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Abstract

Among various transforms, the discrete cosine transform (DCT) is the most widely used
one in multimedia compression technologies for different image or video coding standards.
During the development of image or video compression, a lot of interest has been attracted
to understand the statistical distribution of DCT coefficients, which would be useful to
design compression techniques, such as quantization, entropy coding and rate control.

Recently, a bi-geometric transparent composite model (BGTCM) has been developed to
provide modelling of distribution of DCT coefficients with both simplicity and accuracy. It
has been reported that for DCT coefficients obtained from original images, which is applied
in image coding, a transparent composite model (TCM) can provide better modelling than
Laplacian.

In video compression, such as H.264/AVC, DCT is performed on residual images ob-
tained after prediction with different transform sizes. What’s more, in high efficiency
video coding(HEVC) which is the newest video coding standard, besides DCT as the main
transform tool, discrete sine transform (DST) and transform skip (TS) techniques are pos-
sibly performed on residual data in small blocks. As such, the distribution of transformed
residual data differs from that of transformed original image data.

In this thesis, the distribution of coefficients, including those from all DCT, DST and
TS blocks, is analysed based on BGTCM. To be specific, firstly, the distribution of all the
coefficients from the whole frame is examined. Secondly, in HEVC, the entropy coding is
implemented based on the new encoding concept, coefficient group (CG) with size 4x4,
where quantized coefficients are encoded with context models based on their scan indices
in each CG. To simulate the encoding process, coefficients at the same scan indices among
different CGs are grouped together to form a set. Distribution of coefficients in each set
is analysed. Based on our result, BGTCM is better than other widely used distributions,
such as Laplacian and Cauchy distributions, in both x? and KL-divergence testing.

Furthermore, unlike the way based on Laplacian and Cauchy distribution, the BGTCM
can be used to model rate-quantization (R-Q) and distortion-quantization (D-Q) models
without approximation expressions. R-Q and D-(QQ models based on BGTCM can reflect
the distribution of coefficients, which are important in rate control. In video coding, rate
control involves these two models to generate a suitable quantization parameter without
multi-passes encoding in order to maintain the coding efficiency and to generate required
rate to satisfy rate requirement. In this thesis, based on BGTCM, rate control in HEVC
is revised with much increase in coding efficiency and decrease in rate fluctuation in terms
of rate variance among frames for constant bit rate requirement.
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Chapter 1

Introduction

1.1 Research Motivation and Problem Description

Image and video compression techniques are usually involved in a practical multimedia
system. As shown in Figure 1.1, the system consists of a source encoder, a source decoder,
and a transmission channel or storage media, which is applied as the connection between
the encoder and the decoder. Image and video compression problems have been addressed
between the encoder and the decoder so that coding efficiency achieved by the compression
technique is as high as possible. Based on this structure, several industry standards have
been developed, such as JPEG [40] for image compression, and MPEG [21] [2] [36]and
H.26x [1] [34] for video compression. As video applications with high-resolution video
sequences are becoming more popular, developing video compression techniques with high
coding efficiency in rate-distortion (RD) performance in order to encode high-resolution
sequences is becoming more important. Therefore, the joint collaborative team on video
coding (JCT-VC) has finalized the newest video coding standard called high efficiency
video coding (HEVC) [7], which has reduced the bit rate by more than 20% while keeping
the same reconstruction quality compared with H.264/AVC high profile [34].

In the development of these lossy multimedia compression technologies, a transform is
normally employed to transfer signals from the space or time domain into the frequency
domain where the signals can be represented by a combination of functions with different
frequencies, such as a sequences of cosine functions with different frequencies. Compared
with the original signals, the correlation among transformed signals can be reduced and the
energy is concentrated in only a few transformed signals, which are referred to coefficients.
For example, in JPEG, discrete cosine transform (DCT) is performed on image as the first
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step. In video coding standard, such as H.264/AVC and HEVC, DCT is performed on
residual data obtained by subtracting predictors from original signals. In the encoding
process of all these three standards, transform is followed by quantization and entropy
coding.

According to that, the transformed signal can be regarded as the source of quantization
and entropy coding. Therefore, good understanding of distribution of transformed signals
is important to and beneficial for design of quantization, entropy coding to achieve good
coding efficiency and to satisfy some output requirement such as rate requirement in rate
control.

Original Reconstructed
signal Source Channel/ Source signal
— > » — —
Encoder Storage Decoder

Figure 1.1: Diagram of a Tradition Multimedia System

Unlike image coding, prediction-based video coding technologies, such as H.264/AVC
and HEVC, normally perform transform on residual data, which is derived by subtracting
predictor from original signals. Furthermore, H.264/AVC and HEVC involve various sizes
of blocks to perform prediction, transform, quantization and entropy coding. For example,
as in HEVC, each frame is divided into several coding units (CU) . After prediction based
on prediction units (PU) , the residual data is obtained, and each frame is further divided
into transform units (TU) accordingly. Then, the two-dimensional discrete transform is
performed on each TU before quantization and entropy coding. The process to obtain
the optimal coding parameters, such as how to partition CUs, PUs and TUs which are
determined by minimizing rate distortion (RD) cost is called RD optimization (RDO).
This complicated RDO gives rise to challenges to model the distribution of transformed
coefficients, especially the coefficients which are encoded into the bit steam. What’s more,
unlike H.264/AVC where DCT is the only transform method, HEVC employs three different
transform methods which are DCT, discrete sine transform (DST) and transform skip
(TS). To be specific, DCT is employed in HEVC for all possible sizes of TUs. Discrete sine
transform (DST) and transform skip (T'S) can be applied to TUs with size of 4x4. These
tools also make the modelling difficult.

In previous studies, several models of the distribution of transformed coefficients were
reported, including Gaussian [31], generalized Gaussian [29], Laplacian [33] [37],and Cauchy
distributions [16]. Among these models, the Laplacian and Cauchy models are the most
widely used ones in real applications.



Based on our experimental observation, the actual distribution of transformed coef-
ficients in HEVC differs significantly from both Laplacian and Cauchy distributions in
most cases. Laplacian model ignores the fat tails in the distortion of transformed coeffi-
cients (large magnitudes of coefficients) because the probability density function (pdf) of
Laplacian model drops to zero quickly. However, in the actual entropy coding, these large
coefficients contribute quite a few bits to the bit stream, and its contribution to the dis-
tortion cannot be ignored either. Furthermore, although the curve of Cauchy distribution
drops slower than Laplacian distribution at large coefficients values, it overestimates those
probability. In addition, the parameters of Cauchy distribution are normally complicated
to be estimated accurately.

Besides compression itself, finding a good model to represent the transformed coefficient
probability distributions is also important to the rate control. The rate control is another
important application area of video coding technology. Due to limited channel rates, there
are rate requirements for some practical video transmission application scenarios. For
instance, some applications require a constant transmission rate. In video coding, the rate
control scheme is employed to generate required bit rate in the encoded video streams while
achieving good coding efficiency.

Uncompressed Compressed
Video Video
> Encoder
Complexity .
Estimator QP Bitrate
Complexity
> Rate Controller
Desired
Bitrate

Figure 1.2: Rate Control Diagram in Video Coding [3]

Figure 1.2 shows the diagram of rate control in video coding. In addition to the encoder,
a rate controller is employed. During the encoding process, both properties of image and
video, and encoding features, such as block size and integer quantization parameter (QP)
used for quantization, may affect the final generated rate and the video quality. During



quantization, the transformed coefficients are divided by quantization step size (QS) that
is determined by QP. Based on QP, QS can be computed as

QS = g, (mod(QP, 6)) 2LRP/6]  qp=0,1...51 (1.1)

where, the vector g, is defined as ¢, = [0.625,0.6875,0.8125,0.8750, 1, 1.125] and values in
q» are indexed from 0 to 5.

Since compression can be easily achieved by quantization, the results of choosing a larger
QP are that the output bit rate can be reduced, whereas, the video quality is reduced at
the same time. The rate controller provides a suitable QP to the encoder according to the
information about video features, i.e., the complexity showed in Figure 1.2; the number of
bits that have been generated by the encoder; and the target bits that are set by the users
or the channel capacity. Therefore, among all coding parameters, QP can be utilized to
effectively control the number of generated bits in the encoded stream so that the coding
efficiency is maximized without violating the constraints on channel rates.

To derive a suitable QP in rate control, the knowledge of statistic information of trans-
formed coefficients is important. With the carefully selected QP, rate control scheme can
achieve good coding efficiency and can generate expected bit rate. However, the output
bit rate and distortion cannot be got before encoding finishes. Therefore, the solution to
this problem can be obtained by either multi-passes of the encoding process until getting
a desired rate and achieving the optimal coding efficiency or using a mathematic model
representing the characteristic of the transformed coefficients distribution to estimate the
rate and distortion. Since multi-passes solution is not desirable for most applications re-
quiring fast encodings, model-based methods are usually utilized in rate control with the
assumption that distribution of coefficients satisfies a certain model.

These mathematical models representing video source statistics can help to describe
the relation between the number of generated bits and QP and the relation between the
distortion and QP. By modelling the distribution of the transformed residual data, model-
based rate control algorithms can estimate the bit rate and the peak signal-to-noise ratio
(PSNR) that is most commonly used to measure the quality of reconstruction of lossy
compression codecs. With the residual coefficients model, we can get the relation between
output bit rate and QP (R-~Q model) through the entropy. Also, we can generate the relation
between distortion and QP(D-Q model) through PSNR calculation. Based on the R-Q and
D-Q models, the suitable QP can be determined to satisfy the rate requirement and to
maintain video quality meanwhile without multi-passes encoding. The better the model of
the real transformed coefficient distributions fits, the more accurate the estimation of the
bit rate and the PSNR will be. Similar to H.264/AVC, HEVC also employs a model-based
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rate control method by assuming that the distribution of transformed coefficients satisfies
Laplacian density.

The problem involved in the other model-based research in rate control is, that it is
hard to get a simple and accurate expression for R-Q and D-Q models with these distribu-
tions. Most applications use approximated expressions. Therefore, the parameter used in
these models are trained based on different coding standards and testing sequences other
than derived from the distribution of actual coefficients from currently encoded sequence
or frame directly. Therefore, they cannot reflect the actual coefficient distribution and
needs to be adjusted for different compression standards. As the result, the rate and dis-
tortion models based on them fail to estimate the actual rate quantization and distortion
quantization relationships accurately.

Motivated by these reasons, we want to look for a new distribution model that is a
better fit for the video source statistics (the integer transformed coefficients). Furthermore,
the parameters are able to be derived easily from the online encoding process which can
provide more accurate estimation on statistics information of encoding, such as R-Q and
D-Q relations.

