
Accelerating Mixed-Abstraction SystemC
Models on Multi-Core CPUs and GPUs

by

Anirudh Mohan Kaushik

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Anirudh Mohan Kaushik 2014

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

Note that some of the content in this thesis are taken from my previous published paper [46]
where I am the first author.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions:

Chapter 4:

Contributor Contribution
Kaushik, A. M. Manusript writing and systemc-clang tool design.

Patel, H. D. Manuscript editing, aided in formalizing the definitions
of Suspension-CFG and Suspension Labeled Transition System,

and aided in initial systemc-clang tool design.

iii

Abstract

Functional verification is a critical part in the hardware design process cycle, and it contributes
for nearly two-thirds of the overall development time. With increasing complexity of hardware
designs and shrinking time-to-market constraints, the time and resources spent on functional ver-
ification has increased considerably. To mitigate the increasing cost of functional verification, re-
search and academia have been engaged in proposing techniques for improving the simulation of
hardware designs, which is a key technique used in the functional verification process. However,
the proposed techniques for accelerating the simulation of hardware designs do not leverage the
performance benefits offered by multiprocessors/multi-core and heterogeneous processors avail-
able today. With the growing ubiquity of powerful heterogeneous computing systems, which
integrate multi-processor/multi-core systems with heterogeneous processors such as GPUs, it is
important to utilize these computing systems to address the functional verification bottleneck. In
this thesis, I propose a technique for accelerating SystemC simulations across multi-core CPUs
and GPUs. In particular, I focus on accelerating simulation of SystemC models that are de-
scribed at both the Register-Transfer Level (RTL) and Transaction Level (TL) abstractions. The
main contributions of this thesis are:

1. A methodology for accelerating the simulation of mixed abstraction SystemC models de-
fined at the RTL and TL abstractions on multi-core CPUs and GPUs.

2. An open-source static framework for parsing, analyzing, and performing source-to-source
translation of identified portions of a SystemC model for execution on multi-core CPUs
and GPUs.

iv

Acknowledgements

I am extremely grateful to my supervisor Prof. Hiren D. Patel for his guidance, support, and
dedication throughout this thesis and during my graduate studies. His training and enthusiasm
towards addressing challenging problems has had a tremendous positive effect in my life.

I thank my thesis committee members, Prof. Mark Aagaard and Prof. Derek Rayside for
reviewing this thesis and for their constructive feedback.

I feel extremely privileged and humbled to have interacted with some amazing instructors,
academics, and fellow students during my time here at UWaterloo. I sincerely thank you all
for your wisdom and inspiration. I thank my colleagues at the CAESR lab Dan Wang, Zhuoran
Yin (Jerry) and Mohamed Hassan for their knowledge and support during my graduate studies.
Special thanks to my fellow Waterluvians : Siddharth Subramaniam, Bharathwaj Raghunathan,
and Hemant Saxena for always obliging to go to Burrito Boyz.

I thank my VIT buddies for their love, support and wonderful memories: Srinivas Surya-
narayan, Aakash Bothra, Navnit Narayan Das, Shenin Shyamkumar, Sanket Jaiswal, Krishnendu
Piplai, Aditya Sarathy, Akshay Shrivastava, Pooja Premkumar, and Pratiksha M. Sharma.

To my cousin Srikanth Vaidyanathan, and his family (Geeta, Vrushabh, and Kaushika) -
thank you for being a home away from home.

Finally, my heartfelt thanks to my parents for their unconditional love and support. They are
the sole reason for my success, happiness, and making my dreams come true.

v

Dedication

This thesis is dedicated to my parents Mrs. Revathy Mohan and Mr. M. V. Mohan. This thesis
would not be possible without their constant love, support, and encouragement.

