
Algorithmic Problems in
Access Control

by

Nima Mousavi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Nima Mousavi 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Access control is used to provide regulated access to resources by principals.
It is an important and foundational aspect of information security. Role-Based
Access Control (RBAC) is a popular and widely-used access control model, that,
as prior work argues, is ideally suited for enterprise settings. In this dissertation,
we address two problems in the context of RBAC.

One is the User Authorization Query (UAQ) problem, which relates to sessions
that a user creates to exercise permissions. UAQ’s objective is the identification
of a set of roles that a user needs to activate such that the session is authorized to
all permissions that the user wants to exercise in that session. The roles that are
activated must respect a set of Separation of Duty constraints. Such constraints
restrict the roles that can be activated together in a session. UAQ is known to
be intractable (NP-hard). In this dissertation, we give a precise formulation of
UAQ as a joint-optimization problem, and analyze it. We examine the manner
in which each input parameter contributes to its intractability. We then propose
an approach to mitigate its intractability based on our observation that a corre-
sponding decision version of the problem is in NP. We efficiently reduce UAQ
to Boolean satisfiability in conjunctive normal form (CNF-SAT), a well-known
NP-complete problem for which solvers exist that are efficient for large classes
of instances. We also present results for UAQ posed as an approximation prob-
lem; our results suggest that efficient approximation is not promising for UAQ.
We discuss an open-source implementation of our approach and a corresponding
empirical assessment that we have conducted.

The other problem we consider in this dissertation regards an efficient data
structure for distributed access enforcement. Access enforcement is the process
of validating an access request to a resource. Distributed access enforcement has
become important with the proliferation of data, which requires access control
systems to scale to tens of thousands of resources and permissions. Prior work has
shown the effectiveness of a data structure called the Cascade Bloom Filter (CBF)
for this problem. In this dissertation, we study the construction of instances of the
CBF. We formulate the problem of finding an optimal instance of a CBF, where
optimality refers to the number of false positives incurred and the number of hash
functions used. We prove that this problem is NP-hard, and a meaningful decision
version is in NP. We then propose an approach to mitigate the intractability of
the problem by reducing it to CNF-SAT, that allows us to use a SAT solver for
instances that arise in practice. We discuss an open-source implementation of our
approach and an empirical assessment based on it.

iii

Acknowledgements

I would like to express my deepest appreciation to Prof. Mahesh Tripunitara
for generously offering his time, support and guidance throughout my PhD. Your
advice on both research as well as on my career have been priceless.

I am grateful to Prof. Sylvia Osborn, Prof Jochen Koenemann, Prof. Stephen
Smith, Prof Shreyas Sundaram, and Prof. Nick Wormald for serving on my PhD
Committee. Your suggestions helped me to improve my dissertation.

I owe my deepest gratitude to my parents. Words cannot express how grateful
I am to you for all of your love and support.

iv

Lovingly dedicated to my parents.

v

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Role Based Access Control . 2
1.2 The User Authorization Query problem 3
1.3 The Cascade Bloom Filter for Access Enforcement 4
1.4 Thesis Statements . 4
1.5 Organization . 5

2 The User Authorization Query Problem in RBAC 6
2.1 Introduction . 6
2.2 Related Work . 10
2.3 Complexity Results . 12

2.3.1 Four NP-hard Problems 14
2.3.2 Complexity Results for MIN-UAQ-P 17
2.3.3 Complexity Results for MAX-UAQ-P 21
2.3.4 Complexity Results for MIN-UAQ-R 24
2.3.5 Complexity Results for MAX-UAQ-R 28

2.4 Mitigating the intractability of UAQ 32
2.4.1 Approximation Algorithms 32
2.4.2 Reduction to the decision version of UAQ 37
2.4.3 Efficient Reduction to CNF SAT 40
2.4.4 Fixed-Parameter Polynomial Algorithm 44

2.5 Empirical Evaluation . 45
2.6 Hard Instances of UAQ . 54

2.6.1 The Structure of Hard UAQ Instances 57

vi

3 Cascade Bloom Filter for Distributed Access Enforcement 69
3.1 Introduction . 69
3.2 Bloom Filter . 71

3.2.1 Complexity of the BF problem 73
3.2.2 Efficient Reduction to CNF-SAT 76

3.3 Cascade Bloom Filter . 79
3.3.1 Complexity of the CBF problem 82
3.3.2 Efficient Reduction to CNF-SAT 83

3.4 Empirical Evaluation . 87
3.4.1 Comparison with the prior approach 88
3.4.2 Efficiency of our approach 90
3.4.3 Effect of levels on the performance of the cascade Bloom

filter . 93

4 Conclusions 97
4.1 Future Work . 98

References 100

vii

List of Figures

1.1 An example of access matrix. 1
1.2 An example of RBAC for two users, Alice and Bob. Rectangles

are users, circles are roles, and rounded rectangles are permissions. 3

2.1 An example of an RBAC policy for a user. Circles are roles and rectan-
gles are permissions. 7

2.2 Auxiliary routine checkD takes inputs: an RBAC policy ρ, a set of SoD
constraints D, and a subset of roles S. checkD returns ‘true’ if the S
satisfies all the constraints and ‘false’ otherwise. The time complexity
of checkD is O(|D||R||S|). 18

2.3 Algorithm 1 takes as instance of MIN-UAQ-P and returns ‘true’ if there
is a solution and ‘false’ otherwise. The time complexity of Algorithm
1 is O(|R||Plb|+2(|P |2 + |D|)). Algorithm 1 is used in the proof of
Theorem 6. 18

2.4 Algorithm 2 takes an instance of MAX-UAQ-P and returns ‘true’ if there
is a solution and ‘false’ otherwise. Algorithm 2 relies on the routine
checkD in Figure 2.2 that checks whether a set of roles S satisfies the
SoD constraints in D. Algorithm 2 runs in time O(|R||D|t+2(|P |2 +

|D|)). Algorithm 2 is used in the proof of Theorem 9. 22
2.5 Algorithm 3 takes an instance of MIN-UAQ-R and returns ‘true’ if there

is a solution and ‘false’ otherwise. The time complexity of Algorithm 3
is O(|R||D|+4 2|Plb|(|P |2 + |D|))). 27

2.6 Algorithm 4 takes an instance of MAX-UAQ-R and returns ‘true’ if
there is a solution and ‘false’ otherwise. It returns a correct answer
assuming that the activation of a senior roles in RBAC does not imply
activation of any junior rolest. The time complexity of Algorithm 4 is
O(|R|2|D|+|Plb|+2(|P |2 + |D|)) . 31

viii

2.7 Algorithm 5 is a two-dimensional binary search for the optimal
numbers of roles and extra permissions using an oracle, Ω, for the
decision version of UAQ. 39

2.8 An example of Max-Circuit that we build for a constraint using
the Bit-Sum, Sum and Compare building blocks. We use gates
that correspond to ∧,∨,¬,↔ and ⊕. We point out that the last
two can be reduced in linear time to the first three: x ↔ y =
(¬x ∨ y) ∧ (x ∨ ¬y), and x⊕ y = (x ∨ y) ∧ (¬x ∨ ¬y). 42

2.9 Algorithm 6 takes an instance of the decision version of UAQ.
It returns a set of roles that is a valid solution. The algorithm is
exponential in |Pub|, but is polynomial-time if |Pub| is bounded by
a constant. 44

2.10 Performance of the optimization versions of our approaches for
different values of |R|. 48

2.11 Performance of the optimization versions of our approaches for
different values of depth of the role hierarchy. 49

2.12 Performance of the optimization versions of our approaches for
different numbers of constraints. 50

2.13 Performance of the optimization versions of our approaches for
different number of roles in constraints. 51

2.14 Performance of the optimization versions of our approaches for
different values of the integer (second component) of constraints. . 52

2.15 Performance of the optimization versions of our approaches for
different values of |Plb|. 53

2.16 CPU time versus six different UAQ structural features: (1) |R|;
number of roles, (2) |Plb|; number of permissions in Plb, (3) RPG-
R-Degree; average degree of role-vertices in RPG graph, (4) RPG-
P-Degree; average degree of permission-vertices in RPG graph,
(5) RPG-R-Diameter; average diameter of role-vertices in RPG
graph, and (6) RPG-P-Diameter; average diameter of permission-
vertices in RPG graph. 61

2.17 CPU time versus five different UAQ structural features: (1) RPG-
R-Clustering; average clustering coefficient of role-vertices in RPG
graph, (2) RPG-P-Clustering; average clustering coefficient of per-
mission vertices in RPG graph, (3) RRG-Degree;average degree
of vertices in RRG graph, (4) RRG-Diameter; average diameter
of vertices in RRG graph, and (5) RRG-Clustering; average clus-
tering coefficient of vertices in RRG graph. 62

ix

2.18 CPU time versus three CNF-SAT structural parameters:(1) VCG-
Variable-Degree; average degree of variable-vertices in VCG graph,
(2) VG-Degree; average degree of vertices in VG graph, and (3)
VG-Diameter; average diameter of vertices in VG graph. 66

3.1 An architecture for distributed access enforcement in RBAC. It is
reproduced from prior work . 70

3.2 A circuit to decide the BF problem. 77
3.3 The Hash Valid module. 77
3.4 Filter Array, False Positives, and Hash Valid modules. 79
3.5 The minimum number of false positives that can be achieved with

a cascade Bloom filter of depth d for U = {x1, x2, . . . , x11}, A =
{x1, x2, . . . , x10}, and H = {hj : j = 1, 2, . . . , 10} defined in
Equation 3.1 . 81

3.6 A circuit to decide the CBF problem. 85
3.7 The Bloom filter module at level i, BFi. 86
3.8 Performance comparison of our approach and prior approach in

terms of the number of false positives for different problem sizes.
The graph shows the number of false positives in the optimal so-
lutions returned by two approaches. 89

3.9 Comparison of the success rates of our approach and the prior ap-
proach for different problem size. Each bar represents the number
of instances out of 10 instances for which each approach returns a
solution. 90

3.10 CPU time for our approach to find a solution with minimum num-
ber of false positives for different problem size. Each data point
represents an average across 100 different inputs of the same size.
The vertical line segment at each data point shows the 95% confi-
dence interval. 91

3.11 CPU time for our approach to find a solution with minimum num-
ber of hash functions for different problem size. Each data point
represents an average across 100 different inputs of the same size.
The vertical line segment at each data point shows the 95% confi-
dence interval. 92

3.12 Minimum number of false positive that can be achieved for differ-
ent values of the time limit, where d is the maximum number of
levels. 93

x

3.13 Minimum number of false positives that can be achieved for dif-
ferent values of depth. 94

3.14 Minimum Number of false positives that can be achieved with a
cascade Bloom filter for different problem size. 95

3.15 Minimum number of hash functions required for different values
of k, the number of of false positives allowed. The maximum
number of false positives is 650. 96

xi

Chapter 1

Introduction

Access control is a fundamental security mechanism that is used extensively in
computing systems. It is concerned with regulating actions such as read and write,
by users to resources. An entity that initiates access is called a subject or a user.
The entity to which access is requested is called an object or a resource. The
manner in which a subject desires to access an object (e.g., read, write or execute)
is called an access right. An access control system makes its decision based on a
protection state. The protection state is expressed using some syntax. A natural
syntax is an access matrix [22, 25]. Figure 1.1 shows an example of an access
matrix with rows of subjects and columns of objects. The entry (s, o) in the matrix
specifies the rights that subject s has to object o. The term permission is often used
for an access right and an object pair.

Budget Hire Layoff Pay Invoice
Alice R,W R,W R
Bob R,W R,W R,W R,W

Figure 1.1: An example of access matrix.

1

1.1 Role Based Access Control
Role Based Access Control (RBAC) is a syntax for expressing an access con-
trol policy. It introduces a layer of roles between users and permissions. Roles
typically represent responsibility and authority within a given enterprise. Users
acquire all permissions associated with the roles to which they are authorized. An
intuition behind RBAC is that roles are relatively stable, while users and permis-
sions may change rapidly, and so RBAC can provide a stable and flexible access
control policy.

RBAC is one of the most popular access control models [21, 31, 51] and a
de-facto standard for access control in enterprise settings. According to the Re-
search Triangle Institute, the majority of users in enterprises of 500 or more use
RBAC [42]. Many IT vendors, including IBM, Microsoft, Oracle, Sybase, and
Siemens have developed products based on RBAC.

Roles in RBAC can be related via a hierarchy which defines inheritance se-
mantics using a role-role relation [36, 51, 47]. An RBAC policy is characterized
by the triple 〈UA,PA,RH 〉. UA is the assignment of users to roles, and PA is the
assignment of roles to permissions. RH , the role hierarchy, is a partial order of
roles. If 〈r1, r2〉 ∈ RH , we say that r1 inherits r2. The semantics of inheritance
can vary (see Section 2.3 in Chapter 2). The simplest semantics is that every user
that is authorized to r1 is authorized also to r2. Every permission to which r2 is
authorized is also authorized to r1. Figure 1.2 shows an example of RBAC.

2

Human
Resources

Hire Layoff Invoice

Purchasing

PayBudget

Finance

Financial

Manager

Alice Bob

Figure 1.2: An example of RBAC for two users, Alice and Bob. Rectangles
are users, circles are roles, and rounded rectangles are permissions. Alice is
authorized to role Financial Manager and Bob is authorized to role Human
Resources. The RBAC is characterized by the triple 〈UA,PA,RH〉, where
UA = {〈Alice, F inancialManager〉 , 〈Bob,HumanResources〉}, PA =
{〈Finance,Budget〉 , 〈HumanResources,Budget〉 , 〈HumanResources,Hire〉 ,
〈HumanResources, Layoff〉 , 〈HumanResources, Pay〉 , 〈Purchasing, Pay〉 ,
〈Purchasing, Invoice〉}, and RH = {〈FinancialManager, F inance〉 ,
〈FinancialManger, Purchasing〉}

1.2 The User Authorization Query problem
In RBAC, a user exercises permissions by activating the roles to which he is au-
thorized. However, there is a cost associated with the activation of each set of
roles. The cost is related to the number of roles that need to be activated so the
user indeed acquires the permissions he requires, and the extra permissions that
the user is forced to acquire upon activating that set of roles. There are also Sepa-
ration of Duty (SoD) constraints, which restrict the set of roles that are allowed to
be activated in the same session [16, 53, 7, 55, 21]. Given a user and a set of per-
missions, User Authorization Query (UAQ) is the problem of finding an optimal
subset of roles to which the user is authorized such that he acquires all the per-
missions he wants and respects all the SoD constraints. We define UAQ formally
in Section 2.1. UAQ is the first problem we study in this dissertation.

3

1.3 The Cascade Bloom Filter for Access Enforce-
ment

In RBAC, access enforcement is the process by which a trusted entity, called a
reference monitor, allows or rejects an access request to a resource by a user.
Efficient access enforcement is a meaningful and established problem in access
control. Prior work has shown that an approach to access enforcement based on a
data structure called the cascade Bloom filter is fast and space-efficient. However,
such prior work leaves open the problem of constructing instances of the data
structure. We give a formal definition for this construction problem in Section 3.3.
There are two natural trade-offs in the construction of a cascade Bloom filter: the
number of false positives it incurs, and the number of hash functions it employs.
An optimal cascade bloom filter is a cascade Bloom filter which minimizes the
number of false positives and the number of hash functions. In this dissertation,
we focus on designing optimal cascade Bloom filters for the purpose of access
enforcement.

1.4 Thesis Statements
• Although UAQ is computationally hard and admits no efficient approxi-

mation algorithm (assuming that P 6= NP), there exist effective ways to
mitigate its intractability in practice.

Our approach to proving the above thesis is by construction — we show
how each parameter contributes to the computational complexity of UAQ
and present algorithms that solve UAQ in polynomial time given some con-
ditions on the input parameters. We present also a general solution to UAQ
based on an efficient reduction to CNF-SAT.

• The problem of constructing optimal Cascade Bloom Filters for access en-
forcement of RBAC policies is NP-hard, and a corresponding decision ver-
sion is in NP. Large classes of problem instances that arise in practice can
be solved efficiently.

Our approach to proving the above assertions is to present corresponding
proofs, and by construction. We present an algorithm for finding an optimal
CBF based on a reduction to CNF-SAT.

4

1.5 Organization
The remainder of this dissertation is organized as follows. In Chapter 2, we ad-
dress UAQ. We present new results on the computational complexity of UAQ and
show how the intractability of UAQ can be mitigated. In Chapter 3 we present
new results on the computational complexity of finding optimal Cascade Bloom
Filters. We show also how the intractability of CBF can be mitigated in practice.
We conclude with Chapter 4.

5

Chapter 2

The User Authorization Query
Problem in RBAC

In this chapter, we study the User Authorization Query problem (UAQ) in Role-
Based Access Control (RBAC) [18, 59, 64]. UAQ arises in the context of RBAC
sessions [21, 51], and is known to be intractable [12, 18]. We first present a
comprehensive definition for UAQ in Section 2.1. We then present new results on
the complexity of UAQ in Section 2.3. We address how the intractability of UAQ
can be mitigated (Section 2.4). Finally, we discuss an empirical evaluation of our
approach (Section 2.5).

2.1 Introduction
In RBAC, permissions are not assigned directly to users. Rather, a user is assigned
to roles, which in turn are assigned permissions. A user is authorized to those
permissions that are assigned to the roles to which he is authorized. In Figure 2.1,
for example, a user is assigned to three roles, and is authorized to five permissions
via those roles.

If a user wants to exercise a permission, he must first create a session [21, 51].
He specifies the roles he would like associated with a session when creating it. A
set of Separation of Duty (SoD) constraints§, D, may be imposed on him. Each
such constraint is of the form 〈R′, t〉, where R′ is a set of roles and t is an integer.

§Some prior work [32] calls these “mutually exclusive role constraints” to clearly distinguish
the security objective (separation of duty) from the enforcement mechanism. We call them SoD
constraints to be consistent with prior work on UAQ [18, 59, 64].

6

Human
Resources

Hire Layoff Invoice

Purchasing

PayBudget

Finance

Figure 2.1: An example of an RBAC policy for a user. Circles are roles and rectangles
are permissions.

The semantics of such a constraint is that t or more roles from the set R′ are not
allowed to be activated in any session. In the example in Figure 2.1, the constraint
〈{Finance,Human Resources,Purchasing}, 3〉 precludes the user from activating
all three roles in the same session.

UAQ is an optimization problem with two distinct objectives. The user has
a set of permissions to which he wants the session to be authorized. However,
a set of roles that give him exactly the permissions he seeks may not exist [64].
Consequently, the permissions that a user wants are specified as two sets [59]: a
lower bound set Plb and an upper bound set Pub ⊇ Plb. The permissions in Plb
are those to which the session must be authorized, and Pub − Plb is a “slack” or
extra set of permissions to which the session may be authorized. The user may
wish to either minimize or maximize the number of extra permissions to which
his session is authorized. His choice depends on which of two security objectives,
safety or availability, he wants to prioritize over the other. If he prioritizes safety,
then he would want to minimize the number of permissions from Pub − Plb. If
he prioritizes availability, he would want to maximize the number of permissions
from Pub−Plb. In the latter case, he still has safety in that the permissions cannot
exceed Pub.

Apart from the number of extra permissions that is an optimization objective
as we discuss above, the number of roles that are activated is another optimization
objective. We may want, for example, to minimize the number of roles that are
activated in the session. This may be an important consideration for the system;
minimal sets of roles in sessions may be more efficient for the system to support.
It has been argued [64] that we may instead want to maximize the number of
roles to which a session is authorized. As prior work [12] points out, from the
standpoint of computational complexity, allowing both options of minimization

7

and maximization is no more difficult than allowing minimization only. (We point
out, however, that the assertion in [12] that constraints do not impact the com-
putational complexity of UAQ is not true. For example, with the introduction of
constraints, if P 6= NP, the subcase of UAQ that maximizes the number of extra
permissions is intractable.)

UAQ Specification An instance of UAQ is specified by the following inputs.

• An RBAC policy, ρ, for a user, where ρ = 〈R,P,RH,RP 〉, where RH is a
role-hierarchy that relates roles in a partial order, and RP is an assignment
of roles to permissions. The role hierarchyRH is reflexive, i.e., given a role
r that appears in ρ, 〈r, r〉 ∈ RH . We denote the set of all roles in ρ as R,
and the set of all permissions as P .

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |Rc|],
Rc ⊆ R.

• Two sets of permissions, Plb and Pub, with P ⊇ Pub ⊇ Plb.

• An optimization objective for roles, or ∈ {min,max, none}. The option
“none” means that we do not care to optimize the number of roles in a
solution.

• An optimization objective for extra permissions, op ∈ {min,max, none}. If
Pub = Plb, we assume op = none.

• A priority, pri ∈ {nr, np}; pri indicates which of the two optimization ob-
jectives, roles or extra permissions, we prioritize over the other. If pri = nr
(pri = np resp.), we prioritize optimization of the number of roles (number
of permissions resp.). The need for this arises from our two distinct opti-
mization objectives. As we point out below in Example 2, without this pa-
rameter, there can exist two optimal solutions that are incomparable to one
another. This parameter is meaningful only if or 6= none and op 6= none. If
or = none and op 6= none, then pri = np, and if op = none, or 6= none, then
pri = nr. If both are none, then this input is ignored.

Prior work [64] also considers what are called cardinality constraints as an
input. However, as subsequent work [59] points out, these can be addressed prior
to formulating a UAQ instance. An instance may be associated with no valid
solutions, or one or more valid solutions. A valid solution is 〈Rs〉, where Rs ⊆ R

8

is a set of roles that satisfies every constraint in D, and the set of permissions
Ps ⊆ P , to which the roles in Rs are authorized, is such that Pub ⊇ Ps ⊇ Plb. If
or = min (max), then |Rs| is the minimum (maximum) possible number of roles.
If op = min (max), then |Ps − Plb| is the minimum (maximum) possible number
of extra permissions.

More than one valid solution can exist.

Example 1. Consider the RBAC policy for a user, ρ, from Figure 2.1. Let D =
{〈{Human Resources,Purchasing} , 2〉}; that is, the only SoD constraint is that
the roles Human Resources and Purchasing are not allowed to be activated in
the same session. Let Plb = {Pay}. We consider several example requests with
different values for the other parameters.

• op = min, Pub = Plb and any values for the other inputs: has no valid
solutions because any choice for Rs results in more permissions than Pay
only.

• op = min, Pub = Plb ∪ {Hire, Invoice} and any values for the other inputs:
the only valid solution is Rs = {Purchasing}, with one extra permission,
Invoice.

• op = max, or = min, pri = np, Pub = Plb ∪{Budget,Hire,Layoff, Invoice}:
the only valid solution is Rs = {Human Resources}.

• If we change pri to nr in the previous example request, the valid solution
remains Rs = {Human Resources}. We choose Human Resources over
Purchasing, even though both result in only 1 role, because of the secondary
requirement of maximizing extra permissions.

Example 2. This example illustrates the difference that the input pri makes. Sup-
pose ρ is the policy from Figure 2.1, Plb = {Budget,Pay}, Pub is all the permis-
sions from the figure, D = ∅, op = min and or = min.

• If pri = nr, then our solution is {Human Resources}. We have only 1 role
and 2 extra permissions (Hire and Layoff).

