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Abstract

Poorly damped electromechanical modes detection in a power system and corre-

sponding stability margins prediction are very important in power system planning

and operation, and can provide significant help to power system operators with

preventing stability problems.

Stochastic subspace identification is proposed in this thesis as a technique to

extract the critical mode(s) from the measured ambient noise without requiring

artificial disturbances (e.g. a line outage), allowing these critical modes to be used

as an on-line index, which is referred here to as System Identification Stability

Indices (SISI) to predict the closest oscillatory instability. The SISI is not only

independent of system models and truly representative of the actual system, but

also computationally efficient. In addition, readily available signals in a power

system and several identification methods are categorized, and merits and pitfalls

of each one are addressed in this work.

The damping torque of linearized models of power systems is studied in this

thesis as another possible on-line security index. This index is estimated by means

of proper system identification techniques applied to both power system transient

response and ambient noise. The damping torque index is shown to address some

of drawbacks of the SISI.

This thesis also demonstrates the connection between the second order statistical

properties, including confidence intervals, of the estimated electromechanical modes

and the variance of model parameters. These analyses show that Monte-Carlo

type of experiments or simulations can be avoided, hence resulting in a significant

reduction in the number of samples.

In these types of studies, the models available in simulation packages are ex-
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tremely important due to their unquestionable impact on modal analysis results.

Hence, in this thesis, the validity of generator subtransient model and a typical

STATCOM transient stability (TS) model are also investigated by means of system

identification, illustrating that under certain conditions the STATCOM TS model

can yield results that are too optimistic, which can lead to errors in power system

planning and operation.

In addition to several small test systems used throughout this thesis, the fea-

sibility of the proposed indices are tested on a realistic system with 14,000 buses,

demonstrating their usefulness in practice.
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Chapter 1

Introduction

1.1 Research Motivation

Power systems around the world are faced with challenging issues concerning over-

all system security, reliability and stability because of the unprecedented increase

in electricity demand, lack of transmission expansion, and the fact that new power

plants are not being built close to population centers because of environmental and

economic constraints. Several major blackouts (e.g. August 2003 North-East black-

out [2], September 2003 Italy blackout [3], September 2003 Sweden-Denmark black-

out [4], August 1996 WSCC blackout [5]) are testimonies to these issues. Deregula-

tion of electricity markets is further adding to this problem, since the main objective

is to transfer power from generation surplus areas to generation deficit points, thus

leading to increased transmission congestion problems.

Power system operators are constantly dealing with the challenge of operating

their systems in a secure manner, while taking into account the uncertainty in de-

mand and supply and the availability of enough security margins. Thus, off-line

1



CHAPTER 1. INTRODUCTION 2

system studies are performed to ensure the overall system security ahead of time.

These studies are mainly classified into voltage stability analysis and angle stabil-

ity analysis, based on short-, mid- and long-term stability studies. These off-line

system studies are, however, based on power system models that are represented

by differential-algebraic equations (DAEs). These DAE models are based on ap-

proximate system representation and data, since obtaining models and data for a

system (e.g. system controllers) with several thousand buses is rather cumbersome.

Therefore, during the last two decades, there has been a trend to use identification

techniques based on the real-time response of the power system in order to analyze

its behavior. Furthermore, these on-line tools and techniques can also provide use-

ful information for system operators regarding readily available security margins,

and can further assist operators in taking proper actions to avoid possible system

problems.

This thesis studies various issues regarding on-line monitoring of oscillatory

behavior of a power system, i.e. small-disturbance stability analysis, which are as-

sociated with phenomena that may lead to significant problems in power systems

(e.g. the August 1996 WSCC blackout was mainly triggered by an oscillatory in-

stability). In order to extract stability information from on-line measurements,

several identification tools for different kinds of tests and signals are discussed and

proposed. The possibility of predicting the corresponding stability margins using

these system identification techniques is explored, as is the effect of using different

system models on these oscillations.
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1.2 Literature Review

Poorly damped electromechanical oscillations in power systems are related to lightly

damped modes that arise from a number of factors, such as fast exciters, which

are intended to enhance the synchronizing torque; long transmission lines; and

improvements in the cooling system of turbo-alternators [6]. Upon a change in

one of the system parameters such as loading level, these modes can become less

damped, and eventually result in unstable oscillations, a phenomenon previously

observed in power systems, with major consequences (e.g. August 1996 WSCC

blackout [5]). In fact, being able to predict such problems would be extremely

helpful in preventing them. Hence, there have been significant efforts in developing

techniques to identify, predict and control these stability problems.

1.2.1 Stability Limit Prediction

In general, voltage collapse and oscillatory phenomena have been directly associated

with bifurcation theory in nonlinear systems. Saddle-node bifurcations (SNB) and

limit-induced bifurcations (LIB) have been directly related to voltage stability [7].

On the other hand, electromechanical oscillations have been associated with Hopf

bifurcations (HB), which are important, as they restrain the transfer capacity of

the system [8]. All these are, however, off-line methods, based on DAE models, and

are consequently dependent on approximate data and models.

A fair amount of research work has been conducted to detect and predict the

stability limits associated with voltage collapse [7, 9]. When voltage collapse is

associated with an SNB, it may be predictable by monitoring the minimum sin-

gular value of the power flow Jacobian; however, these types of indices encounter

discontinuities, and have a nonlinear profile. Therefore, these indices are usually
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“linearized” by dividing them by their derivatives. In [10], a test function is also

used in an existent performance index for detection of proximity to a static voltage

collapse point; it is then compared with known singular values and eigenvalues in-

dices, and with other previously proposed test functions, showing some advantages

and disadvantages. On the other hand, LIBs cannot be detected by monitoring

the minimum singular value or eigenvalue; hence, other approaches, such as the

distance to generator Var limit as proposed in [9], have been proposed.

Some research has also been carried out on characterizing oscillatory behavior

in power systems as well as its detection, prediction and control [11, 12, 13, 14, 15].

In [11], it is shown that a power system may experience either an SNB or an HB

depending on the value of the causal parameter; however, an HB, if exists, occurs

prior to an SNB. In [8], an HB index that employs the state matrix and critical

eigenvalues is proposed; then another index, which does not require computing the

state matrix, and hence is faster, is suggested. However, both indices rely on a

DAE model of the system under study.

1.2.2 Electromechanical Mode Detection

Various techniques have been recently developed based on wide area measurements

(WAM) to provide on-line information of poorly damped modes, to identify causal

factors using sensitivity analysis, and to propose actions for real-time operation and

off-line studies to alleviate the problematic system oscillations [16, 17, 18]. However,

these tools are not designed to provide predictions of the available stability limits

when loading or other system parameters change.

The Prony method, for instance, is a well-known system identification technique

that has been widely used in power systems to determine modal content, develop
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equivalent linear models of power systems, and tune controllers using system mea-

surements [19, 20, 21, 22]. Compared with modal analysis, this method is a close

duplicate; however, it needs a high signal-to-noise ratio (SNR) in order to get ac-

curate results. Thus, it cannot be readily applied to the response of a normally

operated power system since it needs “large enough” perturbations (e.g. line or

generator outages), which are usually not available.

There are linear time-invariant models, such as auto-regressive (AR); auto-

regressive moving-average (ARMA); and stochastic state-space, which is a trans-

formed representation of an ARMA, that can be employed to analyze the measured

response of power systems under normal operating conditions. In these models, the

input is white noise, and it can be interpreted as random load switching during

the day, assuming that the system does not change, and remains at its equilibrium

point [23, 24]. ARMA models are more general than AR models, but they are

computationally expensive, as they require the solving of an optimization problem

and do not provide guaranteed global minima. Although it is possible to use an

AR model by removing the moving average term of an ARMA, the system order

needed to model the signal would be high. In [23], the parameters of an ARMA

model is estimated by means of a Least Square Modified Yule-Walker (LSMYW)

equation so as to avoid the optimization problem. However, the accuracy of the

detected mode in this case would be somewhat compromised.

1.2.3 Modeling Effect on Stability Limits

DAE models are vital in power system analysis, as choosing models with different

degrees of complexity would yield different results; for instance, stability limits have

been shown to change significantly for the same system with different load models
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[25, 26, 27, 28]. Generator and exciter modeling also plays a significant role in the

dynamic studies of a power system [8, 29, 30].

Since a power system usually consists of several thousand buses and machines,

its analysis requires handling of extremely large matrices. Therefore, simplified

models such as power flow and transient stability (TS) models have been pro-

posed to enhance computational efficiency (e.g. larger integration time step and

smaller state matrix); these models are typically used in power system analysis

packages instead of more detailed models. To the knowledge of the author, these

models were validated by using only time-domain simulations and comparing their

response with the ones obtained from more detailed models. For instance, the TS

model proposed for all the Flexible AC Transmission Systems (FACTS) controllers

in [1] was validated only by inspection of the time-domain simulation results. Thus,

these TS models need also to be validated from the viewpoint of small-disturbance

analysis and their accuracy in terms of their impact on the system modes. This

requirement becomes important when FACTS controllers are used to enhance both

large-disturbance and small-disturbance stability [15, 31]. For instance, additional

damping for the electromechanical modes may be obtained by adding a supplemen-

tary control to the main control of a FACTS controller [8, 32]. It is important that

TS models when utilized in a small-disturbance analysis program, yield appropriate

information about the real system behavior.

System identification techniques are powerful tools that are used in this thesis

to validate TS models from the abovementioned perspective. These tools can also

be used to obtain transfer functions for tuning purposes [19, 20, 21].
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1.3 Objectives

Based on the review of the state-of-the-art of the areas mentioned before, the fol-

lowing areas of interest will be researched in this thesis, concentrating mostly on the

use of system identification tools for detecting and predicting oscillatory stability

limits in a power system:

1. Propose a computationally efficient identification method to detect the elec-

tromechanical modes in a power system without requiring any major distur-

bances.

2. Develop a simple index for on-line applications that is independent of approx-

imate models and data, based on the critical modes of the system.

3. Develop an index that does not require surveillance of specific, undetected

critical modes.

4. Propose a technique to estimate the uncertainty of the calculated electrome-

chanical modes to avoid Monte-Carlo type of simulations and experiments.

5. Validate TS models of major power system components, such as synchronous

generator and FACTS controllers, by means of system identification.

1.4 Outline of the Thesis

This thesis is structured as follows: Chapter 2 presents a background on review

of the main concepts on power system stability used here. It also describes the

tools, models and test cases used throughout this thesis in order to demonstrate

the feasibility of the proposed methods.
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Chapter 3 discusses and categorizes the types of signals that can be readily mea-

sured in a power system, as well as corresponding techniques to extract the modal

content of the signals. It also explains the merits and pitfalls of each technique.

Chapter 4 describes the development of a proposed stability index, which is

based on the critical eigenvalues of a power system, used to predict the closest os-

cillatory instability point. The results for several test cases are presented, including

those of a real system.

Chapter 5 discusses formulating the analytical representation of the damping

torque, and proposes another index, which is based on the damping torque concept.

Several test cases and dispatch scenarios are used to examine the feasibility of

employing this index in practice.

Chapter 6 first presents a brief background on estimating the covariance of

parameters and then it discusses the procedure to calculate the variance of the

identified electromechanical modes by means of a technique that is employed to

establish a connection between the variance of parameters and variance of modes.

In Chapter 7, the generator subtransient model is validated by comparing its

time-domain simulation results with those obtained from the generator detailed

model; system identification is employed to study the impact of using each model

on the electromechanical modes. The TS model of a shunt FACTS controller known

as STATCOM is also compared, from the small-disturbance analysis point of view,

with its detailed model; the validity of the TS model with a supplementary control

is then investigated.

Finally, Chapter 8 summarizes the main content and contributions of this thesis,

and suggests directions for possible future research work.



Chapter 2

Background Review

2.1 Introduction

In this chapter, a general overview of models, power system stability analysis tools

and techniques, and the test cases used throughout the thesis is presented. A dis-

cussion of the critical points one needs to take into consideration in different system

studies, such as continuation power flow or small-disturbance stability analysis, is

also presented here.

2.2 Modeling

Models for power system components have to be selected according to the purpose

of the system study, and hence, one must be aware of what models in terms of

accuracy and complexity should be used for a certain type of system studies, while

keeping the computational burden as low as possible. Selecting improper models

for power system components may lead to erroneous conclusions. For example,

9
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the author in [8] studied the effect of using various load models on the system

stability margin, showing that for some case studies, when only load models are

changed, different stability margins in terms of MWs are obtained. In the following

sections, the main elements of power systems, for the purpose of this thesis, are

briefly discussed, and the corresponding models are reviewed.

2.2.1 Generators

Generators are important in system stability studies, and are modeled in dissim-

ilar ways depending on the objective of the study. For instance, in a power flow

study, a generator is modeled as a PV bus (defined as a bus with fixed voltage and

power). For other complex analyses, such as small-disturbance stability, it may be

required to use either generator subtransient or transient stability models that are

represented by means of DAEs.

The per unit stator voltage equations for generator detailed model in dq refer-

ence frame are typically written as [33]:

ed = pψd − ψqωr − Raid (2.1)

eq = pψq + ψdωr − Raiq

where ed and eq are the instantaneous stator phase voltages; p is the differential

operator d/dt; id and iq are the instantaneous stator phase currents; ψd and ψq are

the flux linkages; ωr is the rotor electrical speed; and Ra is the armature resistance

per phase.

The two most common simplifications in obtaining generator stability models

are: First, neglect the stator transients, which are represented by the pψd and

pψd terms in 2.1; these terms are associated with network transients, which decay
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rapidly. Second, neglect the effect of speed variations on stator voltages, i.e. ωr = 1

in 2.1. In addition to the abovementioned simplifications, other assumptions, such

as balanced voltages with slowly varying phase and angle, yield generator stability

models represented by differential equations with orders ranging from II (classical

model) to VI (subtransient model) [34]. For instance, a generator subtransient

model is obtained assuming two q-axis and one d-axis damper windings on the rotor,

and X
′′

d = X
′′

q , where X
′′

d and X
′′

q are subtransient reactances. On the other hand,

a generator classical model is obtained by modeling the generator as a constant

voltage source behind a reactance, and hence, only two differential equations are

used to represent the electromechanical swing equations.

A generator is normally equipped with an exciter for primary voltage control

and a governor for frequency control. Fast exciters are known to enhance generator

synchronizing torque, but may deteriorate the damping [35], and hence, for some

generators, a Power System Stabilizer (PSS) is installed to improve the damping.

Several types of exciters, governors and PSSs are readily available (for more details,

please refer to [33]), and are incorporated in most small-disturbance stability and

transient stability analysis programs, such as the Power System Toolbox (PST) [36].

These models are not typically modeled in a power flow study; however, they have

to be adequately represented in an eigenvalue analysis (small-disturbance analysis)

or a transient stability analysis.

2.2.2 Loads

Load models are categorized as static and dynamic. Dynamic load models are

more complicated, and are used mainly for transient stability analysis. On the

other hand, static models are better suited for power flow and small-disturbance
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stability analysis. The three main static load models are known as constant PQ (or

MVA), constant current and constant impedance; all of them can be mathematically

expressed by

P = P0

(
V

V0

)a

(2.2)

Q = Q0

(
V

V0

)b

(2.3)

(2.4)

where P0 and Q0 are the active and reactive power consumed at voltage V0, re-

spectively. The type of the load model depends on exponents a and b, i.e. constant

PQ for a = b = 0, constant current for a = b = 1, and constant impedance for

a = b = 2.

2.2.3 Synchronous STATic COMpensator (STATCOM)

Shunt compensators are primarily used to regulate the voltage in a bus by provid-

ing or absorbing reactive power. They are also known to be effective in damping

electromechanical oscillations [15, 31]. Different kinds of shunt compensators are

currently being used in power systems, of which the most popular ones are Static

Var Compensator (SVC) and Synchronous STATic COMpensator (STATCOM)

[37]; however, in this research, only the STATCOM, which has a more complicated

topology, is explained and studied. SVCs and STATCOMs are thyristor based and

GTO based FACTS controllers, respectively. A thyristor has only turn-on capabil-

ity, thus cannot be used in switch mode applications. Advanced devices such as

Gate Turn-Off Thyristors (GTO) and Integrated Gate Bipolar Transistors (IGBT)

have both turn-on and turn-off capabilities; hence, it is possible to use them in

switched mode applications such as Voltage-Source Converters (VSC) in power
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systems.

A VSC generates a synchronous voltage of fundamental frequency and control-

lable magnitude and phase angle. If a VSC is connected to a system via a coupling

transformer as shown in Figure 2.1, the resulting STATCOM [37, 38, 39] can inject

or absorb reactive power to or from the bus to which it is connected. The main

advantage of a STATCOM over an SVC is its reduced size, which results from the

elimination of ac capacitor banks and reactors. Moreover, a STATCOM response

is 10 times faster than that of an SVC due to turn-on and turn-off control of the

STATCOM.

The active and reactive power exchange between the VSC and the system are

the function of the converter output voltage denoted as Vout in Figure 2.1, i.e.

