
Automated Resolution Selection for
Image Segmentation

by

Fares Al-Qunaieer

A thesis
submitted to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2014

c© Fares Al-Qunaieer 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

It is well known in image processing in general, and hence in image segmentation in par-

ticular, that computational cost increases rapidly with the number and dimensions of the

images to be processed. Several fields, such as astronomy, remote sensing, and medical

imaging, use very large images, which might also be 3D and/or captured at several fre-

quency bands, all adding to the computational expense.

Multiresolution analysis is one method of increasing the efficiency of the segmentation

process. One multiresolution approach is the coarse-to-fine segmentation strategy, whereby

the segmentation starts at a coarse resolution and is then fine-tuned during subsequent

steps. Until now, the starting resolution for segmentation has been selected arbitrarily

with no clear selection criteria.

The research conducted for this thesis showed that starting from different resolutions

for image segmentation results in different accuracies and speeds, even for images from the

same dataset. An automated method for resolution selection for an input image would thus

be beneficial. This thesis introduces a framework for the selection of the best resolution

for image segmentation. First proposed is a measure for defining the best resolution based

on user/system criteria, which offers a trade-off between accuracy and time. A learning

approach is then described for the selection of the resolution, whereby extracted image

features are mapped to the previously determined best resolution.

In the learning process, class (i.e., resolution) distribution is imbalanced, making ef-

fective learning from the data difficult. A variant of AdaBoost, called RAMOBoost, is

therefore used in this research for the learning-based selection of the best resolution for

image segmentation. RAMOBoost is designed specifically for learning from imbalanced

data. Two sets of features are used: Local Binary Patterns (LBP) and statistical features.

Experiments conducted with four datasets using three different segmentation algorithms

show that the resolutions selected through learning enable much faster segmentation than

the original ones, while retaining at least the original accuracy. For three of the four

datasets used, the segmentation results obtained with the proposed framework were sig-

nificantly better than with the original resolution with respect to both accuracy and time.

iii

Acknowledgements

I have faced many obstacles and difficulties while pursuing my PhD degree and writing

this thesis. Several individuals made this journey possible and relieved some of the stress.

First, I would like to thank my supervisor, Dr. Hamid Tizhoosh, and co-supervisor, Dr.

Shahryar Rahnamayan, for their time and support. I have learned valuable lessons from

them. I appreciated their fast response and availability when needed. I also want to thank

all the committee members for their time and valuable suggestions on how to improve this

thesis.

Special thanks go to my wife and children for their support and patience during the

entire time that I worked on the thesis, and to my parents for their endless and constant

motivation and encouragement.

I would like to thank King Abdulaziz City for Science and Technology for their schol-

arship and support. I would also like to thank Dr. Haibo He for his fruitful discussion on

the topic of learning from imbalanced class distribution. Many thanks go to everyone who

discussed and reviewed this thesis with me.

The Saudi Student Association of Waterloo has been helping me since I arrived at

Waterloo. They made me feel as though I were still at my home. I would like to thank

everyone who made this possible. Your support has been invaluable to me.

iv

Dedication

to my wife and children for their endless support

and

to my parents, who always encouraged me to learn and grow

v

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation and Problem Formulation . 2

1.2 Objectives . 3

1.3 Outline of the Thesis . 4

2 Image Segmentation 6

2.1 Thresholding-Based Segmentation . 7

2.2 Edge-Based Segmentation . 8

2.3 Region-Based Segmentation . 11

2.3.1 Statistical Region Merging . 12

2.4 Active Contours . 14

2.4.1 Snakes . 14

2.4.2 Level Sets . 16

2.5 Other Segmentation Algorithms . 19

2.5.1 Parametric Kernel Graph Cuts . 20

vi

3 Multiresolution Image Segmentation 22

3.1 Multiresolution Methods . 23

3.1.1 Pyramid Representation . 23

3.1.2 Scale-Space Representation . 26

3.1.3 Wavelets Analysis . 28

3.2 Multiresolution Image Segmentation Techniques 31

4 Learning Best Resolution for Image Segmentation 36

4.1 Scale Selection for Scale-Space Representation 36

4.2 Analysis of Segmentation at Different Resolutions 40

5 Proposed Framework 45

5.1 Overall Approach . 46

5.2 Preliminary Settings . 46

5.3 Defining the Best Resolution . 48

5.4 Computing the Best Resolution for Learning 49

5.5 Feature Extraction . 53

5.5.1 Local Binary Patterns (LBP) . 54

5.5.2 Statistical Features . 55

5.6 Learning the Best Resolution . 58

5.6.1 Learning from Imbalanced Data . 60

5.6.2 The Learning Algorithm . 62

5.7 Classifiers’ Performance Measures . 63

vii

6 Results and Discussion 66

6.1 Experimentation Setup . 66

6.1.1 Datasets . 67

6.1.2 Parameter Settings . 70

6.1.3 Implementation Environment . 72

6.2 Trade-off Measure Performance . 73

6.2.1 Accuracy and Time with Respect to α 73

6.2.2 Using Different Segmentation Algorithms 82

6.2.3 Maximum Accuracy Resolutions . 84

6.3 Classifier Performance . 87

6.4 Impact of Misclassification on Accuracy and Time 95

6.5 Overhead Time Analysis . 102

6.6 Discussions . 102

7 Summary, Conclusions and Future Work 107

7.1 Summary and Main Findings . 107

7.2 Contributions . 108

7.3 Future Work . 110

References 111

APPENDICES 132

A Algorithms 133

A.1 Support Vector Machines . 133

viii

A.2 Adaptive Synthetic Sampling (ADASYN) 137

A.3 AdaBoost . 137

A.4 Rank Minority Oversampling in Boosting (RAMOBoost) 137

A.5 Joint Mutual Information (JMI) . 139

B Trade-off Measure Alternatives 142

C Classifiers Performance Results 145

C.1 Numerical Results . 146

C.2 F1-measure Figures . 150

D LBP and Statistical Features Results Comparison 158

ix

List of Tables

6.1 Accuracy Levels and Processing Times at the Selected, Peak, Original, and

Minimum Resolutions for Breast Ultrasound Dataset 77

6.2 Accuracy Levels and Processing Times at the Selected, Peak, Original, and

Minimum Resolutions for Liberty Dataset 77

6.3 Accuracy Levels and Processing Times at the Selected, Peak, Original, and

Minimum Resolutions for Lung X-Ray Dataset 78

6.4 Accuracy Levels and Processing Times at the Selected, Peak, Original, and

Minimum Resolutions for Synthetic Dataset 78

6.5 Accuracy at Selected Resolutions with Different Segmentation Algorithms . 85

6.6 Times at Selected Resolutions with Different Segmentation Algorithms . . 85

6.7 Maximum Accuracy Resolutions (α=1) Compared with Original Resolution

for Different Datasets . 85

6.8 Impact of Misclassification of RAMOBoost on Accuracy for the Breast Ul-

trasound Dataset. 96

6.9 Impact of Misclassification of RAMOBoost on Time for the Breast Ultra-

sound Dataset. 97

6.10 Impact of Misclassification of RAMOBoost on Accuracy for the Liberty

Dataset. 98

6.11 Impact of Misclassification of RAMOBoost on Time for the Liberty Dataset. 98

x

6.12 Impact of Misclassification of RAMOBoost on Accuracy for the Lung X-Ray

Dataset. 99

6.13 Impact of Misclassification of RAMOBoost on Time for the Lung X-Ray

Dataset. 99

6.14 Impact of Misclassification of RAMOBoost on Accuracy for the Synthetic

Dataset. 100

6.15 Impact of Misclassification of RAMOBoost on Time for the Synthetic Dataset.101

6.16 Overhead Times for Feature Extraction and for Classification Using RAMO-

Boost and AdaBoost . 103

A.1 Common kernel types for SVM . 136

C.1 Performance of Different Classifiers with Different Values of α for the Breast

Ultrasound Dataset . 146

C.2 Performance of Different Classifiers with Different Values of α for the Liberty

Dataset . 147

C.3 Performance of Different Classifiers with Different Values of α for the Lung

X-Ray Dataset . 148

C.4 Performance of Different Classifiers with Different Values of α for the Syn-

thetic Images Dataset . 149

xi

List of Figures

2.1 Roberts, Prewitt, and Sobel masks for edge detection. 9

2.2 Prewitt and Sobel masks for diagonal edge detection. 9

2.3 Illustration of a level set function and associated curve representation. . . . 17

3.1 Pyramid representation. 24

3.2 Gaussian and Laplacian pyramid representations. 25

3.3 Scale-space representation . 27

3.4 Frequency and space (time) analysis. 29

3.5 The process of 2D wavelet decomposition for one level. 31

3.6 The result of the decomposition of a 2D image for two levels. 32

4.1 Segmentation of different-sized objects at different resolutions, with the out-

put upsampled to the original resolution. 41

4.2 Segmentation of different-sized objects with added Gaussian noise at differ-

ent resolutions, with the output upsampled to the original resolution. . . . 42

4.3 Segmentation of an irregular shape at different resolutions, with the output

upsampled to the original resolution. 44

5.1 Overall approach to the selection of the best resolution for image segmenta-

tion through machine learning. 47

xii

5.2 Illustration of the process of calculating the best resolution of an image . . 51

5.3 An image segmented using ChanVese level set fine-tuned with level set once

at the original resolution, iteratively in each resolution, region growing at

the original resolution, and without fine-tuning. 53

5.4 The process of calculating LBP. 54

5.5 Example of an image filtered with an LBP operator (top) and the resulting

histogram features (bottom). 56

5.6 Confusion matrix: n = number of classes. 63

6.1 Samples of breast ultrasound dataset images (top row) with their corre-

sponding gold standard images (bottom row). 68

6.2 Samples of the Liberty dataset images (top row) with their corresponding

gold standard images (bottom row). 68

6.3 Samples of the images in the lung X-ray dataset (top row) with their corre-

sponding gold standard images (bottom row). 69

6.4 Samples of images from the synthetic images dataset (top row) with corre-

sponding gold standard images (bottom row). 70

6.5 Sample outputs for each resolution for the breast ultrasound dataset (image

1). 74

6.6 Sample outputs for each resolution for the breast ultrasound dataset (image

2). 74

6.7 Sample outputs for each resolution for the Liberty dataset (image 1). . . . 75

6.8 Sample outputs for each resolution for the Liberty dataset (image 2). . . . 76

6.9 Sample outputs for each resolution for the lung X-ray dataset (image 1). . 79

6.10 Sample outputs for each resolution for the lung X-ray dataset (image 2). . 79

6.11 Sample outputs for each resolution for the synthetic dataset (image 1). . . 80

xiii

6.12 Sample outputs for each resolution for the synthetic dataset (image 2). . . 80

6.13 Selected resolution (class) distribution with different values of α for the

breast ultrasound dataset. 82

6.14 Selected resolution (class) distribution with different values of α for the

Liberty dataset. 83

6.15 Selected resolution (class) distribution with different values of α for lung

X-ray dataset. 83

6.16 Selected resolution (class) distribution with different values of α for the

synthetic images dataset. 84

6.17 Selected resolution (class) distribution with different values of α for the

Liberty dataset using the SRM segmentation algorithm. 86

6.18 Selected resolution (class) distribution with different values of α for the

Liberty dataset using the ChanVese level set segmentation algorithm. . . . 86

6.19 Maximum accuracy resolutions (α=1) distribution. 87

6.20 Left: performance of different classifiers with α=0.7 for the breast ultra-

sound dataset: LBP features; right: confusion matrix of RAMOBoost. . . . 89

6.21 Left: performance of different classifiers with α=0.7 for the breast ultra-

sound dataset: statistics features; right: confusion matrix of RAMOBoost. 90

6.22 Left: performance of different classifiers with α=0.7 for the Liberty dataset:

LBP features; right: confusion matrix of RAMOBoost. 91

6.23 Left: performance of different classifiers with α=0.7 for the Liberty dataset:

statistics features; right: confusion matrix of RAMOBoost. 91

6.24 Left: performance of different classifiers with α=0.7 for the lung X-ray

dataset: LBP features; right: confusion matrix of RAMOBoost. 92

6.25 Left: performance of different classifiers with α=0.7 for the lung X-ray

dataset: statistics features; right: confusion matrix of RAMOBoost. 93

xiv

6.26 Left: performance of different classifiers with α=0.7 for the synthetic images

dataset: LBP features; right: confusion matrix of RAMOBoost. 94

6.27 Left: performance of different classifiers with α=0.7 for the synthetic images

dataset: statistics features; right: confusion matrix of RAMOBoost. 94

A.1 Left: linear separable classes; right: linear non-separable classes. 135

A.2 Mapping from input space to higher dimensional space. 136

B.1 Comparison of three trade-off measures with α=0.1. From left to right:

weighted geometric mean, weighted arithmetic mean, and weighted accuracy

over time. 143

B.2 Comparison of three trade-off measures with α=0.5. From left to right:

weighted geometric mean, weighted arithmetic mean, and weighted accuracy

over time. 144

B.3 Comparison of three trade-off measures with α=0.9. From left to right:

weighted geometric mean, weighted arithmetic mean, and weighted accuracy

over time. 144

C.1 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

breast ultrasound dataset: LBP features. 150

C.2 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

breast ultrasound dataset: statistics features. 151

C.3 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

Liberty dataset: LBP features. 152

C.4 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

Liberty dataset: statistics features. 153

C.5 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the lung

X-ray dataset: LBP features. 154

xv

C.6 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the lung

X-ray dataset: statistics features. 155

C.7 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

synthetic images dataset: LBP features. 156

C.8 Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the

synthetic images dataset: statistics features. 157

D.1 Features comparison for RAMOBoost classifier with different values of α for

the breast ultrasound dataset. 159

D.2 Features comparison for AdaBoost classifier with different values of α for

the breast ultrasound dataset. 159

D.3 Features comparison for SVM classifier with different values of α for the

breast ultrasound dataset. 160

D.4 Features comparison for SVM-ADASYN classifier with different values of α

for the breast ultrasound dataset. 160

D.5 Features comparison for RAMOBoost classifier with different values of α for

the Liberty dataset. 161

D.6 Features comparison for AdaBoost classifier with different values of α for

the Liberty dataset. 161

D.7 Features comparison for SVM classifier with different values of α for the

Liberty dataset. 162

D.8 Features comparison for SVM-ADASYN classifier with different values of α

for the Liberty dataset. 162

D.9 Features comparison for RAMOBoost classifier with different values of α for

the lung X-ray dataset. 163

D.10 Features comparison for AdaBoost classifier with different values of α for

the lung X-ray dataset. 163

xvi

D.11 Features comparison for SVM classifier with different values of α for the

lung X-ray dataset. 164

D.12 Features comparison for SVM-ADASYN classifier with different values of α

for the lung X-ray dataset. 164

D.13 Features comparison for RAMOBoost classifier with different values of α for

the synthetic dataset. 165

D.14 Features comparison for AdaBoost classifier with different values of α for

the synthetic dataset. 165

D.15 Features comparison for SVM classifier with different values of α for the

synthetic dataset. 166

D.16 Features comparison for SVM-ADASYN classifier with different values of α

for the synthetic dataset. 166

xvii

Chapter 1

Introduction

Image segmentation is an essential component of many image processing and computer

vision applications. Extracted regions are used for a variety of purposes, such as object

detection and recognition [1], size/volume measurement [2], and content-based image re-

trieval [3]. Because of its importance, tremendous effort has been invested in designing

accurate and efficient segmentation algorithms. Concepts from numerous fields, such as

optimization [4], statistics [5], information theory [6], and graph theory [7], have been

utilized in this area.

An inherent challenge in image processing in general, and in image segmentation in

particular, is the rapid increase in computational cost that accompanies an expanding

number of images and their dimensions. This issue is crucial because, in many fields, such

as astronomy [8], remote sensing [9], and medical imaging [10], the number of images and

their dimensions is extensive. Some of these images also have three dimensions and/or

have been captured at several frequency bands (i.e., multi-spectral).

Processing such images requires either powerful hardware (e.g., GPUs), or enhanced

algorithms (e.g., parallel design), or both. As presented in the literature, an established

method of satisfying these requirements is multiresolution analysis [11, 12, 13]. In addition

to speeding up the segmentation, multiresolution analysis also increases the accuracy of

many techniques because images at different resolutions can be viewed in different perspec-

1

tives. Large objects and major structures and edges can be analyzed at coarse resolutions,

while fine details and small objects are examined at finer resolutions. At lower resolutions,

noise is also reduced, and regions become more homogeneous.

Multiresolution analysis has been used extensively for developing a variety of image

segmentation algorithms. The majority of these methods utilize information from some

or all resolutions, and some of these methods are reviewed in Section 3.2. This work

was targeted at a multiresolution technique for increasing image segmentation efficiency,

namely, the coarse-to-fine segmentation strategy, in which the segmentation process starts

with a coarse resolution and is then fine-tuned at finer ones. Because it simplifies the input

image rather than altering the segmentation algorithm, numerous segmentation algorithms

can be used with this method.

1.1 Motivation and Problem Formulation

Processing large images is computationally expensive. The computation dramatically in-

creases with images captured in 3D (multiple slices) or/and in multiple frequency bands.

Recently, new technology enables the capturing of images in much greater detail, which

results in more data to process. Medical imaging is an example in which an image could

require Gigabytes or Terabytes of memory [10]. These images can be very large or/and

consist of thousands of slices [10]. Another example is hyperspectral images capturing

hundreds of spectral bands [14]. Furthermore, these images could be processed in patches.

One of the challenges for such images is the slow processing time [10]. Even a slight in-

crease in speed for processing an image or slice of it (for 3D or multi-spectral images) can

amount to much greater overall speed.

In some cases, it is not affordable to use powerful hardware for image processing. There-

fore, several research projects have been conducted on developing software solutions, such

as parallel algorithms [15] and multiresolution schemes [11, 12, 13]. The multiresolution

coarse-to-fine image segmentation proved to be an efficient method for increasing both the

speed and accuracy of the used segmentation algorithm as discussed in Section 3.2.

2

Some researchers have used image segmentation algorithms in a coarse-to-fine fashion

with arbitrarily chosen initial resolutions for the processing of all images [16, 17, 18, 19].

However, segmenting an image at a variety of resolutions results in different accuracies and

running times, as discussed in Sections 4.2 and 6.2.1 and in [20, 21]. Different images yield

varying segmentation accuracies and times per resolution, even with images from the same

dataset as explained in Section 6.2.1. To the best of the author’s knowledge, no work has

been reported with respect to the automated selection of resolutions for image segmenta-

tion, for which a framework is proposed in this thesis. Studies have been conducted on

scale selection for the scale-space representation, which are reviewed in Section 4.1, but

they are not directly related to this research, as will be explained.

Defining the best resolution for image segmentation is empirical and is directly related

to the nature of the application. Two factors can be used for defining the best resolu-

tion for image segmentation: accuracy and time. This research is concerned with the

simultaneous consideration of both time and accuracy; hence investigating an intelligent

approach toward establishing a trade-off between time and accuracy becomes crucial. For

critical systems, such as medical applications, accuracy is the primary consideration, while

in other applications, such as robot navigation or image retrieval, speed can be more im-

portant than perfect accuracy. There must therefore be a trade-off between accuracy and

speed, and without an appropriate criterion, selecting a resolution that yields the desired

accuracy and speed is difficult.

1.2 Objectives

The goal of this research was to develop a method for the automated selection of an initial

resolution for image segmentation in a coarse-to-fine scheme. The overall goal was broken

down into the following objectives:

• To investigate trade-off measures with respect to time and accuracy as a means of

defining the best resolution for image segmentation according to application require-

ments. Best resolution generally has no clear definition and is application oriented.

3

The trade-off between accuracy and speed requirements varies enormously according

to the applications.

• To develop a general framework for the resolution selection for image segmentation.

Images are usually complex and can contain several objects of different sizes and

with different characteristics, various noise types and levels, crisp or fuzzy edges, and

varying degrees of uniformity in the regions. Therefore, with the exception of very

specific cases, simple rules seems to be insufficient for estimating the best resolution

for an image. In this research, machine learning methods are investigated to learn

and estimate the best resolutions from training images.

• To identify both an efficient learning method and features suitable for the learning

purposes of this research.

While this work intends to find the best resolution for image segmentation, it is not con-

cerned with developing or modifying image segmentation algorithms, nor with multires-

olution analysis methods.

1.3 Outline of the Thesis

This thesis consists of seven chapters organized as follows:

Chapter 1: The thesis is introduced, the motivation behind the work is explained,

and the specific objectives are discussed.

Chapter 2: An overview of image segmentation techniques is provided. Image seg-

mentation is first defined, and then associated approaches are briefly described.

Chapter 3: Multiresolution image segmentation is discussed: a number of multireso-

lution techniques are described, and several strategies of published multiresolution image

segmentation in the literature are reviewed, with an emphasis on the coarse-to-fine strat-

egy, the approach used in this research.

4

Chapter 4: Resolution selection for image segmentation is explained, and previous

work on scale selection for the scale-space representation is distinguished from the research

in this thesis. The performance of image segmentation at different resolutions is then

analyzed based on simple experimental results.

Chapter 5: The proposed framework is described in detail. A trade-off measure for

defining the best resolution is proposed. Then, image segmentation and the obtaining

of the best resolution using the proposed trade-off measure are discussed, followed by a

description of the proposed features to be used for learning. The learning method selected

is presented, and the measures of classification performance are then discussed.

Chapter 6: This chapter explains the process of experimentally verifying the proposed

framework and assessing the performance of the trade-off measure, along with an analysis of

the behaviour of the trade-off measure with different segmentation algorithms for the same

dataset. The classification performances of the learning method used with the features

chosen are compared with those of other learning methods. The results of the examination

of the impact of misclassification on both accuracy and time are presented. The results

are discussed in the last section of this chapter.

Chapter 7: The main findings of this research are summarized, the contributions are

highlighted, and the direction of future work is suggested.

5

Chapter 2

Image Segmentation

Image segmentation is an essential part of many computer vision applications. Numerous

tasks, such as object recognition, first require the desired object to be extracted (seg-

mented). Let I denote the input image; the aim of image segmentation is to partition

I into n regions Ij, such that [22]

1.
n⋃
j=1

Ij = I (an image consists of multiple segments).

2. Ij is a connected set, where j = 1, 2, . . . , n.

3. Ij ∩ Ik = ∅ for all j and k, where j 6= k.

4. Q(Ij) = TRUE for j = 1, 2, . . . , n, where Q(Ix) is a logical predicate defined over the

pixels in the region Ix. An example of such a predicate is the similarity of intensity

level.

5. Q(Ij ∪ Ik) = FALSE, for any adjacent regions Ij and Ik.

Because of the importance of image segmentation, numerous algorithms have already

been proposed for performing this task accurately and efficiently. Existing segmentation

6

algorithms can be categorized as follows: thresholding-based segmentation [23, 6], edge-

based segmentation [24, 25], region-based segmentation [22, 26], active contour segmenta-

tion [4, 27], and other segmentation algorithms.

This chapter provides an overview of existing methods for image segmentation and the

details of the methods used in this research.

2.1 Thresholding-Based Segmentation

Image thresholding algorithms represent the simplest segmentation methods. The goal

of image thresholding is to discriminate objects from the background. Bi-level threshold-

ing usually involves only one object and a widely uniform background, but thresholding

techniques can also be applied to multiple objects (i.e., multi-level thresholding). Thresh-

olding can be used for segmentation on its own or can be an element of a more complex

processing chain as a pre-stage. Intensive effort has been devoted to the design of accurate

thresholding algorithms, resulting in the reporting of numerous algorithms in the literature.

Sezgin and Sankur [28] conducted an extensive review of more than 40 existing threshold-

ing techniques. They categorized them into the following groups: histogram-shape-based

methods, clustering-based methods, entropy-based methods, object-attribute-based meth-

ods, spatial methods, and local methods.

The Otsu method [23] is the most popular thresholding algorithm. From the histogram

of an image, Otsu proposed an evaluation criterion based on the zeroth and first-order

statistics. The aim of the algorithm is to minimize the measure of separability among the

classes. Kapur et al. [6] proposed an algorithm based on the entropy concept. They defined

the entropies that correspond to the distributions of the different classes. Then, in order to

achieve the maximum information between the classes (hence, the optimal thresholding),

the sum of the defined entropies is maximized. Kittler and Illingworth [29] modeled the

classes (i.e., object and background) as a mixture of Gaussians obtained from the image

histogram. The objective of their suggested algorithm is to minimize the classification

error rate in order to obtain the minimum thresholding error.

7

A variety of techniques have been utilized for designing image thresholding algorithms.

Tao et al. [30] proposed the use of normalized graph cuts. The weights of the graph

were computed from the grey levels of the image. Yang et al. [31] proposed a Spatially

Weighted Fuzzy C-Means (SWFCM) algorithm and incorporated the spatial information

into the Fuzzy C-Mean (FCM) clustering algorithm. Opposition-Based Differential Evolu-

tion (ODE) was applied in order to find the best threshold value [32], and the thresholding

task was modeled as a minimization problem. To solve the problem more quickly, the ODE

with a very small population size (Np = 5), called micro-ODE, was used. Rahnamayan et

al. [33] proposed a method for the fusion of the thresholding results from different algo-

rithms. They applied a weighted voting scheme as a means of finding the best threshold

value. An algorithm for image thresholding based on opposite fuzzy sets was proposed

by Al-Qunaieer et al. [34]. The proposed algorithm searches for the two fuzzy sets with

minimum similarity in order to determine the threshold.

Computational intelligence techniques have also been used for image thresholding. To

find the best thresholding value, Kang and Zhang [35] utilized the Cellular Neural Network

(CNN) in conjunction with histogram analysis. A genetic algorithm was used by Ren [36]

to estimate the optimal threshold value, and Particle Swarm Optimization (PSO) was

utilized for image thresholding by Lin et al. [37], who considered each pixel as a particle

and the optimal threshold as the food source.

Because the thresholding algorithms work on the intensity histogram, they work glob-

ally. This introduces problems in situations such as regions with multiple grey-scales (i.e.,

non-homogenous) and noisy images. Variants were suggested to overcome this problem,

such as adaptive thresholding [38].

2.2 Edge-Based Segmentation

Edges can be detected through a search for sharp and local changes (discontinuities) in the

intensity levels of an image. Since the goal is to find intensity changes, first and second

order derivatives are commonly used for detecting edges. The simplest algorithms are those

8

that use discrete masks for calculating the gradient of the image by convolving the image

with the mask. Roberts [39], Prewitt [40], and Sobel [24] edge detectors are examples of

the use of such masks (Figure 2.1). Roberts masks are used to detect diagonal edges by

taking the difference between adjacent diagonals. Prewitt masks calculate the horizontal

gradient (x-direction edges) Hg by subtracting the first and last rows and, in the same

way, calculate the vertical gradient (y-direction edges) Vg by subtracting the first and last

columns. Sobel masks perform the same operations as Prewitt masks but add additional

weight to the centre pixel to smooth the result. Both the strength (magnitude M) and

direction θ of the edges can be calculated from Hg and Vg, as follows:

M =
√
H2
g + V 2

g , (2.1)

θ = tan−1

[
Vg
Hg

]
. (2.2)

Prewitt and Sobel masks can be modified for enhanced detection of diagonal edges, as

shown in Figure 2.2.

