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Abstract 
 

Movement training modulates the excitability in several cortical and subcortical 

areas.  Compared to training with a single arm, movement training with both arms yields 

a greater increase in motor related cortical regions.  A short-term session of bimanual 

training (BMT) enhances cortical activity of motor preparation and execution areas in 

both hemispheres.  The underlying neural mechanisms for this increased activation with 

BMT are unclear, but may involve interhemispheric connections between homologous 

primary motor cortex (M1) representations and input from motor preparatory areas (i.e. 

dorsal premotor cortex (PMd)).  Also, it is unclear how selective up-regulation or down-

regulation of specific motor-related areas may contribute to changes in M1 excitability 

when combined with BMT.  The work in this thesis investigated modulation of M1 

excitability in terms of in-phase versus anti-phase BMT (Study #1), potentially up-

regulating the left dorsal premotor cortex (lPMd) via iTBS before BMT (Study #2), 

theoretically down-regulating contralateral (right) M1 homologous representation before 

BMT (Study #3), and finally the potential intracortical and interhemispheric cortical 

adaptations in M1 bilaterally due to the same interventions as Study #2 (Study #4). For 

Study #1, it was hypothesized that in-phase BMT would lead to an increased excitability 

in M1. For Studies #2-4, it was hypothesized that modulation of motor-related areas 

would cause an increase in the excitability of left M1, and this modulation would be 

greater when combined with BMT. Study #1 found that in-phase, and not anti-phase 

BMT, lead to increase M1 excitability. Study #2 found that iTBS to lPMd followed by 

BMT caused a unique increase in M1 excitability, in terms of increased spatial extent and 

global MEP amplitude.  Study #3 found that the combination of cTBS to right M1 with 
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BMT caused greater excitability enhancements than either intervention alone.  Finally, 

Study #4 found distinct modulations of cortical excitability within and across M1 

bilaterally due to BMT, iTBS to lPMd and the combination of these interventions that 

involved long-interval inhibitory circuitry asymmetrically. Overall, this current work 

found that the modulation of remote cortical areas to M1 (i.e. lPMd and contralateral M1) 

in combination with movement training led to unique, and at times greater, excitability 

enhancements of M1 which could be advantageous in enhancing short-term plasticity in 

damaged M1.    
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Chapter 1 -- Introduction  
1.1 Overview of the thesis  
  

Chapter 1 begins with the general objectives of the thesis.  Relevant literature will 

then be reviewed concerning the anatomy and physiology of the motor preparatory and 

execution cortical loci, the modulation and relationship of these cortical nodes due to 

bimanual arm training, and modulatory effects of repetitive transcranial magnetic 

stimulation (rTMS) protocols.  Chapter 1 concludes with the specific research objectives 

and hypotheses that motivated the work throughout this thesis.  Chapters 2 through 5 

entails the rationale, hypotheses, methods and results of the original research contributing 

to the thesis.  Chapter 6 includes a general discussion of the findings of the thesis, the 

limitations, future directions and conclusion.   

 
1.2 General objectives of the thesis 
 The general objective of this thesis is to investigate the modulation of the primary 

motor cortex (M1) excitability as influenced by connections with related intra- and 

interhemispheric motor preparatory and execution cortical regions.  Further, cortical 

adaptations in M1 were investigated using bimanual visuomotor movement training 

(BMT), theta burst stimulation (TBS) protocols to remote but related cortical nodes and a 

combination of these interventions.  Particularly, this thesis focused on M1 excitability 

changes due to different phases of upper-limb movement, potentially up-regulating the 

left dorsal premotor cortex (lPMd), theoretically down-regulating contralateral (right) M1 

homologous representation, and the potential intracortical and interhemispheric cortical 

adaptations in M1 bilaterally due to these interventions.  

There is extensive connectivity between premotor (PM) to motor areas within 

ipsilateral and contralateral hemispheres, as well as reciprocal connections between 
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homologous and non-homologous M1 representations (Asanuma & Okuda, 1962; 

Matsunami & Hamada, 1984; Gould et al., 1986; Meyer et al., 1995; Picard & Strick, 

2001; Wahl et al., 2007; Nelson et al., 2009).  Damage to the cortex (i.e. stroke related 

injuries) often leads to weakness in one side of the body (hemiparesis) due to damage to a 

motor cortical area (e.g. M1) (Staines et al., 2001).  Damage to one hemisphere motor 

cortex leads to a misbalance in the interhemispheric interactions, where the unaffected 

cortex often increases in excitability and sends abnormally high inhibitory signals to the 

damaged hemisphere (Ferbert et al., 1992; Liepert et al., 2000; Murase et al., 2004).  

Therefore, understanding the underlying neural connections between these intra- and 

interhemispheric cortical regions and how they may be modulated may be beneficial in 

assisting with functional recovery.  Certainly, studies have shown that PM areas can 

influence the excitability of downstream ipsilateral and contralateral M1 (Kalaska & 

Crammond, 1995; Geyer et al., 2000; Toni et al., 2001; Thoenissen et al., 2002).  Several 

behavioural and neurophysiological studies have shown that M1 activity is facilitated 

when PM areas are engaged via sensorimotor tasks (Rushworth et al., 2003; O’Shea et 

al., 2007) and stimulation protocols (Bäumer et al., 2003; Rizzo et al., 2004; Chouinard & 

Paus, 2006; Huang et al., 2009; Koch & Rothwell, 2009; Ortu et al., 2009; Groppa et al., 

2012), such as transcranial magnetic stimulation (TMS).  

The M1 cortices are highly interconnected through dense reciprocal projections 

via the corpus callosum, particularly between homologous and non-homologous 

neighbouring muscle representations (Chen et al., 1997; Chen et al., 2003; Picard & 

Strick, 2001; Swinnen, 2002; Daskalakis et al., 2004; Wahl et al., 2007).  Further, M1 in 

one hemisphere has influence over the opposite hemisphere M1 via facilitatory and 
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inhibitory reciprocal connections (Ferbert et al., 1992; Liepert et al., 2001; Stinear & 

Byblow, 2002; Smith & Staines, 2006, 2010, 2012; Duque et al., 2007; Avanzino et al., 

2011; Sattler et al., 2012).  Specifically, activity is enhanced in both M1 hemispheres 

when both limbs are active in a task compared to only one limb in healthy and stroke 

patient populations (Silvestrini et al., 1998; Staines et al., 2001; Smith & Staines, 2006, 

2010, 2012), suggesting that similar M1 areas activated in both hemispheres may 

facilitate and/or release inhibition to one another.  In fact, when the two upper limbs 

activate the same muscles simultaneously there is disinhibition of the contralateral M1 

(Stinear & Byblow, 2002).  Although the connectivity and cortical plasticity between PM 

and M1 areas have been explored in healthy and patient population, the 

neurophysiological mechanisms that underlie modulations between these areas still 

remain largely unclear.  

 Bimanual visuomotor movement training (BMT) is a useful way to understand the 

connections between these intra- and interhemispheric motor preparatory and execution 

areas. A short-term session of BMT has been shown to enhance the cortical activity of 

PM areas in both hemispheres (Smith & Staines, 2006, 2010, 2012) and M1 (Neva et al., 

2012).  These cortical modulations seem to occur particularly when the training includes 

time for motor preparation and requires the simultaneous activation of homologous 

muscle groups.  The M1 excitability changes seem to be reflected by an increase in 

cortical territory occupied by the trained muscles (Neva et al., 2012).  Since this task is 

bimanual and requires motor preparation, a potential contributor to the observed cortical 

modulations may include intra- and interhemispheric interactions between PM and M1. 

Another potential contributor to this modulation could be due to the interhemispheric 
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interactions between homologous muscle representations in M1 via the corpus callosum. 

It is currently unclear how these intra- and interhemispheric connections between motor 

preparatory and execution regions modulate M1 excitability due to BMT, rTMS protocols 

that selectively up-regulate or down-regulate these cortical nodes, and the combination of 

these interventions.  

  

1.3 Background of relevant literature 
 
1.3.1 Motor execution and preparation cortical areas 
 
Primary motor cortex (M1) 
 
Anatomy and functional connectivity 
 
 The M1 is located in the frontal lobe of the cortex, immediately anterior to the 

central sulcus, and is referred to as the pre-central sulcus (Brodmann area 4).  The M1 has 

traditionally thought to be the final output from the cortex to generate simple voluntary 

movement via muscle contraction in the contralateral body.  Studies in humans and 

monkeys using microstimulation from indwelling electrodes in the cortex revealed that 

M1 is organized in the form of a homunculus ("little man") (Foerster, 1931, 1936; 

Jackson, 1931; Penfield & Rasmussen, 1950).  This orderly somatotopic organization of 

M1 along the gyrus generally has the more proximal muscles represented medially and 

the distal muscles more laterally, with the facial and vocalization muscles represented 

most laterally (Foerster, 1931, 1936; Penfield & Rasmussen, 1950; Sanes & Schieber, 

2001; Schieber, 2001).  These cortical motor maps were discovered in seizure patients 

experiencing a spread of depolarization along M1 (Jackson, 1931; Foerster, 1936).  The 

areas representing the fingers, hand and face are disproportionally large compared to 
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other areas likely due to the greater skill and finer precision required during everyday 

tasks (Foerster, 1931, 1936; Penfield & Rasmussen, 1950; Woolsey, 1958; Sanes & 

Schieber, 2001; Schieber, 2001).  Further study on the somatotopy of M1 has revealed 

that it is not so strictly organized with clear borders, but that it is more of a mosaic 

representation with blurred borders between muscle loci.  Generally, there is an 

agreement among those who study M1 that the lower limbs and proximal structures are 

represented more medially, and that representation of the upper-limbs are represented 

more laterally (Hluštík et al., 2001; Sanes & Schieber, 2001; Schieber, 2001; Plow et al., 

2010).  However, there is less agreement on the specific representation of the arm and 

hand areas (Schieber & Hibbard, 1993; Hluštík et al., 2001; Indovina & Sanes, 2001; 

Plow et al., 2010).  In fact, stimulation of one area in M1 will often activate more than 

one muscle, but rather groups of muscles (Hluštík et al., 2001; Schieber, 2001), likely due 

to converging (Woolsey, 1958; Woolsey et al., 1979; Schieber & Hibbard, 1993; 

Schieber, 2001), diverging (Buys et al., 1986; Lemon et al., 1986) and overlapping 

cortical output to the periphery, as well as horizontal cortico-cortical interconnections to 

neighbouring somatotopic regions (Huntley & Jones, 1991).  Other studies have 

confirmed that corticospinal projections often diverge to several motor units in order to 

activate multiple muscle groups (Buys et al., 1986; Lemon et al., 1986; Schieber, 2001).  

Also, not only are the borders blurred between the somatotpic organization of M1, but 

activation of one particular muscle can occur in vastly different areas of M1 (Woolsey, 

1958; Woolsey et al., 1979; Schieber & Hibbard, 1993; Schieber, 2001); this is 

particularly true of the cortical representations of smaller body parts, such as the forearm 

and hand (Woolsey, 1958; Kwan et al., 1978; Woolsey et al., 1979; Schieber & Hibbard, 
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1993; Schieber, 2001; Plow et al., 2010).  The redundancy of limb representation within 

M1 may be advantageous to the coordination of diverse muscle synergies for vastly 

different and complex tasks.  Of all the motor-related areas (motor, premotor and 

somatosensory), M1 has the greatest amount and densest projections to the brainstem and 

spinal cord.  M1 is also the area requiring the lowest stimulus intensity to generate 

muscle contraction of the opposite limb (Murray & Coulter, 1981; Dum & Strick, 2002).   

 Several studies have revealed that M1 is involved in more than simple motor 

execution, demonstrating parameters of planning, spatial target location, hand position 

and velocity, joint configuration and patterns of muscle activation, different coordinated 

activity based on the desired goal of a particular movement (Hammond, 1956; Scott, 

2003, 2008) and reorganization due to learning or injury (Pascual-Leone et al., 1995; 

Nudo & Milliken, 1996; Nudo et al., 1996; Kleim et al., 1998; Kleim et al., 2004; Sanes 

& Donoghue, 2000).  The conclusion from the vast number of studies indicates that M1 is 

involved in basic production of motor execution and control, but is also involved in 

higher level processing of many different movement parameters (Scott, 2003, 2008) as 

well as a candidate cortical locus for storing learned motor memories (Pascual-Leone et 

al., 1995; Nudo & Milliken, 1996; Nudo et al., 1996; Classen et al., 1998; Kleim et al., 

1998; Kleim et al., 2004; Sanes & Donoghue, 2000; Tyc et al., 2005; Neva et al., 2012).  

 
The premotor cortices (SMA, PMd and PMv) 
 
 The PM areas are located in the frontal lobe, located immediately anterior to M1 

and classified as Brodmann area 6.  The PM areas contribute to the preparation and 

production of movement through projections to M1 and direct contributions to the 

corticospinal tracts (Murray & Coulter, 1981; Canedo, 1997; Picard & Strick, 2001; Dum 
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& Strick, 2002).  Direct stimulation of PM areas produces movement like that of M1, 

except it requires greater stimulus intensity.  Also, the movements produced from 

stimulation to PM produce more complex, coordinated multiple jointed movements 

compared to the relatively simple movements generated from M1 stimulation (Weinrich 

& Wise, 1982).  The PM areas have pyramidal neurons directly projecting to the spinal 

cord that are more sparse and smaller in size to M1 pyramidal neurons (Murray & 

Coulter, 1981; He et al., 1993; Canedo, 1997; Dum & Strick, 2002).  Generally, most of 

the projections from all PM areas are to M1.  Each PM area receives unique input from 

cortical and subcortical structures, such as parietal areas 5 and 7 and prefrontal area 46. 

The inputs from the parietal areas contribute to combining visual and somatosensory 

information to form a movement plan (Murray & Coulter, 1981; Picard & Strick, 2001; 

Dum & Strick, 2002; Rushworth et al., 2003; Vesia & Crawford, 2012).  Input from 

prefrontal area 46 has strong connections with the ventral PM, and is thought to be 

involved with keeping visual information about objects in working memory.  There is 

dense connectivity between all PM areas themselves in order to integrate information for 

movement planning.  Subcortical structures like the basal ganglia, cerebellum and 

thalamus all project to the PM with areas projecting back to the subcortical areas and the 

spinal cord (Murray & Coulter, 1981; Weinrich & Wise, 1982; Picard & Strick, 2001; 

Dum & Strick, 2002).  

 Recent research is advancing the understanding of PM cortices and at present 

there are six functionally defined areas with sub-classifications in each.  These areas, 

from medial to lateral are the cingulate cortices (dorsal, rostral and ventral), SMA, PMd 

and the ventral PM cortex (PMv).  Some of these areas are recognized contributors to 
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bimanual movement control and certainly these areas have been shown to contribute to 

the preparation and execution of motor control (Schluter et al., 1998, 2001; Johansen-

Berg et al., 2002; Swinnen, 2002; Smith & Staines, 2006, 2010, 2012).  For the purposes 

of this work, the SMA, PMd and PMv will be focused upon due to their involvement in 

bimanual coordination and contribution to the visuomotor transformation within the tasks 

of the current thesis.  

 The most medial of the PM areas is the SMA and it can be anatomically divided 

into two separate areas: the pre-SMA, which lies just anterior to the SMA proper.  In 

humans, the division between these two areas is the VCA line which is at the level of the 

anterior commissure.  The pre-SMA is associated in structure and function to operate 

more like a prefrontal cortical area, which deals with cognitive and motivational inputs 

for motor control.  The evidence for this is that the pre-SMA only has connections with 

the SMA proper and is highly interconnected with prefrontal cortices, whereas the SMA 

proper connects directly with M1 and has direct corticospinal projections (Murray & 

Coulter, 1981; Picard & Strick, 2001; Dum & Strick, 2002).  There is evidence that the 

pre-SMA is involved with tasks that require skilled visuomotor movement and also with 

the early learning phases of sequential motor tasks (Shima et al., 1996; Jäncke et al., 

2000; Picard & Strick, 2001).  In these studies the SMA proper seemed to be more 

involved in the motor execution aspects of the task and particularly when the task was 

learned (Hikosaka et al., 1996a; b; Picard & Strick, 2001).  The SMA proper is also 

activated during preparation of movements during skilled motor learning (Picard & 

Strick, 2001).  Therefore, the pre-SMA could be a relevant area recruited for acquisition 
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of the visuomotor associations involved with the BMT task in the current work and the 

SMA may be more involved in the execution of the bimanual coordination.  

 The lateral PM cortices include the dorsal and ventral portions (PMd-PMv).  

PMd, located lateral to SMA, in monkeys can be functionally and structurally divided in 

to rostral (PMdr) and caudal (PMdc) portions that are similar to the pre-SMA to SMA 

distinctions.  PMdr has a lot of similarities to pre-SMA and the same goes for the PMdc 

with the SMA proper (Geyer et al., 2000; Dum & Strick, 2002).  In general, PMdr has 

many connections with prefrontal areas and the reticular formation and very sparse direct 

corticospinal projections like PMdc (Dum & Strick, 2002).  In human imaging studies, 

PMdr shows greater activation learning visuomotor associations and PMdc is active 

during hand and arm movement (Boussaoud, 2001).  Therefore, similarly to the 

distinction between pre-SMA and SMA, the relevancy to the current work is similar with 

the division between more caudal and rostral portions of PMd.  It may be that PMdr is 

involved in the learned visuomotor transformation required in the BMT whereas the more 

PMdc may contribute to the execution of the task (Geyer et al., 2000; Boussaoud, 2001; 

Picard & Strick, 2001).  

 The second and most lateral PM area, the PMv, which lies just below the arcuate 

sulcus, can be divided into two slightly different areas lying anterior and posterior to one 

another (Matelli et al., 1985; Picard & Strick, 2001).  The posterior portion of PMv has 

very dense connections with M1 and direct corticospinal projections, similarly to PMd 

proper (He et al., 1993; Dum & Strick, 2002).  In monkeys, this portion of PMv has 

connections with the posterior parietal cortex and has led to the idea that this area has to 

do with transforming visual data about objects into information that can be used by the 
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limbs to make reaching movements (Rizzolatti et al., 1998).  This particular area has not 

been clearly demonstrated in humans.  In monkeys, the anterior portion seems to be 

largely involved in visual information processing and it contains what are called 

'cannonical' and 'mirror' neurons.  Cannonical neurons respond to visual information with 

three-dimensional objects.  Mirror neurons are activated during action observation 

(Rizzolatti et al., 1998; Geyer et al., 2000; Picard & Strick, 2001).  Analogous areas have 

not been observed in humans through imaging studies.  The PMv could assist in visual 

transformation during the bimanual training task, but likely the PMd as a whole 

contributes more significantly.  Therefore, this work focuses its efforts on PMd in order 

to probe the contributions of motor preparation to the BMT task and its effects to 

downstream M1.  

 
Interaction of premotor and motor cortices 
 

It has been shown previously that motor preparation during motor tasks (Kalaska 

& Crammond, 1995; Sheliga et al., 1995; Deubel & Schneider, 1996; Nobre et al., 2000; 

Corbetta & Shulman, 2002; Thoenissen et al., 2002; Smith & Staines, 2006, 2010, 2012; 

Neva et al., 2012) and skill training may increase cortical excitability and improve 

behavioural performance (Deiber et al., 1996; Staines et al., 2001; Jennings & van der 

Molen, 2005; Smith & Staines, 2006, 2010, 2012).  On the other hand, cortical activation 

is slightly decreased and task performance is generally worse when there is not the 

opportunity to prepare for upcoming movements (Deiber et al., 1996; Smith & Staines, 

2010).  Reaction times (RT) decrease when participants have prior knowledge of stimulus 

information, such as, spatial location or object features.  Indeed, covertly and overtly 

preparing movements to a target stimulus decreases RTs, and behavioural and 
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neuroimaging studies suggest that both types of preparation are not separate mechanisms, 

but they are coded by similar neural networks (Sheliga et al., 1995; Deubel & Schneider, 

1996; Nobre et al., 2000; Corbetta & Shulman, 2002).  The PM cortices have well known 

roles in selection of appropriate actions for movement execution (Kalaska & Crammond, 

1995; Thoenissen et al., 2002).  Some neuroimaging and TMS research suggests that 

PMd in the left hemisphere has a dominant role in action selection for motor execution. 

Specifically, PMd seems to be particularly involved in movement selection with learned 

visuomotor associations, and not as specifically with reaching or grasping like PMv 

(Geyer et al., 2000; Toni et al., 2001).  Furthermore, lPMd activity increases with action 

selection of one or both upper-limbs (Schluter et al., 2001).  Additionally, when the right 

PMd is disrupted with inhibitory TMS, action selection is hindered in the contralateral 

hand alone.  Conversely, disruption of lPMd leads to a disruption in action selection in 

both upper-limbs (Schluter et al., 1998; Johansen-Berg et al., 2002).  Similarly, rTMS to 

lPMd causes faster preparation of complex sequences performed with the right hand 

(Stinear et al., 2009).  These studies suggests that both hemispheres of PM cortices 

clearly have a role in movement preparation and action selection of the upper limbs.  

Also, enhanced activation of the PM cortices leads to an increased excitability of the 

downstream M1, and improved behavioural performance.  Critically, the lPMd has a 

particularly relevant role in the selection of movement and learning of visuomotor 

behavioural associations with both upper-limbs, which may play an important role in the 

current work.  

 
 
1.3.2 Bimanual movement 
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 The act of coordinated motor behaviour entails precise synchronization of 

multiple muscles around several joints.  Movement coordination is certainly complex 

with a single upper-limb, and becomes much more complex when both upper-limbs move 

simultaneously in order to interact with the surrounding environment.  In order to 

perform many common upper-limb movements, there is a need to overcome the tendency 

for the nervous system to couple movements in terms of timing and spatial displacement.  

Research on rhythmic and discrete bimanual coordination has demonstrated that 

homologous activation of the upper-limbs is the naturally preferred mode of movement, 

which can be referred to as in-phase movements.  There are many movements that 

necessitate an active de-coupling the natural predisposition towards in-phase movements 

of the upper-limbs.  Anti-phase movements, involving antagonist movements of the 

upper-limbs, requires much more complex coordination.  Since bimanual movement 

requires complex coordination of the upper-limbs, there have been a number of theories 

to explain how the CNS might mediate its control.  There are three main theories/models 

proposed to understand bimanual coordination: (1) generalized motor program (GMP) 

theory, (2) the intermanual crosstalk model, and (3) the dynamic systems model (Cardoso 

de Oliveira, 2002; Swinnen, 2002). 

 The generalized motor program (GMP) theory suggests that movements involving 

both limbs could be stored in particular brain areas as a common motor plan (Schmidt et 

al., 1979).  This common motor plan would organize an entire movement goal for the 

limbs, i.e. the 'shape' or destination of movement.  When a movement is executed, since 

the goals of the movement have been specified by the GMP, all that is required is the 

particular parameters to be specified like the force, timing and spatial displacement.  The 
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advantage of the GMP is that it is more efficient, in that the execution of a movement is 

initiated from a singular source, allowing more resources to be allocated to specifying 

movement parameters to complete the desired movement.  This movement theory applies 

to both unimanual and bimanual movements alike, thus a common motor plan could 

account for two-handed wrist movements as well, such as in-phase bimanual movements 

(Swinnen, 2002).   

 As opposed to the GMP, the intermanual crosstalk model proposes that there are 

separate motor programs for each limb (Marteniuk & MacKenzie, 1980).  Mutual 

influence and sharing of information between these separate motor programs are 

suggested to occur at two main levels, the spinal and cortical levels.  Spinal level 

communication is thought to occur primarily due to the ventral corticospinal tract 

(VCST) that remains ipsilateral to the cortical projections, which at the spinal level 

projects bilaterally.  This would cause communication with proximal and axial muscles 

on both sides of the body.  Also, since most of the information for proximal and distal 

limb muscles projects contralaterally, there is the notion that the uncrossed tracts 

influence the crossed tracts and would cause one arm to move similarly to the opposite 

arm.  The spinal level crosstalk is suggested to be non-flexible.  However, crosstalk at the 

cortical level is presumed to be more flexible and occurs by connections between PM and 

M1 in each hemisphere mediated by transcallosal connections.  These connections 

suggest a tendency towards homologous movements, with the ability to overcome this 

tendency due to the flexibility of these higher level cortical interactions (Cardoso de 

Oliveira, 2002; Swinnen, 2002).  
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 Lastly, the dynamic systems model may incorporate ideas from the GMP and 

crosstalk models, however, it differs in that it does not assume a hierarchical 

organization.  Generally, it proposes that there are oscillation patterns from two opposing 

stable patterns of movement: in-phase and anti-phase movements.  There is a tendency 

towards in-phase movements when certain parameters change, such as increased 

movement frequency.  This model does not assume that any one locus will serve to 

specify an abstract motor plan, or rigid stereotyped behaviour but rather bimanual 

coordination results from a distributed network that is highly adaptable to particular 

situations (Easton, 1972; Turvey et al., 1986; Cardoso de Oliveira, 2002; Swinnen, 2002).   

 
1.3.3 Cortical and subcortical regions involved in bimanual movement 
 
 There is certainly evidence for one common location being the locus for bimanual 

coordination, but there is also a wealth of evidence supporting a distributed functional 

network.  There are particular cortical and subcortical areas that have been identified as 

being associated with bimanual coordination, such as the supplementary motor area 

(SMA), M1, cingulate cortex, and to a lesser extent PMd, posterior parietal cortex, the 

basal ganglia and cerebellum. 

 The SMA is certainly a prime candidate for a locus of bimanual coordination due 

to dense interhemispheric connections between SMAs in both hemispheres (Rouiller et 

al., 1994).  There is greater activation of particular SMA neurons during bimanual 

movement compared to unimanual movement (Lang et al., 1990; Jancke et al., 2000).  In 

addition, greater activity in SMA occurs when movements are anti-phase rather than in-

phase (Goerres et al., 1998; Toyokura et al., 1999).  The SMA may be a cortical area that 

contributes to the de-coupling of the natural tendency toward mirrored movements of the 
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upper-limbs.  There could be bimanual movement specific neurons that carry a common 

signal that codes an overall goal of movement with two limbs.  This is supported by 

evidence that certain neurons in the SMA are only active during bimanual movement and 

are silent during unimanual movement (Farrar & Zipser, 1999).  Moreover, several 

clinical and lesion studies to the SMA have demonstrated that these patients have specific 

difficulties with bimanual coordination while unimanual coordination remains intact 

(Brinkman, 1984).  Therefore, the activity observed within the SMA may garner support 

the idea of the GMP for bimanual coordination. 

 M1 is an obvious candidate for the locus of bimanual coordination.  The 

traditional view of M1 is that it is concerned with processing and execution of movement 

parameters for the contralateral limb such as muscle force, joint torque, and movement 

direction (Evarts, 1973, 1979; Kalaska et al., 1983; Kakei et al., 1999) as well as for more 

abstract parameters such as motor imagery (Georgopoulos et al., 1989), serial sequencing 

(Carpenter et al., 1999) and stimulus-response associations (Zhang et al., 1997; Scott, 

2003, 2008).  Much of the current research is casting light on a different view of M1, one 

that does not emphasize a rigid contralateral limb control, but a shared network between 

both M1 representations, particularly of homologous muscle representations (Chen et al., 

1997; Chen et al., 2003; Kanouchi et al., 1997; Kobayashi et al., 2004). There is 

substantial ipsilateral limb representation in M1 (Wassermann et al., 1994) and neurons 

in one hemisphere M1 are active during unimanual and bimanual movement (Donchin et 

al., 1998; Kermadi et al., 1998) specifically when examining fMRI, local field potentials 

and even single neuron data (Toyokura et al., 1999; Donchin et al., 2001).  From these 

lines of research we can see that there is not only contralateral dominant control of the 
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upper-limbs, but in fact there is substantial overlap in M1 representation for both upper 

limbs.  It could be that the two M1s act as one cohesive unit in order to plan and execute 

a common bimanual movement plan (Cardoso de Oliveira, 2002; Swinnen, 2002).  

 Along with cortical structures there are subcortical structures that may be 

involved in the coordination of bimanual movement.  These subcortical structures are 

namely the basal ganglia and cerebellum.  The basal ganglia have been implicated in 

bimanual control due to studies on patients with Parkinson's and Huntington's disease 

(Serrien et al., 2000; van den Berg et al., 2000; Byblow et al., 2002).  These patients have 

been shown in several studies to have difficulty executing bimanual coordination tasks.  

Both of these diseases result from localized cell death in a particular area (substantia 

nigra and striatum, respectively), but these damaged local areas likely affect basal 

ganglia-thalamic-cortical loops.  Specifically, the SMA has been implicated as a cortical 

region having prominent connections with the basal ganglia.  Therefore, the deficits due 

to these disease states may arise from indirectly affecting the cortical areas that have 

reciprocal connections with the basal ganglia.    

 Other than the specific cortical and subcortical structures involved there are 

particular pathways integral to bimanual movement coordination.  As mentioned earlier, 

there are lower level spinal interactions due to ipsilateral corticospinal tracts.  In addition, 

higher level interactions due to dense reciprocal connections between homologous M1 

representations via the corpus callosum are a likely contributor to bimanual coordination.   

Certainly, split brain patients (those who have had a callostomy to sever interhemispheric 

connections) display deficits in spatial and temporal bimanual coordination and learning 

associations between the two upper limbs (Eliassen et al., 1999; Franz et al., 2000).  The 
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specific sub-areas of the corpus callosum are associated with particular aspects of 

temporal and spatial coupling of the limbs.  For instance, the posterior third of the corpus 

callosum seems to be involved in spatial coupling based on patients with damage to that 

area (Eliassen et al., 1999).  There is much anatomical and physiological data that suggest 

crosstalk between homologous M1 representations and descending corticospinal tracts 

likely contribute to the coordination of complex bimanual motor control (Cardoso de 

Oliveira, 2002; Swinnen, 2002).  

  
 
1.3.4 Neurophysiology of plasticity in motor adaptation 
 
 Prior to the last century of advances in understanding the central nervous system, 

the mainstream belief in medicine and research was that generally, the anatomy of the 

brain would never change.  “Plasticity” is a term widely used in modern neuroscience that 

generally describes the ability of the brain to physically change its functional and 

structural characteristics throughout the lifespan.  Over the past decades, the plasticity of 

the nervous system has been demonstrated in humans (Jacobs & Donoghue, 1991; 

Pascual-Leone et al., 1995; Karni et al., 1995, 1998; Nudo & Milliken, 1996; Nudo et al., 

1996; Borsook et al., 1998; Kleim et al., 1998; Kleim et al., 2004; Bütefisch et al., 2000; 

Muellbacher et al., 2001; Korman et al., 2003; Nudo, 2006; Butler & Wolf, 2007), 

monkeys (Nudo & Milliken, 1996; Nudo et al., 1996) and rodents (Donoghue & Sanes, 

1988; Sanes et al., 1988; Rioult-Pedotti et al., 2000) due to brain injury (Brion et al., 

1989; Nudo & Milliken, 1996; Netz et al., 1997; Rossini et al., 1998; Nelles et al., 1999; 

Johansson, 2000; Sanes & Donoghue, 2000; Nudo, 2006; Butler & Wolf, 2007), 

amputation (Cohen et al., 1991; Ramachandran, 1993; Karl et al., 2001), injury to the 
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peripheral nervous system (Donoghue & Sanes, 1988; Sanes et al., 1988) and also 

experience-dependent skilled motor movement (Jacobs & Donoghue, 1991; Pascual-

Leone et al., 1995; Nudo et al., 1996; Karni et al., 1998; Kleim et al., 1998; Kleim et al., 

2004; Bütefisch et al., 2000; Muellbacher et al., 2001; Ungerleider et al., 2002; Korman 

et al., 2003; Tyc et al., 2005; Fox & Wong, 2005; Nudo, 2006; Butler & Wolf, 2007).  It 

is generally agreed that neuronal plasticity, whether that be in the form of increased 

electrical activity or reorganization of cortical representation, must last for a certain time 

beyond the intervention in order to be properly defined as “plasticity” (Jacobs & 

Donoghue, 1991; Classen et al., 1998; Sanes & Donoghue, 2000; Stefan et al., 2004; 

Huang et al., 2005; Ziemann et al., 2006).  However, it is not entirely agreed upon exactly 

how long this effect should last beyond the particular intervention.  Early research 

demonstrated plastic effects on the nervous system that persisted for minutes, whereas 

more recent research has shown through artificial stimulation protocols that plastic 

changes in cortical excitability last for an hour in humans (Huang et al., 2005) and up to 4 

hours in rodents (Bliss & Lomo, 1973).  Similarly, for motor learning to properly be 

observed in any biological system, the effects of the training intervention (i.e. behavioural 

performance improvement) should be observable for a certain amount of time after initial 

learning (Pascual-Leone et al., 1995; Shadmehr & Brashers-Krug, 1997; Caithness et al., 

2004; Krakauer et al., 2005; Yamamoto et al., 2006; Butler & Wolf, 2007).  