P =
Vout V

X
sin αconv (2.5)

Q =
V 2

out − VoutV cos αconv

X
(2.6)

where αconv is the angle between the ac system voltage V and Vout.

Two control strategies may be used for a STATCOM; namely, Phase Control and

PWM Control. In phase control, the DC bus voltage Vdc is regulated by changing

αconv, i.e. charging and discharging the DC capacitor, which ultimately controls

Vout, as this voltage is proportional to Vdc; the block diagram of a phase control

is shown in Figure 2.2. On the other hand, in the PWM control, both angle and

magnitude of the converter output voltage are regulated as shown in Figure 2.3.

Although less low frequency harmonics are produced by a STATCOM with a PWM

control, the high switching losses due to the high switching frequency are the main

constraints for its application in transmission systems.

The maximum and minimum operating points of a STATCOM are independent
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dcV

oi
3 Phase

Figure 2.1: Basic structure of STATCOM.

from the system voltage as opposed to an SVC. The V-I characteristic of a STAT-

COM is limited only by the maximum voltage and current rating as depicted in

Figure 2.4. This controller can be operated over its full output current range even

at very low voltages (typically 0.2 p.u.).

STATCOM Transient Stability (TS) Model

For the case that the output voltage of the STATCOM is balanced and harmonic

free, a TS model has been proposed, which does not include converter switching

phenomena [1, 32]. The STATCOM TS model replaces the detailed model with a

variable voltage source as shown in Figure 2.5, in which the magnitude of capacitor

voltage is determined by a differential equation derived based on the power exchange
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Figure 2.4: Voltage-Current characteristic of a STATCOM.

between the STATCOM and the network [1, 40]:

dVdc

dt
=

3 a k V

CX
sin αconv −

Vdc

Rc C
(2.7)

where a stands for the transformer ratio, and the resistance Rc represents the

converter losses, which can be significant, depending on the number of switches

and the switching frequency. All the blocks in Figure 2.5 are the same as the

STATCOM detailed model in Figure 2.3, except that the converter and the blocks

related to the switches are replaced by a voltage source kVdc∠θ; the coefficient k

is proportional to the modulation index ma, which for a two-level inverter is ma

2
√

2
.

It has been shown by means of time-domain simulation results that the TS model

response is reasonably close to that obtained with the detailed model when the

transients are small [1].



CHAPTER 2. BACKGROUND REVIEW 17

Filter

R+j X

convdcVk α∠

+

_dcV

Magnitude

Controller

+

_
refdcV

+
_

refV

Magnitude

VV θ∠

convα

am (PWM)

P + j Q 1:a

cRC

II θ∠

+

_

Figure 2.5: STATCOM transient stability model and its control [1].

2.3 Power System Stability

From the aforementioned models, a power system model can be represented using

a DAE model, such as :

ẋ = f(x, z, λ, ρ) (2.8)

0 = g(x, z, λ, ρ)

y = h(x, z, λ, ρ)

where x ∈ ℜn is a vector of state variables that represents the state variables of

generators, loads and other system controllers; z ∈ ℜm is a vector of steady state

algebraic variables that result from neglecting fast dynamics in some load phasor

voltage magnitudes and angles; λ ∈ ℜℓ is a set of uncontrollable parameters such as

active and reactive power load variations; ρ ∈ ℜa is a set of controllable parameters

such as tap or AVR set points; and y ∈ ℜl is a vector of output variables such

as power through the lines and generator output power. The nonlinear functions

f : ℜn × ℜm × ℜℓ × ℜa 7→ ℜn, g : ℜn × ℜm × ℜℓ × ℜa 7→ ℜm, and h : ℜn × ℜm ×
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ℜℓ ×ℜa 7→ ℜl stand for the differential equations, algebraic constraints and output

variable measurements, respectively.

The DAE model in (2.8) can be linearized about an operating point (xo, zo, λo,

ρo) to obtain the system state matrix A:

A = Dxf |o −Dzf |o Dzg |−1
o Dxg |o (2.9)

For slowly varying parameters λ, the power system model (2.8) has been shown

to present local bifurcations, on which most stability indices in the current literature

are based [41].

2.3.1 Voltage Stability

In a power system, voltage stability is directly related to the voltage on the system

buses, and is defined as the power system ability to maintain steady acceptable

voltages at all buses under normal operating conditions and after a contingency

[33]. Thus, if the bus voltage magnitude decreases as the reactive power injection

at the same bus increases, the power system is voltage unstable. This may lead to

voltage collapse, if generators or other reactive power sources do not provide enough

reactive power support. Voltage collapse can be explained within the context of

bifurcation theories applied to DAEs in nonlinear systems, namely, SNB and LIB

[7, 9].

Saddle-node Bifurcations (SNB)

When the system state matrix A has a simple and unique zero eigenvalue with

nonzero left and right eigenvectors, the equilibrium point (xo, zo, λo, ρo) is typically
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referred to as SNB point (other transversality conditions must also be met). In

power systems, this bifurcation point is associated with voltage stability problems

due to the local merger and disappearance of equilibria (operating points) as λ

changes.

Limit-induced Bifurcations (LIB)

LIBs occur at an equilibrium point where the eigen-system of A undergoes a discrete

change due to the fact that system states or algebraic variables reach a limit. There

are various types of LIBs, of which a saddle LIB (SLIB) can be associated in power

systems with voltage stability problems due to the local merger and disappearance

of equilibrium points as λ changes.

2.3.2 Angle Stability

Angle stability is defined as the ability of interconnected synchronous machines

to remain in synchronism [33]. In general, the angle instability may happen in

the form of steady increase in rotor angle or undamped rotor oscillations; these

phenomena are due to insufficient synchronizing torque and lack of damping torque,

respectively. This thesis concentrates on the latter. These oscillations are due to

poorly damped or undamped modes that are classified into local modes, inter-

area modes, control modes, and torsional modes. Power system oscillations can be

studied by Hopf bifurcation (HB) theory, which describes the onset of an oscillatory

problem in nonlinear systems.
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Hopf Bifurcations (HB)

In this case, two complex conjugate eigenvalues of A cross the imaginary axis as λ

changes. This results in limit cycles that may lead to oscillatory instabilities, as it

has been observed in practice [5, 42].

2.4 Tools

As explained before, power system stability analyses are classified into static and

dynamic studies. In general, voltage stability analysis requires only static data,

such as power flow data and dispatching scenarios, and is investigated by tracing

P-V curves, which are obtained my means of continuation power flow techniques

or optimal power flows. On the other hand, angle stability analyses require both

static and dynamic data (e.g. exciter data), and hence are computationally more

demanding when compared to voltage stability studies. An overview of all the

utilized techniques and tools in this thesis follows.

2.4.1 Continuation Power Flow

For given dispatch scenarios, the continuation power flow [43] technique is used to

obtain P-V curves similar to the one depicted in Figure 2.6, and thus determine the

static loading margin (SLM) of the system (nose point) associated with a voltage

collapse point, which could be the result of an SNB or an LIB. Figure 2.6 also

demonstrates the dynamic loading margin (DLM) of a system, which is associated

with an angle instability happening before the nose point.

All the P-V curves in this work have been obtained with the University of

Waterloo Power Flow (UWPFLOW) program, which is computationally efficient,
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Figure 2.6: A typical PV curve and corresponding SLM and DLM.

as it has been developed in C and C++, and hence appropriate to study large

systems. Furthermore, UWPFLOW provides other insightful information such the

type of bifurcation and the corresponding right and left eigenvectors, plus power

flow solutions and Jacobians.

2.4.2 Small-Disturbance Stability Analysis

As explained before, matrix A and its eigenvalues can provide valuable information

about the system stability for small perturbations that may occur in the system.

This is also referred to as small-disturbance stability analysis or eigenvalue analysis.

In this work, matrix A and its eigenvalues for the test cases have been ob-

tained by means of the linearized transient stability models in the Power System

Toolbox (PST) [36], which is a MATLAB based program. PST, when compared to
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other programs, is user-friendly but slow, and hence inappropriate for large systems

(more than 50 buses). Therefore, for large systems, the Small Signal Analysis Tool

(SSAT) is used; as it is able to deal with systems made up of several thousand buses.

It offers powerful features, such as complete eigenvalue analysis; Single-Machine-

Infinite-Bus (SMIB) analysis; eigenvalue analysis within specified frequency and

damping ranges; computation of modes closest to a specified frequency and damp-

ing; computation of modes related to a generator; sensitivity analysis; mode trace;

etc.

2.4.3 Time-Domain Simulation

Time-domain simulation is mainly used for transient stability analysis of power

systems following large perturbations, as it accounts for all the nonlinear effects by

solving the complete set of DAEs by means of step-by-step trapezoidal or predictor-

corrector integration [33]. However, in this thesis, this time-domain response of the

power system is also used to obtain important small-disturbance stability informa-

tion. Time-domain simulations of test cases were carried out by means of both the

PST and the Transient Stability Analysis Tool (TSAT) [44]; however, the simula-

tion of large systems was only feasible with the later. TSAT has two simulation

engines: A conventional time-domain simulation engine that uses full numerical

integration techniques and a fast time-domain simulation engine based on a quasi

steady-state system model. It has several useful features for transient stability anal-

ysis, such as the possibility of running multi-contingency cases or multi-dispatch

scenarios, obtaining a security index based on critical clearing time, etc. A wide

range of dynamic models of power system components is available, and well-known

formats, such as PTI PSS/E, GE PSLF, and BPA can be used as input data.
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2.4.4 Identification

System identification is about building mathematical models of complex systems

by using physical insights into the system and the measured input-output data.

It is a useful tool, for a wide range of applications, including obtaining simplified

models for large systems, model validation and controller tuning.

The advantage in studying power systems by means of system identification

techniques is twofold: First, their studies take shorter time, when compared to

analytical techniques that are based on DAE models of the power system, since

the latter usually requires handling equations with several thousand states for a

medium size power system; hence, identification techniques are of interest for on-line

practical system monitoring. Second, these techniques rely on the actual response

of the power system, as opposed to models that are based on approximate system

representation and data.

Since the main objective of this research is to investigate the small-disturbance

stability of the power system, linear parametric models have been used to study

the indices proposed in this thesis. For the first proposed index, the prediction

error method (PEM) and the stochastic subspace identification method are used to

estimate the linear model parameters, and then use the model to extract the modal

content of the time-domain response of the power system. For the second index,

the PEM is used to estimate damping torque coefficients of individual generators,

which in turn provides useful information about the current stability conditions

and margins of the system under study.

The System Identification Toolbox [45] in MATLAB and ad-hoc coding are the

basic tools used to perform these studies.
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Figure 2.7: Single-Machine-Infinite-Bus (SMIB).

2.5 Test Systems

A variety of test cases, ranging from a Single-Machine-Infinite-Bus (SMIB) to a real

power system with 14,000 buses, were used to test the feasibility of the proposed

stability indices and system identification techniques. In some cases, several dis-

patch scenarios were considered in order to emulate the operation of a real power

system. The general characteristics of these test cases are briefly reviewed in this

section.

2.5.1 Single-Machine-Infinite-Bus (SMIB)

This is the simplest but the most widely used test case, as it consists of only a

generator, a transmission line and a load as depicted in Figure 2.7. The load

bus is modeled as an infinite bus, which is normally used to replace a stiff large

system with a constant voltage magnitude and angle. This system can be used

to investigate the behavior of a generator or group of generators, labeled as G1 in

Figure 2.7, with respect to the infinite bus.

2.5.2 IEEE 3-bus System

This corresponds to a case where two areas are connected through a long transmis-

sion line (weak connection); hence, power oscillations are observed in the tie-line.
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Figure 2.8: IEEE 3-bus test system.

A single-line diagram of the test system is shown in Figure 2.8 [8]. The base load

used at Bus 3 is a 900 MW and 300 MVar load, and is modeled as a constant PQ.

Each machine has a simple exciter, and a simple governor is used for the machine

at Bus 1. The generators are modeled in detail by means of subtransient models.

The corresponding static and dynamic data is presented in Appendix A.1.

2.5.3 IEEE 14-bus System

This test system is shown in Figure 2.9, and has 5 generators; two of them are

providing both active and reactive power at Buses 1 and 2, and the generators at

Buses 3, 6 and 8 are basically synchronous condensers [46]. The generators are

modeled by means of subtransient models and equipped with DC exciters (type 1),

and the loads are represented as constant impedances. The base total loading level

of the system is 259 MW and 81.3 MVar. The corresponding static and dynamic

data is presented in Appendix A.2.

2.5.4 Two-area Benchmark System

A single-line diagram of this system is shown in Figure 2.10 [33]. This is similar

to the IEEE 3-bus test system in the sense that two areas are connected through
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Figure 2.10: Two-area benchmark system.

tie-lines, hence resulting in an inter-area mode with a frequency of about 0.7 Hz.

However, the individual machines in each area also contribute to a local mode in

the same area with a frequency of about 1.3 Hz. Therefore, an inter-area rotor

angle mode and two local modes are observed for this test case.

The generators were modeled using subtransient models and their exciters are

simple exciters equipped with PSSs. The corresponding static and dynamic data is

given in Appendix A.3. The total base loading level is 2734 MW and 200 MVar.

2.5.5 Real 14,000-bus System

This system consists of around 2,000 generators, 11,000 lines, 6,000 transformers, 22

areas and 6,500 loads (the details of the system are confidential); the total loading

level of the system is 38.6 GW. Due to the extremely large size of the system, all

the system studies such as power flow, continuation power flow, small-disturbance

stability analysis, and time-domain simulations were carried on PSAT [47], VSAT

[48], SSAT [49], and TSAT [44], respectively.
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2.6 Summary

A brief explanation of some of the key power system components used in this

thesis, such as loads and generators, is presented in this chapter. Also discussed

in this chapter is the importance of selecting the right models for different kinds

of analyses. Power system stability concepts and the analysis techniques and tools

used throughout this thesis, such as voltage and angle stability, continuation power

flow and system identification are briefly explained.



Chapter 3

System Identification Techniques

3.1 Introduction

Real-time signals measured in power systems represent the true response of these

systems, as opposed to those obtained through simulation. These signals may be

analyzed by means of signal processing techniques to obtain useful information,

such as stability conditions, about the system. However, these techniques must be

selected properly to ensure that the analysis results are both accurate and depend-

able. In order to capture the dynamic response of a power system, first it must be

excited, a process that is based on either an external test (ringdown test), such as

line/load tripping, or the existing random load switching happening throughout a

day. A “proper” identification technique is then required to analyze the measure-

ments.

This chapter discusses and categorizes the types of signals that can be readily

measured in a power system, and the corresponding techniques used to extract the

modal content of the signals. This modal content, in turn, provides useful informa-

29
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tion about the system stability conditions. Depending on the kind of excitations

that are present in the system, one can categorize the measured signals as deter-

ministic ringdown data and stochastic ambient data. Thus, each type of data is

explained here thoroughly, as are the corresponding appropriate techniques; the

merits and disadvantages of the techniques are also discussed. A computationally

efficient identification method is then proposed to overcome the shortcomings of

previously used methods.

3.2 Ringdown Data

A power system may be excited by large perturbations (e.g. adding/removing large

loads, generator tripping, severe short circuits), resulting in a transient response

that can be easily observed and distinguished from ambient noise. These transients

usually consist of one or several damped sinusoidal signals. Many techniques can

be deployed to extract the modal content of these transients. Linear techniques are

based mainly on the Prony method [50] and the Matrix Pencil method [51]. The

Prony method is explained below, since it has been widely used in power systems

in order to extract modal content and tune power system controllers such as power

system stabilizers (PSSs) [21, 52, 53, 54].

3.2.1 Prony Method

The Prony method, proposed in 1795 by Gaspard Riche, Baron de Prony, is a viable

technique to model a linear sum of damped exponentials. It was first used to explain

the laws governing the expansion of various gases, and is closely related to the least

square linear prediction algorithms used for AR parameter estimation. However,
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the Prony method is used to fit a deterministic exponential model to evenly sampled

data, as opposed to the AR and ARMA methods, which are based on a random

model. Several versions of the original Prony method, such as the total least square

Prony method and the singular value decomposition (SVD) Prony method, have

improved its performance.

A measured signal y(t) can be represented in continuous and discrete time,

respectively, as a sum of n damped complex sinusoids:

y(t) =
n∑

i=1

R̄i e
λit =

n/2
∑

i=1

Ai eαit cos(βit + φi) (3.1)

y[k] =
n∑

i=1

R̄i Z
k
i (3.2)

where R̄i is an output residue corresponding to the mode λi = αi + jβi; Zi = eλiTs ;

Ts is the sampling time; Ai = 2
∣
∣R̄i

∣
∣; and k is integer time.