-1 0
0 1

0 -1
1 0

(a) Roberts

-1 -1 -1
0 0 0
1 1 1

-1 0 1
-1 0 1
-1 0 1

(b) Prewitt

-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

(c) Sobel

Figure 2.1: Roberts, Prewitt, and Sobel masks for edge detection.

0 1 1
-1 0 1
-1 -1 0

-1 -1 0
-1 0 1
0 1 1

(a) Prewitt

0 1 2
-1 0 1
-2 -1 0

-2 -1 0
-1 0 1
0 1 2

(b) Sobel

Figure 2.2: Prewitt and Sobel masks for diagonal edge detection.

9

Marr and Hildreth [41] proposed a more sophisticated edge detection algorithm, which

requires more processing steps than pure convolution methods. They used Laplacian of a

Gaussian (LoG) as the edge detection operator, which is defined as

O2G(x, y) =

[
x2 + y2 − 2σ2

σ4

]
e
−
x2 + y2

2σ2 , (2.3)

where G is a 2D Gaussian function and O2 is a Laplacian operator. The former is used

for image smoothing and the latter to obtain the second derivative of the image. After

the image is convolved with the operator in Eq. 2.3, the edges are found by searching

for zero-crossings of the resulting image.

Canny [25] proposed one of the most popular edge detection algorithms. First, the

input image is smoothed through convolving with a Gaussian function, and the gradient

magnitude and angles are then calculated from the smoothed image. To thin the edges in

the gradient magnitude image, non-maxima suppression is applied. The resulting image is

thresholded, and connectivity analysis is conducted to find and connect the edges.

Several researchers have applied fuzzy logic for the detection of edges. Law et al.

[42] considered edge detection to be a fuzzy reasoning problem and smoothed the input

image based on that approach. After edge membership values for each pixel are evaluated,

candidate edges are selected, and pixels with high edge membership are then connected

using fuzzy reasoning. Fuzzy morphology was utilized by Gonzalez-Hidalgo et al. [43]

to detect edges and denoise the image. They used a residual operator based on fuzzy

opening and closing operations.

Neural network is a well-known soft computing tool that has been utilized for edge

detection by several researchers [44, 45, 46], who applied backpropagation neural networks

with different training patterns and network settings. Bhandarkar et al. [47] employed ge-

netic algorithms for edge detection, with consideration of minimum cost edge configuration

and the definition of edge configurations as 2D chromosomes.

10

Because edge-based image segmentation methods are local, they are sensitive to noise

and are not working well with smooth edges and low contrast images. In addition, post-

procession is required for edge linking.

2.3 Region-Based Segmentation

While edge detection algorithms depend primarily on discontinuities in the images, region-

based algorithms look for similarities within regions. The characteristics of the regions, such

as intensity, colours, and texture, are used to determine the homogeneity (uniformity) inside

each region. The goal of such algorithms is to maximize the similarity within similar regions

and the dissimilarity among different regions. Region-based algorithms are generally less

sensitive to noise than edge-based algorithms, but they are also usually more complex.

Region growing [22] is considered one of the simplest categories of region-based algo-

rithms. The central concept behind this technique is for regions to grow from predetermined

points termed “seed points.” Starting from each seed, neighbouring pixels that meet speci-

fied similarity criteria are added to the growing region. Many similarity criteria are related

to intensity, colour, and other image properties. The choice of the initial seed points has

a considerable effect on the performance of region-growing algorithms [48]. These points

can be specified manually by allowing user interaction, or they can be obtained through

an automated preprocessing step.

In contrast to region growing is the concept of split and merge [22]: this process starts

with the whole image as one region. Recursively, regions are then split into subregions

until pixels within all regions exhibit the same properties (homogeneity). When no further

possibilities for splitting exist, adjacent regions with the same properties are merged into

larger homogeneous regions. One method of implementing a split-and-merge process is

to split the whole image into four regions, following which, as described previously, each

subregion is then recursively divided into four regions [49]. With this method, the image

and its subregions can be represented as a tree data structure called “quad-trees,” in

which each node has four children.

11

Clustering algorithms have also been used for region-based image segmentation. In

such algorithms, similar pixels are clustered based on their properties, such as intensity

or colour. Each cluster contains pixels with similar properties that represent a region.

Tan et al. [26] proposed a region-based method based on fuzzy similarity. The image is

first divided into blocks of pixels, and then based on the fuzzy similarity of neighbouring

blocks similar blocks are merged.

Numerous researchers have employed computational intelligence techniques for image

segmentation. Malki [50] utilized neural networks for image segmentation. A genetic

algorithm was introduced by Visa [51] as a post-processing stage for improving the results

of image segmentation. Bhandarkar and Zhang [52] proposed a method that utilizes genetic

algorithms, with an algorithmic objective of minimizing a cost function defined based on

both edge information and regional grey-scale uniformity.

Region-based segmentation methods are generally more complex than thresholding and

edge-based methods and may not be suitable for segmenting objects having excess variation

of intensities or textures. As stated previously, the choice of the initial seed can greatly

affect the performance of region-growing methods. Statistical region merging algorithm,

which is used in this research, is described next.

2.3.1 Statistical Region Merging

Statistical Region Merging (SRM) is a region merging image segmentation algorithm pro-

posed by Nock and Nielsen [5] based on the formulation of image segmentation as an

inference problem. An image I is considered to be sampled from a perfect unknown scene

I∗, where pixels are represented by a family of distributions.

For regions R and R′, the following merging logical predicate was suggested for grey-

level regions:

Γ(R,R′) =

true, if |R−R′| ≤
√
b2(R) + b2(R′),

false, otherwise,
(2.4)

12

where R is the average intensity of region R and b(·) is a merging threshold. The merging

predicate for color regions is defined by

Γ(R,R′) =

true, if ∀a ∈ R,G,B, |Ra −R′a| ≤
√
b2(Ra) + b2(R′a),

false, otherwise.
(2.5)

The SRM segmentation method is described in Algorithm 1. Nock and Nielsen [5] tested

two choices of function f(p, p′). The first is defined by

f(p, p′) = |p− p′|, (2.6)

and the Sobel convolution filter was the second choice.

Algorithm 1 Statistical Region Merging (SRM) [5]

Inputs
SI : set of adjacent pixels in a 4-connectivity
f(p, p′): real valued function of p and p′ pixels

Sort(SI) in increasing order of f(p, p′)
for all (p, p′) pixels ∈ SI do

if Γ(R(p), R(p′)) = true then
Merge(R(p), R(p′))

end if
end for

The statistical complexity can be controlled by a parameter Q, which is used in the

definition of the merging threshold, b(·), in Eq. 2.4 as detailed in [5]. Changing this

parameter controls the scale of segmentation. A small value of Q enables the segmentation

of only large regions, and as the value of Q increases, smaller regions can be segmented.

13

2.4 Active Contours

This section discusses algorithms for curve evolution. The objective of these methods is

the evolution of curves based on forces derived from the characteristics of the curve itself

and the content of the image. Cost functions are defined based on these forces, and optimal

segmentation results are obtained through the minimization of the defined cost function.

The active contours presented in this section fall into two main categories: snakes and

level sets. Snakes active contours are parametric in nature, and the curve evolution is

performed explicitly. In the case of level set methods, the curve evolves implicitly through

the deformation of a defined level set function. Snakes active contours and level set methods

are discussed in greater details in the following subsections.

2.4.1 Snakes

Kass et al. [4] introduced the so-named snakes model, because of the behaviour of the

curve evolution: the contour is deformed in order to minimize the contour’s energy. In the

snakes approach, active contours are parameterized curves, and a contour parameterized

by arc length s is defined as

C(s) = {(x(s), y(s)) : 0 ≤ s ≤ L} , (2.7)

where L is the length of the contour C. The energy function E(C) that deforms the

contour can be defined as

E(C) = Eint + Eext, (2.8)

where Eint denotes the internal energy, and Eext denotes the external energy. The internal

energy determines the regularity of the contour and can be defined as

Eint =

∫ L

0

α|C ′(s)|2 + β|C ′′(s)|2 ds, (2.9)

14

where α controls the tension of the contour, and β controls the rigidity of the contour.

The external energy determines the criteria of contour evolution depending on the image

I(x, y), which can be defined as

Eext =

∫ L

0

Eimg(C(s)) ds, (2.10)

where Eimg(x, y) is a function defined on the image plane. A popular choice of edge

attraction function is

Eimg(x, y) =
1

λ|OGσ ∗ I(x, y)|
, (2.11)

where Gσ is a Gaussian smoothing filter with a standard deviation σ, λ is a suitability

constant, and ∗ represents the convolution.

Early snakes formulations entailed two major problems. First, they should be initialized

close to the desired edges because they rely only on local information. This feature makes

contour initialization a critical step, which can become a challenging problem, especially

in the absence of prior knowledge. Second, the topology of the contours cannot change

because they are parametric, which means that boundaries cannot be split or merged.

Cohen [53] proposed a solution for the initialization problem by adding a constant force.

The additional force inflates the growth of the contour, hence the method named “balloon

snake.” In this way, the initial contour can be located farther from the desired boundaries.

Rahnamayan et al. [54] proposed automated snakes initialization for ultrasound prostate

segmentation, whereby morphological operators are used in order to find a section inside

the prostate whose, boundary is used as the initial curve.

A solution for the topology problem was proposed by McInerney and Terzopoulos [55],

who utilized Affine Cell Image Decomposition (ACID), which decomposes the image into

a set of convex polytopes. The changes in topology are managed through the reparame-

terization of the curve with each set of iterations.

15

2.4.2 Level Sets

The level set method was introduced by Osher and Sethian [56] for interface propagation

and has been used in numerous applications: computational fluid mechanics [57], com-

puter graphics [58], shape optimization [59], inverse problems [60], and image analysis

[27]. The contour is defined implicitly with the use of a Lipschitz continuous function

φ(x, y), called a level set function. The contour is usually defined at the zeroth level of

φ(x, y), such that positive and negative represent different regions. Let C represent the

contour; it is defined as

C = {(x, y) : φ(x, y, t) = 0} ,∀(x, y) ∈ Ω, (2.12)

where Ω denotes the entire image domain, and t is the time through deformation. Figure

2.3 illustrates the representation of curves using a level set function. The evolution of

the curve is performed implicitly as the level set function evolves. Since the contour

is defined implicitly with a function of higher dimension, changes in the topology are

handled automatically. For the evolution of a level set function, the following equation

is differentiated with respect to t:

φ(x, y, t) = 0, (2.13)

and the result is

φt + V · Oφ = 0, (2.14)

where V is the velocity field of the contour C(t). The velocity field consists of normal (~N)

and tangent (~T) components; Eq. 2.14 thus becomes

φt +
(
vn · ~N + vt · ~T

)
· Oφ = 0. (2.15)

16

(a) Level set function φ with curve C
embedded in it

(b) Curve C represented by the level set
function φ

Figure 2.3: Illustration of a level set function and associated curve representation.

Tangent velocity is known not to affect the deformation of the function; thus ~T · Oφ = 0.

The unit normal of the curve can also be written as

~N =
Oφ
|Oφ|

, (2.16)

where |.| is the L2-Norm. Thus, Eq. 2.15 becomes [56]

φt + vn|Oφ| = 0. (2.17)

The mean curvature of the level set function, κ, is defined to control the regularity of

the curve and can be obtained as the second derivative of φ(x, y), as follows [56]:

κ(φ(x, y)) = O

(
Oφ
|Oφ|

)
=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

, (2.18)

where φx and φxx are the first and second order partial derivatives of function φ(x, y) with

respect to x, and analogously φy and φyy, with respect to y. The most common method

of defining the initial level set function φ0(x, y) is to use the signed distance function

of the initial contour.

17

Two main methodologies for implementing the level set for image segmentation are

edge-based [61, 62, 27] and region-based [63, 64, 65]. Edge-based level set methods rely on

principles similar to those of edge-based segmentation algorithms. Because the goal is to

attract the contours toward the edges of the image, they usually depend on the gradient of

the image. On the other hand, for curve evolution, region-based active contour algorithms

exploit the characteristics of the regions, such as intensity distribution or texture. In this

research, a region-based level set image segmentation is used, which is described next.

Region-Based Level Set

Region-based active contour algorithms exploit regional characteristics, such as intensity

distribution or texture, for curve evolution. An early and well-known method is the one

proposed by Chan and Vese [63]. The authors employed a level set method to minimize

the Mumford-Shah segmentation model [66] for piecewise constant approximation of the

image. The cost function is defined by

E(c1, c2, C) = µ · L(C) + v · A(Cin)

+λ1

∫
Cin

|I(x, y)− c1|2 dx dy

+λ2

∫
Cout

|I(x, y)− c2|2 dx dy,

(2.19)

where C denotes the curve; Cin is the set of points inside C; Cout is the set of points outside

C; L(·) and A(·) functions calculate the length and area, respectively; I is the input image;

µ, λ1, and λ2 are fixed parameters greater than zero; and c1 and c2 are averages of the

areas inside and outside curve C, respectively. The level set formulation of the function is

E(c1, c2, φ) = µ

∫
Ω

δ(φ(x, y))|Oφ(x, y)| dx dy + v

∫
Ω

H(φ(x, y)) dx dy

+λ1

∫
Ω

|I(x, y)− c1|2H(φ(x, y)) dx dy

+λ2

∫
Ω

|I(x, y)− c2|2(1−H(φ(x, y))) dx dy,

(2.20)

18

where H(x) is the Heaviside function defined by

H(x) =

{
1 if x ≥ 0

0 if x < 0
, (2.21)

and δ(x) is the Dirac measure defined as the first derivative of H(x). Chan and Vese [63]

defined a slightly regularized version of H(x) and δ, denoted by Hε(x) and δε(x). To solve

Eq. 2.20, its Euler-Lagrange equation for φ is derived to steady state by

∂φ

∂t
= δε(φ)

[
µ div

(
Oφ
|Oφ|

)
− v +

2∑
j=1

(−1)j · λj(I − cj)2

]
= 0. (2.22)

Vese and Chan [67] proposed a piecewise smooth approximation, in which smoothed

partial images represent each partition. Similar active contour models and formulations

were proposed by Yezzi et al. [64] and Tsai et al. [65].

2.5 Other Segmentation Algorithms

Another common method is “watershed segmentation” [68], which combines region- and

edge-based algorithms as well as morphological processing. Because the idea of watershed

algorithm came from the field of topography, images are viewed as 3D surfaces. Holes

can be imagined as piercing the local minima of the image (usually the gradient of the

image is used), with water raised to fill the basins. As water from different basins starts

to merge, dams are built. The regions represented by the basins are thus segmented by

the dams that have been built. Watershed algorithms usually obtain results character-

ized by over-segmentation [68]. To prevent this effect, consideration of domain knowl-

edge is included through the use of markers [68]. Appropriate markers can be selected

manually or by the inclusion of domain knowledge, such as intensity range, connectivity,

size, shape, and location.

19

Several segmentation algorithms that integrate both edge-based and region-based tech-

niques are proposed in the literature. Xuan et al. [69] suggested the use of edge detection

to validate the boundaries of the results of region growing and merging. The algorithm

begins with region growing, followed by region merging; Canny edge detection is then

used to verify and correct the boundaries of the resulting regions. Yu and Wang [70] first

utilized an edge detection method to obtain a Difference-In-Strength (DIS) map, which

describes complete edge information in the image. A region growing algorithm is then

employed which includes a criterion that determines whether to stop or proceed if a region

touches an edge. The next step is for the regions to be merged according to the similarity

measure. Moigne and Tilton [71] defined a stopping criterion for region growing based on

edge information: the Hausdorff distance is calculated among edges that result from the

Canny algorithm and the boundaries of the regions.

In “graph-based segmentation” (e.g., the graph cuts [7]), images are represented as a

graph G = (V,E), where V is the set of vertices and E is the set of edges. Each pixel of

the image is represented as a vertex vi ∈ V . The edges (vi, vj) ∈ E denote two adjacent

vertices vi and vj, and each edge has a weight wij. The weight of the edge is a measure

of the dissimilarity of the two vertices connected by that edge. The objective of graph

cut algorithms is to partition V into disjoint sets (regions) by removing the edges from

non-similar sets. Next, a variant of graph cuts is described, which is used in this research.

2.5.1 Parametric Kernel Graph Cuts

Ben Saleh et al. [72] proposed a multi-region image segmentation technique in which the

image data is transformed into a higher dimensional space, and then the graph cuts is

applied. The authors used radial basis function kernel to implicitly transform the image

data. The mapping of the data into higher dimensions transforms the non-linear problem

into a linear one, and the piecewise constant model of the graph cuts can be applied.

20

For image I, with regions parameters {µl}, l = 1, . . . , Nreg, where Nreg is the number

of regions, the proposed functional is defined by

FK({µl}, λ) =
∑
l∈Ψ

∑
p∈Rl

JK(Ip, µl) + α
∑
{p,q}∈Ω

r(λ(p), λ(q)), (2.23)

where λ is a labeling function, Ψ is a set of region indices, Rl is a region with label l, and Ω

is a neighbourhood set containing all pairs of neighbouring pixels. The term r(λ(p), λ(q))

is a smoothness regularization function given by

r(λ(p), λ(q)) = min
(
s2, |µλ(p) − µλ(q)|2

)
, (2.24)

where s is a constant. JK is a non-Euclidean distance measure in the original data space

defined by

JK(Ip, µ) = ||φ(Ip)− φ(µ)||2 = K(Ip, Ip) +K(µ, µ)− 2K(Ip, µ), µ ∈ {µl}1≤l≤Nreg , (2.25)

where

K(x, y) = φ(x)T · φ(y), (2.26)

and φ(·) is a non-linear mapping function to a higher dimensional space.

Ben Saleh et al. [72] comprehensively tested this approach on synthetic and natural

images and found that it outperformed many other well-known segmentation algorithms.

This chapter has provided a general overview of image segmentation approaches. The

next chapter describes common multiresolution methods and approaches for their use in

image segmentation.

21

Chapter 3

Multiresolution Image Segmentation

Objects in images are extremely diverse with respect to a number of aspects: size, shape,

regularity, textures, and edges. It is therefore intuitive to expect that analyzing an object

at a variety of scales provides more information than evaluating it at only a single scale.

In addition, for any specific scale, some objects are more easily analyzed than others. For

these reasons, the understanding and analysis of images at several scales has attracted

the attention of numerous researchers, resulting in a substantial number of methods for

multiscale and multiresolution analysis. These methods have been designed for different

purposes, such as object recognition [73], compression [74, 75], image retrieval [76], and

image segmentation [77, 78]. This chapter provides a discussion of the most common

multiresolution and multiscale methods and reviews previous work related to multireso-

lution image segmentation.

Because of the variation in terminology among disciplines (e.g., spatial resolution, spec-

tral resolution, temporal resolution, and radiometric resolution [79]), clearly defining the

meaning of resolution and scale in this research is important. In this work, the term “differ-

ent resolutions” denotes spatial resolution (different subsampled images): an example is the

pyramid representation. On the other hand, the term “different scales” refers to images

that have different degrees of smoothness but exhibit the same spatial size: scale-space

representation illustrates this terminology.

22

The next sections offer an overview of the most common multiresolution and multiscale

methods, followed by a review of multiresolution image segmentation techniques.

3.1 Multiresolution Methods

The literature includes proposals for several multiresolution and multiscale analysis ap-

proaches that have emerged from different fields and are based on various concepts. These

methods were all proposed for the purpose of analyzing an image at different resolu-

tions/scales. The most common techniques can be grouped in three main categories:

pyramid representation, scale-space representation, and wavelets analysis. An overview

of these methods are presented in the following subsections.

3.1.1 Pyramid Representation

An image pyramid [74] is a hierarchical representation of an image consisting of several

resolutions of different spatial sampling of the image. The basic operations for constructing

pyramids are filtering followed by subsampling. Filtering is necessary in order to avoid an

aliasing problem after the subsampling. Figure 3.1 illustrates an example of the pyramid

representation. Decreased image size in the lower resolutions leads to reduced computa-

tional time in processing. In addition, the memory required for coarser resolutions is much

less than that needed for the original one. The hierarchical structure of the image pyramids

facilitates more efficient hardware implementation. Several types of pyramids have been

proposed in the literature, but the best-known ones are Gaussian and Laplacian [74].

Gaussian Pyramids

A given image I can be decomposed into r levels of resolutions using a Gaussian low-pass

filter followed by subsampling. Each lower resolution level is obtained by using a 5 × 5

low-pass filter on the previous level. For levels 0 < l < r − 1 and an image I of size

23

Figure 3.1: Pyramid representation.

N × M , the pyramid is defined as [74]

G0(i, j) = I(i, j), for level l = 0,

Gl(i, j)=
∑2

m=−2

∑2
n=−2w(m,n)Gl−1(2i+m,2j+n), otherwise,

(3.1)

where i = 1, . . . N , j = 1, . . .M , and w(·) is a Gaussian-like kernel. The result of the image

decomposition is stored in Gk, where k = 0, . . . , r − 1, and r − 1 is the lowest resolution;

thus G0 is the original image, and Gr−1 is the coarsest resolution.

An example of the Gaussian pyramid decomposition is provided in Figure 3.2(a).

Laplacian Pyramids

A Laplacian pyramid is a band-pass pyramid created by taking the difference between

two adjacent levels of a Gaussian pyramid. A Laplacian pyramid L of r different reso-

lutions can be created from

Ll = Gl − Expand(Gl+1), (3.2)

24

Figure 3.2: (a) Gaussian pyramid; (b) Laplacian pyramid.

where l = 0, 1, · · · , r − 1 is the resolution level, and G is a Gaussian pyramid. The

expansion of Gl+1 to Gl is defined as

Expand (Gl+1)=4
2∑

m=−2

2∑
n=−2

w(m,n)Gl+1

(
i−m

2
,
j − n

2

)
. (3.3)

An example of the Laplacian pyramid is shown in Figure 3.2(b).

The pyramid described here is an oversampled representation, in which there are more

pixels in the representation than in the image. The number of pixels is 4
3

times that of

the original image [22]. Many extensions of the pyramid representation are available, each

25

with specific applications. Examples include irregular [80], stochastic [81], and adaptive

[82] pyramids.

3.1.2 Scale-Space Representation

Scale-space, introduced by Witkins [83], is a representation in which an image is decom-

posed into a stack of different smooth versions. The Gaussian kernel is the best smoothing

filter used for linear scale-space, in which new extrema cannot be created with increasing

scale [84]. The continuous scale parameter controls the degree of smoothness. The linear

scale-space representation of an image I is defined as

S(I, ε) = I ∗G(ε), (3.4)

where G(·) is the Gaussian kernel defined as

G(x, y; ε) =
1

2πε
e−(x2+y2)/2ε, (3.5)

and ε = σ2 is the scale parameter. Equivalently, scale-space can be defined as the solution

of the diffusion equation

St = div(c5 I), (3.6)

at time t, with the initial condition

S0 = I, (3.7)

where the diffusion coefficient c(x, y, t) is a constant. Figure 3.3 illustrates the scale-space

representation of an image.

A shortcoming of successive smoothing in the linear scale-space representation is the

spatial distortion of important edges. To solve this problem, non-linear scale-space methods

have been proposed, whereby the regions are smoothed while the edges are preserved.

26

Figure 3.3: Scale-space representation (s=0 at the bottom).

An example of this type of method is the anisotropic diffusion technique suggested by

Perona and Malik [85], which is based on the modification of Eq. 3.6 to have an edge

function g(·), as follows:

St = div (g(| 5 I|) · 5I) , (3.8)

where 5 is the gradient operator. The edge function g(| 5 I|) can be defined as [85]

g(| 5 I|) = e−(|5I|/k)2 , (3.9)

or

g(| 5 I|) =
1

1 +
(
|5I|
k

)2 , (3.10)

where k is a constant set by the user or by means of a noise estimator.

27

3.1.3 Wavelets Analysis

Fourier analysis is a well-known tool for function analysis and approximation, in which

the approximation is performed as a sum of complex sinusoids. The Fourier transform is

used to decompose a signal into its frequency components. A disadvantage of the Fourier

transform is its inability to capture space (time) information, as illustrated in Figure 3.4(a).

One method of solving this problem is to divide the signal into small windows through

multiplication with a sliding window function and then to take the Fourier transform of

each window. Such a technique is called Short-Time Fourier Transform (STFT). However,

a trade-off between frequency and time resolution is still a factor, as shown in Figures

3.4(b) and 3.4(c). If a narrow window is used, satisfactory time resolution will be achieved

but with poor frequency resolution, as shown in Figure 3.4(b). On the other hand, if a

wide window is chosen, satisfactory frequency resolution with poor time resolution will

result, as shown in Figure 3.4(c). Wavelet transform [86] provides a good solution. A base

function, called “mother wavelet,” is defined. The signal is decomposed into a set of basis

functions, called “wavelets,” as different translations and scales of the previously defined

mother wavelet. Frequency analysis is performed using wavelets that are an expansion

of the mother wavelet (low frequency), while temporal (time) analysis is performed using

a contracted version of the wavelets (high frequency). Wavelet analysis is illustrated in

Figure 3.4(d). Because of the scaling property of wavelets, it is considered an effective

tool for multiresolution analysis. The Wavelet transform is used in many fields: astronomy

[87], acoustics [88], optics [89] and image processing. Applications of wavelet transform in

image processing include noise removal [90], edge detection [91], and image compression

[75]. In contrast to the pyramid representation discussed previously, the wavelet transform

is a complete representation (i.e., critically sampled) [86]. The total number of pixels in the

wavelet representation is equal to the number of pixels of the original image, in which there

is no redundancy. This feature is important for some applications, such as compression [92].

The wavelet function is defined as

ψs,τ (t) =
1√
s
ψ

(
t− τ
s

)
, (3.11)

28

(a) Fourier transform (b) STFT with a narrow window

(c) STFT with a wide window (d) Wavelet transform

Figure 3.4: Frequency and space (time) analysis (a) with a Fourier transform, (b) STFT
with a narrow window, (c) STFT with a wide window, and (d) wavelet transform.

where the parameter s indicates scale, and τ represents translation. Wavelets ψs,τ are thus

generated from the mother wavelet ψ through scaling and translation.

The use of wavelet transform for 2D images requires scaling and wavelet functions to

be defined as two variable functions. In 2D, there is one scaling function and three wavelet

29

functions, defined by [86]

φ(x, y) = φ(x)φ(y), (3.12)

ψH(x, y) = ψ(x)φ(y), (3.13)

ψV (x, y) = φ(x)ψ(y), (3.14)

ψD(x, y) = ψ(x)ψ(y), (3.15)

where φ(x, y) is the 2D scaling function, which is the low frequency component of the

previous level. φ(x, y) is known as the approximation coefficients. The three 2D wavelet

functions capture the functional variation information (e.g., edges in the case of images) in

three directions: ψH(x, y) for horizontal, ψV (x, y) for vertical, and ψD(x, y) for diagonal.

