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Abstract 
 

Biodiesel has shown great promise to supplement the fossil diesel since it is a renewable 

energy resource and is environmentally friendly. However, the major obstacle to biodiesel 

large scale commercialization is the high production cost; so converting glycerol, the by-

product of a biodiesel process, into value-added products is an efficient way to promote 

biodiesel production. 1,2-propanediol (1,2PD), also known as propylene glycol, is an 

important commodity chemical used for many applications such as polyester resins, liquid 

detergents and anti-freeze. It can be produced via dehydration of glycerol into acetol 

followed by hydrogenation of acetol into 1,2PD using a bi-functional catalyst. Currently high 

pressure gaseous hydrogen added for hydrogenation causes safety issues as well as additional 

costs of hydrogen purchasing, transportation and storage. Therefore, the utilization of the in 

situ hydrogen produced by steam reforming of a hydrogen carrier could be a novel route for 

this process. In this work, processes of glycerol hydrogenolysis to produce 1,2PD have been 

developed using different hydrogen sources, i.e. molecular hydrogen and in situ hydrogen 

produced by steam reforming. 

Three different preparation methods were attempted to prepare a Cu/ZnO/Al2O3 catalyst in a 

glycerol hydrogenolysis process, which were oxalate gel-coprecipitation, Na2CO3 

coprecipitation and impregnation. The catalyst prepared by oxalate gel-coprecipitation 

showed the highest activity for production of 1,2PD. It was also found that the addition of 

alumina did not only improve the activity but also enhanced the stability of the Cu/ZnO 

catalyst as shown by the catalyst recycling experiments. The morphological and chemical 

properties of the catalysts were characterized via XRD, NH3 TPD, TGA and TEM.  

Compared with other preparation methods, the Cu/ZnO/Al2O3 catalyst prepared by oxalate 
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gel-coprecipitation exhibited a well-mixed form for all the metals as suggested by the XRD 

and TGA results; the particle size of the Cu/ZnO/Al2O3 catalyst was smaller as shown in the 

XRD and TEM results, and also based on NH3 TPD analysis the Cu/ZnO/Al2O3 catalyst 

showed stronger acidic sites. When Ni was loaded onto the Cu/ZnO/Al2O3 catalyst by oxalate 

gel-coprecipitation, it was found that the activity for acetol hydrogenation was improved but 

the overall glycerol hydrogenolysis reaction was slower. This was mainly due to the reduced 

amount of strong acidic sites caused by the addition of Ni as observed from the NH3 TPD 

results. 2wt% Pd supported on a Cu/MgO/Al2O3 catalyst was used in this process. Higher 

reaction rate and higher 1,2PD selectivity could be obtained compared with a Cu/ZnO/Al2O3 

catalyst. However, a significant deactivation was observed when the spent catalyst was used. 

The catalyst deactivation was mainly due to catalyst sintering during the reaction resulting in 

a larger particle size as suggested by XRD results. The activation energies for the glycerol 

hydrogenolysis reaction using Cu/ZnO/Al2O3 and Pd supported on Cu/MgO/Al2O3 catalysts 

have been calculated. The activation energy was calculated to be 69.39kJ/mole using a 

Cu/ZnO/Al2O3 catalyst and 113.62kJ/mol using a Pd supported on Cu/MgO/Al2O3 catalyst. It 

is suggested that the reaction was chemically kinetically controlled using both catalysts and 

the reaction using the Pd supported on Cu/MgO/Al2O3 catalyst was more temperature 

dependent. 

It was found that the 1,2PD selectivity was strongly dependent on hydrogen pressure. The 

low 1,2PD selectivity at lower hydrogen pressure was due to the formation of by-products 

caused by side reactions with acetol. The kinetic data of acetol hydrogenation suggested that 

the acetol hydrogenation step was significantly faster than the overall reaction and hence the 

glycerol dehydration step was the rate-determining-step.  

In the glycerol hydrogenolysis process using in situ hydrogen, the activities of the 

Cu/ZnO/Al2O3 catalysts prepared by different methods were determined and the 

experimental results show that the catalyst prepared by oxalate gel-coprecipitation has the 

best catalytic activity for glycerol conversion and 1,2PD selectivity. With Ni loaded onto a 

iv 

 



Cu/ZnO/Al2O3 catalyst, the 1,2PD selectivity was improved and the glycerol conversion was 

lower. It might be because Ni could improve the steam reforming activity to produce more 

hydrogen, but due to the reduced strong acidic sites based on the NH3 TPD results glycerol 

conversion was decreased. Cu/MgO/Al2O3 catalysts prepared by oxalate gel-coprecipitation 

were used in this process and the activity was found to be higher, i.e. higher glycerol 

conversion and 1,2PD selectivity, compared with the Cu/ZnO/Al2O3 catalyst due to a higher 

amount of acidic sites based on the NH3 TPD results; the Cu/Mg/Al composition was 

optimized. When Ni was added into a Cu/MgO/Al2O3 catalyst, it was found that with only 

1mole% Ni loaded, the glycerol conversion was lower than that without Ni loaded and the 

1,2PD selectivity was slightly improved; when the Ni loading was increased to 5mole%, the 

catalyst was almost completely inactive, since when 5mole% Ni was loaded, the acidic sites 

were almost completely eliminated as observed from the NH3 TPD results. When Pd was 

added onto a Cu/MgO/Al2O3 catalyst the 1,2PD selectivity was significantly improved. 

When Pd was loaded, more surface hydrogen atoms were provided as observed from the H2 

TPD results. Cu/ZnO/Al2O3 and Cu/MgO/Al2O3 catalysts have been recycled and reused to 

investigate the stability of the catalysts. All the catalysts were deactivated after they were 

recycled and reused, since it was apparent that catalyst sintering occurred during the reaction 

resulting in a larger particle size based on the XRD results. The deactivation of the spent 

catalyst was also possibly due to the formation of carbonate when the metals were contacted 

with CO2 which was formed via steam reforming. 
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Chapter One                                       
Introduction 

 

1.1 Biodiesel Industry  

Fossil fuel is an important feedstock used for the development of modern society. However, 

fossil fuel is a non-renewable resource and its global stocks are depleting very fast. The finite 

supply of fossil fuel and the increasing demand for energy have caused the price of energy to 

increase rapidly; so that it has motivated many researchers to find alternative sources of 

energy. Biodiesel has shown great promise to supplement fossil diesel. Biodiesel is 

composed of fatty acid methyl esters derived from triglyceride or free fatty acid via 

transesterification and esterification reactions with alcohols as shown in Scheme 1-1. The 

production of biodiesel utilizes some renewable oil resources such as surplus vegetable oils, 

waste animal fats and restaurant yellow grease; therefore, it can reduce the dependence on 

fossil fuel. Biodiesel has several advantages over petroleum diesel beside renewability; such 

as having no sulfur content, being biodegradable and producing less greenhouse gas (GHG) 

emissions. Furthermore it is miscible in all portions with petroleum diesel and thus no engine 

modification is required [1-3].  
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Scheme 1-1 Transesterification Reaction to Produce Biodiesel. 

 

Biodiesel production has rapidly increased to meet the increasing demand of energy. 

Currently the production capacity of biodiesel in Canada is about 348 million liters (Mmly) 

per year (Table 1-1) [4]. In order to promote biodiesel production, the Canadian federal 

government has mandated that diesel fuel sold in Canada must contain a minimum of 2% 

biodiesel (known as B2). It was reported by the Canada Energy Board  that the total diesel 

demand is expected to be 22400 million liters in 2013, thus the total biodiesel demand is 

calculated to be 448 million liters; if a 2% blend is still maintained by 2035 the total demand 

of biodiesel will increase to 670 million liters as shown in Table 1-2 [5]. Therefore, biodiesel 

production in Canada is expected to grow very fast during the next decade. 

Table 1-1 Canadian Biodiesel Plants Locations and Capacities [4]. 

Plant Location Province Feedstock Capacity 
 Archer Daniels Midland Lloydminster Alberta Canola 265 Mmly Under Construction 

BIOX Corporation Hamilton Ontario Multi-feedstock 66 Mmly Operational 

City-Farm Biofuel Ltd. Delta British Columbia Recycled oil 
tallow 10 Mmly Operational 

Consolidated Biofuels Ltd. Delta British Columbia Yellow grease 11 Mmly Operational 

FAME Biorefinery Airdire Alberta Canola,  
camelina, mustard 1 Mmly Demonstration Facility 

Great Lakes Biodiesel Welland Ontario Multi-feedstock 170 Mmly Operational 
Kyoto Fuels Corp Lethbridge Alberta Multi-feedstock 66 Mmly Under Construction 

Methes Energies Canada Inc. Mississauga Ontario Yellow grease 5 Mmly Operational 
Methes Energies Canada Inc. Sombra Ontario Multi-feedstock 50 Mmly Under Construction 

Milligan Bio-Tech Inc. Foam Lake Saskatchewan Canola 20 Mmly Operational 
Noroxel Energy Ltd. Springfield Ontario Yellow grease 5 Mmly Operational 
QFI Biodiesel Inc. St-Jean-d'Iberville Quebec Multi-feedstock 5 Mmly Operational 
Rothsay Biodiesel Montreal Quebec Multi-feedstock 55 Mmly Operational 
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Table 1-2 Canada Annual Diesel Consumption and Biodiesel Demand [5]. 

  2010 2011 2012 2013 2014 2015 2035 
Diesel Demand 
 (peta joules) 839.1  850.9  855.3  866.4  880.4  894.8  1294.1  

Diesel Demand 
 (million L) 21693.4  21998.5  22112.2  22399.2  22761.1  23133.4  33456.6  

Biodiesel Demand 
 (million L) 433.9  440.0  442.2  448.0  455.2  462.7  669.1  

Glycerol Produced 
 (ton) 39771.2  40330.5  40539.0  41065.1  41728.8  42411.2  61337.0  

 

However, the high production cost of biodiesel is the major obstacle for the expansion of the 

biodiesel industry. Zhang et al. in 2003 proposed an economic assessment on biodiesel 

production from waste cooking oil by different processes with a crude glycerol credit and 

none of the processes provided a positive after-tax rate of return without governmental 

subsidies [6]. Safaei Mohamadabadi et al. in 2009 proposed a multi-criteria assessment 

comparing the use of gasoline, diesel and biodiesel with both environmental and economical 

considerations (Table 1-3) [7]. It was concluded that biodiesel gave the lowest greenhouse 

gas emissions, but it had a lower economic ranking compared with that of fossil diesel. 

Therefore, people have made a great effort on lowering the production cost of biodiesel 

including the use of different feedstocks such as yellow grease [1, 8, 9] and jatropha oil [10-

12] instead of virgin vegetable oil, as well as, improving the activity of catalysts [13], using 

different processes and adding value from the by-products.  

Table 1-3 Economic Assessment Comparison between Biodiesel & Fossil Fuels [7]. 

Fuel Type Fuel cost before tax GHG Emission CO2 Tax Fuel cost after tax 
  ($/100km) kg CO2 eq/100km $/100km $/100km 

Gasoline 4.80 23.08 2.31 7.11 
Diesel 4.09 18.39 1.84 5.93 

Biodiesel 5.38 9.21 0.92 6.30 
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1.2 Glycerol Market 

Glycerol is the principle by-product obtained from biodiesel production. For every 10kg of 

biodiesel produced, about 1kg of glycerol is formed. Glycerol (C3H8O3) is a colorless, 

odorless and viscous liquid under atmospheric conditions. It is soluble in water in all 

proportions due to the presence of three hydrophilic hydroxyl groups. It is sweet-tasting and 

of low toxicity. The main applications of glycerol are in the food industry, pharmaceuticals, 

personal care products, plasticizers, tobacco, emulsifiers, antifreeze and so on. It is also a 

very important raw material for the production of many other chemicals. 

Since biodiesel production has increased dramatically in recent years, the production of 

glycerol has also increased accordingly. Since a large amount of crude glycerol is formed in 

biodiesel plants, the lowest price of crude glycerol has fallen to only 4 ¢/lb, so that the cost of 

storage, handling and transportation has exceeded its market value as reported by BIOX in 

2011 [14]. The dramatic increase in glycerol production will not only upset the traditional 

glycerol production industry, but also cause many environmental problems dealing with the 

excess crude glycerol which contains contaminants due to the use of liquid sodium hydroxide 

(or  potassium hydroxide) or sulfuric acid in current biodiesel plants. Some biodiesel plants 

burn the crude glycerol for energy. The BTU value of glycerol is very low, which is only 10% 

of the calorific value obtained from coal. Based on the price of crude glycerol (8 cents / 

pound), it costs approximately $4.5 to $5 per million BTU, which is much less economical 

compared to coal, whose value is reported to be only $2.8 to $3 per million BTU [15]. It has 

been witnessed that some biodiesel producers added glycerol to animal feed or sprayed it on 

roads to keep the dust down which can cause both economical waste and environmental 

problems due to the residue contaminants in the crude glycerol such as sulfuric acid [16]. 

Many biodiesel plants even pay for the disposal of glycerol as a waste.  

Some plants build glycerol refinery plants to improve the crude glycerol quality to technical 

grade (97%), which can increase the market value to about 30 to 40¢/lb [14]. However, as the 
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amount of surplus crude glycerol increases, the market value of higher grade glycerol also 

drops very fast. Figure 1-1 lists the historical price of pharmaceutical grade glycerol (99.7%); 

the price of which has dropped from 100¢/lb in 1995 to 50¢/lb in 2010, when considering 

economical inflation over the past 15 years and the expected amount of crude glycerol will 

still increase over the next decade.Thus, it is becoming less profitable to refine crude glycerol 

into a higher grade glycerol. 

 

Figure 1-1 Pharmaceutical Grade Glycerol Historical Market Price [17, 18]. 

 

1.3 Converting Glycerol into Value-added Products 

In order to lower the production cost of biodiesel and to avoid the environmental hazard 

caused by a large surplus of glycerol, many researchers have been trying to open up a 

number of practical ways for converting glycerol into value added products. Pagliaro and 

Rossi in 2008 comprehensively summarized 22 different possible ways to convert glycerol 

into different value added products having industrial applications in their book [19]. Some 

others have reported review papers which also summarize many possible ways of converting 

glycerol into value-added products [20-23], such as converting glycerol into 1,2-propanediol 
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and 1,3-propanediol, dehydration of glycerol into acrolein, halogenation of glycerol into 1,3-

dichloro-2-propanol and steam reforming of glycerol to produce hydrogen. Hydrogenolysis 

of glycerol into lower alcohols has frequently been reported as promising processes which 

can produce higher value products such as 1,2-propanediol (1,2PD), 1,3-propanediol (1,3PD), 

ethylene glycol (EG) and 1-propanol (PrOH). It was reported by ICIS (Chemical Industry 

News & Chemical Market Intelligence) in 2012 Feburary that 1,2-propanediol is worth about 

88 cents per pound, which is more than 10 times the price of crude glycerol and double the 

price of pharmaceutical grade glycerol. The price of 1,3-propanediol is reported to be about 

213 cents per pound, which is the highest among all the lower alcohols; it is usually used in 

the production of polymethylene terephthalates (PTT) and polyurethanes [19, 24]. Recently, 

producing 1,3-propanediol from glycerol by bacterial strain fermentation has been reported 

[25, 26]; however, the process has a low metabolic efficiency, and its compatibility with 

existing chemical plants is poor. Many researchers are trying to develop a chemical way to 

produce 1,3-propanediol via glycerol hydrogenolysis using heterogeneous catalysts; however, 

the process is much more challenging compared with the production of 1,2-propanediol and 

the reported yield of 1,3-propanediol is very low so far. Ethylene glycol is also an important 

chemical mostly used as antifreeze in aircraft; it is commercially produced via hydration of 

ethylene oxide. It was reported that the price of ethylene glycol is not very high, which is 

about 50 cents per pound. This value is reported by the United States Security and Exchange 

(U.S.S.A.E) Commission in 2012 and the value is similar to the value reported by Nakagawa 

and Tomishige in 2011 [27]. Therefore, it is not economical to produce ethylene glycol from 

glycerol compared with the production of 1,2 propanediol and 1,3 propanediol; hence the 

selectivity to ethylene glycol should be minimized during glycerol hydrogenolysis processes. 

There are numerous reports on the production of 1,2-propanediol since the glycerol 

conversion and 1,2-propanediol selectivity are relatively high at mild reaction conditions [28].  
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Table 1-4 The Market Value of Different Value-added Products from Glycerol. 

  Cents/pound Year 
1,2PD 87.7 2012 [29] 

EG 49.7 2011 [30] 
1-PrOH 54.6 2011 [27]  
13PD 212.7  2012 [31] 

Crude Glycerol 7.0 2011 [32] 
Pharmaceutical Grade Glycerol 43.0 2011 [32] 

 

1.4 Application of 1,2-propanediol 

1,2-propanediol is a clear, colorless, practically odorless and tasteless liquid under 

atmospheric conditions. It is an important commodity chemical which is used for many 

applications such as anti-freeze, polyester resins, liquid detergents, pharmaceuticals, 

cosmetics, paints and animal feed. The physical properties of propylene glycol as well as 

glycerol are listed in Table 1-4. More detailed properties of C3 alcohols (including 1-

propanol and 1,3-propanediol) and their aqueous solutions were reported by Romero et al. in 

2008 [32]. 

The addition of water to glycol can generate a solution having a freezing point lower than 

that of water. Therefore, glycols are mostly used as antifreeze. The freezing point of different 

alcohol-water solutions are illustrated in Figure 1-2. 1,2-propanediol aqueous solution 

exhibits the lowest freezing point (e.g. -51°C at 60% propylene glycol) compared with other 

alcohols. The application of using glycerol as antifreeze and deicing agents has been claimed, 

but the high freezing point of its aqueous solutions (lowest freezing point is -33.6°C at 60% 

glycerol) makes this application very limited especially in some cold areas and in aircraft. 

Ethylene glycol is traditionally used in aircraft as a deicer since it is cheaper and the freezing 

point of its aqueous solution is fairly low compared with other alcohols. However, ethylene 

glycol is very poisonous and hence environmentally unfriendly for some applications such as 

the deicing of aircraft as listed in Table 1-4. Therefore, there is a potential to replace ethylene 
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glycol as a deicer for aircraft with 1,2-propanediol which is less toxic, environmentally 

friendly and renewable. The demand for 1,2-propanediol as a deicer is expected to increase. 

 

Table 1-5 Comparison of the Physical Properties between 1,2-propanediol and Glycerol. 

Properties 1,2-propanediol Glycerol 

Boiling Point ( ºC) 187.3 290 

Flash Point (Open cup) (ºC) 107 176 

Freezing Point (ºC) -60 17.8 

VEvaporation at 1 atm ( kJ/kg) 914 974 

Specific Heat at 25 ºC (kJ/kg.K) 2.47 2.40 

Viscosity at 20 ºC (Pa.s) 0.04 1.20 

Surface Tension at 20 ºC (mN/m) 43.5 64.0 

Specific Gravity at 20 ºC 1.036 1.261 

Vapor Pressure at 20 ºC (mmHg) 0.0025 (@50 ºC) 0.05 
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Figure 1-2 Comparison of Freezing Point of Different Aqueous Alcohol Solutions. 

 

Table 1-6 Toxicity of Ethylene Glycol and 1,2-propanediol. 

 Oral LDLO Human Oral LD50 Rat 

EG 786mg/kg 4700mg/kg 

1,2PD N/A 20g/kg 

 

1.5 Process of Glycerol Hydrogenolysis Using in situ Hydrogen via Methanol 

Steam Reforming 

There are a number of proposed pathways for the production of 1,2-propanediol. One  

frequently reported pathway is shown in Scheme 1-2 [19, 28]. However, the high hydrogen 

pressure causes a significant cost issue related to the purchase, transportation and storage of 

gaseous hydrogen. In most biodiesel plants hydrogen is not used, hence new hydrogen 

production and storage facilities will be required.  
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Scheme 1-2 Reaction Pathway of Glycerol Hydrogenolysis to Produce 1,2-propanediol [19, 

28]. 

 

Many researchers have spent great effort on hydrogen storage and transportation due to the 

low energy density of gaseous hydrogen [33, 34]. Currently, hydrogen is stored either in high 

pressure tanks or in liquid form in cryogenic tanks. These forms of storage are not 

economical and also cause safety problems due to the high pressure since hydrogen poses 

unique challenges due to its ease of leaking, explosion on contact with air and its ability to 

embrittle metals. Another popular way of storing hydrogen is to use solid materials. In this 

way, hydrogen is adsorbed on high surface area materials physically, i.e. nano-tubes, 

activated carbon and graphene; alternatively, hydrogen can be adsorbed chemically on some 

metals to form complex hydrides, i.e. MgH2, NaBH4 and LiAlH4. Solid materials may cause 

high cost of transportation and it requires additional processes for adsorption and desorption. 

Using liquid hydrogen carriers, i.e. methanol, ethanol, iso-propanol and formic acid, in 

hydrogenation processes have also been frequently reported for in situ hydrogen which is 

produced via steam reforming processes and used for the hydrogenation processes [35-39]; 

this process is called hydrogen transfer.  

 

10 

 



1.6 Research Objective 

Since the glycerol is produced from biodiesel production process with methanol as a 

feedstock, the methanol can be used to produce hydrogen in situ for the hydrogenolysis of 

glycerol. The objective of the present work is to develop a glycerol hydrogenolysis process to 

produce 1,2-propanediol using in situ hydrogen produced from methanol steam reforming. 

Methanol is considered to be the most suitable hydrogen donor with several advantages over 

other hydrogen carriers as summarized by Palo et al. in their review paper on methanol steam 

reforming in 2007 [40].  

a. Methanol is considered as a superior hydrogen carrier since it has a high H/C ratio (4:1) 

compare to other hydrocarbons, and it is equal to that of methane. 

b. Methanol is in a liquid form at atmospheric pressure and ambient temperature, so it is 

easier to handle unlike methane or liquefied petroleum gas. It has a low boiling point (65℃), 

which can facilitate its vaporization if the gas phase is needed. 

c. Methanol steam reforming process can give low CO production compared to direct 

methanol decomposition and methanol partial oxidation. CO is reported to be poisonous for 

some catalysts and causes the occurrence of side reactions. 

d. Compared with other long chain hydrocarbons as hydrogen carriers (i.e. glycerol), 

methanol steam reforming does not transform methanol to other species since it does not 

involve C-C bond cleavage. 

e. Supported Cu, Zn, Ni etc. can be used as the catalysts which are not very expensive; in 

addition, the reaction can be carried out at lower temperature (150ºC to 300ºC) than most 

other long chain fuels, and hence the steam reforming process is more economical. 
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f. The CO2 produced from methanol steam reforming can increase the acidity of the solution 

caused by dissolution of CO2 into water to form carbonic acid promoting the dehydration of 

glycerol to increase glycerol conversion [41-43]. 

g. In addition, alcohol is one of the reactants for transesterification and esterification 

reactions, and methanol is most frequently used. An excess of methanol is usually used to 

shift the reaction equilibrium to the products, which normally varies from 6:1 to 30:1 [44].  

Therefore, in most of the biodiesel production plants the availability of excess methanol 

would not be a major concern.  

The overall reaction pathway is shown in Scheme 1-3 that glycerol is dehydrated into acetol 

followed by a hydrogenation reaction; the hydrogen is produced in situ via a methanol steam 

reforming reaction. 

OH

HO

OH
glycerol

OH
methanol

H
O

H
Water

H H
Hydrogen

H
O

H
Water O

HO

Hydroxyacetone

OH
HO

1,2-propanediol

C OO
carbondioxide  

Scheme 1-3 Pathway of Glycerol Hydrogenolysis Process Using In Situ Hydrogen Produced 

by Methanol Steam Reforming. 
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Chapter Two                                           
Literature Review 

 

2.0 Introduction 

The principle forcus of this research is to develop a glycerol hydrogenolysis process to 

produce 1,2-propanediol using in situ hydrogen produced via methanol steam reforming. The 

hydrogenolysis process with molecular hydrogen added has also been carried out for 

comparison. A comprehensive review of the scientific literature is presented in this chapter 

including the catalyst development and the application of the hydrogenolysis process with 

molecular hydrogen and with other hydrogen sources.  

 

2.1 Reaction Mechanism  

The reaction mechanism for the production of 1,2-propanediol (1,2PD) has been investigated 

by many researchers. Among these studies, a two-step mechanism, in which glycerol is 

dehydrated to acetol (1-hydroxyacetone) followed by hydrogenation of acetol to 1,2PD, has 

been most frequently reported and widely proposed as shown in Scheme 2-1. This 

mechanism is proposed for most of the copper based catalysts [19, 28, 45-51]. Some 

literature has reported this reaction mechanism using a Ni based catalyst [52-55], Ru based 

catalysts [56-58] and Pt based catalysts [59-61]. All these catalysts possess certain acidity for 

the glycerol dehydration step. Therefore a bi-functional catalyst is needed to obtain a high 
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yield of 1,2PD, the catalyst needs to be active for both the dehydration and hydrogenation 

reactions. 

OH

HO

OH
glycerol

O

HO

hydroxyaceton

OH
HO

propylene glycol

H
O

H
water H H

hydrogen

Dehydration Hydrogenation

 

Scheme 2-1 Reaction Pathway of Catalytic Conversion of Glycerol to 1,2PD via Acetol as an 
Intermediate. 

 

Recently, another reaction mechanism has also been frequently reported involving 

dehydrogenation of glycerol to glyceraldehyde followed by a dehydration step to form 2-

hydroxyacrolein which is then hydrogenated to produce 1,2PD as shown in Scheme 2-2. 

Normally to observe this mechanism, alkali catalysts are usually used to catalyze the glycerol 

dehydrogenation reaction such as when Cu/Mg based catalysts are used [62-64]. This step 

has also been reported when some metals having dehydrogenation activity such as Pt [65] 

and Pd [66] were used. 
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Scheme 2-2 Reaction Pathway of Catalytic Conversion of Glycerol to 1,2PD via 

Glyceraldehyde as an Intermediate. 

 

In addition, some researchers also reported that, besides acetol and glyceraldehyde, glycerol 

can also be dehydrated into glycidol (3-hydroxy-1,2-epoxypropane) as an intermediate 
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simultaneously [67, 68], and then the glycidol can be hydrogenated to form 1,2-propanediol 

as shown in Scheme 2-3. 

OHO

glycidol

OH

HO

OH
glycerol

H
O

H
water

Dehydration

H H
hydrogen

Hydrogenation
OH

HO
1,2-propanediol  

Scheme 2-3 Reaction Pathway of Catalytic Conversion of Glycerol to 1,2PD via Glycidol as 
an Intermediate. 

 

Ethylene glycol (EG) is one of the main by-products in a glycerol hydrogenolysis process. It 

was reported that the potential route of EG formation is the direct hydrogenolysis of a C-C 

bond in glycerol, which would form EG and methanol [45, 52, 56, 58, 69] as shown in 

Scheme 2-4. Therefore, in order to obtain a high selectivity of 1,2PD, the catalyst should 

have a low activity for C-C bond cleavage but a high efficiency for C-O bond cleavage. 

OH

HO

OH
Glycerol

H H
Hydrogen

HO
OH

Ethylene Glycol

OH
Methanol  

Scheme 2-4 Formation of Ethylene Glycol from Glycerol. 

 

2.2 Reported Catalysts for Glycerol Hydrogenolysis to Produce 1,2-propanediol 

in an Autoclave Batch Reactor 

The catalyst development experiments are usually carried out in a batch reactor. In this 

section, the literature reported on different types of catalyst in a batch autoclave reactor are 

reviewed. The reported experimental results are listed in Table A-1 shown in Appendix A. 

15 

 



2.2.1 Cu Based Catalysts 

A copper (Cu) based catalyst has been reported to exhibit good selectivity towards 1,2PD 

under mild conditions. This high selectivity can be explained by the low activity of Cu for C-

C bond cleavage and high efficiency for C-O bond cleavage [28, 70, 71].  

 

2.2.1.1 Cu-Cr Catalysts 

Cu-Cr catalysts have been firstly reported for glycerol hydrogenolysis. In 2005, a low-

pressure process to produce 1,2PD catalyzed by a commercial copper-chromite catalyst was 

reported by Dasari et al. providing 85% selectivity to 1,2PD and 55% glycerol conversion 

(after 24 hours) at 473K and 200psi H2 [28].  

Liang et al. in 2009 proposed a route to prepare a high surface area Cu-Cr catalyst via a 

facile carbon template route (BET = 88m2/g; cf. BET = 30m2/g reported by Dasari) [72]. The 

effect of the Cu to Cr ratio was also investigated; an optimum Cu/Cr molar ratio was reported 

to be 1/5 and a selectivity of 97.1% was achieved with 51% glycerol conversion at 200ºC and 

200psi H2 after 10 hours.  

Kim et al. in 2010 reported a Cu-Cr catalyst prepared by a NaOH coprecipitation method [73] 

to investigate the promoting effect of Cr on Cu based catalyst; the Cu only catalyst gave a 

glycerol conversion of 28% while the addition of Cr (Cu/Cr = 1/3) gave a glycerol 

conversion of 80.3% with 83.9% selectivity to 1,2PD after 12 hours. The conditions were 90% 

aqueous glycerol, 220˚C, 1160psi H2, 2% catalyst by weight. It was shown that Cr has a 

significant promoting effect on the Cu catalyst.  

 In 2011 Mane et al. reported a Cu/Cr catalyst prepared by NH4OH coprecipitation, at 220ºC 

and 750psi H2 after 5 hours; the glycerol conversion was reported to be 16% and the 

selectivity was 82%, when Ba was added as a promoter, the catalytic activity was 
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significantly improved, under the same conditions and the glycerol conversion was doubled 

compared to that without Ba and the selectivity to 1,2PD was also increased to 85% [74]. In 

this report, the promoting effects of Al and Zn on the Cu/Cr catalyst were not as significant 

compared with those of Ba.  

In 2013 Xiao et al. developed a novel catalyst preparation method which involves non-

alkoxide sol–gel coprecipitation. The Cu(NO3)2 and Cr(NO3)3 precursor were precipitated by 

propylene oxide to produce nano size particles. It was reported that the catalyst can promote 

the reaction under a very mild reaction conditions, i.e. at only 130ºC and 290psi H2 after 5 

hours, the glycerol conversion was 52.4% and the selectivity was reported to be 99.6%, with 

essentially no by-products being found after the reaction except for a trace amount of acetol 

and glyceraldehyde detected by GC [75]. 

 

2.2.1.2 Cu/ZnO Catalysts 

The toxicity associated with chromium [67, 76, 77] has led many researchers to focus on the 

modification of copper based catalysts and to replace chromium as the promoter. Currently 

Cu/ZnO catalysts have attracted many researchers' attention for this process due to its 

superior selectivity to 1,2PD and its nontoxicity. Cu/ZnO catalysts have been widely applied 

in different industrial processes such as methanol synthesis, water gas shift reaction and 

methanol steam reforming since it is less costly and easy to handle. 

Wang & Liu in 2007 and Balaraju et al. in 2008 reported a Cu-ZnO catalyst prepared by a 

co-precipitation method [67, 70]. Both of them reported that at a 1/1 Cu/Zn molar ratio, the 

catalyst gave the highest activity for the production of 1,2PD. The conversion of glycerol was 

only 33.9% with 77.5% selectivity to 1,2PD at 200 ºC and 600psi H2 after 12 hours; at a 

lower hydrogen pressure (290 psi) after 16 hours, the conversion reached 37% and the 

selectivity was 92% to 1,2PD. Meher et al. in 2009 reported that among  the different 
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combinations of mixed metal oxides (Mg/Al, Zn/Al, Ni/Mg/Al, Co/Ni/Mg/Al, Cu/Zn/Al), 

Cu/ZnO/Al2O3 prepared by co-precipitation exhibited the best activity [47]. With a Cu/Zn/Al 

feed molar ratio of 1/1/4, the glycerol conversion was improved to 47.9% with 93.8% 

selectivity to 1,2PD at 200ºC and 200psi H2. 

Catalyst preparation methods have been reported to have a significant effect on Cu/ZnO 

catalysts activity for a glycerol hydrogenolysis process to produce 1,2PD. Bienholz et al. in 

2010 published a report comparing two different catalyst preparation methods: NaOH 

coprecipitation and oxalate gel-coprecipitation [68]. The oxalate gel-coprecipitation was first 

reported by Deng et al. in 1996 for a methanol synthesis process [78]. It was reported that by 

this preparation method, the Cu/ZnO catalyst exhibited a better metal dispersion and a 

smaller particle size; therefore, the activity was high [78, 79]. In Bienholze’s report, it was 

found that under the same experimental conditions the glycerol conversion was improved 

from 17% using the catalyst prepared by NaOH coprecipitation to 46% when the catalyst was 

prepared via the gel-oxalate copreicpitation method. However, it was reported that this 

catalyst deactivated when water was used as a solvent; when 50% aqueous glycerol was used 

as the feedstock, and the glycerol conversion was only 5%. 

For a Cu/ZnO catalyst, a third metal is usually added such as Al, Zr and Ga. In 2011 

Bienholz et al. reported that by adding Ga to a Cu/ZnO catalyst, the catalyst activity was 

significantly improved [80]. In their report, compared to using the Cu/ZnO catalyst prepared 

by NaOH coprecipitation, when Ga was added on a Cu/ZnO catalyst, the glycerol conversion 

was increased from 84% to 96%; the experimental conditions were 220ºC and 725psi H2, and 

80% aqueous glycerol was loaded and the reaction time was 7 hours. However, Ga is an 

expensive metal, which will result in a higher production cost.  

Recently Tan et al. in 2013 reported a novel preparation method for a Cu/ZnO/Al2O3 catalyst, 

which was called evaporation-induced self-assembly (EISA) in which Pluronic P123 wass 
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used as a structure directing agent, copper-acetate as the precursor of Cu, zinc nitrate as the 

precursor of Zn and aluminum isopropoxide as the precursor of Al. The experimental 

conditions were reported to be 180ºC and 580psi H2; 80% glycerol was loaded and 3wt% of 

catalyst was used, and within 10 hours the glycerol conversion was 85.8% and the 1,2PD 

selectivity was 92.1%. 

 

2.2.1.3 Cu/MgO Catalyst 

Recently, Cu/MgO based catalysts have been frequently reported and it was found that the 

basicity of the catalyst also played an important role with respect to its performance. Yuan et 

al. in 2011 first reported a Cu/MgO/Al2O3 catalyst for a glycerol hydrogenolysis process to 

produce 1,2PD [81]. A Cu0.4/Mg5.6/Al2/O8.6 catalyst prepared via a NaOH and Na2CO3 

coprecipitation method was reported to be the optimum metal molar ratio. Under 

experimental conditions of 180ºC and 435psi H2, 75% aqueous glycerol was loaded and the 

reaction time was 10 hours; the glycerol conversion was 80% and the 1,2PD selectivity was 

98.2% which was very high; however, 10wt% of catalyst was loaded which was very high. It 

was also reported that when 5% to 10% NaOH was added in the reaction mixture, the 

glycerol conversion was higher and the 1,2PD selectivity was decreased due to more ethylene 

glycol being produced. 

To improve the Cu/MgO/Al2O3 catalyst activity, another metal was added to promote the 

catalyst activity. Xia et al. in 2011 reported that when Pd was added, the catalyst was active 

under milder conditions compared with a Cu/MgO/Al2O3 catalyst [82]. In this report, the 

reaction conditions were: 180ºC and 290psi H2, 75% aqueous glycerol was loaded with 10 

hours reaction time; a glycerol conversion of 56.7% and a 1,2PD selectivity of 97.1% were 

obtained using the Cu/MgO/Al2O3 catalyst, and the addition of 4wt% Pd increased the 
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glycerol conversion and 1,2PD selectivity to 76.9% and 97.2% respectively. The promotion 

effect of Pd was proposed to be due to H2 spillover from Pd to Cu. 

The effect of Rh on a Cu/MgO/Al2O3 catalyst has been investigated and reported by Xia et al. 

in 2012 [83]. In this report, 2% of Rh was added to a Cu0.4/Mg5.6/Al1.98/O8.6 catalyst, the 

catalytic activity was significantly improved when 75wt% aqueous glycerol was used as the 

feedstock. It was also reported that the solvent played an important role on the experimental 

results. Under the condition of 180ºC and 290psi H2, and 10 hours reaction time, the glycerol 

conversion was 95.2% when 25wt% methanol was used as the solvent but the glycerol 

conversion was only 56.7% when 25wt% water was used as the solvent. 

Since Cu/ZnO/Al2O3 and Cu/MgO/Al2O3 have been reported to be active for glycerol 

hydrogenolysis to produce 1,2PD, a catalyst of Cu/ZnO/MgO/Al2O3 prepared via a Na2CO3 

and NaOH coprecipitation has been investigated and reported by Xia et al. in 2012 [64]. In 

this work, the molar ratio of Zn:Mg was manipulated to find the optimum composition. It 

was reported that the Cu0.4Zn0.6Mg5.0Al2.0 catalyst gave the highest activity and the catalytic 

activity was increased with increasing basicity. When the experimental conditions were 

180ºC and 290psi H2, 75wt% aqueous glycerol and 10 hours reaction time, the glycerol 

conversion was reported to be 78.2% and the 1,2PD selectivity was 99.3%, which was 

noticeably higher than any recently reported 1,2PD selectivity. 

 

2.2.1.4 Other Cu Based Catalysts 

Some supported catalysts prepared via an impregnation method have also been reported; 

however, the activities of supported Cu catalysts were not as high as the activity of Cu 

catalysts prepared by a coprecipitation method. The most frequently reported catalysts were 

Cu supported on γAl2O3 [84-86], Cu supported on SiO2 [50, 71, 87-89] and Cu supported on 

other supports [90-92]. In 2013 Xia et al. reported a Cu/MgO/Al2O3 supported on multi-wall 
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carbon nanotubes, which showed a high activity for glycerol hydrogenolysis to produce 

1,2PD. When the experimental conditions were 200ºC and 435psi H2, 33wt% aqueous 

glycerol with 10 hours reaction time, the glycerol conversion was reported to be 86.5% and 

the 1,2PD selectivity was 92.5%. 

 

2.2.1.5 Catalyst Deactivation of Cu Based Catalysts 

Catalyst deactivation is one of the major problems in most of industries using heterogeneous 

catalysts and has been reported frequently for Cu based catalysts. It was reported that catalyst 

deactivation is mainly due to (1) catalyst sintering [80]; (2) catalyst fouling by polymeric or 

oligomeric species (polymerization and/or oligomerization of acetol) [43], and (3) leaching 

of metal species. For instance, it was reported that metal leaching is due to the presence of 

water by a disproportionation reaction [93] as shown in Equation 2-1. 

2Cu1+aq => Cu0+ Cu2+aq                                                                                       Equation 2-1 

Cu+2 would be drawn into water forming copper hydroxide (Equation 2-2) 

2Cu2+aq + 2H2O => 2Cu(OH)2 + 2H+                                                                   Equation 2-2                                                           

 

In 2011, Vasiliadou and Lemonidou reported the deactivation of a Cu supported on silica 

catalyst [89]. The experimental results showed that the catalyst was significantly deactivated 

after the second run, i.e. the glycerol conversion was 43% and 1,2PD selectivity was 91% 

when a fresh catalyst was used, after the catalyst was recycled and reused the glycerol 

conversion was decreased to only 18%.  

Bienholz et al. in 2009 reported a significant deactivation for a Cu/ZnO catalyst (Cu/Zn=1/2) 

prepared by an oxalic acid co-precipitation method [68]. The reaction conditions reported 

were: 1.7wt% of catalyst, 100% glycerol, 200 ºC, 725psi hydrogen, 7 hours reaction time. 
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The glycerol conversion using fresh catalyst was reported to be 46% with about 90% 

selectivity to 1,2PD and when the spent catalyst was used, the glycerol conversion was only 

10% although a high 1,2PD selectivity was obtained (97%). This was explained in that the 

deactivation was due to sintering of the catalyst resulting in a larger particle size. 

It was mentioned in the previous section that Xia et al. reported a Cu/MgO/ZnO/Al2O3 

catalyst prepared via Na2CO3 and NaOH coprecipitation, an exceptionally high 1,2PD 

selectivity was obtained [64]. However, in this report, catalyst deactivation was also 

observed; the glycerol conversions were 39.7%, 34.2%, 25.6% and 25.3% for the reactions 

using fresh, first recycled, second recycled and third recycled catalysts respectively. 

Many researchers have reported different ways of preventing catalyst deactivation. Bienholz 

et al. [80] also reported a Cu/ZnO/Ga2O3 catalyst showing a very high activity for the 

reactions. In this report, a catalyst with a Cu/Zn/Ga molar ratio of 2/4/1 prepared using 

Na2CO3 could give 96% glycerol conversion with 82% selectivity to 1,2PD after 7 hours. 

The reaction conditions were 1.7wt% of catalyst, 80wt% aqueous glycerol, 200°C, 725psi 

hydrogen, 7 hours reaction time. It was also reported that Ga efficiently prevented catalyst 

deactiviation. By carrying out the recycling experiments, it was reported that the catalyst 

activity was stable for 4 runs as shown in Table 2-1. However, Ga is a very expensive metal 

compared to Cu, Zn and Al. It was suggested that the promoting effect of Ga2O3 on the 

catalyst stability was due to the presence of a component which isolated the individual metal 

particles, preventing their sintering. The same effect was also reported by adding ZrO 

reported by Duran-Martin et al. in 2013 [90]. 

Table 2-1 Recycling Experiment for Cu/ZnO/Ga2O3 catalysta [80]. 
Run Conversion Selectivity 

1 57 80 
2 53 82 
3 57 83 
4 52 85 

aConditions: 0.3 g of Cu/ ZnO/Ga2O3, 200°C, 8 g of 90 wt % aqueous glycerol, 5 hours. 
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2.2.2 Ru Based Catalysts 

Supported ruthenium (Ru) catalysts have been reported to have relatively higher activity for 

this process compared to Cu catalysts [94-97]. This type of catalyst shows a much faster 

reaction rate compared to a copper based catalyst. However, it was also found that Ru based 

catalysts could promote excessive C-C cleavage, resulting in a higher selectivity to ethylene 

glycol. Then ethylene glycol also becomes another major by-product, which has a lower 

value than 1,2PD. 

Miyazawa et al. in 2007 developed a Ru/C catalyst in combination with an ion-exchange 

resin (Amberlyst 15) [95], in which the selectivity was improved. Alhanash et al. in 2008 

reported that a Ru catalyst supported on heteropoly acid (Cs2.5H0.5[PW12O40]) gave a high 

1,2PD selectivity (87.6%) under exceptionally mild conditions (150℃ and 80psi of H2) [98]; 

however, the glycerol conversion was reported to be only 31%. Balaraju et al. in 2009 

reported that in cooperation with niobium oxide (N2O5), the selectivity to 1,2PD was 66.5% 

at 180℃ and 870psi of H2 after 8 hours and the conversion was 62.8% [96].  

In 2011, van Ryneveld et al. reported a Ru/C catalyst for glycerol hydrogenolysis and the 

results were compared with Pd/C and Pt/C catalysts [99]. It was reported that at very low 

temperature (130°C), but relatively high hydrogen pressure (1160psi) with 20wt% aqueous 

glycerol, the conversion of glycerol was 49.2% after 24 hours and the selectivity to 1,2PD 

was only 74% with 6% selectivity to ethylene glycol.  When the glycerol concentration was 

increased from 20% to 60%, the ethylene glycol selectivity was increased from 5.1% to 

10.1%. Supported Pd and Pt catalysts were also reported and the activity was not as high as a 

Ru based catalyst. In this report, a reaction mechanism involving by-product formation, when 

hydrogen was insufficient, has been proposed. The by-products were caused by condensation 

reactions of acetol with glycerol, 1,2PD and ethylene glycol to form some cyclic products 

(C5 or C6). When hydrogen is insufficient to hydrogenate all the acetol, the high 

concentration of acetol will cause these condensation reactions as shown in Scheme 2-5.  
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Scheme 2-5 Side Reactions Caused by Acetol [99]*. 