The original Prony method calculates λi and R̄i as follows:

1. Consider that (3.1) is the solution to a difference equation with order n:

y[k] = −a1 y[k − 1] − a2 y[k − 2] − . . . − an y[k − n] (3.3)

This can be written in a matrix form:

Y = D θ (3.4)

where

Y = [yk+n yk+n+1 yk+n+2 . . . yk+N ]TN−n+1 (3.5)

θ = [−a1 − a2 . . . − an]T (3.6)
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D =











yk+n−1 yk+n−2 . . . yk

yk+n yk+n−1 . . . yk+1

...

yk+N−1 yk+N−2 . . . yk+N−n











(N−n+1)×n

(3.7)

where N is the number of samples. The least square method can be used to

compute θ.

2. The vector θ leads to the eigenvalues Z ,
is of the system, which are the roots

of the system characteristic equation:

Zn + a1 Zn−1 + a2 Zn−2 + . . . + an = 0 (3.8)

3. One may write (3.2) in a matrix form similar to (3.4) using the calculated

Zi’s, and solve for the residues R̄i’s.

The order of the system n is usually unknown. In [20], the “rule-of-thumb” of an

initial guess for n = N/6 is proposed. Once the roots of the system characteristic

equation are obtained, the poles corresponding to high frequencies, which are known

not to be present in power systems, are discarded. This technique, however, may

lead to results that depend heavily on the user. Furthermore, order underestimation

results in inaccurate results; on the other hand, higher orders lead to accurate

poles estimation as well as extraneous poles, since the model seeks to fit the noise

corrupting the signal.

A better technique for choosing n is proposed in [55] for communication systems.

This method is based on monitoring the singular values of matrix D for n = N/2 .

Although the maximum possible order, which can be chosen for the system, is N/2,

the practical order of a matrix is equal to the number of its largest singular values.

Thus, for σ1 ≥ σ2 ≥ . . . ≥ σn ≥ . . . ≥ σN/2, if σn+1 ≈ σn+2 ≈ ... ≈ σN/2 ≈ 0, then

n < N/2 is the order of the matrix D.
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When SNR is low, the Prony method is known to behave poorly, and yields

biased and sensitive results since (3.3) no longer holds [56]. Its performance and

problems in the presence of noise have been investigated in [57]. In this paper, the

Prony method is shown to be unable to extract the true poles of the signal if the

SNR is below a certain level; however, this level is higher for signals containing

more modes. For instance, in the case of a single mode comprising the entire

signal, a minimum SNR in the range of 10 to 20 db is required. Furthermore,

it is mentioned that the real part of the mode is more sensitive to noise than its

frequency. Hence, the Prony method is recommended as an appropriate tool to

analyze the measured transient response of power systems with large disturbances,

such as major contingencies or artificially added and removed loads, i.e. ringdown

test.

3.3 Ambient Data

The load switching throughout the day, which is random in nature, are persistently

exciting the power system. Hence, the response of the power system contains

information about the dynamic behavior of the system, and it can be employed

for on-line system stability monitoring. However, these perturbations normally

appear as noise with very small magnitudes on ambient data, and therefore, cannot

be easily distinguished from measurement noise. Due to the randomness of the

perturbations, in order to model the measured signals, a stochastic framework has

to be employed. Well-known linear models such as AR or ARMA have been used

for this purpose; the underlying assumption in this case is that the system input is

noise and so is the output. The input noise is assumed to be white in the frequency

range of interest (0.1 Hz - 2 Hz). The output signal, however, would be a colored
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noise, since its power spectrum density (PSD) is proportional to the system transfer

function, i.e.

Soutput(f) = |Gs(f)|2 Sinput(f) (3.9)

where Gs(f) is the system transfer function, f is the frequency, and Sinput(f) is the

input signal PSD, which is assumed to be flat in the frequency range of interest.

Thus, output signal in this case can provide insightful information about the system

transfer function. The PSD of a discrete signal such as x[k] is the Fourier transform

of its autocorrelation function (ACF) rxx[k], which is defined as:

rxx[τ ] = E [x∗[k]x[k + τ ]] (3.10)

where τ is the lag time between the two samples, and E denotes the expectation

operator. In this work, it is assumed that the process is wide-sense stationary.

That is, the mean and the ACF do not depend on time, i.e. the ACF in (3.10) only

depends on the lag time τ .

3.3.1 ARMA Model

The power system linearized model may be represented as a time series or a rational

transfer function. That is, the output y[k] and input noise e[k], which represents

the load switching throughout the day, are related in a linear difference form,

y[k] = −
p

∑

i=1

ai y[k − i] +
d∑

i=0

bi e[k − i] (3.11)

where ai’s and bi’s represent the coefficients related to the AR and MA terms,

respectively, and p and d denote the order of the AR and MA terms, respectively.

This is known as an ARMA(p,d) model. It is important to mention that the input

noise or process noise is different from the measurement or observation noise.
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The system transfer function Gs(q) between the output and the input is defined

as:

Gs(q) =
B(q)

A(q)
(3.12)

A(q) =

p
∑

i=0

ai q−i , a0 = 1

B(q) =
d∑

i=0

bi q−i

where q is the shifting operator defined by q−1y[k] = y[k− 1]. The roots of polyno-

mial A(q) yield the poles of the system. Thus, from (3.9), the relationship between

the input and the output PSDs is,

Sy(f) = σ2

∣
∣
∣
∣

B(f)

A(f)

∣
∣
∣
∣

2

(3.13)

e[k] is assumed to be white noise with variance σ2.

The ARMA(p,d) is a strictly autoregressive model AR(p) if all bk except b0

vanish, and a strictly moving average model MA(d) if all ak except a0 are zero.

According to the Wold decomposition theorem and the Kolmogorov theorem

[56], any ARMA or AR process can be represented by a unique MA process of

infinite order and vice versa. This is important since, if one fails to choose a correct

model structure and a right order for a system, it would still be possible to obtain

a reasonable approximation by choosing an order higher than the true order.

3.3.2 Parameter Estimation

There are different approaches to estimating the parameters of any structure such as

an ARMA model and a state-space model associated with the power system. They



CHAPTER 3. SYSTEM IDENTIFICATION TECHNIQUES 36

mainly fall into the three following categories: Prediction error methods (PEM),

correlation methods and subspace methods; each one providing potential gains as

well as potential pitfalls. Each method is described briefly below [58, 59]:

• Prediction Error Methods: These methods are basically based on performing

an optimization routine to obtain the unknown parameters θ. For instance,

for the ARMA(p,d) model described in (3.11), θ = [a1 ... ap b1 ... bd]
T may be

computed by minimizing an objective function such as

Min V (θ) =
1

N

N∑

k=1

1

2
ǫ2[k] (3.14)

s.t. ǫ[k] = y[k] − ŷ[k]

where ǫ[k] is the prediction error and ŷ[k] is the one-step-ahead prediction of

y[k], and can be mathematically expressed as

ŷ[k] =

[

1 −
(

B(q)

A(q)

)−1
]

y[k] (3.15)

This requires an iterative search for θ that yields the minimum of loss function

V (θ). The optimization is a nonlinear optimization, and thus may lead to local

minima as well as high computational burden. In this work, however, only the

coefficients of polynomial A(q) are of interest, since it is aimed at extracting

the modal content of the signal, which are the roots of A(q). Hence, one may

consider applying other techniques such as the Yule-Walker (YW) method

that only estimates the parameters of A(q), thus employing more simplified

and robust numerical techniques. It is also possible to model y[k] in (3.11)

with a high-order AR rather than using an ARMA as a result of Kolmogorov

theorem. This leads to an objective function that can be solved by means of

well-known least square method; thus, the least square used for an AR model
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would be identical to that of the Prony method. A high-order AR, however,

leads to extraneous poles close to the system poles, which could be difficult

to distinguish between the true and extraneous modes. Furthermore, an AR

model may result in biased estimates if residuals are not white. As previously

mentioned for the Prony method, when the SNR is low, the model structure

is an ARMA rather than a pure AR.

• Correlation Methods: The fundamental idea behind correlation methods is

that, for a good model, the prediction error at time k should be independent

of past data up to time k − 1, i.e. if the errors are correlated with past data,

then there was more information available in past data about y[k] than picked

by ŷ[k]. Normally, similar to the PEM, correlation methods require an iter-

ative search technique to solve a nonlinear equation. However, Instrumental

variable (IV) methods as an application of the correlation methods result in

a linear regression. A special case of IV methods are shown to be the YW

method [60] (a set of linear equations that can be solved by means of fast and

efficient algorithms such as Levinson’s). More details about the fundamentals

of the original YW method and, different versions of YW such as modified YW

(MYW) and least square modified YW (LSMYW) are presented in Section

3.3.3.

• Subspace Methods: Subspace methods have become popular because of their

numerical simplicity, robustness of the techniques that are used in the algo-

rithms, and their state-space form which is convenient for control purposes

[61]. However, subspace methods are suboptimal, as they are not based on the

minimization of a criterion. Some of the main advantages of these methods

over previously mentioned identification methods are:
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1. Model order selection: For PEM, different criteria have been proposed

in order to select the best order of the model, such as Akaike Infor-

mation Criterion (AIC) and Final Prediction Error (FPE) [58]. These

techniques are defined based on prediction error variance. For instance,

to choose the orders p and d of an ARMA(p,d) model, first a range is se-

lected for p and d, then, for each (p,d) pair, the parameters of the model

are estimated; the pair obtaining the lowest value of AIC or FPE crite-

rion is selected as the best estimate of the model order. This approach

results in high computational costs since, in order to obtain the predic-

tion error variance, all the possible models in the selected range have

to be first estimated. On the other hand, in subspace methods, there is

the possibility to estimate the model order without having to estimate

the parameters of a variety of different models. Order estimation in this

case is one step of the algorithm, and only requires a SVD.

2. Handling large data: When the amounts of data are large, order selection

with PEM based techniques is just not feasible [62]. This is the case

of the application being considered in this thesis, which requires long

“blocks” of data in order to truly estimate the power system mode(s).

3. On-line application: If for any reason, the system dynamics change, the

model needs to be updated. The subspace methods are a better choice

in this case, due to the superiority of subspace over other methods from

a computational point of view [62].

The state-space matrices are identified in this case by using measured outputs

and robust numerical techniques such as QR-factorization, least square and

SVD without the need to calculate correlations, i.e. it is data driven instead of

covariance driven. Therefore, these types of techniques are computationally
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more efficient.

3.3.3 AR Parameter Estimation

Several approaches can be utilized to estimate the parameters of the coefficients of

the polynomial A(q) in an AR or ARMA model. They all result in a set of linear

equations that relates the parameters with the help of the ACF. The basic YW

equation is explained, and the variations of YW to overcome its shortcomings are

then presented.

Yule - Walker (YW)

For a strictly AR process, equations (3.11) is rewritten as:

y[k] = −
p

∑

i=1

ai y[k − i] + b0 e[k] (3.16)

Multiplying both sides of (3.16) by y[k − j] and taking the expectation yields:

ryy[j] =







−
p∑

i=1

ai ryy[j − i] for j ≥ 1

−
p∑

i=1

ai ryy[−i] + b0 σ2 for j = 0

(3.17)

This equation is known as YW equation, and defines a relationship between the

ACF and parameters of an AR(p) process. By solving the following set of linear

equations, one can determine the parameters of an AR(p):










ryy[0] ryy[−1] · · · ryy[−(p − 1)]

ryy[1] ryy[0] · · · ryy[−(p − 2)]
...

...
. . .

...

ryy[p − 1] ryy[p − 2] · · · ryy[0]











︸ ︷︷ ︸

Ryy











a1

a2

...

ap











= −











ryy[1]

ryy[2]
...

ryy[p]











(3.18)
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The autocorrelation matrix Ryy is hermitant (RH
yy = Ryy), and Toeplitz since the

diagonal elements (top-left to lower-right) are the same. The model in this case

yields stable poles [56]. Equation (3.18) may be solved by means of an efficient algo-

rithm such as Levinson’s, and it depends on the ACF. A reasonable approximation

is to calculate the elements of Ryy from the limited available data.

Modified Yule - Walker (MYW)

A similar procedure previously used to derive the YW equation can be applied to

an ARMA(p,d) model, leading to the following set of linear equations:











ryy[d] ryy[d − 1] · · · ryy[d − p + 1]

ryy[d + 1] ryy[d] · · · ryy[d − p + 2]
...

...
. . .

...

ryy[d + p − 1] ryy[d + p − 2] · · · ryy[d]











︸ ︷︷ ︸

R
′

yy











a1

a2

...

ap











= −











ryy[d + 1]

ryy[d + 2]
...

ryy[d + p]











(3.19)

The matrix R
′

yy is Toeplitz, although not hermitant. Hence, the stability of the

poles of A(q) is not guaranteed [56].

Least Square Modified Yule - Walker (LSMYW)

Equation (3.19) could also be rewritten as:

ryy[k] = −
p

∑

i=1

ai ryy[k − i] for k ≥ q + 1 (3.20)
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Since there is information in the ACF with higher order lags, it is also possible to

calculate the ai’s by incorporating these ACFs. Thus:










ryy[d] ryy[d − 1] · · · ryy[d − p + 1]

ryy[d + 1] ryy[d] · · · ryy[d − p + 2]
...

...
. . .

...

ryy[M − 1] ryy[M − 2] · · · ryy[M − p]











︸ ︷︷ ︸

R
′′

yy











a1

a2

...

ap











= −











ryy[d + 1]

ryy[d + 2]
...

ryy[M ]











(3.21)

In this case, M − d ≥ p and R
′′ ∈ ℜ(M−d)×p is a nonsquare matrix, as opposed to

R
′ ∈ ℜp×p; hence, the least square method has to be employed to calculate the ai’s.

It is stated in [56] that for large data records, the estimates obtained by solving

LSMYW equations are asymptotically unbiased, and that its variance decreases as

the number of equations (M − d) increases, as long as N ≫ M − d. In general,

LSMYW offers better performance compared to MYW if the number of equations

is not too large. As reported in [56], LSMYW yields the most accurate estimates

when the poles are near the unit circle. This is usually the case in a power system

with poorly damped oscillations, as the corresponding poorly damped modes are

the ones with damping ratios less than 3%, i.e. the power system controllers (e.g.

PSS) are well-tuned if the modes attain a minimum damping ratio of 3%.

Comparison

The previously explained YW method and its variations are compared here with

the PEM based on estimating the parameters of an AR(10) or ARMA(10,5) for

detection of an electromechanical mode. A two-minute recorded power signal PG2

in the two-area benchmark system is used as the system output y[k] (for more details

regarding the test system, please refer to Chapter 2). The input is simulated as
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random load switching, and 20 simulations with independent realizations of the

noise yield the results depicted in Figure 3.1. The order of the system is selected

to be 10 for the YW method. On the other hand, an ARMA(10,5) is assumed for

both MYW and LSMYW methods, but the number of linear equations in (3.19)

and (3.21) are different, i.e. 10 and 15, respectively. Observe that the YW method

does the poorest job in estimating the electromechanical mode with a high variance,

while providing stable poles, as mentioned in Section 3.3.3. However, some of poles

estimated with the MYW and the LSMYW methods are unstable. The LSMYW

performance is better than both the YW and the MYW methods, and comparable

to the PEM results in terms of accuracy and variance. On the other hand, the long

computational times needed by the optimization routine required in the PEM, and

the associated numerical problems are drawbacks of using the PEM.

3.3.4 Stochastic Subspace Identification

Consider the discrete stochastic state-space model:

∆x[k + 1] = Ad ∆x[k] + w[k], Ad = eA Ts (3.22)

∆y[k] = C ∆x[k] + v[k]

where ∆x[k + 1] is the discrete time state vector; w[k] and v[k] are zero mean

noise E[w[k]] = E[v[k]] = 0 representing the process noise and the measure-

ment noise, respectively, and are independent from ∆x[k], i.e. E[∆x[k].wT [k]] = 0,

E[∆x[k].vT [k]] = 0; and A and Ad denote the continuous and discrete time state

matrices, respectively. The output measurements are put into a block Hankel ma-
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ical mode estimation from ambient data.
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trix, and divided into a past and future parts as follows:

Y0|2i−1 =























∆y[0] ∆y[1] . . . ∆y[j − 1]

∆y[1] ∆y[2] . . . ∆y[j]

. . . . . . . . . . . .

∆y[i − 1] ∆y[i] . . . ∆y[i + j − 2]

∆y[i] ∆y[i + 1] . . . ∆y[i + j − 1]

∆y[i + 1] ∆y[i + 2] . . . ∆y[i + j]

. . . . . . . . . . . .

∆y[2i − 1] ∆y[2i] . . . ∆y[2i + j − 2]























=

(
Y0|i−1

Yi|2i−1

)

=
Yp

Yf

(3.23)

where i is typically equal to 2M/l [61], with M representing the “expected” maximal

order of the system, and j is the number of samples of each measured output signal.

The subscripts of Y0|2i−1, Y0|i−1 and Yi|2i−1 are the first and last element in the first

column of the block Hankel matrix. Matrices Y +
p and Y −

f are defined by shifting

the border between past and future data one row down in (3.23), i.e. Y +
p = Y0|i,

and Y −
f = Yi+1|2i−1.