vi

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Main Contributions . 3

1.2 Organization of Thesis . 4

2 Background 6

2.1 SystemC . 6

2.1.1 Overview of the Building Blocks of SystemC 8

2.1.2 SystemC Simulation Kernel . 9

2.1.3 Transaction Level Modeling (TLM) in SystemC 11

2.2 Graphics Processing Units . 16

2.2.1 Architecture . 17

2.2.2 CUDA Programming Model . 18

3 Related Work 21

3.1 Parallel Discrete Event Simulation . 21

3.2 Accelerating SystemC models using GPUs . 22

3.3 SystemC Front-Ends . 23

3.4 Mapping Applications Across CPUs and GPUs 24

vii

4 systemc-clang 27

4.1 systemc-clang Tool Flow . 27

4.2 clang Basics . 28

4.3 Extraction of Structural and Behavioral Information 29

4.3.1 Extraction of SystemC modules . 30

4.3.2 Extraction of SystemC ports . 31

4.3.3 Extraction of TLM-2.0 core interfaces 31

4.3.4 Extraction of SystemC processes . 32

4.3.5 Extraction of TLM-2.0 generic payload attributes 35

4.3.6 Extraction of suspension and notification calls 35

4.3.7 Extraction of netlist . 35

4.4 Intermediate Representation for Structural Information 39

4.5 Intermediate Representation for Behavioral Information 40

4.5.1 Generation of Suspension-CFG . 41

4.5.2 Generation of Suspension Labeled Transition System 43

4.6 systemc-clang Plugins . 47

4.7 Summary of systemc-clang . 47

5 Accelerating Simulation of SystemC Models 48

5.1 SCuitable: A systemc-clang plugin for generating a mapping of a SystemC
model for execution on multi-core CPUs and GPUs 48