1.2 Research Contributions

Recently, a transparent composite model (TCM) [46] has been proposed to provide a
model for distribution of DCT coefficients that can handle the fat tail phenomenon in
DCT coefficients better with simple ways to derive model parameters. This composite
model employs multi-models to describe different parts of the distribution. It is transparent
because once the TCM is determined, the specific model for a given coefficient to fall into
is clear. It has been reported that TCM can be used to model distribution of coefficients
obtained by performing DCT on original images, like the way in JPEG, with both accuracy
and simplicity.

Motivated by that, this thesis examines the modelling performance of the newly devel-
oped discrete parametric bi-geometric TCM (BGTCM) developed from TCM in HEVC.
The BGTCM employs two geometric distributions to composite the model. As described
in last section, there are three types of transform implemented in HEVC, i.e., DCT, DST
and TS. In this thesis, the data before quantization and after residual derivation, no matter
which one out of DCT, DST and TS is performed, is referred to coefficients for simplicity.
The coefficients, which are determined after mode decision, are collected through two ways.
First, they are collected through the whole frame firstly. In addition, because of the feature



of build the context-model in HEVC, 16 coefficient model are built. In HEVC, no matter
what size a TU has, this TU is divided into several non-overlapping coefficient groups (CG)
with size of 4x4. CG is the basic unit to run the entropy coding, i.e., context-adaptive
binary arithmetic coding (CABAC) , in order to encode the quantized coefficients which
contribute the major part to the encoded bit stream. The probability states of different
context models in HEVC are initialized at the beginning of encoding each frame. Coeffi-
cients at the same scan index (from 0 to 15) among different CGs in each frame share the
same set of context models which are used to encode levels and significant bit. Motivated
by that, coefficients at the same scan index are grouped into one set.

The BGTCM is employed to model the distribution of coefficients gathered by the two
collection methods, i.e., the coefficients from the whole frame and the coefficients grouped
based on scan indices. By comparing with the two widely-used models, i.e., Laplacian and
Cauchy distributions, in both x? and KL-divergence, BGTCM achieves better modelling
accuracy in both data collection methods mentioned above especially for the intra frame.

Because the BGTCM can model the residual coefficients more accurately, it would be
helpful for setting up the relation of rate and distortion with the quantization parameter.
Therefore, the corresponding R-Q and D-Q models are derived based on BGTCM. To
evaluate the R-QQ and D-Q models, absolute and relative differences between the actual
bits and modelled bits, the actual distortion in terms of MSE and modelled MSE are
computed for both intra and inter frames. The better modelling performance of R-Q and
D-Q models provided by BGTCM further verifies that the BGTCM is a better model for
the residual coefficients than Laplacian and Cauchy distributions.

Furthermore, when implementing BGTCM on HEVC, due to the limited sample range
and Laplacian-based discrete probability density function (pdf) of BGTCM, there is no
need to approximate the D-Q and R-Q models like Laplacian and Cauchy distributions
proposed in other papers. All the model parameters can be obtained online according to
actual encoded coefficients rather than being trained offline. The modelling results show
that, the estimation of D-QQ model is not highly related to coding tools i.e., the distortion
can be modelled by BGTCM without approximation. On the other hand, estimation of R-
Q model depends on coding techniques. The distortion is modelled directly from BGTCM
while R-Q needs scaling.

With the superior of BGTCM when modelling the distribution of coefficients, the rate
control scheme in HM-9.0 [5] is revised. Without changing the rate allocation algorithm
in codec, the D-Q and R-Q models based on BGTCM can increase coding efficiency while
reduce the rate fluctuation in terms of rate variance in the condition of requiring constant
rate through all frames when encoding one sequence.



Compared with the HM-9.0 codec rate control, the rate control scheme based on collect-
ing coefficients from the whole frame can reduce the BD-Rate [11] by 13.9% while reduce
the rate fluctuation in terms of variance by 64% with turning on the block level rate con-
trol. And the rate control scheme based on collecting coefficients are grouped based on
scan indices can reduce the BD-Rate by 2.8% while reduce the rate fluctuation by 45%
with only turning on the frame level rate control.

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 will introduce background knowledge, which will be used in this thesis. Prior
work about modeling of distribution of coefficients and rate control in video coding will
be presented. In the first section, HEVC and the rate control scheme will be described
briefly. Then, the next section will review the previously related work on distribution
of transformed coefficients and rate control algorithms. In the last section, because the
proposed rate control algorithm is implemented in HEVC codec, the implementation of
HEVC rate controller that is based on the Laplacian model will be discussed.

Then, in Chapter 3, the performance of modelling distribution of coefficients in HEVC
with BGTCM will be introduced in two parts. The first part is the distributions of trans-
formed coefficients after mode decision from the whole frame. In the second part, distri-
bution of transformed coefficients at different scan indices are modelled. The experiments
are performed in both inter and intra frames encoded with different QPs from low ones to
high ones. Three models, i.e., BGTCM, Laplacian and Cauchy are employed for modelling.
The modelling performance is evaluated according to y? and KL-divergence testings.

After that, in Chapter 4, the proposed rate control algorithm in HEVC based on
BGTCM will be presented. Firstly, the rate distortion optimization problem in rate con-
trol will be formulated. Then, based on the BGTCM, the corresponding R-Q and D-Q
models are derived. Using R-Q and D-Q models with the assumption that distribution of
transformed coefficients satisfies BGTCM, the rate control algorithm will be then proposed
and the corresponding experimental results will be presented and compared with other re-
lated methods. The experiments are performed based on constant rate requirement. The
comparisons are performed in both coding efficiency and rate fluctuation.

Finally, Chapter 5 will draw some conclusions and provide some directions for potential
future work.



Chapter 2

Background and Prior Work

In this chapter, the background knowledge and prior work related to this thesis is reviewed.
At first, the newest video coding standard HEVC is briefly introduced. Then, some prior
works about modelling of transformed coefficients and rate control in video coding are
reviewed. At last, the framework of rate control in introduced.

2.1 Overview of HEVC

To achieve better video coding RD performance than the H.264/AVC [34] standard, es-
pecially for high resolution sequences, a new video coding standard called HEVC [7] has
been finalized by the joint collaborative team on video coding (JCT-VC) .

HEVC has proved its superiority in coding efficiency over its predecessors. Compared to
H.264/AVC high profile (JM-18.3), HEVC test model (HM-9.0) [5] can save approximately
33% and 37% of bit rate with the same video reconstruction quality for low delay main
(LD-Main) and random access main (RA-Main) test configuration, respectively [22], [6].

To encode sequences with high resolution effectively, HEVC incorporates many ad-
vanced coding tools, that have not been included in the conventional video standards.
During encoding, a video frame is divided into several non-overlapping 64 x64 largest cod-
ing units (LCUs) . Each LCU is a basic encoding unit relative to the macroblock (MB) with
a size of 16x16 defined in H.264. For each LCU, HEVC adopts quad-tree CU structure
with a size ranging from 8x8 up to 64x64. Each CU can be symmetrically or asymmet-
rically partitioned into PUs, where predictions are applied. The residual signal resulting
from a prediction is transformed and quantized by TUs, which also have a variable size
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block in a quad-tree structure. To choose the optimal coding parameters, such as inter
or intra prediction parameters and block partition structure for CUs, PUs and TUs, are
called mode selection, which is the most important and most complicated part of HEVC.

\

Video

any [ . | Entropy Output
» Transform uantization . e
\“/ | Q | Coding Bitstream

Dequantization

Inv Transform

Deblocking

Inter Prediction
Reference

Buffer

Figure 2.1: Encoding Diagram of HEVC

Figure 2.1 shows the encoding diagram of HEVC, which retains the basic hybrid coding
architecture of prior video coding standards, such as H.264/AVC.

Inter/intra prediction is the first step when encoding a frame in HEVC. Inter and intra
prediction methods are switched based on configuration and features of current frame and
PU. For example, intra frames only allow intra prediction and inter frames allow both
inter and intra prediction methods. Inter prediction (motion estimation) reduces temporal
redundancy by estimating the current frame from reconstruction of previously encoded
frames. This process can achieve accuracy at quarter-pixel level. When an object is en-
coded in one frame, its appearance in all future frames can be well represented with its
shape and displacement. The trajectory of an object (e.g., a moving car) among frames
can be estimated, providing an object-based motion field. However, this method of mo-
tion estimation is not a practical since it needs a large number of overhead bits to store
the arbitrary shape information, and the object shape derivation is very computationally
intensive. On the other hand, the block-based motion estimation, due to its fixed shape
pattern,utilizes quite a few bits to encode the block partition, and it is computationally
tractable. Therefore, the block-based motion estimation is applied in all current video
coding standards.



In addition to inter prediction among temporal frames, intra prediction is used to reduce
the spatial redundancy. A block is predicted by using intra prediction from reconstruc-
tion of previously-coded neighbouring samples in the current frame. When the spatial
redundancy is greater than the temporal, intra prediction is used more often than inter
prediction. Intra prediction always happens to the frames where scene change occurs.

In video coding, inter/intra prediction determines the residual energy. Therefore, the
prediction has a significantly influence on coding efficiency. If the residual energy is high,
i.e., the prediction is not good, the bit rate used to encode the residual will be high to
maintain the same reconstruction quality. On the contrary, for a limited encoding bit rate,
the reconstruction level will degrade.

In prediction, generally speaking, compared with large blocks, blocks with small sizes
tend to supply a more accurate prediction, i.e., the prediction for each block is a good
match to the actual data in the block. This results in lower residual energy. So fewer bits
are required to encode the residual blocks. However, the choice of prediction for every small
block must be signalled to the decoder; that is more bits required to code the prediction
choices. As such, because of the tradeoff between rate and distortion, how to set the block
size is a key problem in the encoding procedure.

After inter/intra prediction, residual information is obtained by subtracting the pre-
dictor from the original block in the pixel domain. Then, transform is applied to each TU
of this block in order to convert the residual data from the image domain to the frequency
domain. The motivation for using transform is to de-correlate signals so that the outputs
after transform can be efficiently coded using simple techniques such as scalar quantization
(Figure 2.1). Tt is worthy to point out that, in HEVC, DCT is the major transform method
for almost all sizes of TU except when the size of TU is 4x4 where DST and TS can be
applied.

Due to the limitations in the human eye’s response to spatial details, quantization
is applied to video compression. With quantization, a certain amount of distortion may
be introduced into reconstruction video sequences where people may not notice it. In
addition, even if noticeable distortion occurs, human observers are still able to extract
critical information from compressed video signals. Therefore, the quantization is applied
in video compression to reduce psycho-visual redundancy.

