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Abstract 

Frequent human activities resulted by rapid urbanization lead to a variety of urban-related 

environmental and socio-economic issues. Therefore, for effective environmental management 

and urban planning, monitoring urban growth and detecting its resulting land use and land 

cover (LULC) change is very important. Most of the previous studies focused on bi-temporal 

or coarsely multi-temporal change detection to extract stationary change information over a 

time span. However, higher-order change information, for instance, acceleration or 

deceleration of urban growth, which would not be observed by bi-temporal method, is more 

meaningful information for policy makers to understand the urbanization process. 

 

With the free access to the USGS Landsat archive and development of remote sensing 

techniques, detecting urban growth pattern (intensification or sprawl) and LULC change 

dynamics with temporally high frequent datasets become possible. In this study, bi-temporal, 

multi-temporal and long-term annual change detection were applied to the Region of Waterloo, 

Ontario, Canada, to identify the urban growth pattern and LULC change dynamics. 

Classification was performed for each scene to extract LULC information from 1984 to 2013.  

 

This study demonstrates that machine learning classifiers, such as support vector machine 

(SVM), random forest (RF) and artificial neural network (ANN), perform better than classical 

maximum likelihood classifier (MLC), among which SVM performs the best. Total urban 

built-up area of the Region of Water increased from 30% in 1984 to 55% in 2013, replacing 

large area of vegetated area (agricultural lands and grassland. Outward (sprawl) and inward 

(intensification) growth patterns were detected both spatially and temporally. Within this time 
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span, built-up area experienced a relatively accelerating growth in 1990s and in early 2000s. In 

terms of long-term record, Kitchener had the fastest growing rate of low-density built-up 

(residential) area. The coverage of high-density built-up (commercial and industrial) area in 

Cambridge increased most dramatically. And the built-up area of Waterloo experienced the 

lowest growth rate. These important findings indicate that using long-term temporal-dense 

Landsat datasets enables monitoring of urban growth and LULC change dynamics. Such 

valuable long-term results can be used for better analysis of urban growth and LULC change 

patterns for planners and policy makers to comprehensively understand the urbanization 

process in the past and make better planning in the future. 
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Chapter 1 Introduction 

1.1 Urbanization of the Region of Waterloo  

To date, the entire world is continuously experiencing rapid urbanization (Kressler & 

Steinnocher, 1996; Ridd & Hipple, 2006). The Region of Waterloo, located in southern Ontario 

and comprised of cities of Waterloo, Kitchener, Cambridge, along with four rural townships 

(North Dumfries, Wellesley, Wilmot, and Woolwich), is one of the rapidest growing regions in 

Canada after its formation in 1973 (RGMS, 2006; Region of Waterloo, 2010). With its fast 

industrialization process, advanced technology and innovation in recent decades, the Region of 

Waterloo, also represented as Canada’s Technology Triangle (CTT) (CTT, 2013), has attracted 

lots of investment and experienced rapid economic growth (Region of Waterloo, 2010). 

Consequently, numerous job opportunities, abundant social services and comfortable living 

environment appealed to more people to settle down here (RGMS, 2006). Based on census data 

from Statistics Canada (2011), population of urban area of Waterloo Region has increased by 

5.7% to more than 470,000 from 2006 to 2011. With such tremendous population growth, 

urban area of Waterloo Region is now ranked as the 4
th

 largest in Ontario and 10
th

 largest in 

Canada (Statistics Canada, 2011).  

In terms of constant and rapid population growth, the regional community keeps 

growing (RGMS, 2006). From environmental perspective, urban growth, mainly caused by 

population growth and frequent human activities, such as industrialization, migration from 

rural to urban area and resettlement (Bhatta, 2010; Ridd & Hipple, 2006), will inevitably lead 

to land use changes and landscape pattern alteration at local and regional scale (Yin et al., 2011; 

Gluch, 2002; Tan & Lim, 2010; Stefanov et al., 2001; Deng et al., 2009; Sundarakumar et al., 
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2012). Those changes include losses of agriculture fields, water bodies, forest and other 

vegetated green spaces and non-vegetated fields (Yang, 2002; Sexton et al., 2013; 

Sundarakumar et al., 2012; Yin et al., 2011). Disturbance of natural environment by urban 

growth can bring about various urban environmental issues, such as climate change, urban heat 

island effect, water quality deterioration, vegetation degradation, increased flooding risk, 

decreased air quality and so on (Bhatta, 2010; Sexton et al., 2013; Li et al., 2011; Tan & Lim, 

2010; Sundarakumar et al., 2012; Nong & Du, 2011; Thapa & Murayama, 2009). Additionally, 

increased population density, housing condition, education, employment, public facilities 

accessibility, infrastructure sufficiency, and quality of life and so on are important socio-

economic issues accompanying urban expansion (Bhatta, 2010; Thapa & Murayama, 2009; 

Patino & Duque, 2013; Gluch, 2002).  

To maintain sustainability and quality of life, effective and practical growth strategies 

and planning policies are requested by Regional Council of Region of Waterloo (RGMS, 2003). 

“Enhancing our natural environment and building vibrant urban places” are two foremost goals 

stated in final revised Regional Growth Management Strategy (RGMS) in 2003. More specific 

acts and planning policies were made and finalized in Regional Official Plan (ROP) in 2010 to 

ensure successful implementation of the strategy. Therefore, consistent monitoring of urban 

growth and land use and land cover (LULC) change at local and regional scale is an urgent 

need to planners and policy makers to understand change dynamics of urban area of the Region 

of Waterloo. 

1.2 Motivations of the Study 

With recent development of remote sensing technologies and increased remotely sensed 

data availability, identifying detailed spatial and temporal changes of urban areas and 
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monitoring urban growth and LULC change have become more cost-effective and successful 

(Thapa & Murayama, 2009; Patino & Duque, 2013; Lunetta et al., 2004).  To date, various 

change detection methods have been explored and developed for detecting urban growth and 

LULC change analysis (Singh, 1989). From a technical perspective, image algebra (image 

differencing and image ratioing), principal component analysis (PCA), post-classification 

change detection (PCCD), direct multi-date classification, and change vector analysis (CVA) 

are most widely used methods for change detection (Singh, 1989; Almutairi & Warner, 2010; 

Coppin et al., 2004; Jensen, 2005). From an application perspective, most of the previous 

studies on urban growth and LULC change detection were based on bi-temporal and coarsely 

multi-temporal analyses.  

Even though bi-temporal analysis and coarsely multi-temporal analysis have their own 

advantages of providing useful change information, they are unable to observe dynamic change 

patterns and higher-order complexities, such as acceleration, deceleration of specific LULC 

change within a long-term time span (Sexton et al., 2013). The dynamic change patterns 

include spatially and temporally complex changes in water, forest, agriculture, and urban built-

up area caused by natural and anthropogenic processes (Sexton et al., 2013). Moreover, the 

impacts on ecosystems caused by frequent human activities exhibit nonlinearities, time lags, 

and legacy effects, and the change dynamics is only able to be detected by long-term 

repeatedly measurements (Sexton et al., 2013). Urban area development is a very complex 

process (Hodge & Gordon, 2008; Thapa & Murayama, 2009). Specifically, urban expansion 

and land use changes are driven by economic factors, restricted by policies preserving 

environmental sensitive and vulnerable areas, and oriented by zoning and taxation policies 

(Sexton et al., 2013; Hodge & Gordon, 2008). Therefore, for better monitoring regional 
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complex LULC change, more comprehensively understanding the causes and consequences of 

urban expansion, and more accurately identifying typical patterns and trends required by 

planners and policy makers for better future planning and environmental management (Hodge 

& Gordon, 2008), long-term time series dynamic LULC change analysis using satellite images 

spanning multiple decades with sufficient temporal resolution is needed (Sexton et al., 2013).   

With the opening of Landsat archive from United States Geological Survey (USGS) in 

2009 (Woodcock et al., 2008; Sexton et al., 2013; Wulder et al., 2011), the increased demand 

of long-term time-serial analysis of urban growth and LULC change dynamics can be met 

(Sexton et al., 2013, Hansen & Loveland, 2012). Therefore, with the free access of Landsat 

archive, processing dense datasets with high frequency will shift research focus from analyzing 

static bi-temporal change to comprehending more detailed long-term change dynamics in 

which planners, policy makers and resource managers are much more interested  (Sexton et al., 

2013). 

In this study, bi-temporal, multi-temporal with 5-year interval and annual time-serial 

dynamic change detection methods were performed on Landsat images of urban area of 

Waterloo Region. Support vector machine (SVM) showed higher accuracy for extracting urban 

area LULC types than traditional maximum likelihood classifier (MLC) and other newly-

developed machine learning classifiers, such as artificial neural network (ANN) and random 

forest (RF). Results were discussed to reveal the advantages and limitations of using datasets 

with different temporal resolutions. Other than static “from-to” change information, urban 

growth patterns and corresponding long-term dynamic LULC change information were also 

identified for better understanding of urbanization process in the past and for better planning 

by planners and policy makers in the future.  
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1.3 Objectives of the Study 

The objectives of this study can be specified as follows: 

 To compare several recently-developed machine learning classifiers including 

artificial neural network (ANN), support vector machine (SVM) and random forest (RF) to 

evaluate urban area LULC classification performance. 

 To analyze LULC change dynamics of urban area of Region of Waterloo from 

1984 to 2013 based on bi-temporal, multi-temporal and annually intensive Landsat datasets. 

 To monitor and analyze long-term urban growth of Region of Waterloo and 

model the urban growth trend of City of Waterloo, City of Kitchener, and City of Cambridge 

respectively. 

1.4 Structure of the Thesis 

This thesis also consists of other five chapters. 

Chapter 2 reviews a variety of previous studies and applications showing the capability 

of Landsat data for monitoring and detecting urban growth and LULC change. 

Chapter 3 describes the study area and data acquisition; and points out the challenges of 

this study, especially for long-term dynamic LULC change analysis. 

Chapter 4 explains specific approaches utilized to reach the study objectives; and 

explains considerations of the methodology designed from both technical and practical 

perspectives. 

Chapter 5 presents and compares the major results obtained from different change 

detection schemes oriented by temporal resolutions. Urban growth and LULC change 
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dynamics are detected and monitored in great depth by annual interpretation of long-term 

Landsat records.  

Chapter 6 draws a conclusion comprised of contributions of the study, considerations of 

uncertainties and limitations, and recommendations of future studies. 
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Chapter 2 Literature Review 

Urbanization, caused by population growth, will lead to inward urban growth 

(intensification) and outward urban growth (sprawl) (Sexton et al., 2013). These processes 

inevitably result in LULC change which has great impacts on both natural ecosystems and 

human systems (Gillanders et al., 2008; Munthali & Murayama, 2011). Thus, detecting urban 

growth and its resulting LULC change is critical to planners, government agencies, 

hydrologists, ecologists, and so on. With the development of remote sensing technologies, 

reliable change detection results can be obtained. In this chapter, the applicability and 

availability of remotely sensed data, especially USGS Landsat archive, are introduced. 

Moreover, widely-used change detection methods and related previous studies are also 

reviewed here. In this study, LULC types were identified using a supervised classification 

method. Therefore, additionally, a variety of LULC classification methods are reviewed in this 

chapter. 

2.1 Satellite Data for Monitoring Urban Dynamics 

As information of distant objects can be gathered by remote sensing based on their 

reflected or emitted electromagnetic radiation (Patino & Duque, 2012; Jensen, 2007), LULC, 

urban morphology, vegetation distribution, and some other biophysical information can be 

extracted for planners and policy makers to analyze the urban environment (Pantino & Duque, 

2012). There are several benefits that urban area analysis can get from remote sensing 

technology. As Yang (2011) summarized, remote sensing images can cover a large area of land 

surface which gives a full view of the landscape of the urban area for better analyzing 

interactions between human and environment. Also, as for some urban studies that researchers 
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do field surveys to collect sampling data, using remote sensing data is more cost-effective and 

unbiased; and electromagnetic information gives researchers more knowledge about the study 

area than human visual perception (Tang et la., 2008; Tian et al., 2011; Yang, 2011). 

Additionally, retrospective measurements of land surface enable long-term time-series analysis 

of urban area to examine process of urbanization or human activities (Sexton et al., 2013). 

Moreover, remote sensing can be integrated with geographic information systems (GIS) 

incorporating other human variables for more spatio-temporal analyses to help understand the 

drivers of changes of urban area (Tang et al., 2008; Tian et al., 2011; Yang, 2011). 

 Therefore, in terms of its superiority to traditional research methods, remote sensing 

technology has been widely used and proved to be effective and reliable for monitoring urban 

growth and detecting LULC change (Munthali & Malawi, 2011; Sexton et al., 2013; Patino & 

Duque, 2013; Hansen & Loveland, 2012; Sundarakumar et al., 2012; Tian et al., 2011; Nong & 

Du, 2011; Tan & Lim, 2010; Gluch, 2002). Based on their availability and capability of urban 

area analysis, a variety of remote sensing sensors and their products will be introduced in this 

section, especially for Landsat archive data used in this study.  

2.1.1 Overview of Earth Observation Satellites and Sensors 

The beginning of remote sensing technology can be considered as the first aerial 

photographs taken in 1860s by Felix Tournachon (Patino & Duque, 2012). Since the late 1950s, 

aerial images have been used for urban area analyses. However, with the launch of several 

earth-orbiting satellites, the focus of studies has shifted from using aerial images to satellite-

based images because of their lower costs, wider area coverage, and frequent image updates 

(Pantino & Duque, 2012). Since the earliest satellite Landsat 1 with Multispectral Scanner 

(MSS) was launched in 1972, many satellites with various sensors in different spectral, spatial 
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and temporal resolutions were launched in the past four decades (Patino & Duque, 2012; 

Jensen, 2007; ITC, 2013). Based on the review of Patino and Duque (2012), Earth-orbiting 

satellite sensors, such as Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+), SPOT 1 to 5, QuickBird, IKONOS, NASA Terra Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) and Indian Remote Sensing (IRS-1C), 

are most often used earth observation (EO) systems in urban area studies. Specific 

characteristics of these EO systems are summarized in Table 2.1. Those characteristics include 

satellites, sensors, resolutions, life time on service, and organization.  
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Table 2.1 Most often used EO systems for urban area analysis 

Satellites Sensors Spectral 

Resolution 

Spatial Resolution  

(m) 

Temporal 

Resolution (Days) 

Launched 

in 

Out of Service 

Since 

Organization 

 

Landsat 1 

MSS 5 bands 
80 for visible and infrared bands 

240 for thermal infrared band 
18 

1972 1978 

NASA-USA 

Landsat 2 1975 1983 

Landsat 3 1978 1983 

Landsat 4 
MSS; TM 

7 bands for 

TM 

30 for visible and infrared bands 

60 for thermal infrared band 
16 

1982 2001 

Landsat 5 1984 2013 

Landsat 7 ETM+ 9 bands 

30 for visible and infrared bands 

60 for thermal infrared bands 

15 for panchromatic band 

16 1999 

 

Landsat 8 OLI; TRIS 11 bands 

30 for visible and infrared bands 

100 for thermal infrared bands 

15 for panchromatic band 

16 2013 

 

SPOT 1 

HRV 4 bands 
20 for visible and infrared bands 

10 for panchromatic band 
26 

1986 2002 

CNES-France 

SPOT 2 1990 2009 

SPOT 3 1993 1996 

SPOT 4 HRVIR 5 bands 
20 for visible and infrared bands 

10 for panchromatic band 

26 
1998 2013 

SPOT 5 HRVIR 5 bands 

20 for mid-infrared band 

10 for visible and near infrared bands 

2.5-5 for panchromatic band 

26 2002 

 

Astrium 

SPOT 6 NAOMI 5 bands 
6 for visible and near infrared bands 

1.5 for panchromatic band 
26 2012 

 

Terra ASTER 14 bands 

15 for visible bands 

30 for infrared bands 

90 for thermal infrared bands 

16 1999 

 

NASA-USA 

IRS-1C LISS-III 5 bands 
23.5 for multispectral bands 

5.8 for panchromatic band 
5 to 24 1995 2007 ISRO-India 

IKONOS IKONOS 4 bands 
4 for multispectral bands 

1 for panchromatic band 
3 1999 

 
DigitalGlobe 

QuickBird QuickBird 5 bands 
2.4 for multispectral bands 

0.6 for panchromatic band 
3 2001 

 
DigitalGlobe 
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Spatial resolution was considered as the most important factor for urban area analysis 

using remotely sensed data (Jensen & Cowen, 1999). However, based on characteristics listed 

below in Table 2.1, most of the images that are often used for identifying urban attributes 

successfully are with moderate spatial resolutions. Patino and Duque (2012) also stated that the 

moderate spatial resolution images are appropriate for detecting LULC change and monitoring 

urban growth trends, because historical images can be used dating back to 1970s. To illustrate 

the lengths of the archives of listed remote sensing systems, a time scale figure, showed as 

Figure 2.1, was generated by Patino and Duque (2012).  

