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Abstract

We present real-time autonomous implementations of a practical distributed formation

control scheme for a multi-quadrotor system for two different cases: parameters of lin-

earized dynamics are exactly known, and uncertain system parameters. For first case,

we design a hierarchical, decentralized controller based on the leader-follower formation

approach to control a multi-quadrotor swarm in rigid formation motion. The proposed

control approach has a two-level structure: high-level and low-level. At the high level,

a distributed control scheme is designed with respect to the relative and global position

information of the quadrotor vehicles. In the low-level, we analyze each single quadrotor

control design in three parts. The first is a linear quadratic controller for the pitch and roll

dynamics of quadrotors. The second is proportional controller for the yaw motion. The

third is proportional-integral-derivative controller in altitude model. For the second case,

where inertial uncertainties in the pitch and roll dynamics of quadrotors are considered,

we design an on-line parameter estimation with the least squares approach, keeping the

yaw, altitude and the high-level controllers the same as the first case. An adaptive linear

quadratic controller is then designed to be used with lookup table based on the estimation

of uncertain parameters. Additionally, we study on enhancement of self and inter-agent

relative localization of the quadrotor agents using a single-view distance-estimation based

localization methodology as a practical and inexpensive tool to be used in indoor environ-

ments for future works. Throughout the formation control implementations, the controllers

successfully satisfy the objective of formation maintenance for non-adaptive and adaptive

cases. Simulations and experimental results are presented considering various scenarios,

and positive results obtained for the effectiveness of our algorithm.
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Chapter 1

Introduction

1.1 Motivation and Earlier Works

Recently, based on robotic development, performance requirements of robotic systems have

been increased for difficult missions and environment. Since most single robotic systems

are not efficient for work in some of complicated team tasks such as military patrol duties,

agricultural activities, search, surveillance, rescue etc., multi-agent dynamic systems are

more useful than single robotic systems. Furthermore, multi-agent dynamic system de-

sign and analysis has become an interdisciplinary subject, having applications in various

fields involving aerial, submarine, satellite and ground systems [1–7]. Considering multi-

agent systems, cooperative and cohesive motion tasks have been a relatively new field of

research in recent decades. Designing control schemes for these tasks have some difficulties

as a consequence of complexities and components of multi-dynamic structures. Typical

control tasks for such cooperative dynamic systems include path planing, flocking, consen-

sus, obstacle avoidance, collision, stability analysis, formation problems [2, 5, 8–15]. Such
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tasks have prospective applications in various field, including cooperative defence robotics,

cooperative surveillance, cooperative source localization and tracking.

In the motion of a multi-agent system as a swarm, formation is used for a swarm

collection to perform certain cooperative mission requirements, optimally [16]. In other

words, the formation control task aims to structure a swarm system in a fixed pattern

while a system is moving on a desired trajectory. In order to solve the formation problems,

several architectures have been considered hierarchical vs. non-hierarchical and symmetric

vs. asymmetric [1,2,5,17]. Note that hierarchical control structure is more practical because

of its applicability to the systems without long-range sensors except in case of leader agents.

Non-hierarchical structures, on the other hand, use a virtual leader approach [12, 13, 17].

The fictitious virtual leader is used as a reference path generator for a fictitious point

(e.g. geometric center) of the formation. All agents are assumed to be responsible for

maintaining inter-agent distances between the virtual leader and each follower with non-

hierarchical architecture. In this thesis, using a leader-follower formation approach, we

perform an asymmetric decentralized control design for a multi-quadrotor system which

is designated to move in an area maintaining a predefined formation. To make the leader

agent more free when it makes decisions, we use hierarchical control structure as studied

in [1, 2].

Later, we consider various parametric uncertainties in the system and design an adap-

tive version of our distributed control scheme. In literature, for adaptive control design,

there are two main approaches: direct and indirect adaptive control approaches [18]. In-

direct method calculates controller parameters using estimated system parameter at each

instant time, while direct method updates directly controller parameters. Considering the

system inertial uncertainties in pitch and roll dynamics, we also perform the asymmetric

decentralized control design using an indirect adaptive control approach based on the least
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square estimation algorithm.

With respect to multi-quadrotor system, quadrotor helicopters have been discussed in

many works of literature such as [19–24] where there are some of important considerations

about designing quadrotor dynamics, namely, external disturbance effect on the system

dynamics, blade flapping, torque effects from propellers, inertial effects from center of

mass, fault detection and tolerance, and trajectory generation. In this thesis, we use a

dynamic model of a multi-quadrotor system from [22,25] to design overall control schemes

for non-adaptive and adaptive cases. As in [15], we consider the overall control task of

the both cases in two parts namely high level and low-level control structures. At first,

the controller is related with the formation maintaining and generation of desired attitude

angles. Second, the controller is responsible for controlling an individual agent. We also use

a linear quadratic controller (LQR), proportional (P), and propositional-integral-derivative

(PID) controller for pitch and roll, yaw, and altitude model, respectively. For the adaptive

control scheme, we design an adaptive linear quadratic controller (ALQR). In both cases,

our main mission is to maintain required distances, positions or specified orientation in a

swarm instead of individual agent behaviors. To better illustrate the formation behaviors

using the proposed control schemes, we fix a set of specific formation missions in upcoming

chapters. In order to perform real-time experimental testing, we use a group of Qball-X4

quadrotor vehicles designed by Quanser Inc.. During formation missions, although sensor

information provides some variables for the quadrotor such as acceleration and rotation

angles by the inertial measurement unit (IMU), we use an external localization system

to make more accurate position information. Because of our chosen indoor environment

for test, GPS (Global Positioning System) is not feasible for obtaining positions of swarm

agents on our system. Therefore, we use an indoor localization method, namely Optitrack

system designed by NaturalPoint Inc., integrated to our multi-quadrotor testbed.

3



1.2 Contributions and Organization of the Thesis

Designing motion controller for a single-quadrotor agent or a multi-quadrotor system carries

many difficulties due to dynamic nonlinearities and uncertainties, and mission complexities

as discussed in earlier literature [3, 19–23]. In this study, by consideration of these works,

we first focus on real-time implementation of autonomous formation control of Qball-

X4 multi-quadrotor system with the leader-follower structure. By means of the tools

provided in [1, 3, 4, 17], we develop a distributed formation acquisition and maintenance

control algorithm based on measurements of inter-agent distances. The control algorithm

establishes a maintained geometric configuration during the swarm motion. Orientations

and global positions of the quadrotors are provided by inertial measurement units (IMU)

and the Optitrack optical sensors in indoor environment are used as feedback signals. Then,

we consider uncertainties in the Qball-X4 quadrotor dynamic parameters, particularly in

inertia of pitch and roll dynamics for the same formation task. We develop an adaptive

control scheme based on the least squares on-line parameter identification (PI). Finally, we

focus on enhancement of the localization tools used in the distributed formation control,

and propose a localization enhancement methodology based on use of a single camera

mounted on each quadorotor.

In summary the main contributions of this thesis are as follows:

(i) we design and analyze a practical distributed formation control scheme for real-time

implementation of rigid formation maintenance tasks on multi-quadrotor systems.

(ii) In order overcome inertial uncertainties during the motion, we design an adaptive

version of the developed practical distributed formation control scheme.

(iii)Utilizing single-view based position estimation for each quadrotor, we design an

optimal localization enhancement method for better accuracy and longer operation field.
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The rest of the thesis is organized as follows: Background and the modeling of the

quadrotor system are presented in Chapter 2. The base real-time formation control archi-

tecture is designed and implemented in Chapter 3. The adaptive control version of this

control architecture is designed and tested Section 4. In Chapter 5, we design a method

for localization enhancement. Concluding remarks are given in Chapter 6.
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Chapter 2

Background

2.1 Graph Modeling of Vehicle Networks

In this section, we give essential definitions about graph theoretical modeling of multi-agent

vehicle networks (swarms) in order to construct a required formation architecture for an

autonomous formation task of a multi-quadrotor system. In the formation control literature

[26–28], graph theory is a significant tool used for geometric representation of a group of

nodes, which represent agents of a swarm S for a formation task, in a specified motion space,

e.g. R2 or R3. Thus, a graph is defined as a theoretical interconnection structure among

agents to represent information flow, communication and interaction topology within the

formation structure of a swarm S. Moreover, graph topology is not only used for a required

mission such as moving into formation, maintenance of formation form or switching between

formations, but also it is used to analyze their controllability and stability. Formally, a

graph G is a pair G = (V,E) which consists of a vertex set V , and an edge set E ⊂ V ×V ;

each vertex represents an agent and communication sensing and each edge connecting two

6



vertices represents a link between corresponding agents. For example, in Figure 2.1-[a],

vertices V = (1, 2, 3) as agents Ai, i = 1, 2, 3 and edges E = (
−→
13,
−→
32,
−→
21) as directed

information links. In addition, when inter-agent distance control is considered, there are

two types of approaches for controlling these inter-agent distances. In terms of graph types,

they are called symmetric or asymmetric structures [26, 28–30]. These control structures

can be represented by directed or indirected graphs, respectively, as seen in Figure 2.1.