The simplest scalar quantization is also called hard decision quantization as shown in
Figure 2.2, where d is the dead-zone size and s is the QS. Hard decision quantization is
implemented to map integer transformed coefficients to some limited indices by simple
arithmetical operations based on the input coefficients and QS. By reducing the dynamic
range of integer transformed coefficients, quantization can achieve significant bit reduction.
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Figure 2.2: An Example of HDQ

In HEVC, rather than the simple HDQ), rate distortion optimized quantization (RDOQ)
based on the concept soft decision quantization (SDQ) [44] is applied to increase the RD
performance.

In video coding, entropy coding is independent of specific data contents and is developed
based on mathematical modelling of the data in order to reduce the statistical redundancy
in data. Whereas the quantization makes video coding lossy, entropy coding transfers data
in a lossless way.

In HEVC, the quantized coefficients are entropy-coded in groups of 16 coefficients for
cach TU no matter what size of the TU is. Each group is called a coefficients group (CG).
The entropy coding is applied as context adaptive binary arithmetic coding (CABAC)
with a similar scheme in H.264/AVC, but it has several improvements to increase the
throughput and compression efficiency. In each CG, the scan order may be different, as
shown in Figure 2.3. However, when encoding coefficients information, such as levels and
significant bits, which context models are used for CABAC will be determined based on
the scan index (from 0 to 15) in each CG. In H.264/AVC, a zigzag scan is performed for
every 4x4 coefficients. After entropy coding, encoding one frame is finished, and this frame
is ready to be transformed or stored.

Figure 2.3: Examples of Different Scan Orders in CGs in a 8x8 TU [38§]

If an encoded frame will be used as a reference frame for inter prediction in the future
encoding procedure, its reconstruction data will be obtained by uniform reconstruction
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de-quantization followed by inverse integer DCT, DST or TS. Like other block-based video
coding standards, HEVC also suffers from visible discontinuities at block boundaries in
reconstructed video sequences. These blocking artifacts are caused by independent cod-
ing of blocks, that is the result of applying the block-based inter/intra prediction and
transform followed by coarse quantization. To remove such artifacts, HEVC employs a in-
loop de-blocking filter and sample adaptive offset (SAQO) for better reconstruction. These
de-blocking filter in HEVC is implemented to improve the subjective video quality while
reducing the complexity of de-blocking method in H.264/AVC, which contributes signifi-
cantly to the decoder complexity.

The concept of SAO is to reduce mean sample distortion of a region by first classifying
the region samples into multiple categories. An offset for each category is derived and added
to each sample in that category. For each region, the classifier index and the corresponding
offsets are encoded in the bitstream.

2.2 Previous Work on Distribution of Transformed
Coefficients

Image and video coding systems with two-dimensional transforms, such as JPEG, H.264/AVC
and HEVC, make several different assumptions about the distributions of the transformed
coefficients. Based on the central limit theorem, Pratt [31] employs Gaussian distribu-
tion to model the pdf of coefficients. Laplacian density is used by Reininger et al. [33]
and Smooth [37] to estimate that pdf. Based on the quadtree LCU partition structure in
HEVC, Seo et al. [35] employ separated Laplacian distribution to model DCT from blocks
with variable sizes. Kamaci [16] reports that pdf of the DCT coefficients is more conjec-
tured to Cauchy density. These models have simple pdfs that can be used easily for other
computations, such as estimation of rate-quantization (R-Q) and distortion-quantization
(D-Q) models .

Other studies model the distribution of DCT coefficients using more complicated pdfs.
Muller [29] employs a generalized Gaussian function, which combines Gaussian and Lapla-
cian distributions. In [10], Eude et al. utilize a linear combination of some of the Laplacian
and Gaussian pdfs to model the distribution of actual DCT coefficients. Comparing to pure
Gaussian and pure Laplacian density, these complex densities can model the statistics of
the DCT coeflicients more accurately. However, they cannot be widely applied in practice
due to the complication in mathematical analysis.

When pure Gaussian or pure Laplacian density is applied, the probabilities of large
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coefficients cannot be estimated properly because the pdf drops to zero quickly and can
be ignored for coefficients with large values. However, in actual entropy coding, these
large coefficients contribute quite a few bits to the bit stream. If these coefficients cannot
be reflected in the pdf, there will be a significant mismatch between the estimated and
actually generated rate.

Recently, the TCM and BGTCM [46] have been proposed to modify the estimation of
distribution by solving the problem at tails, i.e., large coefficients.

The basic ideas of TCM and BGTCM are the same. Given a sequence of DCT coeffi-
cients, they first separate the fat tail of the sequence from the main body of the sequence
and, then, use one distribution to model DCT coefficients in the fat tail and a different
parametric distribution to model the rest of DCT coefficients. In this way, they can model
the fat tail in the DCT coefficient distribution without providing an inaccurate quick drop
to zero. The difference between TCM and BGTCM is that how to model the fat tail.
Specifically, TCM employs a uniform distribution while BGTCM utilises the same dis-
tribution as main body with different parameters, such as geometric model. It has been
reported that, by performing DCT directly on original images like the way in JPEG, TCM
can provide modelling of distribution of coefficients with both accuracy and simplicity.

In this thesis, target at the transformed coefficients in prediction-based video coding
standard, BGTCM is applied to model the distribution of transformed coefficients from the
whole frame in HEVC. Furthermore, due to application of CGs in entropy coding, BGTCM
is applied to model the distribution of transformed coefficients from the same scan indices
from a frame in HEVC.

2.3 Prior Work on Rate Control in Video Coding
Based on Modelling of Transformed Coeflicients

As introduced in Chapter 1, the rate control scheme is applied to control the generated
bit rate by using a specific QP as shown in Figure 1.2. In video coding, the rate controller
will determine the QP according to the information of video feature and number of bits
have been generated. After one frame is encoded, its rate information will be sent to
the controller for future decision. Without several passes or iterative encoding to solve
the dilemma, model-based rate control algorithms are usually employed. Based on the
assumption that pdf of DCT coefficients can be estimated by some distribution density,
the R-Q and D-Q model are established. With the information of rate requirement and
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number of generated bits, budget bit for current frame can be derived. Then QP could be
computed based on R-Q model.

Several model-based rate control algorithms have been proposed for H.264 and HEVC.
The most widely used methods assume Laplacian distribution fit the distribution of DCT
coefficients. What’s more, due to the easy form of pdf of Laplacian distribution, it is easy
to obtain simple expressions of R-Q and D-Q relations. Generally speaking, given a QP,
the more complex a sequence is , the less bits are generated. Based on that, some methods
involve mean of absolute difference (MAD) as the complexity to combine with Laplacian
distribution to estimate R-Q model for rate control.

In [28], a linear R-Q) model is proposed, where bits are assumed to be linearly related
with the product of QS s and MAD m. In [24], the quadratic rate model proposed in [§]
based on Laplacian distribution is employed to determine the QP for a basic encoding unit,
which can be either a frame or a MB. This quadratic model is widely used in video coding
standards. It involves MAD in the model to illustrate the texture complexity of a unit.
MAD for a unit is defined as

m:Z|Oz‘—Pz'| (2.1)
i=1

where O and P are the original and predicted signals.

By the Taylor series approximation to the RD function of Laplacian source signals, the
quadratic R-Q model proposed in [8] with MAD term is defined as

Rr=m (% + S—bQ) (2.2)

where Rr , a and b are a target bit rate for the unit and model parameters for the first
and second order terms, respectively.

The model parameters a and b are updated every unit by using linear regression [8]. It
is worthy to point out that, QS is employed in (2.2) due to the accuracy than QP, which
can be mapped to QS in a one-to-one relation. The model in (2.2) can reflect the relation
between complexity of contents and QS. Generally speaking, large MAD means residual
data is much due to the bad prediction information, if a good reconstruction quality is
desired, small QS is preferred. This will cause an increase in bit rate. In rate control
problem, small QS should be employed for residual blocks with large MAD to satisfy the
requirement of the given target bit rate Ry.

Since the residual signal is not available until RDO finishes, the MAD of a unit is
estimated by the MAD of the collocated unit from the previous frame with a linear model
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defined as
m=c-m.+d (2.3)

where m,, ¢ and d are MAD of the collocated unit and model parameters. Like a and b in
2.2, ¢ and d are updated based on linear regression as well.

Based on Laplacian distribution, in [13], [14] and [12], He et al. presented a rate-
distortion model based on the fraction of zeros among the quantized DCT coefficients
(denotes as p) and a rate-control method based on these models. Based on the observations
that the bit rate and p have a linear relationship. The proposed rate model is

R=46(1-p) (2.4)

and the distortion model is
D = g?e~o(=7) (2.5)

where 0 and « are model parameters and o? is the variance of the coefficients which are
assumed to satisfy a Laplacian distribution. The resulting model based on p-domain was
reported to fit the linear relationship in rate model and to perform better than H.263 and
H.264 rate control scheme in terms of both rate fluctuation and coding efficiency.

Based on the model in (2.2),in [15], with the quadratic rate model and the linear MAD
estimation model, Jiang et al. propose a frame layer bit allocation and improve the com-
plexity measurement by using the MAD ratio and the PSNR drop ratio instead of MAD.
In [35], model in (2.2) is separated for blocks of variable sizes due to the introduction of
coding tree structure in HEVC. According to that, distributions of transformed coefficients
from blocks with different sizes are different. Then the overall R-QQ and D-Q models are
linear combinations of separated ones.

Besides Laplacian distribution, Cauchy density in (2.6) is widely used in rate control
algorithms due to the better fit the fat tails in DCT histograms [16]. In [16], based on
zero-mean Cauchy distribution shown as

pe(z) = a

=— 2R 2.6
2" (2:6)

R-Q and D-Q model are simplified as

R(Q) = a.Q™*
D(Q) = b.Q™"

where parameters o, and . are related to Cauchy distribution, which only have limited
values by setting some intervals for the parameter p and 7, and a. and b. are two scaling

(2.7)
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factors. Both Laplacian and Cauchy densities are defined in R, however, in video compres-
sion, values of DCT coefficients are integers and have limited dynamic range. Furthermore,
it is complex to estimate p accurately. Therefore, Those two densities will not suitable
to fit distribution of coefficients. In addition, the R-Q and D-Q models based on Cauchy
distribution is approximated. (2.7) cannot reflect information of Cauchy distribution. Fur-
thermore, it may not be proper for every coding standard.

Some other methods employ different model to estimate video complexity, which effects
the number of generated bits. For rate control algorithms with focus on intra frames, com-
plexity is highly related to spacial complexity. [20] proposed a complexity measurement to
determine QP for an intra frame based on entropy of the block histogram (EBH) which rep-
resents signal complexity and uncertainty. Gradient-based complexity models [25] can be
used to measure texture distortion. It conducts edge detection in pixel-level and measures
bitrate and edge statistical attributes. For inter-frame rate control, Lan et al. propose a
method based on block histogram difference in [19], which described the difference between
two consecutive frames as complexity measurement.