5.1.1 Extensions to the Suspension Labeled Transition System 49

5.1.2 Assumptions and Requirements for SCuitable 57

5.1.3 Partitioning a SystemC model for execution on multi-core CPUs and GPUs 58

5.1.4 Problem Statement . 61

5.2 CUDA-Gen: A systemc-clang plugin for translating identified GPU portions
to CUDA . 68

viii

6 Results 72

6.1 Efficacy of systemc-clang . 72

6.1.1 S2CBench: A SystemC RTL Benchmark Suite 72

6.1.2 A Complete AT TLM model from Doulous 74

6.1.3 TLM Image Processing Case Studies 76

6.2 Acceleration of SystemC RTL models . 78

6.2.1 3-stage Pipeline . 79

6.2.2 AES Cipher . 80

6.2.3 Kasumi Cipher . 82

6.2.4 FIR Filter . 83

6.2.5 Sobel Filter . 86

6.3 Acceleration of SystemC TLM models . 87

6.3.1 Canny Edge Detector . 88

6.3.2 JPEG Decoder . 90

6.4 Summary . 93

7 Future Work and Conclusions 96

7.1 Future Work . 96

7.1.1 NVIDIA Kepler GPU Architectures . 96

7.1.2 CUDA library for TLM-2.0 transport interfaces 99

7.1.3 Support for APUs and OpenCL . 99

7.2 Conclusion . 100

References 106

ix

List of Tables

3.1 Summary of SystemC front-ends. 25

4.1 Fundamental clang classes and methods. 28

4.2 Summary of information extracted by systemc-clang from a SystemC model. . . 30

4.3 Description of functions used in Algorithm 1. 42

4.4 Description of functions used in Algorithm 2. 45

5.1 SystemC wait() calls, and effect on simulation time. 50

5.2 Variables and constants used in ILP formulation of GPUMAP 62

5.3 Initial value of parameters. 69

5.4 Parameters after first pass of Algorithms 4 and 5. 69

5.5 Parameters after second pass of Algorithms 4 and 5. 69

5.6 Parameters after final pass of Algorithms 4 and 5. 69

6.1 Efficiency of systemc-clang on S2CBench. 73

6.2 Time taken by systemc-clang to build structural and behavioral IRs for S2CBench
benchmark suite. 74

6.3 Efficiency of systemc-clang on complete AT model from Doulous. 75

6.4 Time taken by systemc-clang to build structural and behavioral IRs for complete
AT model. 76

6.5 Efficiency of systemc-clang for AT Canny Edge Detection Model. 77

6.6 Efficiency of systemc-clang for LT Canny Edge Detection Model. 77

x

6.7 Efficiency of systemc-clang for LT JPEG Encoder Model. 78

6.8 Efficiency of systemc-clang for LT JPEG Decoder Model. 78

6.9 Time taken by systemc-clang to build structural and behavioral IRs for SystemC
TL image processing case studies. 79

6.10 Specifications of the heterogeneous platform used for experimentation. 79

6.11 Comparison of SAGA, SCGPSim, and SCuitable for 3-Stage Pipeline. 80

6.12 Comparison of SAGA, SCGPSim, and SCuitable for AES Cipher Algorithm . . . 83

6.13 Comparison of SAGA, SCGPSim, and SCuitable for Kasumi Cipher Algorithm. . 83

6.14 Comparison of SAGA, SCGPSim, and SCuitable for 15-tap FIR Filter. 84

6.15 Comparison of SAGA, SCGPSim, and SCuitable for 1024-tap FIR Filter. 84

6.16 Comparison of SAGA, SCGPSim, and SCuitable for 2048-tap FIR Filter. 84

6.17 Comparison of SAGA, SCGPSim, and SCuitable for 128×128 Sobel Filter. . . . 87

6.18 Comparison of SAGA, SCGPSim, and SCuitable for 512×512 Sobel Filter. . . . 87

6.19 Comparison of SAGA, SCGPSim, and SCuitable for 1024×1024 Sobel Filter. . . 88

6.20 Execution times and speedup of LT model of Canny edge detection model. 91

6.21 Execution times and speedup of AT model of Canny edge detection model. . . . 91

6.22 Execution times and speedup of LT model of JPEG color decoder. 93

6.23 Execution times and speedup of LT model of JPEG black/white decoder. 93

7.1 Preliminary results of executing the SystemC model of Sobel filter on Kepler
GPUs using SCGPSim and SAGA approaches. 97

xi

List of Figures

1.1 Design productivity gap trend [2]. 1

2.1 A SystemC description of D-Flip Flop. 8

2.2 OSCI SystemC Simulation Kernel. 10

2.3 SoC Design Flow [21]. 12

2.4 Example of a Blocking Transport Interface Method calling a wait(). 13

2.5 Example of a Temporally Decoupled Blocking Transport Interface Method. . . . 14

2.6 Example of a Non-Blocking Transport Interface Method. 15

2.7 Generic NVIDIA GPU Architecture. 17

2.8 Vector addition code in CUDA. 19

4.1 systemc-clang Tool Flow [46]. 27

4.2 Extraction of SystemC modules by systemc-clang. 31

4.3 Extraction of SystemC ports by systemc-clang. 32

4.4 Extraction of TLM-2.0 Core Interfaces by systemc-clang. 33

4.5 Extraction of SystemC processes by systemc-clang. 34

4.6 Extraction of TLM-2.0 Core generic payload characteristics by systemc-clang. . 36

4.7 Extraction of wait() and notify() calls by systemc-clang. 37

4.8 Extraction of port bindings by systemc-clang. 38

4.9 IR maintained at the process level [46]. 39

4.10 IR maintained at the module level [46]. 40

xii

4.11 IR maintained at the global level [46]. 41

4.12 Transformation of CFG to Suspension-CFG. 42

4.13 Transformation of Suspension-CFG to Suspension Labeled Transition System. . 44

5.1 Examples of incorrect SystemC code. 51

5.2 Examples of SystemC threads and their corresponding timed Suspension La-
beled Transition Systems. 54

5.3 Position of wait() calls in loops. 56

5.4 Methodology for accelerating mixed-abstraction SystemC models. 59

5.5 Analysis stage of proposed methodology. 59

5.6 Translation and co-simulation stage of proposed methodology. 60

5.7 Parallel SystemC scheduler. 61

5.8 Example of Global Suspension Labeled Transition System with profiling times
of concurrent data-parallel segments. 67

6.1 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for 3-Stage Pipeline Model. 81

6.2 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for AES Cipher Algorithm. 82

6.3 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for Kausmi Cipher Algorithm. 85

6.4 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for different FIR filters. 86

6.5 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for Sobel filter on different image dimensions. . . 89

6.6 Comparison of relative speedups of simulations of SAGA, SCGPSim, and SCuitable over
sequential SystemC simulation for different FIR filters. 90

6.7 Data transfer overhead contribution to GPU execution in unoptimized Canny
edge detection model. 92

6.8 Data transfer overhead contribution to GPU execution in optimized Canny edge
detection model. 92

xiii

6.9 Data transfer overhead contribution to GPU execution in unoptimized JPEG de-
coder model. 95

6.10 Data transfer overhead contribution to GPU execution in optimized JPEG de-
coder model. 95

xiv

Chapter 1

Introduction

The process of functional verification in the hardware design cycle is a crucial and a time con-
suming component. It is responsible for nearly two-thirds of the overall design cycle time, and it
is widely acknowledged as one of the bottlenecks in the design cycle [1]. However, the increasing
complexity of designs due to consumer demands and stringent time-to-market constraints have
further exacerbated the resources and time put into the functional verification process. Figure 1.1
highlights the trends in design complexity and designer effort required to realize these complex
designs. The design productivity gap in Figure 1.1 represents the disparity between what designs
can be conceived based on the rate of number of transistors that can be packed in a single chip
and designs that can actually be realized based on the available resources. As observed, this
design productivity gap is wide and continues to widen.