3

1

2

1

3

2

[a] [b]

Figure 2.1: Graph types for a three-agent formation control [a] Directed graph [b] Undi-

rected graph

2.1.1 Directed Graph Modeling

Considering the asymmetric formation control structure, in order to generate a directed

underlying graph GF = (VF , EF ) of a swarm, we use the directions of information links

within graph GF . If the graph GF involves a directed link between
−−→
(i, j) agents, it is

called a directed underlying graph. For instance, as seen in Figure 2.1-[a], there are three

7



ordered pairs among agents (1, 2, 3), so these ordered pairs represent directed information

links in connection architecture of agents. When considering the formation task in a

multi-agent system, one of neighbor agent in pairs is responsible for receiving position

information by using a communication network or sensing system. Using the asymmetric

formation control structure, the responsible agent makes decisions by itself to maintain

the desired goal. Therefore, when compared to the symmetric control structure, the multi-

agent formation control design avoids half of the complexities in communication and control

complexities. [29].

2.1.2 Undirected Graph Modeling

The symmetric formation control structure has undirected information links between agent

pairs. In order to generate an undirected graph GF = (VF , EF ), the properties of infor-

mation links are also important within underlying graph GF . If both agent pairs are

responsible in maintenance of formation tasks, GF is undirected underlying graph. For

instance, as seen in Figure 2.1-[b], there are three undirected agent pairs, so they have

undirected information links in connection architecture between each responsible agent

pairs. Thus, this represents an undirected underlying graph. Considering the formation

task, in the symmetric structure, since both agent pairs are responsible to maintain de-

sired inter-agent distance, this causes twice the communication and control complexities

as compared to an asymmetric control structure.

8



2.2 Rigid and Persistent Formations

Using graph theory tools, the formation of a swarm S is represented by F = (S,GF , DF )

where GF = (VF , EF ) is underlying graph, S = (A1, ..., Ai), i > 2 represents members of

swarm, and DF = {dij|
−−→
(i, j) ∈ EF} is objective distance set. Considering the formation F

and each of its agent pairs (Ai, Aj), if all distances dij are maintained in F , it is called a rigid

formation by condition of inter-agent distances dij. In other words, by keeping inter-agent

distances of each agent pairs, the desired formation shape remains at its required distances

within the formation shape. In addition, during the formation task, if each agent satisfies

the inter-agent distance constraints, the formation F is called a constraint − consistent.

Furthermore, if F satisfies the rigid and constraint− consistent formation, this is called

a persistent formation [31, 32]. Besides, to satisfy minimal − persistent, the formation

edges should be in the limitation which is minimal number of edges to provide persistence.

2.3 Formation Control Structures

In the formation control various methods have been developed, including leader-follower,

virtual leader, co-leader and behavior-based approaches. Here, we just review the leader-

follower approach and virtual leader approach to offer a brief background.

2.3.1 The Leader-Follower Approach

The leader follower approach is practical for many formation studies, such as seen leader

follower tasks. [1, 3, 5], because of leader’s freedom in guiding the formation and having

the formation free of cyclic control paths. One other benefit of this approach is that the
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only leader agent can be equipped with long-range sensors for localization. Others can be

equipped with unsophisticated short-range distance measurement sensors such as cameras,

sonar, and infrared sensors in order to measure distances between agent pairs.

The main notion of this approach is that one agent is designed as a leader, while the

others are designated to follow the leader as followers in formation structure. Therefore,

the leader agent does not attempt to maintain the formation shape, and it has 3 degrees

of freedom (DOF) in the motion. It tracks a prior planned or on-line decided desired

trajectory in R3. Concurrently, the second agent aims to maintain desired distance from

the leader with 2 DOF, left, to be used orienting the formation. Thereby, it is called the

first follower. In a similar way, the third agent aims to maintain desired distances from

the leader and the first follower, and uses the 1 DOF to help the first follower in orientation

of the formation. It is called the second follower. Each of the other agents maintains pre-

set distances from 3 pre-assigned neighbor agents, having 0 DOF left for free motion, and

it is called ordinary follower. For R2-motion case, [1] and as seen in Figure 2.2, the

leader has 2 DOF with independent from other agents’ positions and heading angles, and

it simply tracks its desired angle as a free agent. With respect to distance error threshold

between the leader and second agent, the second agent follows the generated heading angle

as a first follower, and its desired angles depend on the leader’s position and heading

angle with 1 DOF. Furthermore, the last agent depends on both agent informations to

generate its desired angles with 0 DOF, and it is called ordinary follower in motion.

2.3.2 The Virtual Leader Approach

In the multi-agent systems’ formation control problems, the agents usually have limited

communicating and sensing capabilities. Hence, information acquisition can be limited to

10



A1
A2

d23


/3

/3

d13

12

d3
A3

21

(x3d1,y3d1) (x3d2,y3d2)

(x3d,y3d)

Figure 2.2: A leader-follower formation approach generating desired angles [1]

inter-agent measurements among members of a formation swarm. In the present case, the

developed control laws need to rely only on local information of neighbor agents for satisfy-

ing the targets such as keeping formation, obstacle avoidance, and reference tracking [4,5].

On the other hand, in the virtual leader approach, assuming that each agent is able to

sense its essential information in a perfect manner [6, 17]. A virtual leader is defined in

suitable place of the formation that is designated for a reference path. During the task,

each agent is responsible to maintain the inter-agent distance between the virtual leader

and itself in the non-hierarchical architecture. In other words, all agents are controlled,

and then they position around the virtual leader on the desired position and/or bearing.

In [17], one virtual agent is defined to track the desired virtual path as the leader. Then,

the motion of virtual leader is adapted to desired motion for each agent. Lastly, each agent

tracking is derived with respect to individual consideration as illustrated in Figure 2.3.

11



Virtual leader

Agent 1

Agent 2

Agent 3Agent 4

Agent 5

d12

d1v

x

y

Figure 2.3: A virtual leader formation approach [17]

2.4 Multi-Quadrotor System

As the testbed for our study, we use a multi-quadrotor system [25] composed of Qball-X4

quadrotors developed by Quanser Inc., and shown in Figure 2.4. For the sake of secure

operation, each Qball is enclosed by protective carbon fiber sticks to avoid hazards in

indoor tests. Each Qball is equipped with two pairs of brushless DC motors and fitted

10-inch propellers. The Qball-X4 has an on-board avionics data acquisition card (DAQ)

and Gumstix embedded computer, as shown in Figure 2.5 for interfacing with on-board

sensors and driving the motors. The DAQ includes an inertial measurement unit (IMU)

and an avionics input/output (I/O) card to support different studies on the quadrotor. To

drive the motors, each motor is linked to one of the four PWM servo output channels in

summarized Table 2.1 on the DAQ. Furthermore, Quanser’s real time software Quarc and

its MATLAB Simulinkr interface provide easy developing and testing on actual hardware.

12



Figure 2.4: Multi-quadrotor Qball-X4 swarm system

Figure 2.5: Communication of the Qball-x4 quadrotor [25]
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Table 2.1: Motor servo channels [25]

Motor Back Front Left Right

Servo output channel 0 1 2 3

2.4.1 Communication and Sensing of Multi-Quadrotor System

In our experimental study, within communication architecture, we have a multi-quadrotor

testbed which includes the multi-quadrotor swarm, the Optitrack localization system and

ground station as summarized in Figure 2.6. In the testbed, the host computer is in charge

of communication among the members of the swarm. In addition, in order to reduce

workload on the Gumstix embedded computer, the host computer is used to operate high-

level controller for the generation of the agents’ desired position at any time instant. At that

time, the indoor localization system Optitrack helps the high-level controller by supporting

the actual position information for more accurate localization. Also, inertial measurement

units (IMU) provide acceleration and angular orientation measurements. Therefore,using

these sensor feedback signals, the host computer generates desired position informations,

and then the computer sends them to individual quadrotor motion controllers as reference

inputs. Among testbed units, all communication is via WLAN connection.

2.4.2 OptiTrack Indoor Localization System

Our indoor localization system has fourteen NaturalPoint OptiTrack cameras [33] as shown

in Figure 2.7. To receive position data from the localization system, we use Quarc’s

Optitrack block and predefined trackables of the OptiTrack software. Also, in order to

receive position information of predefined trackable agents, the indoor localization system
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Figure 2.6: Multi-quadrotor Qball-X4 testbed

is directly connected to the host computer by an LAN connection as shown in Figure 2.6,

and markers of different shapes are placed on the quadrotor agents for sensing.

2.4.3 Coordinate Frames

In this study, our operational frames are a global frame Og and the fixed-body frame Ob as

depicted in Figure 2.8, respectively. In fact, there are more frames involved in the whole

design such as camera, image, and inertial frames. We skip them in the thesis presentation

for brevity. All moments, forces, and inertia are taken in fixed-body frame as indicated in
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Figure 2.8, and the frames can be transformed by aid of Rotation matrix

R =


cosθcosψ −cosφsinψ + sinφsinθcosψ sinψsinφ+ cosφsinθcosψ

cosθsinψ cosφcosψ + sinφsinθsinψ −sinφcosψ + cosφsinθsinψ

−sinθ sinφcosθ cosφcosθ

 (2.4.1)

and the corresponding Euler angles. In addition, on the ground plane of the workspace, a

origin point is chosen as a global frame Og in implementation.

Figure 2.7: OptiTrack Camera [33]
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Figure 2.8: The Qball-X4 quadrotor UAV in the real-time indoor autonomous test and its

coordinate representation as body frame Ob and global frame Og with thrust, moment and

gravity effects [25].