• If pri = np, then our solution is {Finance,Purchasing}. We have 2 roles
and only 1 extra permission (Invoice).

If we do not have the input pri, the solutions would both be valid, but incompara-
ble to one another.

9

Layout In the next section, we discuss related work. In that context, we discuss
also soundness, efficiency and joint-optimization issues with prior approaches.
In Section 2.3, we present our results on the computational complexity of UAQ.
In Section 2.4, we discuss how the intractability of UAQ can be mitigated. In
Section 2.4.1, we view UAQ from the standpoint of efficient approximation, and
present related results. In Section 2.4.3, we reduce UAQ to CNF-SAT. In Section
2.4.4, we discuss an algorithm for UAQ that is fixed-parameter polynomial-time.
Finally, we present empirical results in Section 2.5.

2.2 Related Work
To our knowledge, UAQ was first posed by Du and Joshi [18]. That work shows
also that the subcase of optimizing roles is NP-hard and the corresponding deci-
sion version is in NP. That work does not consider the SoD constraints or the
optimization of extra permissions. Zhang and Joshi [64] generalize UAQ by in-
troducing the problem of optimizing the number of extra permissions in addition
to the number of roles. Wickramaarachchi et al. [59] propose two approaches for
mitigating the intractability of UAQ. That work also proposes a different combi-
nation of mixing the optimization of number of roles and permissions than Zhang
and Joshi [64]. Chen and Crampton [12] consider the subcase of UAQ that is the
optimization of permissions as a problem that is related to a variant of the well-
known set cover problem [24]. Chen and Crampton’s work [12] establishes that
the minimization version of the subcase it considers is NP-hard and the maximiza-
tion version is in P. It does not consider SoD constraints or the optimization of
roles.

To our knowledge, the pieces of prior work that consider the mitigation of the
intractability of UAQ are those of Du and Joshi [18], Zhang and Joshi [64], Wick-
ramaarachchi et al. [59] and Armando et al. [3]. The issues with the approaches of
Du and Joshi [18] and Zhang and Joshi [64] are identified by Wickramaarachchi
et al. [59] and we refer the reader to that work for a comprehensive discussion.
We provide a summary here. The work of Du and Joshi [18] considers only the
problem of role minimization in the absence of constraints. The work of Zhang
and Joshi [64] first proposes a greedy algorithm that is not sound [59]. Their
approach to dealing with the unsoundness renders the algorithm inefficient; it is
exponential-time in its design (i.e., their reduction of UAQ to CNF-SAT is expo-
nential).

The work of Armando et al. [3] points out, based on empirical observations,

10

that the approach of Wickramaarachchi et al. [59] is inefficient. They then propose
a complementary approach of caching session information for greater efficiency.
That work does not identify the inefficiency inherent to the approach of Wickra-
maarachchi et al. [59] as we do below. Their work is complementary to our work.
The work of Wickramaarachchi et al. [59] proposes two approaches to mitigate the
intractability of UAQ. Both leverage prior work on Boolean satisfiability (SAT).
The first approach is an algorithm similar to an earlier algorithm for deciding SAT
instances. The algorithm is exponential-time in its design. This analytical ob-
servation is validated by their empirical observations, which show that this first
approach of theirs is inefficient in comparison to the second. The approach also
does not address the joint optimization.

The second approach proposes a mapping to CNF-SAT (SAT instances in
Conjunctive Normal Form). The problem of deciding whether a Boolean expres-
sion in CNF is satisfiable is known to be NP-complete [24]. Unfortunately, this
second approach is unsound, inefficient and is limited in the manner in which
the joint optimization is addressed. The unsoundness arises from the manner
in which the RBAC policy ρ is mapped. Suppose r ∈ R is a role such that
{〈r, r1〉 , . . . , 〈r, rk〉} ⊆ RH , and {〈r, p1〉 , . . . , 〈r, pm〉} ⊆ RP . Then the ap-
proach proposes that we encode this as a clause r ↔ r1 ∧ . . .∧ rk ∧ p1 ∧ . . .∧ pm,
where “↔” is “if and only if” and “∧” is conjunction. (We abuse notation slightly
in our use of ri, pj as both roles and permissions, and Boolean variables that cor-
respond to them.)

The problem with this is that there can exist UAQ instances for which the
approach incorrectly determines that there is no valid solution. Given a constraint
〈R, t〉, if a permission p ∈ Plb is assigned to t or more roles inR, then the approach
would deem that there is no valid solution, which is incorrect. This problem is
quite general, and not some small corner-case. For every constraint 〈R, t〉, there
exists an infinite number of UAQ instances for which the approach is unsound.

One may be tempted to adopt a “quick fix” to address the above problem. For
example, one may change the “if and only if” to an “only if” only. This will not
work. The reason is that the manner in which the joint optimization is addressed
by Wickramaarachchi et al. [59] relies on the “if and only if.” We discuss this
further below in the context of the limited support for joint optimization in that
work.

The approach of Wickramaarachchi et al. [59] is inefficient (other than the
inherent inefficiency due to the NP-hardness of UAQ). The inefficiency arises
from the manner in which constraints are encoded. Given a constraint 〈R, t〉,
the approach first enumerates every t-sized subset of R. Suppose {r1, . . . , rt} is

11

such a subset. The approach encodes the subset as a clause ¬r1 ∨ . . .¬rt. The
problem with this is that it results is an exponential blowup in its design. As
with unsoundness, there is an infinite number of classes of UAQ instances, with
infinite members in each, for which this approach causes an exponential blowup.
An example is when t is polynomial in |R|, e.g., t =

√
|R|.

Finally, the approach offers only limited support for the joint optimization
of the numbers of roles and extra permissions. This issue is related to the un-
soundness above. The manner in which joint optimization is supported is using
the notion of relaxable and non-relaxable clauses. A clause is said to be non-
relaxable if in a truth-assignment, that clause must evaluate to 1; otherwise it is
relaxable. There exist SAT solvers that, in addition to meeting the constraint on
non-relaxable clauses, maximize the number of relaxable clauses that evaluate to
1 in a truth-assignment.

The idea in Wickramaarachchi et al. [59] to minimize the number of roles,
then, is to add a clause ¬p for each p ∈ Pub − Plb and specify that every such
clause is relaxable. To maximize the number of roles, we add a clause p (rather
than ¬p) and specify those to be relaxable. In conjunction with the “if and only
if” clauses we discuss above in the context of unsoundness, this ensures that the
number of roles is maximized if the number of extra permissions is maximized,
and the number of roles is minimized if the number of extra permissions is min-
imized. Unfortunately, there is no obvious way to address other combinations,
for example, minimize the number of roles and maximize the number of extra
permissions.

2.3 Complexity Results
In this section, we discuss the computational complexity of four subcases of UAQ:
MIN-UAQ-P (UAQ in which we seek to minimize the number of extra permis-
sions authorized by the solution-set of roles only), MAX-UAQ-P (maximize extra
permissions), MIN-UAQ-R (minimize number of roles in the solution-set), and
MAX-UAQ-R (maximize roles). We identify the input parameters that contribute
to the complexity of each. We show how the complexity of each subcase de-
pends on the input parameters. Our results not only suggest efficient algorithms
for some subcases of UAQ, but also give a better understanding of the sources of
complexity of UAQ.

12

Role hierarchy Before we present our complexity results, we discuss different
semantics of the role hierarchy RH in an RBAC policy. We explain in Section
2.3.5 how the semantics of the role hierarchy affects the complexity of MAX-
UAQ-R.

The semantics of role hierarchy affects the set of roles that a user can activate,
and the set of permissions that each role has. We recall that a role ri is senior to a
role rj if 〈ri, rj〉 ∈ RH . Joshi et al [27] introduce three types of role hierarchies:

1. permission-inheritance hierarchy (P-hierarchy)¶.

2. activation-inheritance hierarchy (A-hierarchy).

3. permission-activation-inheritance hierarchy (PA-hierarchy)‖.

In the P-hierarchy, a senior role inherits all the permissions of its junior roles.
Under the P-hierarchy, a user assigned to a senior role is not allowed to activate
any of its junior roles, unless the user is assigned to them directly. Under the A-
hierarchy a user assigned to a senior role is allowed to activate any of its junior
roles, but the permissions of the junior roles are not propagated to the senior role.
In the PA-hierarchy, a senior role inherits all the permissions of its junior roles,
and a user assigned to a senior role is allowed to activate any of its junior roles.

The above three different semantics for the role hierarchy RH can be handled
when an instance of UAQ is generated [59]. That is, the set of the roles that the
user can activate, and the set of permissions available to each role are modified as
follows. The set of roles that the user can activate is the set of roles to which he
is directly assigned as well as their junior roles if the A-hierarchy or PA-hierarchy
is adopted as the semantics of the role hierarchy. The set of permissions available
to each role is all the permissions to which it is authorized directly as well as the
permissions of its junior roles if the P-hierarchy or PA-hierarchy is chosen. We
assume that the issue with different semantics for role hierarchy is already handled
in the generation of the UAQ instance.

Li et al. [31] introduce another semantics for the role hierarchy, which we
call the automatic-activation hierarchy. In the automatic-activation hierarchy, the
activation of a senior role in a session implies the activation of all of its junior
roles in that session. The automatic-activation hierarchy can be seen as a fix for
the problem of implicit SoD constraints in the P-hierarchy and PA-hierarchy. We
explain the problem with an example from [59]. Assume that there is an SoD
¶Joshi et al. [27] call this the I-hierarchy.
‖Joshi et al. [27] call this the IA-hierarchy.

13

constraint c that does not allow two roles r1 and r2 to be activated in the same
session, i.e., c = 〈{r1, r2}, 2〉. However, the constraint c does not prevent role
r3, a senior role to r1, and role r4, a senior role to r2, from being activated in the
same session. Under the P-hierarchy or the PA-hierarchy, a user assigned to r3

and r4 can obtain all the permissions of r1 and r2 by activating r3 and r4 without
violating any constraint. Indeed, the constraint c implies three other constraints:
〈{r1, r4}, 2〉, 〈{r2, r3}, 2〉, and 〈{r3, r4}, 2〉.

We adopt the automatic-activation hierarchy as the semantics of the role hier-
archy in the remainder of this chapter. We assume also that the user is allowed to
activate any role that is junior to a role to which he is authorized. We define two
functions δRH : 2R → 2R and πRH : 2R → 2R to account for the role hierarchy
RH .

For any R′ ⊆ R, δRH(R′) is the set of all roles that are activated upon acti-
vation of the roles in R′. In other words, δRH(R′) is the set of all roles in R′ and
their junior roles in RH . The function δRH is defined formally below.

Definition 1. For role hierarchy RH and any R′ ⊆ R, the set δRH(R′) is the
smallest subset of R that satisfies the two following conditions:

1. if r ∈ R′, then r ∈ δRH(R′).

2. if r ∈ δRH(R′) and 〈r, r′〉 ∈ RH , then r′ ∈ δRH(R′).

We define πRH(R′) to be the set of roles in R′ and all senior roles of any role in
πRH . The function πRH is defined formally below.

Definition 2. For role hierarchy RH and any R′ ⊆ R, the set πRH(R′) is the
smallest subset of R that satisfies the two following conditions:

1. if r ∈ R′, then r ∈ πRH(R′).

2. if r ∈ πRH(R′) and 〈r′, r〉 ∈ RH , then r′ ∈ πRH(R′).

2.3.1 Four NP-hard Problems
In this section, we first give a formal definition for three known NP-hard prob-
lems: 3-CNF SAT, Vertex Cover, and Set Cover. Then we define the Minimum
K-Coverage problem and prove that it is NP-hard. The complexity proofs in the
following sections rely on these problems.

14

3-CNF SAT. An instance of 3-CNF SAT is a Boolean formula φ that is a con-
junction (AND) of clauses, where a clause is disjunction (OR) of three literals.
An example for φ is (x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4). The formal language for
the 3-CNF SAT problem is

3-CNF-SAT = {〈φ〉 : φ is a boolean formula in 3-CNF such that
there exists a truth assignment for φ
that causes every clause to evaluate to 1}.

Theorem 1. [14] 3-CNF-SAT is NP-hard.

Vertex Cover. A vertex cover of an undirected graph G = (V,E) is a subset
V ′ ⊆ V such that every edge in E has at least one endpoint in V ′. The Vertex
Cover problem is to find a vertex cover of minimum size. The formal language
for the corresponding decision version is

VERTEX-COVER = {〈G, k〉 : there exists a vertex cover of size at most k for G}.

Theorem 2. [14] Vertex Cover is NP-hard.

Set Cover. Given a finite universe U of elements, e1, e2, . . . , en, and a family F
of subsets, S1, S2, . . . , Sm ⊆ U , a set cover is a S ⊆ F that covers every element
of U , that is,

⋃
Si∈S Si = U . The Set Cover problem is to find a set cover of

minimum size. The formal language for the decision version of Set Cover is

SET-COVER = {〈U ,F , k〉 : there exists a set cover of size at most k}.

Theorem 3. [14] Set Cover is NP-hard.

Minimum K-Coverage. An instance of Minimum K-Coverage consists of a fi-
nite universe U of elements, e1, e2, . . . , en, a familyF of subsets, S1, S2, . . . , Sm ⊆
U , and an integer k. The Minimum K-Coverage problem is to find a subset S ⊆ F
such that the size of S is at least k and S minimizes the number of covered ele-
ments, i.e.,

⋃
Si∈S Si. The formal language for the corresponding decision prob-

lem is

MIN-K-COVERAGE = {〈U ,F , k1, k2〉 : there exists a subset S of F such

that |S| ≥ k1 and |
⋃
Si∈S

Si| ≤ k2}.

15

We prove that Minimum K-Coverage problem is NP-hard by proving that a special
case of it, Minimum K-Vertex Cover, is NP-hard. We define Minimum K-Vertex
Cover below.

Minimum K-Vertex Cover is the optimization problem of finding a subset of
size at least k of vertices of a given graph G(V,E) that minimizes the number of
covered edges. A formal definition for the corresponding decision problem is

MIN-K-VERTEX-COVER = {〈G, k1, k2〉 : there exists a subset V ′ ⊆ V such
that the size of V ′ is at least k1 and

|
⋃
v∈V ′

EG(v)| ≤ k2, where EG(v)

is the set of edges connected to v}.
The following theorem proves that an efficient algorithm for MIN-K-VERTEX-

COVER is unlikely to exist.

Theorem 4. Minimum K-Vertex Cover is NP-hard.

Proof. We prove that VERTEX-COVER ≤p MINIMUM-K-VERTEX-COVER.
Let φ = 〈G, k〉 be an instance of Vertex Cover. We construct an instance of
Minimum K-Vertex Cover, ψ = 〈G′, k1, k2〉, such that φ is true if and only if ψ is
true. We construct ψ by computing the complement graph Ḡ. The output of the
reduction is ψ =

〈
Ḡ, k,

(
k
2

)
+ k(|V | − k)− |E|

〉
.

Suppose that G has a vertex cover V ′ ⊆ V of size (at most) k. We show that
V ′ covers at most

(
k
2

)
+ k(|V | − k) − |E| edges in Ḡ, and therefore is a solution

for ψ. First note that the total number of edges covered by any subset of vertices
in G and Ḡ is constant, that is, for any T ⊆ V , we have∣∣∣∣∣⋃

v∈T

EG(v)

∣∣∣∣∣+

∣∣∣∣∣⋃
v∈T

EḠ(v)

∣∣∣∣∣ =

(
|T |
2

)
+ |T |(|V | − |T |)

where EG(v) denotes the set of edges connected to v in G. Since V ′ is a vertex
cover inG, we have |

⋃
v∈V ′ EG(v)| = |E|. Thus, |

⋃
v∈V ′ EḠ(v)| ≤

(
k
2

)
+k(|V |−

k)− |E|. Conversely, if ψ is true, then there exists a subset V ′ ⊆ V of size k that
covers at most

(
k
2

)
+ k(|V | − k) − |E| edges in Ḡ. Therefore, |

⋃
v∈V ′ EG(v)| ≥(

k
2

)
+ k(|V | − k)− (

(
k
2

)
+ k(|V | − k)− |E|) = |E| and thus V ′ is a vertex cover

in G.

Theorem 5. Minimum K-Coverage is NP-hard.

Proof. Minimum Coverage is NP-hard because it is a generalization of Minimum
K-Vertex Cover.

16

2.3.2 Complexity Results for MIN-UAQ-P
MIN-UAQ-P problem, a subcase of UAQ, is to find a set of roles that minimizes
the number of extra permissions while satisfying all the constraints and require-
ments. As a decision problem, an instance of MIN-UAQ-P is specified by the
following inputs.

• RBAC policy, ρ, for a user, where ρ = 〈R,P,RH,RP 〉, where R is the set
of all roles in the RBAC policy, P is the set of all permissions in the RBAC
policy, RH is a role hierarchy that relates roles in a partial order, RP is an
assignment of roles to permissions,

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |Rc|],
Rc ⊆ R. The semantics of 〈Rc, tc〉 is that tc or more roles from the set Rc

are not allowed to be activated at the same time.

• A set of permissions Plb ⊆ P

• A set of permissions Pub ⊆ P

• k ∈ N

We say a set of roles R′ activates a permission p if there exists at least a role in
R′ that activates p. The formal language for the corresponding decision problem
is

MIN-UAQ-P = {〈ρ,D, Plb, Pub, k〉 : there exists a set of roles R′ ⊆ R such that
δRH(R′) satisfies every constraint in D,
activates all permissions in Plb,
no permission from P − Pub,
and at most k permissions from Pub − Plb}.

Theorem 6. [12] MIN-UAQ-P is NP-hard.

We take a finer look at the sources of complexity of MIN-UAQ-P. We show how
the size of Plb, the number of SoD constraints (|D|), and the role hierarchy (RH)
affect the computational complexity of MIN-UAQ-P.

Algorithms 1 Before we present the assertion on the hardness of MIN-UAQ-
P, we discuss Algorithm 1 in Figure 2.3 on which some of our proofs in this section

17

CheckD Routine
Input: 〈ρ,D, S〉
Output: true/false

foreach 〈Rc, tc〉 ∈ D do1

if |S ∩Rc| ≥ tc then2

return false3

return true4

Figure 2.2: Auxiliary routine checkD takes inputs: an RBAC policy ρ, a set of SoD
constraints D, and a subset of roles S. checkD returns ‘true’ if the S satisfies all the
constraints and ‘false’ otherwise. The time complexity of checkD is O(|D||R||S|).

Algorithm 1
Input: MIN-UAQ-P〈ρ,D, Plb, Pub, k〉
Output: true/false

foreach pi ∈ Plb do1

Ri = {r : r is authorized to pi}2

if Ri = ∅ then3

return false4

F = {{r1, r2, . . . , r|Plb|} : ri ∈ Ri for all i}5

foreach S ∈ F do6

Ractv = δRH(S)7

Pactv = {p : Ractv activates p}8

if Plb ⊆ Pactv ⊆ Pub and |Pactv − Plb| ≤ k then9

if checkD(δRH(S)) then return true10

return false11

Figure 2.3: Algorithm 1 takes as instance of MIN-UAQ-P and returns ‘true’ if there is a
solution and ‘false’ otherwise. The time complexity of Algorithm 1 isO(|R||Plb|+2(|P |2+
|D|)). Algorithm 1 is used in the proof of Theorem 6.

18

and the following sections rely. Algorithm 1 takes as input a decision instance of
MIN-UAQ-P and returns ‘true’ if there is a solution and ‘false’ otherwise. Algo-
rithm 1 relies on the routine checkD in Figure 2.2 that checks whether a set of
roles S satisfies the SoD constraints in D.

In Algorithm 1, for each permission in Plb, a role from the set of roles to which
they are authorized is picked (Line 1-5). For each such set of roles (Line 6), we
account for the role hierarchy, RH (Line 7). That is, we assume that activation of
a senior role implies activation of all its junior roles. Therefore, we need to ensure
that all roles (junior and senior) satisfy the constraints in D. We then compute
the set of all permissions, Pactv, to which at least a role in that set is authorized
(Line 8). We then check whether Pactv includes all the permissions in Plb and no
permission out of Pub, and the number of permissions from Pub − Plb (the “extra
permissions”) in Pactv is at most k (Line 9). If yes, then all that remains to be
checked is satisfaction of the constraints in D, which we do in Line 8. Algorithm
1 runs in time O(|R||Plb|+2(|P |2 + |D|)).

MIN-UAQ-P can be solved in polynomial time using Algorithm 1 when |Plb|
bounded by a constant. However, if the size of Plb is unbounded, MIN-UAQ-P is
NP-hard (see [12]). In the following, we show how the computational complexity
of MIN-UAQ-P changes as the size of Plb increases.

Theorem 7. MIN-UAQ-P is NP-hard even if |Plb| = |R|O(1).

Proof. Let |Plb| ≤ c1|R|c2 for some positive constants c1 and c2. We show that
there is a reduction from SET-COVER (see Section 2.3.1 for a definition of SET-
COVER.) to MIN-UAQ-P that transforms an instance φ = 〈U ,F , k〉 of Set Cover
into an instance ψ = 〈ρ,D, Plb, Pub, k′〉 of MIN-UAQ-P such that Plb ≤ c1|R|c2
and ψ is true if and only if φ is true.

Let m and n denote the size of U and F respectively. For each set Si in F ,
we define a role ri. For each element ej in the universe U , we define a permission
pj in Plb. Each role ri for 1 ≤ i ≤ n is authorized to pj if Si includes ej . We
also introduce m new permissions p′1, · · · , p′m in Plb and (2c−1

1 m)1/c2 new roles
rn+1, · · · , rn+(2c−1

1 m)1/c2 authorized to non-empty subsets of the new permissions,
including a role resp authorized to all the new permissions (assuming thatm is suf-
ficiently large, i.e., (2c−1

1 m)1/c2 ≤ 2m). Each role ri for 1 ≤ i ≤ n+ (2c−1
1 m)1/c2

is additionally authorized to a permission p′′i ∈ Pub − Plb.
The number of permissions in Plb is 2m, and the number of roles is n +

(2c−1
1 m)1/c2 ≥ (c−1

1 |Plb|)1/c2 . The role hierarchy RH consists of tuples of the
form 〈ri, ri〉 for roles defined above. There are no SoD constraints for the roles.
We set k′ = k + 1.

19

Suppose φ has a set cover S ⊆ F of size at most k. It is easy to verify that
the set of roles Rs = {ri : Si ∈ S} ∪ {resp} activates all the permissions in
Plb and at most k + 1 permissions from Pub − Plb. Thus, Rs is a solution to ψ.
Conversely, assume that the set of roles Rs activates all permissions in Plb, and
at most k + 1 permissions from Pub − Plb. The set Rs must consist of at most of
k + 1 roles; otherwise it activates more than k + 1 permissions from Pub − Plb.
Thus, S = {Si : ri ∈ Rs and i ≤ n} is a set cover, and the size of S is at most k
since |S| ≤ |Rs| − 1.

Theorem 7 proves that MIN-UAQ-P is NP-hard even if |Plb| is as small as
O(|R|ε) for any constant ε > 0. For finding a limit on the size of Plb such that
MIN-UAQ-P is no longer NP-hard (assuming P 6= NP), we use the following well
known conjecture.

