
Simulation of Metal
Electrodeposition Using the Kinetic
Monte Carlo and Embedded-Atom

Methods

by

Tanyakarn Treeratanaphitak

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Chemical Engineering

Waterloo, Ontario, Canada, 2014

c© Tanyakarn Treeratanaphitak 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The effects of the microstructure of metal films on electric component performance and

longevity have become increasingly important with the recent advances in nanotechnology.

Depending on the application of the metal films and interconnects, certain microscopic

structures and properties are preferred over others. A common method to produce these

films and interconnects is through electrodeposition. As with every process, the ability to

control the end product requires a detailed understanding of the system and the effect of op-

erating conditions on the resulting product. To address this problem, a three-dimensional

on-lattice kinetic Monte Carlo (KMC) method is developed to conduct atomistic simula-

tions of single crystal and polycrystalline metal electrodeposition. The method utilizes the

semi-empirical multi-body embedded-atom method (EAM) potential that accounts for the

cohesive forces in a metallic system. The resulting computational method, KMC-EAM,

enables highly descriptive simulations of electrodeposition processes to be performed over

experimentally relevant scales.

In this work, kinetically controlled copper electrodeposition onto single crystal copper

under galvanostatic direct-current conditions and polycrystalline copper under potentio-

static direct-current conditions is modelled using the aforementioned KMC method. Four

types of surface processes are considered during electrodeposition: deposition, dissolution,

surface diffusion and grain boundary diffusion. The equilibrium microstructures from single

crystal experiments were validated using molecular dynamics (MD) simulations through

the comparison of energy per atom and average coordination number. The growth mode

observed is in agreement with experimental results for the same orientation of copper. MD

simulation relaxes constraints and approximations resulting from the use of KMC. Results

indicate that collective diffusion mechanisms are essential in order to accurately model the

evolution of coating morphology during electrodeposition.

In the polycrystalline simulations, the effect of surface energy is taken into account in

the propensities of deposition and dissolution. Sub-surface grain volume measurements

were obtained from simulation results and the grain volume evolution with time is in

agreement with both qualitative observations based on the deposit morphology and surface

iii

energy calculations. Simulations of polycrystalline deposition agree with findings from

experimental studies that the evolution of the root-mean-squared roughness of the deposit

during the early stages of deposition follows a power law relationship with respect to time

≈ tn. Furthermore, the power law exponent on time is determined to be n ≈ 0.5, also in

agreement with the experimental values reported in the literature.

iv

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my family, for none

of this would be possible without their encouragement and support.

I would like to thank my supervisors, Professors Mark Pritzker and Nasser Mohieddin

Abukhdeir for their guidance and support throughout the course of my studies.

A special thanks goes to HW and CCC, for your longstanding friendship and unwavering

support. I would also like to thank my friends and the Thai Student Association for all of

their support throughout my undergraduate and graduate studies. Thank you JVA, YY

and members of the ARG for being an invaluable sounding board for the past two years.

Lastly, I would like to thank the Natural Sciences and Engineering Research Council of

Canada (NSERC) for their financial support and Shared Hierarchical Academic Research

Computing Network (SHARCNET) for the use of their computational facilities.

v

Table of Contents

List of Tables ix

List of Figures x

Nomenclature xii

1 Introduction 1

1.1 Research Motivation . 1

1.2 Objectives . 3

1.3 Structure of Thesis . 4

2 Background 5

2.1 Electrodeposition . 5

2.2 Embedded-Atom Method Potential . 10

2.3 On-Lattice Kinetic Monte Carlo Method 11

2.3.1 Ising and Potts Models . 13

2.3.2 Solid-on-Solid and Solid-by-Solid Methods 15

2.4 Polycrystalline Systems . 16

vi

3 Past Approaches to KMC Simulations of Electrodeposition 20

3.1 Single Crystal Systems . 20

3.1.1 Nucleation Studies . 21

3.1.2 Morphological Studies . 23

3.2 Simulations of Electrodeposition . 24

3.3 Multiscale Simulations . 25

4 Electrodeposition onto a Single Crystal Substrate 28

4.1 Methodology . 29

4.1.1 Processes . 30

4.1.2 Simulation Conditions . 31

4.2 Results and Discussion . 35

4.2.1 Kinetics of Diffusion Events . 37

4.2.2 Effect of Diffusion Mechanisms . 41

4.2.3 Comparison of Equilibrium Deposits 43

4.3 Conclusions . 46

5 Electrodeposition onto a Polycrystalline Substrate 47

5.1 Electrochemical Kinetics . 47

5.2 Methodology . 49

5.2.1 Processes . 49

5.2.2 Propensity Scaling . 51

5.2.3 Representation of a Polycrystalline System 52

5.2.4 Substrate Generation . 54

vii

5.2.5 Simulation Conditions . 54

5.3 Results and Discussion . 55

5.3.1 Effect of Domain Size . 61

5.3.2 Effect of Overpotential on Roughness 64

5.4 Conclusions . 66

6 Conclusions 67

6.1 Conclusions . 67

6.2 Recommendations . 68

Appendix – KMC-EAM Documentation 70

References 139

viii

List of Tables

4.1 Propensity functions for the possible events 32

4.2 Parameters used in propensity functions for KMC-EAM 32

4.3 Average deposit cluster properties . 42

5.1 Propensity functions for the possible events 50

5.2 Parameters used in propensity functions for KMC-EAM 50

5.3 Parameters used in Eqns (5.5) and (5.4) 51

5.4 Comparison of β values for copper deposition 64

ix

List of Figures

2.1 Schematic diagram of an electrochemical cell 6

2.2 Schematics of polycrystalline system . 17

3.1 Possible mechanisms for atom attachment 22

3.2 Simulation system in multiscale SBS method 27

4.1 Schematics of three possible diffusion mechanisms 30

4.2 Flowchart of KMC-EAM algorithm . 34

4.3 Morphology evolution of the configuration 36

4.4 Number of diffusion events over time . 39

4.5 Equilibrium morphology at t = 5 s . 40

4.6 Effect of current density on δE . 44

4.7 Effect of temperature on δE . 45

5.1 Representation of a polycrystalline system 53

5.2 Flowchart of polycrystalline KMC-EAM algorithm 56

5.3 Morphology evolution when η = −0.15 V 58

5.4 Morphology evolution when η = −0.10 V 59

5.5 Morphology evolution when η = −0.05 V 60

x

5.6 Side view of final deposit morphology at different overpotentials 61

5.7 Grain volume/(initial volume) of the orientations with time 62

5.8 Variation of average roughness exponent with domain size 63

5.9 Variation of the average final roughness with overpotential 65

5.10 Variation of the average final roughness of grain orientation with overpotential 65

xi

Nomenclature

αa Charge transfer coefficient for anodic reaction

αc Charge transfer coefficient for cathodic reaction

β Power law exponent

σ State of system

∆E Energy difference between final and initial states (eV)

δC Difference between the mean atom coordination number of the equilibrium deposit

configurations from KMC-EAM and from MD-EAM (%)

δE Difference between the mean energy of the equilibrium deposit configurations from

KMC-EAM and the potential energy component of the same relaxed configurations

from MD-EAM (%)

δij Kronecker delta

η Overpotential (V)

Γi,j Propensity at site i due to event j (s−1)

γi Activity of species i

R 3× 3 rotation matrix

xii

t 3× 1 translation vector

x
′
i 3× 1 vector representing the new coordinates of site i

xi 3× 1 vector of reference coordinates for site i

E Half-cell voltage (V)

Eappl Applied potential (V)

F Multi-body embedding energy functional (eV)

ν Kinematic viscosity (m2 s−1)

νads Adsorption frequency (s−1)

νa Frequency rate (s−1)

νdesorb Desorption frequency (s−1)

νd Atomic vibrational frequency for diffusion (s−1)

χ Average Euler characteristic (nm−1)

A Average cluster area fraction

h Average height (nm)

P Average cluster perimeter (nm)

RRMS Average root-mean-squared roughness (nm)

φbinding Binding energy (eV)

φij Pair-wise repulsion between atoms i and j (eV)

φss Average potential energy between solid atoms (eV)

ρh Function that quantifies the electron density of a neighboring atom

xiii

ρi Total host electron density for atom i

A Substrate surface area (m2)

a Lattice constant (nm)

aCu Lattice constant of copper (0.3615 nm)

B Arrhenius constant (mol s−1)

C Power law constant

c Concentration of the plating bath (mol m−3)

Cu Copper

D Diffusion coefficient (m2 s−1)

E Total potential energy (Hamiltonian) of the system (eV)

e Elementary charge (1.602× 10−19 C)

e− Electron

EA Energy of the system before an event (eV)

EB Energy of the system after an event (eV)

Eb Grain boundary diffusion activation energy (eV)

Edep Activation energy of deposition (eV)

Echem
dep Chemical potential contribution to activation energy of deposition (eV)

Ediss Activation energy of dissolution (eV)

Echem
diss Chemical potential contribution to activation energy of dissolution (eV)

Eexch Atom exchange activation energy (eV)

xiv

Ehop Hopping activation energy (eV)

Ei Interaction energy of atom i (eV)

Estep Step-edge atom exchange activation energy (eV)

F Faraday’s constant (96485 C mol−1)

fs Substrate occupancy fraction

G Probability per unit time (s−1)

hi Height of each surface atom (nm)

hs Substrate layer height (nm)

i Current density (A m−2)

i0 Exchange current density (A m−2)

idep Partial deposition current density (A m−2)

idiss Partial dissolution current density (A m−2)

iL Limiting current density (A m−2)

J Generic interaction potential

k Rate constant (mol s−1)

kB Boltzmann constant (8.617× 10−5 eV K−1)

L Number of possible grain orientations

m Number of moles of metal (mol)

M z+
(aq) Metal ions in aqueous solution

M0
(s) Elemental metal

xv

n Number of atoms

nc Number of atoms within the potential cutoff (nm)

ndep Number of possible deposition sites per unit area (sites m−2)

ndiss Number of possible dissolution sites per unit area (sites m−2)

nexch Number of atom exchange diffusion moves

nhop Number of hopping diffusion moves

nn Number of occupied first nearest neighbors

nstep Number of step-edge atom exchange diffusion moves

P (σ) Probability density

R Gas constant (8.314 J mol−1 K−1)

r Rate of reaction (mol s−1)

rij The distance between atoms i and j (nm)

RRMS Root-mean-squared roughness (nm)

T Temperature (K)

t Time (s)

U Uniform random number ∈ (0, 1)

w Angular rotation speed (rad s−1)

Z Partition function

z Number of electrons transferred in reduction

xvi

Chapter 1

Introduction

1.1 Research Motivation

The study of metal deposition continues to attract attention due to its importance to

industry and nanotechnology. One method of forming metal deposits is through electrode-

position which involves reduction of metal ions in an electrolyte solution to their elemental

form. This reduction process can occur either electrolytically through the application of a

current/potential to the electrode surface or electrolessly through the addition of a chemical

reducing agent to the plating solution [1]. Electrodeposition can be used to form protec-

tive metal coatings on surfaces [2], electrodes [3], photoelectrodes used in photovoltaic

cells [4, 5], catalysts [6], interconnects [7–9] and sensors [6].

When electrodeposition is used to fabricate metal or alloy coatings for devices, specific

structures are desired to optimize performance. An example of this is copper interconnects

where larger grains and (111) textured films are preferred to improve device longevity

[10–12]. Another example is for catalysis where multimodal pore size distributions at the

nano- and micron-scale are desired to increase the catalyst surface area [3]. Given the desire

for specific deposit structures, it is important to study electrodeposition at the atomistic

scale.

1

Atomistic simulations can provide information as to how process operating conditions

can be varied to control the desired deposit structure. In addition to deposit morphology,

atomistic simulations provide information regarding the kinetics and different phenomena

such as grain growth and nucleation during the deposition process. This is extremely

beneficial when aiming to understand the effects of specific phenomena on the final product.

Simulations can also be performed to better design experiments to help isolate parameters

of interest and validate macroscale observations at the atomic level. Phenomena at the

atomic level can contribute to processes measured at the macroscale. Nucleation and

growth processes are examples of phenomena that can be modelled at the atomic level

[13–38].

Continuum models are appropriate for describing phenomena occurring at the macroscale

or microscale but do not provide the same level of detail regarding the system as atomistic

simulations. Atomistic simulation methods, such as molecular dynamics (MD), can capture

the dynamics of the system down to the level of phonon vibrations. MD can also be used

to determine kinetic parameters such as reaction rates. When MD is used in conjunction

with a suitable interaction potential, it is a very effective method for simulation of metallic

systems over a small time frame (nanoseconds) or simulation of final equilibrium states.

The embedded-atom method (EAM) potential has been shown to accurately characterize

metal/metal interactions [39] and predict relevant dynamics for systems including hydrogen

adsorption onto nickel and segregation in binary alloys [40]. The EAM potential has been

extensively validated for metallic systems [39–42] and used in MD simulations of hydrogen

dissociation on nickel [42], self-diffusion of metals [40,41,43] and epitaxial growth [44].

A significant limitation of MD is its computational requirement since it explicitly ac-

counts for thermal fluctuations. Thus, even with the use of parallel large-scale MD codes

and a large number of parallel processors running over several days, simulations can only

resolve time scales on the order of nanoseconds. Even accelerated MD methods such as

hyperdynamics [45,46] and temperature-accelerated dynamics [47,48] are limited to small

systems. Kinetic Monte Carlo methods, on the other hand, can simulate the dynamics of

electrodeposition on time scales of seconds on a single-core computer over hours of compu-

tation time. Deposit morphologies and nucleation are still captured in KMC simulations,

2

but the required coarse-graining does not allow phonon vibrations to be considered. Based

on these factors, KMC is an attractive method of simulating electrodeposition at the atom-

istic level.

1.2 Objectives

The overall objectives of this research are:

1. To develop a KMC method for simulating electrodeposition processes using the EAM

potential.

2. To validate the KMC simulation method by comparison with experimental data

reported in the literature.

To complete the aforementioned objectives, the following studies have been conducted:

1. KMC simulation of single crystal electrodeposition

(a) Kinetics of diffusion events and the influence of each diffusion event on deposi-

tion.

(b) Analysis of deposit morphology obtained from the simulations using quantita-

tive morphological measures (Minkowski measures) to determine the effect of

diffusion mechanisms.

(c) Direct comparison of equilibrium morphologies from KMC simulations and MD

simulations.

2. KMC simulation of polycrystalline electrodeposition

(a) Comparison of growth kinetics to experimentally observed behaviour.

(b) Morphological analysis of the deposit surface and grain volume using morpho-

logical measures.

3

1.3 Structure of Thesis

The thesis is organized into six chapters: Chapter 2 – background, Chapter 3 – literature

review, Chapter 4 – KMC simulations of electrodeposition onto a single crystal substrate,

Chapter 5 – KMC simulations of electrodeposition onto a polycrystalline substrate and

Chapter 6 – conclusions and recommendations.

Chapter 2 will cover the relevant theoretical background to the studies. The on-lattice

kinetic Monte Carlo method is described along with the embedded-atom method potential.

Fundamentals of the electrodeposition process are also described.

Chapter 3 provides an overview of the current literature on KMC simulations of elec-

trodeposition. Previous studies involving KMC simulations of electrodeposition are sum-

marized. The review is divided into sections based on the nature of the study (morpho-

logical studies, nucleation studies, simulations of polycrystalline systems and multiscale

simulations).

Chapter 4 presents results of the first part of the study – simulations of single crystal

copper electrodeposition. Morphological analysis and kinetics of diffusion events are dis-

cussed in this chapter. Validation of the KMC-EAM method with MD simulations using

the EAM potential (MD-EAM) is also included in this chapter.

In Chapter 5, the KMC-EAM method presented in Chapter 4 is extended to model

polycrystalline systems. Results from simulations of copper electrodeposition onto a ran-

domly generated polycrystalline copper substrate and morphological analysis are included.

Lastly, Chapter 6 summarizes the conclusions from this work and discusses possible

extensions to the work.

4

Chapter 2

Background

The effective use of KMC to simulate electrodeposition requires an understanding of the

fundamentals of both electrodeposition and KMC. In this chapter, the basics of electrode-

position, embedded-atom method potential, on-lattice kinetic Monte Carlo and polycrys-

talline systems are discussed.

2.1 Electrodeposition

Electrodeposition is a process of forming metal deposits electrochemically by reduction of

metal ions in an electrolyte to metal atoms. The reduction of metal ions (M z+
aq) in an

aqueous electrolyte is represented by the following reaction [1]:

M z+
(aq) + ze− �M0

(s). (2.1)

The reaction proceeds when an external current or potential is applied to an electrochemical

cell (Figure 2.1). In the case of the electrochemical cell in Figure 2.1, the reaction described

in Eqn (2.1) occurs at the cathode. During operation, an electric potential across the

electrochemical cell known as the cell voltage exists. The electrochemical cell such as the

one in Figure 2.1 contains two half-cells, the anode and the cathode. The half-cells can

5

Potentiostat

Electrolyte

Reference
Electrode

Cathode (substrate or
working electrode)

Anode
(counter

electrode)

Mz+

Mz+

Mz+

Mz+

Mz+

Figure 2.1: Schematic diagram of an electrochemical cell.

6

undergo different reactions, Eqn (2.1) is an example of a half-cell reaction that occurs at

the cathode. Each half-cell reaction has a half-cell voltage (E) associated to it. The

half-cell voltage is a function of the equilibrium half-cell voltage and activity of the species

involved in the reaction,

E = E0 +
RT

zF
ln γzM(aq)

, (2.2)

where E0 is the standard (equilibrium) half-cell voltage measured against a reference elec-

trode (V), γM(aq)
is the activity of the aqueous species, z is the number of electrons trans-

ferred in the reaction and F is Faraday’s constant (C mol−1). The voltage calculated in

Eqn (2.2) is with respect to the same reference electrode that E0 is measured against. This

equation is commonly known as the Nernst equation [49].

The rate at which metal is deposited on the substrate is determined by the current

through Faraday’s law of electrolysis [1]:

r =
dm

dt
=
iA

zF
, (2.3)

where r is the rate of the electrodeposition reaction (mol s−1), m is the number of moles

of metal deposited, t is time, i is the current density (current per unit area, A m−2) and

A is substrate surface area (m2). The reaction rate can also be expressed in terms of the

activity of the species involved in reaction (2.1) [1]:

r =←−r −−→r , (2.4)

−→r =
−→
k γzM(aq)

, (2.5)

←−r =
←−
k γ0

M(s)
=
←−
k , (2.6)

where k is the rate constant (mol s−1) and the arrows denote the directions of the reaction

based on Eqn (2.1).

7

The rate constants can be expressed using the Arrhenius equation [1]:

−→
k =

−→
B exp

(
−Edep
kBT

)
, (2.7)

←−
k =

←−
B exp

(
−Ediss
kBT

)
, (2.8)

where B is a constant (mol s−1), Edep is the activation energy of deposition (eV) and Ediss

is the activation energy of dissolution (eV). The activation energies can be expressed as

the sum of the contribution due to the chemical potential and electric potential [1, 50]:

Edep = Echem
dep + αczFEappl/e, (2.9)

Ediss = Echem
diss − αazFEappl/e, (2.10)

where Echem
dep and Echem

diss are the chemical potential contributions to the activation energy of

deposition and dissolution, respectively, αa is the charge transfer coefficient for the reverse

direction of reaction (2.1) (i.e. dissolution), αc is for the forward direction of reaction

(2.1) (i.e. deposition) and Eappl is the applied electrode potential (V). The charge transfer

coefficient is a measure of the effect of the applied potential to each reaction [49]. The

elementary charge (e) appears on the right-hand side of Eqns (2.9) and (2.10) to convert

the units of the electric potential contribution to eV. Substitution of Eqns (2.9) and (2.10)

into Eqns (2.7) and (2.8) yields:

−→
k =

−→
B exp

(
−Edep,chem

kBT

)
exp

(
−αczEappl

kBT

)
, (2.11)

←−
k =

←−
B exp

(
−Ediss,chem

kBT

)
exp

(
αazEappl
kBT

)
. (2.12)

The e term cancels if the value of the Boltzmann constant used in units of eV K−1, which

is the case in this work. Thus, the partial current densities of the reactions in the forward

8

and reverse directions can be written as:

−→
i =

zF
−→
BγzM(aq)

A
exp

(
−Edep,chem

kBT

)
exp

(
−αczEappl

kBT

)
, (2.13)

←−
i =

zF
←−
B

A
exp

(
−Ediss,chem

kBT

)
exp

(
αazEappl
kBT

)
. (2.14)

At equilibrium,
−→
i =

←−
i = i0 and Eappl = E , where i0 is the exchange current density

(A m−2). From Eqn (2.1), the overall current density is i =
←−
i −−→i . Thus, the relationship

between current density and potential can be written as:

i = i0
[
exp

(
αazη

kBT

)
− exp

(
−αczη
kBT

)]
, (2.15)

where η is the overpotential (V) [1],

η = Eappl − E (2.16)

and the exchange current density is given as:

i0 =
zF
−→
BγzM(aq)

A
exp

(
−Edep,chem

kBT

)
exp

(
−αczE
kBT

)
(2.17)

=
zF
←−
B

A
exp

(
−Ediss,chem

kBT

)
exp

(
αazE
kBT

)
. (2.18)

Eqn (2.15) has the form of the Butler-Volmer [1,49,50] equation that is commonly used to

describe electrochemical kinetics.

At the atomic level, the partial current densities are functions of the frequency of

deposition/dissolution and the nature of the surface. Assuming that the deposition sites

are all of the same type and dissolution sites are also of the same type, the relationship is

9

given as [51,52]:

−→
i = −idep = zeΓdepndep, (2.19)
←−
i = idiss = zeΓdissndiss, (2.20)

where idep and idiss are the partial current densities of each reaction (A m−2), Γ is the

frequency or propensity of the event occurring (s−1), ndep is the number of sites that

deposition can occur at per unit area (sites m−2) and ndiss is the number of sites that

dissolution can occur at per unit area (sites m−2).

2.2 Embedded-Atom Method Potential

The embedded-atom method potential is a semi-empirical potential that is based on (quan-

tum) density functional theory (DFT) [39] and is widely used in MD simulations of metallic

systems [40]. This potential closely describes the effect of metallic bonding in metal sys-

tems to accurately estimate the potential energy of an atom [40]. The potential of each

atom (Ei) is composed of both multi-body and pairwise contributions [39]:

Ei = F [ρi] +
1

2

nc∑
j
i 6=j

φij(rij) (2.21)

where rij is the distance between atoms i and j, Ei is the interaction energy of atom i,

F is the multi-body embedding energy functional, nc is the number of atoms within the

potential cutoff and φij(rij) is a pair-wise repulsion between atoms i and j. The function

ρi is the total host electron density for atom i:

ρi =
nc∑
j
i 6=j

ρh(rij) (2.22)

10

where ρh is a function that quantifies the electron density of a neighboring atom. The total

potential energy of the system (Hamiltonian) is the sum of all of the interaction energies,

E =
N∑
i

σiEi, (2.23)

where σi = 0 when the site is vacant and σi = 1 when the site is occupied. The signifi-

cance of the Hamiltonian will be discussed in the next section. The EAM parameters are

estimated by fitting the predictions of the DFT calculations to known experimental values

of metal properties such as the lattice constant, elastic constants, sublimation energy and

vacancy-formation energy [39–42]. Since the EAM potential is based on DFT calculations,

the approximations made in the DFT calculations will affect the parameters of the EAM

potential.

2.3 On-Lattice Kinetic Monte Carlo Method

In MD, the exact locations of the atoms are determined and their motion is solved directly

via Newton’s equations of motion [53]. However, this is computationally expensive and

so is limited to evolution of the domain over short time scales. For metallic systems, it

can be assumed that atoms vibrate about specific locations in quasi-equilibrium over a

period of time. Since each of these locations corresponds to a minimum in potential energy

of the system, an atom must overcome an energy barrier to move from one minimum to

another [54]. Thus using a consistent fine-grained method, such as molecular dynamics or

quantum mechanical density functional theory [54], the ground state lattice type (FCC,

BCC, etc) and lattice spacing of a specific atomic system [41] are used as inputs for on-

lattice KMC simulations. This is the basis of the on-lattice approximation for conducting

KMC simulations of metal deposition via KMC [54], whereby the metal atoms’ positions

are limited only to sites on this crystal lattice.

Utilizing the on-lattice approximation, the discretized microscopic state σ of the system

is a function of only lattice site occupancy and time, where σi = 0 for a vacant site and

11

σi = 1 for an occupied site. In order to utilize the KMC methodology, an additional coarse-

graining approximation must be used which assumes that the domain evolves through a

discrete set of independent dynamic mechanisms. Furthermore, these dynamic mechanisms

are assumed to be Poisson processes [55]. Given these approximations, the KMC method

enables numerical solution of the master equation of the system where the probability

density P (σ) of observing state σ is given as [54,55]:

dP (σ)

dt
=
∑
σ′

σ′ 6=σ

G(σ′ → σ)P (σ′)−
∑
σ′

σ′ 6=σ

G(σ → σ′)P (σ), (2.24)

where G(σ → σ′) is the probability per unit time that the system will undergo a transition

from σ to σ′. Alternatively, Eqn (2.24) is also known as the chemical master equation and

may be reformulated as [56]:

dσi =
∑
j

Γ+
ij(σ)dt−

∑
j

Γ−ij(σ)dt, (2.25)

where Γij(σ) is the transition probability (s−1) or propensity function for process j at

site i when the state σ is observed. The term Γij(σ)dt gives the probability of state σ

undergoing a change due to some move j at site i within the time increment dt [57]. The ‘+’

and ‘−’ signs denote whether site i is entering state σ or leaving state σ. The propensity

defines the frequency at which the events occur and also defines the possible events that

can occur in the system.

When the system is in equilibrium (steady-state), the time derivative of P (σeq) is equal

to zero. Eqn (2.24) becomes:∑
σ′

σ′
eq 6=σ

G(σ′ → σ)P (σ′eq) =
∑
σ′

σ′ 6=σeq

G(σ → σ′)P (σeq), (2.26)

12

where [55,58]:

P (σeq) = Z−1 exp

(
−E(σeq)

kBT

)
, (2.27)

Z =
∑
σ

exp

(
−E(σ)

kBT

)
. (2.28)

The sum of all the probabilities of the system undergoing a transition from state σ to σ′

is equal to the sum of probabilities of the reverse transition. Eqn (2.26) is known as the

detailed balance and is a fundamental constraint for Monte Carlo methods [53,55,59].

Site i and event j are randomly selected through a KMC algorithm such as the Bortz-

Kalos-Lebowitz (BKL) algorithm [60]. After an event has been selected and the transition

has occurred, the simulation time is updated using the following expression [55]:

∆t = − 1∑
i

∑
j Γij

ln(U), (2.29)

tnew = told + ∆t, (2.30)

where U is a uniform random number ∈ (0, 1). This expression relates the events in the

KMC simulation to time.

2.3.1 Ising and Potts Models

The simplest example of a KMC model is the Ising spin model. The Ising model is based

on the property of a ferromagnet where the atoms has two possible states: spin up and

spin down [61]. This type of system can be adapted to represent the simplest form of

crystal growth. In crystal growth, a site i can have two possible states, occupied (σi = 1)

and unoccupied (σi = 0). The propensity function that describes the transition between

the two states will be based on the kinetics of the system. An example of this is a simple

13

adsorption/desorption process with propensity functions as follow [54]:

Γads,i = νads (1− σi) , (2.31)

Γdesorb,i = νdesorbσi exp

(
−φbinding(i)

kBT

)
. (2.32)

where φbinding is the binding energy (eV) and νads and νdesorb are adsorption and desorption

frequencies (s−1), respectively. The Hamiltonian of the system can be described using the

following expression [54]:

E =
N∑
i

Ei =
N∑
i

nc∑
j

J(rij)δσiσj σ = 0 or 1, (2.33)

where J can be any interaction potential and δσiσj is the Kronecker delta.

The Ising model is restricted to having two possible states, although it is possible to

extend the model to Q possible states. Site i can now move between Q possible states as

opposed to only two states. This Q-state model is referred to as the Potts Q-state model.

In crystal growth, the Q state can refer to properties such as the misorientation angle of

site i in a polycrystalline system. An example of this particular application of the Potts

model is in ref. [37] where the propensity of diffusion from one site to another site with a

different misorientation angle is represented by the following:

Γd,i = νd exp

(
−E(σinit, σfinal)

kBT

)
, (2.34)

where the energy barrier is a function of the states of both initial and destination sites. In

the Potts model, the Hamiltonian is given as [62]:

E =
N∑
i

Ei =
N∑
i

nc∑
j

J(rij)δσiσj σ = 0, 1, . . . , Q. (2.35)

In the case of polycrystalline crystal growth, the Hamiltonian would be modified to include

14

interactions between sites of different states,

E =
N∑
i

Ei =
N∑
i

nc∑
j

J(rij, σi, σj) σ = 0, 1, . . . , Q. (2.36)

2.3.2 Solid-on-Solid and Solid-by-Solid Methods

One of the most widely-used methods of simulating crystal growth through KMC is the

solid-on-solid (SOS) method developed by Gilmer and Bennema [63]. The term solid-on-

solid comes from the fact that particles are treated as blocks that can stack on top of each

other during crystal growth [58]. The SOS method is a ‘2+1’ dimensional method where

the simulation domain is two-dimensional but at each site there exists a height parameter

that represents the surface morphology [54, 63]. The propensity of adsorption/deposition

events depends on the kinetics of the system while the propensity of surface diffusion events

and desorption/dissolution events are determined by the number of occupied first nearest

neighbors [58,63]:

Γdep = νa exp

(
Edep
kBT

)
, (2.37)

Γdiss = νa exp

(
−nnφss
kBT

)
, (2.38)

Γdiff = νd exp

(
EA − EB
kBT

)
, (2.39)

where νa is the frequency rate of the event (s−1), φss is the average potential energy between

solid atoms (eV), nn is the number of occupied first nearest neighbors, νd is the atomic

vibrational frequency for diffusion (s−1) and EA and EB are energies of the system before

and after the event (eV). EA and EB are also functions of nn, the solid-solid, fluid-fluid and

solid-fluid interaction energies [63]. The Hamiltonian also depends on nn, the solid-solid,

fluid-fluid and solid-fluid interaction energies and the state of the system [58].

While the SOS method requires less computational time than other KMC methods, this

advantage comes at the expense of accuracy. The approximation that the interaction energy

15

depends only on the number of occupied first nearest neighbors is insufficient in metallic

systems where the nature of metallic bonding implies a multi-body interaction. Another

deficiency in the SOS method is the lack of vacancies in the deposit due the restriction

that the particles must stack on top of another particle and not on a vacant block [27,64].

Kaneko and coworkers [23–27] extended the SOS model to account for vacancy formation

in the deposit. This solid-by-solid (SBS) method uses propensity functions that are based

on Eqns (2.37), (2.38) and (2.39).

2.4 Polycrystalline Systems

Electrochemical experiments are commonly conducted on polycrystalline substrates so that

many metal grains form and interact with each other during electrodeposition. In order to

represent polycrystalline systems, more than one grain must be included in the simulation

domain. Phenomena such as grain boundary migration (diffusion of atoms across grains)

[65] and grain boundary diffusion (diffusion of atoms along grain boundaries) [66] must be

taken into account along with deposition, nucleation and surface diffusion. In addition,

the deposit will also contain grains that are at different orientation angles from each other.

This orientation must also be taken into account in the simulation. These factors are some

of the complexities in simulating polycrystalline systems that have been addressed in some

form or another by researchers modeling electrodeposition and other modes of deposition.

In this section, the different factors in simulations of polycrystalline systems are discussed

with respect to a generic deposition process.

In polycrystalline systems, unaligned grains typically nucleate on a deposit surface [67].