0.001

0.01

0.1

1

10

100

1000

10000

1985
1987

1989
1991

1993
1995

1997
1999

2001
2003

2005
2007

2009

0.01

0.1

1

10

100

1000

10000

100000

T
ra

ns
is

to
rs

/C
hi

p
-

S
ol

id

D
es

ig
ne

r
P

ro
du

ct
iv

ity
 -

 D
as

he
d

T
ra

ns
is

to
rs

/D
es

ig
ne

rsDesign Productivity
Gap

Figure 1.1: Design productivity gap trend [2].

Fortunately, academia and industry have proposed approaches to mitigate this widening

1

gap. For example, the introduction of register-transfer level (RTL) abstraction over gate-level
schematics was a welcomed relief to hardware designers. Although RTL is currently the de-
facto abstraction level for specifying synthesizable designs, the level of detail involved in speci-
fying designs and the cycle accurate simulation associated with this abstraction level results in a
time-consuming design process. This has led to the introduction of higher abstraction levels for
specifying designs, such as Transaction Level (TL) to accelerate the design process. While these
efforts have helped improve designer productivity, the effort needed to validate designs continues
to grow due to incresing complexity of hardware designs.

SystemC [3] is a system level design language (SLDL) that suports modeling designs at both
the RTL and TL abstractions. It has been approved by the IEEE Standards Association as IEEE
1666-2005 [4]. Its growing popularity among industries and academia is primarily attributed
to its open-source nature. It is adopted and supported by many electronic design automation
(EDA) industries in their design flow. SystemC is a collection of C/C++ classes that provide
a notion of time, hardware concurrency, and support for hardware data-types. This has helped
popularize its use among academia and industries as C/C++ is a familiar and commonly used
programming language and requires a standard C++ compiler. In addition, the underlying lan-
guage infrastructure, extensions, and object-oriented programming paradigm of C/C++ further
extends the usability of SystemC over traditional SLDLs such as Verilog and VHDL. Although
SystemC provides the ability to model hardware designs at the RTL and TL abstraction levels,
it still struggles to deliver on its promise for faster design cycle times. This is because the Sys-
temC’s reference implementation is a single threaded implementation designed for uni-processor
systems. The reference implementation employs co-operative multi-threading to simulate con-
current execution of hardware processes. With the current trend in computing shifting from high
frequency uni-processors to multi-cores and multi-processors due to the latter’s performance
gains as a result of higher throughput, there has been considerable interest in parallelizing the
SystemC scheduler [5, 6, 7, 8, 9, 10, 11]. Moreover, heterogeneous computing systems that com-
bine multi-processor and multi-core systems with specialized hardware capable of accelerating
specific types of computations are becoming increasingly ubiquitous due to their performance
benefits. Graphics Processing Unit (GPU) is an example of a specialized processor capable of
accelerating parallel computations such as graphics rendering in current heterogeneous comput-
ing systems. Initially, GPUs were exclusively used for performing graphics rendering. However,
with the advent of proprietary and open-source frameworks for programming on GPUs, it is
possible to perform compute intensive tasks that were previously executed on general proces-
sors on the GPU. The technique of performing compute intensive tasks on the GPU that are
traditionally handled on general purpose processors is termed as General Purpose Computing on
Graphics Processing Units (GPGPU). The performance benefits of heterogeneous systems with
GPUs have contributed to its ubiquitousness in industry and academia. As computing systems

2

shift from consisting of a single processor to multiple heterogeneous processors, applications
need to be re-designed in order to leverage the parallelism provided. This works well for the case
of simulation of hardware designs as hardware designs are inherently parallel.

The idea of using GPUs for logic simulation is not new, and has been studied in [12, 13, 14]
that focus on parallelizing gate-level simulations. With respect to accelerating hardware designs
described in SystemC, [15] and [16] have proposed techniques for accelerating SystemC RTL
designs using GPUs. However, these works execute simple code structures on the GPU cores,
and therefore do not take into consideration the effect of the control flow of a program on its
execution time on the GPU. The control flow of a program is important when considering its
execution on the GPU device as not all programs can be made to execute faster on the GPU.
This is because, GPUs are designed for executing a single instruction on multiple data, and are
devoid of micro-architectural features such as branch predictors and out-of-order processing that
are otherwise common in general processors. Moreover, with the apparent benefits of designing
models at the TL abstraction over RTL, and the ability to design models at the TL abstraction
level using SystemC, it is important to consider accelerating mixed-abstraction (RTL and TL)
models using these heterogeneous computing systems.