There are different algorithms to calculate the system matrices Ad and C. The

canonical variate algorithm (CVA) is used here as explained below.

Canonical Variate Algorithm [61]

Once the block Hankel matrix and its submatrices are formed, the following steps

are taken:
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1. Calculate the projection matrices Oi and Oi−1:

Oi = Yf/Yp (3.24)

Oi−1 = Y −
f /Y +

p (3.25)

where Yf/Yp denotes a shorthand for the projection of the row space of the

future matrix Yf on the row space of past matrix Yp, i.e. YfY
T
p (YpY

T
p )†Yp

where the symbol † denotes the pseudo inverse of the matrix. Robust QR-

factorization methods may be used to calculate the projection matrices.

2. Calculate the SVD of the weighted projection:

W1OiW2 = USV T (3.26)

= (U1 U2)




S1 0

0 0








V T

1

V T
2





where weighting matrices W1 =
(

1
j
YfY

T
f

)− 1

2

, and W2 = Ij (identity matrix

j × j); and U and V are unitary matrices resulting from the SVD process.

The order of the system n is determined by inspecting the singular values in

S, i.e. determine the n×n submatrix S1, which are the cosine of the principal

angles between the row space of past outputs Yp and future outputs Yf . In

practice, however, due to noise and rounding errors, the structure of S is not

as shown in (3.26), i.e. the zero diagonal matrix is not really zero. In this

case, a “large” reduction in the singular values of S are used to define S1 (the

system order n), as discussed in detail for the test systems in Chapter 4.

3. Determine the extended observability matrices Γi and Γi−1 as follows:

Γi = W−1
1 U1S

1/2
1 (3.27)

Γi−1 = Γi (3.28)
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where Γi is obtained by removing the last l rows of Γi with l being the number

of output signals.

4. Find the Kalman filter state sequences X̂i and X̂i+1 as follows:

X̂i = Γ†
iOi (3.29)

X̂i+1 = Γ†
i−1Oi−1 (3.30)

5. Then, Ad and C are determined from:



Ad

C



 =




X̂i+1

Yi|i



 X̂†
i (3.31)

Once Ad is calculated, the eigenvalues Zi = ZRi
+ jZIi

of matrix Ad can be

transformed onto the s-plane si = λRi
+ jλIj

using a bilinear transformation,

i.e. si = 2
Ts

(Zi − 1)/(Zi + 1).

3.3.5 Computational Issues

One of the assumptions in stochastic subspace identification is that the w[k] and

v[k] are independent of ∆x[k], i.e. E[∆x[k].wT [k]] = 0, E[∆x[k].vT [k]] = 0. It

is typically assumed that the data blocks are long enough and ergodic, i.e. the

underlying system model is not changing, so that the expectation operator E can

be replaced with the average over one experiment run for infinite time. This is why

subspace methods work well for long data blocks even in the presence of noise [61].

The asymptotic properties of the proposed subspace method are also discussed in

[63], where it is shown that for a white noise input, the CVA and the PEM are

asymptotically equivalent.

The effect of using different sizes of data blocks on the accuracy of the method

was investigated for the 2-area benchmark system, and the asymptotic behavior
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Table 3.1: CPU time in seconds for different methods and system orders

Method MATLAB function n=13 n=16 n=19 n=22

Subspace n4sid(n) 0.63 0.83 1.00 1.16

ARMA armax(n,n) 6.99 9.96 14.08 19.44

State-space pem(n) 11.17 13.99 24.67 36.20

of the proposed subspace method was compared to an ARMA model and a state-

space model whose parameters were estimated using the PEM. For this purpose,

the following built in functions of MATLAB were used: function n4sid() for the

subspace method; armax() for the ARMA model; and pem() for the state-space

model. The data was generated for an inter-area mode −0.1228±j4.7824 (damping

2.57% and frequency 0.7611 Hz). The standard deviation of the estimated real part

and frequency of the mode for different size of data blocks are depicted in Figure

3.2 and Figure 3.3, respectively; these were obtained based on a Monte-Carlo type

of simulation with 30 independent cases. Notice that for short data blocks, the

ARMA and state-space models yield better performance. On the other hand, for

long data blocks, as explained before, the proposed subspace method and ARMA

and state-space models behave similarly.

From the computational burden point of view, the previously mentioned MAT-

LAB built in functions were used to estimate the parameters of the corresponding

models for the same 4-minute block data. Table 3.1 shows the CPU times obtained

for each function as the system order n changes; observe that the subspace method

is significantly faster than the others.
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−0.1228 ± j4.7824 for the 2-area benchmark system.



CHAPTER 3. SYSTEM IDENTIFICATION TECHNIQUES 49

1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Block size (minutes)

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
fr

e
q

u
e

cy
 (

H
z)

Subspace (n=20)
ARMA (20,20)
State−space (n=20)

Figure 3.3: Standard deviation of the estimated frequency of the inter-area mode

−0.1228 ± j4.7824 for the 2-area benchmark system.



CHAPTER 3. SYSTEM IDENTIFICATION TECHNIQUES 50

3.4 Summary

Different types of signals that can be readily measured in a power system are

described as well as corresponding techniques to extract the modal content of the

signals. This modal content, in turn, provides useful information about the system

stability condition. Depending on the kind of excitations that are present in the

system, appropriate techniques are recommended for both deterministic ringdown

and stochastic ambient data, and the merits and pitfalls of each technique are

discussed. Namely, the Prony method is suitable for the transient response with

high SNR, while the LSMYW and the PEM are shown as proper techniques to

analyze ambient noise.

The stochastic subspace identification method is proposed to capture the critical

modes of a power system from ambient data; it uses robust numerical techniques,

and is data driven instead of covariance driven, and hence is faster. The results

demonstrate the accuracy and efficiency of the proposed method; therefore, it can

be used as an on-line monitoring tool in power system surveillance and electrome-

chanical mode detection. The asymptotic behavior of the proposed method was

also investigated, and compared with the class of estimation methods known as

PEM. It was shown that the methods are asymptotically equivalent; however, the

proposed method is much easier to implement, and is computationally efficient.



Chapter 4

System Identification Stability

Index

4.1 Introduction

The identification of stability limits associated with angle stability is of great in-

terest to Independent System Operators (ISO). The availability of proper on-line

monitoring tools can assist operators to determine the available security margins

of the system, thus allowing them to take proper actions close to real time in the

case of system contingencies.

In this chapter, a general overview is given regarding a previously proposed

oscillatory stability index, which is calculated off-line and is used to predict oscilla-

tory phenomena. A stability index to determine and predict the closest instability

point in a power system with regards to the load change is then proposed and

studied. This index is defined based on the critical eigenvalues of the system, i.e.

the eigenvalues that eventually cross the imaginary axis, thus leading the system to

51
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instability. Several test systems, including a real 14,000-bus system, are employed

to test the effectiveness of the proposed index using both their transient response

and ambient noise by means of the Prony method and the stochastic subspace

identification method, respectively.

4.2 Proposed Oscillatory Stability Index

The index, referred in [13] as to Hopf bifurcation index (HBI), predicts the distance

to the closest SNB or HB stability point, given a known load change direction. It

is based on the system state matrix A and the “critical” eigenvalues µc = αc ± jβc,

i.e. the eigenvalues that eventually cross the imaginary axis at an SNB or HB point

as λ changes. Thus, the HBI is defined as

HBI(A, βc) = svmin(Am) (4.1)

where svmin is the minimum singular value of the modified state matrix Am, which

is defined as

Am =




A +βcIn

−βcIn A





2n

(4.2)

At an SNB or HB point, svmin becomes zero. In [13], the authors also compare the

HBI to an eigenvalue index (EVI) which is defined as the real part of the critical

eigenvalue. It is worth mentioning that almost in all test cases both HBI and EVI

present a fairly linear behavior.

Computing the HBI in (4.1) requires making assumptions about the model, so

that the matrix A can be explicitly determined. However, if the “output” deviations
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∆y(t) ∈ ℜl of (2.8), i.e.

∆ẋ(t) = A ∆x(t) (4.3)

∆y(t) = C ∆x(t)

is measured, the modal content in the output signal ∆y(t) is the same as the modal

content in matrix A if the system modes are excited; hence, these modes can be

calculated using system identification techniques. If the eigenvalues µi(A) = αi+jβi

of the system can be identified, one may define a new diagonal state matrix Λ =

diag{µ1, µ2, . . . , µn}, which can be used to define the following new modified state

matrix:

Λm =




Λ +βcIn

−βcIn Λ





2n

(4.4)

In this case, using basic singular value decomposition concepts as shown in Ap-

pendix B, the svmin for Λm can be calculated using:

svmin(Λm) = min
i=1,n

{√

α2
i + (βc − βi)2

}

(4.5)

If the closest eigenvalue to the imaginary axis is the critical one, then

svmin(Λm) = |αc| (4.6)

Since multiple eigenvalues can be readily determined using system identification

tools applied to measured signals such as generator speed or power, and assuming

that the critical eigenvalue can be monitored, a System Identification Stability

Index (SISI) is hence defined here:

SISI = |αc| (4.7)

Observe that this index does not require assumptions regarding the system modeling

as the HBI would require. Furthermore, based on the observations in [13] regarding
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the behavior of the HBI and EVI, one would expect this index to behave “linearly”

close to an HB point.

In practice, several modes need to be monitored, i.e. an index value would be

generated for each mode, so that the mode that eventually crosses the imaginary

axis is properly captured. This can be accomplished by measuring signals in differ-

ent parts of the system, where the modes of interest are best observed. However, in

some cases, the critical mode is known from previous knowledge of the system (e.g.

the 0.28 Hz mode in the WECC system which can be easily observed on transmis-

sion corridors between the north and south of the system), in which case, this is

the mode used to define the SISI.

It is important to mention that the trend of the index, and more specifically

its slope, may change when the system changes due to large disturbances as well

as changes in loading and dispatching [13]. Figure 4.1 illustrates an example of a

possible index profile for a real power system as system conditions vary. Notice that,

as the system operating conditions change, the index changes as well; when this

index reaches a predetermined threshold, which could be readily associated with a

minimum system damping, a warning or emergency alarm would be triggered.

4.3 SISI from Transient Response

As previously explained in Chapter 3, depending on the type of the tests that are

carried out on power systems, one needs to employ appropriate system identification

techniques to obtain both reliable and accurate modal estimates. Hence, it was

concluded that the measured transient response of the power system with a good

quality, i.e. high SNR, as a result of a large disturbance or ringdown test, may be

analyzed with the use of the well-known Prony method.
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Figure 4.1: SISI profile for a real power system with varying operating conditions.

The response of the system to a large disturbance, such as a line outage or a three

phase fault, is recorded such that it contains at least three periods of oscillations.

Then, the measurement noise is removed with a Chebyshev low pass filter with a

cut off frequency of 2 Hz, then re-sampling the signal at 10 Hz; the mean and low

frequency trends of the measured signal have to be removed as well. The Prony

method is then applied to the preprocessed signal to obtain the modal contents

of the signal and thus the SISI. The behavior of the index, as the system loading

changes, is depicted below for each test system, illustrating the application of the

SISI to the prediction of the stability margin.

4.3.1 IEEE 3-bus System

The IEEE 3-bus system of Figure 2.8 is used here to test the application of the

proposed index. The P-V curves for the base system and for a line 2-3 outage



CHAPTER 4. SYSTEM IDENTIFICATION STABILITY INDEX 56

are given in Figure 4.2; observe that these cases present HBs at certain loading

conditions before the maximum SLM (nose point). The rotor speed of generator

G1 for a line 2-3 outage is shown in Figure 4.3 for two loading conditions; notice

that at higher loading, the contingency results in unstable oscillations associated

with the HB depicted in Figure 4.2. For a SNR of 30 db, the 8 largest singu-

lar values of the matrix D in (3.7) are {0.26568, 0.24935, 0.0089838, 0.0037355,

0.0000252, 0.0000228, 0.0000067, 0.0000006}; hence, the practical order of the sys-

tem is n = 2, as there is a large drop from the second to the third singular value.

Nevertheless, higher orders are examined as well. The characteristic equation can

then be formulated, and the modal content of the signal is obtained using (3.8).

The small-disturbance stability program of the PST program [36] was also used

to obtain the critical eigenvalues from a linearized model of the power system, and

obtain the corresponding EVI of DAE Model. With the variation of the load at

Bus 3, the eigenvalues of the base system and the system under a line 2-3 outage

were computed using PST and the Prony method; the eigenvalue profiles obtained

with PST with respect to load changes in the base system are illustrated in Figure

4.4. For each system, the stability indices (from the linearized DAE model and the

mean value of 30 simulations) are depicted in Figures 4.5 and 4.6. Observe that all

indices predict an HB at about 1500 MW for the base system and 1130 MW for a

line 2-3 outage, with both EVI and SISI indices presenting a rather linear profile.

The results for the Prony method when the SNR is 10 db are shown in Figure

4.7, demonstrating poor results compared with the case when SNR is 30 db, as

expected and explained in Section 3.2.1.

Increasing the model order results in more accurate estimates of the critical

modes, as shown in Figures 4.5, 4.6 and 4.7. However, the order cannot be in-

creased without considering the following: First, the appearance of extraneous
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modes, which makes it difficult to distinguish between the true modes and spurious

ones. Second, the variance of mode/pole estimates, which is directly related to the

variance of the SISI.

One should make a distinction between the variance of the parameters θ, i.e. co-

efficients of the characteristic equation or coefficients of an AR(p), and the variance

of mode/pole estimates that are the roots of the characteristic equation. There is a

nonlinear relationship between them, and the theoretical background on the former

is well understood and developed. Thus, the variance of the parameters θ is known

to increase asymptotically, as the order increases [58]. Figure 4.8 illustrates this

behavior; observe that when the order of the system increases from 2 to 4 and then

9, there is a significant increase in the variance of the parameters estimates. On

the other hand, no clear conclusion can be reached regarding the variance of pole

estimates when the order changes. This can be clearly observed in Figure 4.9, which

shows the standard deviation of pole estimates, depicted with use of the standard

deviation of both the SISI and the frequency.

4.3.2 IEEE 14-bus System

The IEEE 14-bus benchmark system shown in Figure 2.9 is used as a more realistic

test system. There is an HB point for both the base system and for a line 2-4

outage before the “nose” point, as shown in the corresponding P-V curves depicted

in Figure 4.10. The base system yields the critical eigenvalues µc = −0.21637 ±
j8.8298 (1.4 Hz frequency and 2.45% damping ratio) at a 259 MW load; this is the

eigenvalue that eventually crosses the imaginary axis at the HB point, as shown in

the eigenvalue profiles depicted in Figure 4.11.

The stability indices for the base system and for a line 2-4 outage are depicted
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in Figures 4.12 and 4.13, respectively. Observe that SISIs in this case are not as

close to the EVI values as in case of the IEEE 3-bus system. This can be explained

by looking at the time-domain response of the system as depicted in Figure 4.14.

Note that the 1.4 Hz signal (fast) does not oscillate about the pre-contingency

operating condition as opposed to Figure 4.3; hence, the identified indices, when

compared with the IEEE 3-bus system results, deviate significantly from the EVI

model values. This behavior is due to the fact that the type of load models used

in the IEEE 3-bus and 14-bus systems are different; for the IEEE 3-bus system,

the constant PQ load model makes the time-domain response oscillate about the

pre-contingency conditions.

4.3.3 Real System (14,000 buses)

In order to investigate the shape of the proposed index for a real power system, a

14,000-bus system is studied. To move this system closer to an instability condition,

several generator outages are modeled; thus, a low damped 0.33 Hz mode appears

due to the simulated contingencies. The power transfer among some areas in the

system is then increased until the appearance of an HB point associated with this

mode at a 39.6 GW loading level, approximately. It is interesting to highlight the

fact that this example is somewhat similar to the Western Electricity Coordinat-

ing Council (WECC), previously known as WSCC, 1996 blackout, where several

contingencies triggered a 0.28 Hz mode that led the system to instability [5].

The system in this case is perturbed using two 50 MW load perturbations

in different areas to obtain the desired signals and excite the desired mode. By

analyzing the 0.33 Hz mode shape, two generators’ output power signals in the

main areas that oscillate against each other were selected to identify the mode.
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Figure 4.10: P-V curves for the IEEE 14-bus system at Bus 14, for the base case

and for a line 2-4 outage.
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Figure 4.11: Eigenvalue profiles with respect to load changes in the IEEE 14-bus

system.



CHAPTER 4. SYSTEM IDENTIFICATION STABILITY INDEX 69

260 270 280 290 300 310 320 330 340 350 360 370
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Loading (MW)

S
IS

I 
(s

e
c−

1
)

EVI
Prony; n = 2
Prony; n = 3
Prony; n = 4
Prony; n = 8
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14-bus system.
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The SISIs obtained from system identification and the linearized transient stability

model are shown in Figure 4.15; the maximum error between the identified and

modeled SISI is 0.0042 sec−1. Notice that in this case, the index is not quite as

linear as in the previous cases, and hence prediction of maximum loading margins

at light loading levels are not that accurate; however, no discontinuity was observed

while increasing the power transfer between areas, even though several generators

reached their Var limits.