Some methods employs the inter-frame dependency which plays a crucial role in pre-
dictive coding to develop rate control algorithms. Ramchandran et al. [32] analyze the
inter-frame dependency of I, P and B frames in MPEG-2. Lin et al. [26] use a piece-
wise linear approximation model for the rate and distortion dependency among successive
frames for rate control. Both [32] and [26] can obtain good coding performance for MPEG-
2, but the computational complexity of the proposed algorithm grows exponentially when
the number of dependent frames increases.

Since most of the model-based rate control algorithms face the problem how to model
statistic information of residual data accurately and effectively, some methods, such as [42]
employ two stages in rate control. A subset of RDO is performed in the first stage with
a pre-defined QP to derive some rough statistic parameters, such as the motion vectors,
the header lengths and information of DCT coefficients. With this rough data, the QP is
revised in the rate control algorithm in the second stage by using the information gathered
in the first pass. These iterative methods can indeed achieve better rate stabilization and
RD performance due to the better estimation in pdf of DCT coefficients. [27] attempts to
improve the MAD estimation via a two-pass process with a simplified RDO as the first
pass. However, this is at the cost of encoding complexity generated by iterative encoding
procedure are mostly used in non-real-time applications.

Furthermore, there are some methods about how to derive a proper QP for the first
frame of a video sequence. Rather than default fixed initial QP, [23] determine it based on
the bit per pixel (BPP) requirement with some fixed thresholds. [43], [47] and [41] initial
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QP is determined by combining BPP and video contents, such as variance and probability
of occurrence for grey levels. This is not accurate and based on some ad-hoc methods to
fix the relationship between BPP and video contents.

2.4 Rate Controller in HEVC

In the HEVC reference software HM-9.0 [5], the rate control scheme, shown as Figure 2.4,
is performed for inter-frames based on the quadratic R-Q model in (2.2) for a basic unit,
which can be either a frame or a LCU levels. Each basic unit can be either a frame or a

LCU.

Encoder Residual QP Actual bits
interface A

AQP-limiter

] Residual bits y Total bits
QP demand
! Init QP —
R-Q Model |« QP init
! i i
Complexity MAD | Y
Estimation l i
Target bit Buffer fullness | \];Lr?;:rl
. . * I »  Model
Basic Unit bit allocation 1
. 1 ) '
GOP Target bit i i i
Rate GOP bit allocation (= % i i
controller A i | 1
User Demanded | Buffer  Initial
interface bits capacity  Buffer
occupancy

Figure 2.4: Diagram of The Rate Controller in HEVC [3]

The elements of rate controller in Figure 2.4
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e R-Q model.

This is the core of rate controller. QP can only influence the detail of information
carried in the transformed residuals. QP has no direct effect on the bits associated
with other overhead, such as block partition and motion vectors. As the result, QP
in the R-Q model is mainly determined based on residual information. In HM-9.0,
R-Q model is based on the quadratic model shown in (2.2).

Note that a QS value for the current frame is computed from the quadratic R-Q
model with the MAD estimated as (2.3). The corresponding QP will be employed in
the whole encoding procedure for the unit.

e Complexity estimation.

MAD is chosen because it is easy to computed and is an inverse measure of prediction
quality. Due to the ”chicken and egg dilemma”, MAD in (2.2) is estimated based on
(2.1)

o AQP-limiter.

The rate control system must be implemented to appropriately guarantee stability
and to minimize perceptible variations in video quality. For difficult sequences having
rapid changes in complexity, QP obtained from R-QQ model may oscillate significantly.
Therefore, a QP limiter is applied typically to limit changes in QP. To be specific,

where, (), and ),,_; are the QPs for current and collocated units respectively.

e QP Initializer.

Currently, the initial QP is set according to the fixed value in configuration files of
testing in HM 9.0. However, it is flexible to develop some methods to set an adaptive
QP for different sequences.

e Virtual Buffer Model.

Any compliant decoder is equipped with a buffer to smooth out variations in the
rate and arrival time of incoming data. The corresponding encoder must produce a
bitstream that satisfies constraints of the decoder, so a virtual buffer model is used
to simulate the fullness of the real decoder buffer.

This is based on a fluid traffic model and the linear tracking theory introduced in [23].
A mathematical model, also known as a leaky bucket is employed to characterize the
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relationship between decoder and its input buffer. Bits stream is filled into the
decoder buffer at a constant rate and is removed from this buffer. A bit stream must
be decoded in the input buffer without its overflow or underflow. This requirement
can be strict satisfied and implemented by the rate control in the encoder.

The change in fullness of the virtual buffer is the difference between the total bits
encoded into the stream and a constant removal rate assumed to equal the bandwidth
(or demanded bitrate). The buffer fullness is bounded by zero from below and by
the buffer capacity from above. The user must specify appropriate values for buffer
capacity and initial buffer fullness, consistent with the decoder levels supported.

e GOP Bit Allocation.

Based upon the required bit rate and the current fullness of the virtual buffer, a target
bit rate for the entire group of pictures (GOP) is determined, which are allocated to
all frames equally. The QP for the first frame in the GOP is also determined.

e Basic Unit Bit Allocation.

Based on the buffer status and bits generated by the previous unit, the remaining
bits are allocated to all non-coded basic units in the current frame/GOP equally
because the MADs of non-coded basic units are not known. If the remaining bits are
negative, QP will be simply increased by 2 to reduce the generated bits.

2.5 Summary

In this chapter, some background knowledge is introduced. Firstly, the newest video coding
standard HEVC is briefly introduced. After that, some prior work on distribution of
transformed coefficients and rate control are reviewed. At last, the general framework of
rate control is introduced.
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Chapter 3

Modelling Transformed Coeflicients
in HEVC Based on BGTCM

In this chapter, the application of BGTCM in HEVC is presented. BGTCM is used to
model the distribution of both original and quantized coefficients. The modelling pro-
vided by BGTCM will be compared with those models provided by Laplacian and Cauchy
distributions.

3.1 Modelling of Distribution of Transformed Coeffi-
cients

In this section, the modelling of distribution of transformed coefficients in HEVC are
discussed with BGTCM, Laplacian and Cauchy distributions. The transformed coefficients
are derived after mode decision. Modelling are performed in two different methods. Firstly,
the modelling is performed on the coefficients collected from the whole frame. Secondly,
due to the CG-based coefficients coding method in HEVC, coefficients are grouped based
on the same scan indices among different CGs. Then modelling is performed on each group.

3.1.1 Distribution of Transformed Coefficients from the Whole
Frame

Recently, a TCM has been developed to better model DCT coefficient distribution when
performing DCT for image and video coding. Compared with some widely used statistics
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distribution, such as Laplacian distribution whose probability distribution function (pdf)
pr(y) is defined as

1 _ly—wl
=—¢
2\
where Aj, and py, are two model parameters, the results [46] and [45] show that the benefits
of BGTCM are due to the fact that the fat tails in DCT coefficient distribution cannot be
ignored as they are in other statistic models. If Laplacian distribution is employed to model
the DCT coefficient distribution and since the exponential curve drops fast towards zero
for the coefficients {y | |y| > y.}, it does not fit the real distribution very well especially

when there are a lot of DCT coefficients s.t. |y| > ..

pL(y) (3.1)

For a random variable y s.t. |y| < a, the pdf pr(y) of TCM is defined as

Wb\@)—lf (yl0) if |yl < ye
S, if y. < |yl < a

pr (yla,ye, b0, ¢) = Q(Q_;,/CC) gy (=ble e (3.2)
Wf(yc|)+m, Yy =y
0, otherwise ,

where
)
F(yl0) = / f (ul6) du. (3.3)

For computation simplicity, in this proposal, zero-mean truncated Laplacian distribu-
tion is employed for f (y|Ar), i.e.,

1 _lul
fYlAr) = e 3.4
W) = 51 3.0
Therefore, the pdf pr(y) of TCM can be rewritten as
( — .
ZAT(lf:*yC/XT)e /A, if |yl < ye
1-b )
2a—yo)’ ify. <yl <a
pr (y]a, ye, b, 6, ¢) = { X yc)bc vy B  r (3.5)
ZAT(lfefyC//\T)e + Q(G_yc)’ 1 |y| - yc
0, otherwise .
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However, in practice, such as H.264/AVC and HEVC, transform is often implemented
to transfer integer values based on the image domain to other integer values based on the
frequency domain. Rather than modelling the coefficients in continuous domain in (3.4), a
discrete parametric TCM for an integer random variable y based on a truncated geometric
distribution is developed as

bp ify=20
pr(y) = Qb1 =p)y [L— e BT (Lo emmel) ity <y (36)
2(61;;6) otherwise ,

where g7 is the corresponding quantization step size used in quantization to concentrate
the data range. Compared with (3.5), another benefit from (3.6) lies in dividing the main
portion into two parts: zero and non-zero coefficients. Based on the maximum likelihood
estimator, pr(0) in (3.6) is always equals to the actual probability of zero coefficient. As
such, this will model the main portion better, which are dominant among all coefficients.

Similar to (3.6), the dynamic range of data is again divided into three sub-ranges in
BGTCM. The difference lies in that the tails are modelled by another truncated geometric
distribution. This follows the fact that the larger the absolute values of coefficients, the
less probabilities are. Specifically, by modifying the tail part in (3.6), the data is modelled
by the revised distribution with the following pdf

bp ify=0
pr(y) = oL —p)3 [1 —e A e [ e 1<yl <y (3.7)
(1-b) [1 . e*%] ¢ % (wl=ve— 1>/<1 - e*i%(“*yc)) otherwise |

It is worthwhile to point out that the quantization step size gz is introduced in (3.6) and
(3.7) in order to provide a generic model for both original and quantized transformed coef-
ficients. When considering the R-Q relation based on the BGTCM for a batch of quantized
coefficients, qr is the same as the QS used to quantize coefficients in compression. When
the D-Q relation is considered, due to the requirement to know the original coefficients
before quantization, g is set as 1. Moreover, due to the fact that the larger the values
coefficients are the less the probabilities of them are, compared to uniform distribution, a
second geometric distribution is more suitable to model the tails. Therefore, in the future
analysis and experiments, the BGTCM in (3.7) will be employed.
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To justify the proposed BGTCM is a good fit for the distribution of integer transformed
coefficients in HEVC, BGTCM, Laplacian and zero-mean Cauchy are employed to model
coefficients in blocks whose coded block flags (cbf) equals to 1, i.e., when encoding coef-
ficients there are at least one quantized coefficient whose absolute value are not zero in
this block. Nine sequences with various resolutions and motion complexity are encoded
with HM-9.0 all-intra main (AI-Main) and low-delay main (LD-Main) for intra and inter
experiments. Under AI-Main configuration, ten frames from each sequence are picked up
randomly and encoded with QPs from 5 to 50 with 5 as the increase step. In inter case,
frame 0 to 4 are encoded with LD-Main configuration. Frame 0 is encoded as an intra
frame with a fixed QP, which is 20. Other inter frames are encoded with different QPs
from from 5 to 50 with 5 as the increase step as well.