Each grain can be described in terms of a misorientation angle, defined as the angle that

it is rotated with respect to some reference lattice. This grain misorientation can be taken

into account by either assigning a misorientation angle to each site relative to one grain

that is arbitrarily chosen to serve as a reference [37, 68–72] or having different lattices

with coordinates that are based on the grain misorientation angle [34,35,73–76]. The first

approach is based on the Potts model, where the Q-state is now the misorientation angle.

16

J. Liu et al. / Electrochimica Acta 97 (2013) 132– 142 133

Fig. 1. Schematics of the idealized system for electrodeposition of polycrystalline copper and the data structure of the model.

Cu or Au substrate as illustrated in Fig. 1, which is assumed to be
an atomically even surface. Any atom on the substrate or near the
substrate (i.e. the distance to the substrate is less than the lattice
space a) has, by default, two neighbour substrate atoms. The type
of substrate is determined by defining a list of available sites and
corresponding deposition rate. For example, an amorphous sub-
strate can be represented by sites with a random location and
same deposition rate; a single crystal substrate by sites located on
a given lattice with identical deposition rate; a polycrystalline sub-
strate by sites with given location associated with the substrate
grain structure and higher deposition rate at the grain boundaries
of the substrate. In the present investigation, a list of available sites
randomly distributed across the substrate with fixed space a and
a same deposition rate are defined. A simulation cell of 200 × 50
lattice spaces represents about 22 nm × 4 nm in reality.

2.2. Data structure and algorithm

The simulation cell is divided into a two-dimensional array of
small boxes, as illustrated in Fig. 1, which are represented by a struc-
ture matrix B in the simulation code. The purpose of this treatment
is to accelerate the investigation of the neighbourhood of the atom
or the site of study by examining only the nearest neighbour boxes.
Note that the time for this operation will not increase with the size
of the simulation cell. Each box B(i, j) contains deposited atoms,
induced sites and substrate sites each of which is represented by
a sub-structure with appropriate fields storing its location, grain
membership, orientation, normal coordination number, strange
coordination number (see Section 2.3 for the definition), deposi-
tion rate, diffusion destination sites and corresponding diffusion
rates. Initially, the boxes in the first row are defined with substrate
sites and empty fields of atoms and induced sites. The simulation
cell expands dynamically in the y direction when a site is induced
above the top box, which saves on the usage of memory and com-
putation time. Only the first row of boxes is defined with a list of
substrate sites and the fields of atoms and induced sites empty.

The algorithm for event selection is similar to that described in the
previous paper [3].

When a Cu atom is deposited on a substrate site, a new 2D
triangular lattice (i.e. a (1 1 1) plane of a face-centred cubic lat-
tice) representing a grain is generated and a random orientation
(defined by the tilt angle of the lattice against the surface normal
direction) between 0◦ and 60◦ is assigned. The lattices of differ-
ent orientation expand dynamically with growth of the grains.
A newly deposited atom induces up to six neighbouring lattice
sites which must meet the following criteria. First, it must have
at least two neighbouring atoms, considering an atom with fewer
than two neighbour atoms is unstable, or on or near and above
the substrate. Second, it is not inhibited by existing atoms. That is,
if there is an atom within the inhibiting distance dinh, the lattice
site will not be induced taking into account the steep increase of
repulsive strength arising when the interatomic distance is pro-
gressively reduced. Meanwhile, any neighbouring induced sites
belonging to other grains or substrate sites within the range of the
inhibiting distance is annihilated. The possible diffusion destina-
tions are searched and corresponding diffusion rates computed.
The fields of the induced sites are computed and assigned. The
affected neighbour sites and atoms are then updated. Only the
fields of normal and/or strange coordination number, diffusion des-
tination and corresponding diffusion rate require updating. When
a Cu atom is deposited on a previously induced site, it replaces
the site and inherits its coordinates, grain ID, orientation and nor-
mal and strange coordination number. Meanwhile, it induces up to
six new sites and annihilates the sites within inhibiting distance.
Then the induced sites are assigned and the affected neighbour
sites and atoms are updated correspondingly. When a Cu atom dif-
fuses to one of its possible destination sites, the atom and the site
exchange the fields of coordinates, grain ID and orientation. Other
fields are re-computed. The diffused atom will also induce new sites
and annihilate the sites within the inhibiting distance. The affected
neighbour sites/atoms of both the diffusing atom and the vacated
site are then updated. Perodic boundary conditions are imposed in
the x-axis direction.

Figure 2.2: Schematics of polycrystalline system modelled in ref. [34].

Although it only requires one lattice to be generated, the morphology obtained from Potts-

type simulations will not accurately reflect that of actual polycrystalline systems due to the

system only having one physical lattice. The alternative approach is to define a separate

lattice for each grain. The coordinates of the atoms in each grain now have a misorientation

angle associated with them. Figure 2.2 shows an example of this implementation. The

sites in the lattices can now overlap and impinge on each other. This approach clearly

gives a more realistic description of the system than that based on Potts-type models, but

of course has the downside of being much more complex and requiring additional routines

to track the growth of each lattice.

In metallic systems, an atom can diffuse from its location in one grain to another grain,

causing the grain boundary to migrate. The rate of migration is temperature-dependent

that can be modelled in terms of an Arrhenius-type relationship [65]. In some KMC models

of deposition, surface diffusion is restricted to occur within a single grain [77,78] and thus

diffusion across grains is not taken into account. This approach simplifies the model and

17

reduces the computational cost. However, given that grain boundary migration can become

very important to the deposit morphology especially as the temperature increases, this

particular mechanism should not be ignored.

Grain boundary migration can be taken into account in two ways by either ‘switching’

the grain in which the atom is contained [37, 68–72] or permitting atoms to diffuse to a

new site in a different grain [73–76]. Grain switching is the simpler approach since the

only change is in the grain ‘number’ attributed to the atom. The transition probability

of grain switching is given by an Arrhenius-type relationship where the activation energy

is often taken to be the same as for diffusion but with an added grain boundary energy

contribution [68–71]. This method is typically used in simulations where only one lattice

is being considered and the atom coordinates are related to a reference coordinate. In

this case, movement between grains occurs over a distance similar to that involved during

surface diffusion within one grain and grain boundary migration involves essentially one

atom switching its grain assignment.

As stated previously, the alternative method allows an atom to diffuse to a new site

in a different grain [73–76]. This approach is used when the simulation takes into account

the misorientation of the grains by having the atom coordinates reflect the actual location

of the atoms as opposed to some reference coordinate. During grain boundary migration,

atoms will diffuse across the grain boundary to a site within the lattice of the destination

grain with some transition probability. The coordinates of the destination site are based

on the misorientation of the grain. As a result of this misorientation of the lattices, the

distance between the initial and final sites may not be equal to that between the two sites

in a reference lattice. This approach is a more accurate way of representing grain boundary

migration in polycrystalline systems than the grain switching approach.

The activation energy of grain boundary migration is obviously different from the ac-

tivation energy of surface diffusion. This activation energy can be taken as the activation

energy of surface diffusion with an added fixed energy barrier contribution from the bound-

ary [37, 71, 73]. The more frequent approach is to include both a migration barrier and a

difference in energy of the initial and final states [34, 35, 68–70, 72, 76]. This energy differ-

ence will account for the increase in activation energy when the event in question increases

18

the energy of the system. The contribution of the energy difference is only considered if

the diffusion event results in an increase in the total energy of the system. This approach

is based on transition state theory [79] and is discussed in detail in refs [80, 81].

19

Chapter 3

Past Approaches to KMC

Simulations of Electrodeposition

In the previous chapter, the theoretical background of KMC simulation of electrodeposition

is discussed. In this chapter, the past approaches to KMC simulation of electrodeposition

are discussed in a comprehensive literature review. The review is separated into three

main sections: Section 3.1 – single crystal systems, Section 3.2 – polycrystalline systems

and Section 3.3 – multiscale simulations.

3.1 Single Crystal Systems

The majority of the KMC studies of electrodeposition have considered single crystal sys-

tems. Since phenomena associated with grain boundaries, such as dislocations and energy

effects, are neglected, single crystal systems are simpler to model than polycrystalline sys-

tems. However, in industrial applications, single crystals are not as commonly used as

polycrystalline systems. Also, the formation of single crystal deposits requires different

operating conditions from that of polycrystalline deposits [82]. The following section pro-

vides an overview of recent studies of single crystal systems including phenomena such as

nucleation and morphological evolution of deposits.

20

3.1.1 Nucleation Studies

Two mechanisms describe the early stages of nucleation – instantaneous nucleation and

progressive nucleation. Instantaneous nucleation occurs when a discrete set of possible

nucleation sites are instantaneously assumed to become viable nuclei [1]. Given that the

possible deposition sites are the same as possible nucleation sites at the onset of deposition,

all of the possible deposition sites on the surface of the substrate will become occupied.

Progressive nucleation occurs when the possible nucleation sites continuously form nuclei

over time. In this case, the rate of formation of nucleation sites is a function of time, a

rate constant, and total number of possible nucleation sites [1].

The study of nucleation of metals usually involves the deposition of less than one

monolayer of atoms over a short period of time. Simulations of nucleation can be used

to examine the effect of process parameters on the nucleation type (progressive versus

instantaneous) and cluster formation. Additionally, the simulations have been compared

with known theories of nucleation for specific conditions.

Simulations of nucleation have been conducted using the SOS approach, where the

simulation time is restricted such that only sub-monolayer growth occurs. Stephens and

Alkire [13] developed a method based on the SOS method to study the formation of step-

edges and nucleation on a clean face-centred cubic (FCC) metal surface. The morphology

of the simulated deposit was found to depend on the activation energy of surface diffusion.

The SOS method was also used by Drews et al. [14] to investigate nucleation and the

behaviour of the system at low overpotentials when deposition had not extended past the

first monolayer. The energy barrier was determined based on the number of metal and

substrate atoms that formed the nearest neighbours of the metal atom undergoing surface

diffusion. From the study, the average number of clusters per unit surface area was found

to increase when the ratio of the metal-(foreign) substrate surface diffusion energy barrier

to metal-metal surface diffusion energy barrier was low.

Alternatively, descriptive potentials such as the EAM potential have also been used in

place of the SOS method to study nucleation. In two studies by Gimenez et al. [16,17], two-

dimensional KMC simulations with the EAM potential as the interaction potential were

21

electrode, ∆Gdep,x
(0) is theactivationenergy for ion transfer

from the solution to the crystal at E) 0, Rc is the charge-
transfer coefficient, aMez+ is the activity of the metallic ion
in the electrolyte, and kdep,x

0 is the rate constant for the
deposition reaction on a site x. According to eq 1, a
simulation of adatom deposition appears a priori as a
formidable task, since kdep,x(E) should be calculated for
every possible type of site on the surface. This would
requireadetailedknowledge of the electron transfer itself.
For example, the calculation of kdep,x(E) could involve on
one hand the local electronic properties of the site where
the discharge of the ion is taking place, as well as the
nature of the rearrangement of the solvent concomitant
with the charge-transfer process. However, as we stated
in the Introduction, in this work we shall be concerned
with some special cases of eq 1 and we shall think of the
surface as essentially made of two types of surface sites:
those which are next to at least one adatom and those
whichare not. Thus, in principle only twodifferent values
ofkdep,x(E)may occur.Among the variouspossibilities that
emerge even after this simplification, the following three
possiblemechanisms for atomattachment to the growing
phase were studied, which are considered in Figure 1:

A. Particle adsorption occurs on all unoccupied sites on
the surface, which are considered as equivalent, inde-
pendently of whether the site is surrounded by atoms. In
this case, a rate k is assigned to the process of atom
entrance into an unoccupied site, independent of its
surroundings.

B.Particle adsorption occurs onlyat sites corresponding
to the terraces, that is, where no adsorbed atoms are
around. In this case, an adsorption rate k is assigned to
those sites. The adsorption rate is considered to be 0 at
those sites thathaveat leastoneof thenearestneighboring
sites occupied, that is, on the edge of steps or on kink
sites. This model is based on Bockris’ idea4 that the ion
reduces preferentially on the terraces, since it loses there
the least part of its solvation sphere. After that, the ion
diffuses toward the step edges and then toward the kink
sites.

C. Particles are considered to be discharged preferably
at step edges. With this purpose, a rate k1 is assigned to
the entrance into terrace sites, that is, where no neigh-
boring atoms are around, and a rate k2 (where k2 > k1) is
given to the entrance of atoms into sites that have at least

one atom as a nearest neighbor. This situation is com-
parable to the Avrami model3,10 in which the monolayer
grows from the island edges, assuming that atoms enter
more easily there.

In the present model, the parameter k was changed
between 10-3 and 10+2 s-1 (at each adsorption site) and
the nature of the site x was determined by its atomic
enviroment as stated above. In the present model, no
assumption ismade concerning the evolution of the surface
morphology. This is a result of the deposition rate k and
the interaction between the particles of the system that
affects the diffusion properties. Thus emphasis is set on
making a realisticmodel of atom diffusion on the surface,
according to a potential that takes into account the many
body effects and which is suitable for the study ofmetals.

This paper is organized as follows: The model and the
simulation technique used are described in section 3. The
results are given in section 4, which is subdivided into
two parts: in the first, the system dynamic response is
studied in terms of the evolution of the coverage degree
and of the current (defined as i) dθ/dt) as a function of
time; in the secondpart, structural aspects are dealtwith,
that is, a description of themorphologyandquantification
of the formed islands is given. Finally, our conclusions
are presented in section 5.

3. Latt ic e Model and Simulat ion Technique
3.1. Dynamic Mon te Carlo Me thod. Monte Carlo

methods are used as computational tools in many areas
of physical chemistry. Although traditionally applied to
obtain equilibrium properties, they can also be used to
study dynamic phenomena.5 To do this, the following
conditions must be fulfilled: (a) in addition to satisfying
the detailed balance criterion, the probabilities of transi-
tion must reflect a “dynamic hierarchy”; (b) time incre-
ments between events must be correctly formulated in
terms of the microscopic kinetics of the system; (c) the
events must be effectively independent. In the DMC
method, every step consists of a random selection of one
of thepossibleprocesses.Theprobability ofaprocessbeing
selected is directly proportional to its rate. Once the
randomly chosen option has been performed, all the
possible processes are calculated and stored again in the
corresponding vector and there is a time increment of ∆t
)-ln(u)/Σvi where u is a random number between 0 and
1andΣvi is thesumof the ratesofall thepossibleprocesses.
This time increment is due to the assumption that we are
dealing with a Poisson process.5

Silver adsorption on a defect-free Au(100) surface was
studied. The computational model worked with a square
arrangement of n × n adsorption sites, under periodic
boundary conditions. The simulations were performed
with n) 50 and n) 100. Unless otherwise stated, the
results presented correspond to the former case. The sites
corresponding to the nearest neighbors on each side were
kept in a matrix. The system was initialized: for the
present studies, the initial state corresponded to a clean
Au(100) surface, but the model could be easily extended
to surfaces exhibiting previously adsorbed silver or gold
atoms. The rates of every possible process were stored in
a vector to perform the randomselection described above.
In this work, since we consider the case of irreversible
deposition (no desorption), such processes were the
entrance of an atom into an empty site and the motion of
an atom from a site to one of the four sites corresponding
to first nearest neighbors (face 100). For example, a fixed
rate may be assigned to the first process, independently

(4) Bockris, J.O’M.;Reddy,A.K.N.ModernElectrochemistry;Plenum
Press: New York, 1977. (5) Fichthorn, K.A.;Weinberg, W. H. J. Chem. Phys. 1991, 95, 1090.

Figure 1. Scheme of the mechanisms for atom attachment to
the growing2-Dphase studied in thepresentwork: (A)Particle
adsorption occurs on all unoccupied sites on the surface at the
same rate k. (B) Particle adsorption occurs only at sites where
no adsorbed atoms are around (“terrace sites”) at the rate k.
The adsorption rate on sites that have one ormore neighboring
adatoms is 0. (C) Particles are considered to be discharged
preferably at sites with neighboring adatoms (“edges”). A rate
k1 is assigned to the entrance onto terrace sites, and a rate k2
(k2 > k1) is given to the entrance of atoms into sites that have
at least one neighboring adatom.

9088 Langmuir, Vol. 18, No. 23, 2002 Giménez et al.

Figure 3.1: Possible mechanisms for atom attachment and their relative rates studied in
ref. [17].

used to study deposition of silver onto a gold substrate. Deposition was carried out at an

arbitrary rate and the activation energy for surface diffusion was previously set for different

atomic configurations. The first study focused on phase formation for a Frank-van der

Merwe system (layer-by-layer growth) on two different surface orientations, Au(100) and

Au(111) [16]. The model predicted that growth would occur on the Au(100) surface, but

not on Au(111), which contradicts the thermodynamics of the system. The second study

focused on simulation of potentiostatic electrodeposition where three different conditions

for adatom deposition were considered (Figure 3.1). The conditions are the following:

1. deposition rate is uniform across the domain,

2. deposition only occurs at sites with vacant nearest neighbours,

3. deposition rate at sites with occupied nearest neighbours is higher than at sites with

no occupied nearest neighbours [17].

The results from the three cases were found to fit an exponential expression of the surface

coverage versus time relationship for each of the three modes.

The EAM potential is not the only descriptive interaction potential that can be used.

Frank et al. [18] utilized a different multi-body interaction potential based on DFT. In

this study, both KMC and grand-canonical Monte Carlo methods were used to simulate

the early stages of Co-Ni alloy electrodeposition. The energies of the different atomic

22

configurations (i.e. the number of occupied neighbours within a cutoff distance) were stored

in a look-up energy table used to calculate system energy during the simulation. Kinetic

parameters used were estimated to ensure that the simulations matched the experimental

current-potential data for Co-Ni alloy electrodeposition on a glassy carbon substrate.

In many cases, a simulation method for nucleation was presented and validated with

existing theories. Guo et al. [21] introduced an alternative KMC model that is not based

on the SOS method and accounts for ion diffusion in the bulk to the electrode via Brow-

nian motion coupled to metal deposition determined using KMC. Arbitrary deposition

frequencies were used and the simulated results were compared to known mathematical

models for nucleation. Frank et al. [19] used a lattice-gas model to simulate nucleation

during metal deposition to study the influence of nearest neighbour diffusion on surface

coverage. The results were compared to that obtained using the Kolmogorov-Johnson-

Mehl-Avrami (KJMA) theory of nucleation. The quasi-equilibrium distribution of clusters

obtained from KJMA theory was found to be in agreement with simulation results. In a

subsequent work, Frank and Rivkold [20] performed KMC simulations of nucleation us-

ing a two-dimensional Ising lattice-gas model to study the influence of surface adsorbate

diffusion on phase change. The results were compared to KJMA theory for progressive

and instantaneous nucleation. Classical nucleation theory has also been used to relate the

KMJA theory to a KMC model [22]. The theory was extended to include kinks and clus-

ter configurations, resulting in the extended classical nucleation theory. Predictions from

the extended classical nucleation theory were found to be in good agreement with KMC

results.

3.1.2 Morphological Studies

Simulations of the evolution of the morphology of coatings during electrodeposition are

complicated by the fact that they involve longer time scales than that those needed for

simulation of nucleation. Thus, considerable focus of KMC studies on deposit morphology

has been to develop a method that accurately describes the behaviour of the system over

longer time scales. The common properties used to characterize the deposit morphology

23

are surface roughness, cluster density and average cluster size. These parameters are

dependent on operating conditions and kinetic parameters which are adjustable in KMC

simulations.

The group of Braatz and Alkire has performed several morphological studies of copper

electrodeposition using KMC with the SOS method [15, 30–32]. The method used by the

group is a multiscale approach, as discussed in Section 3.3. Another morphological study

using a method very similar to the SOS method was conducted by Liu et al. [36]. They

carried out two-dimensional KMC simulations of the cross-section of single crystal copper

electro-deposits to study their morphological properties. They estimated the activation

energy for surface diffusion from the energy of the metal-metal bond, energy of metal-

substrate bond and number of occupied nearest neighbours, an approach similar to that

used in the SOS method. The operating conditions – electroplating bath concentration,

temperature and applied electrode potential – were found to affect the evolution of deposit

cluster density and cluster size over time. As the plating bath concentration and applied

electrode potential are decreased, the cluster density profile and variance of cluster size

profile change more gradually with respect to time. Kaneko et al. [23–27] used the SBS

method to account for the possible formation of vacancies in the deposit. Simulations were

carried out for different metallic systems and structures, including superfilling of copper

in sub-micron features involved in the fabrication of electronic devices and interconnects

[23–25].

3.2 Simulations of Electrodeposition

Due to their complexity, polycrystalline systems have not been modelled as frequently as

single crystal systems. As of this review, the only reported KMC simulations of the elec-

trodeposition of polycrystalline systems have been restricted to two-dimensional studies.

Liu et al. [34, 35] developed a cross-sectional two-dimensional KMC method for polycrys-

talline systems based on their previous work on single crystal systems [36]. Figure 2.2

describes the system modelled including how data are stored in this method. Correction

24

factors were introduced to account for the grain boundary energy, while grain orientations

were determined randomly. Simulations of copper electrodeposition onto gold and copper

substrates were performed under potentiostatic conditions. The morphologies were found

to qualitatively agree with those observed in experimental studies of the same systems.

The EAM potential was also used to describe the interactions within a polycrystalline

coating produced by kinetically controlled nickel electrodeposition under the presence of

hydrogen impurities incorporated in the deposit in a study by Huang et al [37]. The effects

of operating conditions (electrolyte temperature and deposition rate) on surface roughness,

deposit grain size and relative grain density were examined. Relative grain density is a

measure of the ratio of occupied sites in a grain to the maximum number of occupied sites

in the same grain. As the electrolyte temperature increases, the relative grain density and

average grain size increase. The opposite trend is observed when the deposition rate is

increased, with the two measures decreasing almost linearly with deposition rate. Surface

roughness is found to increase with an increase in deposition rate and decrease with an

increase in electrolyte temperature.

3.3 Multiscale Simulations

Similar to polycrystalline systems, multiscale studies do not feature as prominently in the

area of KMC simulations of electrodeposition. The majority of the work done on this

topic was reported by Braatz and Alkire’s group. Their approach involved coupling ‘2+1’

dimensional simulations with the SOS method for the electrodeposition process to a con-

tinuum model for transport and aqueous chemistry in the bulk solution [15, 30]. In the

earlier versions of the model, the KMC portion was coupled with a one-dimensional con-

tinuum model for the solution. The studies focused on copper electrodeposition on a flat

copper surface. The presence of dissolved additives (polyethylene glycol and 3-mercapto-

1-propane sulfonic acid) that are commonly incorporated in plating baths to help control

deposit composition and morphology was not considered in the first study [30], but was

included in the subsequent one [15]. The results of both studies did not agree with experi-

mental observations for electrodeposition of copper onto a copper substrate [15,30]. In the

25

case of ref. [15], the roughness evolution of the deposit did not agree with experimental

observations while in ref. [30], the morphology obtained did not agree with those observed

experimentally. This approach was later expanded [31–33] to simulate copper electrode-

position with additives. This involved coupling a KMC model for electrodeposition with

a three-dimensional finite volume model for transport and solution chemistry in the bulk

electrolyte [31]. Results from ref. [31] were used to perform parameter estimation of the

rate constants by comparison of simulated and experimental data of roughness evolution

and current-time transients. The use of the estimated parameters improved the agreement

between experimental results and simulation results [32].

Additionally, Kaneko et al. [28] were successful in coupling MD with their SBS KMC

method to model silver electrodeposition from a silver nitrate bath in the presence of

arbitrary spherical polymeric additives. In their approach, transport of ions in the solution

was modelled using MD, while the surface reaction was modelled using KMC. The KMC

model described the deposit growth with kinetics affected by ion transport within the

solution determined by MD. The influence of additives was considered in a similar approach

used by others [31, 32] where an additive has an ‘action’ range within which sites are

affected by the additive. Due to their complexity, the additives are excluded from the

molecular dynamics simulation. The conditions in refs. [31,32] were also simulated using a

three-dimensional SBS method coupled with the coarse-grained random walk method [23].

The random walk method accounts for ion and additive transport in the solution. The

simulation system is described in Figure 3.2 and the model was able to replicate the

bottom-up filling required in trenches during damascene Cu electroplating [7].

Based on the literature reviewed in this chapter, only a few three-dimensional KMC

methods have been reported. The existing SOS- and SBS-based models are inadequate in

their ability to represent a metallic system. The short-comings of the two methods were

discussed in detail in Section 2.3.2. Current approaches in representing polycrystalline

systems do not involve three-dimensional KMC simulations with a highly descriptive in-

teraction potential like the one developed in this research.

26

Please cite this article in press as: Y. Kaneko, et al., Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation
using Solid-by-Solid model: Application to via and trench filling, Electrochim. Acta (2013), http://dx.doi.org/10.1016/j.electacta.2013.01.076

ARTICLE IN PRESSG Model

EA-19883; No. of Pages 8

2 Y. Kaneko et al. / Electrochimica Acta xxx (2013) xxx– xxx

Most of these studies are based on two dimensional (2D) mod-
els. Josell et al. took into account the geometrical factor (curvature
of the sidewall of a via) in the 2D model [9]. Buoni and Petzold
reported a 3D simulation of dual damascene within the framework
of a continuum model [19,20]. The mass balance equation in solu-
tion and the reaction equation on the surface are combined and
numerically solved under the superfilling condition [20]. However,
the direct simulation of 3D shape evolution which accompanies
void formation (from point defects to macro voids) is difficult due
to the complexity of moving boundary conditions.

The purpose of this paper is to present the KMC simulation sys-
tem of Solid-by-Solid (SBS) model for 3D shape evolution and the
application to via and trench fillings for damascene electroplating.
The SBS model is a lattice model for crystal growth developed by
our group as a simple extension of the conventional Solid-on-Solid
model to include the vacancy formation [21,22]. The correlation
between the surface structure and the defect structures in the
deposited films has been studied by the 2D SBS model. The 2D SBS
model has been applied to the simulation of via filling to study the
effects of additives on the void formation [23,24]. The big advan-
tage of the SBS model is that complex 3D shape evolution can be
simulated without difficulties. In this paper we present the KMC
simulation of the 3D SBS model for electrodeposition with solu-
tion part and additives. The core part of the system is the 3D SBS
model which can follow the 3D shape evolution and void forma-
tion. The solution part is located above the electrode surface and
treated by the particle model. The diffusion of the particles rep-
resenting ions and additives is simulated by the coarse-grained
random walk (CGRW). The diffusion layer is located in the upper
part of the solution. In order to take into account the difference
in the time and length scales between the mass transport in the

diffusion layer and the electrochemical reactions occurring on the
electrode, the multi-scale method has been employed. The whole
system is treated within the framework of the KMC simulation.

We have performed the simulations of via and trench fillings
by copper electrodeposition as an application to semiconductor
engineering. Suppressors, chloride ions and accelerators are taken
into account. We first examined the effects of additives on the sur-
face growth. Then, we performed the simulations of via and trench
fillings to discuss the bottom-up mechanism in relation to the addi-
tive distribution. Preliminary results were reported in our previous
papers [25,26].

The model system and the method of simulations are described
in the next section. The simulation results are given in Section
3. Summary and conclusion are given in Section 4. In Appendix
we report the algorithm of searching surface atoms, which is an
important part in the KMC code of the SBS model.

2. Computations

Fig. 1 illustrates the simulation system of the solution–electrode
interface. It consists of the electrode, the solution and the diffusion
layer. The whole system is the three-dimensional (3D) cubic lattice.
Modeling and the simulation method of each part are described as
follows.

2.1. Basic Solid-by-Solid model for crystal growth

The crystal growth on the electrode surface is simulated by the
SBS model. In the SBS model, each site represents either of a solid
atom, a liquid atom or a vacancy. (In a coarse-grained system, a
site represents a superparticle (a group of particles) as described

Fig. 1. The image of the simulation system. (a) The whole system of the solution–electrode interface. (b) SBS model for the electrode surface. (c) Multi-scale model for the
diffusion layer.

Figure 3.2: Simulation system in ref. [23].

27

Chapter 4

KMC-EAM Simulations of

Electrodeposition onto a Single

Crystal Substrate1

The first step in developing a KMC method for simulating electrodeposition using the

EAM potential (KMC-EAM) is to develop a method for single crystal systems. Single

crystal systems have just one grain and thus grain boundary diffusion and grain boundary

migration can be neglected. In this chapter, the single crystal KMC-EAM method is pre-

sented and applied to three-dimensional galvanostatic electrodeposition of a copper single

crystal. The method is then validated by comparison with the equilibrium microstruc-

tures obtained by MD simulations with the EAM potential as the interaction potential

(MD-EAM). The MD-EAM method relaxes a number of the constraints and assumptions

of the KMC-EAM method: the on-lattice approximation, finite diffusion mechanisms and

temporal coarse-graining. The simulations are conducted over a range of current densi-

ties and temperatures that match common experimental conditions. Simulations are then

performed within these parameter ranges to predict the effect of current density and tem-

1The material in this chapter forms the basis for the published article T. Treeratanaphitak, M. D.
Pritzker, and N. M. Abukhdeir. Kinetic Monte Carlo simulation of electrodeposition using the embedded-
atom method. Electrochim. Acta, 121, 407–414, 2014.

28

perature on surface morphology.

4.1 Methodology

The example chosen to apply and assess KMC-EAM in this work is copper electrodeposition

onto a copper substrate (working electrode) from an acidic sulfate solution. The overall

reaction for the cathodic reduction of Cu2+ is:

Cu2+
(aq) + 2e− −→ Cu0

(s). (4.1)

Cu2+ ion reduction proceeds through consecutive single-electron transfer steps and involves

the formation of an intermediate in which Cu has oxidation state +1 [83, 84]. However,

numerous studies have shown that the first of these steps has much slower kinetics than the

second when copper deposition is carried out in acidic sulfate solutions [84]. Thus the first

step is rate-determining [83, 84] and the two steps effectively occur almost simultaneously

under these conditions. In this study, the deposition mechanism is assumed to be kinetically

controlled. Thus, transport of Cu2+ within the solution to the electrode surface has no

influence on the deposition rate and so only phenomena occurring on the copper surface

are considered in the model and simulations.

The EAM interaction potential parameters for copper are taken from Adams et al [41].

This potential is expressed as a function of the atom separation distance in the form of

cubic splines, one for the embedding term and one for the pair-wise repulsion term. The

energy of each atom is obtained by interpolating these splines according to the separation

distance between the atom and each of its neighbours for both embedding energy and pair-

wise repulsion contributions to the EAM potential. The neighbour contribution is limited

to atoms within a cutoff distance of 0.495 nm, as is consistent with EAM parameters

obtained from Adams et al [41]. The lattice used for KMC-EAM simulations is consistent

with the EAM parameters for copper. This lattice type is FCC with a lattice spacing of

0.3615 nm which was determined experimentally and was one of the properties to which

the EAM potential was fitted [41].

29

�

�

�� ��

(a)

�

�

�� ��

(b)

�

�

��

(c)

Figure 4.1: Schematics of three possible diffusion mechanisms: a) hopping b) atom ex-
change and c) step-edge atom exchange. White denotes an adatom, grey denotes the new
location of the adatom, and black denotes an occupied site. Note that the atom locations
are not drawn to scale.

4.1.1 Processes

In this work, two dynamic processes are considered in modelling copper electrodeposition:

i) reduction of metal ions and deposition onto the surface as adsorbed atoms (adatoms)

and ii) diffusion of these adatoms on the surface. Diffusion in the bulk of the electrode

is not considered since simulations are performed under conditions in which very few va-

cancies form [85]. Lattice relaxation mechanisms are not considered because the on-lattice

approximation is used. Diffusion of adatoms on the deposit surface is complex and in-

volves several collective mechanisms (concerted mechanisms) [43], in addition to nearest

neighbour hopping.