*Reprinted from Ryneveld et al. Catalysis Letters, vol. 141, pp. 958-967 with permission from the Springer Science + Business Media. 
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A Cu-Ru bimetallic catalyst has also been investigated to utilize the advantages of both 

metals. Jiang et al. in 2009 reported a Cu-Ru bimetallic catalyst supported on natural clay 

[100], which is a type of environmentally benign material; with a Ru:Cu molar ratio of 3:1, 

the conversion was 81.6% and the selectivity to 1,2PD was 87.3% after 18 hours at 210 ºC 

and 362psi  hydrogen pressure. 

Wu et al. in 2011 also reported a Ru catalyst supported on carbon nanotubes for this process 

[92]. It was found that different types of supports could also affect the catalytic activity of the 

Ru catalyst. Using Ru/C at 200°C and 580psi, after 6 hours, the glycerol conversion was 

found to be 55.7% and the 1,2PD selectivity was only 59.4% and the selectivity to ethylene 

glycol was 15.7%; for the Ru supported on MWCNT (multi-wall carbon nanotube), under the 

same rection conditions, the conversion was improved to 65.5% and the 1,2PD selectivity 

was 72.2%, the ethylene glycol selectivity was only 7.6%, which was still high compared to a 

Cu based catalyst. To further improve the selectivity to 1,2PD, a bi-metallic Cu-Ru/MWCNT 

catalyst was also used since copper could give a very good 1,2PD selectivity and Ru could 

increase the reaction rate. The experimental results showed that the glycerol conversion was 

99.8% and the 1,2PD selectivity was 86.5% which were very high, and no ethylene glycol 

was found (0% selectivity). It can be concluded that Ru promoted by Cu can really improve 

the 1,2PD selectivity and lower the yield of ethylene glycol.  

Ru/SiO2 catalysts have also been frequently reported. In 2011, Vasiliadou and Lemonidou 

reported a Ru(5wt%)/SiO2 catalyst and a bi-metalic Cu-Ru/SiO2 catalyst [89]. Using a 

Ru/SiO2 catalyst, the selectivity of ethylene glycol was very high (28.7%) and selectivity of 

1,2PD was only 60.5% (reaction conditions: 0.6wt% catalyst, 240°C, 1160psi H2, 5hours, 

pure glycerol feed). If Cu was added to the catalyst (Ru-Cu/SiO2), the glycerol conversion 

was increased from 21.7% to 39.2% and the selectivity to 1,2PD was increased from 60.5% 

to 85.9% and the selectivity to ethylene glycol was decreased from 28.7% to 6.9%. The same 

group in 2011 also investigated the effect of reaction conditions (temperature and hydrogen 
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pressure) using a Ru/SiO2 catalyst [101]. The experimental data showed that when the 

temperature increased, the glycerol conversion and selectivity to 1,2PD increased and the 

selectivity of ethylene glycol decreased. The drop in formation of ethylene glycol agrees with 

the results reported by Wu et al. [92].  

Ru based catalysts using other supports have also been reported. For example, Lee and Moon 

in 2011 reported a Ru supported on CaO/MgO/Al2O3 catalyst [102]. In the report a 

hydrotalcite-like CaO/MgO/Al2O3 was prepared by (NH4)2CO3 co-precipitation, Ru was 

loaded on the support by impregnation. Under very mild conditions (100°C, 363psi hydrogen, 

3wt% catalyst, 20% aqueous glycerol feed, 19 hours), the conversion was 58.5% with a 85.5% 

selectivity to 1,2PD, and the selectivity to ethylene glycol was 6.6%. A Ru/γ-Al2O3 catalyst 

has also been investigated. Under the same reaction conditions, the glycerol conversion was 

similar (45.6%), but the selectivity to ethylene glycol was significantly higher (22.3%). 

Recently Hamzah et al. reported Ru catalysts with different types of support (TiO2, bentonite 

and their mixture) for a glycerol hydrogenolysis process [57]. The mixed bentonite and TiO2 

gave the best results under a very mild condition (150°C, 290psi, and 7hours reaction).  It can 

be seen that supports can affect the yield of ethylene glycol significantly, which also has been 

reported by Wu et al. [92].  

In conclusion, the Ru based catalyst catalyze glycerol hydrogenolysis reactions under very 

mild conditions (100-180°C, less catalyst loading and lower hydrogen pressure 300psi to 

500psi) and provide faster reaction rates (less reaction time and high glycerol conversion) 

compared with a Cu based catalyst. However, the low selectivity is mainly caused by a high 

yield of ethylene glycol. Different types of support can also affect the selectivity to 1,2PD. In 

general a support with stronger acidic sites can provide a higher 1,2PD yield. It is also known 

that higher temperature does not favor the yield of ethylene glycol. In order to improve the 

selectivity to 1,2PD, a bi-metalic catalyst (supported Ru-Cu) is usually used. However, Ru is 

also an expensive metal compared with Cu and Ni. 
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Recently, Re was found to have a promotion effect to improve the activity of supported Ru 

catalysts. Ma et al. [103-105] reported that with the addition of Re, the glycerol conversion 

could reach 59.4% and selectivity of the catalyst to 1,2PD was 56.6%, with a selectivity of 

7.2% to 1,3PD; without adding Re, the glycerol conversion was only to be 29.7% with 50.9% 

selectivity to 1,2PD. Nano-size supported Ru was also investigated by Wang et al. in 2009, it 

was found that by supporting Ru on carbon nanotubes, the conversion of glycerol was 

reported to be 42.3% with 60.2% of selectivity to 1,2PD after 12 hours at 200 ºC [97]. 

 

2.2.3 Promoting Effect of Pd on Cu Based Catalyst 

It is known that when the hydrogen pressure is low, the low 1,2PD selectivity is due to side 

reactions of acetol. It has been reported that Pd is used as a promoter for a Cu based catalyst 

since Pd is an active metal for hydrogenation reactions. Xia et al. reported the promoting 

effect of Pd on the Cu/MgO/Al2O3 [82]. It was reported that by adding Pd, the high 

selectivity could still be maintained at a lower hydrogen pressure (since the selectivity highly 

depends on the hydrogen pressure). By adding 4% Pd on the Cu/MgO/Al2O3 catalyst 

(Pd0.04/Cu0.4/Mg5.6/Al2/O8.6) the selectivity to 1,2PD was 97.2% at 290psi hydrogen and the 

glycerol conversion was 88%, while without 4% Pd loaded (Cu0.4/Mg5.6/Al2/O8.6), to obtain a 

98.0% 1,2PD selectivity the hydrogen pressure was reported to be 435psi and the glycerol 

conversion was only 80% as reported by Yuan et al. [81].  

Kim et al. in 2012 reported a promoting effect of Pd on a Cu-Cr catalyst [106]. In their report, 

when the Cu-Cr catalyst was used without Pd loading the experimental conditions were 

220ºC and 870psi H2, with 90wt% aqueous glycerol, 2wt% of catalyst and 12 hours reaction 

time, and the glycerol conversion was 76% and the 1,2PD selectivity was 79%. When 0.5% 

Pd was loaded, the glycerol conversion and 1,2PD selectivity were increased to 83% and 91% 

respectively; the rate constant of the reaction was almost doubled when Pd was loaded. From 

an H2 TPD experiment, it was found that when Pd was loaded onto a Cu-Cr catalyst, the 
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capacity for adsorbed hydrogen on the catalyst surface was significantly improved. Therefore, 

it was found that the promoting effect of Pd was due to hydrogen spillover behavior. When 

hydrogen is adsorbed onto the catalyst, it can dissociate into hydrogen atoms and the Pd can 

provide hydrogen atoms to the catalytic active sites via spillover, and the spillover of 

hydrogen can exhibit higher diffusivity and activity compared with molecular hydrogen. 

 

2.3 Glycerol Hydrogenolysis to Produce 1,2-propanediol without Molecular 

Hydrogen Added  

Literature reports and patents have shown that high hydrogen pressure was required (≥ 

200psi) to produce 1,2PD from glycerol; some of the reactions were carried out at over 

1500psi. This high hydrogen pressure may cause a significant cost issue related to the 

purchase, transportation and storage of gaseous hydrogen as well as the cost of high pressure 

hydrogen reactors. Safety is another concern due to the high pressure operation because 

hydrogen can easily leak and cause explosion on contact with air and also hydrogen can 

easily embrittle metals. Liquid hydrogen also poses additional difficulties in handling due to 

extremely high pressure and low temperature. Therefore, many researchers are focusing on 

glycerol hydrogenolysis processes to produce 1,2PD without adding molecular hydrogen. 

 

2.3.1 Glycerol Steam Reforming as a Hydrogen Source 

Currently steam reforming of glycerol to produce hydrogen has received a lot of attention 

from researchers. Therefore, some researchers have been investigating catalysts that can 

catalyze this process using in situ hydrogen produced via glycerol steam reforming. D’Hondt 

et al. in 2008 firstly proposed a supported Pt catalyst that can convert glycerol to 1,2PD in 

the absence of added hydrogen [41, 42]. A mechanism for this process was also reported as 

shown in Scheme 2-3 where the in situ hydrogen was formed by a liquid steam reforming of 
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glycerol with a CO2 by-product. Then the hydrogen was used for acetol hydrogenation, 

which was formed by dehydration of glycerol. The reaction was carried at 230ºC under an 

inert atmosphere using a Pt supported on NaY catalyst and the glycerol conversion was 

reported to be 85.4% with 64% selectivity to 1,2PD. 

 

Scheme 2-6 Reaction Pathway of Converting Glycerol to 1,2PD in Absence of Added 
Hydrogen Using Pt/NaY as the Catalyst [41]*. 

*Reprinted D’Hondt et al., Chemical Communication, vol. 11, pp. 1511-1513, 2009 with permission from the Royal Society of  

Chemistry. 

 

In 2012, Barbelli et al. reported the same process using a 1% Pt supported on silica catalyst, 

where the Pt loading was lower than what D’Hondt et al. reported [107]. In Barbelli et al. 

report, at 200°C, with a 10% aqueous glycerol feed, after 2 hours, the conversion of glycerol 

was only 1%, and at 225°C, the conversion was only 3% which was very low. With 0.2 mol% 

of Sn added as a promoter (PtSn0.2/SiO2), the conversion was significantly improved from 1% 

to 54%, and the selectivity to 1,2PD was reported to be 59% which was similar to the data 

reported by D’Hondt et al. The by-products were reported to be ethylene glycol, acetol, 

ethanol, 1-propanol and methanol. 

In 2012 Pendem et al. reported a glycerol hydrogenolysis process using supported Pt 

catalysts [59]. In this report, various supports were used and a 3% Pt supported on 

hydrotalcite was found to have the highest activity for this process. The reaction conditions 
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were 10wt% aqueous glycerol, 1wt% catalyst loading and a 250°C reaction temperature; 

after 3 hours the glycerol conversion was 98.4% and the 1,2PD selectivity was 70.2%. It was 

also found that when the catalyst was recycled and reused, the glycerol conversion was 93.1% 

and the 1,2PD selectivity was 67.6%, which were only slightly decreased compared with the 

results using a fresh catalyst. 

From the reported data, it is noticed that in order to get higher glycerol conversion and more 

hydrogen produced, Pt based catalysts are usually used. However, Pt is an expensive metal, 

and hence will result in a high production cost for the 1,2PD hydrogenolysis process. In order 

to lower the cost of the catalyst, Maglinao and He in 2011 reported a process in which Raney 

Nickel was used as the catalyst [108].  In their report, at 230°C with a 50wt% aqueous 

glycerol feed, after 105min of reaction, the glycerol conversion was 99% but the yield of 

1,2PD was only 18%. It was interesting that at 15min, the yield of 1,2-propanediol was at the 

maximum which was 30%, the byproducts were mainly acetol and lower alcohols such as n-

propanol, iso-propanol, ethanol and methanol.  

From the reports published about this process, using the in situ hydrogen produced from 

glycerol steam reforming as the hydrogen source has its advantages and disadvantages.  The 

advantage is that no other reactant feed is needed since glycerol itself is the raw material for 

both hydrogen and 1,2-propanediol production. However, to make this process feasible, a Pt 

supported catalyst is usually used, which is very expensive; also the selectivity is much lower 

compared with when molecular hydrogen is used. Since steam reforming of glycerol involves 

C-C cracking, the by-products were reported to be some lower alcohols and methane. 

 

2.3.2 Iso-propanol as a Hydrogen Donor 

Another process without the addition of molecular hydrogen has been reported, in which the 

hydrogen atom is donated from iso-propanol, therefore producing acetone as the by-product. 

This process was first reported by Musolino et al. in 2009 using a Pd/Fe2O3 catalyst [109] as 
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shown in Scheme 2-7. The hydrogen atom in the hydroxyl group of 2-propanol was absorbed 

by the Pd metal, then the hydrogenation of acetol proceeded utilizing the adsorbed hydrogen 

atom donated from 2-propanol. In this report, the Pd(10wt%) Fe3O4 prepared by Na2CO3 co-

precipitation was used. In this process, a 12wt% glycerol iso-propanol mixture was used as 

the feedstock, and the reaction conditions were: 180°C, and the reaction time was 24 hours. 

The glycerol conversion was 100% with 84% 1,2-PD selectivity which was very high 

compared with the results using glycerol steam reforming as the hydrogen source. If ethanol 

was used, at 180ºC after 24 hours, the conversion was reported to be 100% and the selectivity 

to 1,2PD was 90%. 

 

Scheme 2-7 Reaction Pathway of Converting Glycerol to 1,2PD in the Absence of Added 
Hydrogen Using a Pd/Fe2O3  Catalyst and Iso-propanol as the Hydrogen Resouce [109]*. 

Reprinted Musolino et al., Chemical Communications, pp. 6011-6012, 2008 with permission from the Royal Society of Chemistry. 

 

However, Pd is also an expensive metal and 10% loading is very high; the cost of catalyst is 

even higher than Pt based catalyst. Therefore, Ganarias et al. in 2011 reported the same 

process using a Ni-Cu/Al2O3 catalyst [110]. In this report, temperatures of 320°C and 450°C 

were used, which were much higher than the temperature reported using a Pd based catalyst. 

After 24 hours, at 320°C the glycerol conversion was 41.2% with 48.3% 1,2PD selectivity; at 

450°C, the glycerol conversion was 57.3% with 62.1% 1,2PD selectivity. 
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The advantage of this process is higher selectivity since this process does not involve too 

much C-C cleavage. The by-products were mainly acetol, 1-propanol and ethylene glycol, 

with less lower alcohol produced compared with that when using glycerol steam reforming as 

the hydrogen source. The disadvantages of this process are: acetone is formed as a by-

product causing a high production cost for the downstream separation process; lower 

hydrogen utilization since one mole of iso-propanol can only donate one mole of hydrogen 

atoms, which can result in a high cost of solvent because the solvent is not re-useable; in 

order to have a high 1,2PD selectivity, high loading of Pd is needed resulting in a high 

catalyst cost. 

 

2.3.3 Formic Acid as Hydrogen Donor 

Some researchers have developed a glycerol hydrogenolysis process to produce 1,2PD using 

formic acid as the hydrogen donor. The advantages of using formic acid are that it can be 

obtained from renewable resources from non-food biomass. Formic acid is also considered as 

a promising hydrogen storage compound as it can be obtained through CO2 hydrogenation. 

Gandarias et al. in 2012 reported this process using a Ni-Cu/Al2O3 catalyst [111] as shown in 

Scheme 2-8. In this report, a semi-batch process with formic acid pumping into the reaction 

mixture was developed. The reaction conditions were 20wt% aqueous glycerol, 220°C 

reaction temperature and 0.02mL/min formic acid feed rate, after 10 hours the glycerol 

conversion was 33.5% and the 1,2PD selectivity was 85.9%. 

 
Scheme 2-8 Reaction Pathway of Converting Glycerol to 1,2PD in Absence of Added 
Hydrogen Using Formic Acid as the Hydrogen Resouce [111]*. 

*Reprinted Gandarias et al., Catalysis Today, vol. 195, pp. 22-31, 2012. with permission from the Elsevier Limited. 
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Gandarias et al. in 2012 reported the same process by further optimizing the Ni/Cu ratio and 

reaction conditions [54]. In this report, Ni20Cu15 was reported to be the optimized 

composition. When the formic acid feed rate was 3.6mmolg-cat-1h-1 at 220°C, after 16 hours 

the glycerol conversion was 49.3% and 1,2PD selectivity was 75.4%. The carbon balance in 

the liquid solution was 99.1%, it was suggested that glycerol was not consumed for steam 

reforming. 

In 2013 Gandarias et al. reported the same process and the experimental results were 

compared with the process in which molecular hydrogen was used [112]. Under the same 

conditions, it was found that when hydrogen was initially fed, the 1,2PD selectivity was not 

significantly improved but the glycerol conversion was increased, i.e. when 45 bar nitrogen 

was added into the reaction the glycerol conversion was 55.2% and the 1,2PD selectivity was 

84.6% while when 45 bar hydrogen was added the glycerol conversion was increased to 69.2% 

and the 1,2PD selectivity was unchanged at 84.6%. 

Martin et al. in 2013 published a review article for glycerol hydrogenolysis using in situ 

hydrogen [113]. More reported numerical results regarding this process are listed in Table A-

2 in Appendix A. 

 

2.4 Catalyst Development for Production of 1,3-propanediol (1,3PD) from 

Glycerol    

The conversion of glycerol into 1,3-propanediol (1,3PD) has also been investigated since 1,3-

propanediol is much more valuable as introduced in Chapter 1. 1,3PD is usually used in the 

production of polymethylene terephthalates (PTT) and polyurethanes. However, the process 

is much more challenging compared with the production of 1,2PD. Reported yields of 1,3PD 

from glycerol hydrogenolysis processes are very low so far. 

33 

 



In 2010, Nakagawa et al. reported that a Ir-ReOx (Re:Ir = 1) catalyst was active to give a high 

yield of 1,3PD [114] under mild reaction conditions (0.75wt% catalyst, 120°C, 1160psi, 24 

hours). However, in order to obtain high acidity, sulfuric acid was also added which causes 

environmental pollution problems in case of spillage, equipment corrosion and additional 

cost for the downstream neutralization process. The conversion of glycerol was reported to 

be 62.8% and selectivity to 1,3PD was 49% and selectivity to 1,2PD was 10%. Because of 

the acidity provided by sulfuric acid, a high selectivity to 1-propanol of 33% was found.  

In 2011, Amada et al. reported the effect of Re:Ir ratio [115] under the same experimental 

conditions as Nakagawa et al. reported [114] for the process of 1,3PD production. In their 

report, when Re:Ir = 2, the results were optimal providing 58.6% glycerol conversion, with a 

selectivity to 1,3PD and 1,2PD of 44.6% and 5.4% respectively, and the selectivity to 1-

propanol was still high (40.7%). Also it was mentioned that without sulfuric acid addition, 

the glycerol conversion dropped to about half.  

Supported platinum catalysts have frequently been reported for 1,3PD production from 

glycerol. Oh et al. in 2011 reported a Pt-sulfated zirconia catalyst [116]. In their report, it was 

stated that super acidic sites were required to have a high 1,3PD yield; when platinum was 

loaded on zirconia strong Bronsted acidic sites were found based on NH3 TPD and FTIR 

results. To carry out the experiment, 1,3-dimethyl-2-imidazolidinone (DMI) was used as the 

solvent (3mmol glycerol in 0.2ml DMI), the reaction conditions were: 180°C, 1160psi 

hydrogen, 24 hours,with 35wt% catalyst); the glycerol conversion was 66.5% and the yield 

of 1,3PD was 55.6% which is the highest reported to date. However, without the solvent 

(only aqueous glycerol as the feedstock), the conversion was 62.9% which was similar to the 

value with solvent however, the yield of 1,3PD was only 12.3%. Therefore, the solvent plays 

a very important role on the selectivity toward 1,3PD. It was also reported that the DMI was 

not degraded after each reaction, so it could be separated for subsequent usage.  
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Gong et al. in 2010 reported a Pt/WO3/TiO2/SiO2 catalyst [117]. In this report, aqueous 

glycerol was used as the feedstock and the conversion was only 15.3% with a fairly high 

1,3PD selectivity (50.5%). Recently Zhu et al. in 2012 reported a Pt-H4SiW12O40/SiO2 

catalyst to produce 1,3PD using a fixed bed reactor [118]. At 200°C and 725psi hydrogen, 

when 10% aqueous glycerol was fed at WHSV = 0.03h-1, the glycerol conversion was 88.5% 

however the 1,3PD selectivity was only 27.2%. By varying the reaction condition, it was 

found that high temperature and high hydrogen pressure decreased the 1,3PD selectivity. 

No report has been published about 1,3PD production without external hydrogen added. 

However, Ouyang et al. in 2011 published a report [119], in which a mathematical model 

was developed applying some thermodynamic parameters to simulate the process of 1,3PD 

production using in situ hydrogen from glycerol steam reforming. The results showed that 

this process was thermodynamically feasible. However, based on the experimental results, 

over 1000psi of hydrogen is always needed; therefore, the process using in situ hydrogen 

produced from glycerol steam reforming is very challenging. 

In conclusion, in order to have a high yield of 1,3PD from hydrogenolysis of glycerol, the 

acidity of the catalyst plays a key role. Higher acidic strength and more acidic sites can give 

higher 1,3PD selectivity and higher glycerol conversion. Based on current publications, in 

order to obtain high 1,3PD selectivity, a supported Pt on solid acid catalyst is usually used 

with a special liquid solvent added (DMI or sulfuric acid).  
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Chapter Three                                  
Experimental Apparatus and Methods 

 
In this chapter, the procedure of catalyst preparation and loading of different promoters are 

introduced. The analytical methods employed in this work are outlined including the 

quantitative analysis of liquid products by gas chromatography and the gas products by a 

residual gas analyzer (RGA). The specifications of the bench scale autoclave reaction for 

glycerol hydrogenolysis to produced 1,2-propanediol (1,2PD) and the procedures of liquid 

sampling and gas sampling are explained. The detailed catalyst characterization techniques 

are described including temperature programmed desorption (TPD), X-Ray diffraction 

(XRD), thermogravimetric analysis (TGA), BET surface area and Transmission Electron 

Microscopy (TEM). 

 

3.1 Catalyst Preparation Methods 

In this section, the procedures of preparing catalysts via different preparation methods 

including the methods of loading different promoters are introduced. 

 

3.1.1 Oxalate Gel-coprecipitation 

Ethanol was purchased from Fisher Scientific Canada (HPLC grade). The other chemicals 

were purchased from Sigma Aldridge Co. Canada and all the gases were purchased from 

Praxair Canada Inc. To prepare the Cu/ZnO/Al2O3 catalysts by oxalate gel-coprecipitation, 

36 

 



20% excess ethanol solution of 0.5M oxalic acid (anhydrous, ≥97.0%) was rapidly injected 

into an ethanol solution mixture of Cu(NO3)2•2.5H2O (≥98.0%), Zn(NO3)2•6H2O (≥

98.0%), Al(NO3)3•9H2O (≥98.0%) with designated molar ratio under vigorous stirring, the 

total metal concentration was 0.5M [78, 79]. The slurry was then aged under stirring for 2 

hours and the precipitate was filtered and dried in air at 110ºC for 24 hours. The dried 

particles were ground and screened via a sieve with 250μm opening and then calcined in air 

at 150ºC for 1 hour, 200ºC for 1 hour, 250ºC for 1 hour, 300ºC for 1 hour and 360ºC for 4 

hours [120].  

To prepare Cu/MgO/Al2O3 catalysts via the gel-coprecipitation method, the procedures were 

the same as described in the previous paragraph except replacing Zn(NO3)2•6H2O by 

Mg(NO3)2•6H2O  (≥99.0%) which was purchased from Sigma Aldridge Co. Canada. 

To add Ni into the catalysts via a gel-coprecipitation method, Ni(NO3)2•6H2O (≥99.0%) 

purchased from Sigma Aldridge Co. Canada was used as a Ni precursor. A designated 

amount of Ni(NO3)2 was mixed with the metal nitrate solution. Other procedures were the 

same as described in the previous paragraph. 

 

3.1.2 Na2CO3 Co-precipitation 

For a comparative study, the Cu/ZnO/Al2O3 catalysts were prepared by a conventional 

Na2CO3 coprecipitation method [47, 70]. An aqueous solution of 0.5M Na2CO3 purchased 

from Sigma Aldridge Co. Canada was added drop-wise into an aqueous mixture of 0.5M of 

the metal nitrate with a designated molar ratio under vigorous stirring until the pH reached 

9.0. The slurry was then aged under stirring for 1 hour. The precipitate was then filtered and 

washed with de-ionized water until the pH of the filtrate reached 7.0. The washed precipitate 

was dried in air at 110ºC for 24 hours. The dried particles were ground and screened with a 

sieve with a 250μm opening and then calcined in air at 650ºC for 4 hours.  
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3.1.3 Impregnation 

The catalysts were also prepared by an impregnation method. A designated amount of 

support was aged for a metal nitrates aqueous solution (0.5M) for 4 hours in a round bottom 

flask. The flask containing the impregnated solution was then placed in an oil bath at 110ºC 

under vigorous stirring to evaporate the water. The particles were dried in air at 110ºC for 24 

hours and calcined in air at 450ºC for 4 hours. 

 

3.1.4 Loading Pd on Calcined Cu/Zn/Al or Cu/Mg/Al Catalysts 

The Cu/ZnO/Al2O3 or Cu/MgO/Al2O3 catalysts with a designated ratio prepared via a gel-

coprecipitation method was used as the support for Pd. The catalysts were prepared via an 

impregnation method. Palladium (II) acetate (98%) purchased from Sigma Aldridge Co. 

Canada was used as the precursor. A pre-calculated amount of palladium (II) acetate was 

weighed and transferred into a round bottom flask. A designated amount of acetone (98%) 

required to meet 35ml of solvent per gram of catalyst support [121] was added into the round 

bottom flask under vigorous stirring until the palladium (II) acetate was completely dissolved 

in the solvent. Then the calculated amount of catalyst support was weighed and transferred 

into the round bottom flask with the palladium (II) acetate solution and aged for 4 hours. The 

flask containing the impregnation solution was then placed in an oil bath at 70ºC under 

vigorous stirring to evaporate the acetone solvent. The particles were dried under air at 110ºC 

for 24 hours and calcined in air at 360ºC for 4 hours. 

 

3.2 Autoclave Experimental Apparatus  

In this section, the experimental apparatus for the experiments carried out in an autoclave are 

introduced including the catalyst reduction and reaction systems. 
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3.2.1 Catalyst Reduction Apparatus 

Before each experiment was carried out, the catalyst was reduced in a quartz tubular reactor. 

The reactor is enclosed in a furnace controlled by a temperature controller as shown in Figure 

3-1. The pre-weighed catalyst particles were placed on a catalyst bed made from quartz in the 

tubular reactor and the reactor was placed into the furnace; a thermocouple was placed into 

the tube below the catalyst bed. The reactor was heated to the designated temperature under a 

continuous high purity helium flow. After the desired temperature was reached, the three-

way valve was adjusted to let a continuous high purity hydrogen gas flow upward through 

the catalyst bed for 3 hours. Then the furnace was turn off and the catalyst particles were 

cooled to room temperature under a helium flow. 

 

Figure 3-1 Schematic Flow Diagram of the Catalyst Reduction Apparatus. 

 

3.2.2 Autoclave Apparatus 

A 300mL Parr Instrument 4560 Series mini bench top reactor, which is illustrated in Figure 

3-2, was used for the catalyst activity tests. The reactor was constructed of hastelloy with a 

PTFE o-ring seal on the top of the reactor. The maximum operating conditions were rated to 

be 360ºC and 3000psig. An impeller connected to a magnetic drive was used for mixing. The 
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reactor temperature was monitored by a thermocouple and the temperature was controlled by 

a Parr Instrument 4848 Series reactor controller. Over-pressure protection was provided by a 

rupture disk made from Au and rated to fail at 2500 psi (purchased from Fike Corp). A 

sampler was equipped for taking liquid samples at different time intervals during the reaction. 

A three-way valve sealed with an inlet septa purchased from Agilent Technologies was used 

to take the gas samples. 
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Figure 3-2 Schematic Flow Diagram of an Autoclave Reactor System. 

 

3.3 Products Analytical Apparatus and Method 

In this section, the apparatus for product analysis and the calculations for conversion and 

selectivity are defined. 

 

3.3.1 Gas Chromatography (GC) 

All the liquid samples were analyzed by an Agilent Technology’s 6890N Gas 

Chromatograph equipped with a flame ionization detector (FID). All the samples were 
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injected automatically by using an Agilent Technology’s 7863 Series auto-injector equipped 

with a 5μL syringe. A J&W Scientific DB-WAX megabore capillary column (30m x 0.53mm 

I.D. x 10μm film thickness) was used for separation of the different species. The GC method 

parameters are listed in Table 3-1. 

Table 3-1 Detailed GC Method. 

Inlet 

Volume Injected 1 μL 
Inlet Temperautre 300 ºC 

Carrier Gas He 
Inlet Pressure 5 psi 

Total Flow 100 mL/min 

Oven Temperature Profile 

Initial Temperautre 100 ºC 
Hold 2 min 

Ramp1 1 ºC /min to 105 ºC 
Ramp2 10 ºC /min to 200 ºC 

Hold 15 min 

FID Detector 

Detector Temperautre 300 ºC 
H2 Flow 40 mL/min 
Air Flow 450 mL/min 

Makeup Gas He 
Makeup Flow  45 mL/min 

 

1,4-butanediol was chosen as the internal standard since it is not one of the product species 

and it exhibits similar properties to the components because it contains two hydroxyl groups. 

An internal standard solution was prepared by adding 5g of 1,4-butanediol into 1L of n-

butanol.  The standards were purchased from Sigma Aldridge Co. Canada. Before the 

experimental samples were injected into the GC, a calibration for each sample standard was 

carried out. A typical chromatogram of one calibration standard with all possible products is 

illustrated in Figure 3-3; the species in an unknown sample can be determined based on the 

retention time of standards as listed in Table 3-2. 
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Figure 3-3 A Typical Chromatogram of a GC Calibration Standard (0.05g of each compound 
in 5mL of internal standard solution) 

A multiple-point internal standard method was used for the GC calibration. Which involved 6 

calibration standards which contained different amounts of each product species (50mg, 

100mg, 150mg, 200mg, 250mg, 600mg) in 5mL of internal standard solutions which were 

prepared for analysis. Then the response factor of each component was  calculated according 

to Equation 3-1. The calibrated response factor of each species is listed in Table 3-2 and the 

calibration curves are shown in Appendix B. 
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where, 

mi, Ai  -- mass and area of each species respectively 

mI.S., AI.S. -- mass and area of internal standard respectively 

ki -- response factor of each species 
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Table 3-2 Retention Time and Response Factor for Each Compound. 

Compound n-Butanol Acetol 1,2PD EG 1,3PD 1,4- 
Butanediol Glycerol 

Retention  
Time (min) 2.887 5.322 11.739 12.357 14.772 16.566 24.192 

Response  
Factor  2.014 1.232 1.672 1.222  1.554 

 

The liquid samples taken from the autoclave experiments were first centrifuged in an IEC 

CL31 multispeed centrifuge, purchased from Thermo Electron Corp., at 8000RPM for 10 

minutes to separate the large particles from the liquid product samples. Then the centrifuged 

liquid samples were filtered through a polyethersulfone syringe membrane with a 0.2μm pore 

size to further separate the fine particles remaining in the liquid samples. Approximately 

120mg of liquid sample was added into a 1ml GC vial mixed with 1ml of an internal standard 

solution. Equation 3-2 was used to calculate the mass of each species in the sample. The 

glycerol conversion, 1,2PD selectivity and yield of each product were calculated on a carbon 

basis using Equation 3-3 - Equation 3-5. 
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3.3.2 Refinery Gas Analyzer (RGA) 

Gas samples were analyzed by a calibrated Agilent Refinery Gas Analyzer (RGA, 3000 

Micro C). Gas samples were injected into the sample inlet of the RGA and then an internal 

vacuum pump drew the samples into four independent GC modules simultaneously. Table 3-

3 lists the detailed configuration and separation of gases on the RGA. Each GC module 

houses a silicon micro injector, a temperature-controlled capillary column, and a micro 

thermal conductivity detector (TCD).  

Table 3-3 Configuration and gas separation of RGA. 

 

3.4 Methods and Procedures for Catalyst Characterization Techniques 

In order to study the physicochemical properties of the catalysts and the relationship between 

the catalyst structures and catalytic activity, some catalyst characterization experiments were 

carried out. In this section, the methods and procedures for the catalyst characterization 

techniques are introduced. 

 

Channels A B C D 

Injector Type Backflush Backflush Backflush Firmed volume 

Carrier Gas Argon Helium Helium Helium 

Column Type Molecular Sieve Plot U Alumina OV-1 

Detector Type TCD TCD TCD TCD 

Inlet Type Heated Heated Heated Heated 

Gas separated H2, O2, N2, CH4, 
CO 

CO2, C2, H2S, 
COS C3, C4

=, C5 i-C4, C6 
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3.4.1 NH3 Temperature Programmed Desorption (TPD) 

An Altamira AMI-200 Catalyst Characterization System was used for the TPD experiments. 

The catalyst powder was pressed into thin wafers. The wafers were then broken down and 

screened through a sieve. The particles with sizes between 250μm and 500μm were collected 

for the TPD analysis. Approximately 120mg of catalyst was weighed and placed within a 

quartz U-tube reactor with a small amount of quartz wool placed on both ends of the catalyst 

sample. The U-tube was then secured to the sample station and enclosed by a furnace 

integrated with a thermocouple. The flow diagram for this system is shown in Figure 3-4. 

 

Figure 3-4 Schematic Flow Diagram of the Altamira AMI-200 Catalyst Characterization 
System (Screen print out from AMI-200 Human-Machine Interface). 

 
The catalyst was reduced under a flow of 5% H2 balanced with Argon at a volumetric flow 

rate of 30ml/hr at 300°C for 3 hours as Figure 3-5A shows. After reduction, the catalyst was 

cooled down to 25°C, 20 pulses of 5% NH3 balanced with Argon at a flow rate of 30ml/min 

for 60s were injected into the U tube to saturate all the acidic sites of the catalyst (Figure 3-
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5B). Then the catalyst was heated to 1000°C at a heating rate of 10°C/min for NH3 

desorption (Figure 3-5C). After the catalyst TPD experiment, 10 pulses of a known volume 

(i.e. the sample loop volume of 524.0 mL) of 5% NH3 balanced with Argon were injected 

directly into TCD without being passed through the U tube for calibration; the number of 

moles of ammonia injected can be calculated using the ideal gas law. The number of moles 

of NH3 desorbed during the desorption step can be calculated using Equation 3-6 and 

Equation 3-7. 

 

Figure 3-5 Method for NH3 TPD: A) Catalyst Reduction; B) NH3 Saturation; C) 
Temperature Programmed Desorption. 
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3.4.2 CO2 TPD 

For a CO2 TPD experiment, the catalyst was loaded and reduced as described in the previous 

section for NH3 TPD. After reduction, the catalyst was cooled down to 35°C; a stream of 5% 

CO2 balanced with Argon was passed over the catalyst for 60min at 35°C to saturate the 

catalyst as shown in Figure 3-6A. Then the catalyst was heated to 1000°C at a heating rate of 

10°C/min for CO2 desorption (Figure 3-6B). After the desorption, 10 pulses of a known 

volume (i.e. the sample loop volume of 524.0 mL) of 5% CO2 balanced with Argon were 

injected directly into TCD without being passed through the U tube for calibration; the 

number of moles of CO2 injected can be calculated using the ideal gas law. The number of 

moles of CO2 desorbed during the TPD step can be calculated using Equation 3-6 and 

Equation 3-7. 
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Figure 3-6 Method for CO2 TPD: A) CO2 Saturation; B) Temperature Programmed 
Desorption. 

 

3.4.3 H2 TPD 

Hydrogen temperature programmed desorption experiments have been carried out to test the 

hydrogen adsorption capacity of the catalysts which could affect the catalytic activity for 

hydrogenation. The catalyst was loaded and reduced as described in Section 3.4.1 for the 

NH3 TPD experiments. After the catalyst was cooled to 35°C a stream of 5% H2 balanced 

with Argon was passed over the catalyst for 60min at 35°C to saturate the catalyst as shown 

in Figure 3-7A. Then the catalyst was heated to 1000°C at a heating rate of 10°C/min for H2 

desorption (Figure 3-7B). After the desorption step, 10 pulses of a known volume (i.e. the 

sample loop volume of 524.0 mL) of 5% H2 balanced with Argon were injected directly into 

the TCD without being passed through the U tube for calibration; the number of moles of H2 

injected can be calculated using the ideal gas law. The number of moles of H2 desorbed 

during the TPD step can be calculated using Equation 3-6 and Equation 3-7. 
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Figure 3-7 Method for H2 TPD: A) H2 Saturation; B) Temperature Programmed Desorption. 

 

3.4.4 H2 Temperature Programmed Reduction (TPR) 

Temperature programmed reduction (TPR) experiments have been carried out to test the 

appropriate reduction temperature for each catalyst. In an H2 TPD experiment introduced in 

the previous section, the hydrogen was adsorbed and desorbed on a pre-reduced catalyst and 

the amount of hydrogen adsorbed can be calculated. In a TPR experiment, the catalyst was 

reduced while the temperature was increased to find the optimum reduction temperature. The 

catalyst was first heated to 200°C and kept at 200°C for 60 minutes under a stream of 

30ml/min Argon flow to remove all the moisture and other species absorbed on the catalyst 

surface (Figure 3-8A). Then the catalyst was heated under a stream of 30ml/min 5% H2 

balanced with Argon at a heating rate of 5°C/min until 800°C was reached and then the 

temperature was held at 800°C for 15 minutes (Figure 3-8B). 
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Figure 3-8 Method for TPR: A) Moisture Removal; B) Temperature Programmed Reduction. 

 

3.4.5 BET Surface Area 

BET surface areas of the catalysts were determined by a Gemini 2375 instrument using 

nitrogen physisorption at 77 K, taking 0.162 nm2 as the cross sectional area for di-nitrogen. 

Catalyst samples were dried in air at 110°C overnight and cooled down to room temperature 

before BET analysis. 
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3.4.6 Thermal Gravimetric Analysis (TGA) / Differential Thermal Analysis 

(DTA) 

An SDT Q600 was used for TGA and DTA thermal analysis. The panel was filled with 

around 15mg of catalyst sample. Then the sample was heated under 100ml/min air flow from 

room temperature to 1000 ºC.  

 

3.4.7 X-Ray Diffraction (XRD)  

The XRD patterns were obtained on a Bruker D8 Focus model. The vacuum tube parameters 

were set to 40 kV potential and 30 mA current intensity. The Cu kα radiation wave length 

was set to 1.54 Å; the 2θ angle range was set at 20o-80o with a ramp of 0.02o per minute. 

 

3.4.8 Transmission Electron Microscopy (TEM)   

Catalyst powders were diluted with ethanol and sonicated in order to be well dispersed. One 

drop of the solution was deposited on a holey-carbon film supported on Cu grids. Specimens 

were examined using a JEOL 2010 TEM operated at an accelerating voltage of 200keV.  

 

3.4.9 Inductively coupled plasma (ICP) 

The metal content of the catalysts were determined using a prodigy high dispersion ICP 

purchased from Teledyne Leeman Labs. 10mg of each sample was dissolved in 50ml of HF 

solution before each test. 
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Chapter Four                                            
Glycerol Hydrogenolysis to Produce 1,2-

propanediol with Molecular Hydrogen Feed 

 
The experiments of glycerol hydrogenolysis to produce 1,2-propanediol (1,2PD) with 

molecular hydrogen have been carried out. Different catalyst preparation methods have been 

investigated for Cu/ZnO/Al2O3 catalysts. Based on the method which showed the best 

catalytic activity the ratio of the three metals has been studied to find the optimum 

composition to provide the highest activity for the production of 1,2PD. Experimental 

conditions such as hydrogen pressure, temperature, glycerol concentration, types of solvent, 

have been optimized. The effect of Pd and Mg have been investigated. Pseudo-first-order 

kinetics have been applied to estimate the reaction rate. It was found that the catalysts 

prepared via oxalate gel-coprecipitation had the highest activity for glycerol hydrogenolysis 

and the addition of alumina could prevent the deactivation of the catalysts and improve the 

catalyst stability. 

 

4.1 Effect of the Catalyst Preparation Method on Cu/ZnO/Al2O3 Catalysts 

Experiments have been carried out using Cu/ZnO/Al2O3 catalysts prepared by three different 

preparation methods, which were oxalate gel-coprecipitation (OA), Na2CO3 coprecipitation 

(Na) and impregnation (IMP). The molar ratio of Cu/Zn/Al catalysts prepared by oxalate gel-

coprecipitation and Na2CO3 coprecipitation was 25/25/50 and the molar ratio for the catalyst 

prepared by impregnation was 15/15/70. All the catalysts were pre-reduced using a hydrogen 
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stream (ultra-high purity) at 300ºC for 3 hours, which has been reported very frequently [47]. 

The experimental conditions for hydrogenolysis were: 200ºC, 500RPM, 400psi H2, 5wt% 

catalyst with respect to glycerol weight, 80% aqueous glycerol, and 24 hours reaction time. 

Figure 4-1 shows the glycerol conversion and 1,2PD selectivity over the reaction time using 

different catalysts. From Figure 4-1A it can be seen that the glycerol conversion over the 

reaction time is the highest using the catalyst prepared by oxalate gel-coprecipitation. Using 

the catalyst prepared by Na2CO3 coprecipitation, the glycerol conversion is lower; while the 

catalyst prepared by impregnation method shows the lowest glycerol conversion.  As shown 

in Figure 4-1B, the 1,2PD selectivities using different catalysts are not much different, which 

are between 92% and 94%. Table 4-1 and Figure 4-2 summarize the glycerol conversion and 

the yield of all other by-products. Using the catalyst prepared by oxalate gel-coprecipitation 

the glycerol conversion and 1,2PD selectivity are about 93.0% and 94.8% respectively; and 

they are higher than that obtained using the catalyst prepared by Na2CO3 coprecipitation 

which gives 77.0% glycerol conversion and 92.4% 1,2PD selectivity. The catalyst prepared 

by the impregnation method shows the lowest activity, i.e. the glycerol conversion is only 

17.2%, even though the 1,2PD selectivity is similar to that obtained using the catalysts 

prepared by Na2CO3 coprecipitation and oxalate gel-coprecipitation, the 1,2PD yield is very 

low. 
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Figure 4-1 Glycerol Conversion and 1,2PD Selectivity Comparison Using the Cu/ZnO/Al2O3 
Catalysts by Different Preparation Methods: A) Glycerol Conversion; B) 1,2PD Selectivity. 
Experimental Conditions: 200ºC, 500RPM, 400psi H2, 5wt% catalyst with respect to glycerol 
weight, 80wt% aqueous glycerol. Metal Composition: Cu/Zn/Al-(OA and Na) = 25/25/50 
(molar), Cu/Zn/Al-(IMP) = 15/15/70 (molar), support: γ-Al2O3.  
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Table 4-1 Effect of Preparation Method on Product Yielda. 