4.4 SISI from Ambient Data

Dealing with low quality random signals (ambient data) is more involved, since

these have to be examined with random models (e.g. ARMA model), and their cor-

responding parameters have to be estimated with the more complicated techniques

described in Chapter 3.

In this case, it is assumed that the system is persistently being excited by ran-

dom load switching, emulating the load switching in a real power system through-

out the day. Several methods can be used to monitor the critical electromechanical

mode of the system. The stochastic subspace identification method is used here

due to its superiority over other methods from a computational point of view, as

explained in Section 3.3.

The desired signals for various test cases are obtained with use of independent

random load modulation with a magnitude of 1% of both active and reactive power

at load buses; white Gaussian noise is added to the output signals as measurement

noise vk, so that the SNR is 20 db. A Monte-Carlo type of simulation is used to test

the feasibility and accuracy of the identified modes by simulating 30 independent

cases at each operating condition. The mean and the standard deviation σ of the
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Figure 4.15: SISI for the 14,000-bus real system.



CHAPTER 4. SYSTEM IDENTIFICATION STABILITY INDEX 74

mode estimates do not change significantly when the number of simulations is more

than 30, as it can be observed from Figures 4.16 and 4.17 for the 2-area benchmark

system. Assuming a direction for the load change and the generation dispatch,

critical modes and indices are computed at different operating conditions using both

small-disturbance stability analysis of a linearized transient stability model and the

proposed stochastic subspace identification method applied to signals generated by

time-domain simulation.

The order of the system was determined by inspecting the singular values of S in

(3.26), as explained in Section 3.3.4; thus, n is chosen based on a “large” reduction

in these singular values. For the different test cases, Figure 4.18 shows the singular

values obtained from simulations used in this case. Thus, from this figure, n = 14

for the IEEE 3-bus system, n = 14 for the IEEE 14-bus system, and n = 13 for

the 2-area benchmark system. Experience has shown that order overspecification

results in better estimates of modes; hence, n was selected to be 18, 20, and 16 for

these three test cases, respectively.

4.4.1 IEEE 14-bus System

The SISI results of applying the proposed subspace method to 4-minute blocks of

PG1
and PG2

, which are the output generator power signals for genertors 1 and 2,

respectively, (a one-minute block of PG2
is depicted in Figure 4.19), as the system

loading changes are shown in Figure 4.20; this figure depicts the mean value and

the confidence limit of one standard deviation σ of the SISI. Observe that as the

critical mode moves towards the RHP, and hence becomes less damped, the stan-

dard deviation decreases; this has been previously observed for ARMA models as

well in [23]. As loads are increased, some of the generators reach their maximum
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Var limit; notice that no discontinuity was observed in the index, as opposed to

SNB indices that usually show discontinuities when control limits are reached [7].

The maximum error between the mean value of the identified and modeled SISI is

0.0121 sec−1, which shows that the proposed identified SISI is a good measure of

proximity to oscillatory instabilities.

4.4.2 Two-Area Benchmark System

There is an inter-area mode that eventually crosses the imaginary axis as loads are

increased. Generators G2 and G3 are rescheduled proportionally to their base power

to respond to load increases at Bus 7 and 9. There is an HB point before the nose

point as shown in the corresponding P-V curve depicted in Figure 4.21. Loads are

modeled as constant PQ loads and are increased with a constant power factor. The

inter-area mode, µc = −0.4204 ± j4.9123 (damping 8.53% and frequency 0.7818

Hz), crosses the imaginary axis at about 3100 MW of total loading. The mean

value and confidence limit of one standard deviation of the SISI obtained using

the proposed identification technique, and the SISI using the linearized transient

stability model associated with the inter-area mode are depicted in Figure 4.22;

observe the relatively linear profile of these SISIs. As critical mode becomes less

damped, it is more likely to capture it accurately, i.e. the method works better for

less damped modes, since the oscillations die out slower once the mode is excited.

The maximum error between the mean value of the identified and modeled SISI is

0.0462 sec−1, showing the good accuracy of the proposed identification method.
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Figure 4.19: One-minute block measurement of the change in generator G2’s power

at a 285 MW loading level.
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4.5 Summary

The stability index proposed in this chapter can be used to determine and predict

the closest instability point in a power system with regards to load changes. This

index is defined based on the critical eigenvalues detected using system identifi-

cation; hence, the proposed index is based on the actual response of the system.

The feasibility of the index and the proposed identification methods is investigated

on several test cases including a 14,000 bus real system, obtaining results which

show that it can successfully capture and predict the impending oscillatory stabil-

ity problems.

The results demonstrate the effect of load models on the identified critical

modes, showing that for the system with constant PQ load models, the identi-

fied modes are relatively closer to those obtained from an eigenvalue analysis, when

compared to the system with constant impedance load models.



Chapter 5

Damping Torque Index

5.1 Introduction

The main obstacle for the stability index SISI in the preceding chapter, as well

as with similar off-line indices, is identifying the critical modes in advance, which

is not an easy task in some systems. Therefore, in this chapter, another index is

proposed, which is also based on the time-domain response, and hence of use in

on-line stability monitoring. The new index is defined based on damping torque

concepts for the individual generators.

The theoretical background on damping and synchronizing torques is first pre-

sented, and the procedure to derive the damping and synchronizing coefficients

from a linearized model (LM) of the power system is described. Then, the iden-

tification techniques used to estimate the damping coefficient from the transient

response of the system are explained. The results of applying the proposed identi-

fication methods to calculate the damping torque coefficient are also presented and

discussed for a variety of test cases, focusing on the behavior of this coefficient as

84
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a stability/security index. Finally, damping torque estimation from ambient data

is discussed and an effective identification method is proposed.

5.2 Damping and Synchronizing Torque

The concept of damping and synchronizing torques for a single-machine-infinite-

bus (SMIB) system was first introduced in [35]. Thus, electromechanical torque

Te deviations of a machine can be expressed in terms of its speed ω and angle δ

deviations, known as damping and synchronizing torque, respectively. The damping

and synchronizing torques are the in time phase components proportional to the

speed and angle deviations [64], and are defined as:

∆Te(t) = Kd ω0 ∆ω(t)
︸ ︷︷ ︸

damping

+ Ks ∆δ(t)
︸ ︷︷ ︸

synchronizing

(5.1)

or in the frequency domain:

∆Te(s) = (Kd +
Ks

s
) ω0 ∆ω(s) (5.2)

where Kd (p.u./rad/sec) and Ks (p.u.) are damping and synchronizing coefficients,

respectively; and ω0 (rad/sec) is the system angular frequency. The generator’s

angle and speed deviations in (5.1) are typically measured with respect to a center

of inertia (COI ), i.e. δi = δ̂i − δCOI and ωi = ω̂i − ωCOI , where

δCOI =
1

MT

g
∑

i=1

Miδ̂i (5.3)

ωCOI =
1

ω0

dδCOI

dt

and MT =
∑g

i=1 Mi is the total inertia of the g generators.



CHAPTER 5. DAMPING TORQUE INDEX 86

Since ω0∆ω(t) = d∆δ(t)/dt, or in discrete form ω0∆ω[k] = (∆δ[k] − ∆δ[k − 1])/Ts,

where Ts is the sampling time, one can rewrite (5.1) as:

∆Te[k] = ξ ∆δ[k − 1] + ζ ∆δ[k] (5.4)

where ξ = −Kd/Ts and ζ = Kd/Ts + Ks. Equation (5.4) can be used to calculate

ξ and ζ from sampled signals, thus yielding Kd and Ks. Using (5.4), which only

requires two signals Te and δ, as opposed to (5.1), which requires three signals Te,

ω and δ, reduces the errors due to mean value and low frequency trends in the

measured signals, due to the effect of the governor’s response.

For a single-machine-infinite-bus (SMIB) system, the synchronizing and damp-

ing coefficients correctly define the frequency and damping of the electromechanical

mode. However, for a multi-machine power system, the electromechanical oscilla-

tions contain different modes, and hence a single mode cannot simply be assigned

to a single machine [65], since the oscillations of each machine are a linear combi-

nation of all the modes. Hence, in this case, one must be aware that the damping

coefficient of a given machine includes the effect of several modes.

5.2.1 Damping and Synchronizing Coefficients

In the linear model (4.3), let assume that only the ith mode of the system λi =

αi + jβi is excited by an initial condition x0 in the direction of right eigenvector Ui

associated with λi. Hence, any output yk(t) can be expressed as yk(t) = CkUie
λit,

or yk(s) = CkUi/(s − λi) where Ck is the kth row of C. In this case, one may write

the following relationship between the speed and electrical torque of machine j,

defined as Dj:

Dj =
∆Tej

(t)

∆ωj(t)
=

∆Tej
(s)

∆ωj(s)
=

CTej
Ui

Cωj
Ui

(5.5)



CHAPTER 5. DAMPING TORQUE INDEX 87

sH j2
1+

-

)(sT
jm∆

)(sT
je∆

)(sjω∆

0)( ω










+=

s

K
KsT j

j

s

dj

Figure 5.1: Torque-speed block diagram.

This ratio is a complex number, i.e. Dj = DRj
+ jDIj

and can be calculated using

a state-space model. Thus, from (5.2) and (5.5),

Kdj
=

[
αi DIj

βi
+ DRj

]

ω0

(5.6)

Ksj
=

−DIj
|λi|2

ω0βi

This Kdj
and Ksj

coefficients may be used in the torque-speed block diagram for

a given generator, as depicted in Figure 5.1. This system is stable if both Kdj
and

Ksj
are positive, and becomes oscillatory instable at an operating condition where

Kd = 0 (HB point). Hence, Kd may be used as an index to predict the closest

oscillatory instability. In this work, Kd is referenced to as the damping torque

index.

It is worth mentioning that the Kd and Ks coefficients presented here are dif-

ferent from the damping and synchronizing coefficients discussed in [6, 66], since in

these references, these coefficients are defined by disabling the shaft dynamics in

all generators, which is not the case here. This point is more clearly explained in

Appendix C, which presents another approach to calculate (5.5).
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5.2.2 Electromechanical Mode Estimation

The characteristic equation corresponding to the block diagram depicted in Figure

5.1 can be mathematically expressed as

2Hj

ω0

s2 + Kdj
s + Ksj

= 0 (5.7)

The roots of the characteristic equation may be used to estimate the damping and

the frequency of the electromechanical mode. Although this is true if oscillations

consist of only one mode, it may still be used when several modes are present but

one is more dominant. However, the estimates in this case will not be accurate

due to under-parameterization of a system of order n ≥ 2 when represented by a

second order system. Thus, if several strong modes are dominant in the response,

in order to correctly capture all of the modes, the linear parametric models, such

as the ARMA model or the state-space model explained in Chapter 3, have to be

employed instead.

The main application of using Kd, as explained before, is predicting the available

stability margin without the need to monitor certain modes. However, it can also be

used to provide information about the poorly damped local or sometimes inter-area

modes, and hence re-tuning the controllers such as PSSs.

5.3 Techniques

5.3.1 Ordinary Least Square (OLS)

Damping and synchronizing coefficients in (5.1) can be estimated using an ordinary

least square (OLS) method [64]. It is basically a fitting problem which can be
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described as:

Y = [Ω ∆] K + ǫ (5.8)

= X K + ǫ

where Y =[Te[1] Te[2]... Te[N ]]T ∈ ℜN ; Ω = ω0 [∆ω[1] ∆ω[2]... ∆ω[N ] ]T ∈ ℜN ;

∆ =[∆δ[1] ∆δ[2]... ∆δ[N ]]T ∈ ℜN ; ǫ ∈ ℜN represents “residuals” introduced to

account for fitting errors and measurement noise; K = [Kd Ks]
T ; and N is the

number of samples. The ordinary least square estimate can be obtained as:

K̂OLS = (XT X)−1XT Y. (5.9)

Here, K̂OLS is unbiased, efficient (or Markov estimate), and consistent when ǫ is

white noise with zero mean [67]. Furthermore, it is also identical to the maximum

likelihood estimator when ǫ is normally distributed. However, the condition of

whiteness for the current application is not guaranteed, thus K̂ might be biased.

This will be clearly shown here in a number of case studies.

5.3.2 Generalized Least Square (GLS)

From the system identification point of view, (5.8) can be represented as follows:

y[k] = x[k] K + H(q) e[k] (5.10)

where e[k] is white noise, H−1(q) is a whitening filter, and q is the shifting operator

defined by q−1y[k] = y[k − 1].

Selecting a proper candidate model set in this case, which includes the true

model, is an essential aspect to obtain accurate parameter estimates. On the other

hand, over-parameterization can lead to high computational costs as well as numer-

ical problems (e.g. convergence and local minima). Therefore, one should search
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for a model set that includes the true model with as low number of parameters as

possible. It is also important to consider that choosing a rather simple model, i.e.

under-parameterization, might lead to inaccurate parameter estimates [59].

The candidate model (5.10) with H(q) = 1, which leads to (5.9), is not a general

model and may not correctly represent the power system dynamics. For example,

when the perturbations are large and hence the linearity assumption does not hold,

the OLS estimates can lead to erroneous results. Experience shows that by adding

a transfer function such as H(q) = 1/(1 + h1q
−1 + h2q

−2 + ... + hpq
−p) with p = 1

or 2, good results can be obtained [67]. This method is also known as generalized

least square (GLS) and can be used to correctly model the residuals or filter the

nonlinear effects. In this case, K along with the parameters of the whitening filter

are denoted as θ, and are estimated using PEMs. These methods are basically

based on an optimization problem such as:

Min V (θ) =
1

N

N∑

k=1

1

2
ǫ2[k] (5.11)

s.t. ǫ[k] = H−1(q) {y[k] − x[k] K}

5.3.3 Robust Fitting with Bisquare Weights (RFBW)

Robust fitting may also be employed as another remedial method for handling the

nonlinear effects, which can occur due to large deviations from an operating point.

This method is basically an iterative weighted least square (WLS) method, and is

able to give different weights to each residues during the fitting process; data with

lower quality are given less weight, since the part of the signal that is distorted due

to the nonlinear effects is hard to fit, and hence should be less important in the

estimation process. One may consider using small perturbations as a way to avoid
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nonlinearities; however, in the current application, small disturbances may not be

feasible, since the perturbations have to be large enough to be distinguished from

measurement noise.

Robust fitting employs the following objective function, which assigns weights

to different predicted errors:

Min V =
1

N

N∑

k=1

wk ǫ2[k] (5.12)

The estimated damping and synchronizing coefficients in this case are:

K̂WLS = (XT W X)−1XT W Y. (5.13)

where W = diag{w1, w2, ... , wN} ∈ ℜN×N . There are different weights which can

be utilized in the objective function (5.12) [68]; in this work, bisquare weights are

used. This method has been previously used in economics to decrease the sensitivity

of least square to “extreme” values called outliers.

5.4 Damping Torque Estimation from Transient

Response

For various test cases, the damping torque index is calculated here by means of the

previously mentioned techniques. Similar to the eigenvalue index SISI, the feasi-

bility of using Kd for different types of signals known as ringdown data (transient

response) or ambient data (noise) is addressed. The signals are recorded with the

same specifications mentioned for the eigenvalue index SISI; however, in addition

to the generator power signal, generator angle or speed have to be measured. The

behavior of the index, as the system loading changes, is depicted for each case,

illustrating its capability to predict the closest stability margin.
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The electromechanical torque and generator angle of each generator following

a large disturbance, such as a line outage or a three phase fault, are recorded so

that it contains at least three periods of oscillations. Then, the measurement noise

is removed with a Chebyshev low pass filter with a cut off frequency of 2 Hz, and

then re-sampling the signal at 10 Hz. The mean and low frequency trends of the

measured signal have to be also removed.

5.4.1 Single-Machine-Infinite-Bus (SMIB)

The generator in the simple test system depicted in Figure 2.7 was modeled using a

subtransient model. There is an electromechanical mode, which moves toward the

RHP, as the load increases from 100 MW to 700 MW, resulting in an increase in

tie-line power as well as a gradual decrease in the generator’s damping coefficient

Kd. The results obtained for “theoretical” and estimated values of Kd are shown

in Figure 5.2; observe that all the identification methods were able to correctly

calculate Kd. However, for heavy loads, the different values for Kd obtained from

the various methods used coincide, which is to be expected, since at light loading

conditions the mode is well-damped. This is akin to the case when eigenvalues are

to be identified using the time-domain response of the system, as reported in [23].

5.4.2 Two-area Benchmark System

The single line diagram of the two-area benchmark system used here is shown

in Figure 2.10. There is an inter-area mode and two local modes that change

as the loads are increased. Depending on the load and dispatch scenarios, one

could expect to have different eigenvalue profiles. For instance, in this system, two

dispatch scenarios, Schedules 1 and 2, result in fairly different eigenvalue profiles,
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Figure 5.2: Damping coefficient Kd from transient response for the SMIB.



