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Abstract

Recent work in the area of computer hardware security introduced a number of inter-
esting computational problems in the context of directed acyclic graphs (DAGs). In this
thesis, we pick one of these problems, circuit obfuscation — a combinatorial optimization
problem — and study its computational complexity. First, we prove that the problem is
NP-hard. Next, we show it to be in the class of MAX− SNP optimization problems,
which means it is inapproximable within a certain constant (2.08) unless P = NP. We
then use a reduction from the maximum common edge subgraph problem to prove a lower
bound on the absolute error guarantee achievable for the problem by a polynomial-time
algorithm. Given that the decision version of the problem is in NP, we investigate the
possibility of efficiently solving the problem using a SAT solver and report on our re-
sults. Finally, we study a slightly modified version of the problem underlying a generalized
hardware security technique and prove it to be NP-hard as well.
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Chapter 1

Introduction

Hardware security is concerned with the protection of integrated circuits (ICs) from mali-
cious attempts to change their functionality. The threat is usually in the form of an entity
that is able to insert additional circuitry into the IC in either the design or the fabrication
phase, and can therefore alter the circuit functionality in a malicious manner. The objec-
tives of such an attacker can be wide-ranging; breaking encryption schemes implemented in
hardware, to hijacking of satellites, weapons, and other crucial systems involving electronic
circuits. The threat is made all the more imminent by the fact that IC design is nowadays
done at sites scattered across the world, each with their own, potentially malicious inter-
ests. Further, IC manufacturing is typically done in fabrication facilities external to IC
vendors, which makes it even more easier for an attacker in a fabrication facility to insert
malicious circuits into the IC without the vendor knowing. The security literature abounds
with techniques to combat such attacks on ICs, including modifications and additions to
the design of the circuit itself, to post-fabrication testing and validation to detect and
disable malicious circuits.

In a recent work [10], Imeson et al. propose a way to use an emerging IC manufacturing
technology, known as 3D integration, to increase the security of ICs. In a 3D IC, two or
more layers or tiers of active electronic components are integrated both horizontally and
vertically into a single circuit. Although a few other ways exist to build 3D ICs, [10]
consider a specific manufacturing technology in which the design is split into two tiers that
are independently manufactured and then stacked on top of each other. The bottom tier
in the technology consists of logic gates and metal wires used to interconnect the gates,
whereas the top tier consists solely of metal wires that provide additional connections
between gates on the bottom tier. The two tiers are interconnected together using vertical
metal pillars to create the final 3D IC chip that is shipped to the vendor.
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[10] discusses how manufacturing ICs in this way can potentially enhance hardware
security. The premise is that each tier is fabricated in a separate facility. The bottom
tier, referred to as the untrusted tier, is expensive to fabricate since it implements active
transistor devices and passive metal, and is therefore sent to an external, untrusted facility
for fabrication. The top tier, implementing only passive metal, can be manufactured at a
trusted (possibly local) fabrication facility at a lower cost, and is hence referred to as the
trusted tier. By distributing the design across two fabrication facilities, each facility now
has an incomplete view of the circuit that the designer intends to fabricate, which reduces
the ability of an attacker at any one foundry to compromise the security of the circuit by
altering its functionality. A precise mathematical notion is provided by [10] that captures
this increase in security level we get by using 3D manufacturing. The security measure
involves the satisfying of certain structural properties by mathematical representations of
the bottom tier and original circuits.

Achieving a certain security level in this way is shown by [10] to involve a number of
computational problems in the context of graphs, which are objects of study in discrete
mathematics that model pairwise relations between entities. Their work, however, leaves
some questions open as to the computability and tractability properties of these problems,
and whether methods exist that can be used to solve them efficiently. In this work, we
study one such problem, a combinatorial optimization problem which they call circuit
obfuscation. We analyze the computability properties of the problem and investigate some
approaches to develop efficient solvers for it. This thesis reports our results.

The document is organized as follows. Chapter 2 gives a brief review of mathematical
and computer science concepts that are necessary to understand our work. This includes
concepts from graph theory and computational complexity theory. Chapter 3 gives a formal
definition of the circuit obfuscation problem and outlines how it arises in the context of
IC security and 3D manufacturing. Chapter 4 states the research questions that the thesis
tackles, which are related to the computability properties of the obfuscation problem.
Chapters 5 through 9 describe our answers to the research questions in Chapter 4. Chapter
10 concludes the thesis.
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Chapter 2

A Brief Review of Graphs and
Complexity Theory

In this chapter, we give a brief review of mathematical and computer science concepts
necessary to to understand our work. We start by defining what a graph is and explain
the structural property of isomorphism. We follow that by a quick introduction to deci-
sion problems and complexity classes. We also explain the concept of a reduction and the
complexity classes that are defined based on it. An explanation of heuristics and approx-
imation algorithms follows. We end the chapter by defining two computational problems
that we use in our work, namely the boolean and circuit satisfiability problems.

2.1 Graphs and Isomorphism

A graph is a mathematical way to represent a set of objects where some pairs of objects are
connected by links. A canonical example of such a set is guests at a party where two guests
are connected by a link if they know each other. The interconnected objects in a graph
are represented by vertices and the links that connect pairs of vertices are represented by
edges. This is usually depicted in a diagram as a set of dots for the vertices, joined by lines
or curves for the edges. An example is shown in Figure 2.1. We denote the set of vertices
of a graph G as V [G], and the set of edges as E[G].

The edges in a graph may be directed or indirected. In an undirected graph the links
represented by edges are symmetric, while in a directed graph they are not. An example of
an undirected graph is the set of people at a party where the edges represent acquaintance
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Figure 2.1: A drawing of a graph on 6 vertices and 7 edges. Credit: user:AzaToth /
Wikimedia Commons / Public Domain.

relationships. An example of a directed graph is one where vertices represent gates in a
combinational logic circuit and edges represent the wires. Here, the fact that the output
of a gate is connected to the input of another does not imply the reverse, and should not,
in fact.

An edge in a directed graph can be represented as an ordered pair (u, v) where u is
the head vertex of the edge and v is the tail vertex. Two vertices in a graph are said to
be adjacent if they are connected by an edge (directed or undirected). A directed acyclic
graph (DAG) is a directed graph formed such that there is no way to start at some vertex
v and follow a sequence of edges that eventually loops back to v again.

The vertices in a graph may be assigned colors to denote some attributes of the objects
they represent. In the combinational logic circuit example, for instance, vertices may be
assigned colors to distinguish types of gates (e.g., AND and OR) from one another. In this
thesis, we sometimes express graphs as pairs 〈V,E〉 or tuples 〈V,E, c〉 where V is the set
of vertices, E is the set of edges, and c is a function from V to N that maps each vertex to
a natural number that denotes its color.

An isomorphism between two graphs is a bijective mapping between the vertices
of the two graphs that preserves the edge relations. Formally, given two graphs G1 =
〈V1, E1, c1〉 , G2 = 〈V2, E2, c2〉, we say that G1 is isomorphic to G2 if there exists a bijective
mapping φ : V1 → V2 such that 〈u, v〉 ∈ E1 if and only if 〈φ(u), φ(v)〉 ∈ E2 and c1(u) =
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c2(φ(u)), c1(v) = c2(φ(v)). In other words, renaming the vertices in G1 according to φ gives
us G2. An automorphism is an isomorphism from a graph to itself.

A subgraph of a graph is a graph we obtain by removing some edges and/or vertices
from the original graph. Formally, we say that G1 = 〈V1, E1, c1〉 is a subgraph of G2 =
〈V2, E2, c2〉 if V1 ⊆ V2, and 〈u, v〉 ∈ E1 only if 〈u, v〉 ∈ E2. A subgraph H is said to be
a spanning subgraph of a graph G if it has the same vertex set as G. A subgraph H
of a graph G is said to be induced if, for any pair of vertices x and y of H, (x, y) is an
edge of H if and only if (x, y) is an edge of G. If a subgraph of G is isomorphic to H,
we say that G is subgraph isomorphic to H. The corresponding mapping is called a
subgraph isomorphism. Given two graphs G and H, the computational problem of
deciding whether H is subgraph isomorphic to G is known as the subgraph isomorphism
problem.

Finally, we define the disjoint union of graphs as follows: Given two graphs G1 =
〈V1, E1〉, G2 = 〈V2, E2〉 where V1 and V2 are disjoint (and hence E1 and E2 as well), the
disjoint union of the two graphs is the graph U = 〈V1 ∪ V2, E1 ∪ E2〉.

2.2 Decision Problems and Complexity Classes

A decision problem is a question in some formal system with a yes/no answer, depending
on the values of some input parameters. An example is the problem “given an integer n,
is it prime?”. The answer can be either ‘yes’ or ‘no’ depending on the value of n. Decision
problems usually appear in mathematical questions of decidability, that is, the question of
the existence of a procedure to determine the existence of an object or its membership in
a set. As it turns out, most of the important problems in mathematics are undecidable.

In the field of complexity theory, decision problems are categorized by how difficult
they are to solve, where “difficult” is described in terms of the computational resources
needed by the most efficient algorithm for the given problem. A set of problems of related
resource-based complexity is referred to as a complexity class. For example, the set of
problems that can be solved by an abstract computer in time quadratic in the input size
constitutes a complexity class.

NP is one of the most fundamental complexity classes. The abbreviation NP refers to
“nondeterministic polynomial time”. Informally, NP is the set of all decision problems for
which instances where the answer is “yes” have efficiently verifiable proofs or certificates of
the fact that the answer is indeed “yes”. Strictly Speaking, the proofs have to be verifiable
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in polynomial time by what is referred to as a deterministic Turing machine, a hypothetical
device that manipulates symbols on a strip of tape according to a table of rules.

Another fundamental complexity class is P also known as, PTIME, or DTIME(nO(1)).
This class contains decision problems that can themselves be solved using a polynomial
amount of computation time by the deterministic Turing machine. Cobham’s thesis [7],
holds that problems in P are “efficiently solvable” or “tractable”, that any problem which
cannot be contained in P is not feasible, and that if a real-world problem can be solved by
an algorithm existing in P, the algorithm will eventually be discovered. The reasoning for
the thesis is the relatively mild rate of change in the running time of a polynomial time
algorithm, as compared to an exponential time algorithm, where even for very small inputs
the running time can be prohibitively large. Although the theory is not necessarily true
in practice – some problems not known to be in P have practical solutions, and some that
are in P do not – it is widely believed to be a good rule-of-thumb for real-life problems.

By definition, the class P is contained in NP. However, NP contains some problems
whose solutions are sufficient to deal with any other NP problem in polynomial time.
The hardest of these problems are called NP-complete problems, which we define in the
following section. An open question in complexity theory asks whether polynomial time
algorithms actually exist for NP-complete problems, and by extension, all NP problems.
This is known as the P = NP problem and the answer for the question is widely believed
to be no, that is, there are problems in NP that are harder to compute than to verify; they
cannot be solved in polynomial time but the answer can be verified in polynomial time.

2.3 Polynomial Time Reductions, NP-hardness, and

NP-completeness

A polynomial time reduction is a method of solving one problem by using a hypothetical
subroutine for solving a different problem, which uses polynomial time excluding the time
within the subroutine. The hypothetical routine is more commonly referred to as an oracle.
A polynomial time reduction between two problems proves that the first problem is no more
difficult than the second one, as a polynomial-time algorithm for the second problem can be
used to efficiently solve the first problem. Depending on the details of how the subroutine
for the second problem is used, there can be several different types of polynomial-time
reductions, the most common being polynomial-time many-to-one reductions and Turing
reductions.