Conjecture 1 (Exponential Time Hypothesis (ETH) [26]). There is no 2o(n)-time
algorithm for 3-CNF-SAT with n variables.

Corollary 1. Assuming ETH, there is no 2o(n)-time algorithm for any NP-hard
problem, where n is the size of the problem.

Proof. Follows from the fact that there exists a polynomial time reduction from
3-CNF-SAT to any NP-hard problem and the fact that that the class of 2o(n)-time
problems is closed under composition with polynomials.

Assuming that ETH is true, we are able to prove that MIN-UAQ-P is not
NP-hard if the number of lower bound permissions is as small as |R|o(1) (e.g.
|Plb| = O(log |R|)).

Theorem 8. Assuming ETH, MIN-UAQ-P is not NP-hard if |Plb| = |R|o(1).

Proof. If Plb = |R|o(1), then Algorithm 1 in Figure 2.3, can decide MIN-UAQ-P
in O(2|R|

o(1)
(|P |2 + |D|) = O(2n

o(1)
) where n is the size of MIN-UAQ-P, contra-

dicting ETH.

Impact of D and RH on the hardness of MIN-UAQ-P

We observe from the proof of Theorem 7 that the set of SoD constraints, D, and
role hierarchy, RH , do not contribute to the computational complexity of MIN-
UAQ-P in the sense that MIN-UAQ-P is NP-hard even if there is no SoD constraint
and role hierarchy (i.e., D = ∅ and RH = {〈ri, ri〉 : ri ∈ R}).

20

2.3.3 Complexity Results for MAX-UAQ-P
MAX-UAQ-P problem, a subcase of UAQ, is to find a subset of roles that maxi-
mizes the number of extra permissions granted while satisfying all the SoD con-
straints and requirements. A decision instance of MAX-UAQ-P is specified with
the following inputs.

• RBAC policy, ρ, for a user, where ρ = 〈R,P,RH,RP 〉, where R is the set
of all roles in the RBAC policy, P is the set of all permissions in the RBAC
policy, RH is a role hierarchy that relates roles in a partial order, RP is an
assignment of roles to permissions,

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |Rc|],
Rc ⊆ R. The semantics of 〈Rc, tc〉 is that tc or more roles from the set Rc

are not allowed to be activated at the same time.

• A set of permissions Plb ⊆ P

• A set of permissions Pub ⊆ P

• k ∈ N

The formal language for the corresponding decision problem is

MAX-UAQ-P = {〈ρ,D, Plb, Pub, k〉 : there exists a set of roles R′ ⊆ R such that
δRH(R′) satisfies every constraint in D,
activates all permissions in Plb,
no permission from P − Pub,
and at least k permissions from Pub − Plb}.

Theorem 9. MAX-UAQ-P is NP-hard.

Proof. We show that MAX-UAQ-P is NP-hard by reducing SET-COVER to MAX-
UAQ-P (see Section 2.3.1 for a definition of SET-COVER.) Let φ = 〈U ,F , k〉
be an instance of SET-COVER. We construct the MAX-UAQ-P instance ψ =
〈ρ,D, Plb, Pub, k′〉 that is true if and only if φ is true.

For each element ej in U , we define a permission pj in Pub − Plb. For each
subset Si in F , we define a role ri, which is authorized to permission pj if and

21

Algorithm 2
Input: MAX-UAQ-P〈ρ,D, Plb, Pub, k〉
Output: true/false

Rfree = R−
⋃
ci∈D πRH(Rci)1

foreach ci ∈ D do2

Fi ← {R′ : R′ ⊆ π(Rci) and |R′| < tci}3

F ← {{R1 ∪R2 ∪ · · · ∪R|D|} : Ri ∈ Fi for all i}4

foreach S ∈ F do5

Rval = {r : r is authorized to only permisssions in Pub}6

Ractv = (δRH(S) ∪Rfree) ∩Rval7

Pactv ← {p : Ractv activates p}8

if Plb ⊆ Pactv and |Pactv − Plb| ≥ k then9

if checkD(Ractv) then return true10

return false11

Figure 2.4: Algorithm 2 takes an instance of MAX-UAQ-P and returns ‘true’ if there is
a solution and ‘false’ otherwise. Algorithm 2 relies on the routine checkD in Figure 2.2
that checks whether a set of roles S satisfies the SoD constraints in D. Algorithm 2 runs
in time O(|R||D|t+2(|P |2 + |D|)). Algorithm 2 is used in the proof of Theorem 9.

only if ej ∈ Si. The set of SoD constraints, D, consists of a single constraint
〈R, k + 1〉. The set of lower bound permissions, Plb, is empty. We set k′ = |Pub|.
There is no role hierarchy for the roles, i.e., RH consists of only pairs of the form
〈ri, ri〉

Suppose φ has a solution S ⊆ F of size at most k. The set of roles Rs = {ri :
Si ∈ S} satisfies every SoD constraint and activates all the permissions in Pub: Rs

is a solution for ψ. Conversely, if ψ has a solution Rs, then S = {Si : ri ∈ Rs} is
a set cover of size at most k for φ.

Two following Theorems show how the size of Pub impacts the computational
complexity of MAX-UAQ-P.

Theorem 10. MAX-UAQ-P is NP-hard even if Pub = |R|O(1).

Proof. Assume Pub ≤ c1|R|c2 for some constant positives c1 and c2. In this case,
we show that MAX-UAQ-P is NP-hard by reducing 3-CNF SAT problem to it.
(see Section 2.3.1 for a definition of 3-CNF SAT.) Given a 3-CNF formula φ of
n variables and m clauses, we construct an instance ψ = 〈ρ,D, Plb, Pub, k〉 of
MAX-UAQ-P such that ψ is true if and only if φ is satisfiable.

22

We define a role ri for each literal xi in φ, and a constraint 〈{ri, rj}, 2)〉 in
D for each negated literals xi and xj (xj = ¬xi). For each clause c = (xi ∨
xj ∨ xk) in φ, we define a permission pc ∈ Pub − Plb to which ri, rj, and rk
are authorized. We also define m additional permissions p′1, · · · , p′m in Pub, and
(2c−1

1 m)1/c2 additional roles, each of which is authorized to a non-empty subset
of the additional permissions, including a role resp authorized to all p′i’s. We set
k = 2m. The set of lower bound permissions Plb is an empty set. The role
hierarchy relation, RH , only includes pairs of the form 〈ri, ri〉. It is clear that
the reduction is polynomial in the size of the formula φ. The number of roles is
n+ (2c−1

1 m)1/c2 ≥ (c−1
1 |Pub|)1/c2 .

Suppose that there exists a valid assignment for the literals in φ that makes φ
evaluate to true. The set of roles Rs = {ri : xi is true in the assignment}+ {resp}
is a solution to ψ since the set of rolesRs (δRH(Rs)) satisfies every SoD constraint
in D and is authorized to all permissions in Pub. Conversely, let Rs be a solution
to ψ. It is easy to see that the assignment in which a literal xi is true if and only if
ri is in Rs, is a valid assignment and makes the formula evaluate to true.

Theorem 11. Assuming ETH, MAX-UAQ-P is not NP-hard if Pub = |R|o(1).

Proof. We can decide MAX-UAQ-P in O(|R|Plb+22|Pub|(|P |2 + |D|)) using Algo-
rithm 1 in Figure 2.3. We return true if Algorithm 1 accepts 〈ρ, Plb ∪ Ps, Pub, |Pub|〉
for at least a choice of Ps, where Ps is a subset of size k of Pub − Plb; otherwise,
we return false. Therefore, when Pub = |R|o(1), MIN-UAQ-R can be decided in
O(2|R|

o(1)
(|P |2 + |D|), contradicting ETH.

Impact of D and RH on the hardness of MAX-UAQ-P

Algorithms 2 Before we show how the computational complexity of MAX-
UAQ-P is related to the SoD constraints, we discuss algorithm 2 in Figure 2.4.
Algorithm 2 takes as input a decision instance of MAX-UAQ-P and returns ‘true’
if there is a solution and ‘false’ otherwise.

In Algorithm 2, we first compute Rfree, which is the set of roles that are not in
any SoD constraint (Line 1). For each constraint ci = 〈Rci , tci〉 in D, we compute
every subset of size at most tci − 1 of πRH(Rci) (Line 2-3), where πRH(Rci) is
defined in Definition 2. For each constraint ci, a subset in Fi is picked (Line 4).
For each such set of roles S (Line 5), we compute the set of active roles, Ractv,
which consists of all roles in S (as well as their junior roles) and free roles (Rfree)
(Line 6-7). We then check whether Pactv includes all the permissions in Plb and
the number of permissions from Pub − Plb (the “extra permissions”) in Pactv is at

23

least k (Line 9). If yes, then we return true if the set of active roles satisfies all the
constraints.

Algorithm 2 runs in time O(|R||D|t+2(|P |2 + |D|)) where t is the maximum
value that an integer second component in any constraint can take, i.e., max ti for
〈Rci , ti〉 ∈ D. Therefore, Max-UAQ-P is in P if the number of constraints and t
are bounded by constant.

Corollary 2. MAX-UAQ-P is in P if |D| = O(1) and t = O(1).

From the proofs of Theorem 9 and 10, we conclude that MAX-UAQ-P is
NP-hard if the number of constraint or integer second component in any constraint
is unbounded.

Corollary 3. MAX-UAQ-P is NP-hard if any of t or |D| is unbounded.

We also observe from the proof of 9 that role hierarchy does not contribute to
the complexity of MAX-UAQ-P in the sense that MAX-UAQ-P is NP-hard even
if there is no role hierarchy, i.e., if RH = {〈ri, ri〉 : ri ∈ R}.

2.3.4 Complexity Results for MIN-UAQ-R
MIN-UAQ-R problem is to find a subset of roles of minimum size that satisfies
all the SoD constraints and all the requested permissions. Stating MIN-UAQ-R
as a decision problem, an instance of MIN-UAQ-R is specified by the following
inputs.

• RBAC policy, ρ, for a user, where ρ = 〈R,P,RH,RP 〉, where R is the set
of all roles in the RBAC policy, P is the set of all permissions in the RBAC
policy, RH is a role hierarchy that relates roles in a partial order, RP is an
assignment of roles to permissions,

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |Rc|],
Rc ⊆ R. The semantics of 〈Rc, tc〉 is that tc or more roles from the set Rc

are not allowed to be activated at the same time.

• A set of permissions Plb ⊆ P

• A set of permissions Pub ⊆ P

• k ∈ N

24

The formal language for the corresponding decision problem is

MIN-UAQ-R = {〈ρ,D, Plb, Pub, k〉 : there exists a set of roles R′ ⊆ R such that
the size of δRH(R′) is at most k,
δRH(R′) satisfies every constraint in D,
activates all permissions in Plb,
but no permission from P − Pub}.

Theorem 12. [18] MIN-UAQ-R is NP-hard.

We now take a finer look at the sources of complexity of MIN-UAQ-R. We
show how the number of permissions in Plb, the set of SoD constraint D, and role
hierarchy RH contribute to the computational complexity of MIN-UAQ-R.

Theorem 12 proves that MIN-UAQ-R is NP-hard if the size of Plb , the num-
ber of lower bound permissions, is unbounded. However, MIN-UAQ-R can be
solved in polynomial time if |Plb| is bounded by a constant. For each permission
in Plb, we pick a role that activates it (if such role does not exist, we return false),
and check if the selected roles together with their junior roles satisfies SoD con-
straint and activates no permission out of Pub. In the following, we show how the
computational complexity of MIN-UAQ-R changes as the size of Plb increases.
Following theorem proves that MIN-UAQ-R is still NP-hard if |Plb| = O(|R|ε)
for any ε > 0.

Theorem 13. MIN-UAQ-R is NP-hard even if |Plb| = |R|O(1).

Proof. Assume |Plb| ≤ c1|R|c2 for some positive constants c1 and c2. We prove
it by showing a reduction that transforms an φ = 〈U ,F , k〉 of SET-COVER (see
Section 2.3.1 for a definition of SET-COVER.) to an instanceψ = 〈ρ,D, Plb, Pub, k′〉
of MIN-UAQ-R such that Plb ≤ c1|R|c2 .

Let m and n denote the size of U and F respectively. For each element ej in
U , we define a permission pj in Plb. For each subset Si in F , we define a role ri,
which is authorized to the permissions corresponding to the elements in that sub-
set, i.e., pj’s that ej ∈ Si. We also define m additional permissions p′1, · · · , p′m in
Plb, and (2c−1

1 m)1/c2 roles rn+1, · · · , rn+2c−1
1 m1/c2 authorizing to non-empty sub-

sets of the additional permissions, including a role resp authorized to all p′i’s. The
number of roles is n+ (2c−1

1 m)1/c2 ≥ (c−1
1 |Plb|)1/c2 .

Suppose that S ⊆ F is a set cover of size at most k. The set of roles Rs =
{ri : Si ∈ S} ∪ {resp} is a solution of size k + 1 for ψ. Conversely, if Rs is a
solution for ψ of size k′, then S = {Si : ri ∈ Rs and i ≤ n} is a set cover of size
at most k′ − 1.

25

We can prove a lower bound for the size of Plb such that MIN-UAQ-R is
NP-hard using ETH (see Conjecture 1).

Theorem 14. Assuming ETH, MIN-UAQ-R is not NP-hard if |Plb| = |R|o(1).

Proof. Algorithm 1 in Figure 2.3 can be used to decide MIN-UAQ-R, if instead
of checking the number of extra permissions in Line 9, we check whether the
number of activated roles, i.e., Ractv is less than k. Thus, when Plb = |R|o(1),
MMIN-UAQ-R can be decided in time O(2|R|

o(1)
(|P |2 + |D|)) = O(2n

o(1)
) where

n is the size of MIN-UAQ-R instance, contradicting ETH.

For example MIN-UAQ-R when |Plb| = O(logk |R|) (k is constant) satisfies
the condition of Theorem 14, and therefore is not NP-hard (unless ETH is wrong).
We show that if we assume additionally that the number of constraints is constant,
then there exists a polynomial algorithm that can decide MIN-UAQ-R.

Theorem 15. MIN-UAQ-R can be solved in poly(|R||D|, 2|Plb|), where poly(.) is a
polynomial function of its arguments.

Proof. We present an algorithm based on dynamic programming that decides
MIN-UAQ-R. We define T (i,X, u1, · · · , u|D|) to be one if there exists a subset
of roles S ⊆ R such that

• |δRH(S)| ≤ i,

• δRH(S) activates all permissions in X ,

• δRH(S) activates no permissions not included in Pub, and

• |δRH(S) ∩Rci | = ui for all 〈Rci , ti〉 ∈ D

and zero otherwise, for i ∈ {0, · · · , k} and X ⊆ Plb. A subproblem T (.) can
be expressed in terms of smaller subproblems as below.

T (i,X, u1, · · · , u|D|) = max
rj∈R

T (i− δRH(rj), X
′, u′1, · · · , u′|D|)

where X ′ = X − {p : δRH(rj) activates p}, u′k = uk − |δRH(rj) ∩ Rck |, and
Rvalid = {r : δRH(r) activates no p ∈ P − Pub}. The algorithm is shown in
Figure 2.5.

26

Algorithm 3
Input: MIN-UAQ-R〈ρ,D, Plb, Pub, k〉
Output: true/false

forall i ∈ {−|R|, · · · , 0} do1

forall u1, · · · , u|D| ∈ {−|R|, · · · , |R|} do2

T (i, ∅, u1, · · · , u|D|)← 03

T (0, ∅, 0, · · · , 0)← 14

Rvalid = {ri : δRH(ri) activates no p ∈ P − Pub}5

for i = 1→ k do6

forall X ⊆ Plb do7

forall u1, · · · , u|D| ∈ {0, · · · , |R|} do8

T (i,X, u1, · · · , u|D|) = max
rj∈Rvalid

T (i− δRH(rj), X
′, u′1, · · · , u′|D|)9

where X ′ = X − {p : δRH(rj) activates p} and10

u′k = uk − |δRH(rj) ∩Rck |.
foreach u1 ∈ {0, t1 − 1}, · · · , u|D| ∈ {0, · · · , t|D| − 1} do11

if T (k, Plb, u1, · · · , u|D|) = 1 then12

return true13

return false14

Figure 2.5: Algorithm 3 takes an instance of MIN-UAQ-R and returns ‘true’ if
there is a solution and ‘false’ otherwise. The time complexity of Algorithm 3 is
O(|R||D|+4 2|Plb|(|P |2 + |D|))).

27

Impact of D and RH on the hardness of MIN-UAQ-R

We observe from the proof of Theorem 13 that the SoD constraints and role hi-
erarchy do not contribute to the computational complexity of of MIN-UAQ-R in
the sense that MIN-UAQ-R is NP-hard even if there is no SoD constraint or role
hierarchy (i.e., D = ∅ and RH = {〈ri, ri〉 : ri ∈ R}). However, it remains open
as to whether the existence of SoD constraints and role hierarchy can change the
computational complexity of subcases of MIN-UAQ-R in P (e.g., MIN-UAQ-R
when |Plb| = O(logk |R|) and |D| = O(1))

2.3.5 Complexity Results for MAX-UAQ-R
MAX-UAQ-R problem is to find a subset of roles of maximum size that satisfies
all the SoD constraints and all the permissions in Plb. Stating MAX-UAQ-R as
a decision problem, an instance of MAX-UAQ-R is specified by the following
inputs.

• RBAC policy, ρ, for a user, where ρ = 〈R,P,RH,RP 〉, where R is the set
of all roles in the RBAC policy, P is the set of all permissions in the RBAC
policy, RH is a role hierarchy that relates roles in a partial order, RP is an
assignment of roles to permissions,

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |Rc|],
Rc ⊆ R. The semantics of 〈Rc, tc〉 is that tc or more roles from the set Rc

are not allowed to be activated at the same time.

• A set of permissions Plb ⊆ P

• A set of permissions Pub ⊆ P

• k ∈ N

The formal language for the corresponding decision problem is

MAX-UAQ-R = {〈ρ,D, Plb, Pub, k〉 : there exists a set of roles R′ ⊆ R such that
the size of δRH(R′) is at most k,
δRH(R′) satisfies every constraint in D,
activates all permissions in Plb,
but no permission from P − Pub}.

28

Theorem 16. MAX-UAQ-R is NP-hard.

Proof. We prove it by showing a reduction from 3-CNF-SAT to MAX-UAQ-R.
(see Section 2.3.1 for a definition of 3-CNF-SAT.) Given an instance φ of 3-CNF-
SAT, we construct an instance of MAX-UAQ-R, ψ = 〈ρ,D, Plb, Pub, k〉 as fol-
lows.

Assume without loss of generality that the negation of each literal x ∈ φ is in
φ too (if not we add the trivial clause (x ∨ ¬x ∨ x) to φ). We define a role ri for
each literal xi in φ. The permission set P is empty, and the role hierarchy relation
RH = {〈ri, ri〉 : ri ∈ R}, where R is the set of roles defined. The set of SoD
constraints, D, consists of a constraint 〈{ri, rj}, 2〉 for each negated literals xi and
xj , where xj = ¬xi, and a constraint 〈{ri, rj, rk}, 3〉 for each clause (xi∨xj ∨xk)
in φ. We claim that φ is satisfiable if and only if ψ has a solution of size at least
m/2 where m is the number of literals in φ.

If φ is satisfiable, then the set of roles corresponding to those literals with
false value in the satisfying assignment is a solution for ψ. That is, the set of roles
Rs = {ri : xi is false in the assignment} satisfies all the SoD constraints, and is
of size m/2. Conversely, suppose that Rs is a solution to ψ. It is easy to verify
that the assignment in which a literal is false if and only if the corresponding role
is in Rs, makes φ evaluate to true.

The set of permissions in the proof of Theorem 16 is empty, so we can con-
clude the following corollary.

Corollary 4. MAX-UAQ-R is NP-hard even if |Plb| = O(1).

Impact of D and RH on the hardness of MAX-UAQ-R

We observe in the proof of Theorem 16 that the hardness of MAX-UAQ-R is
related to the number of SoD constraints. However, the following theorem shows
that MAX-UAQ-R is NP-hard even if there exists only one SoD constraint.

Theorem 17. MAX-UAQ-R is NP-hard even if |D| = 1 and |Plb| = O(1).

Proof. We prove that MIN-K-COVERAGE ≤p MAX-UAQ-R. (see Section 2.3.1
for a definition of MIN-K-COVERAGE.) Let φ = 〈U ,F , k1, k2〉 be an instance of
MIN-K-COVERAGE where U , is a finite set of elements;F , a family of subsets of
U ; k1 and k2, positive integers. The instance φ is true if there exists a subset S ⊆ F
such that |S| ≤ k1 and S covers at most k2 elements of U , i.e.,

∣∣⋃
Si∈S Si

∣∣ ≤
29

k2. (see Section 2.3.1 for a proof that MIN Coverage problem is NP-hard.) We
construct an instance of MAX-UAQ-R, ψ = 〈ρ,D, Plb, Pub, k〉 as follows.

The role set, R, consists of a senior role rej for each element ej ∈ U , and
a junior role ri for each set Si ∈ F . A senior role rej is “senior” to a junior
role ri if and only if Si contains ej . That is, we have a pair

〈
rej , ri

〉
in RH for

every ej and Si that ej ∈ Si. Let RJ and RS denote the set of junior and senior
roles respectively. The set of SoD constraints D consists of a single constraint,
〈RJ , |RJ | − k1 + 1〉, which limits the number of junior roles that can be activated
at the same time to |RJ | − k1. The set of permissions, P , is empty. We claim that
φ is true if and only if there exists a set of roles R′ such that the size of δRH(R′)
is at least |R| − k1 − k2, and δRH(R′) satisfies the SoD constraint.

If φ is true, then there exists a subset S ⊆ F of size k1 that covers at most k2

elements of U . The set of roles Rs = {ri : Si 6∈ S} ∪ {rej : ej 6∈
⋃
Si∈S Si} is

a solution to ψ since δRH(Rs) satisfies the SoD constraint and is of size at least
|R| − k1 − k2. Note that by activating the roles in Rs, no other (junior) roles not
in Rs is activated. That is, δRH(Rs) equals to Rs.

Conversely, assume that ψ has a solution Rs such that the size of δRH(Rs) is
at least |R| − k1 − k2. We claim that S = {Si : ri 6∈ Rs} is a solution to φ. Since
δRH(Rs) satisfies the SoD constraint, δRH(Rs) has at most |RJ | − k1 junior roles.
We assume without loss of generality that δRH(Rs) includes exactly |RJ | − k1

junior roles; otherwise, we can add some more junior roles to Rs and still have
the SoD constraint satisfied. So, δRH(Rs) includes at least |RS| − k2 senior roles.
Under the automatic-activation assumption, we know that no senior role rej in Rs

is “senior” to any junior role ri not in Rs; otherwise, the SoD constraint on junior
roles is violated. Thus, S, the set of Si’s corresponding to the junior roles not in
Rs, does not cover at least |U| − k2 elements of U . It proves that S is a solution
for φ because S is of size k1 and covers at most k2 elements of U .