CHAPTER 5. DAMPING TORQUE INDEX 94

as depicted in Figure 5.3. There is an HB point before the nose point, as shown in

the corresponding P-V curves depicted in Figure 5.4.

Schedule 1

This dispatch results in the inter-area mode becoming unstable as loading increases.

In this case, generators G2 and G3 are dispatched proportionally to their base power

as the loads at Bus 7 and 9 increase. Loads are modeled as constant PQ loads and

are increased with a constant power factor. The inter-area mode becomes unstable

at a loading level of about 3050 MW. This can also be observed clearly in Figure

5.5, which depicts the theoretical and estimated values of Kd for this case study.

Observe that all the calculated Kd’s tend to zero as the load increases; however,

the GLS method offers superior performance in terms of predicting the HB point,

since the estimates are fairly close to the theoretical values.

Schedule 2

Schedule 2 is an interesting dispatch scenario where the inter-area mode is primarily

the critical one, until at certain loading level (3030 MW), the local mode in Area

2 becomes critical, crossing the imaginary axis and hence leading the system to

oscillatory instability conditions at a loading level of about 3150 MW. In this case,

the loads are increased as in Schedule 1; however, only Generator G3 is dispatched

to respond to the load change. This certainly stresses G3 more, and thus the local

mode in Area 2 becomes critical, as shown in Figure 5.3.

For this scenario, it is possible to compute two values of Kd using (5.6) which

are associated with the inter-area mode and the local mode in Area 2, as depicted

in Figure 5.6. Since both inter-area and local mode in Area 2 are dominant modes,
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Figure 5.5: Damping coefficients of all generators obtained from transient response

for the 2-area benchmark system for Schedule 1.
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time-domain simulation results in this case would be influenced by both of them,

and so would be the identified Kd’s. Notice that in this case, the values obtained

for Kd from OLS are not accurate; neither are the predicted stability margins. On

the other hand, the Kd’s obtained using GLS present the best results in terms of

accuracy in estimation as well as prediction. The RFBW’s accuracy is between the

OLS and GLS, and from the computational point of view, it is slower than OLS

and faster than the GLS. The advantage of using Kd, when compared to eigen-

value based indices, is that, in order to monitor system stability/security margin,

the damping coefficient is able to provide accurate margins without the need for

monitoring particular modes. This can be an issue for eigenvalue-based indices.

For instance, the damping torque is able to capture the oscillatory phenomenon for

both schedules; on the other hand, for Schedule 2, if only the inter-area mode were

used as an index, it would yield inaccurate margins.

5.4.3 Real System (14,000 buses)

There are around 2000 generators and 22 areas in this system, and hence only the

slack generators in some areas are monitored. The areas are selected by looking at

the mode shape corresponding to the critical mode. The critical mode moves to the

RHP with respect to load change, resulting in unstable oscillations triggered by a

line outage as shown in Figure 5.7. Figure 5.8 depicts the Kd for the slack buses in

four different areas where the critical mode is highly observable. Observe that only

some of the generators are able to successfully predict the oscillatory phenomenon,

indicating the importance of employing several monitoring units in different parts

of the system.
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Figure 5.6: Damping coefficients of all generators obtained from transient response

for the 2-area benchmark system for Schedule 2.
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5.5 Damping Torque Estimation from Ambient

Data

For the following test cases, it is assumed that the system is persistently being

excited by random load switching, and hence the measured signal of the system is

a colored noise. The advantage of using this kind of signals is twofold: There is no

need to carry on expensive, risky, intrusive tests; second, the linearity assumption

due to the small magnitude of the perturbations holds.

5.5.1 Box-Jenkins Model

Experience shows that RFBW yields results similar to OLS, because the pertur-

bations are small, and the problem of nonlinear effects does not show up in the

measured response. However, due to the persistent excitation of different modes,

the whitening filter in this case is more complicated.

As explained in Section 5.3.2, for the transient response of the system, GLS is

used to model the correlated residuals; notice that the residuals were modeled by

means of an AR(p). Since the objective is to obtain white ǫ[k], and considering the

fact that the first term on the right side of (5.10) (x[k] K) cannot be changed, it

would be beneficial to use a Box-Jenkins model. This model provides a parametric

model with errors being modeled separately from the first term that is related to

the system dynamics. The error term properties are modeled by a rational transfer

function H(q) with both numerator and denominator; thus, (5.10) can be written
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as:

y[k] = x[k] K + H(q) e[k] (5.14)

H(q) =
1 + c1 q−1 + c2 q−2 + . . . + cnc

q−nc

1 + d1 q−1 + d2 q−2 + . . . + dnd
q−nd

(5.15)

This model is known as a Box-Jenkins (BJ) model and is denoted by BJ(nc,nd). The

BJ model in this case is indeed employing an ARMA(nc,nd) in order to correctly

model the residuals. The orders nc and nd can be selected by means of AIC or

FPE. For instance, the FPE can be computed as:

FPE = V (θ)
1 − κ

N

1 + κ
N

(5.16)

where θ = [KT c1 c2 ... cnc
d1 d2 ... dnd

]T and κ = dim(θ). It is worth mentioning

that for large data blocks, i.e. N −→ ∞, the FPE is the same as the loss function

V (θ), which is the case for ambient data; and therefore, V (θ) can be used instead

of FPE.

5.5.2 Two-area Benchmark System-Schedules 1 and 2

For the 2-area benchmark system explained in detail in Section 5.4.2, two previously

defined dispatch scenarios (Schedules 1 and 2) are investigated, where 1% of the

loads at Buses 7 and 9 are being switched as driving noise. The BJ(nc,nd) model for

each case is utilized to estimate the damping torque; the optimum order is selected

by inspecting the loss function of models for a given range of nc and nd. First,

a range is selected for nc and nd, thus resulting in models with different orders;

for each case, the corresponding BJ model as well as the loss function V (θ) are

then estimated. Usually, as the order is increased, after a certain point which is

related to the optimum order, no significant reduction in V (θ) is achieved. The
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parsimony principle [58] has to also be taken into consideration, which suggests

selecting the simplest model of all the models that can accurately describe a system.

Furthermore, from an optimization point of view, adding more MA terms results

in more complexity and nonlinearity, as the corresponding regressor is not linear;

thus, parameter estimation would be significantly easier for smaller nc’s.

For instance, Figures 5.9 and 5.10 suggest BJ(1,2) for Schedule 1, and BJ(2,5)

for Schedule 2. Only an inter-area mode is dominant for Schedule 1, as opposed

to Schedule 2; consequently, Schedule 1 needs a simpler model to describe the

residuals.

The predicted errors ǫ[k] may also be examined to check the whiteness assump-

tion, which in turn, leads to efficient estimates as explained in Section 5.3.1. The

typical whiteness test is inspecting the sample autocorrelation function ACF (rǫ[τ ]),

i.e. for ǫ[k] to be white, rǫ[τ ] = 0 for τ 6=0. Usually, the standard deviations obtained

via Barttlet’s approximation [69] are used to test the hypothesis, i.e. the whiteness

is rejected if the sample rǫ[τ ] falls out of the, for instance, 95% confidence interval.

For a selected model, if the whiteness test indicates that ǫ[k] is correlated, then one

needs to reexamine the model and data, and search for a statistically better model.

A close inspection of the ACF for both schedules demonstrate the ability of

using BJ models in obtaining white residuals as depicted in Figures 5.11 and 5.12.

As well, the confidence interval of the estimated Kd’s must be checked to ensure

that it does not experience a significant increase, as the order of the filter H(q)

increases. For instance, in Schedule 1, the standard deviation of the Kd and Ks

for various filter models are depicted in Figure 5.13, showing that the standard

deviation of the Kd for the selected model, BJ(1,2), is relatively close to that of the

BJ(0,0) or OLS.
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Figure 5.11: Whiteness test for the OLS and BJ(1,2) models using ACF(ǫ[k]) in

the 2-area benchmark system; Schedule 1. Horizontal bars indicate 95% confidence

intervals.
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Figure 5.12: Whiteness test for the OLS and BJ(2,5) models using ACF(ǫ[k]) in

the 2-area benchmark system; Schedule 2. Horizontal bars indicate 95% confidence
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The estimated Kd’s for both schedules are shown in Figures 5.14 and 5.15. A

BJ model is employed to estimates the Kd for each generator and is compared to

the theoretical and OLS estimates.

Observe that for Schedule 1, all the calculated Kd’s tend to zero as the load in-

creases; however, the BJ method offers superior performance in terms of predicting

the HB point as well as providing fairly close estimates to the theoretical values,

which are denoted as LM in Figure 5.14. Notice that the OLS underestimates the

Kd for all the generators, especially at light loading levels.

For Schedule 2, only some of the estimated Kd’s are able to predict the instability

point. For instance, the trend of the Kd’s of generators G1 and G2 are giving better

prediction of the instability point compared to the Kd’s of the Generators G3 and

G4. Notice that the OLS is providing erroneous Kd’s for Generators G3 and G4,

and that it is unable to predict the instability point, demonstrating the need for

using better models such as a BJ model.

The differences observed for generators in Schedule 2 are because of the mag-

nitude of the modes’ observability on each generator, i.e. the more observable a

mode on a generator, the larger the corresponding oscillations on the generator’s

response. In Schedule 1, the critical mode is an inter-area mode, and therefore, its

observability is almost the same on all the generators; thus, the differences in Kd’s

are not significant, and all of them can be used to predict the oscillatory stability

limit. On the other hand, in Schedule 2, the local mode in Area 2 is not well ob-

served on the generators in Area 1, and therefore, when this mode becomes critical,

its effect in not significant on Area 1.
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Figure 5.14: Damping coefficients of all generators from ambient data for the 2-area

benchmark system; Schedule 1.
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Figure 5.15: Damping coefficients of all generators from ambient data for the 2-area

benchmark system; Schedule 2.
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5.6 Summary

The procedure to derive the theoretical values of damping and synchronizing co-

efficients obtained using linearized models of power system is demonstrated. In

the systems with single dominant mode, the accuracy of the obtained coefficients

using system identification and measured time-domain response of the system is

investigated by comparing them with the theoretical values.

The GLS and RFBW identification methods are shown to be better alternatives

than the OLS method when the transient response of the power system is available.

In particular, it is shown that the OLS method may not be able to accurately esti-

mate the coefficients, because of the nonlinear effects that appear in the measured

response of a power system; these effects can be reduced using smaller perturba-

tions. There is a trade off, however, between the magnitude of the perturbation

and SNR of the measured signals, i.e. the lower the SNR, the less accurate the

estimates.

The damping coefficient is shown to be a useful index to predict the distance to

instability points when system loading changes. It is basically a close duplicate of

the electromechanical modes behavior; however, it does not require the monitoring

of certain modes, which can be an issue in large power systems. Hence, this index

may help system operators determine proximity to an oscillatory instability with-

out requiring modeling assumptions and simulations, thus allowing to take proper

actions in the case of contingencies and congestion problems.

The Box-Jenkins model is proposed to estimate the damping torque from am-

bient data, and its effectiveness and superior performance over OLS are illustrated

by means of several examples.



Chapter 6

Estimation of Uncertainty

6.1 Introduction

In parameter estimation, second order statistical properties of the estimates, such

as confidence intervals, are important when discussing the quality of the estimates,

i.e. the tighter the confidence intervals, the better the estimates. For the indices

presented in the preceding chapters, the mean value and the confidence interval

(standard deviation of the estimates) were studied to ensure that the estimates are

both accurate and dependable (e.g. Figures 4.20 and 4.22). The confidence inter-

vals, however, were obtained by means of a Monte-Carlo type of simulation, which

requires repeating the simulation for several realizations of the noise; hence, they

are computationally expensive and in some cases impractical. For example, in a

real power system, the system operating conditions as well as its dynamic charac-

teristics may change over a long time window due to load change, rescheduling, tap

changer operation, etc; hence, it is important to quickly conduct the experiment

to ensure that the system does not experience significant changes, and that the

114
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stationarity assumption is not violated over the measurement time.

This chapter starts with a background on estimating the covariance of param-

eters of a linear parametric model. This information is useful in determining the

variance of the indices previously proposed.

The index proposed in Chapter 4, the SISI, has however a nonlinear relation-

ship with the parameters, and so does its variance. This nonlinear relationship is

due to the fact that the SISI is basically related to the eigenvalues of the system

that are the roots of the characteristic equation.

A technique that has been used in civil engineering for identification of civil

structures to establish a connection between the variance of parameters and the

variance of modal parameters is used here [70], and the corresponding equations

are explained in detail.

6.2 Covariance of Parameters

A linear model is given by

y(k) = G(q) u(k) + H(q) e(k) (6.1)

where y(k) is the output; u(k) is the input; and e(k) models the disturbances.

One-step-ahead prediction ŷ(k|θ) uses the observations available up to time k − 1

to predict y(k), thus:

ŷ(k|θ) = H−1(q) G(q) u(k) + [1 − H−1(q)] y(k) (6.2)



CHAPTER 6. ESTIMATION OF UNCERTAINTY 116

This notation is adapted from [71] and is used to emphasize its dependence on the

parameter vector θ. Rewriting (3.14) using (6.1) and (6.2) results in:

θ̂ = arg min V (θ) (6.3)

V (θ) =
1

N

N∑

k=1

1

2
ǫ2(k, θ)

ǫ(k, θ) = y(k) − ŷ(k|θ)

where function V (θ) denotes the loss that results from the model in the fitting

process, and “arg min” means the minimization argument of the function V (θ).

Hence, at the solution point, the differentiation of V (θ) with respect to θ has to be

zero, i.e.:

V
′

(θ̂) = 0 (6.4)

Thus, an iterative algorithm, such as Newton, is used to solve for θ̂ by means of

the Taylor series expansion of (6.4) around θ∗:

0 ≈ V
′

(θ∗) + V
′′

(θ∗)(θ̂ − θ∗) (6.5)

or

(θ̂ − θ∗) = −
[

V
′′

(θ∗)
]−1

V
′

(θ∗) (6.6)

which requires the first derivative (gradient) and second derivative (Hessian). These

derivatives can be expressed as:

V
′

(θ∗) = − 1

N

N∑

k=1

ψ(k, θ∗) ǫ(k, θ∗) (6.7)

V
′′

(θ∗) =
1

N

N∑

k=1

ψ(k, θ∗) ψT (k, θ∗) +
1

N

N∑

k=1

ψ
′

(k, θ∗) ǫ(k, θ∗) (6.8)

ψ(k, θ∗) = − d

dθ
ǫ(k, θ)|θ=θ∗ =

d

dθ
ŷ(k|θ)|θ=θ∗
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Close to the solution θ̂, the predicted errors ǫ(k, θ) are independent; thus,

V
′′

(θ̂) ≈ 1

N

N∑

k=1

ψ(k, θ̂) ψT (k, θ̂) (6.9)

It is known that
√

N(θ̂ − θ∗) is asymptotically Gaussian distributed with zero

mean and a covariance matrix P , i.e. N (0, P ) (for proof refer to [71]). An estimate

of P from available data can be obtained as follows:

P̂ = λ̂0

(

V
′′

(θ̂)
)−1

(6.10)

λ̂0 =
1

N

N∑

k=1

ǫ2(k, θ̂) (6.11)

with λ̂0 being an estimate of the variance of the errors. Then, the covariance of

parameter estimates (Pθ̂ = E[(θ̂ − θ∗)(θ̂ − θ∗)T ]) can be approximated as:

Pθ̂ ≈ 1

N
P̂ (6.12)

The eigenvalues of a system are the roots of the characteristic equation, and

hence are only dependent on the AR part of an ARMA(p,d), as explained in Chapter

3. Thus, the covariance matrix Pθ̂ is partitioned so that the rows and columns

corresponding to the AR and the MA parts are separate as follows:

Pθ̂ =




Pθ̂AR

Pθ̂ARMA

Pθ̂ARMA
Pθ̂MA



 (6.13)

In the next section, a relationship between Pθ̂AR
and the covariance of eigenval-

ues is established.
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6.3 Covariance of Eigenvalues

Eigenvalues are related to the θAR, which are the coefficients of the characteristic

equation. This relationship can be written as:

Φ = γ(θAR) (6.14)

where γ(θAR) is a nonlinear function, and Φ denotes a vector containing the modal

parameters; for instance, the real part α and the frequency f of the eigenvalues can

be used to define:

Φ = [α1, f1, α2, f2, . . . , αp, fp]
T ∈ ℜ2p (6.15)

In order to obtain the mean and variance of modal parameters, the expected

value operator may be applied to a Taylor series expansion of the function γ about

an operating point (Φ̂, θ̂AR), which may be written as:

Φ ≈ Φ̂ + J(θ̂AR)
(

θAR − θ̂AR

)

(6.16)

J(θ̂AR) =
∂γ(θAR)

∂θAR

∣
∣
∣
∣
θAR=θ̂AR

(6.17)

where J(θ̂AR) ∈ ℜ2p×p.