Three possible adatom surface diffusion mechanisms (shown in Figure 4.1) are included

in the model: hopping (single), atom exchange (collective) and step-edge atom exchange

(collective). Hopping (Figure 4.1a) involves the diffusion of single adatoms and kink atoms,

identified by coordination number ≤ 6 [51], to unoccupied nearest neighbour sites. Most

previous simulations include only this mechanism [13,32,34–36,72,76].

30

Atom exchange (Figure 4.1b) involves the simultaneous i) displacement of a sub-surface

crystalline atom by a nearest neighbour adatom and ii) the hopping of the sub-surface

crystalline atom to an unoccupied nearest neighbour site at the surface. Thus, an adatom

and sub-surface crystalline atom exchange states so that the sub-surface atom becomes an

adatom, while the adatom becomes part of the bulk [43].

A special case of atom exchange occurs when the exchange occurs at the edge of a

terrace/step in the surface; this atom exchange process is called step-edge atom exchange

(Figure 4.1c). Unlike the previously described atom exchange mechanism, the sub-surface

atom hops horizontally within the same layer. The adatom becomes part of the surface

crystal and sub-surface atom becomes either an adatom or a kink site depending on the

coordination number of its new site.

The propensity functions for each type of diffusion event, used in the KMC-EAM

method, are given in Table 4.1 [72]. The numerical values of the parameters contained in

the propensity functions used in this work are given in Table 4.2. The activation energies

are assumed to be constant regardless of the atomic configuration. The ∆E term in the

propensity functions is evaluated using the EAM potential. The deposition propensity

(Eqn (4.2)) is obtained from the relationship between the partial current density (idep)

and deposition frequency given by Budevski et al [51]. The projected surface area of the

domain in the x − y plane is used to calculate the values of ndep and ndiss. This is an

approximation of the surface area of the deposit which continually changes during the

deposition process. Furthermore, simulations are restricted to copper deposition occurring

at low enough currents that transport of Cu2+ from the electrolyte to the cathode has no

influence on the process.

4.1.2 Simulation Conditions

KMC-EAM simulations are carried out for a slab geometry that is infinite in the x − y

plane on which deposition occurs and semi-infinite in the z direction normal to this plane.

Periodic boundary conditions are assumed in the x − y plane to approximate an infinite

plane. The copper substrate surface is of the (100) orientation. In addition to the process

31

Table 4.1: Propensity functions for the possible events

Mechanism Propensity Function

Deposition Γi,dep =
idep
−zendep

(4.2)

Hopping Γi,hop =

νd exp
(
−Ehop

kBT

)
∆E ≤ 0

νd exp
(
−Ehop+∆E

kBT

)
∆E > 0

(4.3)

Atom exchange Γi,exch =

νd exp
(
−Eexch

kBT

)
∆E ≤ 0

νd exp
(
−Eexch+∆E

kBT

)
∆E > 0

(4.4)

Step-edge
atom exchange

Γi,step =

νd exp
(
−Estep

kBT

)
∆E ≤ 0

νd exp
(
−Estep+∆E

kBT

)
∆E > 0

(4.5)

Table 4.2: Parameters used in propensity functions for KMC-EAM.

Parameter Definition Value
ndep number of possible deposition sites per unit area varies [=] sites m−2

e elementary charge 1.602× 10−19 C
z number of electrons transferred in reduction reaction 2
νd atomic vibrational frequency 2× 1013 s−1

Ehop hopping activation energy 0.5 eV [43]
Eexch atom exchange activation energy 0.7 eV [43]
Estep step-edge atom exchange activation energy 0.2 eV [43]

32

and material parameters presented above, input parameters for the simulations include the

initial copper substrate seed layer height hs and the occupancy fraction fs. The simulation

domain sizes used range from 25a× 25a× 15a to 50a× 50a× 15a (aCu = 0.3615 nm is the

lattice constant of copper [41,86]).

During the first stage of the simulation, 2.5 × 104 atoms are deposited at different

deposition rates and allowed to diffuse. Following deposition of all the atoms, simulation

continues (in the absence of further deposition) until the system reaches equilibrium. Equi-

librium is identified when the change of the mean energy of the system with respect to

time approaches zero with a tolerance of 1%.

The equilibrium configuration predicted by KMC-EAM in each case is evaluated by

comparing it to the configuration obtained from a simulation using an established MD-

EAM method. This is done to validate the equilibrium state obtained from KMC-EAM

and not the dynamics predicted by KMC-EAM. This MD-EAM simulation uses the equilib-

rium configuration predicted by KMC-EAM as its initial condition and involves no further

deposition to relax the constraints imposed by on-lattice KMC as described in Section 2.3.

The MD-EAM simulations are carried out using the canonical ensemble (constant number

of atoms, volume and temperature) at the same temperature as the corresponding KMC-

EAM simulation over a period of 6 nanoseconds, which is sufficient for the relaxation of

KMC constraints. The resulting configuration is then compared to that from KMC-EAM

on the basis of the i) equilibrium energy per atom and ii) average coordination number.

The KMC simulation package that is the basis of the method is the Stochastic Parallel

Particle Kinetic Simulator (SPPARKS:spparks.sandia.gov) [87]. The Gibson-Bruck [88]

implementation of the direct Gillespie method is used to evolve the system. The KMC-

EAM algorithm is illustrated in the flowchart in Figure 4.2. The MD simulation package

used for comparisons of equilibrium deposits is the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS:lammps.sandia.gov) [89]. A MD-EAM run making use of

24 CPU cores typically requires a duration of several days to simulate 6 nanoseconds of

relaxation, while KMC-EAM requires only 1 CPU and ∼ 12 hours to complete a simulation

in which 5 seconds of electrodeposition are modelled.

33

Start

Read input parameters for Eqns (4.2) – (4.5), lat-
tice configurations and simulation run time (tmax)

Generate data structures for lattice

Compute the EAM potential at each site

Compute propensity (Eqns (4.2) – (4.5)) and energy (Eqn (2.21))

Select and perform an event based
on the propensity distribution

Update the coordination number, energy and propen-
sity of the site up to its second nearest neighbours

Advance the simulation clock by Eqn (2.29)

t � tmax?

Stop

no

yes

Figure 4.2: Flowchart of KMC-EAM algorithm

34

4.2 Results and Discussion

KMC-EAM simulations are performed to model electrodeposition of a fixed number (2.5×
104) of copper atoms for different sets of initial conditions which govern deposition rates.

These initial conditions include domain size, thickness of the substrate layer and occupancy

fraction of the substrate layer. Once deposited, the atoms are allowed to diffuse over the

surface via the three mechanisms described in Figure 4.1.

Simulations are conducted over a range of deposition current densities and operating

temperatures. Temperatures between 300−330 K are considered to span typical operating

conditions used in industry and experimental studies. Current densities ranging from

−10 A m−2 to−1000 A m−2 are chosen to span conditions from low to high deposition rates.

This study is restricted to conditions where the deposition rate is kinetically controlled

and unaffected by mass transfer. The Cu2+ concentration in the bulk is assumed to be

1 mol dm−3 to ensure that deposition remains in the kinetically controlled regime for

all current densities applied in the simulations. At this bulk concentration, the highest

current density of −1000 A m−2 considered is less than 20% of the limiting current density

for copper deposition onto a disk electrode rotating at 1000 RPM, as estimated using the

Levich equation [49,90]:

iL = 0.620zFD2/3w1/2ν−1/6c. (4.6)

In this expression, iL is the limiting current density (A m−2), D is the diffusion coefficient

(m2 s−1), w is the angular rotation speed (rad s−1), ν is the kinematic viscosity (m2 s−1)

and c is the concentration of the plating bath (mol m−3). The initial occupancy fraction

fs in the substrate layer is taken to be 1.0 in every simulation, while the initial copper

substrate layer height hs is set to 1.1 nm. Sample electrodeposition deposit morphology

evolution from a KMC-EAM simulation is shown in Figure 4.3.

The first set of results focuses on the influence of the different surface diffusion mech-

anisms considered in the KMC-EAM method on the resulting deposit roughness and

nanoscale morphology. In particular, a comparison is made between the coatings obtained

when surface diffusion occurs by hopping alone to those obtained when all three surface

diffusion mechanisms operate. Equilibrium deposit morphologies were characterized using

35

(a) (b)

(c) (d)

Figure 4.3: Morphology evolution of the configuration from KMC-EAM simulation at a)
0 s, b) 0.1 s, c) 0.2 s, and d) 0.3 s. The current density is −1000 A m−2 and the operating
temperature is 300 K. Colours denote coordination number (blue to red in ascending order).
The substrate surface area is 40aCu × 40aCu (≈ 210 nm2).

36

root-mean-squared roughness and local morphological measures – area, perimeter and av-

erage curvature. More detail on the evaluation of these morphological quantities and their

meaning for deposit surfaces is provided in Section 4.2.2.

The second set of results involves the use of equilibrium deposit configurations from

KMC-EAM, which correspond to electrodeposition over experimentally relevant timescales

(seconds), as initial conditions for MD-EAM simulations. These MD-EAM simulations

were used to determine the approximation error associated with the assumptions required

for KMC-EAM – the on-lattice approximation, limitation of diffusion mechanisms and

time coarse-graining – since these assumptions are not made in MD-EAM. The effect of

the variation of the deposition rate and temperature on the accuracy of KMC-EAM was

then determined in this way.

In order to characterize the kinetics of the deposition process, the mean energy and

average coordination number of the configurations are used. A consideration in comparing

KMC-EAM and MD-EAM results is that KMC does not explicitly account for the average

kinetic energy of the atoms. Thus, the potential energy contribution to the total energy

from MD-EAM is compared to the mean energy from KMC. The average absolute rela-

tive energy difference per atom (δE) and average absolute relative coordination number

difference (δC) between KMC-EAM and MD-EAM are used as a measure of how equilib-

rium configurations from the KMC-EAM method compare to equilibrium configurations

from MD-EAM. The average root-mean-squared displacement per atom (RMS displace-

ment) in MD-EAM simulations is utilized as a means of tracking the distance atoms travel

from their starting configuration, which corresponds to the equilibrium configuration from

KMC-EAM.

4.2.1 Kinetics of Diffusion Events

Figure 4.4 shows the cumulative number of diffusion moves for each diffusion mecha-

nism versus time for the first 1 s of simulation time for two different current densities

(−1000 A m−2 and −100 A m−2). In both simulations, all diffusion mechanisms are active

during the electrodeposition phase. Following the cessation of deposition (denoted with

37

the vertical line in Figure 4.4), the step-edge atom exchange diffusion (Figure 4.1c) ceases

in both simulations while both the hopping (Figure 4.1a) and atom exchange (Figure 4.1b)

surface diffusion mechanisms persist. During both the initial electrodeposition and relax-

ation regimes, diffusion events are observed to have a power law relationship with respect

to time as indicated by the linear trends in Figures 4.4a-b. This implies that growth of the

deposit surface occurs in a self-similar way where deposit morphology remains qualitatively

unchanged as film thickness increases. Following deposition growth, the step-edge atom ex-

change ceases which indicates that only hopping and atom exchange diffusion mechanisms

are important in the relaxation regime.

The hopping surface diffusion mechanism is found to be dominant both in the growth

and equilibrium regimes. Any adatom can undergo hopping on the surface, while only

atoms that satisfy the restrictions outlined in Section 4.1.1 can undergo atom exchange and

step-edge atom exchange. Given that restrictions exist on the sites where atom exchange

and step-edge atom exchange surface diffusion can occur, the observation that hopping is

the most frequent event is expected.

The step-edge atom exchange is found to occur only during the growth regime, which

is reasonable given that the mechanism results in a new configuration that precludes the

possibility of the event happening again in that locality with the atoms undergoing the ex-

change. Given the conditions for the mechanism (Figure 4.1), diffusion via this mechanism

ceases when deposition has stopped because no additional step-edges are being created.

The duration of time during which the step-edge atom exchange mechanism is most active

depends on the current density which determines the rate of deposition. As the deposition

rate is increased, the interval over which the step-edge exchange mechanism is most active

decreases. This is supported by the increase in the rate of change in nstep during the depo-

sition stage at a current density of −1000 A m−2 versus that at −100 A m−2 (Figure 4.4).

Alternatively, the maximum value of nstep is independent of deposition rate, comparing

Figures 4.4a and 4.4b. Instead, the value of nstep at any time is related primarily to the

total number of atoms deposited up to that point.

38

10−2 10−1 100

Time (s)

101

102

103

104

105

106

107
n

nhop nexch nstep

(a)

10−2 10−1 100

Time (s)

101

102

103

104

105

106

107

n

nhop nexch nstep

(b)

Figure 4.4: Number of diffusion events (n) over time at a) 300 K and −1000 A m−2 and
b) 300 K and −100 A m−2. Vertical line denotes end of deposition.

39

(a) (b)

(c) (d)

Figure 4.5: Equilibrium morphology at t = 5 s of simulations with a) hopping as the only
diffusion mechanism deposited at−1000 A m−2, b) hopping as the only diffusion mechanism
deposited at −100 A m−2, c) all 3 diffusion mechanisms deposited at −1000 A m−2 and
d) all 3 diffusion mechanisms deposited at −100 A m−2. Operating temperature is 300 K.
Colours denote coordination number (blue to red in ascending order). The surface area of
the substrates are 30aCu × 30aCu (≈ 120 nm2).

40

4.2.2 Effect of Diffusion Mechanisms

In order to study the role of the surface diffusion mechanisms considered in KMC-EAM

(Figure 4.1) on deposit morphology, two sets of simulations were performed assuming that

i) hopping alone and ii) all three modes operate. Past KMC simulation studies typically

include only the hopping mechanism [23, 25, 34, 36, 76]. Restricting surface diffusion to

only hopping precludes the possibility of adatoms diffusing from terraces in the deposit.

KMC-EAM simulations were carried out under these two conditions at current densities of

−100 A m−2 and −1000 A m−2. Equilibrium deposit configurations are shown in Figure 4.5

and a distinct difference in deposit morphology is observed independent of current density.

Deposit morphologies predicted by KMC-EAM simulations with hopping-only show a

significant increase in roughness and cluster mean curvature. Deposits simulated when all

three diffusion mechanisms are included are less rough and distinct terraces are formed

that are large compared to the previous case. The root-mean-squared surface roughness

(RRMS) is calculated using [91]:

RRMS =

√√√√ 1

n

n∑
i=1

(
hi − h

)2
, (4.7)

where hi is the height of each surface atom, h is the average height, and n is the number

of surface atoms. As shown in Table 4.3, the average RRMS of the deposit when only hop-

ping operates is significantly greater than when all surface diffusion modes are considered

regardless of the current density. The relative difference between the two cases is signif-

icant since the absolute difference in the roughness will only increase as more layers are

being deposited. The fact that the roughness of deposits formed when hopping is the only

diffusion mechanism is twice that of when all three diffusion mechanisms are taken into

account is an indicator of how the roughness will vary if more sites are to be deposited.

In addition to surface roughness, the morphology of the deposit surface was quan-

tified using the Minkowski measures [92]. Three Minkowski measures are defined for a

two-dimensional surface: surface area, perimeter and Euler characteristic. The Euler char-

41

Table 4.3: Average deposit cluster properties from Figure 4.5 – root-mean-squared rough-
ness (RRMS), cluster area fraction (A), average cluster perimeter (P) and Euler character-
istic (χ).

idep Diffusion RRMS A P χ
(A m-2) Mechanisms (nm) (nm) (nm-1)

−1000
Hopping 0.279 ± 0.004 0.14 ± 0.00 8.4 ± 0.3 1651.2 ± 17.4

All 0.156 ± 0.004 0.74 ± 0.00 101.6 ± 43.7 1620.8 ± 21.7

−100
Hopping 0.287 ± 0.000 0.16 ± 0.00 9.8 ± 0.7 1607.7 ± 34.8

All 0.138 ± 0.004 0.80 ± 0.02 100.1 ± 29.3 1525.2 ± 265.1

acteristic is an integral measure of curvature over the cluster boundary. To compute these

morphological measures from a given deposit surface, they are converted to binary images

using surface depth as image intensity. Thus these morphological measures characterize

the cluster morphology of the deposit.

Table 4.3 shows the morphological measures from the two sets of simulations. The

average cluster area fraction (A) is the average fraction of the total cluster surface area

relative to the total surface area. The average cluster perimeter (P) is the average perimeter

of the clusters in the domain. The average Euler characteristic (χ) is related to the total

curvature of the cluster boundaries within the simulation domain.

At −1000 A m−2, the average cluster perimeter is lower when only hopping is involved

than when three diffusion mechanisms are involved. This corresponds to smaller clusters

which is supported by a reduction in the average total cluster area. Since step-edge atom

exchange and atom exchange which tend to level the surface and coalesce the clusters do

no occur, this result is expected. The measures obtained for deposition at −100 A m−2 are

consistent with those obtained at the higher current. When the three diffusion mechanisms

are considered, A is an order of magnitude greater than that obtained when only hopping

is considered.

The average perimeters for the two cases also agree with this trend by indicating smaller

clusters when hopping is the only diffusion mechanism. The Euler characteristic and thus

average curvature of the domains are similar, indicating that the curvature of the cluster

42

boundaries is determined by minimization of the cluster/bulk interfacial energy and not

specific diffusion mechanisms.

The deposit surface features support the qualitative observation made based on Figure

4.5. When hopping is the only diffusion mechanism, the deposit has greater roughness and

the individual clusters are smaller. The growth mode observed when three surface diffusion

mechanisms are included is similar to that of Cu/Cu(100) homoepitaxial growth observed

experimentally [93,94].

4.2.3 Comparison of Equilibrium Deposits

The final set of simulations was performed over a range of initial conditions, current den-

sities and temperatures using KMC-EAM. Equilibrium deposit configurations from these

KMC-EAM simulations were then used as initial conditions for MD-EAM simulations

under commensurate conditions (temperature and ensemble). Through relaxation of the

approximations required to perform KMC, the MD-EAM simulations results were used to

determine the validity of the equilibrium structure predicted by the KMC-EAM method for

simulations of the electrodeposition process. In all KMC-EAM simulations, the occupancy

fraction fs is set to be 1.0, corresponding to electrodeposition on an atomically smooth

copper crystal.

Figure 4.6 shows the difference δE between the mean energy of the equilibrium deposit

configurations from KMC-EAM and the potential energy component of the same relaxed

configurations from MD-EAM. The simulation results span current densities ranging from

−10 to −1000 A m−2 at 300 K. It is observed that δE is non-negligible but reasonable over

the full range of applied current densities. The increase of δE with respect to current density

is expected in that an increased deposition rate results in the formation of vacancies which

result in lattice relaxations that are not considered in KMC-EAM. Furthermore, lattice

relaxation at the deposit surface is also not considered, which contributes to δE.

The difference in atom coordination number δC was also determined in order to compare

the KMC-EAM equilibrium configurations to those of MD-EAM. These plots are not shown

43

101 102 103

−idep (A m-2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

δ E
(%

)

Figure 4.6: Effect of current density on δE obtained by MD-EAM and KMC-EAM simu-
lations at 300 K, hs = 1.1 nm and fs = 1.0.

since the values of δC were all negligible, less than 0.04%. This implies that deposit mor-

phology from KMC-EAM is almost identical to the average morphology from MD-EAM.

Furthermore, current density was not found to have a statistically significant effect on δC .

Thus, the difference in energy δE is primarily a consequence of the on-lattice approximation

of KMC-EAM and not to any significant difference in the deposit morphology.

Figure 4.7 shows the difference in energy δE between KMC-EAM and MD-EAM equi-

librium deposit configurations for applied current density of −10 A m−2 over a range of

temperatures 300 − 330 K. A similar magnitude and trend of δE is observed as in the

previous case with δE being non-negligible (ideally, δE ≈ 0) but small over the full range

of operating temperatures. The values of δC are again negligible and thus not shown. The

results can be interpreted in the same way as before, but now increasing temperature re-

sults in the increased formation of vacancies and also increased lattice strain in the MD

simulations. The trend is slightly steeper than that observed from the increase of current

density, which implies that the KMC-EAM method will monotonically decrease in accuracy

as temperature is increased. Since the range of operating temperatures used in this work

44

290 300 310 320 330 340
T (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

δ E
(%

)

Figure 4.7: Effect of temperature on δE obtained by MD-EAM and KMC-EAM simulations
at −10 A m−2, hs = 1.1 nm and fs = 1.0.

is typical for electrodeposition processes, KMC-EAM performs adequately in comparison

to MD-EAM within this range.

The final metric used to evaluate the deposit configuration predicted by KMC-EAM is

the RMS displacement of atoms from their starting positions obtained from the metastable

configuration of KMC-EAM to reach their final positions as computed by MD-EAM. The

RMS displacement value for equilibrium single crystal copper deposits is reported to be

0.0113 nm at 300 K [95]. The RMS displacement values for the KMC-EAM simulations

with current density varied at 300 K was found to range between 0.019−0.021 nm. For the

set of simulations in which temperature was varied, the RMS displacement values range be-

tween 0.019−0.023 nm. These results indicate that the equilibrium configuration predicted

by KMC-EAM simulations is essentially equivalent to that of MD-EAM. Furthermore, the

RMS displacement values appear to be only slightly affected by the operating conditions,

which supports the interpretation of δE and δC trends discussed previously.

45

4.3 Conclusions

A kinetic Monte Carlo methodology which uses the embedded-atom method potential and

includes collective diffusion mechanisms (KMC-EAM) for single crystal systems has been

developed. This methodology was applied to the simulation of galvanostatic electrodepo-

sition of metals onto a single crystal substrate of the same species. The average energy

per atom and coordination number of equilibrium configurations from KMC-EAM were

validated using MD simulation. KMC-EAM was found to be accurate for deposition cur-

rent density and temperature values relevant to experimental conditions. Furthermore,

the KMC-EAM accurately describes the nanoscale structure of the metal deposit through

direct representation of the constituent atoms, unlike the SOS and SBS methods.

In addition to analysis of equilibrium configurations, the effects of surface diffusion

mechanisms (hopping, atom exchange and step-edge exchange) and diffusion kinetics were

also studied. Results show that the inclusion of collective diffusion mechanisms (atom ex-

change and step-edge exchange), in addition to nearest neighbour hopping, were required

to predict deposit configurations in agreement with both MD-EAM simulations and exper-

imental results for Cu/Cu(100) homoepitaxy. The inclusion of the three surface diffusion

mechanisms resulted in quantitatively smoother deposits, as reflected by surface morphol-

ogy measures – roughness, cluster perimeter and cluster area.

The diffusion kinetics observed indicated that the step-edge exchange mechanism was

active predominantly during the deposition process, while hopping and atom-exchange con-

tinued following the cessation of electrodeposition. In summary, the presented KMC-EAM

method is shown to provide an accurate representation of the electrodeposition process

over experimentally relevant length (microns) and time (seconds) scales.

46

Chapter 5

KMC-EAM Simulations of

Electrodeposition onto a

Polycrystalline Substrate

In the previous chapter, the KMC-EAM method was developed for single crystal systems.

This chapter extends the KMC-EAM method to polycrystalline systems and applies it

to three-dimensional electrodeposition of copper onto a smooth polished polycrystalline

substrate. In addition to the polycrystalline deposition, the potential dependence of de-

position is also included in the simulations. Simulations are performed over a range of

overpotentials to predict the effect on deposit texture evolution. Results from the simula-

tions are compared to experimental observations and known surface energies of different

grain orientations of copper.

5.1 Electrochemical Kinetics

In this study, the KMC-EAM method is extended to polycrystalline electrodeposition and

applied to study potentiostatic deposition. As was the case in the previous chapter, metal

47

deposition is assumed to proceed by a one-step reaction. Thus, the reduction of copper

ions (Cu2+
(aq)) to form copper atoms (Cu0

(s)) occurs as follows:

Cu2+
(aq) + 2e− � Cu0

(s). (5.1)

The rate of deposition is controlled by the applied current through Faraday’s law of elec-

trolysis [49]. In the case of potentiostatic electrodeposition, the applied current depends on

the applied potential. The current-potential relationship used in this study is based on the

Butler-Volmer equation used by Cabán and Chapman [50] assuming that electrodeposition

is kinetically controlled and the plating bath concentration is 1 mol dm−3:

iCu = i0Cu

[
exp

(
αaη

kBT

)
− exp

(−αcη
kBT

)]
(5.2)

where the parameters were previously described in Section 2.1. In terms of the deposition

partial current density (idep) and dissolution partial current density (idiss), Eqn (5.2) can

be rewritten as:

iCu = idiss + idep, (5.3)

where:

idiss = i0Cu exp

(
αaη

kBT

)
, (5.4)

idep = −i0Cu exp

(−αcη
kBT

)
. (5.5)

Eqns (5.4) and (5.5) are the basis for the propensity functions of electrochemical kinetics

in KMC-EAM.

48

5.2 Methodology

5.2.1 Processes

Four main dynamic processes are considered for copper electrodeposition: i) reduction of

copper ions and deposition onto the substrate surface, ii) oxidation of copper atoms and

dissolution into the electroplating bath, iii) diffusion of adatoms on the surface within

a single grain and iv) diffusion of atoms along the grain boundaries. Aside from grain

boundary diffusion (i.e. diffusion along a grain boundary), which has been observed at

near ambient temperatures [66], diffusion within the bulk of the copper deposit is neglected

since the operating conditions are in the range where few vacancies are formed [85]. Grain

boundary migration (i.e. diffusion across a grain boundary) in the bulk is also assumed

negligible at the operating temperatures considered here, which is supported by past work

[96]. This restriction is not applied to adatoms, which are allowed to diffuse between grains.

The three surface diffusion mechanisms – hopping, atom exchange and step-edge atom

exchange – are described in detail in Section 4.1.1. In addition to the assumptions made in

Chapter 4, the activation energies of the events are also assumed to be constant regardless

of the grain orientation. Grain boundary diffusion follows the same Arrhenius relationship

as other diffusion mechanisms [97]. The activation energy for grain boundary diffusion

(Table 5.2) is assumed to be 0.5 eV regardless of the type of grain boundary. This value

is based on results obtained from simulation studies in ref. [97].

The propensity functions of each diffusion event are given in Table 5.1 [72] with the

parameters given in Table 5.2. The assumptions made regarding the surface area used

in the calculation of ndep in Chapter 4 also applies to ndiss. Eqns (5.6) and (5.7) are

obtained from the relationship between current density and frequency given in ref. [51].

The current density of deposition and dissolution are defined in Eqns (5.6) and (5.7),

respectively. Parameters for the Butler-Volmer equation applicable when the electroplating

bath concentration is 1 mol dm−3 are given in Table 5.3 [50].

49

Table 5.1: Propensity functions for the possible events

Mechanism Propensity Function

Deposition Γi,dep =
idep
−zendep

(5.6)

Dissolution Γi,diss =
idiss
zendiss

(5.7)

Hopping Γi,hop =

νd exp
(
−Ehop

kBT

)
∆E ≤ 0

νd exp
(
−Ehop+∆E

kBT

)
∆E > 0

(5.8)

Atom exchange Γi,exch =

νd exp
(
−Eexch

kBT

)
∆E ≤ 0

νd exp
(
−Eexch+∆E

kBT

)
∆E > 0

(5.9)

Step-edge
atom exchange

Γi,step =

νd exp
(
−Estep

kBT

)
∆E ≤ 0

νd exp
(
−Estep+∆E

kBT

)
∆E > 0

(5.10)

Grain boundary
diffusion

Γi,b =

νd exp
(
− Eb

kBT

)
∆E ≤ 0

νd exp
(
−Eb+∆E

kBT

)
∆E > 0

(5.11)

Table 5.2: Parameters used in propensity functions for KMC-EAM.

Parameter Definition Value
ndep number of possible deposition sites per unit area varies [=] sites m−2

ndiss number of possible dissolution sites per unit area varies [=] sites m−2

e elementary charge 1.602× 10−19 C
z number of electrons transferred in reduction reaction 2
νd atomic vibrational frequency 2× 1013 s−1

Ehop hopping activation energy 0.5 eV [43]
Eexch atom exchange activation energy 0.7 eV [43]
Estep step-edge atom exchange activation energy 0.2 eV [43]
Eb grain boundary diffusion activation energy 0.5 eV [97]

50

Table 5.3: Parameters used in Eqns (5.5) and (5.4) [50].

Parameter Value
i0Cu 107.75 A m−2

αa 1.08
αc 0.39

5.2.2 Propensity Scaling

In this study, the surface energies may vary between grains since the substrate is poly-

crystalline. Subsequently, the propensities of deposition and dissolution are not uniform

across the surface. To account for the difference in surface energy of the different grain

orientations of copper, an energy contribution term (∆E/Esub) is applied to the propensity

of deposition:

Γ
′

i,dep = Γi,dep
∆E

Esub
, (5.12)

where ∆E is the change in energy of site i after the site becomes occupied and Esub is

the sublimation energy of copper (Esub,Cu = −3.54 eV [41]). Sites with lower surface

energies have higher ∆E values and thus will preferentially undergo deposition. However,

this energy contribution will alter the average propensity and thus the deposition partial

current density. A scaling factor is applied to Γ
′

i,dep at every site at which deposition can

occur. Equation (5.12) becomes:

Γ
′

i,dep = Γi,dep
∆E

Esub
sdep, (5.13)

where sdep is the scaling factor which is initially set to 1. The scaling factor is calculated

by making use of the average of the deposition propensities:

Γdep =
1

ndepA

∑
i

Γ
′

i,dep, (5.14)

51

where A is the surface area (m2). Thus,

sdep =
Γdep
Γi,dep

. (5.15)

Previously computed propensities are also updated, but by a factor of sdep/sdep,old, where

sold is the scaling factor from the previous update, bringing the average propensity to Γi,dep.

In the case of dissolution, the energy contribution is taken into account in a slightly

different manner from deposition:

Γ
′

i,diss = Γi,diss
Esub
−∆E

. (5.16)

The difference stems from the fact that higher energy sites are more likely to be removed

than lower energy sites. Higher energy sites will result in lower |∆E| values and thus higher

Esub/ − ∆E. The negative sign in front of ∆E is due to the value of ∆E being positive

in dissolution processes. The scaling factor is determined based on the same procedure as

deposition, but now by making use of Γ
′

i,diss and ndiss (defined in Table 5.2):

Γdiss =
1

ndissA

∑
i

Γ
′

i,diss. (5.17)

5.2.3 Representation of a Polycrystalline System

The KMC-EAM method is extended to represent polycrystalline systems for this study.

Information on the number of crystal orientations in the simulation and details about the

orientation are now required by the KMC-EAM method. A set of reference coordinates is

generated based on the (100) crystal orientation of the metal. The reference coordinates

will form the basis on which the coordinates in each orientation are based. The grain

orientation is related to a rotation matrix and a translation vector as follows:

x
′

i = Rxi + t, (5.18)

52

�����������	
						�����������	�						�����������	�	

Figure 5.1: Representation of a polycrystalline system in KMC-EAM. Sites that are colored
are occupied sites. Occupied sites are not allowed to overlap with occupied sites from
another orientation.

where x
′
i is a 3× 1 vector representing the new coordinates of site i, R is a 3× 3 rotation

matrix, xi is a 3 × 1 vector of reference coordinates for site i and t is a 3 × 1 translation

vector. Coordinates are rotated to provide the desired orientation normal to the z direction

(i.e. the direction exposed to the electroplating solution at t = 0) and translated so that

the majority of the sites remain in the simulation domain. Any sites that are outside

of the simulation domain after translation and rotation are removed but remain in the

reference coordinates matrix. While the sites can overlap with each other, occupied sites

cannot. Vacant sites with a neighbour from a different orientation in the a
√

2/2 radius

that is occupied are excluded from the list of possible deposition sites. Figure 5.1 shows

the representation of the sites in the KMC-EAM method.

A list of active sites in each grain is maintained to track the size of each grain. This

list consists of sites with coordination numbers between 1 and 11, i.e. sites that are not

53

completely part of the bulk. When an active site reaches the edge of the generated grain,

the grain will grow on the face at which the active site is located. The growth will double

the size of the grain in that particular direction. Sites outside the simulation domain are

removed from the simulation.