2.5 Modeling of Quadrotor Agents

This section sets out to explain how the linearized dynamic models of the QBall-X4 quadro-

tor system are designed [22, 25] to build an overall control scheme. Therefore, firstly, we

discuss about nonlinear form of quadrotor motion dynamics and then the QBall-X4’s mo-

tion equations are described as linear models for use in our control design.

17



2.5.1 Equations of Motion

Considering a quadrotor system, motion equations are discussed in form of nonlinear struc-

ture as in earlier works [3,19,22] with regard to different dynamics effects on the system. In

our study, we use dynamic models of autonomous QBall-X4 quadrotor vehicle as presented

in [22,25]. Modeling QBall-X4 quadrotor vehicle, nonlinear dynamics of the quadrotor are

described in terms of applied forces F ∈ R3,

F = [Fx Fy Fz]
T = ma, (2.5.1)

and moments M ∈ R3,

M = Jẇ + w × Jw, (2.5.2)

where m is mass of the quadrotor, J is the rotational inertia, w is the angular velocity and

a = [ẍ ÿ z̈]T is linear acceleration in a 3D global frame.

On the body frame of the quadrotor system, the four actuators and their propellers

generate four different thrust forces as shown in Figure 2.8, and all forces effect on a positive

direction of z-axes as shown below:

Fb =


Fxb

Fyb

Fzb

 =


0

0

T1 + T2 + T3 + T4

 . (2.5.3)

.

Using rotation matrix (2.4.1), we define in 3D global frame as follows:

F =


Fx

Fy

Fz

 = R


Fxb

Fyb

Fzb

 =


sinψsinφ+ cosφsinθcosψ

−sinφcosψ + cosφsinθsinψ

cosφcosθ

[T1 + T2 + T3 + T4

]
. (2.5.4)
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.

Therefore, by Newton’s second law (2.5.1) and using drag effects as discussed in [3,22],

in a global frame, the equation of motion is written by adding the negative direction of the

gravitational effect on the z-plane as follows:

a =
F − f
m

, (2.5.5)


ẍ

ÿ

z̈

 =
1

m


Fx − fx
Fy − fy

Fz −mg − fz

 =
1

m


Fx

Fy

Fz

− 1

m


fx

fy

mg + fz

 , (2.5.6)

where drag forces f = [fx, fy, fz]
T are combined within the equation of motion.

Moreover, these forces are defined in works mentioned earlier [3, 22,34] as follows:

f = Dbv, (2.5.7)
fx

fy

fz

 =


Dx 0 0

0 Dy 0

0 0 Dz



ẋ

ẏ

ż

 ,
where Db is the quadrotor’s drag effect on body frame, and v is velocity of the quadrotor.

In terms of rotational motion of the quadrotor, by using (2.5.2) and from [22, 35], we

can obtain the body frame angular acceleration equations of the quadrotor as follows:

ẇ = J−1[M − w × Jw], (2.5.8)

where w is angular velocity, and J is a rotational inertia matrix in the body frame.
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Thus, by considering drag effects on the rotational motion and disturbance effect from

each rotor angular velocity, we can obtain the rotation equations of the quadrotor as follows:
Jxθ̈

Jyφ̈

Jzψ̈

 =


(Jy − Jz)φ̇ψ̇

(Jz − Jx)θ̇ψ̇

(Jx − Jy)θ̇φ̇

+


l(T1 − T2)

l(T3 − T4)

Kψ(T1 + T2 − T3 − T4)

+


−Jrφ̇Ω

Jrθ̇Ω

0

−

fθ

fφ

fψ

 , (2.5.9)

where Jr is inertial moment for each rotor, Kψ is positive gain for yaw motion, Ω is

disturbance effect from each rotor and f = [fθ, fφ, fψ]T is angular drag force within the

rotation equation.

Moreover, these forces are defined from works mentioned earlier [3, 22,34] as follows:

fa = dbw, (2.5.10)
fx

fy

fz

 =


dθ 0 0

0 dφ 0

0 0 dψ



ẋ

ẏ

ż

 ,
where db is the quadrotor’s rotational drag effect on body frame, and w is angular velocity

of the quadrotor.

Afterwards, from (2.5.6) and (2.5.9), we describe non-linear dynamic representations of
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the overall system as follows:

ẍ =
(T1 + T2 + T3 + T4)(sinψsinφ+ cosφsinθcosψ)

m
− dxẋ, (2.5.11)

ÿ =
(T1 + T2 + T3 + T4)(−sinφcosψ + cosφsinθsinψ)

m
− dyẏ,

z̈ =
(T1 + T2 + T3 + T4)(cosφcosθ)

m
− g − dz ż,

θ̈ =
(Jy − Jz)φ̇ψ̇

Jx
+
l(T1 − T2)

Jx
− Jrφ̇Ω

Jx
− dθθ̇,

φ̈ =
(Jz − Jx)θ̇ψ̇

Jy
+
l(T3 − T4)

Jy
− Jrθ̇Ω

Jy
− dθφ̇,

ψ̈ =
(Jx − Jy)φ̇ψ̇

Jz
+
Kψ(T1 + T2 − T3 − T4)

Jz
− dθθ̇.

Finally, because of the quadrotor vehicle at low speeds and ignoring inertial, drug and

Coriolis effects [18, 22], we can obtain the simplified nonlinear model of the quadrotor

system as follows:

ẍ =
(T1 + T2 + T3 + T4)(sinψsinφ+ cosφsinθcosψ)

m
, (2.5.12)

ÿ =
(T1 + T2 + T3 + T4)(−sinφcosψ + cosφsinθsinψ)

m
,

z̈ =
(T1 + T2 + T3 + T4)(cosφcosθ)

m
− g,

θ̈ =
l(T1 − T2)

Jx
,

φ̈ =
l(T3 − T4)

Jy
,

ψ̈ =
Kψ(T1 + T2 − T3 − T4)

Jz
.
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2.5.2 Linearization of The Quadrotor Model

In the experimental studies, in consideration of the simplified nonlinear model of system

(2.5.12), it is assumed that rotational angles are close to zero since small angle approxi-

mation is used to linearize quadrotor vehicles [18, 22]. Therefore, we obtain the linearized

model of the Qball-X4 quadrotor vehicle system. Then, we easily adapt the linearized

model into each vehicle controller for performing attitude and altitude behaviors of the

Qball-X4 quadrotor vehicle in real-time implementations.

Actuators: Hovering the Qball-X4 quadrotor vehicles, we use mounted motors and

propellers which works clockwise and counter-clockwise in pairs. In order to generate

thrust forces by using actuators, the first-order system represents the thrust models [25]

as follows:

Ti = K
w

s+ w
ui, i = 1, .., 4, (2.5.13)

where ui is the pulse-width modulation (PWM) input for each actuator, w is the actuator

bandwidth and K is a positive gain. In addition, in order to use this for pitch and roll

control design, we can use a state variable v, which represents actuator dynamics as follows:

v =
w

s+ w
u. (2.5.14)

With laplace form being changed to dynamic state-space form, input dynamic is written

as follows:

v̇ = −wv + wu. (2.5.15)

Furthermore, from altitude and attitude control schemes which will be designed in the

following chapters, by using controlled inputs uθ, uφ, uψ and uz, we can combine these
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control inputs to each motor input for generating corresponding thrust forces in a real

system as follows:

u1 = uθ + uψ + uz, (2.5.16)

u2 = −uθ + uψ + uz,

u3 = uφ − uψ + uz,

u4 = −uφ − uψ + uz.

Thus, these obtained motor inputs by help of actuator dynamic (2.5.13) command the

quadrotor vehicles’ attitude and altitude control schemes.

Pitch and Roll Models: Driving the Qball-X4 quadrotor system from forward to

backward or left to right direction, roll and pitch models provide motion of the quadrotor

in x-y axes. When considering the roll and pitch rotations, it is assumed that these

models are decoupled to examine motion of the quadrotor separately in the x-y plane as

demonstrated in Figure 2.9. Hence, the rotation is generated around the center of gravity

by the differences of thrust force pairs. Furthermore, from (2.5.12), we obtain linearized

equations of pitch/roll motion dynamics because of the quadrotor at low speeds and by

neglecting other dynamic effects as follows:

Jζ ζ̈ = L 4Tζ , (2.5.17)

where ζ represents θ and φ rotational angles of pitch/roll motion, Jζ represents Jθ = Jx

and Jφ = Jy which are the rotational inertia of the quadrotor in pitch/roll motion, and

L is the distance between the center of gravity and thrust force pairs. Also, 4Tζ is the

difference between responsible force pairs for pitch/roll motion. Therefore, from (2.5.13),

we write this as follows:

4Tζ = K(
s

s+ w
4uζ), (2.5.18)

23



T1

z
yx

z

T2

mg

L

T3 T4

mg

L

[a] [b]

Figure 2.9: Illustration [a] pitch and [b] roll motions

where 4Tθ = (T1 − T2) and 4Tφ = (T3 − T4) are thrust force differences for pitch/roll

motion, and from (2.5.16), 4uζ represents inputs from the roll/pitch model where 4uθ =

(u1 − u2) = 2(uθ) and 4uφ = (u3 − u4) = 2(uφ).