However, MAX-UAQ-R can be decided in polynomial time if the number of
SoD constraints, D, and the maximum value that an integer second component in
any constraint can take, i.e., max{ti} for 〈Rci , ti〉 ∈ D, are constants. To decide
MAX-UAQ-R in that case, we use Algorithm 2 in Figure 2.4 with a modification
in Line 9. In Line 10 of Algorithm 2, we check for two conditions: (1) Pactv is a
superset of Plb; (2) the number of activated roles, Ractv, is at least k. The algo-
rithm runs in O(|R|c(|P |2 + |D|)), where c is a constant such that |D|t ≤ c− 2.

30

Algorithm 4
Input: MAX-UAQ-R〈ρ,D, Plb, Pub, k〉
Output: true/false

Rval = {r : r is authorized to only permissions in Pub}1

foreach C ⊆ D do2

RCi = (
⋂
c∈Ci

Rc −
⋃
c 6∈Ci

Rc) ∩Rval
3

foreach pi ∈ Plb do4

Ri = {r : r is authorized to pi and r ∈ Rval}5

if Ri = ∅ then6

return false7

Fp ← {{r1, r2, . . . , r|Plb|} : ri ∈ Ri for all i}8

foreach S ∈ Fp do9

foreach (k1, · · · , k2|D|) such that ki ∈ {0, 1, · · · , |RC |} do10

Ractv ← S ∪M(RC1 , ki) ∪ · · · ∪M(RC
2|D|

, k2|D|)11

if checkD(Ractv) and |Ractv| ≥ k then12

return true13

return false14

Figure 2.6: Algorithm 4 takes an instance of MAX-UAQ-R and returns ‘true’ if there is a
solution and ‘false’ otherwise. It returns a correct answer assuming that the activation of a
senior roles in RBAC does not imply activation of any junior rolest. The time complexity
of Algorithm 4 is O(|R|2|D|+|Plb|+2(|P |2 + |D|))

The computational complexity of MAX-UAQ-R changes as we assume dif-
ferent semantics for role hierarchy RH . If we assume that the activation of a
senior roles does not imply activation of any junior roles, then MAX-UAQ-R with
constant number of constraints (i.e., when |D| = O(1) and Plb = O(1) is no
longer NP-hard. In that case Algorithm 4 in Figure 2.6 solves MAX-UAQ-R in
polynomial time.

Algorithm 4: Algorithm 4 takes as input an instance of MAX-UAQ-R and
returns ‘true’ if there is a solution and ‘false’ otherwise. It assumes that activation
of a senior role does not imply activation of its junior roles. It relies on the routine
checkD in Figure 2.2 that checks whether the input set of roles satisfies the SoD
constraints in D.
In Algorithm 4, we first compute the set of valid roles, i.e., the roles not authorized
to any permission in P − Pub. Then for each subset Ci of SoD constraints, D, we

31

compute RCi that is the set of valid roles that appear in every constraint in Ci
(Line 2-3). For each permission in Plb, a role from the set to which they are
authorized is picked (Line 4-8). For each such set of roles S (Line 9), we test
all different ways that we can extend S (Line 10-13). M(RCi , ki) represents any
subset of size ki of RCi . We return true if we are able to extend S to at least k
roles such that it satisfies all SoD constraint (Line 12). Algorithm 4 runs in time
O(|R|c(|P |2 + |D|)), where c is a constant such that 2|D| + |Plb| ≤ c− 2.

Corollary 5. MAX-UAQ-R is in P when |D| = O(1) and Plb = O(1), if there
is no role hierarchy or the activation of senior roles does not imply activation of
junior roles.

2.4 Mitigating the intractability of UAQ
The results in Section 2.3 show that, in general, all the four subcases of UAQ
are NP-hard. Therefore, unless P = NP, there are no efficient algorithms to
find an optimal solution to UAQ. By an efficient algorithm, we mean the one that
runs in time polynomial in its input size. In this section, we consider how the
intractability of UAQ can be mitigated. That is, how we can efficiently address
instances of UAQ that may arise, notwithstanding its worst-case intractability.

The most common approach to dealing with the intractability of NP-hard op-
timization problems is to relax the requirement of finding an optimal solution. An
example of this approach is Approximation Algorithms that efficiently find a solu-
tion that approximates the optimal solution. We discuss this approach in Section
2.4.1.

Another common approach is to relax the requirement of efficiency for all
problem instances. In Section 2.4.2, we discuss an example of this approach,
where we reduce UAQ to SAT and use a SAT Solver.

2.4.1 Approximation Algorithms
A standard approach to mitigate the intractability of NP-hard problems is to look
for efficient algorithms that find approximate solutions, i.e. approximation algo-
rithms. Approximation algorithms are algorithms to find a solution that is guaran-
teed to be within some factor of the optimum. However, an approximation algo-
rithm cannot be defined for instances of UAQ that have no solution. Therefore, we
confine ourselves to those instances of UAQ that have at least a solution. We show

32

how hard it is to approximate UAQ efficiently by establishing inapproximability
results for each subcase of UAQ. These results give a better understanding of the
hardness of UAQ in terms of how well it can be approximated. In this section, we
discuss the hardness of the approximate variants of MIN-UAQ-P, MAX-UAQ-P,
MIN-UAQ-R, and MAX-UAQ-R.

MIN-UAQ-P A solution to the optimization version of MIN-UAQ-P is a set
of roles R′ ⊆ R such that δRH(R′) satisfies every SoD constraint, activates all
permissions in Plb, but no permission out of Pub. The cost associated with each
solutionR′ is the number of permissions in Pub to which δRH(R′) is authorized. In
the optimization version of MIN-UAQ-P, the goal is to find a solution of minimum
cost.

Theorem 18. Unless P = NP, MIN-UAQ-P cannot be approximated withinO(n1−ε)
for any constant ε > 0, where n is the number of permissions in Pub.

Proof. Given an instance φ of 3-CNF-SAT, we construct an instance ψ of MIN-
UAQ-P such that for any ε > 0

• If φ is satisfiable, then OPT(ψ) = O(nε).

• If φ is unsatisfiable, then OPT(ψ) = Θ(n)

where n is the size of Pub. Therefore, the MIN-UAQ-P cannot be approximated
within O(n1−ε) for any constant ε > 0; otherwise, the approximation algorithm
for MIN-UAQ-P can be used to decide 3-CNF-SAT efficiently, which contradicts
the assumption that P 6= NP.

We construct ψ as follows. The set of roles consists of a main role ri for
each literal xi in φ, and an auxiliary role aj for each clause cj in φ. The set of
permissions Plb consists of a permission pj for each clause cj of φ. Each main
role ri is authorized to permission pj if and only if clause cj contains xi. Each
auxiliary role aj is authorized to permissions pj ∈ Plb as well as p′j,1, · · · , p′j,K ∈
Pub − Plb. The set of SoD constraints consists of a constraint 〈{ri, rj}, 2〉 for
each negated literals xi and xj (i.e., xi = ¬xj) in φ, and a constraint 〈{ri, aj}, 2〉
for any pair of main and auxiliary roles, ri, aj . There is no role hierarchy, i.e.,
RH = {〈ri, ri〉 : ri ∈ R}.

If φ is true, then there exists an assignment for the literals in φ that makes every
clause evaluate to true. The set of roles corresponding to the literals with true value
in the assignment, satisfies all SoD constraints, activates all permissions in Plb, but

33

no permission out of Plb. The set of auxiliary roles, A, is another solution to ψ,
which activates all permissions in Pub, and therefore its cost is O(Km) where m
is number of clauses in φ. It is easy to verify that A is the only solution to ψ, if φ
is unsatisfiable. By setting K = m1/ε−1, the cost of the optimal solution to ψ is
O(m) if φ is satisfiable, and O(m1/ε) otherwise.

MAX-UAQ-P A solution to the optimization version of MAX-UAQ-P is a set
of roles R′ ⊆ R such that δRH(R′) satisfies every SoD constraint, and activates
all permissions in Plb, but no permission out of Pub. The cost associated with
each solution is the number of permissions to which δRH(R′) is authorized. In the
optimization version of MAX-UAQ-P, the goal is to find a solution of maximum
cost.

Theorem 19. Unless P = NP, MAX-UAQ-P cannot be approximated within
O(n1−ε) for any constant ε > 0, where n is the number of permissions in Pub.

Proof. Given an instance of 3-CNF-SAT, φ, we construct an instance ψ of MAX-
UAQ-P such that

• If φ is satisfiable, then OPT(ψ) = O(n).

• If φ is unsatisfiable, then OPT(ψ) = O(nε)

where n is the size of Pub.
We construct ψ as follows. The set of role consists of a main role ri for each

literal xi in φ, an auxiliary role aj for each clause cj . The set of permissions Plb
consists of a permission pj for each clause cj in φ. The set of permissions Pub−Plb
consists of K permissions p′j,1, · · · , p′j,K for each clause cj . Each main role ri
is authorized to permissions pj, p′j,1, · · · , p′j,K if and only if clause cj contains
literal xi. Each auxiliary role aj is authorized to permission pj ∈ Plb. For each
negated literals, xi and xj (i.e., xi = ¬xj), we define a SoD constraint 〈{ri, rj}, 2〉.
We also add a SoD constraint 〈{ri, aj}, 2〉 to the set of constraints for any pair
of auxiliary and main roles, ri and aj . There is no hierarchy for the roles, i.e.,
RH = {〈ri, ri〉 : ri ∈ R} .

If φ is true, then there exists an assignment for variables that satisfies all the
clauses in φ. The set of roles corresponding to the literals with true value in the
assignment, is a solution for the ψ, which activates all the permissions in Pub.
The set of auxiliary roles, A, is also a solution for ψ, which activates no extra
permissions. It is easy to verify that A is the only solution for ψ, if φ is not

34

satisfiable. We set K = m1/ε−1. The cost of the optimal solution to ψ is of
O(m1/ε) if φ is satisfiable, and O(m) otherwise.

MIN-UAQ-R A solution to the optimization version of MIN-UAQ-R is a set
of roles R′ ⊆ R such that δRH(R′) satisfies every SoD constraint and activates
all permissions in Plb, but no permission out of Pub. The cost of each solution
R′ is the size of activated roles, i.e, |δRH(R′)|. In the optimization version of
MIN-UAQ-R, the goal is to find a solution with the minimum number of activated
roles.

In the following theorem, we prove that it is NP-hard to approximate MIN-
UAQ-R within O(n1−ε) for any constant ε > 0.

Theorem 20. Unless P = NP, MIN-UAQ-R cannot be approximated withinO(n1−ε)
for any constant ε > 0, where is n is the number of roles.

Proof. We prove that for any ε > 0 there is a gap introducing reduction from
3-CNF-SAT to MIN-UAQ-R that transforms a 3-CNF-SAT instance, φ, to a MIN-
UAQ-R instance, ψ, such that

• if φ is satisfiable, then OPT(ψ) = O(nε), and

• if φ is not satisfiable, then OPT(ψ) = Θ(n),

where n is the size of R. Therefore, if there exists a O(n1−ε)-approximation
algorithm for MIN-UAQ-R, then it can be used to solve 3-CNF-SAT in polynomial
time, which contradicts the assumption that P 6= NP.

We construct ψ as follows. The set of permissions Plb consists of K permis-
sions pj,1, . . . , pj,k for each clause cj in φ. The set of roles consists of a main
role ri for each literal xi in φ, and an auxiliary role aj,k for each permission pj,k
in Plb. Each main role ri is authorized to all permissions pj,1, . . . , pj,K for any
clause cj that contains xi. Each auxiliary role aj,k is authorized to pj,k. The set
of SoD constraints consists of a constraint 〈{ri, rj}, 2〉 for each negated literals xi
and xj , and a constraint 〈{aj,k, ri}, 2〉 for each pair of auxiliary and main roles.
The role hierarchy has only trivial pairs of form 〈ri, ri〉 for any role ri. The set of
permissions Pub is equal to Plb.

Assume that there exists an assignment to the literals in φ that satisfies every
clauses. Therefore, the set of roles corresponding to those literals with true value
in that assignment, is a solution for ψ, which has the cost of O(m) , where m is

35

the number of clauses in φ. On the other hand, if φ is not satisfiable, then the only
solution to ψ is the set of auxiliary roles, which has a cost of Km. By letting
K = m1/ε−1, the optimal solution to ψ is of cost of O(m), if φ is satisfiable, and
m1/ε otherwise. The size of ψ is Θ(Km2), which is polynomial in the size of φ.

MAX-UAQ-R A solution to the decision version of MAX-UAQ-R is a set of
roles R′ ⊆ R such that δRH(R′) satisfies every SoD constraints and activates all
permissions in Plb, but no permission out of Pub. The cost associated to each
solution R′ is the number of activated roles, i.e., |δRH(R′)|. In the optimization
version of MAX-UAQ-R, the goal is to find a solution with the maximum number
of activated roles.

In the following theorem, we prove that it is NP-hard to approximate MAX-
UAQ-R within O(n) where n is the size of role set, R.

Theorem 21. Unless P = NP, MAX-UAQ-R cannot be approximated within
O(n), where n is the number of roles.

Proof. We prove that there exists a gap introducing reduction from 3-CNF-SAT
to MAX-UAQ-R that transforms a instance φ of 3-CNF-SAT to an instance ψ of
MAX-UAQ-R such that

• if φ is satisfiable, then OPT(ψ) = O(n), and

• if φ is not satisfiable, then OPT(ψ) = 1,

Where n is the number of roles. Therefore, any approximation algorithm
that approximates MAX-UAQ-R within a factor of O(n), can decide 3-CNF-SAT
efficiently-contradicting the assumption that P 6=NP.

We construct ψ as follows. Assume without loss of generality that the negation
of each literal x ∈ φ is in φ (if not we add clause (x ∨ ¬x ∨ x) to φ). For each
literal xi in φ, we define a role ri. For each clause cj of φ, we define a permission
pj ∈ Plb to which a role ri is authorized if and only if the literal xi is in that
clause cj . We define an auxiliary role a, which is authorized to all permissions in
Plb. The auxiliary role cannot be activated with any role ri at a same time. So,
we have a SoD constraint 〈{ri, a}, 2〉 for any role ri. For each negated literals, xi
and xj , we define a SoD constraint 〈{ri, rj}, 2〉. Finally, the set of upper bound
permissions Pub is equal to Plb, and the role hierarchy includes only trivial pairs
of the form 〈ri, ri〉 for each role ri.

36

If φ is true, then there exists an assignment for the literals that satisfies every
clause in φ. It is easy to verify that the set of roles corresponding to the literals
with true values in the assignment, is a solution for ψ. The number of roles in the
solution is half of the total number of roles (i.e., the number of literals in φ), hence
the cost of the solution is O(n). The auxiliary role, ra, is also a solution for ψ. It
is easy to verify that ra is the only solution for ψ, if φ is not satisfiable.

Theorems 18, 19, 20, and 21 suggest that approximation algorithms is not a
promising approach to mitigate the intractability of UAQ. In the following sec-
tions, we show how the intractability of UAQ can be mitigated by first reducing
the optimization version of UAQ to its decision version (Section 2.4.2) and then
solving the decision version (Sections 2.4.3 and 2.4.4).

2.4.2 Reduction to the decision version of UAQ
In this section, we design an oracle for the decision version of UAQ, and show
how we can use it for the optimization version. The decision version of UAQ that
corresponds to the optimization version defined in Section 2.1 is specified with
the following inputs.

• An RBAC policy, ρ, for a user, where ρ = 〈RH,RP 〉, where RH is a role-
hierarchy that relates roles in a partial order, and RP is an assignment of
roles to permissions. For convenience, we assume that RH is reflexive, i.e.,
given a role r that appears in ρ, 〈r, r〉 ∈ RH . We denote the set of all roles
in ρ as R, and the set of all permissions as P .

• A set of SoD constraints, D, each of the form 〈Rc, tc〉, where tc ∈ [1, |R|],
Ri ⊆ R.

• Two sets of permissions, Plb and Pub, with P ⊇ Pub ⊇ Plb.

• kr ∈ {≤,≥} × [1, |R|], where R is the set of roles in the policy ρ. This
indicates the number of roles we seek in a solution, and whether that number
is an upper or lower bound.

• kp ∈ {≤,≥} × [0, |Pub − Plb|]. kp is the extra-permissions analogue to kr.

A decision instance is either true or false. It is true if there exists a set of roles
that satisfies kr and kp, and false otherwise. For example, a decision UAQ instance

37

with kr = (≤, k1) and kp = (≥, k2) is true, if there exist a subset of roles R′ such
that the total number of activated roles upon its activation, i.e., δRH(R′), is of
size at most k1, and δRH(R′) satisfies all the constraints, and the set of permission
P ′ to which δRH(R′) is authorized includes Plb and at least k2 permissions from
Pub − Plb.

From the decision to the optimization version The decision and optimization
versions of UAQ are related closely. There exists a polynomial-time Turing re-
duction [11] from the optimization version to the decision version. That is, given
an oracle Ω for the decision version, we can efficiently solve the optimization ver-
sion. A concrete approach is two-dimensional binary search. For example, for the
case that pri = np (i.e., prioritize permissions over roles), we first fix kr at 〈≥, 1〉;
i.e., we accept a solution with any number of roles. We then perform a binary
search for the optimal number of permissions with O(log |Pub − Plb|) invocations
to Ω. Once we find the optimal number of permissions, π, we then perform a
binary search with O(log |R|) invocations to Ω with kp adjusted to π (i.e., kp set
to 〈≤, π〉 or 〈≥, π〉 depending on the optimization objective for permissions).

The algorithm is shown in Figure 2.7. It can be seen as a polynomial-time
Turing reduction [11] from the optimization version to the decision version. We
assume that an oracle, Ω, to the decision version is given. The oracle takes as
input ρ,D, Plb, Pub, kr, kp under UAQ Specification.

Given an oracle for the decision version, a polynomial-time Turing reduction
[11] can give us a certificate (i.e., set of roles) that is a solution. Indeed, a cer-
tificate is a by-product of tools such as SAT solvers along with the ‘satisfiable’ or
‘unsatisfiable’ output. We can then repeatedly look for additional solution sets of
roles by excluding a role from R that is in a prior solution.

In summary, the optimization problem, the problem of finding pareto solu-
tion, and the problem of identifying one or multiple sets of roles that are valid
solutions all rely on the construction of Ω, an approach to the decision version.
Consequently, we focus on the decision version of UAQ in the remainder of this
section.

The following theorem establishes an upper bound on the complexity of UAQ;
the decision version remains in NP.

Theorem 22. The decision version of UAQ ∈ NP.

Proof. It suffices to show that for every instance of UAQ, there is a polynomial-
sized certificate that can be verified in polynomial time. Let R be the set of all

38

Algorithm 5
Input: 〈ρ,D, Plb, Pub, k〉
Output: A subset of roles, Rs

if or = none and op = none then1

return Ω(ρ,D, Plb, Pub, 〈≥, 1〉 , 〈≥, 0〉)2

if or = none then pri = np3

else if op = none then pri = nr4

if pri = np then5

Rs = ∅; αp ← 0; βp ← |Pub − Plb|6

cp ← b(βp − αp) /2c7

while αp ≤ βp do8

if op = max then9

R′s ← Ω(ρ,D, Plb, Pub, 〈≥, 1〉 , 〈≥, cp〉)10

if R′s = ∅ then βp ← cp − 111

else Rs ← R′s; αp ← cp + 112

else13

R′s ← Ω(ρ,D, Plb, Pub, 〈≥, 1〉 , 〈≤, cp〉)14

if R′s = ∅ then αp ← cp + 115

else16

Rs ← R′s; βp ← cp − 117

if op = none then break18

cp ← b(βp − αp) /2c19

if pri = np then20

if Rs = ∅ then return ∅21

Let Ps be all permissions authorized to Rs22

αr ← 1; βr ← R; cr ← b(βr − αr) /2c23

while αr ≤ βr do24

if or = max then25

R′s ← Ω(ρ,D, Plb, Pub, 〈≥, cr〉 , 〈=, |Ps|〉)26

if R′s = ∅ then βr ← cr − 127

else Rs ← R′s; αr ← cr + 128

else29

R′s ← Ω(ρ,D, Plb, Pub, 〈≤, cr〉 , 〈=, |Ps|〉)30

if Rs = ∅ then αr ← cr + 131

else32

Rs ← R′s; βr ← cr − 133

if or = none then break34

cr ← b(βr − αr) /2c35

else {Similar to the “if” case, for roles first.}36

return Rs37

Figure 2.7: Algorithm 5 is a two-dimensional binary search for the optimal num-
bers of roles and extra permissions using an oracle, Ω, for the decision version of
UAQ. 39

roles in the RBAC policy, ρ. A certificate is a set of roles R′, where R′ ⊆ R.
This certificate is clearly polynomial (linear) in the size of the instance. Let P ′ be
the set of permissions to which δRH(R′) is authorized. An algorithm to verify the
certificate first generates P ′ and then checks that R′ ⊆ R, |δRH(R′)| satisfies kr,
Plb ⊆ P ′ ⊆ Pub, |P ′ − Plb| satisfies kp, and δRH(R′) satisfies every constraint in
D. This algorithm is polynomial-time in the instance.

Therefore, NP is an upper bound for the inefficiency of any approach for miti-
gating the intractability of UAQ. In particular, it is known that NP ⊆ PSPACE ⊆
EXPTIME ∗∗, and both containments are thought to be strict [4]. An approach
that causes an exponential blowup in its design, like the one proposed in [59], is
inefficient unless NP = PSPACE = EXPTIME.

2.4.3 Efficient Reduction to CNF SAT
In this section, we discuss our oracle for the decision version of UAQ – a polyno-
mial time many-one reduction [4] to CNF-SAT†† . The main technical challenges
are to capture the SoD constraints and multiple objectives (roles and extra permis-
sions).

An instance of CNF-SAT is a set of clauses that are a conjunction. A clause
comprises one or more literals that are a disjunction. A literal is a variable or its
negation. For each role ri ∈ R and permission pj ∈ Pub, we define a Boolean
variable which is true if and only if ri or pj is activated, respectively. A satisfying
assignment corresponds to a valid solution. If a SAT solver discovers that an input
instance is satisfiable, as auxiliary output, it provides an assignment to the vari-
ables, which immediately tells us the set of roles to be activated. (Even if it does
not, it is easy for us to construct one using a polynomial-time Turing reduction
[4].)

The RBAC policy, ρ, and permission sets, Plb and Pub We adopt the approach
of prior work [59], with a correction for their soundness issue, to capture ρ and
Plb in CNF-SAT. That is, for each 〈r, p〉 ∈ RP we capture it as a clause r → p,
where “→” is “implies.” Also, for every permission p, if r1, . . . , rn are the roles

∗∗PSPACE is the class of decision problems that can be solved given space polynomial in the
size of the input. EXPTIME is the class of decision problems that can be solved given time
exponential in the size of the input.
††CNF-SAT is the problem of deciding whether a Boolean expression in Conjunctive Normal

Form (CNF) is satisfiable. It is a well-known NP-complete problem [24].