Catalysts  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

OA1 93.04 94.78 88.18 0.39 4.16 0.30 0.00 
Na2 77.02 92.44 71.20 0.52 5.06 0.25 0.00 
Imp3 17.16 94.53 16.22 0.46 0.39 0.09 0.00 

a. Reaction conditions: 200ºC, 400psi H2, 500RPM, 80wt% aqueous glycerol, 5wt% catalyst 
with respect to glycerol weight, 24 hours reaction time.  
1. Cu/ZnO/Al2O3 Catalyst Prepared by Oxalate Gel-coprecipitation Cu/Zn/Al = 25/25/50 
(molar) 
2. Cu/ZnO/Al2O3 Catalyst Prepared by Na2CO3 Coprecipitation Cu/Zn/Al = 25/25/50 (molar) 
3. Cu/ZnO/Al2O3 Catalyst Prepared by Impregnation Cu/Zn/Al = 15/15/70 (molar) 
 
 

 

Figure 4-2 Effect of Preparation Method on Product Yield. Experimental Conditions: 200ºC, 
500RPM, 400psi H2, 5wt% catalyst with respect to glycerol weight, 80wt% aqueous glycerol. 
Metal Composition: Cu/Zn/Al-(OA and Na) = 25/25/50 (molar), Cu/Zn/Al-(IMP) = 15/15/70 
(molar), support: γ-Al2O3. 

 

Pseudo-first-order kinetics have been used to calculate the first order rate constant of the 

catalysts prepared by the different preparation methods. Sample calculations are obtained 

from Equation 4-1 and Equation 4-2 and the results are shown in Figure 4-3. 

][][][][
0=+−=⇒=− tGLLnktGLLnGLk

dt
GLd                                                     Equation 4-1 
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Assume [GL] = [GL]t=0 – [1,2PD] 

][]}12[]{[ 00 == +−=− tt GLLnktPDGLLn                                                                Equation 4-2 

 

 

Figure 4-3 Pseudo-First-Order Kinetics Analyses for the Cu/ZnO/Al2O3 Catalysts Prepared 
by Different Preparation Methods. Experimental Conditions: 200ºC, 500RPM, 400psi H2, 
5wt% catalyst with respect to glycerol weight, 80% aqueous glycerol. Catalyst Composition: 
Cu/Zn/Al-(OA and Na) = 25/25/50 (molar), Cu/ZnO/Al2O3-Imp: Cu/Zn/Al-(IMP) = 15/15/70 
(molar), support: γ-Al2O3. 

 

The Cu/ZnO/Al2O3 catalyst prepared by the oxalic acid co-precipitation is the most active 

catalyst since the pseudo-first-order rate constant is the largest, which is calculated to be 
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2.539x10-5s-1; the rate constant of the catalyst prepared by Na2CO3 co-precipitation is 

1.434x10-5s-1, which is much smaller and the Cu/ZnO/Al2O3 catalyst prepared by the oxalate 

gel-coprecipitation; the catalyst prepared by the impregnation has the smallest rate constant 

which is only 1.938x10-6s-1. Therefore, the preparation methods affect the catalytic activity 

significantly. It has been reported that the Cu/ZnO/Al2O3 catalysts prepared by the oxalate 

gel-coprecipitation method can generate much smaller Cu particles to provide more active 

sites, so that the reaction rate is faster [78, 79, 122]. Furthermore, the catalysts prepared by 

the oxalate gel-coprecipitation can generate stronger acidity and more acidic sites based on 

the NH3 TPD results, and it might be able to facilitate the glycerol dehydration step to 

increase the reaction rate. The details will be explained in Section 6.1.1. 

 

4.2 Cu/Zn/Al Composition Study 

The optimum molar ratio of Cu to Zn was reported to be 1/1 in most of the reported literature 

on the activity of Cu/ZnO catalysts for the production of 1,2PD from glycerol [47, 67, 76, 

123]; therefore, the effect of alumina content was studied by keeping the Cu/Zn molar ratio at 

1/1. 0%, 10%, 30%, 50% and 70% of aluminum content (molar) were tested to find out the 

effect of aluminum content and the optimum composition. The final product yields are shown 

in Figure 4-4 and Table 4-2. The selectivity to 1,2PD is similar for all the catalysts which is 

over 90%. The glycerol conversion increases from 84.7% to 93.0% when the aluminum 

content is increased from 0% to 50%; when the aluminum content is further increased to 70%, 

the glycerol conversion dropped to 87.3%. Therefore, the optimum aluminum content is 50%. 

In order to check if the experimental result differences are due to the aluminum content 

rather than experimental error, experiments using a Cu/ZnO catalyst without aluminum 

added and 50% aluminum added have been repeated 3 times. A statistical analysis has been 

carried out using a t-distribution. The results show that the improvement of the activity is 

significant due to the addition of aluminum. 
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Figure 4-4 Effect of Alumina Content on Product Yield. Experimental Condition: 200ºC, 
500RPM, 400psi H2, 5wt% catalyst with respect to glycerol weight, 80% aqueous glycerol.  

 

Table 4-2 Effect of Alumina Content on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

Acetol 
 Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

50/50/0b 84.71±3.81 91.80±2.19 77.76±5.06 0.61±0.49 6.01±1.10 0.32±0.16 0.00 
35/35/30 88.21 93.87 82.80 0.50 3.62 0.67 0.63 
25/25/50b 93.04±2.48 94.78±1.09 88.18±2.30 0.39±0.27 4.16±1.27 0.30±0.05 0.00 
15/15/70 87.29 92.60 80.83 0.57 5.57 0.32 0.00 

aExperimental Condition: 200ºC, 500RPM, 400psi H2, 5wt% catalyst with respect to glycerol 
weight, 80% aqueous glycerol 24hours reaction time. 
b95% Confident Interval with t-distribution 
 

Figure 4-5 shows the glycerol conversion and 1,2PD selectivity during the reaction time for 

the catalysts with a Cu/Zn/Al ratio of 50/50/0, 35/35/30 and 25/25/50. As the aluminum 

molar ratio is increased from 0% to 50%, the glycerol conversion also increases over the 

reaction time. The experiment with a Cu/Zn/Al ratio of 25/25/50 shows the highest reaction 

rate and highest final glycerol conversion compared to the others and can be explained on the 

basis of the highest pseudo-first-order kinetic rate constant as shown in Figure 4-6. The 

selectivity to 1,2PD for all the catalysts over the reaction time does not change significantly. 

It is found that with aluminum added up to 50mol%, the catalytic activity is improved. It has 

been reported that with aluminum addition, the particles are very well mixed and 
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homogeneously distributed throughout the catalyst, and the aluminum in the catalyst is able 

to isolate the individual metal particles, avoiding their sintering [80, 124]. This will be 

further explained in Section 4.6 for catalyst lifetime and in Section 6.7 for XRD analysis. 

 

Figure 4-5 Glycerol Conversion and 1,2PD Selectivity Comparison Using the Cu/ZnO/Al2O3 
Catalysts with Different Aluminum Content: A) Glycerol Conversion; B) 1,2PD Selectivity. 
Experimental Conditions: 200ºC, 500RPM, 400psi H2, 5wt% catalyst with respect to glycerol 
weight, 80% aqueous glycerol.  
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Figure 4-6 Pseudo-First-Order Kinetics Analyses for the Cu/ZnO/Al2O3 Catalysts Prepared 
by Oxalate Gel-coprecipitation with Different Aluminum Molar Content. Experimental 
Conditions: 200ºC, 500RPM, 400psi H2, 5wt% catalyst with respect to glycerol weight, 80% 
aqueous glycerol. 

 

Keeping 50% aluminum content, the Cu/Zn ratio was also varied to confirm that 1/1 is the 

optimum ratio. The experiments with three different Cu/Zn ratios were carried out, which 

were Cu/Zn = 1/2 (16.67/33.33/50), Cu/Zn = 1/1 (25/25/50) and Cu/Zn = 2/1 

(33.33/16.67/50). The yields of final products are shown in Table 4-3. When Cu/Zn=1/1, the 

glycerol conversion is the highest among these catalysts with the three ratios. The 1,2PD 

selectivity for the catalyst with Cu/Zn= 1/2 is slightly higher than the other two, and the yield 
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of 1,2PD is the highest when Cu/Zn=1/1. It is also observed that by varying the Cu/Zn ratio 

from 1/2 to 2/1, the difference on 1,2PD yield is not significant. 

Table 4-3 Effect of Cu/Zn Molar Ratio on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

EG  
Yield 

Acetol  
Yield 

PrOH  
Yield 

Others  
Yield 

Cu/Zn/Al = 17/33/50 71.30 91.27 65.08 0.31 5.29 0.62 0.00 
Cu/Zn/Al = 25/25/50 77.24 88.54 68.39 0.36 7.64 0.85 0.00 
Cu/Zn/Al = 33/17/50 73.74 89.08 65.69 0.31 7.02 0.72 0.00 

aExperimental Condition: 200ºC, 500RPM, 400psi H2, 5wt% catalyst with respect to glycerol 
weight, 50% aqueous glycerol 24hours reaction time. 
 

4.3 Effect of Hydrogen Pressure Using a Cu/ZnO/Al2O3 Catalyst 

The experiments were carried out at 200psi 300psi and 400psi hydrogen pressure to study the 

effect of hydrogen pressure on the overall reaction. The glycerol conversion and 1,2PD 

selectivity during the reaction time are shown in Figure 4-7. In Figure 4-7A, it can be 

observed that when the pressure is higher the glycerol conversion and reaction rate are higher 

which is shown in Figure 4-8. The glycerol conversion rate strongly depends on hydrogen 

pressure possibly because that glycerol hydrogenolysis involves two consecutive reactions 

which are glycerol dehydration and acetol hydrogenation. The glycerol dehydration step is 

believed to be the rate-determining-step; the detailed explanation will be provided in Section 

4.8 for acetol hydrogenation. Therefore, when hydrogen pressure is high, the acetol, which is 

the intermediate, can be effectively reacted driving the reaction equilibrium of the rate-

determing-step in the forward direction. In that case, the overall rate of reaction is faster. It 

can also be observed in Figure 4-9 that when hydrogen pressure is low, the concentration of 

acetol is higher than when the hydrogen pressures are high. Figure 4-8B shows plots of the 

relationship between the pseudo-first-order rate constant and the hydrogen pressure; a linear 

relationship can be observed with a R2 value of 0.9889. Therefore, the overall glycerol 

hydrogenolysis reaction is a first order reaction with respect to hydrogen pressure and the 

rate constant increases linearly with increasing hydrogen pressure. 
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Figure 4-7 Effect of Hydrogen Pressure on Glycerol Conversion and 1,2PD Selectivity 
during the Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% aqueous 
glycerol, Cu/Zn/Al = 25/25/50 (molar).  
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Figure 4-8 Pseudo-First-Order Kinetics Analyses for the Cu/ZnO/Al2O3 Catalysts at 
Different Hydrogen Pressures. Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with 
respect to glycerol weight, 80% aqueous glycerol, Cu/Zn/Al = 25/25/50.  

 

In Figure 4-7B as well as in Table 4-4, it is noticed that the 1,2PD selectivity strongly 

depends on hydrogen pressure. When the hydrogen pressure is increased from 200psi to 

400psi, the 1,2PD selectivity increases from 57.7% to 94.8%. The low 1,2PD selectivity is 

due to many unknown by-products formed as detected by GC and shown in Figure 4-10. It is 

observed that when hydrogen pressure is increased from 200psi to 400psi, the signal is less 

complex and at 400psi, no other by-products formation is observed and only the peaks for 

acetol, 1,2PD, ethylene glycol and un-reacted glycerol are found. It has been reported that the 

unknown by-products are formed by side reactions due to the presence of acetol contacting 
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the catalysts since acetol is a very active species [125]. It was also reported by van Ryneveld 

et al. in 2011 that the by-products were formed via side reactions between acetol and glycerol, 

ethylene glycol or 1,2PD [99]. More observations supporting that the by-products are formed 

by side reactions with acetol will be provided in Section 4.8 for acetol hydrogenation. 

Therefore, a higher hydrogen pressure could improve the selectivity to 1,2PD since it can 

rapidly hydrogenate acetol to 1,2PD and thus eliminate the side reactions due to acetol. 

However, higher hydrogen pressure might facilitate the C-C cleavage to cause a higher yield 

of ethylene glycol as shown in Table 4-4. 400psi was chosen as the optimum hydrogen 

pressure since it gave the highest 1,2PD selectivity and yield of 1,2PD and almost no 

unknown by-products were observed in the final product.  

The dependence of hydrogen for this process was also calculated based on k’=k.[PH2]n where 
k’ is the calculated pseudo-first order rate constant and n is the order of hydrogen. After 
plugging the data from Figure 4-8, the reaction order of hydrogen was calculated to be 2.26.  

 

Figure 4-9 Acetol Concentration during the Reaction Time at Different Hydrogen Pressures. 
Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% 
aqueous glycerol, Cu/Zn/Al = 25/25/50.  
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Table 4-4 Effect of Hydrogen Pressure on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield Others Yield 

400psi 93.04 94.78 88.18 0.39 4.16 0.30 0.00 
300psi 74.02 90.15 66.73 2.19 1.09 0.78 3.23 
200psi 51.32 57.71 29.62 1.98 0.96 0.97 17.79 
a Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 
80% aqueous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction time.  

 

 

Figure 4-10 GC Profile of the Final Products at Different Hydrogen Pressures. Experimental 
Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% aqueous 
glycerol, Cu/Zn/Al = 25/25/50 Catalyst, 24 hours reaction time.  

 

4.4 Effect of Glycerol Concentration Using Cu/ZnO/Al2O3 Catalyst 

The effect of aqueous glycerol feed concentration on the production of 1,2PD was 

investigated. It has been reported that water is an inhibitor in the process and it is always 
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preferable to reduce the water content from the initial reaction mixture to drive the 

equilibrium toward the products [28, 68]. In addition, as the concentration of glycerol 

decreases, the size of the reactor will have to be enlarged to produce the same amount of 

product. Therefore, experiments with different water content were carried out to study the 

initial glycerol concentration effect on the overall reaction. The experiments with 4 different 

initial glycerol concentrations were carried out, which were 100%, 80%, 60% and 50%. The 

glycerol conversion and 1,2PD selectivity over the reaction time are shown in Figure 4-11. 

It can be seen from Figure 4-11A that when the glycerol concentration is increased from 50% 

to 80%, the glycerol conversion and the reaction rate increase as shown in Table 4-5. This is 

possibly due to the fact that as the water content is reduced, the equilibrium is driven in the 

forward direction. From Figure 4-11B, it can be seen that the glycerol initial concentration 

does not have a significant effect on the selectivity to 1,2PD and when the glycerol 

concentration is 80%, the 1,2PD selectivity is slightly higher (Table 4-5). When the glycerol 

concentration is further increased to 100%, the glycerol conversion significantly decreases as 

shown in Figure 4-11A. Dasari in 2006 reported that when pure glycerol was used the 

degradation of reaction product occurred due to polymerization, so it was essential to have 

10%~20% water [17].    Therefore, 80% aqueous glycerol is considered as the optimum 

glycerol concentration in the reaction mixture. 
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Figure 4-11 Effect of Initial Glycerol Concentration on Glycerol Conversion and 1,2PD 
Selectivity during the Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. 
Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol 
weight, Cu/Zn/Al = 25/25/50.  

 

Table 4-5 Effect of Glycerol Concentration on Product Yielda 

Glycerol 
Concentration 

Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

Rate   
Constant 

100%  35.27 88.99 31.38 0.75 0.39 0.65 2.10 5.90-6s-1 

80%  93.04 94.78 88.18 4.16 0.39 0.30 0.00 2.54-5s-1 
60%  85.18 89.75 76.45 7.34 0.53 0.87 0.00 1.59-5s-1 

50%  77.24 88.54 68.39 7.64 0.36 0.85 0.00 1.33-5s-1 

aExperimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol 
weight, Cu/Zn/Al = 25/25/50, 24 hours reaction time.  
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4.5 Effect of Solvent Using a Cu/ZnO/Al2O3 Catalyst 

In most biodiesel plants methanol is used for the transesterification reaction since it is 

cheaper compared with ethanol and butanol and also has a smaller molecular size facilitating 

mass transfer of methanol within the pores of the catalysts [126-128]. Crude glycerol always 

contains a certain amount of methanol [129]. In order to investigate the effect of methanol on 

the catalytic activity, an experiment with 80% glycerol and 20% methanol (by weight) was 

carried out and the experimental results are shown in Figure 4-12.  

 

Figure 4-12 Effect of Methanol as the Solvent on Glycerol Conversion and 1,2PD Selectivity 
during the Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% 
glycerol, Cu/Zn/Al = 25/25/50. 
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From the results, it can be observed that methanol as a solvent has a negative effect on the 

overall reaction. The glycerol conversion is much lower over the reaction time when 

methanol is used as the solvent as shown in Figure 4-12A. The reaction rate is much slower 

when methanol is used as the solvent, as shown in Figure 4-13. The calculated pseudo-first-

order rate constant is 7.021x10-6s-1 when methanol is used as the solvent, while when water is 

used as the solvent, the rate constant is about 3.6 times higher being 2.539x10-5s-1. The 

conversion of glycerol when water is used as the solvent (93.04%) is much higher than that 

when methanol is used as shown in Table 4-6. From Figure 4-12B as well as Table 4-6, it can 

also be noticed that the 1,2PD selectivity is also much higher when water is used as the 

solvent. The yield of other by-products is 4.6% indicating when methanol is used as the 

solvent, the hydrogen pressure is not sufficient and the acetol yield is also observed to be 

much higher. It is possible that the solubility of hydrogen is lower in methanol than in water 

which has been often reported [130-133]. Figure 4-14 illustrates the GC profile for the final 

products when 20% methanol is used as the solvent and the results are compared with the 

profile for the products when 20% water is used as the solvent at low hydrogen pressure 

(200psi). It can be observed that the retention time for the production of the unknown by-

products for these two samples match each other very well. Therefore, the formation of by-

products when methanol is used as the solvent is due to insufficient hydrogen dissolved in 

the solution for the hydrogenation reaction.  
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Figure 4-13 Pseudo-First-Order Kinetics Analyses for the Cu/ZnO/Al2O3 Catalysts Using 
Different Solvent. Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with 
respect to glycerol weight, 80% aqueous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction 
time. 

 

Table 4-6 Effect of Type of Solvent on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

20% Water 93.04 94.78 88.18 0.39 4.16 0.30 0.00 
20% Methanol 56.20 81.35 45.71 1.25 3.95 0.69 4.59 

aExperimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol 
weight, 80% aqueous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction time. 
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Figure 4-14 GC Profile of the Final Products Using Different Solvent. Blue: 20% Water at 
200psi H2; Red: 20% Methanol at 400psi H2. Experimental Condition: 200ºC, 400psi H2, 
500RPM, 5wt% catalyst with respect to glycerol weight, 80% aquous  glycerol, Cu/Zn/Al = 
25/25/50. 

 

Currently in most biodesil plants, homogeneous NaOH or KOH is used for the 

transesterification reactions. Therefore, there is always a certain amount of catalyst residual 

remaining in the crude glycerol [129]. In order to investigate the effect of the residual base 

on the overall reaction, experiments with NaOH addition at different hydrogen pressures 

have been carried out. The reactions were conducted at 200ºC, and the stirring speed was set 

to 500RPM, with 5wt% of catalyst with respect to the glycerol feed. 5wt% NaOH with 

respect to total reactant mixture weight was added, and the experiments at two hydrogen 

pressures were conducted, which were 400psi and 600psi. The yields of the different 

products after 24 hours reaction time are listed in Table 4-7. It can be observed that the 
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presence of NaOH has a negative effect on the overall reaction since at 400psi hydrogen 

pressure, the final glycerol conversion drops from 93.04% when no NaOH is added to only 

81.9% with 5wt% NaOH addition, and the selectivity to 1,2PD drops from 94.8% to 86.3%. 

Furthermore the yield of other undesired by-products is 6.9%. When the hydrogen pressure is 

increased from 400psi to 600psi, the glycerol conversion is only slightly improved from 81.9% 

to 84.5%, and the selectivity to 1,2PD is not changed significantly. It was also noticed that 

with the addition of NaOH, no acetol was detected in the final products but still around 6% of 

other by-products were formed. Figure 4-15 illustrates the GC profile for the final products 

when 5% NaOH was used and the results are compared with the profile for the products 

when no NaOH was used at low hydrogen pressure (200psi). It can be observed that the 

retention time of the unknown by-products for these two samples match each other very well. 

Therefore, the formation of by-products when NaOH is added is due to side reactions of 

acetol. It is possible that NaOH can catalyze the side reactions with acetol; therefore, acetol 

can be rapidly reacted and no acetol is found in the final products. 

 

Table 4-7 Effect of NaOH on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

No NaOH 400psi 93.04 94.78 88.18 4.16 0.39 0.30 0.00 
5% NaOH 400psi  81.90 86.28 70.66 3.64 0.00 0.72 6.88 
5% NaOH 600psi 84.51 86.03 72.70 4.82 0.00 1.30 5.69 
aCondition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% 
aquous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction time, 5wt% NaOH with respect to 
total reactant weight. 
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Figure 4-15 GC Profile of the Final Products with NaOH Added. Condition: 200ºC, 400psi 
H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 80% aquous glycerol, Cu/Zn/Al 
= 25/25/50, 24 hours reaction time, 5wt% NaOH with respect to total reactant weight. 

 

4.6 Effect of Al on Cu/ZnO/Al2O3 Catalyst Lifetime 

The deactivation of Cu based catalysts for glycerol hydrogenolysis processes has been 

frequently reported and many researchers have done extensive research to improve the 

lifetime of the catalysts [68, 80, 89]. In most of the literature deactivation of Cu based 

catalysts by sintering is reported as being the main reason causing the loss of activity. It has 

been reported that adding another metal oxide such as Al2O3, Ga2O3, and ZrO2 can improve 

the stability of the Cu/ZnO catalysts [80, 124, 134, 135]. Since Al2O3 has the lowest cost and 

it is non-toxic, experiments on catalyst lifetime have been carried out to study the effect of 

Al2O3 on catalyst stability. The spent catalysts were recycled by filtering the final reaction 
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mixture. The filtered particles were rinsed with ethanol three times and dried in air at 110ºC 

overnight. Then the particles were calcined in air at 360ºC for 4 hours. Some fresh catalyst 

was added to make up the loss during the recycling process. The calcined particles were 

reduced in air at 300ºC for 3 hours before the experiment. The experiments were carried out 

at 200ºC, with 5wt% catalyst with respect to glycerol weight being added, and 50wt% 

aqueous glycerol was used as the reactant mixture. 

The glycerol conversion and 1,2PD selectivity over the reaction time when using the fresh 

and recycled Cu/ZnO/Al2O3 catalysts are shown in Figure 4-16 and Table 4-8. It can be 

observed that after 4 times of recycling, no obvious deactivation is found since the glycerol 

conversions and 1,2PD selectivity during the reaction time using the recycled catalyst are not 

significantly lowered. The reaction rate is also not lowered using spent catalyst up to the 

forth recycling as shown in Figure 4-17. The glycerol conversion drops slightly from 77.2% 

to 73.6% and the selectivity to 1,2PD does not change after 4th recycling being maintained at 

88.6%. Therefore, after 4 times recycling there is no significant loss in catalyst activity. It 

was reported that when Al was added to the Cu/ZnO catalyst, it was able to isolate the 

individual metal particles, avoiding their sintering [80, 124]. It can also be observed in the 

Section 6.7 concerned with the TEM analysis that when Al is added, the particle size 

distribution for the spent catalyst is not significantly changed compared with the fresh 

catalyst. 
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Figure 4-16 Glycerol Conversion and 1,2PD Selectivity during the Reaction Time using 
Fresh and Recycled Catalysts: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, Cu/Zn/Al = 25/25/50. 
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Figure 4-17 Pseudo-First-Order Kinetics Analyses for the Fresh and Recycled 
Cu/ZnO/Al2O3 Catalysts. Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% 
catalyst with respect to glycerol weight, 50% aqueous glycerol, Cu/Zn/Al = 25/25/50. 

 

Table 4-8 Product Yield Using Fresh and Recycled Cu/ZnO/Al2O3 Catalystsa. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

Fresh 77.24 88.54 68.39 0.36 7.64 0.85 0.00 
First Recycle 75.14 90.14 67.74 0.00 6.54 0.87 0.00 
Second Recycle 75.91 89.53 67.96 0.00 7.11 0.83 0.00 
Third Recycle 73.95 89.37 66.09 0.43 7.42 0.00 0.00 
Forth Recycle 73.56 88.64 65.20 0.45 6.86 1.05 0.00 
aCondition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction time 
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Figure 4-18 shows the glycerol conversion and 1,2PD selectivity during the reaction time 

using the fresh and recycled Cu/Zn catalysts for comparison to investigate the effect of Al on 

the stability of the catalyst. Figure 4-18A shows that the glycerol conversion using fresh 

Cu/ZnO catalyst during the reaction time is much higher than that using the first recycled 

catalyst, and when the catalyst is reused a second time, the glycerol conversion is very low 

and the final conversion at 24 hours is only 17.8% while the glycerol final conversion using 

fresh Cu/ZnO catalyst is 46.44% as shown in Table 4-9. From Figure 4-18B, it is noticed that 

even the conversion of glycerol decreases significantly when the catalyst is recycled and 

reused, the 1,2PD selectivity is not seriously affected. It can be explained in that the 1,2PD 

selectivity strongly depends on hydrogen pressure, when the catalyst is deactivated, and the 

activity of glycerol dehydration is lower; as the hydrogen pressure is sufficient for acetol 

hydrogenation. The deactivation of Cu/ZnO catalyst has been often reported [68, 80, 89]. The 

most commonly reported reason for catalyst deactivation is sintering and it is also observed 

in Section 6.7 from the TEM analysis for the Cu/ZnO spent catalyst; the particle size is much 

larger and the distribution is much wider than that of a fresh catalyst indicating that severe 

sintering occurred. Figure 4-19 shows that when the Cu/ZnO catalyst is recycled, the reaction 

is slower since the rate constant is lower. The reason is because when the catalyst is sintered, 

the particle size is larger resulting in fewer active sites for the reaction. 
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Figure 4-18 Glycerol Conversion and 1,2PD Selectivity during the Reaction Time using 
Fresh and Recycled Catalysts: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, Cu/Zn = 50/50. 

 

Table 4-9 Product Yield Using Fresh and Recycled Cu/ZnO Catalystsa. 

 
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

Fresh 46.44 87.79 40.77 0.00 4.37 0.84 0.46 
First Recycle 40.09 88.31 35.40 0.43 2.47 0.86 0.93 

Second Recycle 17.77 84.77 15.07 0.00 1.22 0.77 0.72 
aCondition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, Cu/Zn = 50/50, 24 hours reaction time. 
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Figure 4-19 Pseudo-First-Order Kinetics Analyses for the Fresh and Recycled Cu/ZnO 
Catalysts. Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect 
to glycerol weight, 50% aqueous glycerol, Cu/Zn = 50/50. 

 

It has been reported by Bienholz et al. in 2010 that the water content plays an important role 

on the catalyst activity [68]. In their report, when the water content was increased from 0% 

(pure glycerol) to 50%, the glycerol conversion dropped from 46% to only 5%. It was 

explained that water could cause a formation of larger Cu particles and hence smaller total 

Cu surface area. Figure 4-20 compares the catalytic activity with Al and without Al using 

different water content in the reactant mixture. It can be observed that when Al is added, the 

glycerol conversion only drops from 93% to 77% when the water content is increased from 
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20wt% to 50wt%; however, when Al is not used, the glycerol conversion drops from 86% to 

46% when the water content is increased from 20wt% to 50wt%. This suggests that Al can 

also improve the water tolerance of the catalyst so that it can be used with various water 

contents. Figure 4-21 shows that when the water content is increased from 20wt% to 50wt%, 

the rate constants decreased. This is possibly due to that higher water content can inhibit the 

glycerol dehydration step resulting in a lower reaction rate. 

 

Figure 4-20 Effect of Al on Glycerol Conversion using Different Water Content: A) 
Cu/Zn/Al = 25/25/50; B) Cu/Zn = 50/50. Experimental Condition: 200ºC, 400psi H2, 
500RPM, 5wt% catalyst with respect to glycerol weight. 
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Figure 4-21 Pseudo-First-Order Kinetics Analyses for Effect of Al on Glycerol Conversion 
using Different Water Content. Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% 
catalyst with respect to glycerol weight, with Al: Cu/Zn/Al=25/25/50, without Al: 
Cu/Zn=50/50. 

 

4.7 Effect of Temperature and Kinetic Study Using Cu/ZnO/Al2O3 Catalyst 

Experiments at different temperatures using a Cu/ZnO/Al2O3 catalyst have been carried out 

to study the effect of temperature on the reaction rate to obtain the activation energy. Three 

temperatures were selected for the reactions which were 180ºC, 200ºC and 220ºC. The 

experimental results are shown in Figure 4-22. It can be observed that at higher temperature, 

the glycerol conversion at the beginning of the reaction time is higher. It is also found that at 

220ºC the final conversion of glycerol after 24 hours (74.1%) is slightly lower than that at 

200ºC (77.4%) also listed in Table 4-10. One possible reason is because at higher 

temperature, the rate of glycerol dehydration is higher and more acetol is formed; the other 

reason might be when the temperature is higher the solubility of hydrogen in the reaction 

mixture is lower and the hydrogen supplied in the reaction mixture is not sufficient to convert 

all the acetol to 1,2PD. Therefore, the 1,2PD selectivity at 220ºC is also lower than those 
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obtained at 200ºC and 180ºC since the selectivity to 1,2PD strongly depends on hydrogen 

pressure. 

 

Figure 4-22 Effect of Temperature on Glycerol Conversion and 1,2PD Selectivity during the 
Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental Condition: 
400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% aqueous glycerol, 
Cu/Zn/Al = 25/25/50. 
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Table 4-10 Effect of Temperature on Product Yielda. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

220ºC 74.11 75.43 55.90 2.80 1.78 5.04 8.58 
200ºC 77.24 88.54 68.39 7.64 0.36 0.85 0.00 
180ºC 34.34 88.37 30.35 3.70 0.00 0.30 0.00 

aConditions: 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, Cu/Zn/Al = 25/25/50, 24 hours reaction time. 

 

It can be seen from Figure 4-22 the reaction rate is strongly temperature dependent. Based on 

the Arrhenius Equation, the activation can be calculated using Equation 4-3. By plotting ln(k) 

versus 1/T, the intersect of the estimated linear trend line is ln(A0) and the slope of the line is 

-Ea/R where R is the gas constant (8.314JK-1mol-1). The fitting of the kinetic parameters is 

shown in Figure 4-24. The pre-exponential factor is calculated to be 24270.1 and the 

activation energy is calculated to be 69387J/mol or 69.39kJ/mol, which indicates that the 

reaction with this catalyst is chemically kinetically controlled.  

 
RTEaeAk /

0
−=  => TR

EaAk 1)ln()ln( 0 −=                                              Equation 4-3 
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Figure 4-23 Pseudo-First-Order Kinetics Analyses for the Cu/Zn/Al Catalyst at Different 
Temperatures. Experimental Condition: 400psi H2, 500RPM, 5wt% catalyst with respect to 
glycerol weight, 50% aqueous glycerol, Cu/Zn/Al = 25/25/50. 
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Figure 4-24 Effect of Temperature on Rate Constant. Experimental Condition: 400psi H2, 
500RPM, 5wt% catalyst with respect to glycerol weight, 50% aqueous glycerol, Cu/Zn/Al = 
25/25/50. 

 

4.8 Acetol Hydrogenation 

Acetol hydrogenation reactions were carried out to investigate the effect of acetol on the 

selectivity to 1,2PD. 20wt% aqueous acetol solution was used as the reactant mixture. The 

experiments were carried out at 3 different hydrogen pressures which were 400psi, 600psi 

and 800psi, and at 200ºC, 20wt% aqueous acetol was used as the reactant, 5wt% catalyst 

(Cu/Zn/Al=25/25/50) with respect to acetol weight was loaded. The conversion of acetol and 

1,2PD selectivity over the reaction time are shown in Figure 4-22A and 4-22B respectively. 

Pseudo-first-order kinetics was used to calculate the first order rate constant for acetol 

hydrogenation. The sample calculation is according to Equation 4-4.  

]ln[]ln[][][
0=+−=⇒=− tAcetolktAcetolAcetolk

dt
Acetold                                 Equation 4-4 

From Figure 4-25A, it can be seen that when the hydrogen pressure is higher, the acetol 

conversion is higher and the hydrogenation rate is higher since a higher rate constant is 

observed in Figure 4-26. The rate constant at 400psi is calculated to be 1.297x10-4s-1 which is 

almost one order of magnitude higher than that obtained for glycerol hydrogenolysis. 
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Therefore, the acetol hydrogenation reaction is much faster and the rate-limiting-step of 

glycerol hydrogenolysis is glycerol dehydration. It is observed in Figure 4-25B that the 

1,2PD selectivity is increased when the hydrogen pressure is increased; this might be because 

if the hydrogenation rate is higher, the concentration of un-hydrogenated acetol is lower as 

shown in Figure 4-25C; hence less by-products will be formed due to side reactions. The 

pseudo-first-order rate constant increases linearly when the hydrogen pressure is increased as 

shown in Figure 4-26B; therefore, the hydrogenation reaction is approximately first order 

with respect to hydrogen pressure. 
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Figure 4-25 Effect of Hydrogen Pressure on Acetol Conversion and 1,2PD Selectivity over 
the Reaction Time: A) Acetol Conversion; B) 1,2PD Selectivity; C) Acetol Concentration. 
Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to acetol weight, 20% 
aqueous acetol, Cu/Zn/Al = 25/25/50. 

 

Table 4-11 Effect of Acetol on Product Yielda. 

  Acetol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Others 
Yield 

400psi 97.70 63.08 61.63 36.07 
600psi 100.00 69.51 69.51 30.49 
800psi 100.00 77.12 77.12 22.88 
aConditions: 200ºC, 500RPM, 5wt% catalyst with respect to acetol weight, 20wt% aqueous 
acetol, Cu/Zn/Al = 25/25/50, 8 hours reaction time. 

87 

 



 

Figure 4-26 Pseudo-First-Order Kinetics Analysis for Acetol Hydrogenation at Different 
Hydrogen Pressures. Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect 
to acetol weight, 20wt% aqueous acetol, Cu/Zn/Al = 25/25/50. 

 

In order to further investigate the effect of acetol concentration on the selectivity to 1,2PD, 

experiments were carried out with different acetol concentrations which were 10wt% and 

20wt% under 400psi hydrogen pressure, 5wt% catalyst with respect to acetol weight was 

loaded and the reactions were conducted at 200ºC. When the acetol feed concentration was 

low the selectivity to 1,2PD was higher (Figure 4-27B) because less by-products were 
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formed. Therefore, the 1,2PD selectivity is strongly dependent on the acetol concentration in 

the reaction mixture. As shown in Figure 4-27A, the rate constant for the reactions with 20% 

acetol is slightly higher than that with 10% acetol.  

 

Figure 4-27 Effect of Hydrogen Pressure on Reaction Rate and 1,2PD Selectivity during the 
Reaction Time: A) Pseudo-first-order Reaction Rate Fitting; B) 1,2PD Selectivity. 
Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to acetol weight, 
Cu/Zn/Al = 25/25/50. 

 

It has been previously discussed that in a glycerol hydrogenolysis process when the hydrogen 

pressure is low, the un-desired by-products are likely due to side reaction caused by the 

presence of the intermediate acetol. Figure 4-25 compares the retention time of the final 

products from glycerol hydrogenolysis when hydrogen pressure is low (200psi) with the 
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acetol hydrogenation. It can be seen that the retention times of the undesired by-products for 

both reactions match each other very well. This confirms that the by-product formation is due 

to insufficient hydrogen supplied to rapidly hydrogenate the acetol to 1,2PD and the side 

reactions occurred when the acetol concentration is high. Therefore, the selectivity to 1,2PD 

could be improved by either increasing the hydrogen supply or improving the activity of the 

hydrogenation catalyst. From the GC profile of the final product, it is noticed that no 

ethylene glycol is detected for acetol hydrogenation as shown in Figure 4-28. It is apparent 

that ethylene glycol is formed via C-C cleavage of glycerol; this observation is in agree with 

the report by Tanielyan et al. in 2013 [45] in Section 2.1. 

 

Figure 4-28 GC Profile of the Final Products for glycerol hydrogenolysis and acetol 
hydrogenation: a) Acetol Hydrogenation: 200ºC, 500RPM, 20% aqueous acetol, 5wt% 
catalyst with respect to acetol weight, 8 hours reaction time, Cu/Zn/Al=25/25/50 catalyst, 
400psi H2 Pressure. b) Glycerol Hydrogenolysis: 200ºC, 500RPM, 80% aqueous glycerol, 
5wt% catalyst with respect to glycerol weight, 24 hours reaction time, Cu/Zn/Al=25/25/50, 
200psi H2 Pressure. 
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4.9 Effect of Ni on a Cu/ZnO/Al2O3 Catalyst 

It has been reported that Ni is widely used in hydrogenation processes and it is less costly 

compared to the precious hydrogenation metals such as platinum, palladium and ruthenium 

[136, 137]. Ni was loaded on a Cu/ZnO/Al2O3 catalyst in 2 different ways. First of all, Ni 

was loaded on the Cu/ZnO/Al2O3 catalyst via oxalic acid co-precipitation. The catalyst 

preparation procedures are described in Section 3.1.1. The other way was just to mix a pre-

calculated amount of NiO purchased from Sigmal Aldridge Co. Canada with the 

Cu/ZnO/Al2O3 catalyst prepared by oxalage gel-coprecipitation method physically.  

The catalyst was used for acetol hydrogenation to investigate the improvement of the 

hydrogenation activity by addition of Ni. 20wt% aqueous acetol solution was used as the 

reactant mixture, 400psi hydrogen pressure, 5wt% catalyst with respect to acetol at 200ºC 

were chosen for the reaction conditions. Figure 4-29 shows the acetol conversion and 1,2PD 

selectivity during the reaction time and Figure 4-30 shows the pseudo-first-order rate 

constant for each catalyst. It can be observed that using the catalysts with 5mole% Ni loaded 

in both ways, the acetol conversions and the reaction rates are higher than that without Ni. 

Compared with the Cu/ZnO/Al2O3 catalyst without Ni, the reaction rate is increased by 100% 

when 5mole% Ni is added. By comparing the two different Ni loading methods, using the 

catalyst with 5mole% Ni loaded by co-precipitation a higher rate constant (2.721x10-4s-1) is 

obtained compared with that obtained by physically mixing (2.272x10-4s-1). This may be due 

to the fact that for the catalyst prepared by co-precipitation method, the metals are very well 

mixed; therefore, the catalyst activity can be improved. With Ni loaded, the 1,2PD selectivity 

is also higher than that without Ni loaded. The results have shown that with Ni loaded, the 

hydrogenation rate is higher; the concentration of the un-reacted acetol in the reaction 

mixture is lower and less amounts of by-products are formed via the side reactions. Since Ni 

can improve the hydrogenation activity of the catalyst, the selectivity to 1,2PD is improved 
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and the Ni loading using the co-precipitation method apparently has a better enhancement 

effect on the catalytic acitivity than physical mixing. 

 

Figure 4-29 Effect of Ni Loading on Acetol Conversion and 1,2PD Selectivity during the 
Reaction Time: A) Acetol Conversion; B) 1,2PD Selectivity. Experimental Condition: 200ºC, 
500RPM, 5wt% catalyst with respect to acetol weight, 20% aqueous acetol. 
Ni/Cu/Zn/Al=5/22.5/22.5/50 (molar). 
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Figure 4-30 Pseudo-First-Order Kinetics Analyses for the Effect of Ni on Acetol 
Hydrogenation. Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to 
acetol weight, 20% aqueous acetol. Ni/Cu/Zn/Al=5/22.5/22.5/50 (molar). 

 

Knowing that Ni can improve the hydrogenation activity of the Cu/ZnO/Al2O3 catalyst, the 

effect of Ni loading for glycerol hydrogenolysis reactions was investigated. As shown in 

Figure 4-31 and Figure 4-32, the glycerol conversion and the reaction rate with Ni added are 

slightly lower than that without Ni loaded. It is found that some acidic sites are lost when Ni 

is added based on the NH3 TPD results (see Section 6.1); therefore, the activity of the 

catalysts for glycerol dehydration is also inhibited causing a slower reaction rate since 

glycerol dehydration is the rate-determining-step of the overall reaction. Details of the 
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change of acidity with Ni added will be presented in Section 6.1 for the NH3 TPD analysis. 

From Figure 4-31B, it can be observed that the selectivity to 1,2PD is very similar for all 

these three catalysts as shown in Table 4-12. By comparing the catalysts with different Ni 

loading methods, it is found that these two loading methods do not make significant 

differences since the glycerol conversion, 1,2PD selectivity and reaction rate are not 

significantly improved after Ni is added. 

 

Figure 4-31 Effect of Ni Loading on Glycerol Conversion and 1,2PD Selectivity during the 
Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental Condition: 
200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 80wt% aqueous glycerol. 
Ni/Cu/Zn/Al=5/22.5/22.5/50 (molar). 
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Figure 4-32 Pseudo-First-Order Kinetics Analyses for the Effect of Ni on Glycerol 
Hydrogenolysis. Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to 
glycerol weight, 80wt% aqueous glycerol. Ni/Cu/Zn/Al=5/22.5/22.5/50 (molar). 

 

Table 4-12 Effect of Ni on Product Yield for a Glycerol Hydrogenolysis Processa. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
 Yield 

EG  
Yield 

Acetol 
 Yield 

PrOH  
Yield 

Others 
Yield 

No Ni 93.04 94.78 88.18 4.16 0.39 0.30 0.00 
5% Ni Co-precipitation 84.12 93.66 78.78 3.61 0.46 0.60 0.67 
5% Ni Physically Mixed 85.02 94.79 80.60 3.26 0.20 0.57 0.59 

aCondition: 500RPM, 5wt% catalyst with respect to glycerol weight, 80wt% gelycerol, 
400psi Hydrogen, 24 hours reaction time, 200ºC. Ni/Cu/Zn/Al=5/22.5/22.5/50 (molar). 
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4.10 2wt% Pd Supported on a Cu/MgO/Al2O3 Catalysts 

The Cu/MgO/Al2O3 catalyst is found to have a higher activity than Cu/ZnO/Al2O3 for the 

glycerol hydrogenolysis process via in situ hydrogen produced by methanol steam reforming 

and Pd as a promoter can improve the catalyst activity, which will be described in Chapter 5. 

In order to investigate the Cu/MgO/Al2O3 catalyst activity on glycerol for the hydrogenolysis 

process with molecular hydrogen added and the effect of Pd as a promoter, experiments were 

carried out using a Cu/MgO/Al2O3 catalyst with an optimum molar ratio 

(Cu/Mg/Al=22.5/67.5/10) via the oxalate gel-coprecipitation method and the Cu/MgO/Al2O3 

catalyst with 2wt% Pd loaded by an impregnation method. The detailed preparation method 

procedure is described in Section 3.1. The experimental conditions were: 200ºC, 500RPM, 

5wt% catalyst with respect to glycerol weight, 50wt% aqueous glycerol and 24 hours 

reaction time. The glycerol conversion and 1,2PD selectivity are compared with those using 

Cu/ZnO/Al2O3 as shown in Figure 4-33. 

From Figure 4-33A, it can be observed that at the beginning of the reaction, the glycerol 

conversion over the reaction time when using the Cu/MgO/Al2O3 catalyst is higher than that 

when using the Cu/ZnO/Al2O3 catalyst; as the reaction goes on, the increase of glycerol 

conversion is slower and the final conversion using Cu/MgO/Al2O3 after 24 hours is lower 

than when using the Cu/ZnO/Al2O3 catalyst as shown in Table 4-13. This is likely due to 

catalyst deactivation occurring during the reaction time with the Cu/MgO/Al2O3 catalyst. 