By combining dynamics from (2.5.17) and (2.5.18), and adding integrator feedback

structure for disturbance effect cancellation, it is written as

ṡ = ζ, (2.5.19)

finally, we obtain the system dynamics in the generic state-space of pitch/roll motion in

order to use in a linear controller design as follows:

ẋζ = Aζxζ +Bζuζ , (2.5.20)
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xζ =


ζ

ζ̇

v

s

 , Aζ =


0 1 0 0

0 0 2KL
Jζ

0

0 0 −w 0

1 0 0 0

 , Bζ =


0

0

w

0

 . (2.5.21)

where ζ represents θ and φ rotational angles of pitch/roll motion, Jζ represents Jθ and

Jφ which are the rotational inertia of the quadrotor in pitch/roll motion, uζ represents

uθ and uφ which are inputs of the quadrotor in pitch/roll motion, and L is the distance

between the center of gravity and thrust force pairs.

Yaw design: In order to control of the quadrotor in yaw motion, we use a relationship

between PMW inputs and torques [25] as follows:

τi = KψTi = KψK
w

s+ w
ui, i = 1, .., 4. (2.5.22)

where τ is generated torques for each actuator, u is control input for each actuator , and

Kψ is positive gain. After torques τi, i = 1, ..., 4 are generated by each motor, according

to quadrotor design, one pair of motor works clockwise and the other pair works counter-

clockwise. Thus, a difference exists between motor pairs, and this difference causes yaw

motion of the quadrotor as seen in Figure 2.10. Moreover, from (2.5.12), we write linearized

form of yaw motion as follows:

Jψψ̈ = 4τ, (2.5.23)

where ψ is the rotational angle in yaw motion, Jψ = Jz is the rotational inertia of the

quadrotor in yaw motion. Also, 4τ is the difference between torque pairs. Therefore, from

(2.5.22), we write the torque difference for yaw dynamics as

4τ = Kψ(T1 + T2 − T3 − T4) = KψK(
w

s+ w
4uψ), (2.5.24)
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Figure 2.10: Actuator torques for the yaw motion model

where 4uψ = (u1 + u2 − u3 − u4) = 4(uψ) represents yaw model input.

Then, by using (2.5.23) and (2.5.24), we can write linearized yaw model in form of a

transfer function as

ψ =
4KψKw

s2(s+ w)Jψ
uψ. (2.5.25)

Altitude Model: Moving the quadrotor vehicle in z-axes, we use the linearized form

of height model which is obtained from the simplified nonlinear model from (2.5.12). Fur-

thermore, all actuator thrusts affect height motion in positive direction as seen in Figure

2.9. From (2.5.12), we write the nonlinear form of height model as

mz̈ = 4Tzcosθcosφ−mg, (2.5.26)
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where Tz is the total thrust generated by each motor, θ and φ represent pitch/roll angles,

m is the mass of the quadrotor, and z is the height of the quadrotor.

Assuming that we use small angle approximation and taking the effect of gravity as an

offset in linearized form of height model, from (2.5.12) we obtain the simplified linear form

of the height model as follows:

mz̈ = 4Tz = (T1 + T2 + T3 + T4) = K(
w

s+ w
4uz), (2.5.27)

where 4uz = (u1 + u2 + u3 + u4) = 4(uz) represents the height model input.

Then, by using (2.5.27), we write the linearized yaw model in the form of a transfer

function as

z =
4Kw

s2(s+ w)m
uz. (2.5.28)
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Chapter 3

Real-Time Rigid Formation Control

Design

In a rigid and persistent formation control structure in real-time application, control law

and its performance directly depend on the agents’ communication or sensing structure

in the experimental environment. Therefore, in order to perform our formation control

structure of the multi-quadrotor system, in this chapter we focus on autonomous formation

control of multi-quadrotor systems in real-time implementation and its realistic simulation,

and then we develop a distributed formation control law based on leader-follower formation

structure.

In formation control problems, in attempt to satisfy the desired shape based on forma-

tion control structure, agents have to maintain minimal requirements of desired distances

between each responsible pair as discussed in Chapter 2. Therefore, in this chapter, we

first provide a formation structure and model for our multi-quadrotor swarm. As men-

tioned in Chapter 2, there are two types of distance control: symmetric and asymmetric.
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In this work, we use the asymmetric control structure as seen in Figure3.1 for the sake

of decreasing the control and communication complexities during the experiment. Then,

we define our formation problem making some assumptions as the requirements of the

testbed. Afterwards, in terms of formation control problems, we have two main parts in

the overall control architecture to achieve the purpose of the formation mission, namely,

high-level and low-level control schemes as seen in the generic block diagram Figure 3.2.

By using testbed facilities as mentioned in Chapter 2, at first, we design the high-level

controller responsible to generate desired trajectories for each of the followers by assisting

the asymmetric decentralized control architecture. Then, at the low-level control, after ref-

erence angles are generated by using desired positions, particular controllers are designed

for controlling attitude and altitude models of quadrotor.

As stated earlier, after the overall control design, we are able to perform the autonomous

formation control performances of the multi-quadrotor system in real-time implementation,

and its realistic simulation.

3.1 Graph Modeling of the Multi-Quadrotor System

In this study, in order to make a formation structure in multi-quadrotor system for simu-

lation and experiment, we consider a swarm S that comprises up to 3 quadrotors each of

which is denoted as Ai, i = 1, ..., 3 as seen in Figure 3.1 where each quadrotor agent moves

at a constant height in R3. Moreover, we denote the inter-agent distances as dij,
−−→
(ij) ∈ EF ;

i, j = 1, ..., 3 , and the position vector of each quadrotor as Pi(t) = [xi(t) yi(t) zi]
T ,

i = 1, ..., 3 in the quadrotor swarm. As mentioned in Chapter 2, concerning formation

graph, it is assumed that the swarm system has a directed graph GF = (VF , EF ), where

each vertex represents agents Ai, i ∈ VF ; i = 1, ..., 3 and each edge represents directed
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inter-agent distances dij,
−−→
(ij) ∈ EF ; i, j = 1, ..., 3 as seen in Figure 3.1. Therefore, we

represent the formation F = (S,GF , DF ) as the combination of swarm S, the underlying

directed graph GF = (VF , EF ) and desired distance set DF = {dij|
−−→
(ij) ∈ EF}.

Note that the multi-quadrotor swarm system has an asymmetric formation control

architecture where one of corresponding agent pair is responsible for maintaining the inter-

agent distance in keeping formation shape as in [1]. In other words, the responsible follower

is supposed to maintain inter-agent distance during the motion for each time instant.

A1

A3

A2 Reference path
 for leader

[a] [b]
Desired distances among agents

A1

A2 Reference path
 for leader

Figure 3.1: Directed underlying graphs for [a] equilateral triangular formation control of a

3-quadrotor system and [b] distance keeping for a 2-quadrotor system
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3.2 Formation Control Problem

The main goal of this study is that the leader tracks the desired way-points, and the

follower quadrotors maintain the predefined formation shape in real-time implementation

and simulation under the given assumptions. In three-agent or two-agent quadrotor sys-

tems, each agent is described as Ai, i = 1, 2, 3, and their position information are denoted

Pi=(xi(t),yi(t) zi), i = 1, 2, 3 at any instant of time. During this work, we denote the

inter-agent distances dij, i = 1, 2, 3, j = i = 1, 2, 3 as seen in Figure 3.1 depending on the

leader-follower formation structure which is explained in Chapter 2. in our testbed, by the

help of the indoor localization facilities as mentioned in Chapter 2, each quadrotor knows

its own global position as well as each neighbor quadrotor as seen in (3.2). Also, because of

omni-directional motion ability of the quadrotor system, relative position information will

be enough in each neighbor agent pair for keeping rigid and persistent formation structure.

Therefore, considering the control task, we can use relative position information among

the agents to achieve the high-level control task. In that case, relative positions between

responsible quadrotor pairs are represented as rij, i = j = 1, 2, 3, where rij = −rji as

r12(t) = (x1(t)− x2(t), y1(t)− y2(t)). The formation control law aims to ensure that

lim
t−→∞

|‖rij‖ − ‖rdij‖| = 0, (3.2.1)

where rij is the relative position, and rdij is the desired relative position between a respon-

sible quadrotor pair.

Due to the localization and formation problem constraints, for formation studies, we

have some assumptions as follows:

Assumption 3.2.1 It is assumed that quadrotors establish formation roughly before mo-

tion. In other words, the quadrotor swarm starts close to initial positions at the edges of
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the desired distance and triangular formation shape for real-time implementation and its

simulation.

Assumption 3.2.2 In the formation shape, each quadrotor Ai, i = 1, 2, 3 has its own

global position information as Pi(t) = [xi(t) yi(t) zi]
T at any time t, and assumed that

all quadrotors move a constant height z during the motion. Therefore, the formation task

performance is in the x−y plane, R2. Furthermore, the agents’ desired trajectory generation

is derived considering constant height zi, and motion in Pi = (xi, yi).

Assumption 3.2.3 We also assume that each quadrotor Ai, i = 1, 2, 3 in the formation

shape knows its neighbor’s position information by using a testbed and indoor localization

system at any time, t.

Considering all assumptions above, we can now summarize the formation control problem.

Problem 3.2.1 [Formation Maintenance Problem] Consider three-quadrotor swarm sys-

tem S consists of A1, A2, and A3 within formation structure as seen in Figure 3.1, and the

overall controller architecture is as seen in Figure 3.2. Let F = (S,GF , DF ) is a rigid and

persistent formation in the leader-follower structure, where DF is consistent inter-agent

distance. Under the assumptions 1, 2, and 3, generate the online desired position and

then reference angles with respect to DF for each follower quadrotor. Furthermore, with

respect to generated desired angles and individual altitude and attitude controller, generate

controlling PWM inputs as in (2.5.16) so that the swarm S satisfies condition in (3.2.1)

during the formation task.