A many-to-one reduction transforms inputs to some decision problem A, to inputs
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to another decision problem B such that the transformed instances have the same answer
(yes/no) as the original instances. An instance of problem A can be solved by applying this
transformation to produce an instance of problem B, providing the latter to an algorithm
for problem B and returning its output. Polynomial-time many-to-one reductions are also
known as Karp reductions, and are usually denoted by the expression A ≤Pm B, indicating
problem A is polynomial-time many-to-one reducible to problem B. If the Karp reduction
yields a way to efficiently transform a certificate for B to a certificate for A and vice versa,
then the reduction is called a Levin Reduction[3].

A polynomial-time Turing reduction, on the other hand, solves problem A — which does
not have to be a decision problem — using a polynomial number of calls to a subroutine for
problem B — which does not have to be a decision problem either — and polynomial time
outside these calls. Polynomial-time Turing reductions are also known as Cook reductions,
and are usually denoted by the expression A ≤PT B, indicating problem A is polynomial-
time Turing reducible to problem B.

The class NP-hard is defined as the class of problems (not necessarily decision) that
are at least as hard as the hardest problems in NP. The hardest problems in NP are
in turn referred to as NP-complete problems. Formally, a problem H is NP-hard if and
only if there is an NP-complete problem L that is polynomial time Turing-reducible to
H (that is, L ≤PT H). Following the definition of polynomial time Turing reductions, this
means that L can be solved in polynomial time by an oracle machine with an oracle for
H, meaning H is at least as hard as L. Since L is NP-complete, and hence the hardest in
class NP, problem H is also at least as hard as any problem in NP.

As NP-hard is at least as hard as NP, a polynomial algorithm for any NP-hard
problem implies there are polynomial algorithms for all problems in NP, and hence that
P = NP. As a result of this, showing a decision problem to be NP-hard is a generally
accepted way to prove it is intractable[11].

2.4 NP Optimization Problems

An optimization problem is the problem of finding the best solution from all feasible
solutions. If the variables in an optimization problem are discrete, the problem is called
a combinatorial optimization problem. Formally, a combinatorial optimization problem
must consist of the following:

• a set of instances I;
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• given an instance x ∈ I, a function f(x) that determines the set of feasible solutions
for x;

• given an instance x and a feasible solution y of x, another function m(x, y) that
determines the measure of y, which is usually a positive number.

• a goal function g, which is either min or max

The goal is to find for some instance x an optimal solution, which is a feasible solution
y that satisfies

m(x, y) = g{m(x, y′) | y′ ∈ f(x)}

Each combinatorial optimization problem has a corresponding decision problem that
asks whether there is a feasible solution with some particular measure m0. As an example,
the problem “Given a graph G and two vertices in it u and v, find a path from u to v
that uses the fewest edges” is an optimization problem. A corresponding decision problem
would be “is there a path from u to v that uses 10 or fewer edges?” This is a decision
problem the answer for which can be either ‘yes’ or ‘no’.

The decision problem is always polynomial-time Turing reducible to the optimization
problem. In the example above, the decision problem can be solved using a single call to
a subroutine for the optimization problem (If the answer of the optimization problem is
less than or equal to 10, then the answer to the decision problem will be ‘yes’; otherwise
the answer will be ‘no’). Thus, the optimization problem is always at least as hard as the
decision problem and if the latter is proven to be NP-complete, then the former is proven
to be NP-hard.

The definition for NP-optimization problems differs slightly from that of NP problems.
A combinatorial optimization problem is said to be an NP-optimization problem or an
NPO if it satisfies the following conditions.

• the size of every feasible solution y ∈ f(x) is polynomially bounded in the size of the
given instance x,

• The set of instances I and the set of feasible solutions f(x) for a given instance x can
be recognized in polynomial time, that is, it is decidable in polynomial time whether,
for any x and for any y such that |y| ≤ p(|x|) where p is a polynomial, y ∈ sol(x)
and
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• m is polynomial-time computable.

Note that the second condition implies the corresponding decision problem is in NP.

2.5 Heuristics, Approximation Algorithms and Ap-

proximation Classes

A heuristic is a method or algorithm that solves an optimization problem more quickly
(compared to classic methods which would be too slow), but that is not certain to arrive
at an optimal solution. The objective of a heuristic is usually to produce quickly enough
a solution that is good enough for solving the problem at hand, typically when speed
is more important than solution accuracy. Results about NP-hardardness often make
heuristics the only viable option for a variety of complex optimization problems that need
to be routinely solved in real-world applications. Deciding whether the solution found by
a heuristic is good enough may be difficult, however, depending on the theory underlying
that heuristic.

An approximation algorithm is also used to find approximate solutions to optimization
problems, for which finding an exact solution is hard. Unlike heuristics, however, which
usually only find reasonably good solutions reasonably fast, the solution quality and run-
time bounds for an approximation algorithm are important. The run-time of an algorithm
is usually restricted to be polynomial, while solution quality is specified in terms of an
approximation ratio, which gives the largest value the ratio of the approximate solution to
the optimal solution — or the inverse, for a minimization problem — can take. A combina-
torial optimization problem is said to be approximable within ratio ρ, if a polynomial-time
algorithm exists for solving the problem which has an approximation ratio of ρ.

An ideal situation is for an optimization problem to be approximable within every
constant greater than 1 (with a different algorithm for every constant). A problem of
this type is said to have a polynomial-time approximation scheme (or a PTAS) or to
be in PTAS. Unfortunately, not all optimization problems have PTAS’s. In fact, some
problems are not approximable within any constant or even polynomial factor unless P =
NP.

This “hardness of approximation” notion is captured through a special type of reduction
(referred to as a gap-preserving reduction) which we define in Chapter 7. Also, depending
on what approximation ratios are hard to achieve for a specific optimization problem,
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the problem is placed into one of several classes[4]. The class of interest to us here is
MAX− SNP, defined in [4] as the class of problems that are hard to approximate within
a certain constant factor (hence not in PTAS). An example of a problem in this class is
the minimum vertex cover problem, also defined in Chapter 7, and used to prove that the
problem we study is also in MAX− SNP.

Finally, an approximation algorithm is said to have an absolute performance guarantee
c, if it has been proven for every instance x that

(OPT− c) ≤ f(x) ≤ (OPT + c).

where OPT is the measure of the optimum solution for x and f(x) is the measure of the the
approximate solution to x returned by the algorithm. The performance guarantee, R(x, y),
of a solution y to an instance x is similarly defined as

R(x, y) = max

(
OPT

m(y)
,
m(y)

OPT

)
,

where m(y) is the measure of the solution y for the instance x.

2.6 The Boolean Satisfiability Problem, Circuit Sat-

isfiability Problem and SAT Solvers

The boolean satisfiability problem (written or abbreviated SAT) is one of the most funda-
mental decision problems in complexity theory. Simply stated, given a boolean formula, it
asks for whether there exists an assignment for the variables involved that would make the
formula evaluate to TRUE. As an example, for the formula “a AND NOT b” the answer
would be ‘yes’ (assign TRUE to a and FALSE to b), while for the formula “a AND NOT
a” the answer would be ‘no’ (as the formula is identically FALSE). SAT was one of the
first problems to be proven NP-complete by Richard Karp.

The circuit satisfiability problem (known as CSAT) is somewhat similar to SAT. Given
a boolean combinational circuit, the question is whether there exists an assignment to the
inputs of the circuit that would make the circuit output 1. Since any SAT instance can
be polynomial-time Turing reduced to an instance of CSAT, CSAT is also NP-complete.
A CSAT instance can also be reduced to a SAT instance using a reduction we describe in
Chapter 6.

Despite being NP-complete, and therefore impossible to solve efficiently unless P =
NP, a number of efficient and scalable algorithms for SAT were developed over the last
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decade that solve a large enough subset of SAT instances. The algorithms have come to be
referred to as SAT solvers and have been used in various practical areas in various fields by
solving SAT instances made by transforming problems that arise in those areas. Extending
the capabilities of SAT solvers is also an ongoing area of progress and a growing number of
research and development groups at universities, research labs, and companies have started
using SAT algorithms for solving different and decision and optimization problems[2].

In [10], the authors use a SAT solver as part of their approach to the circuit obfuscation
problem, where they reduce the subgraph isomorphism problem to a SAT instance which
they then feed to the SAT solver. In Chapter 6, we report the negative results of our
efforts to develop an efficient SAT-based solver for our problem, and analyze why it does
not work in this particular case.

It should be noted that miniSAT, the SAT solver we use, only accepts formulas that
are in conjunctive normal form or CNF, which simply means the formula is a conjunction
of clauses that are each a disjunction of literals. In other words, the formula is and AND
of ORs (e.g., ¬A ∧ (B ∨ C)).
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Chapter 3

The Circuit Obfuscation Problem

In this chapter, we give a formal definition of the computational problem we study in this
thesis. We also provide a brief background on how the problem arises in the context of
hardware security and the 3D manufacturing process described in Chapter 1. We conclude
the chapter with a brief summary of the results [10] obtained for the problem.

3.1 Definition of the Problem

Circuit obfuscation, introduced in [10], is defined as follows.

Circuit Obfuscation Given a colored DAG G representing some boolean combinational
circuit and an integer k ∈ (1, |V [G]|), the problem is to identify a set of edges E ′ ⊆ |E[G]|
with as few edges as possible such that the following property is satisfied for every vertex
u in G:

If H is the graph we get by deleting the edges in E ′ from G, then there exist k distinct
vertices v1, . . . , vk in G (and therefore in H), and mappings φ1, . . . , φk from V [G] to V [H]
such that every φi is a subgraph isomorphism from G to H, and for all i ∈ [1, k], φi(u) = vi.
A vertex that satisfies this property is said to be k-secure and the pair 〈G,E ′〉 is said be
k-secure. Note that no matter what edges are removed from G, at least one φ exists for
each vertex that maps it to itself, that is, regardless of what edges are deleted from G,
every vertex will still be 1-secure.
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k is denoted as the target security level. The actual security level of the a solution is
defined as the largest k such that 〈G,E ′〉 is k-secure. The target and actual security levels
of a solution are not necessarily the same since some vertices may be more than k-secure.

3.2 Context

If we think of the graph in question as a combinational logic circuit, where vertices repre-
sent logic gates, edges represent wires, and the color of vertex represents the type of the
corresponding boolean function (e.g., AND, OR, or NOT), then the problem above essen-
tially asks for a set of wires to be removed from the circuit, so that each each gate becomes
indistinguishable from at least k − 1 other gates. To see this, we note, as in [10], that the
k-security property is a special case of the subgraph isomorphism problem. Whereas in
the subgraph isomorphism problem we are given two graphs A and B and asked whether
B is subgraph isomorphic to A, here, the two graphs restricted to be DAGs, and H is
restricted to be a spanning subgraph of G. We know that H is subgraph isomorphic to
G; the identity mapping from a vertex to itself serving as a certificate. But we require the
existence of k − 1 subgraph isomorphisms that are different from the identity mapping,
and, on top of that, that each of them maps u to a distinct vertex vi.