40

to which it is authorized in ρ, we add a clause p → r1 ∨ . . . ∨ rn. These capture
our intent that if r is activated, p is activated, and for p to be activated, at least
one of the roles to which it is authorized must be activated. We also capture each
〈r1, r2〉 ∈ RH with a clause r1 → r2. This encodes the requirement that a junior
role must be activated if a senior role is. This is optional — Wickramaarachchi et
al. [59] provide a discussion of how we can deal with RH in the context of UAQ.
We refer the reader to that work for a discussion.

We add a clause p for each p ∈ Plb, i.e., a clause with the single variable
p. This captures our intent that every permission in Plb must be activated. For
every permission in P − Pub, we add the clause ¬p. This captures our intent
that only permissions in Pub are allowed to be activated. (We can alternatively
simply remove those permissions and any role that is authorized to any of those
permissions before formulating our UAQ instance.)

SoD constraints This is one of the technical challenges with reducing UAQ to
SAT. We adopt an approach similar to that of Sinz [48]. We first encode each
constraint as a Boolean circuit. That is, we first reduce constraint-satisfaction to
CIRCUIT-SAT (the satisfiability problem for Boolean circuits), and then adopt a
“textbook” reduction from CIRCUIT-SAT to CNF-SAT [14].

We first describe Boolean circuits that we call Bit-Sum, Sum and Compare
that are building blocks. Then, we propose a circuit that we call Max-Circuit. It
takes input n bits and an integer k, and outputs 1 if and only if at most k of the n
bits are 1. All inputs to a Boolean circuit are bits; an integer input is encoded in
binary. Our encoding of a constraint 〈Rc, t〉 ∈ D is as a Max-Circuit with input
〈r1, . . . , rn〉 and t, whereRc = {r1, . . . , rn}. We show an example of encoding the
constraint 〈{r1, r2, r3}, 2〉 in Figure 2.8. In the following, with each description of
a circuit, we mention its size. The size of a circuit is characterized by the number
of gates in it.

• Bit-Sum:

– Input: 〈yn, yn−1, . . . , y1〉, x
– Output: 〈zn, zn−1, . . . , z1〉, such that

∑n
i=1 zi2

i−1 =
∑n

i=1 yi2
i−1 + x.

– Let c1, . . . , cn−1 be carry variables. Then, z1 = x ⊕ y1, c1 = x ∧ y1

and zi = ci−1 ⊕ yi, ci = ci−1 ∧ yi for all i ∈ {2, . . . , n}. The number
of gates in a Bit-Sum circuit is 2n.

• Sum:

41

r1

0

0

r2 r3
1

0
Bit−Sum

Sum Compare

Figure 2.8: An example of Max-Circuit that we build for the constraint
〈{r1, r2, r3}, 2〉 using the Bit-Sum, Sum and Compare building blocks. We use
gates that correspond to ∧,∨,¬,↔ and ⊕. We point out that the last two can be
reduced in linear time to the first three: x ↔ y = (¬x ∨ y) ∧ (x ∨ ¬y), and
x⊕ y = (x ∨ y) ∧ (¬x ∨ ¬y).

– Input: 〈xn, xn−1, . . . , x1〉
– Output: 〈zm, zm−1, . . . , z1〉, such that

∑m
i=1 zi2

i−1 =
∑n

i=1 xi, m =
dlog ne.

– The Sum circuit uses n modules of Bit-Sum, each of m gates. The
total number of gates in Sum is 2nm = 2ndlog ne.
Sum = Bit-Sum(xn,Bit-Sum(xn−1, . . . ,Bit-Sum(x1, ym, ym−1, . . . , y1) . . .)),
where 〈ym, ym−1, . . . , y1〉 = 〈0, 0, . . . , 0〉.

• Compare

– Input: (xn, xn−1, . . . , x1) , (yn, yn−1, . . . , y1)

– Output: z, such that z = 1 if and only if
∑n

i=1 xi2
i−1 ≤

∑n
i=1 yi2

i−1.

– Let e1, . . . , en and l1, . . . , ln be equality and less-ness variables, re-
spectively. Then en = xn ↔ yn, lm = ¬xn∧yn and ei = ei+1∧ (xi ↔
yi), li = ((¬xi ∧ yi) ∧ ei+1) ∨ li+1 for all i ∈ {1, . . . , n − 1}. Then
z = l1 ∨ e1. The number of gates in Compare is 5n− 2.

• Max-Circuit

– Input: (xn, xn−1, . . . , x1) , k ≤ n

42

– Output: z, such that z equals to 1 if and only if the number of true
variables in xn, xn−1, . . . , x1 is at most k.

– Let m = dlog ne and ym, . . . , y1 be such that
∑m

i=1 yi2
i−1 = k. Then

z = Compare(Sum((xn, xn−1, . . . , x1)), (ym, . . . , y1)). The total num-
ber of gates in Max-Circuit(n) is at most (2n+ 5)dlog ne.

Joint optimization This is the other technical challenge with UAQ. We use
Boolean circuits for this as well. We first introduce an additional circuit that we
call Min-Circuit.

• Min-Circuit

– Input: (xn, xn−1, . . . , x1) , k ≤ n

– Output: z, such that z equals to 1 if and only if the number of true
variables in xn, xn−1, . . . , x1 is at least k.

– z = Compare((ym, . . . , y1),Sum((xn, xn−1, . . . , x1))) and
∑m

i=1 yi2
i−1 =

k. The total number of gates in Min-Circuit(n) is at most (2n +
5)dlog ne.

To encode kr = 〈≤, c〉, i.e., that we want a set of roles of size at most c, we
employ Max-Circuit with inputs R (the set of all roles in the RBAC policy) and c.
To encode kr = 〈≥, c〉, we employ Min-Circuit with inputs R and c. To encode
kr = 〈=, c〉, we employ both. That is, each of Max- and Min-Circuit is eventually
encoded as clauses in CNF-SAT, which are then conjuncted, thus giving us the
semantics we seek with “=.” We can similarly encode kp, the decision version of
the optimization objective for extra permissions.

Cost of the reduction Each gate of Max-Circuit and Min-Circuit is converted
to 4 clauses. If d(p) = |{ri : r − i is authorized to p}|, the total number of clauses
is |Plb|+

∑
p∈Pub−Plb(d(p)+1)+

∑
〈Rc,t〉∈D(8|Rc|+20) log |Rc|+(8|Pub−Plb|+

20) log |Pub − Plb| which is O(|Pub|(|R|+ log |Pub|) + |D||R| log |R|).
That is, if the UAQ instance is of size n, our reduction outputs O(n2 log n)

clauses. We infer this from the term |D| |R| log |R|, which dominates in the ex-
pression above — both D and R are input to the problem. The running time of
our reduction, and the size of the output CNF-SAT instance is O(n2 log n).

43

Algorithm 6
Input: 〈ρ,D, Plb, Pub, kp, kr〉
Output: A subset of roles

foreach pi ∈ Plb do1

Ri ← {r : r is authorized to pi}2

foreach pi ∈ Pub − Plb do3

R′i ← {r : r is authorized to pi} ∪ {rε}4

F ← {{r1, . . . , r|Plb|, r
′
1, . . . , r

′
|Pub−Plb|} : ri ∈ Ri and r′i ∈ R′i for all i}5

foreach S ∈ F do6

Let δRH(S) be the set of roles such that r ∈ δRH(S) if and only if either7

r ∈ δRH(S), or r is junior to some r′ ∈ δRH(S)
Pactv ← {p : δRH(S) activates p}8

if Pactv satisfies kp and δRH(S) satisfies kr then9

if checkD(δRH(S)) then return δRH(S)10

return ∅11

Figure 2.9: Algorithm 6 takes an instance of the decision version of UAQ. It
returns a set of roles that is a valid solution. The algorithm is exponential in |Pub|,
but is polynomial-time if |Pub| is bounded by a constant.

2.4.4 Fixed-Parameter Polynomial Algorithm
In this section, we devise the oracle for the decision version of UAQ using an
algorithm that is efficient as long as the number of permissions is bounded by
some constant. We call it FPP algorithm, where FPP stands for Fixed Parameter
Polynomial Algorithm. A problem is said to be fixed-parameter polynomial with
respect to parameter k if there exists an algorithm that solves it in time O(nck),
where n is the input size and c is some constant [54].

Algorithm 6. Before we make our next assertion, we discuss algorithm 6 in
Figure 2.9. For each permission in Plb, we compute the set of roles authorized to
it in Line 1-2. For each permission in Pub − Plb, we compute the set of roles con-
taining dummy role rε and those roles authorized to the permission. The dummy
role rε is authorized to no permission. We assume that the RBAC policy ρ has
the dummy role, otherwise, we add it to the ρ in the preprocessing phase. In line
5-6, we choose a role for each permission from the corresponding set computed
earlier. In Line 7, we take care of the role hierarchy, that is, we assume activation
of a senior role implies activation of all its junior roles. We assume access to an
auxiliary routine, checkD in Figure 2.2, that checks whether its input set of roles

44

satisfies every constraint in D. δRH(S) is needed only if we seek to activate all
junior roles of a role that is activated. If not, we need S only, and the check in
Line 9 is for S, not δRH(S). If we seek all solutions, then rather than returning in
Line 9, we continue to process all sets in F .

The algorithm imposes an upper bound of |Pub| on the number of roles in a
solution set Rs. For each permission in Pub, it picks a role as specified in Line 1–
4. F contains all such sets of roles. As we adopt at most one role per permission,
there are at most (|R| + 1)|Pub| sets in F . If we impose the constraint that |Rs| ≤
|Pub|, F contains every possible solution set of roles. In Lines 5–11, for each set
of roles in F , we check if it satisfies the other parameters for a solution, namely
kr, kp and D.

Theorem 23. Suppose the solution we seek, Rs, is such that the |Rs| ≤ |Pub|.
Then, UAQ is fixed-parameter polynomial in |Pub|.

Proof. The algorithm in Figure 2.9 is correct, and runs in time O(n|Pub|+2), where
n is the size of the input other than Pub. The reason is that |F | ≤ (|R|+ 1)|Pub| =
O(n|Pub|), and the processing of each set in F (e.g., the check against each con-
straint in D in Line 11) takes at worst quadratic time. Therefore, the algorithm is
polynomial-time if |Pub| ≤ c for some constant c.

We argue that the precondition in the assertion of the above theorem, that |Rs|
is bounded by |Pub|, is reasonable, particularly when we seek to minimize the
number of activated roles. For each permission, we expect to acquire it with one
role. If |Rs| > |Pub|, then we know that we have some redundant roles that can be
removed from the solution without affecting the permissions to which the session
is authorized. The theorem and corresponding algorithm are of interest because
part of the motivation for UAQ is the principle of least privilege. There may be
cases in which it is reasonable to assume that |Pub| is small. We include an oracle
based on this algorithm in our empirical assessment in the next section.

2.5 Empirical Evaluation
We have implemented both our reduction to CNF-SAT (Section 2.4.2) and fixed
parameter polynomial (Section 2.4.4) approaches. For the former, we produce
input for the zChaff SAT solver [63]. For the optimization version, we have im-
plemented the two-dimensional binary search that we discuss in Section 2.4.2.
All our implementations are available for public download [37]. We are not

45

aware of any benchmark for UAQ. Consequently, we have done what prior work
[18, 59, 64] does — generate several different kinds of test cases that exercise var-
ious parameters to the problem. We created a program that we have made publicly
available [37] to generate test cases consistent with prior work. Our test program
allows us to specify:

– minimum and maximum number of roles

– minimum and maximum number of permissions

– number of roles authorized to each permission

– minimum and maximum number of constraints

– minimum and maximum number of roles in each constraints

– number of permissions in Plb

– number of permissions in Pub

– depth of role-hierarchy, RH

Within those parameters that the user specifies, we generate the input ran-
domly. For example, if the user specifies 3 for the number of roles authorized
to each permission, we randomly pick role-permission assignment (i.e., each per-
mission is connected to 3 random roles).

All data points in our graphs represent a mean across at least 10 different
inputs generated randomly, that correspond to the value in the horizontal axis,
each of which was run 10 times. That is, each data point is an average across
100 runs. We also computed a 95% confidence interval which we show in the
graphs with a vertical line segment at the data point. (These may be barely visible
because the intervals are small.) All the CPU times that we report are for full joint-
optimization. As we perform binary search, the corresponding decision instances
are about an order of magnitude faster. Our evaluations were conducted on a
standard desktop PC with an Intel Dual Core E8400 CPU, each of which clocks
at 3 GHz and has a 6 MB cache. The machine runs the 32-bit Ubuntu Linux 10.04
LTS operating system and has a 4GB RAM.

46

Overall observations Our approaches are orders of magnitude faster than prior
approaches for which empirical results have been reported [59]. Furthermore, we
are able to push our implementations far beyond prior approaches. For example,
we have tried for up to |R| = 200; prior work [59] goes only up to fewer than
75. Our results are not surprising to us. They are a consequence of the efficiency
inherent to our reduction (in the case of the CNF-SAT approach), and the fact
that the fixed-parameter polynomial-time algorithm indeed demonstrates efficient
(polynomial-time) behaviour so long as |Pub| is bounded by a somewhat small
constant.

We were given access to the decision version of the CNF-SAT approach of
[59]. We tried several inputs for comparison. We discovered that its exponential
behaviour becomes quickly apparent. For an RBAC policy of only 14 roles and a
single SoD constraint in D, the approach from that work takes 1.5 minutes. For
the same policy, our approach takes 0.005 seconds.

Specific observations We report CPU times along 6 different axes for both our
approaches.

• Figures 2.10 and 2.11 show our performance for different number of roles
(i.e., |R|) and depth of role-hierarchy. We observe that both our approaches
are resilient to an increase in either parameter. We have tried up to a some-
what unrealistic role-hierarchy depth of 10; prior benchmarks [30] suggest
that the maximum role-hierarchy in enterprise settings is 5.

• Figures 2.12 and 2.13 show our performance for different number of con-
straints (i.e., |D|) and roles in a constraint (i.e., the first component of a
constraint). Both approaches show a slow, linear worsening of performance
in both cases. However, even for up to |D| = 200, the CNF-SAT approach
takes less than 0.2 seconds. We have also tried up to a somewhat unrealistic
number of roles in a constraint of 90. The CPU time for both our approaches
remains less than 1 second.

• Figures 2.14 and 2.15 show our performance for different values of the in-
teger (second component) of constraints, and |Plb|. We point out that as
Plb ⊆ Pub, and therefore |Plb| is a lower-bound for |Pub|. Both our ap-
proaches remain highly resilient to different values of the integer in con-
straints. For increasing |Plb|, however, the fixed-parameter polynomial-time
algorithm starts to demonstrate exponential behaviour once the parameter

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of roles

CNF-SAT
FPP Algorithm

Figure 2.10: Performance of the optimization versions of our approaches for dif-
ferent values of |R|.

crosses a particular small threshold value. This is completely expected; the
algorithm is exponential in |Pub|, and therefore demonstrates polynomial-
time behaviour only if |Pub| is bounded. In our implementation, this bound
is approximately 7. The CNF-SAT approach, on the other hand, remains
highly efficient for the larger values of |Plb|.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Role-hierarchy Depth

CNF-SAT
FPP Algorithm

Figure 2.11: Performance of the optimization versions of our approaches for dif-
ferent values of depth of the role hierarchy.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of constraints, |D|

CNF-SAT
FPP Algorithm

Figure 2.12: Performance of the optimization versions of our approaches for dif-
ferent numbers of constraints.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of roles per constraint

CNF-SAT
FPP Algorithm

Figure 2.13: Performance of the optimization versions of our approaches for dif-
ferent number of roles in constraints.

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Integer (second component) in constraint

CNF-SAT
FPP Algorithm

Figure 2.14: Performance of the optimization versions of our approaches for dif-
ferent values of the integer (second component) of constraints.

52

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Size of Plb

CNF-SAT
FPP Algorithm

Figure 2.15: Performance of the optimization versions of our approaches for dif-
ferent values of |Plb|.

53

2.6 Hard Instances of UAQ
The results of Section 2.5 suggest that the instances of UAQ in the benchmark
we adopt are easy for our CNF-SAT algorithm. This leads one to ask: what are
some characteristics of hard instances of UAQ? Assuming P 6= NP, we know that
such hard instances exist. In this section we propose a method for systematically
generating hard instances of UAQ and then test our algorithm that is based on
reduction to CNF-SAT with such instances. We study also the structural properties
of such hard instances.

Constraint Satisfaction Problem Before we explain our method of generat-
ing hard instances of UAQ, we define Constraint Satisfaction Problems (CSP). A
constraint satisfaction problem comprises a set of variables x1, x2, · · · , xn, where
the variable xi takes a value from a nonempty domain di, and a set of constraints
C1, C2, · · · , Cm. Each constraint Ci is an associative relation specifying the al-
lowable values for the variables involved in Ci. A solution to a CSP is an assign-
ment of values to all variables such that it satisfies all the constraints. A CSP is
satisfiable if and only if there is a solution to it.

A model for generating hard instances of CSP, called RD, has been proposed
by Xu et al. [60, 62]. Our method for generating hard UAQ instances is based on
their model, which is defined below.

Definition 3. [60, 62] A class of random CSP instances of model RD is denoted
by RD(k, n, α, r, p) where:

• k ≥ 2 denotes the arity of each constraint,

• n denotes the number of variables,

• α > 0 determines the domain size of each variable that is nα,

• r > 0 determines the number of constraints that is rn log n,

• 1 > p > 0 denotes the tightness of each constraint

An instance of RD(k, n, α, r, p) is constructed as follows. Given n variables,
we first construct rn lnn constraints. Each constraint is formed by selecting k
random variables. For each constraint, each tuple of possible values is selected
to be incompatible with probability p.

54

Xu et al. [60, 62] have shown that for p = 1 − e−α/r, instances generated by
model RD, RD(k, n, α, r, p), are hard if α > 1/k and p ≤ k−1

k
.

Hard UAQ Instances We now explain our method for generating hard instances
of UAQ, which is based on model RD. To create an instance of UAQ, we first
construct an RBAC policy ρ as follows.

• Generate n sets of roles R1, R2, · · · , Rn, where each set comprises nα dis-
tinct roles.

• Set RH = {〈r, r〉 : r ∈ R} where R =
⋃
i

Ri.

• For every pair of roles in the same set, rik, r
i
l ∈ Ri, define a permission to

which only rik and ril are authorized.

• Randomly select two sets of roles Ri and Rj , and for each pair of roles
rik ∈ Ri and rjl ∈ Rj , define a permission to which only rik and rjl are
authorized. Perform this step rn lnn times.

We create an instance of UAQ in which we seek the minimum number of roles
that activates all the permissions. In other words, we set Plb = Pub = P (where P
is the set of all permissions defined above), D = ∅, or = min and op = none.

We show how an instance of UAQ with kr = nα+1 − n generated as above
is an instance of RD(k, n′, α, r, p) when k = 2 and n′ = n. We observe that
if there exists a set of nα+1 − n roles that activates all the permissions, then the
remaining n roles, denoted by R′, are such that no two roles are authorized to
the same permission. Since every pair of roles in the same role-set Ri shares a
permission, R′ must have exactly one role from each set. That is, |R′ ∩ Ri| = 1
for all i.

An instance of UAQ that we generate can be seen as an instance of model
RD, i.e., RD(2, n, α, r, p), by defining a variable xi for each set of roles Ri.
The domain of each variable xi consists of nα values v1, v2, · · · , vnα . For each
permission p to which rik ∈ Ri and rjl ∈ Rj are authorized, there is a constraint
that disallows values vk and vl for xi and xj respectively. There is a satisfying
assignment for x1, x2, · · · , xn if and only if there exist a set of n1+α−n roles that
activates all the permissions in Plb.

We generated hard UAQ instances with α = 0.5, p = 0.5, r = 0.72, and
n ∈ {25, 26, · · · , 50}, and used the CNF-SAT algorithm from Section 2.4.3 to

55

Table 2.1: CPU time for hard instances of UAQ
n CPU Time (sec) |R| |Plb| n CPU Time (sec) |R| |Plb|
25 34 125 963 38 208 228 2241
26 9 130 1002 39 291 234 2364
27 37 135 1011 40 259 240 2371
28 44 140 1130 41 454 246 2521
29 25 145 1137 42 233 252 2623
30 43 150 1167 43 588 301 3540
31 125 186 1792 44 293 308 3704
32 260 192 1877 45 472 315 3811
33 166 198 1946 46 524 322 3980
34 87 204 2001 47 825 329 4029
35 110 210 2139 48 737 336 4102
36 134 216 2134 49 598 343 4199
37 130 222 2209 50 1135 350 45075

Table 2.2: CPU time for UAQ instances from Section 2.5
UAQ instance CPU Time (sec) |R| |P | |Plb|
uaq-R 0.097 200 500 7
uaq-RH 0.105 200 500 5
uaq-D 0.283 100 500 7
uaq-RPC 0.803 300 1000 7
uaq-t 0.174 100 500 6
uaq-Plb 0.060 100 500 11

solve them. Table 2.1 shows CPU time for each instance as well as the size of
each instance.

The CPU times in Table 2.1 are significantly larger than the CPU time for
the UAQ instances from the benchmark in Section 2.5. For the purpose of com-
parison, we selected six UAQ instances from the benchmark used for generating
graphs in Section 2.5 (one for each graph). Table 2.2 shows the CPU Time as well
as the size of each such instance.

56

2.6.1 The Structure of Hard UAQ Instances
In this section, we study the structural property of the generated hard UAQ in-
stances. We take three approaches: (1) reducing UAQ to CSP, and studying the
structure of the corresponding CSP, (2) studying the structural property of two
graphs associated to UAQ instances, that we call the RPG and RRP graphs, and
(3) reducing UAQ to CNF-SAT, and studying the structural property of the corre-
sponding CNF-SAT formula.

Reducing to CSP Given a UAQ instance, we construct a CSP instance as fol-
lows. We define a variable for each role and each permission. Each variable is
either zero or one, denoting whether the corresponding role or permission is ac-
tive. Let vr and vp denote the variables corresponding to r ∈ R and p ∈ P . We
define the following constraints.

• for each permission p ∈ P , we define a constraint involving vp and all
vr’s corresponding to the roles authorized to p. The constraint allows only
assignments in which vp is one if and only if at least one of the vr’s is one.

• for each SoD constraint 〈Ri, ti〉 ∈ D, we define a constraint involving vari-
ables vr’s for all r ∈ Ri that allows at most ti − 1 of the variables to be
one.

• for each 〈ri, rj〉 ∈ RH , we define a constraint where the allowable combi-
nation values for (ri, rj) are {(one, one), (zero, one), (zero, zero)}.

• for each p ∈ Plb, the only allowed value for vp is one.

• for each p ∈ P − Pub, the only allowed value for vp is zero.

• a constraint involving variables vp for p ∈ Pub − Plb that allows at most kp
of the variables to be one.

• a constraint involving variables in {vr : r ∈ R} that allows at most kr of the
variables to be one.

A CSP instance can be further represented by a constraint graph where there
is a vertex for each variable and each constraint. There is an edge between a
variable-vertex and a constraint-vertex if and only if the corresponding variable
occurs in the corresponding constraint.