Let I(x, y) be an image of size M × N ; the 2D Discrete Wavelet Transform (DWT) is

defined as follows:

Wφ(j0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)φj0,m,n(x, y), (3.16)

W i
ψ(j,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)ψij,m,n(x, y), i = {H,V,D} , (3.17)

and the inverse transform is defined by

I(x, y) =
1√
MN

∑
m

∑
n

Wφ(j0,m, n)φj0,m,n(x, y)

+
1√
MN

∑
i=H,V,D

∞∑
j=j0

∑
m

∑
n

W i
ψ(j,m, n)ψij,m,n(x, y).

(3.18)

The DWT can be used for 2D images if it is applied on the columns followed by the

rows, as shown in Figure 3.5. Figure 3.6 illustrates the result of the two-level wavelet

30

decomposition of an image. Clockwise from the upper left of Figure 3.6, the results are the

approximation image and the horizontal, vertical, and diagonal details. Approximation

image is further decomposed at the second level.

Figure 3.5: The process of 2D wavelet decomposition for one level; hφ(·) is scaling function
coefficients and hψ(·) is wavelet function coefficients.

3.2 Multiresolution Image Segmentation Techniques

Multiresolution analysis has been used extensively for developing numerous image segmen-

tation algorithms, the majority of which utilize information from some or all resolutions.

Several methodologies have utilized multiresolution analysis for image segmentation. Cat-

egorizing all the methods introduced in the literature is difficult because of the extreme

diversity of the concepts. This section provides a review of some of the types of method-

ologies that have been employed.

Some techniques use a merging strategy, whereby segments from some or all resolutions

are merged to construct the final segment. Gaetano et al. [93, 94] proposed a hierarchical

31

Figure 3.6: The result of the decomposition of a 2D image for two levels.

segmentation scheme for satellite images. The image is first segmented at the original

resolution using a tree-structured Markov Random Field (MRF) model. Based on spectral,

spatial, and textural features, regions are then clustered at a lower resolution, and these

clusters are progressively merged to form the final segments. Rezaee et al. [77] introduced

a segmentation technique using pyramids and fuzzy c-means clustering. A root labeling

method is used for the initial segmentation of each resolution level of the pyramid. Features

from the resulting segments are then used in order to merge regions at the original resolution

through fuzzy c-means clustering.

Other methods employ the dependencies among pixels at different resolutions. An

example is the method proposed by Saeed et al. [78], in which they employed the pixel de-

32

pendence between resolutions to extend the Gaussian Mixture Model (GMM) by including

the correlation of the pixels at adjacent resolution levels. The image is segmented using

the Maximum a Posteriori (MAP) method, in which parameters are learned through the

Expectation Maximization (EM) algorithm.

Other methods include a set of algorithms that utilize the features generated at different

resolutions for image segmentation [95, 96, 97] as well as numerous additional techniques

that cannot be grouped with any of the above categories.

Coarse-to-Fine Strategy

Although the approaches described above can enhance accuracy, they are computation-

ally expensive. The research presented in this thesis is concerned with a multiresolution

technique that increases image segmentation efficiency: the coarse-to-fine segmentation

strategy. With this technique, the segmentation process starts at a coarse resolution, and

then is tuned at finer ones. Many segmentation algorithms can be used with this method

because it simplifies the input image rather than modifying the segmentation algorithm.

Numerous studies published in the literature report the use of this method to increase

the efficiency of several segmentation algorithms. However, as previously mentioned, all of

them select the initial resolution for segmentation arbitrarily.

Snakes active contour segmentation algorithm (Section 2.4.1) has been used with mul-

tiresolution analysis in several research studies. Leroy et al. [11] enhanced the snakes

algorithm by using the pyramid representation. The propagation of the curve starts from

the coarsest resolution and iteratively continues toward finer resolutions when the curve

evolution has converged at previous ones. This method is faster than the original snakes

method because most of the calculations are performed at coarse resolutions that require

less computation. Yan et al. [98] proposed an algorithm based on snakes for prostate seg-

mentation in transrectal ultrasound (TRUS) images. They used prior shape models and

propagated the curve using the Laplacian pyramid in a manner similar to that employed by

Leroy et al. to increase the capturing range of the curve and enhance the efficiency of the

initialization. Akgul and Kambhamettu [99] utilized the scale-space representation to con-

33

struct coarser versions of the original image. The authors used dynamic programming and

gradient descent to propagate the parametric contour from coarser representations through

finer ones. Dehmeshki et al. [100] improved the snakes algorithm by using wavelets. The

contour is initialized at the coarsest resolution of the image, and the initial curve of a finer

resolution is the converged one of the previous coarse resolution. This method extends

the capturing range and prevents the contour from being trapped into weak edges. The

algorithm used four levels of resolutions and was employed for the segmentation of lung

and colour CT images. A similar algorithm was proposed by Yoon et al. [101] to improve

the Gaussian of Gradient Force (GGF) snakes. The authors reported an increase in speed

accompanied by a high degree of accuracy.

The level set is a well-known active contour segmentation algorithm (Section 2.4.2),

but it is computationally expensive and thus slow to converge. Numerous researches have

been directed at solving this problem through the multiresolution coarse-to-fine strategy.

The Gaussian pyramid was utilized by Tsang [16] to enhance the edge-based level set

active contours. The curve is initialized at the coarsest resolution, and the propagation

proceeds with finer resolutions. A similar methodology has been employed for segmenting

ultrasound echocardiographic images [102, 103]. The Curvelet, which is a multiscale and

multidirectional geometric wavelet transform, is used to enhance the geodesic active con-

tours [104], and the edge map is obtained using curvelet thresholding. Initialization occurs

at the coarsest resolution, and for each subsequent finer resolution, the level set function

φ is defined as the converged level set function of the previous resolution. Al-Qunaieer

et al. proposed a method for accelerating region-based level set image segmentation [12].

The authors used wavelets to decompose the image into three resolutions, with the curve

evolution beginning from the coarsest resolution. The results confirmed that using mul-

tiresolution reduces the effect of noise for large objects and accelerates the convergence

rate of the segmentation algorithm.

Graph-based segmentation algorithms (Section 2.5) have been combined with multireso-

lution analysis to reduce computation time. Roullier et al. [105] applied the multiresolution

approach with graph-based segmentation for mitosis extraction in breast cancer histological

whole slide images. The segmentation begins at a coarse resolution, and at each finer reso-

34

lution, the resulting segmentation is refined through semi-supervised clustering. Lombaert

et al. [13] adopted a similar approach, but rather than using clustering for fine-tuning,

they applied graph cuts on a narrow banded graph obtained from the resulting minimum

cut at the coarser resolution. They showed that their method dramatically increases speed

and reduces memory usage without affecting the accuracy of the graph cuts segmentation.

The multiresolution approach has been incorporated to enhance other segmentation

methods. Bouman and Liu [106] proposed a multiresolution version of the MRF segmen-

tation, in which at each resolution, the segmentation is implemented as the maximization

of the posteriori probability. The segmentation is performed from coarse to fine resolu-

tions, and the authors reported substantial improvement with respect to computation time.

Multiresolution Active Shape Model (ASM) was used by Wang et al. [19] for lung segmen-

tation in chest X-ray radiographs. At lower resolutions, the model is fitted to the lung very

quickly, after which it is honed at finer resolutions. The use of multiresolution analysis

considerably improved the ASM performance. Munoz et al. [107] applied the coarse-to-fine

approach for segmentation based on Active Region algorithm. For each resolution level,

the initialization is based on the results of the previous (coarser) level. They concluded

that multiresolution reduces the noise effect and increases computational efficiency.

These studies all offer either a vague or no explanation of the method of selecting the ini-

tial resolution for the commencement of the segmentation. Some adopted a trial-and-error

technique to select a specific resolution level for all images of a single or different dataset(s),

which is impractical because, as shown in Section 6.2.1, with respect to time and accuracy,

performance varies over different resolutions, even for images from the same dataset.

This chapter has reviewed multiresolution techniques and described different approaches

for their use with image segmentation. The next chapter discusses previous work related

to scale selection methods and highlights the distinction between such methods and the

work presented in this thesis. Then, segmentation at different resolutions is analysed.

35

Chapter 4

Learning Best Resolution for Image

Segmentation

Image segmentation at different resolutions yields different accuracies and at varying speeds

as presented in Sections 4.2 and 6.2.1 and discussed in [20, 21]. At each resolution, the

image is viewed from a different perspective because the global view tends to become local

as resolutions become coarser [108]. Such a change in view could contribute to either an

increase or a decrease in accuracy. On the other hand, the lower number of grid points

(pixels) at low resolutions leads to much faster performance.

The next section discusses previous work conducted with respect to scale selection and

highlights the distinguishing features of this work. The following section describes the

experimental analysis of the segmentation performance at different resolutions for images

of different characteristics.

4.1 Scale Selection for Scale-Space Representation

The problem of selecting the best scale for image processing has attracted the attention of

several researchers. A number of proposed methods described in the literature were based

36

on local information obtained from the derivatives of the image. Lindeberg [84] is a pioneer

in the scale selection field. In his work, the scale of interest is selected from the scales that

have maxima of normalized derivative over scales [109]. This methodology was used for the

detection of a variety of features: junctions, edges, ridges, and blobs [110, 109, 111, 112].

Jeong and Kim [113] defined an energy function so that during its minimization it detects

the most useful scale and obtains the edge map. It is also defined to take into account the

constraints of optimal edge detection. A method for detecting “minimum reliable scale,” in

which the edges could be reliably detected, was developed by Elder and Zucker [114], who

calculated the gradient of each scale and then determined the lowest scale as a function

of the amplitude and sensor noise. A drawback of this method is the requirement of prior

knowledge about sensor’s noise and operator norms.

Concepts borrowed from the information theory have also been used for scale selection.

A scale-space measure of information has been proposed by Jagersand [115]. By calculating

Kullback’s contrast between consecutive scales, information distribution among scales can

be obtained. The author demonstrated that this measure could be used for scale selection.

Renyi’s generalized entropy [116] was employed by Sporring and Weickert [117] for scale

selection and size estimation. The authors based their approach on the observation of the

monotonic behaviour and smoothness of generalized entropies with respect to the informa-

tion order and the scale parameter. Hadjidemetriou et al. [118] used Tsallis generalized

entropies [119] of the histogram for scale selection. They used histogram entropies because

they are non-monotonic with respect to scale, can be used for the selection of multiple

scales, and are robust with respect to noise. This approach was utilized to increase the

discriminability among images and to improve the performance of an optical flow algo-

rithm. Kadir and Brady [120] proposed an algorithm for detecting salient regions based on

scale selection and a local descriptor. In their method, scales with maximum entropy are

selected and then weighted using the sum of absolute difference of the grey-level histogram.

In an alterative methodology for scale selection, Mirzaalian and Hamarneh [121] consid-

ered the correlation of a pixel with its neighbours when selecting its scale. They designed

the problem as a Markov Random Field (MRF) multi-label optimization and used this

approach to detect the scales for vascular structures in medical images.

37

Statistical methods have also been utilized for the selection of the most favourable

scales. Based on probabilistic models of the sensor and an edge detection operator, Mari-

mont and Rubner [122] suggested a statistical framework. For each pixel in the image at

different scales, they calculated the edge and confidence probabilities. A minimum reliable

scale is then selected by thresholding the confidence probability and choosing the resulting

minimal scale. Pedersen et al. [123] proposed a scale selection scheme based on maximum

likelihood estimation. The authors utilized the Brownian image model [124] because of its

relation to natural images. After a spatially varying transformation is applied, the selected

scale at location x is obtained based on the maximum likelihood of the probability distri-

bution of a Gaussian filter response. The Bayesian estimation theory was used by Gomez

et al. [125] for scale selection. At each scale, a decomposition likelihood is associated with

both the smoothed image and the residual, and the Minimum Description Length (MDL)

principle is used for scale selection. The authors showed that this method can be used for

simple edge detection and texture segmentation.

In all of these approaches, the objective of scale selection was related primarily to

feature detection, with some works also investigating primitive segmentation tasks (e.g.,

edge detection [112, 113, 114]). Several studies have incorporated scale selection into

the image segmentation process. With some modifications, Bayram et al. [126] applied

the “minimum reliable scale” method proposed by [114] in order to find the edges in

medical images. Lindeberg’s scale selection method [110] was utilized by Piovano and

Papadopoulo [127] to guide snakes active contour inside homogeneous regions. Li et al.

[128] proposed a scale selection method for supervised image segmentation. For each scale

in a training image, features are extracted per pixel and assigned to their corresponding

labels. Therefore, for n scales, there are n learned classifiers. For a test image, pixels

in each scale are classified based on their corresponding classifier, and the best scale is

the one at which the posterior probability calculated from the classification is the highest.

Although these methods incorporated scale selection in the segmentation process, several

distinctions exists between them and the work presented in this thesis:

• The previous methods were intended for selecting the best Gaussian scale for scale-

space approach. Since the scale-space representation does not involve the subsam-

38

pling of the image, the grid size (number of pixels) is the same for all scales. For

the research for this thesis, the pyramid scheme is used, in which each resolution is

filtered and subsampled from the previous resolution. The reduced size is the major

contributing factor in decreasing the computational complexity and hence accelerat-

ing the processing time for image segmentation.

• The scale selection approaches analyze several scales in order to determine the best

scale. Moreover, the majority of the previous approaches select a different scale for

each pixel. These techniques inherently lead to excessive computation time compared

with working only at one resolution (the original one) in order to estimate a single

resolution for all pixels, as in the proposed approach, which is much faster.

• With the exception of [128], the scale selection methods are limited in their appli-

cability. For example, the majority of the approaches mentioned search for local

changes, an approach that does not work well with images that consist of many ho-

mogeneous regions. However, including learning, such as in the approach proposed

in this thesis and in [128] allows to select the resolution/scales most suitable for the

specific problem at hand.

• The mentioned scale selection approaches proposed specific segmentation algorithms

that incorporate scale selection. In contrast, the work introduced in this thesis is

a framework for resolution selection for image segmentation approaches, not a seg-

mentation method. The framework is general and can be used with a wide variety

of image segmentation algorithms, such as level set, graph cuts, region growing, and

watershed. These segmentation algorithms utilize various aspects of images other

than edges: region homogeneity, textures, colours, and others.

• In the proposed approach, the user is given the weighted option of choosing between

accuracy and speed, a feature that broadens the range of applications for which it

can be employed.

39

4.2 Analysis of Segmentation at Different Resolutions

To demonstrate the effect of segmentation at different resolutions on a variety of objects,

three simple experiments were conducted. In all of the experiments, the Chan and Vese

region-based level set [63] was used to segment the input images, and the output segment of

each resolution was simply upsampled to the original image resolution. Each input image

was 512×512. Accuracy was measured using dice coefficient as given in Eq. 6.2 (page 72),

and time was recorded in seconds. The first image contained several objects of different

sizes. Figure 4.1 shows the results of applying the level set for six different resolutions.

It is clear from the accuracy figure that the level of accuracy decreases as the resolution

is reduced, while, except for a slight decrease from the fourth to fifth resolutions, the

speed substantially increases. The sample output of resolutions 3 to 5 reveals the reason

for the decreased accuracy. Because small objects disappear at lower resolutions, the

segmentation algorithm is unable to retain them during the segmentation process. As the

resolution further decreases, additional objects are lost. Another factor contributing to the

lower level of accuracy at coarse resolutions is the loss of quality due to the upsampling

of the segmentation results.

The same image was tested again but with the introduction of Gaussian noise: the

results are illustrated in Figure 4.2. This example shows one advantage of segmenting at a

lower resolution for noisy images: as can be clearly seen in the accuracy figure, the level of

accuracy at all other resolutions is much better than that at resolution 0 because the noise

is suppressed at lower resolutions, as can be observed in the segmented output images.

The accuracy begins to fall after resolution 2 because smaller objects start to disappear,

as mentioned previously. Except for a slight increase in processing time at resolution 1,

the time is greatly decreased in subsequent resolutions. A possible reason for the faster

performance of resolution 0 compared to resolution 1 is that the segmentation at resolution

0 may be trapped at local minima, resulting in early convergence. The extremely poor

result for resolution 0 supports this possibility.

The third image was intended to test the segmentation of irregular shapes, as shown

in Figure 4.3. Accuracy is decreased with respect to resolution because the smaller grid

40

Image Accuracy Time

Resolution 0 Resolution 1 Resolution 2

Resolution 3 Resolution 4 Resolution 5

Figure 4.1: Segmentation of different-sized objects at different resolutions, with the output
upsampled to the original resolution.

41

Image Accuracy Time

Resolution 0 Resolution 1 Resolution 2

Resolution 3 Resolution 4 Resolution 5

Figure 4.2: Segmentation of different-sized objects with added Gaussian noise at different
resolutions, with the output upsampled to the original resolution.

42

sizes did not permit the correct representation of straight lines, sharp edges, or corners.

As with the previous two images, the process is generally much faster at lower resolutions.

It can be noted that for all three images, the segmentation time at resolution 5 is

slightly slower than for resolution 4, which could be due to the initial placement of the

curve. Based on these results, the following factors were the basis of, and motivation for,

the use of the coarse-to-fine multiresolution image segmentation strategy:

• The segmentation results could be better at lower resolutions (Figure 4.2).

• Postprocessing is needed for fine-tuning the segmentation results in order to counter

the quality loss due to the upsampling of the output segments. The use of a simple

method is described in the next chapter.

• Segmentation at lower resolutions is usually much faster.

This chapter has included a discussion of previous scale selection methods and the

results of an analysis of image segmentation at different resolutions. The next chapter

presents the proposed framework for the automated resolution selection.

43

Image Accuracy Time

Resolution 0 Resolution 1 Resolution 2

Resolution 3 Resolution 4 Resolution 5

Figure 4.3: Segmentation of an irregular shape at different resolutions, with the output
upsampled to the original resolution.

44

Chapter 5

Proposed Framework

This chapter proposes a machine learning framework for resolution selection for image seg-

mentation. Resolution selecting for image segmentation is a difficult task, in part because

of the vague definition of the best resolution, which can also differ according to the seg-

mentation method used, as a result of the utilization of different aspects of the image (e.g.,

homogeneity, texture, edges). This chapter presents a measure for determining the best

resolution for an input image when segmented with a specific segmentation algorithm.

The overall approach is described in the next section, followed by a discussion of the

algorithms used in the framework. The trade-off measure used to define the best resolution

is discussed in Section 5.3. Then, the process of image segmentation and the determination

of the best resolutions are explained in Section 5.4. In Section 5.5, the features extracted

from the images for use in the learning are described. The machine learning approach

utilized is presented in Section 5.6, along with an explanation of learning from imbalanced

data. The final section presents the performance measures for assessing the effectiveness

of the learning algorithm.

45

5.1 Overall Approach

The aim of the learning approach, for segmenting an image with a specific segmentation

algorithm, is to map the features extracted from an input image to the best resolution for

image segmentation. Figure 5.1 provides an overall view of the framework, illustrating its

two main components: training and testing. In the training phase, the system associates

features extracted from training images with the best resolution for segmenting them. Each

training image is segmented at r different resolutions. The accuracy of, and time required

for, segmentation at each resolution are recorded, based on which the trade-off measure,

ω, is calculated (Eq. 5.1). The best resolution for each image is the one that obtains the

maximum value of ω. These best resolutions obtained from the training images are the

labels (i.e., classes), which are then used for training the classifier. The inputs are comprised

of features extracted from the training images. Two sets of features are used: Local Binary

Patterns (LBP) [129] and a statistical set of features. After training, the classifier is used

for estimating the best resolution based on the features extracted from the testing image.

Because, as will be shown, the nature of the learning data is imbalanced, a modified version

of AdaBoost, namely Rank Minority Oversampling in Boosting (RAMOBoost), is used.

RAMOBoost was specifically designed by Chen et al. [130] for learning from imbalanced

data. The following sections detail the individual components of the proposed framework.

5.2 Preliminary Settings

For the purpose of this research, a multiresolution representation that includes different

subsampling sizes is needed. This requirement excludes the scale-space representation

(Section 3.1.2), which has the same spatial resolution for all levels. Although the approxi-

mation image of the wavelet representation (Section 3.1.3) can be used, there is information

that is not used in this work (e.g., the high-frequency information defining the horizon-

tal, vertical, and diagonal details images). Therefore, the pyramid representation (Section

3.1.1) is chosen for this research. Because of the learning nature of the framework, other

multiresolution methods constructing finite levels of resolutions should also work with it.

46

Figure 5.1: Overall approach to the selection of the best resolution for image segmentation
through machine learning.

47

The proposed framework is a generic one, in which numerous feature sets and learn-

ing methods can be embedded. Further, the framework can be trained to improve many

segmentation algorithms. It cannot be claimed that a set of features or a certain learn-

ing technique can always achieve the optimal classification accuracy. The performance

of the features varies according to the nature of the images used, and the learning ap-

proach can achieve different results based on several factors, such as data distribution and

size. However, the proposed framework in this thesis may already cover a wide range

of image categories and applications, as demonstrate by using a very diverse set of test

images (see Chapter 6).

For this research, many sets of features have been tested, and two of them were selected

(Section 5.5): LBP [129] and statistical features. Similarly, numerous learning approaches

have been investigated, and RAMOBoost (Section A.4) achieved the best results.

5.3 Defining the Best Resolution

The definition of the best resolution for image segmentation can be different from system

to system. For example, in systems such as robot navigation, speed is very important, so it

could be favoured more than an increase in accuracy. On the other hand, in critical systems,

such as medical applications, accuracy is much more important, because a mistake could

be life-threatening. Thus, a method is needed to facilitate decisions about the selection

of the best resolution. A measure is thereby proposed that allows the user or system to

select a trade-off between speed and accuracy. Weighted geometric mean has been used as

an aggregation function of several variables [131, 132] and for trade-off measurement [133].

Given normalized accuracy Ai and time Ti in the range [0 1], the measure is defined as

ωi = Aαi × (1− Ti)1−α, (5.1)

where α can be set by an algorithm or chosen by the user in order to determine the desired

trade-off and i = 0, · · · , r − 1 is the resolution level.. The values of α are in the range [0

1]. Here, Ai and Ti are obtained from resolution i. This trade-off measure is only used

48

during the training phase to define the best (target) resolutions as labels for the classifier’s

training, where the processing time, T , of all resolutions are available. Therefore, Ti can

be normalized by dividing by the maximum time of all resolutions. Higher values of α will

favour accuracy over speed, while lower values will favour speed. This measure provides the

flexibility of selecting resolutions according to the specifications of the problem at hand,

and forms the criterion for the best resolution definition incorporated into the proposed

resolution selection framework.

The value of α is set to meet the requirements of the application (e.g., to meet minimum

accuracy or time). This is specified by the user based on the domain knowledge. Because

at the training phase all accuracies and times are available, and due to the limited number

of resolutions, the value of α can be quickly found using a simple searching algorithm or by

trial-and-error. The selected α is fixed, and the best resolutions are defined according to it.

The trade-off measure can be defined in several other ways. Appendix B provides a

discussion of two other possible choices.

5.4 Computing the Best Resolution for Learning

The proposed framework is based on a supervised learning approach for resolution selection

for image segmentation. Supervised methods require labeled instances for proper learning,

whereas the labels are the learning targets. For the best resolutions to be learned, they

must be provided as labels (i.e., classes) associated with the training dataset (Boxes 1 and

2 in Figure 5.1). As described in Section 5.3, best resolutions can be defined using the

trade-off measure, ω. As controlled by the parameter α, the system or user can choose

an appropriate trade-off between accuracy and speed based on the specific needs. Higher

α values favour resolutions that provide a great degree of accuracy, while lower α values

favour speed. The best resolution is the one that produces the maximum ω. To this end,

the image should be segmented at each resolution, and the resulting values for accuracy

and time should be recorded.

49

The pyramid representation entails r resolutions, 0, 1, . . . , r − 1, where 0 denotes the

original resolution, and r−1 is the coarsest one. The criterion for choosing the lowest level

of resolution is the disappearance of image information that is useful for segmentation,

which can be found empirically. In the pyramid representation, each level of resolution is

a smoothed and subsampled version of the previous level. Coarse resolutions can be used

to capture the main features that correspond to large objects and strong edges. Because

regions become more homogeneous, capturing similar regions thus becomes easier, and

noise and weak edges are eliminated. The segmentation speed at coarse resolutions is

much faster than at finer ones, because the grid size (number of pixels) is lower, resulting

in a lower computational cost. Fine resolutions capture the details of objects, and are

therefore used to fine-tune the regions that are roughly segmented at coarse resolutions.

After an image is segmented at each resolution and the values for accuracy and time at

each resolution are obtained, ω can be calculated for each level of resolution. For r values

of ω for r resolutions, the best resolution is the one having the maximum value of ω. This

process is illustrated in Figure 5.2 and described in detail in Algorithm 2.

This method of obtaining the best resolution for image segmentation can be used with

many image segmentation algorithms. Different segmentation methods can yield different

results at different resolutions, so that the best resolutions are not the same for different

segmentation algorithms. Section 6.2.2 provides a detailed explanation.

After segmentation at lower resolutions and the upsampling of the results to the original

resolution, fast fine-tuning is needed in order to compensate the loss in quality (see Figures

4.1, 4.2, and 4.3). The literature reports numerous fine-tuning methods, as discussed

in Section 3.2, but the majority are slow, and each method is specific to a particular

segmentation algorithm. This work applies a unified approach for fine-tuning, which is

appropriate for any segmentation algorithm: region-growing segmentation started from

the border of the results. Region-growing was selected for the following reasons:

• It can be used as a boundary-enhancing method following many other segmentation

techniques.

50

Figure 5.2: Illustration of the process of calculating the best resolution of an image (r =
the number of resolutions).

51

Algorithm 2 Calculating The Best Resolution

Inputs
I: input image
G: gold standard image (prepared manually by an expert)
r: number of resolutions
α: trade-off between accuracy and speed for calculating the trade-off measure ω

P = pyramid(I, r) [pyramid decomposition of I into r resolutions]
for i=0,1,. . . ,r-1 do

start time calculation
seg = segment(Pi) [segment the image at resolution i]
if i > 0 then

upSeg = upSample(seg) [upsample the segmentation result to the original resolution
size]
finalSeg = fineTune(upSeg) [fine-tune the upsampled segmentation result]

else
finalSeg = seg;

end if
Ti = stop time calculation
Ai = calcAccuracy(finalSeg, G) [calculate the segmentation accuracy compared to the
gold standard image]

end for
for i=0,1,. . . ,r-1 do

ωi = Aαi ×
(

1− Ti
max(T)

)1−α

end for
BestRes = i | ωi = max

j
ωj, j = 0, 1, · · · , r − 1

• Because of its simplicity, it is very fast — an attribute that translates into only

minimal increase in time during the fine-tuning step.

• It is consistent in its increasing in time, which enables the learning method to learn

the best resolution. In contrast, some methods result in an unpredictable increase in

time, which makes the learning impossible, as illustrated in the forthcoming example.

52

Figure 5.3 shows an image segmented using the ChanVese level set [63]. The accuracy

(dice coefficient, Eq. 6.2, page 72) and time in seconds are presented for four cases:

no fine-tuning, fine-tuning with ChanVese only at the original resolution, fine-tuning with

ChanVese iteratively in each resolution, and fine-tuning with region growing at the original

resolution. Although fine-tuning with ChanVese results in better accuracy than region

growing, it results in a completely unpredictable increase in time. On the other hand,

region growing results in a consistent and slight increase in time.