Now assume that the circuit represented by H is provided to a malicious attacker that
wishes to alter the original circuit functionality in a certain, targeted manner by inserting
some covert, malicious circuitry in the circuit. Assume, further, that to effect its attack,
the attacker must first identify the specific logic gates or wires in the circuit that implement
the functionality that it wishes to modify, i.e. the attacker wants to attack a specific gate
u in the circuit, and not just any gate. Since there are k mappings under which u in the
original circuit is indistinguishable from k− 1 other gates in circuit represented by H, the
attacker does not know whether u corresponds to v1,v2,. . ., or vk in H. The attacker will
now have two choices: either to randomly pick one of the vi’s to attack; or to attack all k
vi’s with a larger malicious circuit and risk the exposure of the attack. In either case, the
attacker’s ability to effect a targeted attack on the circuit is hindered; and hence the term
“k-secure gate”.

[10] refer to this technique as circuit obfuscation. The malicious entity is assumed
to operate from the IC fabrication facility responsible for manufacturing the chip that
implements the circuit functionality. This facility, they show, is often external to the IC
vendor, which makes it easier for the malicious attacker to to insert covert circuitry in the
IC. The process of edge (or wire) removal is referred to as lifting, in reference to the stage
in the 3D IC manufacturing process in which wires are “lifted” from the bottom untrusted
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tier to the top, trusted one. The number of lifted edges is chosen as a simple cost metric
that captures the cost we incur by choosing to fabricate the lifted wires on a separate tier.

3.3 Summary of Previous Results

The decision version of circuit obfuscation is shown to be in NP by [10]. A related decision
problem, k-SECURITY-DEC, defined below is also shown to be NP-complete.

k-SECURITY-DEC Given a DAG G′, E ′ ⊆ E[G], and k ∈ [1, |V [G]|], determine whether
lifting the edges in E ′ results in k-security.

The decision problem simply asks whether a candidate set of edges E ′ is a feasible
solution for circuit obfuscation. [10] also devises an approach to addressing circuit obfus-
cation comprising a greedy heuristic to identify E ′, and the use of a SAT solver to compute
the security level of a circuit (by deciding k-SECURITY-DEC). The approach is empirically
assessed on benchmark circuits, including a case-study of a Data Encryption Standard
(DES) circuit, to illustrate the inability of an attacker to effectively attack circuits secured
using their technique.
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Chapter 4

Research Questions

This thesis tackles the following questions relating to the computational complexity of the
circuit obfuscation problem defined in Chapter 3:

• How hard is it to solve the problem exactly? [10] shows the decision version of the
problem to be in NP, which is not enough to conclude the optimization version is in-
tractable. We show that the decision problem is also NP-hard, which, combined with
the fact that it is in NP, means it is NP-complete, and therefore intractable unless
P = NP. Showing that the problem is NP-hard justifies using other, suboptimal
approaches for solving it.

• Can we use a SAT solver to efficiently solve the problem?. In [10], the authors use a
SAT solver as part of an approach to address the obfuscation problem. In particular,
they reduce the subgraph isomorphism problem to a SAT instance and use the SAT
solver to decide the instance. The same approach has been used elsewhere to develop
somewhat efficient solvers for otherwise intractable problems [1]. We as well pursue
an efficient solver to the problem in the form of a reduction to SAT followed by a
SAT solver. It turns out that for circuit obfuscation, even relatively small instances
(in terms of the number of gates in the circuit to be obfuscated), can result in
prohibitively large SAT formulas, at least when transformed using our reduction. The
SAT instances are difficult to solve even by a state-of-the-art SAT solver running on a
high-performance computing cluster with ample computing resources. We therefore
forgo SAT solvers as a viable approach to our problem.

• How hard is it to approximate the problem? The solution measure for circuit obfus-
cation is |E ′| (if we adopt the same cost metric as [10]). Although [10] shows that
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the decision version of the problem is NP, they do not tackle the approximability
properties of the optimization problem. As the optimization problem is NP-hard, it
follows that it is quite unlikely they will ever be an efficient polynomial-time exact
algorithm solving it. A provably hard-to-achieve approximation ratio for the prob-
lem can serve as a baseline against which proposed approximation algorithms can
be compared, or it can stop efforts to devise approximation algorithms with lower
approximation ratios.

• How good is the heuristic used by [10]? [10] proposes a greedy heuristic for circuit
obfuscation but they do not address its performance in terms of solution quality. As is
the case with any approximate algorithm, it helps to know what kind of performance
guarantees one can expect from running the algorithm on a specific problem instance.

• How hard is the problem of obfuscating a circuit netlist when we are allowed to
introduce new gates into the netlist, in addition to removing wires? [10] considers
the case where we are only allowed to lift edges (wires) from a circuit netlist. We
observe for their notion of security, that introducing additional gates into the netlist,
while lifting certain wires at the same time, can also help in circuit obfuscation by
enabling more mappings between the original and lifted netlists. This poses a whole
new set of underlying computational problems. As is the case in their work, it pays
to characterize the computational complexity of the underlying problems as a first
step to proposing concrete approaches for them.
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Chapter 5

NP-completeness

In this chapter, we show that the optimization problem of circuit obfuscation as defined in
Chapter 3, is NP-hard. As explained in Chapter 2, this means the problem is intractable
(no algorithm can solve it in polynomial time) unless P = NP. We show the problem is
NP-hard by showing the decision version of it to be NP-complete.

The decision version of the problem is as follows: given a tuple 〈G, k, η〉 where G is a
DAG, k ∈ [1, |V [G]|], η ∈ [1, |E[G]|], determine whether whether we can get k-security by
removing at most η edges from G. We refer to this problem from now on as LIFTING-DEC,
and to the optimization version as LIFTING-OPT.

Suppose the answer to a specific LIFTING-DEC is “yes”. To prove that the answer is
indeed “yes”, it suffices to provide:

1. A graph H such that |V [H]| = |V [G]| and |E[G]| − |E[H]| ≤ η, and

2. k mappings each of which is a subgraph isomorphism from G to H, for each verex
u ∈ |V [G]|, such that u is mapped to a distinct vertex in each of the k mappings that
correspond to it.

Veirfying (1) can definitely be done in polynomial time, and verifying (2) can be done
in time that is O(|V [G]|3), which is polynomial in the number of vertices in G. Hence, the
instance has a proof that can be efficiently checked, and therefore LIFTING-DEC is in NP.

To prove that LIFTING-DEC is NP-hard, we describe a polynomial-time Turing reduction
(in fact a polynomial time many-to-one reduction) from the GATE-SUBISO problem defined
in [10] to LIFTING-DEC. GATE-SUBISO is defined as follows:
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GATE-SUBISO Given as input 〈G,E ′, u, v〉, where G is a DAG, E ′ ⊆ E[G], and two distinct
vertices u, v ∈ V [G], let H be the graph we get by removing the edges that are in E ′ from
G. Then, GATE-SUBISO is the problem of determining whether there exists a mapping
φ : V [G]→ V [H] that is a subgraph isomorphism from G to H such that φ(u) = v.

Since GATE-SUBISO is NP-complete [10], the existence of a plynomial-time Turing re-
duction from it to LIFTING-DEC shows that LIFTING-DEC is NP-hard. This reduction is as
follows:

1. Create a copy of G and call it H

2. Remove the edges that are in E ′ from H

3. Add two sets V H and V G of |E ′| + 1 vertices each and color those vertices using
a color that is not assigned by G’s or H’s coloring functions to any of G’s or H’s
vertices

4. Add two more sets CH and CG of η + 1 vertices each and assign them their own
unique color as well

5. ConstructH ′ andG′ as follows. V [G′]← V [G]∪V G∪CG. V [H ′]← V [H]∪V H∪CH.
E[G′]← E[G]. E[H ′]← E[H]

6. Add an edge from u to each vertex in V G and edge from v to each vertex in V H and
denote by DG and DH those sets of newly added edges

7. Add an edge from each vertex in G′ that was in G to each vertex in CG and do the
same for H ′ (add edges to vertices in CH)

8. Construct Final← H ′ ∪G′

9. Provide 〈Final, 2, |E ′|〉 to the oracle for LIFTING-DEC and return the output from the
oracle as the output of the algorithm

It can be seen that the oracle for LIFTING-DEC is called only once by the algorithm (at
then end), and that the algorithm spends polynomial time outside the call. All we have
to do now to show the validity of the reduction is prove that the algorithm above indeed
solves LIFTING-DEC, i.e., an instance of GATE-SUBISO transformed by the algorithm will have
the same answer as the original instance. To prove this, first observe the following:
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1. Removing less than |E ′| of the edges ending at vertices in CG or CH does not help
in increasing the security level of the circuit.

2. As long as none of the edges ending at the vertices in CG or CH is removed, G′ and
H ′ will both be (weakly) connected and it would need at least |E ′| + 1 edges to be
removed for either to become disconnected.

3. The edges in DG and DH distinguish u and v as the the existence of any of them in
an unlifted netlist means the starting vertex is either u or v.

4. An automorphism in G′ that maps u to a vertex other than itself cannot exist. This
is since u is the only vertix in G′ adjacent to a vertex in DG, and those vertices are
of a unique color. The same holds for H ′ and v.

Now assume the answer to some GATE-SUBISO instance 〈G,E ′, u, v〉 is “yes”. By defin-
tion, this means that there exists a mapping φ : V [G]→ V [H] that is a subgraph isomor-
phism from from G to H such that φ(u) = v. If that is the case, then removing the edges in
E ′ from Final will give us 2-security, as the result will be a graph with an automorphism
that maps each vertex to a vertex other than itself. Hence, the anawer to the LIFTING-DEC

instance will be “yes” as well (since |E ′| ≤ |E ′|).

Now assume that the answer to the same GATE-SUBISO instance was “no”; i.e., there
is no subgraph isomorphism from G to H that maps u to v. We show that the answer
to the LIFTING-DEC instance must be “no” as well. Assume the answer was “yes”, that is,
there exits an edge set R ⊆ E[Final] with size at most E ′ that when removed from Final
renders the circuit 2-secure. Let FinalLifted be the graph we get by remvoing the edges
in R from Final. By Items (1) and (2) above, we know that FinalLifted must consist of
two connected components. Let us call these components GL and HL. Denote by u′ and v′

the pair of vertices in FinalLifted corresponding to u and v, respectively, in Final. As R
cannot contain all the edges in DH or DG (the sets have more than |E ′| edges each); any
subismorphic mapping from FinalLifted to Final will have to map u′ and v′ to either u
or v (by Item (3) above) and there must be 2 such subisomorphic mappings for both u′ and
v′ (one mapping it to to u and the other to v) (by Item (4)); otherwise FinalLifted can
not be 2-secure. Now as both HL and GL are (weakly) connected, those subisomorphic
mappings will have to map HL and GL to either G′ or H ′ (i.e., if a vertex in HL is mapped
to a vertex in H ′ then all other vertices of HL will have to be mapped to vertices in H ′

as well, and the same goes for GL). So now we know there must exist a subisomorphic
mapping from H ′ to GL. But such a mapping cannot exist unless H ′ has at least as
many edges as GL (by definition of subgraph isomorphism). Since |E[G′]|− |E[H ′]| = |E ′|,
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Figure 5.1: An example of the reduction from GATE-SUBISO to LIFTING-DEC. E ′ contains
a single edge, the one starting at u. 〈G,E ′, u, v〉 is a true instance of GATE-SUBISO, which
means 〈Final, 2, |E ′|〉 is a true instance of LIFTING-DEC.

it means that all of R’s edges must be from G′, and that the mapping is actually an
isomorphosm from GL to H ′. But we know that GL is subgraph ismorphic to G′ (since
GL is actually G′ with some edges removed). Composing the two mappings together, we
get a subismorphism from G′ to H ′ that maps u to v. The subisomorphic mapping is valid
even when the vertices of G′ and H ′ that are extra to G and H, respectively, are removed.
This means that there exists a subisomorphism from G to H that maps u to v, which is a
contradiction. Hence, the answer to LIFTING-DEC instance must be “no” as well.