57

Table 2.3: Tree width of the corresponding CSP of the generated hard UAQ’s

n C
PU

Ti
m

e
(s

ec
)

Tr
ee

w
id

th
(l

b)

Tr
ee

w
id

th
(u

b)

n C
PU

Ti
m

e
(s

ec
)

Tr
ee

w
id

th
(l

b)

Tr
ee

w
id

th
(u

b)

25 34 17 29 38 208 24 71
26 9 19 41 39 291 25 71
27 37 19 47 40 259 24 76
28 44 18 44 41 454 25 83
29 25 18 45 42 233 25 84
30 43 18 43 43 588 30 98
31 125 22 56 44 293 32 97
32 260 24 63 45 472 30 105
33 166 25 60 46 524 31 98
34 87 25 70 47 825 33 117
35 110 26 59 48 737 32 115
36 134 24 71 49 598 31 122
37 130 26 73 50 1135 32 117

It can be shown that each CSP problem is solvable in O(ndw+1)-time where n
is the number of variables, d is the maximum domain size of each variable, and w
is the tree width of the corresponding constraint graph [46]. Therefore, tree width
is a structural property of the CSP problem that is closely related to its hardness.
In fact, the tree width provides an upper bound for the difficulty of a CSP problem.
For each instance of hard UAQ’s, we first reduce it to a CSP instance as explained
above, and then compute the upper bound and lower bound of the tree width of
the associated constraint graph. We do this because, in general, computing the
tree width for a CSP instance is itself NP-hard. Table 2.3 shows a lower bound
and upper bound for the tree width of the constraint graph corresponding to each
hard UAQ instance generated in Section 2.6. We use the Minor-Min-Width algo-
rithm [23] for computing the lower-bounds and the Greedy-Fill-In algorithm [29]
for the upper-bounds.

RPG and RRG graphs We associate two graphs to every instance of UAQ: (1)
Role-Permission Graph (RPG) and (2) Role-Role Graph (RRG). RPG Graph is

58

a bipartite graph with a vertex for each role, a vertex for each permission in Plb,
and an edge connecting a role-vertex to a permission-vertex if the corresponding
role is authorized to the corresponding permission. RRG graph has vertices rep-
resenting roles. Two vertices are connected if and only if there is a permission in
Plb to which both corresponding roles are authorized. For both graphs, we com-
pute the average degree and the average diameter. The diameter for each vertex is
the shortest distance to the farthest vertex from it. We compute also the average
clustering coefficient. For each vertex the clustering coefficient is the number of
edges between its neighbours, including the vertex itself divided by the maximum
number of possible edges. Thus, the average clustering coefficient gives a mea-
sure of the extent to which each vertex belongs to a clique. Table 2.4 shows the
computed values for all the hard UAQ instances we generated. The parameters
used in Table 2.4 are defined in Table 2.11.

Figures 2.16 and 2.17 show CPU time versus parameters of the RPG and RRG
graphs. We observe from Figure 2.16 that CPU time is correlated exponentially
to the number of roles, number of permissions in Plb and average degree of role-
vertices in RPG graph, while there is a small correlation between CPU time and
each of average degree of permission-vertices, average diameter of role-vertices
in the RPG graph, and average diameter of permission-vertices in the RPG graph.
From Figure 2.17, we observe that CPU time exponentially increases as the aver-
age degree in the RRG graph increases. The average clustering coefficient in the
RPG and RRG graphs decreases slightly as the CPU time increases. The CPU time
has a small correlation with the average diameter of vertices in the RRG graph,
and the average clustering coefficient in the RPG graph. The Pearson product-
moment correlation coefficient [43] between the logarithm of the CPU time and
each parameter is shown in Table 2.5. We observe from Table 2.5 that the size of
Plb, the average degree of role-vertices in RPG graph, and average degree in RRG
graph have the most correlation with the CPU time.

59

Table 2.4: UAQ Structural Parameters for Hard UAQ instances

n |R
|

|P
lb
|

R
PG

-R
-D

eg
re

e

R
PG

-P
-D

eg
re

e

R
PG

-R
-D

ia
m

et
er

R
PG

-P
-D

ia
m

et
er

R
PG

-R
-C

lu
st

er
in

g

R
PG

-P
-C

lu
st

er
in

g

R
R

G
-D

eg
re

e

R
R

G
-D

ia
m

et
er

R
R

G
-C

lu
st

er
in

g

25 125 963 15.40 2 9.34 9.73 0.14 0.67 15.40 4.69 0.52
26 130 1002 15.41 2 9.51 9.85 0.14 0.67 15.41 4.83 0.51
27 135 1011 14.97 2 9.94 10.44 0.15 0.67 14.97 5.24 0.52
28 140 1130 16.14 2 9.65 9.78 0.14 0.67 16.14 4.83 0.53
29 145 1137 15.68 2 10.11 10.27 0.13 0.67 15.68 5.08 0.53
30 150 1167 15.56 2 10.14 10.63 0.14 0.67 15.56 5.11 0.52
31 186 1792 19.26 2 9.924 10.05 0.11 0.67 19.26 4.98 0.50
32 192 1877 19.55 2 10.02 10.28 0.11 0.67 19.55 5.07 0.49
33 198 1946 19.65 2 9.34 9.80 0.12 0.67 19.65 4.76 0.52
34 204 2001 19.61 2 9.50 9.77 0.11 0.67 19.61 4.79 0.48
35 210 2139 20.37 2 9.29 9.45 0.10 0.67 20.37 4.66 0.47
36 216 2134 19.75 2 9.63 10.06 0.11 0.67 19.75 4.88 0.48
37 222 2209 19.90 2 9.63 9.84 0.11 0.67 19.90 4.84 0.48
38 228 2241 19.65 2 9.91 10.25 0.11 0.67 19.65 4.97 0.47
39 234 2364 20.20 2 9.88 10.06 0.11 0.67 20.20 4.98 0.48
40 240 2371 19.75 2 9.80 10.12 0.11 0.67 19.75 4.93 0.49
41 246 2521 20.49 2 9.05 9.47 0.10 0.67 20.49 4.57 0.47
42 252 2623 20.81 2 10.27 10.56 0.10 0.67 20.81 5.15 0.47
43 301 3540 23.52 2 9.97 10.19 0.09 0.67 23.52 5.01 0.48
44 308 3704 24.05 2 9.50 10.00 0.10 0.67 24.05 4.78 0.48
45 315 3811 24.19 2 9.76 9.92 0.09 0.67 24.19 4.91 0.45
46 322 3980 24.72 2 9.59 9.82 0.09 0.67 24.72 4.84 0.46
47 329 4029 24.49 2 9.50 9.88 0.09 0.67 24.49 4.79 0.45
48 336 4102 24.41 2 9.64 9.97 0.09 0.67 24.41 4.91 0.47
49 343 4199 24.48 2 10.24 10.71 0.09 0.67 24.48 5.13 0.46
50 350 4507 25.75 2 9.48 9.77 0.08 0.67 25.75 4.75 0.44

60

Figure 2.16: CPU time versus six different UAQ structural features: (1) |R|;
number of roles, (2) |Plb|; number of permissions in Plb, (3) RPG-R-Degree;
average degree of role-vertices in RPG graph, (4) RPG-P-Degree; average de-
gree of permission-vertices in RPG graph, (5) RPG-R-Diameter; average diame-
ter of role-vertices in RPG graph, and (6) RPG-P-Diameter; average diameter of
permission-vertices in RPG graph.

61

Figure 2.17: CPU time versus five different UAQ structural features: (1) RPG-R-
Clustering; average clustering coefficient of role-vertices in RPG graph, (2) RPG-
P-Clustering; average clustering coefficient of permission vertices in RPG graph,
(3) RRG-Degree;average degree of vertices in RRG graph, (4) RRG-Diameter;
average diameter of vertices in RRG graph, and (5) RRG-Clustering; average
clustering coefficient of vertices in RRG graph.

Reduction to CNF-SAT In Section 2.4.3, we proposed a solution for UAQ
based on reduction to CNF SAT. We now study the structural properties of the
CNF-SAT formula generated for the UAQ instances under that reduction. Nudel-
man et al. [41] have proposed several parameters for a SAT formula, and have

62

Table 2.5: Pearson correlation coefficient between CPU Time and UAQ structural
parameters

Parameter Correlation Coeff. Parameter Correlation Coeff.
Plb 0.9233 RPG-R-Clustering -0.9084
R 0.9061 RPG-P-Clustering 0
RPG-R-Degree 0.9260 RRG-Degree 0.9260
RPG-P-Degree 0 RRG-Diameter -0.1189
RPG-R-Diameter -0.0407 RRG-Clustering -0.7963
RPG-P-Diameter -0.0491

shown that they can be used to effectively predict the CPU time taken for solving
the SAT formula [41, 61]. We compute 16 different parameters for the CNF-SAT
formula that corresponds to each hard UAQ instance under our reduction. All
the parameters we have selected are amongst the parameters proposed in [41, 61]
that are directly related to the structure of a SAT formula. The Variable-Clause
Graph (VCG) is a bipartite graph with a vertex for each variable and each clause
in the SAT formula. A variable-vertex is connected to a clause-vertex if the cor-
responding variable occurs in the corresponding clause. The Clause Graph (CG)
has vertices that represents clauses and an edge between two vertices if the cor-
responding clauses share a negated literal. The Variable Graph (VG) has vertices
for each variable and an edge between variables that occur in at least one clause.
Our results are presented in Table 2.6 and 2.7 and a definition for the parameters
is presented in Table 2.12.

From Table 2.6 and 2.7, we observe that the value of three structural param-
eters, i.e., VCG-Variable-Degree, VG-Degree, and VG-Diameter, vary consider-
ably for different hard instances of UAQ. Figure 2.18 shows CPU time versus the
VCG-Variable-Degree, VG-Degree, and VG-Diameter. The correlation between
these three parameters and logarithm of the CPU time is presented in Table 2.8
from which we observe that average degree of variable-vertices in VCG graph
and average degree of vertices in VG graph have the most correlation with the
CPU time.

We also observe from Table 2.6 that Clause-Variable-Ratio of all instance are
very close to 4.26, which is roughly the clause-variable ratio for hard random
3-CNF SAT formulas [52].

63

Table 2.6: CNF-SAT Structural Parameters for Hard UAQ instances

n V
ar

ia
bl

es

C
la

us
es

C
la

us
es

-V
ar

ia
bl

e-
R

at
io

U
na

ry
-C

la
us

e

B
in

ar
y-

C
la

us
e

Te
rn

ar
y-

C
la

us
e

Po
s-

N
eg

-C
la

us
es

-R
at

io

Po
s-

N
eg

-V
ar

ia
bl

e-
R

at
io

H
or

n-
V

ar
ia

bl
e

H
or

n-
C

la
us

e-
Fr

ac
tio

n

25 1921 8106 4.22 15 978 8106 0.49 0.18 5.49 0.44
26 2263 9487 4.19 16 1019 9487 0.48 0.16 5.56 0.45
27 2348 9816 4.18 17 1028 9816 0.48 0.16 5.57 0.45
28 2433 10255 4.21 17 1147 10255 0.48 0.16 5.56 0.45
29 2518 10582 4.20 17 1154 10582 0.48 0.16 5.56 0.45
30 2603 10932 4.20 16 1185 10932 0.48 0.16 5.57 0.45
31 3215 13861 4.31 17 1809 13861 0.49 0.18 5.52 0.44
32 3317 14330 4.32 17 1894 14330 0.49 0.18 5.51 0.44
33 3419 14783 4.32 16 1964 14783 0.49 0.18 5.51 0.44
34 3521 15222 4.32 16 2018 15222 0.49 0.19 5.51 0.44
35 3623 15744 4.35 16 2157 15744 0.50 0.19 5.50 0.43
36 3725 16123 4.33 16 2151 16123 0.49 0.18 5.51 0.44
37 3827 16582 4.33 17 2226 16582 0.49 0.18 5.51 0.43
38 3929 16998 4.33 16 2259 16998 0.49 0.18 5.51 0.44
39 4031 17505 4.34 17 2381 17505 0.50 0.19 5.50 0.43
40 4133 17896 4.33 17 2389 17896 0.49 0.18 5.51 0.44
41 4235 18430 4.35 17 2538 18430 0.50 0.19 5.50 0.43
42 4337 18916 4.36 17 2641 18916 0.50 0.19 5.49 0.43
43 5779 25399 4.40 18 3560 25399 0.50 0.19 5.54 0.43
44 5912 26067 4.41 18 3724 26067 0.50 0.19 5.53 0.43
45 6045 26678 4.41 18 3830 26678 0.50 0.19 5.52 0.43
46 6178 27351 4.43 18 3999 27351 0.50 0.19 5.52 0.43
47 6311 27904 4.42 19 4048 27904 0.50 0.19 5.52 0.43
48 6444 28481 4.42 18 4121 28481 0.50 0.19 5.52 0.43
49 6577 29082 4.42 19 4219 29082 0.50 0.19 5.52 0.43
50 6710 29894 4.46 19 4526 29894 0.50 0.20 5.49 0.43

64

Table 2.7: CNF-SAT Structural Parameters for Hard UAQ instances

n V
C

G
-C

la
us

e-
D

eg
re

e

V
C

G
-V

ar
ia

bl
e-

D
eg

re
e

C
G

-D
eg

re
e

C
G

-C
lu

st
er

in
g

V
G

-D
eg

re
e

V
G

-D
ia

m
et

er

25 2.88 12.97 13.66 0.44 1.55 15.55
26 2.89 12.71 13.69 0.44 1.48 17.06
27 2.89 12.65 13.69 0.44 1.47 18.15
28 2.89 12.84 13.71 0.44 1.50 17.09
29 2.89 12.77 13.71 0.44 1.49 17.25
30 2.89 12.75 13.71 0.44 1.49 18.35
31 2.87 13.55 13.77 0.44 1.64 17.10
32 2.87 13.63 13.78 0.44 1.66 17.23
33 2.87 13.66 13.78 0.44 1.67 18.21
34 2.87 13.65 13.78 0.44 1.66 16.95
35 2.86 13.87 13.80 0.43 1.71 16.85
36 2.87 13.70 13.79 0.44 1.67 18.26
37 2.86 13.74 13.79 0.44 1.68 16.99
38 2.87 13.67 13.79 0.44 1.67 17.20
39 2.86 13.83 13.80 0.44 1.70 17.30
40 2.87 13.71 13.79 0.44 1.67 18.21
41 2.86 13.93 13.81 0.43 1.72 18.38
42 2.86 14.04 13.81 0.43 1.74 17.37
43 2.86 14.23 13.87 0.43 1.76 18.58
44 2.86 14.40 13.87 0.43 1.80 20.28
45 2.86 14.46 13.88 0.43 1.81 18.72
46 2.85 14.65 13.88 0.43 1.85 18.52
47 2.85 14.56 13.88 0.43 1.83 19.48
48 2.85 14.54 13.88 0.43 1.83 19.67
49 2.85 14.57 13.88 0.43 1.83 18.65
50 2.85 15.07 13.90 0.43 1.94 17.96

65

Table 2.8: Pearson correlation coefficient between CPU Time and CNF structural
parameters

Parameter Correlation Coeff. Parameter Correlation Coeff.
Variables 0.898 VG-Degree 0.9323
Clauses 0.899 VG-Diameter 0.5894
VCG-Variable-Degree 0.934

Figure 2.18: CPU time versus three CNF-SAT structural parameters:(1) VCG-
Variable-Degree; average degree of variable-vertices in VCG graph, (2) VG-
Degree; average degree of vertices in VG graph, and (3) VG-Diameter; average
diameter of vertices in VG graph.

Comparison with benchmark Table 2.9 presents the values of various param-
eters for the 6 instances from the benchmark in Section 2.5. We observe from
Table 2.9 that although the instances in the benchmark have large tree width, the
corresponding CPU times are small. Therefore, tree width cannot explain the
difference between the instances from the benchmark and the hard instances we
generated. We recall that tree width only gives an upper bound for the compu-
tational complexity of an instance. We also observe that the value of parameters

66

VG-Degree, VG-Diamter and RRG-Degree cannot explain the CPU time differ-
ence between the hard instances and the instances in the benchmark. However, the
value of RRG-R-degree and VCG-Variable-Degree, and the size of Plb are signifi-
cantly smaller for the UAQ instances from Section 2.5 compared to the hard UAQ
instances. We increased the size Plb to be as large as the size of P , and observed
that the CPU time increases in most cases. Table 2.10 shows the CPU time for the
new instances.

Table 2.9: Structural parameters for six UAQ instances from Section 2.5

n C
PU

Ti
m

e
(s

ec
)

|R
|

|P
lb
|

Tr
ee

w
id

th
(l

b)

Tr
ee

w
id

th
(u

b)

R
PG

-R
-D

eg
re

e

R
R

G
-D

eg
re

e

V
C

G
-V

ar
ia

bl
e-

D
eg

re
e

V
G

-D
eg

re
e

V
G

-D
ia

m
et

er

uaq-R 0.097 200 7 24 116 7.5 14.30 11.56 1.28 23.34
uaq-RH 0.105 200 5 86 188 7.5 14.53 15.63 1.49 15.11
uaq-D 0.283 100 7 36 90 15 25.82 11.28 1.27 15.84
uaq-RPC 0.803 300 5 48 206 10 19.36 11.89 1.26 19.78
uaq-t 0.174 100 6 31 95 20 25.82 11.70 1.20 17.18
uaq-Plb 0.060 100 11 27 77 10 25.88 11.70 1.31 17.82

Table 2.10: CPU time for UAQ instances from Section 2.5 with Plb = P

UAQ instance CPU Time (sec) |R| |P | |Plb|
uaq-R 16.121 200 500 500
uaq-RH 0.126 200 500 500
uaq-D 0.287 100 500 500
uaq-RPC 5.326 300 1000 1000
uaq-t > 1000 100 500 500
uaq-Plb 0.136 100 500 500

67

Table 2.11: UAQ structural parameters description
Feature Description
RPG-R-Degree Average degree of role-vertices in RPG graph
RPG-P-Degree Average degree of permission-vertices in RPG graph
RPG-R-Diameter Average diameter of role-vertices in RPG graph
RPG-P-Diameter Average diameter of permission-vertices in RPG graph
RPG-R-Clustering Average clustering coefficient of role-vertices in RPG graph
RPG-P-Clustering Average clustering coefficient of permission-vertices in RPG graph
RRG-Degree Average degree of vertices in RRG graph
RRG-Diameter Average diameter of vertices in RRG graph
RRG-Clustering Average clustering coefficient of vertices in RRG graph

Table 2.12: CNF-SAT structural parameters Description
Feature Description
Variables Number of variables in SAT formula
Clauses Number of clauses in SAT formula
Clause-Variable-Ratio Number of clauses divided by number of Variables
Unary-Clauses Number of Clauses of size at most one
Binary-Clauses Number of Clauses of size at most two
Ternary-Clauses Number of Clauses of size at most three
Pos-Neg-Clause-Ratio Average ratio of positive to negative literals in clauses
Pos-Neg-Variable-Ratio Average ratio of positive to negative occurrence of variables
Horn-Variable Average number of occurrence in a Horn clause of variables
Horn-Clause Fraction of Horn clauses
VCG-Clause-Degree Average degree of clause-vertices in VCG graph
VCG-Variable-Degree Average degree of variable-vertices in VCG graph
CG-Degree Average degree of vertices in CG graph
CG-Clustering Average clustering coefficient of vertices in CG graph
VG-Degree Average degree of vertices in VG graph
VG-Diameter Average diameter of vertices in VG graph

68

Chapter 3

Cascade Bloom Filter for
Distributed Access Enforcement

In this chapter, we study the problem of finding an optimal cascade Bloom filter.
Cascade Bloom filter is a data structure proposed by [56] for distributed access
enforcement applications. It has been validated empirically in [56] that the access
enforcement approach based on a cascade Bloom filter is fast and space efficient.
We formalize the problem of finding an optimal Cascade Bloom filter (CBF), and
present our results on the computational complexity of the CBF problem. We
address how the intractability of CBF can be mitigated, and discuss an empirical
evaluation of our approach.

3.1 Introduction
In Role Based Access Control (RBAC) users acquire permissions via roles. A
user creates a session to exercise a set of permissions. In the session, the user
activates a subset of the roles to which he is authorized. When the user requests
a permission in the session, the enforcement mechanism needs to check whether
there exists an active role associated with the session that is authorized to that
permission. If such a role exists, the request by the user is accepted. Access
enforcement is the process in which an entity, called a reference monitor accepts
or rejects the access request by a user (principal).

Distributed enforcement is an important setting in access control [1, 2, 8, 10,
20, 28]. An approach to the problem of efficient, and scalable access enforcement
is to distribute enforcement across several reference monitors [33, 56, 58]. Wei et

69

PDP

PEP

SDP

User
Session

1,3

1,4 5

2

1

1: Session initiation request

3: Access request

5: Access decision

4: Validated/translated access request

2: Access enforcement structure

Figure 3.1: An architecture for distributed access enforcement in RBAC. It is
reproduced from prior work [58, 56]

al. [58] have proposed an architecture for distributed enforcement (see Figure 3.1).
In Figure 3.1, the user first creates a session by issuing a request to the Policy
enforcement Point (PEP) in which he specifies a list of roles that he wants to
activate in that session. The PEP sends the request to the Secondary Decision
Point (SDP), which forwards it to the Policy Decision Point (PDP). The PDP,
which holds the RBAC policy, checks if the user is authorized to the roles that he
wants to activate. If the answer is “yes”, the PDP sends a data structure to SDP
that can be used for the access enforcement by SDP. The SDP accepts or rejects
an access request from the user using the data structure received from PDP.

An access request for a permission p in a session s is represented by the pair
〈s, p〉. Let S and P denote the set of active sessions and the set of permissions
respectively. The set of valid requests V RQ = {〈s, p〉 : s is authorized to p} is a
subset of S × P . In the distributed access enforcement application, a data struc-
ture is used to represent the set V RQ. Prior work [56] proposed a data structure
called cascade Bloom filter for the access enforcement application, and has shown
empirically that the cascade Bloom filter is effective in practice. In this chapter,

70

we study the problem of constructing an optimal cascade Bloom filter.

Layout In the next section, we discuss the Bloom filter. In Section 3.3, we
discuss the Cascade Bloom filter and the problem of finding an optimal cascade
Bloom filter (CBF).

3.2 Bloom Filter
A Bloom filter is a data structure proposed by Bloom [6] for the applications where
the amount of memory required to store a data set with any error-free methods is
impractically large. Since then, there has been a lot of work on Bloom filters, for
example [9, 13, 15, 19, 34, 44, 45, 50]. A Bloom filter is a space efficient data
structure that is used to represent a subset A of elements in a universe U . We
say that the Bloom filter represents A against U − A; the Bloom filter supports
membership queries, that is, whether an element of U is in A or not. A Bloom
filter is an array M of m bits associated with a set H of hash functions h : U →
{0, 1, . . . ,m− 1}, and is represented by a tuple 〈M,H〉. All bits in the array are
initially set to zero. To add an element a ∈ A into the Bloom filter, the indices
h(a) for all h ∈ H are computed and the corresponding bits in the array are set to
one. To query for an element a, the indices h(a) for all h ∈ H are computed, and
if any of the indices for a is not set to one, the element is surely not in A. If all are
one, then the element is reported to be in A. It is possible that some elements not
in A pass the membership query by coincidence. Such elements are called false
positives.