Figure 5.3: An image segmented using ChanVese level set fine-tuned with level set once
at the original resolution, iteratively at each resolution, region growing at the original
resolution, and without fine-tuning. From left to write: input image, accuracies, and
times.

5.5 Feature Extraction

The extraction of relevant features is very important for achieving reasonable classification

accuracy (Box 3 in Figure 5.1). For resolution selection, two sets of features were used:

Local Binary Patterns (LBP) and statistical features. Two criteria were set for the choice

of feature extraction methods in this research: good correlation with the classes (e.g., reso-

lutions) and the time constraint. Determining the best features was performed empirically.

The performance of the features in terms of classification accuracy was assessed with the

F1-measure described in Section 5.7, and the speed was measured in seconds. Relevant

53

features must be extracted extremely fast so as not to delay the decision about the best

resolution. From a set of good features, several of them have therefore been omitted be-

cause they would make the process slow. Examples of such features are Gabor [134] and

Granulometric features [135].

5.5.1 Local Binary Patterns (LBP)

LBP is a method for extracting texture features proposed by Ojala et al. [129]. It was

originally a 3×3 operator, where the intensities inside each block are thresholded by the

value of the central pixel. The value of the central pixel is then obtained from the summa-

tion of the thresholded values multiplied by powers of two. In this way, 28 = 256 different

values can be achieved. This operation is illustrated in Figure 5.4.

Figure 5.4: The process of calculating LBP; the leftmost block is thresholded by its central
pixel value, then multiplied by powers of two. The value of p is the sum of the result.

Constructing features from the histogram of an LBP-labeled image has been proven

to be efficient for face recognition [136, 137]. In order to retain spatial information, the

image is divided into m regions R0, R1, · · · , Rm−1, in which the histogram features are

54

calculated as follows [137]:

Hi,j =
∑
x,y

Γ{ILBP (x, y) = i}Γ{(x, y) ∈ Rj}, i = 0, · · · , n− 1, j = 0, · · · ,m− 1, (5.2)

where ILBP is an LBP labeled image, n is the number of labels produced by the LBP

operator, and Γ{A} is defined as

Γ{A} =

{
1 if A is True,

0 if A is False.
(5.3)

Examples of LBP output and histogram features are shown in Figure 5.5.

LBP is computationally simple and thus very fast, making it appropriate for the pur-

poses of this research. LBP is also robust to monotonic grey-scale changes. Several

LBP variants have been proposed, such as larger operator size [138], rotation invariance

[138, 139], and multiscale LBP [140].

5.5.2 Statistical Features

For this research, the second set of features consists of six measures taken from the Region

of Interest (ROI), and comprised of four first-order statistical features (mean, standard

deviation, skewness, kurtosis), entropy, and a measure of spatial uniformity. Given an

image or part of an image of size M × N , the probability of the occurrence of intensity

level γ ∈ {0, 1, ..., G− 1} is calculated by

p(γ) =
Sγ

M ×N
, (5.4)

where Sγ is the number of pixels with intensity γ. The mean m is then calculated by

m =
G−1∑
γ=0

γp(γ), (5.5)

55

Figure 5.5: Example of an image filtered with an LBP operator (top) and the resulting
histogram features (bottom).

the Standard Deviation (STD) is calculated by

STD =

√√√√G−1∑
γ=0

(γ −m)2p(γ), (5.6)

the skewness is calculated by

SK =
G−1∑
γ=0

(γ −m)3p(γ), (5.7)

56

and the kurtosis is calculated by

K =
G−1∑
γ=0

(γ −m)4p(γ). (5.8)

These features represent the first four moments of the random variable γ. These simple

texture features describe different aspects of the histogram. Standard deviation measures

the width of the histogram, which is a measure of intensity contrast; skewness measures

the asymmetry of the histogram around the mean; and kurtosis measures the flatness (or

sharpness) of the histogram [22, 141].

The fifth measure is the entropy, which measures the randomness (or uniformity) of

the intensity distribution [22, 141]. Entropy is calculated by

E = −
G−1∑
γ=0

p(γ)log2p(γ). (5.9)

These features provide no spatial information because they are taken from the his-

togram. As described in the previous subsection, spatial information can be retained by

dividing the image into several regions and calculating the features from them. The last

feature measures spatial uniformity and is basically the standard deviation of the coeffi-

cients of the Sobel operator response defined as [142]

SU =

√
1

N

∑
i

∑
j

(Sobel(I(i, j)))2 − (
1

N

∑
i

∑
j

(Sobel(I(i, j))))2, (5.10)

where I is the input image, and N is the total number of pixels.

These six measures are concatenated and used as features for each ROI.

57

5.6 Learning the Best Resolution

Objects that have different characteristics can be segmented correctly at different resolu-

tions, as can be observed from the experiments described in Sections 4.2 and 6.2.1 and

as well as demonstrated in [20, 21]. Coarse resolutions are sufficient for segmenting large

objects with clear boundaries. This is not the case with small objects, fine details, and

sharp corners, which must be segmented at finer resolutions. Other factors affect the

choice of the best resolution, such as noise, which can be reduced or eliminated as the

resolution is decreased, allowing more accurate and faster segmentation. Unfortunately,

natural images are complex. The same image can have a variety of noise levels and contain

objects with different characteristics. Resolution selection for image segmentation is thus

difficult. Simple rules, such as noise level and object size, are insufficient, and object size

cannot actually be accurately estimated without segmentation. In this work, a machine

learning approach is suggested (Boxes 4 and 5 in Figure 5.1), so that best resolutions can

be learned based on features extracted from the training images.

Although the problem is complex, many learning algorithms can be used to learn and

construct non-linear models for solving it. Complex problems can be properly learned using

learning methods, given the right conditions. The features from the images are already

available (Section 5.5), as are the training instance labels (Section 5.4), so a supervised

machine learning approach can be used to learn the best resolution. Learning the best

resolutions is explained in Algorithm 3, and estimating the best resolution for an input

image is presented in Algorithm 4.

The learning objective here is to estimate the best resolution for segmenting an input

image from the extracted features. As shown in Section 6.2.1, the learning data in this

research have an imbalanced class distribution. This problem is well recognized in the

machine learning community, and it can seriously affect learning performance. Learning

from imbalanced data is discussed next.

58

Algorithm 3 Learning the Best Resolution

Inputs
Training images set consists of n images (Ij, j = 1, 2, · · · , n), and their corresponding
gold standard images Gj

r: number of resolutions
α: trade-off between accuracy and speed for calculating the trade-off measure ω

Initialize: inputs = [], targets = []
for i=1,2,. . . ,n do

BestRes = Algorithm2(Ii, Gi, r, α) [calculate the best resolution]
F = featuresExtraction(Ii) [extract features from image Ii]
inputs = append(inputs, F) [append extracted features to inputs]
targets = append(targets, BestRes) [append calculated best resolution to the targets]

end for
model = trainClassifier(inputs, targets) [train the classifier of choice with the inputs and
targets]

Algorithm 4 Estimating the Best Resolution

Inputs
I: input image
LM : the learned model

F = featuresExtraction(I) [extract features from image I]
estimatedRes = estimate(LM , F) [estimate the best resolution given the model and the
inputs]

59

5.6.1 Learning from Imbalanced Data

A dataset is considered imbalanced if it has unequal class distribution, i.e., not all classes

are represented equally. Imbalanced data have serious implications with respect to learning,

especially if the imbalance is severe, because the learning models become biased toward the

majority classes. Many real-life problems exhibit imbalanced data: bioinformatics [143],

text classification [144], speech recognition [145], intrusion detection [146], and oil spill

detection [147]. An example of extreme class imbalance can be found in a typical cancer

detection data set, in which about 2% of the data represent the cancer class [148]. In this

case, non-cancer cases will be well modelled, while cancer cases will be undermodelled.

It should be noted that the implications of false negative classification have a greater

impact than a false positive one. Over the last decade, the machine learning community

has witnessed increased interest in this problem, as indicated by the dramatically growing

number of published studies [149]. Several solutions have been proposed for increasing the

efficiency of learning from imbalanced data. These approaches can be grouped into three

general categories: data-level, algorithmic-level, and boosting strategies [150, 149].

Data-Level Strategies

Data-level methods represent an attempt to re-balance the dataset by either decreasing

the number of majority class instances (undersampling), increasing the number of minority

class instances (oversampling), or both. Sampling methods include several variants: ran-

dom oversampling [151] randomly replicates instances of minority classes; similarly, random

undersampling randomly removes instances from majority classes. Both of these techniques

have disadvantages. Random undersampling could remove important instances from a ma-

jority class, and random oversampling can lead to possible overfitting in the learning.

Directed, also called focused or informed, oversampling and undersampling address the

problems inherent in random sampling [151]. In oversampling, only instances on the bound-

aries between the classes are replicated, and in undersampling, only majority class instances

that are far from the boundaries are removed. Although the directed approach can be supe-

rior to random sampling [152], it cannot completely eliminate the shortcomings mentioned.

60

To reduce the overfitting caused by the replication of the instances in oversampling

methods, the Synthetic Minority Over-sampling TEchnique (SMOTE) was proposed by

Chawla et al. [148]. In this approach, new instances are generated using randomly selected

instances from the k-nearest neighbours multiplied by a random number ∈ [0 1]. The

new instances are thus similar to the existing ones but not identical. He et al. [153]

introduced Adaptive Synthetic sampling (ADASYN), in which the number of synthetic data

instances is adaptively determined according to their distribution. ADASYN is described

further in Appendix A.2.

Algorithmic-Level Strategies

In algorithmic-level methods, aspects or procedures of the learning algorithm are modified

to address the class imbalance problem. Cost-sensitive learning [154] solves the imbalance

problem by adjusting the cost of misclassification. This is performed by constructing

a cost matrix that represents the loss resulting from the classification of one class as

another. The learning is then performed using the defined cost. In this way, a greater

penalty can be assigned to the misclassification of a minority class instance and a lesser

penalty for a majority class.

Active learning methods represent another technique for learning from imbalanced data

[155]. In this approach, the most informative instances are selected from the training set in

order to build the model. Other methods based on kernel modification have been proposed

for learning that involves class-imbalanced datasets. For example, in several approaches,

the SVM boundary separating different classes is adjusted by means of boundary-alignment

methods [156, 157, 158].

Boosting Methods

Learning using a combination of classifiers can be an effective approach for enhancing

classification performance. Several ensemble methods have been proposed in the literature,

such as bagging [159], boosting [160], and stacking [161]. Boosting trains several base

classifiers consecutively while adaptively adjusting the weights of the training instances,

so that each classifier concentrates on the examples that were difficult for the previous

classifier to learn. Several studies reported combining sampling and boosting for learning

61

from imbalanced data [162, 163]. RAMOBoost was proposed by Chen et al. [130] for

learning from imbalanced data, which is described in more detail in Appendix A.4.

5.6.2 The Learning Algorithm

In this work, RAMOBoost [130] was used for learning and estimating the best resolution.

RAMOBoost is a variant of AdaBoost that is specifically designed for learning from imbal-

anced data through adaptive generation of synthetic samples of minority class examples

in each iteration of the AdaBoost method. RAMOBoost has been chosen because of its

good performance, which stems from its two combined components: boosting and sam-

pling as follows:

• Boosting: as described in the previous subsection, boosting trains several base clas-

sifiers consecutively while adaptively adjusting the weights of the training instances.

In this manner, the decision boundary is adaptively shifted during each boosting

iteration, so that the focus is on instances that are difficult to learn. This property

provides ability to deal with outliers [164]. The generalization abilities of boosting

methods have been proven by Schapire and Freund [165].

• Sampling: In RAMOBoost, the sampling is based on adaptive adjustment to the

sampling weights of minority class samples according to their distribution. Greater

emphasis is thus placed on rare examples that are inherently difficult to learn.

The RAMOBoost technique is presented in Algorithm 7 in Appendix A. RAMOBoost

algorithm is a direct extension of the AdaBoost.M2 algorithm (Algorithm 6 in Appendix

A), making it inherently applicable for multiclass problems.

Decision trees are selected as the base classifier for RAMOBoost in this research. It

is the most popular choice as the base classifier for AdaBoost [166]. An experimental

comparison of the performance of decision trees against Naive Bayes and Bayes Net as base

classifiers was presented in [167]. The authors reported that AdaBoost with decision trees

as base classifier achieved the highest classification rate with lowest computational time.

62

The model resulting from training with RAMOBoost consists of t decision trees classi-

fiers, where t is the number of iterations. Classification based on this model is performed

by finding the class that maximizes a weighted average of the outputs of all base classifiers

(see Algorithm 7 in Appendix A).

5.7 Classifiers’ Performance Measures

Measuring classifiers’ performance is an important issue in machine learning [168]. A

classifier is typically evaluated using a confusion matrix as illustrated in Figure 5.6 by an

example for multiclass problems. Elements of the confusion matrix count the number of

estimated classes with respect to actual classes. The diagonal elements represent correctly

classified instances. The most widely used measure is accuracy, which is calculated from

the confusion matrix as follows:

Accuracy =

∑n
i=1 aii∑n

i=1

∑n
j=1 aij

. (5.11)

Figure 5.6: Confusion matrix: n = number of classes.

However, the level of accuracy can be misleading when used for imbalanced class problems

[149]. For example, given a data with 2% of minority class instances and 98% of majority

class instances, an accuracy of 98% can be achieved by blindly classifying all the data

63

instances as the majority class. The literature includes descriptions of several measures for

evaluating the performance of the classification of imbalanced class problems [149, 150, 169].

For class Ci, two measures, Precision (Pi) and Recall (Ri), can be calculated from the

confusion matrix as follows:

Pi =
aii∑n
j=1 aji

, (5.12)

and

Ri =
aii∑n
i=1 aij

. (5.13)

F1-measure is the harmonic mean of precision and recall and is calculated by

F1-measure =
2PiRi

Pi +Ri

. (5.14)

G-mean is the geometric mean of precision and recall. It has been extended for multiclass

problem evaluation by Sun et al. [169] and has been defined as

G-mean =

(
n∏
i=1

Ri

)1/n

, (5.15)

where n is the number of classes. However, if any class has 0 recall, the G-mean will also

be 0, which is misleading as an overall performance indication.

The Area Under Curve (AUC), which is the Receiver Operating Characteristic (ROC)

curve, is a well-known method for evaluating a classifier’s performance. It is useful for

evaluating imbalanced class problems [149, 150]. AUC was originally proposed for binary

classification problems, but Hand and Till [170] generalized it to multiclass problems as

well. AUC measures the overall performance of a classifier. However, it cannot repre-

sent the performance of different parts of the ROC curve [171]. Curves in ROC space

might intersect with each other; therefore, classifiers with high AUC value may have worse

performance at some regions of ROC space than a classifier with lower value of AUC.

64

In this research, the F1-measure was used for evaluating the performance of the es-

timation of the best resolutions for image segmentation. Unlike accuracy (Eq. 5.11),

F1-measure, which is a weighted harmonic mean of precision (Eq. 5.12) and recall (Eq.

5.13), is more useful for problems with imbalanced class distribution. By using F1-measure,

the performance of classification per class (i.e., resolution) can be assessed. This enables

the investigation of the performance of classification of individual classes, in contrast to

G-mean (Eq. 5.15) and AUC, which measure the overall performance.

This chapter has introduced a new framework for the learning and selection of the

best resolution for image segmentation. Experiments were conducted in order to verify

the performance of the framework and are presented in the next chapter, along with the

results and related discussions.

65

Chapter 6

Results and Discussion

This chapter describes experiments that were conducted in order to verify the performance

of the trade-off measure and the automated resolution selection framework. The settings

used in the experiments, including datasets and parameters, are explained in Section 6.1,

followed by a discussion of the performance of the trade-off measure in Section 6.2 with

an evaluation of it using different segmentation algorithms, and the accuracy and speed of

the maximum accuracy resolutions. Section 6.3 provides an evaluation of the RAMOBoost

resolution estimation and a comparison of RAMOBoost with other learning approaches.

An examination of the impact of misclassification on accuracy and time is presented in

Section 6.4, followed by an analysis of overhead time in Section 6.5. The results of the

experimentation are discussed in Section 6.6.

6.1 Experimentation Setup

This section explains the datasets and settings used to conduct the experiments described

in this chapter, including the specific datasets used, the parameter settings for the segmen-

tation and learning methods, and the implementation environment.

66

6.1.1 Datasets

Four image datasets were used for the experimental verification of the proposed resolution

selection framework. The aim in these experiments is to assess the performance of the

proposed framework with different types of images. Therefore, each dataset contains images

whose characteristics differ from those of the images in the other datasets. The images in

some datasets are of very similar objects, while others contain objects of varied shapes and

sizes. All of the datasets include gold standard images that have been segmented manually

and that are used for calculating the dice coefficient, as described in Eq. 6.2. The four

datasets are described in the following subsections.

Breast Ultrasound Dataset

This dataset consists of 52 breast ultrasound images whose sizes range from 230×390 pixels

to 580×760 pixels. The level of variability among the shapes in the images is high. The

speckle noise and low local contrast make the images difficult to segment. Segmentation

algorithms for this kind of images usually require special preprocessing and/or postpro-

cessing. Because the objective of this research was not to design an image segmentation

method for a particular dataset, a semi-automated approach was applied, whereby the user

selects one of the several output segments by clicking on it. This has been automated by

taking the centroid of the object in the gold standard image as if it were the user’s click.

Samples of breast ultrasound images can be seen in Figure 6.1.

Statue of Liberty Dataset

The Statue of Liberty dataset (Liberty) is taken from the CMU-Cornell iCoseg image

segmentation dataset [172], which contains several categories of images each of specific

objects. The Liberty category consists of 41 images with a high degree of shape variability.

Some images contain the whole statue, while others contain only part of it. The size of the

images is 375×500 pixels. Figure 6.2 shows sample images from this dataset.

67

Figure 6.1: Samples of breast ultrasound dataset images (top row) with their corresponding
gold standard images (bottom row).

Figure 6.2: Samples of the Liberty dataset images (top row) with their corresponding gold
standard images (bottom row).

68

Figure 6.3: Samples of the images in the lung X-ray dataset (top row) with their corre-
sponding gold standard images (bottom row).

Lung X-Ray Dataset

The lung X-ray dataset [173] consists of 98 lung X-ray images that are of 1024×1024 pixels

in size. Compared to the images in the previous two datasets, these images exhibit a high

degree of similarity. The contrast between the objects (lungs) and the background is low.

Selected images from the lung X-ray dataset are presented in Figure 6.3.

Synthetic Images Dataset

The synthetic images dataset consists of 100 randomly created synthetic images. Each

image is 1024×1024 pixels and was created by the random addition of three circles with

random radius lengths and three rectangles with random lengths and widths. In this way,

images will have objects of different shapes. However, the shapes are not as complex as

the breast ultrasound and the Liberty datasets’ images. Random Gaussian noise was then

added to the image. Selected samples of this dataset are shown in Figure 6.4.

69

Figure 6.4: Samples of images from the synthetic images dataset (top row) with corre-
sponding gold standard images (bottom row).

6.1.2 Parameter Settings

The parameters for the methods used in the experiments in this chapter are described

below.

Image Segmentation

Obtaining the best resolutions as labels (i.e., classes) for training requires the images be

segmented at all possible resolutions. For the datasets used, it was found that after the

sixth level of resolution, no meaningful information remained in the image. The pyramid

representation was thus comprised of six resolutions (i.e., r = 6), where 0 is the original

image resolution, and 5 is the coarsest one. The pyramid was implemented as described

in [74]. A separable 5×5 filter, w, was employed, defined by

w = [
1

4
− a

2
,
1

4
, a,

1

4
,
1

4
− a

2
]. (6.1)

70

Parameter a was selected as 0.4, so that the filter would be close to a Gaussian shape [74].

The purpose of this research was to select the best resolution for the segmentation

of an input image, rather than segmentation enhancement, including optimal parameter

selection, preprocessing, or postprocessing. The parameters selected for the employed

image segmentation algorithms might therefore not be the optimal choice for the respective

datasets. However, some images, such as breast ultrasound and lung X-ray images, are

difficult to segment without preprocessing or postprocessing. For the breast ultrasound

dataset, a semi-automated segmentation approach was used as described in the previous

subsection. Because of the low contrast between objects and background in the lung X-ray

dataset images, their contrast was enhanced through contrast-limited adaptive histogram

equalization [174].

In order to investigate the resolution selection framework with different image segmen-

tation algorithms, three well-known methods were selected. They were chosen to have

different concepts behind them. Parametric Kernel Graph Cuts (PKGraphCuts) is based

on graph theory, ChanVese level set is an active contour method, and Statistical Region

Merging (SRM) is a region growing technique. PKGraphCuts, implemented by Ben Ayed,

was utilized in this research (code available at [175]). The regularization weight parameter

α was set to 0.1. The initialization of the ChanVese level set was performed as multiple

circles, which have been shown to be effective [63]. The iterations stop if a change less

than η (= 5) occurs for five consecutive iterations, or if the number of iterations exceeds

a preset threshold value (here 1000). Parameter Q of the SRM algorithm was set to 32.

The SRM implemented by Boltz was used in this work (code available at [176]).

Images of each dataset were segmented using different segmentation algorithms. The

choice of segmentation algorithm for each dataset was performed empirically based on

random samples of images from each dataset, as follows:

• Breast ultrasound and Liberty datasets: PKGraphCuts

• X-ray Lung dataset: ChanVese level set

• Synthetic dataset: SRM

71

The accuracy of the segmentation is measured using dice coefficient defined as fol-

lows [177]:

Dice =
2|In ∩ IG|
|In|+ |IG|

, (6.2)

where In is the segmented image, IG is the gold standard image, and | · | indicates the

set cardinality.

Learning Methods

In the experiments conducted for this research, the performance achieved with RAMO-

Boost was compared with that obtained with AdaBoost (Appendix A.3), Support Vector

Machines (SVM) (Appendix A.1), and SVM with re-sampled training data using ADASYN

(SVM-ADASYN) (Appendix A.2). LibSVM [178] (code available at [179]) implementation

of SVM was used, with a radial basis function for the kernel. The penalty parameter C and

the parameter γ for radial basis function were selected through 5-fold cross validation. Joint

Mutual Information (JMI) feature selection [180] (Appendix A.5) was used for the selection

of the 10 most representative features for training the SVM. For ADASYN, the number

of nearest neighbours was 5, and the balance level parameter β was chosen as 0.7. For

both AdaBoost and RAMOBoost, the decision tree classifier was used as the base classifier.

Both boosting algorithms were run for 10 iterations. LBP features were extracted using

10-bins histogram for each region. For all methods, the training and testing sets were split

by 10-fold cross validation. Each experiment was run 10 times, and the average was taken.

6.1.3 Implementation Environment

The experiments were conducted using a PC with 8 GB of RAM and a CPU speed of 2.20

GHz. The operating system was Windows 7 (64-bit version). The program was written

and run with a 64-bit version of MatlabTM.

72

6.2 Trade-off Measure Performance

6.2.1 Accuracy and Time with Respect to α

Computing the trade-off measure ω (Eq. 5.1) requires that each image be segmented at

all available resolutions, with the accuracy and speed of each resolution being recorded.

Figures 6.5-6.12 illustrate the segmentation outputs at all resolutions of the images from

the breast ultrasound, Liberty, lung X-ray, and synthetic datasets, respectively. Figure

6.5 reveals that the second resolution obtained the best segmentation: the noise was re-

duced, and the region of the object became more homogeneous, which results in better

segmentation. On the other hand, Figure 6.6 reveals that another image from the same

dataset is better segmented at resolution 4. Figures 6.7 and 6.8 show the segmentation

results of two images from the Liberty dataset. For the first, resolution 1 has the best

segmentation results. It can be seen that the segmentation in resolution 0 is concentrating

on local regions, and segmentation in resolution 2 is missing some details (e.g., the crown

is trimmed, and the edges are affected by interpolation). The second image in Figure

6.8 is better segmented at resolution 2. The results of segmenting lung X-ray images are

presented in Figures 6.9 and 6.10. For the first image, the results are relatively good at

all resolutions, but at lower resolutions, where regions tends to be more homogeneous, the

lung is segmented as a whole. No postprocessing is therefore needed in the segmentation

at the third and fourth resolutions. The output of the fifth resolution shows some lost

portions of the segmentation (e.g., the lower part of the right lung). Contrarily, the sec-

ond image in Figure 6.10 is better segmented at resolution 3. Segmentation at resolution

4 and 5 became worse as the lungs started to merge. Figures 6.11 and 6.12 present the

results of segmenting two images from the synthetic dataset. For the first image, the small

circle at the top has disappeared in the second resolution, and the square at the bottom is

missing at the fourth resolution. At resolution 5, the information seems to have been in-

sufficient for segmentation. The second image in Figure 6.12 contains a high level of noise,

which leads to poor segmentation at higher resolutions. It can be noticed that resolution

4 obtained the best segmentation results.

73

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.5: Sample outputs for each resolution for the breast ultrasound dataset (image 1).

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.6: Sample outputs for each resolution for the breast ultrasound dataset (image 2).

74

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.7: Sample outputs for each resolution for the Liberty dataset (image 1).

After each image was segmented at all resolutions, and the segmentation accuracies

(dice) and times (in seconds) were recorded, ω was calculated as described in Section 5.4.

This subsection presents the results of the assessment of the performance, in respect to seg-

mentation accuracy and speed, of the trade-off measure with different choices of α. These

values were compared against the accuracies obtained when the images were segmented at

the original resolution (level 0), the minimum resolution (level 5), and the peak resolu-

tions, which are the resolutions with maximum frequency for being the best resolution for

a given dataset (i.e., the mode of a normal or quasi-normal distribution of the best resolu-

tions, see Figures 6.13-6.16). The purpose of the comparison with the original resolution

is to compare the difference between the outcomes of using the framework and not using

it. Comparing with the minimum resolution answers the question of the applicability of

just selecting the lowest possible resolution. The importance of learning can be observed

75

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.8: Sample outputs for each resolution for the Liberty dataset (image 2).

by comparing the results of the framework with the peak resolutions, as they constitute

the most frequent best resolution in a given dataset.

Tables 6.1-6.4 present the results of breast ultrasound, Liberty, lung X-ray, and syn-

thetic datasets, respectively. The results show that the degree of accuracy increases as α

increases. The change in the accuracy level with respect to α can be large, as with the

Liberty and synthetic images, or only minimal, as with the lung images. For all datasets,

using higher α values obtained better accuracy results than the original resolution and

much better accuracy than the coarsest one. The results listed in the tables confirm that

segmentation at resolutions other than the original could enhance the results.