We have therefore shown that the answer to a GATE-SUBISO instance remains the same
after applying the reduction. Hence, the reduction is valid and LIFTING-DEC must be
NP-hard. This, combined with the fact that it is is NP means it is NP-complete, which
in turn means that LIFTING-OPT is NP-hard. The example in Figure 5 illustrates the
validity of the reduction.

We point out that LIFTING-OPT is not in NPO, i.e., it is not an NP optimization
problem. Although the problem satisfies the first and third conditions of an NPO described
in Chapter 2 (the size of every feasible solution cannot be greater than |E[G] and is
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at the same time polynomial-time computable), deciding whether a solution is feasible
(second part of the second condition) is not easy. In fact, it is the same as deciding the
k-SECURITY-DEC problem, which is proven to be NP-complete and thus infeasible by [10].
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Chapter 6

Reduction to SAT

In this chapter, we report the negative results of our efforts to develop an efficient solver
for LIFTING-OPT based on miniSAT, an open-source SAT solver. These efforts were moti-
vated by the recent advances in the speed and efficiency of SAT solvers and the fact that
LIFTING-DEC, the decision version of LIFTING-OPT, is in NP, meaning it is polynomial-time
Turing reducible to SAT. [10] uses a SAT solver as part of their approach to circuit ob-
fuscation, but in their case, the solver is used to compute security, where the subgraph
isomorphism problem is reduced to a SAT instance which is then fed to the SAT solver.
We instead reduce LIFTING-DEC to a SAT instance which we then feed to the solver. We
start by presenting the algorithm we use to reduce LIFTING-DEC to SAT, which involves
an intermediate reduction to the circuit satisfiability problem (CSAT). We then describe
how the algorithm can be used to obtain the optimal solution for a LIFTING-OPT instance.
Finally, we analyze why the approach, despite being valid, does not work very efficiently
on large LIFTING-OPT instances.

6.1 Reduction of LIFTING-DEC to SAT

We reduce LIFTING-DEC to SAT in two steps. The first is a Levin reduction from LIFTING-DEC

to CSAT. We use a Levin reduction to ensure we will have an efficient way to transform
a certificate for the CSAT instance (a satisfying assignment to the boolean combinational
circuit) to a certificate for LIFTING-DEC (a candidate edge set which, when lifted, gives us
k-security). The second step is a textbook reduction from CSAT to SAT. The textbook
reduction is also a Levin reduction.
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6.1.1 Reduction of LIFTING-DEC to CSAT

The reduction from LIFTING-DEC to CSAT works as the following. Given a prospective
instance of LIFTING-DEC in the form of a tuple 〈G, k, η〉, we construct a boolean combina-
tional circuit for which the output can be 1 if and only if there exists an edge set E ′ ⊆ E[G]
such that 〈G, k〉 is k-secure and |E ′| ≤ η. The circuit has the following inputs:

1. For each edge of G, the circuit has an input ei. A satisfying assignment for the circuit
with a value of 1 for an ei input translates to an E ′ that includes the corresponding
edge in G. A satisfying assignment with a value of 0 translates to an E ′ that does
not include the edge.

2. For every two pairs of vertices (u, v) and (i, j) in G that each have the same color, i.e.
c(u) = c(v) and c(i) = c(j), the circuit has an input φuv,ij. The semantics for these
inputs are as follows. Assume we have an assignment for the circuit with values for
the ei inputs corresponding to some E ′ ⊆ E[G], and let H be the graph we get by
deleting the edges in E ′ from G. For a given pair of vertices (u′, v′), the assignment
for inputs φu′v′,ij corresponds to a mapping from G to H that maps u′ to v′. The
mapping maps vertex i in G to vertex j in H if and only if the assignment assigns
a value of 1 to input φu′v′,ij (Note that this means that φu′v′,u′v′ is always equal to 1
and is not really an input of the circuit per se).

The definition of a k-secure gate requires the existence of k such mappings that are
each a subisomorphism and that each map u′ to a distinct gate v′ in H. Hence, for the
reduction to be valid, we must enforce this condition on every satisfying assignment for the
CSAT instance. To do this, we build a circuit that outputs 1 if and only if the mapping
represented by inputs φu′v′,ij,i, j ∈ V [G], and c(i) = c(j) is a subisomorphic. The circuit
consists of three subcircuits, the outputs of which are connected by an AND gate. The
first two subcircuits output 1 if and only if the given mapping is bijective (i.e., it maps
each i to only one j and vice-versa). The subcircuits have the following Boolean functions
(We drop the u′v′ part of the subscript in φu′v′,ij for simplicity).

F1 =

|V [G]|∏
j

|V [H]|∑
i

φij |V [H]|∏
k 6=i

¬φkj

 (6.1)

F2 =

|V [G]|∏
j

|V [H]|∑
i

φij |V [H]|∏
k 6=i

¬φkj

 (6.2)
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The products here correspond to AND gates and the summations correspond to OR
gates. The third subcircuit outputs 1 if and only if the edge relations of the vertices in H
are satisfied. It takes and the e inputs along with the φ inputs and applies the following
Boolean function (again, the u′v′ part of the subscript in φu′v′,ij is dropped for simplicity):

F3 =

|E[G]|∏
k

ek ∨
|E[G]|∑
l

φsrc(ek),src(el) ∧ φdest(ek),dest(el)

Here src and dest are functions that take an e input and return respectively, the head
and tail of the corresponding edge in G. What this essentially means is if an edge ei is lifted
in G (and hence ei = 1) the corresponding head and tail vertices in H do not need to map
to adjacent vertices in G; otherwise they do. Here again, the products correspond to AND
gates and the summations to OR gates. By connecting the outputs of the three subcircuits
to an AND gate, we make sure the final circuit outputs 1 if and only if the mapping is
bijective and itand it preserves the edge relations of the vertices of H, i.e., is subisomorphic.
We create one copy of the circuit for each pair of vertices (u, v) in G that has the same
color, and denote the resulting circuit by Cuv. We point out the similarity between the
formulas for the three subcircuits and the ones used in [10] to compute security.

To make sure that at least k subisomorphic mappings exist for u′, we take the outputs
of the Cuv circuits that have u = u′ and feed them an adder, and then use a comparator to
ensure the addition result is greater than or equal to k. We perform the summation using
|S ′
u| − 1 dlog2 |S ′

u|e-bit adders, where Su is the number of vertices in G with the same color
as u, and perform the comparison using a single similarly-sized comparator. We denote
the comparator output for a vertex u by kSATu.

We also have to make sure that an assignment satisfies the circuit if and only if the
corresponding E ′ in G has η edges at most. We do this by feeding the e inputs to an adder
followed by a comparator that outputs 0 if the addition result is greater than η. Addition is
performed using |E[G]|−1 dlog2 |E[G]|e-bit adders and comparison using a single similarly-
sized comparator. We finally connect the comparator output and the kSATu outputs
to an AND gate to make sure both k-security and cost conditions are satisfied by the
satisfying assignment. The output of this AND gate will be the output of the circuit.
Therefore, denoting the output of the comparator by etaSAT , the output of the circuit
can be expressed as:

F = etaSAT

|V [G]|∏
i

kSATi (6.3)
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6.1.2 Reduction from CSAT to SAT

We follow the reduction from LIFTING-DEC to CSAT with a textbook polynomial-time (in
fact linear) reduction from CSAT to SAT. The reduction is usually attributed to Tseitin[13]
although the construction has been independently discovered, in different variations, many
times since then[9]. The reduction works as follows.

Given a circuit C to be reduced to a SAT formula, for each wire xi in the circuit, the
formula φ has a variable xi. The operation of each gate in the circuit C is then expressed
using a small formula (clause) involving the variables of its incident wires. The clause for
a gate that applies a Boolean function f to its inputs x1, . . . , xn is xo ⇐⇒ f(x1, . . . , xn),
where xo is the output of the gate. The formula φ produced by the reduction algorithm is
the AND of the circuit-output variable with the conjunction of the clauses that describe
the operation of each gate. The reason the reduction works is that a satisfying assignment
for the formula φ must assign a value of 1 to the output of the circuit while ensuring correct
operation for every gate in the C, as implied by the last ANDing. A satisfying assignment
for C similarly satisfies φ, hence the transformation is a reduction.

It is worth pointing out that if all the gates in our CSAT instance had a fan-out of at
most 1, then the textbook reduction would not have been necessary; we could have simply
expressed the circuit in the CSAT instance as a boolean formula. In fact for the three
subcircuits that constitute the subisomorphism circuit in the redcution from LIFTING-DEC

to CSAT, we do not use the textbook reduction; rather, we express them as boolean
formulas directly, as the gates in each of them have a maximum fan-out of 1. However,
using such a straightforward method on the rest of the circuit would have resulted in
exponentially-sized formulas, as some of the the gates in the rest of the circuit have fan-
outs of 2 and more. We therefore use the textbook reduction to ensure the final SAT
instance is polynomially sized (in the size of the LIFTING-DEC instance that is).

Finally, since the SAT solver we use does not accept formulas in forms other than
conjunctive-normal form (CNF), we convert the formula generated by the Tseitin reduction
into an equisatisfiable formula that is in CNF.

6.2 LIFTING-OPT Solver

The reduction from LIFTING-DEC to SAT can easily be used to find the optimal solution
for a LIFTING-OPT instance. Given such an instance with a graph G and a security level
k to be achieved by lifting the minimum number of edges, we can do binary search using
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the LIFTING-DEC solver to find the smallest η such that 〈G, k, η〉 is a true instance of
LIFTING-DEC. We know η to be in [0, |E[G]|] so we can start with η = d|E[G]|/2e for
instance. Since the LIFTING-DEC-to-SAT reduction is a Levin reduction, when the search
terminates, we simply transform the certificate for the SAT instance, i.e. the satisfying
assignment for the formula returned by the SAT solver, to a an edge set to be lifted in G
to get k-security. The transformation is simply by looking at the first |E[G]| elements of
the satisfying assignment for the SAT formula, lifting the corresponding edge if an element
has a value of 1 and leaving the edge in G if the element has a value of 0.