 

Figure 2.1 Time scale of several remote sensing systems (Source: Patino & Duque, 2012) 

2.1.2 Introduction to USGS Landsat Archive Data 

Landsat project is the oldest satellite project in the United States for land-surface 

observation (Jensen, 2007). Landsat Project, initiated by National Aeronautics and Space 

Administration (NASA) and USGS, has launched 8 satellites to collect data of Earth surface to 

provide resources for people who manage regional development, who manage natural 

resources, and who do research in various environmental fields throughout the United States 

and worldwide (USGS, 2013). Based on Landsat Project Statistics on USGS website (2013), 

the most primary use of Landsat data is detecting LULC change, showed as Figure 2.2. As 
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established to routinely gather Earth resource information from space, Landsat satellites had 

very well performance during their missions, expect for Landsat 6 (USGS, 2013). To date, 

long-term record of global landscape information has been acquired since the first Landsat 

satellite launched in 1972 (USGS, 2013). To continue the mission of Landsat Project of 

observing land-surface information, Landsat 8, providing higher quality data, was recently 

launched on February 11, 2013 (USGS, 2013). 

 

Figure 2.2 Top 10 primary Landsat data uses (Source: USGS, 2013)  
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With technology development, sensors onboard Landsat satellites have been improved 

as well. Spectral and spatial information retrieved from USGS (2013) of each Landsat sensor 

are specified in Table 2.2. Landsat Multispectral Scanner (MSS) was the primary sensor placed 

on Landsat 1, 2, and 3. MSS have four multispectral bands from green to near-infrared (IR) 

with 80m resolution and one thermal band with 240m resolution only onboard Landsat 3. 

Thematic Mapper (TM) sensors were placed on Landsat 4 and 5 with two added shortwave 

infrared (SWIR) and one thermal band. Resolutions have been increased to 30m for visible and 

infrared bands and to 120m for thermal band. Enhanced Thematic Mapper Plus (ETM+) 

onboard Landsat 7 had one more panchromatic band in 15m resolution; and thermal band 

increased to 60m resolution. As for the newly launched Landsat 8, Operational Land Imager 

(OLI) sensor has eight spectral bands in 30 m resolution, adding one deep blue band and one 

cirrus band, and one panchromatic band in 15m resolution; and Thermal Infrared Sensor (TIRS) 

has two thermal bands with 100m resolution (USGS, 2013).  

In 2009, USGS opened Landsat archive data to the public for free access (Woodcock et 

al., 2008; Sexton et al., 2013; Wulder et al., 2011), enabling more studies can be conducted at 

local, regional, even global scale within a long time span (Hansen & Loveland, 2012). In this 

study, Landsat archive data were chosen to detect LULC change and monitor urban growth of 

Waterloo Region. Free access to Landsat archive makes it possible to obtain satellite images 

with no cost comparing to other commercial satellite images, such as IKONOS and QuickBird. 

More importantly, the longest record of Landsat archive data allows this study to detect long-

term trend of LULC change and monitor urban growth pattern.  
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Table 2.2 Band designations for Landsat sensors 

Sensor Spectral Bands Wavelength 

(µm) 

Resolution (m) 

MSS 

Landsat 1,2,3 Landsat 4,5 

4 – green 1– green 0.5 – 0.6 80 

5 – red 2– red 0.6 – 0.7 80 

6 – near-IR 3– near-IR 0.7 – 0.8 80 

7 – near-IR 4– near-IR 0.8 – 1.1 80 

8 – thermal 

(Landsat 3) 

 
10.4 – 12.6 240 

TM & ETM+ 

1 – blue – green 0.45 – 0.52 30 

2 – green 0.52 – 0.60 30 

3 – red 0.63 – 0.69 30 

4 – near-IR 0.76 – 0.90 30 

5 – SWIR 1 1.55 – 1.75 30 

6 – thermal 10.40 – 12.5 120; 60 (ETM+) 

7 – SWIR 2 0.98 – 2.35 30 

8 – panchromatic (ETM+) 0.52 – 0.90 15 

OLI & TIRS 

1 – coastal/ aerosol 0.43 – 0.45 30 

2 – blue 0.45 – 0.51 30 

3 – green 0.53 – 0.59 30 

4 – red 0.64 – 0.67 30 

5 – near IR 0.85 – 0.88 30 

6 – SWIR 1 1.57 – 1.65 30 

7 – SWIR 2 2.11 – 2.29 30 

8 – panchromatic 0.50 – 0.68 15 

9 – cirrus 1.36 – 1.38 30 

10 – thermal 1 10.60 – 11.19 100 

11 – thermal 2 11.50 – 12.51 100 

(USGS, 2013; Jensen, 2005)  
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2.2 Urban Growth and LULC Change Detection  

LULC change is the major component of global change that significantly influences the 

global climate and environment (Jensen, 2007; Yin et al., 2011). Therefore, monitoring and 

evaluating LULC changes has become one of the most important applications in remote 

sensing field (Almutairi & Warner, 2010; Alphan, 2011). In this section, most widely used 

digital change detection methods were introduced; and several applications of detecting LULC 

change and monitoring urban growth were reviewed as well.  

2.2.1 Overview of Widely Used Change Detection Methods 

As Singh (1989) defined, “change detection is the process of identifying differences in 

the state of an object or phenomenon by observing it at different times”. Changes can be 

detected because the radiance values of the objects also change along with LULC alterations 

(Singh, 1989). To effectively monitoring landscape change by observing satellite data, a 

variety of change detection methods have been developed and applied in many studies (Singh, 

1989; Jensen, 2005; Lu et al., 2004). Four important aspects of monitoring changes were 

suggested and summarized by Macleod and Congalton (1998), which are determination of 

whether or not the changes happened, identification of the nature of the changes, detection of 

the areal extent of the changes, and analysis of the change patterns. In terms of different 

purposes and objectives of applications, selecting an appropriate change detection method is 

very critical to obtain reliable results (Jensen, 2005; Lu et al., 2004). To illustrate and compare 

the key characteristics, advantages and disadvantages of the most often used change detection 

methods, Table 2.3 was generated in terms of some previous review works (Singh, 1984; 

Jensen, 2005; Lu et al., 2004; Coppin et al., 2004; Alphan, 2011; Lunetta & Elvidge, 1998). 
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The methods listed in Table 2.3 have been proved to be effective for detecting changes 

in various applications. Image algebra method can be used for monitoring forest canopy 

change (Hayes & Sader, 2001), monitoring irrigated crops (Manavalan et al., 1995), detecting 

land cover change (Kleynhans et al., 2011; Kaufmann & Seto, 2001), detecting mining process 

and land use change (Prakash & Gupta; 1998), and monitoring landscape change of coastal 

area (Alphan, 2011). Using PCA method, land cover change (Byrne et al., 1980; Parra et al., 

1996; Fung, 1990), forest conversion (Jha & Unni, 1994) can be detected. CVA is also can be 

used in vegetation degradation detection (Lunetta et al., 2004), desertification monitoring 

(Dawelbait & Morari, 2012), LULC change detection (Kontoes, 2008; Song & Cheng, 2011), 

and so on. As for PCCD method, thematic maps and valuable “from-to” change information 

can be obtained by PCCD (Jensen, 2005). Therefore, many applications focusing on LULC 

change and urban growth employed PCCD method to identify specific categories of LULC, 

and thus explore the change pattern and change effect on surrounding environment (Abd El-

Kawy et al., 2011; Zhou et al., 2011; Yuan et al., 2005; Sundarakumar et al., 2012; Peiman 

2011; Tan et al., 2010).  
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Table 2.3 Summary of most often used change detection methods 

Methods Characteristics Advantages Disadvantages Key Considerations 

Write Function Memory 

(WFM) 

Visual interpretation by 

inserting three individual 

bands from multiple dates 

into Red, Green, and Blue 

planes to highlight the 

change area. 

Quick visual interpretation 

of the change at two and 

even three dates;  

Normally not necessary to 

have atmospheric 

correction. 

No quantitative 

information; 

No “from-to” change 

class information. 

Determine 

appropriate bands. 

Image 

Algebra 

 

Image 

Differencing 

Subtract one image of one 

date from another image 

of second date. 

Simple and quick method 

to identify change/no 

change information; 

Normally not necessary to 

have atmospheric 

correction. 

No “from-to” change 

class information; 

Difficult to determine 

the threshold to 

distinguish change/no 

change information. 

Determine 

appropriate bands; 

Threshold should be 

identified carefully. 

Image 

Regression 

Identify the linear 

relationship between 

images from two dates. 

Subtract the first image 

from the regressed image.  

Impacts of atmospheric 

effect and sun angle effect 

can be reduced. 

No “from-to” change 

class information; 

Need to establish 

accurate regression 

model. 

Develop regression 

model; 

Determine 

appropriate bands 

and threshold. 

Image 

Ratioing 

Calculate the ratio of two 

images from two dates, 

band by band. 

Simple and quick method 

to identify change/no 

change information; 

Normally not necessary to 

have atmospheric 

correction. 

No “from-to” change 

class information; 

Difficult to determine 

the threshold to 

distinguish change/no 

change information. 

Determine 

appropriate bands; 

Select appropriate 

threshold. 

Vegetation 

Index 

Differencing 

Calculate vegetation index 

for two dates before using 

image differencing 

method. 

 

Difference of spectral 

features can be enhanced; 

Reduce impacts of 

topographic effects. 

Enhance random 

noise and coherent 

noise; 

Determine 

appropriate 

vegetation index; 

Select appropriate 

threshold. 



18 

 

Table 2.3 (Continued) 

Methods Characteristics Advantages Disadvantages 
Key 

Considerations 

Principal 

Component 

Analysis (PCA) 

Put bands from two dates into one 

single dataset. Perform PCA and 

analyze minor component which 

represents change information. 

Data redundancy can be 

reduced; 

Change can be visually 

interpreted from minor 

component; 

Normally not necessary 

to have atmospheric 

correction. 

Difficult to label 

change classes; 

Threshold is needed to 

identify change/no 

change information. 

Need skills to 

identify the 

component which 

represents the 

change 

information; 

Select appropriate 

threshold. 

Multi-date 

Composite 

Classification 

(MCC) 

Put bands from two or more dates 

into one single dataset. Supervised 

or unsupervised approach is used 

to extract change information. 

Requires only one 

classification. 

 

Data redundancy; 

Difficult to select 

training sites because of 

many change classes. 

Need thorough 

examination of the 

images to label the 

change classes. 

Change Vector 

Analysis (CVA) 

Direction and magnitude of 

change from one date to another 

date are generated. Direction 

vector determines the change 

types. Magnitude vector 

determines whether the change 

happens.  

Have ability to process 

any number of spectral 

bands; 

Detailed change 

information can be 

provided. 

Difficult to identify 

change trajectories. 

Determine 

direction of 

change; 

Identify threshold 

for magnitude of 

each change vector. 

Post 

Classification 

Change Detection 

(PCCD) 

Change information is obtained 

by comparing independently 

classified thematic maps. 

No atmospheric 

correction required; 

Provides “from-to” 

information; 

 

Requires two 

classifications; 

Accuracy of change 

information heavily 

relies on the accuracy 

of classification results. 

Sufficient training 

sample for 

classification. 

(Jensen, 2005; Lu et al., 2004; Lu et al., 2005) 
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2.2.2 Detecting LULC Change and Monitoring Urban Growth Using Landsat Data: 

An Overview 

Even though urban areas are quite small when looking down on the global landscape, 

their expansion is the primary cause of transformation of LULC types and is significant factor 

that has great influence on biodiversity, ecosystems, hydrology, and climate at local, regional, 

and global scales (Yang, 2011). Since the first Landsat satellite launched in 1972, observing 

the regional and global land surface and LULC change became possible throughout the United 

States and worldwide (USGS, 2013). Subsequently, a large number of applications and studies 

focusing on LULC change detection and urban growth emerged using Landsat data. With the 

significantly increased remote sensing data availability in recent two decades, for instance, the 

commercial satellite imagery with higher spatial resolution has evoked new studies and 

applications in urban area because it is possible to identify much finer objects in the complex 

urban systems (Patino & Duque, 2013). However, even today, Landsat data in medium spatial 

resolution is still a satisfactory data source for large regional LULC change detection and 

urban growth monitoring due to their longest historical record and global coverage (Hansen & 

Loveland, 2012). According to previous studies and applications, the usefulness of detecting 

LULC change and monitoring urban growth of a variety of methods has been proved using 

Landsat data.  

In remote sensing studies, impervious built-up land, which precipitation cannot 

penetrate through, is considered as an important indicator of urban land use (Sexton et al., 2013; 

Xu, 2007；Slonecker et al., 2001), including buildings, roads, parking lots, sidewalks, etc. 

(Slonecker et al., 2001). Since built-up land dominates urban area land cover, studies of 

monitoring urban expansion requires useful method to extract built-up area efficiently and 
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accurately (Xu, 2007). Because different land cover types show different spectral 

characteristics based on Landsat multispectral bands, some useful built-up indices have been 

developed to increase separability between built-up area and other land cover types (Waqar et 

al., 2012). Index-based built-up area extraction is a popular approach that many studies applied 

it to monitor growth of urban built-up areas (Jensen, 2005). In Table 2.4, several useful indices 

for extracting built-up areas derived by Landsat TM bands are listed.  

Table 2.4 Useful indices and their expressions 

Index Computed as 

NBI (new built-up index) TM3*TM5/TM4 

NDVI (normalized difference 

vegetation index) 
(TM4 – TM3)/(TM4 + TM3) 

NDBI (normalized difference 

built-up index) 
(TM5 – TM4)/(TM5 + TM4) 

SAVI (soil adjusted vegetation 

index) 

(1 + L) (TM4 – TM3)/(TM4 + TM3 + L) (L is a 

correction factor that adjust soil brightness variations) 

MNDWI (modified normalized 

difference water index) 
(TM2 – TM5)/(TM2 + TM5) 

NBAI (normalized built-up area 

index) 
(TM7 – TM5/TM2)/(TM7 + TM5/TM2) 

BRBA (band ratio for built-up 

area) 
TM3/TM5 

NDISI (normalized difference 

impervious surface index) 

[TM6 – (WI + TM4+TM5)/3]/[TM6 + (WI + 

TM4+TM5)/3] (WI is a water index) 

 

By setting NDVI threshold, binary built-up/non-built-up map can be extracted 

(Slonecker et al., 2001). Zhao and Chen (2005) and Zha et al. (2003) used the same method but 

employed NDBI to extract built-up lands. Masek et al. (2000) observed simple NDVI 

differencing map with ancillary unsupervised classification map for second date to distinguish 

true urban growth from vegetation phonological change of Washing DC metropolitan area. 

Chen et al. (2007) compared NBI, NDVI, and NDBI to discover that NBI shows better 

separation of built-up areas and other land cover types. To increase the accuracy of built-up 

area extraction, Xu (2007) used SAVI, NDBI, and MNDWI simultaneously and tested the 
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performance of these three indices by applying PCA, supervised classification, and logic 

calculation approaches. Simple “if-then-else” logic calculation approach and PCA approach 

provided results with accuracy higher than 93%. This method reduced data redundancy and 

data correlation, and increased separation of land cover types when combing these three index 

bands (Xu, 2007). To more effectively estimate built-up area, some new indices were 

developed, such as NBAI, BRBA, NDISI, etc (Xu, 2010; Waqar et al., 2012). Index-based 

built-up area extraction method is very simple and rapid method for mapping urban area and 

sequentially monitoring urban expansion. Those Landsat derived built-up indices are useful 

features, which enhancing the urban area, to help data users perceive urban information at their 

first glances. However, urban growth area cannot be identified accurately unless an appropriate 

threshold is used (Waqar et al., 2012). Moreover, reviewing the results from those studies, only 

binary built-up/non-built-up maps were generated. Urban growth can be monitored by their 

spatial characteristics, but no specific LULC change information will be provided. However, it 

is important to detect resulting LULC change because it reveals valuable information of 

interactions between urban growth and ecosystems (Tan & Lim, 2010). 