In this thesis, I focus on accelerating the simulation of mixed-abstraction SystemC models
using heterogeneous systems with multi-core CPUs and GPUs, in particular NVIDIA GPUs.
The motivation behind using SystemC is based on its growing rise in its adoption due to its free
and open-source simulation and modeling framework. To this end, I develop an open-source
static analysis framework called systemc-clang that parses SystemC RTL and TL models and
extracts the structural and behavioral information present in the model. The mapping of the
execution of a SystemC model across multi-core CPUs and GPUs, and the translation necessary
for GPU execution are implemented as plugins to systemc-clang. My approach shows promising
results, and with GPU architecture specific optimizations and performance based extensions to
the SystemC scheduler, this technique can yield further improvements.

1.1 Main Contributions

The main contributions of this thesis are:

1. Improving the methodology proposed by Sinha et al. [17] for accelerating mixed-abstraction
SystemC simulations defined at the RTL and TL abstractions across multi-core CPUs and
GPUs.

• Propose an intermediate representation (IR) to capture the behavioral semantics of
SystemC processes and algorithms to generate the IR.

3

• Automate identification of a mapping of data-parallel computations in the input Sys-
temC model across multi-core CPUs and GPUs that results in faster execution time
of the SystemC model.

2. systemc-clang[18]: An extensible open-source framework for parsing and analyzing Sys-
temC models

• Develop an analysis framework for SystemC models that parses and collects relevant
information regarding the structure and behavior of SystemC models.

• Provide a convenient method for developing extensions to systemc-clang for further
analysis of SystemC models using plugins.

• Automate source-to-source translation of SystemC models to execute on multi-core
CPUs and GPUs. Source-to-Source translation takes into account memory transfer
overhead between CPU and GPU and therefore, implements an optimization that
reduces memory transfer overhead between CPU and GPU.

3. Experimentally validate the efficiency of systemc-clang using SystemC RTL benchmarks
from the S2CBench suite [19] and eight TLM models, and evaluate the proposed method
of accelerating SystemC simulations against previous works using multi-core CPUs and
GPUs.

1.2 Organization of Thesis

This thesis is organized as follows:

Chapter 2 provides a brief background on the SystemC simulation kernel and the con-
structs provided to describe hardware models. I also provide an overview of the TLM style
of modeling hardware designs using SystemC. Towards the end of the chapter, I introduce
the GPU architecture and the CUDA programming framework for executing general pur-
pose applications on NVIDIA GPUs.

Chapter 3 discusses previous work related to accelerating hardware design simulation in
general and SystemC simulations across multi-core CPUs and GPUs. I also discuss pre-
vious efforts on distributing computation across multi-core CPUs and GPUs for general
purpose applications.

4

Chapter 4 introduces systemc-clang, the open-source static analysis framework for Sys-
temC RTL and TL models developed in this thesis. In this chapter, I discuss the tool’s
implementation and features for extensibility in the form of systemc-clang plugins. I then
discuss in detail the structural and behavioral IRs maintained by systemc-clang, and the
transformations involved in generating the behavioral IR.

Chapter 5 discusses about the proposed methodology for accelerating mixed-abstraction
SystemC models across multi-core CPUs and GPUs. I discuss in detail about the SCuitable
plugin responsible for modifying the behavioral IR to generate a mapping of the SystemC
model’s execution across the processors in the heterogeneous platform. I also discuss about
the translation plugin CUDA-Gen, which is responsible for translating the identified por-
tions of the SystemC model for execution on the GPU to CUDA.

Chapter 6 compares the previous approaches for accelerating SystemC RTL simulations
on GPUs with the proposed approach using the S2CBench benchmark suite. I also evalu-
ate the proposed approach on four TLM models. In addition, I also compare the efficiency
of systemc-clang based on its ability to extract the structural and behavioral information
present in the input SystemC model.

Chapter 7 concludes this thesis by enumerating possible future extensions to this thesis and
providing a summary of the work carried out in this thesis.

5

Chapter 2

Background

In this chapter I describe the SystemC simulation kernel and the architecture of GPUs. I also
describe the CUDA programming model for NVIDIA GPUs with a simple example to illustrate
the execution of parallel computations on NVIDIA GPUs.