5.2.4 Substrate Generation

In the simulations, copper atoms deposit onto a polycrystalline copper substrate. This

polycrystalline substrate is randomly generated by KMC-EAM based on a specified number

of possible grain orientations (L) and a specified seed layer height (hs). The substrate

generation procedure is as follows:

1. The L possible grain orientations are defined such that they span the entire x − y
plane up to at least hs.

2. Two seed sites are randomly placed in each of the L grain orientations in the z = 0

plane.

3. The first nearest neighbours of the seed sites are allowed to ‘grow’ (become occupied).

4. The nearest neighbours of the newly occupied sites are then allowed to grow until

the grain comes into contact with another grain, as overlap with other grains is not

allowed. This is repeated until no more sites that can become occupied in the seed

layer exist.

5. The seed layer is then ‘polished’ down to 0.75hs. All sites above 0.75hs become

unoccupied. This is to imitate the effects of polishing the substrate prior to deposition

in experiments.

5.2.5 Simulation Conditions

KMC-EAM simulations are carried out for a slab geometry that is periodic in the x and y

directions to approximate an infinite plane. The algorithm for the polycrystalline KMC-

54

EAM method is illustrated in Figure 5.2. The copper substrate contains grains with (100),

(110) and (111) planes normal to the z direction. The three planes are frequently found

in copper [98–105] and their surface energies have been reported in literature [106, 107].

The substrate seed layer height is hs = 1.4 nm. The simulation domain size used is

40a× 40a× 40a where aCu = 0.3615 nm is the lattice constant of copper [41, 86].

During the deposition stage of the simulation, dissolution can also occur. The propen-

sity of dissolution is given in Eqn (5.7). Since Eqn (5.2) is based on the assumption that

the electroplating bath concentration is 1 mol dm−3, the highest overpotential in DC mode

is η = −0.15 V in order to remain in the kinetically controlled regime (see Section 4.2 for

details). The deposition overpotentials applied in this study are −0.05 V, −0.10 V and

−0.15 V. The computational requirement to deposit 70000 sites onto 40a× 40a surface is

three days using one CPU.

5.3 Results and Discussion

Simulations using KMC-EAM are performed to model electrodeposition of a fixed number

of atoms by the application of direct different overpotentials at 300 K. In this study, the

simulation is stopped after all of the atoms have been deposited. The first set of results

focuses on the effect of the size of the domain on the accuracy of the results. If the

simulation domain is too small, there exists a finite size effect that will affect the kinetics

predicted by the simulation. The size of the simulation domain should not have an effect

on the kinetics of the system, thus it is important to determine the minimum domain

size that is unaffected by finite size effect. Roughness evolution over time is chosen as a

morphological measure to determine whether there is a finite size effect at a particular

domain size. This measure is chosen because the roughness-time relationship follows a

power law and the parameters in the power law are easily quantifiable. The exponent of

the power law should be independent of domain size if finite size effect does not exist. The

exponent in the roughness-time power law relationship obtained at different domain sizes

is compared to determine the minimum domain size required. The second set of results

55

Start

Read input parameters for Eqns (5.6) – (5.11), lat-
tice configurations and simulation run time (tmax)

Generate data structures for each lattice. Apply Eqn (5.19)
to coordinates in each grain and create initial substrate

Compute the EAM potential at each site

Determine active and overlapping sites in each grain

Compute propensity (Eqns (5.6) – (5.11)) and energy (Eqn (2.21))

Calculate and apply scaling factors (Section 5.2.2)

Select and perform an event based on the propensity distribution

Update the coordination numbers, active sites list and check status of overlapping sites

Generate
new sites?

Create new sites
and update

data structure

Compute energy and propensity of i up to second nearest neighbours

Calculate and apply scaling factors (Section 5.2.2)

Advance the simulation clock by Eqn (2.29)

t � tmax?

Stop

no

yes

no

yes

Figure 5.2: Flowchart of polycrystalline KMC-EAM algorithm

56

focuses on the effect of overpotential on the morphology of the deposit, specifically the

roughness.

Figure 5.3 shows an example of the morphology evolution when 70000 atoms are being

deposited at an overpotential of −0.15 V. In Figure 5.3a, the (100) grain have the largest

surface area compared to the other two grains at the start of deposition in the randomly

generated substrate (Section 5.2.4). However, as atoms are deposited, the (111) grain

grows at a noticeably faster rate, covering the (100) grain to merge with the other (111)

grain (Figure 5.3d). The same behaviour is observed when the 70000 atoms are being

deposited at η = −0.10 V and η = −0.05 V (Figures 5.4 and 5.5, respectively). The height

difference of each orientation is clear in the side view of the deposit (Figure 5.6). From

the figure, the growth of the (111) plane is three-dimensional while growth of the (100)

plane is two-dimensional and that of (110) is between the two extremes. This qualitative

observation is in agreement with experimental results for copper homoepitaxy on (100)

and (111) planes [94,108,109].

Figure 5.7 shows how the volume of each orientation increases with respect to its initial

volume for the first 0.1 s of deposition. The grain volume (111) orientation is found to be

increasing at a faster rate than the other two orientations at the three overpotentials. This

supports the qualitative observation made based on the deposit morphology in Figures

5.3, 5.4 and 5.5. This behaviour stems from the differences in the surface energies of the

different faces of copper [106,107]. Since the (111) orientation has the lowest surface energy,

atoms will preferentially deposit on this surface.

KMC-EAM accounts for the non-uniform deposition and dissolution propensities through

differences in energy contributions (Section 5.2.2). Experimental results indicate that the

(111) plane is the most dominant orientation in copper deposits [98–105]. Based on this and

the result observed in Figures 5.3 – 5.7, the method discussed in Section 5.2.2 accurately

captures the preferential growth of (111)-oriented grains in copper deposition. However,

it is important to note that while (111) grows preferentially in all cases, the growth of

the (110) and (100) planes observed experimentally appears to be dependent on both the

substrate and deposition conditions.

57

(a) (b)

(c) (d)

Figure 5.3: Morphology evolution when a) 0 % (the randomly generated substrate), b)
33.3 %, c) 66.7 % and d) 100 % of the 70000 atoms have been deposited at η = −0.15 V.
Colours denote grain orientation. The surface area of the substrates are 40aCu × 40aCu
(≈ 210 nm2).

58

(a) (b)

(c) (d)

Figure 5.4: Morphology evolution when a) 0 % (the randomly generated substrate), b)
33.3 %, c) 66.7 % and d) 100 % of the 70000 atoms have been deposited at η = −0.10 V.
Colours denote grain orientation. The surface area of the substrates are 40aCu × 40aCu
(≈ 210 nm2).

59

(a) (b)

(c) (d)

Figure 5.5: Morphology evolution when a) 0 % (the randomly generated substrate), b)
33.3 %, c) 66.7 % and d) 100 % of the 70000 atoms have been deposited at η = −0.05 V.
Colours denote grain orientation. The surface area of the substrates are 40aCu × 40aCu
(≈ 210 nm2).

60

(a) (b) (c)

Figure 5.6: Side view of final deposit morphologies at a) η = −0.05 V, b) η = −0.10 V
and c) η = −0.15 V. Colours denote grain orientation. The surface area of the substrates
are 40aCu × 40aCu (≈ 210 nm2).

5.3.1 Effect of Domain Size

The size of the domain can have an effect on the simulation results even when periodic

boundary conditions are used. If the domain size is too small, the behaviour of the system

captured will be affected by the apparent proximity of grains to each other. Thus, it is

important to determine the minimum domain size for which the results are not affected.

In order to determine this critical (minimum) size, simulations of varying domain sizes

were performed. The domain sizes chosen are 20aCu×20aCu×40aCu, 25aCu×25aCu×40aCu,

30aCu×30aCu×40aCu, 35aCu×35aCu×40aCu and 40aCu×40aCu×40aCu. The parameter

used to track the kinetics of the system is the evolution of surface roughness over time.

Surface roughness is affected by the kinetics of the system, if the kinetics predicted by the

simulation is affected by finite size effect, the roughness evolution will also be affected. At

each domain size, the equivalent of 20 monolayers for that domain was deposited and the

roughness evolution of the deposit over time was calculated. Depositing a fixed number of

atoms for all domain sizes will result in significant variations in the morphology evolution.

The equivalent of one monolayer in one domain size could be equivalent to many monolayers

in another domain size, this will render the roughness-time data incomparable. The RMS

roughness of the surface is calculated using Eqn (4.7). The roughness evolution is assumed

61

0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

100

101

V
/V

0

(100) (111) (110)

(a)

0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

100

101

V
/V

0

(100) (111) (110)

(b)

0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

100

101

V
/V

0

(100) (111) (110)

(c)

Figure 5.7: Grain volume/(initial volume) of the (100), (111) and (110) orientations with
time at a) η = −0.05 V, b) η = −0.10 V and c) η = −0.15 V.

62

15 20 25 30 35 40 45
Domain Size (Lattice Spacing)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β

Figure 5.8: Variation of average roughness exponent with domain size. Error bars denote
standard deviation.

to follow a power law relationship with time:

RRMS = Ctβ, (5.19)

logRRMS = logC + β log t, (5.20)

where C is a constant and β is the power law exponent.

The average value of β obtained at each domain size is shown in Figure 5.8. Once

the domain size is increased to 30aCu × 30aCu × 40aCu the roughness exponent converges

to β ≈ 0.5 and becomes independent of domain size. Thus, it appears that the size of

the domain no longer affects the roughness of the deposit when it becomes larger than

30aCu × 30aCu × 40aCu. Thus the critical domain size is 30aCu × 30aCu (≈ 120 nm2) in

the x− y direction. The value β ≈ 0.5 also agrees very well with the roughness exponents

obtained from additive-free electrodeposition experiments [15, 110] and copper sputter-

ing experiments [111] with atomic force microscopy measurements (Table 5.4). Previous

atomistic simulations have failed to obtain values remotely close to those obtained experi-

63

Table 5.4: Comparison of β values for copper deposition

Type Study β Ref.

Simulation
Polycrystalline KMC-EAM 0.58± 0.07 This study
Multiscale KMC 0.04± 0.06 [15]

Experimental
Single Crystal Cu(111) Electrodeposition 0.51 [15]
Cu Sputtering 0.62± 0.07 [111]
Stirred Cu Electrodeposition 0.45± 0.05 [110]

mentally without the help of adjustment parameters [15, 32].

5.3.2 Effect of Overpotential on Roughness

In this study, the overpotential is varied to determine its effect on the surface roughness.

Simulations were carried out with a domain size of 40aCu × 40aCu × 40aCu and 70000

atoms being deposited. When substituted into Eqn (5.2), the overpotentials yield current

densities in the range that was studied in Chapter 4. Figure 5.9 shows the variation of the

average RMS roughness with overpotential. The RMS roughness appears to be unaffected

by the increase in overpotential. This trend is in agreement with the results obtained

for single crystal deposition (Table 4.3) where the difference between RMS roughness at

−1000 A m2 and −100 A m2 is in the order of 10−2 nm.

From the results shown in Figures 5.3 – 5.5, the three orientations appear to exhibit

different growth modes and the roughness of each plane varies. The (111) grain is ob-

served to undergo three-dimensional growth, which is supported by the orientation-specific

roughness measurements in Figure 5.10. The RMS roughness of the (111) grain is twice

that of the (100) grain since the adatoms in the (111) grain undergo fewer step-edge atom

exchange events than the adatoms in the other two orientations. The RMS roughness

of the (110) grain is slightly higher than that of (100), supporting the observation from

Figures 5.3 – 5.5 that the growth mode of (110) is between fully three-dimensional and

two-dimensional.

While the effect of deposition rate on roughness is similar for single crystal simulations

64

0.00 0.05 0.10 0.15 0.20
−η (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
R
R
M
S

(n
m

)

Figure 5.9: Variation of the average final roughness with overpotential. Error bars denote
standard deviation.

0.00 0.05 0.10 0.15 0.20
−η (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
R
M
S

(n
m

)

(100) (111) (110)

Figure 5.10: Variation of the average final roughness of each grain orientation with over-
potential. Error bars denote standard deviation.

65

and polycrystalline simulations, the actual roughnesses are significantly different. The

overall RMS roughness of polycrystalline deposits are four times that of single crystal

deposits. In single crystals, no grain boundary effects that could affect the roughness

of the deposit obviously occur. The grain-specific roughness of the (100) grain is higher

than the roughness reported for single crystal deposition onto the same grain orientation,

indicating that the presence of other grains can have an effect on the roughness of a deposit.

5.4 Conclusions

The KMC-EAM methodology has been extended to simulate potentiostatic deposition onto

polycrystalline substrates in addition to the galvanostatic deposition onto single crystal

substrates previously presented. The atom dissolution mechanism that exists in electrode-

position has also been incorporated into the kinetics captured by KMC-EAM. Grain bound-

ary diffusion and surface diffusion across grains are taken into account in this novel method

to describe polycrystalline-specific diffusion events. The method uses Butler-Volmer kinet-

ics to describe the potential dependence of deposition and dissolution rates. The effect

of grain orientation on deposition and dissolution kinetics are taken into account through

the EAM potential. This results in preferential growth of (111) orientation in agreement

with the experimental behaviour that has been previously reported. The growth modes

observed are in agreement with experimental results for Cu/Cu(100) and Cu/Cu(111) ho-

moepitaxy. In addition, KMC-EAM was found to accurately predict the exponent in the

roughness-time power law relationship with respect to experimental data without the need

for any adjustment parameters, which previous atomistic simulations were unable to do.

66

Chapter 6

Conclusions

6.1 Conclusions

In this work, a novel KMC methodology for simulating electrodeposition under both gal-

vanostatic and potentiostatic conditions using the highly descriptive EAM potential was

developed. The KMC-EAM method was found to accurately predict the kinetics of elec-

trodeposition for both single crystal and polycrystalline systems. The polycrystalline KMC

methodology is the first three-dimensional polycrystalline method that utilizes the EAM

potential and supports both galvanostatic and potentiostatic deposition modes to simu-

late electrodeposition. The morphology of the deposits follow the same trends observed

experimentally. The general conclusions of this work are:

• The KMC-EAM method accurately describes deposit morphology over experimen-

tally relevant deposition rates and temperatures.

• Step-edge atom exchange mechanism is predominantly active during the deposition

process.

• Collective diffusion events are required to accurately predict deposit morphology.

67

• Propensity scaling allows for surface energy to be accurately taken into account in

deposition kinetics.

• Roughness-time relationship predicted by KMC-EAM is in agreement with experi-

mental results when the domain size is larger than the critical domain size.

6.2 Recommendations

1. Several simplifications were made with respect to the kinetics of the system. It is

recommended that future studies remove the following simplifications:

(a) Constant surface area – In propensity calculations of deposition and dissolution,

the surface area term is assumed to be constant and is approximated to be the

projected surface area of the domain in the x − y plane. This assumption is

valid when the deposit is smooth, which is not always the case. The surface

area should be computed at every time step and based on the actual number of

surface sites.

(b) Activation energy – The activation energy of each diffusion event is assumed

to be constant regardless of grain orientation. In reality, this is not the case,

as some diffusion events will preferentially occur in one texture over another.

Different activation energies should be used based on the grain orientation.

2. The main limiting factor with KMC-EAM is the size of the domain that can be simu-

lated in a reasonable time frame. It is recommended that the following optimization

be made to the KMC-EAM method:

(a) Pre-tabulating distances between sites – The majority of computational time is

spent evaluating the EAM potential. This calculation makes use of the distance

between sites, which is discarded after the potential calculation is completed.

Since the distance between sites does not change with time, it can be stored and

would not have to be recalculated after every event.

68

(b) Identifying surface diffusion events – The current approach in identifying surface

diffusion events involves a series of if/else statements. Instead, an external

graph library can be used to identify the configuration of the atom and thus the

possible surface diffusion events that can occur.

(c) Optimizing neighbour solver and neighbour update – The current neighbour

solver is a brute force solver. When the grain data structure grows, the neigh-

bour solver recomputes the neighbour lists using a brute force algorithm. This

brute force solver is extremely slow and the neighbour update can be limited to

current active sites and new sites.

(d) Limiting EAM potential evaluation to active sites – Currently, the EAM poten-

tial is evaluated over all sites in the domain. This is unnecessary, as sites in the

bulk will not experience any change to their potential energy.

3. While the KMC-EAM method is able to accurately predict the dynamics of elec-

trodeposition of metal onto the same metal substrate, this condition is only one of

the many possible modes of electrodeposition. The following types of simulations

should also be considered:

(a) Coarse-grained KMC – Coarse-grained KMC will help KMC access longer time

scales and large domain sizes.

(b) Multiscale simulations – Multiscale simulations will enable access to either larger

time scales through continuum equations or more detailed kinetics through

smaller length scale methods such as DFT or MD. This will also allow for mass

transfer effects in the adjacent electrolyte to be studied, which in turn will allow

for experimentally relevant simulations of pulsed deposition to be conducted.

(c) Strained heteroepitaxial growth – Incorporation of the effect of elastic energy on

deposit morphology in metal deposition onto a foreign substrate will significantly

extend the applications of the KMC-EAM method.

69

Appendix – KMC-EAM

Documentation

The following documentation is generated using Doxygen2.

SPPARKS NS::AppEAM Class Reference

#include <app eam.h>

Inheritance diagram for SPPARKS NS::AppEAM:

SPPARKS_NS::AppEAM

AppLattice

Public Member Functions

• AppEAM (class SPPARKS ∗, int, char ∗ ∗)
• virtual ∼AppEAM ()

• virtual void grow app ()

• virtual void init app ()

2URL: http://www.stack.nl/˜dimitri/doxygen/index.html

70

http://www.stack.nl/~dimitri/doxygen/index.html

• virtual void setup app ()

• virtual void setup end app ()

• virtual double site energy (int, int)

• virtual void site event rejection (int, class RandomPark ∗)
• virtual double site propensity (int)

• virtual void site event (int, class RandomPark ∗)
• void stats (char ∗)
• void stats header (char ∗)

Private Member Functions

• double system energy (int, int, int, int, int)

• int neighbor check (int, int, int)

• int edge check (int, int)

• void coord update (int, int)

• void update dep flag (int)

• void gen seed layer (class RandomPark ∗, vec int)

• void update status (int, int, int)

• void check grain distance (int)

• void check grain distance (int, int)

• int determine direction (int, int)

• double get local coordinates (array coordinates &, int, int)

• int exchange destination (int, int, int)

• void scale propensities ()

Private Attributes

• int seed n

• int n hop

• int n atomexch

• int n step

• int n grain

• int n boundary

71

• vec int array 2 diff sites

• vec int sites

• double i dep

• double i diss

• double alpha a

• double alpha c

• double i0

• double eta

• double ox rate

• int dep mode

• int diss sites count

• vec int diss sites count grain

• double i a dep

• double i a diss

• double z me

• double Ed

• double Ed exch

• double Ed step

• double Ed grain

• double Ed boundary

• double v d

• double v exch

• double v step

• double v grain

• double v boundary

• double seedlayer size

• double seed frac

• double charge

• int n diss

• int n max

• int dep sites count

• vec coordinates phi old

• double old eng

72

• int phi old count

• int count

• vec int dep sites count grain

• double max eng

• double polish height

• vec int dep sites

• vec int diss sites

• double scale dep on

• double scale dep off

• double scale diss on

• double scale diss off

• int pulse

• double on dt

• double off dt

• double prev time

• int pulse on

• vec vec double dep diss prob

• PairEAM ∗ pair

Constructor & Destructor Documentation

AppEAM::AppEAM (class SPPARKS ∗ spk, int narg, char ∗∗ arg)

Constructor for AppEAM Arguments for AppEAM:

1. seed layer height in Angstroms

2. fraction of number of occupied sites in seed layer

3. dep - deposition mode (p - potentiostatic; g - galvanostatic)

4. z me - number of electrons required for metal reduction

5. n max - max number of atoms adsorbed

6. Ed - hopping diff activation energy (eV)

73

7. Ed exch - atom exchange diffusion activation energy (eV)

8. Ed step - step edge atom exchange activation energy (eV)

9. v d - vibrational freq of atom for hopping (1/s)

10. v exch - vibration freq of atom for atom exchange (1/s)

11. v step - vibration freq of atom for step edge atom exchange (1/s)

12. Ed grain - activation energy for diffusion across grain boundaries (eV)

13. Ed boundary - activation energy for diffusion ALONG grain boundaries (eV)

14. v grain - vibration freq of atom for diffusion across grain boundaries (1/s)

15. v boundary - vibration freq of atom for diffusion along grain boundaries (1/s)

If galvanostatic deposition:

1. i dep - deposition current denstiy (pA/nm∧2; 1 pA/nm2 = 10∧6 A/m2)

If potentiostatic deposition:

1. eta - overpotential (V vs SHE)

2. alpha a - transfer coefficient for anodic reaction

3. alpha c - transfer coefficient for cathodic reaction

4. i0 - exchange current density (pA/nm∧2; 1 pA/nm2 = 10∧6 A/m2)

Plating mode:

1. pulse - pulse-plating type (dc->0, pp->1, or pr->2)

If DC, no parameters required

If pulse-plating:

1. pulse on - current on time

74

2. pulse off - current off time

If pulse-reverse:

1. pulse on - current on time

2. pulse off - current off time

3. ox rate - oxidation rate - overpotential (V)

00053 :
00054 AppLattice(spk,narg,arg)
00055 {
00056 ninteger = 4; // 1) site type, 2) site grain id,
00057 // 3) coordination number, 4) deposition site indicator
00058 ndouble = 2; // rho - embedding density, phi - site energy
00059 delpropensity = 1;
00060 delevent = 0;
00061 allow kmc = 1;
00062 allow rejection = 0;
00063 allow masking = 0;
00064 numrandom = 1;
00065
00066 dt sweep = 1;
00067
00068 seed n = 0;
00069 count = 0;
00070
00071 pulse = 0;
00072
00073 on dt = off dt = prev time = 0.;
00074
00075 i0 = 0.;
00076 eta = 0.;
00077 alpha a = alpha c = 0.;
00078 ox rate = 0.;
00079 i diss = i dep = 0.;
00080
00081 n hop = n atomexch = n step = n grain = n boundary = n diss = 0;
00082
00083 scale dep on = 1.;
00084 scale dep off = 1.;
00085 scale diss on = 1.;
00086 scale diss off = 1.;
00087
00088 dep sites count = 0;
00089 diss sites count = 0;
00090
00091 charge = 1.602176565e-19; // charge of an electron (C)
00092
00093 // parse arguments
00094 if ((narg < 16) || (strcmp(name,"eam") != 0))
00095 error->all(FLERR,"Illegal app style command");

75

00096
00138 seedlayer size = atof(arg[1]);
00139 seed frac = atof(arg[2]);
00140
00141 z me = atof(arg[4]);
00142 n max = atoi(arg[5]);
00143 Ed = atof(arg[6]);
00144 Ed exch = atof(arg[7]);
00145 Ed step = atof(arg[8]);
00146 v d = atof(arg[9]);
00147 v exch = atof(arg[10]);
00148 v step = atof(arg[11]);
00149 Ed grain = atof(arg[12]);
00150 Ed boundary = atof(arg[13]);
00151 v grain = atof(arg[14]);
00152 v boundary = atof(arg[15]);
00153
00154 // set up plating conditions
00155 if (strcmp(arg[3], "p") == 0)
00156 {
00157 if (narg < 21)
00158 error->all(FLERR, "Deposition parameters not specified");
00159
00160 eta = atof(arg[16]);
00161 alpha a = atof(arg[17]);
00162 alpha c = atof(arg[18]);
00163 i0 = atof(arg[19]);
00164
00165 dep mode = 1;
00166
00167 if (strcmp(arg[20], "dc") == 0)
00168 {
00169 pulse = 0;
00170 pulse on = 1;
00171 }
00172
00173 if (strcmp(arg[20], "pp") == 0)
00174 {
00175 if (narg != 23)
00176 error->all(FLERR, "Pulse-plating conditions required");
00177
00178 pulse = 1;
00179 pulse on = 1;
00180 on dt = atof(arg[21]);
00181 off dt = atof(arg[22]);
00182 }
00183
00184 if (strcmp(arg[20], "pr") == 0)
00185 {
00186 if (narg != 24)
00187 error->all(FLERR, "Pulse-plating conditions required");
00188
00189 pulse = 2;
00190 pulse on = 1;
00191 on dt = atof(arg[21]);
00192 off dt = atof(arg[22]);
00193 ox rate = atof(arg[23]);

76

00194
00195 }
00196
00197 }
00198 else if (strcmp(arg[3], "g") == 0)
00199 {
00200 if (narg < 18)
00201 error->all(FLERR, "Deposition current density not specified");
00202
00203 i dep = atof(arg[16]);
00204
00205 dep mode = 0;
00206
00207 if (strcmp(arg[17], "dc") == 0)
00208 {
00209 pulse = 0;
00210 pulse on = 1;
00211 }
00212
00213 if (strcmp(arg[17], "pp") == 0)
00214 {
00215 if (narg != 20)
00216 error->all(FLERR, "Pulse-plating conditions required");
00217
00218 pulse = 1;
00219 pulse on = 1;
00220 on dt = atof(arg[18]);
00221 off dt = atof(arg[19]);
00222 }
00223
00224 if (strcmp(arg[17], "pr") == 0)
00225 error->all(FLERR, "Pulse-reverse is unsupported in galvanostatic mode");
00226 }
00227
00228 if ((seed frac <= 0.) || (seed frac > 1.0))
00229 error->all(FLERR,"Fraction must be between 0 and 1.");
00230
00231 }

AppEAM::∼AppEAM () [virtual]

00236 {
00237 }

Member Function Documentation

void AppEAM::check grain distance (int grain) [private]

Checks the distance between active sites in grain and active site of other grains to see if
the grains have met

77

Parameters

grain Grain ID that needs to be checked

Checks the distance between active sites in grain and neighbors from other grains to see
if the grains are in close proximity of each other. If they are, change the dep flag of those
sites in proximity to either -1 or -2 depending on the type. This will inhibit deposition at
those sites and will help identify sites that can undergo grain boundary diffusion and grain
boundary migration.

Computationally, it’s faster to flip dep flag[i] to -1 than to compare the energy difference
if deposition is to occur at site i. Sites that are less than the cutoff distance away from
each other would have a repulsive energy contribution to the Hamiltonian and the event
would have been unlikely (as in impossible) anyway.

01122 {
01123 vec int& type i = lattice[grain]->iarray[0];
01124 vec int& dep flag i = lattice[grain]->iarray[3];
01125
01126 vec vec int& global neighbors = lattice[grain]->global neighbors;
01127 vec int& num global neighbors = lattice[grain]->num global neighbors;
01128
01129 vec coordinates& coordinates i = lattice[grain]->coordinates;
01130
01131 double x i, y i, z i, x j, y j, z j, dx, dy, dz, rsq;
01132 double cutoff = ((lattice[grain]->latconst)/1.01)*((lattice[grain]->latconst)/1.01);
01133
01134 double xmid = domain->midpoint(0);
01135 double ymid = domain->midpoint(1);
01136 double zmid = domain->midpoint(2);
01137
01138 for (int ii = 0; ii < active sites[grain].size(); ii++)
01139 {
01140 int i = active sites[grain][ii];
01141
01142 int flag = 0; // flag indicating whether dep flag needs to be reverted back from
01143
01144 x i = coordinates i[i][0];
01145 y i = coordinates i[i][1];
01146 z i = coordinates i[i][2];
01147
01148 // only search over global neighbors of site i to speed up the search
01149 // this is ok given the cutoff used here and in finding global neighbors
01150 for (int jj = 0; jj < num global neighbors[i]; jj++)
01151 {
01152 int j = global neighbors[i][jj];
01153 pair int j local = global to grain(j);
01154
01155 // if global neighbor is in the same grain, ignore
01156 if (j local.second == grain)
01157 continue;
01158
01159 // if global neighbor not an active site of another grain, ignore

78

01160 if (!active sites check(j local.first,j local.second))
01161 continue;
01162
01163 array coordinates& coordinates j = lattice[j local.second]->coordinates[j local.first];
01164
01165 x j = coordinates j[0];
01166 y j = coordinates j[1];
01167 z j = coordinates j[2];
01168
01169 dx = x i - x j;
01170 dy = y i - y j;
01171 dz = z i - z j;
01172
01173 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01174 dx = fabs(dx) - 2.*xmid;
01175
01176 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01177 dy = fabs(dy) - 2.*ymid;
01178
01179 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01180 dz = fabs(dz) - 2.*zmid;
01181
01182 rsq = dx*dx + dy*dy + dz*dz;
01183
01184 if (rsq <= cutoff)
01185 {
01186 int& type j = (lattice[j local.second]->iarray[0])[j local.first];
01187 int& dep flag j = (lattice[j local.second]->iarray[3])[j local.first];
01188
01189 if (type i[i] != type j)
01190 {
01191 if (type i[i] == 0)
01192 {
01193 dep flag i[i] = -1;
01194 dep flag j = -2;
01195 flag = 1; // if site i still is inhibited, flag = 1
01196 }
01197 else
01198 {
01199 dep flag j = -1;
01200 dep flag i[i] = -2;
01201 flag = 1;
01202 }
01203 }
01204 else if ((type i[i] == 1) && (type j == 1))
01205 {
01206 dep flag i[i] = -2;
01207 dep flag j = -2;
01208 flag = 1; // if site i still is inhibited, flag = 1
01209 }
01210 }
01211 }
01212
01213 // if initially the site has reached the other grain but now has changed
01214 // revert dep flag back to 0
01215 if (flag == 0)
01216 dep flag i[i] = 0;

79

01217 }
01218 }

void AppEAM::check grain distance (int site, int grain) [private]

Checks the distance between active sites in grain and active site of other grains to see if
the grains have met

Parameters

site Local index of site that needs checking
grain Grain ID that needs to be checked

Checks the distance between active sites in grain and neighbors from other grains to see
if the grains are in close proximity of each other. If they are, change the dep flag of those
sites in proximity to either -1 or -2 depending on the type. This will inhibit deposition at
those sites and will help identify sites that can undergo grain boundary diffusion and grain
boundary migration.

01227 {
01228 if (!active sites check(site,grain))
01229 return;
01230
01231 int& type i = (lattice[grain]->iarray[0])[site];
01232 int& dep flag i = (lattice[grain]->iarray[3])[site];
01233
01234 vec int& global neighbors = lattice[grain]->global neighbors[site];
01235 int& num global neighbors = lattice[grain]->num global neighbors[site];
01236
01237 double x i, y i, z i, x j, y j, z j, dx, dy, dz, rsq;
01238 double cutoff = ((lattice[grain]->latconst)/1.01)*((lattice[grain]->latconst)/1.01);
01239
01240 double xmid = domain->midpoint(0);
01241 double ymid = domain->midpoint(1);
01242 double zmid = domain->midpoint(2);
01243
01244 array coordinates& coordinates i = lattice[grain]->coordinates[site];
01245
01246 x i = coordinates i[0];
01247 y i = coordinates i[1];
01248 z i = coordinates i[2];
01249
01250 int flag = 0; // flag indicating whether dep flag needs to be reverted back from -1
01251
01252 // this distance is chosen to avoid large gaps between grains
01253 for (int jj = 0; jj < num global neighbors; jj++)
01254 {
01255 int j = global neighbors[jj];
01256 pair int j local = global to grain(j);
01257

80

01258 // if global neighbor is in the same grain, ignore
01259 if (j local.second == grain)
01260 continue;
01261
01262 // if global neighbor not an active site of another grain, ignore
01263 if (!active sites check(j local.first,j local.second))
01264 continue;
01265
01266 array coordinates& coordinates j = lattice[j local.second]->coordinates[j local.first];
01267
01268 x j = coordinates j[0];
01269 y j = coordinates j[1];
01270 z j = coordinates j[2];
01271
01272 dx = x i - x j;
01273 dy = y i - y j;
01274 dz = z i - z j;
01275
01276 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01277 dx = fabs(dx) - 2.*xmid;
01278
01279 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01280 dy = fabs(dy) - 2.*ymid;
01281
01282 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01283 dz = fabs(dz) - 2.*zmid;
01284
01285 rsq = dx*dx + dy*dy + dz*dz;
01286
01287 if (rsq <= cutoff)
01288 {
01289 int& type j = (lattice[j local.second]->iarray[0])[j local.first];
01290 int& dep flag j = (lattice[j local.second]->iarray[3])[j local.first];
01291
01292 // if sites are less than the cutoff distance away and one of them is
01293 // unoccupied, the unoccupied site is inhibited
01294 if (type i != type j)
01295 {
01296 if (type i == 0)
01297 {
01298 dep flag i = -1;
01299 dep flag j = -2;
01300 flag = 1; // if site i still is inhibited, flag = 1
01301 }
01302 else
01303 {
01304 dep flag j = -1;
01305 dep flag i = -2;
01306 flag = 1;
01307 }
01308 }
01309 else if ((type i == 1) && (type j == 1))
01310 {
01311 dep flag i = -2;
01312 dep flag j = -2;
01313 flag = 1; // if site i still is inhibited, flag = 1
01314 }

81

01315 }
01316 }
01317
01318 // if initially the site has reached the other grain but now has changed
01319 // revert dep flag back to 0
01320 if (flag == 0)
01321 dep flag i = 0;
01322 }

void AppEAM::coord update (int i, int grain) [private]

Updates the coordination number of site i

Parameters

i Local index of site i
grain Grain ID of site i

Updates coordination number for i’s neighbors, where the index i is a local (within the
grain) index.