Therefore, at the early stage, the reaction using the Cu/MgO/Al2O3 catalsyt is faster than that 

using the Cu/ZnO/Al2O3 as shown in Figure 4-34 and the calculated pseudo-first-order rate 

constant is higher using the Cu/MgO/Al2O3 catalyst (2.469x10-5s-1) than when using the 

Cu/ZnO/Al2O3 catalyst (1.456x10-5s-1); but the final glycerol conversion using the 

Cu/ZnO/Al2O3 catalyst (77.2%) is higher than when using the Cu/MgO/Al2O3 catalyst 

(63.1%). When 2wt% Pd is loaded on the Cu/MgO/Al2O3 catalyst, the glycerol conversion 

over the reaction time is higher than when using the Cu/ZnO/Al2O3 catalyst. For the 
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Cu/MgO/Al2O3 catalyst the reaction rate shows about a 100% increase compared with the 

Cu/ZnO/Al2O3 catalyst as shown in Figure 4-34. As listed in Table 4-13, the final glycerol 

conversion using the 2wt%Pd-Cu/MgO/Al2O3 catalyst is also higher. The 1,2PD selectivity 

using these catalysts is not significantly different, being between 88% and 90%, indicating 

that 400psi hydrogen pressure is sufficient for the hydrogenolysis because no other unknown 

by-product was detected by GC as shown in Table 4-13. 

 

Figure 4-33 Glycerol Conversion and 1,2PD Selectivity during the Reaction Time: A) 
Glycerol Conversion; B) 1,2PD Selectivity. Experimental Condition: 200ºC, 500RPM, 5wt% 
catalyst with respect to glycerol weight, 50wt% aqueous glycerol, Cu/Zn/Al=25/25/50, 
Cu/Mg/Al=22.5/67.5/10. 
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Table 4-13 Products Yield Comparison between Cu/MgO/Al2O3 and Cu/ZnO/Al2O3
a. 

 
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD 
Yield 

EG 
Yield 

Acetol 
Yield 

PrOH 
Yield 

Others 
Yield 

Cu/Zn/Al 77.24 88.54 68.39 7.64 0.36 0.85 0.00 
Cu/Mg/Al 63.07 90.37 57.00 5.39 0.69 0.00 0.00 

2Pd-Cu/Mg/Al 83.91 89.60 75.18 7.58 0.46 0.11 0.58 
aCondition: 500RPM, 5wt% catalyst with respect to glycerol weight, 50wt% glycerol, 400psi 
Hydrogen, 24 hours reaction time, 200ºC, Cu/Zn/Al=25/25/50, Cu/Mg/Al=22.5/67.5/10. 

 

 

Figure 4-34 Pseudo-First-Order Kinetics Analyses for Cu/Zn/Al, Cu/Mg/Al and 2wt%Pd-
Cu/Mg/Al Catalysts. Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect 
to glycerol weight, 50wt% aqueous glycerol, Cu/Zn/Al=25/25/50, Cu/Mg/Al=22.5/67.5/10. 
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In order to investigate the stability of 2wt% Pd-Cu/MgO/Al2O3 catalyst for the glycerol 

hydrogenolysis process, the spent catalyst has been recycled and reused. The glycerol 

conversion and the 1,2PD selectivity are shown in Figure 4-35. An obvious activity 

deactivation is observed since the glycerol conversion using the spent catalyst is significantly 

lower than that using fresh catalyst. The reaction rate drops by 50% as shown in Figure 4-36. 

 

Figure 4-35 Glycerol Conversion and 1,2PD Selectivity during the Reaction Time using 
Fresh and Recycled Catalysts: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 200ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 (Cu/Mg/Al=22.5/67.5/10). 
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Figure 4-36 Pseudo-First-Order Kinetics Analyses for the Fresh and Recycled 2wt% Pd-
Cu/MgO/Al2O3 Catalysts. Experimental Condition: 200ºC, 400psi H2, 500RPM, 5wt% 
catalyst with respect to glycerol weight, 50% aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 
(Cu/Mg/Al=22.5/67.5/10). 

 

4.11 Effect of Temperature and Kinetic Study Using 2wt% Pd-Cu/MgO/Al2O3 

Catalyst 

The experiments at different temperatures using the 2wt% Pd supported on Cu/MgO/Al2O3 

catalyst have been carried out to study the effect of temperature on the glycerol 

hydrogenolysis process and to obtain the activation energy. Three temperatures, namely, 

180ºC, 200ºC and 220ºC, have been selected for the reaction study. The glycerol conversion 

100 

 



and the 1,2PD selectivity during the reaction time are shown in Figure 4-37. It can be 

observed that at higher temperature, the glycerol conversion is higher. It is noticed in Figure 

4-37B that the selectivity to 1,2PD at 220ºC is lower than at 200ºC and 180ºC. This 

observation is similar with what was found when using the Cu/ZnO/Al2O3 catalyst at a high 

temperature. It is possibly due to that the solubility of hydrogen in the reaction mixture is 

lower at a higher temperature; and also that at higher temperature more acetol is formed 

causing a higher acetol concentration in the solution; therefore, the 1,2PD selectivity is lower. 

 

Figure 4-37 Effect of Temperature on Glycerol Conversion and 1,2PD Selectivity during the 
Reaction Time: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental Condition: 
400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% aqueous glycerol, 
2wt% Pd on Cu/MgO/Al2O3 (Cu/Mg/Al=22.5/67.5/10) Catalyst. 
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Table 4-14 Effect of Temperature on Product Yield Using a 2wt%Pd-Cu/MgO/Al2O3 
Catalysta. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

220˚C 96.87 80.03 77.52 1.83 5.52 1.11 10.88 
200˚C 83.91 89.60 75.18 0.46 7.58 0.11 0.58 
180˚C 42.87 90.00 38.58 0.00 3.99 0.00 0.30 

aConditions: 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 (Cu/Mg/Al=22.5/67.5/10) Catalyst, 24 hours 
reaction time. 

 

It can be observed in Figure 4-38 that the reaction is faster when the temperature is higher 

since the reaction rate is higher. Based on Arrhenius Equation, the activation can be 

calculated using Equation 4-3. By plotting ln(k) versus 1/T, the intersect of the estimated 

linear trend line is ln(k0) and the slop of the line is –Ea/R where R is the gas constant with the 

value of 8.314JK-1mol-1. The fitting of the kinetic parameters is shown in Figure 4-39. The 

pre-exponential factor is calculated to be 113.464x106 and the activation energy is calculated 

to be 113619.12J/mol or 113.62/mol. It indicates that the reaction with this catalyst is 

chemically kinetically controlled. It is introduced in Section 4.7 that the activation energy by 

using Cu/ZnO/Al2O3 catalyst is 69.39kJ/mol. Hence the reaction using 2wt%Pd-

Cu/MgO/Al2O3 catalyst is more kinetically controlled. Therefore, a higher temperature is 

necessary when a faster reaction rate is needed. 
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Figure 4-38 Pseudo-First-Order Kinetics Analyses for the 2wt% Pd on Cu/MgO/Al2O3 
Catalyst at Different Temperatures. Condition: 400psi H2, 500RPM, 5wt% catalyst with 
respect to glycerol weight, 50% aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 
(Cu/Mg/Al=22.5/67.5/10) Catalyst. 
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Figure 4-39 Effect of Temperature on Rate Constant. Catalyst: 2wt% Pd on Cu/MgO/Al2O3 
(Cu/Mg/Al=22.5/67.5/10). 

 

It is observed in Table 4-14 that the selectivity to 1,2PD at 220ºC is lower than at lower 

temperatures and the yield of other unknown by-products is 10.9%. This is attributed to 

insufficient hydrogen in the reaction mixture. Therefore, an experiment at higher hydrogen 

pressure (600psi) was carried out to investigate if the 1,2PD selectivity can be improved. The 

glycerol conversion and 1,2PD selectivity during the reaction time are shown in Figure 4-40. 

From Figure 4-40A, it is observed that the glycerol conversion during the reaction time are 

similar at both hydrogen pressures. However, the 1,2PD selectivity at 600psi hydrogen 

pressure is higher than that at 400psi as shown in Figure 4-40B. When the hydrogen pressure 

is increased from 400psi to 600psi, the yield of other by-products after 24 hours due to side 

reactions by acetol drops from 10.9% to only 3.5% respectively and the yield of acetol in the 

final product mixture also drops from 1.8% to 0.5% respectively. It is found that at 220ºC, 

the reaction rate does not change significantly by increasing the hydrogen pressure from 

400psi to 600psi (Figure 4-41) but the selectivity of 1,2PD is improved and less other by-

products are formed. This is possibly attributed to that when the hydrogen pressure is not 

high enough to effectively hydrogenate acetol at higher temperature, the rates of the side 
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reactions are also increased causing a high glycerol conversion rate. From Table 4-15 it is 

also observed that at 600psi hydrogen pressure, the ethylene glycol yield (9.2%) is higher 

than that at 400psi (5.5%) 

 

Figure 4-40 Effect of Hydrogen Pressure on Glycerol Hydrogenolysis Using Pd-
Cu/MgO/Al2O3 Catalyst: A) Glycerol Conversion; B) 1,2PD Selectivity. Experimental 
Condition: 220ºC  400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 (Cu/Mg/Al=22.5/67.5/10) Catalyst. 
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Figure 4-41 Pseudo-First-Order Kinetics Analyses for the 2wt% Pd on Cu/MgO/Al2O3 
(Cu/Mg/Al=22.5/67.5/10) Catalyst at Different Hydrogen Pressures 

 

Table 4-15 Effect of Hydrogen Pressure on Product Yield Using 2wt%Pd-Cu/MgO/Al2O3 
Catalysta 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

600psi 100.00 86.13 86.13 0.54 9.22 0.63 3.49 
400psi 96.87 80.03 77.52 1.83 5.52 1.11 10.88 

aCondition: 220ºC  400psi H2, 500RPM, 5wt% catalyst with respect to glycerol weight, 50% 
aqueous glycerol, 2wt% Pd on Cu/MgO/Al2O3 (Cu/Mg/Al=22.5/67.5/10) Catalyst. 
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4.12 Conclusions 

The autoclave experiments of glycerol hydrogenolysis to produce 1,2PD with a molecular 

hydrogen feed have been carried out.  

Three different preparation methods were attempted to prepare a Cu/ZnO/Al2O3 catalyst, and 

the catalyst prepared by oxalate gel-coprecipitation method was found to have the highest 

activity.  

The experiments were carried out under different hydrogen pressures using a Cu/ZnO/Al2O3 

catalyst prepared by oxalate gel-coprecipitation and it was found that the 1,2PD selectivity 

strongly depended on hydrogen pressure; when the hydrogen pressure was low, some 

unknown by-products were formed. This by-product formation was most likely due to side 

reactions with acetol.  

Acetol hydrogenation experiments have been carried out. The kinetic data suggests that the 

acetol hydrogenation step is significantly faster than the overall reaction and hence the 

glycerol dehydration step is the rate-determining-step. It was also observed that the by-

products formed during the acetol hydrogenation reaction were exactly the same as those 

formed during glycerol hydrogenolysis when the hydrogen pressure was low; this further 

suggests that the by-products were formed via the side reactions with acetol. 

The metal composition of the Cu/ZnO/Al2O3 catalyst has been optimized by varying the 

molar ratio of the three metals and the Cu/Zn/Al metals molar ratio of 25/25/50 gave the 

highest activity. It was also found that with aluminum added, the catalyst not only gave a 

higher activity but also had a better stability as found in the catalyst recycling experimental 

results. Using the Cu/ZnO/Al2O3 catalyst, no obvious activity loss after four times of 

recycling was observed; while when using the Cu/ZnO catalyst without adding Al a 

significant deactivation was observed when the catalyst was recycled and reused.  
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Ni has been loaded onto the Cu/ZnO/Al2O3 catalyst and experiments with Ni loaded have 

been carried out to study the promoting effect of Ni. It was found that with Ni added, the 

hydrogenation activity of the catalyst was improved; however, no significant improvement 

was found for the hydrogenolysis reaction. 

Experiments have been carried out using 2wt% Pd supported on a Cu/MgO/Al2O3 catalyst. 

This catalyst gave a higher reaction rate and higher 1,2PD selectivity compared with the 

Cu/ZnO/Al2O3 catalyst. However, a significant deactivation was observed using the spent 

catalyst.  

Three different temperatures, 180ºC, 200ºC and 220ºC respectively, have been chosen for the 

reactions using both Cu/ZnO/Al2O3 and 2wt%Pd on Cu/MgO/Al2O3 catalysts to study the 

temperature effect on the glycerol hydrogenolysis process. It was found that the reaction rate 

was higher at higher temperature but that the 1,2PD selectivity was lower when the reaction 

was carried out at 220ºC for the reaction carried at 400psi hydrogen pressure. The activation 

energies for the reactions using both catalysts have been calculated. Using the Cu/ZnO/Al2O3 

catalyst, the activation energy was 69.39kJ/mole; when using the 2wt%Pd on Cu/MgO/Al2O3 

catalyst, the activation energy was 113.62kJ/mol. This suggested that the reaction was 

chemically kinetically controlled using both catalysts and that when the 2wt%Pd on 

Cu/MgO/Al2O3 catalyst was used, the reaction was more temperature dependent. 
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Chapter Five                                             
Glycerol Hydrogenolysis Using the in situ 
Hydrogen Produced via Methanol Steam 

Reforming 

 
Experiments of glycerol hydrogenolysis to produce 1,2PD via in situ hydrogen produced via 

methanol steam reforming have been carried out. Different catalyst preparation methods have 

been investigated for Cu/ZnO/Al2O3 catalysts. The method which gave the best catalytic 

activity was used to optimize the metal composition and experimental conditions. The effect 

of Ni as a promoter was also investigated. A Cu/MgO/Al2O3 catalyst was used in the reaction 

system and the metal composition and experimental conditions were also optimized. Pd was 

used as a promoter to study its promoting effect on a Cu/MgO/Al2O3 catalyst. A series of 

factorial design experiments were carried out to investigate the effect of different 

experimental conditions and interactions between various factors such as: temperature, 

pressure, stirring speed, glycerol concentration, water to methanol molar ratio, catalyst 

weight and the loading of Pd. 

 

5.1 Cu/ZnO/Al2O3 Catalyst 

Cu/ZnO/Al2O3 catalyst has been reported to be most frequently used for methanol steam 

reforming because it is easy and safe to handle, low cost and exhibits high activity [138-140]. 

Also Cu/ZnO/Al2O3 has shown high activity for glycerol hydrogenolysis to produce 1,2PD as 

discussed in Chapter 4 and in some literature reports [47, 67, 68]. 
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5.1.1 The Activities of Cu/ZnO/Al2O3 Catalysts by Different Preparation 

Methods. 

Cu/ZnO/Al2O3 is usually prepared via co-precipitation and impregnation methods. Two 

precipitation agents were used for investigation: sodium carbonate (Na) and oxalic acid (OA) 

[79, 138], with a Cu/Zn/Al molar ratio of 25/25/50. The catalyst was also prepared by an 

impregnation method; an alumina ring purchased from Saint-Gobain (SA6575) was used as 

the support and the molar ratio of Cu/Zn/Al is 15/15/70. 

It has been reported in Chapter 4 for glycerol hydrogenolysis with molecular hydrogen added 

that the catalytic activity was high when the molecular ratio of Cu/Zn/Al is 25/25/50; also it 

was reported by Meher et al. in 2009 [47] that the ratio of Cu/Zn/Al at 25/25/50 prepared by 

Na co-precipitation also showed a higher activity compared with other metal compositions. 

Therefore, a Cu/Zn/Al ratio of 25/25/50 was used as a starting point. For a methanol steam 

reforming reaction, the stoichiometric ratio of water to methanol is 1 (Equation 5-1). 

However, the typical water to methanol molar ratio has been reported to be varied from 1 to 

1.4. It was reported that a slightly higher water content can shift the equilibrium toward the 

product to provide higher methanol conversion and it could also decrease CO formation 

caused by methanol decomposition [141, 142]. Therefore, 1.2 was chosen as the ratio of 

water to methanol feed ratio unless otherwise indicated. The experimental results obtained 

are shown in Figure 5-1. 

↑+↑ →←+ 2223 3HCOOHOHCH Catalyst                                                Equation 5-1 
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Figure 5-1 Concentration Profiles of Different By-Products Using Cu/ZnO/Al2O3 Catalyst 
(OA). Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst 
with respect to the total weight of the reaction mixture, 500RPM, Cu/Zn/Al=25/25/50 (OA). 

 

From Figure 5-1, it can be observed that as the reaction proceeds, the concentration of 

glycerol is decreased and the concentration of 1,2PD is increased. The concentration of 

acetol as the intermediate increases at the beginning of the reaction and then decreases with 

reaction time. There are other by-products formed during the reaction time. It has been 

reported previously that some other by-products were formed most likely due to insufficient 

hydrogen to rapidly hydrogenate acetol to 1,2PD. To investigate the nature of the by-

products formed when hydrogen was produced via methanol steam reforming, the GC graph 

of the final sample (8th hour) was compared with the chromatograms of the sample obtained 

when molecular hydrogen was added as shown in Figure 5-2. 
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Figure 5-2 Chromatograms of the Final Sample of: (Blue) Acetol Hydrogenation, (Pink) 
Glycerol Hydrogenolysis with Moledular Hydrogen Added, (Green) Glycerol 
Hydrogenolysis with Methanol Steam Reforming. 

 

In Figure 5-2, it can be seen that the retention times of by-product formation for the reaction 

with methanol steam reforming match the other two reactions. Hence indeed in situ H2 was 

produced for glycerol hydrogenolysis and the the by-product formation is due to insufficient 

hydrogen produced by methanol steam reforming. Therefore, the selectivity to 1,2PD is 

believed to be strongly dependent on the methanol conversion. 

The Cu/ZnO/Al2O3 catalysts prepared by Na2CO3 coprecipitation and impregnation (IMP) 

were also used under the same reaction conditions; the results are compared and shown in 

Figure 5-3 and Table 5-1. 
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Figure 5-3 Products Distribution for the Catalysts Prepared by 3 Different Preparation 
Methods. Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, Cu/Zn/Al=25/25/50 (OA), 8 hours. 

  

Table 5-1 Products Distribution for the Catalysts Prepared by 3 Different Preparation 
Methodsa. 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

OA 88.8  70.3  62.5  7.9  3.0  0.7  14.7  
Na 60.3  29.1  19.6  16.1  0.0  0.0  31.6  

Imp 55.1  28.6  15.8  8.9  1.1  0.5  28.8  
aConditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, Cu/Zn/Al=25/25/50 (OA and Na), Cu/Zn/Al=15/15/70 (Imp), 8 hours. 

 

From Figure 5-3 as well as Table 5-1, it can be seen that the glycerol conversion and 1,2PD 

selectivity are the highest using the catalyst prepared by an oxalate gel-coprecipitation. 

Hence the preparation method apparently plays a very important role for both glycerol 

hydrogenolysis and methanol conversion. This is in agreement with the experimental results 

discussed in Chapter 4 for glycerol hydrogenolysis with added molecular hydrogen as well as 

most of the literature reports on methanol steam reforming. For the catalyst prepared by 

oxalate gel-coprecipitation, Cu particles are very fine and homogenously distributed in the 

catalyst, therefore, providing higher Cu surface area [78, 79, 120, 122, 138]. 
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Figure 5-4 Comparison between Catalysts Prepared by Na Coprecipitation and OA 
Coprecipitation: a) Glycerol Conversion; b) 1,2PD Selectivity. Conditions: 220ºC, 15bar N2, 
20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, Cu/Zn/Al=25/25/50. 

  

It can be seen in Figure 5-4a that for the catalyst prepared by oxalate gel-coprecipitation, the 

glycerol conversion reaches 90% in 10 hours; however, the glycerol conversion only reaches 

76% conversion after 24 hours using the catalyst prepared by Na2CO3 co-precipitation. This 

might be attributed to the fact that the catalyst prepared by the oxalate gel-coprecipitation 

method could provide more Cu sites, which are active for the glycerol hydrogenolysis 

reactions [143]. In Figure 5-4b, it can be seen that the 1,2PD selectivity using both catalysts 

increases slightly over the reaction time. This is possibly because at the beginning of the 

reaction, the hydrogen produced by methanol steam reforming is not sufficient to 

hydrogenate the acetol produced via glycerol dehydration. As the reactions proceed, the 

reaction rate of dehydration decreass due to a lower concentration of glycerol remaining in 
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the reaction mixture while more hydrogen is produced via methanol steam reforming, and the 

selectivity to 1,2PD therefore increases accordingly. The 1,2PD selectivity over the reaction 

time using the catalyst prepared by oxalate gel-coprecipitation is always higher than that by 

Na co-precipitation. One possible reason is that the catalyst by oxalate gel-coprecipitation 

method is reported to be more active for methanol steam reforming [138, 144-148] than the 

catalysts prepared by Na2CO3 coprecipitation, therefore, more hydrogen can be produced for 

acetol hydrogenation, and less by-products are formed. The other reason might be that more 

Cu active sites can facilitate the acetol hydrogenation, therefore acetol can be more rapidly 

hydrogenated resulting in a high 1,2PD selectivity.  

 

5.1.2 Effect of Catalyst Reduction 

For a Cu/ZnO/Al2O3 catalyst, metallic Cu0 is reported to be the active site for glycerol 

hydrogenolysis reactions [106, 143, 149], therefore, the reduction process of the calcined 

catalyst prior the reaction becomes crucial. Two types of reduction reactors were used as 

shown in Figure 5-5. Figure 5-5a shows a semi batch reactor in which the catalysts sit at the 

bottom of the tube, hydrogen flows through a tube extented near the bottom of the tube and a 

vent valve is on the top of the tube; Figure 5-5b shows a fixed bed flow reactor in which the 

catalysts sit on a bed in the middle of the tube, and hydrogen flows in from the bottom of the 

tube and flows out from the top. To further compare the effect of the reactor type on the 

hydrogenolysis process, an un-reduced catalyst was also tested and the results are shown in 

Figure 5-6. 
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Figure 5-5 Reactors Used for Catalyst Reduction: a) Batch Reactor; b) Flow Reactor. 

 

 

Figure 5-6 Effect of Catalyst Reduction: a) Glycerol Conversion; b) 1,2PD Selectivity. 
Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, Cu/Zn/Al=25/25/50, OA Coprecipitation.  

Thermal 

couple

H2 in

Vent

Catalyst 
Particle

H2 Out

H2 in

Thermal 

couple

H2 in

Vent

Catalyst 
Particle

H2 Out

H2 in

a b 

116 

 



From Figure 5-6, it can be seen that, the 1,2PD selectivity using the catalyst reduced in a 

flow reactor (63.0%) is much higher than that in a batch reactor (52.4%). This indicates that 

the flow reactor can give a better reduction to provide more Cu0 sites for methanol steam 

reforming and glycerol hydrogenolysis. It is also noticed that the glycerol conversions are 

similar for the catalysts reduced in both reactors; these results suggest that an inefficiently 

reduced catalyst also has an activity for glycerol dehydration. The results of an un-reduced 

catalyst as shown in Figure 5-6 also show glycerol conversion (25.4%), but the 1,2PD 

selectivity is very low (21.9%). Therefore, it appears that CuO also has some activity for 

glycerol dehydration. The by-product distribution is shown in Figure 5-7 as well as in Table 

5-2. 

 

Figure 5-7 Effect of Catalyst Reduction on Product Distribution. Conditions: 220ºC, 15bar 
N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, Cu/ZnO/Al2O3 
(Cu/Zn/Al=25/25/50) by oxalate gel-co-precipitation.  
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Table 5-2 Effect of Catalyst Reduction on Product Distributiona. 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

 Flow Reactor 80.2 63.0 50.5 9.4 2.6 0.0 17.7 
Batch Reactor 80.9 52.4 42.4 10.7 2.4 0.0 25.4 

Unreduced  25.4 21.9 5.6 6.1 0.0 0.7 13.0 
aConditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, Cu/ZnO/Al2O3 (Cu/Zn/Al=25/25/50) by oxalate gel-co-precipitation. 

 

5.1.3 Study of Reaction Conditions (Temperature and Catalyst Loading) 

In most of the literature reports about methanol steam reforming, the methanol conversion is 

always higher at higher temperature (150ºC to 300ºC) since this is an exothermic reaction. 

However, for glycerol hydrogenolysis, if the temperature is too high, the selectivity to 1,2PD 

is lower [28, 67]. The reasons for this are that if the temperature is too high, the 1,2PD will 

be degraded to lower alcohols and the rate of side reactions will also increase to form some 

un-desired by-products. The optimum temperature was reported to be between 200ºC and 

240ºC. In this set of experiments, two temperatures were chosen which 200ºC were and 

240ºC. Three different amounts of catalyst (1%, 2% and 3%) were used to investigate the 

effect of catalyst loading on the reaction products.  

The glycerol conversion and 1,2PD selectivity over the reaction time at different 

temperatures are shown in Figure 5-8. 
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Figure 5-8 Effect of Temperature on: a) Glycerol Conversion; b) 1,2PD Selectivity; c) 1,2PD 
Yield. Conditions: 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 
Cu/Zn/Al=45/45/10 oxalate gel-coprecipitation.  

 

From Figure 5-8a, it can be seen that at high temperature (220ºC), the glycerol conversion is 

higher over the reaction time, but the 1,2PD selectivity is slightly lower than that when the 

temperature is lower (200ºC) (Figure 5-8b). The same behavior has been observed for 

glycerol hydrogenolysis via molecular hydrogen as reported in Chapter 4. At higher 

temperature, the solubility of hydrogen in the reaction mixture becomes lower, therefore, 

more by-products might be formed due to side reactions with acetol. It is found previously in 

Chapter 4 that the glycerol hydrogenolysis reaction is highly temperature dependent, so when 

the temperature is higher, the rate of glycerol dehydration would be increased and more 
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acetol is produced. Figure 5-8c shows the 1,2PD yield over the reaction time at different 

temperatures; since the glycerol conversion at 220ºC is significantly higher than that at 200ºC, 

the 1,2PD yield at 220ºC during the reaction is higher than that at 200ºC.  

 

Figure 5-9 Effect of Catalyst Amount on: a) Glycerol Conversion; b) 1,2PD Selectivity. 
Conditions: 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 220 ºC catalyst, 500RPM 
Cu/Zn/Al=45/45/10 OA co-precipitation.  

 

Figure 5-9a shows that at 220ºC, when the catalyst amount is increased from 2wt% to 3wt%, 

the conversion of glycerol is increased from 87.3% to 92.2%. From Figure 5-9b, it can be 

seen that the selectivity to 1,2PD is slightly increased when the catalyst loading is increased 

from 2wt% to 3wt%. Detailed product distributions using different amounts of catalyst at 

different temperatures are shown in Table 5-3 and Figure 5-10. 
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Table 5-3 Effect of Catalyst Loading and Temperature on Product Distributiona 

 Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol 
 Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

3g 220˚C 92.2 54.2 49.9 5.0 2.8 1.1 33.4 
2g 220˚C 87.3 52.9 46.1 4.3 3.3 1.0 33.6 
1g 220˚C 71.5 48.6 34.7 4.7 2.8 1.1 28.2 
3g 200˚C 57.5 61.9 35.5 5.8 1.8 1.3 12.9 
2g 200˚C 45.6 64.0 29.2 5.5 1.6 0.0 9.3 
1g 200˚C 31.7 55.8 17.7 7.4 0.0 0.0 6.6 

aConditions: 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 500RPM, Cu/Zn/Al=45/45/50, 
oxalate gel-coprecipitation, 8 hours. 

 

 

Figure 5-10 Effects of Catalyst Loading and Temperature on Product Distribution. 
Conditions: 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 500RPM, Cu/Zn/Al=45/45/50, 
Oxalate gel-coprecipitation, 8 hours. 

 

Figure 5-11 and Table 5-3 show the effect of catalyst loading and temperature on the reaction 

products. It can be seen that glycerol conversion is higher at higher temperature up to 220 ºC 

and when the catalyst loading is higher up to 3wt%. However, the selectivity to 1,2PD is 

slightly lower at 220 ºC than at 200 ºC and it is not affected by catalyst loading up to 3wt%. 

At high glycerol conversion, the yield of 1,2PD is still high at 220 ºC and 3wt% catalyst 

loading. 
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Figure 5-11 Effects of Catalyst Loading and Temperature on: a) Glycerol Conversion; b) 
1,2PD Selectivity c) 1,2PD Yield. Conditions: 15bar N2, 20wt% Glycerol, 
Water/Methanol=1.2, 500RPM, Cu/Zn/Al=45/45/10, OA co-precipitation, 8 hours. 

 

5.1.4 Effect of Cu/Zn/Al Composition 

For a Cu/ZnO/Al2O3 catalyst, the molar ratio of Cu/Zn is usually reported to be 1 for both 

methanol steam reforming [138, 146] and glycerol hdyrogenolysis [47, 67, 76]. In 2010, 

Wang et al. [76] specifically investigated the effect of Cu/Zn ratio; four ratios were examined 

(0.4/1, 1/1, 2/1 and no Zn), and the catalyst with a Cu/Zn molar ratio of 1:1 was shown to 

have the highest Cu surface area, therefore, giving the highest 1,2PD selectivity and fastest 

reaction rate. In this section, the ratio of Cu/Zn was kept at 1 and the effect of aluminum 

content was investigated. The experimental results are shown in Figure 5-12. 
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Figure 5-12 Effect of Aluminum Content on: a) Glycerol Conversion; b) 1,2PD Yield. 
Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM. 

 

It can be seen from Figure 5-12 that when the aluminum molar content is increased from 10% 

to 30%, the glycerol conversion (Figure 5-12a) and the 1,2PD yield (Figure 5-12b) are 

significantly increased. However, if the aluminum molar content is further increased to 50%, 

the glycerol conversion and 1,2PD yield is slightly lower than when the aluminum molar 

content is 30%. The detailed products distributions are shown in Figure 5-13 as well as in 

Table 5-4.  
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Figure 5-13 Effect of Aluminum Content on Products Distribution. Conditions: 220ºC, 15bar 
N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours. 

 

Table 5-4 Effect of Aluminum Molar Content on Products Distributiona. 

  
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD  
Yield 

Act  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Cu/Zn/Al = 45/45/10 80.2 65.7 52.7 9.5 2.6 0.5 14.9 
Cu/Zn/Al = 35/35/30 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
Cu/Zn/Al = 25/25/50 85.7 69.9 59.9 9.2 2.0 0.9 13.7 

aConditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours. 

 

Therefore, the catalyst with a Cu/Zn/Al molar ratio of 35/35/30 was chosen as the optimum 

ratio for further study. It has been reported that the presence of alumina improved the 

dispersion of Cu particles in the catalyst [79]. Also the presence of alumina was reported to 

be able to significantly prevent Cu/ZnO catalyst deactivation by isolating the individual 

metal particles to prevent sintering [80, 134, 150]. Ga2O3, ZrO2 and Al2O3 are most 

frequently reported to be added to the supported Cu/ZnO catalyst. Considering the economics 

of this process, Al2O3 is a very good choice since it is much cheaper. 
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5.2 Study of Ni as a Promoter for the Cu/ZnO/Al2O3 Catalyst 

Nickel (Ni) based catalysts are normally useful catalysts for hydrogenation and they are less 

costly compared to precious metal hydrogenation catalysts such as platinum, palladium and 

ruthenium; it is also often used as a catalyst in various hydrocarbon reforming processes. It 

has been reported to be used for both glycerol hydrogenolysis [55, 151-154] and methanol 

steam reforming [155-159]. In this section, the promotion effect of Ni addition on glycerol 

hydrogenolysis using in situ hydrogen produced by methanol steam reforming is reported.  

 

5.2.1 Effect of Ni and Ni/Cu/ZnO/Al2O3: Composition Study 

Ni/Cu/ZnO/Al2O3 catalysts were prepared by oxalate gel-coprecipitation method as described 

in Section 3.1.1. The aluminum molar content was kept at 30% and the molar ratio of Cu/Zn 

was kept at 1. Four different Ni loadings (molar%), i.e. 0, 1, 3 and 5, were tested to study the 

effect of Ni on the reaction products. The experimental results are shown in Figure 5-14. 
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Figure 5-14 Effect of Ni Content on: a) Glycerol Conversion; b) 1,2PD Selectivity; c) Others 
Yield; d) 1,2PD Yield. Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 
3wt% catalyst, 500RPM, 30mole% Al content, Cu/Zn=1. 

 

From 5-14a, it can be seen that by adding Ni to the Cu/ZnO/Al2O3 catalyst, the glycerol 

conversion during the reaction time is lower compared with that without added Ni; the higher 

the amount of Ni loaded, the lower the glycerol conversion becomes. This might be because 

as Ni is loaded, the amount of strong acidic sites are reduced resulting in some loss of 

activity for the glycerol dehydration process. A detailed explanation will be provided in the 

NH3 TPD analysis provided in Section 6.1. However, from Figure 5-14b, it can be seen that 

the selectivity to 1,2PD is increased as the amount of Ni loaded is increased. This is due to 

the improved hydrogenation activity provided by Ni addition as discussed in Section 4.8. 

Without Ni loading, the yield of by-products grows much faster than with Ni loading as 
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shown in Figure 5-14c and becomes 16.7% at the end of the reaction (8th. hour). As the molar 

content of Ni is increased from 1% to 5%, the yield of other by-products over the reaction 

time becomes lower. When the Ni loading is 5mole%, the yield of other by-products is only 

2.5% at the end of the reaction. Since the high selectivity to 1,2PD on Ni addition, even 

though the glycerol conversion is lower, the yields of 1,2PD for these four catalysts are not 

much different as shown in Figure 5-14d. Detailed product distributions for these four 

catalysts are shown in Figure 5-15 and Table 5-5. The catalyst with 1mole% Ni gives the 

highest 1,2PD yield which is about 65.6%; without added Ni the 1,2PD yield is 61.6%. With 

5mole% Ni added, the yield of 1,2PD is slightly lower, being about 60%; however, the 

selectivity to 1,2PD is very high and the yield of other by-products is only 2.5%. 

 

Figure 5-15 Effect of Ni Content on Products Distributions. Conditions: 220 ºC, 15bar N2, 
20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 30mole% Al content, 
Cu/Zn=1, 8hours. 
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Table 5-5 Effect of Ni Molar Content on Product Distributionsa 

 
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD 
Yield 

Act 
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

0% Ni 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
1% Ni 85.5 76.7 65.6 4.9 3.4 0.6 11.1 
3% Ni 77.4 82.8 64.1 3.3 3.6 0.5 5.9 
5% Ni 70.0 85.5 59.9 3.5 3.5 0.6 2.5 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 30mole% Al content, Cu/Zn=1, 8hours. 

 

It has been discussed in Chapter 4 that the 1,2PD selectivity is strongly dependent on 

hydrogen pressure since the major by-products are due to side reactions with acetol [99]. 

Therefore, one reason why Ni can improve the 1,2PD selectivity might be due to the 

improved activity for the methanol steam reforming reaction to produce more hydrogen. In 

order to study the effect of Ni on methanol steam reforming, experiments have been carried 

out without taking any sample during the reaction for 24 hours. The initial mass of methanol 

fed was weighed and recorded as min, and the final mass of methanol left over in the products 

was analyzed by GC and recorded as mf, and the methanol conversion can then be calculated 

using Equation 5-2.   

%100×
−

=
i

fi

m
mm

Conversion                                                                               Equation 5-2 

It has also been reported that Ni can be used for glycerol steam reforming to produce 

hydrogen [160-162]. Since in this set of experiments, no samples were taken during the 

reaction, the glycerol mass balance was also calculated using Equation 5-3. 

%100
)(

)_(
_ ×

+
= ∑

i

f

glycerolmol
glycerolproductsuscarbonaceomol

BalanceGlycerol              Equation 5-3 

The experimental results are shown in Figure 5-16 and Table 5-6. 

128 

 



 

Figure 5-16 Effect of Ni Content on Products Distributions (No sample was taken during the 
reaction time). Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, 30mole% Al content, Cu/Zn=1, 24hours. 

 

Table 5-6 Effect of Ni Content on Products Distributions and Mass Balancea. 

  
Glycerol 

Conversion 
1,2PD  

Selectivity 
1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Methanol  
Conversion 

Mass  
Balance 

Cu/ZnO/Al2O3 100.0 77.0 77.0 0.0 6.4 1.6 15.1 17.7 96.5 
5%Ni/Cu/ZnO/Al2O3 97.4 86.0 83.8 0.0 5.8 1.2 6.7 21.6 100.4 

10%Ni/Cu/ZnO/Al2O3 59.4 78.9 46.9 2.1 2.5 0.7 7.2 22.6 99.8 
aConditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 30mole% Al content, Cu/Zn=1, 24hours. 

 

From Table 5-6, it can be seen that with 5mole% Ni added onto the Cu/ZnO/Al2O3 catalyst, 

the methanol conversion is increased from 17.7% to 21.6% compared with that without Ni 

added. When Ni loading is further increased from 5mole% to 10mole%, the methanol 

conversion is slightly increased from 21.6% to 22.6%; however, the glycerol conversion is 

significantly decreased from 97.4% to 59.4% as shown in Figure 5-16. Therefore, the 

addition of Ni can improve methanol conversion to produce more hydrogen to hydrogenate 

the acetol; hence the 1,2PD selectivity is improved. From the calculated glycerol mass 

balance shown in Table 5-6, it is found that the glycerol balance for all the three experiments 
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are closed to 100% (the deviation might be due to some experimental error). This suggests 

that glycerol is not consumed by the steam reforming reaction under the current reaction 

conditions. The chromatograms of the final samples obtained from the reaction with the 

Cu/ZnO/Al2O3 catalyst and with 10mole% Ni added are compared as shown in Figure 5-17. 

 

Figure 5-17 Chromatograms of the Final Sample of: (Blue) Cu/ZnO/Al2O3 catalyst, (Pink) 
Ni/Cu/ZnO/Al2O3 catalyst. 

 

From the GC results shown in Figure 5-17, it can be seen that with Ni added, the signal is 

much less complex compared with the one without Ni added showing that much less by-

products are formed. The retention times of all the products for these two samples match 

each other very well suggesting that the addition of Ni does not cause formation of any new 

by-product. 

It has been discussed in Chapter 4 that the loading of Ni will inhibit the glycerol dehydration 

process. Since it has been reported that Cu is active for glycerol dehydration [106, 143, 149], 

a Ni/ZnO/Al2O3 catalyst without Cu loading was used to study the effect of Cu on the 
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glycerol hydrogenolysis process. The experimental results are shown in Figure 5-18 and 

Table 5-7. 

 

Figure 5-18 Effect of Ni and Cu on Products Distributions. Conditions: 220 ºC, 15bar N2, 
20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, Cu/Zn/Al=35/35/30, 
Ni/Cu/Zn/Al=5/32.5/32.5/30, Ni/Zn/Al=10/60/30, 24 hours. 

 

Table 5-7 Effect of Ni Content on Products Distributionsa 

 Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH 
Yield 

Others 
Yield 

Methanol 
Conversion 

mass  
balance 

Cu/ZnO/Al2O3 100.0 77.0 77.0 0.0 6.4 1.6 15.1 17.7 96.5 
Ni/Cu/ZnO/Al2O3 97.4 86.0 83.8 0.0 5.8 1.2 6.7 21.6 100.4 

Ni/ZnO/Al2O3 4.8 0.0 0.0 2.3 0.0 0.0 2.5 23.3 94.6 
aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, Cu/Zn/Al=35/35/30, Ni/Cu/Zn/Al=5/32.5/32.5/30, Ni/Zn/Al=10/60/30, 24 hours. 

 

From Figure 5-18 as well as Table 5-7, it can be seen that without Cu added, the 

Ni/ZnO/Al2O3 catalyst is completely inactive for the reaction. However, the methanol 

conversion for the methanol steam reforming reaction is 23.3%. Therefore, it can be 

understood that when Ni is added to the Cu/ZnO/Al2O3 catalyst by co-precipitation, the 

glycerol conversion is lowered because Ni is not active for the glycerol dehydration step. 
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Because of its activity for methanol steam reforming and acetol hydrogenation, the 1,2PD 

selectivity is increased when Ni is added. 

Figure 5-19 shows the activity of the Ni/Cu/ZnO/Al2O3 catalyst with different metal 

composition. It can be more clearly seen that as the Ni content is increased, the glycerol 

conversion decreases (Figure 5-19a), however, the 1,2PD selectivity is increased (Figure 5-

19b). The yields of 1,2PD are the highest when the aluminum molar content is 30% with the 

Ni molar content between 1% and 3% (Figure 5-19c). The numerical data is shown in Table 

B-1 in Appendix B. 

 

Figure 5-19 Ni/Cu/Zn/Al Composition Study: a) Glycerol Conversion; b) 1,2PD Selectivity; 
c) 12PD Yield. Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, 8 Hours. 

 

5.2.2 The activity of a Cu/ZnO/Al2O3 Catalyst Physically Mixed with Ni 

It has been previously discussed that the glycerol hydrogenolysis reaction rate is lowered by 

Ni addition via the coprecipitation preparation method. An experiment with the 

Cu/ZnO/Al2O3 catalyst physically mixed with Ni was carried out to investigate the effect of 

Ni interactions with the Cu/ZnO/Al2O3 catalyst. In the reaction, 5mole% NiO was mixed 
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with the Cu/ZnO/Al2O3 catalyst (Cu/Zn/Al = 35/35/30). The particle mixture was reduced at 

300 ºC before reaction, and the experimental results are shown in Figure 5-20. 

 

 

Figure 5-20 Cu/ZnO/Al2O3 Catalyst Physically Mixed with Ni: a) Glycerol Conversion; b) 
1,2PD Selectivity; c) 1,2PD Yield. Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, 
Water/Methanol=1.2, 3wt% catalyst, 500RPM. 

 

From Figure 5-20, it can be seen that when Ni is physically mixed with Cu/ZnO/Al2O3, the 

glycerol conversion is improved compared with the Ni/Cu/ZnO/Al2O3 catalyst prepared via a 

coprecipitation method; however, it is still lower than the glycerol conversion when using the 

Cu/ZnO/Al2O3 catalyst as shown in Figure 5-20a. The selectivity to 1,2PD is slightly higher 

compared with the Cu/ZnO/Al2O3 catalyst, but much lower than that using the 

Ni/Cu/ZnO/Al2O3 catalyst prepared via coprecipitation as shown in Figure 5-20b. This 

suggests that the glycerol dehydration step is also inhibited by the physical addition of Ni. 

Therefore, the yield of this catalyst is the lowest compared with the other two catalysts. 

Detailed product distributions using these three catalysts are shown in Table 5-8.  
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Table 5-8 Products Distributions by Physically Mixing Ni with Cu/ZnO/Al2O3 Catalysta. 

 Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

Cu/ZnO/Al2O3 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
Ni/Cu/ZnO/Al2O3 70.0 85.5 59.9 3.5 3.5 0.6 2.5 
Ni+Cu/ZnO/Al2O3 

Physically 78.2 75.7 59.2 5.2 3.1 0.6 10.1 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 8 
hours, 500RPM. 

 

It has been reported in Section 5.1.2 that the reduction of the Cu/ZnO/Al2O3 catalyst plays an 

important role on the catalytic activity. To study the effect of the reduction on a 

Ni/Cn/ZnO/Al2O3 catalyst temperature programmed reduction experiments were carried out 

to find out the optimal reduction temperature. The experimental results are shown in Figure 

5-21. More detailed analysis is provided in the TPR analysis provided in Section 6.2. 

 

Figure 5-21 TPR Profile for NiO/CuO/ZnO/Al2O3, CuO/ZnO/Al2O3 and NiO: 
Ni/Cu/Zn/Al=5/32.5/32.5/30, Cu/Zn/Al=35/35/30. 
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From Figure 5-21, it can be seen that the reduction peaks for the CuO/ZnO/Al2O3 catalyst 

and NiO/CuO/ZnO/Al2O3 catalyst prepared by oxalate gel-coprecipitation are almost at the 

same temperature (255 ºC) and only one peak is found for the NiO/CuO/ZnO/Al2O3 catalyst. 