Motor learning and adaptation 

 The definition of motor learning is controversial, but it generally denotes either (i) 

learning a novel motor skill and/or (ii) adaption of a previously learned motor skill or 

association to new and challenging environments (motor adaptation).  Learning a novel 
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motor skill often involves the acquisition of new spatial and temporal muscle activation 

patterns to complete the task.  This would be the case when an individual learns to play 

piano, where the timing and spatial location of the hands and digits must be coordinated 

in particular sequences to perform a musical piece.  Motor adaptation can be functionally 

divided in two ways: (i) sensory-motor adaptation and (ii) conditional sensory-motor 

associations.  Sensory-motor adaptation occurs when an accomplished pianist must learn 

a new musical score, where the individual would alter precise timing and spatial locations 

of hands and digits to move in proper sequence with the new piece.  Conditional sensory-

motor associations are similar, but involve more arbitrary visual cues associating with 

certain movement response, such as a red traffic light indicating to the driver to depress 

the brake pedal.  Whether the motor task involves learning a brand new skill or adapting 

already learned skills and associations to novel environments, there is generally a 

progression of motor adjustments so the motor task is learned and performed with relative 

ease, and both scenarios involve similar cortical adaptations demonstrated in many 

studies.  Following a certain amount of exposure, practice and repetition with the adapted 

motor task, it can be recalled and executed for long periods of time, and these behavioural 

adaptations may be associated with changes in cortical excitability (Friston et al., 1992; 

Grafton et al., 1992; Karni & Sagi, 1993; Jenkins et al., 1994; Kawashima et al., 1994; 

Pascual-Leone et al., 1995; Karni et al., 1995; Doyon et al., 1996; Nudo et al., 1996; 

Hikosaka et al., 1996a; Shadmehr & Brashers-Krug, 1997; Kleim et al., 2004; Sakai et 

al., 1998; Kleim et al., 1998; Sanes & Donoghue, 2000; Ungerleider et al., 2002; Korman 

et al., 2003; Caithness et al., 2004; Krakauer et al., 2005; Luft & Buitrago, 2005; Seitz & 

Roland, 2006; Yamamoto et al., 2006).  Strictly speaking, since the current behavioural 
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tasks require short-term visuomotor movement training and motor performance 

adjustments, the research in this thesis will not refer to motor learning specifically.  

Therefore, the work in this thesis primarily involves and refers to modest changes in 

motor adaptation and performance.    

Motor adaptation and cortical plasticity 

The general progression of adapting a new motor skill tends to begin with 

pronounced initial errors in the behavioural task, followed by large improvements in 

performance over successive practice.  This initial phase in motor adaptation is thought to 

be the 'fast' process of performance improvement which depends on a larger subset of 

cortical resources in order to rapidly improve performance in a trial-by-trial fashion 

(Karni & Sagi, 1993; Karni et al., 1998; Korman et al., 2003).  More cortical and 

subcortical loci are involved in this initial adaptation process, such as prefrontal areas, 

PM areas, M1 as well as the cerebellum and basal ganglia (Friston et al., 1992; Grafton et 

al., 1992; Karni & Sagi, 1993; Jenkins et al., 1994; Kawashima et al., 1994; Karni et al., 

1995, 1998; Doyon et al., 1996; Nudo & Milliken, 1996; Nudo et al., 1996; Hikosaka et 

al., 1996a; Kleim et al., 2004; Sakai et al., 1998; Kleim et al., 1998; Sanes & Donoghue, 

2000; Ungerleider et al., 2002; Luft & Buitrago, 2005; Seitz & Roland, 2006).  Once 

motor adaptation has progressed to the ‘slow’ phase, there is greater accuracy and fewer 

gains in performance (i.e. asymptomatic performance).  In this ‘slow’ phase of motor 

adaptation, where the motor task is becoming more consolidated, cortical activity seems 

to shift to a more local subset of the aforementioned cortical areas, such as the PM and 

M1 cortices (Friston et al., 1992; Grafton et al., 1992; Karni & Sagi, 1993; Jenkins et al., 

1994; Doyon et al., 1996; Hikosaka et al., 1996a; Karni et al., 1998; Sakai et al., 1998; 
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Sanes & Donoghue, 2000; Ungerleider et al., 2002; Kleim et al., 2004; Luft & Buitrago, 

2005).  The M1 cortices are certainly involved throughout all stages of motor adaptation; 

however, it seems that M1 is particularly involved in the longer term storage and 

consolidation of motor memories (Karni & Sagi, 1993; Jenkins et al., 1994; Hikosaka et 

al., 1996a; Karni et al., 1998; Sakai et al., 1998; Sanes & Donoghue, 2000; Ungerleider et 

al., 2002; Kleim et al., 2004; Luft & Buitrago, 2005).  This has been demonstrated with 

several studies displaying greater activation in M1 when humans perform a practiced 

motor skill as compared to adaptation of a novel skill (Karni & Sagi, 1993; Jenkins et al., 

1994; Karni et al., 1998), and also by an expanded M1 representation due to continued 

practice of a motor skill (Pascual-Leone et al., 1995; Nudo et al., 1996; Sanes & 

Donoghue, 2000; Ungerleider et al., 2002; Kleim et al., 2004). 

Motor adaptation, neuronal and cellular mechanisms of plasticity 

 On a much smaller scale, there are several neurophysiological mechanisms 

underlying the progression in motor adaptation.  A widely accepted cellular mechanism 

for the formation of motor memories is long-term potentiation (LTP) and the counterpart 

long-term depression (LTD) (Bliss & Lomo, 1973; Baranyi & Feher, 1978; Baranyi et al., 

1991; Aroniadou & Keller, 1995; Hess & Donoghue, 1996; Martin et al., 2000; Rioult-

Pedotti et al., 2000; Hess, 2004).  These are thought to be due to changes in synaptic 

efficacy in the communication between the pre- and post-synaptic membranes of neurons.  

Induction of LTP results in strengthening connections between neurons whereas LTD 

results in decreasing the strength of synaptic connections (Sanes & Donoghue, 2000).  

LTP leads to a lasting increased response in magnitude of excitatory post-synaptic 

potentials (EPSPs) in the post-synaptic membrane, due to simultaneous firing of pre- and 
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post-synaptic neurons.  Several studies have demonstrated this phenomenon in areas like 

the entorhinal cortex, hippocampus and M1 due to activity-dependent synaptic plasticity 

and cortical stimulation within animal models (Bliss & Lomo, 1973; Baranyi & Feher, 

1978; Aroniadou & Keller, 1995; Andersen et al., 1996; Hess & Donoghue, 1996; Martin 

et al., 2000; Rioult-Pedotti et al., 2000; Hess, 2004).  LTD, which decreases EPSPs 

lasting from hours to days (Moser et al., 1993; Martin et al., 2000; Rioult-Pedotti et al., 

2000), is also thought to be a mechanism in the formation of motor memories.  Generally, 

artificially inducing LTP requires high-frequency intracortical stimulation whereas 

inducing LTD requires low-frequency stimulation (Martin et al., 2000; Sanes & 

Donoghue, 2000).  A model of a molecular basis for the initiation of LTP involves the 

increased concentration of calcium (Ca2+) in the postsynaptic membrane.  An increase in 

depolarization of the post-synaptic membrane is brought on by the opening of existing N-

methyl-D-aspartic (NMDA) and non-NMDA channels.  NMDA and non-NMDA are fast-

acting ionotropic channels existing on the postsynaptic membranes and are receptive to 

glutamate, a neurotransmitter associated with excitatory responses (EPSPs).  The opening 

of these postsynaptic channels results in the increased postsynaptic Ca2+ concentration, 

which is thought to send a retrograde messenger to the presynaptic dendritic spine.  This 

leads to an increase in the production and release of neurotransmitters from the 

presynaptic dendritic spine, ultimately resulting in an increased depolarization response 

in the postsynaptic membrane (Gustafsson & Wigström, 1988; Kandel et al., 2012).  

Motor adaptation and plasticity of intracortical circuitry 

 Another mechanism that could account for rapid plasticity in the brain due to 

motor adaptation is the unmasking of latent or existing connections in the sensorimotor 
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cortex.  This type of adaptive neural mechanism has been shown in the somatosensory 

cortex due to amputation of a limb or digit (Cohen et al., 1991; Ramachandran, 1993; 

Karl et al., 2001) or peripheral nerve injury (Donoghue & Sanes, 1988; Sanes et al., 

1988).  Shortly after the digit was removed, the cortical area formally occupied by the 

amputated digit was now responding to sensory information from the surface area of the 

neighbouring digit (Cohen et al., 1991; Ramachandran, 1993; Karl et al., 2001).  It is 

thought that these pre-existing connections are within the 2nd and 3rd layers of the cortex 

and run horizontally to connect neighbouring areas together for things like muscle 

synergy (Cohen et al., 1991; Jacobs & Donoghue, 1991; Ramachandran, 1993; Karl et al., 

2001).  Also, these pre-existing connections could be another means of communicating 

between adjacent regions of cortex after injury.  It is suggested that the mechanism for 

strengthening pre-existing horizontal connections could be a release of the chief 

inhibitory receptor in the nervous system: gamma-aminobutyric acid-A (GABA-A).  The 

release of inhibitory GABA-A receptor activity, in turn, induces excitatory horizontal 

signals between neighbouring regions of cortex, possibly leading to greater excitability 

and larger motor output maps (Jacobs & Donoghue, 1991; Hess & Donoghue, 1994).  

The involvement of horizontal cortical connections, both in terms of activating latent or 

silent pre-existing connections, is certainly a possible way that the cortex could rapidly 

reorganize itself in the short-term phases of motor adaptation (Jacobs & Donoghue, 1991; 

Hess & Donoghue, 1994; Isaac et al., 1995; Liao et al., 1995, 1999; Nudo et al., 1996; 

Gomperts et al., 1998; Kleim et al., 1998; Nusser et al., 1998; Petralia et al., 1999; Rioult-

Pedotti et al., 2000).  Silent synapses are neurons that do not have the α-amino-5-

hydroxy-3-methyl-4-isoxazole propionic acid (AMPA)-mediated glutamate receptors.  
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Therefore, presynaptic neurotransmitter release would have no effect on postsynaptic 

action potential (Isaac et al., 1995; Liao et al., 1995; Atwood & Wojtowicz, 1999).  

AMPA are non-NMDA ionotropic receptors that are responsible for fast transmission of 

excitatory signals which are receptive to the neurotransmitter glutamate and an analogue 

of glutamate ‘AMPA’, and are the most common receptors in the CNS.  Activation, or 

‘awakening’, of these existing but silent synapses occur due to the appearance of AMPA 

receptors within synaptic connections, which would then increase the rate and amount of 

signal transmission across neurons (Gomperts et al., 1998; Nusser et al., 1998; Atwood & 

Wojtowicz, 1999; Liao et al., 1999; Petralia et al., 1999).  Latent horizontal connections 

may be active in the sense that they have these AMPA receptors, but may not participate 

in intracortical communication with adjacent areas until injury or activity-dependent 

changes occur to the nervous system (Jacobs & Donoghue, 1991; Hess & Donoghue, 

1994, 1996; Huntley, 1997). 

 Additionally, it is commonly thought that increases in local cortical activity from 

motor adaptation could be due to the remodelling and formation of new synapses 

(synaptogenesis).  Synaptogenesis has been demonstrated in several areas of the cortex 

due to motor adaptation, such as M1, somatosensory, visual areas and the cerebellum 

(Black et al., 1990; Kleim et al., 1998; Kleim et al., 2004; Butler & Wolf, 2007).  

Specifically, it is thought that synaptogenesis occurs in the M1 due to longer term motor 

adaptation with repeated exposure to specific muscle activation patterns (Kleim et al., 

1998; Kleim et al., 2004). 

Motor adaptation and M1 cortical reorganization  
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 All of the mechanisms mentioned above at the molecular and cellular level are 

thought to contribute to a reorganization of the cortical territory occupied by the 

particular limbs involved in the skilled motor adaptation tasks.  Several studies have 

shown that motor adaptation leads to modulation of the motor map which represents the 

specific muscles trained in the task in human (Pascual-Leone, Valls-Sole, et al., 1994; 

Pascual-Leone et al., 1995; Classen et al., 1998; Pearce et al., 2000; Muellbacher et al., 

2001; Luft & Buitrago, 2005; Tyc et al., 2005; Butler & Wolf, 2007; Neva et al., 2012), 

monkey (Nudo et al., 1996; Plautz et al., 2000) and rodent (Kleim et al., 1998; Kleim et 

al., 2004) motor cortex.  Reorganization of M1 territory has usually been demonstrated in 

the long-term aspects of motor skill consolidation due to repeated practice (Wilson et al., 

1993; Pascual-Leone, Valls-Sole, et al., 1994; Pascual-Leone et al., 1995; Thickbroom et 

al., 1998; Kleim et al., 2004; Tyc et al., 2005), but some studies have shown this cortical 

reorganization during short term training as well (Pascual-Leone et al., 1995; Neva et al., 

2012).  

One such study demonstrated that skilled reaching caused an increase in the 

representation of distal muscles used in the task at the expense of more proximal muscles, 

with no overall increase in motor map size (Nudo et al., 1996).  This demonstrates that 

skilled motor movement leads to an expansion of the particular trained muscles and this 

encroaches on the neighbouring untrained muscles.  This also indicates that there is a 

finite area that M1 can expand.  This is likely due to horizontal connections in layers 2, 3 

and 4 of the cortex that remain unused or silent before either brain trauma or the onset of 

skilled movement training.  Another study showed that reaching for food pellets which 

required skilled motor control lead to an areal increase of cortical representation whereas 
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retrieval of the food pellets with simple motor control demands (unskilled) did not cause 

this expansion in rat M1 (Kleim et al., 1998).  Repetitive use or movement of the limbs in 

monkey in a similar task to retrieve food pellets showed no such increase or modulation 

in the M1 map, and it was concluded that no skill was adapted during this more simple 

movement task.  This lends more evidence to suggest that skilled movement is required to 

produce such plastic changes in the cortex, such as M1 (Plautz et al., 2000).  Another 

similar study showed that M1 map reorganization only took place due to long-term 

skilled motor training (Kleim et al., 2004).  In this study the researchers suggest that 

initial stages of motor adaptation, where the rats improved performance at the task 

significantly from day 3 to 7 of training, is not the time period where expansion in M1 

maps are observed.  Increases in spatial representation of distal muscles involved were 

only seen after 10 days of training, where the motor task has been sufficiently practiced.   

The authors concede that changes in M1 excitability occur during early adaptation stages, 

and it is even possible that small changes in representational M1 maps may occur early as 

well.  Pascual-Leone and colleagues (1993) used TMS to map the first dorsal 

interosseous (FDI) and adductor digiti minimi (ADM) muscles in both hands in proficient 

Braille readers and controls.  The reading hand of the Braille readers FDI representation 

was significantly larger than the non-reading hand and both hands of the control group 

(Pascual-Leone et al., 1993).  Conversely, studies have shown M1 map output can 

decrease in size quite rapidly when practice of a known skill ceases for a time (Pascual-

Leone et al., 1993).  Braille readers who followed a 6 hours daily training regime 

demonstrated enlarged FDI representation in M1.  However, when these Braille readers 

spent 2 days without the usual practice regime a significant decrease in FDI 
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representation was observed.  This occurs not only when a skill is not practiced for a 

period of time, but also when a limb is immobilized (Liepert et al., 1995).  M1 output 

maps were acquired from the tibialis anterior (TA) of the immobilized and non-

immobilized ankle.  It was found that the immobilized TA representation was much 

smaller than the non-immobilized TA, and the amount of time the ankle was immobilized 

correlated to the decrease in map size.  Interestingly, this affect could be reversed rapidly 

due to voluntary muscle contraction.  Another study using TMS to measure the extents of 

the cortical representation of the wrist muscles before and after human participants 

learned a skilled finger tapping sequence on a piano, demonstrated that M1 maps can 

expand in size after a short-term session of training.  This study showed that after 2 hours 

of training M1 representation was enhanced (Pascual-Leone et al., 1995).  Interestingly, 

with additional training of 2 hour sessions over multiple days (total of 5) the cortical 

representation continued to expand.  

Adaptation of fine motor skills as well as gross motor skills leads to 

reorganization of M1.  This study used TMS to investigate the representation of 

corticomotor projection of the hand muscles in elite racquet players.  Therefore, this was 

an investigation into the long-term modulations of M1 representation through continued 

high level skilled gross motor movement.  The elite racquet players demonstrated higher 

MEP amplitude, and a shift in cortical representation compared to social racquet players.  

The interpretation of these results was that these modulations in cortical representation 

are associated with the initial adaptation and long-term retention of the motor skill 

(Pearce et al., 2000; Kleim et al., 2004; Tyc et al., 2005).  Another similar study 

investigated the wrist and shoulder representation of elite volleyball players versus 
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runners (control group).  The results revealed that the medial deltoid and ECR 

representations were larger in space and of greater MEP amplitude compared to runners.  

In addition, the comparison of dominant and non-dominant hemisphere within both 

groups showed that the elite volleyball players had larger map areas in the dominant 

compared to non-dominant hemispheres, whereas no such difference was observed in the 

runners.  This further demonstrates that skilled motor training leads to reorganization of 

M1 and does not occur with mere aerobic exercise (Tyc et al., 2005).  Other TMS studies 

have demonstrated a shift in the pattern of representation of particular trained muscles, 

due to short-term movement training (Classen et al., 1998).  In this study, TMS was used 

to elicit right thumb flexion movements before and after 30 minutes of training thumb 

extension movements.  After training, the same TMS pulses that elicited thumb flexion 

now produced thumb extension.  This study showed that movement parameters that are 

likely coded in M1, such as movement direction and force, can be modulated due to 

short-term training (Classen et al., 1998).  The current research clearly indicates that M1 

reorganizes itself due to short-term skilled movement training, and this will not occur 

with simple repetitive movement, aerobic exercise or strength training (Pascual-Leone et 

al., 1995; Nudo et al., 1996; Kleim et al., 1998; Kleim et al., 2004; Pearce et al., 2000; 

Plautz et al., 2000; Tyc et al., 2005).  Several of the above mentioned studies utilized a 

modern technique which can not only probe corticospinal and intra-cortical activity, but 

also transiently modulate this activity in a focal area, namely: TMS.  

 

1.3.5 Transcranial magnetic stimulation (TMS) 
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 Modern day TMS was introduced by Baker and colleagues (1985) as a way to 

map the cortical muscle representation in healthy and patient populations.  TMS is a safe, 

painless and non-invasive way to probe the underlying activity within the cortex and even 

alter activity in a focal area transiently.  TMS operates on the bases of electromagnetic 

induction wherein electric current is converted to magnetic fields (Rothwell, 1997; Terao 

& Ugawa, 2002).  Specifically, electricity flows through the TMS figure of eight coil (or 

a single circular coil (round coil)) and this creates a focal transient magnetic field at the 

intersection of the two round components, which travels perpendicular to the induced 

electric current and then traverses the skull and generates an electric current within the 

underlying brain tissue in the opposite direction to the electrical flow within the coil.  

When the coil is held over M1, a single-pulse of TMS is thought to stimulate the 

descending corticospinal tracts indirectly, via interneurons likely in layers 2-4 of the 

cortex (Walsh & Cowey, 1999; Hallett, 2000; Butler & Wolf, 2007).  This type of activity 

generated by a TMS pulse is said to produce an "indirect" wave (I-wave) in the horizontal 

interneurons that eventually reaches the descending pyramidal neurons in layer 5 (Di 

Lazzaro et al., 1998).  Once these corticospinal neurons are activated, the descending 

volleys of electrical activity eventually reach the target muscles and produce a 

contraction.  This induced activity that results in a motor evoked potential (MEP) can be 

recorded from surface electrodes overtop the target muscles (Rothwell, 1997; Walsh & 

Cowey, 1999; Hallett, 2000; Kammer et al., 2001; Butler & Wolf, 2007).  

Single, paired-pulse and repetitive TMS 

There are several different types of TMS that are employed to measure or alter the 

excitability of focal cortical areas in the brain.  Single-pulse TMS is easy to administer 
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and is the most common form of TMS used.  This type of TMS does not alter cortical 

activity, but is primarily used to generate corticospinal output that can be measured in the 

peripheral musculature through surface or indwelling electrodes.  Although single-pulse 

TMS is primarily used over M1 to generate MEPs, it has been shown to elicit phosphenes 

when applied over the occipital cortex (Amassian et al., 1989).  Since cortical excitability 

is variable among individuals, the TMS intensity used in experiments are most commonly 

adjusted to the excitability of the individual.  M1 excitability is used to determine this 

since it is the only reliable and measurable physiological output from the cortex in the 

form of MEPs (Kammer et al., 2001).  In order to adjust M1 excitability to each 

individual, the resting motor threshold (RMT) or active motor threshold (AMT) must be 

determined for each individual.  The RMT is determined by finding the lowest stimulus 

intensity output required to elicit 5 out of 10 MEPs greater or equal to a peak-to-peak 

amplitude of 50 µV.  The AMT is determined to be the lowest stimulus intensity that 

would elicit 5 out of 10 MEPs greater or equal to a peak-to-peak amplitude of 200 µV 

while maintaining a light contraction of the target muscle of approximately 10-20% of 

maximum voluntary contraction (MVC).  Usually, a certain suprathreshold TMS intensity 

is used to evoke MEPs in the range of 100-150% of RMT (Rossini et al., 1994).  

Similarly, single-pulse TMS may probe long-latency inhibitory intracortical circuitry the 

cortical silent period (CSP).  The CSP is evoked when participants hold a light voluntary 

contraction during the application of a single-pulse of TMS over the contralateral target 

muscle representation in M1, which produces a temporary suppression of EMG activity 

(Cantello et al., 1992; Kimiskidis et al., 2005).  The CSP evoked in the upper-limb 

muscles results largely from cortical inhibitory mechanisms, although spinal mechanisms 
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are likely involved in the early portion (Fuhr et al., 1991; Inghilleri et al., 1993; Roick et 

al., 1993; Uncini et al., 1993; Chen et al., 1999).  Assuming that spinal excitability 

remains the same, prolonged CSP indicates greater cortical inhibition and shorter CSP 

indicates less inhibition (Chen et al., 2008).  

Another common type of TMS is called paired-pulse which can either excite or 

inhibit cortical motor output.  The purpose of paired-pulse TMS is to understand the 

intra- and intercortical connections between two different hemispheres or the intracortical 

interactions within a local cortical area (Kujirai et al., 1993; Ziemann et al., 1996; Di 

Lazzaro et al., 1998; Di Lazzaro et al., 1999; Chen, 2004; Ni et al., 2011).  Paired-pulse 

TMS is accomplished when a subthreshold conditioning stimulus (CS) is delivered before 

a suprathreshold test stimulus (TS), which would normally elicit an MEP.  Depending on 

the interstimulus interval (ISI) between CS and TS, the resulting MEP will either be 

suppressed or enhanced.  Suppressed MEPs occur with ISIs from 2-5 ms and enhanced 

MEPs result from ISIs of 6-11 ms.  The former is referred to as short-intracortical 

inhibition (SICI) and the latter intracortical facilitation (ICF).  Typically, the stimulus 

intensity of the CS is 60-90% of RMT and the TS is ~120 % of RMT.  For SICI, it is 

thought that the CS, which is at a high enough intensity to evoke cortical activity, but not 

enough to produce corticopsinal output, primarily activates GABAergic interneurons that 

inhibit the successive TS that would, by itself, produce a greater MEP amplitude.  

Therefore, the resultant MEP amplitudes for SICI are smaller in comparison to single-

pulse MEPs.  With ICF, the resultant MEP amplitude is facilitated compared to a single-

pulse.  ICF is thought to involve interactions with glutamate receptors (Ziemann et al., 

1998; Schwenkreis et al., 1999).  It is suggested that subcortical or spinal interactions 
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may be involved as well (Di Lazzaro et al., 2006).  Another type of paired-pulse TMS is 

called long-interval intracortical inhibition (LICI), where the ISIs between the 

suprathreshold CS and TS from 50-200 ms produce inhibition of corticospinal output 

(Wassermann et al., 1996; Nakamura et al., 1997; Chen et al., 1999, 2008).  It is thought 

that LICI is mediated by GABA-B receptors (Roick et al., 1993; Werhahn et al., 1999; 

McDonnell et al., 2006), which are a metabotropic type of inhibitory receptor that has to 

do with long-latency synaptic modulation (Kandel et al., 2012). 

Using the same general approach as above, dual-site paired-pulse TMS probes the 

intrahemispheric and interhemispheric connections between two cortical regions.  

Generally, this type of paired-pulse TMS entails a CS over one cortical area and a TS 

over M1, in order to observe the interactions between other cortical regions and M1 

(Civardi et al., 2001; Koch et al., 2007; Bäumer et al., 2009).  Several studies have 

investigated connections between PM (Civardi et al., 2001; Mochizuki et al., 2004; Koch 

et al., 2007; Bäumer et al., 2009; Groppa et al., 2012), sensory (Ziluk et al., 2010), 

parietal (Koch et al., 2007; Koch & Rothwell, 2009; Karabanov et al., 2012), frontal areas 

(Civardi et al., 2001) and M1, and also the interaction between M1 bilaterally (Ferbert et 

al., 1992; Netz et al., 1995; Stinear & Byblow, 2002; Bäumer et al., 2007; Nelson et al., 

2009; Perez & Cohen, 2009; Ni et al., 2011; Sattler et al., 2012).  Depending on the 

physical cortical distance between the CS and the TS (intra- or interhemispheric), the ISIs 

would be modified to investigate these intrinsic cortical connections and whether these 

are inhibitory or excitatory interactions (Civardi et al., 2001; Baumer et al., 2006; Koch et 

al., 2007; Nelson et al., 2009).  For example, Civardi et al. (2001) showed that delivering 

a low intensity CS (~90% AMT) over PMd suppressed the MEP amplitude from a TS to 
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ipsilateral M1 at an ISI of 6 ms.  However, increasing the CS intensity (110-120% AMT) 

led to a facilitation of M1 MEPs.  Mochizuki et al (2004) showed that a CS over PMd 

(80% AMT) led to facilitation in MEPs from contralateral M1 when the ISI was 8 ms.  

Also, it has been shown that MEPs are suppressed when a CS over one M1 representation 

of a particular muscle is applied before a TS over the opposite M1 representation, at ISIs 

between 6-50 ms (Ferbert et al., 1992; Kujirai et al., 1993; Gerloff et al., 1998; Chen et 

al., 2003; Chen, 2004; Nelson et al., 2009).  These results suggest that interhemispheric 

inhibition (IHI) dominates the interaction between homologous muscle representations 

across M1 hemispheres (Nelson et al., 2009).  These paired-pulse TMS measures are 

certainly useful ways to measure intra- and interhemispheric cortical excitability due to 

training or rTMS protocols. 

The third common type of TMS is rTMS, which is used to either enhance or 

suppress local cortical activity for a period of time beyond the application of the 

stimulation (Pascual-Leone et al., 1994; Chen et al., 1997; Walsh & Cowey, 1999; 

Hallett, 2000; Butler & Wolf, 2007).  Corticospinal activity is suppressed after a session 

of >1 Hz suprathreshold rTMS over M1 with relatively little effect on intracortical 

inhibition (Chen et al., 1997; Fitzgerald et al., 2006; Heide et al., 2006).  M1 

corticospinal activity is generally enhanced when rTMS is applied at < 5 Hz with a 

reduction in intracortical inhibition (Pascual-Leone et al., 1994; Ziemann, 2004; 

Fitzgerald et al., 2006; Heide et al., 2006). Whether the effect of rTMS enhances or 

suppresses cortical excitability depends on the frequency, intensity and duration of the 

stimulation (Modugno et al., 2001; Ziemann, 2004; Houdayer & Degardin, 2008).  Low 

frequency rTMS (> 1 Hz) applied at an intensity of 115% of RMT over M1 for ~15-30 
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min leads to a reduction in MEPs for ~15 min (Chen et al., 1997; Gilio et al., 2003).  

High frequency rTMS (< 5 Hz) applied to M1 at an intensity of 90% of RMT for 4 min 

leads to an increase in M1 excitability (Maeda et al., 2000).  Also, rTMS applied to 

remote cortical locations, such as the opposite M1 and PMd, can influence cortical 

excitability between areas (e.g. PMd to M1) as well as the excitability of intracortical 

circuits within M1 (Wassermann et al., 1998; Chouinard et al., 2003; Rizzo et al., 2004; 

Suppa et al., 2008).  These studies suggest that rTMS can modulate M1 activity in terms 

of its corticospinal output and intracortical networks by applying it directly to M1 and to 

other cortical loci as well.  Although rTMS is used in many studies investigating its 

modulatory effects on cortical excitability, studies have indicated potential issues with its 

application in human participants (Huang et al., 2005). 

Some of these issues with rTMS include the fact that the effects are minimal and 

are variable between individuals (Maeda et al., 2000), behaviour is scarcely effected in 

terms of simple motor parameters like speed or strength of movements (Muellbacher et 

al., 2000), stimulation to different cortical areas only produce modest changes in 

cognitive function (Evers et al., 2001) and results in neurological and psychological 

disorders have been difficult to interpret (Martin et al., 2002; Hausmann et al., 2004).  In 

addition, there is a safety concern when applying the amount of stimulation to humans in 

rTMS studies which has limited the frequency of stimulation to be relatively low (usually 

> 10 Hz) for a short period of time (Wassermann et al., 1998; Hallett, 2000).  Finally, 

rTMS is likely activating more than one focal neural system that may interact with each 

other, which makes it difficult to interpret the effects (Huang et al., 2005).  For all of 

these reasons, a different type of repetitive stimulation with higher frequencies and 



35 
 

shorter duration used in animal models has been applied to rTMS in humans (Hess et al., 

1996; Vickery et al., 1997; Huang et al., 2005).  

This type of rTMS, which is becoming more commonly used in human 

neuroscience research, is theta burst stimulation (TBS).  The benefit of this type of 

stimulation is that it can produce similar effects of traditional rTMS within a shorter time, 

but with potentially more reliable and focal after effects on the cortex (Huang et al., 

2005).  This type of stimulation utilizes high frequency bursts of 3 stimuli at 50 Hz in 

patterns separated by a time of 200 ms (5 Hz, hence ‘theta burst’), for a total of 600 TMS 

pulses.  A recent study demonstrated that different patterns of TBS produces unique 

plastic changes in M1 excitability (Huang et al., 2005).  Continuous TBS (cTBS) 

suppresses M1 cortical excitability for up to 60 min post stimulation.  Implied in the 

name, ‘continuous’ TBS applies the stimulation in the theta burst pattern constantly for 

the 600 pulses which lasts for 40 seconds.  On the other hand, intermittent TBS (iTBS) 

employs the burst of 3 stimuli at 50 Hz for 2 seconds, followed by a pause of 8 seconds 

with no stimulation.  This pattern is repeated until 600 pulses are completed after a total 

time of 190 seconds.  iTBS applied to M1 leads to an increase in M1 excitability for 

approximately 60 min post stimulation.  Not only is corticospinal activity either 

suppressed or enhanced due to TBS (cTBS or iTBS, respectively), but the intracortical 

excitability within M1 is modulated as well.  Specifically, following cTBS to M1, SICI 

and ICF is suppressed for up to 20 min beyond the stimulation.  Conversely, following 

iTBS to M1, SICI is enhanced and ICF is suppressed for a short time.  This demonstrates 

that TBS applied to M1 modulates the output as well as the intracortical connectivity 

within M1 for a significant time beyond stimulation.  However, recent work has revealed 
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that the effects of TBS show substaintial variability across participants, which likely 

depends upon which interneuron populations are activated by the TMS pulse (Hamada et 

al., 2013).   

Regardless, TBS has also been shown to modulate M1 excitability by applying 

stimulation to remote cortical loci, such as the PM cortex (Huang et al., 2009; Ortu et al., 

2009; Stinear et al., 2009).  These studies found that cTBS applied to PMd suppressed 

MEPs from the ipsilateral M1 to a greater extent than when applied to M1 itself.  