With respect to the running times, it can be seen from the tables that selecting lower

values of α results in faster execution times. Compared with the speed at the original

resolution, all values of α for the four datasets produces much faster times. For example,

76

Table 6.1: Accuracy Levels and Processing Times at the Selected, Peak, Original, and
Minimum Resolutions for Breast Ultrasound Dataset

Breast Ultrasound Dataset
α Dice at Selected Dice at Peak Time at Selected Time at Peak

0.1 69.88 ± 27.88 65.09 ± 30.01 0.32 ± 0.34 0.82 ± 0.50
0.3 70.73 ± 27.55 65.09 ± 30.01 0.37 ± 0.41 0.82 ± 0.50
0.5 71.14 ± 27.46 65.09 ± 30.01 0.41 ± 0.42 0.82 ± 0.50
0.7 71.65 ± 27.38 65.09 ± 30.01 0.52 ± 0.58 0.82 ± 0.50
0.9 71.93 ± 27.45 65.09 ± 30.01 0.74 ± 0.99 0.82 ± 0.50

Original 63.52 ± 28.92 11.52 ± 7.90
Minimum 36.65 ± 33.03 0.20 ± 0.09

Table 6.2: Accuracy Levels and Processing Times at the Selected, Peak, Original, and
Minimum Resolutions for Liberty Dataset

Liberty Dataset
α Dice at Selected Dice at Peak Time at Selected Time at Peak

0.1 72.07 ± 17.92 69.68 ± 19.74 0.33 ± 0.11 0.48 ± 0.18
0.3 75.80 ± 18.16 69.68 ± 19.74 0.48 ± 0.31 0.48 ± 0.18
0.5 76.58 ± 18.45 73.68 ± 20.37 0.57 ± 0.38 1.08 ± 0.33
0.7 77.58 ± 18.69 74.52 ± 20.92 0.84 ± 0.66 3.39 ± 1.20
0.9 78.04 ± 18.71 74.52 ± 20.92 1.05 ± 0.86 3.39 ± 1.20

Original 74.24 ± 18.61 13.54 ± 5.58
Minimum 62.44 ± 20.25 0.27 ± 0.11

77

Table 6.3: Accuracy Levels and Processing Times at the Selected, Peak, Original, and
Minimum Resolutions for Lung X-Ray Dataset

Lung X-Ray Dataset
α Dice at Selected Dice at Peak Time at Selected Time at Peak

0.1 85.41 ± 5.75 84.64 ± 6.22 0.61 ± 0.09 1.21 ± 0.18
0.3 85.52 ± 5.73 84.64 ± 6.22 0.89 ± 0.43 1.21 ± 0.18
0.5 85.58 ± 5.68 84.64 ± 6.22 1.11 ± 0.99 1.21 ± 0.18
0.7 85.62 ± 5.65 84.64 ± 6.22 1.44 ± 1.48 1.21 ± 0.18
0.9 85.62 ± 5.65 84.64 ± 6.22 1.59 ± 1.67 1.21 ± 0.18

Original 82.42 ± 5.20 460.84 ± 63.07
Minimum 80.19 ± 8.27 0.61 ± 0.09

Table 6.4: Accuracy Levels and Processing Times at the Selected, Peak, Original, and
Minimum Resolutions for Synthetic Dataset

Synthetic Dataset
α Dice at Selected Dice at Peak Time at Selected Time at Peak

0.1 90.77 ± 8.18 95.22 ± 6.03 3.01 ± 1.30 4.52 ± 0.09
0.3 93.93 ± 6.07 92.79 ± 12.17 3.45 ± 1.27 15.09 ± 0.14
0.5 95.09 ± 4.79 92.79 ± 12.17 3.89 ± 1.60 15.09 ± 0.14
0.7 95.64 ± 4.23 92.79 ± 12.17 4.29 ± 2.15 15.09 ± 0.14
0.9 96.32 ± 3.69 92.79 ± 12.17 6.03 ± 3.82 15.09 ± 0.14

Original 89.36 ± 0.00 56.79 ± 0.00
Minimum 45.33 ± 0.00 1.32 ± 0.00

78

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.9: Sample outputs for each resolution for the lung X-ray dataset (image 1).

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.10: Sample outputs for each resolution for the lung X-ray dataset (image 2).

79

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.11: Sample outputs for each resolution for the synthetic dataset (image 1).

Input Image Gold Standard Resolution 0 Resolution 1

Resolution 2 Resolution 3 Resolution 4 Resolution 5

Figure 6.12: Sample outputs for each resolution for the synthetic dataset (image 2).

80

for the times resulting from α=0.9, which is considered to be the slowest and most accurate,

the speed compared with the original resolution increases by 15, 12, 290, and 9 times for the

breast ultrasound, Liberty, lung X-ray, and synthetic images, respectively. The acceleration

is especially obvious in the case of the lung X-ray dataset, which has large images and was

segmented with the inherently slow level set algorithm.

Comparing the selected resolutions with the peak resolutions, except with α=0.1 for

the synthetic dataset, accuracies at the selected resolutions with all α values are better

than those at the peak ones for the four datasets. With respect to speed, except for α=0.3

for the Liberty dataset and α=0.7 and 0.9 for the lung X-ray dataset, the speed at selected

resolutions is faster than that at the peak resolutions. The difference in speed can be up

to 2.6 times for the breast ultrasound dataset, 4 times for the Liberty dataset, and 4.4

times for the synthetic dataset.

For breast ultrasound, Liberty, lung X-ray, and synthetic datasets, Figures 6.13, 6.14,

6.15 and 6.16, respectively, illustrate the distributions of the resolutions selected based on

different α values for the trade-off measure. It can be observed that the distribution varies

significantly from dataset to dataset and for different α values with the same dataset. As

can also be seen in many of the figures, the class distribution is imbalanced, which creates

difficulties with respect to the learning process as discussed in Section 5.6.1. As well, no

single selected resolution is revealed, even for images from the same dataset, and in no

dataset is the original resolution selected for any value of α.

The previous results show that selecting resolutions for images in a specific dataset can

obtain higher accuracies and faster speeds than fixing one resolution for all images. Seg-

menting at the original resolution results in lower accuracies and much slower speeds, while

segmenting at the lowest resolution will result in much lower accuracies. Even compared

with the peak resolutions, resolution selecting based on the trade-off measure obtained

better results.

Note that for the lung X-ray dataset, the difference in accuracies among the selected,

peak, original, and minimum resolutions is very small. Moreover, the difference in speed

between selected and peak resolution is also small, and the peak resolution is faster than

81

the selected ones for α=0.7 and 0.9. The reason for this is the extreme similarity of the

objects (the lungs) among all the images in the dataset. This suggests that learning to

select best resolutions for image segmentation might not work effectively for such datasets.

Figure 6.13: Selected resolution (class) distribution with different values of α for the breast
ultrasound dataset.

6.2.2 Using Different Segmentation Algorithms

This subsection describes the investigation of the behaviour of the trade-off measure with

images from one dataset segmented using three different segmentation algorithms. The

purpose of this experiment was to determine whether class distributions are different when

different segmentation methods are applied for the same dataset. The Liberty dataset was

segmented with SRM and ChanVese level set, in addition to the previous segmentation

using PKGraphCuts.

Table 6.5 shows the accuracy results obtained with the three segmentation methods for

α=0.1, 0.3, 0.5, 0.7 and 0.9, as well as a comparison of the results with the ones obtained

at the original and minimum resolutions. Table 6.6 lists the speed results for the same

conditions. It can be observed that the accuracy of the three segmentation methods is very

82

Figure 6.14: Selected resolution (class) distribution with different values of α for the Liberty
dataset.

Figure 6.15: Selected resolution (class) distribution with different values of α for lung X-ray
dataset.

close and that at α=0.9, the accuracy of PKGraphCuts and ChanVese is better than that

at the original resolution. On the other hand, with α=0.9, SRM results in a slightly lower

level of accuracy than at the original resolution. Regarding speed, PKGraphCuts provides

83

Figure 6.16: Selected resolution (class) distribution with different values of α for the syn-
thetic images dataset.

the fastest performance, closely followed by SRM, then ChanVese. ChanVese shows the

greatest increase in speed, because it is very slow at the original resolution.

Figures 6.17 and 6.18 illustrate the class distribution for the selected resolutions of

the Liberty dataset segmented with SRM and ChanVese, respectively. A comparison of

these figures with Figure 6.14 clearly reveals that, for the same dataset, different segmen-

tation algorithms have different selected resolutions. This observation suggests that, even

for the same dataset, learning for resolution selection should be performed for different

segmentation algorithms separately.

6.2.3 Maximum Accuracy Resolutions

Interesting question may be asked about what would occur if accuracy were all that was

needed. For determining the maximum accuracy resolutions, α should be set to 1. The

accuracy and running times for the four datasets (including the Liberty dataset images

segmented using the three segmentation methods) with α=1 are presented in Table 6.7,

which also shows a comparison with the original resolutions.

84

Table 6.5: Accuracy at Selected Resolutions with Different Segmentation Algorithms

Selected Resolutions Accuracy (%)
α PKGraphCuts SRM ChanVese

0.1 72.07 ± 17.92 70.43 ± 26.19 71.66 ± 18.87
0.3 75.80 ± 18.16 74.02 ± 24.81 75.82 ± 20.45
0.5 76.58 ± 18.45 76.66 ± 23.79 77.69 ± 21.48
0.7 77.58 ± 18.69 78.99 ± 22.81 78.32 ± 21.56
0.9 78.04 ± 18.71 79.45 ± 23.10 78.46 ± 21.53

Original 74.24 ± 18.61 80.74 ± 20.02 76.95 ± 24.05
Minimum 62.44 ± 20.25 41.77 ± 16.51 49.26 ± 17.46

Table 6.6: Times at Selected Resolutions with Different Segmentation Algorithms

Selected Resolutions Times (seconds)
α PKGraphCuts SRM ChanVese

0.1 0.33 ± 0.11 0.44 ± 0.13 0.78 ± 0.60
0.3 0.48 ± 0.31 0.62 ± 0.57 1.11 ± 0.74
0.5 0.57 ± 0.38 0.98 ± 1.02 1.36 ± 0.99
0.7 0.84 ± 0.66 1.55 ± 1.25 1.73 ± 1.74
0.9 1.05 ± 0.86 1.74 ± 1.13 2.02 ± 2.09

Original 13.54 ± 5.58 12.47 ± 0.25 33.90 ± 27.77
Minimum 0.27 ± 0.11 0.40 ± 0.04 0.39 ± 0.03

Table 6.7: Maximum Accuracy Resolutions (α=1) Compared with Original Resolution for
Different Datasets

Dataset Sel. Res. Accuracy Sel. Res. Time Orig. Res. Accuracy Orig. Res. Time
Breast Ultrasound 72.30 ± 27.43 3.47 ± 5.44 63.52 ± 28.92 11.52 ± 7.90

X-ray Lung 85.66 ± 5.60 10.40 ± 49.50 82.42 ± 5.20 460.84 ± 63.07
Synthetic 96.65 ± 3.83 12.20 ± 11.50 88.77 ± 7.35 56.77 ± 0.44

Liberty-PKGraphCuts 79.49 ± 18.57 8.20 ± 8.56 74.24 ± 18.6 13.54 ± 5.58
Liberty-SRM 82.79 ± 20.12 9.96 ± 4.48 80.74 ± 20.02 12.47 ± 0.25

Liberty-ChanVese 79.24 ± 21.73 9.97 ± 11.78 76.95 ± 24.05 33.90 ± 27.77

85

Figure 6.17: Selected resolution (class) distribution with different values of α for the Liberty
dataset using the SRM segmentation algorithm.

Figure 6.18: Selected resolution (class) distribution with different values of α for the Liberty
dataset using the ChanVese level set segmentation algorithm.

It can be observed that the accuracy levels obtained with α=1 are all better than those

at the original resolutions. The breast ultrasound and synthetic images datasets exhibit

large differences between the accuracy at the selected resolutions and that at the original

86

ones, while the accuracy for the Liberty-SRM images shows little difference. As with Tables

6.1-6.4, the speeds at the selected resolutions are still faster than at the original resolutions,

but much slower than at the selected resolutions for lower values of α.

Figure 6.19 illustrates the class distribution. It should be noted that the original res-

olutions appear among the selected resolutions, while they were absent in the previous

results. This change occurs because time is neglected when the selected resolutions are

chosen with α=1.

Figure 6.19: Maximum accuracy resolutions (α=1) distribution for, from right to left,
(upper row) the breast ultrasound, lung X-ray, and synthetic images datasets, (lower row)
Liberty-PKGraphCuts, Liberty-SRM, and Liberty-ChanVese.

6.3 Classifier Performance

This section presents an evaluation of the performance of RAMOBoost for resolution selec-

tion. As explained in Section 5.5.1, Local Binary Patterns (LBP) and statistical features

87

(Stat) were used for the learning process. The results obtained were compared with those

produced by AdaBoost, SVM, and SVM with training data re-balanced via ADASYN

(SVM-ADASYN). The targets (labels) were defined based on the trade-off measure ω (Eq.

5.1). In these experiments, five values of α were used: 0.1, 0.3, 0.5, 0.7, and 0.9. F1-measure

(Eq. 5.7) was used to evaluate the performance per class. The numerical results are listed

in Tables C.1, C.2, C.3 and C.4 in Appendix C, and Figures C.1 - C.8 in Appendix C

show a summary of them for α=0.1, 0.3, 0.5, and 0.9. Figures 6.20 - 6.27 illustrate the

performance for α=0.7 along the confusion matrices. Because the presented classifiers’

performances are the average of 10 runs, the mean and standard deviation of 10 confusion

matrices are calculated. The values were rounded to the nearest integer for easier inter-

pretation. The number of instances is different for each class. Figures 6.13-6.16 show the

number of instances for each class for the four datasets.

For the four datasets, Figures 6.13, 6.14, 6.15, and 6.16, reveals an imbalance in class

distribution. Two of the methods used are designed specifically for imbalanced classification

problems: RAMOBoost and ADASYN. The use of these methods was assessed with respect

to the effect on the classification of minority class examples.

Breast Ultrasound Dataset

Figures 6.20 and C.1 show a comparison of the values of the F1-measure obtained from

the four learning methods for the breast ultrasound dataset using LBP features. It can be

observed that RAMOBoost obtained the best overall results, followed closely by AdaBoost.

The boosting algorithms significantly outperformed both SVM and SVM-ADASYN. The

results reveal that SVM-ADASYN is slightly better than SVM with respect to classifying

minority class samples, as in class 2 with α=0.3 and classes 1 and 5 with α=0.9. RAMO-

Boost is superior to AdaBoost in classifying minority classes, especially for class 5 with

α=0.5, classes 1 and 5 with α=0.7 and class 1 with α=0.9.

The results obtained using Stat features are shown in Figures 6.21 and C.2. As with

the LBP results, RAMOBoost produced the best classification and AdaBoost, the second

best. Both SVM methods performed very poorly, with many classes that could not be

88

correctly estimated, such as class 5 with α=0.3, α=0.5, and α=0.7, and classes 1 and 4

with α=0.9. SVM-ADASYN is slightly better than SVM for estimating minority classes,

such as classes 2 and 4 with α=0.5.

Figures D.1, D.2, D.3, and D.4 in Appendix D provide a comparison of the performance

of the LBP and Stat features. It can be observed that little difference appears in the

performance of the two features when RAMOBoost and AdaBoost are used. However,

the LBP features provide performance level that is far superior to that achieved by Stat

features for either of the SVM methods.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, LBP, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.20: Left: performance of different classifiers with α=0.7 for the breast ultrasound
dataset: LBP features; right: confusion matrix of RAMOBoost.

Liberty Dataset

The classification performance for the Liberty dataset using LBP features is presented in

Figures 6.22 and C.3. RAMOBoost provided the best overall performance, with AdaBoost

producing slightly worse results. Both boosting methods are far superior to SVM and

SVM-ADASYN. For example, class 4 with α=0.7 could not be correctly classified by either

SVM or SVM-ADASYN, while it was accurately classified by both boosting algorithms.

SVM and SVM-ADASYN offer similar performance levels. It should be noted how well

89

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, Stat, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.21: Left: performance of different classifiers with α=0.7 for the breast ultrasound
dataset: statistics features; right: confusion matrix of RAMOBoost.

the boosting algorithms perform with respect to the imbalanced class distributions, as

with α=0.7 and α=0.9.

Figures 6.23 and C.4 illustrate the performance using the Stat features. As with the

LBP features, boosting methods provide much better performance than either of the SVM

methods. SVM-ADASYN provides slightly better performance than does SVM for some

minority classes, such as class 1 with α=0.7 and classes 1 and 4 with α=0.9.

A comparison of the results obtained with the LBP and Stat features for the four

learning methods is presented in Figures D.5, D.6, D.7, and D.8 in Appendix D. It can be

observed that the use of LBP and Stat features with RAMOBoost, AdaBoost, and SVM-

ADASYN led to comparable performance levels for both features. On the other hand, the

use of Stat features resulted in a generally better performance level with SVM.

Lung X-Ray Dataset

A comparison of the performance of the different classification algorithms for the lung X-

ray dataset using the LBP features is shown in Figures 6.24 and C.5. As with the previous

90

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, LBP, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.22: Left: performance of different classifiers with α=0.7 for the Liberty dataset:
LBP features; right: confusion matrix of RAMOBoost.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, Stat, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.23: Left: performance of different classifiers with α=0.7 for the Liberty dataset:
statistics features; right: confusion matrix of RAMOBoost.

two datasets, RAMOBoost provides the best classification accuracy, followed closely by

AdaBoost. SVM and SVM-ADASYN generally produce close accuracy levels. It can be

observed how SVM-ADASYN led to better results than SVM for minority classes such

91

as class 5 with α=0.1 and class 2 with α=0.5. As with the other datasets, RAMOBoost

and AdaBoost result in far superior performance for minority classes estimation. It should

be noted that class 2 with α=0.3 has only one instance, so it is impossible for it to be

learned with any method.

The results obtained using the Stat features are presented in Figures 6.25 and C.6.

As with the LBP features, the boosting methods produce the best results, and the results

achieved with SVM and SVM-ADASYN are inferior. SVM-ADASYN successfully classified

some minority classes examples, such as for class 5 with α=0.1, classes 2 and 5 with α=0.5,

and class 5 with α=0.7.

Figures D.9, D.10, D.11, and D.12 in Appendix D present a comparison of the classi-

fication results using the LBP and Stat features. It can be seen that with either type of

features, the performance is almost the same with RAMOBoost, while the LBP results are

generally slightly better with AdaBoost, SVM, and SVM-ADASYN.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, LBP, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.24: Left: performance of different classifiers with α=0.7 for the lung X-ray dataset:
LBP features; right: confusion matrix of RAMOBoost.

92

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, Stat, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.25: Left: performance of different classifiers with α=0.7 for the lung X-ray dataset:
statistics features; right: confusion matrix of RAMOBoost.

Synthetic Dataset

Figures 6.26 and C.7 illustrate the results produced by the four classifiers using LBP

features for the synthetic dataset. Both RAMOBoost and AdaBoost obtained excellent

and comparable results, with SVM and SVM-ADASYN exhibiting worse results. In fact,

for extremely skewed distributions (as can be seen in Figure 6.16), the boosting methods

provide good results, as with class 1 with α=0.7 and class 3 with α=0.9, whereas neither

SVM nor SVM-ADASYN could classify any instance of these classes. It should be noted

that class 4 with α=0.3 and classes 1 and 4 with α=0.5 have only one instance, making

it impossible for them to be learned.

Figures 6.27 and C.8 show the results using the Stat features, which are very close to

those obtained with the LBP features, with the exception that SVM-ADASYN could clas-

sify some instances from the classes that it was not able to classify using the LBP features.

A comparison of the LBP and Stat features is presented in Figures D.13, D.14, D.15,

and D.16 in Appendix D. With RAMOBoost and AdaBoost, the results using the two

types of features are very close. The Stat features produce slightly better results with the

SVM and SVM-ADASYN methods.

93

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, LBP, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.26: Left: performance of different classifiers with α=0.7 for the synthetic images
dataset: LBP features; right: confusion matrix of RAMOBoost.

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, Stat, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure 6.27: Left: performance of different classifiers with α=0.7 for the synthetic images
dataset: statistics features; right: confusion matrix of RAMOBoost.

Observations

Several points can be observed from the results in this section. The boosting algorithms

greatly outperformed both SVM algorithms. As well, RAMOBoost has better classification

94

performance than AdaBoost, especially for minority classes. This is due to the adaptability

of RAMOBoost with respect to imbalanced class distribution.

SVM-ADASYN is better than SVM for minority classes classification, but slightly worse

for majority ones. This shows that using ADASYN to re-balance class distribution can

improve the classification of minority classes, but with the cost of affecting the perfor-

mance for majority ones.

It can be noted from the confusion matrices that the classification performance is good,

and the misclassified instances are usually classified as a resolution next to the actual ones,

which decreases the impact of misclassification on accuracy and time as shown in the next

section. Furthermore, the low standard deviations in the confusion matrices indicate that

the classification results are robust and consistent.

6.4 Impact of Misclassification on Accuracy and Time

An important factor to assess is the impact of resolution misclassification on segmentation

accuracy and speed, the investigation of which is described in this section. The estimated

resolutions are compared with the original, minimum, and peak resolutions with respect

to both accuracy and speed of segmentation. Although the selected resolutions obtained

based on the trade-off measure ω are not available in real-life situations, they have been

included here for reference. Paired t-tests with a 95% confidence level were performed in

order to evaluate the significance of the differences. The effect of the outcomes obtained

with RAMOBoost were analyzed.

Breast Ultrasound Dataset

The findings listed in Tables 6.8 and 6.9 indicate the impact of misclassification on accuracy

and time for the breast ultrasound dataset. As can be observed, the accuracy at the

estimated resolutions using LBP and Stat features is better than that at the original

resolutions for all α values, and is statistically significant for α=0.3, 0.5, 0.7, and 0.9.

95

Table 6.8: Impact of Misclassification of RAMOBoost on Accuracy for the Breast Ultra-
sound Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Est/Orig Est/Min Est/Peak Est/Sel

0.1
LBP 1.35 4.32 1.23 0.96

Statistical 1.31 4.32 1.20 0.95

0.3
LBP 1.38 4.76 1.26 0.98

Statistical 1.36 4.65 1.24 0.96

0.5
LBP 1.40 4.96 1.28 0.99

Statistical 1.37 4.82 1.26 0.97

0.7
LBP 1.40 4.78 1.27 0.97

Statistical 1.39 4.88 1.26 0.96

0.9
LBP 1.39 4.55 1.26 0.96

Statistical 1.39 4.88 1.26 0.97

The estimated resolutions with RAMOBoost provide substantially better accuracy levels

than those at minimum resolutions, and are better than those at the peak resolutions,

with α=0.5, 0.7, and 0.9 demonstrating significant differences. With respect to speed,

the segmentation at the estimated resolutions is much faster than at the original ones,

substantially slower than at the minimum resolutions, and faster than the peak resolutions,

with α=0.1, 0.3, 0.5, and 0.7 with LBP and α=0.1, 0.3 and 0.5 with Stat demonstrating

significant differences.

Liberty Dataset

The impact of misclassification on accuracy and time for the Liberty dataset is shown

in Tables 6.10 and 6.11. It can be seen that the accuracy at the estimated resolutions

is almost identical to the accuracy at the original ones, with the estimated resolutions

only slightly worse than the original ones at α=0.1, and slightly better at the remaining

values of the α settings. The accuracy at the estimated resolutions is significantly higher

than at the minimum ones and better than the peak resolutions. The speed at estimated

resolutions is much faster than at the original ones, but significantly slower than at the

96

Table 6.9: Impact of Misclassification of RAMOBoost on Time for the Breast Ultrasound
Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Orig/Est Min/Est Peak/Est Sel/Est

0.1
LBP 22.41 0.42 1.64 0.98

Statistical 23.39 0.43 1.69 1.03

0.3
LBP 21.19 0.40 1.55 0.99

Statistical 21.77 0.40 1.57 1.00

0.5
LBP 19.97 0.37 1.45 0.97

Statistical 19.75 0.36 1.43 0.98

0.7
LBP 18.47 0.34 1.34 1.07

Statistical 17.78 0.32 1.28 0.98

0.9
LBP 15.47 0.29 1.12 0.97

Statistical 16.01 0.29 1.16 0.98

minimum resolutions. For α=0.1 and 0.3, the segmentation at the estimated resolutions is

slower than the ones at the peak resolutions, but it is much faster for α=0.5, 0.7, and 0.9.

Lung X-Ray Dataset

Tables 6.12 and 6.13 present the impact of misclassification on accuracy and time for

the lung X-ray dataset. The accuracy at the estimated resolutions is statistically better

than at the original, minimum, and peak resolutions. The running time is substantially

faster at the estimated resolutions than at the original resolutions and slower than at the

minimum and peak resolutions.

Synthetic Dataset

The impact of resolution misclassification on accuracy and speed for the synthetic dataset is

presented in Tables 6.14 and 6.15. It can be observed that at all the estimated resolutions,

better accuracy was obtained than at the original resolution, with a significant difference

for all α values, except α=0.1. The accuracy at the estimated resolutions is substantially

97

Table 6.10: Impact of Misclassification of RAMOBoost on Accuracy for the Liberty
Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Est/Orig Est/Min Est/Peak Est/Sel

0.1
LBP 0.99 1.22 1.05 1.00

Statistical 0.99 1.22 1.06 1.00

0.3
LBP 1.02 1.26 1.09 0.98

Statistical 1.01 1.26 1.09 0.98

0.5
LBP 1.03 1.29 1.05 0.99

Statistical 1.04 1.29 1.05 0.99

0.7
LBP 1.04 1.29 1.04 0.98

Statistical 1.03 1.28 1.03 0.97

0.9
LBP 1.04 1.29 1.04 0.98

Statistical 1.03 1.29 1.04 0.97

Table 6.11: Impact of Misclassification of RAMOBoost on Time for the Liberty Dataset;
Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Orig/Est Min/Est Peak/Est Sel/Est

0.1
LBP 23.40 0.45 0.83 0.99

Statistical 23.08 0.45 0.84 1.00

0.3
LBP 19.44 0.39 0.70 1.02

Statistical 18.64 0.38 0.70 0.99

0.5
LBP 17.38 0.36 1.42 0.99

Statistical 17.47 0.37 1.45 0.99

0.7
LBP 14.33 0.31 3.66 1.03

Statistical 12.58 0.27 3.22 0.94

0.9
LBP 12.00 0.25 3.08 0.98

Statistical 12.45 0.26 3.15 1.04

98

Table 6.12: Impact of Misclassification of RAMOBoost on Accuracy for the Lung X-Ray
Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Est/Orig Est/Min Est/Peak Est/Sel

0.1
LBP 1.04 1.07 1.01 1.00

Statistical 1.04 1.07 1.01 1.00

0.3
LBP 1.04 1.07 1.01 1.00

Statistical 1.04 1.07 1.01 1.00

0.5
LBP 1.04 1.07 1.01 1.00

Statistical 1.04 1.07 1.01 1.00

0.7
LBP 1.04 1.08 1.01 1.00

Statistical 1.04 1.07 1.01 1.00

0.9
LBP 1.04 1.07 1.01 1.00

Statistical 1.04 1.07 1.01 1.00

Table 6.13: Impact of Misclassification of RAMOBoost on Time for the Lung X-Ray
Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Orig/Est Min/Est Peak/Est Sel/Est

0.1
LBP 298.86 0.40 0.78 1.00

Statistical 309.05 0.41 0.81 1.00

0.3
LBP 282.12 0.37 0.74 1.01

Statistical 291.66 0.39 0.76 1.01

0.5
LBP 265.23 0.35 0.70 1.01

Statistical 274.23 0.37 0.72 1.02

0.7
LBP 248.50 0.33 0.65 1.01

Statistical 248.27 0.33 0.65 0.98

0.9
LBP 235.63 0.32 0.62 0.98

Statistical 234.23 0.32 0.61 0.97

99

Table 6.14: Impact of Misclassification of RAMOBoost on Accuracy for the Synthetic
Dataset; Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Est/Orig Est/Min Est/Peak Est/Sel

0.1
LBP 1.02 2.47 0.95 1.00

Statistical 1.02 2.45 0.94 0.99

0.3
LBP 1.06 2.57 1.06 1.00

Statistical 1.06 2.58 1.06 1.00

0.5
LBP 1.06 2.55 1.06 0.99

Statistical 1.06 2.55 1.06 0.99

0.7
LBP 1.07 2.61 1.07 0.99

Statistical 1.07 2.61 1.07 0.99

0.9
LBP 1.09 2.67 1.08 1.00

Statistical 1.09 2.66 1.08 1.00

better than at the minimum ones. Compared with peak resolutions, the accuracy at the

estimated resolutions is worse with α=0.1, but better for the remaining α values. With

respect to speed, segmentation at the estimated resolutions is much faster than at the

original and peak resolutions, and significantly slower than at the minimum ones.