2.1 SystemC

SystemC [3] is a widely used SLDL that consists of C/C++ classes that provide the ability to
model hardware and software. There are five major extensions that SystemC provides to model
hardware [20]:

• A notion of time

• Support for hardware data-types

• Module hierarchy and organization

• Concurrency

• Communication between different modules and processes

Using examples wherever needed, I describe these constructs and their implementation in
SystemC.

6

A notion of time
SystemC provides a notion of time through the sc time class. It consists of an enumer-
ated type that provides a range of time resolutions such as SC NS to denote nano-second
resolution of time and SC PS to denote pico-second resolution of time. For models requir-
ing clocks, SystemC provides a class called sc clock through which the clock cycle, duty
period and resolution of the clock can be set.

Support for hardware data-types
In addition to the rich data-types provided by C/C++, SystemC also allows users to de-
fine arbitrary widths for integer and fixed-point data-types. For example, sc uint〈5〉 is
an unsigned integer data-type with a bit width of five. An important SystemC data-type
that models real hardware is the sc logic data-type that represent the uninitialized value
‘X’, high impedance value ‘Z’ and the boolean values ‘0’ and ‘1’. The SystemC data-type
classes also provide convenient functions such as range and bit select operations to operate
on selected bits.

Module hierarchy and organization
Typical hardware designs consist of several hardware blocks interconnected through some
communication interface, with each hardware block performing some function. In Sys-
temC, these hardware blocks are defined as modules. SystemC modules are defined using
the SC MODULE class. The communication interfaces such as ports and signals, and the
functional behavior of the module are defined in the module.

Communication between different modules and processes
Hardware processes communicate through wires, signals, and ports. SystemC provides
two ways of communication between processes and modules: channels and events. Inter-
module communication is carried out through channels while communication between pro-
cesses are carried out by events. SystemC provides three types of channels: primitive, hi-
erarchical, and evaluate-update channels. Primitive channels such as sc fifo and sc mutex
are simple channels that are designed for fast prototyping and simulation. A hierarchical
channel is a channel that contains processes and other channels. Evaluate-update channels
model real-world electronic signals that operate on the delta-cycle paradigm. The sc signal
and sc buffer are examples of evaluate-update channels.

Concurrency
Hardware designs are inherently parallel. However, traditional hardware simulators that
run on single processor systems employ techniques to provide the illusion of concurrent
execution. The SystemC simulation framework is no exception to this and employs a run-
time scheduler that manages the scheduling and synchronization of concurrent hardware

7

processes. It uses a discrete-event (DE) scheduler that decides when to switch between
concurrent processes in response to events. I provide a more in-depth description of the
discrete-event scheduler in Section 2.1.2.

2.1.1 Overview of the Building Blocks of SystemC

Figure 2.1 is a SystemC model of a D flip-flop. I shall highlight the modules, processes, and
module hierarchy for this example to give the reader a better understanding of the SystemC code
structure.

1 #include "systemc.h"
2

3 SC_MODULE(dff) {
4 sc_in<bool> clk;
5 sc_in<bool> i_data;
6 sc_out<bool> o_data;
7

8 void dflipflop(){
9 while(true) {

10 wait();
11 o_data.write(i_data.read());
12 }
13 }
14

15 SC_CTOR(dff) {
16 SC_THREAD(dflipflop);
17 sensitive<<clk.pos();
18 }
19 };

Figure 2.1: A SystemC description of D-Flip Flop.

Modules: As mentioned earlier, the modules represent hardware blocks of the SystemC
model. In this example, dff is the module name. The module consists of the ports clk,
i data, and o data. Ports clk and i data are input boolean ports denoted by sc in〈bool〉 and
port o data is the output port denoted by sc out〈bool〉.

Processes: SystemC processes describe the implementation of the module. A module may
have more than one SystemC process. For this particular example, dflipflop is the SystemC
process. There are three different types of SystemC processes namely SC METHOD,

8

SC THREAD, and SC CTHREAD. The type of the process and its sensitivity list is de-
fined in the constructor of the module. A SC METHOD process is a SystemC process that
is called by the SystemC scheduler whenever a signal changes on its sensitivity list. It can-
not be suspended and resumed. A SC THREAD on the other hand, is a SystemC process
that can be suspended and resumed through wait() calls and event notifications. For this ex-
ample, the process dflipflop is a SC THREAD process that is sensitive to the positive edge
of the clock. Notice that the dFlipFlop is suspended for every iteration of the while loop
using a wait() call. An SC CTHREAD is a variant of the SC THREAD SystemC process,
and is used to model clocked processes.