For the purpose of access enforcement, we are required to respond to a mem-
bership query with no false positive errors. However, this requirement can be
satisfied by keeping all the false positives in a list E [56]. An element is in A if
and only if it tests positive with the Bloom filter and it is not in the list E.

Assuming that each hash function maps every element of U uniformly to an
index in {0, 1, . . . ,m}, a formula can be derived for the false positive rate, i.e., the
probability that an element not in A is a false positive. The formula enables one to
minimize the false positive rate for a given A and M , by choosing the following
value for the number of uniform hash functions.

k =
m

n
ln 2

Where, k, m, and n are the size of H , M and A respectively. However, the
uniformity assumption is not always true in practice. Thus, we study the problem

71

of finding an optimal Bloom filter for a given set of elements A ⊆ U , and a
set of available hash functions, H; we do not make any assumption for the hash
functions inH.

We can associate two types of costs to any Bloom filter that represents a set
A with a bit array M and hash functions in H: (1) the memory cost of storing
all the false positives in the list E, and (2) the computational cost associated with
each membership query, which corresponds to the number of hash functions in
H . Therefore, our goal is to find Bloom filters with fewer false positives and hash
functions. In the following, we define the BF problem that is the optimization
problem of finding an optimal Bloom filter with respect to two objectives: the
number of false positives, and the number of hash functions used.

BF Specification. An optimization the BF problem is specified by the following
inputs.

• U : A finite universe of elements

• A : A subset of U

• M : An array of m bits

• H : A set of hash functions that map each element of U to a non-negative
integer

• pri : pri ∈ {nfp, nh} indicates which of the two optimization objectives,
the number of false positives or the number of hash functions, we prioritize
over the other. Without this parameter, there can exist two optimal solutions
that are incomparable to one another.

Assuming that we prioritize the number of false positives over the number of hash
functions, i.e., pri = nfp, a solution to the optimization the BF problem is a
Bloom filter 〈M,H〉 with a minimum number of false positives such that the size
of H ⊆ H is minimum over all the solutions with the minimum number of false
positives. A decision version of BF that corresponds to the above optimization
version does not take the input pri. Instead two input integers:

• kfp: this indicates the maximum number of false positives that we seek in a
solution

• kh: this indicates the maximum number of hash functions that a solution
can use

72

A decision instance is either true or false. It is true if there exists a Bloom
filter 〈M,H〉 that represents A against U −A with at most kfp false positives and
kh hash functions (i.e., |H| ≤ kh).

From the decision version to the optimization version. There exists a polynomial-
time Turing reduction [11] from the optimization versions of BF to the deci-
sion version. That is, given an oracle Ω for the decision version, we can solve
the optimization version in polynomial time. An approach is performing a two-
dimensional binary search for the number of false positives and the number of
hash functions. For example, for the case that pri = nfp, we first fix kh at the to-
tal number of hash functions, |H|; that is, we accept a solution with any number of
hash functions. We then perform a binary search for the optimal number of false
positives with O(log |U − A|) invocations to Ω. Once we find the optimal number
of false positives, optfp, we search for the optimal number of hash functions with
O(log |H|) invocations to Ω, while kfp is set to optfp.

3.2.1 Complexity of the BF problem
In this section we discuss the computational complexity of the BF problem. The
formal language for the corresponding decision problem is

BF = {〈U , A,M,H, kfp, kh〉 : there exists a Bloom filter 〈M,H〉 that
represents A against U − A such that
the number of false positives is at most kfp,
and the size of H ⊆ H is at most kh}.

The following theorem shows that an efficient algorithm for the BF problem
is unlikely to exist.

Theorem 24. The BF problem is NP-hard.

Proof. We prove it by showing that SET-COVER ≤p BF. (see Section 2.3.1 for
a definition of SET-COVER.) Given an instance of SET-COVER, φ = 〈U ,F , k〉,
we construct an instance ψ of BF such that ψ is true if and only if φ is true.

We construct ψ = 〈U ′, A,M,H, kfp, kh〉 as follows. The universe U ′ consists
of an element xi for each ei in U , as well as an additional element xn+1, where
n denotes the size of U . The set A contains only the element xn+1. That is,
U ′ = {x1, x2, . . . , xn, xn+1} and A = {xn+1}. The set of hash functions, H,

73

consists of a hash function hj for each subset Sj in F . The bit array, M , consists
of two bits, and each hash function maps an element to either index zero or one.
Each hash function hj is defined as below.

hj(xi) =

{
1 if i 6= n+ 1 and ei is in Sj
0 otherwise

We set kfp to zero, and kh to k.
Suppose that S ′ ⊆ F is a set cover of size k. The Bloom filter 〈M,H〉 where

H = {hj : Sj ∈ S ′} representsAwith no false positives because each xi in U ′−A
is mapped by at least one hash function in H to index one, which is not set in M .
Conversely, assume that there exists a Bloom filter 〈M,H〉 that represents A with
no false positives and |H| ≤ k. The bit zero is the only bit in M that is set to one.
The fact that the number of false positives is zero implies that there exists a hash
function in H for each xi in U − A that maps xi to index one. Therefore, the set
S ′ = {Sj : hj ∈ H} is a set cover of size at most k.

The reduction in the proof of Theorem 24 shows that the hardness of the BF
problem is related to minimizing the second objective, i.e., the number of hash
functions. However, the following theorem shows that optimizing the number of
false positives is also NP-hard.

Theorem 25. The BF problem is NP-hard even if kh = |H|.

Proof. We prove it by showing that SET-COVER ≤p BF. (see Section 2.3.1 for
a definition of SET-COVER.) Given an instance of SET-COVER instance, φ =
〈U ,F , k〉, we construct an instance of BF, ψ = 〈U ′, A,M,H, kfp, kh〉 as follows.
Let n andm denote the size of U and F in φ respectively. The universe U ′ consists
of (n+ 2)m+ 1 elements x1, x2, . . . , x(n+2)m+1 from which the first m elements,
and the last element are in A, i.e., A = {x1, x2, . . . , xm, x(n+2)m+1}. Bit array M
is an array of m+ 1 bits. The set of hash functions,H, consists of a hash function
hj for each set Sj in F , where hj is defined as below.

hj(xi) =


j + 1 if i ≤ m
i+ 1−m if m+ 1 ≤ i ≤ 2m
1 if 2m+ 1 ≤ i ≤ (n+ 2)m and ek is in Sj ,

where k = d i−2m
m
e

0 o.w.

74

We set kfp to k, and kh to |H|. We claim that the BF instance is true if and only if
the SET-COVER instance is true.

Suppose that there exists a set cover S ′ of size at most k. Then we show
that 〈M,H〉 where H = {hj : Sj ∈ S ′} is a solution for ψ. After adding all
elements of A using hash functions in H , the array M has |H| + 1 bits set to
one: bit zero since any hash function maps x(n+2)m+1 to zero, and bit j + 1 for
any hash function hj in H . Let I denote the indices in M that are set to one,
i.e., I = {j + 1 : hj ∈ H} ∪ {0}. Since S ′ is a set cover, any xi ∈ U ′ − A
for i ≥ 2m + 1 is mapped to one by at least one hash function in H; none of
x2m+1, x2m+2, . . . , x(n+2)m is false positive. Any of xm+1, xm+2, . . . , x2m is false
positive if and only if i + 1 − m ∈ I . Therefore, the number of false positives
is at most k. Conversely, assume that 〈M,H〉 is a solution to ψ. We show that
S ′ = {Sj : hj ∈ H} is a set cover. Assume toward a contradiction that there
exists an element ek that S ′ does not cover. So, all of x(k+1)m+1, . . . , x(k+2)m are
false positives since any hash function in H maps them to zero, which is set to
one. Now, we show that the size of H is at most k, so is the size of S ′. Assume
toward a contradiction that there are at least k + 1 hash functions in H . The array
M has at least k + 2 bits set to one after adding all elements of A, because each
hash function hj inH sets two bits to one: bit zero, and bit j+1. Each nonzero bit
of index j 6= 0 in M makes xm+j−1 to be a false positive. Therefore, the number
of false positives is at least k + 1, which contradicts the assumption that H is a
solution to ψ.

Theorem 24 gives a lower bound for the hardness of BF problem, i.e., BF
∈ NP-hard. However, the following theorem establishes an upper bound for the
hardness of the BF problem is in NP.

Theorem 26. The BF problem is in NP.

Proof. We prove that there exists a polynomial certificate for BF, which can be
verified in polynomial time. A certificate for BF is a subset of size at most kh of
H. An algorithm to verify the certificate first constructs a M by adding all ele-
ments of A using hash functions in H . Then, it checks for each element of U −A
whether it is a false positive. The algorithm accepts the certificate if the number of
false positives is at most kfp. The verification algorithm runs in timeO(|U||H|Th)
where Th is the time complexity of computing each hash function. We assume Th
is polynomial in |U| and |M |, and therefore the verification algorithm is polyno-
mial in the size of the instance.

75

Theorem 26 suggests a way for mitigating the intractability of the Bloom Filter
problem — efficient reduction to CNF-SAT. We discuss this approach in the next
section.

3.2.2 Efficient Reduction to CNF-SAT
In this section, we discuss how the intractability of the BF problem can be miti-
gated. We investigate a standard approach in which we reduce the BF problem to
CNF-SAT for which solvers exist that are efficient for large classes of instances.
The fact that BF is in NP implies that there exists a polynomial-time many-one
reduction from BF to CNF-SAT. We present an efficient reduction, which is based
on designing a circuit that decides BF. Our reduction to CNF-SAT involves re-
ducing BF first to a circuit SAT problem, and then reducing the circuit SAT to
CNF-SAT.

Let n denote the size of the universe U . We encode the set A with n binary
variables x1, x2, . . . , xn in our circuit, where circuit variable xi is one if and only
if element xi is in A. We say X = {x1, x2, . . . , xn} encodes A. Similarly, we
encode U − A with n variables y1, y2, . . . , yn ∈ Y. The set of circuit variables
K = {k1, k2, . . . , km} is a binary encoding for k if m = dlog ke, and

∑
i ki2

i = k.
The circuit has five inputs: X, which is the encoding of A; Y, the encoding of

U −A; W, an encoding of the size of M ; Kh, the binary encoding of kh; and Kfp,
the binary encoding of kfp. The output is one if and only if there exists a solution
to the corresponding BF instance. As shown in Figure 3.2, the circuit consists of
five components, which we explain in the following.

Hash Valid. A hash function inH may map an element of U to an index greater
than |M |. Hash Valid is a module that determines if a hash functions is valid to
be used in the Bloom filter. A Hash Valid module is shown in Figure 3.3. The
first input to Hash Valid is W, which is the binary encoding of the size of the
bit array M . Hash Valid uses a compare module from Section 2.4.3 to decide
whether a hash function is valid; a hash function is valid if the maximum to which
it maps an element of the universe is less than m. For each hash function hj , we
have a circuit variable hj,val that is one if and only if hj maps every element of
the universe to an integer in {0, 1, . . . ,m − 1}. Each variable hj,val is an input
to the AND gate whose output hj,sel determines whether the hash function hj is
selected. Hsel = {h1,sel, h2,sel, . . . , h|H|,sel} is the output of Hash Valid, which is
also an input to Filter Array and False Positives modules. Hash Valid consists

76

X

Y

Z

W

FAFilter
Array

False Positive
 Detector

Hash Valid

False
Positive
Manager

Hash
Manager

Kfp

Kh

out

Hsel Hsel

Hsel

Figure 3.2: A circuit to decide the BF problem.

of |H| compare modules and |H| AND gates. Thus, the total number of gates in
Hash Valid is O(|H| log |M |).

W

h1,sel

h1,val

h|H|,val h|H|,sel

h2,sel

w1

w2

wlog(|M|)

compare

compare

Figure 3.3: The Hash Valid module.

Filter Array. The first input to Filter Array is X, the encoding of A. The second
input to the Filter Array is Hsel, Hash Valid’s output. The output of Filter Array is

77

the set of circuit variables FA = {f1, f2, . . . , f|M|} that encodes the bits in the array
M . We have the following relation between each fk and input variables.

fk =
∨

(xi,hj,sel)∈D

(xi ∧ hj,sel) where D = {(xi, hj,sel) : hj(xi) = k}

Filter Array has O(|U||H|) gates.

False Positive Detector. Three inputs to a False Positives Detector module are
Y, the encoding of U − A, Hsel, and FA. The output is Z = {z1, . . . , z|U|} that
encodes the set of false positives. A circuit variable zk is one if and only if element
xk is a false positive. An element xk ∈ U − A passes a hash function hj if either
hj is not selected or the bit to which xk is mapped by hj is set to one. An element
xk is a false positive if it is in U − A and it passes every hash function. We have
the following relation between each circuit variable zk and input variables.

zk =
∧

j

(yk ∧ (hj,sel ∧ fl)) where l = hj(xk)

False Positive Detector consists of O(|U||H|) gates. False Positive Detector is
shown in Figure 3.4.

Hash Manager. Hash Manager checks whether the total number of hash func-
tions selected is less than kh. Two inputs to Hash Manager are Hsel and Kh, an
binary encoding of integer kh. The Hash Manager module consists of a Max-
Circuit module from Section 2.4.3. The output is one if the total number of hash
functions selected is less than the kh. Hash Manager consists of O(|H| log |H|)
gates.

False Positive Manager. False Positive Manager checks whether the total num-
ber of false positives is less than kfp using a Max-circuit module from Section 2.4.3.
False Positive Manager has two inputs: Z, the output of a False Positive Detector
module; and Kfp, an binary encoding of kfp. The total number of gates in False
Positive Manager is O(|U| log(|U|).

We adopt a “textbook” reduction from CIRCUIT-SAT to CNF-SAT [14] to
generate the CNF formula that corresponds to the circuit. The total number of the
gates in the circuit that decides an instance of BF is O(n2) where n is the size of
the instance. Thus, the CNF-SAT formula is of size O(n2). This proves that the
proposed reduction to CNF-SAT is efficient.

78

Hash Valid

Filter
Array

False +ve
Detector

X

Y

Z

W

FA

Hsel

Figure 3.4: Filter Array, False Positives, and Hash Valid modules.

3.3 Cascade Bloom Filter
In this section, we discuss the cascade Bloom filter, a generalization of the Bloom
filter, which is proposed by [56]. A Cascade Bloom filter represents a setA against
U − A by employing a cascade of Bloom filters. The basic idea of cascading
multiple Bloom filters is to use the next Bloom filter to distinguish between two
sets that the previous Bloom filter failed to, i.e., the false positives of the previous
Bloom filter and the set that the previous Bloom filter represents.

A cascade Bloom filter is specified with d Bloom filters BF1,BF2, . . . ,BFd,
where Bloom filter BF1 represents A against U − A, and Bloom filter BF i rep-
resents FPi−1, the false positives in the previous level, against Ai. Similar to the
traditional Bloom filter, the false positives in the last Bloom filter, FPd, are stored
in an explicit list E in order to perform membership query with no error.

The idea of using multiple Bloom filters has been proposed [13, 15]. The
Cascade Bloom filter is an adapted version of the Bloomier filter [13] suited to
the purpose of access checking [56]. The Authors in [56] give an example that
shows how a cascade Bloom filter with only two levels outperforms a Bloom filter

79

by 33% less false positives, while it uses the same number of hash functions and
allocates the same amount of memory to filter arrays.

Definition 4. (Cascade Bloom Filter)[56]
A cascade Bloom filter is 〈B, E〉, where B = BF1,BF2, . . . ,BFd is a list of
Bloom filters andE ⊆ U is a set of elements from a universe U . Each l = 1, . . . , d
is called a level and d is called the depth of the cascade. Each BF i = 〈Mi, Hi〉
represents a set Ai ⊆ U against a set Bi ⊆ U , such that for i = 2, . . . , d, Ai
is the set of false positives in BF i−1 and Bi is equal to Ai−1, with A1 = A and
B1 = U − A. The set E is the set of false positives in BFd. We say that the
cascade Bloom filter represents A against U − A.

The total memory size of a cascade Bloom filter is the sum of the array size
at each level, i.e.,

∑
imi. The total number of hash functions used in a cascade

Bloom filter is the sum of the number of hash functions used at each level, i.e.,∑
i |Hi|. Before defining the problem of finding an optimal cascade Bloom filter,

we discuss two examples. The first example shows how a cascade Bloom filter
can reduce the number of false positives when a traditional Bloom filter can not.
It also explain why the filter BFi, which is to distinguish between FPi−1 and
Ai−1, should represent FPi−1, not Ai−1.

Example 3. Assume we want to represent A = {x1, x2} against U − A = {x3}.
The set of available hash functions is H = {h1, h2} where h1 and h2 are binary
hash functions. h1(x) = 1 if and only if x = x1, and h2(x) = 0 if and only if
x = x2. The element x3 is a false positive for any Bloom filter 〈M,H〉. However,
we can have zero false positive using a cascade Bloom filter with three Bloom
filters: BF1 = 〈M1, H1〉, where |M1| = 0 and H1 = ∅; BF2 = 〈M2, H2〉,
|M2| = 2 and H2 = {h1}; and BF3 = 〈M3, H3〉, |M3| = 2 and H3 = {h2}.

The following example shows that the number of false positives may not in-
crease monotonically as the number of levels increase in the cascade Bloom filter.

Example 4. Let U = {x1, x2, . . . , xn+1}, A = {x1, x2, . . . , xn} . The set of
available hash functions is H = {h1, h2, . . . , hn}, where each hash function hi is
defined as below.

hj(xi) =

{
j mod 2 i = j
j − 1 mod 2 o.w. (3.1)

80

If Minfp(d) denotes the minimum number of false positives that can be achieved
with a cascade Bloom filter of depth d, we have the following.

Minfp(d) =


1 if 0 < d < 2n− 1 and d is odd
n− k if 0 < d < 2n− 1 and d is even
0 if d ≥ 2n− 1

The minimum number of false positives can be achieved by choosing hj for the
Bloom filter at level 2j and any hash function for the Bloom filter at level 2j − 1
for j = 1, . . . , dd/2e. The size of the bit array at each level is 2. Figure 3.5 shows
Minfp(d) as d increases for n = 10.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
in

fp
(d

)

Level

Figure 3.5: The minimum number of false positives that can be achieved with a
cascade Bloom filter of depth d for U = {x1, x2, . . . , x11}, A = {x1, x2, . . . , x10},
and H = {hj : j = 1, 2, . . . , 10} defined in Equation 3.1

Similar to the traditional Bloom filter, we define the problem of finding an
optimal cascade Bloom filter of depth dwith respect to two objectives: the number
of false positives, and total number of hash functions used. It is a two dimensional
optimization problem, which we define formally below.

81

CBF Specification. An optimization Cascade Bloom Filter problem (CBF) is
specified by the following inputs.

• U : A finite universe of elements

• A : A subset of U

• d : A positive integer

• M : An array of m bits

• H : A set of hash functions that map each element of U to a non-negative
integer

• pri : pri ∈ {nfp, nh} indicates which of the two optimization objectives,
the number of false positives or the number of hash functions, we prioritize
over the other.

A solution to the optimization version of the CBF problem is a cascade Bloom
filter of depth d with total memory of m that minimize the number of false pos-
itives and hash functions used. A decision version of the CBF problem that cor-
responds to the above optimization version takes all inputs of the optimization
version, but the input pri, as well as two input integers:

• kfp: this indicates the maximum number of false positives that we seek in a
solution

• kh: this indicate the maximum number of hash function that a solution can
use

The decision and optimization versions of Cascade Bloom Filter problem are
related closely. Given an oracle Ω for the decision version, we can solve the
optimization version using two dimensional binary search approach.

3.3.1 Complexity of the CBF problem
The formal language for the corresponding decision version is

82

CBF = {〈U , A, d,M,H, kfp, kh〉 : there exists a cascade Bloom filter 〈B,E〉 of
depth d that represents A against U − A such
that the number of false positives is at most kfp,
the total hash functions used is at most kh,
and the total memory size is at most |M |}.

The BF problem is a special case of the CBF problem with d = 1. Since
the Bloom Filter Problem is NP-hard, it is unlikely that there exists an efficient
algorithm for the Cascade Bloom Filter.

Theorem 27. The CBF problem is NP-complete.

Proof. CBF is NP-hard because it generalizes the BF problem, which is proved
to be NP-hard in Theorem 24.

We show that CBF ∈ NP. A certificate for an instance of CBF is a list of d
Bloom filters, BF1,BF2, . . . ,BFd. The size of certificate is O(d(|H| + |M|)),
which is polynomial in the size of the instance since d = O(|M |).

The verification algorithm first checks whether
∑

i |Hi| ≤ kh and
∑

imi ≤
|M |. It then computes the sets Ai and Bi for each i = 1, . . . , d, and checks
whether hash functions selected for each level are valid; that is, h ∈ Hi maps each
elements of Ai∪Bi to an integer less than mi. Finally, it computes the set of false
positives, and checks if its size is less than kfp. The verification algorithm runs
in time O(d|U||H|Th), where Th is the time complexity of computing each hash
function. We assume Th is polynomial in |U| and |M |. Therefore, the verification
can be performed in polynomial time.

Theorem 27 establishes an upper bound for the complexity of the Cascade
Bloom Filter problem.

3.3.2 Efficient Reduction to CNF-SAT
In this section, we discuss how the intractability of the CBF problem can be mit-
igated. Our approach is to reduce an instance of the CBF problem to a CNF-SAT
formula and solve the SAT formula using a SAT solver. Since CBF is in NP,
there exists an efficient reduction from CBF to CNF-SAT. We find the efficient
reduction by designing an efficient circuit that decides CBF and then adopting a
“textbook” reduction from CIRCUIT-SAT to CNF-SAT [14].

83

The circuit that decides CBF is shown in Figure 3.6. It has five inputs: X,
which is the encoding of A; Y, an encoding of U − A; W, the encoding of |M |;
Kh, the binary encoding of kh; and Kfp, the binary encoding of kfp. The output
of the circuit is one if and only if there exists a solution to the corresponding CBF
instance. The circuit consists of dmodules of Bloom filters, BF1,BF2, . . . ,BFd, a
Hash Manager module, a Memory Manager module, and a False Positive Manager
module. We explain each module in the following.

Bloom filter A Bloom Filter module is similar to the one described in the Sec-
tion 3.2.2, except that it does not have False Positive Manager and Hash Manager
modules (see Figure 3.7). A Bloom Filter module has two inputs: Xi, the encoding
of Ai; Yi, the encoding of Bi, and three outputs: Zi, the encoding of FPi; Hi,sel,
the encoding of the set of hash functions selected at level i; Wi, the binary encod-
ing ofmi. A Bloom filter module consists of three modules: a Filter Array, a False
Positives Detector, and a Hash Valid, which are described in the Section 3.2.2.

Hash Manager Hash Manager checks if the total number of hash functions used
is at most kh. It consists of a Max-circuit with inputs H1,sel,H2,sel, . . . ,Hd,sel and
Kh. A Hash Manager module consists of O(d|H| log d|H|) gates.

Memory Manager Memory Manager checks if the total memory size is at most
|M |. The inputs to a Memory Manager module are the binary encoding of mem-
ory size of each level, i.e., W1,W2, . . . ,Wd, and the binary encoding of the max-
imum memory size allowed, W. Memory Manager outputs one if and only if the
total memory size is less than |M |. A Memory Manager module consists of a
Max-circuit module from Section 2.4.3, and therefore has O(d log |M | (log d +
log log |M |)) gates.