For NiO, the reduction started at 250ºC and a peak occurred at 330ºC, which is much higher 

than for the NiO/CuO/ZnO/Al2O3 catalyst prepared by oxalate gel-coprecipitation. This 

indicates that NiO and CuO are well mixed when using the coprecipitation method, which 

can facilitate catalyst reduction at a significantly lower temperature. Since the reduction peak 

for NiO occurred at a higher temperature than for the NiO/CuO/ZnO/Al2O3 catalyst, a 

reaction using a reduction temperature of 360ºC was carried out for the CuO/ZnO/Al2O3 

catalyst physically mixed with NiO. The experimental results are shown in Figure 5-22. 

 

Figure 5-22 Effect of Reduction Temperature on: a) Glycerol Conversion; b) 1,2PD 
Selectivity. Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, Catalyst: 5wt% Ni Physically Mixed with Cu/ZnO/Al2O3. 
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It can be seen from Figure 5-22a that the glycerol conversions are not significantly changed 

by increasing the reduction temperature from 300ºC to 360ºC. Figure 5-21b shows that the 

selectivity to 1,2PD using the catalysts at these two reduction temperatures are also similar. 

The 1,2PD selectivity for the reduction temperature of 300ºC is even slightly higher than that 

at 360ºC. It appears that the Cu/ZnO/Al2O3 catalyst physically mixed with Ni can be reduced 

efficiently at 300 ºC. The slightly higher 1,2PD selectivity at the lower reduction temperature 

is possibly due to experimental error or possibly catalyst sintering occurs at the higher 

reduction temperature. 

 

5.3 Cu/MgO/Al2O3 Catalyst 

Recently, magnesium based catalysts have been frequently reported to be active for glycerol 

hydrogenolysis [64, 81-83]. A Cu/Mg/Al2O3 catalyst has also been used for methanol steam 

reforming [163, 164]. In this section, the reactivity of a Cu/MgO/Al2O3 catalyst will be 

investigated and the effect of Pd and Ni as promoters will be discussed. 

 

5.3.1 Catalysts Screening 

Cu, Zn, Al, Mg, Zr, and La have all been reported to be active for glycerol hydrogenolysis. In 

this section, catalysts with different combinations of these metals have been prepared by the 

oxalate gel-coprecipitation method and investigated to identify the most active catalyst. The 

combinations are shown in Table 5-9, and the experimental results are shown in Figure 5-23. 
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Table 5-9 Catalysts Screening: Different Metal Combinations. 

Catalyst 
# Combination Molar Ratio Ref. 

1 Cu/Zn/Zr 45/45/10 [165, 166] 
2 Cu/Zr/Al 52.5/17.5/30 [145, 166] 
3 Cu/Mg/Al 35/35/30 [64, 81] 
4 Cu/Zn/Al 35/35/30 [47, 138] 
5 Cu/La/Al 20/50/30  

 

 

Figure 5-23 Different Metal Combinations: a) Glycerol Conversion; b) 1,2PD Selectivity; c) 
1,2PD Yield. Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, 8 hours. 

 

It can be seen that the Cu/MgO/Al2O3 and Cu/ZnO/Al2O3 catalysts show similar glycerol 

conversions, which are much higher than those of the Cu/ZnO/ZrO2 and Cu/ZrO2/Al2O3 

catalysts (Figure 5-23a). Cu/MgO/Al2O3 shows distinctly higher selectivity to 1,2PD 

compared with the other three catalysts as shown in Figure 5-23b. Therefore, the yield of 

1,2PD using the Cu/MgO/Al2O3 catalyst is the highest among all the catalysts. The high 

selectivity for the Cu/MgO/Al2O3 catalyst compared with other metal selections also results 

in a lower yield of other by-products as shown in Figure 5-24 and Table 5-10. 
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Figure 5-24 Products Distributions for the Catalysts with Different Metal Combinations. 
Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours. 

 

Table 5-10 Product Distributions for the Catalysts with Different Metal Combinationsa 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

Cu/MgO/Al2O3 84.7 83.4 70.7 5.6 5.9 0.4 2.2 
Cu/ZnO/Al2O3 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
Cu/ZnO/ZrO2 75.2 57.3 43.1 10.3 2.8 0.5 18.5 

Cu/ZrO2/Al2O3 59.1 52.9 31.3 12.2 3.1 0.5 12.1 
Cu/La2O3/Al2O3 29.7 58.0 17.2 8.9 1.8 0.0 1.7 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours. 

 

It can be seen that by using the Cu/MgO/Al2O3 catalyst, the yield of other by-products is only 

2.2% which is noticeably lower than for the other catalysts. However, the ethylene glycol 

yield is higher being about 6%. Table 5-10 also shows that Cu/La2O3/Al2O3 does not exhibit 

a very high activity. 
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5.3.2 Effect of Cu/Mg/Al Composition. 

Since it has been discussed that the Cu/MgO/Al2O3 catalyst shows promising activity for 

glycerol hydrogenolysis using in situ hydrogen produced from methanol steam reforming, the 

composition of Cu/Mg/Al has been optimized.  A 3x3 factorial design was carried out. Three 

Cu/Zn molar ratios (1/1, 1/3 and 1/5) and three alumina molar content (0%, 10% and 30%) 

have been picked for the optimization study of the compositions as shown in Table 5-11. The 

experimental results are shown in Figure 5-25 and Table 5-12. 

Table 5-11 Composition Study of Cu/MgO/Al2O3 Catalysts. 

  Aluminum Content % 
Cu/Mg 0% 10% 30% 

1/1 1/1 45/45/10 35/35/30 
1/3 1/3 22.5/67.5/10 17.5/52.5/30 
1/5 1/5 15/75/10 11.7/58.3/30 

 

 

Figure 5-25 Cu/Mg/Al Composition Optimization Study: a) Glycerol Conversion; b) 1,2PD 
Selectivity; c) 1,2PD Yield. Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, 
Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours. 

 

 

139 

 



Table 5-12 Cu/Mg/Al Composition Optimization Studya. 

Composition 
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD 
Yield 

Acetol 
Yield 

EG  
Yield 

PrOH 
Yield 

Others 
Yield 

1/1 77.6 68.1 52.9 1.8 7.3 0.6 15.0 
1/3 80.6 62.3 50.2 2.2 5.7 0.9 21.5 
1/5 68.8 54.2 37.3 2.6 4.7 1.1 23.1 

45/45/10 84.5 82.3 69.5 1.5 8.3 0.6 4.6 
22.5/67.5/10 95.6 79.5 75.9 1.0 7.7 0.8 10.1 

35/35/30 83.4 81.9 68.4 6.7 5.6 0.4 2.3 
17.5/52.5/30 85.2 85.3 72.7 5.0 6.3 0.4 0.8 
11.7/58.3/30 84.9 81.9 69.5 2.6 6.8 0.6 5.4 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours. 

 

From Figure 5-25a and Table 5-12, it can be seen that for all the aluminum contents, a 

Cu/Mg molar ratio of 1/3 always shows the highest glycerol conversion. When the Cu/Mg 

molar ratio is 1/3 and the aluminum content is 10 mole%, the glycerol conversion is 

remarkably higher than for the others, being 95.6%. Figure 5-25b shows that the 1,2PD 

selectivity increases when the aluminum content is increased. Because of the high conversion 

of glycerol when the molar ratio of Cu/Mg/Al is 22.5/67.5/10, the yield of 1,2PD is the 

highest using a catalyst with this composition as shown in Figure 5-25c, being 75.9%. This is 

higher than that using a catalyst with 30mole% aluminum content (72.7% selectivity to 

1,2PD).  

A repeatability study of the catalyst with a Cu/Mg/Al ratio of 22.5/67.5/10 has been carried 

out using 95% confidence interval to ensure that the high apparent yield of 1,2PD is not due 

to experimental error. Three experiments with this catalyst were conducted under the same 

experimental conditions. The 95% confidence interval is calculated using Equation 5-4 and 

Equation 5-5 and the results are shown in Table 5-13. 

[ ]SDXSDXIC ×+×−= 96.1,96.1..%95                                                              Equation 5-4 
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Table 5-13 Repeatability Study on Cu/MgO/Al2O3 Catalysta. 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Run 1 96.4 78.6 75.8 0.9 7.9 0.7 11.2 
Run 2 94.2 79.4 74.8 1.3 7.5 0.8 9.8 
Run 3 96.2 80.3 77.3 0.9 7.8 0.8 9.4 
Mean 95.6 79.4 75.9 1.0 7.7 0.8 10.1 

SD 0.72 0.50 0.73 0.12 0.10 0.02 0.55 
95% C.I. 95.6±1.4 79.4±0.98 75.9±1.43 1.0±0.12 7.7±0.20 0.8±0.05 10.1±0.55 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

As shown in Table 5-13, the 95% confidence interval for the 1,2PD yield using a catalyst 

with a Cu/Mg/Al ratio of 22.5/67.5/10 is [77.33%, 74.47%]. The yield of 1,2PD by using the 

catalyst with a Cu/Mg/Al molar ratio of 17.5/52.5/30 catalyst is 72.7%, which is below the 

lower bound of the interval. Therefore, it can be stated with 95% confidence that the 

Cu/MgO/Al2O3 catalyst with a Cu/Mg/Al molar ratio of 22.5/67.5/10 gives a higher 1,2PD 

yield than that with a Cu/Mg/Al molar ratio of 17.5/52.5/30. 

In order to study the effect of the calcination environment, the Cu/MgO/Al2O3 catalyst was 

calcined under helium and the activity was tested. The experimental results are shown in 

Figure 5-26.  
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Figure 5-26 Effect of Calcination Environment: a) Glycerol Conversion; b) 1,2PD 
Selectivity; c) 1,2PD Yield. Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, 
Water/Methanol=1.2, 3wt% catalyst, 500RPM, Cu/Mg/Al = 22.5/67.5/10. 

 

From Figure 5-26a, it can be observed that when using the catalyst calcined in helium, the 

glycerol conversion is significantly lower than that calcined in air. The 1,2PD selectivity for 

the catalysts calcined in these two environments are similar as shown in Figure 5-26b, 

therefore, the yield of 1,2PD using the catalyst calcined in air is higher than that calcined in 

helium. It suggests that the decarboxylation process is more complete under air than helium 

at 360 ºC for 4 hours. 

 

5.3.3 Recyclability of Cu/MgO/Al2O3 Catalyst 

The life time of the Cu/MgO/Al2O3 and Cu/ZnO/Al2O3 catalysts have also been investigated 

and the experimental results are compared. The catalyst was recycled and reused. The 

experimental results for the Cu/MgO/Al2O3 catalyst recycling study are shown in Figure 5-27 

and Table 5-14. 
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Figure 5-27 Cu/MgO/Al2O3 Catalyst Recycling Study. Conditions: 220 ºC, 15bar N2, 20wt% 
Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10.  

 

Table 5-14 Cu/MgO/Al2O3 Catalyst Recycling Studya. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

Fresh 94.2 79.4 74.8 1.3 7.5 0.8 9.8 
Recycle 1 83.7 72.3 60.5 3.0 6.4 0.6 13.1 
Recycle 2 61.9 50.9 31.5 1.9 4.6 0.9 23.0 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

It can be seen that the Cu/MgO/Al2O3 catalyst loses its activity when it is recycled and reused. 

The glycerol conversion drops from 94.2% using a fresh catalyst down to 83.7% for first 

recycle and is lowered to 61.9% for the second recycle. 

It has been discussed in Section 4.6 that the Cu/ZnO/Al2O3 catalyst has an outstanding life 

time for the glycerol hydrogenolysis process with added molecular hydrogen. Therefore, the 

life time of the Cu/ZnO/Al2O3 catalyst was also investigated for the glycerol hydrogenolysis 

process using in situ hydrogen produced by methanol steam reforming. The Cu/ZnO/Al2O3 

catalyst with different molar composition were used (Cu/Zn/Al = 35/35/30 and Cu/Zn/Al = 

25/25/50). The experimental results are shown in Figure 5-28 and Table 5-15. 
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Figure 5-28 Cu/ZnO/Al2O3 Catalyst Recycling Study. Conditions: 220 ºC, 15bar N2, 20wt% 
Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours. a) Cu/Zn/Al = 35/35/30; b) 
Cu/Zn/Al = 25/25/50. 

 

Table 5-15 Cu/ZnO/Al2O3 Catalyst Recycling Studya. 

35/35/30 Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

Fresh 87.4 68.7 60.0 3.4 2.8 0.7 20.5 
Recycle 1 76.4 64.6 49.3 4.5 2.6 0.7 19.2 

25/25/50 Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

Fresh 86.7 70.9 61.5 3.6 2.9 0.7 18.0 
Recycle 1 82.6 55.5 45.8 7.0 2.6 0.7 26.5 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 
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From Figure 5-28 and Table 5-15, it can be seen that both catalysts show deactivation after 

the first recycle. The glycerol conversion and 1,2PD selectivity drop significantly. It was 

reported in Section 4.6 that when using the Cu/ZnO/Al2O3 catalyst with a Cu/Zn/Al molar 

ratio of 25/25/50, after 5 recycles, the catalyst did not show any significant activity loss. 

Therefore, there might be several reasons causing this activity loss for the process when 

using in situ hydrogen produced via methanol steam reforming. First of all, CO2 is produced 

as the by-product of methanol steam reforming as shown in Equation 5-1. The dissolved CO2 

gas might interact with the metals, i.e. Cu, Zn and Mg, to produce metal carbonates; therefore, 

some active sites might be lost. Another reason is possibly due to some carbonaceous 

compound, which is formed via side reactions when insufficient hydrogen is produced, and 

deposited on the catalyst surface. 

 

5.3.4 Effect of KOH 

It has been widely reported that when some base is present in the reactant i.e. KOH or NaOH, 

the catalytic activity can be improved [81, 167, 168]; also K+ and Na+ were also found to 

improve the activity of methanol steam reforming [169]. Currently, most biodiesel plants in 

the world are using KOH or NaOH as the catalyst, therefore, there is always KOH or NaOH 

residues remaining in the crude glycerol, which is reported to be about 1% [129]. In order to 

investigate the effect of KOH on the catalyst life time as well as catalytic activity, 

experiments have been carried out with 0.5g KOH added (2.5wt% with respect to glycerol 

weight), and then the catalysts were recycled and re-used under the same conditions. The 

experimental results are shown in Figure 5-29 and Table 5-16. 
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Figure 5-29 Effect of KOH on the Lifetime of Cu/MgO/Al2O3 catalyst. Conditions: 220 ºC, 
15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, 
Cu/Mg/Al = 22.5/67.5/10. 

 

Table 5-16 Effect of KOH on the Lifetime of Cu/MgO/Al2O3 catalysta. 

 
Glycerol 

Conversion 
1,2PD 

Selectivity 
1,2PD 
Yield 

Acetol 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

Fresh 94.2 79.4 74.8 1.3 7.5 0.8 9.8 
Recycle 1 83.7 72.3 60.5 3.0 6.4 0.6 13.1 
Recycle 2 61.9 50.9 31.5 1.9 4.6 0.9 23.0 

0.5gKOH Fresh 94.2 80.3 75.6 1.3 8.7 0.9 7.8 
0.5gKOH Recycle 1 79.2 76.5 60.6 2.3 6.9 0.9 8.6 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10 

 

From Figure 5-29 as well as Table 5-16, it can be seen that the product distributions for the 

reactions without adding KOH are similar to those when adding 0.5g KOH. Without adding 

KOH, when the catalyst was recycled and reused, the 1,2PD yield drops from 74.8% to 

60.5%; when 0.5g KOH is added, and when the catalyst is recycled and reused, the 1,2PD 

yield drops from 75.6% to 60.6%. Hence by adding 0.5g KOH, catalyst deactivation is also 

observed. 
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To further investigate the effect of KOH, 10g of KOH was added into the reactant system. 

The experimental results are shown in Figure 5-30. 

 

Figure 5-30 Effect of KOH on the Cu/MgO/Al2O3 activity: a) Glycerol Conversion; b) 
1,2PD Selectivity; c)1,2PD Yield; d) EG Yield. Conditions: 220 ºC, 15bar N2, 20wt% 
Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

From Figure 5-30, it can be seen that by adding a significant amount of KOH (10g in this 

case, 50wt% with respect to glycerol weight), the glycerol is converted much faster than for 

the glycerol conversion when no KOH is added over the reaction time as shown in Figure 5-

30a. However, the selectivity to 1,2PD is much lower when 10g KOH is added as shown in 

Figure 5-30b, therefore, the yield of 1,2PD is significantly lower (Figure 5-30c). This is not 

only caused by the formation of other by-products, but also a significant amount of EG is 

formed which as shown in Figure 5-30d, Figure 5-31 and Table 5-17. Therefore, it is 

apparent that the basicity of the reaction environment can promote C-C bond cleavage 

resulting in a high EG yield.  
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Figure 5-31 Effect of KOH on the Products Distribution. Conditions: 220 ºC, 15bar N2, 20wt% 
Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

Table 5-17 Effect of KOH on Product Distributiona. 

 
Glycerol 

Conversion 
1,2PD 

Sel. 
1,2PD 
Yield 

Act 
Yield 

EG 
Yield 

PrOH 
Yield 

Others 
Yield 

No KOH 94.2 79.4 74.8 1.3 7.5 0.8 9.8 
0.5g KOH 94.2 80.3 75.6 1.3 8.7 0.9 7.8 
10g KOH 100.0 44.2 44.2 0.0 27.3 1.0 27.6 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

5.3.5 Effect of Glycerol Feed Concentration 

An experiment with a higher glycerol concentration (30%) was carried out to study the effect 

of glycerol concentration on the 1,2PD selectivity. A higher glycerol concentration is desired 

in industry since the operational cost will be lower by running fewer batch reactions and 

smaller reactors are required. However, it can be expected that for a higher glycerol 

concentration, the concentration of methanol and water will be lower; hence less hydrogen 

will be produced. In this case the selectivity to 1,2PD will be affected. The experimental 

results obtained are shown in Figure 5-32. 
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Figure 5- 32 Effect of Glycerol Concentration on: a) Glycerol Conversion; b) 1,2PD 
Selectivity; c) Acetol Yield; d) Others Yield. Conditions: 220 ºC, 15bar N2, 
Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

It can be seen that when the glycerol concentration is increased from 20% to 30%, the 

glycerol conversion over the reaction time becomes lower as shown in Figure 5-32a. This is 

because with the same amount of catalyst, when the glycerol concentration is higher, the 

catalyst concentration with respect to glycerol load is lower. When the glycerol concentration 

is higher, the selectivity to 1,2PD is much lower than that when the glycerol concentration is 

20% (Figure 5-32b), since when the glycerol concentration is higher, the concentration of 

methanol and water will be lower and less hydrogen will be produced for acetol 

hydrogenation. As Figure 5-23c shows, the yield of acetol at higher glycerol concentration is 

higher resulting in a higher yield of by-products due to side reactions with acetol, as shown 

in Figure 5-23d. The detailed final product distributions for these two glycerol initial 

concentration experiments are shown in Figure 5-33 as well as in Table 5-18. 
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Figure 5-33 Effect of Glycerol Concentration on the Products Distribution. Conditions: 220 
ºC, 15bar N2, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 
22.5/67.5/10. 

 

Table 5-18 Effect of Glycerol Concentration on Product Distributiona 

 Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

30% Glycerol 84.8 58.1 49.2 3.2 5.0 0.6 26.8 
20% Glycerol 95.6 79.5 75.9 1.0 7.7 0.8 10.1 

aConditions: 220 ºC, 15bar N2, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, 
Cu/Mg/Al = 22.5/67.5/10. 

 

Therefore, a more active catalyst for methanol steam reforming or acetol hydrogenation is 

required if a higher concentration of glycerol is to be used as the feedstock. 
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5.4 Study of Pd as a Promoter for the Cu/MgO/Al2O3 and Cu/ZnO/Al2O3 

Catalysts 

Palladium has been used for many hydrogenation process. Recently it has been reported that 

adding Pd to a Cu based catalyst [60, 82, 106] can improve the catalytic acitivity for the 

glycerol hydrogenolysis process.  

 

5.4.1 Effect of Pd Precursors and Preparation Methods 

It has been reported that palladium acetate can be reduced to palladium nano-particles by 

some reducing agents such as ethanol, NaBH4 or hydrazine [170, 171]. A similar method was 

used to prepare a palladium supported on Cu/ZnO/Al2O3 catalyst. A pre-calculated amount of 

Pd(Ac)2 in acetone was added drop wise into a slurry containing 20g of calcined 

CuO/ZnO/Al2O3 catalyst and 350ml ethanol with vigorous stirring for 4 hours. The 

palladium acetate was reduced to metallic palladium as the ethanol acted as a reducing agent 

[172]. The solid was filtered and dried in air at 110 ºC for 12 hours. The particles were 

calcined in air at 360 ºC for 4 hours (PdAc Red.). For comparison, a catalyst was prepared by 

a conventional impregnation method (PdAc Imp.). The detailed procedures are provided in 

Section 3.1. In order to study the effect of the palladium precursor, a palladium nitrate 

Pd(NO3)2 precursor was also used for impregnation. The procedure was similar to the method 

described previously when palladium acetate was used as the precursor except water was 

used as the solvent and the solvent was evaporated on an oil bath at 110 ºC, the catalyst was 

referred to as Pd(NO3)2 Imp.  

Gopinath et al. in 2008 reported that the supported palladium catalyst prepared by deposition 

precipitation had a higher activity [173] compared with the catalyst prepared by impregnation. 

Therefore, a Pd supported on Cu/ZnO/Al2O3 catalyst prepared by Pd(NO3)2 deposition 

precipitation was prepared. 20 gram of calcined CuO/ZnO/Al2O3 catalyst was first dispersed 
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into a 350ml aqueous solution of Pd(NO3)2. 0.5M (NH4)2CO3 was slowly added to the 

palladium solution until the pH value of the mixture reached 10. The suspension was stirred 

for 1h. The solid was filtered and washed with deionized water until the pH of the filtrate 

became 7.0. The catalyst was then dried in air at 110 ºC for 12 hours and calcined in air at 

360 ºC for 4 hours. The catalyst was referred to as Pd(NO3)2 D.P.. The experimental results 

are shown in Figure 5-34 and Table 5-19. 

 

Figure 5-34 Effect of Preparation Method of Pd Supported on Cu/ZnO/Al2O3 on the 
Products Distribution. Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 
3wt% catalyst, 500RPM, 8 hours, Cu/Zn/Al = 35/35/30, 1wt% Pd Loading. 

 

Table 5-19 Effect of Preparation Method of Pd Supported on Cu/ZnO/Al2O3 on Product 
Distributiona. 

Catalyts 
Glycerol 

Conversion 
1,2PD  

Selectivity 
1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

No Pd 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
PdAc Red. 92.4 67.4 62.3 3.0 3.2 0.7 23.2 
PdAc Imp. 94.9 74.3 70.5 3.9 3.7 0.8 15.9 

Pd(NO3)2 Imp 87.6 58.8 51.5 4.6 2.8 0.6 28.0 
Pd(NO3)2 D.P. 90.4 67.7 61.2 3.4 2.9 0.6 22.2 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10, 1wt% Pd Loading. 

 

152 

 



From Figure 5-34 as well as Table 5-19, it can be seen that only the impregnation method 

using palladium acetate as the precursor has a positive effect on the catalyst activity. With 

1wt% loading, the glycerol conversion increases from 87.1% to 94.9% compared with a 

Cu/ZnO/Al2O3 catalyst without loading Pd; the 1,2PD selectivity also increases from 70.7% 

to 74.3%. The other three preparation methods (PdAc Red., Pd(NO3)2 Imp. and Pd(NO3)2 

D.P.) all have negative effects on the catalytic activity.  

Knowing that the addition of Pd via an impregnation method can promote the activity of the 

catalyst, two different catalysts, which are Cu/ZnO/Al2O3 and Cu/MgO/Al2O3, were used. 

The experimental results are shown in Table 5-20. 

Table 5-20 Effect of Support for Pd on Product Distributiona 

Catalysts Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Cu/ZnO/Al2O3 87.1 70.7 61.6 5.2 2.9 0.7 16.7 
1wt%Pd-Cu/ZnO/Al2O3 94.9 74.3 70.5 3.9 3.7 0.8 15.9 

Cu/MgO/Al2O3 95.6 79.5 75.9 1.0 7.7 0.8 10.1 
1wt%Pd-Cu/MgO/Al2O3 97.2 83.4 81.0 0.0 9.2 0.7 6.2 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Cu/Zn/Al = 35/35/30, Cu/Mg/Al = 22.5/67.5/10, 1wt% Pd Loading. 

 

It has been discussed in Section 5.3.1 that Cu/MgO/Al2O3 gave a higher activity than the 

Cu/ZnO/Al2O3 catalyst for glycerol hydrogenolysis using in situ hydrogen produced by 

methanol steam reforming. It can be seen from Table 5-20 that 1wt% addition of Pd can 

improve the activities of both the Cu/ZnO/Al2O3 and Cu/MgO/Al2O3 catalysts; the Pd 

supported on Cu/MgO/Al2O3 catalyst has a higher activity than that of Pd supported on 

Cu/ZnO/Al2O3. The promoting effect of Pd is possibly due to a greater suppy of surface 

hydrogen by Pd as shown in the H2 TPD results shown in Section 6.4 and the promoting 

effect on the methanol steam reforming reaction as has been frequently reported [174, 175]. 
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5.4.2 Effect of Pd Loading 

It has been discussed in Section 5.3.5 that the 1,2PD selectivity was lower when the glycerol 

concentration was higher. Therefore, to further investigate if the small improvement 

(glycerol conversion 95.6% to 97.2% and 1,2PD selectivity 79.5% to 83.7%) when 20% 

aqueous glycerol was used as the feedstock was due to the addition of Pd or experimental 

errors, a higher glycerol concentration (40%) was used in the experiment. The catalyst with 

different amount of Pd loading (wt%) (0, 1, 2, 3) were used and the experimental results are 

shown in Figure 5-35. 

 

Figure 5-35 Effect of Pd Loading on: a) Glycerol Conversion; b) 1,2PD Selectivity; c) 1,2PD 
Yield; d) Acetol Yield. Conditions: 220 ºC, 15bar N2, Water/Methanol=1.2, Glycerol 
Concentration=40wt%, 7wt% catalyst, 500RPM, 8 hours, Cu/Mg/Al = 22.5/67.5/10. 

 

As shown in Figure 5-35a, the glycerol conversions for these four catalysts are not very 

different since they all reach 100% glycerol conversion after 8 hours. This suggests that 7wt% 

of catalyst is enough to provide 100% glycerol conversion in 8 hours when 40% aqueous 
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glycerol is used as the feedstock. From Figure 5-35b, it can be seen that as the Pd loading is 

increased from 0wt% to 2wt%, the 1,2PD selectivity increases significantly from 53.5% to 

73.2% as shown in Figure 5-36 and Table 5-20. When the Pd loading is further increased 

from 2wt% to 3wt%, the selectivity of 1,2PD does not change significantly (73.2% to 73.6%). 

Therefore, 2wt% of Pd loading is selected as the optimum amount. The yield of other by-

products decreases from 35.5% (no Pd loaded) to 18.4% when 2wt% Pd is loaded. Figure 5-

36d shows that when the Pd loading is increased, the concentration of acetol in the mixture 

becomes lower, which is the main cause for the formation of by-products.  

 

Figure 5-36 Effect of Pd Loading on Cu/MgO/Al2O3 on the Products Distribution. 
Conditions: 220 ºC, 15bar N2, 40wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 
500RPM, 8 hours, Support: Cu/Mg/Al = 22.5/67.5/10, 40wt% Glycerol. 

 

Table 5-21 Effect of Pd Loading on Cu/MgO/Al2O3 on Product Distributiona 

  
Glycerol 

Conversion 
1,2PD  

Selectivity 
1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

0% Pd 97.4 54.9 53.5 2.0 4.4 2.1 35.5 
1% Pd 100.0 66.8 66.8 0.7 5.5 0.7 26.3 
2% Pd 100.0 73.2 73.2 0.4 6.6 1.4 18.4 
3% Pd 100.0 73.6 73.6 0.4 6.6 0.8 18.6 

aConditions: 220 ºC, 15bar N2, 40wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 
500RPM, 8 hours, Support: Cu/Mg/Al = 22.5/67.5/10, 40wt% Glycerol. 
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5.4.3 Effect of Pd-Cu/MgO/Al2O3 Catalyst Amount 

Experiments with different amounts of 2wt%Pd-Cu/MgO/Al2O3 catalyst loading were also 

carried out to study the effect of catalyst amount on the reaction products. Three amounts 

(3wt%, 5wt% and 7wt%) were selected and the experimental results are shown in Figure 5-

37. 

 

Figure 5-37 Effect of Catalyst Amount on: a) Glycerol Conversion; b)1,2PD Selectivity; c) 
1,2PD Yield d) Acetol Yield. Conditions: 220 ºC, 15bar N2, Water/Methanol=1.2, 7wt% 
catalyst, 500RPM, 8 hours, Catalyst: 1% Pd on Cu/Mg/Al = 22.5/67.5/10 40wt% Glycerol. 

 

Figure 5-37a shows that when the catalyst amount is increased, the glycerol conversion over 

the reaction time is higher. When 7wt% of catalyst is loaded, the conversion of glycerol 

reaches 100% in 5 hours while when 5wt% of catalyst is loaded, the conversion is 100% in 8 

hours. Figure 5-37b shows that when the catalyst amount is increased from 3wt% to 5wt%, 

the selectivity to 1,2PD is improved significantly from 36.2% to 61.1%; the detailed product 

distribution is shown in Figure 5-38 and Table 5-22. When the catalyst amount is further 

increased from 5wt% to 7wt%, the selectivity to 1,2PD is only improved from 61.1% to 
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66.8%. Figure 5-38d shows that the concentration of acetol is lower when the catalyst 

loading is higher; therefore, the selectivity to 1,2PD is higher when more catalyst is loaded. 

When more catalyst is loaded, apparently more active sites will be available for methanol 

steam reforming; therefore, more hydrogen will be produced for acetol hydrogenation 

resulting in a lower yield of by-products. 

 

Figure 5-38 Effect of Pd on Cu/MgO/Al2O3 Catalyst Amount on the Products Distribution. 
Conditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 
500RPM, 8 hours, Catalyst: 1wt% Pd on Cu/Mg/Al = 22.5/67.5/10, 40wt% Glycerol. 

 

Table 5-22 Effect of Pd on Cu/MgO/Al2O3 Catalyst Amount on the Product Distributiona 

  
Glycerol 

Conversion 
1,2PD  

Selectivity 
1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

3wt% 91.1 36.2 32.9 6.2 2.9 1.3 47.7 
5wt% 98.5 61.1 60.2 1.3 5.1 0.9 31.0 
7wt% 100.0 66.8 66.8 0.7 5.5 0.7 26.3 

aConditions: 220 ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 
500RPM, 8 hours, Catalyst: 1wt% Pd on Cu/Mg/Al = 22.5/67.5/10 40wt% Glycerol. 
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5.4.4 Methanol Steam Reforming Using 2wt% Pd-Cu/MgO/Al2O3 

Experiments of methanol steam reforming to produce hydrogen have been carried out using 

2wt% Pd on the Cu/MgO/Al2O3 catalyst. Two temperatures were used to study the 

temperature effect on the reaction products, which were 220ºC and 240ºC. The reaction 

conditions were: 3wt% catalyst, 500RPM, 6 hours reaction time, water to methanol molar 

ratio of 1.2; 25bar (363 psi) of nitrogen was used to keep the reactant in liquid phase. The 

experimental results are shown in Figure 5-39 and Figure 5-40. 

 

Figure 5-39 Methanol Conversions for Methanol Steam Reforming Using Pd on 
Cu/MgO/Al2O3 Catalyst. Conditions: 3wt% catalyst, 500RPM, 25bar N2, water to methanol 
molar ratio is 1.2, catalyst 2% Pd on Cu/Mg/Al=22.5/67.5/10. 
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Figure 5-40 Hydrogen Pressure During the Reaction Time for Methanol Steam Reforming 
Using Pd on Cu/MgO/Al2O3 Catalyst. Conditions: 3wt% catalyst, 500RPM, 25bar N2, water 
to methanol molar ratio is 1.2, catalyst 2% Pd on Cu/Mg/Al=22.5/67.5/10. 

 

From Figure 5-39 and Figure 5-40, it can be seen that when the temperature is at 240ºC, the 

methanol conversion after 6 hours is about 7% and at 220ºC, only 5.5% of methanol is 

converted; accordingly the hydrogen pressure at 240ºC is higher than that at 220ºC. All the 

results of the gas phase were calculated based on the van der Waal’s Equations as shown by 

Equation 5-6 and Equation 5-7. The results are shown in Table 5-22. 

RTnbnV
V

anp ii
i

i =−+ ))(( 2

2

                                                                                    Equation 5-6 

where n is calculated by an online calculator provided V, pi, a, b, T and R 

itotali xpp ×=                                                                                                    Equation 5-7 

where xi is provided by RGA 
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Table 5-22 RGA Data for Methanol Steam Reforming. 

    % Psi mmol Meth Conv 
220˚C Psi total H2 N2 CO CO2 CH4 H2 N2 CO CO2 CH4 H2 % 

0 1103 7.00 91.53 0.31 1.17 0.00 77.16 1009.56 3.38 12.89 0.00 25.88 0.46 
1 1435 20.29 75.74 0.03 3.94 0.00 291.18 1086.86 0.48 56.48 0.00 96.95 1.73 
2 1594 33.41 61.60 0.08 4.92 0.00 532.51 981.84 1.20 78.45 0.00 175.82 3.15 
4 1824 44.43 48.88 0.12 6.55 0.03 810.32 891.55 2.11 119.42 0.60 264.96 4.74 
6 1860 50.64 41.93 0.18 7.15 0.10 941.97 779.96 3.31 132.97 1.79 306.60 5.48 

 

240˚C   % Psi mmol Meth Conv 
  Psi total H2 N2 CO CO2 CH4 H2 N2 CO CO2 CH4 H2 % 
0 1050 6.90 91.89 0.06 1.15 0.00 72.41 964.88 0.68 12.03 0.00 30.00 0.54 

0.5 1786 14.97 79.59 0.06 5.38 0.00 267.36 1421.39 1.15 96.09 0.00 84.51 1.51 
1 1893 31.15 62.78 0.15 5.92 0.00 589.71 1188.41 2.88 112.01 0.00 186.47 3.34 
2 2020 43.42 48.56 0.17 7.83 0.02 877.03 980.94 3.44 158.23 0.36 274.41 4.91 
4 2112 53.26 37.43 0.27 8.85 0.18 1124.92 790.56 5.80 186.92 3.80 350.04 6.26 
6 2242 56.47 29.35 0.31 13.50 0.38 1266.04 658.01 6.94 302.59 8.41 390.58 6.99 
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It can also be observed that the Pd supported on Cu/MgO/Al2O3 catalyst has a very 

high selectivity towards CO2 since there is only 0.18% of CO present in the gas 

mixture at 220ºC and only 0.31% CO at 240ºC. The selectivity to hydrogen is 

calculated using Equation 5-8, which is 98.94% at 220ºC and 99.05% at 240ºC. 

100
%3%

3%
2

2 ×
+÷
÷

=
COH

HySelectivit                                                           Equation 5-8 

An experiment of glycerol hydrogenolysis using in situ hydrogen produced from 

methanol steam reforming has been carried out. The gas samples were analyzed by 

RGA and the experimental results were compared with the methanol steam reforming 

results as shown in Figure 5-41 and Figure 5-42. 

 

Figure 5-41 Methanol Conversion Comparison Between the Feedstock with Glycerol 
Added and without Glycerol Added: (Red) With Glycerol Added Conditions: 220 ºC, 
25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, 
Catalyst: 2wt% Pd on Cu/Mg/Al = 22.5/67.5/10; (Blue) Without Glycerol Added 
Conditions: 3wt% catalyst, 500RPM, 25bar N2, water to methanol molar ratio is 1.2, 
catalyst 2% Pd on Cu/Zn/Al=22.5/67.5/10. 

 

 

 

Without Glycerol 

With Glycerol 
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Figure 5-42 Hydrogen Pressure Comparison Between the Feedstock with Glycerol 
Added and without Glycerol Added: (Red) With Glycerol Added Conditions: 220 ºC, 
25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 8 hours, 
Catalyst: 2wt% Pd on Cu/Mg/Al = 22.5/67.5/10; (Blue) Without Glycerol Added 
Conditions: 3wt% catalyst, 500RPM, 25bar N2, water to methanol molar ratio is 1.2, 
catalyst 2% Pd on Cu/Zn/Al=22.5/67.5/10. 

 

From Figure 5-41, it can be seen that with glycerol added, the methanol conversion is 

higher than without glycerol added. It is possibly because that when hydrogen is 

consumed the lower hydrogen pressure will drive the equilibrium of methanol steam 

reforming towards the products. From Figure 5-42, it can be seen that because of the 

hydrogen consumption, the hydrogen pressure with glycerol added is much lower than 

that when no glycerol is added. The hydrogen pressure stays below 200psi during the 

reaction. At the beginning of the reaction (first two hours), the hydrogen pressure is 

below 100 psi. Based on the discussion in Chapter 4, the minimum hydrogen pressure 

required to avoid the formation of other by-products is 400psi. So the low hydrogen 

pressure is possibly one of the reasons for the low selectivity to 1,2PD when the 

glycerol concentration is high. 

The hydrogen consumption is calculated using Equation 5-9 to determine the portion 

of hydrogen used for glycerol hydrogenolysis from the hydrogen produced via 
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methanol steam reforming and the results are shown in Table 5-23 as well as in Figure 

5-43. 

%100
___

2,1__% ×
−

=
hydrogenofmoltotal

lpropanedioofmolnConsumptio
                         Equation 5-9 

 

Table 5-23 Hydrogen Consumptiona. 

Time  H2 consumed 
Methanol 

Conversion 
 Hours % % 

0 0.0 0.2 
0.5 84.7 2.9 
1 82.9 3.5 
2 81.0 4.7 
4 78.4 5.8 
6 77.1 6.7 

aConditions: 220 ºC, 25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8 hours, Catalyst: 2wt% Pd on Cu/Mg/Al = 22.5/67.5/10 40wt% Glycerol. 

 

 

Figure 5-43 Hydrogen Consumption. Conditions: 220 ºC, 3wt% Catalyst, 500RPM, 6 
hours reaction time, water to methanol molar ratio is 1.2, 30wt% of glycerol added. 
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From Figure 5-43 and Table 5-23, it can be seen that around 77% to 85% of the 

hydrogen is consumed by hydrogenation. The H2 consumption decreases along the 

reaction from 85% to 77%, since at the beginning of the reaction, the concentration of 

acetol is higher, and hence the hydrogenation rate is higher. As the reaction proceeds, 

the acetol concentration decreases, therefore, the hydrogen consumption becomes 

lower.  

 

Figure 5-44 Concentration Profile of Each Product for Glycerol Hydrogenolysis 
Using the H2 Produced by Methanol Steam Reforming: a) All the Products; b) Acetol. 
Conditions: 220ºC, 3wt% catalyst, 500RPM, 6 hours, water to methanol molar ratio is 
1.2, 30wt% of Glycerol Added. 

 

Figure 5-44 shows the concentration profile of each product over the reaction time, it 

can be observed that the concentration of acetol increases first and then slowly 
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decreases; the decreasing acetol concentration decreases the hydrogen consumption 

rate. 

5.4.5 Glycerol Hydrogenolysis Using in situ Hydrogen Produced via 

Methanol Steam Reforming with Molecular Hydrogen Initially Added 

It has been discussed that a lower hydrogen production rate is one of the reasons for 

the low 1,2PD selectivity especially during the early stages of the reaction. An 

experiment with hydrogen added initially with methanol steam reforming was carried 

out to investigate the improvement in the 1,2PD selectivity. The experimental 

procedure was: hydrogen was used to flush the air out of the reactor, and then at room 

temperature, 25bar of hydrogen was charged into the reactor. The reaction conditions 

were: 220ºC, 7wt% catalyst loaded, 500RPM, 6 hours reaction time, with a water to 

methanol molar ratio of 1.2, and with 40wt% of aqueous glycerol added. Figure 5-45 

and Table 5-24 show the experimental results and the comparison with those when 

molecular hydrogen was continuous fed at the same temperature without methanol 

steam reforming in Section 4.11. 

 

Figure 5-45 Comparison between Molecular Hydrogen and in situ Hydrogen. 
Molecular H2: 220ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to glycerol 
weight, 50% aqueous glycerol, 24 hours; in situ H2: 7wt% Catalyst, 40wt% Glycerol, 
W/M = 1.2, 6 hours 25bar H2 initially; Catalyst: 2wt% Pd on Cu/MgO/Al2O3 
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Table 5-24 Effect of Initial Hydrogen Gas on Product Distributiona 

  
Glycerol 

Conversion 
1,2PD  

Selectivity 
1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Molecular H2 96.87 80.03 77.52 1.83 5.52 1.11 10.88 
In situ H2 with H2 98.64 87.18 85.99 0.58 8.47 0.36 3.24 
In situ H2 with N2 94.98 69.91 66.40 2.02 5.82 1.76 18.98 

aConditions: Molecular H2: 220ºC, 400psi H2, 500RPM, 5wt% catalyst with respect to 
glycerol weight, 50% aqueous glycerol, 24 hours; in situ H2: 7wt% Catalyst, 40wt% 
Glycerol, W/M = 1.2, 6 hours, 25bar H2 initially; Catalyst: 2wt% Pd on 
Cu/MgO/Al2O3 

 

From Table 5-24 and Figure 5-45, it can be seen that at the same temperature, when 

molecular hydrogen is used, the 1,2PD selectivity (80.03%) is lower than that when in 

situ hydrogen is used with molecular hydrogen initially added (87.18%). It also can be 

seen that with molecular hydrogen at 220ºC, around 10.88% of byproducts was 

formed but with in situ hydrogen, the yield of byproducts was only 3.2%. This is 

possibly because the in situ hydrogen generated from methanol steam reforming can 

exist in the form of adsorbed hydrogen atom facilitating the acetol hydrogenation step. 

Therefore, it can more effectively hydrogenate the acetol avoiding side reactions 

occure. 

 

5.5 Effect of Ni on Cu/MgO/Al2O3 Catalyst 

It was discussed in Section 5.2 that when Ni was added onto a Cu/ZnO/Al2O3 catalyst, 

the 1,2PD selectivity was improved but the glycerol conversion was lower. In this 

section, different amounts of Ni were added into a Cu/MgO/Al2O3 catalyst (1mole% 

and 5mole%), the results are shown in Figure 5-46 and Table 5-25. 
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Figure 5-46 Effect of Ni on Cu/MgO/Al2O3 Catalyst on Product Distribution. 
Conditions: 220ºC, 5wt% catalyst, 500RPM, 6 hours, water to methanol molar ratio is 
1.2, 30wt% of glycerol added. Catalyst: 10mole% Aluminum, Cu/Mg = 1/3, 25bar N2. 

 

Table 5-25 Effect of Ni on Cu/MgO/Al2O3 Catalyst on Product Distributiona 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

Acetol 
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

No Ni 97.29 72.26 70.30 1.70 6.27 1.69 18.33 
1mole% Ni 88.73 76.73 68.08 1.49 6.46 2.80 9.91 
5mole% Ni 8.70 50.48 4.39 0.48 0.82 0.73 2.27 

aConditions: 220ºC, 5wt% catalyst, 500RPM, 6 hours, water to methanol molar ratio 
is 1.2, 30wt% of glycerol added. Catalyst: 10mole% Aluminum, Cu/Mg = 1/3, 25bar 
N2. 