Observations

Several trends can be observed based on the results:

• Except at α=0.1 for the Liberty dataset, the overall accuracy at the estimated reso-

lutions is always superior to that at the original ones. In some cases, the difference

in accuracy can be significant, as in the breast ultrasound, lung X-ray, and synthetic

images datasets.

• The accuracy at the estimated resolutions is always significantly better than at the

minimum resolutions.

100

Table 6.15: Impact of Misclassification of RAMOBoost on Time for the Synthetic Dataset;
Est: estimated, Orig: original, Min: minimum, and Sel: selected.

α Features Orig/Est Min/Est Peak/Est Sel/Est

0.1
LBP 16.57 0.39 1.32 0.99

Statistical 17.93 0.42 1.43 1.00

0.3
LBP 14.73 0.34 3.92 0.99

Statistical 15.46 0.36 4.11 0.98

0.5
LBP 13.19 0.31 3.51 1.02

Statistical 13.96 0.33 3.71 1.03

0.7
LBP 12.61 0.29 3.35 1.03

Statistical 13.14 0.31 3.49 1.03

0.9
LBP 9.94 0.23 2.64 1.01

Statistical 10.37 0.24 2.76 1.02

• Except with α=0.1 for the synthetic dataset, the accuracy at the estimated resolu-

tions is always better than that at the peak ones.

• The speed at the estimated resolutions is always much faster than at the original

resolutions.

• The speed at the minimum resolutions is always substantially faster than at the

estimated resolutions, but it must be remembered that the extreme speed at the

minimum resolutions is accompanied by a huge reduction in accuracy.

• Except with the lung X-ray dataset, the speed at the estimated resolutions is almost

always faster than that at the peak ones. Many cases are significantly faster, such

as α=0.1, 0.3, 0.5, and 0.7 for the breast ultrasound dataset, and α=0.5, 0.7, and

0.9 for the Liberty and synthetic datasets.

When these points are considered, it is obvious that even with misclassification, the

worst case is that the estimated resolutions produce the same degree of accuracy as the

original resolutions but at significantly faster speeds. For three of the datasets, mostly

101

the accuracy at the estimated resolutions is higher than the peak ones, and the speed is

faster. This implies that resolution selection for individual images obtains better results

than fixing at the peak resolutions. As discussed in Section 6.2.1, because of the extreme

similarity of the images in the lung X-ray dataset, the results in terms of speed compared

with the peak resolutions are not satisfactory. This confirms that resolution selection for

images of extreme similarity might not be efficient.

6.5 Overhead Time Analysis

The calculation of the overhead time for feature extraction and classification is highlighted

in this section. Although this time was included in the calculations for determining the

impact of misclassification explained in Section 6.4, it is interesting to assess the contribu-

tion of each individual component. Two tasks result in overhead time: feature extraction

and classification. Table 6.16 indicates the average times in seconds for these tasks. The

time required for extracting the LBP and Stat features were calculated for images from

each dataset. The lung X-ray and synthetic datasets required more time than the other

two datasets because of their large size (1024×1024). The Stat features were faster to ex-

tract from the synthetic images. For the other datasets, the LBP and Stat extraction

times are very close.

Although the training of RAMOBoost and AdaBoost differs, the classification time is

the same because they use the same voting algorithm. It can be seen that classification

time per instance is much shorter than that required for feature extraction.

6.6 Discussions

The primary objective of this research was to design a framework for the automated selec-

tion of resolutions for image segmentation. For the best resolution to be appropriately de-

fined, a trade-off measure was developed. The measure allows the user or system to choose

a trade-off between accuracy and time through a single parameter α. RAMOBoost was

102

Table 6.16: Overhead Times for Feature Extraction and for Classification Using RAMO-
Boost and AdaBoost

Dataset Task Time (mean)

Breast Ultrasound
Feature extraction (LBP) 0.1982
Feature extraction (Stat) 0.1988

Liberty
Feature extraction (LBP) 0.2546
Feature extraction (Stat) 0.2784

Lug X-Ray
Feature extraction (LBP) 0.7960
Feature extraction (Stat) 0.7741

Synthetic
Feature extraction (LBP) 0.7941
Feature extraction (Stat) 0.5779

— Classification 0.0280

used for learning, using LBP and statistical features. The experimental verification of the

new framework based on four different image datasets has been described in this chapter.

Trade-off Measure (ω)

The monotonic increase in accuracy with a shift from low to high α values and the similar

decrease in time for the reverse shift suggest that α can indeed be used to control the

trade-off between accuracy and time. Significant overall savings in time result when the

segmentation is performed at resolutions having maximum ω values, even with α=1. For

a segmentation algorithm with fixed parameters, highest accuracy through all resolutions

is guaranteed when ω is calculated with α=1. Similarly, α=0 will result in the shortest

times, but this effect is meaningless because the lowest resolution can, in fact, be selected

for the fastest segmentation regardless of the accuracy.

The selected resolutions obtained with ω differ according to the segmentation algorithm,

even for the same dataset. This finding suggests that ω can be used independently with

many existing segmentation approaches.

103

Proposed Framework

The ability to use the trade-off measure ω (Eq. 5.1) with numerous segmentation algo-

rithms indicates that the proposed framework can be used to learn the best resolutions

for many segmentation algorithms. The results with different α values are also consistent.

Higher α values provide better accuracy, and lower values result in faster segmentation.

The selection of the best resolution could therefore be learned based on the user’s require-

ments. For example, for critical systems, such as medical applications, α could be set to

1, which would yield the highest level of accuracy (even higher than at the original resolu-

tion). On the other hand, for applications entailing fast and rough segmentation, such as

robot navigation or image retrieval, lower values of α could be selected.

Using a machine learning approach for resolution selection yields promising and statis-

tically significant results, as verified based on the outcomes using four different datasets.

Learning Method and Features

The two boosting algorithms, RAMOBoost and AdaBoost, obtained much better results

than did SVM or SVM-ADASYN. For the learning tasks in this research, 10 combined

decision trees provide far greater accuracy than the strong SVM classifier. In addition,

the SVM parameters were selected through cross-validation, while decision trees param-

eters were chosen arbitrarily and then fixed for all datasets. One reason for the superior

performance of boosting is the directed learning: in each subsequent iteration, learning is

concentrated on the instances that are difficult to learn. This feature might be the reason

for the successful classification of some of the instances relating to minority classes.

ADASYN was used for re-sampling training data for SVM (SVM-ADASYN) and for

each AdaBoost (RAMOBoost) iteration. Although the classification of minority classes is

slightly better with SVM-ADASYN than with SVM, the estimation of the majority classes

was slightly affected, showing decreased accuracy. On the other hand, the RAMOBoost

performance was more impressive for all classes: much better than AdaBoost for minority

104

classes classification, and slightly better for the majority classes. The time required for

RAMOBoost to classify an input image is fast, which is desirable for fast decisions.

The performance levels produced with RAMOBoost using LBP and statistical features

are very similar. These features are relatively fast with promising results, making them a

good choice for the problem at hand. Other features can also be valuable, such as Gabor

and some colour features, but they are much slower and hence are not suitable for fast tasks.

Accuracy and Time

The accuracy obtained and time required at the estimated resolutions were calculated and

compared to those at the original, minimum, and peak resolutions. Except in one case,

accuracy is always better at the estimated resolutions than at either the original or the

minimum resolutions. The segmentation times at the estimated resolutions are extremely

fast compared to those at the original resolutions, and significantly slower than at the

minimum resolutions. However, the extreme speed at the lowest resolutions comes at the

cost of a severe reduction in accuracy.

Given these observations, it seems that the worst case that can result from the use of

the proposed framework is the selection of resolutions that provide the same segmentation

accuracy as at the original resolution, but that do so significantly faster.

Comparing the accuracy and speed at the selected resolutions with those at the original,

minimum, and peak ones showed that learning for resolution selection provides better

overall results. However, it is not effective for images having extremely similar objects,

as shown with the lung X-ray dataset.

Time Complexity Analysis

For an image of size M × N , the input size is n = M · N . Computing the LBP with an

operator of size k×k requires a time of O(k2n). Statistical features can be divided into two

groups: ones that use filtering in order to extract the features, such as spatial uniformity,

and those that rely on the histogram for the calculation of the features. Calculating the

105

histogram requires a time of O(n), and calculating the features from the histogram takes

O(g) time, where g is the intensity levels. Using the Sobel operator of size k × k for the

spatial uniformity filter requires a time of O(k2n), and as with the other statistical features,

the standard deviation requires a time of O(n+ g). The time complexity of the combined

statistical features is therefore O(k2n + g). It should be noted that the LBP and statical

features entail almost the same time complexity, which can be further observed from the

examination of the running times reported in Section 6.5.

RAMOBoost involves a time complexity of O(n2Ilog(n)) in the training phase [130],

where I is the number of iterations. The classification time is O(I) [130], that is, it is

dependent on the number of trained hypotheses. It is important to mention that these

times are applicable only for RAMOBoost, without the base classifier. Different base

classifiers have different time complexities, with the classification time usually being much

faster than the training time.

As was determined based on this research, image segmentation at coarser resolutions

is much faster than at finer ones because of the reduction in the input size (e.g., n above).

A lower input size (number of pixels) reduces the time complexity, resulting in faster

segmentation.

It is important to mention that all experiments conducted in this thesis were performed

using MatlabTM. Although it is a well-known platform for development and research, it is

relatively slow compared with other programming languages. Therefore, the use of faster

languages, such as C++, will provide much faster segmentation.

This chapter has presented the experiments conducted in order to verify the perfor-

mance of the proposed framework. The results have also been provided and discussed.

The next chapter summarizes the findings, highlights the contributions, and provides sug-

gestions for future research.

106

Chapter 7

Summary, Conclusions and Future

Work

7.1 Summary and Main Findings

In this thesis, a framework for the automated resolution selection for image segmentation

was proposed. This framework is applicable for numerous segmentation methods. The

pyramid representation was chosen as the multiresolution analysis method, and the mul-

tiresolution coarse-to-fine segmentation strategy was adopted. The best resolutions are

determined based on the simultaneous consideration of both time and accuracy, which is

achieved by using a trade-off measure ω, whose parameter α is controlled by the user to

specify the desired trade-off between accuracy and speed. A supervised machine learn-

ing approach, RAMOBoost, was used for the selection of the best resolutions. The main

findings of this thesis are summarized as follows:

• Segmentation at resolutions other than the original one may provide better accuracy,

usually at a much faster speed.

• Images in the same dataset can have different best resolutions for segmentation pur-

poses.

107

• Different segmentation algorithms can have different best resolutions for the same

image.

• The trade-off measure can be used to define and obtain the best resolution based on

user requirements: higher α values result in the selection of resolutions with better

accuracy, and lower values favour resolutions with faster segmentation.

• The framework introduced in this thesis has been shown to successfully learn and

estimate resolutions for input images. Its efficiency was verified with the use of four

different image datasets and three segmentation algorithms.

• Boosting algorithms can learn more effectively than single strong classifiers. In this

research, 10 iterations of AdaBoost and RAMOBoost with decision trees as base

classifiers substantially outperformed the powerful SVM.

• Synthetic oversampling can be used to enhance learning from imbalanced class data,

an effect that is especially obvious with boosting methods, such as RAMOBoost.

However, oversampling can also affect learning from majority classes, as indicated

by the results obtained with SVM-ADASYN.

• The LBP and statistical features used in this research provided promising results with

fast performance, characteristics that make them good candidates for fast decision

making with respect to the selection of a resolution for image segmentation.

• The worst case of selection performance seems to be providing resolutions that result

in segmentation accuracy at least equal to that produced at the original resolutions

but at much faster speeds.

7.2 Contributions

The main contributions in this research are as follows:

108

• A framework for the resolution selection for image segmentation has been proposed.

This framework is suitable for use with many segmentation algorithms and is com-

prised of several components: the definition of best resolutions as labels for learning,

feature extraction, and the learning and selection of resolutions based on the features

and labels.

• A trade-off measure for defining the best resolution for image segmentation has been

proposed. Because such a definition is based on the application at hand, using a single

parameter, the trade-off measure provides the user or system with the flexibility to

determine an appropriate trade-off between accuracy and speed.

• RAMOBoost has been shown to be effective for learning from imbalanced class dis-

tribution data. RAMOBoost combines the strength of a boosting algorithm with

synthetic oversampling and is therefore a good choice for the problem at hand. The

experimental results confirm the advantage of RAMOBoost over AdaBoost, SVM,

and SVM-ADASYN.

Other contributions of the research include:

• The utilization of LBP features for learning has been demonstrated. These features

offer good learning performances and are fast to extract, which makes them suitable

for fast estimation.

• An analysis of the behaviour of image segmentation at different resolutions with

respect to accuracy and speed (Section 4.2)

• Empirical evidence that images of the same dataset can have different best resolutions

(Section 6.2.1)

• Verification that images segmented with different segmentation algorithms can have

different best resolutions (Section 6.2.2)

• Comprehensive verification of the framework using four different datasets and three

segmentation algorithms

109

7.3 Future Work

The following are suggestions for extending the research conducted for this thesis. Other

multiresolution approaches could be investigated. An important criterion would be that

the images be subsampled at lower resolutions, excluding methods such as scale-space.

Examples of suggested choices are irregular pyramids [80] and adaptive pyramids [82].

An approach involving an adaptive parameter setting per resolution for the coarse-to-

fine strategy for image segmentation could be studied. It is logical to assume that using

the same parameters of a specific image segmentation algorithm at all resolutions would

not produce the best results at each resolution: the parameters could be the best for one

resolution, but be very poor for others.

A natural extension suitable for real applications is the ability to learn continually.

Online learning methods could be utilized for this purpose. For example, in multi-core

processors, the decision making could be performed in one core, while other cores segment

the input image at all resolutions. The user could then determine the best choice, or the

results could be automatically compared with existing gold standard images.

This approach could be used for automated resolution selection for video tracking. Fast

tracking in high-definition video may be impossible, giving rise to a need for automated

decisions about the best resolution for tracking.

The application of the proposed framework in combination with other image processing

applications could be examined. For example, it could be applied for image registration,

in which case the trade-off measure could be used as is, because accuracy and time are

the two main concerns in this area.

110

References

[1] R. Patel and A. Greig, “Segmentation of 3d acoustic images for object recognition

purposes,” in OCEANS ’98 Conference Proceedings, vol. 1, pp. 577–581, 1998.

[2] R. Lu, P. Marziliano, and C. H. Thng, “Liver tumor volume estimation by semi-

automatic segmentation method,” in 27th Annual International Conference of the

Engineering in Medicine and Biology Society, pp. 3296–3299, 2005.

[3] T.-W. Chen, Y.-L. Chen, and S.-Y. Chien, “Fast image segmentation and texture

feature extraction for image retrieval,” in IEEE 12th International Conference on

Computer Vision Workshops, pp. 854–861, 2009.

[4] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Inter-

national Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[5] R. Nock and F. Nielsen, “Statistical region merging,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1452–1458, 2004.

[6] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture

thresholding using the entropy of the histogram,” Graph. Models Image Process,

vol. 29, pp. 273–285, 1985.

[7] Y. Boykov and O. Veksler, “Graph cuts in vision and graphics: Theories and ap-

plications,” in Handbook of Mathematical Models in Computer Vision (N. Paragios,

Y. Chen, and O. Faugeras, eds.), pp. 79–96, Springer US, 2006.

111

[8] R. J. Brunner, S. G. Djorgovski, T. A. Prince, and A. S. Szalay, “Handbook of

massive data sets,” ch. Massive datasets in astronomy, pp. 931–979, Norwell, MA,

USA: Kluwer Academic Publishers, 2002.

[9] M. Merino and J. Nunez, “Super-resolution of remotely sensed images with variable-

pixel linear reconstruction,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 45, no. 5, pp. 1446–1457, 2007.

[10] I. Scholl, T. Aach, T. Deserno, and T. Kuhlen, “Challenges of medical image pro-

cessing,” Computer Science - Research and Development, vol. 26, pp. 5–13, 2011.

[11] B. Leroy, I. Herlin, and L. Cohen, “Multi-resolution algorithms for active contour

models,” in ICAOS ’96, vol. 219 of Lecture Notes in Control and Information Sci-

ences, pp. 58–65, Springer Berlin / Heidelberg, 1996.

[12] F. Al-Qunaieer, H. Tizhoosh, and S. Rahnamayan, “Multi-resolution level set im-

age segmentation using wavelets,” in 18th IEEE International Conference on Image

Processing (ICIP), pp. 269–272, 2011.

[13] H. Lombaert, Y. Sun, L. Grady, and C. Xu, “A multilevel banded graph cuts method

for fast image segmentation,” in Tenth IEEE International Conference on Computer

Vision, vol. 1, pp. 259–265, 2005.

[14] J. Maerker, W. Grob, W. Middelmann, and A. Ebert, “Hyperspectral band selection

using statistical models,” 2011.

[15] A. P. S. V. Mamta Bhojne, Abhishek Chakravarti, “High performance computing

for satellite image processing and analyzing a review,” International Journal of

Computer Applications Technology and Research, vol. 2, no. 4, pp. 424–430, 2013.

[16] P.-Y. Tsang, “Multi-resolution image segmentation using geometric active contours,”

Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 2004.

112

[17] R. Fernandez-Gonzalez, T. Deschamps, A. Idica, R. Malladi, and C. O. de Solorzano,

“Automatic segmentation of histological structures in mammary gland tissue sec-

tions,” Journal of Biomedical Optics, vol. 9, no. 3, pp. 444–453, 2004.

[18] A. Joulin, F. Bach, and J. Ponce, “Discriminative clustering for image co-

segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1943–1950, 2010.

[19] C. Wang, S. Guo, J. Wu, Q. Liu, and X. Wu, “Lung region segmentation based on

multi-resolution active shape model,” in 7th Asian-Pacific Conference on Medical

and Biological Engineering, vol. 19, pp. 260–263, 2008.

[20] D. Bruce, “Object oriented classification: case studies using different image types

with different spatial resolutions,” in 21st International Society for Photogrammetry

and Remote Sensing (ISPRS) World Congress, vol. 37, pp. 515–520, 2008.

[21] H. Huiping, W. Bingfang, and F. Jinlong, “Analysis to the relationship of classifi-

cation accuracy, segmentation scale, image resolution,” in IEEE International Geo-

science and Remote Sensing Symposium, IGARSS, vol. 6, pp. 3671–3673, 2003.

[22] R. Gonzalez and R. Woods, Digital Image Processing. Prentice Hall, third ed., 2008.

[23] N. Otsu, “Threshold selection method from gray-level histogram,” IEEE Trans. Sys.

Man Cybern., vol. SMC-9, no. 1, pp. 62–66, 1979.

[24] L. Sobel, Camera Models and Machine Perception. Stanford University, 1970.

[25] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal-

ysis and Machine Intelligence, vol. PAMI-8, no. 1, pp. 679–699, 1986.

[26] W. Tan, G. Coatrieux, B. Solaiman, and R. Besar, “A region based segmentation

using pixel block fuzzy similarity,” in 2nd Information and Communication Tech-

nologies, ICTTA ’06, pp. 1516–1521, 2006.

113

[27] R. Malladi, J. Sethian, and B. Vemuri, “Shape modeling with front propagation: a

level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 17, no. 2, pp. 158–175, 1995.

[28] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantita-

tive performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, pp. 146–

168, 2004.

[29] J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern Recognition,

vol. 19, no. 1, pp. 41–47, 1985.

[30] W. Tao, H. Jin, and L. Liu, “A new image thresholding method based on graph

cuts,” in IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP, pp. I–605–I–608, 2007.

[31] Y. Yang, C. Zheng, and P. Lin, “Image thresholding based on spatially weighted

fuzzy c-means clustering,” in The Fourth International Conference on Computer and

Information Technology, CIT, pp. 184–189, 2004.

[32] S. Rahnamayan and H. Tizhoosh, “Image thresholding using micro opposition-based

differential evolution (micro-ode),” in IEEE Congress on Evolutionary Computation,

CEC 2008, pp. 1409–1416, 2008.

[33] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Weighted voting-based robust image

thresholding,” in IEEE International Conference on Image Processing, pp. 1129–

1132, 2006.

[34] F. Al-Qunaieer, H. Tizhoosh, and S. Rahnamayan, “Oppositional fuzzy image thresh-

olding,” in IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–7, 2010.

[35] J. Kang and W. Zhang, “An approach for image thresholding using cnn associated

with histogram analysis,” in International Conference on Measuring Technology and

Mechatronics Automation, ICMTMA, pp. 421–424, 2009.

114

[36] X. Ren, “An optimal image thresholding using genetic algorithm,” in International

Forum on Computer Science-Technology and Applications, IFCSTA, pp. 169–172,

2009.

[37] Z. Lin, Z. Wang, and Y. Zhang, “Image thresholding using particle swarm opti-

mization,” in International Conference on MultiMedia and Information Technology,

MMIT, pp. 245–248, 2008.

[38] D. Bradley and G. Roth, “Adaptive thresholding using the integral image,” Journal

of Graphics Tools, vol. 12, no. 2, pp. 13–21, 2007.

[39] L. Roberts, Optical and Electro-Optimal Information Processing, ch. Machine Per-

ception of Three-Dimension Solids. MIT Press, Cambridge, 1965.

[40] J. Prewitt, Picture Process, ch. Enhancement and Extraction. Academic Press, New

York, 1970.

[41] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal Society

of London. Series B, Biological Sciences, vol. 207, no. 1167, pp. 187–217, 1980.

[42] T. Law, H. Itoh, and H. Seki, “Image filtering, edge detection, and edge tracing using

fuzzy reasoning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 18, no. 5, pp. 481–491, 1996.

[43] M. Gonzalez-Hidalgo, A. M. Torres, and J. T. Sastre, “Noisy image edge detection

using an uninorm fuzzy morphological gradient,” in Ninth International Conference

on Intelligent Systems Design and Applications, ISDA, pp. 1335–1340, 2009.

[44] W. Li, C. Wang, Q. Wang, and G. Chen, “An edge detection method based on

optimized bp neural network,” in International Symposium on Information Science

and Engieering, ISISE, pp. 40–44, 2008.

[45] H. Mehrara, M. Zahedinejad, and A. Pourmohammad, “Novel edge detection using

bp neural network based on threshold binarization,” in Second International Confer-

ence on Computer and Electrical Engineering, ICCEE, pp. 408–412, 2009.

115

[46] P. Terry and D. Vu, “Edge detection using neural networks,” in The Twenty-Seventh

Asilomar Conference on Signals, Systems and Computers, pp. 391–395, 1993.

[47] S. Bhandarkar, Y. Zhang, and W. Potter, “A genetic algorithm-based edge detec-

tion technique,” in Proceedings of 1993 International Joint Conference on Neural

Networks, IJCNN, pp. 2995–2999, 1993.

[48] W. Cui, Z. Guan, and Z. Zhang, “An improved region growing algorithm for im-

age segmentation,” in International Conference on Computer Science and Software

Engineering, vol. 6, pp. 93–96, 2008.

[49] D. Kelkar and S. Gupta, “Improved quadtree method for split merge image segmen-

tation,” in First International Conference on Emerging Trends in Engineering and

Technology, pp. 44–47, 2008.

[50] H. Malki, “Image segmentation using multilayer neural network,” in International

Joint Conference on Neural Networks, IJCNN, pp. 354–360, 1992.

[51] A. Visa, “A genetic algorithm based method to improve image segmentation,” in

Fourteenth International Conference on Pattern Recognition, pp. 1015–1017, 1998.

[52] S. Bhandarkar and H. Zhang, “Image segmentation using evolutionary computation,”

IEEE Transactions on Evolutionary Computation, vol. 3, no. 1, pp. 1–21, 1999.

[53] D. Cohen, “On active contour models and balloons,” in CVGIP: Image Understand-

ing, 1991.

[54] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Automated snake initialization for

the segmentation of the prostate in ultrasound images,” in Image Analysis and Recog-

nition (M. Kamel and A. Campilho, eds.), vol. 3656 of Lecture Notes in Computer

Science, pp. 930–937, Springer Berlin Heidelberg.

[55] T. McInerney and D. Terzopoulos, “T-snakes: Topology adaptive snakes,” Medical

Image Analysis, vol. 4, no. 2, pp. 73–91, 2000.

116

[56] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Al-

gorithms based on hamilton-jacobi formulations,” Journal of Computational Physics,

vol. 79, no. 1, pp. 12–49, 1988.

[57] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, “Two-way coupled sph and par-

ticle level set fluid simulation,” IEEE Transactions on Visualization and Computer

Graphics, vol. 14, no. 4, pp. 797–804, 2008.

[58] A. Brodersen, K. Museth, S. Porumbescu, and B. Budge, “Geometric texturing using

level sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 14,

no. 2, pp. 277–288, 2008.

[59] Y. S. Kim, J. K. Byun, and I. H. Park, “A level set method for shape optimization of

electromagnetic systems,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1466–

1469, 2009.

[60] A. Ghodrati, F. Calderero, D. Brooks, G. Tadmor, and R. MacLeod, “A level sets

algorithm for the inverse problem of electrocardiography,” in Thirty-Eighth Asilomar

Conference on Signals, Systems and Computers, vol. 2, pp. 1590–1594, 2004.

[61] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active contours

in image processing,” Numerische Mathematik, vol. 66, pp. 1–31, 1993.

[62] R. Malladi, J. Sethian, and B. Vemuri, Evolutionary fronts for topology-independent

shape modelling and recovery, vol. 800 of Lecture Notes in Computer Science, pp. 1–

13. Springer Berlin / Heidelberg, 1994.

[63] T. Chan and L. Vese, “Active contours without edges,” IEEE Transactions on Image

Processing, vol. 10, no. 2, pp. 266–277, 2001.

[64] J. Yezzi, A., A. Tsai, and A. Willsky, “A statistical approach to snakes for bimodal

and trimodal imagery,” in The Proceedings of the Seventh IEEE International Con-

ference on Computer Vision, vol. 2, pp. 898–903, 1999.