However, cTBS to PMd had no effect on local M1 SICI and ICF.  Also, cTBS and iTBS 

applied over area 5 in the parietal cortex modulates M1 excitability, causing an increase 

in MEPs from M1 bilaterally for up to an hour, with no effect on SICI and ICF within M1 

(Premji et al., 2011).  iTBS caused a delayed increase in MEPs in contralateral M1 for up 

to an hour, with no effect on SICI or ICF (Premji et al., 2011).  TBS has also been shown 

to modulate the excitability from M1 in one hemisphere to the other (Suppa et al., 2008; 

Meehan et al., 2011) and contralateral PMd (Stefan et al., 2008).  Specifically, Suppa and 

colleagues (2008) found that cTBS to M1 caused an increase in MEPs and reduced SICI 

in the non-stimulated opposite M1, and iTBS caused a decrease in MEPs and increased 

SICI in the opposite M1.  Stefan and colleagues (2008) found that cTBS to right PMd 

caused no change in contralateral M1 MEP amplitude.  TBS has been used to effect 

motor behaviour and skilled movement in stoke patients when applied to contralesional 

M1 and S1 (Meehan et al., 2011) and in healthy individuals applied to ispilateral PMd 

(Mochizuki et al., 2005; Ortu et al., 2009; Stinear et al., 2009) and contralateral PMd 

(Stefan et al., 2008).  Meehan and colleagues found that cTBS applied to contralesional 

M1 and S1 causes increases in movement speed and better motor control in terms of peak 
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velocity and acceleration of movement in the affected limb.  Ortu and colleagues (2009) 

found that cTBS applied to M1 led to changes in motor preparation when making self-

paced voluntary movements.  Mochizuki and colleagues (2005) demonstrated delays in a 

cued reaction time task with both limbs due to TBS to PMd, with no detriment to 

accuracy.  Interestingly, Stinear and colleagues (2009) found that iTBS to left PMd led to 

an increase in the preparation speed of complex sequence learning with no changes in 

MEP excitability in M1 bilaterally.  However, cTBS to left PMd caused no change in 

performance of the sequence task, with an increased left M1 and decreased right M1 

excitability.  TBS has since been used in other focal regions of the cortex, such as the 

dorsal lateral prefrontal cortex (DLPFC), which modulated cortical activity during 

attention related tasks (Bolton & Staines, 2011).  Specifically, this study found that the 

ability to ignore distractor stimuli not relevant to the particular task was impaired as well 

as the tactile event-related potentials (ERPs) after cTBS to the right DLPFC.  Clearly, 

TBS is a useful method to transiently modulate cortical excitability in several nodes 

directly and remotely, which can also affect sensorimotor behaviour and motor 

adaptation.  

The work in this thesis will primarily involve the use of single-pulse TMS in 

order to probe the excitability of M1 in terms of quantifying the distribution and 

amplitudes of MEP in the target muscles (Figure 1).  This technique of mapping the M1 

representation of particular muscles has been used since TMS was introduced to 

understand normal and pathological cortex (Levy et al., 1991; Wassermann et al., 1992; 

Wilson et al., 1993; Mortifee et al., 1994; Amassian et al., 1995; Thickbroom et al., 1998, 

1999a; b, 2005; Pearce et al., 2000; Thielscher & Kammer, 2002; Uy et al., 2002).  
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Quantifying M1 maps in individuals over multiple time points has been shown to be very 

accurate and reproducible (Levy et al., 1991; Mortifee et al., 1994; Uy et al., 2002).  

Usually, it is more difficult to map proximal muscles (Levy et al., 1991) compared to 

distal muscles (Wassermann et al., 1992) due to a higher stimulation intensity required to 

produce MEPs.  Mapping M1 has also been used before and after skilled motor training 

(Pascual-Leone et al., 1994; Pascual-Leone et al., 1995; Pearce et al., 2000; Tyc et al., 

2005; Butler & Wolf, 2007; Neva et al., 2012).  In addition to the intervention of BMT, 

this thesis will utilize TBS to a select portion of motor preparatory and execution cortical 

nodes to modulate the contributions of these nodes to the dominant M1 representation.  In 

the final study of the thesis, paired-pulse TMS will be used to investigate the relationship 

and interconnections between the motor preparatory and execution areas due to short-

term BMT and TBS.  
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Figure 1: Examples of TMS mapping procedures and display of data. A) Participant wearing swimming 
cap on which TMS mapping grid has been drawn ready for motor cortex mapping, with each position 1 cm 

apart from one another. B) Image of template MRI with an example rectangular grid as used in the 
neuronavigation software. C) Three-dimensional map of the extensor digitorum communis (EDC) muscle, 
which amplitude in microvolts on the Y-axis and the X- and Z- axis represent 1 cm spacing between each 

grid position. D) Examples of cortical motor output maps for the wrist flexor and extensor muscles on days 
1-5 of practice of a finger sequencing task. Each map is based on 25 measured points, with each grid 

position 1 cm apart. The shade of grey represents the probability of an MEP (< 50µV) occurring. 
 
 
1.4.1 Specific Research Objectives 
 
1)  To determine the effects of in-phase versus anti-phase bimanual movement training on 
the trained muscle representation in M1. 
 
Hypothesis:  In-phase and not anti-phase BMT will increase the M1 excitability of the 

wrist extensors with the greatest change from an emphasis on motor preparation.  
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2)  To investigate the effects of potentially enhancing PM input on ipsilateral M1 and the 
potential combined effects when followed by BMT.   
 
Hypothesis:  Enhancing left PM input will enhance the excitable area of M1 

representation of the wrist extensors. The combined effects of enhancing left PM input 

and short-term BMT will lead to a greater enhancement of M1 representation compared 

to either intervention alone. 

 
3)  To investigate the effects of theoretically suppressing the excitability of the 
contralateral homologous (right) M1 on (left) M1 representation and the potential 
combined effects when followed by BMT.  
 
Hypothesis:  Suppressing right M1 will increase excitability of the wrist extensors in left 

M1, and the addition of BMT will cause a greater increase in left M1 excitability. 

4)  To investigate the intracortical and interhemispheric excitability circuitry within and 
across M1 bilaterally due to short-term BMT, the enhancement of left PM input, and the 
combination of these interventions.  
 
Hypothesis:  BMT will enhance excitability within and between M1 bilaterally, 2) 

enhancement of left PM input will primarily enhance left M1 excitability, and 3) the 

combination of these interventions will cause a greater enhancement of bilateral M1 

cortical excitability.  
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Chapter 2 - Study #1 
 
Primary motor cortex excitability is modulated with bimanual training 
Adapted from work seen in Neuroscience Letters 514 (2012) 147– 151 
 
Jason L. Neva, Wynn Legon, W. Richard Staines 
 
2.1 Research objective 
This study sought to address research objective 1: 
 
1)  To determine the effects of in-phase versus anti-phase bimanual movement training on 
the trained muscle representation in M1. 
 
Abstract 
 
 Bimanual visuomotor movement has been shown to enhance cortical motor 

activity in both hemispheres, especially when movements require simultaneous activation 

of homologous muscle groups (in-phase movement). It is currently unclear if these 

adaptations are specific to motor preparatory areas or if they also involve changes in 

primary motor cortex (M1). The present study investigated the representation of wrist 

muscles within motor cortex before and following bimanual movement training that was 

in-phase, anti-phase with or without motor preparation. Motor evoked potentials (MEPs) 

for the extensor carpi radialis muscle (ECR) cortical territory were acquired and analyzed 

before and following bimanual movement. The cortical representation was quantified and 

compared in terms of spatial extent and MEP amplitude, in two different experiments 

involving distinct movement training types. In Experiment 1, participants performed 

bimanual wrist flexion/extension movements to targets which involved in-phase 

movements, either following a 2 s preparation period (In-phase preparation), or without 

the preparation period (In-phase no preparation). In Experiment 2, training involved 

antagonist muscle groups activated simultaneously (Anti-phase) with the addition of the 2 

s preparation period. In-phase bimanual movement enhanced the spatial representation of 
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ECR in M1, and did not show a difference in MEP amplitude of the cortical area. It may 

be that simultaneous activation of homologous M1 representations in both hemispheres, 

in combination with activity from premotor areas, leads to a greater increase in plasticity 

in terms of increased M1 spatial extent of trained muscles. 

 
Background 
 
 Movement training changes the excitability in several cortical and subcortical loci 

(Jacobs & Donoghue, 1991; Deiber et al., 1996; Classen et al., 1998; Kleim et al., 1998; 

Hallett et al., 1999; Staines et al., 2001; Cauraugh & Kim, 2002; Jennings & van der 

Molen, 2005; Butler & Wolf, 2007; Cauraugh et al., 2010). In stroke patients, movement 

training performed with the upper limb increases the excitability within primary motor 

cortex (M1) (Silvestrini et al., 1998; Staines et al., 2001).  Compared to single arm 

training, movement training with both arms yields a greater increase in M1 cortical 

excitability (Silvestrini et al., 1998; Staines et al., 2001; Stinear & Byblow, 2002).  

Bimanual arm training also improves hand and arm function in stroke patients (Mudie & 

Matyas, 2000; Staines et al., 2001; Cauraugh & Kim, 2002; Luft et al., 2004; McCombe 

Waller & Whitall, 2008; Cauraugh et al., 2010).  

 Changes in cortical excitability that follow bimanual training may relate to the 

phase of movement and/or the opportunity to prepare for an upcoming movement.  In-

phase bimanual movement refers to the simultaneous activation of homologous muscle 

groups on each limb. Anti-phase bimanual movement refers to the simultaneous 

activation of antagonist muscles on each limb (Smith & Staines, 2006, 2010).  In-phase 

movement training modulates preparatory activity as measured by 

electroencephalography (EEG) associated with premotor cortices and possibly M1. This 
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increase in preparation associated cortical activity was assessed when participants 

performed closely related unilateral movements not specifically trained. However, these 

increases in preparatory activity were not observed due to anti-phase movement training 

(Smith & Staines, 2006, 2010). The lack of effects involving anti-phase training may 

relate to the duration of training, the skill learning requirement or the sensitivity of the 

dependent measure.  The opportunity to prepare for movement during training may also 

increase cortical excitability (Smith & Staines, 2006, 2010) and improve behavioural 

performance (Deiber et al., 1996; Sohn & Carlson, 2000; Jennings & van der Molen, 

2005; Smith & Staines, 2006, 2010). Conversely, without the opportunity to prepare for 

movement, cortical activation is slightly decreased and task performance is worsened 

(Deiber et al., 1996; Smith & Staines, 2010).  

 Cortical excitability changes in M1 may also be measured using the amplitude 

and spatial distribution of motor evoked potentials (MEPs) following single pulse 

transcranial magnetic stimulation (TMS) over the cortical territory occupied by a 

particular muscle representation (Wise, 1985; Wassermann et al., 1992; Pascual-Leone et 

al., 1994; Pascual-Leone et al., 1995; Tyc et al., 2005; Butler & Wolf, 2007). The MEP 

amplitude is an index of cortical and spinal excitability for a particular target muscle 

while the cortical map of MEPs indicates the spatial extent of excitability for a given 

targeted muscle (Weinrich & Wise, 1982; Wise, 1985; Classen et al., 1998; Tyc et al., 

2005; Butler & Wolf, 2007). Both measures are sensitive to changes induced by 

movement interventions (Weinrich & Wise, 1982; Wise, 1985; Classen et al., 1998; Tyc 

et al., 2005; Butler & Wolf, 2007). 
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Experiment 1 measures the MEP amplitude and spatial extent for the extensor 

carpi radialis (ECR) muscle within left-hemisphere M1 before and following in-phase 

bimanual training. Such training was performed with or without the opportunity to 

prepare for the upcoming movement.  It was hypothesized that in-phase bimanual 

movement training would increase the excitability of M1 leading to an increase in the 

spatial extent of the cortical representation of ECR muscle with the greatest change 

exhibited by the addition of motor preparation.  Experiment 2 performs identical 

measures during anti-phase bimanual movement training.  Previous studies have shown 

that anti-phase training does not increase cortical excitability therefore we examined this 

question without a priori hypotheses. 

 
Methods 
Participants 

Twenty-four healthy, self-reported right-handed participants (12 female, 12 male; 

average age= 27 years, range 20-41) took part in the study.  Twenty individuals 

participated in Experiment 1 and ten individuals in Experiment 2.  The experimental 

procedures were approved by the University of Waterloo Office of Research Ethics. All 

participants completed informed written consent and a transcranial magnetic stimulation 

(TMS) screening form. 

Electromyographic (EMG) recording 

 Surface EMG was recorded from the right extensor carpi radials (ECR) muscle 

using a 9 mm diameter Ag-AgCl electrodes.   Two active electrodes were placed over the 

muscle belly of the ECR with a ground electrode over the styloid process of the ulna. 

EMG recordings were amplified (2000X), band-pass filtered (DC-200 Hz), digitized with 
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a sample frequency of 1 kHz, and stored for later analysis, using customized LabVIEW 

software (National Instruments; Austin, Texas, USA).  

TMS & Neuronavigation 

Focal TMS was performed using a figure-8 (MCF-B65) 70 mm MagProx 100 

stimulation coil (Medtronic, Minneapolis, MN, USA). BrainSight Neuronavigation 

(Rogue Research, Canada) was used to facilitate the location of the coil to the cortical 

target areas using a template MRI for all participants. The motor hot-spot for the ECR in 

M1 of the left hemisphere was acquired by placing the stimulation coil on the scalp at a 

45˚ to the mid-sagittal line to induce a posterior to anterior current in the underlying 

neural tissue. The motor hot-spot was determined to be the location in left-hemisphere 

M1 to elicit an optimal MEP in the contralateral resting ECR. The resting motor threshold 

(RMT) was determined to be the lowest stimulus intensity that would elicit 5 out of 10 

MEPs greater or equal to a peak-to-peak amplitude of 50 µV.  

The spatial extent of ECR was determined before and immediately following a 

bimanual movement training paradigm. Specifically, Brainsight was used to create a 

rectangular grid, with positions separated by 1 cm, centered on the hot-spot for ECR as a 

reproducible template for stimulus delivery (Figure 2A). Ten stimulation samples were 

acquired from each grid position at a stimulus intensity of 120% of RMT with an 

interstimulus interval (ISI) of ~1-2 s. Background EMG activity of the target measure 

was quantified during the interstimulus interval at the hotspot. Neuronavigation was used 

to acquire MEPs initially at the hot-spot, then at the position 1 cm lateral, medial, 

posterior and anterior (order varied across subjects) followed by locations diagonal to the 

hot-spot.  The identical pattern was continued until the MEPs did not meet the amplitude 
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criteria (≥ 30 µV peak-to-peak). These sites were considered "active" and were summed 

before and following bimanual training to determine changes in spatial extent. To assess 

changes in MEP amplitude ten stimulation samples from the nine sites closest to, and 

including, the hot-spot were averaged and compared before and after bimanual movement 

training. 

Behavioural task - Experiment 1 

Participants were seated in a well lit room facing a computer monitor, with the 

head and forearms supported. The ECR representation was mapped in the left hemisphere 

before and following bimanual movement training. Training consisted of 160 bimanual 

wrist flexion and extension movements to visually cued targets displayed on a computer 

monitor (Figure 2B).  The left and right handles controlled movement of a circular cursor 

displayed on the monitor in the horizontal and vertical planes, respectively. The position 

of the handles were recorded by a potentiometer at the base of each handle and were 

sampled at a frequency of 1 kHz in a customized LabVIEW program. Participants were 

required to make wrist flexion/extension movements that moved a cursor to particular 

targets displayed in the upper and lower corners of the computer screen (Figure 2C). 

Targets were displayed as a box outlined in black (2.5 X 2.5 cm). Targets appeared at 

random distances from the center origin in the upper and lower corners.  A 2 s time 

window was provided in order to move the cursor to the desired target. If the cursor did 

not reach the target within 2 s it was considered an incomplete trial.   

Bimanual visuomotor movement training was performed by two different groups. 

Group 1 performed In-phase preparation, required simultaneous flexion or extension of 

the wrists with the addition of a 2 s preparation period where the cursor disappeared as 
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the target was visible. After 2 s, the cursor reappeared and a brisk bimanual wrist flexion 

or extension movement was made. Group 2 performed In-phase no preparation, identical 

to that above but without the 2 s preparation period.  

Behavioural task - Experiment 2 

The methods were identical to Experiment 1, except the training type was 

completed with an anti-phase movement. Ten individuals participated in Experiment 2, 

six of which also participated in Experiment 1. Anti-phase training involved simultaneous 

activation of antagonistic muscle groups with each arm with a 2 s preparation period 

before reaching to each target. Therefore, participants were using wrist flexion and 

extension movements to move the cursor to the opposite diagonal corners as the in-phase 

training groups (Figure 2C). Since previous studies have found no enhancement of 

preparatory motor activity due to anti-phase training, the current study did not require a 

further study of the effects of preparation during anti-phase training (Smith & Staines, 

2006, 2010).  

 

Figure 2: Experimental apparatus, neuronavigation and behavioural tasks. A) Image of template MRI with 
an example rectangular grid as used in the neuronavigation software. B) Above view of a participant 

performing the behavioural task, grasping the two handles and viewing both the target and cursor 
movement on the computer screen. C) Top panel: displays movements made during the In-phase movement 
task, with the corresponding cursor movement on the right. Bottom panel: displays movements made during 

the Anti-phase movement task, with the corresponding cursor movement on the right. 
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Statistical analysis 
 
   For Experiment 1, a 2-way ANOVA was performed on the spatial extent and 

MEP amplitude data with within-subject factor TIME (2 levels; before and after) and 

between subject-factor GROUP (2 levels; In-phase preparation, In-phase no preparation).  

Behavioural performance was quantified by taking the angle at peak velocity of the 

resultant cursor path, relative to a straight path to the visual target, for each movement 

trial. A 2-way ANOVA was performed on the first block (10 trials) and last block of trials 

of the behavioural performance data with within-subject factor BLOCK (2 levels; first 

block and last block of 10 trials) and between-subject factor GROUP (2 levels; In-phase 

preparation, In-phase no preparation).  For Experiment 2, a two-tailed paired t-test was 

used to investigate differences between the before and after training measures for the 

cortical excitability and the same two-tailed paired t-test comparing the first and last 

block of trials for the behavioural performance data.  Significance was set at p ≤ 0.05.  

 
Results 
 
Experiment 1  
 
 The mean RMT for the left M1 was 48 ± 8.6% (range 34 - 63%) of maximum 

stimulator output. Figure 3A displays the spatial extent before and after movement for in-

phase training groups. Shown are the average number of active sites (with standard error). 

There is a significant increase in spatial extent for the two groups for number of active 

sites indicating a modest territorial expansion in ECR cortical representation. Two-way 

ANOVA revealed a main effect of TIME (F (1, 18)=12.99, p=0.002), no effect of 

GROUP (F (1, 18)=0.104, p=0.750) and no interaction of TIME by GROUP (F (1, 
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18)=0.06, p=0.804). Data from individual participants for both training groups are shown 

in Figure 3B.  For the measure of MEP amplitude, the ANOVA revealed no effect of 

TIME and no interaction (Mean Pre = 198 ± 38 µV (SE); Mean Post = 225 ± 45 µV 

(SE)).  

 Figure 5 displays the behavioural data of the in-phase training groups, with the 

angle at peak velocity (leftward panel) and movement time (rightward panel).  A two-

way ANOVA on angle at peak velocity revealed a main effect of BLOCK (F (1, 

18)=6.445, p=0.021) with no interaction of BLOCK by GROUP (F (1, 18)=1.693, 

p=0.210) and no effect of GROUP (F (1, 18)=1.160, p=0.296). The main effect of 

BLOCK indicates that there was a decrease in deviation of cursor path from the initial to 

the final trials.  
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Figure 3: Spatial extent of ECR for in-phase training. Number of active sites for all participants and for in-
phase movement training groups. A) Average number of active sites before (black) and after (white) 

movement training for each training group. Bars represent SEM. Asterisk indicates significance, p < 0.05.  
B) Number of active sites before and after training for each participant. Each participant is shown as a 

different symbol. 
 

Experiment 2  

Figure 4 displays the spatial extent (with standard errors) for the anti-phase 

training. Paired t-tests revealed that the spatial extent was unaltered following anti-phase 

training (t (9)= -0.733, p=0.482).  This was also the case for MEP amplitude (t (9)= 

1.359, p=0.207). A two-tailed paired t-test revealed no decrease in cursor path deviation 

from the beginning to the end of anti-phase training (t (9)=1.080, p=0.308) (Figure 5).   

 

Figure 4: Spatial extent of ECR for Anti-phase training. Number of active sites for all participants and for 
Anti-phase movement training group. Left Average number of active sites before (black) and after (white) 
movement training for each training group. Bars represent SEM. Right Number of active sites before and 

after training for each participant. Each participant is shown as a different symbol. 
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Figure 5: Behavioural data for anti-phase (black), in-phase without preparation (grey), and in-phase with 
preparation (white) bimanual training. Left Angle at peak velocity of the resultant cursor path. Right 

Movement time. All bars represent SEM. Asterisk indicates significance, p < 0.05. 
Discussion 
 
 The present study demonstrated short-term bimanual visuomotor training 

enhancement of M1 excitability. Specifically the spatial representation of the ECR 

muscle was expanded only when bimanual wrist movements were performed in-phase. 

However, increased excitability was not represented in the amplitude of the MEP in the 

cortical region of the ECR muscle. Also, in-phase training with an emphasis on 

preparation did not further increase M1 excitability. It may be that simultaneous 

activation of homologous M1 representations of ECR across both hemispheres, in 

combination with activity from premotor areas, leads to an increase in excitability along 

the borders of M1 representation of the trained muscles.  

 Increases in cortical spatial extent are shown to occur with trained muscles at the 

expense of neighbouring muscle representations (Pascual-Leone et al., 1995; Nudo et al., 

1996; Kleim, Barbay, et al., 1998). Modest increases in trained muscle representation are 

seen after two 2 hr sessions of finger sequence training in humans (Pascual-Leone et al., 
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1995). However, more substantial increases in spatial extent of trained muscles appear to 

require more extensive training (Pascual-Leone et al., 1995; Nudo et al., 1996; Kleim et 

al., 1998; Kleim et al., 2004). The modest increase in spatial extent of ECR we observe 

may involve preliminary phases of unmasking existing neuronal connections (Jacobs & 

Donoghue, 1991) and early activity-dependent LTP-like mechanisms, possibly involving 

increased neurotransmitter release in cortical regions surrounding the ECR hot-spot 

(Rioult-Pedotti et al., 2000). The above studies indicate that motor skill training likely 

engages the aforementioned neural mechanisms (i.e. unmasking existing neuronal 

connections and increased synaptic transmission such as LTP) as an explanation for the 

expansion of cortical territory.  

 Changes in cortical excitability are exhibited by altered motor thresholds and 

MEP amplitude (Pascual-Leone et al., 1995; Muellbacher et al., 2001). Increases in MEP 

amplitude due to motor training likely reflect increased activity in neighbouring cortical 

area to the hot-spot (Hallett et al., 1999; Muellbacher et al., 2001), suggestive of an 

increase in the bordering regions of cortical representation found in the present study. 

Conversely, decreases in motor threshold represent a focal change in the hot-spot of a 

muscle representation (Hallett et al., 1999; Muellbacher et al., 2001). In addition, 

increases in MEP amplitude are correlated to increases in exerted force, particularly in 

short-term training (Muellbacher et al., 2001). In the present study, we did not observe a 

change in the MEP amplitude following any training type. One explanation is that the 

training used does not emphasize increased exertion of force, and engages different 

mechanisms for cortical plasticity that results in cortical expansion while the amplitude 

remains unchanged. Prolonged movement training decreases motor threshold, indicating 
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enhanced excitability at the hot-spot (Pascual-Leone et al., 1995). Our in-phase training 

could have been too brief to engage neuronal mechanisms that would increase MEP 

amplitude. 

 Cortical activity is enhanced in both hemispheres in damaged and healthy M1 

when homologous muscles are activated together (Silvestrini et al., 1998; Staines et al., 

2001). It is thought that transcollosal neural activity of homologous representations in M1 

act to excite and/or release inhibition from the contralateral hemisphere (Stinear & 

Byblow, 2002), which may contribute to M1 plasticity. Intracortical inhibition is 

decreased in M1 when the two upper limbs co-activate the homologous muscles 

simultaneously, but inhibition remains when they are not activated simultaneously 

(Stinear & Byblow, 2002). Although the current study did not find a greater enhancement 

of M1 representation when in-phase training emphasized movement preparation, an 

alternative mechanism may involve contribution from premotor cortex. Premotor cortical 

areas, such as the dorsal premotor cortex (PMd), have extensive reciprocal neuronal 

projections with M1 (Weinrich & Wise, 1982). In-phase bimanual training increases 

fMRI activity in the lateral premotor cortical areas, including PMd (Seitz et al., 2004). 

Also, short-term in-phase bimanual training, particularly involving visual cues, has been 

associated with increases in lateral premotor cortical activity (Smith & Staines, 2006, 

2010). In contrast, increases in premotor cortex are not necessarily accompanied by 

increases in M1 activity as measured using EEG (Smith & Staines, 2006, 2010). 

However, TMS may have an enhanced ability to detect subtle changes as we presently 

observe. Therefore, the liberation of inhibition due to homologous M1 ECR 

representations activated together, along with this activity engaging areas in PMd which 
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could further facilitate M1 ECR representation, may be the driving force for the observed 

changes in spatial extent. 

Conclusion 

 Short-term bimanual visuomotor movement training leads to an increase in M1 

excitability in terms of an expansion along the borders of cortical representation of 

trained muscles. It is possible that co-activation of M1 representation of trained muscles 

across both hemispheres, in combination with activity from premotor areas, leads to the 

greatest increase in plasticity along the borders of M1 representation of the trained 

muscle.  
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Chapter 3 - Study #2 

Modulation of left primary motor cortex excitability after bimanual training and 
intermittent theta burst stimulation to left dorsal premotor cortex 
Adapted from work seen in Behavioural Brain Research 2014, in press 
 
Jason L. Neva, Michael Vesia, Amaya M. Singh, W. Richard Staines 
 
3.1 Research objective 
This study sought to address research objective 2: 
 
2)  To investigate the effects of potentially enhancing PM input on ipsilateral M1 and the 
potential combined effects when followed by BMT.   
 
 
Abstract 
 

Bimanual visuomotor movement training (BMT) enhances the excitability of 

human preparatory premotor and primary motor (M1) cortices compared to unimanual 

movement.  This occurs when BMT involves mirror symmetrical movements of both 

upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase).  The 

neural mechanisms mediating the effect of BMT is unclear, but may involve 

interhemispheric connections between homologous M1 representations as well as the 

dorsal premotor cortices (PMd).  The purpose of this study is to assess how intermittent 

theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the 

possible combined effects of iTBS to left PMd applied before a single session of BMT.  

Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in 

terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the 

extensor carpi radialis (ECR) before and multiple time points following 1) BMT, 2) iTBS 

to left PMd or 3) iTBS to left PMd and BMT.  Although there was not a greater increase 

in either specific measure of M1 excitability due to the combination of the interventions, 

iTBS applied before BMT showed that both the spatial extent and global MEP amplitude 
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for the ECR became larger in parallel, whereas the spatial extent was enhanced with 

BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone.  

These results suggest that the modulation of rapid functional M1 excitability associated 

with BMT and iTBS of the left PMd could operate under related early markers of neuro-

plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 

excitability.  Critically, this work may guide rehabilitation training and stimulation 

techniques that modulate cortical excitability after brain injury. 

 

Introduction 

 
 Visuomotor movement training modulates the excitability in several cortical 

areas, namely, motor (Jacobs & Donoghue, 1991; Pascual-Leone et al., 1995; Classen et 

al., 1998; Karni et al., 1998; Kleim et al., 1998; Nudo, 2006; Butler & Wolf, 2007), 

premotor (PM) (Deiber et al., 1996; Karni et al., 1998; Andres et al., 1999; Jennings & 

van der Molen, 2005; Smith & Staines, 2006, 2010, 2012), and parietal cortices as well as 

subcortical areas such as the basal ganglia and cerebellum (Clower et al., 1996; Doyon et 

al., 1997; Kleim et al., 1998; Seidler & Noll, 2008).  In individual stroke patients, 

bimanual movement performed with the upper-limbs can increase the excitability within 

the damaged primary motor cortex (M1) (Silvestrini et al., 1998; Staines et al., 2001).  

Critically, bimanual visuomotor movement training (BMT) yields a greater increase in 

premotor (Smith & Staines, 2006, 2010, 2012) and M1 (Neva et al., 2012) cortical 

excitability than does unimanual movement training.  Additionally, bimanual arm 

training has been shown to improve hand and arm function in stroke patients (Mudie & 

Matyas, 2000; Staines et al., 2001; Cauraugh & Kim, 2002; Luft et al., 2004; McCombe 
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Waller & Whitall, 2008; Cauraugh et al., 2010).  Although BMT can modulate the 

excitability in motor preparation and execution areas as well as improve upper-limb 

function in patient populations, the underlying neural mechanisms remain unclear.  

 Modulation of cortical excitability after BMT likely relates to the phase of 

movement with some influence of emphasizing the motor preparatory aspect of the 

trained movements (Neva et al., 2012).  Specifically, increases in motor preparatory and 

execution areas occur when BMT involves the simultaneous co-activation of homologous 

muscle groups (in-phase training), but not with co-activation of antagonist muscle groups 

(anti-phase training) (Smith & Staines, 2006, 2010, 2012; Neva et al., 2012).  

Electroencephalography (EEG) work suggests that in-phase BMT modulates preparatory 

activity in PM cortices and possibly M1.  This increase in preparation-associated cortical 

activity was found during the performance of similar unilateral movements not 

specifically trained (Smith & Staines, 2006, 2010).  Likewise, transcranial magnetic 

stimulation (TMS) work has shown that in-phase BMT, but not anti-phase, increases M1 

excitability.  Specifically, the excitable cortical territory of trained muscle representation 

increases along the borders without a concurrent increase in excitability of the central 

representation of that muscle (Neva et al., 2012).  The lack of effect due to anti-phase 

training may relate to the reciprocal inhibition of active versus inactive agonist and 

antagonist muscle representations in the contralateral hemispheres (Stinear & Byblow, 

2002).  In addition, motor preparation associated with a goal-directed movement during 

training increases cortical excitability and, in turn, improves behavioural performance 

(Deiber et al., 1996; Sohn & Carlson, 2000; Jennings & van der Molen, 2005; Smith & 

Staines, 2006, 2010, 2012).  Conversely, without this goal-directed motor preparation, 
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cortical activation is slightly decreased and task performance generally declines (Deiber 

et al., 1996).  

Indeed, behavioural studies have shown that covertly and overtly preparing 

movements to a target stimulus decreases reaction times (RTs) and increases activity in 

PM cortices (Sheliga et al., 1995; Deubel & Schneider, 1996; Nobre et al., 2000; Corbetta 

& Shulman, 2002).  The dorsal premotor cortex (PMd) has well-known roles in the 

selection of appropriate actions for movement execution (Kalaska & Crammond, 1995; 

Thoenissen et al., 2002; O’Shea et al., 2007; Groppa et al., 2012).  Interestingly, 

neuroimaging and TMS research suggest that PMd in the left hemisphere has an 

important role in action selection for motor execution (Geyer et al., 2000; Toni et al., 

2001).  Specifically, PMd seems to be particularly involved in movement selection with 

learned visuomotor associations (Geyer et al., 2000; Toni et al., 2001).  Also, left PMd 

activity increases with action selection of one or both upper-limbs (Schluter et al., 2001).  

Further, when the right PMd is disrupted with inhibitory TMS, action selection is 

hindered in the contralateral hand alone.  Conversely, disruption of left PMd leads to a 

disruption in action selection of both upper-limbs (Schluter et al., 1998; Johansen-Berg et 

al., 2002).  Similarly, repetitive TMS to left PMd causes faster preparation of complex 

sequences performed with the right hand (Stinear et al., 2009).  This suggests that the left 

PMd has a particularly relevant role in movement selection with both upper-limbs and the 

learning of visuomotor behavioural associations.   