 

It is noticed that the same trend to that observed when Ni/Cu/ZnO/Al2O3 is used when 

1mole% Ni is loaded, and the 1,2PD selectivity is improved from 72.3% to 76.7%, 

but the glycerol conversion drops from 97.3% to 88.7% and the glycerol conversion 

over the reaction time is always lower than that without Ni loaded (Figure 5-47a). The 

yield of un-desired by-products is also reduced from 18.3% to 9.9% and the acetol 

yield is also lower with 1mole% Ni loaded (Figure 5-47d). However, when the Ni 

amount is increased to 5mole%, the glycerol conversion is only 8.7% and the 

selectivity to 1,2PD is 50.5%; the catalyst is almost completely deactivated by adding 

5mole% Ni. It is found from the NH3 TPD results that by adding Ni, the number of 
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acidic sites is reduced; when 5mole% Ni is added, and the acidic sites are completely 

eliminated. A detailed acidity analysis will be provided in Section 6.1. Since the 

acidic sites are important for glycerol dehydration, the addition of Ni might result in a 

lower glycerol conversion. 

 

Figure 5-47 Effect of Ni on Cu/MgO/Al2O3 Catalyst Activity: a) Glycerol Conversion; 
b)1,2PD Selectivity; c) Others Yield d) Acetol Yield. Conditions: 220ºC, 25bar N2, 
30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 500RPM, 6 hours, Catalyst: 
10mole% Aluminum, Cu/Mg = 1/3. 

 

5.6 Cu/MgO/Ga2O3 Catalyst 

It was reported by Bienholz et al. in 2010 that Ga can prevent Cu/ZnO catalyst 

deactivation [80]; and also it was reported that Ga could improve the Cu/ZnO catalyst 

stability in a methanol steam reforming process [176]; therefore, in this section Ga 

was loaded onto a Cu/MgO catalyst to investigate the effect on the catalytic activity 

and stability. 
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5.6.1 Activity Comparison between Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 

10 mole% of gallium was loaded onto the Cu/MgO catalyst to replace Al. The 

preparation procedures were described in Section 3.1. The experimental results are 

shown in Figure 5-48. 

 

Figure 5-48 Effect of Ga on Cu/MgO Catalyst Activity. Conditions: 220ºC, 25bar N2, 
30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 500RPM, 6 hours, Catalyst: 
Cu/Mg/Al = 22.5/67.5/10, Cu/Mg/Ga = 22.5/67.5/10. 

 

As shown in Figure 5-48, no obvious difference is observed on glycerol conversion 

and 1,2PD selectivity ove the reaction time. The final glycerol conversion and 1,2PD 

selectivity using Cu/MgO/Al2O3 after 6 hours are 97.3% and 72.3 respectively, and 

the final glycerol conversion and 1,2PD selectivity using Cu/MgO/Ga2O3 are 96.5% 

and 74.5% respectively; the yields of all the other by-products using both catalysts are 

very similar as listed in Table 5-26. Therefore, no significant improvement of 

catalytic activity is observed by replacing Al by Ga. 
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Table 5-26 Product Distribution Comparison between Cu/MgO/Al2O3 and 
Cu/MgO/Ga2O3

a. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD 
Yield 

Acetol 
Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

Cu/MgO/Al2O3 97.29 72.26 70.30 1.70 6.27 0.69 18.33 
Cu/MgO/Ga2O3 96.49 74.51 71.90 1.77 6.39 0.00 16.43 

aConditions: 220ºC, 25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 
500RPM, 6 hours, Catalyst: Cu/Mg/Al = 22.5/67.5/10 and Cu/Mg/Ga = 22.5/67.5/10. 

 

5.6.2 Effect of Ga on Cu/MgO Catalyst Stability 

The Cu/MgO/Ga2O3 catalyst was recycled and reused to investigate the stability of the 

catalyst. The glycerol conversion and 1,2PD selectivity during the reaction time are 

shown in Figure 5-49. It can be seen from Figure 5-49a that the glycerol conversion is 

lower when the catalyst is recycled, as shown in Table 5-27, with about a 7% to 9% 

glycerol conversion drop every time the catalyst is recycled. The 1,2PD selectivity 

during the reaction time drops significantly from 74.5% to 57.1% when the catalyst is  

recycled the first time; as the catalyst is further recycled, the decrease in 1,2PD 

selectivity is only about 3% to 4% every time the catalyst is recycled as shown in 

Figure 5-49b and Table 5-27. It is found that fresh catalyst is significantly deactivated 

during the first cycle of reaction, and when the catalyst is further recycled and reused, 

the deactivation becomes less significant. 
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Figure 5-49 Study of Cu/MgO/Ga2O3 Catalyst Stability. Conditions: 220ºC, 25bar N2, 
30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 500RPM, 6 hours, Catalyst: 
Cu/Mg/Ga = 22.5/67.5/10. 

 

 

Figure 5-50 Products Yield Using the Fresh and Recycled Cu/MgO/Ga2O3 Catalyst. 
Conditions: 220ºC, 25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 
500RPM, 6 hours, Catalyst: Cu/Mg/Ga = 22.5/67.5/10. 
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Table 5- 27 Product Yield Using the Fresh and Recycled Cu/MgO/Ga2O3 Catalysta. 

  Glycerol 
Conversion 

1,2PD 
Selectivity 

1,2PD  
Yield 

Acetol 
 Yield 

EG  
Yield 

PrOH  
Yield 

Others 
Yield 

Fresh 96.44 74.49 71.84 1.76 6.40 0.00 16.45 
Recycle 1 87.66 57.13 50.08 2.85 5.67 0.00 29.05 
Recycle 2 80.00 53.18 42.54 4.65 5.06 0.00 27.75 
Recycle 3 71.63 50.08 35.87 5.15 4.41 0.00 26.20 

aConditions: 220ºC, 25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 
500RPM, 6 hours, Catalyst: Cu/Mg/Ga = 22.5/67.5/10. 

 

5.7 Effect of Pd on Cu/MgO/Ga2O3  

2wt% Pd was also loaded onto the Cu/MgO/Ga2O3 catalyst to investigate the 

selectivity promoting effect of Pd on the reaction products; the results are compared 

with the Pd loaded onto Cu/MgO/Al2O3 catalyst. The glycerol conversion and 1,2PD 

are shown in Figure 5-51. 

 

Figure 5-51 Effect of Pd on Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 Catalyst Activity: a) 
Glycerol Conversion; b) 1,2PD Selectivity. Conditions: 220ºC, 25bar N2, 30wt% 
Glycerol, Water/Methanol=1.2, 5wt% catalyst, 500RPM. 
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It can be seen that Pd loading does not significantly improve the glycerol conversion 

during the reaction (Figure 5-51a); the 1,2PD selectivity can be improved by loading 

2wt% Pd on both Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 catalysts as shown in Figure 5-

51b. By comparing the Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 with 2wt% Pd loaded, 

no obvious activity improvement is observed (Table 5-28). 

 

Figure 5-52 Effect of Pd on the Products Yield Using Cu/MgO/Al2O3 and 
Cu/MgO/Ga2O3 Catalysts. Conditions: 220ºC, 25bar N2, 30wt% Glycerol, 
Water/Methanol=1.2, 5wt% catalyst, 500RPM, 6 hours reaction time. 

 

Table 5-28 Effect of Pd on Product Yield Using Cu/MgO/Al2O3 and Cu/MgO/Al2O3 
as Supportsa. 

  Glycerol 
Conversion 

1,2PD  
Selectivity 

1,2PD  
Yield 

Acetol  
Yield 

EG  
Yield 

PrOH  
Yield 

Others  
Yield 

Cu/MgO/Al2O3 97.29 72.26 70.30 1.70 6.27 0.69 18.33 
2Pd-Cu/MgO/Al2O3 98.74 81.50 80.47 0.43 8.18 0.32 9.34 
Cu/MgO/Ga2O3 96.49 74.51 71.90 1.77 6.39 0.00 16.43 
2Pd-Cu/MgO/Ga2O3 97.79 79.93 78.17 0.39 8.34 0.00 10.90 

aConditions: 220ºC, 25bar N2, 30wt% Glycerol, Water/Methanol=1.2, 5wt% catalyst, 
500RPM, 6 hours reaction time. 
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5.8 Investigation of the Effects of Experimental Conditions by Factorial 

Design Using a Pd-Cu/MgO/Al2O3 Catalyst 

A series of factorial designed experiments were carried out and a statistical analysis 

was conducted in this section to investigate the effect of different factors on the 

experimental results and the interactions between two factors. 

 

5.8.1 Advantages of Factorial Design 

It is believed that many factors can possibly affect the catalyst activity; nevertheless, 

only a limited number of experiments can be carried out. A factorial design is a 

powerful technique to investigate the effect of different factors on the experimental 

system. Generally in a factorial experimental design, experimental trials are carried 

out at all combination of factor levels. Therefore, it can efficiently examine a number 

of factors which may possibly affect the catalyst activity by a reduced number of 

experiments. Compared to the unvariate (one factor at a time) method in which only 

one experimental factor is changed while the remaining ones are held constant, the 

factorial experiments combine all levels of one factor with all levels of another factor 

and can detect both single factor effects and multi-factor-interactions. 

 

5.8.2 Experimental Methods  

In this section, seven factors are investigated which are: reaction temperature, catalyst 

loading, glycerol concentration, Pd loading, stirring speed, nitrogen pressure and 

water to methanol molar ratio. Two levels of each factor were used which were coded 

as +1 (high) and -1 (low); the reaction conditions for high level and low level are 

shown in Table 5-29. A full factorial design for seven factors requires 27 experiments 

which are 128 experiments. To make an efficient fractional factorial design, the 

concept of design resolution is a useful way to catalog fractional factorial design. 
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Since only two factor interaction study is necessary in this case a resolution IV design 

was used which no main effect was aliased with any other main effect or two-factor 

interactions, but two-factor interactions were aliased with each other. To investigate 

the two-factor interactions, only main effect interactions were investigated. The 

criteria for the fractional experimental design are listed in Table 5-30 [177]. 

  

Table 5-29 Experimental Conditions for High Level (-1) Middle Level (0) and Low 
Level (-1) for a Fractional Factorial Design. 

 Conditions -1 0 1 
Temperature (°C) 200 220 240 

Catalyst wt% 3 5 7 
Glycerol Concentration 20 30 40 

Pd Loading wt% 0 1 2 
Stirring Speed RPM 400 500 600 

Nitrogen Pressure bar 15 25 35 
Water to Methanol Molar Ratio 1 1.2 1.4 

 

A 1/8 27 fractional design was carried out in this study which included 16 experiments. 

4 factors were chosen as the main factors for a 24 full factorial design which were 

reaction temperature (A), catalyst loading (B), glycerol concentration (C) and Pd 

loading (D). The other 3 factors were generated by: E (stirring speed) = ABC, F (N2 

pressure) = BCD and G (water to methanol molar ratio) = (ACD). Five responses 

were investigated, which were glycerol conversion, 1,2PD selectivity, 1,2PD yield, 

EG yield, and yield of other by-products. The experiments at 0 conditions (middle 

level) were repeated 3 times to test the repeatability of the experiment and to estimate 

some statistical parameters such as standard deviation, variance, sum of square and 

mean square. The two-factor interactions were also estimated by simply multiplying 

the codings of the two factors. Only two-factor interactions among the main factors 

were investigated which were AB, AC, AD, BC, BD, CD interactions. The full 

factorial design and the experimental results are shown in Table 5-31.  
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Table 5-30 Criteria for a Fractional Factorial Design [177]* 

 

*Reprinted Montgomery and Runger, Applied Statistics and Probability for Engineers, 3rd ed., pp. 560, 2003 with permission 

from the John Wiley & Sons, Inc. 
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Table 5-31 Experimental Results for the 1/8 27 Factorial Design. 

A B C D E=ABC F=BCD G=ACD           

Temp Cat wt GL% Pd Stirring P W/M Conv 1,2PD 
Sel. 1,2PD Yield EG Yield Others 

Yield 
1 1 1 1 1 1 1 99.2 74.0 73.5 9.8 13.9 
1 1 1 -1 1 -1 -1 100.0 39.6 39.6 4.3 52.7 
1 1 -1 1 -1 -1 -1 100.0 79.7 79.7 14.2 3.8 
1 1 -1 -1 -1 1 1 100.0 79.8 79.8 14.4 4.0 
1 -1 1 1 -1 -1 1 93.0 44.3 41.2 5.3 43.5 
1 -1 1 -1 -1 1 -1 86.2 30.5 26.3 4.0 51.8 
1 -1 -1 1 1 1 -1 99.0 82.0 81.1 11.7 4.3 
1 -1 -1 -1 1 -1 1 100.0 73.4 73.4 9.0 15.2 
-1 1 1 1 -1 1 -1 82.1 78.8 64.7 5.9 9.9 
-1 1 1 -1 -1 -1 1 78.1 67.7 52.8 3.9 18.7 
-1 1 -1 1 1 -1 1 88.7 85.8 76.1 11.4 0.5 
-1 1 -1 -1 1 1 -1 79.8 85.1 68.0 7.9 2.2 
-1 -1 1 1 1 -1 -1 98.6 41.2 40.6 5.4 49.6 
-1 -1 1 -1 1 1 1 51.9 51.1 26.5 2.4 17.7 
-1 -1 -1 1 -1 1 1 69.0 85.4 59.0 7.2 2.4 
-1 -1 -1 -1 -1 -1 -1 61.3 79.4 48.7 5.2 5.5 
0 0 0 0 0 0 0 96.2 81.7 78.7 8.2 8.0 
0 0 0 0 0 0 0 98.2 82.1 80.6 9.1 7.7 
0 0 0 0 0 0 0 98.8 81.5 80.5 8.2 9.4 
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5.8.3 Main Effect by Each Factor 

The main effect of one factor is the difference between the average response at the high level of 

this factor and the average response at the low level of this factor. For instance, the main effect 

of temperature on glycerol conversion is calculated to be the average value of the glycerol 

conversions at high temperature (8 trials when the temperature is high) minus the average value 

of the glycerol conversion at low temperature as shown in Equation 5-10. 
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The main effects of all factors are listed in Table 5-32. 

Table 5-32 Main Effects by All Factors and Two Factor-Interactions. 

  Effect    Conversion 1,2PD 
Selectivity 

1,2PD  
Yield 

EG  
Yield 

Others  
Yield 

A Temperature  
 

240 97.2 62.9 61.8 9.1 23.6 
200 76.2 71.8 54.6 6.2 13.3 

Effect 21.0 -8.9 7.3 2.9 10.4 

B Catalyst Weight  
7% 91.0 73.8 66.8 9.0 13.2 
3% 82.4 60.9 49.6 6.3 23.7 

Effect 8.6 12.9 17.2 2.7 -10.5 

C GL% 
40% 86.1 53.4 45.7 5.1 32.2 
20% 87.2 81.3 70.7 10.1 4.7 

Effect -1.1 -27.9 -25.1 -5.0 27.5 

D Pd Loading 
With 91.2 71.4 64.5 8.9 16.0 

Without 82.2 63.3 51.9 6.4 21.0 
Effect 9.0 8.1 12.6 2.5 -5.0 

E Stirring 
600 89.7 66.5 59.9 7.8 19.5 
400 83.7 68.2 56.5 7.5 17.4 

Effect 5.9 -1.7 3.3 0.3 2.1 

F Pressure 
35 bar 83.4 70.9 59.9 7.9 13.3 
25 bar 90.0 63.9 56.5 7.3 23.7 
Effect -6.6 7.0 3.3 0.6 -10.4 

G W/M 
1.4 85.0 70.2 60.3 7.9 14.5 
1 88.4 64.5 56.1 7.3 22.5 

Effect -3.4 5.7 4.2 0.6 -8.0 

AB Temp/Cat 
weight 

+1 85.0 66.3 55.9 7.9 18.7 
-1 88.4 68.5 60.5 7.4 18.2 
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Effect -3.3 -2.2 -4.5 0.5 0.4 

AC Temp/GL% 
+1 84.7 65.5 54.0 6.9 21.6 
-1 88.7 69.2 62.3 8.4 15.4 

Effect -4.0 -3.7 -8.3 -1.5 6.2 

AD Temp/Pd 
+1 82.8 70.4 58.9 7.6 13.7 
-1 90.6 64.3 57.4 7.7 23.2 

Effect -7.8 6.1 1.5 -0.2 -9.6 

BC Cat weight/GL% 
+1 86.1 72.5 61.6 7.1 15.3 
-1 87.3 62.2 54.8 8.1 21.6 

Effect -1.2 10.4 6.8 -1.0 -6.3 

BD Cat weight/Pd 
+1 83.7 69.1 58.6 7.7 14.8 
-1 89.7 65.6 57.8 7.5 22.2 

Effect -6.0 3.5 0.9 0.2 -7.4 

CD GL%/Pd 
+1 89.3 69.5 61.2 7.9 18.0 
-1 84.1 65.2 55.1 7.4 19.0 

Effect 5.2 4.3 6.1 0.5 -1.0 
 

To investigate which factor(s) has (have) significant effect(s) on each response, normal 

probability plots of the effects was used. The expected normal value (y-axis) was obtained based 

on the normal probability of each effect given by the relationship 
n

i )5.0( −  where i was the order 

of each factor and n was the total number of effects. The effects that are not significant will fall 

along a line; on the other hand, the significant effects will deviate from the straight line. Figure 

5-53 illustrates the normal plot of all the effects for all the responses.  
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Figure 5-53 The Normal Plot of Effects: A) Effects on Glycerol Conversion, B) Effects on 
1,2PD Selectivity, C) Effects on 1,2PD Yield, D) Effects on EG Yield and E) Effects on Others 
Yield. 
 

In Figure 5-53A, the main effects of A, B, D, E are significant for glycerol conversion which are 

temperature, catalyst weight, palladium loading and stirring. Among them, temperature (A) has 

the most significant effect on glycerol conversion. When the temperature is increased from 

200°C to 240°C, the average glycerol conversion increases significantly. The palladium loading 

(D) also has an important effect on glycerol conversion; this is possibly because palladium can 

increase the methanol steam reforming conversion to more effectively hydrogenate acetol. The 

effect of catalyst loading on glycerol conversion is also expected since more catalyst loading will 

provide more active sites; therefore, the reaction rate might be higher. 
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Figure 5-53B and Figure 5-53C show that B, D and C have significant effects on 1,2PD 

selectivity and yield, which are catalyst weight, palladium loading and glycerol concentration. 

Glycerol concentration has the most significant effect on 1,2PD selectivity and yield and it has a 

negative effect. When glycerol concentration is higher, the rate of glycerol dehydration is faster 

and the acetol concentration will be higher; also when the glycerol concentration is high the 

concentration of water and methanol will be lower and the amount of hydrogen produced via 

methanol steam reforming will be possibly lower; thus, the insufficient amount of hydrogen and 

higher acetol concentration will cause lower 1,2PD selectivity and 1,2PD yield. The catalyst 

weight also has a significant effect on 1,2PD selectivity and yield. The reason might be that 

when more catalyst is loaded, more active sites will be available for methanol steam reforming; 

therefore, more hydrogen can be produced to rapidly hydrogenate the acetol. Pd loading has a 

positive effect on 1,2PD selectivity and yield since Pd can promote methanol steam reforming to 

produce more hydrogen and also improve the catalysts activity for acetol hydrogenation as 

discussed in Section 5.4. 

Figure 5-53D shows that A, B, D and C have significant effects on EG yield, which are 

temperature, catalyst weight, palladium loading and glycerol concentration. Higher temperature 

(A), higher catalyst weight (B) and palladium loading (D) can improve the activity of the catalyst 

for methanol steam reforming reactions; more hydrogen will be produced to facilitate the C-C 

bond cleavage, therefore, possibly causing a higher EG yield. Glycerol concentration (A) has a 

negative effect on EG yield, possibly since the rate of a side reaction between acetol and 

ethylene glycol is high when the glycerol concentration is high [99].  

Figure 5-53E shows that B (catalyst weight) and C (glycerol concentration) have significant 

effects on the yield of other by-products. This can be explained in an opposite way to the main 

effect on 1,2PD selectivity. When 1,2PD selectivity is lower, the yield of the other by-products 

will be higher.  

 

5.8.4 Two Factor Interactions 

A two-factor interaction indicates whether the effect of one factor on a response depends upon 

the level of another factor. The interaction effect can be calculated as the difference between the 
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average effect of one factor at the high level of the other factor and the average effect of one 

factor at the low level of the other factor. Therefore, if the lines of two factors are parallel, there 

is no interaction. On the contrary, when the lines significantly deviate from being parallel, there 

is an interaction between these two factors. The results of the two-factor interactions are shown 

in Figure 5-54 to Figure 5-58. 

From Figure 5-54, it can be observed that temperature x palladium loading and glycerol feed 

concentration x palladium loading have significant interactions on glycerol conversion. In Figure 

5-54C, when the temperature is increased from 200°C to 240°C, the increase of glycerol 

conversion for the catalyst without palladium is must faster than that with palladium. At 240°C 

the average glycerol conversion is over 96% for both catalysts and at 200°C the average glycerol 

conversion for the catalyst with Pd loading is much higher than that without Pd loading. 

Therefore, the increase of glycerol conversion for the catalyst with Pd loading is not as fast as the 

one without Pd loading. If glycerol conversion is the only response being considered, at high 

temperature, the loading of Pd becomes less necessary since it is an expensive metal. In Figure 5-

54F, a significant interaction between glycerol feed concentration and palladium loading on 

glycerol conversion is observed. With palladium loading, when the glycerol concentration is 

increased from 20wt% to 40wt%, the glycerol conversion does not change significantly since the 

glycerol concentration does not affect the glycerol conversion significantly as observed in Figure 

5-53A. Without palladium loading, a significant drop of glycerol conversion occurs. This is 

possibly because Pd can promote methanol steam reforming to produce more hydrogen to 

rapidly hydrogenate the acetol; hence the equilibrium of the glycerol dehydration reaction will be 

shifted in the forward direction. Therefore, for lower glycerol concentration, Pd loading is not 

essential to obtain a higher glycerol conversion. However, when the glycerol concentration is 

increased, the improvement of glycerol conversion by loading palladium will become more 

significant. 
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Figure 5-54 Two-Factor Interactions on Glycerol Conversion: A) Catalyst Weight x 
Temperature, B) Temperature x Glycerol Concentration, C) Temperature x Palladium Loading, 
D) Catalyst Weight x Glycerol Concentration, E) Catalyst Weight x Palladium Loading, F) 
Glycerol Concentration x Palladium Loading. 
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Figure 5-55 illustrates the two-factor interactions on 1,2PD selectivity, which is a very important 

response for the glycerol hydrogenolysis process. It can be observed that palladium loading x 

temperature (Figure 5-55C), catalyst weight x glycerol feed concentration (Figure 5-55D) and 

catalyst weight x palladium loading (Figure 5-55E) have significant interactions on 1,2PD 

selectivity. As shown in Figure 5-55C, with Pd loading, when the temperature is increased from 

200°C to 240°C, the 1,2PD selectivity does not change significantly; without Pd loading, the 

1,2PD selectivity is significantly lower when the temperature is higher. As shown in Table 5-32, 

temperature has a negative effect on 1,2PD selectivity; therefore, at high temperature Pd needs to 

be loaded if high selectivity to 1,2PD is desired; this is because at higher temperature, more 

hydrogen is needed to obtain a high 1,2PD selectivity as discussed in Section 4.11. Figure 5-55D 

shows that the glycerol feed concentration and catalyst weight have a significant interaction for 

1,2PD selectivity. When only 20wt% glycerol is fed, the 1,2PD selectivity does not change 

significantly when the catalyst loading is increased from 3% to 7%; the selectivity to 1,2PD is 

over 80%. When 40wt% glycerol is fed, the selectivity to 1,2PD is significantly lower since the 

glycerol feed concentration is the main effect on 1,2PD selectivity as discussed in Section 5.8.3. 

However, more catalyst weight can significantly improve the 1,2PD selectivity when the glycerol 

feed concentration is high. In Figure 5-55E, it can be observed that the palladium loading and 

catalyst weight also have a significant interact on 1,2PD selectivity. When no palladium is 

loaded, the selectivity to 1,2PD does not change significantly when the catalyst weight is 

increased from 3wt% to 7wt% and they were all very low; when palladium is loaded; the more 

catalyst loaded, the higher selectivity to 1,2PD.  
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Figure 5-55 Two-Factor Interactions on 1,2PD Selectivity: A) Catalyst Weight x Temperature, B) 
Temperature x Glycerol Concentration, C) Temperature x Palladium Loading, D) Catalyst 
Weight x Glycerol Concentration, E) Catalyst Weight x Palladium Loading, F) Glycerol 
Concentration x Palladium Loading. 

 

Figure 5-56 shows the 2-factor interactions on 1,2PD yield. Figure 5-56A shows that the catalyst 

weight and temperature have a significant interaction on 1,2PD yield. When the temperature is 

increased from 200°C to 240°C, if 3wt% catalyst is used, the increase of 1,2PD yield is much 

higher than when 7wt% catalyst is used. In Figure 5-56B, it can be observed that temperature and 

glycerol feed concentration also have a significant interaction on 1,2PD yield. When the 

temperature is increased from 200°C to 240°C, the 1,2PD yield increases much more when 20wt% 

of glycerol is fed than that when 40wt% glycerol is fed, however when the glycerol feed 

concentration is high, high temperature does not improve the yield of 1,2PD. 
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Figure 5-56 Two-Factor Interactions on 1,2PD Yield: A) Catalyst Weight x Temperature, B) 
Temperature x Glycerol Concentration, C) Temperature x Palladium Loading, D) Catalyst 
Weight x Glycerol Concentration, E) Catalyst Weight x Palladium Loading, F) Glycerol 
Concentration x Palladium Loading. 
 

From Figure 5-57, only catalyst weight and glycerol feed concentration have a significant 

interaction on EG yield. It can be observed that when the glycerol concentration is low (20wt%), 

as catalyst weight is increased from 3wt% to 7wt%, and the EG yield increases much faster than 

that when the glycerol concentration is high (40%). This is possibly because at a lower glycerol 

concentration, more active sites can be provided for C-C cleavage to produce more EG. 
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Figure 5-57 Two-Factor Interactions on EG Yield: A) Catalyst Weight x Temperature, B) 
Temperature x Glycerol Concentration, C) Temperature x Palladium Loading, D) Catalyst 
Weight x Glycerol Concentration, E) Catalyst Weight x Palladium Loading, F) Glycerol 
Concentration x Palladium Loading. 
 

Figure 5-58 shows the two-factor interactions on the yield of other undesired by-products. In 

Figure 5-58B, it can be observed that the temperature and glycerol feed concentration interaction 

has a significant effect on the yield of other by-products. Temperature has a negative effect on 

1,2PD selectivity as discussed in Section 5.8.3; therefore, more by-products will be formed when 

the temperature is increased. When the glycerol feed concentration is 40%, if the temperature is 
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increased from 200°C to 240°C, the increase in yield of other by-products was much more than 

that when the glycerol feed concentration is 20%. Therefore, temperature has more effect on the 

by-product yield when the glycerol feed concentration is high. Figure 5-58C shows that the 

palladium loading and temperature interaction also have a significant effect on by-products yield. 

When no Pd is loaded, if the temperature is increased from 200°C to 240°C, the other by-

products increases more rapidly than with Pd loaded. It can be observed that with Pd loaded, the 

yield of other by-products stays stable at a very low level. Therefore, Pd can provide high 

selectivity even at high temperature.  

 

Figure 5-58 Two-Factor Interactions on others Yield: A) Catalyst Weight x Temperature, B) 
Temperature x Glycerol Concentration, C) Temperature x Palladium Loading, D) Catalyst 
Weight x Glycerol Concentration, E) Catalyst Weight x Palladium Loading, F) Glycerol 
Concentration x Palladium Loading. 
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5.9 Conclusion 

In this Chapter, experiments of glycerol hydrogenolysis using in situ hydrogen produced via 

methanol steam reforming have been reported.  

The activities of the Cu/ZnO/Al2O3 catalysts prepared by different methods were determined 

using a batch autoclave. The experimental results showed that the catalyst prepared by oxalate 

gel-coprecipitation had the best catalytic activity for glycerol conversion and 1,2PD selectivity. 

Different Cu/Zn/Al molar ratios have been investigated to determine the optimum composition 

of the catalyst; it was found that the best metal molar ratio was Cu/Zn/Al = 35/35/30.  

Ni was added onto a Cu/ZnO/Al2O3 catalyst to investigate its promoting effect on catalytic 

activity. From the experimental results, it was seen that with Ni loaded, the 1,2PD selectivity was 

improved and the glycerol conversion was lower than that without Ni loaded. It was found that 

by adding Ni, more hydrogen was produced via methanol steam reforming to improve the 1,2PD 

selectivity; on the other hand, the addition of Ni had a negative effect on the glycerol 

dehydration reaction resulting in a lower glycerol conversion. From the experimental results 

using the Ni/ZnO/Al2O3 catalyst without Cu added, no glycerol conversion was observed 

suggesting that Ni was not active for glycerol dehydration. Hence Cu was the active site for the 

glycerol dehydration reaction. 

Cu/MgO/Al2O3 catalysts prepared by oxalate gel-coprecipitation were also studied for glycerol 

hydrogenolysis using in situ hydrogen produced via methanol steam reforming. A composition 

study has been conducted and the optimum metal molar ratio was determined to be 22.5/67.5/10, 

which corresponded to Cu/Mg = 1/3 (molar) and 10mole% aluminum. Compared with the 

Cu/ZnO/Al2O3, Cu/MgO/Al2O3 catalysts this catalyst gave a higher glycerol conversion and a 

better 1,2PD selectivity under the same experimental conditions. It was also found that the 

glycerol concentration significantly affected the 1,2PD selectivity; when the glycerol 

concentration was higher, the 1,2PD selectivity was lower due to less hydrogen being produced 

via methanol steam reforming. 

Ni was added onto a Cu/MgO/Al2O3 catalyst to investigate the promoting effect on the catalytic 

activity. With only 1mole% Ni loaded, the glycerol conversion was lower than that without Ni 
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loaded and 1,2PD selectivity was slightly improved; it was interesting to note that when the Ni 

loading was increased to 5mole%, the catalyst was almost completely inactive.  

Pd was added onto a Cu/MgO/Al2O3 catalyst to investigate the promoting effect on the catalytic 

activity. It was found that Pd significantly improved the 1,2PD selectivity especially when the 

glycerol concentration was high. 

Ga was added to a Cu/MgO catalyst and the experimental results were compared with those 

using a Cu/MgO/Al2O3 catalyst. No obvious improvement on the catalytic activity was observed. 

Since Ga is more expensive than Al, no further studies were carried out to study the effects of 

different parameters on the catalyst with Ga loading. 

Cu/ZnO/Al2O3, Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 catalysts were recycled and reused to 

investigate the stability of the catalysts. All the catalysts deactivated after they were recycled and 

reused. This might be due to the formation of carbonates when the metals were contacted with 

CO2 which was formed via methanol steam reforming. 
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Chapter Six                                                   
Catalyst Characterization 

 
In this chapter, the results of catalyst characterization are reported. The experiments were carried 

out to study the relationship between the catalyst physicochemical properties and the catalytic 

activities. The characterization techniques included NH3 temperature programmed desorption 

(TPD), CO2 TPD, temperature programmed reduction (TPR), H2 TPD, thermogravimetric 

analysis (TGA), differential thermal analysis (DTA), X-Ray diffraction (XRD), transmission 

electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) surface area analysis.  

 

6.1 NH3 Temperature Programmed Desorption (TPD) 

NH3 TPD is a very useful technique to study the acidity of a catalyst. The catalyst is firstly 

saturated with NH3 and then heated based on a designated thermal profile. The peaks as a 

function of a temperature profile can provide information on acid strength and the number of 

acidic sites. The number of acidic sites can be calculated based on the area of the peak and the 

temperature at which the desorption peaks are and they can be used to determine the acid 

strength of the catalyst, i.e. NH3 can be desorbed from a stronger acidic site at a higher 

temperature. The detailed experimental method used was described in Section 3.5.1. 

 

6.1.1 Effect of Catalyst Preparation Method on Catalyst Acidity 

It has been shown that the catalyst preparation method plays an important role on the catalyst 

activity for a Cu/ZnO/Al2O3 catalyst. NH3 TPD experiments on Cu/ZnO/Al2O3 catalysts 

prepared by three different methods were carried out, and the TPD profiles are shown in Figure 

6-1. Based on the NH3 desorption behavior of each catalyst as shown in Figure 6-1, the acidic 

sites are classified into two types, which are weak to moderate acidic sites (80ºC-420ºC) and 
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strong acidic sites (400ºC-790ºC). The acidic sites over different temperature ranges are listed in 

Table 6-1. In Figure 6-1, it can be observed that the catalyst prepared by the Na2CO3 

coprecipitation method shows a weak desorption peak at 194ºC, which represents some weak 

acidic sites. The catalyst prepared by oxalate gel-coprecipitation with alumina present shows 

both medium acidic sites (363ºC) and strong acidic sites (676ºC); the strong acidic sites are a 

majority, which can improve the catalyst activity by facilitating glycerol dehydration. Similar 

results have been reported by Yang et al. in 2010 [178], and in that report it was found that for a 

Cu/ZnO/Al2O3 catalyst prepared by the oxalate gel-coprecipitation method two peaks at around 

300ºC and 600ºC were observed; the total number of acidic sites was reported to be 

0.14mmolNH3/gcat, which is also similar to the number of acidic sites for the Cu/ZnO/Al2O3 

catalyst prepared by oxalate gel-coprecipitation method listed in Table 6-1. Without adding 

alumina, a desorption peak is observed at 326ºC, which is lower than the catalyst with alumina 

added. The large peak shown at 205ºC for the catalyst prepared by the impregnation method is 

mainly due to the high amount of acidic alumina used for the catalyst preparation; it has been 

widely reported that for an acidic alumina, the NH3 desorption peaks are normally observed 

between 150ºC  to 250ºC depending on the methods used [84, 179-182], which agrees with the 

desorption peak temperature for the Cu/ZnO/Al2O3 catalyst by impregnation as observed in 

Figure 6-1. According to the results, the oxalate gel-coprecipitation method can significantly 

improve the number of acidic sites and acidic strength; furthermore, the addition of alumina can 

generate a high amount of strong acidic sites. 
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Figure 6-1 NH3 TPD Profile for the Cu/ZnO/Al2O3 Catalyst Prepared by Different Methods. 

 

Table 6-1 NH3 Uptake by the Cu/ZnO/Al2O3 Catalysts Prepared by Different Methods. 

Catalysts  Acidic Strength Total acidic sites 
  mmmolNH3/gcat mmmolNH3/gcat 

Cu/ZnO/Al2O3-OA-25/25/50 0.031 (89.2-359.1°C) 0.21 
  0.18 (599.5-787.4ْ°C)   

Cu/ZnO-OA-50/50 0.08 (222.9-426.3ْ°C) 0.08 
Cu/ZnO/Al2O3-Na-25/25/50 0.04 (107.04-392.0°C) 0.04 

Cu/ZnO/Al2O3-IMP 0.27 (94.3-542.2ْ°C) 0.27 
 

6.1.2 Effect of Ni on the Acidity of Cu/ZnO/Al2O3 Catalysts 

In Chapter 4 and Chapter 5, it was found that with Ni added into a Cu/ZnO/Al2O3 catalyst, the 

glycerol conversion rate was negatively affected. NH3 TPD experiments have been carried out 

using Cu/ZnO/Al2O3 (Cu/Zn/Al=35/35/30), Ni/Cu/ZnO/Al2O3 (Ni/Cu/Zn/Al=1/34.5/34.5/30) 

and Ni/Cu/ZnO/Al2O3 (Ni/Cu/Zn/Al=5/32.5/32.5/30) catalysts to study the effect of Ni on the 

acidity of Cu/ZnO/Al2O3 catalysts. As Figure 6-2 shows, three distinct peaks are observed 

between 51.3°C and 289.7°C, 281.7°C and 468.8°C, 589.9°C and 760.3°C, denoted as low, 

medium and high strength acidic sites. It can be observed that as more Ni is loaded, the number 

of strong acidic sites is reduced. When 1mole% of Ni is loaded, the number of strong acidic sites 

is about the same; if 5mole% Ni is loaded, the number of strong acidic sites is reduced from 

0.075mmol/g-cat to 0.030mmol/g-cat (Table 6-2). It is apparent that when Ni is added into the 
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Cu/ZnO/Al2O3 mixed oxides, some acidic sites are blocked. This behavior has been reported in 

some reports of NH3 TPD analysis when Ni is loaded [183]. Since the rate determining step of 

glycerol hydrogenolysis is the glycerol dehydration, so the loading of Ni may cause a slower 

reaction rate resulting in a lower glycerol conversion. According to the results discussed in 

Section 4.9 for the glycerol hydrogenolysis process using molecular hydrogen, when 5mole% Ni 

was loaded, the pseudo-first-order rate constant decreased from 2.54s-1 to 1.80s-1 which was 

about a 30% decrease; from the results discussed in Section 5.2.1, the glycerol conversion shows 

a positive relationship with the total number of strong acidic sites as shown in Figure 6-3.  

 

Figure 6-2 NH3 TPD Profile for the Cu/ZnO/Al2O3 Catalyst with Different Amount of Ni 
Loading. Cu/Zn=1/1, 30% Al. 
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Figure 6-3 The Relationship between the Glycerol Conversion and Number of Strong Acidic 
Sites. Conditions: Conditions: 220 ºC, 25bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% 
catalyst, 500RPM, 30% Al content, Cu/Zn=1, 8hours. 

 

Table 6-2 Effect of Ni and Pd on the Acidity of a Cu/ZnO/Al2O3. 

Catalysts Desorption Temperature °C Total Acidic Sites Glycerol Conversion 
  mmolNH3/gcat mmolNH3/gcat % 

0% Ni-Cu/ZnO/Al2O3
a 51.3-289.7 294.9-435.1   589.9-749.3   

Uptake (mmol/gcat) 0.226 0.020 0.321 0.075 87.1 
1% Ni-Cu/ZnO/Al2O3

b 58.9-269.6 281.7-468.8   630-760.3   
Uptake (mmol/gcat) 0.198 0.076 0.347 0.073 85.5 
5% Ni-Cu/ZnO/Al2O3

c 60.2-247.8 295.4-466.2   617.3-712.0   
Uptake (mmol/gcat) 0.197 0.071 0.298 0.030 70.0 

2% Pd-Cu/ZnO/Al2O3
a 51.2-249.2 271.2-455.4   629.5-741.9   

Uptake (mmol/gcat) 0.167 0.066 0.292 0.059 94.9 
a Cu/Zn/Al=35/35/30 
bNi/Cu/Zn/Al=1/34.5/34.5/30 
cNi/Cu/Zn/Al=5/32.5/32.5/30 

 

6.1.3 Effect of Pd on the Acidity of Cu/ZnO/Al2O3 Catalysts 

The effect of Pd loading on the acidity of Cu/ZnO/Al2O3 catalysts has been investigated as 

shown in Figure 6-4 and the quantification of NH3 uptake is listed in Table 6-2. It can be 

observed that when 2wt% Pd is loaded, the number of strong acidic sites is reduced from 

0.075mmol/g-cat to 0.059mmol/g-cat. This suggests that Pd may cover some strong acidic sites. 
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A desorption peak is interestingly observed between 751.9°C and 1001.6°C; however, no 

literature has reported that Pd can generate super acidic sites, thus it is possibly due to either an 

experimental error or the decomposition of a Pd(NH3)x complex. Therefore, the promoting effect 

of Pd on glycerol hydrogenolysis reaction is mainly due to the improvements of the catalyst 

activity for methanol steam reforming and acetol hydrogenation. 

 
Figure 6-4 NH3 TPD Profile for Cu/ZnO/Al2O3 and Pd/Cu/ZnO/Al2O3 Catalysts. 
Cu/Zn/Al=35/35/30. 

 

6.1.4 NH3 TPD for a Cu/MgO/Al2O3 Catalyst: Effect of Al on the Catalyst Acidity 

The acidity analysis has been conducted for Cu/MgO/Al2O3 catalysts with different Al content. 

The experimental results are shown in Figure 6-5 and Table 6-3. If no Al is added, two peaks are 

observed between 314.7°C and 517.2°C representing medium acidity and strong acidity. With 

10mole% alumina added, only one large peak is observed between 312.8°C and 526.9°C. This 

suggests that the addition of alumina can improve the mixing of Cu and Mg oxides. Also if 

10mole% alumina is added, the total number of acidic sites (3.341mmol/g-cat) is higher than that 

when no alumina is added (2.967mmol/g-cat). However, if 30mole% alumina is added, the 

acidity is significantly reduced resulting in only 1.12mmol/g-cat. The reason for this might be 

because the medium and strong acidic sites are due to Cu; if a high amount of alumina is added, 
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it might block the acidic sites of Cu. As discussed in Section 5.3.2, when 10mole% Al is added, 

the catalyst shows the best activity among different Al contents suggesting the number of acidic 

sites play an important role on the catalyst activity.  

 
Figure 6-5 NH3 TPD Profile for Cu/MgO/Al2O3, Effect of Al Content. 

 
Table 6-3 Number of Acidic Site for Cu/MgO/Al2O3 Catalysts with Different Al Molar Contents. 

Catalysts Desorption Temperature °C Total Acidic Sites 
  mmolNH3/gcat mmolNH3/gcat 

Cu/Mg 1/3 72.2-210.6 347.7-415.1 
 Uptake (mmol/gcat) 0.065 2.902 2.967 

Cu/Mg 1/3 10% Al 73.5-253.4 312.8-526.9 
 Uptake (mmol/gcat) 0.070 3.270 3.341 

Cu/Mg 1/3 30% Al 46.2-282.2 283.8-1001.1 
 Uptake (mmol/gcat) 0.047 1.076 1.123 

 

6.1.5 Effect of Pd on the Acidity of Cu/MgO/Al2O3 Catalysts 

A NH3 TPD experiment was carried out using 2wt% Pd supported on Cu/MgO/Al2O3 with a 

Cu/Mg/Al molar ratio of 22.5/67.5/10. The results are shown in Figure 6-6. It can be observed 

that the Pd blocks some medium acidic sites. A broad peak is observed between 270.7°C and 

1003.3°C and the total acidic sites (3.89mmol/g-cat) is slightly more than that of Cu/MgO/Al2O3 
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(3.48mmol/g-cat) as shown in Table 6-4. The peak area at high temperature agrees with the 

observation of Pd loaded on Cu/ZnO/Al2O3 explained in Section 6.1.3; the NH3 desorption at 

high temperature is possibly due to the formation of a Pd(NH3)x complex which is decomposed 

at high temperature. 

 
Figure 6-6 Effect of Pd on the Acidity of a Cu/MgO/Al2O3: Cu/Mg/Al = 22.5/67.5/10 

 

Table 6-4 Effect of Pd on Number of Acidic Site for a Cu/MgO/Al2O3 Catalysta. 

Catalysts Desorption Temperature °C Total Acidic Sites 
  mmolNH3/gcat mmolNH3/gcat 

Cu/MgO/Al2O3 73.5-253.4 312.8-526.9   
Uptake (mmol/gcat) 0.070 3.270 3.341 
2%Pd-Cu/MgO/Al2O3  69.2-284.1 270.7-1003.3   
Uptake (mmol/gcat) 0.044 3.848 3.892 

aCu/Mg/Al = 22.5/67.5/10 

 

6.1.6 Effect of Ni on the Acidity of the Cu/MgO/Al2O3 Catalyst 

The effect of Ni on the acidity of the Cu/MgO/Al2O3 catalyst has been investigated.  As Figure 

6-6 shows, when 1mole% Ni is loaded, the number of acidic sites is slightly reduced. If the Ni 
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loading is increased to 5mole%, the acidic sites between 356.6°C and 483.1°C are significantly 

reduced from 3.270mmol/g-cat to only 0.116mmol/g-cat as shown in Table 6-5. This possibly 

can be explained in that if Ni loading is high, it will block the acidic sites provided by Cu 

resulting in a low glycerol conversion as discussed in Section 5.5. When the Ni loading is 

increased from 0mole% to 5mole%, the glycerol conversion using the Ni/Cu/MgO/Al2O3 catalyst 

is significantly decreased from 97.3% to only 8.7%. A positive relationship between the glycerol 

conversion and the total number of the strong acidic sites can be observed from Figure 6-8. 