117

[65] A. Tsai, J. Yezzi, A., and A. Willsky, “Curve evolution implementation of the

mumford-shah functional for image segmentation, denoising, interpolation, and mag-

nification,” IEEE Transactions on Image Processing, vol. 10, no. 8, pp. 1169–1186,

2001.

[66] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions

and associated variational problems,” Communications on Pure and Applied Mathe-

matics, vol. 42, no. 5, pp. 577–685, 1989.

[67] L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation

using the mumford and shah model,” International Journal of Computer Vision,

vol. 50, no. 3, pp. 271–293, 2002.

[68] J. B. Roerdink and A. Meijster, “The watershed transform: Definitions, algorithms

and parallelization strategies,” Fundam. Inf., vol. 41, no. 1,2, pp. 187–228, 2000.

[69] J. Xuan, T. Adali, and Y. Wang, “Segmentatin of magnetic resonance brain image:

Integrating region growing and edge detection,” in International Conference on Image

Processing, pp. 544–547, 1995.

[70] Y.-W. Yu and J.-H. Wang, “Image segmentation on region growing and edge detec-

tion,” in IEEE International Conference on Systems, Man, and Cybernetics, IEEE

SMC ’99, pp. 798–803, 1999.

[71] J. L. Moigne and J. Tilton, “Refining image segmentation by integration of edge and

region data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 3,

pp. 605–615, 1995.

[72] M. Salah, A. Mitiche, and I. Ayed, “Multiregion image segmentation by parametric

kernel graph cuts,” IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 545–

557, 2011.

[73] D. Park, D. Ramanan, and C. Fowlkes, “Multiresolution models for object detec-

tion,” in Computer Vision ECCV 2010 (K. Daniilidis, P. Maragos, and N. Paragios,

118

eds.), vol. 6314 of Lecture Notes in Computer Science, pp. 241–254, Springer Berlin

Heidelberg, 2010.

[74] P. Burt and E. Adelson, “The laplacian pyramid as a compact image code,” IEEE

Transactions on Communications, vol. 31, pp. 532–540, apr 1983.

[75] S. P. Raja and A. Suruliandi, “Analysis of efficient wavelet based image compres-

sion techniques,” in International Conference on Computing Communication and

Networking Technologies, pp. 1–6, 2010.

[76] C. E. Jacobs, A. Finkelstein, and D. H. Salesin, “Fast multiresolution image query-

ing,” in Proceedings of the 22nd annual conference on Computer graphics and inter-

active techniques, SIGGRAPH ’95, pp. 277–286, ACM, 1995.

[77] M. Rezaee, P. M. J. Van der Zwet, B. P. F. Lelieveldt, R. van der Geest, and

J. Reiber, “A multiresolution image segmentation technique based on pyramidal

segmentation and fuzzy clustering,” IEEE Transactions on Image Processing, vol. 9,

no. 7, pp. 1238–1248, 2000.

[78] M. Saeed, W. Karl, T. Nguyen, and H. Rabiee, “A new multiresolution algorithm for

image segmentation,” in IEEE International Conference on Acoustics, Speech and

Signal Processing, vol. 5, pp. 2753–2756, 1998.

[79] J. Yang and T. Huang, Image super-resolution: historical overview and future chal-

lenges. from the book: Super-Resolution Imaging (edited by Peyman Milanfar), CRC

Press (Taylor & and amp and Francis Group), 2011.

[80] R. Marfil, L. Molina-Tanco, A. Bandera, J. Rodrguez, and F. Sandoval, “Pyramid

segmentation algorithms revisited,” Pattern Recognition, vol. 39, no. 8, pp. 1430–

1451, 2006.

[81] P. Meer, “Stochastic image pyramids,” Computer Vision, Graphics, and Image Pro-

cessing, vol. 45, no. 3, pp. 269–294, 1989.

119

[82] J. Jolion and A. Montanvert, “The adaptive pyramid: A framework for 2d image

analysis,” CVGIP: Image Understanding, vol. 55, no. 3, pp. 339–348, 1992.

[83] A. P. Witkin, “Scale-space filtering,” in Proceedings of the Eighth international joint

conference on Artificial intelligence, pp. 1019–1022, 1983.

[84] T. Lindeberg, Scale-Space Theory in Computer Vision. Kluwer international series

in engineering and computer science, Springer, 1993.

[85] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7,

pp. 629–639, 1990.

[86] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet repre-

sentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11,

pp. 674–693, 1989.

[87] J.-L. Starck and J. Bobin, “Astronomical data analysis and sparsity: From wavelets

to compressed sensing,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1021–1030, 2010.

[88] W. Huang and M. Solorzano, “Wavelet preprocessing of acoustic signals,” in Con-

ference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and

Computers, vol. 2, pp. 1114–1118, 1991.

[89] Y. Li, H. Szu, Y. Sheng, and H. Caulfield, “Wavelet processing and optics,” Proceed-

ings of the IEEE, vol. 84, no. 5, pp. 720–732, 1996.

[90] X. Huang, A. Madoc, and M. Wagner, “Noises removal for images by wavelet-based

bayesian estimator via levy process analysis,” in IEEE International Conference on

Multimedia and Expo, vol. 1, pp. 327–330, 2004.

[91] Y. Hao, L. Changshun, and P. Lei, “An improved method of image edge detection

based on wavelet transform,” in IEEE International Conference on Computer Science

and Automation Engineering, vol. 3, pp. 678–681, 2011.

120

[92] Y. Lu and M. N. Do, “Crisp-contourlet: a critically sampled directional multiresolu-

tion representation,” in Proc. SPIE Conf. on Wavelets X, pp. 655–665, 2003.

[93] R. Gaetano, G. Scarpa, and G. Poggi, “A hierarchical segmentation algorithm for

multiresolution satellite images,” in IEEE International Geoscience and Remote

Sensing Symposium, pp. 1885–1888, 2007.

[94] R. Gaetano, G. Scarpa, and G. Poggi, “Hierarchical texture-based segmentation

of multiresolution remote-sensing images,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 47, no. 7, pp. 2129–2141, 2009.

[95] L. Qingsheng and L. Guoying, “Multi-resolution markov random field model with

variable potentials in wavelet domain for texture image segmentation,” in Com-

puter Application and System Modeling (ICCASM), 2010 International Conference

on, vol. 9, pp. 342–346, 2010.

[96] G. Liu and G. Tao, “Multiresolution algorithm for image segmentation using mrmrf

with edge information,” in Wireless Communications Networking and Mobile Com-

puting (WiCOM), 2010 6th International Conference on, pp. 1–4, 2010.

[97] D. Boukerroui, O. Basset, N. Gurin, and A. Baskurt, “Multiresolution texture based

adaptive clustering algorithm for breast lesion segmentation,” European Journal of

Ultrasound, vol. 8, no. 2, pp. 135–144, 1998.

[98] P. Yan, S. Xu, B. Turkbey, and J. Kruecker, “Discrete deformable model guided

by partial active shape model for trus image segmentation,” IEEE Transactions on

Biomedical Engineering, vol. 57, no. 5, pp. 1158–1166, 2010.

[99] Y. Akgul and C. Kambhamettu, “A coarse-to-fine deformable contour optimiza-

tion framework,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 25, no. 2, pp. 174–186, 2003.

[100] J. Dehmeshki, M. Siddique, W. Wong, and I. Ster, “Multiresolution active contour

model applied on non lung and colon images,” in SPIE International Symposium on

Medical Imaging, vol. 5370, pp. 1685–1694, 2004.

121

[101] S. Yoon, C. Lee, J. Kim, and M. Lee, “Wavelet-based multi-resolution deformation

for medical endoscopic image segmentation,” Journal of Medical Systems, vol. 32,

pp. 207–214, 2008.

[102] N. Lin, W. Yu, and J. S. Duncan, “Combinative multi-scale level set framework

for echocardiographic image segmentation,” in Proceedings of the 5th International

Conference on Medical Image Computing and Computer-Assisted Intervention-Part

I, MICCAI, pp. 682–689, 2002.

[103] N. Lin, W. Yu, and J. S. Duncan, “Combinative multi-scale level set framework

for echocardiographic image segmentation,” Medical Image Analysis, vol. 7, no. 4,

pp. 529–537, 2003.

[104] J. M. Hao Shan, “Curvelet-based geodesic snakes for image segmentation with mul-

tiple objects,” Pattern Recognition Letters, vol. 31, no. 5, pp. 355–360, 2010.

[105] V. Roullier, V. T. Ta, O. Lezoray, and A. Elmoataz, “Graph-based multi-resolution

segmentation of histological whole slide images,” in IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, pp. 153–156, 2010.

[106] C. Bouman and B. Liu, “Multiple resolution segmentation of textured images,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 99–

113, 1991.

[107] X. Munoz, J. Marti, X. Cufi, and J. Freixenet, “Unsupervised active regions for

multiresolution image segmentation,” in 16th International Conference on Pattern

Recognition, vol. 2, pp. 905–908, 2002.

[108] A. Rosenfeld, Multiresolution Image Processing and Analysis. Springer Series in

Information Sciences, Springer London, Limited, 1984.

[109] T. Lindeberg and J. Garding, “Shape from texture from a multi-scale perspective,”

in Fourth International Conference on Computer Vision, pp. 683–691, 1993.

122

[110] T. Lindeberg, “Feature detection with automatic scale selection,” Int. J. Comput.

Vision, vol. 30, no. 2, pp. 79–116, 1998.

[111] T. Lindeberg, “Junction detection with automatic selection of detection scales and

localization scales,” in IEEE International Conference Image Processing, pp. 924–

928, 1994.

[112] T. Lindeberg, “Edge detection and ridge detection with automatic scale selection,”

in IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pp. 465–470, 1996.

[113] H. Jeong and C. Kim, “Adaptive determination of filter scales for edge detection,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 5,

pp. 579–585, 1992.

[114] J. Elder and S. Zucker, “Local scale control for edge detection and blur estimation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 7,

pp. 699–716, 1998.

[115] M. Jagersand, “Saliency maps and attention selection in scale and spatial coordinates:

an information theoretic approach,” in Fifth International Conference on Computer

Vision, pp. 195–202, 1995.

[116] A. Renyi, Some fundamental questions of information theory, pp. 526–552. Budapest,

Hungary: Akademiai Kiado, 1976.

[117] J. Sporring and J. Weickert, “Information measures in scale-spaces,” IEEE Transac-

tions on Information Theory, vol. 45, no. 3, pp. 1051–1058, 1999.

[118] E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar, “Resolution selection us-

ing generalized entropies of multiresolution histograms,” in Proceedings of the 7th

European Conference on Computer Vision-Part I, pp. 220–235, 2002.

[119] M. Tanaka, T. Watanabe, and T. Mishima, “Tsallis entropy in scale spaces,” in Proc.

SPIE, vol. 3811, pp. 273–283, 1999.

123

[120] T. Kadir and M. Brady, “Saliency, scale and image description,” Int. J. Comput.

Vision, vol. 45, pp. 83–105, Nov. 2001.

[121] H. Mirzaalian and G. Hamarneh, “Vessel scale-selection using mrf optimization,”

in IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3279,

2010.

[122] D. Marimont and Y. Rubner, “A probabilistic framework for edge detection and scale

selection,” in Sixth International Conference on Computer Vision, pp. 207–214, 1998.

[123] K. S. Pedersen, M. Loog, and B. Markussen, “Generic maximum likely scale selec-

tion,” in Proceedings of the 1st international conference on Scale space and variational

methods in computer vision, pp. 362–373, 2007.

[124] K. Pedersen, “Properties of brownian image models in scale-space,” in Scale Space

Methods in Computer Vision (L. Griffin and M. Lillholm, eds.), vol. 2695 of Lecture

Notes in Computer Science, pp. 281–296, Springer Berlin Heidelberg, 2003.

[125] G. Gomez, J. L. Marroquin, and L. Sucar, “Probabilistic estimation of local scale,”

in 15th International Conference on Pattern Recognition, vol. 3, pp. 790–793, 2000.

[126] E. Bayram, C. L. Wyatt, and Y. Ge, “Automatic scale selection for medical image

segmentation,” in Proc. SPIE, vol. 4322, pp. 1399–1410, 2001.

[127] J. Piovano and T. Papadopoulo, “Local statistic based region segmentation with au-

tomatic scale selection,” in Computer Vision (D. Forsyth, P. Torr, and A. Zisserman,

eds.), vol. 5303 of Lecture Notes in Computer Science, pp. 486–499, Springer Berlin

Heidelberg, 2008.

[128] Y. Li, D. M. Tax, and M. Loog, “Scale selection for supervised image segmentation,”

Image and Vision Computing, vol. 30, no. 12, pp. 991–1003, 2012.

[129] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures

with classification based on featured distributions,” Pattern Recognition, vol. 29,

no. 1, pp. 51–59, 1996.

124

[130] S. Chen, H. He, and E. Garcia, “Ramoboost: Ranked minority oversampling in

boosting,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1624–1642,

2010.

[131] G. Beliakov, T. Calvo, and S. James, “Aggregation of preferences in recommender

systems,” in Recommender Systems Handbook (F. Ricci, L. Rokach, B. Shapira, and

P. B. Kantor, eds.), pp. 705–734, Springer US, 2011.

[132] P. J. Walsh and W. Wheeler, “Water quality index aggregation and cost benefit

analysis,” NCEE Working Paper Series 201205, National Center for Environmental

Economics, U.S. Environmental Protection Agency, 2012.

[133] M. J. Scott and E. K. Antonsson, “Aggregation functions for engineering design

trade-offs,” Fuzzy Sets and Systems, vol. 99, no. 3, pp. 253–264, 1998.

[134] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biological Cybernetics,

vol. 61, no. 2, pp. 103–113, 1989.

[135] L. Vincent, “Fast granulometric methods for the extraction of global image informa-

tion,” The proceedings of PRASA, pp. 119–140, 2000.

[136] G. Zhao and M. Pietikäinen, “Dynamic texture recognition using local binary pat-

terns with an application to facial expressions,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 29, no. 6, pp. 915–928, 2007.

[137] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local binary pat-

terns,” in 8th European Conference on Computer Vision, pp. 469–481, 2004.

[138] T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[139] T. Ahonen, J. Matas, C. He, and M. Pietikäinen, “Rotation invariant image descrip-

tion with local binary pattern histogram fourier features,” in Proceedings of the 16th

Scandinavian Conference on Image Analysis, pp. 61–70, 2009.

125

[140] T. Menp and M. Pietikinen, “Multi-scale binary patterns for texture analysis,” in

Image Analysis (J. Bigun and T. Gustavsson, eds.), vol. 2749 of Lecture Notes in

Computer Science, pp. 885–892, Springer Berlin Heidelberg, 2003.

[141] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press, 4th ed.,

2008.

[142] P. Correia and F. Pereira, “Objective evaluation of video segmentation quality,”

IEEE Transactions on Image Processing, vol. 12, no. 2, pp. 186–200, 2003.

[143] P. Radivojac, N. V. Chawla, A. K. Dunker, and Z. Obradovic, “Classification

and knowledge discovery in protein databases,” Journal of Biomedical Informatics,

vol. 37, no. 4, pp. 224–239, 2004.

[144] D. D. Lewis and J. Catlett, “Heterogeneous Uncertainty Sampling for Supervised

Learning,” in In Proceedings of the Eleventh International Conference on Machine

Learning, pp. 148–156, 1994.

[145] Y. Liu, E. Shriberg, A. Stolcke, and M. P. Harper, “Using machine learning to cope

with imbalanced classes in natural speech: evidence from sentence boundary and

disfluency detection,” in INTERSPEECH, 2004.

[146] V. Engen, J. Vincent, and K. Phalp, “Enhancing network based intrusion detection

for imbalanced data,” Int. J. Know.-Based Intell. Eng. Syst., vol. 12, no. 5,6, pp. 357–

367, 2008.

[147] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection of oil

spills in satellite radar images,” Mach. Learn., vol. 30, no. 2-3, pp. 195–215, 1998.

[148] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Syn-

thetic minority over-sampling technique,” Journal of Artificial Intelligence Research,

vol. 16, pp. 321–357, 2002.

[149] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

126

[150] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced datasets: A

review,” GESTS International Transactions on Computer Science and Engineering,

2006.

[151] N. Japkowicz, “The class imbalance problem: Significance and strategies,” in Proceed-

ings of the 2000 International Conference on Artificial Intelligence (ICAI, pp. 111–

117, 2000.

[152] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance

learning,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, vol. 39, no. 2, pp. 539–550, 2009.

[153] H. He, Y. Bai, E. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling ap-

proach for imbalanced learning,” in IEEE International Joint Conference on Neural

Networks, IJCNN 2008, pp. 1322–1328, 2008.

[154] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on cost-sensitive learn-

ing: An empirical study,” in Sixth International Conference on Data Mining, pp. 970–

974, 2006.

[155] S. Ertekin, J. Huang, and C. L. Giles, “Active learning for class imbalance problem,”

in Proceedings of the 30th annual international ACM SIGIR conference on Research

and development in information retrieval, pp. 823–824, 2007.

[156] G. Wu and E. Chang, “Class-Boundary Alignment for Imbalanced Dataset Learning,”

in Workshop on Learning from Imbalanced Datasets in ICML, pp. 49–56, 2003.

[157] G. Wu and E. Chang, “Aligning boundary in kernel space for learning imbalanced

dataset,” in IEEE International Conference on Data Mining, pp. 265–272, 2004.

[158] G. Wu and E. Chang, “Kba: kernel boundary alignment considering imbalanced

data distribution,” IEEE Transactions on Knowledge and Data Engineering, vol. 17,

no. 6, pp. 786–795, 2005.

127

[159] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,

1996.

[160] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in

International Conference on Machine Learning, pp. 148–156, 1996.

[161] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp. 241–259, 1992.

[162] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boosting and

data generation: the databoost-im approach,” SIGKDD Explor. Newsl., vol. 6, no. 1,

pp. 30–39, 2004.

[163] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “Smoteboost: Improving prediction

of the minority class in boosting,” in Knowledge Discovery in Databases: PKDD

(N. Lavra, D. Gamberger, L. Todorovski, and H. Blockeel, eds.), vol. 2838 of Lecture

Notes in Computer Science, pp. 107–119, Springer Berlin Heidelberg, 2003.

[164] Y. Freund and R. Schapire, “A short introduction to boosting,” Japanese Society for

Artificial Intelligence, vol. 14, no. 5, pp. 771–780, 1999.

[165] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms (Adaptive

Computation and Machine Learning series). The MIT Press, 2012.

[166] J. Zhu, S. Rosset, H. Zou, and T. Hastie, “Multi-class AdaBoost,” tech. rep., 2006.

[167] P. Natesan, P. Balasubramanie, and G. Gowrison, “Performance Comparison of Ad-

aBoost Based Weak Classifiers in Network Intrusion Detection,” Journal of Infor-

mation Systems and Communication, vol. 3, no. 1, pp. 295–299, 2012.

[168] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classification Per-

spective. New York, NY, USA: Cambridge University Press, 2011.

[169] Y. Sun, M. Kamel, and Y. Wang, “Boosting for learning multiple classes with imbal-

anced class distribution,” in Sixth International Conference on Data Mining, ICDM,

pp. 592–602, 2006.

128

[170] D. J. Hand and R. J. Till, “A simple generalisation of the area under the roc curve for

multiple class classification problems,” Machine Learning, vol. 45, no. 2, pp. 171–186,

2001.

[171] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn. Lett., vol. 27, no. 8,

pp. 861–874, 2006.

[172] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “Interactively co-segmentating

topically related images with intelligent scribble guidance,” Int. J. Comput. Vision,

vol. 93, no. 3, pp. 273–292, 2011.

[173] Japanese Society of Radiological Technology, “Lung X-Ray Dataset.” available at:

http://www.jsrt.or.jp/jsrt-db/eng.php.

[174] K. Zuiderveld, Contrast limited adaptive histogram equalization, pp. 474–485. San

Diego, CA, USA: Academic Press Professional, Inc., 1994.

[175] I. B. Ayed, “Parametric Kernel Graph Cuts Code.” available at:

http://http://www.mathworks.com/matlabcentral/fileexchange/

38555-kernel-graph-cut-image-segmentation.

[176] S. Boltz, “Statistical Region Merging Code.” available

at: http://www.mathworks.com/matlabcentral/fileexchange/

25619-image-segmentation-using-statistical-region-merging.

[177] L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology,

vol. 26, no. 3, pp. 297–302, 1945.

[178] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, 2011.

[179] C.-C. Chang and C.-J. Lin, “LIBSVM - A Library for Support Vector Machines.”

available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

129

http://www.jsrt.or.jp/jsrt-db/eng.php
http://http://www.mathworks.com/matlabcentral/fileexchange/38555-kernel-graph-cut-image-segmentation
http://http://www.mathworks.com/matlabcentral/fileexchange/38555-kernel-graph-cut-image-segmentation
http://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging
http://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[180] H. H. Yang and J. Moody, “Data visualization and feature selection: New algo-

rithms for nongaussian data,” in Advances in Neural Information Processing Systems,

pp. 687–693, MIT Press, 1999.

[181] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” in Proceedings of the fifth annual workshop on Computational

learning theory, pp. 144–152, 1992.

[182] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995.

[183] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of face and speech data for

person identity verification,” IEEE Transactions on Neural Networks, vol. 10, no. 5,

pp. 1065–1074, 1999.

[184] H. Drucker, S. Wu, and V. Vapnik, “Support vector machines for spam categoriza-

tion,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1048–1054, 1999.

[185] I. N. Flaounas, D. K. Iakovidis, and D. E. Maroulis, “Cascading svms as a tool for

medical diagnosis using multi-class gene expression data,” International Journal on

Artificial Intelligence Tools, 2006.

[186] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in

International Conference on Machine Learning, pp. 148–156, 1996.

[187] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood maximi-

sation: A unifying framework for information theoretic feature selection,” J. Mach.

Learn. Res., vol. 13, pp. 27–66, 2012.

[188] F. Tab, G. Naghdy, and A. Mertins, “Scalable multiresolution color image segmen-

tation with smoothness constraint,” in IEEE International Conference on Electro

Information Technology, pp. 1670–1687, 2005.

130

[189] J. Wang, J. Li, R. Gray, and G. Wiederhold, “Unsupervised multiresolution segmen-

tation for images with low depth of field,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 23, no. 1, pp. 85–90, 2001.

[190] G. Liu and G. Tao, “Multiresolution algorithm for image segmentation using mrmrf

with edge information,” in 6th International Conference on Wireless Communica-

tions Networking and Mobile Computing (WiCOM), pp. 1–4, 2010.

[191] R. Gaetano, G. Scarpa, and G. Poggi, “Hierarchical texture-based segmentation

of multiresolution remote-sensing images,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 47, no. 7, pp. 2129–2141, 2009.

[192] K. Okada, D. Comaniciu, and A. Krishnan, “Scale selection for anisotropic scale-

space: application to volumetric tumor characterization,” in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–594–I–601,

2004.

[193] S. Banerji, A. Verma, and C. Liu, “Lbp and color descriptors for image classification,”

in Cross Disciplinary Biometric Systems, vol. 37 of Intelligent Systems Reference

Library, Springer Berlin Heidelberg, 2012.

[194] “The support vector machine under test,” Neurocomputing, vol. 55, no. 12, pp. 169–

186, 2003.

[195] X. Hong, S. Chen, and C. Harris, “A kernel-based two-class classifier for imbalanced

data sets,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 28–41, 2007.

[196] M. Shahriar, T. Ahsan, and U. Chong, “Fault diagnosis of induction motors utilizing

local binary pattern-based texture analysis,” EURASIP Journal on Image and Video

Processing, vol. 2013, no. 1, pp. 1–11, 2013.

131

APPENDICES

132

Appendix A

Algorithms

A.1 Support Vector Machines

Support Vector Machines (SVM) [181] is a well-known learning method in machine learning.

It was originally introduced for binary classification problems, but was later extended for

multi-class problems. The objective in SVM is to search for the optimal hyperplane that

separates two classes, a goal that is achieved by finding parameters that maximize the

marginal distance between the classes. Since its introduction, SVM has become a popular

choice in many fields, such as optical character recognition [182], personal identification

[183], spam filtering and categorization [184], and medical imaging [185].

For a binary classification problem, let xi be the feature vectors (input) of the n in-

stances training set X, and yi be the targets, where i = 1,2,. . . , n. The hyperplane sep-

arating two classes linearly can be defined as

wTx+ b = 0, (A.1)

133

where w is a weight vector and b is a bias. In this way, we have

wTx+ b ≥ 0 for yi = +1,

wTx+ b < 0 for yi = −1.
(A.2)

The separating hyperplane defined in Eq. A.1 is not unique. Different hyperplanes

can be defined with different weights w and biases b. The objective of SVM is to find

the optimal hyperplane with the maximum separation between classes by searching for

optimal values of w and b. Separation can be represented by a margin, which is the

distance between the hyperplane and the closest data point of either class (support vectors).

This margin is defined by

m =
1

||w||
, (A.3)

The margin of separation between the two classes is therefore

2

||w||
. (A.4)

Maximizing the margin is equivalent to minimizing the Euclidean norm of w. The opti-

mization problem can thus be stated as follows:

minimize
1

2
||w||2

subject to yi
(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n.

(A.5)

This solution is applicable only to strictly separable classes. For nonseparable classes,

the problem must be relaxed, which can be accomplished with slack variables ξi. The

optimization problem will then be

minimize
1

2
||w||2 + CΣn

i=1ξi

subject to yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0,

(A.6)

134

where C > 0 is a constant for controlling the relative influence of the two terms: maximizing

the margin and minimizing the amount of slack. Figure A.1 illustrates the cases of linear

and non-linear separable classes.

Figure A.1: Left: linear separable classes; right: linear non-separable classes.

An interesting aspect of SVM is the ability to linearly solve a non-linear problem

by transforming the non-linear problem into higher dimensional space, and then finding

the optimal linear hyperplane there. The linear hyperplane in the transformed space is

equivalent to a non-linear one in the input space as shown in Figure A.2. Computing the

dot product in very high-dimension space can be prohibitively expensive. Fortunately, this

computation can be performed implicitly from the input space through the use of kernels.

For the non-linear mapping function φ(.), kernel K is therefore defined as

K(xi, xj) = φ(xi) · φ(xj). (A.7)

There are many types of kernels; Table A.1 lists the most common three.

Up to this point, this discussion has referred to binary classification problems. SVM

can also be extended for multiclass problems: the most popular methods are one ver-

sus all and one versus one [141]. For an N class problem, the one-versus-all strategy

constructs N classifiers, whereby each class is discriminated from the rest of the classes.

135

Figure A.2: Mapping from input space to higher dimensional space.

Table A.1: Common kernel types for SVM

Kernel Equation K(xi, xj)

Polynomial
(
xTi xj + 1

)p
, p > 0

Gaussian exp
(
− ||xi−xj ||

2

σ2

)
Sigmoid tanh

(
kxTi xj − δ

)

136

Classification is performed by selecting the classifier that provides the maximum sepa-

rability. In the one-versus-one approach, N(N − 1)/2 binary classifiers are constructed,

whereby each classifier discriminates between two pairs of classes. The classification is

performed via majority vote.