Events: Since SystemC utilizes a DE simulation paradigm, events are an important as-
pect for the scheduler. Events allow triggering suspended processes through a notification
mechanism. SystemC provides three types of events: immediate, delta, and timed events.
Immediate events are triggered immediately and executed in the same delta-cycle before
any update to the signals. Delta events are caused due to change in the signals and are pro-
cessed in the next delta-cycle. Timed events are triggered after a certain time has elapsed.

2.1.2 SystemC Simulation Kernel

The SystemC simulation kernel is responsible for the scheduling and synchronization of SystemC
processes. Figure 2.2 describes the execution semantics of the scheduler. The execution of the
scheduler can be split into two major phases: Elaboration Phase and Execution Phase. The
Elaboration Phase builds the architecture of the SystemC model and establishes the module
hierarchy by resolving the port bindings between modules. The Elaboration Phase is followed
by the Execution Phase, which performs the simulation of the model. The Execution Phase is
split into three phases: Initialization, Evaluation, and Update phases. The scheduler maintains
a queue of ready-to-run processes and a queue of suspended processes that is updated during the
simulation. The simulation begins with the Initialization Phase wherein all processes present
in the model are placed in the ready-to-run queue. In the Evaluation Phase, processes from
the ready-to-run queue are picked in an unspecified order and are executed either till the end
of the process or on encountering wait() call. Suspended processes are placed in the suspended
queue. During this phase, a process’s execution might trigger some processes in the suspended
queue to be available for execution. Therefore, these processes are placed back into the ready-
to-run queue. The simulation kernel remains in this state until there are no more processes in
the ready-to-run queue. When the ready-to-run queue is empty, the simulation kernel enters into
the Update phase in which signal values are updated. At this point, change in signal values

9

Start of
Simulation

Initialize and
Execute

Processes

Ready-to-Run=0?

Update the
values

of signals

Delta events
generated?

Add to Ready-
To-Run
Queue

Update
simulation time

Time triggered
events?

Execute process

Process
immediate

events

End of
Simulation

Yes

No

Yes

No

Initialization Phase

Evaluate Phase

Update Phase

Yes

No

Figure 2.2: OSCI SystemC Simulation Kernel.

may trigger activation of some suspended processes. This is also known as a delta-cycle. The
re-activation of processes due to the update of signal values causes the kernel to perform another
round of evaluation. When no delta events are generated by the Evaluation Phase and Update
Phase, the scheduler scans the suspended queue of processes, and updates the simulation time
to the nearest time of activation. Simulation time is advanced to the earliest time of activation
and the scheduler re-enters the Evaluation Phase. When there are no more processes in the
suspended queue and the ready-to-run queue or the specified simulation time has been met, the
kernel exits and performs any necessary cleanup.

10

2.1.3 Transaction Level Modeling (TLM) in SystemC

The conventional design process for System-on-Chip (SoC) designs requires defining hardware
designs at the RTL abstraction level, which has proved detrimental to the design cycle with rising
complexity and shrinking time-to-market constraints. This is because of the level of detail and
cycle accuracy involved at this abstraction level. Figure 2.3a illustrates the conventional SoC
design flow, which begins with the system requirements and specifications that includes a purely
algorithmic and untimed model of the design. The flow then splits into two paths: hardware
development and software development. The hardware development process involves designing
the system at the cycle-accurate RTL abstraction level using a hardware descriptive language
such as VHDL or Verilog. Necessary functional verification, synthesis, and timing analysis
are carried out on the RTL design resulting in a prototype that is ready to be fabricated in a
foundry. Meanwhile the software development process proceeds independently without having
any knowledge about the hardware design development. Therefore, the validation of the software
is delayed as it has to wait for a hardware prototype in order to deploy the software. This in turn
is dependent on how quickly the hardware development process can roll out the prototype. Any
bugs or modifications observed when integrating the software with the prototype results in a
reiteration of the entire process leading to an expensive and time consuming design process.
With shrinking time-to-market constraints, the SoC design flow has undergone modifications to
provide a hardware/software co-simulation framework to speed up the design flow process and
mitigate the high cost associated with the conventional design flow. This is shown in Figure 2.3b.