After deriving the transformed coefficients after mode selection from blocks with cbf=1
and encoding each frame, based on maximum likelihood estimation, parameters for Lapla-
cian distributions are estimated as

e i is the median of {y1,yo, y3..., yn}

N
o A= ity i —

Since 0 is the dominant coefficient, Cauchy distribution is assumed as zero mean. There-
fore, the pdf of Cauchy distribution is

be

RG] (38)

pe()

where the parameter b, is obtained based on maximum likelihood estimation as well.

Figure 3.1 and Figure 3.2 show examples of modelling the distribution of the original
and quantized DCT coefficients from the first frame of the sequence Cactus under AI-Main
with different QPs by using BGTCM, Laplacian and Cauchy distribution.

Figure 3.3 and Figure 3.4 show examples of modelling of distribution of original and
quantized DCT coefficients from frame 2 of the sequence Cactus with LD-Main configura-
tion respectively.
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Figure 3.4:
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In these figures, actual distribution is derived by normalizing the histogram of either
original or quantized coefficients. It is worthy to point out that, for save of convenience to
compare distribution models, all density curves are illustrated in a continuous way, however,
the actual pdf and BGTCM density should be discrete because all coefficients are integers.
According to these figures, compared with Laplacian and Cauchy distribution, BGTCM
has a better match for middle part of the histograms. For the tails, Cauchy distribution
drops less slowly than BGTCM and Laplacian indeed. However, based on the histograms
of encoded coefficients, this dropping trend is too slow to follow the real histograms. To be
specific, at tails, Cauchy distribution over-estimates the probabilities of large coefficients.
This phenomenon is obvious for quantized coefficients especially. Furthermore, to solve
the maximum likelihood estimator for Cauchy distribution is complicated and takes much
longer time than the other two models.

Besides the histograms of actual pdf and various models shown above, x? and KL-
divergence tests are employed to compare modelling accuracy among BGTCM, Laplacian
and Cauchy distributions.

Given a sequence of original or quantized coefficients with alphabet set set {y1, y2, y3..., yn }
where y; # y; for i # j, p(y;) is the empirical probability of y; based on the nor-
malized histogram. pr(v:), pr(y;) can pe(y;) are model probabilities obtained by using
BGTCM, Laplacian and Cauchy distributions respectively. The KL divergences of the
model BGTCM, Laplacian and Cauchy from the observations are computed as

(

N
KLr = 3 plu)ln 22

[
=0

KLy =3 p(y)hn L, (3.9)
> (3:)
Klo o =2 ply)ngcts

@
Il
—

\

where 0In0 is defined as 0. The 2 test is defined as

¢

2 _ n[p(ys)—pr (y:)]*
X1 Z pr(Yi)
2 = Z n[p(y;)L(z;zL)(yl)] (3.10)
N
2 n[p(y:))—pc (v:)]*
Xc = z pc(yi)

\

where n is the total number of samples. The smaller the values of KL and y, the better
the modelling is.
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Table 3.1: Results of x? and KL When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Original Coefficients from Intra Frames under AI-Main

OC,2 OCkr x 1072
Sequence | QP =z %) 5 KL, | KL, | Ko
Baskethall 15 | 27392 | 633070 | 3529195 | 3.02 | 3.53 | 3.32
Drive 25 | 4312 | 51179 | 67534 | 4.60 | 4.85 | 5.11
35 | 1596 | 27143 | 25007 | 523 | 54 | 5.35
Four 15 | 2716 | 113447 | 235080 | 0.82 | 0.94 | 1.13
People 25 106 4291 2443 1.69 | 1.80 | 1.79
35 22 855 94 592 | 812 | 6.11
Race 15 | 2029 | 160668 | 63045 | 1.39 | 1.92 | 1.79
Horses C 25 | 1666 | 80409 | 23570 | 1.13 | 1.57 | 1.24
35 | 1455 | 29246 6134 2.58 | 2.73 | 2.68

Table 3.2: Results of xy? and KL, When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Quantized Coefficients from Intra Frames under AI-Main

chz QCKL X 10_4

Sequence | QP = ] 5 KL, | KL, | KLo
Basketball 15 | 10845 | 184697 | 289848 | 36.44 | 48.39 | 46.42
Drive 25 | 1771 | 162867 | 249311 | 14.41 | 33.52 | 24.39
35 78 | 184697 | 124953 | 1.91 | 245 2.22

Four 15 | 1808 | 360724 | 153757 | 11.49 | 16.91 | 13.44
People 25 55 | 288793 | 12147 | 7.86 | 13.53 | 8.11
35 17 715 89 24.33 | 44.38 | 30.53
Race 15 | 5107 | 80343 | 38256 | 91.97 | 103.34 | 111.94
Horses C 25 391 | 10217 | 41926 | 10.31 | 27.32 | 10.18
35 24 19246 | 8699 | 5.55 | 11.94 | 9.62
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Table 3.3: Results of xy? and KL, When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Original Coefficients from Inter Frames under LD-Main

OC,- OCkr x 1072
Sequence | QP =z %) X 5 KL, | KL, | Ko
Basketball 15 | 36320 | 933033 | 807946 | 2.67 | 2.89 | 2.73
Drive 25 | 6822 | 234406 | 148066 | 3.14 | 3.46 | 3.24
35 | 7536 | 226892 | 106617 | 4.51 | 4.84 | 4.61
Four 15 | 16047 | 671770 | 2612675 | 1.55 | 1.84 | 1.75
People 25 | 35161 | 653683 | 712375 | 2.87 | 3.12 | 3.27
35 | 32180 | 646594 | 316113 | 2.91 | 3.47 | 3.41
Race 15 | 16908 | 482353 | 102928 | 1.85 | 2.58 | 2.25
Horses C 25 | 26943 | 437712 | 85945 | 3.03 | 4.07 | 3.73
35 | 20150 | 376349 | 71900 | 2.93 | 3.77 | 3.14

Table 3.4: Results of xy? and KL, When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Quantized Coefficients from Inter Frames under LD-Main

QC 2 QOKL X 10_4

Sequence | QP v v A 5 KL, | KL, KLo
Basketball 15 | 16641 | 603156 | 262296 | 58.98 | 61.09 | 62.99
Drive 25 | 2892 | 2654433 | 586217 | 10.15 | 12.13 | 10.14
35 377 | 294238 | 610404 | 2.13 5.03 3.11
Four 15 | 11133 | 638696 | 118430 | 100.64 | 144.96 | 120.63
People 25 916 | 221829 | 173737 | 14.64 | 19.50 | 16.61
35 336 | 809212 | 174515 | 4.60 9.92 6.53
Race 15 | 9275 | 190573 | 18367 | 116.84 | 139.81 | 126.82
Horses C 25 662 | 794440 | 60005 | 23.96 | 27.76 | 25.91
35 264 | 648899 | 87994 | 4.83 8.21 5.71
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Table 3.1 to Table 3.4 show x? and KL-divergence testing results when using BGTCM,
Laplacian and Cauchy to model distribution of original and quantized coefficients from
inter and intra frames encoded with different QPs in HEVC. In most cases, the values of
KLz and x% are much smaller than those values for Laplacian and Cauchy distributions.
For instance, those values for Laplacian and Cauchy distributions are tens and hundreds

larger than the values of KLy and x3 for BGTCM.

Clearly, the BGTCM can model is significantly better than Laplacian and Cauchy model
for modelling the transformed coefficients in HEVC. The BGTCM matches the distribution
of transformed coefficients very accurately, especially for intra frame.

Above experimental results demonstrate that BGTCM is better than Laplacian density
to model both original and quantized DCT coefficients in both inter and intra frames in

HEVC.

3.1.2 Distribution of Transformed Coefficients from the Same
Scan Indices among Different CGs in a Frame

In HEVC, the quantized coefficients are entropy-coded in groups of 16 coefficients for
each TU. Each group is a CG. When encoding quantized coefficients information with
CABAC, which context models will be used for levels and significant bits of coefficients
are determined by the scan indices of coefficients in their CGs. Therefore, it will be useful
if the models are established for coefficients with the same scan indices. Since the scan
in each CG is from bottom-right to up-left, i.e., bottom-right coefficients are indexed as
0 and up-left coefficients are indexed as 15. According to the energy concentration of
transforms, in each CG, generally speaking, coefficients at high indices have higher energy
than coefficients at low indices.

The only difference of testings in this section, compared with testings in last section, is
performing models on coefficients at the same indices.

Figure 3.5 and 3.6 show modelling of distributions of original and quantized coefficients
at scan index 0 when performing BGTCM, Laplacian and Cauchy. Figure 3.7 and 3.8 show
modelling of performing BGTCM, Laplacian and Cauchy on coefficients at scan index 15.
The coefficients are from the first frame of sequence Cactus encoded in intra mode with
QP set as 15 and 35. Similar to last section, y? and KL-divergence tests are performed.
Results are shown in Table 3.5 and Table 3.6 correspondingly.