6.3 Results

Although our approach of reducing LIFTING-DEC to a SAT instance and feeding the instance
to a SAT solver is valid, the SAT instances generated by the reduction can be too large for
even a state-of-the-art SAT solver running on a high performance computing (HPC) cluster
to handle efficiently. This is due to the relation between the the size of the SAT formula
generated by our algorithm and the size of the graph in LIFTING-DEC. Although the size of
the SAT formula is linear in the size of the CSAT circuit, the size of the CSAT circuit is in
fact O(|V [G]|5) where G is the graph in the LIFTING-DEC instance. To show this, consider
the circuits corresponding to the formulas in Equations 6.1 and 6.2. It can be seen that
each circuit has O(|V [G]|3) wires and since we need O(|V [G]|2) copies of each, one for each
pair of vertices in G, the total number of wires will be O(|V [G]|5). This means that, for a
circuit with ≈ 200 circuits such as the c432 benchmark from ISCAS-85 benchmark suite [5]
(a benchmark bus-controller), the size of the generated CSAT circuit will be ≈ 2005 = 320
billion gates. Assuming we need a single byte to store the data relating to each wire (which
is an underestimation), this calls for at least 320 GB of memory just to store the circuit.
This amount of memory exceeds the per-process memory limits of the HPC cluster we used
to run our experiments, which means the instance of the SAT solver runs out of memory
before it even begins trying to solve the CNF formula.

In fact, even tring to solve the special case of LIFTING-OPT where the k-security target
is a single gate is hard. The only case we were able to solve on the HPC cluster was
when k in LIFTING-DEC is restricted to be equal to 2 and the target of security is reduced
to a single gate. Restricting LIFTING-OPT in this way enables us to replace the adder-
comparator combinations following the Cuv circuits in our CSAT circuit with a simple OR
of the outputs of the circuits (that does not include the circuits where the two vertices in
the pair are the same vertex). This is since, when k is 2, only one subisomorphism other
than the identity mapping is required for the vertex. But even that would take about 75%
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of the available per-job memory available on the cluster.

6.4 Conclusion

We conclude that a straightforward reduction from LIFTING-OPT to SAT is not a viable
apparoch for developing an efficient solver for LIFTING-OPT. This is largely due to the
Pseudo-Boolean (PB) constraints involved in LIFTING-OPT (namely, the constraints on the
number of edges that can be lifted as well as the number of subisomorphic mappings that
must exist for each vertex in the unlifted netlist). Although it seems like our approach for
translating these PB constraints to circuits is the same as that used by SAT solvers that
handle PB constraints[9], we point out that this still may not be the most efficient way
to handle the problem. This is since it is quite possible that a more efficient reduction
from LIFTING-DEC to SAT exists. Another possible approach for developing an efficient
solver for LIFTING-DEC could be to reduce it to a k-SECURITY-DEC instance (this should be
possible since k-SECURITY-DEC is NP-complete), and then use the solver developed by [10]
to solve the k-SECURITY-DEC instance. A third approach is to express LIFTING-OPT as 0− 1
integer linear programming (ILP) problem with Pseudo-Boolean constraints and then use
a commercial ILP or a free open-source PB solver to solve the ILP problem. We leave an
investigation of the feasibility of these approaches as topics for future work.
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Chapter 7

Approximability Properties

In this chapter, we report two results relating to the approximability of LIFTING-OPT, that
is, how hard it is to achieve certain approximation ratios for it. The first result follows
from a gap-preserving reduction from the minimum vertex cover problem to LIFTING-OPT,
which proves that LIFTING-OPT is in MAX− SNP, and therefore no polynomial-time
approximation scheme is likely to exist for it. The other result is through a Cook reduction
from a special case of the maximum common edge subgraph problem, which proves that a
certain absolute error guarantee is NP-hard to achieve for LIFTING-OPT.

7.1 LIFTING-OPT is in MAX− SNP

We prove that LIFTING-OPT is in MAX− SNP, and therefore inapproximable within a
certain constant factor, by describing a gap-preserving reduction from the minimum vertex
cover problem to it. Minimum vertex cover is defined as the problem of determining the
vertex cover of a given graph that has the minimum cardinality, where a vertex cover of
a graph is a set of vertices such that each of edge of the graph is incident to at least one
vertex in the set. The problem is known to be inapproximable within a factor of 1.04
unless P = NP[12]. A gap-preserving reduction from it to LIFTING-OPT proves that the
same constant approximation factor is hard to achieve for LIFTING-OPT.

Gap-preserving reductions work as follows. Given a minimization problem I with a
known NP-hard approximation ratio ρ, a polynomial-time algorithm is described that
transforms an instance of I to an instance of another minimization problem I ′ for which
an NP-hard approximation ratio is unknown, such that the following property is satisfied.
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OPT (I) ≤ c =⇒ OPT (I ′) ≤ c′

OPT (I) ≥ c/ρ =⇒ OPT (I ′) ≥ c′/ρ′

where OPT(I) and OPT(I’) are the optima of I and I ′ respectively, c is some function
of |I|, the size of instance I and c′, ρ′ are some functions of |I ′|. The existence of such a
reduction then proves that achieving an approximation ratio of ρ′ for I ′ is also NP-hard [4].
When one (or both) of the optimization problems involve maximization, the appropriate
≤ and ≥ signs in the above implications are reversed.

Our reduction from minimum vertex cover to LIFTING-OPT works as the following. Let
G be the graph in the minimum vertex cover instance. We create a new graph G′ as
follows. For each vertex v in G, we creates two edges, ev1 and ev2, in G′. As well, for each
edge e in G, we create four vertices ve1, ve2, ve3, ve4, with a unique color, in G′. Further,
if an edge e is covered by vertices v1 and v2 in G (note that every edge in G has to be
covered by exactly 2 vertices), we create edges from both ve1 and ve2 (i.e., the first two
vertices in G′ corresponding to e) to the head vertices of ev1,1 and ev1,2 (the two edges in
G′ corresponding to v1) and edges from both ve3 and ve4 to the tail vertices of ev1,1 and
ev1,2. We also create edges from both ve3 and ve4 to the head vertices of ev2,1 and ev2,2 (the
two edges in G′ corresponding to v2) and edges from both ve2 and ve4 to the tail vertices of
ev2,1 and ev2,2. The LIFTING-OPT instance will ask for the minimum number of edges that
can be removed from G′ to make it 2-secure. Figure 7.1 illustrates the operation of the
algorithm.

It can be seen that the algorithm runs in polynomial time. Specifically, the run-time
is O(|V [G]|). We now show that if the size of the minimum vertex cover for G is k, then
the optimal solution to the LIFTING-OPT instance will be of size 2k. To show this, we
observe first that the head and tail vertices of all edges in G′ corresponding to vertices
in G are 2-secure. This is since the reduction ensures each of these vertices has the same
connectivity as at least one other vertex in G′. We also observe that lifting any of the edge
pairs in G′ corresponding to vertices in G will make all vertices connected to them 2-secure.
More specifically, for the example in Figure 7.1, lifting the red edge pair will make vertices
ve1 and ve2 indistinguishable from each other, and vertices ve3 and ve4 indistinguishable
from each other. Similarly, lifting the blue edge pair will also make all vertices 2-secure.
Therefore, lifting the edge pair ev1 and ev2 in G′ makes 2-secure all the vertices vei in G′

such that i ∈ [1, 4] and e is incident to v in G. Hence, if a set of vertices of size k exists
that covers all edges in G, a corresponding set of edges of size 2k exists that when lifted
from G′ makes all vertices 2-secure.
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Figure 7.1: Operation of the reduction from minimum vertex cover to LIFTING-OPT. On
the left depicted is an edge in G, the input graph to the minimum vertex cover instance. On
the right is depicted the corresponding subgraph in G′, the input graph to the LIFTING-OPT

instance.

Now assume a cover of size k does not exist for G, that is, no set of vertices of size k
covers all the edges of G. We show that a solution of size 2k cannot exist for LIFTING-OPT.
First, we note that for any vertex vei in G′, i = 1, . . . , 4, making it 2-secure requires lifting
at least one of the edge pairs in the set {(ev1, ev2) : e is incident to v in G}, i.e., one of the
edge pairs corresponding to a vertex in G that is incident to e. Hence, any feasible solution
for LIFTING-OPT, i.e., an edge set that makes all vertices in G′ 2-secure when lifted, must
include at least once such pair for each vertex. This edge set corresponds to a vertex cover
in G. If a solution for LIFTING-OPT exited with at most 2k edges, it means a vertex cover
exits for G that is of size k, which is a contradiction, hence, a solution for LIFTING-OPT

with size 2k cannot exist.

The following relation therefore holds between the optimas of the LIFTING-OPT and
minimum set cover instances of the reduction.

OPT (LIFTING-OPT) = 2OPT (VERTEX-COVER)

We can therefore write
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OPT (VERTEX-COVER) ≤ c =⇒ OPT (LIFTING-OPT) ≤ c/2

OPT (VERTEX-COVER) ≥ c/ρ =⇒ OPT (LIFTING-OPT) ≥ c/2ρ

By the definition of a gap-preserving reduction, this means that if an approximation
ratio ρ is NP-hard to achieve for minimum vertex cover, then an approximation ratio of
2ρ is NP-hard to achieve for LIFTING-OPT. Since the minimum vertex cover problem is
inapproximable within a factor of 1.04 unless P = NP, it follows that LIFTING-OPT is
inapproximable within a factor of 2.08. Thus, LIFTING-OPT is itself in MAX− SNP, and
as such, no polynomial-time approximation scheme can exist for it.

7.2 Reduction from the Maximum Common Edge Sub-

graph Problem

We show another result that proves an absolute error of
(

|V [G]|
2

)ε
is hard to achieve for

LIFTING-OPT. Stated formally, the result is as follows.

Theorem 7.2.1 There is no polynomial-time approximation algorithm for the undirected
and not necessarily acyclic version of LIFTING-OPT that can guarantee an absolute error of(

|V [G]|
2

)ε
where ε is some constant that lies between 0 and 1.

Note the condition placed on LIFTING-OPT that it is undirected and not necessarily
acyclic. We conjecture that the result holds even when LIFTING-OPT is restricted to DAGs.
We leave a investigation into the validity of this claim as a topic for future work.

The result follows from a reduction to LIFTING-OPT from the maximum common edge
subgraph problem, which is the problem of determining, given two graphs G and H, a
graph g with a maximal number of edges that is isomorphic to a subgraph of G and a
subgraph of H. We consider the special case of the problem where the two graphs in
question have the same number of vertices, which [14] shows is not approximable within
addend |V [G]|ε, for some ε ∈ (0, 1), unless NP = P .

The reduction we use is a polynomial-time many-to-one reduction that has the following
property.
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|E ′| = |E(G)|+ |E(H)| − 2k (7.1)

Here, E ′ is the optimal solution for the LIFTING-OPT instance generated by the reduction,
G and H are the two graphs in the maximum common edge subgraph instance, and k is
the maximum size of a common subgraph of G and H. The reduction works as follows.

Let G and H be the two graphs in the maximum common edge subgraph instance.
The reduction adds |E(G)| + |E(H)| new vertices each of a distinct color to each graph
and connects each new vertex to each of the original vertices of the graphs. If we call the
resulting graphs G′ and H ′, it can be seen that G′ and H ′ are weakly connected and it
would need at least |E(G)|+ |E(H)| edges to be removed for any to become disconnected.
The instance of LIFTING-OPT generated by the reduction asks for the minimum number of
edges to be removed from G′ ∪H ′ to make it 2-secure.