To monitor nation-wide LULC change of the U.S. and evaluate and manage the 

consequences of change, USGS developed a Land Cover Trends (LCT) project to detect LULC 

change at ecoregional scale for the 1972 – 2000 period using Landsat data (USGS, 2013). 

PCCD method was employed to obtain specific “from-to” information (which LULC classes 

are changing, what they are changing to, and how much they change) and monitor LULC 

change dynamics (Sleeter et al., 2012). The study of Mojave Basin and Range Ecoregion is a 

typical example of LULC change detection. Since Las Vegas is one of the fastest growing 

cities in the U.S., significant urban growth in place of grassland is detected. The most rapid 
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growth happened during 1986 to 1992.  In 2011, Huang et al. applied PCCD method using the 

Iterative Self Organizing Data Analysis (ISODATA) classifier to analyze urbanization process 

and its effect on irrigation districts of the Lower Rio Grande Valley in the south of Texas. 

Using the same PCCD method, Tan and Lim (2010) evaluate the impact of land surface 

temperature by monitoring urban expansion based on LULC maps classified by MLC in 

Penang Island, Malaysia. For spatial progressive urban growth mapping of Atlanta 

metropolitan area, Yang (2003) designed a change detection scheme based on multi-temporal 

map-by-map comparison. Similarly, Yin et al. (2011), in order to evaluate how Shanghai 

metropolitan area conformed to the “reform and opening-up” policy, detected urban growth 

dynamics applying multi-temporal change detection scheme as well. In addition, Yin et al. 

(2011) generated radar graphs to illustrate spatial orientation of LULC change. Moreover, 

other studies, conducted by Yuan et al. (2005), Sundarakumar et al. (2012), Tang et al. (2008), 

Afify (2011), and Abd El-Kawy et al. (2011), also proved that PCCD is a very useful and 

popular approach for LULC change detection and urban growth monitoring.  

Classification processes involved in the above reviewed studies are all conducted at 

pixel level. However, Landsat multi-spectral bands are in 30m spatial resolution, some pixels 

are mixed pixels that represent as a mixture of different LULC types (Slonecker et al., 2001). 

Linear spectral mixture analysis (LSMA) was then proposed by some studies to increase 

mapping accuracy of built-up area at sub-pixel level (Lu et al., 2011; Lu et al., 2004; Lu & 

Weng, 2004; Powell et al., 2007). The basis of this method is the assumption that reflectance 

measured at one pixel is a linear combination of reflectance of all components (endmembers 

which assumed to represent the purest pixels) within the pixel (Lu & Weng, 2006; Powell et al., 

2007). Powell et al. (2007) applied a pure pixel index (PPI) to collect endmembers, while in 
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some other studies (Lu & Weng, 2004; Lu & Weng, 2006; Lu et al., 2011), endmembers were 

selected from feature spaces formed by components from minimum noise fraction (MNF) 

transformation. After spectral unmixing, some approaches, such as direct classification (Lu & 

Weng, 2006; Lu et al., 2004), regression tree model (Yang et al., 2003), and decision tree (Lu 

& Weng, 2004), were conducted on fraction images to identify LULC classes. Even though 

LSMA method is a suitable technique to characterize urban LULC types and estimate built-up 

area, there are still some limitations and uncertainties when using this method (Yang et al., 

2003; Weng, 2012). The key aspect of LSMA is to select appropriate endmembers to generate 

fraction images successfully (Lu et al., 2011; Somers et al., 2011; Lu et al., 2004; Lu & Weng, 

2006). Carefully identifying number and type of endmembers and reducing correlation 

between image bands are two key factors for obtaining high quality fraction images (Somers et 

al., 2011; Lu et al., 2004).  

Other than per-pixel and sub-pixel approaches, object-based image analysis (OBIA) is 

also useful for processing remote sensing data for change detection analysis (Walter, 2004; Im 

et al., 2008). Instead of pixel by pixel, OBIA approach identifies objects by analyzing not only 

spectral but also spatial homogeneity of groups of pixels (Yang, 2011). Since objects of 

interest should be larger than the ground resolution, OBIA is more applicable to high spatial 

resolution data (Yang, 2011; Im et al., 2008; Jensen, 2005).  

As for study object which has persistent but irregular change mode during different 

time periods, for instance, urban growth, determination of temporal frequency is especially 

important (Lunetta et al., 2004; Gillanders et al., 2008). According to previous studies, most of 

the urban area change detection analyses were conducted based on bi-temporal scheme (Song 

& Cheng, 2011; Afify, 2011) or coarsely multi-temporal scheme (Abd El-Kawy et al., 2011; 
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Yuan et al., 2005; Sundarakumar et al., 2012; Peiman, 2011; Tian et al., 2011). With data 

availability increasing recently, more and more studies used multi-temporal datasets to detect 

change dynamics of urban area. However, as Sexton et al. (2013) mentioned, in order to 

understand the causes and consequences of urbanization, coarsely multi-temporal datasets are 

still insufficient. To detect the spatially and temporally complex change of LULC of North 

Carolina Piedmont from 1984 to 2007, Sexton et al. (2013) derived LULC information from a 

dense time-serial Landsat dataset using supervised classification approach. To monitoring 

urban expansion and observe the change pattern (acceleration or deceleration), Sexton et al. 

(2013) developed a regression tree model to detect impervious surface of the Washing D.C. - 

Baltimore metropolitan area from 1984 to 2010 using normalized Landsat images at high 

temporal frequency. The results clearly illustrated the change dynamics, and well depicted the 

trajectories of each LULC type spanning a long-term period. Such long-term detailed change 

information has great potential for planners, policy makers, social scientists and ecologists to 

better understand the complicated urbanization process and human-natural systems (Sexton et 

al., 2013).  

In this study, in order to detect LULC change dynamics and observe urbanization 

pattern of Waterloo Region, supervised classification will be conducted for the urban area from 

1984 to 2013 with a dense-temporal Landsat dataset. Per-pixel method will be adopted because 

(1) this study requires large amount of classification capacity and the per-pixel approach uses 

relatively less steps to obtain satisfactory LULC maps than sub-pixel approach, and (2) it is not 

easy to generate consistent high quality fraction images for every year because uncertainties 

are bound to be introduced during endmember selection process. The effectiveness of this 

change detection technique is mainly reply on the accuracy of each classification maps (Sexton 
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et al., 2013). Therefore, choosing an appropriate classifier is very important in this study. 

Classification techniques will be reviewed in the following section. 

2.3 Review of LULC classification Methods 

The key factor of acquiring satisfactory change detection results based on PCCD 

method is producing highly accurate classification maps (Lu et al., 2004). Many statistical 

pattern recognition techniques have been developed and applied to multispectral remotely 

sensed data to extract LULC information (Jensen, 2005). This section gives an overview of a 

variety of classification techniques and introduces several newly developed machine learning 

techniques. 

2.3.1 Overview of Classification Techniques 

Since accurate classification results are useful information for many environmental and 

socio-economic applications, image classification is still a popular topic among various remote 

sensing researches, and many scientists and practitioners put great efforts in exploring new 

classifiers to increase classification accuracy (Lu & Weng, 2007). Generally, classification 

techniques can be grouped or categorized by parametric and nonparametric, supervised and 

unsupervised, hard and soft (fuzzy), or per-pixel, sub-pixel, and object-based (Jensen, 2005; Lu 

& Weng, 2007). Table 2.5 summarizes the characteristics of each category. Since each method 

has its own merits, it is hard to determine which method is best (Lu & Weng, 2007). As Jensen 

(2005) stated, classification algorithm selection is determined by the nature of classification 

problem, biophysical complexity of the landscape, distribution of remote sensing data, and 

prior knowledge of the classes.  

With the first Landsat satellite launched in 1972, numerous classification techniques 

have been developed for LULC classification (Huang et al., 2002). In spite of its limitation due 
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to data assumption of normal distribution, MLC is still one of the most widely used classifiers 

(Huang et al., 2002; Rogen & Chen, 2004). In a variety of urban area studies using Landsat 

data, MLC provided satisfactory LULC classification results for successful urban area change 

detection analysis (Deng et al., 2009; Yuan et al., 2005; Afify, 2011; Rogen & Chen, 2004). In 

addition to a single classification, Sundarakumar et al. (2012) applied unsupervised ISODATA 

classifier first to understand the distribution of pixels and then applied MLC to acquire the final 

classification maps. Moreover, Rozenstein & Karnieli (2011) compare classification results 

obtained by unsupervised ISODATA algorithm, supervised MLC algorithm, and a hybrid 

method that used ISODATA first and MLC second to improve the spectral signature set. 

Results indicated that the hybrid method obtained more accurate classification results. 

Similarly, Thapa and Murayama (2009) compared ISODATA, MLC, fuzzy classification 

method using a membership function, and a combination of the advantages of these methods 

with GIS overlay function. They concluded that the hybrid approach worked better than either 

single approach.  

In order to improve classification accuracy, new advanced classification algorithms 

continuously emerged in recent years (Lu & Weng, 2007). Machine learning classifiers, such 

as, ANN, SVM, RF, decision tree, expert systems etc. have been used effectively in a variety 

of LULC classification studies (Rogen & Chen, 2004; Huang et al., 2002). Almost in all 

studies, these non-parametric machine learning classifiers performed much better than 

traditional statistical classifiers (e.g. MLC) (Bischof et al., 1992; Rogen & Chen, 2004; Jensen, 

2005; Lu & Weng, 2007; Estes et al., 2012). These non-parametric classifiers have superiority 

of LULC classification in complex landscape, and thus commonly used for solving urban area 

change detection problems (Rogen & Chen, 2004; Lu & Weng, 2007; Estes et al., 2012). More 
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studies of several machine learning classifiers and their applications will be introduced in the 

next section.     
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Table 2.5 Summary of classification techniques 

Criteria  Category  Characteristics  Examples 

Whether 

parametric 

statistics are 

used or not 

Parametric 

Normally distributed; need prior knowledge of class density 

functions; produce noisy results when landscape is complex; cannot 

integrate ancillary spatial, contextual and non-statistical information 

into classification process. 

MLC, unsupervised 

classification etc. 

Nonparametri

c  

No assumption of the data; not normally distributed; suitable for 

incorporating non-statistical information into classification process. 

Nearest-neighbor classifiers, 

fuzzy classifiers, ANN, 

SVM, RF, decision tree 

classifiers, expert system 

etc. 

Whether 

training 

samples are 

needed or not 

Supervised  

LULC classes need to be defined; select training samples for each 

known class; thematic maps are generated based on the signatures 

obtained from the training samples. 

MLC, minimum distance, 

parallelepiped, nearest 

neighbor classifier, ANN, 

SVM, RF etc.   

Unsupervised  

Used when there is no prior knowledge of the classes; pixels are 

grouped into unique clusters based on their spectral similarity 

determined by some criteria. 

ISODATA, K-means 

clustering etc. 

Which pixel 

level the 

classification 

is conducted 

at 

Per-pixel Process the image pixel by pixel; ignore mixed pixel problems. 

Most of the classifiers, such 

as MLC, ANN, SVM, RF 

etc. 

Sub-pixel 

The spectral information of each pixel can be considered as linear or 

nonlinear combination of endmembers; membership of each pixel of 

each endmember will be assigned. 

Fuzzy set classifiers, 

spectral mixture analysis 

Object-based 
Group pixels into objects and classify the objects based on their 

spectral and spatial homogeneity. 
Supervised classifiers 

Whether the 

LULC type is 

definitive or 

not 

Hard Assign each pixel into a single class. 

Most of the classifiers, such 

as MLC, ANN, SVM, RF 

etc. 

Soft 
Assign membership for each pixel of each class based on the degree 

of similarity for each class. 

Fuzzy set classifiers, 

spectral mixture analysis 

(Jensen, 2005; Lu & Weng, 2007) 
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2.3.2 Machine Learning Techniques 

Supervised machine learning algorithms can be used to predict future instances based 

on hypotheses that made by reasoning from provided instances (Kotsiantis, 2007). A concise 

model, which also can be called as a classifier, will be built after the learning process to assign 

class labels to the future instances where the predictor features are known (Kotsiantis, 2007). 

In terms of the classification capability of machine learning techniques, they have been widely 

attempted for LULC mapping in remote sensing field, and proved to be superior to 

conventional statistical classifiers in many studies (Bischof et al., 1992; Rogen & Chen, 2004; 

Jensen, 2005; Lu & Weng, 2007; Estes et al., 2012). The most commonly used machine 

learning algorithms include ANN, SVM, RF, decision trees, expert systems etc. (Lu & Weng, 

2007). In this review, focus will be narrowed to ANN, SVM, and RF techniques. 

ANN can be considered as an artificial intelligence system that works like a massively 

parallel distributed processor consisting of many simple units to simulate the capabilities for 

knowledge acquisition and problem solving of human brain (Bischof et al., 1992; Yang, 2011). 

In addition to no assumption of the data distribution, the adaptive learning process enables 

ANN to handling nonlinear and complex situation (Jensen, 2005; Yang, 2011). Also, it has 

outstanding performance under noisy environment with incomplete and ambiguous data 

(Bischof et al., 1992; Rogen & Chen, 2004; Yang, 2011; Song et al., 2012). Practitioners began 

to use ANN in remote sensing field for classification in late 1980s (Yang, 2011). The most 

widely used ANNs in LULC classification studies are the multilayered perceptrons (MLP) 

feed-forward networks trained with a back propagation learning process due to their robustness 

(Huang et al., 2002; Frohn & Arellano-Neri, 2005; Kotsiantis, 2007; Lu & Weng, 2007). 

Bischof et al. (1992) compared ANN and MLC for classification of Landsat data at per-pixel 
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level, demonstrating that ANN outperformed MLC for multi-class classification and 

incorporating texture information in ANN improved the overall accuracy. Frohn and Arellano-

Neri (2005) also used ANN and integrated texture information to improve LULC classification 

results, showing that ANN has capability of incorporating non-spectral features into 

classification process and obtained a thematic map with much higher accuracy than USGS land 

cover data. ANNs also have some limitations. It is difficult to configure ANN, because ANN is 

very sensitive to various parameter settings which will influence classification performance 

(Yang, 2011). Moreover, the learning process through which the output is obtained is difficult 

to explain comprehensively (Jensen, 2005). Therefore, a neural network is usually considered 

as a “black box” (Jensen, 2005).  

In addition to ANN, SVM has also been successfully applied in many pattern 

recognition tasks (Huang et al., 2002; Nemmour & Chibani, 2010; Song et al., 2012). SVM is 

based on statistical learning theory, and used structural risk minimization method proposed by 

Vapnik (1995) to discriminate class members (Nemmour & Chibani, 2010; Song et al., 2012). 

Thus, a minimal generalization error can be obtained by minimizing the probability of 

misclassification of the unseen data points. SVM was initially designed for binary 

classification; but now has been extended for solving multi-class problems (Nemmour & 

Chibani, 2010). According to previous studies, SVM has showed superior performance in 

handling high dimensional dataset, such as hyperspectral images (Huang et al., 2002; 

Nemmour & Chibani, 2010). It also has been proved to be applicable for multispectral image 

classification (Huang et al., 2002). Pal and Mather (2005) designed an experiment to test the 

classification performance of SVM, MLC, and ANN using Landsat data and hyperspectral data. 

No matter for multispectral data or hyperspectral data, SVM obtained more accurate results, 
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even when the training data set is small (Pal & Mather, 2005). Similarly, Nemmour and 

Chibani (2010) applied SVM as well as ANN to detect LULC change of Algerian capital using 

Landsat data. Classification results also demonstrated that SVM performed better than ANN 

for identifying all LULC types. In terms of the superior performance of SVM, Estes et al. 

(2012) applied it for LULC mapping to identify the causes for population growth and LULC 

change in the protected area of greater Serengeti ecosystem from 1984 to 2003 using Landsat 

data. As the same disadvantage of ANN, the effectiveness of SVM is determined by the user-

defined parameters, including kernel functions and associated parameters (Huang et al., 2002; 

Pal & Mather, 2005).   