01583 {
01584 vec int& type = lattice[grain]->iarray[0];
01585 vec int& coordnum = lattice[grain]->iarray[2];
01586
01587 vec int& num neighbors = lattice[grain]->num neighbors;
01588 vec vec int& neighbors = lattice[grain]->neighbors;
01589
01590 coordnum[i] = 0;
01591
01592 for (int jj = 0; jj < num neighbors[i]; jj++)
01593 {
01594 int j = neighbors[i][jj];
01595 coordnum[j] = 0;
01596 for (int k = 0; k < num neighbors[j]; k++)
01597 {
01598 if (type[neighbors[j][k]] != 0)
01599 coordnum[j]++;
01600 }
01601
01602 if (type[j] != 0)
01603 coordnum[i]++;
01604 }
01605 }

int AppEAM::determine direction (int i, int grain) [private]

Determines the face that site i is closest to and which direction should be considered when
determining whether step-edge and atom exchange moves for site i

82

Parameters

i Local index of site i
grain Grain ID of site i

Determines the face that site i is closest to and which direction should be considered when
determining whether step-edge and atom exchange moves for site i.

This is a hack that would not be necessary if we use graph theory to map the diffusion
sites.

0 is x-, 1 is x+, 2 is y-, 3 is y+, 4 is z-, and 5 is z+ Implementation: Loop over all first
nearest neighbors of i. If the neighbor is occupied, boxed in (coordnum > 6) or dep flag =
-1, ignore the site. Find dx, dy, and dz from site i. For every time dx, dy, dz != 0, add it
to the corresponding element in the direction array.

Function will find the max in the array to determine which direction has the highest
number of vacant neighbors - that direction is the direction that step-edge/atom exchange
will move in.

Example: if loc = 5, this means that site i may undergo step-edge/atom exchange in
the z direction on the plane that is normal to the z+ direction

01616 {
01617 vec int& dep flag = lattice[grain]->iarray[3];
01618
01619 double xmid = domain->midpoint(0);
01620 double ymid = domain->midpoint(1);
01621 double zmid = domain->midpoint(2);
01622
01623 vec int direction(6,0); // create 6x1 vector and initialize all values to zero
01624
01625 double x loc, y loc, z loc;
01626 double j x loc, j y loc, j z loc;
01627 double dx, dy, dz;
01628
01629 vec coordinates& coordinates = lattice[grain]->coordinates;
01630
01631 vec vec int& neighbors = lattice[grain]->neighbors;
01632 vec int& num neighbors = lattice[grain]->num neighbors;
01633
01634 vec int& coordnum = lattice[grain]->iarray[2];
01635
01636 vec int& type = lattice[grain]->iarray[0];
01637
01638 // get local coordinates of site i
01639 x loc = get local coordinates(coordinates[i], grain, 0);
01640 y loc = get local coordinates(coordinates[i], grain, 1);
01641 z loc = get local coordinates(coordinates[i], grain, 2);
01642
01650 for (int jj = 0; jj < num neighbors[i]; jj++)

83

01651 {
01652 int j = neighbors[i][jj];
01653
01654 // if site is not vacant, skip
01655 if (type[j] != 0)
01656 continue;
01657
01658 // if dep flag = -1 (vacant, on a grain boundary) - skip since we don’t want
01659 // sites in the grain boundary to undergo atom exchange
01660 if (dep flag[j] == -1)
01661 continue;
01662
01663 // if bulk, ignore
01664 if (coordnum[j] > 6)
01665 continue;
01666
01667 // get j’s local coordinates
01668 j x loc = get local coordinates(coordinates[j], grain, 0);
01669 j y loc = get local coordinates(coordinates[j], grain, 1);
01670 j z loc = get local coordinates(coordinates[j], grain, 2);
01671
01672 // get the distance away from site i in terms of local coordinates
01673 dx = x loc - j x loc;
01674 dy = y loc - j y loc;
01675 dz = z loc - j z loc;
01676
01677 // if periodic boundary condition is used, make sure dx, dy, and dz are correct
01678 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01679 dx = fabs(dx) - 2.*xmid;
01680
01681 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01682 dy = fabs(dy) - 2.*ymid;
01683
01684 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01685 dz = fabs(dz) - 2.*zmid;
01686
01687 // every time dx, dy, dz is not zero, add it to the count in direction array
01688 // store them in the reverse order so that when we use max element and there’s
01689 // a case where two elements are equal, it will favor the z-direction
01690 if ((dx > 0.) && (fabs(dx) > 0.001))
01691 direction[5]++;
01692
01693 if ((dx < 0.) && (fabs(dx) > 0.001))
01694 direction[4]++;
01695
01696 if ((dy > 0.) && (fabs(dy) > 0.001))
01697 direction[3]++;
01698
01699 if ((dy < 0.) && (fabs(dy) > 0.001))
01700 direction[2]++;
01701
01702 if ((dz > 0.) && (fabs(dz) > 0.001))
01703 direction[1]++;
01704
01705 if ((dz < 0.) && (fabs(dz) > 0.001))
01706 direction[0]++;
01707

84

01708 }
01709
01710 int sum = std::accumulate(direction.begin(), direction.end(), 0);
01711
01721 // find where the max element in direction vector is (max element returns an iterator)
01722 int loc = std::distance(direction.begin(), std::max element(direction.begin(),

direction.end()));
01723
01724 loc = 5 - loc; // converting back to x->z ordering
01725
01726 // if there are no sites that satisfy the previous criteria, site i is at the grain
01727 // boundary
01728 if (sum == 0)
01729 loc = -1;
01730
01731 return loc;
01732 }

int AppEAM::edge check (int i, int grain) [private]

Checks whether site i is at the edge of the simulation domain

Parameters

i Local index of site i
grain Grain ID of site i

Checks if site is at the edge of the box. This is based on the coordination number of the
edge site being lower in non-periodic BCs.

01329 {
01330 vec int& coordnum = lattice[grain]->iarray[2];
01331
01332 vec coordinates& coordinates = lattice[grain]->coordinates;
01333
01334 double x = coordinates[i][0];
01335 double y = coordinates[i][1];
01336
01337 double x max = domain->boxhi[0];
01338 double y max = domain->boxhi[1];
01339
01340 // max distance away from the box boundary to be considered an edge site
01341 double max dist = (lattice[grain]->next site)*(lattice[grain]->latconst);
01342
01343 // if the site is at the edge of the box at the x-axis and is non-periodic in x
01344 if (((x <= max dist) || (fabs(x - x max) <= max dist))
01345 && (domain->periodicity[0] == 0))
01346 {
01347 if (coordnum[i] >= 5) // coordination number of edge sites in the bulk >= 4
01348 return 1;
01349 else if (((y <= max dist) || (fabs(y - y max) <= max dist)) && (coordnum[i] >= 3))
01350 // unless it is at the corner, in that case coordnum >= 3

85

01351 return 1;
01352 else
01353 return 0;
01354 }
01355 else if (((y <= max dist) || (fabs(y - y max) <= max dist))
01356 && (domain->periodicity[1] == 0))
01357 {
01358 if (coordnum[i] >= 5)
01359 return 1;
01360 else if (((x <= max dist) || (fabs(x - x max) <= max dist)) && (coordnum[i] >= 3))
01361 return 1;
01362 else
01363 return 0;
01364 }
01365 else
01366 return 0;
01367
01368 }

int AppEAM::exchange destination (int n, int grain, int direction)
[private]

Check if site n is a possible destination for step-edge atom exchange and atom exchange
in some direction

Parameters

n Local index of site n
grain Grain ID of site n

direction Direction that step-edge is occuring

Check if site n is a possible destination for step-edge atom exchange and atom exchange
in some direction. Function returns 0 or 1 depending on whether it is a possible exchange
site or not. Criteria is that site n’s 4 nearest neighbors in the layer below it in the plane
in which step-edge occurs have to be occupied. This is because step-edge is the movement
from one terrace down to the layer below it. The layer below is a fully occupied layer
because otherwise the atom will be hanging out from the terrace.

01741 {
01749 vec int& type = lattice[grain]->iarray[0];
01750 vec coordinates& coordinates = lattice[grain]->coordinates;
01751
01752 // if site is edge of box, return 1 since the rest of the criteria will not apply
01753 if (coordinates[n][floor(direction*0.5)] < (lattice[grain]->next site)

*((lattice[grain]->latconst)/1.01))
01754 return 1;
01755
01756 vec int& coordnum = lattice[grain]->iarray[2];
01757

86

01758 // if coordination number is not greater than 4 and not at the edge, the site cannot
01759 // be a potential destination for step-edge atom exchange
01760 if ((coordnum[n] < 5) && (coordinates[n][floor(direction*0.5)] >=

(lattice[grain]->next site)*((lattice[grain]->latconst)/1.01)))
01761 return 0;
01762
01763 vec int& neighbors = lattice[grain]->neighbors[n];
01764 int& num neighbors = lattice[grain]->num neighbors[n];
01765
01766 double dx, dy, dz;
01767 int neigh count = 0;
01768
01769 double xmid = domain->midpoint(0);
01770 double ymid = domain->midpoint(1);
01771 double zmid = domain->midpoint(2);
01772
01773 for (int jj = 0; jj < num neighbors; jj++)
01774 {
01775 int j = neighbors[jj];
01776
01777 if (direction == 0)
01778 {
01779 dx = coordinates[n][0] - coordinates[j][0];
01780
01781 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01782 dx = fabs(dx) - 2.*xmid;
01783
01784 if ((dx < 0.) && (fabs(dx) > 0.001) && (type[j] == 1))
01785 neigh count++;
01786 }
01787 else if (direction == 1)
01788 {
01789 dx = coordinates[n][0] - coordinates[j][0];
01790
01791 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01792 dx = fabs(dx) - 2.*xmid;
01793
01794 if ((dx > 0.) && (fabs(dx) > 0.001) && (type[j] == 1))
01795 neigh count++;
01796 }
01797 else if (direction == 2)
01798 {
01799 dy = coordinates[n][1] - coordinates[j][1];
01800
01801 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01802 dy = fabs(dy) - 2.*ymid;
01803
01804 if ((dy < 0.) && (fabs(dy) > 0.001) && (type[j] == 1))
01805 neigh count++;
01806 }
01807 else if (direction == 3)
01808 {
01809 dy = coordinates[n][1] - coordinates[j][1];
01810
01811 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01812 dy = fabs(dy) - 2.*ymid;
01813

87

01814 if ((dy > 0.) && (fabs(dy) > 0.001) && (type[j] == 1))
01815 neigh count++;
01816 }
01817 else if (direction == 4)
01818 {
01819 dz = coordinates[n][2] - coordinates[j][2];
01820
01821 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01822 dz = fabs(dz) - 2.*zmid;
01823
01824 if ((dz < 0.) && (fabs(dz) > 0.001) && (type[j] == 1))
01825 neigh count++;
01826 }
01827 else if (direction == 5)
01828 {
01829 dz = coordinates[n][2] - coordinates[j][2];
01830
01831 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01832 dz = fabs(dz) - 2.*zmid;
01833
01834 if ((dz > 0.) && (fabs(dz) > 0.001) && (type[j] == 1))
01835 neigh count++;
01836 }
01837 }
01838 // if the 4 nearest neighbors above site n are vacant, return 1
01839 if (neigh count == 4)
01840 return 1;
01841
01842 return 0;
01843
01844 }

void AppEAM::gen seed layer (class RandomPark ∗ random, vec int
seedlayer) [private]

Generates a seed layer to initialize the simulation

Parameters

random Random number generator
seedlayer Vector of sites in the seed layer

Generates the seed layer for deposition to occur. App will not work without a seed layer
since the propensity will be zero for all sites.

Two modes are possible: i) seed layer occupancy fraction is not 1 - sites are randomly
assigned or deposition is on a foreign substrate and ii) seed layer occupancy fraction is 1 -
polycrystalline substrate will be randomly generated.

00564 {

88

00565 pair int site local;
00566
00567 int seed count = 0; // counter for number of sites occupied in seed layer
00568 int ind = 0;
00569 double einitial;
00570 double efinal;
00571 int flag;
00572
00573 if (seed frac != 1.0)
00574 // if the desired fraction is not 1, randomly assign atoms to sites in the seed layer
00575 {
00576 double xmid = domain->midpoint(0);
00577 double ymid = domain->midpoint(1);
00578 double zmid = domain->midpoint(2);
00579
00580 double dx, dy, dz, rsq;
00581 double cutoff = ((lattice[0]->latconst)/1.01)*((lattice[0]->latconst)/1.01);
00582
00583 while (seed count <= seed n)
00584 {
00585 // select site using random number
00586 ind = int (random->uniform()*seedlayer.size());
00587
00588 if (ind == seedlayer.size())
00589 // making sure that the index will not exceed the dim. of array
00590 ind--;
00591
00592 flag = 0;
00593 site local = global to grain(seedlayer[ind]);
00594
00595 int& type i = (lattice[site local.second]->iarray[0])[site local.first];
00596 vec int& num global neighbors = lattice[site local.second]->num global neighbors;
00597 vec vec int& global neighbors = lattice[site local.second]->global neighbors;
00598
00599 array coordinates& coordinates site = lattice[site local.second]->

coordinates[site local.first];
00600
00601 // check global neighbors within cutoff to prevent overlap
00602 for (int i = 0; i < num global neighbors[site local.first]; i++)
00603 {
00604 int j = global neighbors[site local.first][i];
00605 pair int j local = global to grain(j);
00606
00607 array coordinates& coordinates j = lattice[j local.second]->coordinates[j local.first];
00608
00609 dx = coordinates site[0] - coordinates j[0];
00610 dy = coordinates site[1] - coordinates j[1];
00611 dz = coordinates site[2] - coordinates j[2];
00612
00613 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
00614 dx = fabs(dx) - 2.*xmid;
00615
00616 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
00617 dy = fabs(dy) - 2.*ymid;
00618
00619 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
00620 dz = fabs(dz) - 2.*zmid;

89

00621
00622 rsq = dx*dx + dy*dy + dz*dz;
00623
00624 if (rsq >= cutoff)
00625 continue;
00626
00627 int& type j = (lattice[j local.second]->iarray[0])[j local.first];
00628
00629 // if one of the site’s neighbors from a different grain is occupied
00630 // this site has to be unoccupied (same idea as check grain distance)
00631 if ((type j == 1) && (site local.second != j local.second))
00632 flag = 1; // flip the flag to prevent deposition
00633 }
00634
00635 // if no issues, try depositing a site here
00636 if (flag == 0)
00637 {
00638 einitial = system energy(site local.first,-1,0,site local.second,site local.second);
00639 // change type to occupied
00640 type i = 1;
00641
00642 efinal = system energy(site local.first,-1,1,site local.second,site local.second);
00643
00644 // check energy
00645 if (efinal <= einitial)
00646 {
00647 seed count++;
00648 efinal = system energy(site local.first,-1,2,site local.second,site local.second);
00649 }
00650 else // else, revert type back
00651 {
00652 type i = 0;
00653 }
00654 }
00655 }
00656 }
00657 else
00658 {
00659 // ‘grow’ the seed up to seedlayer size then polish it back down to 0.75*height
00660
00661 int seed sites = lattice count*2; // get the number of seed sites
00662
00663 int seed sites count = 0;
00664
00665 int next grain = 0; // grain ID of next site - to ensure equal distribution of seeds
00666
00667 vec int occ sites; // vector containing occupied sites in seed
00668
00669 while (seed sites count < seed sites)
00670 {
00671 ind = int (random->uniform()*seedlayer.size()); // pick a site
00672
00673 if (ind == seedlayer.size())
00674 // making sure that the index will not exceed the dim. of array
00675 ind--;
00676
00677 site local = global to grain(seedlayer[ind]);

90

00678
00679 array coordinates& coordinates i = lattice[site local.second]->

coordinates[site local.first];
00680 int& type i = (lattice[site local.second]->iarray[0])[site local.first];
00681
00682 // if the site is at the bottom z limit of box, plant the seed
00683 if ((coordinates i[2] <= (lattice[site local.second]->next site)*

((lattice[site local.second]->latconst)/1.01)) &&
00684 (site local.second == next grain))
00685 {
00686 type i = 1;
00687 seed sites count++;
00688 occ sites.push back(seedlayer[ind]); // add to occ sites
00689 seedlayer.erase(seedlayer.begin() + ind); // remove from seedlayer
00690 coord update(site local.first,site local.second); // update coordnum
00691 // add to active sites
00692 active sites[site local.second].push back(site local.first);
00693
00694 vec int& num neighbors = lattice[site local.second]->num neighbors;
00695 vec vec int& neighbors = lattice[site local.second]->neighbors;
00696
00697
00698 check grain distance(site local.first,site local.second);
00699
00700 // add the nearest neighbors to active sites as well
00701 for (int jj = 0; jj < num neighbors[site local.first]; jj++)
00702 {
00703 int j = neighbors[site local.first][jj];
00704 active sites[site local.second].push back(j);
00705 check grain distance(j,site local.second);
00706 }
00707
00708 // update dep flag
00709 update dep flag(site local.second);
00710
00711 next grain++; // move on to next grain
00712 }
00713 // if looped over all grains, start over
00714 if (next grain == lattice count)
00715 next grain = 0;
00716 }
00717 // now fill in the rest based on the seed sites
00718 // let it loop over occ sites.size() - this will grow as the number of occ sites
00719 // increases
00720 int k = 0;
00721 while (k < occ sites.size())
00722 {
00723 int site = occ sites[k];
00724
00725 site local = global to grain(site);
00726
00727 vec int& num neighbors = lattice[site local.second]->num neighbors;
00728 vec vec int& neighbors = lattice[site local.second]->neighbors;
00729
00730 array coordinates& coordinates site = lattice[site local.second]->

coordinates[site local.first];
00731

91

00732 // loop over all first nearest neighbors
00733 for (int j = 0; j < num neighbors[site local.first]; j++)
00734 {
00735 // get global index to find site in seedlayer
00736 int neigh global = grain to global(std::make pair(neighbors[site local.first][j],

site local.second));
00737
00738 auto ind = std::find(seedlayer.begin(), seedlayer.end(), neigh global);
00739
00740 // if the neighbor is in the seedlayer vector, it’s a seed site
00741 if (ind != seedlayer.end())
00742 {
00743 site local = global to grain(*ind);
00744
00745 int dep flag i = lattice[site local.second]->iarray[3][site local.first];
00746
00747 // check dep flag to prevent overlaps and to avoid computing the
00748 // energy (sites that will cause efinal > einitial are excluded by
00749 // dep flag)
00750 if (dep flag i != 1)
00751 continue;
00752
00753 einitial = system energy(site local.first,-1,0,site local.second,site local.second);
00754
00755 // change type to 1
00756 lattice[site local.second]->iarray[0][site local.first] = 1;
00757
00758 efinal = system energy(site local.first,-1,1,site local.second,site local.second);
00759
00760 if (efinal > einitial)
00761 {
00762 lattice[site local.second]->iarray[0][site local.first] = 0;
00763 seedlayer.erase(ind);
00764 continue;
00765 }
00766
00767 occ sites.push back(*ind);
00768 seedlayer.erase(ind);
00769 coord update(site local.first,site local.second);
00770
00771 // if it was not in active sites, add it
00772 if (!active sites check(site local.first, site local.second))
00773 active sites[site local.second].push back(site local.first);
00774
00775 check grain distance(site local.first,site local.second);
00776
00777 for (int jj = 0; jj < num neighbors[site local.first]; jj++)
00778 {
00779 int j = neighbors[site local.first][jj];
00780 if (!active sites check(j, site local.second))
00781 {
00782 active sites[site local.second].push back(j);
00783 check grain distance(j,site local.second);
00784 }
00785 }
00786
00787 update dep flag(site local.second);

92

00788
00789 }
00790 }
00791 k++;
00792 }
00793 // now that we have the substrate, we ‘polish’ it
00794 for (int i = 0; i < occ sites.size(); i++)
00795 {
00796 site local = global to grain(occ sites[i]);
00797
00798 array coordinates& coordinates i = lattice[site local.second]->coordinates[site local.first];
00799
00800 if (coordinates i[2] > polish height)
00801 lattice[site local.second]->iarray[0][site local.first] = 0;
00802
00803 coord update(site local.first,site local.second);
00804 }
00805 seed n = occ sites.size();
00806 }
00807 }

double AppEAM::get local coordinates (array coordinates & coord, int
grain, int direction) [private]

Calculates the local coordinates of a site

Parameters

coord Coordinates of site
grain Grain ID of site

direction Direction (x, y, or z) of the local coordinates to return

Calculates the local ‘direction’-coordinate of site.

01021 {
01022 matrix& inv rot mat = lattice[grain]->inv rot mat;
01023 array coordinates& trans mat = lattice[grain]->trans mat;
01024 double local coord;
01025
01026 if (direction == 0)
01027 local coord = inv rot mat[0][0]*(coord[0] - trans mat[0]) + inv rot mat[0][1]

(coord[1] - trans mat[1]) + inv rot mat[0][2](coord[2] - trans mat[2]);
01028 else if (direction == 1)
01029 local coord = inv rot mat[1][0]*(coord[0] - trans mat[0]) + inv rot mat[1][1]

(coord[1] - trans mat[1]) + inv rot mat[1][2](coord[2] - trans mat[2]);
01030 else if (direction == 2)
01031 local coord = inv rot mat[2][0]*(coord[0] - trans mat[0]) + inv rot mat[2][1]

(coord[1] - trans mat[1]) + inv rot mat[2][2](coord[2] - trans mat[2]);
01032 else
01033 error->all(FLERR, "Invalid direction");
01034
01035 return local coord;

93

01036
01037 }

virtual void SPPARKS NS::AppEAM::grow app () [inline], [virtual]

00048 {};

void AppEAM::init app () [virtual]

Initialize the application before each run.

The function will initialize the EAM potential, calculate the current densities of depo-
sition and dissolution, generate seed layer, and determine coordination number, dep flag,
etc. seed n = specified fraction ∗ number of sites in seed layer, rounded up to nearest
integer

00247 {
00248 // initialize potential
00249 potential->init();
00250 pair = (PairEAM*)potential->pair;
00251
00252 // if potentiostatic, apply Butler-Volmer to get the current densities
00253 if (dep mode == 1)
00254 {
00255 i dep = i0*exp(-1. * alpha c * eta * t inverse);
00256 i diss = i0*exp(alpha a * eta * t inverse);
00257
00258 if (pulse == 2)
00259 {
00260 i a dep = i0*exp(-1. * alpha c * ox rate * t inverse);
00261 i a diss = i0*exp(alpha a * ox rate * t inverse);
00262 }
00263 }
00264
00265 // vector of vector of doubles containing the propensity contribution of each
00266 // dep/diss event for each site
00267 dep diss prob.resize(N total, vec double(4, 0.));
00268
00269 if (pair == NULL)
00270 error->all(FLERR,"App EAM requires a pair potential");
00271
00272 if (temperature == 0.0)
00273 error->warning(FLERR, "Nothing will happen if temperature = 0.");
00274
00275 pair int i local;
00276
00277 // sum of dep/diss flags of each grain
00278 dep sites count grain.resize(lattice count, 0);
00279 diss sites count grain.resize(lattice count, 0);

94

00280
00281 vec int seedlayer;
00282
00283 // find sites in seed layer
00284 for (int i = 0; i < lattice count; i++)
00285 {
00286 int& N = lattice[i]->N;
00287
00288 vec coordinates& coordinates = lattice[i]->coordinates;
00289
00290 for (int j = 0; j < N; j++)
00291 {
00292 if (coordinates[j][2] < seedlayer size)
00293 {
00294 i local = std::make pair(j,i);
00295 seedlayer.push back(grain to global(i local));
00296 }
00297 }
00298
00299 }
00300
00301
00303
00304 seed n = static cast<int> (ceil(seed frac*seedlayer.size())); // number of occupied

sites in the seed layer
00305
00306 polish height = 0.75*seedlayer size;
00307
00308 if (seed n > N total)
00309 error->all(FLERR,"Specified density exceeds number of sites");
00310
00311 if (seed n > 0)
00312 gen seed layer(ranapp, seedlayer);
00313
00314 std::cout << "Seeded " << seed n << " sites." << std::endl;
00315
00316 // initializes coordination number, dep flags, and active sites
00317 for (int k = 0; k < lattice count; k++)
00318 {
00319 int& N = lattice[k]->N;
00320
00321 active sites[k].clear(); // clear out active sites and start over to prevent

double counting them
00322
00323 vec int& num neighbors = lattice[k]->num neighbors;
00324 vec vec int& neighbors = lattice[k]->neighbors;
00325 vec int& coordnum = lattice[k]->iarray[2];
00326 vec int& dep flag = lattice[k]->iarray[3];
00327 vec coordinates& coordinates = lattice[k]->coordinates;
00328 vec int& grainid = lattice[k]->iarray[1];
00329
00330 for (int i = 0; i < N; i++)
00331 {
00332 coord update(i,k);
00333 // identify the edges of the active site
00334 if ((coordnum[i] != 12) && (coordnum[i] != 0))
00335 active sites[k].push back(i);

95

00336
00337 if ((seed n == 0) && (coordinates[i][2] < (lattice[k]->next site)*

((lattice[k]->latconst)/1.01)))
00338 active sites[k].push back(i);
00339
00340 grainid[i] = k; // assign grain id
00341 dep flag[i] = 0; // clear out dep flag
00342 }
00343
00344
00345 }
00346
00347 // check whether grain needs growing
00348 for (int k = 0; k < lattice count; k++)
00349 {
00350 vec int& type = lattice[k]->iarray[0];
00351 // check the grain (only check occupied active sites)
00352 for (int i = 0; i < active sites[k].size(); i++)
00353 {
00354 if (type[active sites[k][i]] == 1)
00355 update status(i,k,0);
00356 }
00357 }
00358
00359 // check the distance between grains and flag any sites that are in close proximity
00360 for (int k = 0; k < lattice count; k++)
00361 check grain distance(k);
00362
00363 dep sites count = 0; // reset dep sites count - it might have been changed by

gen seed layer
00364 diss sites count = 0;
00365
00366 // update dep flag
00367 for (int k = 0; k < lattice count; k++)
00368 {
00369 dep sites count grain[k] = 0; // clear out grain count
00370 diss sites count grain[k] = 0; // clear out grain count
00371 update dep flag(k); // now update dep flag
00372 }
00373 }

int AppEAM::neighbor check (int i, int j, int grain) [private]

Checks whether site j is a 2nd nearest neighbor of site i

Parameters

i Local index of site i

96

j Local index of site j
grain Grain ID of the two sites

Check if j is already part of neighbors2[i]

00813 {
00814 vec int& num neighbors2 = lattice[grain]->num neighbors2;
00815 vec vec int& neighbors2 = lattice[grain]->neighbors2;
00816
00817 if (i == j)
00818 return 1;
00819
00820 if (j == -1)
00821 return 1;
00822
00823 if (num neighbors2[i] == 0)
00824 return 0;
00825
00826 // using stl to do the search instead of for loop
00827 auto loc = std::find(neighbors2[i].begin(), neighbors2[i].end(), j);
00828
00829 if (loc != neighbors2[i].end())
00830 return 1;
00831
00832 // lattice site not in 2nd nearest neighbors list
00833 return 0;
00834 }

void AppEAM::scale propensities () [private]

Scales the deposition propensities such that the average = propensity with i dep

Calculates the average propensity for each event based on the propensities stored in
dep diss prob. Divide that average by the desired average propensity based on the current
density. The quotient of that is the scaling factor. Update the scaling factor and apply
the change to all sites in question.