To prove that the reduction has the property in Equation 7.1, recall that E ′ is the
smallest subset of the edge set of G′ ∪ H ′ such that 〈G′ ∪ H ′, E ′〉 is 2-secure. Let us
denote by S the graph we get by deleting the edges in E ′ from G′ ∪ H ′. It can be seen
that G′ ∪ H ′ can always be made 2-secure by deleting G’s and H’s edges from it, and
so |E ′| ≤ |E[G]| + |E[H]|. As G′ and H ′ both have an edge-connectivity of at least
|E(G)|+|E(H)|, S must consist of two connected components that are subgraph isomorphic
to bothG andH (the possibility of an automorphism existing in eitherG orH that provides
2-security has been eliminated by the addition of the new vertices with distinct colors).
Also |E ′| cannot contain any of the edges connecting the new vertices in G′ and H ′ to G’s
and H’s original vertices, as removing less than |E(G)| + |E(H)| of these edges does not
help in increasing security. The following two lemmas prove that if k is the maximum size
of a common subgraph of G and H, then |E ′| = |E(G)|+ |E(H)| − 2k.

Lemma 7.2.2 There is an edge set with size |E(G)| + |E(H)| − 2k which when removed
from G′ ∪H ′ gives us 2-security.

Proof Since G and H have a common subgraph of size k, we can get 2-security by removing
from G′ ∪H ′ the edges of G and H that are not part of this subgraph. The result will be
a graph that is 2-isomorphic (has 2 components that are isomorphic to each other), and
therefore 2-secure by the definition of k-security.

Lemma 7.2.3 There is no edge set with size |E(G)| + |E(H)| − 2k − 1 that can give us
2-security when removed from G′ ∪H ′.
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Proof Assume there was. It means either G′ and H ′ in the unlifted graph must have at
least k + 1 edges, which cannot be as the maximum size of a common subgraph of G and
H is k.

We now derive a relation between |V [G]| and |V [G′ ∪ H ′]| as follows. First, we note
that, by definition of the reduction, the following relations hold between the vertex and
edge counts of the graphs.

‖V [G′ ∪H ′]| = 2|V [G] + 2(|E(G)|+ |E(H)|)| (7.2)

‖E[G′ ∪H ′]| = |E(G)|+ |E(H)|+ 2|V [G]|(|E(G)|+ |E(H)|) (7.3)

This is of course assuming that |V [G]| = |V [H]|, which is a necessary condition for our
reduction. Solving Equations 7.2 and 7.3 simultaneously for |V [G]|, we get:

|V [G]| =
|V [G′ ∪H ′]| − 1 +

√
(|V [G′ ∪H ′]|)2 + 8

(
|V [G′∪|H′|]|

2
− |E[G′ ∪H ′]|

)
4

The second root is invalid if we take into account the nature of the variables. Moreover,
the expression under the root cannot be 0 (again, taking into account the nature of the
variables), which means we can write.

V [G] ≥ V [G′ ∪H ′]

4
(7.4)

As stated previously, [14] proves that for some ε ∈ (0, 1), there is no polynomial-
time algorithm that can achieve an absolute error guarantee of |V [G]|ε for the maximum
common subgraph problem unless P = NP. Assume a polynomial-time algorithm existed

that guarantees an absolute error of
(

|V [G]|
2

)ε
for LIFTING-OPT. For such an algorithm, the

solution size, ηo for any LIFTING-OPT instance will satisfy:

ηo − η ≤
(
|V [G]|

2

)ε
(7.5)
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where η is the size of the optimal solution for that specific LIFTING-OPT instance and
G is the graph. Assume an instance of the maximum common edge subgraph problem is
transformed to an instance of LIFTING-OPT according to the our reduction. If k is the size
of the optimal solution for the maximum common edge subgraph instance, then combining
( 7.1) and ( 7.5) we get:

ηo − (|E[G]|+ |E[H]| − 2k) ≤
(
|V [G′ ∪H ′]|

2

)ε
(7.6)

or, since 0 < ε < 1

(ηo − |E[G]|+ |E[H]|)/2− k ≤ 1

2

(
|V [G′ ∪H ′]|

2

)ε
<

(
|V [G′ ∪H ′]|

4

)ε
(7.7)

where G, H, G′ and H ′ are as in the reduction. Combining ( 7.7) with ( 7.4) we get:

(ηo − |E[G]|+ |E[H]|)/2− k ≤ |V [G]|ε

meaning we will always get a value ((ηo− (|E[G]|+ |E[H]|/2)) that is within |V [G]|ε of
the size of the optimal solution for the maximum common edge subgraph instance. In other
words, the algorithm can be used to approximate the maximum common subgraph problem
within addend |V [G]|ε, by first transforming the maximum common subgraph problem
instance to a LIFTING-OPT instance and then applying the algorithm. This contradicts
[14]’s result, which means a polynomial-time algorithm that guarantees an absolute error

of
(

|V [G]|
2

)ε
for LIFTING-OPT cannot exist, unless P = NP, and that is our result.

7.3 Conclusion

We have shown that LIFTING-OPT is in MAX− SNP, meaning there is no PTAS for it,
and also that it is inapproximable with addend |V [G]|

2

ε
, where ε is some number between 0

and 1, unless P = NP. Although the latter can be seen as a somewhat stronger result,
we suspect LIFTING-OPT to be even harder to approximate. In fact, we conjecture it to be
in Class II of [4], i.e. we suspect it be inapproximable within ratio O(log n) unless NP
has quasipolynomial-time deterministic algorithms. We leave a proof of this as a topic for
future work.
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Chapter 8

A Greedy Heuristic

[10] use a greedy wire lifting procedure as part of their approach to determine the security-
code trade-off involved in circuit obfuscation but they do not address its performance in
terms of solution quality. As is the case for any heuristic or approximation algorithm,
it is of interest to know what performance guarantees one can expect from running the
algorithm on a specific instance. In this chapter, we show that for [10]’s heuristic there
is no performance guarantee better than O(n2), where n is the number of vertices in the
graph in the LIFTING-OPT instance. This is the worst any algorithm can do considering
as the solution measure for the problem is the number of edges in the solution, which
is limited by n2. We start by giving a brief description of how the heuristic works and
discuss why it is not optimal. We follow that by describing two example instances where
the greedy heuristic may return solutions with performance guarantees of O(n) and O(n2).
Given that a slight modification to the heuristic can fix the performance guarantee for one
of the examples, we address that and give example cases where even the new heuristic may
return solutions with performance guarantees of O(n) and O(n2). We conclude the chapter
by comparing the heuristic to an algorithm we propose for achieving k-security that was
inspired by recent work in the context of privacy-preserving data publication.

8.1 How the Heuristic Works

[10]’s heuristic works as follows. Given a graph G representing a circuit to be obfuscated,
the algorithm starts by lifting every edge in G. This, naturally, gives us the best possible
security. The algorithm then checks to see if edges exist that can be added back to G
without causing the security level of the circuit to go below the target. If such edges exist,
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the edge that will have the least effect on the security level is added back (ties are broken
randomly). This step is repeated until no more edges can be added back without causing
the security level to drop below the target. The set of edges that are still lifted is then
returned as the solution. The heuristic is shown as Algorithm 1, where E ′ maintains the set
of edges that are still lifted, and σ(G,E ′) is the security level of G given E ′. The security
level is computed using a SAT solver, as mentioned previously.

E ′ ← E[G];
while |E ′| > 0 do

s← 0;
foreach e ∈ E ′ do

E ′ ← E ′ − {e};
if σ(G,E ′) > s then

s← σ(G,E ′);
eb ← e;

end
E ′ ← E ′ ∪ {e};

end
if s < k then return E ′;
E ′ ← E ′ − {eb};

end
return E ′;

Algorithm 1: lift wires(G, k)

The algorithm essentially makes the locally optimal choice at each stage, hence the
term “greedy”, but in doing so, it runs the risk of not yielding an optimal set of edges on
return. As an example, consider the graph in Figure 8.1. Assume the graph represented a
circuit to be obfuscated with a target security level of 2. The security target can achieved
by lifting the middle edge. The heuristic, however, starting with an empty graph, may
decide to put any of three edges back; as far as it is concerned, putting any of them back
gives the same security level of 3. If the heuristic decides to put the middle edge back,
however, it will be stuck, as putting any of the other two edges back now will make each
vertex uniquely identifiable. The heuristic will then output a solution with two edges when
the optimal edge set consists of a single edge.
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Figure 8.1: The greedy heuristic does not necessarily yield an optimal set of edges.

8.2 Performance Guarantees

The graph in Figure 8.1 belongs to the family of graphs depicted in Figure 8.2, with n
vertices in each of the upper and lower rows of vertices. Assume a graph in this family is
given to the heuristic algorithm with a target security level of 2. When every edge in the
graph is lifted, the security level is n + 2. It can be seen that adding any edge back will
give us the same security level (i.e., n+ 1). But once more, if the greedy heuristic chooses
to add the middle edge back, then adding any more edges back will make both “hub”
vertices uniquely identifiable, thereby reducing the security level of the whole circuit to 1.
The heuristic will return an edge set with 2n edges as the solution, when the same security
level can be achieved by lifting a single edge (the middle one), meaning the performance
guarantee of the solution will be 2n = O(n). Note that the heuristic also has a chance of
skipping the middle edge at every iteration, in which case it is going to output the optimal
solution when it terminates.

Now assume we modify the heuristic so that instead of starting with an empty graph,
it starts with the original graph, and then tries to progressively add edges to E ′, i.e. lift
edges from the graph. This is shown as Algorithm 2.

That is, the new heuristic iterates while G still has edges to remove. If this is the
case, the heuristic identifies the best edge that can be removed, which is the one that gives
the greatest security if added to E ′. As soon as the target security level is reached, the
heuristic stops.

Assume this heuristic is applied to the graph in Figure 8.2. At the first iteration, the
heuristic finds that no edge other than the middle one will have any effect on the security
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Figure 8.2: Performance guarantee of the greedy heuristic solution can be as bad as 2n.

E ′ ← φ;
while |E ′| < |E[G]| do

s← 0;
foreach e ∈ E[G]− E ′ do

E ′ ← E ′ ∪ {e};
if σ(G,E ′) > s then

s← σ(G,E ′);
eb ← e;

end
E ′ ← E ′ − {e};

end
if s > k then return E ′;
E ′ ← E ′ ∪ {eb};

end
return E ′;

Algorithm 2: lift wires2(G, k)
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Figure 8.3: Performance guarantee of the new heuristic solution can be as bad as 2n.

level if lifted. The middle edge, on the other hand, gives a security level of 2 when lifted.
The algorithm chooses that edge for lifting, and afterwards it stops, since the target security
level of 2 has been reached. Thus, by changing the heuristic in this way, the algorithm is
now guaranteed to always return the optimal edge set for this graph family.

Now consider the graph family shown in Figure 8.3, where the upper and lower rows
have n vertices each. For a graph in this family, a security level of 3 can be achieved by
lifting the two middle edges. However, starting with the original circuit, the heuristic in
Algorithm 2 has no way of knowing that it should select one of two middle edges for lifting,
as lifting any single edge will give us the same security level of 2. This remains true as long
as at least one “non-hub” vertex is connected to two hub vertices. But the heuristic can
end up lifting 4n − 1 edges before every non-hub vertex becomes connected to connected
no more than one hub vertex, meaning the performance guarantee of the solution can still
be as bad as 4n/2 = O(n).