Many previous studies demonstrated that using combination of multiple classifiers can 

produce more accurate classification results than using one single classifier (Pal, 2005). Some 

studies showed that an ensemble classifier by using bagging or boosting method based on a 

decision tree increased accuracy for LULC classification (Pal, 2005; Gislason et al., 2006). RF 

classifier, proposed by Breiman in 2001, assigns an unknown pixel to a class by generating a 

great number of trees (classifiers) and conducting unweighted voting to combine their results 

(Pal, 2005; Gislason et al., 2006). These decision trees are created involving randomly 

choosing a set of features and selecting samples from training data using bootstrap sampling 

method (Pal, 2005; Mellor et al., 2013). Pal (2005) compared the performance of RF and SVM 

using Landsat data; and concluded that RF performed equally well to SVM. A study, which 

was conducted by Gislason et al. (2006), integrated Landsat multispectral bands, elevation, 

slope and aspect data together for classification of a mountainous area in Colorado. Mellor et al. 

(2013) incorporated Landsat multispectral bands, texture information, topographic variables, 

and climate variables for forest mapping. RF was proved to be effective tool to learn the 
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complex and nonlinear relationships between forest land cover types and biophysical variables 

(Mellor et al., 2013). Moreover, RF is capable of dealing with outliers and nonparametric and 

noisy data (Mellor et al., 2013). In addition to the good classification performance of RF, 

importance of variables can be estimated by this algorithm (Gislason et al., 2006; Mellor et al., 

2013). Therefore, RF can be a useful tool applied in other studies such as feature selection for 

multisource data classification (Gislason et al., 2006). The advantage of RF is that fewer 

parameters need to be determined comparing to SVM. Number of features selected for each 

split and number of trees are two parameters that need to be predefined before training (Pal, 

2005; Gislason et al., 2006). 

In summary, ANN, SVM, and RF are advanced nonparametric machine learning 

classifiers that have been proved to be superior to traditional classifier for LULC classification 

in many remote sensing studies. Their superiority can be represented as the capability of 

handling data in complex landscape with no data assumption, capability of dealing with 

missing or noisy data, and capability of integrating continuous, categorical, binary, and other 

multisource data in classification procedure (Huang et al., 2002; Pal, 2005; Frohn and 

Arellano-Neri, 2005; Gislason et al., 2006; Kotsiantis, 2007; Benediktsson et al., 2007; Mellor 

et al., 2013). In this study, MLC, ANN, SVM, and RF will be applied on one Landsat image 

for the built-up area of Region of Waterloo; and the classifier with highest classification 

accuracy will be selected for classification of images obtained on other dates.  
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2.4 Chapter Summary 

Since the Landsat 1 was launched in 1972 as the first land-surface observation satellite, 

satellite data have been widely used for urban area analysis. Landsat archive data with longest 

record and global coverage allowed a great number of studies to detect long-term LULC 

change and urban expansion. With the open of Landsat archive data, detect long-term change 

dynamics is the trend of change detection analysis of complex systems. Numerous change 

detection methods were applied in previous studies. The most widely used one is PCCD 

method which can generate thematic map for each date and provide specific “from-to” change 

information. The key factor of producing high quality change detection results is producing 

accurate individual thematic map. Selecting an appropriate classification technique is critical to 

generate accurate classification maps. According to numerous studies, newly developed 

advanced machine learning classifiers outperformed the traditional classifiers and widely 

adopted in classification of complex landscape.  
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Chapter 3 Study Area and Data 

3.1 Study Area 

The Region of Waterloo, located in southern Ontario, has become a prosperous and fast 

growing region after its formation in 1973 (RGMS, 2006). The location of Region of Waterloo 

is shown in Figure 3.1. Three urban municipalities, Waterloo, Kitchener, and Cambridge, and 

four rural townships, North Dumfries, Wellesley, Wilmot, and Woolwich, make up this region 

(Region of Waterloo, 2013). The region is 1369 km
2
 in size and the Region’s population was 

507,079 as of the 2011 census (Region of Waterloo, 2013). As the main goal of this study is to 

monitor urban growth and detect its resulting change dynamics, the study area can be narrowed 

to the urban area of Waterloo Region. According to visual observation of Landsat image 

acquired in 1984, urban built-up areas located within municipal boundaries of the three cities. 

However, with the rapid urban sprawl in recent decades, urban built-up areas have exceeded 

the cities’ municipal boundaries.  

The latest map of official-defined urban area retrieved from the Regional Official Plan 

(ROP) is shown as Figure 3.2. Urban area is represented as the purple zone within the dashed 

line. One part of the urban built-up area expanded out of cities’ municipalities is adjacent to the 

northernmost part of City of Waterloo along Weber Street and King Street. Another part is the 

expansion of the built-up area along the eastbound railway, which is known as East Side Lands 

designated for employment uses (ROP, 2010). Even though both of these two areas belong to 

the Township of Woolwich, they are of great significance to explore the nature of the urban 

growth and should be included. As a result, the study area, shown in Figure 3.3, is determined 

as the union of the municipal area of the cities and the official-defined urban area. The 
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geographic extents are from 43⁰31′53.71″N to 43⁰19′56.81″N and from 80⁰37′32.94″W to 

80⁰14′57.79″W. The total area is approximately 328 km
2
.  

 

Figure 3.1 Location of Region of Waterloo 

As an overview, within this study area, urban built-up area is one of the most typical 

land cover types, including low-density urban use area (e.g. single/multiple family houses, 

local roads, etc.) and high-density urban use area (e.g. commercial and industrial areas, high-
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density residential areas, etc.). Another typical land cover type is vegetation, such as 

agriculture area and grassland (e.g. pastures, golf courses, parks, etc.). Forest land, considered 

as very important land cover type, occupies relatively small area in general. This study area 

also covers some water bodies, such as part of Grand River and Laurel Creek Reservoir. 

Moreover, there are small areas of exposed lands, including natural barren land and building 

sites.   

 

Figure 3.2 Urban area of Waterloo Region (Source: ROP, 2010) 
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Figure 3.3 Map of study area 

3.2 Data  

Sufficient and appropriate datasets are very critical to reach the objectives of this study. 

As is stated in Section 2.1.2, free access of long-term Landsat archive data provide opportunity 

to detect time-serial change dynamics at regional scale. In this study, Landsat archive data are 

the core data of extracting urban LULC information. Population data is useful supplementary 

data for analyzing urbanization process of this Region. In addition, some other ancillary data 

are utilized as reference during Landsat data processing and accuracy assessment. 
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3.2.1 Landsat Archive Data 

Table 3.1 Landsat images used for classification 

Year Sensor system 
Date 

(mm/dd) 
Year Sensor system 

Date 

(mm/dd) 

1984 Landsat 5 TM 06/13 1999 Landsat 7 ETM+ 09/03 

1985 Landsat 5 TM 09/20 2000 Landsat 5 TM 08/28 

1986 Landsat 5 TM 06/03 2001 Landsat 5 TM 08/15 

1987 Landsat 5 TM 09/10 2002 Landsat 7 ETM+ 08/01 

1989 Landsat 5 TM 06/11 2003 Landsat 5 TM 06/02 

1990 Landsat 5 TM 09/02 2005 Landsat 5 TM 08/26 

1991 Landsat 5 TM 07/19 2006 Landsat 5 TM 08/13 

1992 Landsat 5 TM 08/22 2007 Landsat 5 TM 06/29 

1993 Landsat 5 TM 08/09 2008 Landsat 5 TM 09/03 

1994 Landsat 5 TM 10/15 2009 Landsat 5 TM 05/17 

1995 Landsat 5 TM 07/30 2010 Landsat 5 TM 05/20 

1996 Landsat 5 TM 05/29 2011 Landsat 5 TM 06/08 

1997 Landsat 5 TM 07/19 2013 
Landsat 8 OLI & 

TIRS 
09/17 

1998 Landsat 5 TM 05/19    

 

Path and Row Worldwide Reference System (WRS) is designated for locating Landsat 

scenes for any area on Earth (Jensen, 2007). The entire study area can be covered by the WRS-

2 path-18/row-30 scene. Images are projected in Universal Transverse Mercator (UTM) 

coordinates based on World Geodetic System of 1984 (WGS84) datum. Since the time span of 

this study is from 1984 to 2013, one scene of each year is needed. To obtain high quality data, 

images with no cloud and no haze were selected. Data for 1988, 2004, and 2012 were 

eliminated due to large cloud obstructed area. In order to minimize the phenological effect 

during change detection analysis, data acquired in summer season were preferred. Most of the 

data are obtained from June to September. All used Landsat data were retrieved from USGS 

Global Visualization Viewer (GloVis) interface (http://glovis.usgs.gov/). Specific data 

acquisition information is listed in Table 3.1.  

http://glovis.usgs.gov/
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3.2.2 Supplementary Data 

To clip out the study area from Landsat images, a shapefile representing the study area 

boundary should be generated first. This shapefile can be considered as the revision of the 

shapefile representing municipal boundaries of Waterloo Region based on the urban area map 

from ROP. The Region of Waterloo boundary shapefile was obtained from the University of 

Waterloo Geospatial Centre. The urban area map was retrieved from the Region of Waterloo 

official website. 

To help select training samples of the supervised classification and reference samples 

for accuracy assessment, two full-colour digital orthoimages with 12cm spatial resolution were 

acquired from University Geospatial Centre. These two orthoimages cover the entire area of 

Waterloo Region in 2006 and 2010 respectively. With 12cm spatial resolution, the orthoimages 

are projected in UTM coordinates and are stored in MrSID image format, accompanying SDW 

world files (Morgan, 2012). The datum used is the North American Datum of 1983 (NAD83) 

(Morgan, 2012).  Another data that can be used for aiding choosing training samples is a land 

use shapefile of Waterloo Region in 2007, also obtained from the University of Waterloo 

Geospatial Centre. This shapefile parcels the study area into polygons based on different land 

use types. Additionally, Google Maps, providing high spatial resolution aerial or satellite 

images of the world, is an auxiliary source for training samples selection and accuracy 

assessment. Selecting appropriate training samples is very critical for satisfactory classification 

results. Even though there is no reference data for every year, the two orthoimages, the land 

use shapefile, and images from Google Maps are effective reference data for understanding the 

land surface information of this study area.  
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In this study, population growth in recent decades is incorporated to help understand 

the urbanization process of Waterloo Region. A census of population is taken every five years 

in Canada (Statistics Canada, 2013). The earliest available census data of Waterloo Region can 

be dating back to 1991. Data taken since 1991 were recorded and edited by the geographic area. 

Because the population of non-permanent residents is a growing segment of the Canadian 

population, Statistics Canada covered both permanent and non-permanent residents since 1991 

census (Statistics Canada, 2013). Population information used in this study is for 1991, 1996, 

2001, 2006, and 2011, respectively. The shapefiles containing census statistics were retrieved 

from the University of Waterloo Geospatial Centre.  

3.3Chapter Summary 

Scenes of the long-term Landsat archive data were selected from 1984 to 2013 for each 

year with no cloud for classification. Supplementary orthoimages, land use shapefile, and 

images from Google Maps were useful reference data for training sample selection and 

accuracy assessment. Census data were incorporated for analyzing urbanization process. 

Details of data processing and analysis methods will be explained in next chapter. 
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Chapter 4 Methodology 

After study area determination and data acquisition, a sequence of processes was 

adopted to obtain the desired results. The major modules include data preprocessing, image 

classification, change detection analysis, and urban growth analysis. This chapter begins with 

an overview of the methods applied, clearly summarized by a workflow. Then specific steps of 

each module will be explained sequentially. 

4.1 Overview of Workflow 

 

Figure 4.1 Summarized workflow chart 
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The methodology can be divided into four modules, which are data preprocessing, 

image classification, change detection analysis and urban growth analysis, illustrated in Figure 

4.1. The first module is data preprocessing. After layer stacking for each year, image 

registration issue was considered. Then study area was clipped out for all images. Atmospheric 

correction was conducted sequentially for each image based on specific characteristics of data 

acquisition. After data preprocessing, consistent calibrated images for each year were prepared 

for LULC information extraction in next module. To determine which classifier would be used 

for classification of all images, MLC, ANN, SVM, and RF classifiers were compared using 

2006 data. The classifier which can obtain the highest classification accuracy was selected for 

classifying other images. The quality of classification maps was indicated by the results of 

accuracy assessment. LULC information can be extracted from classification maps for further 

post-classification analysis. In the third module, change detection analysis is performed in 

terms of classification maps comparison based on different temporal resolutions ------ bi-

temporal, coarsely multi-temporal, and annually time-serial resolutions. Furthermore, in last 

module, urban built-up area was extracted individually to analyze urban growth pattern.  

Moreover, a simple linear model was applied to fit the built-up area using all built-up area 

estimation results. Then development rates for each city (Waterloo, Cambridge, and Kitchener) 

were acquired. The detailed processes and related image processing principles will be 

explained in the following sections. 

4.2 Data Preprocessing 

Data preprocessing is an important part that is prerequisite to generate consistent 

calibrated images for classification and change detection analysis. Specific processes are 

shown in Figure 4.2.  
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Figure 4.2 Workflow chart of data preprocessing module 

Downloaded Landsat archive data were all in GeoTIFF format for each individual band 

layer. The layers acquired on the same date were stacked into one dataset using ENVI software. 

All Landsat scenes used in this study were processed to Standard Terrain Correction (Level 

1T), which has provided systematic, radiometric, and geometric accuracy (USGS, 2013). 

However, image registration issue still needs to be considered before performing change 

detection analysis, because subtle differences caused by spatial offset have direct impact on 

change detection result. Image registration degree can be visually observed by linking the 

images for different dates geographically. By checking the overlapping of some easily located 
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features, such as intersection of roads or corner of a building, all images have already been 

well co-registered.   

To clip out the study area from all Landsat scenes, a shapefile representing the union of 

ROP urban area and city municipalities needs to be generated. Taking the shapefile which 

represents Waterloo Region municipalities as the base map, the urban area map can be geo-

referenced using Georeferencing Tool under ArcGIS software. Study area boundary was 

generated by extending cities municipal boundaries towards the urban area boundary based on 

manually delineation. Then study area was clipped out for each Landsat images. 

Before electromagnetic radiation emitted from the Earth’s surface is observed by 

satellite sensors, it undergoes interaction with the atmosphere when propagated through the 

atmosphere (Jensen, 2007; Hadjimitsis et al., 2010). Absorption and scattering of radiation are 

two major effects of atmosphere. Atmospheric correction is the process of eliminating the 

atmospheric and terrain effects to obtain the true ground reflectance of the land surface 

(Geomatica, 2013). In this study, PCI Geomatica ATCOR module was used to conduct 

atmospheric correction. Atmospheric conditions and some data acquisition information which 

can be retrieved from metadata file were entered into the ATCOR module to accomplish the 

correction, such as data acquired date and time, sensor type, coordinates of the image central, 

atmospheric definition area, and atmospheric condition. Atmospheric definition area was set up 

as “urban” area. Atmospheric condition was determined as “mid-latitude summer” for images 

taken prior to October, otherwise as “fall”.  
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4.3 Image Classification 

4.3.1 Workflow of image classification module 

Image classification is the most important process for obtaining accurate LULC 

information. To generate consistent classification results, an appropriate classification 

algorithm needs to be determined first. Thus, this module was comprised of two parts. Detailed 

workflow is illustrated in Figure 4.3.  

Part A was to compare several classifiers that were suitable for urban area classification. 

Training samples were selected for training process before classification. Some supplementary 

data, such as 2007 LULC shapefile and 2006 orthoimage, were used to assist in identifying 

appropriate training samples for 2006 image. A separability report was generated to indicate 

the spectral separability of the training samples. After the training samples were determined, 

MLC, ANN, SVM, and RF classifiers were applied on 2006 image to generate classification 

maps. These classification maps were compared not only by visual observation, but also by 

conducting statistical accuracy assessment. SVM classifier was superior to other classifiers in 

this study, and thus was selected to classify other Landsat images. 

Part B was classification for all images using SVM classifier. Classification process 

was the same as Part A. Since the shadows in urban area can be misclassified into water class, 

post-classification processing of the classification maps was performed to remove the casting 

shadow by the tall buildings. The real water area has very low value based on mid-infrared and 

thermal bands. Therefore, shadow areas can be removed by observing their corresponding 

values from mid-infrared and thermal bands. Then a 3×3 majority filter was applied to the 

classification maps to reduce the “salt and pepper” noise. Finally accuracy assessment was 

performed for all classification maps. 
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During classification process, results accuracy is controlled by the quality of training 

samples and the classifier used. In the following sections, classification algorithms, training 

samples selection method, and accuracy assessment method will be explained specifically. 
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Figure 4.3 Workflow chart of image classification module 
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4.3.2 Training Samples Selection 

An appropriate classification system and sufficient representative training samples are 

very critical for a successful classification (Lu & Weng, 2007). As referring to USGS “Land-

Use/Land-Cover Classification System for Use with Remote Sensor Data” (Anderson et al., 

1976), classification design in this study was determined at a mixed USGS Level I/II based on 

the consideration of spectral and spatial resolution of Landsat image. With visual interpretation 

and analysis of the satellite images and supplementary data, eight classes were determined, 

which were water, forest land, agricultural land I (green cropland), agricultural land II (fallow), 

low-density urban built-up area, high-density urban built-up area, grassland, and barren land. 