Therefore, the formation maintenance problem has two parts; (i) at the high-level, the

controller is responsible to generate the desired position and angles during the motion, (ii)
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at the low-level, the controller is responsible for tracking the performance of quadrotors

for the maintenance of distance and equilateral triangle formation by using individual

controllers.

IMU and
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Reference 

Angle
 generator

(φ1, θ1, ψ1)(x1, y1, z1)
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 controller 
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Reference 
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 controller 

and
Reference 
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Figure 3.2: Block diagram of the control system
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3.3 On-line Trajectory Generation for the Distributed

Control Scheme

This section is about the multi-quadrotor swarm system’s high-level control design. It is

considered that the high-level controller is a decentralized, hierarchical, asymmetric con-

trol structure to solve Problem (3.2.1). Therefore, we designate the agents as Leader

A1, first follower A2 and second follower A3 respectively. Under consideration of forma-

tion Problem (3.2.1), it is necessary to maintain the inter-agent distances for each agent

Ai i = 1, 2, 3 throughout the autonomous motion. Hence, by using the host computer

communication, localization system, decentralized control architecture and relative posi-

tion knowledge, we can derive desired global positions for the members of swarm as follows:

Leader Quadrotor’s Control Law: At first, leader quadrotor A1 is responsible to

satisfy reference path tracking, so the leader should satisfy

‖P1 − Pref‖ 6 P , (3.3.1)

where P1 is the leader’s global position, Pref is a predefined way-point for the leader’s

motion, and P is a small threshold value for tracking.

In this respect, the leader agent’s tracking can be derived at any time instant by com-

paring the predefined way-point path Pref and threshold value P as

if ‖P1(t)− Pref (t)‖ > P , P1d(t) = Pref (t)

otherwise, P1d(t) = Pref (t+ 1). (3.3.2)

where P1d(t) is the generated desired position.

Follower Quadrotors’ Control Law: The other quadrotors, Ai, i = 2, 3 as ordinary

agents follow the leader in a hierarchy as per the formation distances DF . Therefore,
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followers Ai, i = 2, 3 are required to move on desired positions Pid, i = 2, 3, and then

they can be satisfied condition (3.2.1) during the formation task. As mentioned in Section

3.2, using global position informations and desired relative positions will be enough to

generate the desired positions of the follower agents, and then this will satisfy rigid and

persistent formation maintenance. We obtain the desired positions of the follower agents

Pid at any time instant as,

P2d(t) = P1(t) + rd12,

P3d(t) = P1(t) + rd13, (3.3.3)

where rd1i, i = 2, 3 is the desired relative position between the leader and followers.

3.4 Reference Angle Generation

By distributing the high-level controller in Section 3.3, we obtain the desired global posi-

tions for each quadrotor agent. In this section, by using these generated desired positions

from (3.3.2) and (3.3.3), and actual positions from localization system, we can obtain the

desired angles Ui = (θid, φid, ψid), i = 1, 2, 3 as seen in block diagram Figure 3.2 before

individual attitude controllers. Hence, in order to generate the reference angles of each

quadrotor, we consider the PD controller as follows:

φdi = kpi(ydi − yi) + kdi( ˙ydi − ẏi), (3.4.1)

θdi = kpi(xdi − xi) + kdi(ẋdi − ẋi),

ψdi = 0.

Yaw motion does not directly affect the quadrotor motion on x− y axes. For this reason,

it is assumed that desired yaw angle is ψdi = 0, i = 1, 2, 3 for ∀t > 0.
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3.5 Distributed Control Scheme for Attitude and Al-

titude Control Design

In this section, considering Problem (3.2.1), we now design of the attitude and altitude

control laws for formation performance of each quadrotor vehicle after the high-level control

as seen in Figure 3.2.

Pitch and Roll Control: Considering the linearized dynamic equation (2.5.17), we

first present a linear quadratic controller (LQR) design to generate effective control inputs

of the pitch and roll model, which are uθ and uφ. In order to design a linear quadratic con-

trol scheme, the state-space form (2.5.21) of linearized dynamic representation are shown

in the generic state-space form as

ẋζ = Aζxζ +Bζuζ , (3.5.1)

where Aζ is a 4x4 matrix and Bζ is a 4x1 matrix, and for minimizing performance mea-

surement of the system, we can use the cost function as

J =

∫
(xTQx+ λu2)dt, (3.5.2)

where Q is a 4x4 matrix positive semidefinite matrix and λ is a positive scalar.

Then, in order to find stable feedback gain, a state-feedback control law is written as,

u = −Kcx, (3.5.3)

where Kc is an 1x4 gain matrix obtained by

Kc = λ−1BT
ζ P. (3.5.4)
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Here, P is a 4x4 auxiliary matrix obtained by solving the Riccati equation

ATζ P + PAζ − PBζλ
−1BT

ζ P + I = 0, P = P T > 0. (3.5.5)

Yaw Control: As a result of not directly affecting the x-y motion of the quadrotor,

we consider that the yaw motion is more free. Therefore, the yaw controller is taken as

proportional (P) control law by using (2.5.25) as

uψ = Kp(ψdi − ψi). (3.5.6)

Altitude Control: By assuming 3.2.2, altitude controller is derived for keeping quadro-

tors in constant height during the task. Therefore, we consider that the system’s altitude

controller is proportional-integral-derivative (PID) control law by using (2.5.28) as

uz = Kp(zdi − zi) +Ki

∫ t

0

(zdi − zi)dt+Kd( ˙zdi − żi). (3.5.7)

After generating of control inputs uθ, uφ, uψand uz, by using the altitude and attitude

control scheme as above, we combine these inputs from (2.5.16) to generate each motor

PWM inputs for the Qball-X4 quadrotor system. Therefore, these motor inputs obtained

by help of actuator dynamic (2.5.13) command the system’s attitude and altitude behavior

during the motion of the quadrotor system.

3.6 Simulation and Experimental Studies

In this section, we present the results of formation performances of multi-quadrotor swarm

system for different reference path in real-time implementation and its simulation. Before

the experiment, we employ the formation task for the Qball-X4 quadrotor dynamic model
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described in Chapter 2 by using the MATLAB Simulinkr simulation environment. Making

a more realistic simulation study, we add characterized Gaussian noises into the system’s

pitch and roll dynamics, and these system noises come from the IMU measurement in

real-time applications. Thus, determining the noise condition, we use one of the Qball-X4

quadrotor’s roll angle data for the preliminary 25 [sec] as in Figure 3.3 which is measured

when the system does not hover at first. After receiving the data, we calculate the variance

and mean value as below.

[r
ad

]

t [sec]

Figure 3.3: Qball-X4 roll angle measurement for 25[sec]

µ =
1

n

n∑
i=1

(xi) (3.6.1)

V ar(X) =
1

n

n∑
i=1

(xi − µ)2 (3.6.2)

where V ar(X) is the variance value of the measurement data and µ is the average of the

noisy measurement data.

By using measured roll data, and from (3.6.1) and (3.6.2), we can find IMU’s noise
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characteristics which are calculated as µ = 0.000721 and V ar(X) = 0.0003. Afterwards,

we add these characteristics into the quadrotors’ pitch and roll dynamics in simulation by

the Gaussian noise model.

At first, we employ two different paths for the leader quadrotor, namely, spiral and line

path in simulation model. We also designed the high-level and low-level controllers from

sections 4.3, 4.4, and 4.5 in order to maintain the desired equilateral triangle with each

edge being 3 meter during the motion. Second, in the experiment, we have just employed

a line path because of the localization constraint for leader quadrotor. We are able to

use two quadrotors for the same reason. In addition, we use the same designed controller

structures to maintain rigid formation distance 2 meter between the leader and follower.

Moreover, considering the QBall-X4 quadrotor, in order to design experiment and sim-

ulation, we use system dynamic parameters which are specified by Quanser Inc. as seen in

table (3.1).

Table 3.1: System dynamic parameters [25]

K ω Jroll Jpitch M Ky Jyaw L

120 N 15 rad/sec 0.03 kgm2 0.03 kgm2 1.4 kg 4 Nm 0.04kgm2 0.2 m

Furthermore, before the controller design, we use angle generation with kp = 0.7 and

kd = 0.4. Then, for the LQR controller design of pitch and roll dynamics, the ideal cost is

obtained by using randomly found Q = diag(150 0 20000 25) and λ = 30000. Afterwards,

by (4.3.5), LQR gains are calculated as Kc = diag(0.0763 0.0143 1.1726 0.0288), and

all poles are placed to the left-hand-side of the complex palne. Also, the yaw proportional

control gain is taken as Kpψ = 0.015, and for the altitude PID controller, Kpz = 0.006,

Kiz = 0.008,and Kdz = 0.002.
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From the line path results of the next Section 3.6.1 and 3.6.2, by using mean square

error calculation (3.6.3) and the formation distance errors of experiment and simulation,

we obtain the formation performance of the multi-quadrotor swarm system. Thus, for

simulation and experiment, formation mean square errors are demonstrated in table (3.2).

mse =
1

N

N∑
i=1

(εi)
2, εi =

√
(xi − xid)2 + (yi − yid)2, i = 1, ..., 3. (3.6.3)

where εi, i = 1, ..., 3 is the formation distance error between the leader and followers during

formation motion, N is the total data number and mse is the mean square error.