We have therefore shown that both ways of applying the heuristic can output solutions
with performance guarantees of O(n). We now show that they can also output solutions
with performance guarantees of O(n2) for some instances. The example family of instances
for [10]’s heuristic is shown in Figure 8.2, where there are 6n white vertices, for a natural
number n. In this case, 2-security can be achieved by lifting 4 edges (the ones connecting
the blue vertices to black vertices). However, starting with the version of the graph where
every edge is lifted, the heuristic may choose to place the edges connecting the blue vertices
to the black vertices as well as those connecting the black vertices to the white vertices
(the security level will still be 2). The heuristic will then be stuck (adding back any of the
white-to-white edges will expose the identities of the blue vertices). The output edge set
will then have O(n2) edges compared to the optimal set which has O(1) edges, meaning
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Figure 8.4: Performance guarantee of the greedy heuristic solution can be as bad as O(n2).

the performance guarantee of the solution will be O(n2).

The heuristic in Algorithm 2 can also output a solution with a performance guarantee
that is O(n2). The example family of instances is shown in Figure 8.2, where we have 2n
white vertices, exactly two of which are connected to the black vertex. For a graph in this
family, 2-security can be achieved by lifting two edges, namely, the ones incident to the
black vertex. But again, starting with a full graph, the heuristic has no way of knowing
that it should select one of these edges first (as long as least one of them exist, the colored
vertex will be uniquely identifiable). The heuristic can end up lifting all other edges before
lifting the two that are incident to the lower black vertex, thus providing a solution with
O(n2) edges, compared to the optimal solution that has only 2 edges.

Thus, we have shown that both heuristics can output solutions with performance guar-
antees that are as bad as O(n2). In the next section, we compare [10]’s heuristic to an
algorithm we develop for solving LIFTING-OPT that was inspired by recent work in the
context of privacy-preserving data publication.
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Figure 8.5: Performance guarantee of the heuristic in Algorithm 2 can be as bad as O(n2).

8.3 K-Isomorphism

In a somewhat recent work, Cheng et al. [6] introduced an algorithm that transforms
a graph representing a social network into an arbitrary number of pairwise isomorphic
graphs, by performing elementary operations on the original graph. The objective of the
transformation is to protect the privacy of individuals in the network represented by the
graph from certain types of attacks that leverage information in graph representations. The
transformation is demonstrated as being both necessary and sufficient for the protection
of the network. The algorithm they propose involves partitioning the given graph into
into k subgraphs with the same number of vertices, then augmenting those with edge
addition and deletion to ensure pairwise graph isomorphism. In an effort to keep the main
characteristics of the original graph in the final k-isomorphic graph, so that the latter may
be useful for data analysis, the algorithm tries to keep the total number of edge additions
and deletions to a minimum.

Now assume an algorithm existed that achieves the same end result, i.e. k-isomorphism,
but it does so only by deleting edges from the original graph, that is, no edge additions
are performed. The following proposition states that the resulting graph will be k-secure
with respect to the original graph.

Proposition 8.3.1 Given a DAG G, and a DAG H we get from G by removing the edges
in a set E ′ ⊆ E[G], if H is k-isomorphic then 〈G,E ′〉 is k-secure.

Proof A k-isomorphic graphH, as defined in [6], consists of k disjoint subgraphs h1, . . . , hk,
i.e. H = {h1, . . . hk} such that hi and hj are isomorphic for i 6= j. Such a graph, by defini-
tion, has k−1 automorphisms for each component graph hi, that each map the vertices in hi
to the vertices of a distinct component graph hj, such that i 6= j for all mappings. Assume
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the identity mapping from G to H maps vertex u in G to some vertex v in hi (we know we
have such a mapping since H is subgraph isomorphic to G). This mapping, combined with
an automorphism of H that maps the vertices of hi to the vertices of another component
hj gives us a subisomorphic mapping from G to H that maps u to some other vertex vj in
hj. This vertex is different for each automorphism provided that automorphism maps hi’s
vertices to another component’s vertices, which means we have k subisomorphisms from G
to H that each map u to a distinct vertex. This means u is k-secure and the whole graph
by extension is also k-secure.

Of course, while k-isomorphism is a sufficient condition for k-security, it is not a nec-
essary condition, i.e., 〈G,E ′〉 can be k-secure even if H is not k-isomorphic. Still, it seems
like an efficient algorithm for making a graph k-isomorphic by deleting as few edges as
possible could act as an approximation algorithm for LIFTING-OPT, maybe even with an
approximation ratio better than that of the greedy heuristic.

Unfortunately it turns out that such an algorithm is highly unlikely to exist, and that
if it did, just like the heuristic, the performance guarantee can be no better than O(n2).
The reason for the first claim is that the problem of finding the optimum edge set remains
NP-hard, and therefore unsolvable exactly in an efficient way unless P = NP. The
proof of NP-hard ardness is the same as the one used to be prove that LIFTING-DEC is
NP-complete, if we note that the unlifted netlist in the reduction’s LIFTING-DEC instance
is always 2-isomorphic. Moreover, an algorithm that transforms a graph into k pairwise-
isomorphic components by edge deletion can return a solution with a size that is O(n2)
times the size of the optimum solution for LIFTING-OPT, as shown in the example in Figure
8.2. For the graph in the figure, n-security can be achieved by lifting a single edge (the one
ending at the black vertex). However, to transform the graph into n pair-wise isomorphic
components, at least n(n − 1) + 1 edges will need to be lifted, meaning the performance
guarantee of the solution will be n(n− 1) + 1 = O(n2).

But the example in Figure 8.3 is unlikely to correspond to a real-life circuit, so we
investigate the relative performance of the k-isomorphism approach compared to [10]’s
greedy heuristic on a more realistic benchmark, that is, the c432 circuit from the ISACS
benchmark suite[5]. We choose the circuit for comparison since [10] already uses it to to
investigate security-cost trade-offs obtained from the heuristic. We modify [6]’s algorithm
so that the operations it performs on the input graph consist only of edge deletions, instead
of both edge additions and deletions, hence guaranteeing the generated graph will be
subgraph isomorphic to the original graph. The modified algorithm works as follows.

1. Vertices are added to the input graph to ensure the number of vertices of each color
in the graph is a multiple of k (since otherwise no algorithm can make the graph
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Figure 8.6: Performance guarantee of the solution provided by an algorithm that trans-
forms a graph into k pairwise-isomorphic components by lifting as few edges as possible
can be as bad as 2n.

k-isomorphic merely by deleting some edges). We note that this can be done by
adding no more than c(k− 1) vertices where c is the number of distinct colors in the
input graph.

2. We then locate what [6] refers to as Potential Anonymization Graphs (PAGs). A PAG
is simply any connected subgraph of the input graph with an edge count that lies
within a certain threshold, maxPAGsize. In [10], maxPAGsize is set to the average
degree of the input graph, with the intuition being that many vertices in the input
graph have this degree and each forms a PAG with their immediate neighbors. The
PAGs are determined by traversing the given graph from each vertex in a depth-first
manner, and enumerating all connected subgraphs with mazPAGsize edges. The
graph-traversal also determines the embeddings for each PAG, where an embedding
of a PAG is simply another subgraph of the input graph that is isomorphic to the
PAG in question.

3. For each PAG, it is then determined whether the PAG has k vertex-disjoint embed-
dings. As [6] shows, this poses an NP-hard decision problem that can be transformed
to a problem of finding an independent set with size k in a graph representation of the
embeddings and their relations. [6] seem to do without a polynomial time algorithm
for the independent set problem. For better efficiency, we use the polynomial time
algorithm described in [8] instead.

4. We select one of the PAGs that was determined in the previous step to have k vertex-
disjoint embeddings, and assign the vertices of each of the k embeddings to a separate
partition. Since a vertex may only be assigned to a partition once, this step may
affect the formation of vertex-disjoint embeddings for the remaining PAGs. [6] intuit
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that PAGs that contain vertices with the highest degrees may incur greater distortion
and that there is a chance of reducing the overall distortion if treated earlier. We do
the same. We also maintain the isomorphic mappings between the embeddings in a
table, which we refer to later in the algorithm.

5. Steps 3 to 4 are repeated until no PAG remains with size maxPAGsize that has at
least k vertex-disjoint embeddings.

6. In [6] the remaining PAGs are “anonymized”, a process which involves adding new
vertices and edges to the graph to form new vertex-disjoint embedding for a PAG.
Since we do not have the liberty to do this for LIFTING-OPT, we simply look for
PAGs with smaller sizes that have at least k vertex disjoint embeddings. That is,
we decrement maxPAGsize by 1 and repeat Steps 2 to 6 until all vertices in the
graph have been assigned to partitions or maxPAGsize becomes 1, in which case we
simply divide the remaining vertices into groups such that the number of vertices of
each color within a group in the same, and assign each group to a separate partition.

7. Edges that cross partitions are deleted, so that we end up with k components. For
every pair of components, we use the mappings we generated earlier between the
vertices of the two components to determine which edges should be deleted, if any, to
make the two components isomorphic. This is another difference from [6]’s algorithm,
where they can add edges that did not exist originally in the input graph.

The results of running our algorithm on the c432 benchmark for security levels 2 through
10 are reported in Table 8.1.

For security levels higher than 10, the algorithm deletes all edges in the c432 circuit.
The algorithm thus does a significantly worse job than [10]’s heuristic, which for the first 10
security levels, deletes at most 200 wires from the circuit. The relatively bad performance
for higher security levels can be due to the isolated vertices introduced into the circuit
in Step 1, which necessitate the isolation of some other vertices in the circuit to achieve
k-isomorphism.

8.4 Conclusion

We have shown that for [10]’s greedy heuristic, no performance guarantee better than
O(n2) can be expected. The heuristic performs favorably however compared to a state-
of-the-art algorithm that provides a feasible solution for LIFTING-OPT by transforming the
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Target security level Number of added vertices Number of deleted edges
2 1 229
3 4 258
4 3 279
5 6 278
6 7 291
7 8 303
8 7 303
9 16 294
10 11 293

Table 8.1: Performance of [6]’s modified algorithm on the c432 benchmark for security
levels 2 to 10.

input graph to a k-isomorphic one, where k is the target security level in the LIFTING-OPT

instance.
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Chapter 9

Circuit Obfuscation by Augmentation

In this chapter, we give a couple of examples to illustrate how augmenting a circuit by
introducing new gates and wires can help in increase the security level, provided it is
coupled with the right wires being lifted to the trusted tier. We give a new notion of
security appropriate in this context and characterize the computational complexity of the
problem of achieving security as a first step to proposing concrete approaches for it.

9.1 Example

Assume the target of the defender is the make the full adder circuit in Figure 9.1 from
[10] 2-secure. The defender can select the wires connecting the adder’s inputs and outputs
to the rest of the circuit for lifting, then request that the foundry fabricates two isolated
copies of the unlifted netlist on the untrusted tier. That is, the defender can send the
attacker the netlist in Figure 9.2. Since it has access to the original netlist, the foundry
knows that all the designer needs is a single full adder circuit on the chip, but it has no way
of knowing which of the two circuits will be activated when the final 3D chip is created. An
attacker at the foundry can then either randomly pick one of the two circuits to attack and
only succeed with probability 50%, or it can attack the two circuits with a larger malicious
circuit and risk the detection of the attack. The attacker’s ability to conduct a malicious
attack is, therefore, again somewhat hindered.