Explanations of the classes and examples of training sites are shown in Table 4.1. Examples 

are displayed in RGB by true colour composite (Bands 1, 2, 3) and false colour composite 

(Bands 2, 3, 4) of 2006 image.  

One of the key factors of training samples selection is identifying relatively 

homogeneous pixels of each class from the satellite images. Different classes can be 

distinguished by their different color, shape, textures, tones, and spectral signatures. Training 

sites can be selected by visual observation of Landsat images and higher resolution 

orthoimages, and by distinguishing spectral characteristics of each LULC type. As for the 

number of samples, a minimum of 10n to 100n pixels should be selected for each class, where 

n (is 6 in this study) is the number of spectral bands that used for classification. The total 

number of training samples is approximately 8000 for each image in this study. Moreover, 

training samples were distributed dispersedly over the study area to obtain sufficient 

representative samples. Classification can be conducted after training sample selection. 
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Table 4.1 Explanations of the classes and examples of training sites 

Class Type Explanation Examples 

Water  
Rivers, lakes, reservoirs, 

streams 

  

Forest land 
Coniferous, deciduous, and 

mixed forest land 

  

Agricultural land I (green 

cropland)  
Growing green crop fields 

  

Agricultural land II 

(fallow) 
Harvested crop fields 

  

Low-density urban built-

up area 

single/multiple family 

houses, roads, yards, small 

open spaces 

  

High-density urban built-

up area 

Commercial and industrial 

complexes, high-density 

residential areas 

  

Grassland 
Pastures, golf courses, 

parks, lawns 

  

Barren land 

Construction/transitional 

area,  sandy area, quarries, 

bare exposed rock 
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4.3.3 Classification Techniques 

As reviewed in Chapter 2, MLC is the most widely used classifier in various remote 

sensing studies. ANN, SVM, and RF are newly developed advanced classifiers that can deal 

with more complex situation. To determine which classifier would be used in this study, the 

four classifiers were conducted on 2006 image and then compared their results accuracies. 

Principles of these classifiers are explained in this section. 

4.3.3.1 Maximum Likelihood Classifier  

Maximum Likelihood Classifier (MLC) is based on the concept of probability. MLC 

assumes that the statistics of each class in each band are in normal (Gaussian) distribution, and 

pixels are assigned to a specific class for which has the highest probability (Jensen, 2005). 

Taking Figure 4.4 as an example, after calculation of probability density of class A and B, 

pixel X is assigned to class B because it has higher probability of being a member of class B. 

This diagram shows a bivariate example as pixel X is distributed in a two dimensional feature 

space built up by band 1 and band 2. Since Landsat image, which has multispectral bands, is 

considered as a multivariate dataset, the probabilities can be calculated by an n-dimensional 

multivariate probability density function based on mean vector and covariance matrix 

estimated from training data for each class (Jensen, 2005). Since there is no prior knowledge of 

probability of the classes using Landsat images in this study, an assumption of considering 

each class has an equal probability of occurring in the study area can be made.  

The probability density function can be calculated by: 

                                 (4.1) 
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where Mi mean vector for class i, Vi is the covariance matrix of class i for all bands, Vi
-1

 is the 

inverse of Vi (Jensen, 2005). And the unknown measurement vector X is in class i if, and only 

if, pi ≥ pj for all i and j out of 1, 2, ... m possible classes (Jensen, 2005). The measurement 

vector X for each unknown pixel has n elements, where n is the number of bands used in 

classification (Jensen, 2005). To assign an unknown pixel to a specific class, pi of the 

measurement vector X of that unknown pixel for each class is calculated (Jensen, 2005). The 

unknown pixel will be assigned to the class that has the highest probability value (Jensen, 

2005). In this study, no probability threshold was set up. All pixels were classified to a specific 

class. Classification was conducted in ENVI 4.8. 

 

Figure 4.4 Concept of MLC algorithm (Source: JARS, 1999)
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4.3.3.2 Artificial Neural Network (ANN) 

Feed-forward networks and recurrent networks are the two fundamentally different 

types of neural networks (Yang, 2011). The multilayer perceptron (MLP) feed-forward 

networks are the most popular neural networks used in image classification because of its 

technological robustness (Lu & Weng, 2007; Yang, 2011). As shown in Figure 4.5, MLP 

neural network is arranged in input-hidden-output layered structure with distributed neurons 

and weighted links (Yang, 2011). ANN has the capability of dealing with statistics with non-

linear relationship, so that the inputs can be various types of data, such as spectral reflectance, 

slope, elevation, aspect, etc. Then data propagate through the neurons and the weighted links in 

a forward direction. Each neuron has an activation function that can deal with complex 

problems individually; and the weighted links determine the data flow direction and the effect 

of the neuron ahead to the neuron behind (Yang, 2011). Finally, thematic map classes are 

generated in the output layer. 

 

Figure 4.5 An example of MLP neural network (Source: Yang, 2011)
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Except for training samples, an error measure and a learning algorithm are needed to 

accomplish the learning process when using ANN. The learning process aims to acquire an 

optimal network by adjusting the connection weights (Yang, 2011). The most commonly used 

error measure is the root mean square error (RMSE); and the widely used learning algorithm is 

back-propagation method (Yang, 2011). This algorithm used an iterative learning method that 

on each iteration the direction and magnitude of the weights are adjusted to minimize the 

RMSE by propagating the computed error backward through the network (Yang, 2011; Song et 

al., 2012). Then the network can be optimized through the iterations.  

In this study, ANN classification was conducted using ENVI 4.8. Several topological 

parameters and training parameters need to be defined before the training and learning 

processes. Topological parameters include number of hidden layers, type of activation function, 

and training threshold, while training parameters include learning rate, momentum and number 

of iterations (Yang, 2011). To evaluate the sensitivity of MLP neural network for image 

classification in relation to the parameter settings, Yang (2011) designed an experiment to 

classify a Landsat ETM+ image of the northern Atlanta metropolitan area with different 

parameters combinations. The rule of the experiment was to allow one parameter to alter at one 

time while keeping others unchanged. The results demonstrated that the most accurate 

classification map was generated by setting one hidden layer, using logistic-sigmoid activation 

function, and by setting training threshold as zero, learning rate as 0.1, momentum as 0.8, and 

iteration time as 1300. Since the experiment has been conducted on a Landsat image which had 

similar urban landscape as this study, same parameter settings were used in this study to save 

time of tuning the parameters to acquire accurate classification result. Training RMSE exit 

criterion is another parameter that needs to be defined using ENVI package. Default value (0.1) 
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of this parameter was used. Learning process will stop when either RMSE exit criterion is 

reached or all iterations are finished. 

4.3.3.3 Support Vector Machine  

Support Vector Machine (SVM) is another advance non-parametric statistical learning 

method that has been successfully applied to LULC classification (Huang et al., 2002; Pal & 

Mather, 2005; Song et al., 2012). SVM employs optimization algorithms to decide the location 

of optimal boundaries that can best separate the classes (Huang et al., 2002; Pal & Mather, 

2005). Taking a two-class problem as an example (shown as Figure 4.6), if the two classes are 

linearly separable in two dimensional feature space, a linear boundary can be determined with 

a greatest margin which leaves maximal space between two classes (Pal & Mather, 2005). This 

linear boundary can be called as a hyperplane. The margin is determined by the sum of 

distances from the closest data points to the central hyperplane. Those closest data points are 

the support vectors (Pal & Mather, 2005).  

 

Figure 4.6 Example of the optimal separating hyperplane between (a) separable sample and (b) 

non-separable samples (Adapted from Huang et al., 2002) 
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The hyperplane is represented as: 

w ∙ x + b = 0                                                                  (4.2) 

where w represents the normal vector to the hyperplane, x are vectors on hyperplane, b is the 

parameter that determines the offset of hyperplane from the origin by calculating 
 

     
 (||w|| is 

the Euclidean norm of w) (Huang et al., 2002). The two linearly separable classes can be 

separated by two hyperplanes that are parallel to the central optimal hyperplane, shown as 

Figure 4.6 (a). Then an assumption can be made that each pixel is classified and labeled by yi = 

+1 or yi = -1 (Huang et al., 2002). The criteria of the classification can be described by: 

                         w ∙ xi + b ≥ 1, then yi = +1 (i = 1, 2, 3, ..., n, n is the number of samples) or 

                         w ∙ xi + b ≤ −1, then yi = −1 

However, in the real world, situations are more complex that there are rarely cases that data 

samples are well linearly separable. To deal with non-linearly separable cases, except for 

finding the optimal hyperplane that maximize the margin, misclassification errors should be 

minimized (Pal & Mather, 2005). Therefore, positive slack variables    and a penalty parameter 

C are introduced to solve this problem (Huang et al., 2002). Then the criteria of the 

classification become as: 

w ∙ xi + b ≥ 1 −   , then yi = +1 or 

w ∙ xi + b ≤ −1 −   , then yi = −1 

The maximized margin can be obtained by using standard quadratic programming (QP) 

optimization techniques which try to find the minimum value of the following formula (Huang 

et al., 2002; Pal & Mather, 2005).  

       

 
  ∑   

 
                                                             (4.3) 
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SVM has been extended to deal with non-linear problem by projecting the sample data 

onto a high-dimensional feature space using a kernel function and then generate the optimal 

hyperplane in that feature space (Huang et al., 2002; Pal & Mather, 2005). In this study, SVM 

classification was conducted using ENVI 4.8. There are four kernel functions that can be used, 

which are linear, polynomial, radial basis function (RBF), and sigmoid. RBF is the most 

widely used kernel function (Nemmour & Chibani, 2010; Song et al., 2012) which can be 

represented by: 

K (xi, xj) =           
 
                                                     (4.4) 

A   parameter is introduced that should be defined by users. In terms of a series of trials, the 

parameter was set as the inverse of the number of bands used in the classification process in 

this study, which is 0.167; and parameter C is 100. 

SVM was initially developed for dealing with two-class problems, and now has been 

extended for multi-class problems (Huang et al., 2002; Pal & Mather, 2005; Nemmour & 

Chibani, 2010). n classifiers are generated. And n classes are compared in pairwise way. Each 

classifier is trained based on only two out of n classes. Each data vector will be tested by all 

classifiers and given a vote to the winning class (Pal & Mather, 2005). Then the data vector can 

be assigned to specific class with most votes (Pal & Mather, 2005).  

4.3.3.4 Random Forest  

Random Forest (RF), which was proposed by Breiman (2001), has become another 

effective machine learning algorithm to improve classification accuracy significantly in terms 

of its robustness of dealing with noisy data (Liaw & Wiener, 2002; Pal, 2005; Gislason et al., 

2006; Akar & Güngör, 2012; Immitzer et al., 2013; Mellor et al., 2013). RF, which also can be 

known as a voting based ensemble classification method, creates many classifiers (trees) and 
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then classifies the data points into the specific class using a voting method based on their 

predictions (Breiman, 2001; Liaw & Wiener, 2002; Akar & Güngör, 2012). Each classification 

tree is generated independently using a different bootstrap sample of the dataset with 

replacement to construct a classifier (Breiman, 2001; Liaw & Wiener, 2002). The selected 

samples are used for training and the rest of them are used for estimating the error of the tree. 

The data not in the bootstrap sample is called “out-of-bag” (OOB) data (Breiman, 2001). For 

each note in a random forest, the best split is determined based on the randomly selected 

features (or variables) (Breiman, 2001). The trees are grown without pruned (Breiman, 2001). 

Final prediction of the OOB data can be determined due to the majority votes by aggregating 

the results of the trees (Breiman, 2001). When a forest is constructed, an OOB estimate of error 

rate can be calculated to evaluate the performance of the classifiers generated by the training 

samples (Breiman, 2002). 

In this study, RF classification was conducted using “randomForest” package available 

in R software. R is a free software programming language that used for statistical analysis. The 

functions available in that package were written by Breiman and Cutler (2002). RF is a user-

friendly machine learning method because there are only two parameters that need to be 

defined and usually classification results are not very sensitive to the values of the parameters 

(Liaw & Wiener, 2002). These two parameters are the number of variables used to split each 

node and the number of trees in the forest, which are represented as mtry and ntree in R 

respectively. Breiman (2002) suggested that generally optimum results can be obtained by 

setting mtry equal to the square root of the number of all variables. As for the parameter ntree, 

generally more trees will obtain more accurate results but take much more time (Breiman, 

2002). In this study, a sequence of trials was conducted and mtry and ntree were set to be 3 and 
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500 respectively in terms of the lowest OOB estimate of error rate. The R script can be found 

in Appendix I. 

4.3.4 Accuracy Assessment 

Even though each classification algorithm has its own advantages, it is difficult to 

determine which algorithm is the best due to complex real world situation. In order to select the 

most appropriate classifier for classification of all Landsat images of this study area, accuracy 

assessment was performed on classification maps of 2006 image using the four classification 

methods described above. In addition to compare different classification results, accuracy 

assessment was also conducted on subsequent classification maps of the rest images. 

Accuracy assessment requires unbiased design, strict sampling procedures, and rigorous 

analysis of the classification results to make the accuracy itself reliable (Congalton & Green, 

1999). Some factors and issues need to be considered when performing accuracy assessment, 

which are reference data selection, sample size, sampling schemes, assessment techniques 

(confusion error matrix, Kappa analysis), etc. (Congalton, 1991). Reference data were selected 

on Landsat images based on visual interpretation of the high resolution orthoimages to identify 

the pixel type. As for the sample size, it should be minimized to reduce the cost and time, and 

also should be large enough to generate an appropriate error matrix (Congalton & Green, 1999). 

A general guideline is to collect a minimum of 50 samples for each land cover type (Congalton 

& Green, 1999). In this study, a more reliable sample size determination method introduced by 

Thompson (1992) was used. When investigating the accuracy of multi-class classification map, 

sample size can be calculated by: 

  
         

  
                                                                (4.5) 
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where N is the sample size;    is the proportion of the ith class out of all classes that has the 

proportion closest to 50%;    is the desired precision; B is determined from the chi-

squared ( 2
) table that B is the upper (α/k) x 100

th
 percentile of the   2

 distribution with one 

degree of freedom; α is the allowable probability of error; and k is the number of classes. When 

determine the sample size before performing accuracy assessment, the allowable probability of 

error α should be determined first (Thompson, 1992). 100%(1-α) is called the confidence 

interval. Confidence interval is a very important parameter of estimating the sample size, 

because generally it shows the reliability of an estimation (Thompson, 1992). In this study, 

α         was set to be 0.05 and 0.05 respectively.  2 
value that used to determine B was 1 − 

 

 
 

= 0.99375. Then B was obtained as 7.568 from the chi-squared table. Since the values of     

varied from image to image of different years, 2006 classification map was taken as an 

example here. The value of    was 39%. Then sample size can be determined as 720.  

Sampling scheme is another important factor that needs to be considered before 

accuracy assessment. Stratified random sampling scheme was employed in this study to ensure 

that sufficient samples can be selected for each class. This method considers classes as strata; 

then certain number of sample points can be selected randomly without bias within each 

stratum (Thompson, 1992). Since there were 720 samples totally and eight classes, 90 samples 

were selected for each class of 2006 classification map.  

After reference samples have been selected, reference data were compared to their 

corresponding classified data to generate the confusion error matrix. This matrix is another 

important component of accuracy assessment. It is a square array of numbers representing the 

number of sample points classified into a specific category compared to their actual category 

based on the reference data (Congaton, 1991). All off-diagonal numbers are considered as 
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failures (Rossiter, 2004). The confusion matrix can provide much information on a 

classification. It provides the overall and per-class accuracy. Some descriptive statistics can be 

derived from the error matrix, such as overall accuracy, user’s accuracy, and producer’s 

accuracy. Overall accuracy can be calculated by dividing the total value of diagonal numbers 

by total number of pixels (Congaton, 1991). Producer’s accuracy, also called as omission error, 

obtained by dividing the number of pixels classified correctly by total number of pixels of that 

category from the reference data (Congaton, 1991). As for user’s accuracy, also the 

commission error, the denominator is the total number of pixels that classified in one category 

(Congaton, 1991). Overall accuracy reflects the accuracy of entire thematic map. Producer’s 

accuracy represents how well a certain area can be classified, while user’s accuracy indicates 

the probability that a pixel classified on the map can actually represent the category on the 

ground (Congalton, 1991). 