 

Figure 6-7 NH3 TPD Profile for Ni/Cu/MgO/Al2O3 Catalysts with Different Ni Content: Cu/Mg 
= 1/3, 10% Al 
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Figure 6-8 The Relationship between the Glycerol Conversion and Number of Strong Acidic 
Sites. Conditions: 220ºC, 25bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, Cu/Mg=1/3, 10mole% Al, 6hours. 

 

Table 6-5 Number of Acidic Site for Ni/Cu/MgO/Al2O3 Catalysts with Different Ni Molar 
Contents. 

Catalysts Desorption Temperature Total Acidic Sites Glycerol Conversionc 

  mmolNH3/gcat mmolNH3/gcat % 
Cu/MgO/Al2O3

a  73.5-253.4 312.8-526.9     
Uptake (mmol/gcat) 0.070 3.270 3.341 97.3 

1%Ni/Cu/MgO/Al2O3
b  65.1-258.3 286.9-541.5     

Uptake (mmol/gcat) 0.151 3.150 3.301 88.7 
5%Ni/Cu/MgO/Al2O3

b  45.4-295.7 356.6-483.1     
Uptake (mmol/gcat) 0.208 0.116 0.324 8.7 

aCu/Mg/Al = 22.5/67.5/10 
bCu/Mg=1/3, 10% Al 
cConditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 
Cu/Mg=1/3, 10mole% Al, 6hours 

 

6.1.7 Acidity Comparison between Cu/ZnO/Al2O3 and Cu/MgO/Al2O3 

Figure 6-9 compares the acidity between Cu/ZnO/Al2O3 (Cu/Zn/Al=35/35/30) catalyst and 

Cu/MgO/Al2O3 (22.5/67.5/10) catalyst. A large medium desorption peak is observed between 

312.8°C and 526.9°C for the Cu/MgO/Al2O3 catalyst. For the Cu/ZnO/Al2O3 catalyst, a strong 

desorption peak is observed between 589.9°C and 749.3°C, but the amount of acidic sites are 

significantly reduced compared with the Cu/MgO/Al2O3 catalyst. The total number of acidic 
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sites for the Cu/MgO/Al2O3 catalyst (3.34mmol/g-cat) is about 10 times higher than that for the 

Cu/ZnO/Al2O3 catalyst (0.32mmol/g-cat) as shown in Table 6-6. As discussed in Section 4.10, 

when molecular hydrogen is used the rate constant is only increased from 1.456s-1
 using a 

Cu/ZnO/Al2O3 catalyst to 2.254s-1 using a Cu/MgO/Al2O3 catalyst. The activities are not 

different by a factor of 10 as the total number of acidic sites shows. This is possibly because both 

the strength of the acidity and number of acidic sites play important roles on the catalyst activity, 

as even the Cu/MgO/Al2O3 catalyst can provide about 10 times more acidic sites than the 

Cu/ZnO/Al2O3 catalyst, with the majority of them being medium acidic sites, while the major 

acidic sites provided by Cu/ZnO/Al2O3 catalyst are stronger according to a higher desorption 

temperature.  

 
Figure 6-9 NH3 TPD Profile Comparison between Cu/ZnO/Al2O3 and Cu/MgO/Al2O3 

 

Table 6-6 Number of Acidic Sites Comparison between Cu/MgO/Al2O3 and Cu/ZnO/Al2O3. 

Catalysts Desorption Temperature Total Acidic Sites 
  mmolNH3/gcat mmolNH3/gcat 

Cu/MgO/Al2O3
a 73.5-253.4 312.8-526.9     

Uptake (mmol/gcat) 0.070 3.270   3.341 
Cu/ZnO/Al2O3

b 51.3-289.7 294.9-435.1 589.9-749.3   
Uptake (mmol/gcat) 0.23 0.02 0.07 0.321 

aCu/Mg/Al=22.5/67.5/10 
bCu/Zn/Al=35/35/30 
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6.2 H2 Temperature Programmed Reduction (TPR) 

H2 TPR is a technique used to investigate the optimum reduction temperature of a catalyst since 

it has been reported that metallic Cu0 is the active site of the catalyst, the catalyst reduction plays 

a very important role on the catalytic activity. The catalyst is heated based on a pre-designed 

thermal profile while the catalyst is exposed to a flowing stream of high purity hydrogen gas. 

The peaks as a function of temperature can provide the information of the hydrogen consumption 

for the catalyst reduction. The detailed experimental method was described in Section 3.5.4. 

 

6.2.1 TPR Data for the CuO/ZnO/Al2O3 Catalysts by Different Preparation Methods. 

Figure 6-10 illustrates the TPR profile for the catalysts prepared by different methods. All the 

profiles indicate that the reduction of the catalysts can be completed below 300ºC suggesting that 

a 300ºC reduction temperature is sufficient to reduce the CuO to metallic Cu0. For the 

Cu/ZnO/Al2O3 catalyst prepared by Na2CO3 precipitation, a pronounced shoulder peak at 177ºC 

is observed beside the dominant peak which is at 230ºC. This is possibly due to the formation of 

two types of CuO species which are bulk CuO and well dispersed CuO in the catalyst as reported 

by Fierro et al [184]; also it might be due to the reduction of CuO to Cu+ at lower temperature as 

suggested by Bienholz et al. [80]; while for the Cu/ZnO/Al2O3 catalyst prepared by the oxalate 

gel-coprecipitation method, the shoulder peak at 201ºC beside the dominant peak (253ºC) is 

much less intense indicating that this preparation method could generate well dispersed CuO 

particles and the interactions between CuO and Al2O3 can facilitate the direct reduction of CuO 

to metallic Cu0. For Cu/ZnO prepared by the oxalate gel-coprecipitation method without alumina 

added, the reduction peak is observed at 225ºC, which is lower than those for the Cu/ZnO/Al2O3 

catalysts prepared by Na2CO3 coprecipitation (230ºC), oxalate gel-coprecipitation (253ºC) and 

impregnation (263ºC) indicating that the addition of alumina could generate interactions between 

Al2O3 and CuO to make the reduction temperature higher as reported by Panyad et al. [185]. 
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Figure 6-10 TPR Profile for the CuO/ZnO/Al2O3 by Different Preparation Methods: 
Cu/Zn/Al=25/25/50 for Na and OA; Cu/Zn=50/50 for CuO/ZnO-OA; Cu/Zn/Al=15/15/70 for 
IMP. 
 

6.2.2 TPR Data Comparison between CuO/ZnO/Al2O3 and NiO/CuO/ZnO/Al2O3 

Catalysts 

Figure 6-11 shows the TPR profiles of NiO/CuO/ZnO/Al2O3 (Ni/Cu/Zn/Al = 5/32.5/32.5/30), 

CuO/ZnO/Al2O3 (Cu/Zn/Al = 35/35/30) catalyst, and NiO only. From the graph it can be 

observed that both NiO/CuO/ZnO/Al2O3 and CuO/ZnO/Al2O3 catalyst shows the reduction peak 

at around 300°C. A very broad peak is observed for the NiO profile starting from 330°C to 

400°C. However, no distinctive peak is observed in the NiO/CuO/ZnO/Al2O3 profile between 

330°C and 400°C. This suggests that NiO and CuO are well mixed and can be effectively 

reduced at 300°C [186]. 
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Figure 6-11 TPR Profile for NiO/CuO/ZnO/Al2O3, CuO/ZnO/Al2O3 and NiO: 
Ni/Cu/Zn/Al=5/32.5/32.5/30, Cu/Zn/Al=35/35/30. 

 

6.2.3 TPR Data Comparison between CuO/MgO/Al2O3 and NiO/CuO/MgO/Al2O3 

Catalysts 

Figure 6-12 shows the TPR profile of NiO/CuO/MgO/Al2O3 (Ni/Cu/Mg/Al = 5/21.25/63.75/10), 

CuO/MgO/Al2O3 (Cu/Mg/Al = 22.5/67.5/10) catalyst and NiO only. It can be observed that for 

the CuO/MgO/Al2O3 catalyst, the reduction peak appears at 280°C, which is much lower than 

that for CuO/ZnO/Al2O3; when 5mole% NiO is added, the reduction peak appears at even a 

lower temperature being around 247°C and also no distinctive reduction peak is observed for 

NiO. Therefore, when 300°C was chosen as the reduction temperature for the CuO/MgO/Al2O3 

and NiO/CuO/MgO/Al2O3, the catalysts can be effectively reduced. 
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Figure 6-12 TPR Profile for NiO/CuO/MgO/Al2O3, CuO/MgO/Al2O3 and NiO: 
Ni/Cu/Mg/Al=5/21.5/63.75/10, Cu/Mg/Al=22.5/67.5/10 

 

6.2.4 TPR Data Comparison between CuO/MgO/Al2O3 and PdO/CuO/MgO/Al2O3 

Catalysts 

Figure 6-13 shows the TPR profile of PdO/CuO/MgO/Al2O3 (2wt% Pd, Cu/Mg/Al = 

22.5/67.5/10) catalyst and CuO/MgO/Al2O3 (Cu/Mg/Al = 22.5/67.5/10) catalyst. It can be 

observed that as 2wt% Pd is loaded, the reduction peak is shifted to a lower temperature from 

280°C to 180°C. This suggests that Pd is very fine and well mixed with CuO, and hence Pd can 

reduce Cu in situ [186]. 
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Figure 6-13 TPR Profile for PdO/CuO/MgO/Al2O3 and CuO/MgO/Al2O3: 2wt%Pd, 
Cu/Mg/Al=22.5/67.5/10.   

 

6.3 CO2 TPD 

CO2 TPD is a technique to study the basicity of a catalyst. The catalyst is first saturated with CO2 

and then heated based on a designated thermal profile. The peaks as a function of a temperature 

profile can provide the information of basic strength and number of basic sites. The number of 

acidic sites can be calculated based on the area of the peak and the temperature at which the 

desorption peaks are can be used to determine the basic strength of the catalyst. The detailed 

experimental method was described in Section 3.5.2. 

 

6.3.1 Effect of Cu/Mg ratio and Al content on the Basicity of the Cu/MgO/Al2O3 

Catalysts 

The Cu/Mg molar ratios of 1/1, 1/3 and 1/5 were tested for the glycerol hydrogenolysis reactions 

using in situ hydrogen produced from methanol steam reforming in order to find the optimum 

Cu/Mg ratio; also 10%, 20% and 30% Al (molar) were added into the Cu/MgO catalyst to study 

206 

 



the effect of Al on the catalytic activity as discussed in Section 5.3.2. CO2 TPD experiments 

have been carried out using the Cu/MgO/Al2O3 catalysts to study the effect of the metals molar 

ratio on the catalyst basicity. From Figure 6-14 it can be observed that as the Cu/Mg molar ratio 

is changed from 1/1 to 1/3 and further to 1/5, the number of basic sites is increased as Mg 

content increases. This is expected since Mg is known to be a basic metal. The numbers of basic 

sites for the catalysts with different metal molar ratios are listed in Table 6-7. Al can also affect 

the basicity of the catalysts. From Figure 6-14 as well as Figure 6-15, it can be observed for all 

the Cu/Mg molar ratios when no Al is added, the catalysts always shows the largest amount of 

basic sites; the addition of Al does not change the strength of the catalysts’ basicity. When the Al 

content is increased to 10mole%, the amount of basic sites is reduced significantly especially 

when Cu/Mg molar ratios are 1/1 and 1/3; when Al molar content is further increased to 30%, all 

the catalysts show essentially no basic sites (Figure 6-15A). Based on the experimental results 

provided in Chapter 5, the catalyst with a Cu/Mg molar ratio of 1/3 and 10mole% Al content 

gave the best catalytic activity for the glycerol hydrogenolysis reactions. No direct relationship is 

observed between the basicity and the catalyst activity as shown in Table 6-7 and Figure 6-16. 

 

Figure 6-14 Effect of Cu/Mg Molar Ratio on the Basicity of Catalysts: A) 30mole% Al; B) 
10mole% Al; C) no Al 
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Figure 6-15 Effect of Al molar Content on the Basicity of Catalysts: A) Cu/Mg = 1/1; B) Cu/Mg 
= 1/3; C) Cu/Mg = 1/5 
 

Table 6-7 CO2 Uptake for Cu/MgO/Al2O3 Catalysts with Different Metals Molar Ratio 
Catalysts Desorption Temperature Total Basic Sites Glycerol Conversion 

 
mmolCO2/gcat mmolCO2/gcat % 

Cu/Mg = 1/1 337.0-546.3 559.6-1003.4 Total Basic Sites 
 

 
5.19 1.73 6.91 77.6 

Cu/Mg = 1/3 321.6-570.5 582.3-997.7  
 

 
15.27 2.18 17.45 80.6 

Cu/Mg = 1/5 302.2-584.5 604.4-994.5  
 

 
17.45 2.33 19.78 68.8 

Cu/Mg = 1/1 10% Al 36.2-255.8 271.5-1002.8  
 

 
0.15 2.27 2.42 84.5 

Cu/Mg = 1/3 10% Al 334.5-535.4 537.1-1002.7  
 

 
10.13 2.83 12.96 95.6 

Cu/Mg = 1/5 10% Al 330.8-591.3 594.6-1002.8  
 

 
18.88 2.03 20.91 

 Cu/Mg = 1/1 30% Al 
 

287.2.3-1003.1  
 

  
1.96 1.96 83.4 

Cu/Mg = 1/3 30% Al 
 

264.6-1003.3  
 

  
5.13 5.13 85.2 

Cu/Mg = 1/5 30% Al 
 

248.1-999.7  
 

  
4.39 4.39 84.9 
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Figure 6-16 The Relationship between the Glycerol Conversion and Number of Basic Sites. 
Conditions: Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 
500RPM, 8hours. 
 

6.4 H2 TPD for the Effect of Pd on Cu/MgO/Al2O3 Catalysts 

It has been reported that the amount of surface hydrogen provided plays an important role in 

hydrogenation and hydrogenolysis reactions [106]. A series of H2 TPD experiments have been 

carried out to investigate the amount of adsorbed hydrogen species on the catalysts. The detailed 

experimental method was described in Section 3.5.3. It can be seen from Figure 6-17 that a 

distinct hydrogen desorption peak ocurrs between 180°C and 800°C and the highest point of the 

peak is at 400°C. This suggests that when the reaction temperature is between 180°C and 220°C, 

a major amount of the hydrogen species will not be desorbed from the catalyst surface. From 

Figure 6-17 as well as Table 6-8, it can be seen that when Pd is loaded, the amount of desorbed 

hydrogen is increased. The amount of hydrogen desorbed for a Cu/MgO/Al2O3 catalyst without 

Pd loading is calculated to be 0.39mmol/g-cat, when 1wt% Pd is loaded the amount of hydrogen 

desorbed is increased to 0.57mmol/g-cat, and when the Pd loading is increased from 1wt% to 

2wt%, the desorbed hydrogen amount is increased to 0.86mmol/g-cat, and when 3wt% Pd is 

loaded, the desorbed hydrogen amount is only increased from 0.86mmol/g-cat to 0.88mmol/g-cat. 

Therefore, it is known that when Pd is loaded on the Cu/MgO/Al2O3 catalyst surface, the 

hydrogen storage capacity is improved since Pd is a very active metal for hydrogen transfer [37, 
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187]. When the loading of hydrogen is increased, the Pd may cover some Cu surface and also Pd 

can overlap each other; therefore, the amount of adsorbed hydrogen is not significantly improved 

when the Pd loading is very high.  

 
Figure 6-17 H2 TPD Profile for the Cu/Mg/Al Catalysts with Different Pd Loading. 
Cu/Mg/Al=22.5/67.5/10. 

 

Table 6-8 The H2 Uptake for the Cu/MgO/Al2O3 Catalysts with Different Pd Loadinga. 

Catalysts Desorption Temperature Total H2 Desorbed Glycerol Conversionb 

  mmolH2/gcat mmolH2/gcat % 
Cu/MgO/Al2O3 66.5-177.4 186.8-967.9 Total 

 Uptake (mmol/gcat) 0.02 0.37 0.39 54.9 
1%Pd- Cu/MgO/Al2O3 36-206.8 212.6-900.9 Total 

 Uptake (mmol/gcat) 0.01 0.57 0.57 66.8 
2%Pd- Cu/MgO/Al2O3 56-143 164.9-1001.9 Total 

 Uptake (mmol/gcat) 0.01 0.85 0.86 73.2 
3%Pd- Cu/MgO/Al2O3 51.8-175.3 253.4-945.2 Total 

 Uptake (mmol/gcat) 0.02 0.86 0.88 73.6 
aCu/Mg/Al=22.5/67.5/10 
bConditions: 220 ºC, 15bar N2, 40wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 500RPM, 
8 hours, Support: Cu/Mg/Al = 22.5/67.5/10 40wt% Glycerol 
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Since it has been discussed that the 1,2PD selectivity strongly depends on the amount of H2 

supplied for the acetol hydrogenation reaction, the relationship between the 1,2PD selectivity and 

the total amount of desorbed H2 was investigated based on the results discussed in Section 5.4.2. 

In Figure 6-18 it can be observed that the 1,2PD selectivity has a strong linear relationship with 

the total amount of desorbed H2. Therefore, it is known that one of the promotion effects of Pd 

on the Cu/MgO/Al2O3 catalyst is that it can effectively catalyze the transfer hydrogenation 

reaction by providing more surface hydrogen. 

 

Figure 6-18 Relationship between the Amount of Desorbed H2 and 1,2PD Selectivity. 
Conditions: 220 ºC, 15bar N2, 40wt% Glycerol, Water/Methanol=1.2, 7wt% catalyst, 500RPM, 8 
hours, Support: Cu/Mg/Al = 22.5/67.5/10 40wt% Glycerol. 

 

6.5 Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) 

The thermal treatment of the catalysts is a very important parameter affecting the catalyst activity. 

Therefore, thermo analysis experiments have been carried out using a TGA equipment (SDT 

Q600) integrated with DTA analysis. The detailed experimental method was described in Section 

3.5.6. 
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6.5.1 Thermo Analysis for Cu/ZnO/Al2O3 Catalyst Prepared by Oxalate Gel-

coprecipitation 

The experiments on Cu-oxalate and Zn-oxalate have been carried out for reference. Figure 6-19A 

and Figure 6-19B shows the TGA and DTA profile for Cu-oxalate and Zn-oxalate respectively. 

The decarboxylation for Cu-oxalate started at around 200ºC and is completed at around 300ºC; 

whereas, Zn-oxalate starts to decompose at around 320ºC and continues until it is complete at 

400ºC. The exothermic peaks (upward temperature difference peak if exothermic) at 305ºC and 

390ºC represent the fastest decarboxylation temperatures for Cu-oxalate and Zn-oxalate 

respectively.  

 
Figure 6-19 TGA and DTA Profile for: A) Cu-oxalate; B) Zn-oxalate. 

 

Figure 6-20 and Figure 6-21 illustrate the TGA and DTA profile for Cu/ZnO (Cu/Zn = 1/1) and 

Cu/ZnO/Al2O3 (Cu/Zn/Al = 25/25/50) catalysts prepared by oxalic acid co-precipitation. When 

the alumina is present in Figure 6-20, only one peak is observed between 220ºC and 325ºC 

indicating that the Cu and Zn oxalates are in a very well mixed phase, while in absence of 

alumina in Figure 6-21, a small peak is observed between 215ºC and 250ºC and a large peak 

appeares between 290ºC and 350ºC indicating higher Zn content within this temperature range. It 

is known that that with Al added the metals are well mixed, which suggests that the mixing of 

metals plays an important role on the catalytic activity since with Al added the activity of the 

catalyst was improved as introduced in Chapter 4. For both catalysts, the decomposition can be 

completed before 350ºC, so 360ºC as the calcination temperature is sufficient for both catalysts. 
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Figure 6-20 TGA and DTA Profile for Cu/ZnO/Al2O3 Catalyst Prepared via Oxalate Gel-
coprecipitation. 

 

 
Figure 6-21 TGA and DTA Profile for Cu/ZnO Catalyst Prepared via Oxalate Gel-
coprecipitation. 

 

6.5.2 Thermo Analysis for Cu/ZnO/Al2O3 Catalysts Prepared by Na2CO3 

Coprecipitation and Impregnation 

For the Cu/ZnO/Al2O3 catalyst prepared by Na2CO3 co-precipitation (Cu/Zn/Al = 25/25/50) as 

shown in Figure 6-22, a slow decarboxylation occurs from 195ºC up to 400ºC followed by a 

small amount of mass loss between 550ºC and 630ºC, which was also reported by Zhang et al. 

[188]. Therefore, the calcination temperature is designed to be 600ºC. The high calcination 

temperature can cause sintering of Cu resulting in larger Cu size particles, which is observed in 
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the XRD pattern in Section 6.7. The profile shown in Figure 6-23 is for Cu/ZnO/Al2O3 prepared 

via the impregnation method (Cu/Zn/Al = 15/15/70). From 220ºC to 260ºC and from 260ºC to 

305ºC, two endothermic peaks are observed corresponding to the decomposition of Cu(NO3)2 

and Zn(NO3)2 respectively [189]. So 400ºC is used as the calcination temperature for this catalyst. 

Therefore, oxalate gel-coprecipitation with alumina present favors a chemical homogenous phase 

of Cu and Zn, which is in a good agreement with the XRD analysis presented in Section 6.7.  

 
Figure 6-22 TGA and DTA Profile for Cu/ZnO/Al2O3 Catalyst Prepared via Na2CO3 
Coprecipitation 
 

 

Figure 6-23 TGA and DTA Profile for Cu/ZnO/Al2O3 Catalyst Prepared via Impregnation 
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6.5.3 Thermo Analysis for Cu/MgO/Al2O3 Catalyst Prepared by Oxalate Gel-

coprecipitation 

Figure 6-24 shows the decomposition profile for a Cu/MgO/Al2O3 catalyst prepared by oxalic 

acid co-precipitation (Cu/Mg/Al = 22.5/67.5/10). A small exothermic peak between 218ºC and 

260ºC is observed on the shoulder of the main peak which is between 218ºC and 340ºC. The 

decomposition of this catalyst is completed after 340ºC. Therefore, 360ºC is used as the 

calcination temperature for this catalyst. 

 

Figure 6-24 TGA and DTA Profile for Cu/MgO/Al2O3 Catalyst Prepared via Oxalate Gel-
coprecipitation 

 

6.5.4 Thermo Analysis for 2wt% Pd Supported on Cu/ZnO/Al2O3 and 

Cu/MgO/Al2O3 Catalysts  

Figure 6-25 and Figure 6-26 illustrate the thermal decomposition profiles of 2wt% Pd supported 

on Cu/ZnO/Al2O3 (Cu/Zn/Al = 25/25/50) and 2wt% Pd supported on Cu/MgO/Al2O3 (Cu/Mg/Al 

= 22.5/67.5/10) catalysts using palladium acetate as the palladium precursor. Both profiles show 

an exothermic peak between 230ºC and 250ºC indicating the decomposition temperature of 

palladium acetate. The weight loss stops at 275 ºC for Pd-Cu/ZnO/Al2O3 and at 350ºC for Pd-

Cu/MgO/Al2O3. Therefore, 360ºC is used for the calcination temperature for these catalysts. 
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Figure 6-25 TGA and DTA Profile for 2wt% Pd on Cu/ZnO/Al2O3 Catalyst. 

 

 
Figure 6-26 TGA and DTA Profile for 2wt% Pd on Cu/MgO/Al2O3 Catalyst. 

 

6.6 Transmission Electron Microscopy (TEM) 

TEM experiments have been carried out to investigate the catalyst particle size, particle shapes 

and crystal structures. Fresh and spent catalysts have been used to investigate the morphology 

change before and after the reaction. 
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6.6.1 Effect of Al on Cu/ZnO Catalysts Prepared via Oxalate Gel-coprecipitation 

Figure 6-27 shows TEM pictures of Cu/ZnO (Cu/Zn = 50/50) catalyst and Cu/ZnO/Al2O3 

(Cu/Zn/Al = 25/25/50) catalyst. It can be observed that particles of both catalysts are well 

dispersed and no aggregation is observed. With Al added, the particle shape is more regular and 

much smaller; also the particle size is more uniformly distributed. The particle size for the 

catalyst with Al added is calculated to be 10.41nm with a standard deviation of 2.04nm as shown 

in Figure 6-28 and Table 6-9. If Al is not added, it can be observed that the particles are formed 

very irregularly. The particle size is much larger compared with that when Al is added; the 

particle size is calculated as 14.96nm with a much larger standard deviation. As discussed in 

Section 4.2, adding alumina can significantly improve the catalyst activity for a glycerol 

hydrogenolysis process; therefore, the particle size is an important factor affecting the catalyst 

activity and smaller particle size can give a higher catalytic activity. 
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Figure 6-27 TEM Images of: A&B) Cu/ZnO/Al2O3 Catalyst; C&D) Cu/ZnO Catalysts. 

 

A B 

C D 
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Figure 6-28 Effect of Al on Cu/ZnO Particle Size Distribution. 

 

Table 6-9 Effect of Al on Cu/ZnO Particle Size Distribution. 

 Mean SD 
Cu/ZnO/Al2O3 10.41 2.04 

Cu/ZnO 14.96 3.71 
 

 

6.6.2 Effect of Preparation Method 

Figure 6-29 shows TEM pictures of Cu/ZnO/Al2O3 catalysts from different preparation methods. 

From Figure 6-29C and Figure 6-29D, it can be observed that for the catalyst prepared by 

Na2CO3 precipitation, the particle shape is elliptical while with oxalic acid precipitation, the 

particles are spherical as shown in Figure 6-29A and Figure 6-29B. For the elliptical particles the 

average size of the major axis is calculated to be 18.83nm which is much larger than that of the 

catalyst prepared by oxalic acid precipitation as shown in Table 6-10 and Figure 6-30, and the 

distribution of the particle size is also wider since the calculated standard deviation is larger. It 

has been discussed in Section 4.1 that the Cu/ZnO/Al2O3 catalyst prepared by oxalage gel-

coprecipitation has a higher activity for the glycerol hydrogenolysis than the catalyst prepared by 

Na2CO3 coprecipitation; one of the reasons being that this preparation method can provide a 
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smaller particle size. This is in a good agreement with some literature reporting this preparation 

method [78, 120, 122]. 

 

Figure 6-29 TEM Images of: A&B) Cu/ZnO/Al2O3 Catalyst Prepared via Oxalic Acid Co-
Precipitation; C&D) Cu/ZnO/Al2O3 Catalysts Prepared via Na2CO3 Co-Precipitation. 

 

 

 

A B 

C D 
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Figure 6-30 Effect of Preparation Method on Cu/ZnO/Al2O3 Catalyst Particle Size Distribution. 
 

Table 6-10 Effect of Preparation Method on Cu/ZnO/Al2O3 Catalyst Particle Size Distribution. 

 
Mean SD 

Cu/ZnO/Al2O3-OA 10.41 2.04 
Cu/ZnO/Al2O3-Na 18.83 4.05 

 

 

6.6.3 Analysis of Fresh and Spent Catalysts  

Figure 6-31 and Figure 6-32 show a comparison of the morphology of the catalysts between the 

fresh catalyst and the spent catalyst used for the glycerol hydrogenolysis reaction with molecular 

hydrogen added as discussed in Section 4.6. Both fresh Cu/ZnO/Al2O3 Cu/ZnO catalysts 

particles disperse very well. Both spent catalysts undergo a certain level of agglomeration. 

However, by comparing Figure 6-31C and Figure 6-31D with Figure 6-32C and Figure 6-32D, it 

can be observed that the agglomeration for spent Cu/ZnO catalyst is more serious than that of the 

Cu/ZnO/Al2O3 catalyst since the particles of the spent Cu/ZnO catalyst is more irregular and 

only large particles are observed. From Figure 6-32 and Table 6-11, it can clearly be seen that 

the particle size distribution of the spent Cu/ZnO/Al2O3 catalyst is not significantly changed 
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compared with the fresh catalyst. The average particle size of the Cu/ZnO catalyst grew 

remarkably from 14.96nm to 24.29nm after it was recycled and the distribution was much wider 

as seen by a larger standard deviation. This result indicates that the presence of Al can not only 

reduce the particle size of the catalyst but also can prevent catalyst aggregation during the 

reactions, therefore, improving the life time of the catalyst. This is in a very good agreement with 

what was discussed in Section 4.6 that with Al added, the Cu/ZnO/Al2O3 catalyst could be 

recycled and reused for 5 times with no significant deactivation being observed. When Cu/ZnO 

was used without Al added, the catalyst was deactivated when it was recycled and reused for the 

first time. 
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Figure 6-31 TEM Images of: A&B) Cu/ZnO/Al2O3 Fresh Catalyst Prepared by Oxalic Acid Co-
Precipitation; C&D) Cu/ZnO/Al2O3 Spent Catalysts Prepared by Oxalic Acid Co-Precipitation. 

 

A B 

C D 
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Figure 6-32 TEM Images of: A&B) Cu/ZnO Fresh Catalyst Prepared by Oxalic Acid Co-
Precipitation; C&D) Cu/ZnO Spent Catalysts Prepared by Oxalic Acid Co-Precipitation. 

 

Table 6-11 Catalyst Particle Size Distribution Comparison between Fresh Catalysts and Spent 
Catalysts. 

 
Cu/ZnO/Al2O3  

Fresh 
Cu/ZnO/Al2O3  

Spent 
Cu/ZnO 
Fresh 

Cu/ZnO  
Spent 

Mean 10.41 11.24 14.96 24.29 
STDEV 2.04 2.04 3.71 8.14 
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Figure 6-33 Catalyst Particle Size Distribution Comparison between Fresh Catalysts and Spent 
Catalysts. 

 

6.6.4 TEM Analysis of Cu/MgO/Al2O3 Catalyst and Comparison with 

Cu/ZnO/Al2O3 Catalyst 

In Figure 6-34C and Figure 6-34D, it can be observed that the Cu/MgO/Al2O3 (Cu/Mg/Al = 

22.5/67.5/10) catalyst particles also has a spherical shape and dispersed very well. The average 

particle size of Cu/MgO/Al2O3 catalyst is measured to be 9.87nm, which is slightly smaller than 

that of the Cu/ZnO/Al2O3 catalyst and the size distribution of Cu/MgO/Al2O3 catalyst is 

narrower as shown in Table 6-12.  
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Figure 6-34 TEM Images of: A&B) Cu/ZnO/Al2O3 Catalyst Prepared via Oxalate Gel-
coprecipitation; C&D) Cu/MgO/Al2O3 Catalysts Prepared via Oxalate Gel-coprecipitation 
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Figure 6-35 Particle Distribution Comparison between Cu/MgO/Al2O3 and Cu/ZnO/Al2O3. 

 

Table 6-12 Particle Distribution Comparison between Cu/MgO/Al2O3 and Cu/ZnO/Al2O3. 

  Cu/ZnO/Al2O3 Cu/MgO/Al2O3 
Mean 10.41 9.87 
STDEV 2.04 1.74 

 

Table 6-13 and Figure 6-36 illustrate the relationship between the particle sizes of different 

catalysts and the rate constants for glycerol hydrogenolysis reactions using molecular hydrogen 

as reported in Chapter 4. It can be seen that the rate constant is higher when the particle size of 

the catalyst is smaller. Therefore, the particle size can significantly affect the catalyst activity and 

a smaller particle size is always desired for higher catalytic activity. 
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Figure 6-36 Relationship between the Catalyst Particle Size and the Rate Constant. 
Experimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 50wt% 
aqueous glycerol. 
 

Table 6-13 Relationship between the Catalyst Particle Size and the Rate Constanta 

Catalysts Average Particle Size Rate Constant 

 nm s-1 
Cu/MgO/Al2O3 Fresh 9.87 2.469E-05 
Cu/ZnO/Al2O3 Fresh 10.41 1.456E-05 
Cu/ZnO/Al2O3 Spent 11.24 1.201E-05 

Cu/ZnO Fresh 14.96 9.984E-06 
Cu/ZnO Spent 24.29 2.885E-06 

aExperimental Condition: 200ºC, 500RPM, 5wt% catalyst with respect to glycerol weight, 50wt% 
aqueous glycerol, 400psi H2. 

 

6.7 X-Ray Diffraction (XRD) 

XRD experiments have been carried out using different catalysts to study the crystal structure of 

different catalysts. The detailed experimental method was described in Section 3.5.7. 
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6.7.1 XRD Parterns for Cu/ZnO/Al2O3 Catalysts Prepared by Different Methods 

Figure 6-37 shows the XRD patterns for metal oxalates before calcination. The profile for Cu-

oxalate and Zn-oxalate are shown for reference. Zn-oxalate peaks are observed at 2θ angles of 

19.1°, 23.9° and 25.2° and a Cu-oxalate peak is observed at a 2θ angle of 22.8°, which is 

consistent with the data reported by Deng et al. in 1996 [78]. Both Cu/Zn/Al and Cu/Zn oxalate 

particles only show one broad peak at 2θ angles of 23.0° indicating that Cu and Zn are well 

mixed resulting in the overlaping of the peaks. 

 

 
Figure 6- 37 XRD Patterns for Different Metal Oxalates. 

 

Figure 6-38 illustrates the XRD patterns for calcined CuO/ZnO/Al2O3 catalysts prepared by 

different preparation methods. The calcined CuO and ZnO prepared by oxalic acid are shown for 

reference. CuO peaks are observed at 2θ angles of 35.4° and 38.6°, ZnO peaks show 2θ angles of 

31.8°, 34.4° and 36.3°. For the CuO/ZnO/Al2O3-IMP catalyst, sharp CuO and ZnO peaks are 

observed representing high crystallization. The CuO/ZnO/Al2O3-Na and CuO/ZnO-OA show 

much more broaden peaks and some overlapping is shown in the 2θ region at 33.8º and 37.6º. In 

the pattern of the CuO/ZnO/Al2O3-OA catalyst, the peaks are even more broadened and the CuO 
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and ZnO peaks totally overlap each other and no Al2O3 peak is observed, which suggests that the 

particles are very well mixed and homogeneously distributed through the catalyst [79, 122].  

 

 
Figure 6-38 XRD Patterns for the Calcined Catalysts Prepared by Different Preparation Methods: 
(●) CuO, (■) ZnO, (▲) Al2O3. Cu/Zn/Al=25/25/50 for CuO/ZnO/Al2O3-OA and 
CuO/ZnO/Al2O3-Na, Cu/Zn=50/50 for CuO/ZnO-OA, Cu/Zn/Al=15/15/70 for CuO/ZnO/Al2O3-
IMP. 
 

Figure 6-39 shows the XRD patterns of the reduced catalysts. No CuO peaks are observed 

suggesting that CuO is completely reduced to Cu0 under the reduction temperature of 300oC. 

Similarly to Figure 6-38, no ZnO and Al2O3 peaks are observed in the pattern for the catalyst 

Cu/ZnO/Al2O3-OA and the Cu0 peak is much broader compared to the catalysts prepared by 

other methods. The Cu0 particle size calculated by Scherre equation is the smallest (7.28nm 

shown in Table 6-14), which is important for glycerol hydrogenolysis, this observation is in good 

agreement with the discussion for the TEM images in Section 6.6. Therefore, the oxalate gel-

coprecipitation with aluminum present has a significant effect on the particle dispersion and the 

catalyst structure. 
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Figure 6-39 XRD Patterns for the Reduced Catalysts Prepared by Different Preparation Method: 
(♦) Cu, (■) ZnO. Cu/Zn/Al=25/25/50 for Cu/ZnO/Al2O3-OA and Cu/ZnO/Al2O3-Na, 
Cu/Zn=50/50 for Cu/ZnO-OA, Cu/Zn/Al=15/15/70 for Cu/ZnO/Al2O3-IMP 

 

Table 6-14 Physical Chemical Properties of the Catalysts Prepared by Different Methods 

Catalysts 
(Molar Feed Composition)a 

Specific  
Surface Area b 

Crystallite Size  
of Cu0 c 

Acidic  
Strengthd 

 
Total Acidic 

 Sitesd 

Observed  
Metal Content 
(Cu; Zn; Al)e 

  m2/g nm mmolNH3/gcat mmolNH3/gcat wt% 
Cu/Zn/Al-OA 

(25/25/50) 113.92 7.28 
0.03  

(89.2-359.0ْC) 0.21 (30.78; 24.91; 11.56) 

   
0.18  

(399.5-787.4ْC)   
Cu/Zn-OA 

(50/50) 34.06 22.78 
0.08  

(222.9-426.3ْC) 0.08 (44.02; 44.97; 0) 

Cu/Zn/Al-Na 
(25/25/50) 53.09 35.99 

0.04  
(107.04-
511.0ْC) 0.04 (23.15; 23.32; 19.63) 

Cu/Zn/Al-IMP 
(16.7/16.7/66.6) 95.58 32.36 

0.27  
(94.3-542.2ْC) 0.27 (17.30; 17.79; 28.12) 

a. Molar feed composition used to make the catalysts 
b  Measured by BET Surface Area Experiments 
c. Calculated by Scherrer Equation from XRD Patterns 
d. Measured by NH3 TPD Experiments 
e. Measured by ICP Experiments 
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6.7.2 XRD Patterns for Cu/MgO/Al2O3 Catalysts with Different Cu/Mg Molar 

Ratios 

Figure 6-40 illustrates the calcined Cu/MgO/Al2O3 catalysts with different Cu/Mg ratio. It can be 

observed that as the Cu/Mg molar ratio increases, the CuO peaks at 2θ angles of 35.4° and 38.6° 

are getting sharper and the intensity is much higher suggesting that highly crystallized phases 

formed when the copper content is high. When the Cu/Mg molar ratio is 1/5, the peaks for CuO 

are less intense and no MgO peak is observed suggesting that Cu is in a highly dispersed form 

and well mixed with Mg. The particle size is calculated to be smaller when the copper content is 

lower as listed in Table 6-15. It has been discussed in Section 6.7 and Chapter 4 that the catalysts 

with smaller particle sizes can give higher activities for the  glycerol hydrogenolysis reactions; 

however, based on the experimental results in Section 5.3.2, the catalyst is more active when the 

Cu/Mg molar ratio is 1/3. This is possibly because when the Cu content is very low, there will be 

less Cu sites on the catalyst surface resulting in a lower catalytic activity since it has been 

reported by Bienholz et al. in 2011 that the catalyst activity strongly depends on the copper 

surface area [190]. 

 

Figure 6-40 XRD Patters for Cu/MgO/Al2O3 Catalysts with Different Cu/Mg Ratio: ◊ CuO, ○ 
MgO. 
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Table 6-15 Crystal Sizes of Cu/MgO/Al2O3 Catalysts with Different Cu/Mg Ratiosa. 

  Crystal Sizes 
  CuO MgO 
Cu/Mg=1/1 13.21 7.50 
Cu/Mg=1/3 9.48 6.55 
Cu/Mg=1/5 8.66   

aCalculated by Scherrer Equation 

 

6.7.3 XRD Patterns for Pd Supported on Cu/MgO/Al2O3 Catalysts 

Figure 6-41 illustrates the XRD patterns for the calcined Pd supported on Cu/MgO/Al2O3 

catalysts with different Pd loading. It can be observed that no PdO diffraction peak was observed 

suggesting a high dispersion of Pd up to 3wt% loading. The crystal structures of CuO and MgO 

are not affected by Pd impregnation and the particle sizes of CuO and MgO are not significantly 

changed as listed in Table 6-16. 

 

Figure 6-41 XRD Patters for Pd Supported on Cu/MgO/Al2O3 Catalysts:  
Cu/Mg/Al=22.5/67.5/10. 
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Table 6-16 Particle Sizes for Pd Supported on Cu/MgO/Al2O3 Catalystsa. 

  Crystal Sizes 
  CuO MgO 

0%Pd 9.475 6.55 
1%Pd 10.81 8.89 
2%Pd 10.735 8.33 
3%Pd 9.965 7.11 

aCu/Mg/Al=22.5/67.5/10 

 

6.7.4 XRD Patterns for the Recycled Cu/MgO/Al2O3 Catalysts 

Figure 6-42 demonstrates the XRD patterns for fresh CuO/MgO/Al2O3 catalyst and spent 

CuO/MgO/Al2O3 catalyst. It can be clearly observed that both CuO and MgO peaks for the 

recycled catalyst are much sharper compared with the fresh catalyst; the CuO and ZnO particle 

sizes for the fresh catalyst are calculated to be 9.48nm and 6.55nm respectively and CuO and 

MgO particle sizes for the spent catalyst are significantly larger than that of a fresh catalyst 

which are 23.80nm and 12.43nm respectively as shown in Table 6-17. This suggests that severe 

catalyst sintering occurred during the reaction leading to an increase in the particle size and 

therefore, a decrease in the active surface area and hence a loss of activity. This observation is in 

a good agreement with what has been discussed in Section 5.3.4 in that the Cu/MgO/Al2O3 

catalyst was significantly deactivated after it was recycled and in agreement with some literature 

reporting on such catalyst deactivation [68, 80].  
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Figure 6-42 XRD Patterns for Fresh CuO/MgO/Al2O3 and Recycled CuO/MgO/Al2O3 Catalysts: 
◊ CuO, ○ MgO. 

 

Figure 6-43 illustrates the XRD patterns for fresh and spent 2wt%Pd-CuO/MgO/Al2O3 catalysts. 

The peaks for CuO and MgO changed in a similar way as described in the XRD patterns for the 

recycled CuO/MgO/Al2O3 catalyst. As listed in Table 6-17, the CuO and ZnO particle sizes for 

the fresh catalyst are calculated to be 10.74nm and 8.33nm respectively and CuO and MgO 

particle sizes for the spent catalyst are 16.67nm and 17.40nm respectively. As shown in the 

pattern for the fresh catalyst, no PdO peak is observed due to a high dispersion of palladium on 

the catalyst; when the catalyst is recycled, a PdO peak is observed at a 2θ angle of 34.2° 

suggesting that Pd is also sintered during the reaction resulting in a larger particle size which is 

calculated to be 15.43nm. Therefore, the catalyst is deactivated after it was recycled and reused 

as discussed in Section 4.10. 
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Figure 6-43 XRD Patterns for Fresh and Recycled 2%Pd Supported on CuO/MgO/Al2O3 
Catalysts: ◊ CuO, ○ MgO, ▫ PdO. 
 

Table 6-17 Particle Size for Fresh and Recycled Catalystsa. 

  Crystal Sizes 
  CuO MgO PdO 

Fresh Cu/MgO/Al2O3 9.48 6.55   
Recycled Cu/MgO/Al2O3 23.80 12.43   

Fresh 2%Pd-Cu/MgO/Al2O3 10.74 8.33   
Recycled 2%Pd-Cu/MgO/Al2O3 16.67 17.40 15.43 

aCu/Mg/Al=22.5/67.5/10 
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6.8 Conclusions 

In this chapter, catalysts have been characterized by different catalyst characterization techniques 

to study the relationship between the catalyst structure and the catalytic activity. 

NH3 TPD experiments have been conducted to investigate the acidity of the different types of 

catalysts. From the results, it was seen that the Cu/ZnO/Al2O3 catalyst prepared via oxalate gel-

coprecipitation had stronger acidic sites compared with the ones prepared via Na2CO3 

coprecipitation and impregnation; therefore, the Cu/ZnO/Al2O3 catalyst exhibited the highest 

activity for the glycerol hydrogenolysis reaction. Cu/MgO/Al2O3 NH3 TPD results showed that 

the major acidic sites were of medium strength and the number of acidic sites was an order of 

magnitude higher than that for a Cu/ZnO/Al2O3 catalyst. The effect of Ni on the catalyst acidity 

has been investigated and it was found that Ni reduced the acidic sites for both the catalysts 

Cu/ZnO/Al2O3 and Cu/MgO/Al2O3. It was found that the catalyst activity was strongly 

dependent on the number of strong acidic sites [191]. 