 Theta burst stimulation (TBS) is a type of repetitive TMS (rTMS) that has been 

shown to modulate the cortical excitability of M1 after a brief period of stimulation 

(Huang et al., 2005).  Continuous theta burst stimulation (cTBS) decreases cortical 
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excitability of M1, and intermittent theta burst stimulation (iTBS) enhances the 

excitability of M1 as demonstrated by respective modulations in motor evoked potential 

(MEP) amplitude.  Furthermore, cTBS to PMd decreases MEP amplitude of the 

ipsilateral M1 representation (Huang et al., 2009; Ortu et al., 2009).  Subthreshold rTMS 

to PMd decreases ipsilateral M1 cortical excitability when delivered at 1 Hz, and 

increases excitability when delivered at 5 Hz (Gerschlager et al., 2001; Chouinard et al., 

2003; Rizzo et al., 2004; O’Shea et al., 2007; Suppa et al., 2008).  This suggests that M1 

excitability may be differentially modulated by unique stimulation patterns to remote and 

related areas, like PMd.  Specifically, there are strong excitatory anatomical connections 

between the PM and M1 cortices, particularly within the left hemisphere (Picard & 

Strick, 2001; Rushworth et al., 2003; Koch et al., 2007). Therefore, up-regulating the 

excitability of the left PMd may lead to a modulation in the excitability of the left 

(ipsilateral) M1.  Furthermore, given that PMd has been shown to be specifically 

involved with action selection of learned associations with both upper-limbs, perhaps 

enhancing the excitability of ipsilateral PMd via iTBS will lead to a greater enhancement 

of M1 excitability when combined with BMT compared to BMT alone.    

 The current study investigates the effect of short-term in-phase BMT, iTBS to left 

PMd and the possible combined effects of iTBS to left PMd applied before BMT on left 

M1 cortical excitability.  It was hypothesized that in-phase BMT would increase the 

corticospinal excitable area of left M1.  Also, it was hypothesized that iTBS to left PMd 

would enhance the excitability of the M1.  Finally, it was hypothesized that iTBS to left 

PMd would potentially enhance the excitable input from PMd to the motor cortices and, 

in turn, enhance M1 corticospinal excitability to a greater extent when followed by BMT.  
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Methods 
Participants 

Twenty healthy, self-reported right-handed participants (7 female; average age= 

27 years, range 21-38) took part in the study.  Participants were divided into three groups 

with different interventions: BMT alone (group 1), iTBS to left PMd alone (group 2) and 

iTBS to left PMd followed by BMT (group 3).  Ten individuals participated in each of the 

three interventions in random order, with no participants performing the bimanual 

training twice.  The experimental procedures were approved by the University of 

Waterloo Office of Research Ethics.  All participants provided informed written consent 

and completed a TMS screening form (Keel et al., 2000). 

Electromyographic (EMG) recording 

 Surface EMG was performed in the same way as Study #1. 	

TMS & Neuronavigation 

Focal TMS was performed in a similar manner to Study #1 with some additions 

listed below.  The active motor threshold (AMT) was defined as the lowest stimulus 

intensity that would elicit 5 out of 10 MEPs greater than or equal to a peak-to-peak 

amplitude of 200 µV while maintaining a light contraction of the ECR of 10% of 

maximum voluntary contraction.  For iTBS, the theta burst pattern of stimulation (three 

stimuli delivered at 50 Hz, which were grouped and delivered at 5 Hz) was delivered in 

blocks of 2 seconds followed by a period of 8 seconds with no stimulation, for a total of 

600 stimuli applied over 190 seconds (Huang et al., 2005; Stinear et al., 2009).  We 

delivered iTBS to PMd in the left hemisphere (Huang et al., 2009; Stinear et al., 2009) at 
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80% of AMT.  The location of PMd was determined to be 2.5 cm anterior to the ECR 

motor hotspot in left M1 (Picard & Strick, 2001; Huang et al., 2009; Stinear et al., 2009). 

The modulation of M1 excitability in the left hemisphere was measured similarly 

to Study #1 with exceptions listed below.  The spatial extent of ECR was measured 

before and multiple time points after 1) BMT alone (pre, 30 min post), 2) iTBS to left 

PMd alone (pre, 5, 30, 60 min post) or 3) iTBS to left PMd with BMT following (pre, 30, 

60 min post) (Figure 7).  Ten stimulation samples were acquired from each grid position 

at stimulus intensity of 110% of rMT with a random interstimulus interval (ISI) of ~2 

seconds.  Acquisition of MEPs from individual grid positions were sampled with a time 

interval of ~30-45 seconds between stimulation blocks.   

 The centre of gravity (CoG) was calculated by taking the average of the 10 MEPs 

from each grid position and dividing that by the average MEP amplitude for the entire 

spatial map.   

Behavioural task 

The behavioural task was performed in a similar way to Study #1 with a few 

additions listed below (see Figure 6C-D).  Participants were required to make 

simultaneous in-phase wrist extension movements (Smith & Staines, 2006, 2010, 2012; 

Neva et al., 2012) that moved a cursor to targets displayed in the upper left from the 

lower right (starting point) quadrants of the computer screen (Figure 6D).  Targets were 

displayed as a box outlined in black (2.5 X 2.5 cm), and appeared at one of three different 

locations in the upper left corner of the screen in pseudo-random order. BMT was 

performed by groups 1 and 3, with group 1 performing BMT alone and group 3 

performing the same BMT as group 1 following iTBS to left PMd (Figure 7). 
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Statistical analysis 
 
   Analysis was performed in two ways.  First, to specifically investigate the 

temporal factors of each intervention, analysis was performed within each group across 

all time points with the dependent measures of spatial extent, global, and central MEP 

amplitude.  Therefore, for each group, a repeated measures ANOVA was performed with 

TIME as a factor (group 1: BMT alone – pre and 30 min post; group 2: iTBS to PMd 

alone – pre, 5, 30, 60 min post; group 3: iTBS to PMd + BMT – pre, 30, 60 min post).  

Post hoc analyses were performed with a Tukey correction method to investigate any 

other differences between time points.  Second, as an exploratory measure that the 

combination of iTBS to left PMd and BMT would possibly yield a greater increase in M1 

excitability than either intervention alone, a one-way ANOVA was performed on all three 

groups with the difference score between pre and post 30 min time points for the spatial 

extent, global, and central MEP amplitude data with between-subjects factor GROUP 

(BMT alone, iTBS to left PMd alone, iTBS to left PMd + BMT).  

 Behavioural performance for groups 1 and 3 were quantified in terms of the 

movement time for both hands and the resultant cursor movement to the targets displayed 

on the screen.  Generally, both hands were active simultaneously and were similarly 

contributing to the resultant cursor movement across training trials in both groups.  

Specifically, the behavioural performance was quantified by taking the movement time 

and the angle at peak velocity of the resultant cursor path (wrist extension movements of 

both upper-limbs), relative to an ideal (straight) path to the visual target, for each 

movement trial (Neva et al., 2012).  A two-way ANOVA was performed on the 

movement time and angle at peak velocity including within-subjects factor BLOCK (first 
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block and last block of 10 trials) and between-subjects factor GROUP (BMT alone and 

iTBS to left PMd + BMT).  Where interactions were observed, separate paired t-tests 

were performed with factor BLOCK (first block and last block of 10 trials), in order to 

investigate the differences in performance between groups 1 and 3.  Statistical 

significance was set at p ≤ 0.05.  

 

Figure 6:	Experimental apparatus, neuronavigation and behavioural task. (A) Displays the experimental set 
up during TMS and collection of MEPs while participants were at rest (B) Image of template MRI with an 

example rectangular grid as used in the neuronavigation software. (C) Above view of a participant 
performing the behavioural task, grasping the two handles and viewing both the target and cursor 
movement on the computer screen. (D) Top panel: displays movements made during the bimanual 

movement training task. Participants began in the bottom right corner and made varying degrees of wrist 
extension movements to move the cursor to the remembered targets. 
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Results  

 The motor thresholds were consistent across groups (group 1 – mean rMT = 47 ± 

6.8%; group 2 – mean rMT = 47 ± 7.2% and mean AMT = 39 ± 6.6%; group 3 – mean 

rMT = 49 ± 8.7% and mean AMT = 43 ± 8%).  Similarly, the size of the stimulated 

spatial map area was similar across groups (average number of grid positions acquired in 

the pre: group 1 = 29 ± 6; group 2 = 29 ± 6; group 3 = 31 ± 8).  Figure 7 displays the M1 

cortical excitability maps of the right ECR muscle (leftward panel) of representative 

participants and the means of the resultant displacement (medial-lateral and anterior-

posterior) of the CoG (rightward panel) for all groups at all time points.  For group 1, the 

ECR cortical excitability map in the left hemisphere increased after a single session of 

BMT as shown previously (Figure 7A) (Neva et al., 2012).  For group 2, the ECR cortical 

excitability map increased noticeably at 30 min post iTBS to left PMd and continued to 

60 min post stimulation (Figure 7B).  Lastly, for group 3, the cortical excitability map of 

ECR in the left hemisphere was increased immediately after iTBS to left PMd and BMT 

at both 30 min and 60 min post intervention (Figure 7C).  Figure 7D shows that the 

average resultant displacement in CoG shifts slightly across groups and across time 

points, with no significant change.  

To further analyze the data of all three groups, figure 8 displays the spatial map, 

global, and central MEP amplitude before and after the intervention of (1) in-phase BMT 

(white bars), (2) iTBS to left PMd (black bars), and (3) iTBS to left PMd followed by 

BMT (grey bars).  Figure 8A shows the spatial extent of ECR in M1 in the left 

hemisphere as the group average number of active sites (with standard error), with figure 

8B displaying individual data (unique symbols represent individual participants).  There 
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was an increase in spatial extent of ECR in M1 for the two groups that performed the 

BMT (groups 1 and 3), as evidenced by the increased number of active sites. For group 1 

(white), a one-way repeated measures ANOVA revealed an increase in active sites 

between before and after in-phase BMT alone (F (1, 9)=16.943, p=0.003).  Additionally, 

for group 2 (black), a repeated measures ANOVA revealed no increase in active sites 

from iTBS to left PMd (F (3, 26)= 2.21, p=0.111). Finally, for group 3 (grey), a repeated 

measures ANOVA revealed an increase in active sites from iTBS to left PMd followed 

by BMT (F (2, 18)= 9.57, p=0.002).  Post hoc analyses revealed differences between pre 

and 30 min and 60 min post (p<0.05), with no difference between 30 min and 60 min 

post (p>0.05).  Additionally, there were no differences across groups between pre and the 

30 min time point post, as a one-way ANOVA revealed no effect of GROUP (F (2, 

26)=0.841, p=0.443).  

 Figure 8C shows the global MEP amplitude before and after the intervention of 

(1) in-phase BMT (white bars), (2) iTBS to left PMd (black bars), and (3) iTBS to left 

PMd followed by BMT (grey bars) (with standard error).  There was an increase in global 

MEP amplitude for groups 2 and 3.  A one-way repeated measures ANOVA performed 

on group 1 (white) revealed a slight increase in global MEP amplitude after BMT, which 

was near significance (F (1, 9)=4.530, p=0.062).  Additionally, for group 2 (black), a 

repeated measures ANOVA revealed a significant increase in global MEP amplitude 

from iTBS to left PMd (F (3, 26)= 4.01, p=0.018).  Post hoc analyses revealed 

differences between pre and 30 min post (p<0.05) and 60 min post (p<0.05), with no 

other differences.  Finally, for group 3 (grey), a repeated measures ANOVA revealed an 

increase in global MEP amplitude due to iTBS to left PMd followed by BMT (F (2,18)= 
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4.51, p=0.026).  Post hoc analyses revealed differences between pre and 30 min post 

(p<0.05) and 60 min post (p<0.05), with no difference between 30 min and 60 min post.  

In addition, a one-way ANOVA comparing the difference between pre and post 30 min 

revealed no difference across GROUP (F (2, 26)=0.643, p=0.534).  

 Figure 8D displays central MEP amplitude before and after the interventions of all 

three groups (with standard error).  There was no excitability increase of the central area 

of ECR in left hemisphere M1 due to any intervention.  A repeated measures ANOVA 

revealed no effect of BMT (group 1 – white) (F (1, 9)=1.918, p=0.199), iTBS to left PMd 

(group 2 – black) (F (3, 26)=1.59, p=0.215) and iTBS to left PMd followed by BMT 

(group 3 – grey) (F (2, 18)=1.22, p=0.320) on central MEP amplitude of ECR in the left 

hemisphere M1 across all time points. Additionally, a one-way ANOVA comparing the 

difference between pre and post 30 min revealed no difference across GROUP (F (2, 

26)=0.067, p=0.935).  

 Figure 9 displays the behavioural data of groups 1 and 3, with the movement time 

(leftward panel) and angle at peak velocity (rightward panel).  For the movement time, a 

two-way ANOVA revealed a main effect of BLOCK (F (1, 18)=20.460, p<0.001), no 

effect of GROUP (F (1, 18)=0.598, p=0.451) and no interaction of BLOCK x GROUP (F 

(1, 18)=0.009, p=0.926).  This indicates that both groups 1 and 3 improved performance 

in movement time similarly.  For the angle at peak velocity, a two-way ANOVA revealed 

a main effect of BLOCK (F (1, 18)=8.513, p=0.009) and an interaction of BLOCK x 

GROUP (F (1, 18)=6.060, p=0.024), but no effect of GROUP (F (1, 18)=0.082, p=0.778).  

The main effect of BLOCK indicates that there was a decrease in deviation of cursor path 

from the initial to the final trials (i.e., performance improvement).  Further analysis on 
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factor BLOCK with separate paired t-tests revealed a significant improvement in 

performance for group 1 (t (9)=3.338, p=0.009), with no improvement for group 3 (t 

(9)=0.385, p=0.709), which may be due to the slightly lower initial angle at peak velocity 

of the resultant cursor path in group 3. 

 

 

Figure 7: Representative examples of the M1 cortical excitability maps for the ECR muscle for groups 1 
(A), 2 (B) and 3 (C) across all time points (post time points are relative to the pre). Red on the scale 
represents the greatest probability and blue represents the least probability to generate a MEP. An 

amplitude of ≥ 30 µV peak-to-peak in the ECR was considered an MEP. (D) Means of the resultant 
displacement (medial-lateral and anterior-posterior) of the center of gravity (CoG) for all participants (time 

points relative to the pre). All bars represent SEM. Asterisk indicates significance, p < 0.05. 
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Figure 8: Means of all dependent measures for left M1 ECR excitability for all participants before and 
after bimanual training and/or iTBS to PMd. Group 1: BMT (white). Group 2: iTBS to PMd (black). Group 

3: iTBS to PMd + BMT (grey). (A) Spatial maps displayed by number of active sites group mean (B) 
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individual participants (unique symbols represent each participant). (C) Global MEP amplitude mean. (D) 
Central MEP amplitude mean. All bars represent SEM. Asterisk indicates significance, p < 0.05. 

 

 
 

Figure 9. Behavioural data for groups 1 and 3. Left Movement time for Group 1 (white) and Group 3 
(grey). Right Angle at peak velocity of the resultant cursor path for Group 1 (white) and Group 3 (grey). All 

bars represent SEM. Asterisk indicates significance, p < 0.05. 
 

Discussion 

 The present study is the first to demonstrate the early markers of rapid functional 

human motor cortical plasticity associated with short-term BMT following iTBS to left 

PMd.  Although there was not a greater increase in each measure due to the combination 

of iTBS to left PMd followed by BMT, the specific modulations in left M1 excitability 

resulting from each intervention indicate that they may operate under related neural 

mechanisms, which are possibly expressed in distinct patterns concurrently.  Motor 

cortex mapping demonstrated that both the spatial extent and global MEP amplitude for 

the task-specific muscles became larger with iTBS to left PMd followed by short-term 

BMT, whereas the spatial extent was enhanced with BMT alone and the global MEP 

amplitude was enhanced with iTBS to left PMd alone.  The effect of iTBS to left PMd 

alone indicates that motor preparatory areas modulate the excitability of the downstream 
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ipsilateral (left) M1, whereas the effect of BMT alone confirms that left M1 excitability is 

increased along the borders of the ECR representation (Neva et al., 2012).  

The concurrent effects of iTBS to left PMd with bimanual training 

 This study is the first to demonstrate that applying iTBS to the left PMd before 

BMT increases excitability in the left M1 in terms of both the spatial extent and global 

MEP amplitude concurrently, along with the specific excitability changes due to BMT or 

iTBS to left PMd alone.  One possibility is that the iTBS to left PMd enhanced the 

downstream ipsilateral connections to M1 (and possibly connections between left PMd 

and right M1) and facilitated BMT-induced excitability changes.  As noted, the left PMd 

has a critical role in action selection for execution of learned associations for movements 

of either or both upper-limbs (Schluter et al., 1998; Rushworth et al., 2003).  Inhibition of 

left PMd using TMS leads to a disruption during action selection when using both upper-

limbs (Schluter et al., 1998; Johansen-Berg et al., 2002).  Also, short-term BMT increases 

activity in the lateral PM cortex during a closely associated unimanual task (Smith & 

Staines, 2006, 2010, 2012).  Further, iTBS to left PMd causes faster preparation of 

complex sequences performed with the right hand (Stinear et al., 2009).  Given that the 

current study involved learning a skilled task that required movement of both upper-limbs 

simultaneously, the potential up-regulation of the left PMd could have induced a greater 

degree of excitatory input to M1 in both hemispheres during the training of the task.  This 

up-regulation of the left PMd may have led to the slightly enhanced initial behavioural 

performance observed when followed by BMT, compared to BMT alone.  Conversely, it 

is possible that the BMT slightly enhanced the effects of iTBS applied to PMd.  

Voluntary contraction of the right limb immediately after iTBS applied to left M1 
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enhances the facilitating effects of iTBS to MEP amplitude in the resting limb (Huang et 

al., 2008).  It may be that increased cortical input to M1 due to iTBS to left PMd acts to 

facilitate excitability similarly with our BMT task to that observed due to voluntary 

contraction immediately after applying iTBS to M1 itself.  Overall, it could be that 

simultaneous activation of homologous muscles, with the addition of an increased 

excitable input from left PMd, led to the slightly greater enhancement in left M1 ECR 

excitability observed in this study.  

iTBS to left PMd on left M1 cortical excitability 

 This study found that iTBS to left PMd markedly increased the excitability of 

ipsilateral M1, in terms of global MEP amplitude.  The lateral premotor cortex (i.e. PMd) 

has extensive reciprocal neuronal projections with the ipsilateral M1 (Picard & Strick, 

2001; Rushworth et al., 2003).  Perhaps iTBS increased the excitatory input from left 

PMd to ipsilateral M1 and, in turn, increased the resulting corticospinal excitability of the 

downstream M1.  Other studies have shown that rTMS at 5 Hz to left PMd increases 

cortical excitability in the ipsilateral M1 (Gerschlager et al., 2001; Chouinard et al., 2003; 

Rizzo et al., 2004; O’Shea et al., 2007; Suppa et al., 2008).  The increased excitability 

from left PMd to ipsilateral M1 may be due to neural projections to M1 in both 

hemispheres that may be particularly involved in motor preparatory sequences, 

particularly for visually cued tasks (Schluter et al., 1998; Modugno et al., 2001; 

Rushworth et al., 2003).  Interestingly, similar to other studies using different TBS 

protocols to PMd (i.e. cTBS), the effects on corticospinal excitability in M1 are observed 

after a delay (Huang et al., 2009).  Perhaps this results from left PMd reciprocal 

connections with M1 in both hemispheres, with interactions between both excitatory and 
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inhibitory projections, which may in turn also influence right M1 to left M1 projections 

(Asanuma & Okuda, 1962; Ferbert et al., 1992; Gerloff et al., 1998; Chen et al., 2003; 

Nelson et al., 2009), that could lead to a delay in the observable excitability changes in 

left M1.  These studies along with the current results demonstrate that cortical excitability 

in M1 may be modulated by inputs from the upstream ipsilateral PMd.     

Bimanual training effects on left M1 cortical excitability 

 Enhanced M1 cortical excitability represented by the enlargement of the spatial 

extent of the muscles involved in a skilled motor task has been shown to occur at the 

expense of neighbouring limb representations (Pascual-Leone et al., 1995; Nudo et al., 

1996; Kleim et al., 1998; Kleim et al., 2004).  Modest increases in M1 spatial extent of 

trained muscles have been observed in a 30 min session of BMT (Neva et al., 2012) and 

skilled finger sequence training for two 2 hr sessions (Pascual-Leone et al., 1995).  

However, more substantial increases in spatial extent of M1 require a greater amount of 

training (Pascual-Leone et al., 1995; Nudo et al., 1996).  The increases in spatial extent of 

M1 observed in the current study resulting from BMT could be due to early stages of 

unmasking of pre-existing horizontal connections in M1 and the increased synaptic 

transmission of long-term potentiation (LTP) (Jacobs & Donoghue, 1991).  

 Cortical activity is enhanced in both hemispheres in damaged and undamaged M1 

when homologous muscles are activated together in individual stroke patients (Silvestrini 

et al., 1998; Staines et al., 2001). Transcallosal neural activity of the homologous muscle 

representations in M1 could act to excite, but likely releases inhibition to the contralateral 

hemisphere (Ferbert et al., 1992; Gerloff et al., 1998; Stinear & Byblow, 2002; Chen et 

al., 2003), possibly leading to short-term M1 plasticity.  Intracortical inhibition is 
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released when upper-limb movements are performed synchronously (in-phase) (Stinear & 

Byblow, 2002).  It is possible that the mere co-activation of the homologous muscles 

involved in the current bimanual training task increases M1 excitability. 

Conclusion 

 In sum, our findings suggest that iTBS to the left PMd followed by BMT caused a 

slightly different modulation of M1 excitability than either intervention alone, as shown 

by the concurrent increase in spatial extent and global MEP amplitude.  iTBS to left PMd 

markedly increased the excitability of ipsilateral (left) M1, as reflected by an increase in 

the global MEP amplitude.  Short-term BMT increased the spatial extent of M1 

excitability, as revealed by the expansion along the borders of the trained muscles.  These 

modulations in M1 cortical excitability resulting from BMT and iTBS suggest that they 

operate under related plasticity mechanisms that may be expressed in distinct ways 

concurrently.  It is possible that the simultaneous activation of homologous M1 

representations across both hemispheres, combined with neural input from PMd, 

promotes the observed concurrent increases in excitability of the trained muscle 

representations in M1.  Critically, this work may guide rehabilitation training and 

stimulation techniques that modulate cortical plasticity after brain injury and other 

neurological diseases.  It may be that the modulation of remote cortical areas to M1 (i.e. 

PMd) in combination with rehabilitation training could be advantageous in enhancing 

short-term plasticity in damaged motor cortex.  However, further study is required to 

understand the potential implications of this research that could be applicable in clinical 

settings.  
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Chapter 4 - Study #3 
 
Selective modulation of left primary motor cortex excitability after continuous theta 
burst stimulation to right primary motor and bimanual training 
Prepared for submission. 
 
Jason L. Neva, Amaya M. Singh, Michael Vesia, W. Richard Staines 
 
4.1 Research objective 
This study sought to address research objective 3: 
 
3)  To investigate the effects of theoretically suppressing the excitability of the 
contralateral homologous (right) M1 on (left) M1 representation and the potential 
combined effects when followed by BMT. 
 
Abstract 
 

Activity in motor related cortical areas are enhanced after a single session of 

bimanual visuomotor training (BMT), and occur specifically when training requires 

simultaneous activation of homologous muscles (in-phase) and is characterized by an 

increase in the excitable cortical territory occupied by the trained muscles within the 

primary motor cortex (M1). This modulation may include connectivity with premotor 

regions and interhemispheric interactions between homologous muscle representations in 

M1. Continuous theta burst stimulation (cTBS) to M1 suppresses motor evoked potentials 

(MEPs) from the stimulated M1. Few studies suggest that cTBS to right hemisphere M1 

(rM1) increases corticospinal activity in lM1. Also, motor function of the affected limb 

improves in stroke patients after applying cTBS to the contralesional M1 or S1 in 

combination with movement training. The purpose of this study is to investigate the 

effects of cTBS to rM1 on wrist extensor representation in lM1, and its potential effects 

when followed by BMT.  This experiment tests the hypothesis that cTBS to rM1 will 

increase excitability of the extensor carpi radialis (ECR) in lM1, and the addition of BMT 

will cause a greater increase. lM1 excitability was quantified using transcranial magnetic 
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stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked 

potentials (MEPs) for the extensor carpi radials (ECR) muscle representation before and 

multiple time points following 1) BMT, 2) cTBS to rM1 or 3) cTBS to rM1 and BMT.  

The combination of cTBS to rM1 and BMT demonstrated an increased shift in the center 

of gravity (CoG) compared to either intervention alone. Spatial extent of lM1 excitability 

was prolonged to 60 minutes when cTBS to rM1 was combined with BMT compared to 

cTBS to rM1 alone. Both spatial extent and map volume were enhanced with BMT alone 

and cTBS to rM1 alone at 30 min post stimulation, without an increase when cTBS to 

rM1 was combined with BMT. These results suggest that modulation of one M1 may 

alleviate ongoing interhemispheric inhibition (or increase facilitation) to the opposite M1 

in healthy individuals via transcallosal or subcortical connections. Critically, this work 

may guide rehabilitation training and stimulation techniques that modulate cortical 

plasticity after brain injury.  

 
Introduction 
 

Visuomotor movement training modulates the excitability in several cortical 

areas, namely, motor (Jacobs & Donoghue, 1991; Pascual-Leone et al., 1995; Classen et 

al., 1998; Karni et al., 1998; Kleim et al., 1998; Nudo, 2006; Butler & Wolf, 2007), 

premotor (PM) (Deiber et al., 1996; Karni et al., 1998; Andres et al., 1999; Jennings & 

van der Molen, 2005; Smith & Staines, 2006, 2010, 2012), and parietal cortices as well as 

subcortical areas such as the basal ganglia and cerebellum (Clower et al., 1996; Doyon et 

al., 1997; Kleim et al., 1998; Seidler & Noll, 2008).  Critically, bimanual visuomotor 

movement training (BMT) yields a greater increase in premotor (Smith & Staines, 2006, 

2010, 2012) and M1 (Neva et al., 2012) cortical excitability compared to unimanual 
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movement training.  Further, in select stroke patients, bimanual movement performed 

with the upper-limbs can increase the excitability within the damaged and undamaged 

primary motor cortex (M1) (Silvestrini et al., 1998; Staines et al., 2001).  Additionally, 

bimanual arm training has been shown to improve hand and arm function in stroke 

patients (Mudie & Matyas, 2000; Staines et al., 2001; Cauraugh & Kim, 2002; Luft et al., 

2004; McCombe Waller & Whitall, 2008; Cauraugh et al., 2010).  Although BMT can 

modulate the excitability in motor preparation and execution areas as well as improve 

upper-limb function in patient populations, the underlying neural mechanisms remain 

unclear.  

Modulation of cortical excitability after BMT likely relates to the phase of 

movement with some influence of emphasizing the motor preparatory aspect of the 

trained movements (Neva et al., 2012).  Specifically, increases in motor preparatory and 

execution areas occur when BMT involves the simultaneous co-activation of homologous 

muscle groups (in-phase training), but not with co-activation of antagonist muscle groups 

(anti-phase training) (Smith & Staines, 2006, 2010, 2012; Neva et al., 2012).  

Electroencephalography (EEG) work suggests that in-phase BMT modulates preparatory 

activity in PM cortices and possibly M1.  More specifically to M1, transcranial magnetic 

stimulation (TMS) work has shown that in-phase BMT, but not anti-phase, increases M1 

corticospinal excitability.  Explicitly, the excitable cortical territory of trained muscle 

representation increases along the borders without a concurrent increase in excitability of 

the central representation of that muscle (Neva et al., 2012).  The lack of effect due to 

anti-phase training may relate to the reciprocal inhibition of active versus inactive agonist 
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and antagonist muscle representations in the contralateral hemispheres (Stinear & 

Byblow, 2002).  

Many animal and human studies indicate that there are extensive reciprocal 

interhemispheric connections between homologous muscle representations in M1 

(Asanuma & Okuda, 1962; Matsunami & Hamada, 1984; Gould et al., 1986; Meyer et al., 

1995; Picard & Strick, 2001; Nelson et al., 2009). There are both inhibitory and 

excitatory connections between the homologous M1 representations, yet inhibition 

between the hemispheres seems to dominate (Asanuma & Okuda, 1962; Ferbert et al., 

1992; Gerloff et al., 1998; Chen, 2004; Nelson et al., 2009). Further, local cortical 

inhibition in M1 is released between homologous M1 representations the upper-limbs are 

moved synchronously (in-phase), but inhibition remains with asynchronous (anti-phase) 

movements (Stinear & Byblow, 2002, 2004). These studies suggest that interhemispheric 

connections between M1 representations may be a potential neural mechanism, with 

presumed GABAergic local M1 disinhibition, which underlies the corticospinal 

modulations observed due to BMT tasks.  

Transcranial magnetic stimulation (TMS) has become a useful way to measure 

and modulate the intracortical and subsequent corticospinal excitability in local areas of 

the brain. Repetitive TMS (rTMS) can induce lasting modulations of cortical excitability. 

A specific type of rTMS, known as theta burst stimulation (TBS) (Huang et al., 2005) 

modulates local cortical excitability with a short period of rapid stimulation. Specifically, 

when continuous theta burst stimulation (cTBS) is applied to M1, the amplitude of MEPs 

from the stimulated M1 are suppressed for up to 60 min post stimulation (Huang et al., 

2005; Suppa et al., 2008; Ortu et al., 2009), with this effect showing variability across 
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participants depending upon which interneuron populations are activated by the TMS 

pulse (Hamada et al., 2013). Additionally, few studies suggest that cTBS applied to the 

right hemisphere M1 (rM1) increases corticospinal activity in the left M1 (lM1) (Suppa et 

al., 2008; Meehan et al., 2011). Also, motor function of the affected limb improves in 

stroke patients after applying cTBS to the contralesional M1 or S1 in combination with 

movement training (Meehan et al., 2011). Therefore, there is evidence that modulation of 

the one hemisphere homologous M1 representation can remotely influence excitability of 

the opposite M1. Although M1 excitability may be modulated by altering the excitability 

of the opposite M1, the underlying neural mechanisms remain unclear. Furthermore, it is 

unclear whether the remote modulation of M1 will be additive with the cortical 

excitability changes observed due to BMT (Smith & Staines, 2006, 2010, 2012; Neva et 

al., 2012). Therefore, suppression of the rM1 excitability may lead to an increase in the 

excitability of the lM1 representation of the wrist extensor muscles. Further, since it has 

been shown that BMT increases cortical excitability of the lM1, perhaps enhancing the 

excitability of the lM1 (by means of suppressing rM1), may cause an additional 

enhancement of corticospinal excitability of lM1 when cTBS to the rM1 is followed by 

BMT.  

The current study investigates the effect of cTBS to rM1 on the opposite 

hemisphere M1 (lM1) in terms of the spatial representation and MEP amplitude of the 

extensor carpi radialis (ECR) muscle over time.  Additionally, this study explores the 

possible combined effects of cTBS to rM1 applied before BMT on lM1 corticospinal 

excitability.  This study also includes data from a previous study in order to compare each 

intervention to BMT alone (Neva et al., 2014). Group 1 measures ECR corticospinal 
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excitability before and three time points following cTBS to rM1.  It was hypothesized 

that cTBS to rM1 would enhance the excitability of the lM1 ECR representation.  Group 

2 measures ECR corticospinal excitability before and following cTBS to rM1 followed 

by BMT.  It was hypothesized that cTBS to rM1 would enhance the excitability in the 

lM1, which would potentially cause a greater enhancement of ECR corticospinal 

excitability when followed by BMT.  

Methods 
 
Participants 

Twenty-seven healthy, self-reported right-handed participants (12 female; average 

age= 26±4 years) took part in the study.  Participants were divided into three groups with 

different interventions: BMT (group 1), cTBS to rM1 alone (group 2) and cTBS to rM1 

followed by BMT (group 3).  Ten individuals participated in group 1, while twelve 

individuals participated in group 2 and 3 in random order, with five individuals 

participating in both group 2 and 3.  The experimental procedures were approved by the 

University of Waterloo Office of Research Ethics.  All participants provided informed 

written consent and completed a TMS screening form (Keel et al., 2000). 

Electromyographic (EMG) recording 

 Surface EMG was recorded from the right and left extensor carpi radials (ECR) in 

the same way as Study #2 (Figure 6).  

TMS & Neuronavigation 

Focal TMS was performed in the same way as Study #2, with the exception of 

acquiring the AMT from rM1 (Figures 6 & 7).  For cTBS, the theta burst pattern of 

stimulation (three stimuli delivered at 50 Hz, which were grouped and delivered every 5 
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Hz) was delivered in continuous blocks for a total of 600 stimuli applied over 40 seconds 

(Huang et al., 2005).  We delivered cTBS to rM1 (Suppa et al., 2008; Meehan et al., 

2011) at 80% of AMT. 