00410 {
00411 diss sites.clear(); // clear old data
00412 dep sites.clear();
00413
00414 double sum = 0.0;
00415 double scale = 1.;
00416 double area = (domain->length(0))*(domain->length(1));
00417
00418 // find the deposition and dissolution sites whose propensity is > 1e-10
00419 // loop over active sites in each grain
00420 for (int j = 0; j < lattice count; j++)
00421 {
00422 for (int ii = 0; ii < active sites[j].size(); ii++)

97

00423 {
00424 int i = active sites[j][ii];
00425 int k = grain to global(std::make pair(i,j));
00426 // find all sites that can undergo deposition
00427 if ((lattice[j]->iarray[3][i] == 1) && (lattice[j]->iarray[0][i] == 0)

&& (propensity[k] > 1e-10))
00428 dep sites.push back(k);
00429 // now all sites that can undergo dissolution
00430 else if ((lattice[j]->iarray[3][i] == 2) && (lattice[j]->iarray[0][i] == 1)

&& (propensity[k] >1e-10))
00431 diss sites.push back(k);
00432
00433 }
00434 }
00435
00436 // start with deposition
00437 for (int i = 0; i < dep sites.size(); i++)
00438 {
00439 // remove the contribution from total propensity for now, will add scaled value back to it
00440 propensity[dep sites[i]] -= dep diss prob[dep sites[i]][0];
00441 sum += dep diss prob[dep sites[i]][0]; // add it to sum
00442 }
00443
00444 // find numx - area is in Angstromsˆ2, so we need to convert to nmˆ2
00445 double numx = dep sites count*100./area;
00446 // i dep is in pA/nmˆ2, 1e-12 is to convert it to A/nmˆ2
00447 double avg = i dep * 1.e-12/ (z me*charge*numx); // desired average propensity
00448
00449 sum = sum / dep sites.size(); // divide by dep sites.size() to get ‘average’ propensity
00450
00451 if (sum < 1e-15) // to prevent divide by zero error
00452 scale = 1.;
00453 else
00454 scale = avg/sum; // get the new scaling parameter
00455
00456 scale dep on *= scale; // apply that to existing scaling parameter
00457
00458 for (int i = 0; i < dep sites.size(); i++)
00459 {
00460 dep diss prob[dep sites[i]][0] *= scale; // apply the scale to old probs
00461 propensity[dep sites[i]] += dep diss prob[dep sites[i]][0]; // add back to propensity
00462 }
00463 // now dep rate when turned off - only in pulse-reverse
00464 if (pulse == 2)
00465 {
00466 sum = 0.; // zero out sum
00467
00468 // again, remove contribution from propensity, add that to sum
00469 for (int i = 0; i < dep sites.size(); i++)
00470 {
00471 propensity[dep sites[i]] -= dep diss prob[dep sites[i]][1];
00472 sum += dep diss prob[dep sites[i]][1];
00473 }
00474
00475 avg = i a dep * 1.e-12/ (z me*charge*numx); // desired average propensity
00476
00477 sum = sum / dep sites.size(); // divide by dep sites.size() to get ‘average’ propensity

98

00478
00479 if (sum < 1e-15) // to prevent divide by zero error
00480 scale = 1.;
00481 else
00482 scale = avg/sum; // get the new scaling parameter
00483
00484 scale dep off *= scale;
00485
00486 for (int i = 0; i < dep sites.size(); i++)
00487 {
00488 dep diss prob[dep sites[i]][1] *= scale; // apply the scaling factor
00489 propensity[dep sites[i]] += dep diss prob[dep sites[i]][1]; // add back to propensity
00490 }
00491 }
00492 solve->update(dep sites,propensity); // update the solver
00493
00494 // now for dissolution events - first check if there are any sites that fit the criteria
00495 if (diss sites.size() != 0)
00496 {
00497 sum = 0.0; // clear out sum
00498
00499 // repeat same procedure
00500 for (int i = 0; i < diss sites.size(); i++)
00501 {
00502 propensity[diss sites[i]] -= dep diss prob[diss sites[i]][2];
00503 sum += dep diss prob[diss sites[i]][2];
00504 }
00505
00506 numx = diss sites count*100./area; // now with diss sites count for dissolution
00507 avg = i diss * 1.e-12/ (z me*charge*numx); // desired average propensity
00508
00509 sum = sum / diss sites.size(); // divide by dep sites.size() to get ‘average’ propensity
00510 if (sum < 1e-15)
00511 scale = 1.;
00512 else
00513 scale = avg/sum; // get the new scaling parameter
00514
00515 scale diss on *= scale;
00516
00517 for (int i = 0; i < diss sites.size(); i++)
00518 {
00519 dep diss prob[diss sites[i]][2] *= scale; // apply the scaling factor
00520 propensity[diss sites[i]] += dep diss prob[diss sites[i]][2]; // add back to propensity
00521 }
00522
00523 // diss rate when off -only in PR
00524 if (pulse == 2)
00525 {
00526 sum = 0.;
00527 for (int i = 0; i < diss sites.size(); i++)
00528 {
00529 propensity[diss sites[i]] -= dep diss prob[diss sites[i]][3];
00530 sum += dep diss prob[diss sites[i]][3];
00531 }
00532
00533 avg = i a diss * 1.e-12/ (z me*charge*numx); // desired average propensity
00534 sum = sum / diss sites.size(); // divide by dep sites.size() to get ‘average’ propensity

99

00535
00536 if (sum < 1e-15)
00537 scale = 1.;
00538 else
00539 scale = avg/sum; // get the new scaling parameter
00540
00541 scale diss off *= scale;
00542
00543 for (int i = 0; i < diss sites.size(); i++)
00544 {
00545 dep diss prob[diss sites[i]][3] *= scale; // apply the scaling factor
00546 propensity[diss sites[i]] += dep diss prob[diss sites[i]][3]; // add back to propensity
00547 }
00548 }
00549 solve->update(diss sites,propensity); // update solver
00550 }
00551
00552 }

void AppEAM::setup app () [virtual]

Set up the application.

Calculate the potential at each site before the propensities are computed.

00380 {
00381 // compute the site energies for the first time
00382 for (int j = 0; j < lattice count; j++)
00383 {
00384 for (int i = 0; i < lattice[j]->N; i++)
00385 pair->energy(i, j, lattice[j]->num global neighbors, lattice[j]->global neighbors,

lattice[j]->coordinates, lattice[j]->iarray[0], lattice[j]->darray[0], lattice[j]->darray[1]);
00386
00387 }
00388
00389 max eng = -3.54;
00390 }

void AppEAM::setup end app () [virtual]

Set up the application after propensity is computed.

Scale the propensities before application starts

00398 {
00399 scale propensities();
00400 }

100

double AppEAM::site energy (int i, int grain) [virtual]

Computes the energy of site i

01373 {
01374 vec int& type = lattice[grain]->iarray[0];
01375
01376 vec double& rho = lattice[grain]->darray[0];
01377 vec double& phi = lattice[grain]->darray[1];
01378
01379 vec coordinates& coordinates = lattice[grain]->coordinates;
01380 vec int& num global neighbors = lattice[grain]->num global neighbors;
01381 vec vec int& global neighbors = lattice[grain]->global neighbors;
01382
01383 if (type[i] != 0)
01384 return pair->energy(i, grain, num global neighbors, global neighbors, coordinates, type, rho,

phi);
01385 else
01386 return 0.;
01387 }

void AppEAM::site event (int i, class RandomPark ∗ random) [virtual]

KMC method - choose and perform an event for site. See comments in site propensity for
explanation of how events are identified. energy after proposed move

02358 {
02359 if (propensity[i] == 0.)
02360 {
02361 naccept--;
02362 return;
02363 }
02364
02365 // if plating was originally on but now have exceeded on time, turn it off
02366 if ((pulse != 0) && (pulse on == 1) && ((time - prev time) > on dt))
02367 {
02368 pulse on = 0;
02369 prev time = time;
02370 }
02371 // if it was off but have exceeded off time, turn it on
02372 else if ((pulse != 0) && (pulse on == 0) && ((time - prev time) > off dt))
02373 {
02374 pulse on = 1;
02375 prev time = time;
02376 }
02377
02378 pair int i local = global to grain(i);
02379
02380 int jj;
02381
02382 vec int& type = lattice[i local.second]->iarray[0];

101

02383 vec int& coordnum = lattice[i local.second]->iarray[2];
02384 vec int& dep flag = lattice[i local.second]->iarray[3];
02385
02386 vec coordinates& coordinates = lattice[i local.second]->coordinates;
02387 vec int& num neighbors = lattice[i local.second]->num neighbors;
02388 vec vec int& neighbors = lattice[i local.second]->neighbors;
02389 vec int& num global neighbors = lattice[i local.second]->num global neighbors;
02390 vec vec int& global neighbors = lattice[i local.second]->global neighbors;
02391 vec int& num neighbors2 = lattice[i local.second]->num neighbors2;
02392 vec vec int& neighbors2 = lattice[i local.second]->neighbors2;
02393 double xmid = domain->midpoint(0);
02394 double ymid = domain->midpoint(1);
02395 double zmid = domain->midpoint(2);
02396
02397 // sites = array of site indices that have to be updated
02398 sites.clear();
02399
02400 // clear out diff sites
02401 // first column of diff sites contains the indices to sites that i can diffuse to
02402 // the second column is a flag indicating the diffusion mechanism
02403 // 0 = grain boundary diffusion; 1 = hopping; 2 = atom exchange on plateau;
02404 // 3 = atom exchange on edge
02405
02406 diff sites.clear();
02407
02408 // zero out diff count
02409 int diff count = 0;
02410 int grain j = i local.second;
02411 int j = -1;
02412 int flag = 0; // flag to indicate diffusion across a grain (=1)
02413 int step flag = 0; // flag to indicate whether step-edge atom exchange is possible or not
02414 double einitial;
02415 double prob = 0.0;
02416 double efinal;
02417
02418 // threshold = random number * total propensity of site i
02419 double threshold = random->uniform()*propensity[i];
02420
02421 i = i local.first;
02422
02423 // we only need to update the status of the site and the system energy
02424 if (type[i] == 0)
02425 {
02426 if (count >= n max)
02427 {
02428 naccept--;
02429 return;
02430 }
02431
02432 if ((dep flag[i] == 1) && (pulse on == 1))
02433 {
02434 einitial = system energy(i,j,0,i local.second,i local.second);
02435
02436 type[i] = 1;
02437
02438 // find surface area in (Angstroms)ˆ2
02439 double area = (domain->length(0))*(domain->length(1));

102

02440
02441 // possible dep sites per unit area (sites/nmˆ2)
02442 double numx = dep sites count*100./area;
02443
02444 efinal = system energy(i,j,1,i local.second,i local.second);
02445
02446 // Budevski et al. p.28
02447 prob += i dep * 1.e-12 *(efinal - einitial) * scale dep on/ (

z me*charge*numx*max eng);
02448
02449 if (prob >= threshold)
02450 {
02451 // need to run system energy to calculate the energy after the move
02452 // otherwise, the energy will not be updated
02453 efinal = system energy(i,j,2,i local.second,i local.second);
02454 count++;
02455 grain j = i local.second;
02456 goto update;
02457 }
02458 else
02459 {
02460 type[i] = 0;
02461 naccept--;
02462 return;
02463 }
02464 }
02465 // deposition during anodic part of pulse-reverse
02466 else if ((dep flag[i] == 1) && (pulse == 2) && (pulse on == 0))
02467 {
02468 einitial = system energy(i,j,0,i local.second,i local.second);
02469
02470 type[i] = 1;
02471
02472 // find surface area in (Angstroms)ˆ2
02473 double area = (domain->length(0))*(domain->length(1));
02474
02475 // possible dep sites per unit area (sites/nmˆ2)
02476 double numx = dep sites count*100./area;
02477
02478 efinal = system energy(i,j,1,i local.second,i local.second);
02479
02480 // Budevski et al. p.28
02481 prob += i a dep * 1.e-12 *(efinal - einitial)*scale dep off / (

z me*charge*numx*max eng);
02482
02483 if (prob >= threshold)
02484 {
02485 // need to run system energy to calculate the energy after the move
02486 // otherwise, the energy will not be updated
02487 efinal = system energy(i,j,2,i local.second,i local.second);
02488 count++;
02489 grain j = i local.second;
02490 goto update;
02491 }
02492 else
02493 {
02494 type[i] = 0;

103

02495 naccept--;
02496 return;
02497 }
02498 }
02499
02500 // if neither are satisfied
02501 naccept--;
02502 return;
02503
02504 }
02505 // if the event is diffusion, have to loop over all possible diffusion sites
02506 else
02507 {
02508 // special case of diffusion - grain boundary migration
02509 // the event will affect sites in 2 different grains
02510 // for (int kk = 0; kk < num global neighbors[i]; kk++)
02511 // {
02512 // int k = global neighbors[i][kk];
02513 // pair int k local = global to grain(k);
02514 //
02515 // // if they are in the same grain, ignore it
02516 // if (k local.second == i local.second)
02517 // continue;
02518 //
02519 // // we have already identified possible destination sites using dep flag
02520 // // when dep flag[k] = -1, atom i can diffuse to site k (based on the
02521 // // criteria of assigning -1 to dep flag)
02522 // vec int& dep flag k = lattice[k local.second]->iarray[3];
02523 //
02524 // // if dep flag[k] is not -1, the two sites are not close enough
02525 // if (dep flag k[k local.first] != -1)
02526 // continue;
02527 //
02528 // vec int& type k = lattice[k local.second]->iarray[0];
02529 //
02530 // einitial = system energy(i,k local.first,0,i local.second, k local.second);
02531 //
02532 // type[i] = 0;
02533 // type k[k local.first] = 1;
02534 //
02535 // efinal = system energy(i,k local.first,1,i local.second, k local.second);
02536 //
02537 // if (efinal <= einitial)
02538 // prob += v grain*exp(-Ed grain*t inverse);
02539 // else // if efinal > einitial, this event is impossible
02540 // prob += v grain*exp(-(Ed grain + efinal - einitial)*t inverse);
02541 //
02542 // if (prob >= threshold)
02543 // {
02544 // efinal = system energy(i,k local.first,2,i local.second, k local.second);
02545 //
02546 // j = k local.first;
02547 // grain j = k local.second;
02548 // n grain++;
02549 //
02550 // flag = 1;
02551 //

104

02552 // // flip the dep flag of i and k as well since they swap states
02553 // dep flag[i] = -1;
02554 // dep flag k[k local.first] = -2;
02555 // break;
02556 // }
02557 // else
02558 // {
02559 // type k[k local.first] = 0;
02560 // type[i] = 1;
02561 // j = -1;
02562 // }
02563 // }
02564 //
02565 // if (j != -1)
02566 // goto update;
02567 //
02568
02569 if (coordinates[i][2] < (lattice[i local.second]->next site)

*((lattice[i local.second]->latconst)/1.01))
02570 {
02571 naccept--;
02572 return;
02573 }
02574 // dissolution when not pulse-reverse
02575 if ((dep flag[i] == 2) && (pulse on == 1) && (count < n max))
02576 {
02577
02578 einitial = system energy(i,j,0,i local.second,i local.second);
02579
02580 type[i] = 0;
02581
02582 // get efinal without permanently changing the energy
02583 efinal = system energy(i,j,1,i local.second,i local.second);
02584
02585 double area = (domain->length(0))*(domain->length(1)); // find surface area in (Angstroms)ˆ2
02586
02587 double numx = diss sites count*100./area; // possible dep sites per unit area

(sites/nmˆ2)
02588
02589 // only need einitial, efinal is zero
02590 // sites with higher energy is less negative, max eng/einitial will be higher
02591 prob += i diss * 1.e-12 * max eng*scale diss on/ (

z me*charge*numx*(einitial-efinal));
02592 // prob += i diss * 1.e-12 / (z me*charge*numx);
02593
02594 if (prob >= threshold)
02595 {
02596 // need to run system energy to calculate the energy after the move
02597 // otherwise, the energy will not be updated
02598 efinal = system energy(i,j,2,i local.second,i local.second); // energy after

proposed move
02599 n diss++;
02600 grain j = i local.second;
02601 goto update;
02602 }
02603 else
02604 type[i] = 1;

105

02605
02606 }
02607 // anodic part of pulse-reverse -- remove sites at i a diss
02608 if ((dep flag[i] == 2) && (pulse on == 0) && (pulse == 2) && (

count < n max))
02609 {
02610 einitial = system energy(i,j,0,i local.second,i local.second);
02611
02612 type[i] = 0;
02613
02614 // get efinal without permanently changing the energy
02615 efinal = system energy(i,j,1,i local.second,i local.second);
02616
02617 double area = (domain->length(0))*(domain->length(1)); // find surface area in (Angstroms)ˆ2
02618
02619 double numx = diss sites count*100./area; // possible dep sites per unit area

(sites/nmˆ2)
02620
02621 // sites with higher energy is less negative, max eng/(einitial-efinal) will be higher
02622 prob += i a diss * 1.e-12 * max eng* scale diss off/

(z me*charge*numx*(einitial-efinal)); // convert i dep to A/nmˆ2 and calculate propensity
02623
02624 if (prob >= threshold)
02625 {
02626 // need to run system energy to calculate the energy after the move
02627 // otherwise, the energy will not be updated
02628 efinal = system energy(i,j,2,i local.second,i local.second);
02629 n diss++;
02630 grain j = i local.second;
02631 goto update;
02632 }
02633 else
02634 type[i] = 1;
02635
02636 }
02637
02638 if (coordnum[i] > 6)
02639 {
02640 naccept--;
02641 return;
02642 }
02643
02644 if (edge check(i, i local.second))
02645 {
02646 naccept--;
02647 return;
02648 }
02649
02650 // loop over first nearest neighbors to see if there’s any neighbor that has
02651 // dep flag = -1 (close to or overlapping with another grain)
02652 // if there is, change step flag to -1 to prevent step-edge atom exch
02653 for (int kk = 0; kk < num neighbors[i]; kk++)
02654 {
02655 int k = neighbors[i][kk];
02656
02657 if (dep flag[k] == -1)
02658 step flag = 1;

106

02659 }
02660
02661 // get the direction that the local coordinate of i and j will be compared
02662 int direction = determine direction(i, i local.second);
02663 int dir;
02664 double local coord i, local coord k, local coord n;
02665
02666 if (direction != -1)
02667 {
02668 dir = static cast<int> (floor(direction*0.5));
02669 local coord i = get local coordinates(coordinates[i], i local.second, dir)

;
02670
02671 // if we’re dealing with lower limit, multiply the coordinate by -1 to get the
02672 // right comparison
02673 if (direction % 2 == 0)
02674 local coord i *= -1;
02675 }
02676
02677 double dx, dy, dz, rsq;
02678 double cutoff = (lattice[i local.second]->latconst)*(lattice[i local.second]->latconst);
02679 // find diff sites and diff count
02680 // diff sites is an array containing the indices of sites that i can diffuse to
02681 for (int kk = 0; kk < num global neighbors[i]; kk++)
02682 {
02683 int k = global neighbors[i][kk];
02684 pair int k local = global to grain(k);
02685
02686 int& type k = (lattice[k local.second]->iarray[0])[k local.first];
02687 int& coordnum k = (lattice[k local.second]->iarray[2])[k local.first];
02688 int& dep flag k = (lattice[k local.second]->iarray[3])[k local.first];
02689
02690 array coordinates& coordinates k = lattice[k local.second]->coordinates[k local.first];
02691
02692 dx = coordinates[i][0] - coordinates k[0];
02693 dy = coordinates[i][1] - coordinates k[1];
02694 dz = coordinates[i][2] - coordinates k[2];
02695
02696 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
02697 dx = fabs(dx) - 2.*xmid;
02698
02699 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
02700 dy = fabs(dy) - 2.*ymid;
02701
02702 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
02703 dz = fabs(dz) - 2.*zmid;
02704
02705 rsq = dx*dx + dy*dy + dz*dz;
02706
02707 if (rsq > cutoff)
02708 continue;
02709
02710 // hopping mechanism across grains
02711 // coordnum should be > 1, or else we’re diffusing into thin air
02712 if ((i local.second != k local.second) && (type k == 0)
02713 && (coordnum k > 1) && (dep flag[i] == -2)
02714 && (exchange destination(k local.first, k local.second, direction)))

107

02715 {
02716 // hopping to another grain on the surface
02717 diff sites.push back(int array 2 ());
02718 diff sites[diff count][1] = 4;
02719 diff sites[diff count][0] = k;
02720 diff count++;
02721
02722 }
02723 } // end of global neighbors loop
02724
02725 for (int kk = 0; kk < num neighbors[i]; kk++)
02726 {
02727 int k = neighbors[i][kk];
02728
02729 if (direction != -1)
02730 {
02731 local coord k = get local coordinates(coordinates[k], i local.second, dir);
02732
02733 if (direction % 2 == 0)
02734 local coord k *= -1;
02735 }
02736 // regular hopping
02737 if ((type[k] == 0) && (coordnum[k] > 1) && (dep flag[k] != -1))
02738 {
02739 // special case - grain boundary diffusion
02740 // assume that it happens only via hopping for now
02741 // Herzig2005 and Suzuki2005
02742 diff sites.push back(int array 2 ());
02743
02744 if (dep flag[i] == -2)
02745 diff sites[diff count][1] = 0;
02746 else
02747 diff sites[diff count][1] = 1;
02748
02749 diff sites[diff count][0] = k;
02750 diff count++; // # of possible diffusion sites
02751 }
02752
02753 if ((type[k] == 1) && (local coord k < local coord i) && (coordnum[k] >= 6)
02754 && (direction != -1) && (dep flag[i] != -2))
02755 // exchange
02756 {
02757 for (int nn = 0; nn < num neighbors[k]; nn++)
02758 {
02759 int n = neighbors[k][nn]; // destination site
02760
02761 if (dep flag[n] == -1)
02762 continue;
02763
02764 if (type[n] != 0)
02765 continue;
02766
02767 if (exchange destination(n, i local.second, direction) == 0)
02768 continue;
02769
02770 local coord n = get local coordinates(coordinates[n], i local.second, dir);
02771

108

02772 if (direction % 2 == 0)
02773 local coord n *= -1;
02774
02775 if ((fabs(local coord n - local coord i) < 0.001)
02776 && (coordnum[k] >= 8))
02777 {
02778 // atom exchange
02779 diff sites.push back(int array 2 ());
02780 diff sites[diff count][0] = n;
02781 diff sites[diff count][1] = 2;
02782 diff count++;
02783 }
02784 else if ((fabs(local coord n - local coord k) < 0.001)
02785 && (coordnum[k] < 8) && (step flag == 0)
02786 && (((direction % 2 == 0)
02787 && (coordinates[i][dir] < coordinates[n][dir])
02788 && (fabs(coordinates[i][dir]-coordinates[n][dir]) > 0.001))
02789 || ((direction % 2 == 1)
02790 && (coordinates[i][dir] > coordinates[n][dir])
02791 && (fabs(coordinates[i][dir]-coordinates[n][dir]) > 0.001))))
02792 {
02793 // step edge atom exchange
02794 diff sites.push back(int array 2 ());
02795 diff sites[diff count][0] = n;
02796 diff sites[diff count][1] = 3;
02797 diff count++;
02798 }
02799 }
02800 } // end of exchange loop
02801 } // end of nearest neighbors loop
02802 // if we are assuming that the diffusion rate is the same for all configurations
02803 // and sites
02804 // if diff is independent of the energy of the system
02805 for (int k = 0; k < diff count; k++)
02806 {
02807 j = diff sites[k][0]; // find site j from diff sites
02808 grain j = i local.second;
02809 pair int j local;
02810
02811 // special case for hopping - hop across grains
02812 if (diff sites[k][1] == 4)
02813 {
02814 j local = global to grain(j);
02815 j = j local.first;
02816 grain j = j local.second;
02817
02818 einitial = system energy(i,j local.first,0,i local.second,j local.second);
02819
02820 // type[j] = 1
02821 lattice[j local.second]->iarray[0][j local.first] = 1;
02822 type[i] = 0;
02823
02824 efinal = system energy(i,j local.first,1,i local.second,j local.second);
02825 }
02826 else
02827 {
02828 einitial = system energy(i,j,0,i local.second,i local.second);

109

02829
02830 type[j] = 1;
02831 type[i] = 0; // in surface diffusion, i becomes vacant
02832 efinal = system energy(i,j,1,i local.second,i local.second);
02833 }
02834
02835 if (efinal <= einitial)
02836 {
02837 if (diff sites[k][1] == 0)
02838 prob += v boundary*exp(-1.0*Ed boundary*t inverse);
02839 else if ((diff sites[k][1] == 1) || (diff sites[k][1] == 4))
02840 prob += v d*exp(-1.0*Ed*t inverse);
02841 else if (diff sites[k][1] == 2)
02842 prob += v exch*exp(-1.0*Ed exch*t inverse);
02843 else if (diff sites[k][1] == 3)
02844 prob += v step*exp(-1.0*Ed step*t inverse);
02845
02846 if (prob >= threshold)
02847 {
02848 efinal = system energy(i,j,2,i local.second,grain j); // do the energy update
02849 if (diff sites[k][1] == 0)
02850 n boundary++;
02851 else if (diff sites[k][1] == 1)
02852 n hop++;
02853 else if (diff sites[k][1] == 2)
02854 n atomexch++;
02855 else if (diff sites[k][1] == 3)
02856 n step++;
02857 else if (diff sites[k][1] == 4)
02858 n hop++;
02859
02860 break; // move accepted, break the for loop
02861 }
02862 else
02863 // if prob < threshold, restore the types if i and j
02864 {
02865 if (diff sites[k][1] != 4)
02866 type[j] = 0;
02867 else
02868 lattice[j local.second]->iarray[0][j local.first] = 0;
02869
02870 type[i] = 1;
02871 j = -1; // set j = -1 since nothing happened
02872 }
02873 }
02874 else
02875 {
02876 if (diff sites[k][1] == 0)
02877 prob += v boundary*exp(-1.0*(Ed boundary + efinal - einitial)*t inverse);
02878 else if ((diff sites[k][1] == 1) || (diff sites[k][1] == 4))
02879 prob += v d*exp(-1.0*(Ed + efinal - einitial)*t inverse);
02880 else if (diff sites[k][1] == 2)
02881 prob += v exch*exp(-1.0*(Ed exch + efinal - einitial)*t inverse);
02882 else if (diff sites[k][1] == 3)
02883 prob += v step*exp(-1.0*(Ed step + efinal - einitial)*t inverse);
02884
02885 if (prob >= threshold)

110

02886 {
02887 efinal = system energy(i,j,2,i local.second,grain j); // do the energy update
02888 if (diff sites[k][1] == 0)
02889 n boundary++;
02890 else if (diff sites[k][1] == 1)
02891 n hop++;
02892 else if (diff sites[k][1] == 2)
02893 n atomexch++;
02894 else if (diff sites[k][1] == 3)
02895 n step++;
02896 else if (diff sites[k][1] == 4)
02897 n hop++;
02898
02899 break;
02900 }
02901 else // restore the types if i and j
02902 {
02903 if (diff sites[k][1] != 4)
02904 type[j] = 0;
02905 else
02906 lattice[j local.second]->iarray[0][j local.first] = 0;
02907
02908 type[i] = 1;
02909 j = -1;
02910 }
02911 }
02912 } // end of diff count loop
02913
02914 if (j == -1) // if nothing happened, skip the rest and return
02915 {
02916 naccept--;
02917 return;
02918 }
02919 goto update;
02920
02921 }
02922 update:
02923 coord update(i,i local.second); // update the coordination numbers
02924
02925 if (j != -1) // if there’s a site j, update that too
02926 coord update(j,grain j);
02927
02928 // check the status of i as an active site and check if grain needs growing
02929 update status(i,i local.second,1);
02930
02931 // same for j if there is a site j
02932 if (j != -1)
02933 update status(j,grain j,1);
02934
02935 // check distance between grains
02936 check grain distance(i,i local.second);
02937
02938 for (int mm = 0; mm < num neighbors[i]; mm++)
02939 check grain distance(neighbors[i][mm], i local.second);
02940
02941 if (j != -1)
02942 {

111

02943 check grain distance(j,grain j);
02944
02945 for (int mm = 0; mm < lattice[grain j]->num neighbors[j]; mm++)
02946 check grain distance(lattice[grain j]->neighbors[j][mm], grain j);
02947 }
02948
02949 if (grain j != i local.second)
02950 flag = 1; // flip the flag so that the update is done on the right grain
02951
02952 for (int m = 0; m < lattice count; m++)
02953 update dep flag(m);
02954
02955 scale propensities();
02956
02957 // update the propensities for site i and its 2nd nearest neighbors - use global indices
02958 int ii = grain to global(i local);
02959 sites.push back(ii);
02960 propensity[ii] = site propensity(ii);
02961
02962 for (int mm = 0; mm < num neighbors2[i]; mm++)
02963 {
02964 int m = neighbors2[i][mm];
02965 pair int grain m = std::make pair(m, i local.second);
02966 m = grain to global(grain m);
02967 sites.push back(m);
02968 propensity[m] = site propensity(m);
02969 }
02970
02971 if (j != -1) // if diffusion, need to update j and its 2nd nn as well
02972 {
02973 if (flag == 0) // if same grain
02974 {
02975 if (!neighbor check(i,j, i local.second))
02976 {
02977 jj = grain to global(std::make pair(j,grain j));
02978 sites.push back(jj);
02979 propensity[jj] = site propensity(jj);
02980 }
02981 for (int mm = 0; mm < num neighbors2[j]; mm++)
02982 {
02983 int m = neighbors2[j][mm];
02984 if (!neighbor check(i,m, i local.second))
02985 // if it’s a ‘2nd nn’ of i, it would have already been taken care of in
02986 // the first for loop; this check is there to optimize the update
02987 {
02988 pair int grain m = std::make pair(m, i local.second);
02989 m = grain to global(grain m);
02990 sites.push back(m);
02991 propensity[m] = site propensity(m);
02992 }
02993 }
02994 }
02995 else // if another grain is affected, flag = 1 and the update is done differently
02996 {
02997 jj = grain to global(std::make pair(j,grain j));
02998 sites.push back(jj);
02999 propensity[jj] = site propensity(jj);

112

03000
03001 vec int& num neighbors2 j = lattice[grain j]->num neighbors2;
03002 vec vec int& neighbors2 j = lattice[grain j]->neighbors2;
03003
03004 for (int mm = 0; mm < num neighbors2 j[j]; mm++)
03005 {
03006 int m = neighbors2 j[j][mm];
03007 pair int grain m = std::make pair(m, grain j);
03008 m = grain to global(grain m);
03009 sites.push back(m);
03010 propensity[m] = site propensity(m);
03011 }
03012
03013 }
03014 }
03015
03016 // update
03017 solve->update(sites,propensity);
03018 }

virtual void SPPARKS NS::AppEAM::site event rejection (int , class
RandomPark ∗) [inline], [virtual]

00055 { };

double AppEAM::site propensity (int i) [virtual]

KMC method – compute total propensity of owned site summed over possible events The
integer ‘dir’ is the direction that is normal to the surface at site i.

General Hopping Mechanism: Atom at site i can hop to a nearest neighbor site in the
same grain or to a vacant surface site of another grain. For this to occur, the destination
site, referred to as site k, will have to be vacant and its coordination number has to be
greater than 1 to avoid diffusing into air.

Hopping to Another Surface Site (Different Grains): Same conditions as the general
case, but a check is added to ensure that site k is a surface site of the grain.

General Exchange Mechanism: The intermediate site k will have a lower local ‘dir’-
coordinate than that of site i. The intermediate site will also have to be part of the crystal,
hence coordnum[k] >= 6. The direction has to be a valid direction (!= -1) and the dep flag
of site i is not -2 (occupied and in proximity of an active site from another grain).

Atom Exchange: Sites i and n are in the plane where their local ‘dir’-coordinates are
equal. The coordination number of the intermediate site k should also be >= 8 to ensure
that the site is ‘buried’ in the layer below.

113

Step Edge Atom Exchange: For step edge atom exchange, the intermediate site k and
destination site n have the same ‘dir’ coordinate. The coordination number of k should
be less than 8 such that it is part of the crystal but not completely in the bulk. The
mod of direction will determine whether the event is occurring in the + or - direction with
respect to ‘dir’-coordinate. If the mod is 0, i is at the - direction and destination site n will
have a higher ‘dir’-coordinate than site i. The last condition that fabs(coordinates[i][dir]-
coordinates[n][dir]) > 0.001 is to ensure that the two sites are in different layers.

