisition. A major threshold can be assigned to any one of the parameters. Since the FL1 

channel collects most of the viruses’ emission, it is therefore set as the major threshold in the study. 

A.3.1.4 Data display 

As shown in Figure A-1, when a single particle passes the laser beam, a number of light signals 

are detected, and converted to voltage values by the correspondent sensors and data-processing system, 

in terms of FSC, SSC, and FL1 to FL3. When a particle suspension is subjected to flow cytometry 

analysis, the distribution of signals under various types (FSC, SSC, FL1, FL2, and FL3) from the 

population is obtained as a histogram. By correlating any two of the parameters, a particle is 

transformed into a point using its parameter values as its position. Therefore, using a two-dimensional 

dot plot, one can differentiate multiple species within a solution. Additionally, the software’s gating 

function can further extract detailed information for each population such as particle number, 

fluorescence distribution, scatter distribution, etc. 

A.3.2 Detection of fluorospheres 

Standardized fluorospheres are important to flow cytometry based methods. It is a calibrating 

regent that can reflect minor fluctuations in the flow cytometer’s flow rates when they are put through 

the instrument. Due to good uniformity in terms of fluorescent intensity, density and size, a Flow-Set™ 

Pro Fluorospheres (Beckman Coulter Canada, LP., Mississauga, ON, Canada) solution has been used 

as a reference to determine instrument settings for baculovirus quantification (Brussaard et al., 2000; 

Shen et al., 2002). 
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Figure A-3 2-D dot plots during detection of Flow Set in SSC vs. FSC and SSC vs. FL1 scales 

 

The Flow-Set fluorospheres were diluted 20 times and put through the flow cytometer at a flow 

rate of 12 μL/min (instrument settings given in Table A-1). The major threshold was set to FL1 to 

eliminate background noise when high FL1 amplifying voltages were used. Upon acquisition, a distinct 

group of particles was observed. The group can be seen in Figure A-3 as a population of 330 particles 

from both FSC vs. SSC and SSC vs. FL1 scales. This number was converted with Equation (3-1) to 

obtain the actual particle concentration in the initial solution. A resulting concentration of  

1.1 × 106 particles/mL reflected excellent consistency with the reported concentration of the control 

(1.0 × 106 particles/mL). 

 

Table A-1 Instrument settings for fluorosphere detection. 

Parameter Value Threshold 

Flow rate 12 μL/min n/a 

FSC E00 n/a 

SSC 330 n/a 

FL1 480 52 

Flow Flow 
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A.3.3 Finding baculovirus using the flow cytometer 

 
Figure A-4 A. 2-D dot plot at SSC and FL1 scale. An aliquote of 900X diluted baculovirus stock solution was subjected to 

sample preparation procedure and put through the flow cytometry for 30s. B. Histogram of particle count versus SSC form 

the same sample in A. “SSC-H-” is the gate covering the particles with a fluorescence intensity less than 1. “SSC-H+” is the 

gate that summrizes the total particle number outside “SSC-H-”. 

 

Using the instrument settings for the fluorospheres as a starting point, the detection of 

baculovirus began with testing a baculovirus sample mixed with fluorospheres (Figure A-4). The 

fluorospheres were added to a 900 × diluted baculovirus stock to a final concentration of 2 % (v/v). 

After the mixture was put through the flow cytometry, the fluorescent beads appeared within the region 

of SSC: 50-100 and FL1: 2000-3600, which is consistent with the Flow-Set region in  

Figure A-4A. 

In the lower SSC region, a group of particles occurred between FL1 values 10 to 100  

(Fig. A-4A). This could be the potential baculovirus group. However, in the FL1 histogram  

(Fig. A-4B), there is a peak between the FL1 values of 1 to 10, which does not agree with the potential 

virus group in the 2-D scale. Further analysis based on the SSC histogram pointed out that over 94.6% 
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of the total particles in the plot exist near the x-axis. This result means that the majority of the detected 

particles had a very small SSC signal (less than 2), which hampered the overall resolution of the 

particles. Given that the same protocol was followed as described in Shen et al. (2002), the differences 

in instrument sensitivity or software resolving power might lead to the difference in data display.  