Table 3.2: Formation mean squared error performances by the LQR control scheme

Mean squared error Simulation Experimental

Leader Follower 1 Follower 2 Leader Follower 1

Overall term 2.034 0.0072 0.0262 2.12 0.026

After the settling 0.467 0.0038 0.0039 2.04 0.025

3.6.1 Simulation Results

Formation control simulation results are given in Figure 3.4 - 3.11 for spiral and line

path. As they are shown, the two-level distributed control structure is able to tackle the

formation problem described in Section 3.2. For testing our algorithm, as can be seen in

Figure 3.4 and 3.8, our algorithm works satisfactorily under applied Gaussian sensor noise

in simulations.

As seen in Figures 3.5 and 3.9, all agents track their references. Also, each follower

maintains its desired distance and the desired formation shape with small error as seen in
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3.4b and 3.8c. Note that the orientation of formation does not change during the motion,

and agents are in trends of tracking of attitude angles as seen in Figures 3.6 and 3.10.

Also, note that all control inputs are suitable for real-time implementations.

3.6.2 Experimental Results

Formation control experimental results are given in Figure 3.12 - 3.16 for line path. As

they are shown, the two-level distributed control structure is able to tackle the forma-

tion problem described in Section 3.2. For testing our algorithm, as seen in Figure 3.13,

our algorithm works satisfactorily for maintaining the desired rigid distance in real-time

environment.

Both of agents track insistently their references as seen in Figure 3.12 after the system

ready for hovering at 25 [sec]. Follower maintains its desired distance with small error as

seen in 3.13. Note that the orientation of formation does not change during the motion,

and agents are in trends of tracking of attitude angles as seen in Figures 3.15.
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Figure 3.4: Agents’ motions and formation distances for spiral path with noise effect
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Figure 3.5: Tracking performances of agents for spiral path with noise effect
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Figure 3.6: Attitude performances of agents for line path with noise effect.
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Figure 3.7: Control inputs of agents for line path with noise effect.

45



−3
−2

−1
0

1
2

3
4

−2
−1

0
1

2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

x [m]y [m]

 

z 
[m

]

P1

P2

P3

P1d

P2d

P3d

P1(0)

P2(0)

P3(0)

P1(50)

P2(50)

P3(50)

d12 and d13

(a) Pathways of agents

−3 −2 −1 0 1 2 3 4
−2

−1

0

1

2  

x [m]

 

y 
[m

]
(b) Pathways in x-y motion

0 5 10 15 20 25 30 35 40 45 50
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

t [sec]

F
or

m
at

io
n 

D
is

ta
nc

es
 [m

]

 

 

d
12

 

d
13

d
12d

 and d
13d

(c) Formation Distance among leader and followers

Figure 3.8: Agents’ motions and formation distances for line path with noise effect
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Figure 3.9: Tracking performances of agents for line path with noise effect
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Figure 3.10: Attitude performances of agents for line path with noise effect.
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(c) Follower 2 PWM inputs

Figure 3.11: Control inputs of agents for line path with noise effect.
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Figure 3.12: Agents’ motions for line path in experimental implementation
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Figure 3.13: Formation distance for line path in experimental implementation
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Figure 3.14: Tracking performances of agents for line path in experimental implementation
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Figure 3.15: Attitude performances of agents for line path in experimental implementation
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Figure 3.16: Control inputs of agents for line path in experimental implementation
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Chapter 4

On-line Identification and Adaptive

Formation Control

This section focuses on on-line parameter identification (PI) of the multi-quadrotor swarm

system during the formation motion. In Chapter 4, we control the multi-quadrotor system

by using specified control parameters in a linear quadratic controller (LQR). On the other

hand, note that in the experiment, the quadrotor system has uncertainties on some of

control parameters because of their dynamic or various neglected dynamic effects on the

quadrotor. Therefore, we consider that inertia has uncertainty in the simplified linear

model (2.5.17) of the roll and pitch model during the motion. Furthermore, we focus on

on-line identification of inertia in roll and pitch model, and then we develop a decentralized

adaptive linear quadratic control (ALQR) for performing the formation task.
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4.1 Motivation and Problem Definition

On-line parameter identification (PI) works between current input and past output mea-

surements of signals which are known or detected with the help of various kinds of equip-

ment. Afterward, by using these measurements, the estimation algorithm generates values

for the unknown plant parameters at each instant of time [18]. In this chapter, we consider

that the inertia parameters in the simplified model are not constant values and change

during the motion. Hence, we identify this value at each instant of time during the esti-

mation, and then develop an ALQR control scheme for performing the adaptive formation

task.

In order to perform the formation objective with the adaptive parameter estimation,

we use the same formation design as mentioned in Chapter 3. Therefore, it is considered

that formation modeling, on-line trajectory generation and reference angle generation are

taken similarly as non-adaptive design to provide condition (3.2.1) from Chapter 3. We

give our formation problem as follows:

Problem 4.1.1 [Adaptive Formation Problem] Consider a swarm S with Ai, i = 1, ..., 3

as in Figure 3.2. The subblock Si, i = 1, ..., 3 represents real dynamics and controller of

each single quadrotor agent. Equation (2.5.17) represents the dynamic of motion in the

x-y plane, and the exact value of inertia Jζ parameter is not known during the motion.

Generate control signals uζ(t) ∀t, for each agent under the consideration of assumptions

(3.2.1),(3.2.2) and (3.2.3) so that Pi(t) tracks Pid(t), i = 1, ..., 3 for maintaining distance

and triangular formation, asymptotically.

Afterwards, considering Problem 4.1.1 and by using a designed non-adaptive forma-

tion structure as discussed in Chapter 3, we develop an adaptive linear quadratic control
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(ALQR) scheme for the autonomous formation experiment and its simulation. Therefore,

the on-line identification procedure consists of three steps, namely, setting unknown pa-

rameters in form of parametric model, designing an adaptive estimation algorithm, and

establishing parameter convergence and stability. These steps will be used for on-line PI

algorithms in the next section.

4.2 On-line Parameter Identification

Following [18], we first a design static parametric model (SPM), and then a least squares es-

timation algorithm to find the unknown parameters in the attitude behavior of the quadro-

tor system. The roll and pitch dynamic equation (2.5.17) is written in Laplace form as

s2ζ =
L

Jζ
∆T =

L

Jζ

(
2K

w

s+ w
uζ

)
, (4.2.1)

where ζ represents measurable outputs of system which are pitch/roll angles and uζ

represents known inputs of pitch/roll dynamic models. ∆Tζ represents the net changes for

generated thrust forces as pitch/roll inputs.

Note that ζ is measurable by using inertial measurement unit (IMU) on the quadrotor,

and uζ represents inputs calculated by adaptive controller. Also, L, K and w are specified

constant parameters for pitch and roll dynamics, respectively. Jζ is taken as a constant

parameter in chapter 3, however, we consider that this parameter has uncertain behavior in

attitude dynamics during the motion because its inertial resistance is supposed to change at

different speeds. In implementation, we do not deal with speed control, and the quadrotor

system works within proper speed range during the task; thus, it is considered that Jζ is

an uncertain parameter in dynamics to identify on-line as informed follows.
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4.2.1 Parametric Model

We can express (4.2.1) in form of a static parametric model (SPM). Thus, we filter each

side by the stable filter 1
(s+λ)2

, λ > 0, as follows. Then, we obtain

s2

(s+ λ)2
ζ =

1

Jζ

2KL

(s+ λ)2
w

(s+ w)
[uζ ], (4.2.2)

where ζ and uζ represent output and input of pitch and roll model for each agent, respec-

tively. Then, we write a parametric model for (4.2.2) as

z = θ∗φ, (4.2.3)

z =
s2

(s+ λ)2
ζ, θ∗ = [

1

Jζ
], φ = [

2KL

(s+ λ)2
w

(s+ w)
(uζ)].

Note here that θ∗ represents the uncertain system parameter.

4.2.2 Parameter Estimation using Least Squares

We apply recursive the least squares algorithm [18] to the parametric model (4.2.3) as

˙̂
θ(t) = P (t)ε(t)φ(t), θ̂(0) = θ̂0, (4.2.4)

Ṗ (t) = βP (t)− φ2(t)

m2(t)
P 2(t), P (0) = P0,

ε(t) =
z(t)− ẑ(t)

m2(t)
, m2(t) = 1 + φ2(t),

where P ∈ R is the covariance and P > 0, m is the normalizing signal, φ ∈ R is the

regressor signal and ε is the estimation error. The estimation model is given by

ẑ(t) = θ̂(t)φ(t), (4.2.5)

where θ̂(t) is the estimated parameter at time instant of time t. Stability features of this

estimation algorithm are given in the following proposition.
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4.2.3 Stability and Convergence

Considering parameter identification of the uncertain parameter, according to Theorem 3.7.1

of [18], the estimation algorithm (4.2.4)-(4.2.5) is applied to the pitch and roll dynamics

(4.2.1). If φ
m

is PE then the recursive LS algorithm with forgetting factor (4.2.4) guaran-

tee that P, P−1 ∈ L∞ and that θ(t) → θ∗ as t → ∞. The convergence of θ(t) → θ∗ is

exponential when forgetting factor β > 0.