Thus, rearranging (6.16) and applying the second moment operator (covariance)

yields

Cov Φ = E
[

(Φ − Φ̂) (Φ − Φ̂)T
]

= J(θ̂AR) P (θ̂AR) JT (θ̂AR) (6.18)

This clearly shows the connection between the covariance of estimates P (θ̂AR) and

the covariance of eigenvalues Cov Φ. Hence, in order to obtain Cov Φ, one first

needs to calculate the numeric Jacobian J(θ̂AR) as follows:

Jij(θ̂AR) =
γi(θ̂AR + ∆θj) − γi(θ̂AR − ∆θj)

2h
(6.19)
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where

∆θj =




















0
...
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
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





←− j

and h is a small number, and P (θ̂AR) can be estimated using (6.12).

6.4 Test case

The proposed method for estimating the standard deviation of the identified modes

is tested with the 2-area benchmark system. First, a Monte-Carlo type of simula-

tion with 150 trials is performed by running independent simulations, where 1% of

the loads at Buses 7 and 9 are represented as Gaussian noise; 4-minutes data blocks

of generator G1’s power output are recorded in each simulation. Then, the prepro-

cessed data blocks along with a PEM are employed to estimate the parameters of

an ARMA(10,5) model representing the power system transfer function.

The estimated standard deviation of both the real part and frequency of the

inter-area mode obtained using (6.18) is depicted in Figures 6.1 and 6.2, respec-

tively. Observe that the estimates track the results corresponding to the Monte-
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Carlos simulation, and that the mean of the estimates depicted in both figures

show that it can provide good accuracy with a significantly reduced number of tri-

als. For instance, in Figure 6.1, the convergence speed of the estimates is nearly 3

to 4 times faster than the Monte-Carlo method, which is a significant reduction in

the monitoring time.

6.5 Summary

A procedure to calculate the second order statistical properties of the previously

proposed is presented and justified. It is based on a technique that employs the

Taylor series expansion to establish a connection between the variance of parame-

ters and the variance of eigenvalues. The presented technique can be used to avoid

Monte-Carlo type of analyses, thus resulting in a significant reduction in computa-

tional time, making the proposed indices and monitoring techniques more appealing

for real-time applications.
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Figure 6.1: Standard deviation of the real part of the identified critical mode

−0.1228±j4.7824 for the 2-area benchmark system using Monte-Carlo and equation

(6.18).
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Figure 6.2: Standard deviation of the frequency of the identified critical mode

−0.1228±j4.7824 for the 2-area benchmark system using Monte-Carlo and equation

(6.18).



Chapter 7

System Identification Techniques

Applied to Model Validation

7.1 Introduction

This chapter discusses the validation of the simplified models of major power system

elements, in particular synchronous generators and STATCOMs. These approxi-

mate models, instead of their detailed models, are typically used in power system

analysis packages, since power systems normally consist of several thousand buses

and machines, which may lead to intractable problem if full device models are used.

Thus, TS models are based on simplifications made to enhance computational effi-

ciency.

The validation procedure is performed by means of system identification applied

to the time-domain response of the both detailed models and simplified models,

so that the identified electromechanical modes can then be compared. The test

systems with detailed models was simulated in PSCAD/EMTDC program [72];

123
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since large test cases cannot be handled in this program, the simulations were

obtained only for the IEEE 3-bus system.

7.2 Generator Modeling

As explained in Chapter 2, neglecting stator and network transients is the first

common step for simplification of the generator detailed model, as it provides a

very close approximation of the actual system response; this simplification along

with a few other assumptions result in the generator subtransient model [33], and

thus permit the use of a much larger step size for integration in transient stability

programs. The reason for neglecting stator and network transients is that these

transients are fast and damp quickly, as they are related to main frequency tran-

sients (50 Hz or 60 Hz), since when these transients are included, there will be a DC

offset term in the phase currents, which results in a DC braking torque and a main

frequency oscillatory torque, adding a slight degree of stability to the system [33].

Thus, the stability limits obtained using simplified models are conservative when

compared to the actual system stability limits. It has been shown that DC offset

currents can also develop abnormal oscillatory torques and back swing phenomena

[73, 74].

In order to compare generator models by means of system identification tech-

niques, the author has been forced to use signals generated through time-domain

simulations of detailed PSCAD/EMTDC [72] models for a small IEEE 3-bus system,

so that the resulting signals would be as close to field measurements as possible.

To perturb the system in PSCAD, a pseudo-random binary signal (PRBS) [75],

which approximates white noise, was used to represent a 1% load modulation at

Bus 3. The stochastic subspace technique applied to the generators’ output power
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Figure 7.1: SISI for the IEEE 3-bus system; generator detailed model versus its

subtransient model.

yielded the results shown in Figure 7.1. Observe that both the generator detailed

model and its linearized subtransient model in PST yeild fairly similar results. The

maximum error in this case, between the identified and modeled SISI is 0.047 sec−1,

which is small.

The effect of including/or neglecting stator and network transients for small-

disturbance stability analyses and their impact on rotor angle mode was also stud-

ied. A small-disturbance stability program MASS [76], which is capable of per-

forming modal analysis including/neglecting network transients, was used for some

test cases and the results were given in Table 7.1. Observe that the corresponding
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Table 7.1: Effect of including/neglecting network transients on the critical mode

Network Transients Included Neglected

Mode, Damping Mode, Damping

IEEE 3-bus -0.6509 ± j8.09, 8.01% -0.6298± j8.14, 7.71%

IEEE 14-bus -0.2502 ± j8.85, 2.82% -0.2158± j8.83, 2.44%

Two-area 11-bus -0.0940± j4.61 , 2.04% -0.0800± j4.61, 1.74%

eigenvalues indicate that network transients add a slight degree of stability to the

electromechanical mode, i.e. generator subtransient models are slightly conservative

from the point of view of calculating the electromechanical modes.

7.3 STATCOM Modeling

Readily available power system packages employ power flow or TS models to rep-

resent FACTS controllers. TS models, however, need to be validated from the

small-disturbance analysis point of view prior to using them in TS studies. This

can be achieved by means of system identification.

A typical STATCOM TS model is based on a fundamental frequency representa-

tion (phasor model) of the power system. In [1, 40], the authors study the accuracy

of the proposed TS model with regards to the detailed model only by means of

time-domain simulations. However, since these controllers can play a major role in

damping electromechanical oscillations [15, 31], one needs to validate these models

by means of small-disturbance stability analysis or modal analysis.

In this section, besides time-domain simulation results, a system identification

technique is used to investigate the accuracy of a typical STATCOM TS model
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Table 7.2: STATCOM static data

Rc (Ω) Rtransformer (Ω) Xtransformer (Ω) C (µF)

200 0 0.108 740

Table 7.3: STATCOM controller parameters

Kpα
KIα

Kpm
KIm

Tw (s)

0.06 0.6 10 100 10

compared to its detailed model, from the small-disturbance stability analysis point

of view.

7.3.1 Test case

Both the STATCOM detailed and TS models are simulated in PSCAD/EMTDC

program. Due to the limitations imposed by PSCAD, only the IEEE 3-bus system

(Figure 2.8) is studied here. A 200 MVar STATCOM is connected to the Bus 3

through a coupling transformer (∆-Y, 6 kV/138 kV) to mainly regulate the voltage

at Bus 3. By adding a supplementary control loop (Figure 2.3), it could also be

used in damping oscillations. The data for the STATCOM are given in Tables 7.2

and 7.3.

The STATCOM detailed PSCAD model includes all the switches and the cor-

responding snubbers. The PWM control with a carrier frequency of 1260 Hz is

used to reduce the harmonics. It should be mentioned that the harmonic content

of the output voltage of the converter can be significantly reduced by increasing the

carrier frequency fc. The harmonics with order of Mfc ±Nfs appear in the output
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voltage where fs is power system frequency, M and N are integers, and M + N

is an odd integer [77]; however, fc is limited to the maximum switching frequency

that the switches can withstand. A capacitor bank is connected to the Bus 3 to

filter high frequency harmonics; it is also providing 140 MVar of reactive power at

the fundamental frequency when the loading level is 900 MW.

For TS studies, the converter is replaced in PSCAD with a TS model based on a

controlled voltage source with a fixed frequency equal to the fundamental frequency

of the power system. The magnitude of the voltage source is determined from the

differential equation described in (2.7).

7.3.2 Standard Control Analysis

The detailed model and TS model are studied for several loading conditions. As

the load at Bus 3 increases, the electromechanical mode becomes less stable, as

shown in Table 7.4. The Prony method is employed to obtain the modal content

of the measured generator 1’s output power, showing a close agreement between

the eigenvalue calculated for the detailed and the TS models. The time-domain

simulation results for a line 2-3 outage and reconnection after 2 cycles are depicted in

Figure 7.2, showing fairly similar profiles. These results basically validate previous

studies of the STATCOM TS model [1, 40].

7.3.3 Supplementary Control Analysis

A supplementary control is added to damp the oscillations and remove the HB point.

The auxiliary signal used for this control is usually a local signal such as power or

current through the STATCOM adjacent lines. The auxiliary signal used here is
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Figure 7.2: The response of the system to a line 2-3 outage in the IEEE 3-bus

system; STATCOM at Bus 3 without supplementary control at 160% loading level.
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Table 7.4: Critical electromechanical mode for the IEEE 3-bus system with STAT-

COM detailed and TS models.

Loading Level Detailed Model TS Model

Mode, Damping Mode, Damping

100% (900 MW) -0.5600± j8.11, 6.89% -0.5500± j8.11, 6.77%

130% (1170 MW) -0.3686 ± j8.12, 4.53% -0.3698± j8.11, 4.56%

160% (1440 MW) -0.1993 ± j8.08, 2.47% -0.2170± j8.07, 2.69%

190% (1710 MW) -0.0294 ± j8.02, 0.37% -0.0674± j8.00, 0.84%

the power in line 1-3 due to the better performance of power over other signals as

reported in [8]. At the same loading conditions as in the previous case, the critical

eigenvalue is calculated by means of the Prony method applied to the time-domain

simulation results. Table 7.5 and Figure 7.3 clearly illustrate the effectiveness of the

supplementary control in damping electromechanical oscillations when compared to

the results in Table 7.4; however, the calculated eigenvalues for the TS model in

this case are not as close to the ones related to the detailed model. Observe that

the TS model does a better job in damping oscillations, i.e. the TS model provides

more optimistic results from the eigenvalue analysis point of view, as depicted in

Figure 7.4. This basically results in an overestimation of the real stability margin

of the power system, and hence it is a potential risk in power system planning.

The discrepancy between the two models is better illustrated in Figure 7.5,

which shows the terminal voltage Vt, the DC bus voltage Vdc and converter’s delay

angle αconv. Observe that the fast transients during and right after clearing the

fault are not captured by the TS model. This is due to the fact that the TS model

was developed based on the balanced three phase voltages with fundamental fre-



CHAPTER 7. SYSTEM IDENTIFICATION TECHNIQUES APPLIED TO
MODEL VALIDATION 131

Table 7.5: Critical electromechanical mode for the IEEE 3-bus system; STATCOM

with a supplementary control

Loading Level Detailed Model TS Model

Mode, Damping Mode, Damping

100% (900 MW) -0.9778± j8.51, 11.41% -1.0252± j8.44, 12.06%

130% (1170 MW) -0.7038 ± j8.72, 8.04% -0.8067± j8.63, 9.31%

160% (1440 MW) -0.4439 ± j8.76, 5.06% -0.5952± j8.66, 6.86%

190% (1710 MW) -0.1766 ± j8.70, 2.03% -0.3641± j8.60, 4.23%

quency, i.e. phasors, and hence is not able to capture the fast voltage transients.

The absorbed active and reactive power from the system to the converter depicted

in Figure 7.6 provide additional insights into the functioning of the different mod-

els. Notice that the active power, which plays a fundamental role in damping the

oscillating power ∆PG1
, is larger in the case of the TS model, hence yielding a

more stable system. The main reason for this is that the TS model is based on

a controlled voltage source, with its magnitude being controlled by a differential

equation, whereas in the detailed model, the voltage is directly affected by fast DC

voltage transients.

7.4 Summary

The generator subtransient model and the STATCOM TS model are studied and

compared here with respect to their detailed models by means of PSCAD simula-

tions and system identification. From the electromechanical mode point of view,

the subtransient model of a generator yields very close results to the those obtained
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at a 130% loading level.
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Figure 7.4: IEEE 3-bus system response for a line 2-3 outage for a STATCOM with

a supplementary control at 190% loading level.
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a supplementary control at a 190% loading level.
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supplementary control at a 190% loading level.
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from the detailed model, while being slightly conservative, which is acceptable from

the planning point of view. On the other hand, the STATCOM TS model also yields

results fairly close to those of its detailed model for the case when no supplemen-

tary control is added to the STATCOM control. However, it is shown that, in

the presence of supplementary control, the STATCOM TS model gives optimistic

results regarding the electromechanical modes, which could be a problem for power

system operators and designers that has not been previously identified.



Chapter 8

Conclusions

8.1 Summary and Conclusions

This thesis concentrates on the study of oscillatory angle stability problems, propos-

ing system identification techniques to detect the electromechanical modes from

both power system transient response and ambient noise. Two on-line stability in-

dices, along with several identification methods, are proposed to monitor oscillatory

phenomena and to predict stability margins in a power system. Also, a procedure

is presented to obtain the confidence intervals of these stability indices from the

variance of the parameters. Finally, the generator subtransient model and a typical

STATCOM model are compared with respect to their detailed models using system

identification tools.

In Chapter 2, the models of some of the key power system components used in

this thesis are briefly explained. The importance of selecting the right models for

different kinds of power system analyses is also discussed. Power system stability

concepts, techniques and tools used throughout this thesis, such as voltage and

137
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angle stability, continuation power flow and system identification are presented

here as well.

Chapter 3 describes different types of signals that can be readily measured

in a power system, as well as the corresponding techniques to extract the signal

modal content. Namely, the Prony method is shown to be suitable for the transient

response with high SNR, while the LSMYW and the PEM are shown as proper

techniques to analyze ambient noise. A stochastic subspace identification method

is proposed to capture the critical modes of a power system from ambient data. The

asymptotic behavior of the proposed method is investigated by comparing it with

the PEM. It is shown that the methods are asymptotically equivalent; however, the

proposed method is easier to implement and is computationally more efficient.

Chapter 4 proposes an eigenvalue based index referred to as SISI to predict the

closest stability margin related to the impending oscillatory phenomena. Several

test cases along with a 14,000-bus power system are used to illustrate the effective-

ness of the index in practice.

In Chapter 5, another stability index based on the damping torque of individual

generators is proposed to overcome the shortcomings of the SISI, as it does not

require surveillance of certain modes. The drawback of using this index is that

the contributing modes to oscillations are not separately identified, as opposed

to the SISI which allows to estimate the damping and frequency of each mode.

Some identification methods and models, such as GLS method and BJ model, are

proposed and studied to estimate the damping torque.

Chapter 6 demonstrates the connection between the second order statistical

properties, including confidence intervals, of the estimated modes and the variance

of model parameters. These analyses show that Monte-Carlo type of experiments
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or simulations can be avoided by using the proposed formulas and procedures.

Chapter 7 investigates the validity of generator subtransient model and a typical

STATCOM TS model by means of system identification, illustrating that, under

certain conditions, the STATCOM TS model can yield optimistic results regarding

damping in the system.

8.2 Contributions

The main contributions of the thesis are the following:

1. Previous research on on-line electromechanical mode detection has been fo-

cused on using and developing linear parametric models estimated by means

of PEMs, which are computationally demanding, and may run into numer-

ical problems. A new subspace identification method is proposed here to

detect the electromechanical mode from ambient noise. It is shown to be

asymptotically equivalent to PEMs; however, the proposed method is easier

to implement and computationally more efficient, and thus should be useful

for on-line monitoring applications in power systems.

2. Currently proposed indices used for prediction of oscillatory stability margins

in power systems are based on off-line analyses, which rely on approximate

DAE models and data. The proposed new SISI is an on-line index, based on

identified critical modes of the system, which allows for the prediction of the

distance to the maximum loading condition in practice, as demonstrated here

by means of real system studies.

3. A novel damping torque index is also proposed to predict oscillatory stability

limits in power systems. This index is shown to offer some complementary
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features when compared to the proposed SISI, as it does not need prior knowl-

edge of the critical modes of the system. However, as opposed to the SISI, it

cannot correctly reveal the true nature of the poorly damped oscillations, i.e.

whether the problematic modes are local modes or inter-area modes, so that

appropriate remedial actions can be taken accordingly.

4. The OLS method has been mostly used so far to estimate the damping torque

of individual generators; however, it is shown here that for well-damped tran-

sient response of power systems and ambient noise, the OLS method cannot

accurately estimate the damping torque. Thus, several identification meth-

ods are presented and studied for the estimation of the damping torque from

power system transient response and ambient noise under various operating

conditions. The new techniques are shown to be better than the currently

existent methods.