The modulation of M1 excitability in the left hemisphere was measured in the 

same way as Study #2 with a few additions listed below.  The excitability of lM1 ECR 

was measured before and multiple time points after i) cTBS to rM1 alone and ii) cTBS to 

rM1 followed by BMT.  Additionally, changes in map volume were assessed similarly to 

global MEP amplitude, with the exception of summing all of the “active sites” rather than 

averaging (Wolf et al., 2004; Kleim et al., 2007).  To assess changes in the MEP 

amplitude of the hotspot were averaged and compared before and after cTBS to rM1 and 

cTBS to rM1 followed by BMT.  

Behavioural task 

Refer to Study #2 and Figure 6. 

Statistical analysis 
 
 Analysis was performed in two ways. First, to specifically investigate the 

temporal factors of each intervention, analysis was performed within each group across 

all time points with the dependent measures of spatial extent, global, central, hotspot 

MEP amplitude and map volume.  Therefore, for each group, a repeated measures 

ANOVA was performed with TIME as a factor (group 1: BMT – pre, 30 min post; group 

2: cTBS to rM1 alone – pre, 5, 30, 60 min post; group 3: cTBS to rM1 + BMT – pre, 30, 

60 min post).  In addition, for groups 2 and 3, pre-planned contrasts were performed 

between pre and 30 and 60 min post intervention to test the hypothesis that lM1 

excitability would be greatest at 30 minutes post intervention and then would return to 
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baseline levels at 60 min post intervention.  Post hoc analyses were performed with the 

Tukey correction method to investigate any other differences between time points.  

Second, as an exploratory measure that the combination of cTBS to rM1 and BMT would 

possibly yield an additional increases in M1 excitability than cTBS to rM1 alone, a one-

way ANOVA was performed on all groups with the difference score between pre and 

post 30 min time points for the spatial extent, global, central MEP, hotspot amplitude and 

map volume data with between-subjects factor GROUP (BMT only, cTBS to rM1 only, 

cTBS to rM1 + BMT). Similarly, to explore whether there were any additional increases 

in M1 excitability between cTBS to rM1 alone (group 2) and cTBS to rM1 followed by 

BMT (group 3), a one-way ANOVA was performed on all groups with the difference 

score between pre and post 60 min time points for the spatial extent, global, central, 

hotspot MEP amplitude and map volume data with between-subjects factor GROUP 

(cTBS to rM1 only, cTBS to rM1 + BMT). 

 Behavioural performance for group 1 (Neva et al., 2014) and group 3 were 

quantified in the same way as in Study #2.  

 
Results  

Participants, motor thresholds and map distributions 

 For group 2, one data point (post 30 min) for one participant was not able to be 

collected due to technical difficulties, and thus has been excluded from analysis. The 

motor thresholds were consistent across groups (group 1 – mean rMT = 47 ± 6.8%; group 

2 – mean left M1 rMT = 46 ± 8%, right M1 rMT = 47 ± 4%, and mean right M1 AMT = 

44 ± 6%; group 3 – mean left M1 rMT = 45 ± 7%, right M1 rMT = 55 ± 6%, and mean 

right M1 AMT = 44 ± 6%).  Similarly, the size of the stimulated spatial map area was 
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similar across groups (average number of grid positions acquired in the pre: group 1 = 29 

± 6; group 2 = 30 ± 9; group 3 = 26 ± 6).  

Contour maps and center of gravity (CoG) 

Figure 10 shows the representative cortical output maps of the right ECR muscle 

(leftward panel) and the means of the resultant displacement (medial-lateral and anterior-

posterior) of the center of gravity (CoG) (rightward panel) for all groups at all time 

points.  For group 1, the ECR cortical excitability map in the left hemisphere increased 

after a single session of BMT as shown previously (Figure 10A) (Neva et al., 2012). For 

group 2, the center of the ECR cortical representation increased slightly immediately after 

cTBS to rM1, and there was further increase at 30 min post (Figure 10B).  For group 3, 

the size of the cortical representation of ECR in the left hemisphere was increased after 

cTBS to rM1 and BMT at both 30 min and 60 min post intervention (Figure 10C).  Figure 

2D shows that the average resultant displacement in CoG shifts across groups and across 

time points, with a one-way ANOVA revealing an effect of GROUP (F (2, 31)=4.767, 

p=0.016) at 30 min post. Post hoc analyses revealed a greater shift of CoG in group 3 

(cTBS to rM1 + BMT) compared to group 1 (BMT only) (p<0.05). A one-way ANOVA 

showed no difference between group 2 and 3 for 60 min post (F (1, 22)=0.001, p=0.978).  

Spatial extent 

To further analyze the data of all groups, figure 11 displays the spatial map, 

global, and central MEP amplitude before and after the intervention of (1) in-phase BMT 

only (white bars), (2) cTBS to rM1 (black bars), and (3) cTBS to rM1 followed by BMT 

(grey bars).  Figure 11A shows the spatial extent of left M1 as the average number of 

active sites (with standard error).  There was an increase in spatial extent for groups 1 and 
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3, which performed the BMT after cTBS to rM1, as evidenced by the increased number 

of active sites. For group 1 (white), a one-way repeated measures ANOVA revealed an 

increase in active sites between before and after in-phase BMT alone (F (1, 9)=16.943, 

p=0.003).  Additionally, for group 2 (black), a repeated measures ANOVA revealed no 

increase in active sites from cTBS to rM1 (F (3, 33)= 2.22, p=0.105). However, pre-

planned contrast analyses revealed a significant increase between pre and 30 min (F (1, 

32)=5.81, p=0.022).  Since there were no other statistical differences, this indicates no 

increase immediately after cTBS to rM1 and a return to baseline levels 60 min post 

stimulation. Finally, for group 3 (grey), a repeated measures ANOVA revealed an 

increase in active sites from cTBS to rM1 combined with bimanual training (F (2, 22)= 

10.06, p=0.0008). Pre-planned contrast revealed a significant increase in active sites 

between pre and 30 min (F (1, 32)=9.26, p=0.006). Post hoc analyses revealed an 

unexpected increase in active sites between pre and 60 min post (p<0.05), with no 

difference between 30 min and 60 min post (p>0.05).  Additionally, there were no 

differences across all groups between pre and the 30 min time point post, as a one-way 

ANOVA revealed no effect of GROUP (F (2, 31)=0.072, p=0.931).  Interestingly, there 

was a significant increase in active sites for group 3 (cTBS to rM1 + BMT) when 

comparing the difference between pre and the 60 min post time point between group 2 

and 3, as a one-way ANOVA revealed an effect of GROUP (F (1, 22)=6.832, p=0.016). 

Global MEP amplitude 

Figure 11B left shows the global MEP amplitude before and after the intervention 

of (1) in-phase BMT (white bars), (2) cTBS to rM1 (black bars), and (3) cTBS to rM1 

combined with BMT (grey bars) (with standard error).  There was an increase in global 
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MEP amplitude for groups 1 and 2.  A one-way repeated measures ANOVA performed 

on group 1 (white) revealed a slight increase in global MEP amplitude after BMT, which 

was near significance (F (1, 9)=4.530, p=0.062).  Additionally, for group 2 (black), a 

repeated measures ANOVA revealed no increase in global MEP amplitude from cTBS to 

rM1 (F (3, 33)= 2.13, p=0.115). Pre-planned contrast revealed a near significant increase 

in global MEP amplitude from pre to post 30 min time point (F (1,33)=4.11, p=0.06).  

Finally, for group 3 (grey), a repeated measures ANOVA revealed no increase in global 

MEP amplitude due to cTBS to rM1 combined with BMT (F (2,22)= 1.9, p=0.173).  

Similarly, pre-planned contrast revealed no increase in global MEP amplitude.  In 

addition, a one-way ANOVA comparing the difference between pre and post 30 min 

revealed no difference across GROUP (F (2, 31)=0.078, p=0.926).  Similarly, there was 

no increase in global MEP amplitude when comparing the difference between pre and the 

60 min post time point between group 2 and 3, as a one-way ANOVA revealed no effect 

of GROUP (F (1, 22)=0.010, p=0.921). 

Central MEP amplitude 

Figure 11C left displays central MEP amplitude before and after the interventions 

of all three groups (with standard error).  There was no increase in central representation 

of M1 excitability of ECR in the left hemisphere.  A repeated measures ANOVA revealed 

no effect of BMT (group 1 – white) (F (1, 9)=1.918, p=0.199), cTBS to rM1 (group 2 – 

black) (F (3, 33)=1.43, p=0.250) and cTBS to rM1 combined with BMT (group 3 – grey) 

(F (2, 22)=0.74, p=0.490) on central MEP amplitude of M1 ECR representation in the left 

hemisphere across all time points. Similarly, pre-planned contrasts revealed no increases 

in central MEP amplitude. Additionally, a one-way ANOVA comparing the difference 
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between pre and post 30 min revealed no difference across GROUP (F (2, 31)=0.211, 

p=0.811). Similarly, there was no increase in central MEP amplitude when comparing the 

difference between pre and the 60 min post time point between group 2 and 3, as a one-

way ANOVA revealed no effect of GROUP (F (1, 22)=0.094, p=0.763). 

Hotspot MEP amplitude 

Figure 11D right displays hotspot MEP amplitude before and after the 

interventions of all three groups (with standard error).  There was a slight decrease in M1 

excitability at the hotspot for the ECR representation in the left hemisphere for groups 2 

and 3.  A repeated measures ANOVA revealed no effect of BMT (group 1 – white) (F (1, 

9)=1.918, p=0.199), cTBS to rM1 (group 2 – black) (F (3, 33)=2.12, p=0.117) and cTBS 

to rM1 combined with BMT (group 3 – grey) (F (2, 22)=1.9, p=0.173) on hotspot MEP 

amplitude of M1 ECR representation in the left hemisphere across all time points. 

Similarly, pre-planned contrasts revealed no increases in hotspot MEP amplitude. 

Additionally, a one-way ANOVA comparing the difference between pre and post 30 min 

revealed no difference across GROUP (F (2, 31)=2.594, p=0.091).  Similarly, there was 

no increase in hotspot MEP amplitude when comparing the difference between pre and 

the 60 min post time point between group 2 and 3, as a one-way ANOVA revealed no 

effect of GROUP (F (1, 22)=0.118, p=0.735). 

Map Volume 

Figure 11E right shows the map volume before and after the intervention of (1) 

in-phase BMT (white bars), (2) cTBS to rM1 (black bars), and (3) cTBS to rM1 

combined with BMT (grey bars) (with standard error).  There was an increase in map 

volume for groups 1 and 2.  A one-way repeated measures ANOVA performed on group 
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1 (white) revealed an increase in map volume after BMT (F (1, 9)=6.310, p=0.033).  

Additionally, for group 2 (black), a repeated measures ANOVA revealed a slight increase 

in global MEP amplitude from cTBS to rM1 (F (3, 33)= 2.58, p=0.070). Pre-planned 

contrast revealed a significant increase in map volume from pre to post 30 min time point 

(F (1, 33)=5.75, p=0.022).  Finally, for group 3 (grey), a repeated measures ANOVA 

revealed no increase in map volume due to cTBS to rM1 combined with BMT (F (2, 22)= 

2.77, p=0.084).  Similarly, pre-planned contrast revealed no increase in map volume.  In 

addition, a one-way ANOVA comparing the difference between pre and post 30 min 

revealed no difference across GROUP (F (2, 31)=0.178, p=0.838). Similarly, there was 

no increase in map volume when comparing the difference between pre and the 60 min 

post time point between group 2 and 3, as a one-way ANOVA revealed no effect of 

GROUP (F (1, 22)=0.008, p=0.930). 

Behavioural performance 

Figure 12 displays the behavioural data of groups 1 (Neva et al. 2014) and 3, with 

the movement time (leftward panel) and angle at peak velocity (rightward panel).  For 

movement time, a two-way ANOVA revealed a main effect of BLOCK (F (1, 

18)=20.460, p<0.001), no effect of GROUP (F (1, 18)=0.598, p=0.451) and no 

interaction of BLOCK x GROUP (F (1, 18)=0.009, p=0.926).  This indicates that both 

groups 1 and 3 had similar decreases in movement time.  For the angle at peak velocity, a 

two-way ANOVA revealed a main effect of BLOCK (F (1, 20)=19.252, p<0.0001), an 

interaction of BLOCK x GROUP (F (1, 20)=6.227, p=0.021), and a main effect of 

GROUP (F (1, 20)=7.439, p=0.013).  The main effect of BLOCK indicates that there was 

a decrease in deviation of cursor path from the initial to the final trials (i.e., performance 
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improvement).  Further analysis on factor BLOCK with separate paired t-tests revealed a 

significant improvement in performance for group 3 (t (11)=2.969, p=0.013), and an 

improvement for group 1 (t (9)=3.338, p=0.009). Further, independent samples t-tests 

with factor GROUP revealed a significantly lower initial angle at peak velocity in the 

first block in group 3 compared to group 1 (t (20)=-2.930, p=0.008) with no difference 

between groups at the final block of trails (t (20)=-0.182, p=0.858). Therefore, the 

differing results between these groups seem to be due to the slightly lower initial angle at 

peak velocity of the resultant cursor path in group 3. 

Figure 10. Representative examples of the M1 cortical excitability maps for the ECR muscle for groups 1 
(A), 2 (B) and 3 (C) across all time points (post time points are relative to the pre). Red on the scale 
represents the greatest probability and blue represents the least probability to generate a MEP. An 

amplitude of ≥ 30 µV peak-to-peak in the ECR was considered an MEP. (D) Means of the resultant 
displacement (medial-lateral and anterior-posterior) of the center of gravity (CoG) for all participants (time 

points relative to the pre). All bars represent SEM. Asterisk indicates significance, p < 0.05. 
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Figure 11. Means of all dependent measures for left M1 ECR excitability for all participants before and 
after bimanual training and/or cTBS to rM1. Group 1: BMT (white). Group 2: cTBS to rM1 (black). Group 
3: cTBS to rM1 + BMT (grey). (A) Spatial maps displayed by number of active sites. (B) Left Global MEP 

amplitude, Right Map volume. (C) Left Central MEP amplitude, Right Hotspot MEP amplitude. All bars 
represent SEM. Asterisk indicates significance, p < 0.05. 
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Figure 12. Behavioural data for groups 1 and 3. Left Movement time for Group 1 (white) and Group 3 
(grey). Right Angle at peak velocity of the resultant cursor path for Group 1 (white) and Group 3 (grey). All 

bars represent SEM. Asterisk indicates significance, p < 0.05. 
 

Discussion 

 The current study is the first to demonstrate the early indicators of motor cortex 

plasticity associated with short-term BMT following cTBS to rM1. The specific 

modulations in left M1 excitability resulting from each intervention indicate that they 

may operate under related neural mechanisms, possibly additively facilitating changes in 

cortical excitability.  The combination of cTBS to rM1 and BMT demonstrated an 

increased shift in the center of gravity (CoG) compared to either intervention alone. 

Additionally, the increased spatial extent of M1 excitability was prolonged to 60 minutes 

when cTBS to rM1 was combined with BMT compared to cTBS to rM1 alone. Motor 

cortex mapping showed that both spatial extent and map volume were enhanced with 

BMT alone (Neva et al., 2014) and cTBS to rM1 alone at 30 min post stimulation, 

without an increase when cTBS to rM1 was combined with BMT. The effect of cTBS to 

rM1 alone indicates that homologous right M1 may remotely modulate the excitability of 

the left hemisphere M1, and the effect of BMT alone confirms that left M1 excitability is 

enhanced along the borders of ECR representation (Neva et al., 2012, Neva et al., 2014). 

The combined effects of cTBS to rM1 with BMT 

 This study is the first to demonstrate that applying cTBS to rM1 before BMT 

increases excitability in the left M1 in terms of a shift in the centre of gravity and a 

prolonged increase in spatial extent. One possibility is that cTBS to rM1 released 

inhibition (or increased facilitation) from the right to left hemisphere M1 and facilitated 

the BMT-induced excitability enhancements.  The homologous M1 to M1 reciprocal 
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connections have been demonstrated in many animal and human studies, with inhibitory 

connections dominating between the hemispheres (Asanuma & Okuda, 1962; Matsunami 

& Hamada, 1984; Gould et al., 1986; Asanuma & Keller, 1991; Meyer et al., 1995; 

Picard & Strick, 2001; Nelson et al., 2009). Local inhibition between the homologous M1 

representations of the upper-limbs is released when movements are made synchronously 

(in-phase) (Stinear & Byblow, 2002, 2004).  Additionally, cTBS applied to the right 

hemisphere M1 (rM1) increases corticospinal activity in the left M1 (lM1) (Suppa et al., 

2008; Meehan et al., 2011). Also, motor function of the affected limb improves in stroke 

patients after applying cTBS to the contralesional M1 or S1 in combination with 

movement training (Meehan et al., 2011). These studies suggest that interhemispheric 

connections between M1 representations may be a potential neural mechanism, with 

presumed GABAergic local M1 disinhibition, which underlies the corticospinal 

modulations observed due to BMT tasks. It is possible that cTBS applied to the opposite 

M1 before performing BMT caused a release of inhibition (or increased facilitation) from 

the right to the left hemisphere, which leads to increased and prolonged effects when 

combined with BMT. This release of inhibition (or increased facilitation) from right to 

left M1 may have led to the enhanced initial behavioural performance observed when 

followed by BMT, compared to BMT alone. Overall, it could be that simultaneous 

activation of homologous muscles, with the addition of an increased excitable input from 

rM1, led to the slightly greater enhancement in left M1 ECR excitability observed in this 

study.  

cTBS to right M1 on left M1 cortical excitability  
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This study found that cTBS to rM1 increased the excitability of contralateral M1, 

in terms of spatial extent and map volume.  The homologous M1 to M1 reciprocal 

connections have been demonstrated in many animal and human studies, with inhibitory 

connections dominating between the hemispheres (Asanuma & Okuda, 1962; Matsunami 

& Hamada, 1984; Gould et al., 1986; Asanuma & Keller, 1991; Meyer et al., 1995; 

Picard & Strick, 2001; Nelson et al., 2009). It is thought that these interhemispheric M1 

connections are primarily mediated by projections through the body of the corpus 

callosum (CC), as paired pulse TMS studies have shown decreased or absent 

interhemispheric interactions in patients without a an intact CC (Ferbert et al., 1992; 

Chen et al., 2002; Daskalakis et al., 2004; Avanzino et al., 2007). It has been shown that 

these interhemispheric connections between M1s can also be influenced by rTMS over 

either hemisphere M1. Several studies have shown differing results using rTMS, with 

some research showing an increased excitability after applying rTMS at 1 Hz to the 

contralateral M1 and some showing a decreased excitability (Wassermann et al., 1998; 

Gilio et al., 2003; Gorsler et al., 2003; Plewnia et al., 2003; Schambra et al., 2003; Pal et 

al., 2005; Heide et al., 2006). Possible reasons for these conflicting results may be the 

different intensities used during rTMS, the orientation of the TMS coil (i.e. anterior-

posterior, posterior-anterior), and stimulation of either the dominant or non-dominant 

hand representation. However, a recent study suggests that hand dominance does not play 

a role in the effects produced by rTMS protocols such as theta burst stimulation (TBS) 

(Suppa et al., 2008).  

Results from other rTMS protocols (i.e. TBS) has shown conflicting results on the 

non-stimulated contralateral M1. Few studies have shown that cTBS applied to the right 
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hemisphere M1 (rM1) increases cortical excitability in the left M1 (lM1) (Stefan et al., 

2008; Suppa, Bologna, et al., 2008; Meehan et al., 2011), whereas one such study showed 

a decrease excitability in the contralateral M1 (Ishikawa et al., 2007).  The differing 

results of the mentioned studies may be due to the slightly different intensities used to 

apply the CTBS (70% versus 80% of AMT).  Specifically, it seems when cTBS is applied 

to the rM1 with an anterior-posterior coil orientation, MEPs are increased in the lM1 as 

well as a reduction in local inhibition (i.e. short-interval intracortical inhibition (SICI)), 

while it decreased MEPs and increase SICI in the stimulated rM1 (Suppa et al., 2008). It 

is possible that the application of cTBS to the right hemisphere M1 in the current study 

lead to a decreased rM1 excitability, decreasing SICI and an increasing excitability in the 

left M1, which resulted in the enhanced spatial extent and map volume of the entire ECR 

representation in left M1.  

BMT 

 The effects of in-phase BMT enhancing M1 cortical excitability has been shown 

and discussed in previous studies (Neva et al., 2012; Neva et al., 2014). 

Conclusion 

 In summary, the findings of the current study suggest that cTBS to the right M1 

followed by BMT demonstrated an increased shift in the center of gravity (CoG) 

compared to either intervention alone and an increased spatial extent of M1 excitability 

up to 60 minutes post intervention. cTBS to rM1 alone and BMT alone increased spatial 

extent and map volume, increasing the cortical excitability along the borders of the 

trained muscle representation. These modulations in M1 cortical excitability resulting 

from BMT and cTBS suggest that they operate under related plasticity mechanisms that 
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may be expressed distinctly.  It is possible that the simultaneous activation of 

homologous M1 representations across both hemispheres, combined with enhanced 

neural input from right M1, promotes the observed combined increases in excitability of 

the trained muscle representation in left M1.  Critically, this work may guide 

rehabilitation training and stimulation techniques that modulate cortical plasticity after 

brain injury and other neurological diseases.  It may be that the modulation of related 

cortical areas to M1 (i.e. contralateral M1) in combination with rehabilitation training 

could be advantageous in enhancing short-term plasticity in damaged motor cortex.  

However, further study is required to understand the potential implications of this 

research that could be applicable in clinical settings. 
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Chapter 5 - Study #4 
 
Cortical adaptations within and between the primary motor cortices after bimanual 
training and theta burst stimulation to the left dorsal premotor cortex 
Prepared for submission. 
 
Jason L. Neva, Michael Vesia, Amaya M. Singh, W. Richard Staines 
 
5.1 Research objective 
This study sought to address research objective 4: 
 
 
4)  To investigate the intracortical and interhemispheric excitability circuitry within and 
across M1 bilaterally due to short-term BMT, the enhancement of left PM input, and the 
combination of these interventions. 
 
 
Abstract 
 

Activity in motor related cortical areas are enhanced after a single session of 

bimanual visuomotor training (BMT) involved in motor preparation and execution. These 

changes in cortical excitability occur specifically when training requires simultaneous 

activation of homologous muscles (in-phase) and is characterized by an increase in the 

excitable cortical territory occupied by the trained muscles within the primary motor 

cortex (M1). These modulations may include interhemispheric interactions between 

homologous muscle representations in M1 and connectivity with premotor regions, like 

the dorsal premotor cortex (PMd).  Specifically, the effects of short-term in-phase BMT 

was enhanced when training was preceded by intermittent theta burst stimulation (iTBS) 

to the left hemisphere PMd (lPMd).  This study investigates the possible intracortical and 

interhemispheric modulations of the extensor carpi radials (ECR) in M1 bilaterally due 

to: 1) BMT, 2) iTBS to lPMd, and 3) the combination of these interventions. This study 

tests three related hypotheses in three separate experiments: 1) BMT will enhance 

excitability within and between M1 bilaterally, 2) iTBS to lPMd will primarily enhance 
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lM1 excitability, and 3) the combination of these interventions will cause a greater 

enhancement of bilateral M1 cortical excitability. This study quantified MEPs, short-

interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval 

intracortical inhibition (LICI), cortical silent period (CSP), and interhemispheric 

inhibition (IHI) for the ECR in M1 bilaterally.  BMT alone resulted in facilitated MEPs in 

both hemispheres, an increase in CSP in the right M1 and a decrease in IHI from the left 

to right M1. iTBS to the lPMd increased the CSP in the left M1, and when iTBS to lPMd 

preceded BMT there was increased MEPs and decreased LICI in M1.  These results 

demonstrate the possible neural mechanisms that may underlie the early indications of 

rapid functional plasticity associated with BMT and iTBS to lPMd, which may be related 

to a decreases of in long-latency inhibitory mechanisms within and between M1s.  

Critically, this work may guide rehabilitation training and stimulation techniques that 

modulate cortical plasticity after brain injury.  

 
Introduction 
 

Visuomotor movement training modulates the excitability in several cortical 

areas, namely, motor (Jacobs & Donoghue, 1991; Pascual-Leone et al., 1995; Classen et 

al., 1998; Karni et al., 1998; Kleim et al., 1998; Nudo, 2006; Butler & Wolf, 2007), 

premotor (PM) (Deiber et al., 1996; Karni et al., 1998; Andres et al., 1999; Jennings & 

van der Molen, 2005; Smith & Staines, 2006, 2010, 2012), and parietal cortices as well as 

subcortical areas such as the basal ganglia and cerebellum (Clower et al., 1996; Doyon et 

al., 1997; Kleim et al., 1998; Seidler & Noll, 2008).  Critically, bimanual visuomotor 

movement training (BMT) yields a greater increase in premotor (Smith & Staines, 2006, 

2010, 2012) and M1 (Neva et al., 2012) cortical excitability compared to unimanual 
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movement training.  Further, in select stroke patients, bimanual movement performed 

with the upper-limbs can increase the excitability within the damaged and undamaged 

primary motor cortex (M1) (Silvestrini et al., 1998; Staines et al., 2001).  Additionally, 

bimanual arm training has been shown to improve hand and arm function in stroke 

patients (Mudie & Matyas, 2000; Staines et al., 2001; Cauraugh & Kim, 2002; Luft et al., 

2004; McCombe Waller & Whitall, 2008; Cauraugh et al., 2010).  Although BMT can 

modulate the excitability in motor preparation and execution areas as well as improve 

upper-limb function in patient populations, the underlying neural mechanisms remain 

unclear.  

Modulation of cortical excitability after BMT likely relates to the phase of 

movement and emphasizing the motor preparatory aspect of the trained movements 

(Neva et al., 2012).  Specifically, increases in the excitability of motor preparatory and 

execution areas occur when BMT involves the simultaneous co-activation of homologous 

muscle groups (in-phase training), but not when co-activation of antagonist muscle 

groups (anti-phase training) (Smith & Staines, 2006, 2010, 2012; Neva et al., 2012).  

Electroencephalography (EEG) work suggests that in-phase BMT modulates preparatory 

activity in PM cortices and possibly M1.  More specifically to M1, transcranial magnetic 

stimulation (TMS) work has shown that in-phase BMT, but not anti-phase, increases M1 

excitability.  Specifically, the excitable cortical territory of trained muscle representation 

increases along the borders without a concurrent increase in excitability of the central 

representation of that muscle (Neva et al., 2012).  The lack of effect due to anti-phase 

training may relate to the reciprocal inhibition of active versus inactive agonist and 

antagonist muscle representations in the contralateral hemispheres (Stinear & Byblow, 
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2002).  In addition, motor preparation associated with a goal-directed movement during 

training increases cortical excitability and, in turn, improves behavioural performance 

(Deiber et al., 1996; Sohn & Carlson, 2000; Jennings & van der Molen, 2005; Smith & 

Staines, 2006, 2010, 2012).  Conversely, without this goal-directed motor preparation, 

cortical activation is slightly decreased and task performance generally declines (Deiber 

et al., 1996).  

Covertly and overtly preparing movements to a target stimulus decreases reaction 

times (RTs) and increases activity in PM cortices (Sheliga et al., 1995; Deubel & 

Schneider, 1996; Nobre et al., 2000; Corbetta & Shulman, 2002).  The dorsal premotor 

cortex (PMd) has well-known roles in the selection of appropriate actions for movement 

execution (Kalaska & Crammond, 1995; Thoenissen et al., 2002; O’Shea et al., 2007; 

Groppa et al., 2012).  Interestingly, neuroimaging and TMS research suggest that PMd in 

the left hemisphere has an important role in action selection for motor execution (Geyer 

et al., 2000; Toni et al., 2001).  Specifically, PMd seems to be particularly involved in 

movement selection with learned visuomotor associations (Geyer et al., 2000; Toni et al., 

2001).  Also, left PMd activity increases with action selection of one or both upper-limbs 

(Schluter et al., 2001).  Further, when the right PMd is disrupted with inhibitory TMS, 

action selection is hindered in the contralateral hand alone.  Conversely, disruption of left 

PMd leads to a disruption in action selection of both upper-limbs (Schluter et al., 1998; 

Johansen-Berg et al., 2002).  Similarly, repetitive TMS to left PMd causes faster 

preparation of complex sequences performed with the right hand (Stinear et al., 2009).  

Additionally, iTBS applied to lPMd before performing a short-term session of BMT leads 

to enhanced M1 excitability in the left hemisphere compared to either BMT or iTBS to 
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lPMd alone, in terms of both increases in spatial extent and global MEP amplitude (Neva 

et al., 2014). This suggests that the lPMd has a particularly relevant role in movement 

selection as well as the visuomotor movement training with both upper-limbs 

simultaneously.   

There are extensive reciprocal interhemispheric connections between homologous 

muscle representations in M1 (Asanuma & Okuda, 1962; Matsunami & Hamada, 1984; 

Gould et al., 1986; Meyer et al., 1995; Picard & Strick, 2001; Nelson et al., 2009). 

Although there are inhibitory and excitatory connections between the homologous M1 

representations, inhibition seems to dominate (Asanuma & Okuda, 1962; Ferbert et al., 

1992; Gerloff et al., 1998; Chen, 2004; Nelson et al., 2009).  Local cortical inhibition in 

M1 is decreased between homologous M1 representations the upper-limbs are moved 

synchronously (in-phase), but inhibition remains with asynchronous (anti-phase) 

movements (Stinear & Byblow, 2002, 2004).  These studies suggest that interhemispheric 

connections between M1 representations may be a potential neural mechanism mediating 

cortical excitability changes due to synchronous upper-limb movements, with presumed 

GABAergic local M1 disinhibition. However, it is unclear if these interhemispheric 

connections are modulated by altering cortical excitability of remote but related cortical 

areas (i.e. lPMd), and in combination with short-term BMT.    

Transcranial magnetic stimulation (TMS) is a useful way to measure and 

modulate the intracortical and subsequent corticospinal excitability in local areas of the 

brain. Repetitive TMS (rTMS) can induce lasting modulations of cortical excitability. A 

specific type of rTMS, known as theta burst stimulation (TBS) (Huang et al., 2005) 

modulates local cortical excitability with a short period of rapid stimulation. Specifically, 
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when continuous theta burst stimulation (cTBS) is applied to M1, the amplitude of MEPs 

from the stimulated M1 are suppressed for up to 60 min post stimulation (Huang et al., 

2005; Suppa et al., 2008; Ortu et al., 2009), with this effect showing variability across 

participants depending upon which interneuron populations are activated by the TMS 

pulse (Hamada et al., 2013).  Further, cTBS to PMd decreases MEP amplitude of the 

ipsilateral M1 representation (Huang et al., 2009; Ortu et al., 2009).  Subthreshold rTMS 

to PMd decreases ipsilateral M1 excitability when delivered at 1 Hz, and increases 

excitability when delivered at 5 Hz (Gerschlager et al., 2001; Chouinard et al., 2003; 

Rizzo et al., 2004; O’Shea et al., 2007; Suppa et al., 2008).  This suggests that M1 

excitability may be differentially modulated by unique stimulation patterns to remote and 

related areas, like PMd.  Specifically, there are strong excitatory anatomical connections 

between the PM and M1 cortices, particularly within the left hemisphere (Picard & 

Strick, 2001; Rushworth et al., 2003; Koch et al., 2007).  Left hemisphere M1 excitability 

is enhanced by applying iTBS to lPMd, in terms of the overall MEP amplitudes of the 

entire ECR representation for up to 60 min post stimulation (Neva et al., 2014).  

Although there were specific modulations of M1 excitability due to BMT, iTBS to lPMd 

and the combination of these interventions, the underlying neural mechanisms are 

unclear. 

Despite the known anatomical connectivity between PMd and M1, and the known 

roles of PMd in motor preparation, action selection and visuomotor associations, little is 

known about the functional significance of PMd to M1 in both hemispheres.  Further, it is 

not understood how BMT alone, iTBS to lPMd alone or the combination of these 

interventions influences the excitatory and inhibitory networks within and across M1 
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bilaterally.  This study investigates modulations of MEPs, CSP as well as intracortical 

and interhemispheric circuitry (SICI, ICF, IHI, LICI) within and across M1 extensor carpi 

radials (ECR) representation bilaterally due to 1) BMT, 2) iTBS to lPMd and 3) iTBS to 

lPMd before BMT. This study tests three related hypotheses in three separate 

experiments: 1) BMT will enhance excitability within and between M1 bilaterally, 2) 

iTBS to lPMd will primarily enhance lM1 excitability, and 3) the combination of these 

interventions will cause a greater enhancement of bilateral M1 cortical excitability.  