False Positive Manager False Positive Manager checks if the number of false
positives is at most kfp. The inputs to a False positive Manager module are Zd,
the encoding of the false positives at level d, and Kfp, the binary encoding of kfp.
False Positive Manager outputs one if and only if the number of false positives at
most kfp. A False Positives Manager module consists of a Max-circuit module
from Section 2.4.3 , and therefore has O(|U | log |U |) gates.

The total number of gates in the circuit for CBF is O(dn2), where n is the size
of an instant of CBF. Since d = O(|M |), the total size of the circuit, and therefore
the size of the corresponding CNF SAT formula is O(n3).

84

out

H1,sel

W1

BF1

Y1

X1

Z1

H2,sel

W2

BF2

Y2

X2

Z2

Hd,sel

Wd

BFd

Yd

Xd

Zd

Hash
Manager

False
Positive
Manager

Memory
Manager

Kfp

WKhYX

Figure 3.6: A circuit to decide the CBF problem.

85

X

Y

W

FAFilter
Array

False Positive
 Detector

Hash Valid

Hi,sel Hi,sel

Hi,sel

Wi

Zi

i

i

i

i

Figure 3.7: The Bloom filter module at level i, BFi.

86

3.4 Empirical Evaluation
We have implemented our CNF SAT approach to the Cascade Bloom Filter prob-
lem. We used MiniSat [35], an open source SAT solver, to solve the SAT formula
from the reduction in Section 3.3.2. The input for the empirical assessment has
been generated based on the benchmark of RBAC instances in [30]. Each gen-
erated RBAC consists of two users, 2n roles, 10n permissions. Each user is as-
signed to a role with probability 0.5. Each permission is connected to k random
roles where k is less than 8. There is also a role-hierarchy of depth 3, generated
according to stanford model (see [30]). The generated RBAC policies are used to
create CBF instances for our approach. For each RBAC instance with 2n roles,
we create a session profile by instantiating n sessions. Each session profile com-
prises access pairs 〈session id, permission〉 for the permissions allowed in the
sessions. In each session we choose the set of allowed permissions as below.

– Randomly pick one of the two users, as the user for the session (call it u)

– Randomly pick one role, r, from the roles to which u is authorized

– Collect all the junior roles S for r (including r itself)

– Collect all the permissions to which at least a role in S is authorized

– Output that set of permissions for that session

The sets A and U in the corresponding CBF instance are the set of all access
pairs (i.e., 〈session id, permission〉) in the session profile and the set of all
possible access pairs respectively. Each generated CBF instance is represented
with the quantity “Problem size”, which is the number of different sessions in the
corresponding session profiles (i.e., n). All data points in our graphs represent a
mean across at least 10 different inputs generated randomly.

All our implementations are available for public download [39]. Our empirical
evaluations were conducted on a desktop PC with an Intel Dual Core E8400 CPU,
each of which clocks at 3 GHz and has a 6 MB cache. The machine runs the 32-bit
Ubuntu Linux 10.04 LTS operating system and has a 4 GB RAM.

Overall Observations. Our approach results in cascade Bloom filters with sig-
nificantly fewer false positives than prior work. We observe that a cascade Bloom
filter with more levels produces fewer false positives, and in some cases requires
fewer hash functions to achieve the same number of false positives. Furthermore,

87

our implementation can be adapted to trade off between efficiency (CPU time) and
the quality of the solution, i.e., the number of false positives and hash functions
used in a solution.

We present our specific observations in the following sections.

3.4.1 Comparison with the prior approach
We were given access to the implementation of the prior work [56]. We first com-
pared the performance of two approaches in optimizing the number of false posi-
tives when there is no constraint for the number of hash functions used. Figure 3.8
shows the result of that comparison. We observe that our approach is resilient to
the size of the problem, and is always able to find a cascade Bloom filter with a
small number of false positives as the problem size increases.

88

0

100

1000

1500

5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

Problem size

prior work
CNF SAT

Figure 3.8: Performance comparison of our approach and prior approach in terms
of the number of false positives for different problem sizes. The graph shows the
number of false positives in the optimal solutions returned by two approaches.

To compare the performance of the two approaches in minimizing the number
of hash functions, we set a constraint for the number of false positives to be no
more than half of the maximum number of false positives, i.e., |U − A|/2 where
U is the universe and A is the set to be represented by the cascade Bloom filter.
However, We were not be able to compare two approaches because the prior work
fails for most instances. Figure 3.9 shows the success rates for the two approaches.

89

 0

 2

 4

 6

 8

 10

 12

5 7 9 11 13 15 17 19 21 23 25 27 29

S
uc

ce
ss

 r
at

e

Problem size

prior work
CNF SAT

Figure 3.9: Comparison of the success rates of our approach and the prior ap-
proach for different problem size. Each bar represents the number of instances
out of 10 instances for which each approach returns a solution.

3.4.2 Efficiency of our approach
We observe that the prior work always returns in few seconds, while it takes more
time for our approach to find the optimal solution. However, our empirical results
in the previous section show that the prior approach does not find an optimal so-
lution, and it is not even complete; it may not return a solution for hard instances.

Figure 3.10 shows the CPU time for our approach to find a cascade Bloom
filter with minimum number of false positives as the problem size increases. Fig-
ure 3.11 shows the CPU time for our approach to find a cascade Bloom filter with
minimum number of hash functions. We observe that it takes few minutes for our
approach to find the optimal cascade Bloom filter for large problem size. We are
able to trade off between the CPU time and the quality of solution, i.e., the number

90

of false positives and the number of hash functions, by introducing a time limit
for each invocation to the Sat solver, MiniSat, in our binary search for finding
the optimal solution. If MiniSat does not return an answer within the time limit,
the approach would deem that the instance provided to MiniSat is unsatisfiable.
Indeed, the time limit affects the quality of the solution as there might be the case
that the instance deemed unsatisfiable is just a hard satisfiable instance for Min-
iSat. Figure 3.12 shows how the time limit affects the number of false positives in
the solution that our approach returns.

10

100

200

300

400

5 7 9 11 13 15 17 19 21 23 25 27

T
im

e
(s

ec
)

Problem size

Figure 3.10: CPU time for our approach to find a solution with minimum number
of false positives for different problem size. Each data point represents an average
across 100 different inputs of the same size. The vertical line segment at each data
point shows the 95% confidence interval.

91

10

100

200

300

400

5 7 9 11 13 15 17 19 21 23 25 27

T
im

e
(s

ec
)

Problem size

Figure 3.11: CPU time for our approach to find a solution with minimum number
of hash functions for different problem size. Each data point represents an average
across 100 different inputs of the same size. The vertical line segment at each data
point shows the 95% confidence interval.

92

0

10

100

1 5 10 20 30 40 50

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

Time Limit (sec)

d = 1
d = 3
d = 5

Figure 3.12: Minimum number of false positive that can be achieved for different
values of the time limit, where d is the maximum number of levels.

3.4.3 Effect of levels on the performance of the cascade Bloom
filter

Figure 3.13 shows how the number of false positives changes as the number of
levels increases. We observe that the number of false positives may increase first,
but eventually decrease as the number of level increases. It is discussed in Exam-
ple 4 and Figure 3.5. Figure 3.14 shows how the number of false positives changes
for different problem sizes. We observe that regarding the number of false posi-
tives, cascade Bloom filter is more resilient to an increase in the problem size than
the traditional Bloom filter. Figure 3.15 shows how the number of hash functions
required to achieve a k false positives decrease as k increases. We observe that for
large value of k, a cascade Bloom filter with fewer levels uses fewer hash func-
tions. However, for smaller value of k, a cascade Bloom filter with more levels

93

uses fewer hash functions.

0

5

10

15

1 2 3 4 5

N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

d

problem size = 23
problem size = 25
problem size = 27
problem size = 29

Figure 3.13: Minimum number of false positives that can be achieved for different
values of depth.

94

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

Problem size

d=1
d=2
d=5

Figure 3.14: Minimum Number of false positives that can be achieved with a
cascade Bloom filter for different problem size.

95

0

10

010 50 100 300 649

N
um

be
r

of
 H

as
h

fu
nc

tio
ns

 u
se

d

kfp

d = 1
d = 2
d = 3
d = 4
d = 5

Figure 3.15: Minimum number of hash functions required for different values
of k, the number of of false positives allowed. The maximum number of false
positives is 650.

96

Chapter 4

Conclusions

In this dissertation, we focused on two problems in the context of Role-Based
Access Control: the User Authorization Query (UAQ) Problem and the Cascade
Bloom Filter (CBF) problem.

In Chapter 2, we formulated UAQ as a joint optimization problem of iden-
tifying optimal roles and extra permissions for an RBAC session. We studied
the computational complexity of four subcases of UAQ. For each subcase, we
identified the manner in which the input parameters contribute to computational
complexity. We showed how hard it is to approximate each subcase. Our results
show that approximation algorithms are not a promising approach to UAQ. We
have identified several issues with prior work on this problem related to sound-
ness, efficiency and limited support for the joint optimization. We have adopted
a systematic approach based on the observations that the decision version of the
general case remains in NP, and an effective approach to the decision version
gives us an effective approach to the optimization version.

We have then investigated a standard, theoretically well-founded approach to
addressing the decision version, reduction to CNF SAT. Our approach permits us
to leverage existing SAT solvers, which are efficient for a large class of instances.
We have implemented our approach, and provided an empirical assessment that
validates our analytical insights. We observe that our approach is orders of mag-
nitude faster than prior approaches. We have identified also that the benchmark
that we and prior work on UAQ have adopted for empirical assessment is limited
in that it appears to comprise easy instances only. We have systematically studied
how to generate hard instances of UAQ, and the structural properties that such
hard instances have.

In Chapter 3, we formulated the problem of finding an optimal Cascade Bloom

97

Filter (CBF) as a joint optimization problem of identifying the optimal number of
false positives and number of hash functions used. Our formulation does not rely
on the uniformity assumption for hash functions, an assumption that is custom-
arily made in part work on the analysis of the Bloom filter data structure. We
prove that CBF is NP-complete— a result that prevented us from finding an ef-
ficient algorithm for CBF. We have then proposed an approach for mitigating the
intractability of CBF, that is an efficient reduction to CNF-SAT. We have imple-
mented our approach, and made several observations based on our empirical re-
sults. Our approach results in cascade Bloom filters with significantly fewer false
positives. We showed also the manner in which the number of levels affects the
performance of a cascade Bloom filter.

4.1 Future Work
We have shown in Chapter 2 that the UAQ problem is in P if some input parame-
ters are bounded. Some of the input parameters are indeed bounded for many of
the UAQ instances that arise in practice. For example, it is reasonable to assume
that the number of lower bound permissions in an instance of UAQ is small. Our
proofs for the existence of efficient algorithms for the subcases of UAQ are by
giving polynomial time algorithms. It will be interesting to improve the proposed
algorithms for the subcases of UAQ that are shown to be in P. It is possible, in tan-
dem with the evolution of a benchmark for UAQ, that such approaches are deemed
to be efficient in practice. Also of interest is the identification and evolution of a
benchmark for UAQ as the basis for empirical assessments.

The framework that we developed in Chapter 3, i.e., cascade Bloom filter, is
of interest even outside the context of access enforcement. Our observation has
shown that a cascade Bloom filter with few levels outperforms a conventional
Bloom filter. It will be interesting to prove this result formally. It will be inter-
esting to study the effect of the number of levels on the performance of a cascade
Bloom filter as well.

The efficiency of our approach for mitigating the intractability of the CBF
relies on the performance of SAT solvers. The fact that SAT solvers have been en-
gineered using many intelligent methods may explain why they are often effective
for many combinatorial problems, even though they seem to be oblivious of the
underlying structure of the problems. Investigating other approaches that make
use of the properties of the CBF problem, and comparison with our approach is
an interesting aspect to explore for mitigating the intractability of CBF.

98

In the formulation of the CBF problem, we primarily focused on optimizing
the number of false positives and the number of hash functions. We considered
the total memory of the cascade Bloom filter as an input parameter. A natural
extension to our formulation is to add the total memory needed as an optimization
objective.

99

Bibliography

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming Lan-
guages and Systems, 15(4):706734, Oct. 1993.

[2] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classification
and analysis of distributed firewall policies. IEEE Journal on Selected Areas
in Communications (JSAC), 23(10), October 2005.

[3] A. Armando, S. Ranise, F. Turkmen, and B. Crispo. Efficient run-time solv-
ing of RBAC user authorization queries: Pushing the envelope. In Proceed-
ings of the ACM Conference on Data and Applications Security and Privacy
(CODASPY’12). ACM, Feb. 2012.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifica-
tion and the hardness of approximation problems. Electronic Colloquium on
Computational Complexity (ECCC), 5(8), 1998.

[6] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422426, 1970.

[7] R.W. Baldwin. Naming and grouping privileges to simplify security man-
agement in large databases. In Proceedings., 1990 IEEE Computer Society
Symposium on Research in Security and Privacy. pages 116–132, 1990.

[8] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access- control
systems. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 8195, 2005.

100

[9] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. In Proceedings of the 40th Annual Allerton Conference on Commu-
nication, Control and Computing, pages 636646. ACM Press, 2002.

[10] K. Borders, X. Zhao, and A. Prakash. Cpol: High-performance policy eval-
uation. In Proceedings of the 12th ACM Coference on Computer and Com-
munications Security (SACMAT05), pages 147157, 2005.

[11] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, STOC ’71,
pages 151–158, New York, NY, USA, 1971. ACM.

[12] L. Chen and J. Crampton. Set covering problems in role-based access
control. In Proceedings of the 14th European conference on Research in
computer security, ESORICS’09, pages 689–704, Berlin, Heidelberg, 2009.
Springer-Verlag.

[13] B. Chazelle, J. Kilian, R. Rubinfield, and A. Tal. The bloomier filter: An
efficient data structure for static support lookup tables. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pages 3039, 2004.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3 edition, Sept. 2009.

[15] S. Cohen and Y. Matias. Spectral bloom filters. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data (SIG-
MOD), pages 241252, 2003.

[16] Clark, David D., and David R. Wilson. A comparison of commercial and
military computer security policies. IEEE symposium on security and pri-
vacy. Vol. 184. 1987.

[17] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM Journal on Computing, 24(4):873–921,
1995.

[18] S. Du and J. B. D. Joshi. Supporting authorization query and inter-domain
role mapping in presence of hybrid role hierarchy. In Proceedings of the
eleventh ACM symposium on Access control models and technologies, SAC-
MAT ’06, pages 228–236, New York, NY, USA, 2006. ACM.

101

[19] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache:A scalable wide-
area web cache sharing protocol. IEEE/ACM Transactions on Networking,
8(3):281293, 2000.

[20] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dR-
BAC: Distributed Role-Based Access Control for Dynamic Coalition En-
vironments. In Proceedings of the International Conference on Distributed
Computing Systems, July 2002.

[21] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. ACM Transactions
on Information and Systems Security, 4(3):224–274, Aug. 2001.

[22] G. S. Graham and P. J. Denning. Protection principles and practice. In
Proceedings of the AFIPS Spring Joint Computer Conference, volume 40,
pages 417-429. AFIPS Press, May 16-18 1972.

[23] V. Gogate, and R. Dechter. A Complete Anytime Algorithm for Treewidth.
In Proceedings of the 20th Conference on Uncertainty in Artificial Intelli-
gence,UAI ’04, 2004.

[24] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[25] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating
systems. Communications of the ACM,19(8):461471, Aug. 1976.

[26] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly ex-
ponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.

[27] J. D. B. Joshi, E. Bertino, and A. Ghafoor. Temporal hierarchies and inher-
itance semantics for GTRBAC. In Proceedings of the seventh ACM sympo-
sium on Access control models and technologies (SACMAT ’02). ACM, New
York, NY, USA

[28] G. Karjoth. Access control with IBM Tivoli Access Manager. ACM Trans-
actions on Information and System Security, 6(2):232257, May 2003.

[29] A. Koster, H. Bodlaender, and S. Van Hoesel. Treewidth: Computational
experiments. Technical report, Universiteit Utrecht, 2001.

102

[30] M. Komlenovic, M. Tripunitara, and T. Zitouni. An empirical assessment of
approaches to distributed enforcement in role-based access control (RBAC).
In Proceedings of the first ACM conference on Data and application security
and privacy, CODASPY ’11, pages 121–132, New York, NY, USA, 2011.
ACM.

[31] Ninghui Li, Ji-Won Byun, and Elisa Bertino. A Critique of the ANSI Stan-
dard on Role-Based Access Control. IEEE Security & Privacy, 5(6):41–49,
2007.

[32] N. Li, M. V. Tripunitara, and Z. Bizri. On mutually exclusive roles and
separation-of-duty. ACM Trans. Inf. Syst. Secur., 10, May 2007.

[33] Y. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao, and J.
Zhang. Core role-based access control: efficient implementations by trans-
formations. IN Proceedings of the ACM SIGPLAN symposium on Partial
Evaluation and semantics-based Program Manipulation, pp. 112120, May
2006.

[34] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on
Networking, 10(5):604612, 2002.

[35] MiniSat. http://minisat.se/, Jan 2013.

[36] Moffett, Jonathan D. and Lupu, Emil C. The uses of role hierarchies in ac-
cess control. In Proceedings of the fourth ACM workshop on Role-based ac-
cess control, RBAC ’99, pages 153–160, New York, NY, USA, 1999, ACM.

[37] N. Mousavi, and M.V. Tripunitara. Mitigating the intractability of the user
authorization query problem in role-based access control (RBAC). In Pro-
ceedings of the international conference on Network and System Security,
NSS ’12, pages 516-529, 2012, Springer-Verlag.

[38] N. Mousavi, and M.V. Tripunitara. CNF-SAT and Fixed-
Parameter Polynomial-Time Implementations for UAQ (April 2012),
https://ece.uwaterloo.ca/tripunit/uaq/

[39] N. Mousavi, and M.V. Tripunitara. CNF-SAT Implementations for CBF (Jan
2013), https://ece.uwaterloo.ca/tripunit/CBF/

103

http://minisat.se/

[40] S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to
practical success. Commun. ACM, 52(8):76–82, Aug. 2009.

[41] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham.
Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. In
Proceedings of Principles and Practice of Constraint Programming, CP
2004, 10th International Conference, 2004.

[42] A.C. O’Connor and R.J. Loomis. Economic Analysis of Role-Based Access
Control. Research Triangle Institute. Dec, 2010.

[43] K. Pearson. Notes on regression and inheritance in the case of two parents.
In Proceedings of the Royal Society of London, 58 : 240-242, 1985.

[44] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 823829, 2005.

[45] M. V. Ramakrishna. Practical performance of bloom filters and parallel free-
text searching. Communications of the ACM, 32(10):12371239, Oct. 1989.

[46] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach
(3rd ed.), Pearson Education,2010.

[47] Ravi S. Sandhu. Role Activation Hierarchies. ACM Workshop on Role-Based
Access Control. RBAC ’98, pages 33-40, 1998, ACM.

[48] C. Sinz. Towards an optimal CNF encoding of boolean cardinality con-
straints. In P. van Beek, editor, CP, volume 3709 of LNCS, pages 827831.
Springer, 2005.

[49] M. Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, 2006.

[50] K. Shanmugasundaram, H. Bronnimann, and N. Memon. Payload attribution
via hierarchical bloom filters. In Proceedings of the 11th ACM conference on
Computer and communications security (CCS04), pages 3141. ACM Press,
2004.

[51] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, February 1996.

104

[52] B. Selman, D. Mitchell, and H. Levesque. Generating Hard Satisfiability
Problems. Artificial Intelligence, 1996.

[53] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. In Proceedings of the IEEE, 63(9):1278-1308, 1975.

[54] S. D. Stoller, P. Yang, C R. Ramakrishnan, and M. I. Gofman. Efficient pol-
icy analysis for administrative role based access control. In Proceedings of
the 14th ACM conference on Computer and communications security (CCS
’07). ACM, New York, NY, USA, 2007.

[55] T.C. Ting. A user-role based data security approach. In Database Security:
Status and Prospects, pages 187-208, Annapolis, Maryland, USA, 1988.

[56] M. Tripunitara and B. Carbunar. Efficient Access Enforcement in Distributed
Role-Based Access Control (RBAC) Deployments. In Proceedings of the
14th ACM Symposium on Access Control, Models and Technologies (SAC-
MAT’09). ACM, June, 2009.

[57] V. Vazirani. Approximation Algorithms. Springer, 2001.

[58] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu, Authorization Recy-
cling in RBAC Systems, In Proceedings of the 13th ACM Symposium on
Access Control, Models and Technologies (SACMAT08), pp. 6372, 2008.

[59] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li. An efficient framework
for user authorization queries in RBAC systems. In Proceedings of the 14th
ACM symposium on Access control models and technologies, SACMAT ’09,
pages 23–32, New York, NY, USA, 2009. ACM.

[60] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. 2005. A simple model
to generate hard satisfiable instances. In Proceedings of the 19th interna-
tional joint conference on Artificial intelligence (IJCAI’05). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 337-342.

[61] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-
based algorithm selection for SAT. J. Artif. Int. Res. 32, 1 (June 2008),
565-606.

[62] K. Xu and W. Li. 2006. Many hard examples in exact phase transitions.
Theor. Comput. Sci. 355, 3 (April 2006), 291-302.

105

[63] zChaff. http://www.princeton.edu/˜chaff/zchaff.html,
Apr 2012.

[64] Y. Zhang and J. B. D. Joshi. Uaq: a framework for user authorization query
processing in RBAC extended with hybrid hierarchy and constraints. In Pro-
ceedings of the 13th ACM symposium on Access control models and tech-
nologies, SACMAT ’08, pages 83–92, New York, NY, USA, 2008. ACM.

106

http://www.princeton.edu/~chaff/zchaff.html

	List of Figures
	Introduction
	Role Based Access Control
	The User Authorization Query problem
	The Cascade Bloom Filter for Access Enforcement
	Thesis Statements
	Organization

	The User Authorization Query Problem in RBAC
	Introduction
	Related Work
	Complexity Results
	Four NP-hard Problems
	Complexity Results for MIN-UAQ-P
	Complexity Results for MAX-UAQ-P
	Complexity Results for MIN-UAQ-R
	Complexity Results for MAX-UAQ-R

	Mitigating the intractability of UAQ
	Approximation Algorithms
	Reduction to the decision version of UAQ
	Efficient Reduction to CNF SAT
	Fixed-Parameter Polynomial Algorithm

	Empirical Evaluation
	Hard Instances of UAQ
	The Structure of Hard UAQ Instances

	Cascade Bloom Filter for Distributed Access Enforcement
	Introduction
	Bloom Filter
	Complexity of the BF problem
	Efficient Reduction to CNF-SAT

	Cascade Bloom Filter
	Complexity of the CBF problem
	Efficient Reduction to CNF-SAT

	Empirical Evaluation
	Comparison with the prior approach
	Efficiency of our approach
	Effect of levels on the performance of the cascade Bloom filter

	Conclusions
	Future Work

	References