Another useful statistic of measurement of agreement in accuracy assessment is Kappa 

coefficient (Congaton, 1991). Kappa statistic is a more sophisticated measure of interclassifier 

agreement, and provides better interclass discrimination than overall accuracy (Fitzgerald & 

Lees, 1994). It can be calculated by: 

   
 ∑    

 
    ∑          

 
   

   ∑          
 
   

                                                 (4.6) 

where r is the number of rows in the matrix;     is the diagonal numbers;     and     are the 

marginal total of row i and column i respectively; N is the total number of the samples 

(Congalton, 1991).  

Confusion error matrix and Kappa coefficient were obtained for each classification map 

in this study to demonstrate the quality of classification maps. Then the useful LULC 

information can be extracted for change detection analysis and urban growth monitoring. 
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4.4 Change Detection Analysis 

The change detection method used in this study is post-classification change detection. 

LULC information of each year was extracted to detect changes. To fully understand the 

change occurred in recent three decades, bi-temporal, multi-temporal (in six-year interval), and 

time-serial change analyses were performed. The logic of change detection analysis module 

and some major outputs are illustrated in Figure 4.7.  

 

Figure 4.7 Workflow chart of change detection analysis module 

In order to minimize the vegetation phenological effect and periodic cultivation cycle 

of agricultures in suburban and rural area, green cropland, fallow, and grassland were 

combined into one category, which is called “vegetated area”. Forest land was not combined 

into the new class because forest is important natural resource that needs to be considered 

individually. Other classes also remained the same. Then LULC information was extracted for 
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change detection analyses. Analyses were conducted both qualitatively and quantitatively. Bi-

temporal analysis compared the classification maps of 1984 and 2013. Multi-temporal analysis 

detected changes based on classification maps in six-year interval, which were 1984, 1990, 

1996, 2002, 2008, and 2013 classification maps. Time-serial analysis used all images to 

illustrate the trajectories of each LULC type change dynamics over these three decades. 

Various graphics and tables were created to help interpret and analyze the results shown in 

Figure 4.7. For example, change maps demonstrating significant spatial change of LULC types 

can be obtained; and confusion matrix showing very detailed statistical “from-to” information 

of each class can be generated.  

4.5 Urban Growth Analysis 

Changes detected in this study area were primarily caused by urban growth. More 

specific urban growth analysis was conducted in this module. The logic and processes are 

clearly illustrated in Figure 4.8. The urban built-up area for each year can be obtained from the 

LULC classification maps. Spatial growth pattern was analyzed based on the entire built-up 

area extracted from 1984, 1990, 1996, 2002, 2008, and 2013 maps. An urban sprawl map then 

can be obtained by overlaying the built-up area detected from those maps. This map was 

generated based on the assumption that the built-up area existing in previous years would not 

change to other land cover types. To investigate the relationship between population growth 

and urban growth, total population of 1991, 1996, 2001, 2006, and 2011 in the municipality 

area and total built-up area of each corresponding year were used. Since the urban areas belong 

to the three cities and nearby townships, in order to monitor the urban growth of the cities, 

built-up areas extracted for each city were analyzed separately.  
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Figure 4.8 Workflow chart of urban growth analysis module 

A simple linear regression model was fitted for urban built-up area based on least 

squares method to show the relationship between the area of built-up areas and corresponding 

year. Least squares method finds the least sum of squared residuals which are the differences 

between the observed values and the values provided by the model (Meyers et al., 2006). The 

sum of squared residuals can be represented by: 

∑   ̂
  

     ∑      ̂  
  

                                                  (4.7) 

where n is the number of observations;    is the ith observed value;  ̂  is the model estimated 

value;   ̂ is the residual between    and  ̂ . Thus, after finding the minimum value of ∑   ̂
  

   . 
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The regression line generated based on the values representing the area of built-up areas can be 

expressed as: 

                                                                   (4.7) 

  

where    represents the area of built-up area of the ith year;    represents the ith year;  
 
 is 

value of the Y intercept when X equals 0;    is regression coefficient, which is also known as 

the slope of regression line (Meyers et al., 2006; Walpole et al., 2012). In this study, coefficient 

   also can be considered as the annual urban growth rate. Standard error of each estimated 

coefficient was also calculated. The equations are listed in Appendix I. 

To measure the strength of linear relationship between    and   , the coefficient of 

determination, denoted as   , was used in this study. This indicator is widely used to represent 

the total proportion of variation which can be explained by the regression (Meyers et al., 2006; 

Walpole et al., 2012). The value ranges from 0 to 1. A value close to 0 indicates little 

association between     and    while a value close to 1 indicates strong relevance (Meyers et al., 

2006; Walpole et al., 2012). Calculation process of    is also illustrated in Appendix I.  -value, 

an indicator showing the significance of the relationship of     and   ,  was also provided in 

this study. The lower the value, the more significant the relationship is (Meyers et al., 2006; 

Walpole et al., 2012). 

The linear models were generated for high-density urban area and low-density urban 

area of each city respectively based on the information extracted from time-serial classification 

maps. In this way, urban growth rate for each city can be obtained. The linear regression 

analysis was conducted by using SPSS software. 
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4.6 Chapter Summary 

This chapter gives an overall and comprehensive explanation of the methods that used 

in this study. This methodology consists of four modules, which are data preprocessing, image 

classification, change detection analysis, and urban growth analysis. All Landsat images 

needed to be checked and preprocessed to calibrated consistent images for classification 

process. Classifiers, such as MLC, ANN, SVM, and RF, were compared based on the 

classification results. Algorithm of each classifier was explained here. The most appropriate 

classifier with the highest classification accuracy was selected for classification of all images. 

After obtaining the LULC classification maps for each year from 1984 to 2013, change 

detection analysis was performed in terms of different temporal resolutions. Furthermore, 

urban built-up area was extracted individually for urban growth analysis. The trend of urban 

development can be detected and analyzed. 
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Chapter 5 Results and Analysis 

Following the methodology specified in Chapter 4, results of this study were obtained. 

Classification maps of 2006 image generated by the four classifiers, ANN, MLC, SVM, and 

RF, were compared to select the most appropriate one for all image classification. Subsequent 

change detection and urban growth analysis were based on the annual classification results. 

Change detection analysis was conducted from different temporal resolutions perspective. 

Urban growth situation of each city was monitored using high-frequent classification results. In 

this chapter, major results are provided and analyzed. Analyses focus on dynamic LULC 

change detection analysis and urban growth monitoring.  

5.1 Classification  

5.1.1 Class Separability 

Training sample selection is a very important process for obtaining accurate and 

reliable classification results. For 2006 image classification, pairwise spectral separability 

values of different classes of training samples are shown in Table 5.1. Values range from 0 to 2. 

The closer to 2, the more separable training samples have been selected (ENVI Help, 2010). 

Values greater than 1.9 represent that class pairs have good separability, while values lower 

than 1 represent that the class pairs should be combined into one single class (ENVI Help, 

2010). Observing the values shown in Table 5.1, most of the class pairs are well separated from 

each other with values greater than 1.9. Grassland and green cropland have relatively lower 

value (1.657); and class separability value of pair of high-density urban built-up area and 

barren land (1.412) is also relatively lower than other pairs. However, no class has to be 

combined into others because all values are greater than 1. The selected training samples are 
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satisfactory to be used for classification. After determining the training samples, classification 

using four classifiers can be conducted. Classification results will be illustrated in the 

following context. 

Table 5.1 Class separability of training samples of 2006 image 

Separability 

values 
Water  

Forest 

land 

Green 

cropland 
Fallow 

Low-

density 

urban area 

High-

density 

urban area 

Grassland 
Barren 

land 

Water  1.999 1.999 2.000 1.999 2.000 1.999 2.000 

Forest land   1.898 2.000 2.000 2.000 1.995 2.000 

Green 

cropland    2.000 1.999 2.000 1.657 2.000 

Fallow     1.999 1.999 2.000 1.999 

Low-density 

urban area      1.985 1.999 1.999 

High-density 

urban area       2.000 1.412 

Grassland        2.000 

Barren land         

 

5.1.2 Comparison of Classifiers  

Classification was conducted on 2006 image using four different classifiers, which 

were MLC, ANN, SVM, and RF. The classification maps are illustrated in Figure 5.1. 

Analyzing the classification maps from Figure 5.1 (a) to (d) visually, maps generated by three 

machine learning classifiers appear to be very similar. All classification maps have intraclass 

“salt and pepper” noise. This situation of MLC classification map is more obvious than others. 

Additionally, some pixels which represent shadow areas that are casted by tall buildings are 

classified into “water”. However, in general, by rough observation, all classifiers can generate 

useful LULC maps and produce consistent classification results. 
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Figure 5.1 Classification maps of 2006 generated by (a) MLC, (b) ANN, (c) SVM, (d) RF, and 

(e) SVM with post-classification processing
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In addition to visually observing the classification maps, accuracy assessment was also 

conducted on the classification maps to compare the performance of these classifiers 

quantitatively. User’s accuracy and producer’s accuracy of each category and overall accuracy 

and Kappa coefficient of each classification map are demonstrated in Table 5.2. According to 

the result, in general, classification using SVM has highest overall accuracy and Kappa 

coefficient, which are 89.58% and 0.88 respectively, while MLC generates the least accurate 

classification map with 81.11% overall accuracy and 0.78 Kappa coefficient. Classification 

maps generated by ANN and RF have much higher overall accuracy (88.36% and 88.47% 

respectively) than MLC, but relatively slightly lower than SVM.  
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Table 5.2 Accuracy assessment of classification maps generated by different classifiers 

 MLC ANN SVM RF 
SVM (with post-

classification processing) 

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

Water 100.00 95.56 100.00 98.89 100.00 100.00 100.00 96.56 100.00 100.00 

Forest land 85.94 61.11 97.65 92.22 93.48 95.56 95.24 88.89 91.67 97.78 

Green 

cropland 
75.00 60.00 68.70 87.78 77.45 87.78 83.52 84.44 79.05 92.22 

Fallow 93.02 88.89 92.22 92.22 89.58 95.56 93.33 93.33 92.55 96.67 

Low-

density 

urban area 

100.00 97.78 98.89 98.89 100.00 97.78 96.67 96.67 100.00 100.00 

High-

density 

urban area 

88.57 68.89 90.67 75.56 88.75 78.89 85.54 78.89 96.30 86.67 

Grassland 56.93 86.67 85.92 67.78 92.31 80.00 79.21 88.89 93.42 78.89 

Barren land 69.23 90.00 73.33 85.56 77.66 81.11 76.84 81.11 86.02 88.89 

Overall 

accuracy 

(%) 

81.11 87.36 89.58 88.47 91.94 

Kappa 

coefficient 
0.78 0.86 0.88 0.87 0.91 

(UA = user’s accuracy; PA = producer’s accuracy) 
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Be more specific, to detect performance of the classification of each category, user’s 

accuracy (UA) and producer’s accuracy (PA) should be analyzed as well. These values are 

important for indicating the value of LULC information extracted from the classification maps. 

According to Table 5.2, referring to “water” category, SVM provides 100% accuracy for both 

UA and PA. For “forest land”, “fallow”, and “low-density urban area” categories, all 

classification maps have high UA and PA with values greater than 85%, except for PA of 

“forest land” in MLC map. Comparatively, “fallow”, “high-density urban area”, “grassland” 

and “barren land” have lower UA and PA with most values around 80%. For MLC 

classification map, UA and PA are overall lower than other classification maps, which is 

consistent with the result of their overall accuracies. As for other three classifiers, they 

generate classification maps with high UA and PA generally. However, ANN generates less 

stable result in terms of some low values. For example, green cropland and barren land have 

low UA, which are 68.70% and 73.33% respectively; and grassland has low PA, which is 

67.78%. As for SVM and RF, SVM generated classification maps with relatively more stable 

and higher UA and PA of the classes than RF.  

All in all, SVM was selected for classification of all Landsat images to extract LULC 

information. To improve classification accuracy, post-classification processing was conducted 

on all classification maps. To demonstrate the improvement of classification result after this 

process, one example for 2006 image is shown as Figure 5.1 (e). Intraclass “salt and pepper” 

noise is reduced. According to Table 5.2, overall accuracy increases to 91.94%. UA and PA of 

high-density urban area and barren land are significantly improved. After all classification 

maps have been generated, change detection and urban growth monitoring were performed. 

Results are shown in the following sections. 
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5.2 Analysis of LULC Change  

Classification was performed on all Landsat images of each year from 1984 to 2013 

except for 1988, 2004, and 2012. Accuracy assessment result of each classification map is 

summarized in Appendix III. To increase the reliability of change detection result, green 

cropland, fallow, and grassland were combined into “vegetated area”. Other classes remained 

the same. Change detection analysis was conducted based on the classification results. To 

make the change detection results more meaningful from management perspective, statistics 

were extracted not from the entire study area, but from the municipality area of the cities. 

Results of bi-temporal, multi-temporal and time-serial change dynamics analysis are 

demonstrated in this section. 

5.2.1 Bi-Temporal Change Detection Analysis 

Classification maps of 1984 and 2013 are shown in Figure 5.2 with six classes, which 

are water, forest land, vegetated area, low-density urban area, high-density urban area, and 

barren land. There are two large and concentrated built-up areas which locations are isolated 

and can easily be distinguished in this study area in both two classification maps. The southeast 

urban area is located in Waterloo-Kitchener city area. And the other one is located in 

Cambridge city area. According to the maps, the most significant change occurred during this 

time period is caused by the expansion of urban built-up area. The sprawl of built-up area 

encroaches large area of vegetated area which includes agricultural land and grassland. As for 

other LULC types, just based on visual observation of the classification maps, forest lands 

almost remain the same; and water bodies are also well preserved. Some barren lands remain 
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the same, while some change to built-up area. To detect more specific changes occurred during 

this time period, the two classification maps are overlaid to extract the changes.  

 
Figure 5.2 Classification maps of (a) 1984 and (b) 2013 
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Figure 5.3 Examples of real scenes of several LULC types  

Overall accuracy of each map is shown in Appendix III. Reference samples were 

selected on Landsat images. Since 2013 is the most recent image, in order to make the result of 

accuracy assessment more reliable, a field trip was taken to checking the LULC type of several 

confusing pixels. Figure 5.3 shows some examples of photos taken for some LULC types. The 

field trips guaranteed the quality of reference samples. 
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Figure 5.4 Change map showing alteration from vegetated area to built-up area 

Based on the change detection result, important changes can be obtained. The most 

significant change is the alteration from vegetated area to built-up area. Figure 5.4 shows the 

spatial distribution of this type of change occurred over the recent 30 years. Low-density built-

up area in Waterloo-Kitchener city area, represented as pink area, replaces large area of the 

greenfield surrounding the urban built-up area existing in 1984. As for Cambridge city area, 

low-density built-up area also increases and mainly occupies large amount of vegetation in the 

east and south part of Cambridge. For high-density built-up area which appears as red in Figure 

5.4, result demonstrates that changes mainly occur in the north of Waterloo, in the south of 

Kitchener, and in the middle of Cambridge. Also, near the border of Kitchener and Cambridge, 

large area of high-density built-up area emerges that can be easily detected in the change map. 
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Figure 5.5 Pie chart of LULC coverage of 1984 and 2013  

By counting the number of pixels of each class for each year, LULC coverage 

information can be obtained, which is shown as Figure 5.5. Taking the entire municipality area 

as a whole, forest land, water, and barren land don’t experience significant change over the 

time period in general. The percentages of coverage of these three classes remain 

approximately 14%, 2%, and 1% respectively by coarsely estimated. However, as for vegetated 

area, the coverage shrinks dramatically from 53% to 28%, demonstrating that almost half of 

the vegetation excluding forest has disappeared by recent 30 years. Consistent with the 

decrease of vegetated area, coverage of urban built-up area increases significantly from 30% to 

55%. Low-density area grows from 25% to 44%; and the coverage of high-density area in 2013 

(11%) becomes more than twice as that in 1984 (5%). 