Methods 
Participants 

Twenty-seven, self-reported right-handed participants (14 female; average age= 

26 years, ± 3.3) took part in the study.  Participants were divided into 3 experiments with 

different interventions: BMT alone (experiment 1), iTBS to lPMd (experiment 2), and 

iTBS to lPMd followed by BMT (experiment 3).  Fourteen individuals participated in 

experiments 2 and 3 in random order, and these experiments were separated by at least 

one week.  The experimental procedures were approved by the University of Waterloo 

Office of Research Ethics. All participants provided informed written consent and 

completed a TMS screening form (Keel et al., 2000). 

Electromyographic (EMG) recording 

 Surface EMG was recorded from the right and left extensor carpi radials (ECR) 

muscle using 9 mm diameter Ag-AgCl electrodes.  Two active electrodes were placed 

over the muscle belly of the right and left ECR with a ground electrode over the right 

styloid process of the ulna.  EMG recordings were amplified (1000X), band-pass filtered 

(2-2500 Hz) (Intronix Technologies Corporation Model 2024F, Canada), digitized at a 
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sample frequency of 5 kHz by an analog-to-digital interface (Micro1401, Cambridge 

Electronics Design, Cambridge, UK), and stored for later analysis.  

TMS & Neuronavigation 

Single and paired-pulse magnetic stimulation were delivered using two custom 

built 50 mm inner diameter figure-of-eight branding coils connected to two Magstim 2002 

stimulators (Magstim, Whitland, UK). TBS was applied in a similar manner as Study #2.  

The motor hotspot for the ECR in M1s bilaterally were acquired similarly to the previous 

studies (#1-#3) (see Figure 13).    

Behavioural task 

Refer to Studies #2 and #3 (see Figure 13).  

Experiment 1: BMT 

 Thirteen participants (7 female; average age= 28 years, ± 3) performed a short-

term session of in-phase BMT (Neva et al., 2012, 2014). In thirteen individuals MEPs, 

short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval 

intracortical inhibition (LICI), and interhemispheric inhibition (IHI) was recorded from 

the ECR bilaterally before and immediately after BMT, as depicted in Figure 13D. 

Cortical silent period (CSP) was collected in twelve of the thirteen participants. For 

MEPs, 15 single TMS pulses were applied over the left and right M1. TMS intensity was 

set at 120% of rMT for both the left and right M1 ECR representation. For SICI and ICF, 

both the conditioning and test stimuli were applied over M1 with the same coil connected 

to a Magstim 2002 stimulator operating via a Bistim module.  The paired-pulse 

paradigms, SICI and ICF, were performed as previously (Kujirai et al., 1993), where a 

subthreshold conditioning stimulus (CS) is followed by a suprathreshold rest stimulus 
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(TS) to the M1 hotspot for ECR. The interstimulus interval (ISI) for SICI and ICF was 3 

and 10 ms respectively, to produce intracortical inhibition and facilitation (Kujirai et al., 

1993; Di Lazzaro et al., 2006).  To measure SICI and ICF, a block of TMS pulses 

consisted of TS alone, ISI of 3 ms (SICI) and ISI of 10 ms (ICF). Each ISI and TS alone 

trials were randomly presented 15 times during the pre and post collections. The CS was 

set at 80% of rMT for SICI and ICF, which was determined before BMT and kept 

consistent throughout the experiment. The TS intensity was adjusted to evoke MEPs in 

the contralateral ECR of 0.3-0.5 mV before and after BMT (Perez & Cohen, 2008). 

Fifteen trials with an inter-trial interval of 6 seconds were collected for SICI and ICF in 

the left and right M1 ECR. LICI was elicited by suprathreshold CS and TS with an ISI of 

100 ms (Inghilleri et al., 1993; Nakamura et al., 1997; Chen et al., 1999; Chen, 2004) 

over M1 ECR representation in both hemispheres. The CS and TS intensities were 

adjusted to evoke MEPs in the contralateral ECR of 0.3-0.5 mV, just as in the TS of the 

SICI and ICF conditions (Perez & Cohen, 2008), along with the same number of trials 

and inter-trial interval. IHI was tested in both cortical directions (left M1 → right M1 and 

vice versa), with the CS and TS adjusted to evoke MEPs in the contralateral ECR of 0.3-

0.5 mV, just as in the LICI condition. The ISIs for IHI were 10 and 40 ms, to produce 

short and long IHI (SIHI and LIHI) (Ferbert et al., 1992; Chen et al., 2003; Chen, 2004; 

Perez & Cohen, 2008; Nelson et al., 2009).  Similarly to SICI and ICF, a block of TMS 

pulses consisted of TS alone, ISI of 10 ms (SIHI) and ISI of 40 ms (LIHI). Each ISI and 

TS alone trials were randomly presented 15 times during the pre and post collections. 

Finally, CSP (Terao & Ugawa, 2002) was tested with participants maintaining a light 

contraction of the contralateral ECR of 20% MVC and fifteen single pulses of TMS was 
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applied to the left and right M1 at an intensity of 130% rMT.  The duration of the CSP 

was acquired from the TMS stimulus onset to the re-onset of muscle activity within the 

ECR muscle.   

Experiment 2: iTBS to lPMd 

 Fourteen participants (7 female; average age= 24 years, ± 4) received iTBS over 

PMd in the left hemisphere at 80% of AMT using the 600 pulse protocol (Huang et al., 

2005; Ishikawa et al., 2007; Stefan et al., 2008). The location of PMd was determined to 

be 2.5 cm anterior to the ECR motor hotspot in left M1 (Picard & Strick, 2001; Huang et 

al., 2009; Stinear et al., 2009).  In ten participants MEPs and CSP were recorded, and 

SICI/ICF, LICI, CSP and IHI were recorded from all fourteen participants using the same 

methodology as in Experiment 1, with the addition of collection immediately after iTBS 

was applied to lPMd of MEPs, SICI/ICF and IHI in M1s bilaterally. This was then 

followed by recording all of the dependent measures as in Experiment 1.  

Experiment 3: iTBS to lPMd followed by BMT 

 The same fourteen individuals (7 female; average age= 24 years, ± 4) received 

iTBS over PMd in the left hemisphere at 80% of AMT using the 600 pulse protocol 

(Huang et al., 2005; Ishikawa et al., 2007; Stefan et al., 2008), which was followed by in-

phase BMT that was performed in Experiment 1. The location of PMd was determined to 

be 2.5 cm anterior to the ECR motor hotspot in left M1 (Picard & Strick, 2001; Huang et 

al., 2009; Stinear et al., 2009).  In ten participants MEPs and CSP were recorded, and 

SICI/ICF, LICI, CSP and IHI were recorded from all fourteen participants using the same 

methodology as in Experiment 1. 

Statistical analysis 



104 
 

 
 Analysis was performed in two ways. First, to specifically investigate the 

temporal factors of each intervention, analysis was performed within each group across 

all time points. Therefore, Experiments 1 and 3 used one-way repeated measures analyses 

of variance (ANOVA) with within-subject factor TIME (2 levels: pre, post) for each 

dependent measure (MEPs, SICI, ICF, LICI, CSP, IHI) for the left and right ECR. 

Experiment 2 used one-way repeated measures ANOVA using within-subject factor 

TIME (3 levels; pre, post 1 min and post 30 min) for each dependent measure as in 

Experiments 1 and 3. Additionally, post hoc analyses were performed with the Tukey 

correction method to investigate any other differences between time points. Second, as an 

exploratory measure that the combination of iTBS to lPMd and BMT would possibly 

yield an additional modulations of M1 intracortical and interhemispheric excitability than 

iTBS to lPMd or BMT alone, a one-way ANOVA was performed on all groups with the 

difference score between pre and post 30 min time points for all of the dependent 

measures (MEPs, SICI, ICF, LICI, CSP, IHI) with between-subjects factor 

EXPERIMENT (Exp. 1: BMT alone, Exp. 2: iTBS to lPMd only, Exp. 3: iTBS to lPMd + 

BMT).  Where appropriate, post hoc analyses were performed with the Tukey correction 

method to investigate potential differences between experimental interventions.     

Significance was set at p ≤ 0.05.   

 Behavioural performance for Experiments 1 and 3 were quantified in the same 

way in Studies #2 and #3. 
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Figure 13. Neuronavigation, experimental set up, and behavioural task. (A) TMS target locations. 
Template MRI from one session demonstrating the targets used for iTBS in lPMd and M1 bilaterally. A 

(anterior), P (posterior). Orange lines indicate location of TMS coil placement over M1 ECR 
representation, and the blue line indicates TMS coil placement over left PMd. (B) Above view of a 

participant performing the behavioural task, grasping the two handles and viewing both the target and 
cursor movement on the computer screen. (C) Displays movements made during the bimanual movement 
training task. Participants began in the bottom right corner and made varying degrees of wrist extension 

movements to move the cursor to the remembered visual targets. (D) Experimental Time Course. Graphic 
representation depicting the order of data collection and each experimental interventions. Exp. 

(experiment), M1 (primary motor cortex), lPMd (left dorsal premotor cortex), iTBS (intermittent theta burst 
stimulation), BMT (bimanual training), Post 1 (bilateral collection of MEPs, SICI, ICF and IHI in 

experiment 2 only, immediately after iTBS to lPMd), Post 2 (bilateral collection of MEPs, SICI, ICF, IHI, 
LICI and CSP). 
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Results  

Experiment 1: BMT 

MEPs. The motor thresholds were consistent among participants (mean left M1 

rMT = 40 ± 4%, right M1 rMT = 41 ± 6%).  Figure 14A displays the MEPs for the left 

(top) and right (bottom) M1 ECR representations. A one-way repeated measures 

ANOVA revealed an increase in amplitude in the left M1 (F (1, 11)=5.858, p=0.034) and 

a near significant increase in the right M1 (F (1, 11)=4.358, p=0.061).  

SICI/ICF. Two participants (one for each hemisphere) were removed for SICI 

due to not displaying inhibition in the pre measure. Figure 14B displays the SICI and ICF 

data for the left (top) and right (bottom) M1 ECR representations. For SICI, a one-way 

repeated measures ANOVA revealed no changes in the left M1 (F (1, 10)=0.390, 

p=0.546) or right M1 (F (1, 10)=0.582, p=0.463). For ICF, a one-way repeated measures 

ANOVA revealed no change for left M1 (F (1, 11)<0.0001, p=0.995) and near significant 

decrease in right M1 (F (1, 11)=4.703, p=0.053).  

IHI. Three participants were removed in the left M1 (SIHI and LIHI) and two 

participants were removed in the right M1 (LIHI) due to not displaying inhibition in the 

pre measure. Figure 14C shows the IHI data for the left (top) and right (bottom) M1 

representations for both the SIHI and LIHI. For SIHI, a one-way repeated measures 

ANOVA revealed no change from the right to the left M1 (F (1, 8)=0.043, p=0.840) or 

left to right M1 (F (1, 11)=0.006, p=0.942). For LIHI, a one-way repeated measures 

ANOVA revealed no change in the right to left M1 (F (1, 8)=0.253, p=0.629), with a 

significant decrease from the left to right M1 (F (1, 9)=6.602, p=0.030).  
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LICI. Conditioning stimulus MEPs were similar in the pre and post measures for 

the left (t (12)=1.095, p=0.295) and right M1 (t (12)=0.460, p=0.653). Figure 14D shows 

the LICI data for the left (top) and right (bottom) M1 representations. A one-way 

repeated measures ANOVA revealed a slight decrease in the left M1 (F (1, 11)=3.422, 

p=0.091) and no change in the right M1 (F (1, 11)=0.617, p=0.449).  

CSP. Figure 14E displays the CSP data for the left (top) and right (bottom) M1. A 

one-way repeated measures ANOVA revealed no change in the left M1 (F (1, 10)=2.530, 

p=0.143), with a significant increase in the right M1 (F (1, 10)=8.327, p=0.016).  

 

 

Figure 14. BMT alone. Group-averaged data acquired from the left (top) and right (bottom) M1 ECR 
representation A. MEPs. B. SICI/ICF. C. IHI. D. LICI. E. CSP. Pre, Post 1 (immediately following iTBS), 

Post 2 (30-60 min post). All bars represent SEM.  * p ≤ 0.05.  
 

Experiment 2: iTBS to lPMd 

MEPs. The motor thresholds were consistent among participants (mean left M1 

rMT = 42 ± 7%, right M1 rMT = 42 ± 7%, and mean left M1 AMT = 39 ± 8%).  Figure 

15A displays the MEPs for the left (top) and right (bottom) M1 ECR representations. A 

one-way repeated measures ANOVA revealed no changes across all time points for MEP 
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amplitude in the left M1 (F (2, 18)=0.852, p=0.443) the right M1 (F (2, 18)=2.414, 

p=0.118).  

SICI/ICF. Three participants were removed in the left M1 for not displaying the 

expected inhibition and one was removed for not displaying facilitation in the pre 

measures. Similarly, two participants were removed in the right M1 due to not displaying 

inhibition and two were removed due to not displaying facilitation in the pre measure. 

Figure 15B displays the SICI and ICF data for the left (top) and right (bottom) M1 ECR 

representations. For SICI, a one-way repeated measures ANOVA revealed no changes in 

the left M1 (F (2, 20)=0.682, p=0.517) or right M1 (F (2, 20)=2.373, p=0.117). For ICF, a 

one-way repeated measures ANOVA revealed no change for left M1 (F (2, 24)=1.075, 

p=0.357) or right M1 (F (2, 22)=0.477, p=0.627).  

IHI. Two participants were removed in the left M1 (SIHI and LIHI), two 

participants were removed for SIHI and three were removed for LIHI in the right M1 due 

to not displaying inhibition in the pre measure. Figure 15C shows the IHI data for the left 

(top) and right (bottom) M1 representations for both the SIHI and LIHI. For SIHI, a one-

way repeated measures ANOVA revealed no change from the right to the left M1 (F (2, 

22)=2.252, p=0.129) or left to right M1 (F (2, 22)=1.087, p=0.355). For LIHI, a one-way 

repeated measures ANOVA revealed no change in right to left M1 (F (2, 22)=2.009, 

p=0.158), and no significant change from the left to right M1 (F (2, 20)=1.296, p=0.296).  

LICI. Three participants were removed in left M1 for not displaying inhibition in 

the pre measure. Conditioning stimulus MEPs were similar in the pre and post measures 

for the left (t (13)=1.650, p=0.123) and right M1 (t (13)=0.016, p=0.988). Figure 15D 

shows the LICI data for the left (top) and right (bottom) M1 representations. A one-way 
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repeated measures ANOVA revealed no change in the left M1 (F (1, 10)=0.118, p=0.739) 

or right M1 (F (1, 13)=0.559, p=0.468).  

CSP. Figure 15E displays the CSP data for the left (top) and right (bottom) M1. A 

one-way repeated measures ANOVA revealed an increase in the left M1 (F (1, 9)=7.045, 

p=0.026), or the right M1 (F (1, 9)=0.530, p=0.485).  

 

Figure 15. iTBS to lPMd alone. Group-averaged data acquired from the left (top) and right (bottom) M1 
ECR representation A. MEPs. B. SICI/ICF. C. IHI. D. LICI. E. CSP. Pre, Post 1 (immediately following 

iTBS), Post 2 (30-60 min post). All bars represent SEM.  * p ≤ 0.05. 
 

Experiment 3: iTBS to lPMd + BMT 

MEPs. The motor thresholds were consistent among participants (mean left M1 

rMT = 42 ± 7%, right M1 rMT = 43 ± 7%, and mean left M1 AMT = 39 ± 8%).  Figure 

16A displays the MEPs for the left (top) and right (bottom) M1 ECR representations. A 

one-way repeated measures ANOVA revealed an increase in amplitude in the left M1 (F 

(1, 9)=2.145, p=0.177) and a near significant increase in the right M1 (F (1, 9)=4.434, 

p=0.065).  

SICI/ICF. Two individuals were removed for left M1 and right M1 for not 

displaying inhibition (SICI) in the pre measure. One individual was removed for right M1 
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for not displaying facilitation (ICF) in the pre measure. Figure 16B displays the SICI and 

ICF data for the left (top) and right (bottom) M1 ECR representations. For SICI, a one-

way repeated measures ANOVA revealed no changes in the left M1 (F (1, 11)=0.816, 

p=0.386) or right M1 (F (1, 11)=1.557, p=0.238). For ICF, a one-way repeated measures 

ANOVA revealed no change for left M1 (F (1, 13)=0.140, p=0.714) or right M1 (F (1, 

12)=0.576, p=0.463).  

IHI. Four individuals were removed for the left M1 for both SIHI and LIHI due to 

not displaying inhibition in the pre measures. Two individuals were removed for the right 

M1 for LIHI and one individual was removed for SIHI due to not displaying inhibition in 

the pre measure. Figure 16C shows the IHI data for the left (top) and right (bottom) M1 

representations for both the SIHI and LIHI. For SIHI, a one-way repeated measures 

ANOVA revealed no change from the right to the left M1 (F (1, 9)=1.945, p=0.197) or 

left to right M1 (F (1, 12)=2.816, p=0.119). For LIHI, a one-way repeated measures 

ANOVA revealed no change in right to left M1 (F (1, 9)=0.462, p=0.514), and no 

significant change from the left to right M1 (F (1, 11)=1.226, p=0.292).  

LICI. One individual was removed for the right M1 due to not displaying the 

expected inhibition in the pre measure. Conditioning stimulus MEPs were similar in the 

pre and post measures for the left (t (13)=1.149, p=0.271) and right M1 (t (13)=1.124, 

p=0.282). Figure 16D shows the LICI data for the left (top) and right (bottom) M1 

representations. A one-way repeated measures ANOVA revealed no change in the left 

M1 (F (1, 13)=1.377, p=0.262), with a decrease in the right M1 (F (1, 12)=6.880, 

p=0.022).  
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CSP. Figure 16E displays the CSP data for the left (top) and right (bottom) M1. A 

one-way repeated measures ANOVA revealed no change in the left M1 (F (1, 9)=0.193, 

p=0.670), or the right M1 (F (1, 9)=0.014, p=0.909).  

 

Figure 16. iTBS to lPMd followed by BMT. Group-averaged data acquired from the left (top) and right 
(bottom) M1 ECR representation A. MEPs. B. SICI/ICF. C. IHI. D. LICI. E. CSP. Pre, Post 2 (30-60 min 

post). All bars represent SEM.  * p ≤ 0.05. 
 

Comparison across Experiments 

 As a secondary exploratory measure that the combination of iTBS to lPMd and 

BMT would possibly yield additional modulations of M1 intracortical and 

interhemispheric excitability than iTBS to lPMd or BMT alone, a one-way ANOVA was 

performed on all groups with the difference score between pre and post 30 min time 

points with between-subjects factor GROUP (Exp. 1: BMT alone, Exp. 2: iTBS to lPMd 

only, Exp. 3: iTBS to lPMd + BMT). 

 MEPs. Figure 17A shows that there were no differences between pre and 30 min 

time point post, as a one-way ANOVA revealed no effect of EXPERIMENT in left M1 

(F (2, 29)=1.708, p=0.199), but there was a significant difference in right M1 (F (2, 

29)=3.386, p=0.048). Post Hoc analyses revealed a difference between Experiment 2 and 
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3 (p=0.045), showing that iTBS to lPMd alone caused a decrease but iTBS to lPMd 

followed by BMT caused an increase in MEP amplitude.  

 SICI/ICF. Figure 17B and C shows SICI and ICF data. For SICI, there were no 

differences between pre and 30 min time point post, as a one-way ANOVA revealed no 

effect of EXPERIMENT in left M1 (F (2, 31)=0.231, p=0.795), or in right M1 (F (2, 

32)=0.226, p=0.799). For ICF, there were no differences between pre and 30 min time 

point post, as a one-way ANOVA revealed no effect of EXPERIMENT in the left M1 (F 

(2, 36)=0.226, p=0.799), and a near significant difference in the right M1 (F (2, 

34)=3.009, p=0.063). 

IHI. Figure 17D shows IHI data. For SIHI, there were no differences between pre 

and 30 min time point post, as a one-way ANOVA revealed no effect of EXPERIMENT 

in left M1 (F (2, 28)=0.547, p=0.585), or in right M1 (F (2, 34)=0.723, p=0.492). For 

LIHI, there were no differences between pre and 30 min time point post, as a one-way 

ANOVA revealed no effect of EXPERIMENT in the M1 (F (2, 28)=0.558, p=0.579), and 

a near significant difference in right M1 (F (2, 30)=2.896, p=0.071).  

LICI. Figure 17E shows LICI data. There were no differences between each 

intervention, as a one-way ANOVA revealed no effect of EXPERIMENT in left M1 (F 

(2, 34)=0.761, p=0.475) and a trend towards a difference among experiments in right M1 

(F (2, 36)=2.722, p=0.079).  

CSP. Figure 17F shows CSP data. There were no differences in CSP as shown by 

a one-way ANOVA with factor EXPERIMENT in left M1 (F (2, 28)=1.923, p=0.165) or 

right M1 (F (2, 28)=2.607, p=0.092).  
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Figure 17. Comparison across experiments. Group-averaged difference score for all experimental 
conditions from the left (top) and right (bottom) M1 ECR for (A) MEPs, (B) SICI, (C) ICF, (D) IHI, € LICI 

and (F) CSP. All bars represent SEM.  * p ≤ 0.05. 
 

Behavioural performance 

Figure 18 displays the behavioural data of experiments 1 and 3, with the 

movement time (leftward panel) and angle at peak velocity (rightward panel).  For the 
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movement time, a two-way ANOVA revealed a main effect of BLOCK (F (1, 

24)=27.071, p<0.0001), no effect of EXPERIMENT (F (1, 24)=0.007, p=0.935) and no 

interaction of BLOCK x EXPERIMENT (F (1, 24)=0.081, p=0.779).  For the angle at 

peak velocity, a two-way ANOVA revealed a main effect of BLOCK (F (1, 24)=9.527, 

p=0.005), no effect of EXPERIMENT (F (1, 24)=0.0003, p=0.987), and no interaction of 

BLOCK X EXPERIMENT (F (1, 24)=1.762, p=0.201).  The main effect of BLOCK 

indicates that there was a decrease movement time and in deviation of cursor path from 

the initial to the final trials (i.e., performance improvement) similarly between 

experiments 1 and 3.  Post Hoc analyses revealed no other differences between 

experiments with factor TIME.  

 

Figure 18. Behavioural data for experiments 1 and 3. Left Movement time for Group 1 (white) and Group 3 
(grey). Right Angle at peak velocity of the resultant cursor path for Group 1 (white) and Group 3 (grey). All 

bars represent SEM.  * p ≤ 0.05. 
 

Discussion 

 The experiments in the current work are the first to investigate the changes in 

cortical excitability in intracortical and interhemispheric circuitry within M1 associated 
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with short-term BMT following iTBS to lPMd. There were distinct modulations of 

intracortical and interhemispheric excitability due to the interventions within each of the 

experiments, which were primarily associated with changes in long-latency inhibitory 

mechanisms. Short-term BMT alone was associated with increases in bilateral M1 

excitability, with a decrease in long interhemispheric inhibition from the left to right M1, 

and an increase in long-latency local inhibition in right M1. Surprisingly, iTBS to lPMd 

alone was only associated with an increase in long-latency local inhibition in the left M1. 

When short-term BMT is preceded by iTBS to lPMd there is a slight increase in 

excitability along with a decrease in long-latency local inhibition in right M1. 

Collectively, these data suggest that BMT asymmetrically modulates the excitability 

within and between homologous M1 representations, lPMd primarily modulates 

inhibition in the ipsilateral M1, and the potential up-regulation of lPMd before BMT 

leads to modulation in the contralateral (right) M1 inhibitory mechanisms.  

 

Short-term BMT effects of bilateral M1 neural mechanisms 

 Enhancements in cortical excitability have been shown in several studies as an 

increase in the cortical area represented by the muscles involved in the specifically 

trained task (Pascual-Leone et al., 1995; Nudo et al., 1996; Kleim et al., 1998, 2004).  

Increases in M1 excitability of trained muscles have been observed after a 30 min session 

of BMT (Neva et al., 2012, 2014) and skilled digit sequence training for two 2 hour 

sessions (Pascual-Leone et al., 1995). Previous research has shown that a short-term 

session of BMT leads to an increase in the left M1 in terms of the cortical area occupied 

by the trained muscles, without a significant increase in the central MEP amplitude (Neva 
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et al., 2012, 2014). The current study found an increase in MEP amplitude in the left and 

a near significant increase in the right M1 ECR hotspots. The lack of consistency between 

the current and former studies may be due to slight variations in the experimental 

procedures. For example, the short-term BMT task in the former study involved skilled 

wrist extension and flexion, whereas the current study focused on skilled wrist extension 

movements. Additionally, the former study used a biphasic single pulse TMS to acquire 

MEPs from the left M1, which may recruit a slightly different population of neurons than 

the monophasic single pulse TMS employed in the current study (Kammer et al., 2001). 

Regardless of the difference in results with the former studies, it is not entirely surprising 

that there is an increase MEP amplitude at the trained ECR hotspot bilaterally. Many 

studies have found increased MEP amplitude due to movement training (Liepert et al., 

1999; Pearce et al., 2000; Muellbacher et al., 2001; Perez et al., 2004; Jensen et al., 

2005). MEP amplitude increases due to skilled thumb (Liepert et al., 1999), hand 

(Muellbacher et al., 2001), arm (Jensen et al., 2005) and ankle (Perez et al., 2004) 

movement training. In one study, participants performed repetitive (1 Hz) thumb 

movements while completely relaxing the other muscles of the hand (skilled motor 

component). Following training this task MEP amplitudes from the thumb muscle 

(trained muscle) was specifically enhanced compared to neighbouring hand muscles 

(Liepert et al., 1999). Another study where participants practiced ballistic pinch 

contractions caused increase in force and acceleration of the pincer grip and were also 

correlated with increased MEP amplitude in the trained muscle (Muellbacher et al., 

2001). Further, another study comparing spatial distribution and amplitudes of MEPs in 

the upper-limb representation between highly skilled racket players and non-skilled 
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players showed that skilled racket players have not only the expected increased spatial 

distribution of MEPs compared to non-skilled players, but skilled players also have 

higher MEP amplitudes (Pearce et al., 2000). Changes in cortical excitability are also 

exhibited by altered motor thresholds (Pascual-Leone et al., 1995). A decrease in motor 

threshold due to prolonged training would indicate a focal change in the hotspot of a 

muscle representation, however a change in MEP amplitude likely reflects overall 

excitability of the muscle representation (cortical and spinal excitability). Since MEP 

amplitude reflects overall corticospinal tract activity at the moment of single pulse TMS 

stimulation, it is an index of the sum of cortical and spinal motor output excitability. The 

current study indicates that the sum of cortical and spinal motor output excitability of the 

trained muscle (ECR) representation was enhanced in both M1 hemispheres due to a 

short-term session of BMT. The short-term BMT in the current study could have been too 

brief to engage neural mechanisms that would induce a change in motor threshold.  

 Cortical activity is enhanced in both hemispheres in damaged and healthy M1 

when homologous muscles are simultaneously activated (Silvestrini et al., 1998; Staines 

et al., 2001). It is thought that transcollosal activity between homologous M1 

representations act to excite and/or release inhibition from the contralateral hemisphere 

(Stinear & Byblow, 2002), which could facilitate M1 plasticity observed in the current 

and previous (Neva et al., 2012; Neva et al., 2014) studies. Specifically, intracortical 

inhibition is decreased in M1 when both upper-limbs are moving in a mirror-symmetrical 

pattern, where both agonist and antagonist muscles are extending and contracting 

simultaneously. However, inhibition remains when the upper-limbs are moving 

asymmetrically (Stinear & Byblow, 2002; Byblow et al., 2012). Similarly, left M1 
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excitability of the wrist extensor muscles are enhanced when bimanual movement 

training is made with the two upper-limbs co-activated the homologous muscles 

simultaneously, with no increase when they are not activated simultaneously (Neva et al., 

2012; Neva et al., 2014). The current study found a decrease in IHI specifically from the 

left to right M1 homologous representations. Since previous research found that when 

both upper-limbs are moving symmetrically, intracortical inhibition was decreased in 

both hemispheres (Stinear & Byblow, 2002), and that unimanual movement decreases 

IHI in both directions (Nelson et al., 2009), it is surprising that the current study found 

reduced IHI only in one direction (left to right M1). However, this specific finding may 

be explained by the specific movement requirements of the BMT.  

During BMT, participants were required to make simultaneous wrist extension 

movements of both upper-limbs to three different targets (35º, 45º, 55º relative to start 

position). The 45º target requires simultaneous co-contraction of the ECR muscles and to 

the same magnitude. However, the 35º and 55º target locations require a slightly different 

magnitude of co-contraction of both limbs. The asymmetrical reduction in IHI could be 

due to the requirement of this different magnitude of co-contraction of the wrist muscles. 

Moreover, all participants in these studies were right-hand dominant. Even though 

previous studies did not find a difference in IHI with hand dominance (Nelson et al., 

2009), it is possible that the differing amounts of co-contraction required for 66.7% of the 

training (35º, 55º target locations) along with individuals with right-hand dominance may 

have led to the reduction of inhibition from the dominant to non-dominant hemisphere. 

Furthermore, there is a plethora of evidence suggesting that asymmetrical bimanual 

movement is less stable than strictly mirror symmetrical movements (Kelso et al., 1979; 
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Cardoso de Oliveira, 2002; Swinnen, 2002; Carson, 2005). Therefore, asymmetrical 

bimanual movements likely require more complex patterns of neural activity, which is a 

potential explanation for the release of inhibition from the dominant to non-dominant 

hemisphere due to BMT.  Interestingly, this reduction in IHI was only in the long interval 

IHI (LIHI, 40 ms ISI) and not with the shorter interval IHI. The underlying mechanism 

mediating SIHI is largely unknown (Meyer et al., 1995), while LIHI likely involves 

GABA-B-mediated inhibition since it has a relatively longer time course and is increased 

with baclofen, a GABA-B receptor agonist (Irlbacher et al., 2007). Therefore, we 

specifically found that short-term BMT caused an asymmetrical long-latency reduction in 

IHI from the dominant (left) to non-dominant (right) hemisphere, which could have been 

necessary to provide increase excitable input to the non-dominant hand for the skilled 

requirement of the BMT task.  

 The excitability of cortical inhibitory networks is integral to motor control and the 

motor cortex (Chen et al., 1999; Ljubisavljevic, 2006). Specifically, the ‘cortical silent 

period’ (CSP) duration induced from a single pulse of TMS while holding a light 

voluntary contraction contralateral to the hemisphere of stimulation is thought to indicate 

the state of spinal and cortical inhibitory networks (Inghilleri et al., 1993; Chen et al., 

1999; Terao & Ugawa, 2002; Ljubisavljevic, 2006). Several studies suggest that the 

initial portion of the CSP is thought to be due to spinal mechanisms, and the latter portion 

due to long-interval cortical inhibition, that is associated with GABA-B-like mechanisms 

(Terao & Ugawa, 2002). The current study found an increase in the CSP duration in the 

right hemisphere due to short-term BMT. Therefore, similarly to the IHI data, BMT could 

possibly increase GABA-B inhibitory activity asymmetrically in the non-dominant (right) 
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hemisphere. This increase in inhibition may be associated with increased motor control 

required of the non-dominant hand, due to the asymmetrical co-contraction when moving 

the cursor to the peripheral targets during our BMT task. One such study in support of 

this idea, had participants actively move one upper-limb in response to the other which 

was passively moved. When movements were entirely mirror-symmetrical, there was a 

decrease in intracortical inhibition, however this inhibition remained when movements of 

the upper-limbs were asymmetrical (Stinear & Byblow, 2002). Other research supports 

the idea that the dominant hemisphere has the ability to disinhibit the non-dominant 

hemisphere during mirror-symmetrical upper-limb movements (Stinear & Byblow, 

2004). Although the current study required both symmetrical and non-symmetrical 

movements of the upper-limbs, the asymmetrical nature of the movements could have 

been so slight that the movements were essentially symmetrical, leading to the 

asymmetrical increase in right M1 inhibition found in the current study and previous 

studies (Stinear & Byblow, 2004).  

iTBS to lPMd effects of on M1 neural mechanisms 

 This study found that iTBS to lPMd increased the excitability of inhibitory 

newtworks of ipsilateral M1, in terms of CSP.  The PMd has extensive reciprocal 

neuronal projections with the ipsilateral M1 (Picard & Strick, 2001; Rushworth et al., 

2003).  Perhaps iTBS increased the excitatory input from left PMd to ipsilateral M1 and, 

in turn, increased the resulting long latency inhibitory networks of the downstream M1.  