H2 TPR experiments have been carried out to investigate the reduction behavior of the catalyst 

and to determine the optimum reduction temperature. It was found that Ni does not affect the 

reduction temperature of both Cu/MgO/Al2O3 and Cu/ZnO/Al2O3; Pd could significantly reduce 

the reduction temperature of Cu/MgO/Al2O3. 

H2 TPD experiments were carried out to study the characterization of hydrogen adsorption and 

hydrogen storage capacity for different catalysts. By adding Pd on Cu/MgO/Al2O3 up to 2wt%, 

the amount of hydrogen adsorbed on the catalyst surface increased, if more Pd was loaded, the 

amount of adsorbed catalyst did not significantly increased. It was found that the 1,2PD 

selectivity was strongly dependent on the amount of hydrogen adsorbed [106]. 

CO2 TPD experiments were carried out using Cu/MgO/Al2O3 to study the basicity of the 

catalysts with different metal composition. It was found that when the Cu/Mg ratio was lower, a 

higher amount of basic sites were observed. The loading of Pd significantly reduced the amount 

of basic sites. No direct relationship was found between the catalyst basicity and the catalyst 

activity. 
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TGA experimental results were used to determine the optimum calcination temperature. It was 

also observed that for a Cu/ZnO/Al2O3 catalyst prepared by oxalate gel-coprecipitation, with Al 

added the metals were mixed better than that without Al added. 

The TEM images were used to visualize the catalyst particle shape and analyze the particle size 

distribution. It was found that the Cu/ZnO/Al2O3 catalyst prepared via an oxalate gel-

coprecipitation had a spherical particle shape and the Cu/ZnO/Al2O3 catalyst prepared via a 

Na2CO3 coprecipitation had an elliptical shape. The effect of Al on the catalyst stability has been 

analyzed based on the TEM images of fresh and recycled catalysts. It was seen that with Al 

added, no significant agglomeration was observed and the average particle size was slightly 

increased after the catalyst was recycled. When the Cu/ZnO catalyst was recycled without Al, 

severe sintering occurred and only large particles were observed in the images, which was the 

main reason for the catalyst deactivation. It was found that the catalyst activity was strongly 

related to the average particle size of the catalyst. 

XRD experiments were carried out to study the crystal structure of different catalysts. The 

Cu/ZnO/Al2O3 catalyst prepared by oxalate gel-coprecipitation exhibited a better component 

dispersion with a smaller particle size compared to the catalysts prepared by the Na2CO3 co-

precipitation and the impregnation methods. For Cu/MgO/Al2O3 catalysts, when the Cu/Mg ratio 

was high, the Cu was in a highly crystallized form resulting in a larger particle size. When 

Cu/MgO/Al2O3 catalyst and 2wt% Pd-Cu/MgO/Al2O3 catalyst were recycled, severe sintering 

occurred leading to a larger particle size, and hence catalyst deactivation [68, 80]. 
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Chapter Seven                                         

Conclusion and Recommendation 

 
7.1 Conclusions on Glycerol Hydrogenolysis Prcesses Using Molecular Hydrogen 

The experiments for glycerol hydrogenolysis process using molecular hydrogen have been 

carried out in an autoclave batch reactor. The Cu/ZnO/Al2O3 catalysts were prepared by three 

different preparation methods, i.e. oxalate gel-coprecipitation, Na2CO3 coprecipitation and 

impregnation. The experimental results showed that the catalyst prepared via oxalate gel-

coprecipitation exhibited the highest activity. The results of XRD and TGA/DGA showed better 

metal mixing for the catalyst prepared by oxalate gel-coprecipitation compared with the catalyst 

prepared by the other two methods. The NH3 TPD experimental results suggested that the 

Cu/ZnO/Al2O3 prepared by gel-coprecipitation provided stronger acidic sites, and these strong 

acidic sites could facilitate the glycerol dehydration step, which is the rate limiting step, and thus, 

improve the catalyst acitivity. From the TEM images and XRD analysis, it was seen that the 

Cu/ZnO/Al2O3 catalysts prepared by the oxalate gel-coprecipitation method could provide highly 

dispersed particles and the particle size was smaller compared with the catalyst prepared by the 

other two methods; more active sites were provided if the particle size was smaller, and hence 

the catalyst was more active. Therefore, it can be seen that the catalyst acidity, the metal mixing 

and the particle size play an important role on the catalytic activity of a Cu/ZnO/Al2O3 catalyst. 

The effect of hydrogen pressure on the reaction products of the glycerol hydrogenolysis 

processes has been investigated using different hydrogen pressures. The experimental results 

showed that the 1,2PD selectivity strongly depended on the hydrogen pressure. When the 

hydrogen pressure was low many un-desired by-products were formed resulting in a low 1,2PD 

selectivity. The by-product formation was mainly due to side reactions with acetol when the 

supplied hydrogen was not sufficient to rapidly hydrogenate the acetol to 1,2PD as reported by 

van Ryneveld et al. [99]. Acetol hydrogenation reactions at different hydrogen pressures have 
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also been carried out. Same by-products were detected by GC confirming that the by-product 

formation was due to side reactions with acetol. The calculated rate constant of acetol 

hydrogenation was one order of magnitude higher than that for the glycerol hydrogenolysis 

process under the same reaction conditions suggesting that acetol hydrogenation is the rate 

determing step [48]. 

A composition study of Cu/Zn/Al has been carried out and the optimum molar ratio of Cu/Zn/Al 

was determined to be 25/25/50. It was also found that the addition of alumina did not only 

increase the activity of a Cu/ZnO catalyst but also improved the stability of the catalyst. Without 

Al added, the Cu/ZnO catalyst was significantly deactivated when it was reused for the first time 

recycle; however, when Al was added, after 4 times recycling no obvious deactivation was 

observed. The TEM results showed that after recycling, the particle size of the Cu/ZnO catalyst 

without Al added was larger than that for the fresh catalyst, and the particle size for a 

Cu/ZnO/Al2O3 catalyst was not significantly changed suggesting that severe sintering has 

occurred for the Cu/ZnO catalyst during the reaction. This is in a very good agreement with 

literature reports on catalyst deactivation [68, 80]. The enhancement of the catalyst stability as a 

result of Al addition was because alumina could isolate the individual metal particles to prevent 

their sintering [68, 124]. 

The promoting effect of Ni was also investigated. The acetol hydrogenation experimental results 

showed that with Ni added, the hydrogenation rate and the 1,2PD selectivity were higher than 

when using a Cu/ZnO/Al2O3 catalyst without Ni added suggesting that the addition of Ni 

improved the hydrogenation activity of the Cu/ZnO/Al2O3 catalyst. However, when the 

Ni/Cu/ZnO/Al2O3 catalyst was used for the glycerol hydrogenolysis reaction; the reaction rate 

was lower resulting in a lower glycerol conversion. Based on the NH3 TPD results, the addition 

of Ni reduced the number of strong acidic sites, which caused some loss of catalyst activity for 

the glycerol dehydration step, which is the rate limiting step in the glycerol hydrogenolysis 

process; therefore, the reaction was slower on adding Ni to a Cu/ZnO/Al2O3 catalyst. 

Cu/MgO/Al2O3 prepared via oxalate gel-coprecipitation has been used in the glycerol 

hydrogenolysis process. Compared with the Cu/ZnO/Al2O3 catalyst, the Cu/MgO/Al2O3 catalyst 

showed a higher activity for the glycerol hydrogenolysis process. Based on the TEM images and 

XRD results the particle size of the Cu/MgO/Al2O3 catalyst was smaller than the Cu/ZnO/Al2O3 
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catalyst. The number of acidic sites of the Cu/MgO/Al2O3 catalyst was ten times more than that 

for the Cu/ZnO/Al2O3 catalyst; however, the strength of the acidic sites for the Cu/MgO/Al2O3 

catalyst was slightly lower, and therefore, the rate constant obtained using the Cu/MgO/Al2O3 

catalyst was not a magnitude higher than that obtained using the Cu/ZnO/Al2O3 catalyst. 

The effect of Pd loading on the Cu/MgO/Al2O3 catalyst was investigated by impregnating Pd on 

a Cu/MgO/Al2O3 catalyst. The enhancement of the catalyst acitivity was due to more surface 

hydrogen supplied with addition of Pd as observed in the results of the H2 TPD. The stability of 

the supported Pd on the Cu/MgO/Al2O3 catalyst has also been investigated by reusing the 

catalyst. A significant activity loss was observed when the catalyst was first time recycled and 

used. The catalyst deactivation was possibly due to sintering during the reaction resulting in a 

large particle size as observed in XRD results. 

The activation energy of the reactions using Cu/ZnO/Al2O3 catalyst and Pd/Cu/MgO/Al2O3 were 

calculated based on the Arrhenius Equation, and were 69.39kJ/mol and 113.62kJ/mol 

respectively. This suggests that the reactions are chemical kinetically controlled for both 

catalysts with the process using Pd/Cu/MgO/Al2O3 being more temperature dependent than when 

using Cu/ZnO/Al2O3 catalyst. 

 

7.2 Conclusions on Glycerol Hydrogenolysis Processes Using in situ Hydrogen 

Produced by Methonal Steam Reforming 

Experiments for the glycerol hydrogenolysis process using molecular hydrogen have been 

carried out in an autoclave batch reactor. The Cu/ZnO/Al2O3 catalysts prepared by three different 

preparation methods, i.e. oxalate gel-coprecipitation, Na2CO3 coprecipitation and impregnation. 

The experimental results showed that the catalyst prepared via the oxalate gel-coprecipitation 

gave the highest activity, i.e. higher glycerol conversion and 1,2PD selectivity, which has also 

been observed in the results for the glycerol hydrogenolysis process using molecular hydrogen. 

The promoting effect of Ni has been investigated. Based on the experimental results, the addition 

of Ni improved the 1,2PD selectivity because Ni could promote the methanol steam reforming to 

produce more hydrogen; however, due to the reduced amount of strong acidic sites on Ni 
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addition as observed in NH3 TPD results, the glycerol conversion was lower. When the 

Ni/ZnO/Al2O3 catalyst was used without Cu, no glycerol was converted suggesting that Cu was 

necessary for the glycerol dehydration step when the Ni/Cu/ZnO/Al2O3 catalyst was used. Pd 

was loaded on the Cu/ZnO/Al2O3 catalyst by different preparation methods, i.e. impregnation, 

reduction deposition and deposition precipitation, and with different Pd precursors, i.e. palladium 

acetate and palladium nitrate. The catalyst prepared by the impregnation method with palladium 

acetate as the Pd precursor showed the highest 1,2PD selectivity. Compared with Cu/ZnO/Al2O3 

catalyst the glycerol conversion by the Pd/Cu/ZnO/Al2O3 catalyst was slightly lower due to 

fewer strong acidic sites as shown from the NH3 TPD results and the 1,2PD selectivity was 

significantly improved due to more surface hydrogen being supplied by Pd as shown from the H2 

TPD results and the promoting effect on the methanol steam reforming reaction as has frequently 

been reported [174, 175]. 

A Cu/MgO/Al2O3 catalyst was used for the glycerol hydrogenolysis process using in situ 

hydrogen produced by methanol steam reforming; both glycerol conversion and 1,2PD 

selectivity were significantly improved compared with the Cu/ZnO/Al2O3 catalyst. A Cu/Mg/Al 

composition study has been carried out and the optimum Cu/Mg/Al molar ratio was found to be 

22.5/67.5/10. 

The effect of Pd on the Cu/MgO/Al2O3 has been investigated, a 2wt% Pd loading was found to 

be the optimal. The H2 TPD results suggested that the 1,2PD selectivity was strongly related to 

the total amount of hydrogen adsorbed on the catalyst surface. 

The promoting effect of Ni on the Cu/MgO/Al2O3 catalyst has been investigated. The 

experimental results showed that the glycerol conversion was decreased as more Ni was loaded; 

when 5mole% Ni was loaded the catalyst was completely deactivated. This was because when 

5mole% Ni was loaded, most of the acidic sites were eliminated based on the NH3 TPD results. 

Ga2O3 was added on the Cu/MgO instead of Al2O3 to investigate the enhancement of the catalyst 

activity and stability. No obvious improvement on the catalytic activity was observed by 

replacing Al2O3 with Ga2O3 for the fresh catalysts and both Cu/MgO/Al2O3 and Cu/MgO/Ga2O3 

catalysts were deactivated when they were recycled and reused. Based on the XRD results, 

severe sintering occurred during the experiments resulting in a larger particle size. 
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The glycerol hydrogenolysis reactions using in situ hydrogen produced by methanol steam 

reforming were carried out with molecular hydrogen initially added. The 1,2PD selectivity was 

significantly improved compared with the experiment with nitrogen initially added. Since it has 

been discussed that the low 1,2PD selectivity was most likely due to insufficient hydrogen 

produced via methanol steam reforming especially in the early stage of the reaction, the addition 

of molecular hydrogen initially could enhance the acetol hydrogenation resulting in a higher 

1,2PD selectivity. 

 

7.3 Recommendations 

It has been reported that a fixed bed reactor is normally used for a continuous process to convert 

glycerol into 1,2PD [48, 77, 143, 192, 193]. It has been discussed that the low selectivity for the 

glycerol hydrogenolysis process using in situ hydrogen produced by methanol steam reforming is 

due to insufficient hydrogen for the acetol hydrogenation reactions. In a fixed bed reactor, all of 

the reaction can be carried out in a gas phase.  The gas phase reaction for glycerol 

hydrogenolysis can eliminate the limitation of low hydrogen solubility in the liquid, therefore, 

the formation of by-products caused by insufficient hydrogen supply when a batch reactor is 

used can be reduced; when the reaction is in the gas phase a high methanol conversion can be 

achieved for methanol steam reforming [138, 145, 194]. Furthermore, it has been discussed that 

the catalyst deactivation in a glycerol hydrogenolysis process using in situ hydrogen produced by 

methanol steam reforming is possibly due to the formation of carbonate when the metals or metal 

oxides contact with CO2 which is the by-product of the methanol steam reforming reaction; 

therefore, a continuous process can reduce the contact time between CO2 and the catalyst surface 

preventing deactivation of the catalyst. 

Catalytic distillation (CD) is a novel technology that combines a catalytic reaction in a 

distillation process. The CD reactor consists of a packed distillation column, within which 

heterogeneous catalysts are located. During the reaction the reactants and products are separated 

in situ by distillation. This continuous removal of product from the reaction zone can effectively 

enhance the conversion for equilibrium-limited reactions, resulting in a much higher conversion 

than the theoretical equilibrium conversion. In addition, the rapid removal of products from the 
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reaction zones can improve the selectivity by preventing undesirable consecutive reactions due to 

the lower contact time of the product and the catalyst surface. For a glycerol hydrogenolysis 

process, it has been discussed that the glycerol dehydration is the rate limiting step of the whole 

process and water is the inhibitor for this process. The boiling points of the two products (1,2PD 

and water) are 188.2˚C and 100˚C respectively and the differences between these two boiling 

points are very large; therefore, CD is expected to be very suitable for this process because it can 

eliminate the distillation process of separating water and propylene glycol as Figure 7-1 shows. 

The in situ removal of water from the distillate can also enhance the rate of the reaction. 

 

Figure 7-1 Process for Conversion of Glycerol into 1,2-PD via CD. 
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Appendix A Literature Data  
 

Table A-1 Glycerol Hydrogenolysis to 1,2-Propanediol with Molecular Hydrogen Added. 

Catalyst 
Catatyst  
Loading 

Glycerol  
Content Temperature Pressure 

Reaction 
 Time Conversion 

1,2PD  
Selectivity 

13PD 
 Selectivity Ref 

(Co-Catalyst) wt% wt% C psi hr % %     

CsPW 

4 

20 

120 73 

10 

0.0 0.0   

alhanash 2008 

180 0 0.0 0.0   

5%Ru/CsPW 

120 

73 

9.8 88.0   

150 
21.0 95.8   

6 31.0 87.6   

10 31.0 82.9   

4 

180 23.0 73.6   

200 27.0 67.7   

5%Rh/CsPW 180 6.3 65.4   

Cu/Zn 40/60 

1.2g/100ml 20 200 290 16 

30.0 91.0   

balaraju 2008 
Cu/Zn 50/50 37.0 92.0   

Cu/Zn 60/40 27.0 92.0   

Cu/Zn 70/30 15.0 92.0   

Ru/C (TPA/ZrO2) 

3+6 
20 180 870 8 

44.0 64.3   

balaraju 2009 

Ru/C (CsTPA) 21.0 60.2   

Ru/C (CsTPA/ZrO2) 25.0 67.0   

IER 25.0 40.9   

Ru/C (Nb2O5) 
44.6 60.9   

0.6g(1.2g)/50ml 62.8 66.5   

Co/SiO2 3 60 200 725 12 8.3 61.7   Huang 2008 
Cu/SiO2 5.9 57.5   
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Ni/SiO2 8.5 60.5   

Pd/SiO2 2.4 65.3   

Ru/SiO2 24.3 47.8   

Cu/ZnO/Al2O3 20.4 80.1   

Cu/Cr2O3 15.1 73.8   

Ni/Al2O3 32.3 55.1   

Pd/C 2.1 63.2   

30% CuO/SiO2 (PG) 4.5%Na 

5 80 180 1305 12 

15.4 / 8.6 94.4 / 97.3   

Huang 2009 

30% CuO/SiO2 (PG) 2.49%Na 21.6 96.7   

30% CuO/SiO2 (PG) 0.54%Na 27.2 / 23.5 98.5 / 97.4   

30% CuO/SiO2 (PG) 0.14%Na 32.7 98.7   

30% CuO/SiO2 (PG) 0.01%Na 28.6 / 21.3 99.0 / 99.2   
30% CuO/SiO2 (PG)  

 
1.9%Na impregnation 24.0 94.3   

Ru/Al2O3 

150mg/10ml 40 

150 

1160 

8 

18.7 34.5 3.4 

Ma 2008 

Ru/ZrO2 19.5 36.3 7.2 

Ru/C 29.7 50.9 0.8 

Ru/Al2O3 +Re2(CO)10 53.4 50.1 6.4 

Ru/ZrO2 +Re2(CO)10 27.1 53.1 12.6 

Ru/C +Re2(CO)10 

59.4 56.6 7.2 

160 53.4 50.1 6.4 

140 29.0 52.8 9.9 

160 
1450 56.3 50.3 8.1 

870 33.9 46.7 6.1 
Cu/Calcined PG       

nano 19.6nm 

5 80 180 1305 12 

52.7 93.1   

Huang 2008 

Cu/Reduced PG       
nano 9.0nm 73.4 94.3   

Cu/Calcined IM       
nano 35.2nm 22.9 94.5   

Cu/Reduced IM       
nano 31.1nm 25.6 95.2   
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Pt/WO3/TiO2 

100mg 
3mmol/0.2mlDMI 170 1160 18 

16.9 (yield) 7.1 6.5 

Kurosaka 2008 

Pt/WO3/HY 25.9 8.9 7.2 

Pt/WO3/AlMCM-41 27.8 7.0 7.5 

Pt/WO3/SiO2-Al2O3 42.2 11.6 11.0 

Pt/WO3/Al2O3 43.9 11.0 13.2 

Pt/WO3/ZrO2 85.8 12.5 24.2 

Pt/WO3 16.4 7.2 3.0 

WO3/ZrO2 11.5 2.7 2.6 

Pt/ZrO2 + WO3/ZrO2 100+100 21.2 4.6 2.8 
Ru5/C(I) +  
Amberlyst 

150mg + 300mg 2% 20ml 120 1160 10 

79.3 74.4   

Miyazawa 2008 
Ru3/C(I) 2.4 69.6 3.4 

Ru5/C(I) 4.7 59.4 6.7 

Ru3/C(I)-Ar 573K 9.5 75.8 4.6 

Ru5/C(I)-Ar 573K 21.3 76.7 1.5 

Raney Ni  2g/8g 100 

150 

150 

20 12.0 93.0   

Perosa 2005 
190 

8 32.0 79.0   

20 63.0 77.0   

44 97.0 71.0   

Ni/AC-C 

0.695g/150g 25 200 725 

12 7.4 18.3   

Yu 2010 

Ni/AC-CB 43.3 76.1   

24 63.2 77.4   

Ni/AC-H 

12 

6.3 38.2   

Ni/AC-HB 10.8 63.5   

NiB/AC 16.6 38.3   

Mg/Al  

5 

80 

200 

200 

24 

0.0 0.0   

Meher 2009 Zn/Al 
100 100 

      

Ni/Mg/Al 8.7 24.4   

Co/Ni/Mg/Al 9.2 36.2   
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Cu/Zn/Al 
 (M2+/M3+=1.5) 58.2 66.2   

Cu/Zn/Al  
(M2+/M3+=2.13) 67.2 63.0   

Cu/Zn/Al  
(M2+/M3+=0.5) 47.9 93.8   

Cu/Zn/Al  
(M2+/M3+=1.0) 55.7 73.8   

Cu/Zn/Al  
(M2+/M3+=2.0) 62.1 44.5   

Cu/Zn/Al  
(M2+/M3+=2.5) 66.7 64.0   

Cu/Zn/Al  
(M2+/M3+=3.0) 69.4 64.5   

Cu/Zn/Al (1:1:4) 

3 37.1 78.0   

7 57.6 89.4   

10 70.5 75.0   

5 

25.0 50.5   

300 47.8 90.0   

200 
57.0 59.5   

50 35.4 75.0   

RuAl(Cl3) 

0.9g/120ml 100 240 1160 5 

69.0 37.9 0.7 

Vasiliadou 2009 

RuAl(NO3) 26.7 39.7 0.4 

RuSi(Cl3) 25.2 50.4   

RuSi(NO3) 21.7 60.5   

RuZr(NO3) 40.5 60.5   

Cu-Cr/Ac (100% Cu) 

5 40 210 210 10 

21.0 98.5   

Liang 2009 

Cu-Cr/Ac (1:2) 51.0 97.1   

Cu-Cr/Ac (1:5) 50.1 96.2   

Cu-Cr/Ac (5:1) 14.4 99.8   

Cu-Cr/Ac (2:1) 18.8 99.2   

Cu-Cr/Ac (1:1) 24.0 97.8   

Pt/MgO 0.5/20ml 0.2g/ml 220 435 20 50.0 81.2 1.6 Yuan 2009 
Pt/HLT 92.1 93.0 0.0 
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Pt/Al2O3 39.0 81.2 1.5 

Pt/HZSM5 4.0 19.5 0.0 

Pt/Hbeta 7.0 9.5 0.0 

Pt/C 1.8 43.6 44.3 

Pt/C (pH = 12) 7.3 81.9 11.1 

Pt/HLT  

0.5/20ml 0.8g/ml 220 435 20 

98.3 91.7 0.2 

Pt/HLT (Rec2) 97.9 98.1 0.4 

Pt/HLT (Rec3) 93.5 92.4 0.3 

Pt/HLT (Rec4) 85.6 93.4 0.5 

Pt/HLT (Rec5) 70.5 94.0 0.4 

Ni/SiO2-Al2O3 

5 

100 

200 218 

8 

19.0 87.0   

Marinoiu 2009 
250 78.0 12.0   

5.5 200 290 20.0 78.0   

5 200 362 30.0 100.0   

Cu-ZnO (Cu/Zn =0.6) 

7.5mmmol/65ml 20 200 609 12 

22.5 20.4 

0.0 Wang 2007 

Cu-ZnO (Cu/Zn =1.0) 17.2 29.4 

Cu-ZnO (Cu/Zn =2.0) 7.8 51.3 

CuO 4.0 76.8 

ZnO 3.6 0.0 

Cu/Zn =1.0 pH=2 10.4 27.9 

Cu/Zn =1.0 pH=7 21.1 29.4 

Cu/Zn =1.0 pH=12 33.9 77.5 

Ru/C 5 

1 200 580 5 

40.0 26.0 

0.0 Maris 2007 

Pt/C 3 13.0 79.0 

Ru/C(0.01M-NaOH) 5 48.0 27.0 

Pt/C(0.01M-NaOH) 3 25.0 55.0 

Ru/C(0.8M-NaOH) 5 100.0 19.0 

Pt/C(0.8M-NaOH) 3 92.0 46.0 

Ru/C(0.01M-CaO) 5 16.0 46.0 
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Pt/C(0.01M-CaO) 3 40.0 71.0 

Ru/C(0.8M-CaO) 5 85.0 36.0 

Pt/C(0.01M-CaO) 3 100.0 36.0 

10%Pd/Fe2O3 

600mg/50ml 

12 (2-propanol) 

180 

70 N2      
 (0 H2) 

24 100.0 94.0   

Musolino 2009 

12 (EtOH) 100.0 90.0   

12(2-propanol) 

12 96.0 84.0   

8 96.0 87.0   

150 24 84.0 91.0   

Reduced (H2-2hr 200C) 180 8 100.0 84.0   

4 87.0 73.0   

acetol Hydrogenation 180 8 100.0 100.0   

14.6%Co/MgO-673K 
5 10 200 290 9 

5.3 45.3   
Guo 2009 

15.3%Co/MgO-873K 44.8 42.2   

(3:0)Ru/Cu-Clay 

3 (Ru) 5mmol/1ml 

195 1450 

18 

90.7 62.3   

Jiang 2009 

(3:0.5)Ru/Cu-Clay 71.9 57.6   

(3:1)Ru/Cu-Clay 70.9 71.7   

(3:2)Ru/Cu-Clay 66.1 70.3   

(3:3)Ru/Cu-Clay 64.4 69.5   

(3:4)Ru/Cu-Clay 41.7 72.7   

(3:9)Ru/Cu-Clay 27.0 79.4   

(0:3)Ru/Cu-Clay 26.5 83.1   

(3:1)Ru/Cu-Clay 

210 

1450 71.4 83.3   

870 77.4 84.6   

725 87.6 84.5   

362 81.6 87.3   

230 
1450 100.0 86.4   

1160 100.0 83.4   
Ru/CNT-IM  
(10-60nm) 5 (Ru) 20 200 580 12 42.3 60.2   Wang 2009 
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Ru/CNT-EG 
 reduction 82.9 30.0   

Ru/AC-IM 51.6 24.4   

Ru/TiO2-IM 81.7 35.2   

Ru/Al2O3-IM 80.8 26.7   

Ru/Graphite-IM 16.0 53.0   

Ru/CNT-IM  
(10-60nm) 

1 11.6 50.7   

3 27.1 55.1   

5 42.3 60.2   

8 75.0 48.3   

10 56.5 60.3   

Rh-ReOx/SiO2(1/2) 

150mg/20ml 

20 

120 

1160 

5 79.0 41.5 14.0 

Shimao 2009 

2 38.4 46.9 16.1 

Rh-MoOx/SiO2(1/16) 5 45.8 32.1 6.0 

Rh-Wox/SiO2(8/1) 33.7 43.2 11.3 

Rh/SiO2 
10 

7.2 38.1 7.9 

Ru/C 3.5 26.4 4.9 

 Ru/C+Amberlyst 150+300 12.9 55.4 4.9 

Rh-ReOx/SiO2(1/2) 

150 

160 2 86.2 42.2 10.4 

Rh/SiO2 10 28.2 23.5 3.4 

Rh-ReOx/SiO2(1/2) 120 290 5 42.1 41.1 16.1 

Rh/SiO2 10 1.8 29.7 6.6 

Rh/C + H2WO4 150+180 
180 

1160 
5 

5.7 46.8 0.0 

Raney Ni 1500 5.7 36.8 1.5 

Cu-Cr 1500 0.8 53.6 0.0 

Rh-MoOx/SiO2(1/16) 
150 

100 120 
15.0 51.2 28.2 

50 96 61.3 34.0 19.7 

Ru/SiO2 150mg/10ml 40 160 1160 8 16.8 39.0 6.4 Ma 2009 
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Ru/SiO2+Re2(CO)10 

150mg Ru +  
equal molar Re 

37.0 51.7 10.7 

Ru/ZrO2 

150mg/10ml 

25.4 31.9 1.8 
Ru/ZrO2  

Reduced 450C 4h 19.5 36.3 7.2 

Ru/ZrO2 +Re2(CO)10 37.0 55.7 11.8 

Ru/H-ZSM5 20.5 42.2 6.0 

Ru/H-ZSM5 + Re2(CO)10 30.8 52.2 11.2 

Ru/Al2O3 18.7 34.5 3.4 

Ru/Al2O4 + Re2(CO)10 53.4 53.1 12.6 

Ru/C 29.7 50.9 0.8 

Ru/C + Re2(CO)10 59.4 56.6 7.2 

Ru3(CO)12 15.0 39.4 5.4 

Re2(CO)10 1.2 38.8 11.7 

Ru3(CO)12 + Re2(CO)10 30.2 55.4 10.1 

2.7Pt/NaY 

0.22mmol/40ml 20 230 

atm 

1 18.1 25.0   

D'Hondt 2008 

2.7Pt/NaY 2 18.4 29.4   

2.7Pt/NaY 4 58.8 41.5   

2.7Pt/NaY 15 85.4 64.0   

2.7Pt/NaY 609 1 98.7 91.3   

3.0Pt/γAl2O3 

atm 

24 99.9 19.1   

2.7Pt/C 24 94.6 19.1   

2.7Pt/Hbeta 17 12.8 0.0   

Ni/Silica-Alumina 5% 100 200 218 8 20.1 80.5   Marinoiu 2010 
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Catalyst 
Catatyst  
Loading 

Glycerol  
Content Temperature Pressure 

Reaction  
Time Conversion 

1,2PD 
 

Selectivity 
Acetol  

Selectivity 
EG  

Selectivity 
Others 

Selectivity Ref 

(Co-Catalyst) wt% wt% C psi hr % % % % %   

Cu/Cr-1/2 (NaOH) 2 90 220 1160 
12 80.3 

83.9 
  

  
  

Kim 2011 
24 90-92 

Cu/Cr (NH3) 1 20 220 754 5 16 80-82 ~9 ~3 
~7(2-
prop) Mane 2011 

Cu/Cr/Ba30 34 85 ~3 ~5 
~8 (2-
prop) 

Cu/Zn-1/2 (NaCO3) 1.7 90 

220 725 7 

84 81   2 17 

Bienholz 2011 
Cu/Zn/Ga-1/2/4  

Unreduced 

3.4 50 36 85   3 12 

1.7 100 60 81   2 17 

4 100 99 80   2 18 

Cu/Zn/Ga-1/2/4  
Reduced 

1.6 100 78 80   2 18 

1.7 80 96 82   2 16 

5Ru/SiO2 (IMP) 

0.6 100 240 1160 5 

21.7 60.5   28.7 10.8 

Vasiliadou 2011 
5(Cu-Ru)/SiO2 39.2 85.9   6.9 7.2 

5Cu/HMS(IMP) 28.5 93.2   1.1 5.7 

20Cu/HMS(IMP) ~43 91   1 8 
Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10 

75 180 435 20 

80 98.2   1 0.7 

Yuan 2011 

Cu0.8/Mg5.2/Al2  
(NaOH&NaCO3) 51.8 97.2   2.1 0.7 
Cu1.5/Mg4.5/Al2  
(NaOH&NaCO3) 29.6 98.6   0.9 0.5 

Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10 
(0.5gNaOH) 85 96.2   1.9 1.9 

10 
(1.0gNaOH) 91.2 95.5   2.6 1.9 

Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10 75 180 290 10 

56.7 97.1   1.1 1.8 

Xia 2011 

Pd0.024/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 70.5 97.9   1.1 1 

Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 76.9 97.2   1.6 1.2 

Pd0.08/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 66.6 97.5   1.5 1 
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Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 5 48.7 97.6   1.6 0.8 

Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 15 91.2 97   1.7 1.3 
Ru5/Ca/Zn/Mg/Al  

((NH4)2CO3) 3 20 180 363 18 58.5 85.5   6.6 7.9 Lee 2011 
Ru5/garmaAl2O3 45.6 59.2   22.3 18.5 

Ru5/C 5 
20 

130 1160 24 
49.2 74   5.9 20.1 

van Ryneveld 2011 40 40.3 75.2   7.9 16.9 

60 34.5 63.1   10.1 26.8 

Ru5/C 

5 80 200 580 6 

55.7 59.4   15.7 24.9 

Wu 2011 

Cu(10mol%)MWCNT 31.3 91.1   3.2 5.7 

Ru(5wt%)MWCNT 65.5 72.2   7.6 20.2 
Cu/MWCNT+ 
Ru/MWCNT 77.2 74.2   9.6 16.2 

CuRu/MWCNT 99.8 86.5   0.1 13.4 

Ru5/SiO2 0.6 100 

180 
1160 

5 

7 36 0 64 0 

Vasiliadou 2011 

200 15 56 4.0 37.0 3 

240 

21 62 1 30 7 

870 20 51 23 25 1 

580 16 41 35 24 0 

290 11 40 43 17 0 

Ag/Al2O3 
(2mmol1gsupport) 2 50 

180 

522 10 

17 91   4 5 

Zhou 2011 
200 21 95   3 2 

220 46 96   2 2 

240 66 76   6 18 

Ru/bentonite-TiO2 (1:2) 

5 20 150 290 7 

69.8 80.6   9.9 9.5 

Hamzah 2012 Ru/bentonite-TiO2 (1:1) 62.8 83.4   11.2 5.4 

Ru/bentonite+Ru/TiO2 62.3 83.6   11.4 5 

Cu/Zn (1/2) NaOH 
2 

100 
200 725 7 

17 87 1 0 12 
Bienholz 2009 Cu/Zn (1/2) OA 46 90 1 1 8 

Cu/Zn (1/2) OA Second   10         
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Cu/Zn (1/2) OA 
50 (water) 5 87 2 9 2 

50  
(1,2-

Butanediol) 55 86 1 1 12 

Rh0.02Cu0.4/ 
Mg5.6Al1.98O8.57 1 

75 
(methanol) 180 290 10 95.2 98.7   1 0.2 Xia 2012 75 
(ethanol) 91 98.7   1.1 0.2 

 

 

 

Catalyst 
Catatyst  
Loading 

Glycerol  
Content Temperature Pressure 

Reaction  
Time Conversion 

1,2PD  
Selectivity 

EG  
Selectivity 

13PD 
 Selectivity Ref 

(Co-Catalyst) wt% wt% C psi hr % % %     

CuCr(0.5) 5 100 130 290 4 52.4 99.6     Xiao 2013 

Ru-C 5 10 180 1160 24 42 8 30   Gallegos-Suarez 2013 

Ru/ZrO2   10 200 870   22.9 45.7 21   Wang 2013 

Cu0.4Mg6.46Al1.14O8.17 10 33 200 435 10 86.5 92.5     Xia 2013 

Ni/Mg 2 20 200 580 4 67.8 33.7 26   Chen 2013 

Ru/Al2O3+HZSM5 4 40 160 1160 8 60.9 12.7 7.3   Li 2013 

Cu/Al2O3 5 80 200 580 24 75.7 95.8 0.7   Wolosiak-Hnat 2013 

Pt-Ti-W 25 10 180 800 12 55.4 11.8   26.9 Zhang 2013 

CuZnAl 3 80 180 580 10 85.8 92.1 2.3   Tan 2013 

Pd-Fe2O3 66 1 200 725 12 40 48     Ge 2013 

Cu-Al Hydrotalcite 1 1 (1,4-dioxane) 180 145 6 100 99     Mizugaki 2013 

CuZr 

6 40 200 580 8 

12 87.5     

Duran-Martin 2013 CuZr 4th 17 3     

CuZr 4th regen 10 90     

CuSiO2(SBA) 0.6 40%(butanol) 240 1160 5 52 96.2 1.8   Vasiliadou 2013 

Cu/delaminated hectorite 8 60 200 580 24 61.4 93     Sanchez 2012 
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CuMgZnAl  15 

75 180 290 10 

78.2 99.3     

Xia 2012 

CuMgZnAl fresh 

7 

39.7 99.6     

1st recycle 34.2 99.7     

2nd recycle 25.6 99.7     

3rd recycle 25.3 99.6     

4th recycle         

CuCr 
2 90 220 870 12 

76 79     
Kim 2012 

Pd0.5-CuCr 83 93     

CuMg(1/4) 6 20 200 580 8 49.3 92.3     Balaraju 2012 

CuAl2O3(K2CO3) 

5 20(0.9M NaOH) 220 754 5 

38 91 4   

Mane 2012 
CuAl2O3(Na2CO3) 62 88 10   

CuAl2O3(KOH) 58 88 10   

CuAl2O3(NaOH) 51 87 10   

Cu/y Al2O3 2 80 220 348 8 12 78     Vila 2012 

Cu/Al2O3 (Citric Acid) 2 100 220 725 12 91 92     Kwak 2012 

Raney Nickle 2 
30 

230 580 9 
42 28     

Hosgun 2012 
Cude Glycerol 29 37     

Ru-Cu/ZrO2 

17 60 180 1450 24 

100 84 9.3   

Liu 2012 Ru/ZrO2 100 47.7 26   

Cu/ZrO2 28 99.6 0.2   

Cu/Cr-1/2 (NaOH) 2 90 220 1160 
12 80.3 

83.9 
  

  Kim 2011 
24 90-92 

Cu/Cr (NH3) 
1 20 220 754 5 

16 80-82 ~3   
Mane 2011 

Cu/Cr/Ba30 34 85 ~5   

Cu/Zn-1/2 (NaCO3) 1.7 90 

220 725 7 

84 81 2   

Bienholz 2011 
Cu/Zn/Ga-1/2/4 Unreduced 

3.4 50 36 85 3   

1.7 100 60 81 2   

4 100 99 80 2   
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Cu/Zn/Ga-1/2/4 Reduced 
1.6 100 78 80 2   

1.7 80 96 82 2   

5Ru/SiO2 (IMP) 

0.6 100 240 1160 5 

21.7 60.5 28.7   

Vasiliadou 2011 
5(Cu-Ru)/SiO2 39.2 85.9 6.9   

5Cu/HMS(IMP) 28.5 93.2 1.1   

20Cu/HMS(IMP) ~43 91 1   
Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10 

75 180 435 20 

80 98.2 1   

Yuan 2011 

Cu0.8/Mg5.2/Al2 
 (NaOH&NaCO3) 51.8 97.2 2.1   
Cu1.5/Mg4.5/Al2  
(NaOH&NaCO3) 29.6 98.6 0.9   

Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10  
(0.5gNaOH) 85 96.2 1.9   

10  
(1.0gNaOH) 91.2 95.5 2.6   

Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 

10 

75 180 290 10 

56.7 97.1 1.1   

Xia 2011 

Pd0.024/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 70.5 97.9 1.1   

Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 76.9 97.2 1.6   

Pd0.08/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 66.6 97.5 1.5   

Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 5 48.7 97.6 1.6   

Pd0.04/Cu0.4/Mg5.6/Al2  
(NaOH&NaCO3) 15 91.2 97 1.7   
Ru5/Ca/Zn/Mg/Al  

((NH4)2CO3) 3 20 180 363 18 58.5 85.5 6.6   Lee 2011 
Ru5/garmaAl2O3 45.6 59.2 22.3   

Ru5/C 5 
20 

130 1160 24 
49.2 74 5.9   

van Ryneveld 2011 40 40.3 75.2 7.9   

60 34.5 63.1 10.1   

Cu/Zn-1/2 OA 

1.7 100 

200 725 7 

46 90 1   

Bienholz 2010 3.4 50 (14Budiol) 55 86 1   

3.4 50 (Water) 5 87 9   
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Table A-2 Glycerol Hydrogenolysis to 1,2-Propanediol without Molecular Hydrogen Added. 

Catalysts 
Catatyst  
Loading 

Glycerol  
Content 

Hydrogen  
Source Temperature Pressure 

Reaction  
Time Conversion 

1,2PD  
Selectivity 

Acetol  
Selectivity 

EG  
Selectivity EthOH Ref 

(Co-Catalyst) wt% wt%   C psi hr % % % % %   

2.7Pt/NaY 
0.22mmol pt 20 GL SR 230 

  1 18.1 25 10   7 

D'Hondt 2008 
  4 58.8 41.1 4   6.7 

  15 85.4 64 3   9.5 
2.7Pt/Al2O3 

(gama)   24 99.9 19.1 1.9   10.6 

Raney Nickle 8.9 50 GL SR 230 

  15min 91.1 30 (Yield) 4   6 

Maglinao 2011 
  45min  98.6 28 3   8 

  75min 99.6 23 2   9 

  105min 99.9 18 0   10 

Pt(1wt%)/SiO2 300mg 
/12ml GL 10 

GL SR 200 

58 2 

1 50 32 0 11 

Barbelli 2012 

225 3 42 16 19 7 

H2 

200 

0.6 56 23 0 10 

Pt(1wt%)Sn0.2 
/SiO2 

GL SR 54 59 25 11 2 

    H2 16 84 3 8 2 

Pd(10%)/Fe3O4 600mg 
/25ml 12 i-Propanol 180 73 

4 87 73 9 15   
Musolino 2009 

8 100 84 3 9   

Cu/Al2O3 

166mg/g GL 4 

i-Propanol 320 

652 24 

14.6 40.5 47.5     

Ganarias 2011 

450 39.1 59.4 26.3     

H2 320 32.9 0.1 90.1     

450 57 0.8 72.8     

Ni/Al2O3 

i-Propanol 320 2 60.3 7.5     

450 31.8 50.4 32.6     

H2 320 5.2 7.2 73.7     

450 69 0.9 61.3     

Cu-Ni/Al2O3 i-Propanol 320 41.2 48.3 41.7     

450 57.3 62.1 27     
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H2 
320 31 84.7 0.9     

450 70.5 66.9 0.6     

Pt-Hydrotalcite 
0.2g/20ml 10 GL SR 250 652 3 

98.4 70.2       
Pendem 2012 Pt-Hydrotalcite  

Recycle 93.1 67.6       

Ni-Cu/Al2O3 0.9/135 4 Formic Acid 220 653 16 49.3 75.4       Gandarias 2012 

Ni-Cu/Al2O3 0.5/20ml 20 
Formic Acid  
1.8mmol/h 220 653 10 33.5 85.9 6.7     Gandarias 2012 

Pt-yAl2O3 
0.1g/g GL 11.4 

Methanol 250 35bar 

4 70.4 9.5       

EP 2565175 A1 Pt-SiO2 58.9 36.2       

8 62.8 27.6       

CuZnAl (Oxalic) 0.35g/g GL   4 88.8 39.2       
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Appendix B Supplementary Data 
 

 

Figure B-1 Calibration Curve for Acetol. 
 

 

Figure B-2 Calibration Curve for 1,2PD 
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Figure B-3 Calibration Curve for EG. 
 

 

Figure B-4 Calibration Curve for Glycerol. 
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Figure B-5 Calibration Curve for Propanol. 
 

 

Figure B-6 Calibration for Methanol. 
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Figure B-7 Calibration Curve for 1,3PD. 
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Table B-1 Ni/Cu/Zn/Al Composition Studya.  

Glycerol Conversion   
Ni\Al 10 30 50 
0% 80.2 87.1 85.7 
1%   85.52346467   
3% 81.28806309 77.39553329 76.42285 
5%   70.02560644 62.86014 

10% 61.97284165     
 

12PD Selectivity   
Ni\Al 10 30 50 
0% 65.7 70.7 69.9 
1%   76.71889496   
3% 79.57717781 82.8013258 80.30146 
5%   85.5225695 80.7363 

10% 76.2590697     
 

12PD 
Yield    
Ni\Al 10 30 50 
0% 52.7 61.6 59.9 
1%   65.6   
3% 64.7 64.1 61.4 
5%   59.9 50.8 

10% 47.3     
a Conditions: 220ºC, 15bar N2, 20wt% Glycerol, Water/Methanol=1.2, 3wt% catalyst, 500RPM, 
8 Hours. 
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