Figure 5.5 only demonstrates the static state of each class in 1984 and 2013. In addition 

to the alteration from vegetated area to built-up area, other types of interclass changes also 

need to be detected for more comprehensive analysis. Specific “from-to” change information is 

obtained and summarized in Table 5.3. Values shown in the table represent the amount of 

change from one type detected in 1984 to another type detected in 2013. The amount of 
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changes is demonstrated by area (km
2
) and percentage (%) of the change class area detected in 

1984. Observing the table, diagonal values represent the area with no change. Water, forest 

land, low-density urban area, and high-density urban are relatively stable classes that don't 

have significant change, keeping 72.46%, 68.68%, 89.15%, and 75.46% unchanged 

respectively. Only about 1.013 km
2 

of water change to forest land and 0.36 km
2
 change to 

vegetated area. 7.349 km
2
 of forest land become vegetated area and 5.79 km

2
 become low-

density urban built-up area. As for low-density built-up area, a small portion (2.22 km
2
) of the 

area changes to vegetated area and another small portion (5.6 km
2
) changes to high-density 

built-up area. However, about 3.583 km
2
 area of high-density built-up area changes to low-

density built-up area according to the table.  

Table 5.3 “From-to” change confusion matrix 

      1984 

 

   2013 

Water 
Forest 

land 

Vegetated 

area 

Low-density 

urban area 

High-density 

urban area 

Barren 

land 

km
2
 (%) km

2
 (%) km

2
 (%) km

2
 (%) km

2
 (%) km

2
 (%) 

Water 
4.651 

(72.46) 

0.704 

(1.54) 

0.574 

(0.35) 

0.116  

(0.15) 

0.001 

(0.01) 

0.000 

(0.00) 

Forest land 
1.013 

(15.77) 

31.472 

(68.68) 

12.815 

(7.78) 

0.716 

(0.89) 

0.007 

(0.04) 

0.011 

(0.34) 

Vegetated 

area 

0.356 

(5.38) 

7.349 

(16.04) 

72.094 

(43.77) 

2.222 

(2.77) 

0.433 

(2.53) 

1.058 

(33.06) 

Low-

density 

urban area 

0.401 

(6.25) 

5.794 

(12.65) 

60.106 

(36.49) 

71.619 

(89.15) 

3.583 

(20.95) 

1.387 

(43.36) 

High-

density 

urban area 

0.008 

(0.13) 

0.437 

(0.95) 

16.381 

(9.95) 

5.600 

(6.97) 

12.907 

(75.46) 

0.661 

(20.65) 

Barren land 
0.000 

(0.00) 

0.067 

(0.15) 

2.737 

(1.66) 

0.061 

(0.08) 

0.175 

(1.02) 

0.083 

(2.59) 

Class 

changes 

1.778 

(27.55) 

14.351 

(31.32) 

92.613 

(56.23) 

8.715 

(10.85) 

4.199 

(24.55) 

3.117 

(97.41) 

 

Comparatively, vegetated area experiences the most dramatic change. 60.106 km
2
 and 

16.381 km
2
 of vegetated areas alter into low-density built-up area and high-density built-up 
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area, respectively. And 2.737 km
2 

of the vegetated area are cleaned up to be barren land for 

establishing built-up area in the future. In total, about 56% of vegetated area detected in 1984 

decreases for building purpose. As for barren land, about 1.387 km
2
 and 0.661 km

2
 of the area 

develop into low-density built-up area and high-density built-up area, respectively. However, 

the total area of barren land remains almost the same because a portion of vegetated area 

changes to it. Therefore, most of the barren land area can be considered as construction area 

that shows the intermediate transitional status from vegetation to buildings.  

5.2.2 Multi-Temporal Change Detection Analysis 

Based on the bi-temporal change detection method, LULC interclass changes can be 

detected according to their static states recorded by snapshots taken in 1984 and 2013. Result 

shows that the major change is the alteration from vegetation to built-up area caused by urban 

growth process. To detect relatively detailed change processes over the 30-year time period, 

multi-temporal change detection has been conducted with 6-year interval. Classification maps 

used in this analysis are of 1984, 1990, 1996, 2002, 2008, and 2013, which are displayed in 

sequence in Figure 5.6. Overall accuracy of each classification map is shown in Appendix III. 

All classification maps have high overall accuracy. The growth process of built-up area can be 

detected roughly by visual interpretation of the maps. It is obvious that both low-density built-

up area and high-density built-up area expand outward in general. Low-density area grows 

surrounding the existing built-up area in Waterloo and Kitchener region, while it grows 

eastward and southward in Cambridge. As for high-density built-up area, significant growths 

occur in the north of waterloo, in the south of Kitchener, and in the middle of Cambridge. 

Another emergence of high-density industrial area is detected near the boundary of Kitchener 

and Cambridge with rapid growth. In addition to outward growth, high-density built-up area 
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also has inward growth pattern which increases built-up density inside urban area. 

Correspondingly, the coverage of vegetated area shrinks. Some barren lands detected in earlier 

years are replaced by built-up area successively. And the newly emerged barren lands are 

mostly located on the fringe of the urban built-up area.  

Table 5.4 Statistics of multi-temporal LULC net change 

Time 

period 
 Water 

Forest 

land 

Vegetated 

area 

Low-

density 

urban area 

High-

density 

urban area 

Barren 

land 

1984 

~ 

1990 

 

km
2
 -0.848 -1.981 -20.898 10.941 4.694 8.113 

% -0.27 -0.62 -6.58 3.44 1.48 2.55 

1990 

~ 

1996 

 

km
2
 0.321 15.535 -28.716 9.937 5.633 -2.748 

% 0.10 4.89 -9.04 3.13 1.77 -0.87 

1996 

~ 

2002 

km
2
 -0.543 -4.541 -24.634 24.818 1.912 2.984 

% -0.17 -1.43 -7.75 7.81 0.60 0.94 

2002 

~ 

2008 

km
2
 0.761 -6.430 -3.880 8.124 5.609 -4.252 

% 0.24 -2.02 -1.22 2.56 1.77 -1.34 

2008 

~ 

2013 

km
2
 0.046 -2.355 -3.040 8.756 1.042 -4.174 

% 0.01 -0.74 -0.96 2.76 0.33 -1.31 

1984 

~ 

2013 

km
2
 -0.263 0.228 -81.168 62.577 18.889 -0.077 

% -0.08 0.07 -25.54 19.69 5.94 -0.02 
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Figure 5.6 Classification maps of (a) 1984, (b) 1990, (c) 1996, (d) 2002, (e) 2008, and (f) 2013
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To detect specific change processes quantitatively, area and percentage of change of 

each class over each time interval are calculated and summarized in Table 5.4. Analyzing the 

table generally, only vegetated area experiences constant shrinkage during each time period 

with total loss of about 81 km
2
. To the contrary, coverage of both low-density and high-density 

built-up area keeps increasing; the expanded areas are about 63 km
2
 and 19 km

2
 respectively. 

As for forest land, it only has gain in coverage during 1990 to 1996 period; and over other time 

period, the area decreases slightly and constantly. Comparatively, gain and loss of coverage of 

water and barren land are erratic. To more intuitively detect the change process of each class 

over this time span, area net changes represented by percentage in municipality area of each 

class are shown as graphic in Figure 5.7. Much of the change occurs during time period of 

1990~1996 and 1996 to 2002, while least change occurs during 2008~2013 according to the 

figure. Gain in urban area is mainly cost by the loss of great amount of vegetated area and 

small portion of forest land. It is clearly shown that vegetated area experiences constant great 

loss from 1984 to 2002 with a decrease about 23% of the entire municipality area. Low-density 

built-up area increases most rapidly during 1996~2002 time period, gaining area of about 8%. 

During other four time periods, low-density urban area grows at similar rates which are about 3% 

in average. High-density urban area grows relatively slower than low-density urban area. The 

most rapid growth occurs during 1990~1996 and 2002~2008 time period, increasing area about 

2%. Barren land fluctuates around gain and loss within the 30 years. And water experiences 

very subtle change that is not easy to detect. 
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Figure 5.7 Normalized net change in municipality area by time period for each LULC class 

5.2.3 Time-Serial Change Dynamics Analysis 

In terms of coarsely multi-temporal change detection method, intermediate LULC 

classification maps generated with given time interval are used and analyzed to reveal the 

change processes during the time period. This analysis method shows more detailed change 

information than bi-temporal one. However, to detect more complex dynamics of LULC 

changes, all classification maps can be involved to accomplish time-serial analysis. . Statistics 

of the classes are calculated and recorded in Table 5.5. Trajectories of dynamic change of each 

class are illustrated in Figure 5.8. 
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Figure 5.8 LULC dynamic change from 1984 to 2013 

According to Figure 5.8, trajectory of change process of each class is clearly illustrated 

that dynamic change of each class can be easily observed. Obviously, urban built-up area 

experiences growth over the 30 years in general. However, based on the statistics recorded in 

Table 5.5, the overall trend of built-up area is increase, but the process is torturous. Area 

increases in one year but falls back slightly in next year and increases again in later years. For 

example, according to the table total percentage of built-up area is 48.3% in 2002, but the value 

decreases to 47.9% in 2003 and rebounds to 51.3% in 2005. The situation of vegetated area is 

similar as built-up area that the coverage decreases over the period but experiences fluctuation. 

As for forest land and barren land, they have erratic change throughout the years, while water 

cover keeps relatively stable values around 2%. Based on the observation of built-up area over 

the entire time span, Region of Waterloo has experienced relatively accelerating urbanization 

process in 1990s and in early 2000s. 
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In terms of the above change detection results, most of the changes are caused by the 

expansion of urban built-up area at the expense of vegetation area. Urbanization process can be 

monitored, and will be analyzed in the next section.  

Table 5.5 Percentage of each class in municipality area for each year 

     

Class 

  

   Year  

Water  

(%) 

Forest 

land (%) 

Vegetated 

area (%) 

Low-density 

urban area 

(%) 

High-density 

urban area 

(%) 

Barren 

land (%) 

1984 2.14 14.37 52.44 24.71 5.32 1.03 

1985 1.75 13.06 52.09 24.42 5.79 2.88 

1986 2.09 8.99 54.67 25.31 5.82 3.09 

1987 1.84 12.02 49.79 25.35 5.98 5.03 

1989 1.97 12.21 47.22 28.01 5.92 4.67 

1990 1.89 13.71 45.95 28.09 6.74 3.64 

1991 1.83 14.58 42.34 29.59 6.56 5.07 

1992 2.22 14.31 41.21 30.97 6.03 5.21 

1993 1.83 18.88 36.93 29.20 7.56 5.58 

1994 1.78 22.83 33.99 31.26 8.09 2.03 

1995 1.93 15.74 37.56 33.27 8.31 3.19 

1996 2.03 18.65 36.83 31.11 8.61 2.77 

1997 1.92 11.65 42.01 32.09 8.80 3.50 

1998 2.18 17.57 32.41 34.17 8.64 5.04 

1999 1.74 19.41 34.29 33.07 8.63 2.85 

2000 1.79 19.97 30.43 35.21 8.87 3.70 

2001 1.82 17.43 26.70 37.71 8.99 7.32 

2002 1.82 17.31 28.92 39.14 9.19 3.62 

2003 1.99 16.53 29.92 38.49 9.43 3.62 

2005 2.01 17.28 26.51 41.83 9.51 2.83 

2006 1.90 18.39 24.85 41.39 10.15 3.29 

2007 2.35 10.53 32.72 40.91 10.50 2.98 

2008 2.09 15.16 27.77 41.49 10.90 2.55 

2009 2.25 13.03 29.49 42.55 11.03 1.63 

2010 2.06 12.31 30.14 42.48 11.27 1.73 

2011 2.32 13.25 28.44 43.89 11.32 0.78 

2013 2.19 14.50 26.80 44.37 11.29 0.98 
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5.3 Urban Growth Analysis 

5.3.1 Analysis of Urban Growth Pattern  

 

Figure 5.9 Map of the sprawl of urban built-up area 

By extracting and overlaying the urban built-up area from the multi-temporal 

classification maps shown in Figure 5.6. Figure 5.9 shows the map that represents the urban 

expansion. The area appearing dark mahogany represents the built-up area in 1984. Other built-

up area with colors changing gradually from dark red to pale red represents the growth 

occurred during different time periods, from earlier time periods to recent time periods. From 

spatial perspective, growth is unevenly distributed across the study area. Three types of urban 

growth patterns can be observed from this map. The dominant growth pattern over this recent 

30-year time period is the exurban outward sprawl pattern that can be most easily detected. 
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Significant urban expansion in this pattern occurs in the northeast and southwest part of 

Waterloo, in the northeast and south part of Kitchener, and in the east and south part of 

Cambridge. As the Grand River flows through the urban area to the east of Waterloo and 

Kitchener and to the west of Cambridge, the rate of westward urban growth is faster than the 

eastward growth in Waterloo and Kitchener, while eastward growth is very dramatic and there 

is almost no westward growth in Cambridge. Examples of urban growth in outward sprawl 

pattern are shown in Figure 5.10 (a). It can be clearly observed that built-up area experiences 

steady outward growth over time.  

The second type of urban growth pattern is growth in isolation. This can be considered 

as the initial emergence of built-up area which grows independently to other existing built-up 

area. One example of this type of growth is shown in Figure 5.10 (b). Referring to Figure 5.6 

(a), this area is occupied with vegetation in the 1984 classification map. Then it experiences 

rapid growth in suburban area in isolation from neither main built-up area over the time period. 

Though this growth happens in suburban area, it is very close to the junction of Highway 8 and 

Highway 401. 

The third type of growth pattern is inward growth which includes replacement of 

vegetation in central urban area and intensification of existing built-up area. One example of 

the previous inward growth is shown in Figure 5.10 (c). Large area of vegetation is gradually 

occupied by built-up area. As for the latter type of inward growth, the typical example is the 

change from low-density built-up area to high-density built-up area.  
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Figure 5.10 Examples of three urban growth patterns 

5.3.2 Long-Term Processes of Population Growth and Urban Growth 

According to the literature review, urban growth is mainly caused by population growth. 

To explore the long-term processes of population growth and urban growth of the Region of 

Waterloo, a double vertical axes chart, shown in Figure 5.11, was generated based on the 

census data and urban built-up area extracted from the classification maps of the corresponding 

years. The left hand side axis represents the area of total urban built-up area, while the right 

hand side axis is the population of the entire municipality area. According to this chart, both 

population and urban built-up area experiences a constant growth throughout the time period.  
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To further investigate the relationship between urban growth and population growth, 

Table 5.6 shows the growth rates of urban area and population for each time period 

respectively. For 1996~2001 and 2001 ~2006 period, urban built-up area experiences relatively 

higher growth rate than other time periods, with 17.58% and 10.36% respectively. Likewise, 

growth rates of population during these two time period are higher than other periods, which 

are 8.12% and 10.25% respectively. Based on Figure 5.11 and Table 5.6, it can be clearly 

demonstrated that urban area grows along with population growth in general. 

 

Figure 5.11 Population growth and urbanization process during recent 30 years 

Table 5.6 Growth rates of population and urban area 

Growth rate 

(%) 
1991~1996 1996~2001 2001~2006 2006~2011 

Population  1.18 8.12 10.25 5.25 

Urban area 9.86 17.58 10.36 7.10 
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5.3.3 Linear Regression analysis of Urban Growth  

Taking the entire built-up area as a whole object, qualitative growth pattern analysis 

can be conducted to discover the urbanization process roughly. However, in order to detect 

urban growth trend in a quantitative way, linear regression analysis was applied using annual 

urban built-up information. Since the urban area is comprised of three different cities, analysis 

was conducted on the statistics of each city respectively. Low-density built-up area, high-

density built-up area, and total built-up area are also analyzed for each city respectively. Figure 

5.12 to Figure 5.14 show the scatter plots and fitted lines of dynamic growth process of low-

density built-up area, high-density built-up area, and total built-up area of Waterloo, Kitchener, 

and Cambridge, respectively, over the time period. 