Other studies have shown that rTMS at 5 Hz to left PMd increases cortical excitability in 

the ipsilateral M1 (Gerschlager et al., 2001; Chouinard et al., 2003; Rizzo et al., 2004; 

O’Shea et al., 2007; Suppa et al., 2008). Further, cTBS to lPMd reduces MEP amplitudes 
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from ipsilateral M1 for a longer period of time than cTBS directly over M1. However, 

cTBS over lPMd did not cause any changes in inhibitory or excitatory intracortical 

networks (Huang et al., 2009; Ortu et al., 2009). Another study demonstrated increased 

MEP amplitudes due to cTBS to lPMd and no effects due to iTBS to lPMd (Stinear et al., 

2009). All of these studies did not report any effects on long-latency inhibitory 

mechanisms like LICI or CSP. Huang and colleagues found that iTBS to M1 increases 

MEP amplitudes and also increases inhibitory networks like SICI (Huang et al., 2005). It 

is possible that the increase in CSP in ipsilateral (left) M1 selectively enhances inhibitory 

intracortical networks similarly as if iTBS was applied directly to M1. Perhaps this 

results from left PMd reciprocal connections with M1 in both hemispheres, with 

interactions between both excitatory and inhibitory projections, which may in turn also 

influence right M1 to left M1 projections (Asanuma & Okuda, 1962; Ferbert et al., 1992; 

Gerloff et al., 1998; Chen et al., 2003; Nelson et al., 2009), that could lead to an increased 

inhibition in left M1.  These studies along with the current results demonstrate that 

cortical excitability in M1 may be modulated by input from the upstream ipsilateral PMd. 

The effects of iTBS to left PMd with bimanual training 

This study is the first to investigate the effects of applying iTBS to the left PMd 

before BMT to the circuitry within and between M1, along with the specific excitability 

changes due to BMT or iTBS to left PMd alone.  One possibility is that the iTBS to left 

PMd enhanced the downstream ipsilateral connections to M1 (and possibly connections 

between left PMd and right M1) and combined with BMT-induced excitability changes to 

produce a unique set of modulations of excitability in M1.  Specifically, there was a slight 

increase in MEP amplitude in the right hemisphere M1 due to iTBS to lPMd followed by 
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short-term BMT.  Strictly speaking, there was not an additive effect due to the specific 

interventions of BMT and iTBS to lPMd, but rather there were unique modulations of 

excitability due to each intervention.  Similarly to the effects due to BMT alone, the 

asymmetrical modulations in excitability in the right M1 from iTBS to lPMd and BMT 

could be due to the differing amounts of co-contraction required for 66.7% of the training 

(35º, 55º target locations) along with individuals with right-hand dominance may have 

led to the reduction of inhibition in the non-dominant hemisphere.  

The current study also found a decrease in right M1 LICI due to iTBS to lPMd 

followed by short-term BMT. LICI is elicited by two suprathreshold TMS pulses with an 

ISI of 50-200 ms, and it likely relates to long-latency inhibitory activity like the CSP 

(Chen, 2004). There is some evidence that both the latter half of the CSP and LICI are 

associated with GABA-B-like activity (Werhahn et al., 1999). The concurrent effects of 

increased MEP amplitude and decreased LICI in the right hemisphere are consistent with 

the idea that presynaptic GABA-B receptor inhibition is associated with decreased MEP 

amplitude (Sanger et al., 2001; Chen, 2004). Additionally, a recent study where 

participants train upper-limb movements by having one upper-limb passively moved and 

either having to actively match that movement with the contralateral upper-limb (mirror 

symmetrical movement) or to move the contralateral limb in an alternating manner 

(asymmetrical movement) (Byblow et al., 2012). This study found that LICI decreased in 

the passively moved limb when movements were symmetrical and there was a slight 

increase in LICI when movements were asymmetrical. These findings are consistent with 

the current findings of a decrease in LICI when performing BMT alone in the left M1 and 

when iTBS to lPMd was applied before BMT in the right M1. Previous research has 
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shown that BMT performed in this study has shown increases in lateral premotor cortex 

(i.e. PMd) activity (Seitz et al., 2004) in both hemispheres (Smith & Staines, 2006, 2010, 

2012). It may be the case that pre-conditioning the lPMd before BMT increased the 

neural input from the premotor cortex to both the left and right M1, which in turn, caused 

an associated release of inhibition and increased excitability due to BMT. The resulting 

specific increase in the right hemisphere M1 in the current study may be related to the 

increased skill requirement of the non-dominant (left) upper-limb of the varying degrees 

of co-contraction of the upper-limbs, as discussed previously.  

Previously, it was found that iTBS over lPMd preceding in-phase BMT led to a 

concurrent increase in the spatial distribution and also the amplitude of MEPs in left M1 

(Neva et al., 2014). Interestingly, an increase in spatial distribution of left M1 was only 

seen due to BMT alone, and an increase in amplitude of MEPs occurred due to iTBS to 

lPMd alone. Primarily, these enhancements in M1 excitability were found on the boarders 

of M1 representation (Neva et al., 2012, 2014). This study attempted to establish the 

potential intracortical and interhemispheric excitability changes that may have 

contributed to the interventions of iTBS and short-term BMT, but found that the effects 

were primarily in the right hemisphere, which was not tested in the previous studies. One 

possible explanation for why effects were not seen in the left hemisphere is due do the 

fact that all TMS measurements were taken only at the hotspot for the ECR 

representation. The previous studies mentioned took MEPs from the entire spatial 

distribution of ECR representation. Perhaps there were effects not captured in the current 

studies due to taking measures only at the centre of the M1 representation. Further study 

will have to be done to investigate the intracortical and interhemispheric adaptations that 
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may occur due to TBS and BMT interventions across the entire trained muscle 

representation(s).   

Conclusion 

 In sum, our findings suggest that iTBS to the left PMd followed by BMT caused 

distinct modulations of M1 excitability than either intervention alone, which are mainly 

associated with changes in long-latency inhibitory neural mechanisms. Short-term BMT 

increased MEP amplitudes bilaterally, with an asymmetrical reduction of left to right M1 

interhemispheric inhibition and an increased right M1 inhibition. iTBS to lPMd increased 

ipsilateral (left) M1 cortical inhibition. Finally, iTBS to lPMd followed by BMT caused 

an asymmetrical increase MEP amplitude and reduction of inhibition in the right M1. 

These modulations in M1 intracortical and interhemispheric excitability resulting from 

BMT and iTBS suggest that they operate under related plasticity mechanisms that may be 

expressed in distinct ways concurrently.  It is possible that BMT, iTBS to lPMd and the 

combination of these interventions engage distinct neural circuitry associated with 

GABA-B-like activity.  Critically, this work may guide rehabilitation training and 

stimulation techniques that modulate cortical plasticity after brain injury and other 

neurological diseases.  It may be that the modulation of remote cortical areas to M1 (i.e. 

PMd) in combination with rehabilitation training could be advantageous in distinctly 

enhancing short-term plasticity in damaged motor cortex.  However, further study is 

required to understand the potential implications of this research that could be applicable 

in clinical settings.  

 

 



125 
 

Chapter 6 

6.1 General Discussion 
 

The work in this thesis incorporated an investigation of the excitability 

modulation of the primary motor cortex (M1) as influenced by connections with related 

intra- and interhemispheric motor preparatory and execution cortical regions.  Cortical 

adaptations in M1 were investigated using bimanual visuomotor movement training 

(BMT), theta burst stimulation (TBS) protocols to remote but related cortical nodes and a 

combination of these interventions.  Particularly, this thesis investigated modulation of 

M1 excitability in terms of in-phase versus anti-phase BMT (Study #1), potentially up-

regulating the left dorsal premotor cortex (lPMd) via iTBS before BMT (Study #2), 

theoretically down-regulating contralateral (right) M1 homologous representation before 

BMT (Study #3), and finally the potential intracortical and interhemispheric cortical 

adaptations in M1 bilaterally due to the same interventions as Study #2 (Study #4).  

Based on the findings of the four studies covered in this work, this thesis proposes 

four related models to account for the observed modulations in M1 excitability: 1) 

released inhibition (or increased excitation) in lateral premotor cortices (i.e. PMd), 2) 

released inhibition (or increased excitation) with interhemispheric projections between 

homologous M1 representations, 3) modulations in long-interval inhibitory mechanisms 

within and between M1 representations, and 4) excitability increases along the borders of 

trained muscle representation in M1, which potentially relate to changes in long-term 

potentiation/depression (LTP/D) (Woody et al., 1991; Hess & Donoghue, 1996, 1999; 

Hess et al., 1996; Martin et al., 2000), and unmasking of pre-existing horizontal 

connections (Jacobs & Donoghue, 1991; Malinow et al., 2000).   
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(1) Released inhibition (or increased excitation) in lateral premotor cortices (PMd) 

The work in the current thesis provides evidence that the lateral PM cortices (the 

left dorsal (lPMd) portion in particular) likely contributes to the BMT-induced cortical 

adaptations observed.  It is possible that the current BMT training task itself is 

responsible for the potential release in inhibition (or increased excitation) in the lateral 

PM that results in increased M1 excitability.  Since the lateral PM responds to externally 

cued tasks (i.e. visual and auditory) (Jäncke et al., 2000; Sugiura et al., 2001; Koch et al., 

2006), it is likely that PMd activity is enhanced during performance of the current 

visually cued BMT task.  In addition, it is possible that this BMT task involving co-

contraction of homologous muscle representations in M1 led to a release of inhibition of 

the homologous muscle representations in the premotor cortices, resulting in increased 

excitability in M1.  The potential mechanisms driving this effect could involve 

interhemispheric communication between both hemispheres of PMd (Boussaoud et al., 

2005) and interacting with the homologous M1 representations via the corpus callosum.  

Since there was disinhibition between the homologous M1 representations due to short-

term BMT found in Study #4 (experiment 1), it is possible that the same homologous 

representations within the PM cortices followed the same pattern of decreased inhibition.  

In fact, previous research has confirmed that lateral PM (i.e. left and right PMd) 

excitability increases due to short-term in-phase BMT (Smith & Staines, 2006, 2010, 

2012), during index finger-thumb opposition (Seitz et al., 2004), in the selection of 

appropriate actions for movement execution (Kalaska & Crammond, 1995; Thoenissen et 

al., 2002; O’Shea et al., 2007; Groppa et al., 2012), and with learned visuomotor 

associations of both upper-limbs (Geyer et al., 2000; Toni et al., 2001).  Specifically, 
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when visually cued in-phase movements are trained, the Bereitschaftspotential (BP) (a 

self-paced, rather than externally cued movement related potential (MRP)), associated 

with motor preparatory activity within the SMA (Shibasaki et al., 1980; Shibasaki & 

Hallett, 2006), is not enhanced.  Furthermore, source localization (sLORETA) identified 

PMd to be the cortical region generating the excitability changes in the early component 

of the MRP due to BMT (Smith & Staines, 2012).  Although the contribution of lPMd to 

M1 excitability cannot be directly confirmed in these studies, there is evidence in 

previous and confirmed and extended in the current work that lPMd likely contributes to 

modulations in M1 excitability.  

Study #2 found that iTBS to left PMd markedly increased the excitability of 

ipsilateral M1, demonstrating the vital influence of PM areas on the excitability of 

downstream M1.  It is possible that the extensive reciprocal projections from the PM to 

M1 cortices (Weinrich & Wise, 1982; Wise, 1985) were enhanced by the application of 

iTBS to lPMd, leading to the modulations in ipsilateral M1 excitability observed.  Other 

studies have shown that rTMS at 5 Hz to left PMd increases cortical excitability in the 

ipsilateral M1 (Gerschlager et al., 2001; Chouinard et al., 2003; Rizzo et al., 2004; 

O’Shea et al., 2007; Suppa et al., 2008).  The increased excitability from left PMd to 

ipsilateral M1 may be due to neural projections to M1 in both hemispheres that may be 

involved in motor preparatory sequences, particularly for visually cued tasks (Schluter et 

al., 1998; Modugno et al., 2001; Rushworth et al., 2003).  Other studies using TBS 

protocols to lPMd have shown modulation of the excitability of downstream M1 

ipsilaterally (Huang et al., 2009) and contralaterally (Stinear et al., 2009).   
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Therefore, when neural input was potentially enhanced from lPMd before BMT 

due to iTBS, this may have led to increased input from PM during the cued BMT to 

ipsilateral and contralateral M1.  This enhanced input from lPMd may have been partially 

responsible for the enhanced M1 excitability observed when iTBS to lPMd was followed 

by BMT.  It is likely that both hemispheres of the PMd were involved during the cortical 

adaptations during this task, since they are highly connected interhemispherically 

(Boussaoud et al., 2005).  The left PMd has a critical role in action selection for execution 

of learned associations for movements of either or both upper-limbs (Schluter et al., 

1998; Rushworth et al., 2003).  Inhibition of left PMd using TMS leads to a disruption 

during action selection when using both upper-limbs (Schluter et al., 1998; Johansen-

Berg et al., 2002).  Also, short-term BMT increases activity in the lateral PM cortex 

during a closely associated unimanual task (Smith & Staines, 2006, 2010, 2012).  Further, 

iTBS to left PMd causes faster preparation of complex sequences performed with the 

right hand (Stinear et al., 2009).  Given that the current study involved learning a skilled 

task that required movement of both upper-limbs simultaneously, the potential up-

regulation of the left PMd could have induced a greater degree of excitatory input to M1 

in both hemispheres during the training of the task.  On the other hand, it is possible that 

the BMT slightly enhanced the effects of iTBS applied to PMd.  Voluntary contraction of 

the right limb immediately after iTBS applied to left M1 enhances the facilitating effects 

of iTBS to MEP amplitude in the resting limb (Huang et al., 2008).  Therefore, these 

studies along with the Study #1, #2 and #4 suggest that lPMd has a particularly relevant 

role in movement selection with both upper-limbs and the adaptation to visuomotor 



129 
 

movement associations, like the short-term cued in-phase BMT used in the studies of the 

current thesis.   

It is likely that PM cortices, along with other important cortical nodes (e.g. the 

homologous M1 representations), potentially contribute to the modulations of cortical 

excitability due to in-phase BMT.   

2) Released inhibition (or increased excitation) with interhemispheric projections 
between homologous M1 representations 
 

The work in this thesis suggests a modulation of inhibition due to co-activation of 

homologous muscle representations due to BMT, via transcallosal projections.  

Specifically, Study #1 found that M1 excitability increased due to BMT with 

simultaneous homologous muscle activity (Neva et al., 2012), and these results were 

confirmed with Study #2 using similar BMT.  Furthermore, modulating the excitability of 

the contralateral homologous M1 representation prior to BMT led to greater 

enhancements of M1 excitability as shown in Study #3.  Finally, Study #4 specifically 

revealed a decrease in IHI between homologous muscle representations due to in-phase 

BMT.  Several other studies support these findings by suggesting that transcallosal 

projections via homologous M1 representations may serve as a mediator of short-term 

plasticity due to BMT.  For example, excitability in motor related areas are enhanced in 

both hemispheres in damaged and healthy cortices when homologous muscles are 

activated together (Silvestrini et al., 1998; Staines et al., 2001).  It is thought that neural 

connections between homologous M1 representations via the corpus callosum act to 

excite and/or release inhibition to the contralateral hemisphere (Stinear & Byblow, 2002), 

which could lead to M1 plasticity.  Specifically, local intracortical inhibition in M1 is 

released when homologous M1 representations of the upper-limbs are activated 



130 
 

synchronously (in-phase), but inhibition remains with asynchronous (anti-phase) 

activation (Stinear & Byblow, 2002, 2004).  These studies suggest that interhemispheric 

connections between M1 representations may be a potential neural mechanism, with 

presumed GABAergic local M1 disinhibition, which underlies the corticospinal 

modulations observed due to BMT tasks.  It is not surprising, therefore, that Study #1 

specifically found increased M1 excitability due to in-phase (mirror-

symmetrical/synchronous movements) and not anti-phase (asymmetrical/non-

synchronous movements) BMT.  Further, it follows that Study #4 found a release of 

inhibition across homologous M1 hemispheres due to in-phase BMT.  

Modulation of the contralateral homologous M1 representation prior to in-phase BMT 

in Study #3 caused a greater change in M1 excitability compared to BMT alone or 

modulation of contralateral M1 alone.  Other work supports these findings and suggest 

that this enhanced excitability found in Study #3 may be due to additional reduction of 

interhemispheric inhibition by combining in-phase BMT and suppressive rTMS to the 

opposite homologous M1 (Stinear & Byblow, 2002; Suppa et al., 2008; Meehan et al., 

2011; Byblow et al., 2012).  When suppressive rTMS (cTBS) is applied to rM1 

corticospinal excitability in lM1 increases in healthy individuals (Suppa et al., 2008; 

Meehan et al., 2011) and with those who have suffered stroke (Meehan et al., 2011).  

Also, motor function of the affected limb improves in stroke patients after applying cTBS 

to the contralesional M1 (or S1) in combination with movement training (Meehan et al., 

2011).  The current study found no enhancements in behavioural performance when 

cTBS was applied prior to in-phase BMT, so this effect may only occur with more 

extensive training or with those displaying movement impairment due to stroke.  
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Although there is evidence from Study #3, #4 and the previous studies mentioned that 

increases to M1 excitability may be mediated through transcallosal pathways, it cannot be 

definitively stated that this was the driving neural mechanism in Study #3.  Future study 

on the specific interhemispheric pathways and their potential modulation due to rTMS 

and movement training is required to further understand these effects.    

More evidence for transcallosal pathways potentially mediating the cortical 

excitability effects observed was found in studies with split-brain patients (partial or full 

severing of the corpus callosum).  These patients are unable to perform discrete anti-

phase bimanual movements, and cannot perform continuous in-phase or anti-phase 

bimanual movements (Kennerley et al., 2002).  This demonstrated the importance of the 

corpus callosum in the spatial coupling and coordination of complex bimanual movement 

tasks, such as bimanual circle drawing (representing anti-phase like movements of the 

digits).  The BMT task in Studies #2, #3 and #4 required a complex coordination of both 

upper-limbs, involving simultaneous co-contraction of varying degrees in order to move a 

cursor to multiple visual targets (Neva et al., 2014).  Therefore, it is likely that 

interhemispheric projections via the corpus callosum were necessary to perform the 

skilled motor movement required during the current studies and potentially mediate the 

cortical adaptations observed. 

The lack of effect due to anti-phase training (in Study #1) may relate to the reciprocal 

inhibition of active versus inactive agonist and antagonist muscle representations in the 

contralateral hemispheres (Stinear & Byblow, 2002; Byblow et al., 2012).  Other studies 

have also demonstrated that anti-phase BMT does not lead to increases in motor 

preparatory activity through EEG (Smith & Staines, 2006, 2010, 2012).  The findings of 
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previous research and the current thesis does not discount the potential use of anti-phase 

BMT as a useful training strategy to enhance cortical excitability.  The medial premotor 

areas (i.e. the supplementary motor area (SMA)) have been implicated as a cortical locus 

that mediates bimanual motor control (Swinnen et al., 1997; Johnson et al., 1998; 

Almeida et al., 2002, 2003; Cardoso de Oliveira, 2002; Serrien et al., 2002; Swinnen, 

2002).  Particularly, rTMS applied to disrupt SMA activity leads to an interruption of the 

spatial and temporal coordination of anti-phase bimanual movements as opposed to in-

phase movements (Serrien et al., 2002).  Additionally, Parkinson’s patients with indicated 

disruption of the SMA has shown similar disorders of anti-phase bimanual movement 

production with external cueing (Swinnen et al., 1997; Johnson et al., 1998; Almeida et 

al., 2002, 2003).  Of course, the lateral PM is likely to be involved along with the SMA in 

some aspect anti-phase bimanual movement training.  Conversely, it is certainly possible 

that SMA is partially involved in the cortical adaptations observed in the in-phase BMT 

utilized in the current thesis.  It is possible that the particular BMT emphasized and the 

methods used to measure the M1 excitability modulations were not sensitive to measure 

the involvement of the SMA.  Future studies involving specific anti-phase BMT, fMRI 

and modulation of SMA through rTMS could be useful in understanding the contribution 

of medial PM areas to training-induced modulations of M1 cortical excitability.   

 
3)  Modulations in long-interval inhibitory mechanisms within and between M1 
representations 
 
 The effects observed in Study #4, which was investigating the intracortical and 

interhemispheric adaptations due to BMT and/or iTBS to lPMd, were surprisingly 

primarily modulations in long-interval inhibitory connections, and many of these were 
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observed asymmetrically in one hemisphere.  BMT (experiment 1) led to a reduction in 

long-interval interhemispheric inhibition (LIHI) to rM1 and an increase in long-interval 

inhibition due to prolonged cortical silent period (CSP) in rM1.  iTBS to lPMd 

(experiment 2) caused an increase in long-interval inhibition by a prolonged CSP in lM1.  

Finally, iTBS to lPMd followed by BMT (experiment 3) caused a reduction of long-

interval intracortical inhibition (LICI) in rM1.  There has been little research on the 

specific effects of long-interval inhibitory mechanisms due to skilled movement training 

and few on the effects due to iTBS protocols.  These will be discussed below.  

The effect of long-latency interhemispheric inhibition (LIHI) 
 
 Study #4 (experiment 1) found that short-term in-phase BMT led to an 

asymmetrical reduction of LIHI from the left to the right M1.  It is generally accepted that 

IHI exists to suppress unwanted simultaneous movement of both upper-limbs, therefore, 

it follows that IHI would be reduced when simultaneous movements are made with both 

limbs, particularly with homologous muscle activation.  Since previous research found 

that when both upper-limbs are moving symmetrically, intracortical inhibition was 

decreased in both hemispheres (Stinear & Byblow, 2002), and that unimanual movement 

decreases IHI in both directions (Nelson et al., 2009), it is initially surprising that the 

current study found reduced IHI only in one direction (left to right M1).  However, this 

specific finding may be explained by the particular movement parameters of the in-phase 

BMT.  

During BMT in the current thesis (Studies #2-#4), participants were required to 

make simultaneous wrist extension movements of both upper-limbs to three different 

targets (35º, 45º, 55º relative to start position) (see Figure 6D).  The 45º target required 
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simultaneous co-contraction of the ECR muscles to the same magnitude.  However, the 

35º and 55º target locations required a slightly different magnitude of co-contraction of 

both limbs.  The asymmetrical reduction in IHI could be due to the requirement of 

different magnitudes of wrist muscle co-contraction.  Moreover, all participants in these 

studies were right-hand dominant.  It is thought that there is a reduction in IHI to produce 

contralateral unimanual movements (Duque et al., 2007).  Furthermore, some studies 

have not found a hemispheric difference in IHI with hand dominance during voluntary 

contraction and unimanual tasks (Nelson et al., 2009).  Conversely, there is evidence for 

lateralization of M1, showing that there is increased IHI from the dominant to non-

dominant hemisphere at rest (Netz et al., 1995; Bäumer et al., 2007), which is how IHI 

was tested bilaterally in the current studies.  The suggestion by this work was that this 

increased inhibition due to handedness may reflect dominant usage and experience with 

skilled manipulation of the dominant hand.  Additionally, IHI in the wrist extensors and 

flexors is unchanged during light contraction and rest conditions from the non-dominant 

(right) to dominant (left) M1 compared to the reverse scenario (Sattler et al., 2012), 

providing evidence for asymmetrical increased IHI from the dominant to non-dominant 

M1.  It is possible that the differing amounts of co-contraction required for two-thirds of 

the training (35º and 55º target locations), along with individuals with right-hand 

dominance may have led to the asymmetrical reduction of inhibition from the dominant 

to non-dominant hemisphere.  Therefore, a certain amount of IHI may have remained in 

order to suppress full co-contraction of the upper-limbs.  This remainder of inhibition 

could have been more likely to suppress activity in the more experienced (dominant, 

right) upper-limb, leading to stable IHI from the right to left M1.  Since there is evidence 
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that right-hand dominant people would initially demonstrate enhanced inhibition from the 

left to right hemisphere at rest (Netz et al., 1995; Bäumer et al., 2007; Sattler et al., 2012), 

it follows that this inhibition may be ‘released’ in order for the non-dominant hemisphere 

to be more efficiently engaged during the complex bimanual movement task of the 

current thesis.  Furthermore, there is a plethora of evidence suggesting that asymmetrical 

bimanual movement is less stable than strictly mirror symmetrical movements (Kelso et 

al., 1979; Cardoso de Oliveira, 2002; Swinnen, 2002; Carson, 2005).  Therefore, 

asymmetrical bimanual movements likely require more complex patterns of neural 

activity, which is another potential explanation for the release of inhibition from the 

dominant to non-dominant hemisphere due to our specific BMT task.   

Interestingly, this reduction in interhemispheric inhibition was only in LIHI and 

not with SIHI.  The underlying mechanism mediating SIHI is largely unknown (Meyer et 

al., 1995), while LIHI likely relates to the ipsilateral silent period (Chen et al., 2003) and 

involves GABA-B-mediated inhibition since it has a relatively longer time course and is 

increased with baclofen, a GABA-B receptor agonist (Irlbacher et al., 2007).  Although 

both SIHI and LIHI are believed to be mediated by excitatory transcollosal connections 

(Lee et al., 2007), the connections to contralateral inhibitory interneurons may differ 

(Chen, 2004).  Previous studies found that a unimanual movement task compared to rest 

led to a reduction in both SIHI and LIHI bi-directionally from M1 to M1 (Nelson et al., 

2009).  The results of Study #4 (experiment 1) indicate that SIHI and LIHI are likely 

mediated by different inhibitory mechanisms, which has been confirmed by previous 

work (Meyer et al., 1995; Irlbacher et al., 2007), since if the SIHI and LIHI followed 
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similar inhibitory pathways, both would likely be modulated in a similar way due to the 

training tasks in the current thesis.   

 
The effects on cortical silent period (CSP) 
 

The CSP is affected by damage to M1 itself and other cortical nodes while sparing 

M1 (von Giesen et al., 1994; Classen et al., 1997).  Specifically, von Giesen and 

colleagues (1994) showed that patients who have suffered stroke to the sensorimotor 

cortex resulted in a shortening of CSP, whereas damage to the ipsilateral premotor cortex 

to M1 resulted in prolonged CSP in the contralateral muscles.  These results suggest that 

the shortening of CSP indicates that this inhibition is primarily generated within M1, and 

that the damage to remote areas (i.e. premotor cortex) results in a decreased inhibition of 

cortical interneurons.  The results of Study #4 (experiment 2), which demonstrated a 

prolonged CSP due to iTBS to lPMd, may be an indication of disinhibition within M1 or 

interneurons from the PM cortex to M1.    

Additionally, the CSP can be modified by high frequency rTMS of the stimulated 

M1 (Daskalakis et al., 2006; Khedr et al., 2007) and by particular pharmacological agents 

that indicate the CSP is at least partially mediated by GABA-B receptors (Ziemann et al., 

1996; Ziemann et al., 1996; Mohammadi et al., 2006).  Specifically, Daskalakis and 

colleagues (2006) found that CSP was prolonged after 600 stimuli delivered at 6 Hz 

applied to M1.  This indicates that cortical inhibition was increased due to high frequency 

rTMS, similar to the effects of Study #4 (experiment 2) where iTBS was applied to 

ipsilateral PMd.  It is possible that increasing the excitability of M1 directly (Daskalakis 

et al., 2006) and to remote but closely related motor areas (i.e. left PMd) may have 

enhanced the excitability of the GABA-B-mediated cortical inhibitory circuitry.  PMd has 
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extensive reciprocal neuronal projections with the ipsilateral M1 (Picard & Strick, 2001; 

Rushworth et al., 2003), and rTMS at 5 Hz to lPMd increases cortical excitability in the 

ipsilateral M1 (Gerschlager et al., 2001; Chouinard et al., 2003; Rizzo et al., 2004; 

O’Shea et al., 2007; Suppa et al., 2008).  Perhaps iTBS to lPMd increased the excitatory 

input from lPMd to ipsilateral M1 and, in turn, increased the excitability of long-interval 

inhibitory circuitry specifically mediating CSP in downstream M1.  The increased 

excitability from lPMd to ipsilateral M1 may be due to neural projections to M1 in both 

hemispheres (Schluter et al., 1998; Modugno et al., 2001; Rushworth et al., 2003).  

Interestingly, cTBS over lPMd suppresses corticospinal excitability in left M1, with no 

changes in SICI or ICF (Huang et al., 2009).  Additionally, cTBS applied over lPMd 

suppressed corticospinal activity in the contralateral (right) M1 (Stinear et al., 2009).  

Perhaps the findings from Study #4 (experiment 2) result from lPMd reciprocal 

connections with M1 in both hemispheres, with interactions between both excitatory and 

inhibitory projections, which may in turn also influence right M1 to left M1 projections 

(Asanuma & Okuda, 1962; Ferbert et al., 1992; Gerloff et al., 1998; Chen et al., 2003; 

Nelson et al., 2009), that could lead to the enhancement in long-interval inhibition in left 

M1.  Interestingly, lower frequency rTMS (< 1 Hz) has produced inconsistent effects on 

CSP, with some studies showing no change (Fitzgerald et al., 2002), others showing 

shortening (Fierro et al., 2001) and still others showing lengthening (Romeo et al., 2000).  

The evidence from most studies on rTMS to CSP seem to indicate that the effects depend 

largely on the frequency and intensity of stimulation (Daskalakis et al., 2006; Khedr et 

al., 2007; Chen et al., 2008).  Overall, there is evidence from all of these studies along 
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with the Study #4 (experiment 2) that CSP can be modulated by applying rTMS to motor-

related cortical nodes.  

As for the prolonged CSP in rM1 following short-term in-phase BMT (Study #4, 

experiment 1), it is possible that an increase in inhibitory mechanisms could be 

concurrent with increased requirement of precise motor control.  Studies have 

demonstrated that CSP is reduced in patients with ALS (Mills, 2003), PD (Cantello et al., 

1991; Siebner et al., 2000), in some patients with HD (Lefaucheur et al., 2006) and 

dystonia involving the upper-limb (Filipović et al., 1997).  This suggests that a decrease 

in CSP is detrimental to motor control and coordination.  Many of these studies attempted 

to administer pharmacological aids or rTMS protocols to rebalance inhibition by 

prolonging CSP.  Therefore, the increase in CSP-related inhibition may be indicative of 

the heightened motor control requirement during the bimanual task in the current studies.  

The increased motor control parameters of the BMT task is likely due to the varying 

degrees of simultaneous co-contractions of the wrist musculature in order to successfully 

move the visual cursor to the cued targets.  Additionally, this increased motor control 

requirement could have been more pressing for the non-dominant (left) upper-limb, 

which is why increased inhibition was observed in rM1 instead of lM1.  Furthermore, it 

may be that the reduction of IHI from the left to the right M1 may have resulted in an 

increased excitability in rM1, as shown by increased MEP amplitudes.  This increased 

excitatory input to rM1 could have resulted in increased excitability in the long-interval 

inhibition mediating the CSP.  Conversely, an increased CSP in rM1 may be an 

indication of a reduction in inhibition of cortical interneurons within or to rM1, as 

evidenced by similar effects to those with damage to remote cortical areas (i.e. PM) (von 
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Giesen et al., 1994).  Altogether, the results of the current thesis and previous studies 

provide potential explanation for the increased asymmetric long-interval inhibitory 

circuitry related to the CSP in M1.  Other than the CSP-related inhibitory modulations, 

related but distinct LICI was uniquely modulated due to a combination of iTBS to lPMd 

and in-phase BMT. 