5. In the current technical literature, the most common approach to obtaining

the confidence intervals associated with identified electromechanical modes

is based on Monte-Carlo type of simulations and experiments. A clear con-

nection is demonstrated here between the confidence intervals of identified

modes and the variance of model parameters. This new approach is shown to

significantly reduce the number of experiments and recorded data needed to

detect critical modes for on-line power system monitoring applications.

6. The TS models of power system components are usually validated only by

inspection of the time-domain simulation results and comparing them with

those of more detailed models. System identification is employed here to

validate the generator subtransient model and the STATCOM TS model from

the viewpoint of small-disturbance analysis. These new results show that the
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STATCOM TS model, when a supplementary oscillation control is added, can

lead to damping levels that are too optimistic, which is a problem that so far

has not been identified.

Part of the proposed stability indices, identification methods, and corresponding

results presented in this thesis have been published in [78, 79, 80].

8.3 Directions for Future Work

Based on the research work presented and discussed in this thesis, further research

may be pursued on the following subjects:

• Application of the proposed SISI and the damping torque index to on-line

tuning of power system controllers such as PSSs.

• TS model validation for other FACTS controllers, such as SVC, SSSC and

TCSC, from the small-disturbance stability point of view by means of system

identification.

• Application of recursive identification methods in mode detection and damp-

ing estimation from ambient data to improve computational efficiency.

• Investigate the whiteness of both load switching phenomena and measurement

noise in power systems, as well as the “stationarity” hypothesis over a long

time monitoring window.



Appendix A

SYSTEM DATA

The dynamic and static data for the test systems used in this thesis are presented
here in PST format [36]. The data for teh 14,000-bus real system is confidential.

A.1 IEEE 3-bus System

%Bus data

%Column:

% 1 2 3 4 5 6 7 8

% bus volt angle p_gen q_gen p_load q_load G_shunt

% 9 10 11 12 13 14 15

% B_shunt type q_max q_min v_rate v_max v_min

bus = [ 1 1.05 0.0 4 1.5 0.0 0.0 0.0 0.0 2 10 -2;

2 1 0.0 5 1.5 0.0 0.0 0.0 0.0 1 999 -999;

3 1.0 0 0 0 9 3 0.0 2.0 3 0 0];

% line data format

% line: from bus, to bus, resistance(pu), reactance(pu),

% line charging(pu), tap ratio, tap phase, tapmax, tapmin, tapsize
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line = [1 3 0.00 0.05 0. 1. 0.;

2 3 0.00 0.03999 0. 1. 0.;

2 3 0.00 0.03999 0. 1. 0.];

% Machine data format

% machine: 1. machine number

% 2. bus number

% 3. base mva

% 4. leakage reactance x_l(pu)

% 5. resistance r_a(pu)

% 6. d-axis sychronous reactance x_d(pu)

% 7. d-axis transient reactance x’_d(pu)

% 8. d-axis subtransient reactance x"_d(pu)

% 9. d-axis open-circuit time constant T’_do(sec)

% 10. d-axis open-circuit subtransient time

% constant T"_do(sec)

% 11. q-axis sychronous reactance x_q(pu)

% 12. q-axis transient reactance x’_q(pu)

% 13. q-axis subtransient reactance x"_q(pu)

% 14. q-axis open-circuit time constant T’_qo(sec)

% 15. q-axis open circuit subtransient time

% constant T"_qo(sec)

% 16. inertia constant H(sec)

% 17. damping coefficient d_o(pu)

% 18. damping coefficient d_1(pu)

% 19. bus number

% 20. S(1.0) - saturation factor

% 21. S(1.2) - saturation factor

mac_con = [...

1 1 555.5 0.16 0 1.81 0.300 0.217 7.8 0.022 ...

1.76 0.610 0.217 0.9 0.074 ...

4.53 0 0 1 0.0 0.0;

2 2 700.0 0.16 0 1.81 0.300 0.217 7.8 0.022 ...

1.76 0.610 0.217 0.9 0.074 ...

6.53 0 0 2 0.0 0.0];
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%Exciter data format

%Column: 1. Exciter type 0 for simple exciter

% 2. Machine number

% 3. Rc compensation resistance

% 4. Xc compensation reactance

% 5. Transuducer time constant

% 6. Voltage regulator gain Kg

% 7. Voltage regulator time constant Ta

% 8. Tb

% 9. Tc

% 10. Maximum voltage regulator output Vmax

% 11. Minimum voltage regulator output Vmin

exc_con = [...

0 1 0.0 100 0.05 0.0 0.0 6.43 -6 ...

0 0 0 0 0 0 0 0 0 0 0 ;

0 2 0.0 100 0.05 0.0 0.0 6.43 -6 ...

0 0 0 0 0 0 0 0 0 0 0

];

%Turbine Governor

%Column

% 1 turbine model number (=1)

% 2 machine number

% 3 speed set point wf pu

% 4 steady state gain 1/R pu

% 5 maximum power order Tmax pu on generator base

% 6 servo time constant Ts sec

% 7 governor time constant Tc sec

% 8 transient gain time constant T3 sec

% 9 HP section time constant T4 sec

% 10 reheater time constant T5 sec

tg_con = [

1 1 1 5 25 5 0.01 0.01 0.01 0.01;

];
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A.2 IEEE 14-bus System

bus = [

1 1.0600 0.00 2.353 -0.1689 0.0000 0.0000 0.00 0.00 1 10.0 -10.0;

2 1.0450 -4.98 0.40 -0.4240 0.2170 0.1270 0.00 0.00 2 0.5 -0.4;

3 1.0100 -12.72 0.00 0.2815 0.9420 0.1900 0.00 0.00 2 0.4 0.0;

4 1.0107 -10.32 0.00 0.0000 0.4780 0.0390 0.00 0.00 3 0.0 0.0;

5 1.0200 -8.78 0.00 0.0000 0.0760 0.0160 0.00 0.00 3 0.0 0.0;

6 1.0700 -14.22 0.00 0.2400 0.1120 0.0750 0.00 0.00 2 0.24 -1.06;

7 1.0620 -13.37 0.00 0.0000 0.00 0.00 0.00 0.00 3 0.0 0.0;

8 1.0900 -13.37 0.00 0.24 0.00 0.00 0.00 0.00 2 0.24 -1.06;

9 1.0563 -14.95 0.00 0.0000 0.2950 0.1660 0.00 0.00 3 0.0 0.0;

10 1.0513 -15.10 0.00 0.0000 0.0900 0.0580 0.00 0.00 3 0.0 0.0;

11 1.0571 -14.80 0.00 0.0000 0.0350 0.0180 0.00 0.00 3 0.0 0.0;

12 1.0552 -15.08 0.00 0.0000 0.0610 0.0160 0.00 0.00 3 0.0 0.0;

13 1.0504 -15.16 0.00 0.0000 0.1350 0.0580 0.00 0.00 3 0.0 0.0;

14 1.0385 -16.04 0.00 0.0000 0.1490 0.0500 0.00 0.00 3 0.0 0.0];

line = [

1 2 0.01938 0.05917 0.0528 1. 0.; %1

1 5 0.05403 0.22304 0.0492 1. 0.; %2

2 3 0.04699 0.19797 0.0438 1. 0.; %3

2 4 0.05811 0.17632 0.0374 1. 0.; %4

2 5 0.05695 0.17388 0.0340 1. 0.; %5

3 4 0.06701 0.17103 0.0346 1. 0.; %6

4 5 0.01335 0.04211 0.0128 1. 0.; %7

4 7 0.0 0.20912 0.0 1 0.; %8

4 9 0.0 0.55618 0.0 1 0.; %9

5 6 0.0 0.25202 0.0 1 0.; %10

6 11 0.09498 0.19890 0.0 1. 0.; %11

6 12 0.12291 0.25581 0.0 1. 0.; %12

6 13 0.06615 0.13027 0.0 1. 0.; %13

7 8 0.0 0.17615 0.0 1. 0.; %14

7 9 0.0 0.11001 0.0 1. 0.; %15

9 10 0.03181 0.08450 0.0 1. 0.; %16

9 14 0.12711 0.27038 0.0 1. 0.; %17

10 11 0.08205 0.19207 0.0 1. 0.; %18

12 13 0.22092 0.19988 0.0 1. 0.; %19
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13 14 0.17093 0.34802 0.0 1. 0.]; %20

mac_con = [ ...

1 1 615 0.1725 0.0 0.8979 0.2995 0.23 7.4 0.03 ...

0.746 0.646 0.4 0.25 0.033 ...

5.548 0.00 0.0 ;

2 2 75 0.00 0.0031 1.0500 0.1850 0.1300 6.10 0.04...

0.980 0.36 0.130 0.3 0.099...

6.54 0.0 0.0 ;

3 3 75 0.00 0.0031 1.0500 0.1850 0.1300 6.10 0.04...

0.98 0.36 0.130 0.3 0.099 ...

6.54 0.0 0.0 ;

4 6 25 0.09 0.0014 1.2500 0.2320 0.1200 4.75 0.06 ...

1.2200 0.7150 0.1200 1.50 0.21 ...

5.06 0.0 0 ;

5 8 25 0.09 0.0014 1.2500 0.2320 0.1200 4.75 0.06...

1.2200 0.7150 0.1200 1.50 0.21...

5.06 0.0 0];

exc_con = [...

1 1 0.000 190.0 0.05 0.000 0.00 7.32 -1.000 ...

1.00 0.1900 0.000 0.0000 0.0000 0.0000 0.001 1.0;

1 2 0.000 20.0 0.05 0.000 0.00 7.32 -1.000 ...

1.00 1.9800 0.000 0.0000 0.0000 0.0000 0.005 1.0;

1 3 0.000 20.0 0.05 0.000 0.00 7.32 -1.000 ...

1.00 1.9800 0.000 0.0000 0.0000 0.0000 0.005 1.0;

1 4 0.000 20.0 0.05 0.000 0.00 7.32 -1. ...

1.00 0.7000 0.000 0.0000 0.0000 0.0000 0.005 1.0;

1 5 0.000 20.0 0.05 0.000 0.00 7.32 -1. ...

1.00 0.7000 0.000 0.0000 0.0000 0.0000 0.005 1.0];

A.3 Two-area Benchmark System

bus = [

1 1.03 26.0 6.84 1.31 0.00 0.00 0.00 0.00 1 990.0 -990.0;

2 1.01 17.0 5.00 1.13 0.00 0.00 0.00 0.00 2 5.0 -300.0;

3 1.03 0.045 9.24 0.67 0.00 0.00 0.00 0.00 2 5.0 -300.0;
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4 1.01 -1.97 7.00 0.43 0.00 0.00 0.00 0.00 2 5.0 -300.0;

5 1.01 20. 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0 0.0;

6 0.98 10.8 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0 0.0;

7 0.97 4.79 0.00 0.00 9.67 1.00 0.00 2.00 3 0.0 0.0;

8 0.9503 0.49 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0 0.0;

9 0.97 -13.14 0.00 0.00 17.67 1.00 0.00 3.50 3 0.0 0.0;

10 0.9862 -8.54 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0 0.0;

11 1.01 -6.52 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0 0.0];

line = [...

1 5 0.0 0.0167 0.00 1.0 0.;

2 6 0.0 0.0167 0.00 1.0 0.;

3 11 0.0 0.0167 0.0 1.0 0.;

4 10 0.0 0.0167 0.0 1.0 0.;

5 6 0.0025 0.025 0.04375 1.0 0.;

6 7 0.001 0.0100 0.0175 1.0 0.;

6 7 0.002 0.0200 0.0170 1.0 0.;

10 9 0.00125 0.0100 0.0175 1.0 0.;

9 10 0.005 0.0125 0.0035 1.0 0.;

7 8 0.0075 0.005 0.12833 1.0 0.;

7 8 0.0075 0.075 0.12833 1.0 0.;

7 8 0.0075 0.075 0.12833 1.0 0.;

7 8 0.0075 0.075 0.12833 1.0 0.;

8 9 0.018 0.180 0.1925 1.0 0.;

8 9 0.018 0.180 0.1925 1.0 0.;

8 9 0.018 0.180 0.1900 1.0 0.;

11 10 0.0025 0.005 0.0140 1.0 0.

];

mac_con = [...

1 1 900 0.200 0.0025 1.8 0.30 0.25 8.00 0.03...

1.7 0.55 0.25 0.4 0.05...

6.5 0 0 1;

2 2 900 0.200 0.0025 1.8 0.30 0.25 8.00 0.03...

1.7 0.55 0.25 0.4 0.05...

6.5 0 0 2;

3 3 900 0.200 0.0025 1.8 0.30 0.25 8.00 0.03...

1.7 0.55 0.25 0.4 0.05...

5.175 0 0 3;

4 4 900 0.200 0.0025 1.8 0.30 0.25 8.00 0.03...
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1.7 0.55 0.25 0.4 0.05...

6.175 0 0 4];

exc_con = [...

0 1 0.0 100 0.02 0.0 0.0 7 -7 ...

0 0 0 0 0 0 0 0 0 0 0 ;

0 2 0.0 100 0.02 0.0 0.0 7 -7 ...

0 0 0 0 0 0 0 0 0 0 0 ;

0 3 0.0 75 0.02 0.0 0.0 7 -7 ...

0 0 0 0 0 0 0 0 0 0 0 ;

0 4 0.0 50 0.02 0.0 0.0 7 -7 ...

0 0 0 0 0 0 0 0 0 0 0 ;

];

tg_con = [

1 1 1 5 25 5 0.01 0.01 0.01 0.01;

];

%Power System Stabilizer (PSS)

%Column

%1 type

%1 speed input

%2 power input

%2 machine number

%3 gain K

%4 washout time constant T sec

%5 lead time constant T1 sec

%6 lag time constant T2 sec

%7 lead time constant T3 sec

%8 lag time constant T4 sec

%9 maximum output limit pu

%10 minimum output limit pu

pss_con = [...

1 1 6.0 2.0 0.08 0.04 0.08 0.04 10 -10;

1 2 6.0 2.0 0.08 0.04 0.08 0.04 10 -10;

1 3 6.0 2.0 0.08 0.04 0.08 0.04 10 -10;

1 4 6.0 2.0 0.08 0.04 0.08 0.04 10 -10

];
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SISI Proof

From equation (4.4), the singular values of the matrix Λm are defined as:

svi(Λm) =
√

µi (Q) for i = 1, 2, · · · , 2n (B.1)

Q = Λ∗
m Λm ∈ ℜ2n×2n (B.2)

where µi(Q) denotes the ith eigenvalue of Q, and Λ∗
m is the transpose conjugate of

Λm. Thus,

Q = Λ∗
m Λm =




Λ∗Λ + β2

c I βc(Λ − Λ∗)

βc(Λ
∗ − Λ) Λ∗Λ + β2

c I



 (B.3)

Then, these submatrices can be expressed in terms of the eigenvalues in Λ (λi =

αi ± jβi) as:

Λ∗Λ + βcI = diag{|λ1|2 + β2
c , |λ2|2 + β2

c , · · · , |λn|2 + β2
c} ∈ ℜn×n (B.4)

βc(Λ − Λ∗) = (2j βc) diag{β1, β2, · · · , βn} ∈ ℜn×n (B.5)

Thus, the characteristic equation of Q can be obtained as:

∆(s) = det(sI − Q) = [(s − |λ1|2 − β2
c )

2 − (2β1βc)
2] [(s − |λ2|2 − β2

c )
2 − (2β2βc)

2]

· · · [(s − |λn|n − β2
c )

2 − (2βnβc)
2] (B.6)
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The roots of the characteristic equation are the eigenvalues of Q, which can be

written as

µi(Q) = α2
i + (βc ± βi)

2 (B.7)

Thus, (B.7) and (B.1) yields (4.5). ⋄



Appendix C

Alternative Damping Torque

Formulation

In order to calculate Dj in (5.5), it is possible to separate the states as ∆x =

[∆ωj ∆xd]
T , and hence rewrite the linearized state-space model as follows:

∆ẋd = Ax ∆xd + Bω ∆ωj (C.1)

∆ω̇j = Aω ∆ωj + Bx ∆xd (C.2)

∆Tej
= Cd ∆xd + Cωj

∆ωj (C.3)

Replacing d/dt by s in (C.1) would yield ∆xd = (sI − Ax)
−1Bω∆ωj. Thus:

Dj(s) =
∆Tej

∆ωj

=
(
Cd (s I − Ax)

−1 Bω + Cωj

)
(C.4)

Evaluating Dj(s = λi) would give the same results as (5.5). In [6], the author pro-

poses a method to obtain transfer functions similar to (C.4) by disabling the shaft

dynamics in all machines, resulting in various transfer functions. These functions

are used to show the inherent damping and interaction between different machines.
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However, the procedure shown here is equivalent to disabling only the shaft dy-

namics for machine j; this means that (C.4) includes the induced damping and

synchronizing torques of all machines on the shaft of Machine j.
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[80] H. Ghasemi and C. A. Cañizares, “Damping torque estimation and oscillatory

stability margin prediction,” accepted to IEEE Power Engineering Summer

Meeting, Montreal, Canada, June 2006, 6 pages.