01850 {
01851 int i global = i;
01852
01853 pair int i local = global to grain(i);
01854
01855 double prob = 0.0;
01856
01857 int flag = 0; // flag to indicate whether step-edge atom exchange is possible or not
01858
01859 i = i local.first; // get the local i and overwrite i
01860
01861 vec int& type = lattice[i local.second]->iarray[0];
01862 vec int& coordnum = lattice[i local.second]->iarray[2];
01863 vec int& dep flag = lattice[i local.second]->iarray[3];
01864
01865 vec coordinates& coordinates = lattice[i local.second]->coordinates;
01866 vec int& num neighbors = lattice[i local.second]->num neighbors;
01867 vec vec int& neighbors = lattice[i local.second]->neighbors;
01868 vec int& num global neighbors = lattice[i local.second]->num global neighbors;
01869 vec vec int& global neighbors = lattice[i local.second]->global neighbors;
01870 vec int& num neighbors2 = lattice[i local.second]->num neighbors2;
01871 vec vec int& neighbors2 = lattice[i local.second]->neighbors2;
01872
01873 double xmid = domain->midpoint(0);
01874 double ymid = domain->midpoint(1);
01875 double zmid = domain->midpoint(2);
01876
01877 // SPPARKS will calculate the propensities of all sites before performing site event
01878 // site event will only update the propensities of affected sites
01879
01880 // propensity of all events at site i
01881 // possible events: adsorption and diffusion, depending on the type of site i
01882 // if the site is part of the bulk or in the vacuum, return prob = 0
01883 if ((coordnum[i] == 12) || (coordnum[i] == 0))
01884 return prob;
01885 // if the temperature is 0 K, the rate = 0
01886 if (temperature == 0.0)
01887 return prob;
01888
01889 int j = -1; // diffusion destination site index, -1 for adsorption
01890
01891 double einitial; // energy of initial configuration
01892 double efinal;
01893
01894 if (type[i] == 0)

114

01895 {
01896 // if dep flag[i] = -1 or 0, return prob = 0
01897 if (dep flag[i] != 1)
01898 return prob;
01899
01900 if (count >= n max)
01901 return prob;
01902
01903 einitial = system energy(i,j,0,i local.second,i local.second);
01904
01905 type[i] = 1;
01906
01907 // get efinal without permanently changing the energy
01908 efinal = system energy(i,j,1,i local.second,i local.second);
01909
01910 type[i] = 0;
01911
01912 double area = (domain->length(0))*(domain->length(1)); // find surface area in (Angstroms)ˆ2
01913
01914 double numx = dep sites count*100./area; // possible dep sites per unit area

(sites/nmˆ2)
01915 // convert i dep to A/nmˆ2 and calculate propensity
01916 double prob tmp = i dep * 1.e-12 * (efinal - einitial)*scale dep on/ (

z me*charge*numx*max eng);
01917
01918 if (prob tmp < 0.) // if calculated prob is < 0, let it = 0
01919 // this can occasionally happen in the seeding, but should not be frequent
01920 {
01921 dep diss prob[i global][0] = 0.;
01922 }
01923 else
01924 {
01925 prob += prob tmp;
01926 dep diss prob[i global][0] = prob tmp;
01927 }
01928
01929 if (pulse == 2)
01930 {
01931 einitial = system energy(i,j,0,i local.second,i local.second);
01932
01933 type[i] = 1;
01934
01935 // find surface area in (Angstroms)ˆ2
01936 double area = (domain->length(0))*(domain->length(1));
01937
01938 // possible dep sites per unit area (sites/nmˆ2)
01939 double numx = dep sites count*100./area;
01940
01941 efinal = system energy(i,j,1,i local.second,i local.second);
01942
01943 type[i] = 0;
01944 // convert i dep to A/nmˆ2 and calculate propensity
01945 double prob tmp = i a dep * 1.e-12 *(efinal - einitial)*

scale dep off/ (z me*charge*numx*max eng);
01946
01947 if (prob tmp < 0.)
01948 {

115

01949 dep diss prob[i global][1] = 0.;
01950 }
01951 else
01952 {
01953 // Budevski et al. p.28
01954 prob += prob tmp;
01955 dep diss prob[i global][1] = prob tmp;
01956 }
01957 }
01958
01959 }
01960
01961 if (type[i] != 0)
01962 {
01963 for (int kk = 0; kk < num neighbors[i]; kk++)
01964 {
01965 int k = neighbors[i][kk];
01966
01967 if ((coordnum[k] == 1) && (type[k] == 1))
01968 // if coordnum of one of i’s neighbors is 1, that site will end up
01969 // floating in space when i diffuses away
01970 // this cannot happen, so if this is the case, i cannot diffuse
01971 return prob = 0.0;
01972 }
01973
01974 if (coordinates[i][2] < (lattice[i local.second]->next site)

*((lattice[i local.second]->latconst)/1.01))
01975 return prob;
01976
01977 // dissolution
01978 if ((dep flag[i] == 2) && (count < n max))
01979 {
01980 einitial = system energy(i,j,0,i local.second,i local.second);
01981
01982 type[i] = 0;
01983
01984 // get efinal without permanently changing the energy
01985 efinal = system energy(i,j,1,i local.second,i local.second);
01986
01987 type[i] = 1;
01988
01989 double area = (domain->length(0))*(domain->length(1)); // find surface area in (Angstroms)ˆ2
01990
01991 double numx = diss sites count*100./area; // possible dep sites per unit area

(sites/nmˆ2)
01992 // sites with higher energy is less negative, max eng/(einitial-efinal) will be higher
01993 // if no i diss is specified, the default is zero
01994 double prob tmp = i diss * 1.e-12 * (max eng) *

scale diss on/ (z me*charge*numx*(einitial-efinal)); // convert i dep to A/nmˆ2 and
calculate propensity

01995
01996 if (prob tmp < 0.)
01997 {
01998 dep diss prob[i global][2] = 0.;
01999 }
02000 else
02001 {

116

02002 prob += prob tmp;
02003 dep diss prob[i global][2] = prob tmp;
02004 }
02005
02006 }
02007 // anodic part of pulse-reverse -- remove sites at i a diss
02008 if ((dep flag[i] == 2) && (pulse == 2) && (count < n max))
02009 {
02010 einitial = system energy(i,j,0,i local.second,i local.second);
02011
02012 type[i] = 0;
02013
02014 // get efinal without permanently changing the energy
02015 efinal = system energy(i,j,1,i local.second,i local.second);
02016
02017 type[i] = 1;
02018
02019 double area = (domain->length(0))*(domain->length(1)); // find surface area in (Angstroms)ˆ2
02020
02021 double numx = diss sites count*100./area; // possible dep sites per unit area

(sites/nmˆ2)
02022
02023 // sites with higher energy is less negative, max eng/(einitial-efinal) will be higher
02024 double prob tmp = i a diss * 1.e-12 * (max eng)*

scale diss off / (z me*charge*numx*(einitial-efinal)); // Budevski et al. p.28

02025
02026 if (prob tmp < 0.)
02027 {
02028 dep diss prob[i global][3] = 0.;
02029 }
02030 else
02031 {
02032 prob += prob tmp;
02033 dep diss prob[i global][3] = prob tmp;
02034 }
02035
02036 }
02037
02038 // // If site is occupied it can participate in diffusion across grains.
02039 // for (int kk = 0; kk < num global neighbors[i]; kk++)
02040 // {
02041 // int k = global neighbors[i][kk];
02042 // pair int k local = global to grain(k);
02043 //
02044 // // if they are in the same grain, ignore it
02045 // if (k local.second == i local.second)
02046 // continue;
02047 //
02048 // // we have already identified possible destination sites using dep flag
02049 // // when dep flag[k] = -1, atom i can diffuse to site k (based on the
02050 // // criteria of assigning -1 to dep flag)
02051 // vec int& dep flag k = lattice[k local.second]->iarray[3];
02052 //
02053 // // if dep flag[k] is not -1, the two sites are not close enough
02054 // if (dep flag k[k local.first] != -1)
02055 // continue;

117

02056 //
02057 // vec int& type k = lattice[k local.second]->iarray[0];
02058 //
02059 // einitial = system energy(i,k local.first,0,i local.second, k local.second);
02060 //
02061 // type[i] = 0;
02062 // type k[k local.first] = 1;
02063 //
02064 // efinal = system energy(i,k local.first,1,i local.second, k local.second);
02065 //
02066 // type k[k local.first] = 0;
02067 // type[i] = 1;
02068 //
02069 // if (efinal <= einitial)
02070 // prob += v grain*exp(-Ed grain*t inverse);
02071 // else
02072 // // if we’re moving to a higher energy state, need to account for the
02073 // // configuration-specific increase in activation energy of the move
02074 // prob += v grain*exp(-(Ed grain + efinal - einitial)*t inverse);
02075 //
02076 // }
02077
02078 if (edge check(i,i local.second))
02079 // if it is the edge and is part of the crystal, no diffusion (for non PBC)
02080 return prob;
02081
02082 // if site is part of the bulk, it cannot undergo diffusion
02083 if (coordnum[i] > 6)
02084 return prob;
02085
02086 // loop over first nearest neighbors to see if there’s any neighbor that has
02087 // dep flag = -1 (close to or overlapping with another grain)
02088 // if there is, change flag to -1 to prevent step-edge atom exch
02089 for (int kk = 0; kk < num neighbors[i]; kk++)
02090 {
02091 int k = neighbors[i][kk];
02092
02093 if (dep flag[k] == -1)
02094 flag = 1;
02095 }
02096
02097 // surface diffusion, site i becomes vacant while destination j becomes occupied
02098
02099 // determine the direction that is normal to site i; function returns int [0,5]
02100 int direction = determine direction(i, i local.second);
02101 double local coord i, local coord k, local coord n;
02102 int dir;
02103
02104 // function returns -1 when site is not exposed to the solution
02105 if (direction != -1)
02106 {
02108 dir = static cast<int> (floor(direction*0.5));
02109 local coord i = get local coordinates(coordinates[i], i local.second, dir);
02110
02111 // if we’re dealing with lower limit, multiply the coordinate by -1 to get the
02112 // right comparison
02113 if (direction % 2 == 0)

118

02114 local coord i *= -1;
02115 }
02116
02117 double dx, dy, dz, rsq;
02118 // define cutoff for diffusion involving sites from different grains - use latconst
02119 double cutoff = (lattice[i local.second]->latconst)*(lattice[i local.second]->latconst);
02120
02121 // hopping to another grain on the surface - loop over global neighbors
02122 for (int kk = 0; kk < num global neighbors[i]; kk++)
02123 {
02124 int k = global neighbors[i][kk];
02125 pair int k local = global to grain(k);
02126
02127 int& type k = (lattice[k local.second]->iarray[0])[k local.first];
02128 int& coordnum k = (lattice[k local.second]->iarray[2])[k local.first];
02129 int& dep flag k = (lattice[k local.second]->iarray[3])[k local.first];
02130
02131 array coordinates& coordinates k = lattice[k local.second]->coordinates[k local.first];
02132
02133 dx = coordinates[i][0] - coordinates k[0];
02134 dy = coordinates[i][1] - coordinates k[1];
02135 dz = coordinates[i][2] - coordinates k[2];
02136
02137 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
02138 dx = fabs(dx) - 2.*xmid;
02139
02140 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
02141 dy = fabs(dy) - 2.*ymid;
02142
02143 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
02144 dz = fabs(dz) - 2.*zmid;
02145
02146 rsq = dx*dx + dy*dy + dz*dz;
02147
02148 // if outside of cutoff, ignore that site
02149 if (rsq > cutoff)
02150 continue;
02151
02159 if ((i local.second != k local.second) && (type k == 0)
02160 && (coordnum k > 1) && (dep flag k == -1) && (dep flag[i] == -2)
02161 && (exchange destination(k local.first, k local.second, direction)))
02162 {
02163 // hopping to another grain on the surface
02164
02170 einitial = system energy(i,k local.first,0,i local.second,k local.second);
02171
02172 type k = 1; // update the type of site j
02173 type[i] = 0; // in surface diffusion, i becomes vacant
02174
02175 efinal = system energy(i,k local.first,1,i local.second,k local.second);
02176
02177 // restore the types
02178 type k = 0;
02179 type[i] = 1;
02180
02181 if (efinal <= einitial)
02182 prob += v d*exp(-1.*Ed*t inverse);

119

02183
02184 else
02185 prob += v d*exp(-1.*(Ed + efinal - einitial)*t inverse);
02186
02187 }
02188 }
02189 for (int kk = 0; kk < num neighbors[i]; kk++)
02190 {
02191 int k = neighbors[i][kk];
02192 if (direction != -1)
02193 {
02194 local coord k = get local coordinates(coordinates[k], i local.second, dir);
02195
02196 if (direction % 2 == 0)
02197 local coord k *= -1;
02198 }
02199 if ((type[k] == 0) && (coordnum[k] > 1) && (dep flag[k] != -1))
02200 {
02201 // hopping
02202 // cannot diffuse to a site that has coordnum <= 1, it will be floating
02203 // if type[nearest neighbors] = 0, find the propensity of the move
02204 j = k;
02205
02206 einitial = system energy(i,j,0,i local.second,i local.second);
02207
02208 type[j] = 1; // update the type of site j
02209 type[i] = 0; // in surface diffusion, i becomes vacant
02210
02211 efinal = system energy(i,j,1,i local.second,i local.second);
02212
02213 // restore the types
02214 type[j] = 0;
02215 type[i] = 1;
02216
02217 if (efinal <= einitial)
02218 {
02219 if (dep flag[i] == -2) // special case, grain boundary diffusion
02220 prob += v boundary*exp(-1.*Ed boundary*t inverse);
02221 else // otherwise, regular hopping
02222 prob += v d*exp(-1.*Ed*t inverse);
02223 }
02224 else
02225 {
02226 // if we’re moving to a higher energy state, need to account for the
02227 // configuration-specific increase in activation energy of the move
02228 if (dep flag[i] == -2)
02229 prob += v boundary*exp(-1.*(Ed boundary + efinal - einitial)*t inverse);
02230 else
02231 prob += v d*exp(-1.*(Ed + efinal - einitial)*t inverse);
02232 }
02233 }
02234 else if ((type[k] == 1) && (local coord k < local coord i)
02235 && (coordnum[k] >= 6) && (direction != -1) && (dep flag[i] != -2))
02245 // exchange mechanism
02246 // coordnum = 6 is a kink site, can still participate in exchange
02247 // find intermediate sites, k, whose z[k] < z[i] (lower plane)
02248 // Antczak and Ehrlich, p. 88-104

120

02249 {
02250 for (int nn = 0; nn < num neighbors[k]; nn++)
02251 {
02252 // loop over 1st nearest neighbors of k to find destination site
02253 int n = neighbors[k][nn]; // destination site
02254
02255 // if n is near an active site from another grain, move on
02256 if (dep flag[n] == -1)
02257 continue;
02258
02259 if (type[n] != 0)
02260 continue;
02261
02262 // if n is not a possible exchange destination, move on
02263 if (exchange destination(n, i local.second,direction) == 0)
02264 continue;
02265
02266 local coord n = get local coordinates(coordinates[n], i local.second, dir);
02267
02268 if (direction % 2 == 0)
02269 local coord n *= -1;
02270
02271 if ((fabs(local coord n - local coord i) < 0.001)
02272 && (coordnum[k] >= 8))
02273 {
02281 // atom exchange on a plateau
02282 // atom i will displace atom k, pushing atom m up to the same plane
02283 // as where i was initially
02284
02285 j = n;
02286
02287 einitial = system energy(i,j,0,i local.second,i local.second);
02288
02289 type[j] = 1;
02290 type[i] = 0;
02291
02292 efinal = system energy(i,j,1,i local.second,i local.second);
02293
02294 type[j] = 0;
02295 type[i] = 1;
02296
02297 if (efinal <= einitial)
02298 prob += v exch*exp(-1.0*Ed exch*t inverse);
02299 else
02300 prob += v exch*exp(-1.0*(Ed exch+efinal-einitial)*t inverse);
02301 }
02302 else if ((fabs(local coord n - local coord k) < 0.001)
02303 && (coordnum[k] < 8) && (flag == 0)
02304 && (((direction % 2 == 0)
02305 && (coordinates[i][dir] < coordinates[n][dir])
02306 && (fabs(coordinates[i][dir]-coordinates[n][dir]) > 0.001))
02307 || ((direction % 2 == 1)
02308 && (coordinates[i][dir] > coordinates[n][dir])
02309 && (fabs(coordinates[i][dir]-coordinates[n][dir]) > 0.001))))
02310 {
02325 // step edge atom exchange at edges
02326 // atom i will displace atom k, pushing atom k outwards

121

02327 // coordnum[k] < 8 to ensure that it is at the edge
02328 j = n;
02329
02330 einitial = system energy(i,j,0,i local.second,i local.second);
02331
02332 type[j] = 1;
02333 type[i] = 0;
02334
02335 efinal = system energy(i,j,1,i local.second,i local.second);
02336
02337 type[j] = 0;
02338 type[i] = 1;
02339
02340 if (efinal <= einitial)
02341 prob += v step*exp(-1.0*Ed step*t inverse);
02342 else
02343 prob += v step*exp(-1.0*(Ed step+efinal-einitial)*t inverse);
02344 }
02345 }
02346 }
02347 }
02348 }
02349
02350 return prob;
02351 }

void AppEAM::stats (char ∗ strtmp)

03024 {
03025 char big[8],format[256];
03026 strcpy(big,BIGINT FORMAT);
03027
03028 if (solve)
03029 {
03030 sprintf(format,"%%10g %%10%s %%10d %%10d %%10d %%10d %%10d %%10d %%10d

%%10d %%10d %%10g %%10g",&big[1]);
03031 sprintf(strtmp, format, time, naccept, n hop, n atomexch,

n step, n boundary, n grain, count, n diss,
dep sites count, diss sites count, scale dep on,
scale diss on);

03032 }
03033 else
03034 {
03035 sprintf(format,"%%10g %%10%s %%10%s %%10d %%10d %%10d %%10d %%10d %%10d

%%10d %%10d %%10g %%10g",&big[1],&big[1]);
03036 sprintf(strtmp, format, time, naccept, n hop, n atomexch,

n step, n boundary, n grain, count, n diss,
dep sites count, diss sites count, scale dep on,
scale diss on);

03037 }
03038 }

122

void AppEAM::stats header (char ∗ strtmp)

03045 {
03046 sprintf(strtmp,"%10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s", "Time",

"Naccept","N hop", "N atomexch", "N stepedge", "N boundary", "N grain", "N dep", "N diss",
"sum dep", "sum diss", "scale dep", "scale diss");

03047 }

double AppEAM::system energy (int i, int j, int flag, int grain i, int
grain j) [private]

Calculates the energy of sites affected by a move

Parameters

i Local index of site in question
j If the event is a diffusion event, local index of destination site

flag Flag to indicate whether a permanent update of the energies is required
or not

grain i Grain ID of the site i
grain j Grain ID of the site j

Computes the energy of system for before or after a proposed change Function will calcu-
late the energy of the system after a proposed change in i calling site energy for site i and
its 2nd nearest neighbors.

This is because when site i is changed, the energy of its 2nd nearest neighbors are also
affected. But the change of site i will not affect its neighbors that is outside the cutoff
range of site i.

The function is used to determine einitial and efinal to calculate the change in the
energy of the system after some change.

The flag is to indicate einitial (flag = 0), efinal without overwrite (flag = 1), efinal with
overwrite (flag = 2). When flag = 2, the phis from phi old are not restored into phi.

When the function is run with flag = 0, as is the case when calculating einitial, the
function will also find the indices of sites that will be affected by some change in i and j.
This is stored in the n x 3 vector phi old. The first column in phi old stores the indices of
the sites. The second column stores the phis of the sites before any change is made to the
system. The last column stores the new values of phis.

01393 {
01417 double eng = 0.0;

123

01418
01419 if (flag == 0)
01420 {
01421 double xmid = domain->midpoint(0);
01422 double ymid = domain->midpoint(1);
01423 double zmid = domain->midpoint(2);
01424 double dx, dy, dz, rsq;
01425 // use latconst as the cutoff
01426 double cutoff = (lattice[0]->latconst)*(lattice[0]->latconst);
01427
01428 // initialize the references to the grain data
01429 double& phi i = (lattice[grain i]->darray[1])[i];
01430 // create a copy of i’s global neighbors list
01431 vec int global neighbors i(lattice[grain i]->global neighbors[i]);
01432 int num global neighbors i = lattice[grain i]->num global neighbors[i];
01433 array coordinates& coordinates i = lattice[grain i]->coordinates[i];
01434
01435 old eng = 0.0; // zero out old eng
01436
01437 for (int kk = 0; kk < lattice count; kk++)
01438 {
01439 for (int k = 0; k < lattice[kk]->N; k++)
01440 old eng += lattice[kk]->darray[1][k]; // add up energy before change
01441 }
01442
01443 // clear out phi old
01444 phi old.clear();
01445
01446 phi old.push back(array coordinates());
01447 phi old[0][0] = grain to global(std::make pair(i, grain i));
01448 phi old[0][1] = phi i; // start adding sites that will see their energy changed
01449
01450 phi old count = 1; // number of sites whose phi are stored in phi old
01451 // loop over global neighbors (within EAM potential cutoff)
01452 for (int kk = num global neighbors i-1; kk >= 0; kk--)
01453 {
01454 int k = global neighbors i[kk];
01455 pair int k local = global to grain(k);
01456
01457 array coordinates& coordinates k = lattice[k local.second]->coordinates[k local.first];
01458
01459 dx = coordinates i[0] - coordinates k[0];
01460 dy = coordinates i[1] - coordinates k[1];
01461 dz = coordinates i[2] - coordinates k[2];
01462
01463 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01464 dx = fabs(dx) - 2.*xmid;
01465
01466 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01467 dy = fabs(dy) - 2.*ymid;
01468
01469 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01470 dz = fabs(dz) - 2.*zmid;
01471
01472 rsq = dx*dx + dy*dy + dz*dz;
01473
01474 // ignore sites outside the cutoff

124

01475 if (rsq > cutoff)
01476 {
01477 global neighbors i.erase(global neighbors i.begin() + kk);
01478 continue;
01479 }
01480 phi old.push back(array coordinates());
01481 phi old[phi old count][0] = k;
01482 phi old[phi old count][1] = lattice[k local.second]->darray[1][k local.first];
01483 phi old count++;
01484 }
01485
01486 // if the event is surface diffusion, the energy of site j and its 2nd
01487 // nearest neighbor are also stored in phi old
01488 if (j != -1)
01489 {
01490 double& phi j = lattice[grain j]->darray[1][j];
01491
01492 vec int& global neighbors j = lattice[grain j]->global neighbors[j];
01493 array coordinates& coordinates j = lattice[grain j]->coordinates[j];
01494
01495 phi old.push back(array coordinates());
01496 phi old[phi old count][0] = grain to global(std::make pair(j, grain j));
01497 phi old[phi old count][1] = phi j;
01498 phi old count++;
01499
01500 // no need to create a copy for j’s global neighbor list
01501 for (int kk = 0; kk < global neighbors j.size(); kk++)
01502 {
01503 int k = global neighbors j[kk];
01504 pair int k local = global to grain(k);
01505
01506 array coordinates& coordinates k = lattice[k local.second]->coordinates[k local.first];
01507
01508 dx = coordinates j[0] - coordinates k[0];
01509 dy = coordinates j[1] - coordinates k[1];
01510 dz = coordinates j[2] - coordinates k[2];
01511
01512 if ((fabs(dx) > xmid) && (domain->periodicity[0] == 1))
01513 dx = fabs(dx) - 2.*xmid;
01514
01515 if ((fabs(dy) > ymid) && (domain->periodicity[1] == 1))
01516 dy = fabs(dy) - 2.*ymid;
01517
01518 if ((fabs(dz) > zmid) && (domain->periodicity[2] == 1))
01519 dz = fabs(dz) - 2.*zmid;
01520
01521 rsq = dx*dx + dy*dy + dz*dz;
01522
01523 if (rsq > cutoff)
01524 continue;
01525
01526 // if not part of i’s global neighbor2 list - add to phi old
01527 if (std::find(global neighbors i.begin(), global neighbors i.end(), k) ==

global neighbors i.end())
01528 {
01529 phi old.push back(array coordinates());
01530 phi old[phi old count][0] = k;

125

01531 phi old[phi old count][1] = lattice[k local.second]->darray[1][
k local.first];

01532
01533 phi old count++;
01534 }
01535 }
01536 }
01537 return old eng;
01538 }
01539 else if (flag == 1) // find energy of new state and restore phis
01540 {
01541 eng += old eng;
01542
01543 for (int kk = 0; kk < phi old count; kk++)
01544 {
01545 eng -= phi old[kk][1];
01546 // find new energy contribution from that site
01547 int k = phi old[kk][0];
01548 pair int k local = global to grain(k);
01549 phi old[kk][2] = pair->energy(k local.first, k local.second,

lattice[k local.second]->num global neighbors, lattice[k local.second]->global neighbors,
lattice[k local.second]->coordinates, lattice[k local.second]->iarray[0],
lattice[k local.second]->darray[0], lattice[k local.second]->darray[1]);
// store the new energy

01550 // note: pair energy is called instead of site energy so that the phi update
01551 // is done automatically; if type = 0, site energy will return 0
01552 // without updating phi
01553 eng += phi old[kk][2];
01554 // restore the value for the phis after calculating eng
01555 lattice[k local.second]->darray[1][k local.first] = phi old[kk][1];
01556 }
01557 }
01558 else if (flag == 2) // apply the change to phi
01559 {
01560 eng += old eng; // eng starts off with having the same value as old eng
01561 // the sites that need their energies recalculated are already stored
01562 // in phi old[kk][0]
01563
01564 for (int kk = 0; kk < phi old count; kk++)
01565 {
01566 // find contribution from sites in phi old and subtract it from eng
01567 eng -= phi old[kk][1];
01568 // add the new energy when the change is accepted
01569 int k = phi old[kk][0];
01570 pair int k local = global to grain(k);
01571 lattice[k local.second]->darray[1][k local.first] = phi old[kk][2];
01572 eng += phi old[kk][2]; // add new contribution
01573 }
01574 }
01575 return eng;
01576 }

void AppEAM::update dep flag (int grain) [private]

Updates dep flag after an event is accepted

126

Parameters

grain Grain ID that is being checked

Updates dep flag for all active sites in the grain and update the deposition site and disso-
lution site counts.

Possible values of dep flag are: 0 (not an active site), 1 (available for deposition),
2 (available for dissolution), -1 (occupied, the site is at the edge of the grain) and -2
(unoccupied, the site is at the edge of the grain)

01049 {
01050 vec int& type = lattice[grain]->iarray[0];
01051 vec int& coordnum = lattice[grain]->iarray[2];
01052 vec int& dep flag = lattice[grain]->iarray[3];
01053
01054 vec coordinates& coordinates = lattice[grain]->coordinates;
01055
01056 int diss old = diss sites count grain[grain];
01057 int dep old = dep sites count grain[grain]; // store old value
01058
01059 double min dist = (lattice[grain]->next site)*((lattice[grain]->latconst)/1.01);
01060 double max dist x = domain->boxhi[0] - (lattice[grain]->next site)*

((lattice[grain]->latconst)/1.01);
01061 double max dist y = domain->boxhi[1] - (lattice[grain]->next site)*

((lattice[grain]->latconst)/1.01);
01062 double max dist z = domain->boxhi[2] - (lattice[grain]->next site)*

((lattice[grain]->latconst)/1.01);
01063
01064 // resets dep sites count grain
01065 dep sites count grain[grain] = 0;
01066 diss sites count grain[grain] = 0;
01067
01068 for (int ii = 0; ii < active sites[grain].size(); ii++)
01069 {
01070 int i = active sites[grain][ii];
01071
01072 // if coordnum != 12 and 0, vacant, not in proximity of another grain, site is
01073 // available for deposition
01074 if ((type[i] == 0) && (coordnum[i] != 12) && (coordnum[i] != 0)
01075 && (dep flag[i] >= 0))
01076 dep flag[i] = 1; // if possible deposition site, change the flag to 1
01077 // if site is occupied, has coordnum < 10 - it can undergo dissolution
01078 // the condition in coordnum and determine direction is to ensure that it is
01079 // at the topmost layer in a particular plane
01080 else if ((coordnum[i] < 10) && (type[i] == 1) && (coordinates[i][0] > min dist)
01081 && (coordinates[i][0] < max dist x) && (coordinates[i][1] > min dist)
01082 && (coordinates[i][1] < max dist y) && (coordinates[i][2] > min dist)
01083 && (coordinates[i][2] < max dist z) && (!edge check(i,grain))
01084 && ((determine direction(i,grain) != -1) || (dep flag[i] >= 0)))
01085 // edge sites are excluded to prevent weird things from happening to the domain
01086 dep flag[i] = 2; // possible dissolution site, change flag to 2
01087 else
01088 {
01089 if (dep flag[i] >= 0)

127

01090 dep flag[i] = 0; // else, dep flag = 0
01091 }
01092
01093 }
01094
01095 // sum over all sites - doing this in the loop was not working for some reason
01096 for (int ii = 0; ii < active sites[grain].size(); ii++)
01097 {
01098 int i = active sites[grain][ii];
01099 if ((dep flag[i] == 1) && (type[i] == 0))
01100 dep sites count grain[grain]++; // update the sum
01101 else if ((dep flag[i] == 2) && (type[i] == 1))
01102 diss sites count grain[grain]++; // update the sum
01103
01104 }
01105
01106 diss sites count += (diss sites count grain[grain] - diss old);
01107 dep sites count += (dep sites count grain[grain] - dep old); // add new value
01108 }

void AppEAM::update status (int i, int grain, int flag) [private]

Checks whether the active site i is at the edge of existing lattice sites. Updates the status
of site i and its nearest neighbors in the active sites vector

Parameters

i Local index of site i
grain Grain ID of site i

flag Flag indicating whether function is called in site event() or not

Calls check box and does the necessary update for AppEAM-specific data structures. Up-
dates active sites with the new status of i and its neighbors.