Shen et al. (2002) reported an SSC scale ranging from 0.1 to 1000, while the current instrument 

plots the data at an SSC scale of 1 to 10000. The major viral group in Shen et al. (2002)  appeared in 

the lower-than-100 SSC region, which exceeded the lower SSC limitaton with the BD Calibur Flow 

Cytoemter. Therefore, to properly resolve the baculoviruses, further instrument optimization is needed. 

A.3.3.1 Improving resolution by higher amplifying SSC voltage  

Based the analysis in the previous section, the same 900 × diluted virus sample was analyzed 

again with a new set of new voltages given below (Table A-2). 

Table A-2 Instrument settings for virus detection. 

Parameter Value Threshold 

Flow rate 12 μL/min  

FSC E00 n/a 

SSC 390 n/a 

FL1 480 52 

 

While the SSC voltage increased, the side scatter signals of the particles were strengthened, 

resulting in an elevation of the particles’ position in the y direction (SSC) (Fig. A-5). The group near 

the bottom axis moved upwards, revealing a denser particle region in the FL1 region of 0-50. However, 

quantification results still indicated roughly 90 % of the total particles remaining near the plot bottom, 

with SSC values lower than 2. It should be noted that the increase in SSC also elevated the position of 
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the Flow-Set. By further enhancement in the SSC voltage, the Flow-Set group was no longer well-

resolved, as its position exceeded the maximum y-axis value. 

 
Figure A-5 2-D dot plot at SSC vs. FL1 scale of an aliquote of 900 X diluted baculovirus stock solution. The fluorospheres 

were mixted with the aliquote. 

 

Figure A-6 shows a 2-D dot plot with SSC vs. FSC scale at instrument settings of SSC 660 and 

FL1 480 (Table A-3). Proper resolution of the major potential baculovirus group was finally obtained. 

A tail-shaped secondary virus group occurs in the FL1 region of 10 to 100, which corresponds to virus 

aggregation (Jorio, Tran, Meghrous, Bourget, & Kamen, 2006). 

 

Table A-3 Instrument settings 

Parameter Value Threshold 

Flow rate 12 μL/min  

FSC E00 n/a 

SSC 660 n/a 

FL1 480 52 

 

Flow Set 

SSC histogram,  

90% of the particles have SSC lower than 1 
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Figure A-6 2-D dot plot with SSC vs. FSC scale at instrument setting of SSC 660 and FL1 480 of the stock recombinant 

baculovirus.  

A.3.4 Negative control 

In addition to the identification of the major virus population, it is also necessary to consider the 

interference from the other species’ particles that can potentially overlap with this preliminary virus 

region. An experiment was carried out to identify any background noises from reagents in the protocol. 

A blank solution was prepared as described by Shen et al. (2002), with the virus solution replaced by a 

PBS buffer.  

As depicted in Figure A-7, the particles detected in the blank solution present little overlay over 

the major virus region in Figure A-6. By proper gating analysis, the particle count from the reagents 

can be removed from the true virus count. 

Flow-Set, out of view 

Less than 10% of the particles in the 

low SSC region 

Virus 

Region 
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Figure A-7 2-D dot plot of a blank solution: a mixture of 20 μL of 2 % (v/v) paraformaldehyde, 10 µL of 10 % (v/v) Triton-

X 100, 20 μL of 200 X diluted SYBR Green I, and 950 μL of PBS. 

A.3.5 Dilution test 

To further validate the established gating analysis for baculovirus (shown as the “virus region” 

in Figure A-6), a set of virus solutions was prepared with serial dilutions of 300 and 900. Therefore, 

when subjected to flow cytometry testing, the counts of particles in the virus region should reflect the 

dilution factor applied to the virus solution, while the number of background noises should remain 

roughly constant. The results are summarized in Figure A-8. The gated count significantly declines 

when the dilution factor increased from 300 to 900, while the counts of the background noise region 

are relatively stable. The limited effect of dilution on background noises suggests that the noises are 

reflective of the constant fraction of the reagents. The ratio of the count in the 300  diluted sample to 

the count in the 900 sample is 2.93, which agreed with the change in the dilution factors and 

demonstrates the reliability of the flow cytometry measurement. 

 

>80% of the particles detected 

were on the upper limit 
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Figure A-8 Particle count of gated regions of diluted baculovirus samples. “Gated Count” refers to the particle number in the 

virus region and “Noise” refers to the total partcle number outside the virus region. 