The effects of long-interval intracortical inhibition (LICI) 
 

To the best of our knowledge, Study #4 is the first to investigate the combined 

effects of iTBS to lPMd with in-phase BMT on LICI.  Furthermore, it is one of the few 

studies that have investigated the effects of movement training on LICI (Meunier et al., 

2012), and the first to study the effects of BMT on LICI.  The we found a reduction in 

LICI due to iTBS to lPMd followed by BMT (experiment 3) and a slight reduction in lM1 

LICI due to BMT alone (experiment 1).  LICI has been shown to decrease with increased 

test stimulus intensity, which indicates that low threshold corticospinal neurons are more 

sensitive to LICI than high threshold corticospinal neurons (Sanger et al., 2001).  It is 

possible that lower threshold corticospinal neurons in the area surrounding the hotspot 

were heightened in excitability due to the interventions, and were therefore activated 

during the testing of LICI.  This idea follows the previous findings of Study #2 (group 3) 

that combined iTBS to lPMd and BMT in the same way as Study #4 (experiment 3), 

which demonstrated an increased M1 excitability in terms of both the amplitude and 

spatial distribution of MEPs along the borders of the trained muscle representation, 

without a concurrent increase in the hotspot MEP amplitude (Neva et al., 2014).  It could 

be that the modulation in LICI reflects a reduction in intracortical inhibition in the area 

surrounding the central representation of the specifically trained muscles, similar to the 
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findings of previous work (Neva et al., 2014).  Similarly, the effects due to BMT alone 

may reflect changes in intracortical inhibition surrounding the hotspot of the wrist muscle 

representation (Neva et al., 2012).  Additionally, a recent study has shown that LICI is 

reduced in the presence of LIHI (Udupa et al., 2010).  This study specifically 

demonstrated that these two long-interval inhibitory circuits influence each other by 

reducing the amount of inhibition each population produces by itself when both of these 

protocols are delivered together, suggesting that they share common properties.  It is 

suggested that both of these networks (LIHI, LICI) are mediated by pre-synaptic and 

post-synaptic GABA-B receptors (Huang, 2006).  It is possible that BMT induced a slight 

decrease in the dominant (left) M1, which could have concomitantly reduced the LIHI 

from the left to rM1 through related GABA-B receptor mediated mechanisms.  The 

specific underlying processes cannot be confirmed in this work, therefore future study 

potentially utilizing LICI in the presence of LIHI (Udupa et al., 2010) bilaterally in M1 

after in-phase BMT would further elucidate the intracortical modulations observed.   

Few studies have demonstrated modulations in LICI circuitry due to movement 

training, (Meunier et al., 2012) rTMS protocols of motor-related cortical nodes (Suppa, 

Ortu, et al., 2008), and other plasticity inducing protocols like paired-associative 

stimulation (PAS) (Russmann et al., 2009; Meunier et al., 2012).  Similar to the results of 

Study #4 (experiment 3), recent work has shown a prolonged reduction in LICI due to 

movement training involving precisely timed pinch grip or PAS (Meunier et al., 2012).  

This study further supports a reduction in LICI due to movement training, likely 

involving GABA-B related transmission.  Previous studies found reductions in SICI due 

to motor training (Nordstrom & Butler, 2002; Liepert et al., 2004; Perez et al., 2004; 



141 
 

Rosenkranz & Rothwell, 2006; Rosenkranz et al., 2007) and the aforementioned work 

found a decrease in LICI due to motor training tasks (Meunier et al., 2012), therefore this 

was suggestive of a post-synaptic GABA-B related mechanism.  Particularly since 

baclofen (an agonist of post-synaptic GABA-B receptors), decreased PAS-induced 

plasticity in human M1 (McDonnell et al., 2007).  Also, this is supported by the fact that 

LICI circuitry is believed to actively inhibit SICI connections pre-synaptically (Sanger et 

al., 2001; Chen, 2004; Ni et al., 2011).  This particular effect was not supported in the 

current study due to no observed modulation in SICI.  Therefore, it could be that the 

reduction of LICI observed (Study #4, experiment 3) could be equally due to pre- and/or 

post-synaptic GABA-B-related inhibitory circuitry.  One study investigated the effects of 

cTBS over either hemisphere M1 and found no change in LICI (Suppa et al., 2008).  To 

our knowledge, Study #4 (experiment 3) is the first to measure LICI modulations due to 

the combination of rTMS and movement training, particularly using both upper-limbs.  

Therefore, the potentially increased cortical input from the lPMd in combination with in-

phase BMT-induced plasticity may be required to produce a selective modulation of 

GABA-B-related LICI circuitry in rM1.  Again, the specific asymmetrical reduction in 

inhibition may be due to the requirement of more efficient engagement of the non-

dominant upper-limb to co-activate in varying degrees with the contralateral upper-limb 

(see above).   

The lack of effect of short-interval intracortical circuitry 
 
 Study #4 did not support the hypothesis that BMT and iTBS to lPMd would lead 

to modulations in both SICI and ICF, and a combination of these interventions would 

lead to a greater modulations.  Previous research has demonstrated reductions in SICI due 
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to motor training (Nordstrom & Butler, 2002; Liepert et al., 2004; Perez et al., 2004; 

Rosenkranz & Rothwell, 2006; Rosenkranz et al., 2007) and TBS protocols over M1 

(Huang et al., 2005; Suppa et al., 2008).  Many of these studies and others found no 

concurrent change in ICF.  Specifically, no changes in ICF have been found due to 

unimanual sequential visuomotor training (Winkler et al., 2012), or due to a visuomotor 

tracking task involving unimanual wrist flexion and extension (Smyth et al., 2010).  Also, 

5 Hz suprathreshold rTMS applied to PMd resulted in no change of SICI (Suppa et al., 

2008).  In addition, iTBS to lPMd has demonstrated no effect of SICI or ICF on 

ipsilateral or contralateral M1 (Stinear et al., 2009), or when iTBS to lPMd is followed by 

unimanual movement training (Stinear et al., 2009).  The findings of the current Study #4 

were somewhat surprising, but there are factors that may account for the lack of observed 

changes in SICI and ICF due to each intervention.  The disparity between the previous 

studies and the findings of the current thesis (Study #4, experiment 1) may be reconciled 

due to vast difference between the motor tasks.  The previous studies that demonstrated 

reductions in SICI were with expert musicians performing unimanual tasks (Nordstrom & 

Butler, 2002), phasic unimanual finger adductions (Liepert et al., 2004), gait training 

recorded from the tibialis anterior (Perez et al., 2004), rapid thumb abduction, muscle 

vibration and PAS (Rosenkranz & Rothwell, 2006; Rosenkranz et al., 2007).  All of these 

tasks were vastly different from the current in-phase BMT in terms of the unimanual 

upper-limb(s) (or lower limbs) use, the extents of the training that was required to 

produce the changes in SICI, and the fact that the intrinsic hand muscles were used in 

many of the tasks instead of the wrist musculature.  Similarly, all TMS measures were 
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recorded from intrinsic hand muscles or a lower leg muscle, which could likely explain 

the differences in results.   

It has been shown that SICI is the lowest threshold neural circuitry activated by 

TMS in the upper-limb area (Davey et al., 1994; Ziemann et al., 1996; Awiszus et al., 

1999), so it could be that the modulations in SICI were too slight due to the interventions 

to be detected at the hotspot.  Although SICI is a useful measure for assessing minor 

changes in cortical excitability (Modugno et al., 2003; Bagnato et al., 2005), other 

intracortical and interhemispheric networks such as LICI and LIHI may interact with 

SICI and ICF circuitry (Udupa et al., 2010).  LICI circuitry actively inhibits SICI 

circuitry (Chen, 2004; Udupa et al., 2010), and LIHI circuitry can modulate SICI and ICF 

connections.  Therefore, it is possible that the training and stimulation protocols (in 

combination and separately) in the current studies may interact to result in undetectable 

changes in the short-interval intracortical inhibitory and facilitatory circuitry bilaterally.  

Since Study #4 demonstrated changes in LICI due to BMT alone and iTBS to lPMd 

followed by BMT, it is possible that the long-interval circuitry affected short-interval 

circuitry by inhibiting its potential modulation.   

However, other studies performing symmetrical bimanual movement tasks have 

demonstrated a reduction in SICI (Stinear & Byblow, 2002).  The difference between the 

results of the current thesis (Study #4, experiment 1) and the previous study may be due 

to the constraints of the tasks themselves.  The previous study had one upper-limb 

passively moved and the task was to match the movement with the opposite limb to 

perform mirror symmetrical movements.  The BMT task in the current study had 
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participants actively move both upper-limbs to a visually cued target, and then extend 

both wrists simultaneously to move the visual cursor to the target (Neva et al., 2012).   

Since the studies of the current thesis (Studies #1-#3) found increased excitability 

in the cortical area surrounding the hotspot, it follows that modulations would not be 

observed in SICI or ICF directly over the hotspot.  Furthermore, it is possible that the 

conditioning-test pulse paradigm of SICI and ICF could not have been at a high enough 

intensity to recruit neurons in the area surrounding the ECR hotspot (Chen et al., 2008).  

Therefore, future study of the effects of BMT and TBS protocols to PMd on SICI and 

ICF in the cortical territory adjacent to the hotspot would be necessary.   

 
4) Excitability increases along the borders of trained muscle representation in M1, 
which potentially relate to changes in long-term potentiation/depression (LTP/D), and 
unmasking of pre-existing horizontal connections.   
 

The findings from Study #4 are indicative of modulations in GABA-related 

inhibition, specifically the long-interval GABA-B-related inhibition.  However, the 

methodology of Study #4 did not allow for the testing the cortical area outside of hotspot 

where the previous studies observed many of the enhancements in cortical excitability.  

The cortical reorganization and increases in M1 excitability observed in the current 

studies (Study #1, #2, #3) were found in the areas surrounding the hotspot (Neva et al., 

2012; Neva et al., 2014).  These specific excitability increases could potentially relate to 

the early stages of changes in long-term potentiation/depression (LTP/D) (Woody et al., 

1991; Hess & Donoghue, 1996, 1999; Hess et al., 1996; Martin et al., 2000), and 

unmasking of pre-existing horizontal connections in M1 (Jacobs & Donoghue, 1991; 

Malinow et al., 2000).   
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Several other studies have demonstrated that cortical reorganization and the 

enlargement of spatial cortical excitability of trained muscle representation occurs due to 

many different types of movement training (Pascual-Leone et al., 1995; Nudo et al., 

1996; Classen et al., 1998; Kleim et al., 1998; Liepert et al., 1999; Kleim et al., 2004; Tyc 

et al., 2005; Adkins et al., 2006).  Increases in M1 spatial extent of trained muscles have 

been observed in a 30 min session of in-phase BMT (Neva et al., 2012).  These modest 

increases in short-term BMT can be slightly enhanced by applying rTMS (i.e. iTBS or 

cTBS) to remote and related cortical nodes such as PMd and the contralateral 

homologous M1 representation before movement training (Neva et al., 2014; Study #3).  

Further, movement training involving skilled finger sequence training for two 2 hr 

sessions (Pascual-Leone et al., 1995) leads to an expansion of the excitable area in M1.  

Other studies have shown that gross motor movement training also leads to an expansion 

of the trained proximal muscle representation in M1 in skilled volleyball players (Tyc et 

al., 2005).  The studies of the current thesis (Studies #1, #2, #3) support these previous 

findings and also extend them by demonstrating that BMT and TBS protocols also lead to 

expansion of the excitable area of trained muscles in M1.   

The interventions of the current studies (Study #2 and #3) demonstrated slight 

changes in cortical reorganization in terms of the centre of gravity (CoG) due to short-

term BMT, iTBS to lPMd, iTBS with BMT, with the greatest change in CoG due to 

cTBS to rM1 followed by BMT.  A shift in CoG is an amplitude-weighted center of the 

map and hotspot indicating the scalp position of maximum response in the target muscle 

(Ljubisavljevic, 2006).  Although a shift in CoG and the overall spatial distribution of 

cortical map are related, they could both be sensitive to slightly distinct modulations in 
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overall M1 excitability.  Cortical reorganization reflected in a shift in CoG has been 

demonstrated in previous studies (Classen et al., 1998; Liepert et al., 1999).  Liepert and 

colleagues (1999) found that synchronised hand and foot movements led to a shift of the 

two muscle representations closer towards each other.  Interestingly, no shifts in the M1 

maps were seen when asynchronous hand and foot movements were trained.  

Additionally, Study #3 showed that the shift in CoG of the trained muscle representations 

remained up to 60 min post movement training.  Further support for a shift in CoG due to 

movement training was found by another study which trained participants to perform 

thumb movements in a different direction than were consistently produced by single-

pulse TMS over the abductor pollicis brevis (APB) hotspot (Classen et al., 1998).  After 

training thumb movements in the opposite direction for approximately 30 min, the same 

single-pulse TMS over the APB representation evoked thumb movements in the trained 

direction.  This modulation in M1 excitability likely reflected a shift in the CoG of the 

trained muscle representation.  The shift in CoG mentioned is similar to the CoG shift 

due to cTBS to rM1 followed by short-term BMT that lasted up to 60 min beyond the 

interventions.  Interestingly, not only did the CoG shift due to cTBS to rM1 followed by 

BMT, but the spatial map increased in size as well.  Further, cTBS to rM1 alone caused a 

slight shift in CoG without a concurrent increase in spatial extent of cortical excitability.  

This could indicate that CoG and total M1 excitability may share related plasticity 

mechanisms that may be expressed in slightly different patterns across the entire M1 

map.  Additionally, the slight shifts in CoG due to the interventions in the current thesis 

may also be an explanation as to why changes in the hotspot or central MEP amplitude 

were not observed.  Since, even a slight change in CoG (~1 cm in any direction) could 
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account for the potential modulations in the hotspot over the scalp (which remained the 

same before and following all interventions) to be undetectable, especially with subtle 

changes in central M1 representation excitability.  

Several studies using animal models have also demonstrated increases and 

reorganization of M1 cortical maps due to skilled movement training (Nudo et al., 1996; 

Kleim et al., 1998; Kleim et al., 2004; Adkins et al., 2006; Ljubisavljevic, 2006; Nudo, 

2006), and these do not occur due to simple repetitive movement (Kleim et al., 1998; 

Nudo, 2006).  This has been supported in human research showing that skilled motor 

movement training and strength training leads to distinct modulations in M1 excitability 

(Jensen et al., 2005; Adkins et al., 2006).  Strength training modulates the excitability of 

the spinal cord, whereas skilled movement training alone demonstrates M1 map 

reorganization and increases in cortical excitability.  The cortical reorganization and 

enhancements in spatial excitability observed in this thesis and previous studies could be 

due to early stages of unmasking pre-existing horizontal connections (Jacobs & 

Donoghue, 1991; Atwood & Wojtowicz, 1999; Malinow et al., 2000), and increased 

synaptic transmission through long-term potentiation or depression (LTP/D) in M1 

(Woody et al., 1991; Hess & Donoghue, 1996, 1999; Hess et al., 1996; Martin et al., 

2000).  It is likely that both changes in LTP/D and unmasking pre-existing horizontal 

connections in M1 occur concurrently during the early stages of the motor adaptation and 

movement training processes.  It is likely that the increases in excitability along the 

borders of M1 representation due to BMT is primarily due to the unmasking of latent 

horizontal connections surrounding the target muscle cortical hotspot, without 

discounting the contribution of a concurrent increased synaptic transmission.  
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Conversely, the enhanced MEP amplitudes closer to the hotspot due to iTBS to lPMd and 

cTBS to rM1 may be primarily due to changes in LTP, strengthening the established 

neural connections within M1.  Furthermore, when BMT was preceded by iTBS to lPMd 

or cTBS to rM1 there were concurrent increases in MEP amplitudes and spatial 

excitability, which may reflect simultaneous unmasking of horizontal connections and 

increased synaptic transmission due to LTP. 

Another related possibility is that changes in membrane excitability may reflect 

the rapid modulations in cortical excitability associated with movement training and TBS 

protocols (Ljubisavljevic, 2006).  Changes in membrane excitability could represent 

another way to modify the connections between neurons.  Many studies have 

demonstrated prolonged increase in the excitability of M1 due to trained movements and 

other conditions (Sanes & Donoghue, 2000).  This suggests that a change in membrane 

excitability of neuron populations, may be linked to plastic change due to skilled motor 

training and/or repetitive TMS protocols to related cortical nodes, by increasing the 

opportunity for multiple neurons to depolarize together and thus, enhancing the 

probability of strengthening synaptic connections.  It is possible that both BMT and TBS 

of related cortical nodes (iTBS to ipsilateral PMd or cTBS to contralateral M1) may have 

modulated membrane excitability of neurons that potentially facilitated concurrent, and in 

some cases greater, enhancements in cortical excitability of the entire spatial 

representation of target muscles in M1.  However, due to the constraints of the 

methodology of the current thesis this cannot be definitively determined.  Indeed, the 

current studies involved the use of single and paired-pulse TMS as a means to image 

cortical plasticity and potential underlying neural mechanisms at the population level in 
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awake human participants (Ljubisavljevic, 2006).  Therefore, it is not possible to 

distinguish the particular cellular and synaptic mechanisms underlying any of the 

interventions of these studies, other than to indicate that paired-pulse TMS in Study #4 

suggested that modulations of GABA-B-related inhibition were involved in the cortical 

excitability changes observed.  Overall, it is possible that the specific enhancements in 

cortical excitability and reorganization due to short-term BMT, TBS and the combination 

of these interventions were early markers of rapid functional plasticity involving the 

entire M1 map of the target muscle representations.   

6.2 Thesis Limitations 

 There are limitations that could affect the interpretation of the work.  In all the 

studies of the thesis, there were participants that took part in more than one 

experiment/intervention, with no individuals performing the BMT twice, except for Study 

#1, where six individuals performed the in-phase and anti-phase training.  However, it is 

likely that in-phase and anti-phase training types were sufficiently different so that one 

training session did not affect the other.  The purpose for no individuals repeating the in-

phase BMT was so that behavioural performance and therefore the potential cortical 

excitability changes were not confounded.  Second, a control group was not tested in any 

specific study.  Therefore we did not test the placebo effects of training and stimulation.  

However, a small group of participants were collected with M1 cortical mapping before 

and following a rest period for approximately the amount of time that BMT (and/or TBS 

protocol) would take and found no changes in M1 excitability (See Appendix 1).  Third, 

for the M1 mapping studies (Studies #1, #2, and #3) the total number of TMS pulses 

across the entire M1 map for the ECR representation may have caused a modulation in 
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cortical excitability itself.  However, at each individual grid position 10 TMS pulses 

occurred with an ISI of ~2 seconds, with a time delay of 30-45 seconds with no 

stimulation when acquiring each following grid position.  Therefore, it is unlikely that the 

frequency and total number of single-pulse stimulations led to a modulation of cortical 

excitability.  Also, although training involved wrist flexion movements, as well as wrist 

extension, MEPs were not recorded from the flexor wrist muscles to observe the 

possibility of similar changes as observed in the wrist extensor muscles.  For Study #2 

and #4, the localization of the left hemisphere PMd was based on previous studies 

indicating that PMd is 2.5 cm anterior to the M1 hotspot (Picard & Strick, 2001; Huang et 

al., 2009; Ortu et al., 2009; Stinear et al., 2009).  However, these studies based the 

location of PMd on the averages among individuals, which places PMd  at a range of 0.88 

to 2.29 cm anterior to the central sulcus (Picard & Strick, 2001).  Therefore, there is 

variability among individual locations of left PMd relative to M1, and it is possible that 

the location of PMd was not always stimulated (or solely stimulated) by iTBS.  It would 

have been a benefit to have each individuals MRI in order to locate PMd.  Also, for Study 

#3, single-pulse MEPs were not acquired from rM1 before or after application of cTBS to 

rM1 in either group that experienced cTBS.  Therefore, it cannot be verified that cTBS 

suppressed the stimulated M1 as previous work has shown (Huang et al., 2005).  Finally, 

as previous mentioned above, Study #4 only acquired all TMS measures from the hotspot 

in M1 bilaterally.  Therefore, it is possible that the lack of effects in the hypothesized 

measures may be due to the fact that TMS measures were not acquired in the cortical 

territory surrounding the hotspot, where modulations in excitability were observed in the 
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previous studies (Studies #1, #2, and #3).  Further research will control for and 

investigate these potential confounding variables.  

6.3 Future Directions 

 There are many different studies that could evolve from the work of the current 

thesis.  Four potential experiments will be presented.  

 Study #1 found increased excitability of M1 due to in-phase, and not anti-phase 

bimanual movement training.  Also, Study #4 found an asymmetrical reduction of 

inhibition from the left to right M1, which could be due to the slightly different type of 

in-phase BMT implemented, one that required varying degrees of simultaneous co-

contraction.  Therefore, it is of interest to investigate further varying the degrees of co-

contraction during a visuomotor bimanual movement task to understand the kinematic 

parameters required for potentially inducing modulations in intracortical and 

interhemispheric inhibition.  Therefore, this study will compare three conditions: 1) 

complete in-phase BMT (consistent simultaneous co-contraction of wrist extensors), 2) 

complete anti-phase BMT (consistent simultaneous antagonist muscle co-contraction) 

and a task which requires a 3) varying amount of co-contraction (“in-anti-phase 

movements”).  This study would follow similar pre and post measures as in Study #4. 

 The second proposed study involves the investigation of the non-dominant M1 

cortical plasticity, since these studies entail the use of both upper-limbs simultaneously.  

Study #4 found asymmetrical effects of intracortical and interhemispheric inhibition 

(much in the right M1), and Studies #1-#3 recorded MEP spatial distribution from the 

dominant upper-limb hemisphere (left M1).  Therefore, it would be very useful to 

understand the excitability modulations in the non-dominant hemisphere (right) M1.  
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Therefore, this study will compare two conditions: 1) short-term in-phase BMT, and 2) 

anti-phase BMT.  This study would follow similar pre and post measures as in Study #2, 

mapping the extents of the right M1 representations off the wrist flexors and extensors, as 

well as the APB and adductor digiti minimi muscles.  This study will complement the 

results of Study #1 (Neva et al., 2012), furthering the understanding of the excitability 

modulations of the entire M1 representation in both hemispheres. 

 The third study uses fMRI to localize the cortical nodes involved in short-term in-

phase versus anti-phase BMT.  These studies could confirm the findings of Study #2 and 

#3, demonstrating the vital contribution of PMd and contralateral M1.  It is possible that a 

single session of training would not be evident using fMRI, therefore several training 

sessions would be required.  Further, once specific cortical nodes are identified due to in-

phase or anti-phase BMT, these cortical loci could be targeted using iTBS to enhance the 

effects of short-term BMT.  Conversely, these same cortical loci could be targeted using 

cTBS to investigate the necessity of these particular cortical nodes during cortical and 

behavioural adaptations from BMT.   

Finally, the fourth proposed study would target the stroke patient population.  

Previous studies have shown that cTBS applied to the contralesional M1, or 

somatosensory cortex, followed by skilled motor training leads to enhanced cortical 

excitability in the ipsilesional cortex and improved motor performance in the affected 

upper-limb (Meehan et al., 2011).  The objective of this study would be to determine the 

short-term intrahemispheric and interhemispheric cortical M1 adaptations that are 

affected by altering sensorimotor-related cortical nodes with rTMS paired with short-term 

in-phase BMT in individuals with stroke.  This study will firstly determine whether 
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individual stroke patients will be able to perform a single short-term training session of 

BMT.  Secondly, these patients will be then perform short-term BMT following the 

application of TBS protocols to motor-related areas in order to enhance ipsilesional 

excitability.  Single, paired and dual-coil TMS will be measured at M1 ECR hotspot 

bilaterally and 1 cm in each anatomical direction surrounding the hotspot, in order to 

assess the overall M1 map. The Wolf Motor Function Test (WMFT) will assess motor 

function before and after the interventions.  Participants will perform simultaneous in-

phase wrist flexion/extension movements that move a cursor to targets displayed on a 

computer screen (Neva et al., 2012).  One BMT session will consist of 5 blocks of 160 

movements (800 movements total).  Response time and kinematic measures will be 

recorded.  Participants will be split up into four groups of 10 (both individuals with stroke 

and matched controls) 1) BMT (Neva et al., 2012; Smith & Staines, 2012), 2) cTBS over 

contralesional S1, 3) M1 and, 4) intermittent TBS over ipsilesional PMd, with all groups 

performing BMT immediately following stimulation.  The proposed research has both 

clinical and theoretical significance as it provides insight into whether excitability 

changes in motor-related areas of the stroke-injured and uninjured brain may enhance the 

effectiveness of use-dependent cortical adaptations.  This information will advance 

understanding of the factors that stimulate neuroplasticity and inform the development of 

novel therapeutic interventions for individuals living with the aftereffects of stroke. 

6.4 Conclusion 

 The current thesis demonstrates the advantage of bimanual visuomotor movement 

training (BMT), theta burst stimulation (TBS) protocols to remote but related cortical 

nodes and a combination of these interventions to enhance M1 excitability.  This is the 
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first series of studies that have shown BMT-induced cortical adaptation due to a specific 

training type (in-phase), and that repetitive stimulation of related cortical areas applied 

previously may enhance this BMT-induced cortical excitability in unique ways, and at 

times a greater extent, than any intervention alone.  These results reveal that M1 

excitability may be modulated by enhancement of PM areas and down-regulation of 

contralateral homologous M1.  Furthermore, these results demonstrate that modulation of 

these cortical nodes may be advantageous in furthering cortical excitability changes in 

distinct ways, which could be useful in adapting more efficient rehabilitation of cortical 

areas affecting upper-limb function.  These data will guide training and stimulation 

techniques that modulate cortical plasticity in the healthy population and in clinical 

settings.  It may be that the modulation of remote cortical areas to M1 (i.e. lPMd and 

contralateral M1) in combination with rehabilitation training could be advantageous in 

enhancing short-term plasticity in damaged M1.   
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Appendix 1: Primary motor cortex (M1) cortical mapping of extensor muscle 
representation before and following rest 
 
Rationale 
 The purpose of this study was to investigate the potential modulations in cortical 

excitability by acquiring the extents of M1 cortical map through single-pulse TMS as in 

Studies #1-#3 of the current thesis.  There is a potential that the previous studies collected 

the M1 maps at a frequency of ~ 0.5 Hz (~2 seconds) between single-pulse stimulations 

at each individual position on the scalp could have induced a modulation in M1 cortical 

excitability.  However, as previously mentioned in the limitations of the studies of this 

thesis, there was a period of time in between stimulation at each grid position of 45-60 

seconds.  In addition, the number of single-pulse stimulations during individual 

experiments were variable, yet usually involved an average total of 280-320 stimulations.  

There is a potential the mere total number of single-pulse stimulations may have 

modulated M1 excitability.  Therefore, it was hypothesized that collection of the extents 

of M1 cortical map will not cause a modulation of the cortical excitable area of left M1. 

 
Materials & Methods 
Participants 
 Eight healthy participants took part in the study. All gave written consent to 

participate in the study which has been approved by the Office of Research Ethics at the 

University of Waterloo. 

Electromyographic (EMG) recording 

 Surface EMG was recorded in the same way as previous studies. 

TMS & Neuronavigation 
 Focal TMS was performed as in Studies #1-#3. All participants performed no 

behavioural task.  Instead, the single-pulse TMS mapping measurements of the ECR 
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representation were performed before and following a rest period of approximately 30 

min (the amount of time required on average to complete the BMT tasks performed in the 

previous studies).    

Statistical analysis 
   To investigate the potential effects of cortical mapping, analysis was performed 

between the pre and post time points with the dependent measures of spatial extent, 

global, and central MEP amplitude.  Therefore, a repeated measures ANOVA was 

performed with TIME as a factor (group 1: rest – pre and 30 min post acquisition of pre 

mapping).   

 

Results 

Appendix figure 1 displays the spatial map, global, and central MEP amplitude 

before and after the intervention of rest.  There was no change in spatial extent of ECR in 

M1, as a one-way repeated measures ANOVA revealed no increase in active sites 

between before and after rest alone (F (1, 7)=0.026, p=0.876).  There was also no change 

in global (F (1, 7)=0.067, p=0.803) or central (F (1, 7)=0.001, p=0.973) MEP amplitudes 

before and after rest alone.  

 

Appendix figure 1. Means of all dependent measures for left M1 ECR excitability for all participants before 
and after rest. Left Spatial maps displayed by number of active sites. Middle Global MEP amplitude. Right 

Central MEP amplitude. All bars represent SEM. Asterisk indicates significance, p < 0.05. 
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Discussion 

 M1 cortical excitability of the ECR in the left hemisphere is not modulated by the 

collection of single-pulse TMS over the extents of the target muscle representation.  The 

results indicated that neither the frequency of single-pulse stimulations, nor the total 

number of stimulations changed the excitability of the ECR muscle representation in M1.  

Therefore, it is unlikely that this particular limitation in Studies #1-#3 affected the results 

observed.  

 

Appendix 2: Behavioural performance parameters during bimanual training (BMT) 
 
Rationale 
 The purpose of this analysis is to further elucidate the contribution of both upper-

limbs to the performance of the bimanual training tasks (BMT) used in the current thesis.  

The contribution of each individual limb to the behavioural performance of the BMT 

tasks is of particular interest since all participants were right hand dominant and Studies 

#1-#3 primarily recorded TMS measures from the left hemisphere M1.  The performance 

of each limb during BMT could be indicative of the particular cortical excitability 

changes observed in the studies of the current thesis.  It was hypothesized that the 

behavioural of each upper-limb equally contributed to kinematic dependent 

measurements quantified in the current studies. 

 
Statistical analysis 
   This analysis specifically focused on comparing the horizontal (left upper-limb) 

and vertical (right upper-limb) peak velocities from each upper-limb during the first 10 

trials and last 10 trials of BMT for each group (anti-phase BMT, in-phase BMT, iTBS to 

lPMd + BMT, cTBS to rM1 + BMT).  Therefore, a 2-way ANOVA was performed with 
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UPPER-LIMB (2 levels: left and right upper-limb) and GROUP (4 levels: anti-phase 

BMT, in-phase BMT, iTBS to lPMd + BMT, cTBS to rM1 + BMT) as a between subjects 

factors.  Post hoc analyses were performed with a Tukey correction method to investigate 

any further differences between factor GROUP.   

 

Results 

Appendix figure 2 displays scatterplots of all groups that performed BMT, 

displaying the angle at peak velocity for both the left (horizontal component) and right 

(vertical component) upper-limbs, with the top panel showing all training trials for all 

participants and the bottom panel showing the first and last 10 trials for all participants.  

Linear regression line is shown.  For the first 10 trials of BMT, a 2-way ANOVA 

revealed no difference in angle at peak velocity between UPPER-LIMB (F (1, 76)=0.002, 

p=0.968), no GROUP X UPPER-LIMB interaction (F (3, 76)=1.016, p=0.390), with an 

effect of GROUP (F (3, 76)=4.813, p=0.004).  Post Hoc analysis revealed a reduced 

angle at peak velocity (i.e. enhanced performance) in the first 10 trials in the cTBS to 

rM1 + BMT group compared to those that performed in-phase BMT alone (p=0.003) and 

a close to significant difference with anti-phase BMT alone (p=0.056).  For the last 10 

trials of BMT, a 2-way ANOVA revealed no difference in angle at peak velocity between 

UPPER-LIMB (F (1, 74)=1.196, p=0.278) no GROUP X UPPER-LIMB interaction (F (3, 

74)=0.795, p=0.501), with an effect of GROUP (F (3, 74)=4.163, p=0.009).  Post Hoc 

analysis revealed a reduced angle at peak velocity (i.e. enhanced performance) in the last 

10 trials in the cTBS to rM1 + BMT group compared to the anti-phase BMT group 

(p=0.027) and a near significant difference with the iTBS to lPMd + BMT group 
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(p=0.056).  These analyses reveal that at the beginning of training (first 10 trials) and the 

end of training (last 10 trials) there were no differences in the contribution of each upper-

limb to the overall performance bimanual movement task.  There was a slight difference 

at the beginning of training (first 10 trials) in the overall performance of the in-phase and 

anti-phase BMT between the cTBS to rM1 with BMT and BMT alone groups, and 

between the cTBS to rM1 with BMT and iTBS to lPMd with BMT and anti-phase BMT 

at the end of training (last 10 trials).  This indicated that there was a slight enhancement 

in performance at the start and finish when BMT was preceded by cTBS to rM1.  

However, these performance enhancements are very slight and occur only with the 

dependent measure of angle at peak velocity.  

 

Appendix figure 2. Top Scatterplots of the horizontal (x-axis) and vertical (y-axis) contributions to the 
angular error at peak velocity of the resultant cursor path for anti-phase BMT, in-phase BMT, iTBS to 

lPMd + BMT and cTBS to rM1 + BMT groups (from left to right in the figure). Bottom Scatterplots of the 
horizontal (x-axis) and vertical (y-axis) contributions to the angular error at peak velocity of the resultant 

cursor path for the same groups for the first and last 10 trials of BMT.  Linear regression fit shown, with R-
squared correlation values. 
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Discussion 

 Overall, both hands were active simultaneously and were similarly contributing to 

the resultant cursor movement across training trials in all groups that performed BMT.  

As confirmed by analysis comparing the angular error of each upper-limb in this 

appendix, there are equal contributions of each upper-limb to the performance of the 

BMT task.  From this, it is reasonable to assume that generally speaking, participants 

were performing the task appropriately, with both upper-limbs simultaneously active with 

the goal of moving the cursor to the particular visual targets displayed.  Therefore, the 

cortical excitability effects observed in the current thesis are likely due to the specific 

parameters of our BMT training tasks.  
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