Then D-Q and R-Q relations based BGTCM will be introduced in the following sections.
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Table 3.5: Results of xy? and KL, When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Original Coefficients in Different Scan Indices from Intra Frames
under AI-Main

chz OCkr, X 1072

Sequence | QP | Index v & 5 KL, | KL, | KLo
15 0 10281 | 31576 | 45364 | 3.56 | 7.73 | 2.40
15 4299 | 20558 | 8795 | 3.22 | 16.92 | 4.84
Basketball 95 0 176 3673 | 10423 | 1.27 | -0.22 | 1.17
Drive 15 1315 | 27783 | 2943 | 2.01 | 30.93 | 2.72
35 0 294 4769 | 10993 | 1.02 | 1.26 | 1.93
15 552 | 40624 | 3936 | 1.84 | 26.35 | 3.38
0 360 3082 | 39285 | 1.56 | 7.31 | 4.19

Four 15
People 15 1243 | 25973 | 13129 | 242 | 42.3 | 5.51
95 0 184 2460 | 18698 | 1.97 | 10.73 | 5.49
15 5940 | 37485 | 38274 | 8.24 | 52.3 | 15.2
35 0 173 2637 | 8612 | 2.64 | 14.56 | 4.08
15 8045 | 52264 | 99754 | 10.40 | 75.21 | 26.54
Race 15 0 262 3650 | 1517 | 0.96 | 17.33 | 1.67
Horses C 15 2206 | 9530 | 8567 | 7.05 | 25.67 | 6.81
95 0 53 5105 | 1877 | 1.28 | 21.03 | 1.57
15 4002 | 12362 | 13781 | 10.85 | 30.22 | 11.24
a5 0 84 3340 | 1655 | 1.80 | 16.11 | 1.86
15 5369 | 16501 | 25972 | 20.35 | 42.20 | 22.18
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Table 3.6: Results of xy? and KL, When Using BGTCM, Laplacian and Cauchy Distributions
to Model Distribution of Quantized Coefficients in Different Scan Indices from Intra Frames
under AI-Main

QC 2 QCKL X 10—2

Sequence | QP | Index v ] X 5 KL, | KL, | KLo
15 0 282 11315 12447 | 0.17 | 2.93 | 0.19
15 2610 12547 4337 | 2.81 | 14.70 | 2.86
Basketball 95 0 13767 | 3324419 | 292876 | 0.02 | 0.21 | 3.02
Drive 15 321 94158 15849 | 0.42 | 26.07 | -6.05
35 0 47 2x107 | 26767 | 1072 | 0.10 | 10.06
15 87 2x10% | 26309 | 0.17 | 5.32 | -1.30
Four 15 0 619 20778 6460 | 3.01 | 38.21 | 3.24
People 15 450 294441 | 27456 | 0.66 | 11.37 | -2.06
95 0 27 107 38236 | 0.08 | 9.04 | 3.68
15 138 17035 6243 | 0.95 | 32.84 | -6.11
35 0 32 107 30357 | 0.03 | 7.46 | 7.34
15 70 303628 | 15567 | 0.33 | 20.7 | -5.09
0 343 7119 4142 | 091 | 14.66 | -2.55

Race 15
Horses C 15 1204 7446 3999 | 3.62 | 22.37 | 3.80
95 0 14 45088 11571 | 1073 | 10.59 | -3.13
15 43 5129 1468 | 1.05 | 18.33 | -1.85
a5 0 5 8940 1431 [ 1073 ] 5.21 | 3.88
15 59 14910 5834 | 0.26 | 10.43 | -3.19
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3.2 Summary

In this chapter, the performance of modelling transformed coefficients in HEVC are examine
by using BGTCM, Laplacian and Cauchy distributions, where the later two are two widely
used models. At first, the distribution of all transformed coefficients from a whole frame
is modelled with those three models. Since in TUs with different sizes, the transformed
coefficients are grouped into 4 x 4 CGs and coefficients at the same scan indices using the
same context model during encoding, models are performed based on scan indices.

Histograms are derived to show the modelling performance intuitively. Also, KL-
divergence and y? testing are performed to compare the performance numerically. The
results show that, BGTCM outperforms the other two models when modelling both origi-
nal and quantized transformed coefficients in HEVC.
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Chapter 4

The Rate and Distortion Optimized
Rate Control Algorithm in HEVC
with BGTCM

In this chapter, with the assumption that the distribution of the transformed coefficients
in HEVC satisfy BGTCM, the corresponding R-Q and D-Q models are derived. Based on
R-Q and D-Q models, a rate and distortion optimized rate control algorithm is developed,
which is used to achieved the bit rate requirement and reduce the distortion. Compared
with HEVC codec and a newly proposed method, the proposed method in this thesis can
achieve less rate fluctuation in terms of rate variance and some gain in RD performance in
terms of BD-rate.

4.1 Problem Formulation

As we described in Chapter 1 and 2, a predetermined bit rate is desired in some video
coding applications where the bandwidth of the channels and the capacity of storage are
limited. However, it is also important to maintain the video quality at the same time.
Therefore, the problem can be described as minimizing the distortion, when given a target
bit rate for each frame.

Q" = argmin{D(Q)||R(Q) < Rr}, (4.1)
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where () denotes a quantization step size. Ry and R(Q) are the target bits and the number
of bits generated by encoding the current frame with @, respectively. D((Q)) means the
distortion resulting from encoding when @) is used. To determine a () providing R, this
problem can be transferred to a R-D optimization problem. Therefore, the quantization
step size ) for the current frame can be determined as follows:

Q" = argmin{J.,s = D(Q) + A\-R(Q), when R(Q) < Rr}, (4.2)

where J.,s denotes the total R-D cost when the current frame is encoded with Q. A is the
Lagrange multiplier. To determine a ) providing Ry, the relationship between D(Q) and
@, R(Q) and @ should be formulated with a D-Q model and a R-Q model, respectively.
Not only the predetermined target bit rate for each frame, but also the condition related
to the buffer fullness determine the Ry for current frame.

Because HEVC codec has adopted a quadtree-based CU, PU, and TU structure, the
transformed coefficients (DCT coefficients) contain less energy compared to H.264/AVC.
Some well-developed method to fit distribution of transformed coefficients in H.264 may
not work so well in HEVC. Therefore, it is desirable to find a model to better represent
the distribution of DCT coefficients in HEVC. In the proposed method, the pdfs of DCT
coefficients in HEVC will be modelled according to the skipped and non-skipped CUs
separately. In the skipped CU, all the transformed coefficients will be quantized to zero,
whereas in the non-skipped CU, at least one coefficient will not be quantized to zero. In the
next sections, the R-Q and D-Q models for HEVC based on integer BGTCM are derived.
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4.2 D-Q Model Based on BGTCM in HEVC

The distortion D is calculated as the mean square error (MSE) between original and
reconstructed sequence. MSE can be computed between original and reconstructed DCT
coefficients in frequency domain, as shown as below

D= (=) p () (4.3

(2

where ; is the reconstructed value of y; and p (y;) is the empirical probability of y;.

In our algorithm, actual MSE is estimated based on modelling of distribution of coef-
ficients, D,,.

Therefore, the distortion based on Laplacian model is
2s

Dy, =2X\} + 5 :
AL (eiﬁ — eﬁ>

(4.4)

Distortion based on Cauchy density can be computed in a similar way.
For BGTCM,

Dr=2%"pr(y) (y— L +a)) (1.5)

where d is the size of the dead-zone. Note that y in (3.7) is the values of integer DCT
coefficients and the quantization step size gr in (3.7) is set as 1 due to the density of
original DCT coefficient is employed when distortion is considered.

Since the AQP-limiter in the rate controller is employed to limit the QPs between
neighbouring units, in our methods introduced later, the D-Q model in (4.5), which is in
the form of summation, will not be approximated to some simple expression. At most 5
QPs are considered for a unit, due to the limited range of y in BGTCM (3.7), Dt for each
QP can be computed quickly.

Figure 4.1 shows modelling of D-Q relation in intra frames from four sequences. Each
frame is encoded in several QPs from 10 to 45 with 5 as a step. Original DCT coefficients
are grouped into two set depends on whether the corresponding blocks are skipped or not.
Then parameters of Laplacian and BGTCM densities are derived for each group. Based
on the PSNR value, the actual MSE is computed as

20log 10(255) — PSNR]"
10

MSE = (4.6)
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Figure 4.2: D-Q Model Based on Distribution of Original Coefficients for Frame 1 in Four

Sequences Encoded under LD-Main with QP from 10 to 45

Absolute (AD) and relative (RD) difference between actual and modelled MSE are also

computed as

AD = Yp IMSE(QP) — Dy (QP)|/8

RD = Y IMSE(QP) — Dy (QP)|/[8 x MSE(QP)] x 100%

(4.7)

where Dy, M € {T, L,C}, is the modelled MSE. Since, eight QPs (10, 15, 20, 25, 30, 35,
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Table 4.1: Results of Absolute and Relative Difference between Modelled MSE by BGTCM,
Laplacian and Cauchy and Actual MSE from Intra and Inter Frames under AI-Main and
LD-Main Respectively

Sequence Type | ADy | ADy | AD¢c | RDy | RDy, | RD¢
Intra | 0.73 | 2.03 | 1.14 | 4.82 | 9.73 | 6.03
Inter | 0.36 | 0.78 | 0.81 | 2.42 | 4.12 | 4.59
Race Intra | 4.12 | 6.47 | 4.75 | 7.38 | 11.90 | 9.01
Horses C Inter | 3.29 | 3.87 | 4.11 | 3.97 | 4.01 | 5.69
Basketball | Intra | 1.21 | 2.52 | 1.54 | 6.95 | 10.62 | 9.11

Kimono

Drive Inter 0.21 1.05 0.44 3.52 8.20 5.31
Basketball | Intra | 5.67 | 5.89 | 5.61 5.36 6.21 5.38
Pass Inter 0.63 | 0.85 | 0.69 | 4.21 7.58 6.96

40, 45) are employed, the sum of difference is divided by eight to obtain the average value.
The results are shown in Table 4.1. Based on our observation, the DQ model based on
BGTCM is better than the other two.

Similarly, D-Q relation curves in inter frames from those four sequences are shown in
Figure 4.2. In this scenario, the second frame in each sequence is encoded with different
QPs from 10 to 45 with 5 as a step. For all QPs, the reference frame, i.e., the first frame
in each sequence is encoded in intra mode with fixed QP=25.

Figure 4.1 and Figure 4.2 demonstrate that, compared with Laplacian and Cauchy
distribution, BGTCM can be employed to model D-Q relation more accurately.