A.3.6 RT-PCR vs. Flow Cytometry Linearity Validation 

A series of virus stock dilutions were prepared for validation test of flow cytometry acquired 

virus titres. RT-PCR method has been used for linearity examination of the flow cytometry data.  
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Figure A-9 Comparison analysis of RT-PCR and flow cytometry acquired data. (n=4 for RT-PCR; n=2 for flow cytometry) 

 

Based on Figure A-9, consistent trend in virus titres was reflected both with flow cytometry and 

RT-PCR. The virus titres based on gp64 DNA segments are generally 12.6 times higher than those 

based on virus particles. 

A.3.7 Virus production 

An insect cell culture at a cell density of 2  106 cells/mL in Gibco® Sf-900™ III serum-free 

media was infected with a MOI of 1. Then 1 mL aliquot of the culture was taken for flow cytometry 

analysis at 24 hours, 48 hours, and 96 hours post infection (hpi). Based on the flow cytometry resuts,  

a virus production curve was plotted (Figure A-10). The baculovirus production kinetics agreed with 

published results (Shen et al., 2002). 
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Figure A-10 Production kinetics of the recombinant baculoviru in Sf9 cells and Gibco® Sf-900™ III serum free media in a 

30 mL shake-flask experiment. 

A.3.8 Benzonase® Digestion Study 

Benzonase® Nuclease (EMD Millipore, MA, USA) is a genetically engineered endonuclease. It 

degrades all forms of DNA and RNA. Since the flow cytometric detection of baculovirus depends on 

the use of SYBR Green I, which stains double stranded DNA, the existing free DNA in the virus 

solution can produce considerable amount of error in the results. To obtain reliable baculovirus titres, 

this study investigated the influence of Benzonase® on the baculovirus quantitation. 
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Figure A-11 The effect of Benzonase® treatment on flow cytomtric data acquisition. The left graph depicts the distribution 

change in FL1 scale and the right graph shows the distribution change in SSC scale. 

 

The Benzonase® treatment procedures were carried out according to (Jorio et al., 2006). Three 

aliquots were taken from the original baculovirus stock. Two of the stock samples were treated with 

the Benzonase® procedures for 30 min and 60 min, respectively, while the other stock sample was the 

control. Then, all of these samples were subjected to flow cytometric assay to acquire virus titres. The 

histograms above (Figure A-11) show the distribution of particle numbers against their relative 

fluorescence intensities and their side scatters. In the green fluoresce histogram, two distinct 

populations are identified. In the results of the the control sample, between the fluorescence values 1 

and 7, there is a major particle peak which contains 65.5% of the total particles. A secondary group, 

with 34.6% of the total particles, was identified between the fluorescence values 7 and 1000. For the 

sample treated with the Benzonase® for 30 min, two distinct populations appeared as well, which were 

located at the same fluorescence ranges as the untreated the samples. Meanwhile, the peak height of the 

lower fluorescence group was significantly reduced. The secondary population peak, which represents 

the population of higher fluorescence, was only slightly reduced, compared to the huge change in lower 

Control 

30min 

Control 
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fluorescence population. Extended nuclease treatment did not reduce the population further, as shown 

in Figure A-12.  

 
Figure A-12 Effect of Benzonase® treatment on stock virus samples for different incubation times in two fluorescnece regions. 

 

The nuclease treatment decreased 41% of the total virus titre. The reduction in the lower 

fluorescence region is 58% while the higher fluorescence region lost 10% of the population. Jorio et al. 

suggested that the population with higher green fluorescence is virus aggregate, which are dense group 

of intact virus particles. Because Benzonase® only degrades double-stranded DNA, the virus count in 

the aggregation was not affected as the reagent cannot access to the encapsulated DNA within the virus. 

At the same time, the reduction of count in the lower fluorescence region was due to the digestion of 

free DNA by the nuclease. Meanwhile, the remaining population in the low fluorescence region was 

singular virus particles, as longer Benzonase® incubation had limited influence on these particles. 
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In the histogram of Side Scatter distribution, only a single population was found. In contrast to 

the fluorescent histogram, the SSC plot did not provide additional information on the nature of the two 

groups found in fluorescence graph. With 30 min Benzonase® treatment, the reduction of population 

with regard to SSC scale did not suggest any local trend but overall decline in the count. 

 
Figure A-13 Effect of Benzonase® treatment in eluted samples (n=2).  