We should emphasize that for the least square algorithm signal φ(t), which is the

control input uζ itself in this specific case, to be sufficiently rich. However, this case may

not always be guaranteed to converge the parameter values to its true value in the least

squares algorithm. Here, the control law has to achieve formation objectives. Therefore, a

different approach is used to guarantee the control objective by using an on-line estimated

θ. It is considered that if the value of θ exceeds its limitation which is specified in adaptive

controller design during the estimation, θ is assumed in its ideal value specified by Quanser

inc. as seen in Figure 3.1. Otherwise, the estimated θ value is used for the adaptive control

scheme at each instant time.

4.3 Adaptive Linear Quadratic Control (ALQR) De-

sign

In this section, we design an adaptive linear quadratic controller scheme for each quadro-

tor’s pitch and roll models as seen in the single-quadrotor control scheme diagram in Figure

4.1. After the on-line parameter estimation of inertia in pitch and roll dynamics, we design

an adaptive control law to control quadrotor for x-y motion. The overall control structure

is considered in two parts, as seen in Figure 4.1, since we consider the pitch and roll dy-
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namics separately for x-y motion. Furthermore, although we design an adaptive control

scheme for the pitch and roll model, we use same control structures for the altitude and

yaw model as stated in Chapter 3.

Adaptive
roll and pitch 

controller 

Least Square
 Estimation

ui

Altitude and yaw 
controller 

(θd, φd )

[θ*]

+

[θrate,φrate]

(uθ,uφ)

(uψ,uz)

Single quadrotor ALQR controller

(ψd, zd) Plant

Figure 4.1: Adaptive linear quadratic control (ALQR) scheme for an individual quadrotor

agent

Thus, considering the linearized dynamic equation (2.5.17), we present an adaptive

linear quadratic controller (ALQR) design to generate effective control inputs of pitch and

roll model which are uθ and uφ. In order to design an adaptive linear quadratic control

scheme, generic state-space form of linearized dynamic representation are obtained with

respect to on-line parameter estimation from (2.5.21) and (4.2.5) as

ẋζ = Âζxζ +Bζuζ . (4.3.1)

where Âζ is a 4x4 on-line estimated matrix and Bζ is a 4x1 matrix, and for minimizing

performance measurement of the system, we can use the cost function as

J =

∫
(xTQx+ λu2)dt, (4.3.2)
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where Q is a 4x4 positive semidefinite matrix and λ is a positive scalar.

Then, in order to find stable adaptive feedback gain, a state-feedback control law is

written as

u = −K̂cx. (4.3.3)

K̂c is an 1x4 on-line calculated gain matrix obtained as

K̂c = λ−1BT
ζ P̂ , (4.3.4)

where P̂ is a 4x4 auxiliary matrix calculated at each instant of time by solving the Riccati

equation as

ÂTζ P̂ + P̂ Âζ − P̂Bζλ
−1BT

ζ P̂ + I = 0, P̂ = P̂ T > 0. (4.3.5)

4.4 Simulation and Experimental Studies

This section present the results of real-time adaptive formation implementation and sim-

ulation for different references. The difference is that for the pitch and roll model, we

apply on-line parametric estimation for inertial change as stated in Section 4.2, and then

depending on this estimation, we use a pre-prepared look-up gain table which is calculated

off-line by the LQR control scheme for each estimated value of inertia. Therefore, during

the motion, to calculate ALQR control gain K̂c, this table is used based on estimation

value of θ(t) at any time.

At first, for two reference cases we employ an adaptive formation simulation with a

specified noise effect by MATLAB Simulinkr for the quadrotor system as designed in

Chapter 3. Furthermore, all parameters are taken from table 3.1 except for inertia value
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of pitch and roll dynamics. Then, the experiment is applied to the adaptive formation

control design depending on earlier formation design.

In the implementation, in order to design the adaptive linear quadratic controller

(ALQR), we use input and output data from (4.2.3). Although they are filtered for the

estimation model by a low-pass filter, the noise effect is not canceled over the data. For

this reason, we use a Butterworth low-pass filter to cancel the noise effect on the data of

estimation model. In order to find the ideal filter, we use the low-pass Butterworth filter

gain equation

|H(jw)| = 1√
1 + ( w

wc
)2n

, (4.4.1)

where wc is cutoff frequency and n is filter order.

Therefore, from (4.4.1) and ideal cutoff gain, for randomly chosen filter order, we can

obtain cutoff frequency wc=15 as seen in Figure 4.2. Afterwards, we use this filter before

the estimation algorithm for each quadrotor agent in the pitch and roll models as seen in

example Figure 4.3a and 4.3b.
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Figure 4.2: Butterworth filter gain

In the implementations, as the recursive least square algorithm parameters, we particu-

larly use forgetting factor β = 0.1, covariance P0 = 105, and initial theta value θ0 = 10, and
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Figure 4.3: Example filtering for z and φ estimation dynamics in roll using Butterworth

filter

in experimental test, adaptive controller works within estimation parameters’ limitation

between θ = 1
Jζ

= 10− 50 using a look-up gain table which is prepared before the test for

each θ values of the limitation. Otherwise, if θ is exceeded its limitation, it switches the

ideal gain value for the specified theta value θ = 33.

From line path results of next Section 4.4.1 and 4.4.2, by using mean square error

calculation (3.6.3) and the formation distance errors of experiment and simulation, we can

obtain formation performance of multi-quadrotor swarm system. Thus, for simulation and

experiment, formation mean square error are demonstrated in table (4.1).

4.4.1 Simulation Results

This subsection presents simulation results of adaptive formation control as shown in Fig-

ures 4.4-4.13. It is clearly seen that after the settling of parameter estimation adaptive

controller works smoother than non-adaptive case. However, as seen in Figure 4.5 and

4.10c, adaptive controller has a bigger formation distance errors and oscillations before
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Table 4.1: Formation mean squared error performances by ALQR control scheme

Mean squared error Simulation Experimental

Leader Follower 1 Follower 2 Leader Follower 1

Overall term 2.005 0.0112 0.0289 1.65 0.021

After the settling 0.471 0.0069 0.0062 1.55 0.020

settling steady-state formation error because parameter estimation convergence takes time

for spiral path at around 40 [sec] and line path at 5 [sec] as seen in Figure 4.6 and 4.11.

When sensor noises are applied in simulation, parameter estimation is affected to con-

verge to ideal value, especially, in line path since its inputs have sufficiently rich problem.

However, as seen in Figure 4.4, 4.5 and 4.10, our algorithm works satisfactorily and then

all agents track their references. Also each follower maintain its desired distance and the

desired formation shape with small error as seen in Figure 4.5 and 4.10c. Note that all

control input are suit able for real-time implementations.

4.4.2 Experimental Results

Adaptive Formation control experimental results are given in Figure 4.14 - 4.18 for line

path. As they are shown, the two-level distributed control structure is able to tackle

the formation problem described in Section 4.1. For testing our algorithm, as seen in

Figure 4.15, our algorithm works satisfactorily for maintaining the desired rigid distance

in real-time environment. It is clearly seen that adaptive controller works smoother than

non-adaptive case after the quadrotors hovering. As seen in Figure 4.16, it expected that

adaptive controller should have a bigger formation distance errors and oscillations before
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settling steady-state formation error, however, because of using lookup table, these errors

are compensated.

Both of the agents track their references as seen in Figure 4.18 after the system ready

for hovering at 25 [sec]. Follower maintains its desired distance with small error as seen

in 4.16. Note that the orientation of formation does not change during the motion, and

agents track attitude angles as seen in Figures 4.19.
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Figure 4.5: Formation distances among leader and followers for spiral path with noise effect
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Figure 4.6: Parameter estimation for pitch and roll motions of leader and followers
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Figure 4.7: Tracking performances of agents for spiral path with noise effect
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Figure 4.8: Attitude performances of agents for spiral path with noise effect.
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Figure 4.9: Control inputs of agents for spiral path with noise effect.
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Figure 4.10: Agents’ motions and formation distances for line path with noise effect.
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Figure 4.11: Parameter estimation for pitch and roll motions of leader and followers
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Figure 4.12: Tracking performances of agents for line path with noise effect
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Figure 4.13: Attitude performances of agents for line path with noise effect
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Figure 4.14: Control inputs of agents for line path

72



−1
−0.5

0
0.5

1
1.5 −0.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

x (m)
y (m)

 

z 
(m

) P1 

P1d

P2

P2d

P1 (0)

P2 (0)

P1 (60)

P2 (60)

d12 (60)

(a) Pathways of agents

−1

−0.5

0

0.5

1

1.5

−0.500.511.5

 

x (m)

 

y 
(m

)

(b) Pathways in x-y motion

(c) Experimental view of leader and follower during the task

Figure 4.15: Agents’ motions for line path in experimental implementation
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Figure 4.16: Formation distance for line path in experimental implementation
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Figure 4.17: Parameter estimation for pitch and roll motions of leader and follower.
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Figure 4.18: Tracking performance of agents for line path in experimental implementation
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Figure 4.19: Attitude performances of agents for line path in experimental implementation
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Figure 4.20: Control inputs of agents for line path in experimental implementation
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Chapter 5

Localization Enhancement Using

Single-View Distance Estimation

In an attempt to acquire more advantages in localization of the multi-quadrotor swarm,

different localization methods can be used by the leader agent to estimate its absolute

(or global) position or by the follower agents to estimate relative positions of the agents

they follow. Aiming and enhancing localization accuracy in an easily implementable based

on single-view distance estimation [4]. Such a methodology will be useful for the multi-

quadrotor system indoor localization problems such as restricted workspace because the

main indoor localization systems such as Optitrack have limited work space area. In [4],

single-view (camera) based distance estimation method is used for inter-agent distance

estimation and formation control of a ground robotic swarm. Here, we develop a similar

methodology for indoor aerial vehicle networks, particularly our multi-quadrotor system.
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5.1 Camera Modeling and Quantization

In this section, we assume a conceptual setting where each agent is equipped with a single

camera [36] at a suitable place in the lower part of the quadrotor as illustrated in Figure

5.1, and there are two specified landmarks on the ground. It is assumed that the landmarks

are in the field of view during the task. Here, by geometry of a single perspective camera,

we design the localization system to estimate distance and direction of the landmark based

on the studies in [4, 37].