4.3 R-Q Model Based on BGTCM in HEVC

Due to the tools in practical entropy coding, such as context models which considers the
conditional distribution, the number of actually generated bit rate may differs a lot from
the entropies of sources, in our methods, the bits generated by HEVC encoder can be
estimated linearly by using entropy of the encoded signal as follows

BPP = 3Hy (4.8)

where (3 is the linear scaling factor between Hyr and BPP and Hr is entropy of quantized
transformed coefficients. Since coefficients from skipped blocks are not encoded into bit
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streams, the entropy is computed only for coefficients from non-skipped blocks as
Hr = —pr(0)log 2 (pr(0)) — 2ZPT ) log o (pr(y)) (4.9)

where y is the value of quantized transformed CoefﬁClents. Since the distribution of quan-
tized DCT coefficients are employed when computing rate, the quantization step size qr
in (3.7) is equal to the actually step size used to quantize coefficients. According to (3.7),
4.9 can be written in a closed formula as

Hy = — (bp) log, (bp) —2ZPT )log, (pr(y)) —2 Y pilog, (pr(y))

y=1 y=yc+1
= — (bp)logs (bp)
b(1 —p)(1 — e—q//\l) 1 Yoo~ el M
—b(1—p){l wa|
(1 = p){log, [ 2(1 — e—ave/M) A (1 —e=9/M) t A (1 — efqyc/M)}
(L=0)(1—e ") i 1 ayge” 1ONsTve)/ 2o
~ (= h)tlos, [2 (1 — e~ala—ye)/2) ‘ il Ao (1 — e=9/22) i Ao(1 — e_q(aNS_yc)/’\2)}
(4.10)

Similarly, the entropy of Laplacian distribution for quantized coefficients from non-
skipped blocks is computed as

H;, = (1 — e_z*LC{NS> log, (1 — e_”L({NS>

el GZAL(TNS —e 2AJst
_ 26 L NS 10g2 2 (411)

g
_ 9
(1= ¢ 755 ) A wsIn2

and the entropy of Cauchy distribution for quantized coefficients from non-skipped blocks
is computed as

___q
+ 2e 2A\L,NS .

He = — pC(O) log, (p0<0))
> (G+d)q (§+d)q (4'12
-2y / pe(y)dylog, ( / pc(y)dy> )
j=1 (j—14d)q (j—14+d)q

Under the same testing conditions as those in D-Q model above, Figure 4.3 and Figure
4.4 show the rate curve of R-Q relation in intra and inter encoding mode. Those figures
demonstrate that BGTCM can be employed to model R-Q relation more accurately.
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4.4 Rate Control Algorithm Based on BGTCM in
HEVC

4.4.1 Parameter Estimation

In our method, BGTCM is employed to derive D-Q and R-Q models. As in HEVC, due to
the complicated rate distortion optimization (RDO) procedure for motion estimation and
mode selection in video coding, the residual data and its related information used for rate
control cannot be generated until RDO is performed. On the other hand, RDO employs
a pre-defined QP to do quantization in mode selection to choose an optimal compression
mode in order to achieve the best coding efficiency. Therefore, the parameters of BGTCM
based on actual DCT coefficients cannot be derived before that fixed QP is determined. To
overcome this problem, the parameters at frame level are predicted as the same as those
for the previous frame and those at block level are predicted as the same as those of the
collocated block.

Scaling factors § used in R-Q model (4.8) is updated based on the least mean square
algorithm. This happens after encoding one unit when the actual transform coefficients
are available.

4.4.2 QP Decision

This section describes the algorithm used for QP decision for current unit (frame or CU),
which is shown in Algorithm 1.

The inputs are QP for previous unit QPpye, target bit rate Ry for current unit and the
set of BGTCM parameters S. The target bits allocated for current unit is determined in
the same way as HM. Since the actual TCM parameters could be obtained after encoding
of current unit, these actual parameters will be used for rate control of future units. Specif-
ically, current frame employs actual S from previous frame in display order and current
CU employs actual S from its collocated CU. The output is the QP used to encode current
unit.

At the beginning of the algorithm, if the target bit rate Ry < 0, i.e., the buffer is full
currently, so the generated bit rate should be as little as possible. In this scenario, the QP
will be set as QPpre + 2 directly.

When there is space in the buffer, five candidate QPs are employed, i.e., QPpre —
2,QPpre — 1...QPpre + 2 to reduce the rate fluctuation among neighbour units. The each
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QP, the corresponding estimated bits Rrcys is obtained based on (4.9) and (4.10). If
Rrov < Ry, the total cost is computed as

J = Droy + ARroum (4.13)

where the distortion Drepys is computed as (4.5). The QP with minimum cost will be
employed for encoding.

However, if there is no QP satisfying the condition Rrcoy < Ry, |(RTCM(QPpre +2)—
Rr)| and|Rrem (QPpre +3) — Rr| are compared. Then, the QP with smaller rate distance
would be taken.

49



Algorithm 1 QP decision

Input:
The quantization parameter (QP) used for previous frame/block: QPpre;
The target bit rate for current frame/block, Rr;
The set of BGTCM parameters, S;

Output:
The QP used for current frame/block, Q;

1: if Ry < 0 then

22 Q=QPpre +2 \*when target bit rate is negative, () = QPpre +2 *\

3: else

5. HasQ = false;

6:  Jpest = MAX,
\*Choose the QP with minimum RD cost which is estimated based on
BGTCM parameterss\
fori=0;7<5 14+ + do

: if Rperem(Qrempli], S) < Ry then

9: Has@Q) = true;

10: J = Dparem(Qremplt], S) + ARparem (Qremplt], S);

11: if J < Jpes then

12: J = JBest;

13: Q = QTemp[i];

14: end if

15: end if

16: end for
17:  if 'HasQ then

18: Compare [(Rperem(QPpre +2) — Rr)| and|Rperem(QPpre + 3) — Rr| Choose
the small one

19:  end if

20: end if

21: return (Q;
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4.5 Experimental Results

This section presents the experimental results for the proposed rate control algorithm.
The testings are implemented in the HEVC reference codec HM-9.0 under default LD-
Main configuration. The actually generated bit rate without rate control in HM-9.0 are
employed as target bit rates. The initial QPs are set as 22, 27, 32 and 37 for the first intra
frame. Twelve sequences [4] with different resolution, motion complexity are utilized. The
rate control method in [35] are implemented as well for the purpose of comparison.

Firstly, the coefficients among the whole frame are grouped to generate a BGTCM with
rate control on CU level. The experimental results are shown in Table 4.2. HM-9.0 with
rate control on is employed as benchmark. BD-Rate [11] is used to compare those three
methods in coding efficiency and variance of number of generated bits among frames is
employed to compare them in rate fluctuation.

According to Table 4.2, it is clear that the proposed rate control method based on
BGTCM is better than the reference HEVC codec with rate control and [35] in both
coding efficiency and rate fluctuation. Compared with HM, on average, the proposed
method based on BGTCM can achieve 13.9% reduction in BD-rate with around 67%
reduction in variance of bits. On the other hand, when compared with HM, although
the method in [35] based on Laplacian achieves 12.9% reduction in BD-rate, the variance
of bits is increased by 14.3% as the cost. Figure 4.5 and 4.6 show rate fluctuations of
sequence Cactus and BasketballPass with different QPs respectively. This also provides
the verification for the performance of proposed methods based on BGTCM. Therefore,
the proposed method based on BGTCM outperforms the other two in both rate fluctuation
and RD performance.

Secondly, due to the CG-based on coefficients encoding method in HEVC, coefficients
from the whole frame are separated into 16 groups based on the scan indices. As such, in
each group, coefficients come from the same scan indices among different CGs. At this time,
only frame level rate control is performed. The experimental results are shown in Table
4.3. Compared with HM, the proposed method can achieve 2.8% and 45.4% reduction in
BD-rate and bits variance, respectively.

ol



Table 4.2: Experimental Results with BGTCM on Coefficients from the Whole Frame

Sequ Target HM9.0RC [35] BGTCM Variance(Rate) x 10°

-ence Rate Rate PSNR Rate PSNR BD- Rate PSNR BD- HM9.0 [35] TCM
(kbps) (kbps) (dB) (kbps) (dB) Rate% (kbps) (dB) Rate% RC

Race 5300 5425.36 39.14 5421.57 39.46 5293.74 39.48 4.60 4.77 1.63
Horses 2300 2355.97 36.10 2358.06 36.24 28 2299.55 36.24 5.8 1.54 1.79 0.69
C 1000 1024.11 32.84 1025.10 32.88 1000.72 32.92 0.73 1.04 0.22
450 460.59 29.87 460.57 29.90 450.83 29.96 0.65 0.37 0.06
8000 8115.25 39.64 8123.36 39.69 7935.41 39.73 52.7 46.3 36.3
Park 3200 3274.35 36.09 3260.99 36.84 220 3171.16 36.73 20.1 7.16 20.2 7.73
Scene 1400 1433.13 33.04 1421.48 34.19 ’ 1386.10 33.89 ' 2.02 6.58 2.49
600 613.69 30.31 606.59 31.57 589.89 31.31 0.49 1.40 0.68
4200 4302.35 39.86 4302.47 39.87 4193.41 39.91 0.78 1.44 0.58
BQ 1900 1945.60 36.93 1945.42 37.21 8.0 1896.56 37.11 6.2 0.26 0.63 0.24
Mall 900 921.46 33.85 920.98 34.30 ’ 899.18 34.00 ’ 0.12 0.26 0.07
460 470.80 31.06 470.57 31.54 459.52 31.28 0.06 0.08 0.02
5200 5319.38 41.26 5251.53 41.42 5191.80 41.56 14.7 12.5 2.73
Kimono 2400 2435.92 38.84 2433.55 39.414 -19.9 2394.08 39.39 20.9 4.29 5.38 1.21
1200 1227.58 36.10 1210.44 37.06 1193.52 36.99 2.07 2.44 0.49
600 611.08 33.02 605.77 34.61 590.50 34.95 0.91 0.94 0.45
Basket 1800 1841.68 41.12 1838.81 41.03 1801.16 41.26 0.045 0.098 0.044
ball 900 921.70 37.22 922.23 37.25 108 901.75 37.35 33 0.017 0.0618 | 0.016
Pass 450 460.80 33.93 461.15 33.89 451.03 33.95 0.009 0.037 0.007
200 204.77 30.55 204.86 30.39 200.72 30.45 0.004 0.013 0.002
Race 1400 1433.72 39.90 1434.75 39.97 1398.11 39.94 0.09 0.25 0.13
Horses 650 666.14 35.60 666.81 35.74 A7 650.10 35.70 36 0.06 0.14 0.04
D 300 307.34 32.04 307.35 32.11 300.51 32.06 0.015 0.065 0.017
150 153.57 29.40 153.34 29.27 150.17 29.40 0.005 0.028 0.005
Basket 20000 20422.76 39.21 20486.48 39.25 19987.57 39.29 48.5 33.4 4.05
ball 6800 6961.22 37.26 6952.58 37.31 4.9 6802.19 37.36 74 1.5 6.06 0.55
Drive 3200 3275.12 35.24 3272.05 35.42 3200.56 35.38 0.42 2.3 0.13
1600 1637.98 32.81 1635.47 33.25 1600.04 33.20 0.15 0.76 0.12
20000 20423.22 38.54 20461.00 38.50 20021.412 38.11 83.0 84.6 13.5
Cactus 5700 5835.46 35.82 5822.64 36.52 22.9 5695.33 36.54 22.8 10.1 8.59 2.23
2600 2660.89 33.48 2656.88 34.43 2598.97 34.34 6.21 2.73 0.73
1300 1330.81 31.03 1328.29 32.14 1299.24 32.13 3.60 0.81 0.25
1500 1533.33 41.90 1523.88 42.66 1495.60 42.80 0.53 0.51 0.27
Johnny 500 509.54 40.36 505.33 41.12 98.8 498.64 41.19 314 0.32 0.10 0.069
200 203.79 38.07 201.52 38.91 199.15 38.97 0.044 0.029 0.023
100 101.92 35.75 100.83 36.35 99.38 36.41 0.015 0.009 0.008
2200 2247.34 41.63 2240.78 42.23 2194.43 42.43 1.13 0.94 0.47
Four 900 916.88 39.77 914.47 40.03 48 897.55 40.11 73 0.39 0.29 0.18
People 450 458.28 37.48 456.72 37.50 ’ 449.36 37.45 ’ 0.13 0.11 0.07
200 203.37 34.21 202.70 34.13 199.60 34.11 0.04 0.04 0.03
Kristen 2000 2047.46 42.47 2044.44 43.00 1997.39 43.14 0.55 0.62 0.26
And 700 716.64 40.29 714.47 40.85 171 699.34 40.90 -19.9 0.16 0.09 0.16
Sara 350 358.08 38.28 357.27 38.75 349.94 38.77 0.16 0.16 0.09
200 204.53 35.98 204.09 36.54 200.38 36.50 0.03 0.023 0.018
53000 53257.09 38.12 51394.74 38.04 51992.56 38.14 236 273 90.4
BQ 7400 7574.46 34.75 7607.85 35.10 301 7395.54 35.11 8.4 7.70 43 5.18
Terrace 2000 2043.10 31.70 2035.05 33.35 ’ 1993.62 32.99 ' 1.86 2.68 1.52
800 816.39 30.27 813.23 31.30 796.42 30.97 0.72 0.65 0.49
Avarage / / [/ / / -12.9 ] / [/ ] -139 [ 954 109 [ 3.43
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Figure 4.5: Generated Rate Versus Frame for Three Rate Control Algorithms on Sequence
Cactus with Different QPs.
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Figure 4.6: Generated Rate Versus Frame for Three Rate Control Algorithms on Sequence
BasketballPass with Different QPs.
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Table 4.3: Experimental Results on Frame Level Rate Control with 16 BGTCMs