A.2 Adaptive Synthetic Sampling (ADASYN)

The Adaptive Synthetic Sampling (ADASYN) method, proposed by He et al. [153], is an

adaptive oversampling approach. Instances of minority classes are synthetically generated

based on their distributions. In this way, more instances are generated for difficult-to-learn

minority class instances than for those that are easier to learn. ADASYN can be straight-

forwardly extended for multiclass problems, as the authors described. The ADASYN

method is described in Algorithm 5.

A.3 AdaBoost

The Adaptive Boosting (AdaBoost) method used in this research is described in Algorithm

6. This version of AdaBoost is called AdaBoost.M2 [186] and is designed for multi-class

classification problems. The usual strict assumption in AdaBoost for the base learning

method is to have an error less than 50%. This assumption is relaxed in AdaBoost.M2.

A.4 Rank Minority Oversampling in Boosting (RAMO-

Boost)

RAMOBoost [130] is a variant of the AdaBoost learning algorithm that has been designed

specifically for learning from imbalanced data. The power of RAMOBoost stems from

its two combined components: boosting and sampling. Boosting trains several base clas-

sifiers consecutively while adaptively adjusting the weights of the training instances. In

137

Algorithm 5 Adaptive Synthetic Sampling (ADASYN)

Inputs
ml: number of majority class instances
ms: number of minority class instances
β ∈ [0, 1]: specify balancing level, where β = 1 creates fully balanced dataset
dthresh: threshold of the maximum tolerated ratio of class imbalance
K: number of nearest neighbours in the K-nearest neighbours algorithm

d = ms/ml [degree of class imbalance]
if d < dthresh then
G = (ml −ms)× β [number of synthetic data to be generated for minority class]
for all xi ∈ minority class do
knni = findKNN(xi) [find K-nearest neighbors of xi]
∆i = numMajorityInstances(knni) [number of majority class instances in knni]
ri = ∆i/K, i = 1, 2, . . . ,ms

r̂i = ri/
∑ms

i=1 ri [normalize ri]
gi = r̂i ×G [number of synthetic instances to generate for minority instance xi]

end for
for all xi ∈ minority class do

for 1 to gi do
xzi = rand(knni,minority) [randomly choose a minority class instance from knn
of xi]
si = xi + (xzi − xi)× λ [generate synthetic instance, si]
[λ ∈ [0, 1] is a randomly generated number]

end for
end for

end if

this manner, the decision boundary is adaptively shifted during each boosting iteration

so that the focus is on instances that are difficult to learn. In RAMOBoost the sampling

is based on adaptive adjustment to the sampling weights of minority class samples ac-

cording to their distribution. Greater emphasis is thus placed on rare examples that are

inherently difficult to learn.

138

Algorithm 6 AdaBoost

Inputs
m Samples, (xi, yi), i = 1, . . . ,m, with yi ∈ Y = 1, . . . , k
BaseLearn: the base learning algorithm
B = (i, y) : i ∈ 1, . . . ,m, y 6= yi
T : number of iterations

Initialize: D1(i, y) = 1/|B| for (i, y) ∈ B
for t = 1,2,. . . ,T do

call BaseLearn, with mislabel distribution Dt

obtain hypothesis ht: X × Y → [0, 1]
εt = 1

2

∑
(i,y)∈BDt(i, y)(1− ht(xi, yi) + ht(xi, y)) [calculate the pseudo-loss of ht]

βt = εt/(1− εt)
update the sampling distribution Dt:
Dt: Dt+1(i, y) = Dt(i,y)

Zt
· β(1+ht(xi,yi)−ht(xi,y))

t , where Zt is a normalization constant
end for
Output
hfinal(x) = arg max

y∈Y

∑T
t=1(log 1

βt
)ht(x, y) [final hypothesis]

The RAMOBoost technique is presented in Algorithm 7, which reveals that it is a

direct extension of the AdaBoost.M2 algorithm (see Algorithm 6), making it inherently

applicable for multi-class problems.

A.5 Joint Mutual Information (JMI)

Joint Mutual Information (JMI) [180] is a well-known method for selecting the most rel-

evant features from features sets. Given random variables X and Y representing features

and targets, their mutual information is calculated by

I(X, Y) =
∑
x

∑
y

P (X, Y)log2
P (X, Y)

P (X)P (Y)
, (A.8)

where P (.) is the probability density function.

139

Algorithm 7 RAMOBoost

Inputs
m Samples, (xi, yi), i = 1, . . . ,m, with yi ∈ Y = 1, . . . , k
BaseLearn: the base learning algorithm
B = (i, y) : i ∈ 1, . . . ,m, y 6= yi
T : number of iterations
N : number of synthetic data samples to generate at each iteration
k1: number of nearest neighbours for adjusting the sampling probability of the minority
samples
k2: number of nearest neighbours used to generate the synthetic data instances
α: scaling coefficient

Initialize: D1(i, y) = 1/|B| for (i, y) ∈ B
for t=1,2,. . . ,T do
Se: mislabeled training data sampled with Dt

e1: majority class samples in Se (with size mlt)
e2: minority class samples in Se (with size mst)
for each sample xi ∈ e2 do

find its k1 nearest neighbours in Se
ri = 1

1+exp(−α·δi) , i = 1, . . . ,mst [δi: number of majority classes in k1 examples]
end for
r̂i = ri∑mst

i=1
ri, [normalize ri]

dt = ri
gt = e2 sampled with dt
for each sample xi ∈ gt do

find its k2 nearest neighbours in Se
generate N synthetic data samples using linear interpolation

end for
call BaseLearn, with the sampled dataset Se and the N synthetic data samples
obtain hypothesis ht: X × Y → [0, 1]
εt = 1

2

∑
(i,y)∈BDt(i, y)(1− ht(xi, yi) + ht(xi, y)) [calculate the pseudo-loss of ht]

βt = εt/(1− εt)
update the sampling distribution Dt:
Dt+1(i, y) = Dt(i,y)

Zt
· β(1+ht(xi,yi)−ht(xi,y))

t , where Zt is a normalization constant
end for
Output
hfinal(x) = arg max

y∈Y

∑T
t=1(log 1

βt
)ht(x, y) [final hypothesis]

140

The JMI of feature Xi is calculated by [187]

JMI(Xi) =
∑
Xj∈S

I(XiXj;Y), (A.9)

where S is the set of currently selected features.

Using JMI for feature selection returns a subset of features X that are the most relevant

to targets Y and at the same time reduce the redundancy among the selected features.

141

Appendix B

Trade-off Measure Alternatives

Several methods can be used to measure the trade-off between two values. The measure

adopted in this research is the weighted geometric mean, defined in Eq. 5.1. In this Ap-

pendix, two other measures are discussed, namely, weighted arithmetic mean and weighted

division of accuracy and time.

Weighted arithmetic mean is a well-known measure used as aggregation function, and

is usually compared with the weighted geometric mean [132]. For accuracy A and time

T , weighted arithmetic mean is defined as

ω = A× α + (1− T)× (1− α), (B.1)

where α is a parameter selected to control the trade-off between accuracy and time.

Another possible measure can be defined by dividing accuracy over time as follows

ω =
Aα

T 1−α . (B.2)

A comparison of the trade-off values of the three measures for α=0.1, 0.5 and 0.9

is presented in Figures B.1, B.2 and B.3, respectively. For a better view, the weighted

arithmetic mean plots in the three figures were rotated.

142

Figure B.1: Comparison of three trade-off measures with α=0.1. From left to right:
weighted geometric mean, weighted arithmetic mean, and weighted accuracy over time.

Comparing the weighted geometric mean with the weighted arithmetic mean, it can

be noticed that the former changes non-linearly, while the latter changes linearly. The

weighted arithmetic mean lacked sensitivity to low values [132], therefore it has less penalty

for low values of accuracy and time. At extreme points (e.g., A=0 or T=1), the weighted

arithmetic mean obtains values greater than 0. For example, for α=0.5, even when accu-

racy is equal to 0, the weighted arithmetic mean obtained values up to 0.5. Unless α=1 or

α=0, the trade-off measure should be 0 for those values, as obtained by the weighted

geometric mean.

The values obtained by dividing accuracy over time rapidly change with lower values of

time. This is especially noticeable with lower α values as in Figures B.1 and B.2. Further-

more, the values of ω are not bounded, which makes it difficult to understand the results.

143

Figure B.2: Comparison of three trade-off measures with α=0.5. From left to right:
weighted geometric mean, weighted arithmetic mean, and weighted accuracy over time.

Figure B.3: Comparison of three trade-off measures with α=0.9. From left to right:
weighted geometric mean, weighted arithmetic mean, and weighted accuracy over time.

144

Appendix C

Classifiers Performance Results

This Appendix presents the numerical results of the classifiers’ performance and the com-

parative figures of F1-measure with α=0.1, 0.3, 0.5, and 0.9.

145

C.1 Numerical Results

Table C.1: Performance of Different Classifiers with Different Values of α for the Breast
Ultrasound Dataset

F-measure
α Features Learning Alg. Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

0.1

LBP

SVM — — 0.2760 0.6110 0.2310 0.2430
SVM+ADASYN — — 0.2928 0.6145 0.2712 0.1753

AdaBoost — — 0.5549 0.8445 0.8560 0.6277
RAMOBoost — — 0.6488 0.8628 0.8842 0.7530

Statistical

SVM — — 0.1415 0.5689 0.0775 0.0382
SVM+ADASYN — — 0.0934 0.5909 0.1056 0.0778

AdaBoost — — 0.5241 0.8687 0.8835 0.7795
RAMOBoost — — 0.5021 0.8822 0.9044 0.8549

0.3

LBP

SVM — — 0.0000 0.6926 0.4108 0.0000
SVM+ADASYN — — 0.2337 0.6565 0.3213 0.0000

AdaBoost — — 0.6589 0.8666 0.8863 0.1990
RAMOBoost — — 0.7718 0.8870 0.8836 0.5067

Statistical

SVM — — 0.0250 0.5741 0.3922 0.0000
SVM+ADASYN — — 0.0959 0.4860 0.3364 0.0000

AdaBoost — — 0.6278 0.8917 0.8895 0.2105
RAMOBoost — — 0.6804 0.8955 0.8661 0.7429

0.5

LBP

SVM — — 0.1896 0.6805 0.1304 0.1000
SVM+ADASYN — — 0.3214 0.6230 0.2525 0.0000

AdaBoost — — 0.8268 0.8797 0.8187 0.0500
RAMOBoost — — 0.8809 0.9200 0.8282 0.5000

Statistical

SVM — — 0.0000 0.6853 0.0000 0.0000
SVM+ADASYN — — 0.0518 0.4243 0.0944 0.0000

AdaBoost — — 0.7663 0.9161 0.7215 0.2000
RAMOBoost — — 0.7887 0.9002 0.7794 0.5200

0.7

LBP

SVM — 0.0000 0.3292 0.5938 0.0308 0.0667
SVM+ADASYN — 0.0000 0.3179 0.6240 0.1115 0.0667

AdaBoost — 0.0000 0.8461 0.8550 0.7373 0.0500
RAMOBoost — 0.3000 0.8295 0.8585 0.6984 0.1900

Statistical

SVM — 0.0000 0.2490 0.4447 0.0250 0.0000
SVM+ADASYN — 0.0200 0.2203 0.3770 0.0442 0.0000

AdaBoost — 0.2467 0.8312 0.8813 0.5703 0.2300
RAMOBoost — 0.2867 0.8173 0.9086 0.6648 0.5300

0.9

LBP

SVM — 0.0000 0.4772 0.5317 0.2053 0.0000
SVM+ADASYN — 0.0606 0.4956 0.4488 0.2823 0.1308

AdaBoost — 0.1905 0.8923 0.8182 0.6097 0.0000
RAMOBoost — 0.6749 0.8622 0.8390 0.5209 0.0667

Statistical

SVM — 0.0000 0.0154 0.4201 0.0000 0.0000
SVM+ADASYN — 0.0000 0.0345 0.4341 0.0000 0.0000

AdaBoost — 0.4441 0.9114 0.8321 0.6296 0.0000
RAMOBoost — 0.6405 0.8733 0.8588 0.5794 0.1333

146

Table C.2: Performance of Different Classifiers with Different Values of α for the Liberty
Dataset

F-measure
α Features Learning Alg. Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

0.1

LBP

SVM — — — 0.7020 0.5797 0.6213
SVM+ADASYN — — — 0.6899 0.6428 0.7117

AdaBoost — — — 0.9175 0.9643 0.9665
RAMOBoost — — — 0.9531 0.9707 1.0000

Statistical

SVM — — — 0.5028 0.5665 0.7487
SVM+ADASYN — — — 0.5344 0.5402 0.6832

AdaBoost — — — 0.8626 0.9496 0.9602
RAMOBoost — — — 0.9895 0.9935 1.0000

0.3

LBP

SVM — — 0.3153 0.1450 0.5342 0.1239
SVM+ADASYN — — 0.3460 0.1601 0.5103 0.0903

AdaBoost — — 0.5790 0.8547 0.9687 0.7325
RAMOBoost — — 0.5805 0.8576 0.9744 0.9241

Statistical

SVM — — 0.2500 0.3923 0.6512 0.0000
SVM+ADASYN — — 0.3884 0.4473 0.6871 0.0479

AdaBoost — — 0.5259 0.8326 0.9216 0.7522
RAMOBoost — — 0.6652 0.8782 0.9677 0.8934

0.5

LBP

SVM — — 0.6434 0.3231 0.2479 0.0879
SVM+ADASYN — — 0.6793 0.3422 0.2460 0.2237

AdaBoost — — 0.8963 0.8589 0.9041 0.6574
RAMOBoost — — 0.9489 0.9292 0.9251 0.8774

Statistical

SVM — — 0.8176 0.4430 0.3951 0.3951
SVM+ADASYN — — 0.6768 0.3893 0.4165 0.0582

AdaBoost — — 0.8330 0.8586 0.9069 0.5467
RAMOBoost — — 0.9385 0.9155 0.9436 0.8726

0.7

LBP

SVM — 0.2043 0.4310 0.7401 0.0000 0.4123
SVM+ADASYN — 0.1472 0.4371 0.7523 0.0000 0.3403

AdaBoost — 0.2800 0.9680 0.7812 0.5751 0.6880
RAMOBoost — 0.5667 0.9854 0.8440 0.7151 0.8858

Statistical

SVM — 0.0000 0.6777 0.6337 0.2040 0.1653
SVM+ADASYN — 0.3871 0.6015 0.6243 0.2063 0.3082

AdaBoost — 0.3400 0.9855 0.7512 0.5183 0.7115
RAMOBoost — 0.5567 0.9763 0.7824 0.5478 0.8145

0.9

LBP

SVM — 0.2547 0.3628 0.6872 0.0000 0.3671
SVM+ADASYN — 0.2495 0.4323 0.7564 0.0644 0.4559

AdaBoost — 0.6401 0.9950 0.7379 0.4267 0.6871
RAMOBoost — 0.7389 0.9974 0.7880 0.4810 0.9273

Statistical

SVM — 0.0000 0.6897 0.7253 0.0000 0.2389
SVM+ADASYN — 0.2281 0.4751 0.5391 0.0944 0.3402

AdaBoost — 0.5908 0.9797 0.6643 0.4019 0.6047
RAMOBoost — 0.4579 0.9752 0.7292 0.3962 0.8887

147

Table C.3: Performance of Different Classifiers with Different Values of α for the Lung
X-Ray Dataset

F-measure
α Features Learning Alg. Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

0.1

LBP

SVM — — — 0.2399 0.7345 0.0000
SVM+ADASYN — — — 0.4086 0.5703 0.2388

AdaBoost — — — 0.8812 0.9532 0.8266
RAMOBoost — — — 0.9070 0.9658 0.9314

Statistical

SVM — — — 0.2310 0.7336 0.0000
SVM+ADASYN — — — 0.4032 0.5699 0.3493

AdaBoost — — — 0.8440 0.9339 0.8041
RAMOBoost — — — 0.8938 0.9562 0.9175

0.3

LBP

SVM — — 0.0000 0.4142 0.5805 0.0000
SVM+ADASYN — — 0.0000 0.4149 0.5854 0.0206

AdaBoost — — 0.0000 0.9191 0.9552 0.7743
RAMOBoost — — 0.0000 0.9416 0.9709 0.8733

Statistical

SVM — — 0.0000 0.1571 0.5975 0.0000
SVM+ADASYN — — 0.0000 0.1445 0.5912 0.0281

AdaBoost — — 0.0000 0.9239 0.9561 0.7496
RAMOBoost — — 0.0000 0.9433 0.9712 0.9030

0.5

LBP

SVM — — 0.0000 0.5554 0.5752 0.0250
SVM+ADASYN — — 0.2594 0.3922 0.5694 0.2498

AdaBoost — — 0.6713 0.9236 0.9457 0.7999
RAMOBoost — — 0.5708 0.9419 0.9501 0.8634

Statistical

SVM — — 0.0000 0.4769 0.5175 0.0000
SVM+ADASYN — — 0.2105 0.4028 0.4990 0.0586

AdaBoost — — 0.5244 0.9016 0.9234 0.6369
RAMOBoost — — 0.5938 0.9258 0.9530 0.8354

0.7

LBP

SVM — — 0.2819 0.4281 0.5732 0.1682
SVM+ADASYN — — 0.4908 0.3824 0.5321 0.3076

AdaBoost — — 0.8245 0.8845 0.9437 0.6946
RAMOBoost — — 0.8363 0.9102 0.9650 0.8625

Statistical

SVM — — 0.5078 0.3009 0.5180 0.0000
SVM+ADASYN — — 0.5238 0.2127 0.4366 0.2460

AdaBoost — — 0.7154 0.8700 0.9013 0.6078
RAMOBoost — — 0.7961 0.8975 0.9310 0.7978

0.9

LBP

SVM — — 0.4603 0.5188 0.5077 0.1453
SVM+ADASYN — — 0.4159 0.3847 0.4435 0.1901

AdaBoost — — 0.8691 0.8905 0.9454 0.6450
RAMOBoost — — 0.8716 0.9075 0.9531 0.7737

Statistical

SVM — — 0.5516 0.4290 0.4663 0.0222
SVM+ADASYN — — 0.5291 0.3292 0.4274 0.2692

AdaBoost — — 0.7960 0.8891 0.9310 0.5742
RAMOBoost — — 0.8234 0.8955 0.9409 0.7717

148

Table C.4: Performance of Different Classifiers with Different Values of α for the Synthetic
Images Dataset

F-measure
α Features Learning Alg. Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

0.1

LBP

SVM — — 0.4199 0.7131 0.0000 —
SVM+ADASYN — — 0.4571 0.7142 0.0000 —

AdaBoost — — 0.9847 0.9659 0.0500 —
RAMOBoost — — 0.9848 0.9737 0.5000 —

Statistical

SVM — — 0.7289 0.7090 0.0000 —
SVM+ADASYN — — 0.7373 0.4830 0.0914 —

AdaBoost — — 0.9717 0.9596 0.3300 —
RAMOBoost — — 0.9762 0.9720 0.7157 —

0.3

LBP

SVM — — 0.7332 0.5553 0.0000 —
SVM+ADASYN — — 0.7278 0.5631 0.0000 —

AdaBoost — — 0.9808 0.9583 0.0000 —
RAMOBoost — — 0.9975 0.9826 0.0000 —

Statistical

SVM — — 0.8239 0.6584 0.0000 —
SVM+ADASYN — — 0.8128 0.6637 0.0000 —

AdaBoost — — 0.9619 0.9285 0.0000 —
RAMOBoost — — 0.9841 0.9646 0.0000 —

0.5

LBP

SVM — 0.0000 0.8381 0.4599 0.0000 —
SVM+ADASYN — 0.0000 0.7419 0.3928 0.0000 —

AdaBoost — 0.0000 0.9861 0.9241 0.0000 —
RAMOBoost — 0.0000 0.9855 0.9213 0.0000 —

Statistical

SVM — 0.0000 0.8323 0.4664 0.0000 —
SVM+ADASYN — 0.0000 0.7777 0.4662 0.0000 —

AdaBoost — 0.0000 0.9834 0.9162 0.0000 —
RAMOBoost — 0.0000 0.9799 0.9105 0.0000 —

0.7

LBP

SVM — 0.0000 0.8674 0.1573 — —
SVM+ADASYN — 0.0000 0.8047 0.1203 — —

AdaBoost — 0.5400 0.9826 0.9294 — —
RAMOBoost — 0.6200 0.9922 0.9812 — —

Statistical

SVM — 0.0000 0.8715 0.2636 — —
SVM+ADASYN — 0.1596 0.7007 0.4653 — —

AdaBoost — 0.2467 0.9675 0.9056 — —
RAMOBoost — 0.3000 0.9731 0.9505 — —

0.9

LBP

SVM — 0.2013 0.9040 0.0000 — —
SVM+ADASYN — 0.1318 0.8341 0.0000 — —

AdaBoost — 0.9314 0.9844 0.7567 — —
RAMOBoost — 0.9650 0.9940 1.0000 — —

Statistical

SVM — 0.0694 0.8893 0.0000 — —
SVM+ADASYN — 0.2883 0.7230 0.0892 — —

AdaBoost — 0.8948 0.9798 0.7933 — —
RAMOBoost — 0.8903 0.9833 0.9514 — —

149

C.2 F1-measure Figures

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, LBP, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, LBP, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, LBP, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, LBP, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.1: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the breast
ultrasound dataset: LBP features.

150

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, Stat, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, Stat, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, Stat, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, Stat, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.2: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the breast
ultrasound dataset: statistics features.

151

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, LBP, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, LBP, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, LBP, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, LBP, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.3: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the Liberty
dataset: LBP features.

152

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, Stat, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, Stat, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, Stat, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, Stat, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.4: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the Liberty
dataset: statistics features.

153

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, LBP, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, LBP, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, LBP, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, LBP, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.5: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the lung
X-ray dataset: LBP features.

154

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, Stat, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, Stat, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, Stat, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

XrayLung, Stat, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.6: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the lung
X-ray dataset: statistics features.

155

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, LBP, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, LBP, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, LBP, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, LBP, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.7: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the syn-
thetic images dataset: LBP features.

156

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, Stat, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, Stat, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, Stat, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, Stat, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

SVM
SVM+ADASYN
AdaBoost
RAMOBoost

Figure C.8: Performance of different classifiers with α=0.1, 0.3, 0.5, and 0.9 for the syn-
thetic images dataset: statistics features.

157

Appendix D

LBP and Statistical Features Results

Comparison

Comparisons of the learning performance using LBP and Statistical features are presented

in this Appendix.

158

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, RAMOBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, RAMOBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, RAMOBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, RAMOBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, RAMOBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.1: Features comparison for RAMOBoost classifier with different values of α for
the breast ultrasound dataset.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, AdaBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, AdaBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, AdaBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, AdaBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, AdaBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.2: Features comparison for AdaBoost classifier with different values of α for the
breast ultrasound dataset.

159

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.3: Features comparison for SVM classifier with different values of α for the breast
ultrasound dataset.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM−ADASYN, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM−ADASYN, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM−ADASYN, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM−ADASYN, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Breast Ultrasound, SVM−ADASYN, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.4: Features comparison for SVM-ADASYN classifier with different values of α
for the breast ultrasound dataset.

160

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, RAMOBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, RAMOBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, RAMOBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, RAMOBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, RAMOBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.5: Features comparison for RAMOBoost classifier with different values of α for
the Liberty dataset.

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, AdaBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, AdaBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, AdaBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, AdaBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, AdaBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.6: Features comparison for AdaBoost classifier with different values of α for the
Liberty dataset.

161

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.7: Features comparison for SVM classifier with different values of α for the Liberty
dataset.

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM−ADASYN, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM−ADASYN, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM−ADASYN, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM−ADASYN, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Liberty, SVM−ADASYN, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.8: Features comparison for SVM-ADASYN classifier with different values of α
for the Liberty dataset.

162

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, RAMOBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, RAMOBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, RAMOBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, RAMOBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, RAMOBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.9: Features comparison for RAMOBoost classifier with different values of α for
the lung X-ray dataset.

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, AdaBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, AdaBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, AdaBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, AdaBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, AdaBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.10: Features comparison for AdaBoost classifier with different values of α for the
lung X-ray dataset.

163

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.11: Features comparison for SVM classifier with different values of α for the lung
X-ray dataset.

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM−ADASYN, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM−ADASYN, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM−ADASYN, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM−ADASYN, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Xray Lung, SVM−ADASYN, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.12: Features comparison for SVM-ADASYN classifier with different values of α
for the lung X-ray dataset.

164

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, RAMOBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, RAMOBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, RAMOBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, RAMOBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, RAMOBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.13: Features comparison for RAMOBoost classifier with different values of α for
the synthetic dataset.

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, AdaBoost, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, AdaBoost, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, AdaBoost, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, AdaBoost, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, AdaBoost, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.14: Features comparison for AdaBoost classifier with different values of α for the
synthetic dataset.

165

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.15: Features comparison for SVM classifier with different values of α for the
synthetic dataset.

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM−ADASYN, alpha=0.1

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM−ADASYN, alpha=0.3

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM−ADASYN, alpha=0.5

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM−ADASYN, alpha=0.7

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Synthetic, SVM−ADASYN, alpha=0.9

Resolution (Class)

F
−

m
ea

su
re

LBP
Stat

Figure D.16: Features comparison for SVM-ADASYN classifier with different values of α
for the synthetic dataset.

166

	List of Tables
	List of Figures
	Introduction
	Motivation and Problem Formulation
	Objectives
	Outline of the Thesis

	Image Segmentation
	Thresholding-Based Segmentation
	Edge-Based Segmentation
	Region-Based Segmentation
	Statistical Region Merging

	Active Contours
	Snakes
	Level Sets

	Other Segmentation Algorithms
	Parametric Kernel Graph Cuts

	Multiresolution Image Segmentation
	Multiresolution Methods
	Pyramid Representation
	Scale-Space Representation
	Wavelets Analysis

	Multiresolution Image Segmentation Techniques

	Learning Best Resolution for Image Segmentation
	Scale Selection for Scale-Space Representation
	Analysis of Segmentation at Different Resolutions

	Proposed Framework
	Overall Approach
	Preliminary Settings
	Defining the Best Resolution
	Computing the Best Resolution for Learning
	Feature Extraction
	Local Binary Patterns (LBP)
	Statistical Features

	Learning the Best Resolution
	Learning from Imbalanced Data
	The Learning Algorithm

	Classifiers' Performance Measures

	Results and Discussion
	Experimentation Setup
	Datasets
	Parameter Settings
	Implementation Environment

	Trade-off Measure Performance
	Accuracy and Time with Respect to
	Using Different Segmentation Algorithms
	Maximum Accuracy Resolutions

	Classifier Performance
	Impact of Misclassification on Accuracy and Time
	Overhead Time Analysis
	Discussions

	Summary, Conclusions and Future Work
	Summary and Main Findings
	Contributions
	Future Work

	References
	APPENDICES
	Algorithms
	Support Vector Machines
	Adaptive Synthetic Sampling (ADASYN)
	AdaBoost
	Rank Minority Oversampling in Boosting (RAMOBoost)
	Joint Mutual Information (JMI)

	Trade-off Measure Alternatives
	Classifiers Performance Results
	Numerical Results
	F1-measure Figures

	LBP and Statistical Features Results Comparison