Ground frame FG

Qball-X4 rigid body frame: FR

Landmark

Camera frame FC

yc

xc

zc

ybxb

zb

zg

yg

xg

Camera vision plane 

Fictitious 
image plane 

f

f

a1(x,y1)

A1(X,Y1,Z)

C

Cf

Landmark

A2(X,Y2,Z)

D

d

Figure 5.1: Modeling of a single-view camera vision and frames

As seen in Figure 5.1, vision geometry of camera has optical center C as a camera

frame center, Cf focus point, the focal length f and and the principal axes parallel to the

z-axis [4, 37]. Here, camera vision plane is parallel to fictitious image plane, and optical
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center is in the center of this parallel planes. Therefore, we obtain the position relation

between particular position of landmark A1 and camera vision position a1, and the camera

calibration matrix using these components and their geometry as

f

Z
=

x

X
=
y1
Y1
. (5.1.1)

Then the central projection is written as

Z


x

y1

1

 = P


X

Y1

Z

1

 =


f 0 0 0

0 f 0 0

0 0 1 0



X

Y1

Z

1

 , (5.1.2)

where P is the camera projection matrix [4, 37].

In order to calculate small difference (px, py) in the match of the frames between real

camera frame and assumed camera frame in Z-axis, we use

x =
fX

Z
+ px, y1 =

fY1
Z

+ py, (5.1.3)

then we write the central projection matrix as

Z


x

y1

1

 =
[
K ′ | 0

]

X

Y1

Z

1

 =


f 0 px 0

0 f py 0

0 0 1 0



X

Y1

Z

1

 , (5.1.4)

where K ′ is the camera calibration matrix 3x3 [4, 37].

Moreover, adding the number of pixels per unit distance (mx,my), in images coordinate,

pixel values (x, y1) are converted to (x̄, ȳ1), and in order to quantize the pixels of the
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camera [4], we obtain
x̄

ȳ1

1

 = q

Z
−1
[
K | 0

]

X

Y1

Z

1



 = q

Z
−1


fmx 0 pxmx 0

0 fmy pymy 0

0 0 1 0



X

Y1

Z

1



 , (5.1.5)

where q is quantization operator, and

K =


fmx o pxmx

0 fmy pymy

0 0 1

 =


ax o x0

0 ay y0

0 0 1

 . (5.1.6)

By considering non-rectangle pixels, skew parameter is added in K as

K =


ax o x0

s ay y0

0 0 1

 (5.1.7)

Finally, we obtain


x̄

ȳ1

1

 = q

Z
−1
[
K | 0

]

X

Y1

Z

1



 = q

Z
−1


ax 0 x0 0

s ay y0 0

0 0 1 0



X

Y1

Z

1



 , (5.1.8)

5.2 Single-View Distance Based Position Estimation

Using equation (5.1.4), a single camera and a specified landmark, we can calculate x-y

direction of quadrotor assuming the z distance is known; however, we can estimate z-

distance if we have two specified landmarks and we know the distance between them,
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using triangular similarities. Here, it is considered that we have a camera set as shown in

Figure 5.2 and two detectable objects placed at A1(X, Y1, Z) and A2(X, Y2, Z). The goal

is self-localization of the quadrotor agent of interest using the single camera mounted on

the lower part of it as depicted in Figure 5.1. From equation (5.1.8), we obtain between

pixel coordinate to global coordinate as

ȳi = q(Z−1(ayYi + y0Z + sX)), i = 1, 2. (5.2.1)

x̄ = q(Z−1(axX + x0Z)),

where (x̄, ȳ1) and (x̄, ȳ2) pixel coordinates of the images of A1 and A2. If we consider

the quantization remainder on the estimation, let q̃ : R −→ [0, 1) be the quantization

remainder operator which is described as ξ̃ = ξ − q(ξ) for any ξ ∈ R [4], we have as

ỹi = q̃(Z−1(ayYi + y0Z + sX)), i = 1, 2. (5.2.2)

x̃ = q̃(Z−1(axX + x0Z)).

Then, we obtain

ȳ1 − ȳ2 = Z−1ay(Y1 − Y2)− (ỹ1 + ỹ2), i = 1, 2. (5.2.3)

x̄ = Z−1(axX + x0Z)− (x̃),

where d̄ = ȳ1 − ȳ2 , d̃ = ỹ1 − ỹ2 and D = Y1 − Y2.

Using the prior information of distance D between landmarks and calculation of pixel

coordinate distance d̄ on vision plane as seen in Figure 5.1, we obtain

Z =
ayD

d̄+ d̃
. (5.2.4)

Afterward, from (5.2.4) and (5.2.3), we calculate

X =
ayD(x̄− x0 + x̃)

ax(d̄+ d̃)
. (5.2.5)
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After calculation of Z and X, form (5.2.1) and (5.2.2), we obtain the Y1 as

Y1 =
Z(ȳ1 + ỹ1 − x0)− sX

ay
. (5.2.6)

Thus, we obtain position information of chosen landmark A1 = (X, Y1, Z) for camera

frame. Here, we assume that A1 is the global reference for the design. Therefore, using

generic Euler transformation between frames, we can obtain global position of the partic-

ular quadrotor agent’s fixed-body according to the global position reference landmark A1

as illustrated in Figure 5.1.

(a) Firefly camera (b) Fujifilm lens

Figure 5.2: Camera and lens set for the design [36,38]

In our design, we have a Pointgrey firefly camera (Model:FMVU-13S2C-CS) and Fuji-

film lens (Model:YV3.3x15SA-2) with adjustable focal length f = 15− 50mm, 1328x1048

pixels and pixel density mx = 1/(3.614µm), mx = 1/(3.435µm). In order to designate the

limitation of vision with respect to these parameters, for focal length f = 15mm, note that

ax = fmx = 4150, ay = fmy = 4366 (5.2.7)

0 < x̄ 6 1328, 0 < d̄ 6 1048 (5.2.8)
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The limitation on the operation region of the quadrotor to be able to detect the land-

marks is related to field of view (FOV), and for our camera and lens set, FOV is given as

18◦08′x13◦34′.

During the model design, we assume that heading directions of sensing camera is toward

the sign in the direction of xc to calculate more accurate position information. In addition,

for localization, as due to the limited FOV, there is a limitation to detect the landmarks.

Therefore, it is also assumed that the landmarks are within the image plane throughout

the task.

Due to the indoor localization constraints, Optitrack system has a limited workspace.

Hence, in this method, we use an single-view distance estimation approach to enhance

the workspace for motion task. A result of the method, we design a localization for the

leader agent as well as follower agents for keeping distances between each other during the

formation mission. Therefore, in order to setup the method in implementation we use a

switching from Optitrack localization to our method when the method is feasible in terms

of FOV. Also, it is assumed that agents work in detectable range of landmarks due to FOV.
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Chapter 6

Conclusion and Future Works

In this thesis, we have designed a two-level, hierarchical, distributed control scheme to

maintain a rigid autonomous formation for a multi-quadrotor system, focusing on real-time

implementations. The performance of the developed control scheme has been analyzed by

simulations and experimental results for various scenarios. In both simulation and ex-

perimental tests, it is clearly seen that our proposed control algorithms achieve desired

formation specifications and perform well in all the scenarios. Later, in order to suppress

the effects of parametric inertial uncertainties, we have designed an on-line estimator in the

pitch and roll dynamics, and developed and adaptive version of our distributed formation

control scheme.For this, an adaptive linear quadratic control scheme is designed based on

the on-line parameter estimation used with a lookup gain table. The performance of adap-

tive formation control algorithm has been evaluated via simulation and experimental tests.

Successful formation results show the efficiency of the proposed on-line identification and

adaptive control scheme. As the performance measure we use the mean square of distance

errors in formation of the quadrotors. Both in the real-time experiments and simulations
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based realistic models of the quadrotors (developed from first principle dynamics as well as

using data collected from real-time experiments), we witness the high performance of our

adaptive control design in terms of the mean square error. Finally, in order to enhance the

current localization system, we have developed a self-localization method for the quadrotor

agents based on single-view vision information. This method may be applied to determine

global positions of the agents more accurately as well as to estimate distances between

agents to satisfy the formation maintenance problem of the multi-quadrotor system.

As a future study, it would be a good extension to combine the single-view distance-

estimation based localization enhancement algorithm with the proposed formation control

algorithms, and experimentally validate the new control scheme. This way would enable us

to control formations employing less sensors and also would increase the workspace of the

quadtortors. Two further future directions are analysis of system robustness to actuator

failures, and study of other cooperative control tasks such as cooperative surveillance and

joint tasks with ground vehicle networks.
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