00841 {
00842 int N old = lattice[grain]->N;
00843 vec coordinates& coordinates = lattice[grain]->coordinates;
00844 vec int& num neighbors = lattice[grain]->num neighbors;
00845 vec vec int& neighbors = lattice[grain]->neighbors;
00846 vec int& coordnum = lattice[grain]->iarray[2];
00847 vec int& dep flag = lattice[grain]->iarray[3];
00848
00849 double x max = domain->boxhi[0];
00850 double y max = domain->boxhi[1];
00851 double z max = domain->boxhi[2];
00852
00853 double x loc, y loc, z loc;
00854
00855 matrix& inv rot mat = lattice[grain]->inv rot mat;
00856 array coordinates& trans mat = lattice[grain]->trans mat;
00857

128

00858 vec int& type = lattice[grain]->iarray[0];
00859 vec int& grainid = lattice[grain]->iarray[1];
00860
00861 // find where i is in the active sites list
00862 auto loc = std::find(active sites[grain].begin(), active sites[grain].end(), i);
00863
00864 // max distance away from the box boundary to be considered an edge site
00865 double max dist = (lattice[grain]->next site)*(lattice[grain]->latconst);
00866
00867 // if not in the list and not at the edge, update active sites
00868 if (loc == active sites[grain].end())
00869 {
00870 if ((coordnum[i] != 12) && (coordnum[i] != 0))
00871 {
00872 active sites[grain].push back(i);
00873 }
00874 for (int mm = 0; mm < num neighbors[i]; mm++)
00875 {
00876 int m = neighbors[i][mm];
00877
00878 // condition for an active site
00879 if ((coordnum[m] != 12) && (coordnum[m] != 0)
00880 && (!active sites check(m, grain)))
00881 {
00882 active sites[grain].push back(m);
00883 }
00884 else if (((coordnum[m] == 12) || (coordnum[m] == 0))
00885 && (active sites check(m, grain)))
00886 {
00887 auto loc2 = std::find(active sites[grain].begin(), active sites[grain].end(), m);
00888 active sites[grain].erase(loc2);
00889 dep flag[m] = 0;
00890 }
00891 }
00892
00893 return;
00894 }
00895 else
00896 {
00897 // check if i is no longer an active site
00898 if ((coordnum[i] == 12) || (coordnum[i] == 0))
00899 {
00900 active sites[grain].erase(loc);
00901 dep flag[i] = 0;
00902 }
00903
00904 // check its neighbors too
00905 for (int mm = 0; mm < num neighbors[i]; mm++)
00906 {
00907 int m = neighbors[i][mm];
00908
00909 if ((coordnum[m] != 12) && (coordnum[m] != 0)
00910 && (!active sites check(m, grain)))
00911 {
00912 active sites[grain].push back(m);
00913 }
00914 else if (((coordnum[m] == 12) || (coordnum[m] == 0))

129

00915 && (active sites check(m, grain)))
00916 {
00917 auto loc2 = std::find(active sites[grain].begin(), active sites[grain].end(), m);
00918 active sites[grain].erase(loc2);
00919 dep flag[m] = 0;
00920 }
00921 }
00922 }
00923
00924 // if site is not at the edge, then check whether it needs to grow or not
00925 auto loc2 = std::find(neighbors[i].begin(), neighbors[i].end(), -1);
00926
00927 if ((loc2 != neighbors[i].end())
00928 && (fabs(coordinates[i][0]) > max dist)
00929 && (fabs(coordinates[i][0] - x max) >= max dist)
00930 && (fabs(coordinates[i][1]) > max dist)
00931 && (fabs(coordinates[i][1] - y max) >= max dist)
00932 && (fabs(coordinates[i][2]) > max dist)
00933 && (fabs(coordinates[i][2] - z max) >= max dist)
00934 && (loc != active sites[grain].end()))
00935 // if one of its neighbors = -1, grow the lattice
00936 {
00937 int grow = update grain(i, grain); // calls check grain in app lattice to check
00938 // if we did grow the grain the number of sites would have increased
00939 if (grow)
00940 {
00941 std::cout << "Updating propensity...";
00942
00943 for (int m = N old; m < lattice[grain]->N; m++)
00944 {
00945 // update all the arrays, no need to update energy
00946 // and type since the new sites start out as unoccupied
00947 grainid[m] = grain;
00948 coord update(m,grain);
00949
00950 // check the status of the new sites
00951 if ((coordnum[m] != 12) && (coordnum[m] != 0)
00952 && (!active sites check(m, grain)))
00953 {
00954 active sites[grain].push back(m);
00955 }
00956 else if (((coordnum[m] == 12) || (coordnum[m] == 0))
00957 && (active sites check(m, grain)))
00958 {
00959 auto loc2 = std::find(active sites[grain].begin(), active sites[grain].end(), m);
00960 active sites[grain].erase(loc2);
00961 dep flag[m] = 0;
00962 }
00963 }
00964
00965 for (int m = 0; m < lattice count; m++)
00966 check grain distance(m);
00967
00968 for (int m = 0; m < lattice count; m++)
00969 update dep flag(m);
00970
00971 dep diss prob.resize(N total, vec double(4, 0.));

130

00972 // if called from site event(), need to extend the propensity
00973 // vector to accommodate the new sites and update existing propensities of
00974 // active sites
00975 if (flag == 1)
00976 {
00977 for (int m = N old; m < lattice[grain]->N; m++)
00978 propensity.push back(site propensity(grain to global(std::make pair(m, grain))));
00979
00980 for (int n = 0; n < active sites[grain].size(); n++)
00981 site propensity(grain to global(std::make pair(active sites[grain][n], grain)));
00982
00983 solve->resize(N total,propensity); // resize the propensity bin
00984 }
00985
00986 std::cout << " done" << std::endl;
00987
00988 }
00989
00990 // check if i is no longer an active site
00991 if ((coordnum[i] == 12) || (coordnum[i] == 0))
00992 {
00993 active sites[grain].erase(loc);
00994 dep flag[i] = 0;
00995 }
00996
00997 // check its neighbors too
00998 for (int mm = 0; mm < num neighbors[i]; mm++)
00999 {
01000 int m = neighbors[i][mm];
01001
01002 if ((coordnum[m] != 12) && (coordnum[m] != 0)
01003 && (!active sites check(m, grain)))
01004 {
01005 active sites[grain].push back(m);
01006 }
01007 else if (((coordnum[m] == 12) || (coordnum[m] == 0))
01008 && (active sites check(m, grain)))
01009 {
01010 auto loc2 = std::find(active sites[grain].begin(), active sites[grain].end(), m);
01011 active sites[grain].erase(loc2);
01012 dep flag[m] = 0;
01013 }
01014 }
01015 }
01016 }

Member Data Documentation

double SPPARKS NS::AppEAM::alpha a [private]

Transfer coefficient for anodic reaction

131

double SPPARKS NS::AppEAM::alpha c [private]

Transfer coefficient for cathodic reaction

double SPPARKS NS::AppEAM::charge [private]

Elementary charge (C)

int SPPARKS NS::AppEAM::count [private]

Number of sites deposited

vec vec double SPPARKS NS::AppEAM::dep diss prob [private]

Stores deposition and dissolution propensity contributions - used in scaling; columns: dep
when pulse is on, dep when pulse is off, diss when pulse is on, diss when pulse is off

int SPPARKS NS::AppEAM::dep mode [private]

Deposition mode (0 galvanostaic, 1 potentiostatic)

vec int SPPARKS NS::AppEAM::dep sites [private]

List of sites whose propensities need to be scaled (deposition)

int SPPARKS NS::AppEAM::dep sites count [private]

Total number of possible deposition sites

vec int SPPARKS NS::AppEAM::dep sites count grain [private]

Sum of dep flag of active sites in each grain

132

vec int array 2 SPPARKS NS::AppEAM::diff sites [private]

A n x 2 vector of possible diffusion sites and the type of diffusion

vec int SPPARKS NS::AppEAM::diss sites [private]

List of sites whose propensities need to be scaled (dissolution)

int SPPARKS NS::AppEAM::diss sites count [private]

Total number of possible dissolution sites

vec int SPPARKS NS::AppEAM::diss sites count grain [private]

Number of possible dissolution sites in each grain

double SPPARKS NS::AppEAM::Ed [private]

Energy barrier for hopping diffusion

double SPPARKS NS::AppEAM::Ed boundary [private]

Energy barrier for diffusion along grain boundaries

double SPPARKS NS::AppEAM::Ed exch [private]

Energy barrier for atom exchange diffusion

double SPPARKS NS::AppEAM::Ed grain [private]

Energy barrier for diffusion across grain boundaries

double SPPARKS NS::AppEAM::Ed step [private]

Energy barrier for step-edge atom exchange diffusion

133

double SPPARKS NS::AppEAM::eta [private]

Overpotential (V)

double SPPARKS NS::AppEAM::i0 [private]

Exchange current density (pA/nm∧2)

double SPPARKS NS::AppEAM::i a dep [private]

Deposition current density during oxidation (pA/nm∧2)

double SPPARKS NS::AppEAM::i a diss [private]

Dissolution current density during oxidation (pA/nm∧2)

double SPPARKS NS::AppEAM::i dep [private]

Deposition current density (pA/nm2)

double SPPARKS NS::AppEAM::i diss [private]

Dissolution current density (pA/nm2)

double SPPARKS NS::AppEAM::max eng [private]

Max value of energy at a site at t = 0

int SPPARKS NS::AppEAM::n atomexch [private]

Number of atom exchange diffusion events occurred

int SPPARKS NS::AppEAM::n boundary [private]

Number of diffusion events along grain boundaries

134

int SPPARKS NS::AppEAM::n diss [private]

Number of sites removed

int SPPARKS NS::AppEAM::n grain [private]

Number of diffusion events across a grain boundary

int SPPARKS NS::AppEAM::n hop [private]

Number of hopping diffusion events occurred

int SPPARKS NS::AppEAM::n max [private]

Maximum number of sites deposited

int SPPARKS NS::AppEAM::n step [private]

Number of step-edge atom exchange diffusion events occurred

double SPPARKS NS::AppEAM::off dt [private]

Pulse off time

double SPPARKS NS::AppEAM::old eng [private]

Total energy of affected sites before event occurs

double SPPARKS NS::AppEAM::on dt [private]

Pulse on time

double SPPARKS NS::AppEAM::ox rate [private]

Overpotential during ‘off’ time in pulse-reverse (V)

135

PairEAM∗ SPPARKS NS::AppEAM::pair [private]

vec coordinates SPPARKS NS::AppEAM::phi old [private]

A n x 3 vector of site indices, energy, new energy

int SPPARKS NS::AppEAM::phi old count [private]

Number of rows used in phi old

double SPPARKS NS::AppEAM::polish height [private]

Height to polish to (Angstroms)

double SPPARKS NS::AppEAM::prev time [private]

Previous time step

int SPPARKS NS::AppEAM::pulse [private]

Flag to indicate pulse plating

int SPPARKS NS::AppEAM::pulse on [private]

Pulse on/off

double SPPARKS NS::AppEAM::scale dep off [private]

Scaling parameter for propensity when deposition is off

double SPPARKS NS::AppEAM::scale dep on [private]

Scaling parameter for propensity when deposition is on

136

double SPPARKS NS::AppEAM::scale diss off [private]

Scaling parameter for propensity when dissolution is off

double SPPARKS NS::AppEAM::scale diss on [private]

Scaling parameter for propensity when dissolution is on

double SPPARKS NS::AppEAM::seed frac [private]

Seed layer occupancy fraction

int SPPARKS NS::AppEAM::seed n [private]

Number of sites in seed layer

double SPPARKS NS::AppEAM::seedlayer size [private]

Height of seed layer (Angstroms)

vec int SPPARKS NS::AppEAM::sites [private]

Vector of sites whose propensity needed updating

double SPPARKS NS::AppEAM::v boundary [private]

Frequency factor for diffusion along grain boundaries

double SPPARKS NS::AppEAM::v d [private]

Frequency factor for hopping diffusion

double SPPARKS NS::AppEAM::v exch [private]

Frequency factor for atom exchange diffusion

137

double SPPARKS NS::AppEAM::v grain [private]

Frequency factor for diffusion across grain boundaries

double SPPARKS NS::AppEAM::v step [private]

Frequency factor for step-edge atom exchange diffusion

double SPPARKS NS::AppEAM::z me [private]

Number of electrons transferred in reduction reaction

138

References

[1] M. Paunovic and M. Schlesinger. Fundamentals of Electrochemical Deposition. John
Wiley and Sons, 2nd edition, 2006.

[2] D. Clark, D. Wood, and U. Erb. Industrial applications of electrodeposited nanocrys-
tals. Nanostruct. Mater., 9, 755 – 758, 1997.

[3] S. Cherevko and C.-H. Chung. Direct electrodeposition of nanoporous gold with
controlled multimodal pore size distribution. Electrochem. Commun., 13, 16 – 19,
2011.

[4] S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura. Cathodic
electrodeposition of oxide semiconductor thin films and their application to dye-
sensitized solar cells. Solid State Ionics, 151, 19 – 27, 2002.

[5] J. Elias, R. Tena-Zaera, and C. Lévy-Clément. Electrodeposition of ZnO nanowires
with controlled dimensions for photovoltaic applications: Role of buffer layer. Thin
Solid Films, 515, 8553 – 8557, 2007.

[6] J. Zhang and C. M. Li. Nanoporous metals: fabrication strategies and advanced
electrochemical applications in catalysis, sensing and energy systems. Chem. Soc.
Rev., 41, 7016–7031, 2012.

[7] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni. Damascene
copper electroplating for chip interconnections. IBM J. Res. Develop., 42, 567 –574,
1998.

[8] P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos. The chemistry
of additives in damascene copper plating. IBM J. Res. Develop., 49, 3 –18, 2005.

139

[9] N. Shaigan, D. G. Ivey, and W. Chen. Electrodeposition of NiLaCrO3 composite
coatings for solid oxide fuel cell stainless steel interconnect applications. J. Elec-
trochem. Soc., 155, D278–D284, 2008.

[10] J. Cho and C. V. Thompson. Grain size dependence of electromigration-induced
failures in narrow interconnects. Appl. Phys. Lett., 54, 2577–2579, 1989.

[11] C. Ryu, K.-W. Kwon, A. L. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari,
G. W. Ray, and S. S. Wong. Microstructure and reliability of copper interconnects.
IEEE T. Electron. Dev., 46, 1113–1120, 1999.

[12] C. S. Hau-Riege and C. V. Thompson. Electromigration in Cu interconnects with
very different grain structures. Appl. Phys. Lett., 78, 3451–3453, 2001.

[13] R. M. Stephens and R. C. Alkire. Simulation of kinetically limited nucleation and
growth at monatomic step edges. J. Electrochem. Soc., 154, D418–D426, 2007.

[14] T. O. Drews, A. Radisic, J. Erlebacher, R. D. Braatz, P. C. Searson, and R. C. Alkire.
Stochastic simulation of the early stages of kinetically limited electrodeposition. J.
Electrochem. Soc., 153, C434–C441, 2006.

[15] T. O. Drews, J. C. Ganley, and R. C. Alkire. Evolution of surface roughness during
copper electrodeposition in the presence of additives: Comparison of experiments
and Monte Carlo simulations. J. Electrochem. Soc., 150, C325–C334, 2003.

[16] M. C. Gimenez, M. G. Del Popolo, E. P. M. Leiva, S. G. Garcia, D. R. Salinas,
C. E. Mayer, and W. J. Lorenz. Theoretical considerations of electrochemical phase
formation for an ideal Frank-van der Merwe system: Ag on Au(111) and Au(100).
J. Electrochem. Soc., 149, E109–E116, 2002.

[17] M. C. Gimenez, M. G. Del Popolo, and E. P. M. Leiva. Kinetic Monte Carlo study
of electrochemical growth in a heteroepitaxial system. Langmuir, 18, 9087–9094,
2002.

[18] A. C. Frank, P. T. Sumodjo, and E. P. Leiva. A Monte Carlo model for the simulation
of the electrodeposition of CoNi alloys onto glassy carbon. ECS Trans., 25, 53–63,
2010.

[19] S. Frank, D. E. Roberts, and P. A. Rikvold. Effects of lateral diffusion on morphology
and dynamics of a microscopic lattice-gas model of pulsed electrodeposition. J. Chem.
Phys., 122, 064705, 2005.

140

[20] S. Frank and P. A. Rikvold. Kinetic Monte Carlo simulations of electrodeposition:
Crossover from continuous to instantaneous homogeneous nucleation within Avrami’s
law. Surf. Sci., 600, 2470–2487, 2006.

[21] L. Guo, A. Radisic, and P. C. Searson. Kinetic Monte Carlo Simulations of nucleation
and growth in electrodeposition. J. Phys. Chem. B, 109, 24008–24015, 2005.

[22] F. Berthier, B. Legrand, J. Creuze, and R. Tétot. Ag/Cu (001) electrodeposition:
beyond the classical nucleation theory. J. Electroanal. Chem., 562, 127 – 134, 2004.

[23] Y. Kaneko, Y. Hiwatari, K. Ohara, and F. Asa. Kinetic Monte Carlo simulation of
three-dimensional shape evolution with void formation using solid-by-solid model:
Application to via and trench filling. Electrochim. Acta, 100, 321–328, 2013.

[24] Y. Kaneko, Y. Hiwatari, K. Ohara, and F. Asa. Kinetic Monte Carlo approach to
the effects of additives in electrodeposition. ECS Trans., 35, 7–12, 2011.

[25] Y. Kaneko, Y. Hiwatari, K. Ohara, and F. Asa. Monte Carlo simulation of damascene
electroplating: effects of additives. Mol. Simul., 32, 1227–1232, 2006.

[26] Y. Kaneko, Y. Hiwatari, K. Ohara, and T. Murakami. Computer simulation of thin
film growth with defect formation. Surf. Coat. Technol., 169-170, 215–218, 2003.

[27] Y. Kaneko, Y. Hiwatari, K. Ohara, and T. Murakami. Monte Carlo simulation of
thin film growth with lattice defects. J. Phys. Soc. Jpn., 69, 3607–3613, 2000.

[28] Y. Kaneko, S. Nishimura, Y. Hiwatari, K. Ohara, and F. Asa. Monte Carlo and
molecular dynamics studies of the effects of additives in electrodeposition. J. Korean
Phys. Soc., 54, 1207–1211, 2009.

[29] T. Treeratanaphitak, M. D. Pritzker, and N. M. Abukhdeir. Kinetic Monte Carlo
simulation of electrodeposition using the embedded-atom method. Electrochim. Acta,
121, 407–414, 2014.

[30] T. J. Pricer, M. J. Kushner, and R. C. Alkire. Monte Carlo simulation of the elec-
trodeposition of copper: I. Additive-free acidic sulfate solution. J. Electrochem. Soc.,
149, C396–C405, 2002.

[31] X. Li, T. O. Drews, E. Rusli, F. Xue, Y. He, R. Braatz, and R. Alkire. Effect of
additives on shape evolution during electrodeposition I. Multiscale simulation with
dynamically coupled kinetic Monte Carlo and moving-boundary finite-volume codes.
J. Electrochem. Soc., 154, D230–D240, 2007.

141

[32] E. Rusli, F. Xue, T. O. Drews, P. M. Vereecken, P. Andricacos, H. Deligianni, R. D.
Braatz, and R. C. Alkire. Effect of additives on shape evolution during electrodeposi-
tion II. Parameter estimation from roughness evolution experiments. J. Electrochem.
Soc., 154, D584–D597, 2007.

[33] Z. Zheng, R. M. Stephens, R. D. Braatz, R. C. Alkire, and L. R. Petzold. A hybrid
multiscale kinetic Monte Carlo method for simulation of copper electrodeposition. J.
Comput. Phys., 227, 5184–5199, 2008.

[34] J. Liu, C. Liu, and P. P. Conway. Kinetic Monte Carlo simulation of the electrode-
position of polycrystalline copper: Effects of substrates and deposition parameters
on the microstructure of deposits. Electrochim. Acta, 97, 132 – 142, 2013.

[35] J. Liu, C. Liu, and P. P. Conway. Kinetic Monte Carlo simulation of electrodeposition
of polycrystalline Cu. Electrochem. Commun., 11, 2207–2211, 2009.

[36] J. Liu, C. Liu, and P. P. Conway. Kinetic Monte Carlo simulation of kinetically
limited copper electrocrystallization on an atomically even surface. Electrochim.
Acta, 54, 6941–6948, 2009.

[37] Y. Y. Huang, Y. C. Zhou, and Y. Pan. Simulation of kinetically limited growth of
electrodeposited polycrystalline Ni films. Physica E, 41, 1673–1678, 2009.

[38] N. B. Luque and E. P. Leiva. On the application of computer simulations to the
study of electrochemical nanostructuring and surface phase formation. Electrochim.
Acta, 50, 3161 – 3178, 2005.

[39] M. S. Daw and M. I. Baskes. Embedded-atom method: Derivation and application
to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29, 6443–6453,
1984.

[40] M. S. Daw, S. M. Foiles, and M. I. Baskes. The embedded-atom method: a review
of theory and applications. Mater. Sci. Rep., 9, 251–310, 1993.

[41] J. B. Adams, S. M. Foiles, and W. G. Wolfer. Self-diffusion and impurity diffusion
of fcc metals using the five-frequency model and the Embedded Atom Method. J.
Mater. Res., 4, 102–112, 1989.

[42] S. M. Foiles, M. I. Baskes, C. F. Melius, and M. S. Daw. Calculation of hydrogen
dissociation pathways on nickel using the embedded atom method. J. Less-Common
Met., 130, 465–473, 1987.

142

[43] G. Antczak and G. Ehrlich. Surface Diffusion. Cambridge University Press, New
York City, 2010.

[44] M. Mariscal, E. Leiva, K. Pötting, and W. Schmickler. The structure of electrode-
posits – a computer simulation study. Appl. Phys. A, 87, 385–389, 2007.

[45] A. F. Voter. Hyperdynamics: Accelerated molecular dynamics of infrequent events.
Phys. Rev. Lett., 78, 3908–3911, 1997.

[46] A. F. Voter. A method for accelerating the molecular dynamics simulation of infre-
quent events. J. Chem. Phys., 106, 4665–4677, 1997.

[47] M. R. Sorensen and A. F. Voter. Temperature-accelerated dynamics for simulation
of infrequent events. J. Chem. Phys., 112, 9599–9606, 2000.

[48] A. F. Voter, F. Montalenti, and T. C. Germann. Extending the time scale in atomistic
simulaton of materials. Annu. Rev. Mater. Res., 32, 321–346, 2002.

[49] A. J. Bard and L. R. Faulkner. Electrochemical Methods: Fundamentals and Appli-
cations. John Wiley and Sons, New York, 2nd edition, 2001.

[50] R. Cabán and T. W. Chapman. Statistical analysis of electrode kinetics measure-
ments: Copper deposition from CuSO4-H2SO4 solutions. J. Electrochem. Soc., 124,
1371–1379, 1977.

[51] E. Budevski, G. Staikov, and W. J. Lorenz. Electrochemical Phase Formation and
Growth: An Introduction to the Initial Stages of Metal Deposition. Advances in
Electrochemical Science and Engineering. VCH, Weinheim, Germany, 1996.

[52] A. Milchev. Electrocrystallization: Fundamentals of Nucleation and Growth. Kluwer
Academic Publishers, 2002.

[53] D. Frenkel and B. Smit. Understanding Molecular Simulation From Algorithms to
Applications. Academic Press, San Diego, California, 2nd edition, 2002.

[54] A. Chatterjee and D. G. Vlachos. An overview of spatial microscopic and accelerated
kinetic Monte Carlo methods. J. Comput. Aided Mater. Des., 14, 253–308, 2007.

[55] K. A. Fichthorn and W. H. Weinberg. Theoretical foundations of dynamical Monte
Carlo simulations. J. Chem. Phys., 95, 1090–1096, 1991.

[56] C. W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, 2nd edition, 1985.

143

[57] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,
58, 35–55, 2007.

[58] D. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics.
Cambridge University Press, 3rd edition, 2009.

[59] G. Gilmer and S. Yip. Basic Monte Carlo models: Equilibrium and kinetics. In S. Yip,
editor, Handbook of Materials Modeling, pages 613–628. Springer Netherlands, 2005.

[60] A. Bortz, M. Kalos, and J. Lebowitz. A new algorithm for Monte Carlo simulation
of Ising spin systems. J. Comput. Phys., 17, 10 – 18, 1975.

[61] D. V. Schroeder. An Introduction to Thermal Physics. Addison Wesley Longman,
2000.

[62] K. Binder. Static and dynamic critical phenomena of the two-dimensional q-state
Potts model. J. Stat. Phys., 24, 69–86, 1981.

[63] G. H. Gilmer and P. Bennema. Simulation of crystal growth with surface diffusion.
J. Appl. Phys., 43, 1347–1360, 1972.

[64] Y. Kaneko. Modeling and simulation. In K. Kondo, R. N. Akolkar, D. P. Barkey,
and M. Yokoi, editors, Copper Electrodeposition for Nanofabrication of Electronics
Devices, volume 171 of Nanostructure Science and Technology, pages 63–95. Springer
New York, 2014.

[65] D. A. Smith. Grain boundary structure and migration. In D. Wolf and S. Yip,
editors, Materials interfaces: Atomic-level structure and properties, chapter 6, pages
212–227. Chapman and Hall, 1st edition, 1992.

[66] C. Herzig and Y. Mishin. Grain boundary diffusion in metals. In P. Heitjans and
J. Kaerger, editors, Diffusion in Condensed Matter, pages 337–366. Springer Berlin
Heidelberg, 2005.

[67] A. Kelly and K. M. Knowles. Crystallography and Crystal Defects. John Wiley and
Sons, 2nd edition, 2012.

[68] H. Huang, G. H. Gilmer, and T. D. de la Rubia. An atomistic simulator for thin film
deposition in three dimensions. J. Appl. Phys., 84, 3636–3649, 1998.

[69] S. Ruan and C. A. Schuh. Kinetic Monte Carlo simulations of nanocrystalline film
deposition. J. Appl. Phys., 107, 073512, 2010.

144

[70] L. A. Zepeda-Ruiz, G. H. Gilmer, C. C. Walton, A. V. Hamza, and E. Chason.
Surface morphology evolution during sputter deposition of thin films - lattice Monte
Carlo simulations. J. Cryst. Growth, 312, 1183 – 1187, 2010.

[71] H. S. Uhm and S. K. Hwang. Three-dimensional Monte Carlo computer simulation
of grain growth in electro-plated pure Ni. Met. Mater. Int., 10, 113–121, 2004.

[72] C. C. Battaile. The kinetic Monte Carlo method: Foundation, implementation, and
applications. Comput. Methods Appl. Mech. Engrg., 197, 3386 – 3398, 2008.

[73] P. Bruschi, A. Nannini, and F. Pieri. Monte Carlo simulation of polycrystalline thin
film deposition. Phys. Rev. B, 63, 035406, 2000.

[74] H. Huang and L. Zhou. Atomistic simulator of polycrystalline thin film deposition
in three dimensions. J. Comput. Aided Mater. Des., 11, 59–74, 2004.

[75] H. Huang. Texture evolution during thin film deposition. In S. Yip, editor, Handbook
of Materials Modeling, chapter 2, pages 1039–1049. Springer Netherlands, 2005.

[76] J. E. Rubio, M. Jaraiz, I. Martin-Bragado, J. M. Hernandez-Mangas, J. Barbolla, and
G. H. Gilmer. Atomistic Monte Carlo simulations of three-dimensional polycrystalline
thin films. J. Appl. Phys., 94, 163–168, 2003.

[77] S. W. Levine and P. Clancy. A simple model for the growth of polycrystalline Si
using the kinetic Monte Carlo simulation. Modell. Simul. Mater. Sci. Eng., 8, 751,
2000.

[78] X. Tan, Y. Zhou, and X. Zheng. Pulsed-laser deposition of polycrystalline Ni films:
A three-dimensional kinetic Monte Carlo simulation. Surf. Sci., 588, 175 – 183,
2005.

[79] A. F. Voter. Introduction to the kinetic Monte Carlo method. In K. E. Sickafus,
E. A. Kotomin, and B. P. Uberuaga, editors, Radiation Effects in Solids, volume 235
of NATO Science Series, chapter 1, pages 1–23. Springer Netherlands, 2007.

[80] C. C. Battaile and D. J. Srolovitz. Kinetic Monte Carlo simulation of chemical vapor
deposition. Annu. Rev. Mater. Res., 32, 297–319, 2002.

[81] C. Battaile. Monte Carlo methods for simulating thin film deposition. In S. Yip, ed-
itor, Handbook of Materials Modeling, chapter 7, pages 2363–2377. Springer Nether-
lands, 2005.

145

[82] P. Allongue and F. Maroun. Metal electrodeposition on single crystal metal surfaces
mechanisms, structure and applications. Curr. Opin. Solid State Mater. Sci., 10,
173 – 181, 2006.

[83] E. Mattsson and J. O. Bockris. Galvanostatic studies of the kinetics of deposition
and dissolution in the copper + copper sulphate system. Trans. Faraday Soc., 55,
1586–1601, 1959.

[84] B. E. Conway and J. O. Bockris. On the calculation of potential energy profile
diagrams for processes in electrolytic metal deposition. Electrochim. Acta, 3, 340 –
366, 1961.

[85] D. Wolf. Atomic-level geometry of crystalline interfaces. In D. Wolf and S. Yip,
editors, Materials interfaces: Atomic-level structure and properties, chapter 1, pages
1–57. Chapman and Hall, 1st edition, 1992.

[86] M. E. Straumanis and L. S. Yu. Lattice parameters, densities, expansion coefficients
and perfection of structure of Cu and of Cu–In α phase. Acta Crystallogr. A, 25,
676–682, 1969.

[87] S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wag-
ner, E. Webb, X. Zhou, C. G. Cardona, and A. Slepoy. Crossing the mesoscale
no-man’s land via parallel kinetic Monte Carlo. Sandia report SAND2009-6226, San-
dia National Laboratories, 2009.

[88] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A, 104, 1876–1889, 2000.

[89] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput.
Phys., 117, 1 – 19, 1995.

[90] J. Vazquez-Arenas, M. Pritzker, and M. Fowler. Kinetic and hydrodynamic implica-
tions of 1-D and 2-D models for copper electrodeposition under mixed kinetic-mass
transfer control. Electrochim. Acta, 89, 717 – 725, 2013.

[91] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman. Roughness
parameters. J. Mater. Process. Technol., 123, 133 – 145, 2002.

[92] H. Mantz, K. Jacobs, and K. Mecke. Utilizing Minkowski functionals for image
analysis: a marching square algorithm. J. Stat. Mech: Theory Exp., 2008, P12015,
2008.

146

[93] J. Ferrón, L. Gómez, J. Gallego, J. Camarero, J. E. Prieto, V. Cros, A. L. Vázquez de
Parga, J. J. de Miguel, and R. Miranda. Influence of surfactants on atomic diffusion.
Surf. Sci., 459, 135 – 148, 2000.

[94] H.-J. Ernst, F. Fabre, and J. Lapujoulade. Growth of Cu on Cu(100). Surf. Sci.,
275, L682 – L684, 1992.

[95] L. Yang, T. S. Rahman, and M. S. Daw. Surface vibrations of Ag(100) and Cu(100):
A molecular-dynamics study. Phys. Rev. B, 44, 13725–13733, 1991.

[96] G. Gottstein and L. S. Shvindlerman. Grain Boundary Migration in Metals: Ther-
modynamics, Kinetics, Applications. CRC Press, 2nd edition, 2009.

[97] A. Suzuki and Y. Mishin. Atomistic modeling of point defects and diffusion in copper
grain boundaries. Interface Sci., 11, 131–148, 2003.

[98] P. Sonnweber-Ribic, P. Gruber, G. Dehm, and E. Arzt. Texture transition in Cu
thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Mater., 54,
3863 – 3870, 2006.

[99] H. Pick, G. Storey, and T. Vaughan. The structure of electrodeposited copper I. an
experimental study of the growth of copper during electrodeposition. Electrochim.
Acta, 2, 165 – 176, 1960.

[100] H. L. Wei, H. Huang, C. H. Woo, R. K. Zheng, G. H. Wen, and X. X. Zhang.
Development of < 110 > texture in copper thin films. Appl. Phys. Lett., 80, 2290–
2292, 2002.

[101] B. Hong, C. Jiang, and X. Wang. Influence of complexing agents on texture formation
of electrodeposited copper. Surf. Coat. Technol., 201, 7449 – 7452, 2007.

[102] L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding, and K. Lu. Grain growth and strain
release in nanocrystalline copper. J. Appl. Phys., 89, 6408–6414, 2001.

[103] A. Ibanez and E. Fatás. Mechanical and structural properties of electrodeposited
copper and their relation with the electrodeposition parameters. Surf. Coat. Technol.,
191, 7 – 16, 2005.

[104] C. H. Seah, S. Mridha, and L. H. Chan. Quality of electroplated copper films pro-
duced using different acid electrolytes. J. Vac. Sci. Technol. B, 17, 2352–2356,
1999.

147

[105] S. Tao and D. Y. Li. Tribological, mechanical and electrochemical properties of
nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnol-
ogy, 17, 65, 2006.

[106] L. Vitos, A. Ruban, H. Skriver, and J. Kollar. The surface energy of metals. Surf.
Sci., 411, 186–202, 1998.

[107] M. Jia, Y. Lai, Z. Tian, and Y. Liu. Calculation of the surface free energy of fcc
copper nanoparticles. Modell. Simul. Mater. Sci. Eng., 17, 015006, 2009.

[108] J. J. De Miguel, A. Sánchez, A. Cebollada, J. M. Gallego, J. Ferrón, and S. Fer-
rer. The surface morphology of a growing crystal studied by thermal energy atom
scattering (TEAS). Surf. Sci., 189-190, 1062 – 1068, 1987.

[109] W. Wulfhekel, N. N. Lipkin, J. Kliewer, G. Rosenfeld, L. C. Jorritsma, B. Poelsema,
and G. Comsa. Conventional and manipulated growth of Cu/Cu(111). Surf. Sci.,
348, 227 – 242, 1996.

[110] A. Iwamoto, T. Yoshinobu, and H. Iwasaki. Stable growth and kinetic roughening
in electrochemical deposition. Phys. Rev. Lett., 72, 4025–4028, 1994.

[111] G. Palasantzas, S. A. Koch, and J. T. M. De Hosson. Growth front roughening
of room-temperature deposited copper nanocluster films. Appl. Phys. Lett., 81,
1089–1091, 2002.

148

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Research Motivation
	Objectives
	Structure of Thesis

	Background
	Electrodeposition
	Embedded-Atom Method Potential
	On-Lattice Kinetic Monte Carlo Method
	Ising and Potts Models
	Solid-on-Solid and Solid-by-Solid Methods

	Polycrystalline Systems

	Past Approaches to KMC Simulations of Electrodeposition
	Single Crystal Systems
	Nucleation Studies
	Morphological Studies

	Simulations of Electrodeposition
	Multiscale Simulations

	Electrodeposition onto a Single Crystal Substrate
	Methodology
	Processes
	Simulation Conditions

	Results and Discussion
	Kinetics of Diffusion Events
	Effect of Diffusion Mechanisms
	Comparison of Equilibrium Deposits

	Conclusions

	Electrodeposition onto a Polycrystalline Substrate
	Electrochemical Kinetics
	Methodology
	Processes
	Propensity Scaling
	Representation of a Polycrystalline System
	Substrate Generation
	Simulation Conditions

	Results and Discussion
	Effect of Domain Size
	Effect of Overpotential on Roughness

	Conclusions

	Conclusions
	Conclusions
	Recommendations

	Appendix – KMC-EAM Documentation
	References