 

Figure 5.12 Dynamic change of low-density urban built-up area of Waterloo, Kitchener, and 

Cambridge from 1984 to 2013 
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Figure 5.13 Dynamic change of high-density urban built-up area of Waterloo, Kitchener, and 

Cambridge from 1984 to 2013 

 

Figure 5.14 Dynamic change of total urban built-up area of Waterloo, Kitchener, and 

Cambridge from 1984 to 2013 
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It can be observed in these three figures that all cities experiences unstable built-up 

development based on the measured data. The linear fitted lines reveal the growth trend and 

growth rate of built-up area in each city. Regression coefficients and fit of linear regression 

model are summarized in Table 5.7. Nine linear models are generated. According to the values 

of R
2
, all of them are high values (greater than 0.8) and most of them are greater than 0.9, 

demonstrating that the trend of built-up area growth is well fitted by the linear model. By 

observing the figures, scatters representing low-density built-up area and total built-up area are 

mostly concentrated near the fitted lines, while the scatters representing high-density built-up 

area fluctuate relatively severe around the fitted lines than other measurements. In addition, 

significant level is another indicator of evaluating the model effectiveness. The values of 

significance are all less than 0.001 implying that the relationship between built-up area and its 

corresponding year is significant for all linear models.  

Values under “Intercept” columns are the estimated area of low-density, high-density 

and total built-up area at year 1984 of each city by km
2
 and percentage of its municipality area. 

Result shows that Kitchener has the largest area of both low-density and high-density types, 

which are 17.038±1.139 km
2
 or 27.764±1.04% and 8.898±0.083 km

2
 or 6.451±0.61% 

estimated at year 1984, respectively, while Waterloo has the smallest area. The rate of linear 

growth is observable referring to the “Slope” columns. The values show that Kitchener has 

greatest increase in low-density built-up area, at a rate of 0.969±0.033 km
2
/year, or 0.703±

0.02% of the city area per year. Waterloo and Cambridge develop relatively slower, at a rate of 

0.629±0.026 km
2
/year and 0.791±0.036 km

2
/year, respectively. As for high-density built-up 

area, Cambridge develops much more rapid, with the area increasing at a rate of 0.309±0.017 

km
2
/year. Comparatively, Waterloo increases much slower, at a rate of 0.148±0.011 km

2
/year, 
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and that of Kitchener, area increases at a rate of 0.203±0.019 km
2
/year. Putting low-density 

and high-density built-up area together, Kitchener and Cambridge grows with similar rates, 

which are 1.172±0.032 km
2
/year and 1.100±0.041 km

2
/year respectively, while Waterloo 

increases relatively slower, at a rate of 0.777±0.027 km
2
/year. 

Table 5.7 Summary of regression coefficient and fit of linear regression model of urban built-

up area over time from 1984 to 2013 for Waterloo, Kitchener, Cambridge 

Municipality 

Intercept (estimated at year 

1984) 
Slope 

R
2
 

km
2
 

(S.E.) 

% 

(S.E.) 
Sig. 

km
2
/year 

(S.E.) 

%/year 

(S.E.) 
Sig. 

Low-

density 

Waterloo 
17.038 

(1.139) 

26.33 

(1.76) 
.000 

0.629 

(0.026) 

0.97 

(0.04) 
.000 0.959 

Kitchener 
38.293 

(1.430) 

27.76 

(1.04) 
.000 

0.969 

(0.033) 

0.70 

(0.02) 
.000 0.973 

Cambridge 
22.246 

(1.593) 

19.33 

(1.38) 
.000 

0.791 

(0.036) 

0.69 

(0.03) 
.000 0.950 

High-

density 

Waterloo 
3.774 

(0.466) 

5.83 

(0.72) 
.000 

0.148 

(0.011) 

0.23 

(0.02) 
.000 0.886 

Kitchener 
8.898 

(0.843) 

6.45 

(0.61) 
.000 

0.203 

(0.019) 

0.15 

(0.01) 
.000 0.816 

Cambridge 
5.524 

(0.761) 

4.80 

(0.66) 
.000 

0.309 

(0.017) 

0.27 

(0.02) 
.000 0.927 

Total 

Waterloo 
20.970 

(1.195) 

32.40 

(1.85) 
.000 

0.777 

(0.027) 

1.20 

(0.04) 
.000 0.970 

Kitchener 
47.151 

(1.405) 

34.19 

(1.02) 
.000 

1.172 

(0.032) 

0.85 

(0.02) 
.000 0.982 

Cambridge 
27.800 

(1.792) 

24.16 

(1.56) 
.000 

1.100 

(0.041) 

0.96 

(0.04) 
.000 0.967 

(S.E.  = standard error; Sig. = significance) 

5.4 Chapter Summary 

This chapter shows the major results obtained based on the methodology. Classification 

maps generated by four classifiers were compared in terms of accuracy assessment. According 

to the comparison result, machine learning classifiers provided better results than MLC. And 

finally SVM classifier was selected as the most appropriate classifier to process all Landsat 
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images in this study. Subsequently, based on LULC information extracted from the 

classification maps, bi-temporal, multi-temporal, and time-serial change detection analysis 

were conducted to comprehensively explore the change process both qualitatively and 

quantitatively. Result shows that urbanization is the major cause that leads to change, replacing 

large area of vegetation. The most significant change occurred during 1996 to 2002 time period. 

More detailed dynamic change process can be detected by time-serial analysis. 

Urban growth analysis is also included in this chapter. Three urban growth patterns, 

which are outward urban sprawl, growth in isolation, and inward expansion, were detected by 

observing classification maps spatially. The dominant growth pattern is the outward growth. In 

addition, growth trend and growth rate of Waterloo, Kitchener, and Cambridge were analyzed 

as well. Simple linear regression model was applied to the data representing the area of built-

up area obtained from the high-frequent classification maps. Strong relationship was shown 

between the area and the year detected. Kitchener experiences highest growth rate of low-

density built-up area, while high-density built-up area increases most rapidly in Cambridge. In 

total, Kitchener and Cambridge grow relatively faster than Waterloo over this time period. 
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Chapter 6 Conclusions and Recommendations 

In this study, LULC change dynamics and urban growth trend of the Region of 

Waterloo were successfully detected by using long-term Landsat archive data. In this chapter, 

key findings, significance and contributions of this study will be summarized. Moreover, some 

limitations and uncertainties of this study will be considered as well. Potential future studies 

will be conceived and proposed in the end.  

6.1 Key Findings of the Study 

This study aims to detect the LULC change dynamics and monitor urban growth 

process of the urban area of Region of Waterloo using long-term Landsat record. By discussing 

the fulfillment of the objectives defined in the beginning, key findings and contributions of this 

study will be summarized. 

6.1.1 Performance of Classifiers 

There are several key findings of this study. First of all, classification is the most 

important process that determines the reliability of the results. SVM outperformed MLC, ANN, 

and RF based on its highest overall accuracy in this study. However, it is insufficient to 

indicate that SVM is the best classifier among the four classifiers. Each classifier has its own 

advantages and disadvantages. Based on the overall accuracy, all classifiers can generate 

acceptable results. MLC obtained result with the lowest accuracy in this study, but the idea 

behind the algorithm is easy to understand and it needs the least parameters to be tuned and 

least operation time. Among the machine learning classifiers, the running time of ANN 

classification was the longest, while the time of RF classification was the shortest. Also, there 

were more parameters that need to be defined when using ANN classifier. ANN is sensitive to 
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the number of hidden layer and the type of activation function. Compared to SVM, RF is less 

sensitive to the input parameters. Additionally, RF also can provide intermediate OOB estimate 

of error rate during training process to demonstrate whether the defined parameters are the 

most appropriate or not.  

As a whole, machine learning classifiers performed much better than traditional MLC 

algorithms when dealing with digital satellite data of complex urban area landscape. When 

selecting training samples, some mixed urban pixels might be selected. Especially for low-

density built-up area, many pixels are not pure pixels that only represent built-up land cover 

type. The mixed pixels might contain land cover type of grassland or soil/barren land. 

Moreover, due to the phenological effect, some pixels representing green cropland and 

grassland have very similar spectral signature so that they are hard to be distinguished from 

each other. Based on their performance, machine learning classifiers exhibit their robustness in 

dealing with such complex situation. Furthermore, the robustness of SVM was also verified by 

using long-term Landsat dataset. High overall accuracy of the classification maps can be 

guaranteed. 

6.1.2 LULC Change Dynamics of Urban Area of Region of Waterloo 

With the free access to Landsat archive data, LULC change dynamics can be 

completely detected by extracting LULC information from the temporally dense and extensive 

time-serial classification maps. Complexities of LULC change of urban systems of Region of 

Waterloo can be successfully detected. One major finding was obtained from the time-serial 

trajectory analysis that LULC change processes of urban area of Region of Waterloo were very 

complex, not simply increasing or decreasing all the way. Taking built-up area as an example, 

it experienced dramatic growth over the time period, but the coverage still had irregular 
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fluctuation up and down during the process. Water and forest, which was not supposed to 

change too much, also experienced observable fluctuation during this time period.  

Apart from the real change, those fluctuations might be resulted from other two aspects. 

One is the classification error which cannot be completely eliminated because of the medium 

spatial resolution of Landsat data and atmospheric noise. The other one might be the 

phenological effects that influence the classification results. Under this circumstance, the use 

of long-term dense datasets reveals its superiority of reducing the impacts caused by those 

factors. Time-series trajectory analysis detects the long-term change of complex ecosystems in 

a macroscopic view, reducing reliance on one single classification map. For example, it can be 

detected that there was an acceleration of urban built-up area growth of Region of Waterloo in 

1990s and a deceleration in late 2000s. Such valuable information of change complexities, 

which are required by environmental researchers and decision makers, cannot be detected by 

bi-temporal method or multi-temporal method.  

6.1.3 Urban Growth Monitoring of the Region of Waterloo 

In this study, the predominant change is urban growth. One important finding is that the 

growth of urban built-up area of Region of Waterloo presents three types of pattern. The major 

growth pattern is the outward sprawl mainly caused by the expansion of low-density built-up 

(residential) area towards suburban area. The second type of urban growth is the inward 

intensification, occupying some vegetated area inside the city. The third pattern is the growth 

in isolation, which is mainly due to industrial development.  

Another finding of this study is that the urban growth trend and growth rate of each city 

can be truthfully presented and estimated based on the built-up area trajectories. Cambridge 

experienced dramatic growth of high-density built-up area with fastest growth rate among the 
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three cities. Kitchener had the most rapid growth rate of low-density built-up area and of total 

built-up area. Meanwhile, Waterloo had the slowest growth rate of both low-density and high-

density built-up areas. The regression model based on the dense dataset can generate more 

reliable result than sparse dataset. Likewise, the limitation of data spatial resolution, the effect 

of phenological change, and the atmospheric noise introduced by satellite images can be 

reduced by using such high dense dataset. The results are very valuable for the regional 

governments to make decisions of regional development in the future. 

In summary, this study has several contributions. First of all, this study verifies SVM as 

a robust classifier for urban area classification, which is tested by using long-term Landsat data. 

Second, since this study used the most recent 2013 Landsat 8 data, the change detection results 

of the urban area of Region of Waterloo are the most up-to-date. The third contribution is that 

this is the first attempt to conduct long-term analysis of change dynamics and urban growth 

Region of Waterloo. The results are of great value for environmental researchers to perform 

further environmental studies, and for policy makers and planners of Region of Waterloo for 

better environmental management and urban planning purposes. Moreover, the methods of 

long-term change dynamics analysis and urban growth trend monitoring used in this study can 

inform further studies in various remote sensing fields by using long-term temporally dense 

and extensive datasets with the booming of remote sensing data volume.  

6.2 Limitations and Uncertainties of This Study 

This study has focused on change detection and urban growth analysis using high-

frequent Landsat dataset. There are some limitations and uncertainties in this study. From data 

perspective, in order to detect long-term dynamic change and generate linear regression model 

of urban built-up area, remote sensing data which are sufficiently dense and extensive in time 
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are required. With the long-term record and free open policy, Landsat archive data are the best 

choice for this study. However, Landsat data with medium spatial resolution (30m * 30m) 

cannot detect very subtle objects on land surface. Therefore, classification errors will be 

introduced and cannot be eliminated. Moreover, from classification perspective, in this study, 

classification was performed on each Landsat image taken from 1984 to 2013 except for 1988, 

2004, and 2012. Training samples were selected for each year. In this way, the quality of 

classification maps can be guaranteed because the training samples are sufficient. However, for 

high dense dataset, selecting training samples for each year was a huge task in this study. The 

work might become more burdensome when the study area is large. Additionally, it is hard to 

control all sets of training samples with the same quality. Therefore, effective image 

normalization methods should be developed to let training sample selection process much 

easier. During classification process, parameters determination is critical for obtaining the best 

result. However, when employing machine learning classifiers, it is difficult to determine 

which combination of the parameter setting is the most superior.  

Furthermore, in terms of the result of linear regression analysis of urban built-up area, 

the regression lines were well fitted by the extracted built-up area information from the 

classification maps. Though the fitted lines can well represent the growth trend of each city, it 

cannot be concluded that the linear model is the best model that exactly reflect the real 

urbanization process of Region of Waterloo. It only can be concluded that the linear model can 

successfully reflect the general trend of urban growth during 1984 to 2013 time period. Since 

urbanization is a very long and complex process, urban growth model can be very complicated. 

In order to detect the urban growth trend more accurate, the entire time span should be 

extended and more statistical growth models should be generated and employed.  
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6.3 Recommendations for Future Studies 

Based on both the superiorities and limitations of this study, some potential future 

studies are proposed here. With the global coverage of Landsat data, the time-serial change 

detection method can also be applied to other cities or metropolitan areas or even global scale 

to detect the LULC dynamic change. As for urban area analysis using remote sensing data, 

efforts also can be put into improving the urban area classification result. Since machine 

learning classifiers can deal with high dimensional dataset, various input features can be 

integrated together to investigate their effectiveness of improving the classification result. Also, 

studies can be focused on feature selection using RF algorithm to select useful features 

obtained from not only different remote sensing data, but also environmental variables and 

geographical parameters for urban area classification improvement. Moreover, in addition to 

time-serial remote sensing data, GIS data and socio-economic data can be also incorporated to 

generated more accurate urban growth model. Furthermore, the accessibility of long-term 

Landsat record also makes it possible to detect time-serial dynamic change of different land 

cover types, such as dynamic change of forest cover, glacier, watershed, coastline, etc.   
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Appendix I  

Equations of parameters of linear regression analysis 
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Appendix II  

The R script for random forest classification 

###Invoking the R packages  

library(sp) 

library(maptools) 

library(randomForest)  

library(raster) 

library(rgdal) 

###Reading the .txt files of each band and the training data 

train = scan('D:/RF classification/txt/roi.txt') 

b1 = scan('D:/RF classification/txt/b1.txt') 

b2 = scan('D:/RF classification/txt/b2.txt') 

b3 = scan('D:/RF classification/txt/b3.txt') 

b4 = scan('D:/RF classification/txt/b4.txt') 

b5 = scan('D:/RF classification/txt/b5.txt') 

b7 = scan('D:/RF classification/txt/b7.txt') 

###Store all layers into one dataframe 

data_all = data.frame(class = train, t.1 = b1, t.2 = b2, t.3 = b3, t.4 = b4, t.5 = b5, t.6 = b7) 

###Eliminate all data with value of 0 

data <- data_all[data_all$class != 0, ] 

data$class <- factor(data$class) 

###Training using random forest 

rf <- randomForest(class~., data = data, ntree = 500, mtry = 3, importance = T, proximity = T) 

importance(rf) 

print(rf) 

varImpPlot(rf) 

###Read the image and store the classification data as .tif file 

satImage <- stack('D:/RF classification/t.tif') 

outImage <- 'D:/RF classification/t_RF.tif' 

###Classification 

predict(satImage, rf, filename=outImage, progress='text', format='GTiff', datatype='INT1U', 

type='response', overwrite=TRUE) 

###Read reference data and classification data 

ref = scan('D:/RF classification/txt/ref.txt') 

t_RF = scan('D:/RF classification/txt/t_RF.txt') 

###Accuracy assessment 

acc_data = data.frame(ref, t_RF) 

acc_data = acc_data[!acc_data$ref == 0,] 

###Error matrix 

acc = table(acc_data$t_RF, acc_data$ref) 

acc 

###Kappa coefficient 

library(psych) 

wkappa(acc) 
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Appendix III  

Accuracy assessment of classification maps 

 1984 1990 1996 2002 2008 2013 

Overall 

accuracy (%) 
90.37 92.90 88.67 88.55 92.08 92.84 

Kappa 

coefficient 
0.89 0.92 0.89 0.87 0.91 0.92 

 

 

 