 

The effect of Benzonase® addition was also evaluated for eluted samples. An aliquot from the 

permeating flow, during a 0.2 M NaCl elution process, was treated according the reaction protocol and 

was prepared for flow cytometric assays together with an untreated aliquot, which was the control. The 

flow cytometry procedure was done at the same operating parameters as the virus stock samples. 

The results indicated that the nuclease had minimal impact on the virus titre of the elution 

samples, as shown in Figure A-13. This finding suggested the low free double-stranded DNA content 

in the eluted samples, which did not cause significant overestimation to the titration, compared to the 

error in the quantitation of the stock virus samples. An explanation to this is the dsDNA’s charge 

property. Double-stranded DNA is negatively charged and irreversible bound to anion exchangers at 
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baculovirus’ pI, so the free DNA in the virus loading samples did not come to the permeate flow while 

the virus particles were being eluted. The consistent titres of the eluted sample before and after nuclease 

digestion also illustrate the potential to simultaneously remove genetic contaminants in a single process 

with the anion exchange chromatography.  

This chapter pointed out that the Benzonase® treatment is essential to virus loading solution for 

reducing free-DNA-induced errors in further quantitation analysis using a flow cytometry. For all the 

existent results obtained in the past, an adjustment to the virus titres of positive control samples at a 

40% reduction has been made to the works in this thesis. 

 

A.4 Summary 

By investigating the compatibility of the published protocol with the commercial flow cytometer, 

the appropriate operating parameters were identified: FSC: E00, SSC: 660 and FL1: 480. The dilution 

tests proved good linearity with this instrument. Negative control experiments further improved the 

accuracy of gating analysis for the baculovirus. The comparison analysis over a series of diluted 

samples using both RT-PCR and flow cytometry presented consistent correlation between the data from 

these two methods. The kinetics concluded from flow cytometric results during baculovirus production 

provided strong evidence that the results were reliable. And finally, the Benzonase® digestion study 

implied the DNA interference, and provided essential correction to flow cytometry data. Therefore, 

given all the adjustment in this appendix, the flow cytometry is therefore used for baculovirus 

quantitation. 
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Appendix B  

Characterization of the hydrogel material’s microstructure using 

scanning electron microscopy 

To further investigate the physical hindrance occurred in baculovirus purification process using 

the current anion exchange membrane, the columns were disassembled and the membranes were 

subjected to SEM imaging. 

 

Figure B-1 Membrane column assembly. 

As seen in B-1, the column contains two layers of membranes. Here, the upper side of the two 

layers is denoted as “top” while the other side is denoted as “bottom”. Both of the two sides were 

scanned using SEM. 
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Figure B-2 SEM image of “top” side of a untreated membrane. 
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Figure B-3 SEM image of the “bottom” side of a untreated membrane. 
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Figure B-4 SEM image of the “top” side of layer 1 from a membrane used in normal flow purifcation. 
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Figure B-5 SEM image of the “bottom” side of layer 1 from a membrane used in normal flow purifcation. 
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Figure B-6 SEM image of the “top” side of layer 2 from a membrane used in normal flow purifcation. 
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Figure B-7 SEM image of the “bottom” side of layer 2 from a membrane used in normal flow purifcation. 
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Figure B-8 SEM image of the “top” side of layer 1 from a membrane used in reverse flow purifcation.  
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Figure B-9 SEM image of the “bottom” side of layer 1 from a membrane used in reverse flow purifcation. 
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Figure B-10 SEM image of the “top” side of layer 2 from a membrane used in reverse flow purifcation. 
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Figure B-11 SEM image of the “bottom” side of layer 2 from a membrane used in reverse flow purifcation. 

  



 

 93 

Appendix C  

Sample calculation for Micro BCA assay 

 
Figure C-1 Caliburation curve for absorbance at 562 nm. BSA samples over a linearge range from 2.5 – 200 μg/mL. the 

trendline shows a second order polynomial approximation to the date point. Error bars indicate standard error at n=2. 

 

The sample calculation for total protein is based on a standard curve, generated by absorbance 

of serial dilutions of BSA samples. A second order polynomial approximation was used to evaluate the 

correlation between sample absorbance at 562 nm and its protein content. 

The absorbance of samples collected in purification processes are converted to protein 

concentration using the polynomial equation, where y is the protein concentration and x is the corrected 

absorbance.0 

y = 11.63x2 + 64.413x - 7.4678
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