Sequence Target HM9.0RC BGTCM Var(Rate) x 109
Rate Rate PSNR Rate PSNR
(kbps) | (kbps) (dB) (kbps) (aB) | BD-Rate | HM9.O-RC | BGTCM
5300 | 5421.96 | 39.71 | 5295.20 | 39.67 1.58 3.16
Race 2300 | 2357.74 | 36.48 | 230124 | 3645 | o 1.88 1.39
HorsesC 1000 | 1025.06 | 33.11 | 1002.90 | 33.19 D70 113 0.58
150 16065 | 30.18 | 450.15 | 30.19 0.32 0.17
8000 | 8120.37 | 39.92 | 7966.49 | 39.93 10.1 16.0
Park 3200 | 3249.19 | 37.06 | 318853 | 3713 | o0 1.04 1.35
Scene 1400 | 1420.46 | 34.41 | 1397.88 | 34.47 S0 6.66 118
600 607.14 | 31.79 | 593.93 | 31.76 1.40 0.99
4200 | 4302.61 | 40.10 | 4195.04 | 40.11 1.43 1.06
BQ 1900 | 1945.96 | 37.44 | 1898.07 | 37.49 3.5% 0.65 0.44
Mall 900 92122 | 3455 | 899.48 | 3460 | °°7° 0.26 0.17
160 170.04 | 31.79 | 460.40 | 31.83 0.08 0.05
5200 | 5250.06 | 41.64 | 5185.50 | 41.62 13.1 13.3
Ki 2400 | 242838 | 39.63 | 2392.87 | 39.50 0.2% 5.47 176
nmono 1200 | 1214.07 | 37.31 | 119466 | 3727 | ~°7° 2.44 2.01
600 604.54 | 3481 | 596.29 | 34.70 7.09 0.91
1800 | 1839.34 | 41.29 | 1804.81 | 41.28 0.10 0.09
Basketball 900 022.00 | 3747 | 903.95 | 3739 | .o 0.05 0.04
Pass 150 16120 | 34.13 | 452.90 | 34.09 S0 0.04 0.03
200 204.84 | 30.58 | 20083 | 3054 0.01 0.000
1400 | 1434.80 | 40.23 | 1398.21 | 40.14 0.22 0.21
Race 650 667.07 | 3508 | 64982 | 3593 | | .o 0.15 0.10
HorsesD 300 30752 | 32.34 | 30054 | 32.29 070 0.07 0.05
150 153.53 | 29.48 | 150.31 | 29.54 0.03 0.01
20000 | 20482.02 | 39.46 | 10987.14 | 39.42 30.0 20.4
Basketball | 6800 | 6059.457 | 37.53 | 6803.23 | 37.49 | .o 6.05 3.59
Drive 3200 | 3271.54 | 35.65 | 3202.00 | 35.69 070 2.19 1.49
1600 | 1635.38 | 33.49 | 1601.44 | 33.42 0.75 0.55
20000 | 20449.74 | 38.71 | 10893.54 | 38.70 82.6 56.2
Coctus 5700 | 5818.23 | 36.74 | 570921 | 36.79 | 440 8.68 5.56
2600 | 2655.42 | 34.65 | 2601.94 | 34.69 270 2.65 1.85
1300 | 1327.35 | 32.38 | 1300.26 | 32.42 0.82 0.66
1500 | 1522.62 | 42.88 | 1500.16 | 42.89 0.51 0.76
Johun 500 50470 | 4133 | 49996 | 4145 | o 0.10 0.12
Y 200 201.55 | 39.13 | 198.95 | 39.23 0 0.03 0.03
100 100.79 | 36.57 99.58 36.69 0.01 0.01
2200 | 2239.56 | 42.45 | 220027 | 42.42 0.97 0.81
Four 900 01274 | 4026 | 89862 | 4035 | oo 0.29 0.31
People 150 156.45 | 37.72 | 44928 | 37.76 70 0.11 0.12
200 202.67 | 3436 | 199.91 | 34.39 0.04 0.03
2000 | 2040.70 | 43.22 | 2005.75 | 43.23 0.61 0.72
Kristen 700 714.08 | 41.09 | 70044 | 41.12 5.0% 0.16 0.15
AndSara 350 357.18 | 38.07 | 34882 | 30.15 | 7 0.06 0.06
200 204.02 | 36.77 | 199.99 | 36.96 0.02 0.02
52000 | 53271.47 | 38.27 | 51971.96 | 38.19 203 138
BQ 7400 | 7548.27 | 3529 | 740611 | 3538 | .o 136 20.4
Terrace 2000 | 2034.53 | 33.57 | 2004.38 | 33.58 70 2.73 2.83
800 81331 | 3152 | 802.14 | 31.48 0.64 0.61
[ Avarage | / [ / [/ ] / [/ T 28% ] 13.3 [ 726 ]
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4.6 Summary

In this chapter, based on the assumption that the distribution of both original and quan-
tized transformed coefficients in HEVC satisfy BGTCM, the distortion and rate estimated
with BGTCM, Laplacian and Cauchy models are computed. Results show that BGTCM
can estimate the bit rate and distortion more accurately compared with Laplacian and
Cauchy distributions. a RD optimized rate control algorithm is developed to achieve re-
quired bit rate and maintain RD performance. The rate fluctuation is compared in terms
of variance and RD performance is compared in terms of BD-rate. Compared with HM
and a newly proposed algorithm, the proposed method can reduce rate fluctuation and
increase RD performance.
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Chapter 5

Conclusion and Future Work

This chapter concludes this thesis by summarizing the contents and contributions and
presenting some possible future research topics.

5.1 Conclusion

This thesis begins with brief introduction of video coding and modelling of distribution of
transformed coefficients. In Chapter 2, the hybrid encoding diagram of HEVC encoder is
described in the first section. Then some prior works on modelling of distribution of trans-
formed coefficients and model-based rate control are presented. Due to the ”chicken and
egg” dilemma, the rate controller are normally developed based on R-QQ and D-Q models.
To obtain accurate models, precise estimation of distribution of transformed coefficients is
required.

Chapter 3 analyses the modeling of distribution of coefficients in prediction-based
HEVC video coding standard. Distribution of all coefficients from a whole frame are
firstly modelled. Then, based on the scan indices among different CGs, coefficients at the
same scan index are grouped into one set. Distribution of coefficients from each set are
modelled. With the newly proposed model BGTCM in discrete version, which has been
reported to achieve better modelling in DCT coefficients obtained by performing DCT on
original images like the image compression standard JPEG, the model of the distribution
of integer transformed coefficients based on residual data in HEVC is better than models
provided by Laplacian and Cauchy densities. It benefits from the fat tails in the distri-
bution of coefficients, which traditional models, such as Laplacian and Cauchy densities,
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cannot model precisely. The D-Q relation is developed based on distribution of original
coefficients and R-Q relation is based on distribution of quantized coefficients. Experimen-
tal results have shown that, BGTCM can be employed to fit distribution of both original
and quantized coefficients better than Laplacian and Cauchy density especially for large
coefficients values which contribute a lot to the number of bits in the bit stream based on
x? and KL-divergence tests.

In Chapter 4, a RD optimized rate control algorithm is proposed to determine the
QP for current frame or block based on BGTCM. Experimental results have shown that,
based on BGTCM, compared with the reference rate control implementation in HM-9.0,
the proposed rate control method reduces the rate and quality fluctuation a lot in HEVC.
Meanwhile, the RD performance is highly increased.

5.2 Future Work

There are a few possible extensions based the discussion in this thesis.

5.2.1 Estimation of Number of Overhead Bits

The overall bits generated by the encoder can be divided into two parts:

e Texture bits generated by encoding DCT coefficients

e Overhead bits generated by encoding other information

This thesis gives a solution to model the texture bits precisely based on BGTCM. However,
the overall bits are simply estimated by multiplying the texture bits with a scaling factor.
The overhead bits are generated by encoding other information, such as block partition
structure, prediction mode, motion vectors and etc. Unlike bits caused by DCT coefficients,
the number of overhead bits has relatively little relationship with QP. It can be estimated
based the characteristics of video sequences and coding configuration.

Let’s take an intra frame as an example. When the frame is complicated, i.e., it
contains a lot of texture information, blocks are potential to be encoded as small ones. In
this scenario, the overhead bits can be estimated by how complex a frame is. Since the
BGTCM provides the outlier information, which can reflect the edge in image domain, the
complexity can be estimated by this.
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Consequently, one can develop an adaptive method based on spatial and/or temporal
complexity to estimate the number of overhead bits, which mainly consist of prediction
information.

5.2.2 Approximated Expression of D-QQ Model

Compared to continuous Laplacian density, it is hard to obtain precise D-Q model in simple
expressions for the BGTCM which is a discrete function. These complex expressions make
it hard to resolve the rate distortion optimization problems. This is why all five candidate
QPs determined by the AQP-limiter are tested in the proposed algorithm. Thus, the D-Q
relation based on BGTCM will studied further to derive some simple expression without
estimation mismatching.
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