The circuit duplication technique of course has the disadvantage that implementing two
copies of a circuit on a tier requires an IC that is approximately two times larger. This
cost can be mitigated by lifting more wires from the original netlist to make some gates
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Figure 9.1: A full adder circuit and its graph representation.
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Figure 9.2: The defender can select the wires connecting the adder’s inputs and outputs
to the rest of the circuit for lifting, then request that the foundry fabricates two isolated
copies of the unlifted netlist on the untrusted tier.
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Figure 9.3: Possible bottom tier netlist for the full adder circuit. The netlist consists of 8
gates.

more secure, even without duplication. The graph representation of an example bottom
tier netlist is depicted in Figure 9.3. The netlist has 8 gates as opposed the one in Figure
9.2 which has 10, but at the same time more wires need to be implemented on the top tier
to create the final 3D circuit. In the example in Figure 9.4, the bottom tier netlist has
even less gates, but in order to activate Gate r in the final circuit, a total of 7 wires will
need to be implemented on the top tier.

For the netlist in Figure 9.4, note that if Gate r is chosen for activation as the OR
gate in the final circuit, then we will have a dead gate in the circuit, namely Gate y. In
this chapter, we only consider the case where the final active circuit is a replica of the
original circuit, i.e., without any extraneous logic. This includes logic that is not dead yet
introduced for the mere purpose of obfuscation (e.g., a pair of inverters placed in a row on
an internal wire of the circuit).

To conclude this section, we note the following two points about the circuit augmenta-
tion technique. First, if there are less than k gates of a certain type in a given circuit, then
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Figure 9.4: Possible bottom tier netlist for the full adder circuit. The netlist consists of 5
gates.

circuit obfuscation by wire lifting alone cannot make these gates k-secure, e.g. without
introducing a new OR gate into the full adder netlist, it is impossible to make Gate 5
2-secure, as it is the only OR gate in the full adder circuit. Second, obfuscation by circuit
augmentation implicitly assumes an underlying 3D IC manufacturing process. This is since
for it to work, at least the wires connecting the circuit I/O to the rest of the circuit will
need to be implemented on a separate tier than the one where the rest of the circuit is
implemented.

9.2 Notion of Security

The notion of security here is also based on the existence of multiple one-to-one mappings
between gates in the original netlist and gates in the netlist sent out for fabrication. How-
ever, in this case the mappings do not need to be surjective. i.e., not every gate in the
bottom tier netlist will need to be map to a gate in the original netlist. As we mentioned
previously, we consider the special case where the subgraph of the bottom tier netlist is
disconnected from the rest of the circuit. We define a special type of mapping, which we
call a subcircuit isomorphism, to capture this notion.

Definition (Subcircuit isomorphism). A DAG G is subcircuit isomorphic to a DAG H if
a spanning subraph of G is isomorphic to an induced subgraph of H that is connected to
no additional vertex in H. The corresponding mapping is called a subcircuit isomorphism.
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Note that we restrict the subgraph of H to be an induced subgraph. The cost of a
subcircuit isomorphism from a DAG G to a DAG H is defined as the difference in edge
count between the spanning subgraph of G and the induced subgraph of H. Based on the
notion of subcircuit isomorphism, we define the notion of a k-secure gate for obfuscation
by circuit augmentation as follows.

Definition (k -secure gate). Given a DAG G, a vertex u in it, and another graph H such
that there is at least one subcircuit isomorphism from G to H, we say that u is k -secure
if there exists k distinct vertices v1, . . . , vk in H and mappings φ1, . . . , φk from V [G] to a
subset of V [H] such that every φi is a subcircuit isomorphism from G to H and for all
i ∈ [1, k], φi(u) = vi.

This is similar to [10]’s definition of a k-secure gate, except here subgraph isomorphism
is replaced by subcircuit isomorphism. We denote by Su the set of vertices in H that u
can be mapped to via a subcircuit isomorphism from G to H. By definition, for u to be
k-secure, |S| ≥ k. If vi is a vertex in Su, it is possible that u can be mapped to vi via many
different subcircuit isomorphisms from G to H. Let φu,vi denote the mapping that has the
lowest cost among all subcircuit isomorphisms that map u to vi. We define the lift cost of
the k-secure gate u, σu, as the cost of the kth least expensive φu,vi , where vi ∈ Su.

The intuition behind the cost definition is that for the gate to be truly k-secure, the
defender must be willing to incur the cost of each of the k mappings corresponding to every
gate. In fact, to make the attacker’s job as difficult as possible, the selection of the final
mapping should be done uniformly at random from the set of all possible mappings. We
choose the pessimistic approach of using the cost of the most expensive mapping as a cost
metric. Another approach would be to use the expected cost instead.

Based on the definition of a k-secure gate, we define a k-secure graph as follows.

Definition (k -security with lift cost σ). Given two DAGs G and H such that there is at
least one subcircuit isomorphism from G to H, we say that 〈G,H〉 is k -secure with lift
cost σ if every vertex in G is k -secure and maxu∈V [G] σu = σ. The cost of the k-secure
pair 〈G,H〉 is defined as max(c1σ, c2|V [H]|) where c1 and c2 are positive constants. An
optimum k-secure version of G is defined as a graph that has the minimum cost among all
graphs H such that 〈G,H〉 is k-secure.

Here, c2|V [H]| is an estimate of the area consumed by the cells in the bottom tier of
the 3D IC while c1σ is an estimate of the area consumed by the bond-points required to
lift wires to the top tiers (According to [10], the bond-density is limited by technology
and therefore, more lifted wires correspond to increased area). The area of a 3D IC is
determined by the larger of the two areas, hence the cost definition.
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9.3 Computational Complexity

We now show that finding an optimum k-secure version of a given DAG G as defined above
is NP-hard. We show this by showing the corresponding decision problem, OBFUSCATE, to
be NP-complete.

Definition (OBFUSCATE). Given a tuple 〈G, c, k〉, where G is a DAG, c is a real number,
and k is a natural number, determine if there exists a DAG H such that 〈G,H〉 is k-secure
and the cost of the k-secure pair is at most c.

The problem is NP-complete by the following simple reduction from LIFTING-DEC.
Given a prospective instance of LIFTING-DEC, 〈G, η, k〉, add a number of vertices to G
equal to max(n, k) where n is the smallest integer that satisfies:

c2(|V [G]|+ n) > c1η

The new vertices need to be of a color that is not assigned by G’s coloring function to
any of G’s vertices. Call the new graph G′. The instance of OBFUSCATE becomes 〈G′, c1η〉.
To see that the reduction is valid, observe first that a solution for the LIFTING-DEC instance
always yields a solution for OBFUSCATE, as, if E ′ is the edge set in the certificate for the
LIFTING-DEC instance and H ′ is the graph we get by removing the edges in E ′ from G′,
then 〈G′, H ′〉 is k-secure with cost c2η. Moreover, since c2|V [G′]| > c1η, a solution for the
OBFUSCATE instance implies the existence of an edge set with size at most η which when
lifted from G′ makes it k-secure. The same edge set will make G k-secure when lifted
from it. Hence, 〈G, η, k〉 can only be a true instance of LIFTING-DEC if 〈G, c1η〉 is a true
instance of OBFUSCATE, and since we showed LIFTING-DEC to be NP-complete in Chapter 5,
it follows that OBFUSCATE is NP-hard.

To show that OBFUSCATE is in NP, note that to prove that the answer to a specific
OBFUSCATE instance is ‘yes’, it suffices to provide the graph H, the size of which will be
limited by c/c1, as well as k subcircuit isomorphisms for each vertex in G that each map the
vertex to a distinct vertex in H. The proof can be efficiently checked and hence OBFUSCATE

is in NP.

We have therefore shown that OBFUSCATE is NP-complete, which in turn means the
optimization problem is NP-hard. Thus, finding an optimal k-secure version of a DAG G
as defined here is also unlikely to be computationally intractable.
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9.4 Conclusion

Characterizing the computational complexity of a problem usually serves as a first step to
proposing concrete approaches for it. Here, we have shown that the problem of circuit
obfuscation by augmentation is NP-hard which means it cannot be solved exactly in
polynomial time, and that other, suboptimal algorithms for solving it must be pursued.
As a first step in this direction, we conjecture that any optimal solution for the problem
will be a subgraph of the graph we get by repeating G k times. We leave a proof and
procedure for achieving k-security based on it as topics for future work.
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Chapter 10

Conclusions

10.1 Conclusions

The questions stated in Chapter 4 have been answered. As shown in Chapters 5 to 9:

1. The computational problem of circuit obfuscation, as defined in Chapter 3, is highly
unlikely to be tractable.

2. SAT solvers are unlikely to be a viable approach for solving the problem.

3. The problem is inapproximable within ratio 2.08 unless P = NP. Moreover, it is
highly unlikely that a polynomial time approximation algorithm exists for solving

the problem that has an absolute error guarantee of
(

|V [G]|
2

)ε
.

4. The heuristic used by [10] to obtain the security-cost trade-offs involved in cir-
cuit obfuscation can output solutions with relative guarantees of O(n2) for certain
LIFTING-OPT instances, where n is the vertex count of the input graph. This is the
worst the heuristic can do.

5. The problem of circuit obfuscation is still hard when we are allowed to introduce new
gates and wires into the circuit to enhance the security level.

10.2 Summary of Contributions

1. Proved that LIFTING-OPT, as defined in Chapter 3, is NP-hard.
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2. Proved that the same problem is in MAX− SNP and that it cannot be approxi-

mated within addend
(

|V [G]|
2

)ε
for some ε ∈ (0, 1) unless P = NP.

3. Showed that no performance guarantee better than O(|V [G]|2) can be provided by
the heuristic proposed by [10] for solving the problem. Yet the heuristic does better
than a solution based on a state-of-the-art algorithm that achieves k-isomorphism.

4. Developed a reduction from LIFTING-OPT to SAT.

5. Showed that the problem of circuit obfuscation remains NP-hard when we are allowed
to introduce gates and wires into the netlist. This is assuming that we adopt the
area of the final 3D circuit as a cost metric. The area of the bottom tier is assumed
to be directly proportional to the number of cells implemented in it.

10.3 Future Research

1. Try to place LIFTING-OPT into one of the higher classes of [4]. We showed LIFTING-OPT

to be in Class I (MAX− SNP), but we suspect it to also be in Class II, that is,
to be inapproximable within ratio O(log(n)) unless NP has quasipolynomial-time
deterministic algorithms.

2. Investigate the possibility of developing an efficient exact solver for LIFTING-OPT using
a reduction from LIFTING-DEC to k-SECURITY-DEC, followed by [10]’s efficient solver
for k-SECURITY-DEC.

3. Investigate the possibility of developing an efficient exact solver for LIFTING-OPT using
an ILP or PB solver.

4. Try to come up with a more efficient reduction from LIFTING-DEC to SAT, or prove
that ours is the most efficient.

5. Develop a concrete algorithm for approximating the problem of determining the
optimum k-secure version of a DAG G, as defined in Chapter 9. We conjecture
that any k-secure version of G will be subgraph isomorphic to the graph we get by
repeating G k times, which can serve as a starting point for developing concrete
algorithms for the problem.
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