The Transaction Level Modeling (TLM) abstraction is a level of abstraction above RTL that
is intended to improve hardware simulation by relaxing cycle accuracy and at the same time,
serve as an appropriate platform for hardware/software verification. As shown in Figure 2.3b,
the TLM model serves as a reference model between the hardware and software development
process resulting in early and accurate verification and architectural exploration. The concept
behind TLM designs is to abstract the cycle accurate details of communication between hard-
ware modules and instead, use function calls for intermodule communication. In TLM designs,
modules are categorized as initiators and targets. Initiators are modules that generate transac-
tions to be sent over some channel connecting other modules, and targets are modules that accept
the transactions generated by initiators. Interconnects act as both initiators and targets but do
not modify the contents of the transaction passing through. The OSCI TLM 2.0 [22] standard
provides three primary core interfaces for communicating transactions: transport interface, de-
bug interface and direct memory interface. The transport interfaces are the primary interfaces
connecting initiators and targets. It provides the blocking and non-blocking interfaces that pro-
vide different coding styles for TLM designs. The blocking transport interface is intended to
capture the loosely-timed model (LT) of TLM designs. It is implemented as a virtual function

11

Prototype

System Integration and
Validation

Fabrication

Algorithmic and
Untimed Design

System Specifications
and Requirements

Hardware
Design

Software
Design

(a) Conventional SoC Design Flow.

Prototype

System Integration and
Validation

Fabrication

Algorithmic and
Untimed Design

System Specifications
and Requirements

Hardware
Design

Software
Design

Hardware/Software
Partitioning

TLM Model

(b) Enhanced SoC Design Flow with
TLM.

Figure 2.3: SoC Design Flow [21].

in the blocking transport interface class, and it is used to model transactions between initiators
and targets as a single function call. It takes as arguments a reference to the transaction ob-
ject and a timing delay, and does not have a return value. Figure 2.4 shows an example of a
user defined blocking transport function call and the associated message sequence chart for the
transport interface. A message sequence chart illustrates the interaction between the initiator and
target using the transport interface. When the transport interface is called by the initiator, the
method performs some operation on the transaction object trans, and then synchronizes with the
SystemC scheduler via a wait() call.

However, frequent wait() calls result in high switching context overhead between the Sys-
temC processes and the SystemC scheduler. Therefore, in order to reduce the context switching
between SystemC processes and the SystemC scheduler to realize faster simulation, the blocking
transport allows initiators to run ahead of the simulation time and synchronize with the SystemC
scheduler when necessary. This is termed as temporal decoupling. In such a scenario, the ini-

12

1 void b_transport(TRANS &trans, sc_time& t_delay) {
2 wait(20, SC_NS);
3 perform_operation(trans);
4 }

(a) Blocking Transport Interface Method Definition.

Initiator Target

b_transport(trans,0)

wait(20,SC_NS)

0 ns

20 SC_NS
b_transport(trans,0)

b_transport(trans,0)

wait(20,SC_NS)

20 SC_NS

40 SC_NS
b_transport(trans,0)

(b) Message Sequence Chart.

Figure 2.4: Example of a Blocking Transport Interface Method calling a wait().

tiator continues to accumulate its local time until it yields to the SystemC scheduler through a
wait() call. Figure 2.5 illustrates the concept of temporal decoupling. The blocking transport
increments the timing delay t delay associated with the transport by 20 SC NS whenever this
blocking method is called. It continues to accumulate time until an explicit synchronization with
the SystemC scheduler occurs at which time, the local time of the initiator is reset. A potential
problem with temporal decoupling is that the initiator can continue to execute without advanc-
ing simulation time and thereby, prevent the SystemC scheduler from executing other processes.
The TLM-2.0 library provides a time quantum class that ensures other concurrent processes are
allowed to be scheduled by the SystemC scheduler. This is done by ensuring that the decoupled
initiator synchronizes with the SystemC scheduler and resumes only when the next time quantum
is reached.

13

1 void b_transport(TRANS &trans, sc_time &t_delay) {
2 sc_time inc(10, SC_NS);
3 t_delay = t_delay + inc;
4 if(t_delay == sc_time(20, SC_NS)) {
5 wait(20, SC_NS);
6 t_delay = SC_ZERO_TIME;
7 }
8 perform_operation(trans);
9 }

(a) Blocking Transport Interface Method Definition.

Initiator Target

b_transport(trans,0)
0 ns

b_transport(trans,10)

b_transport(trans,20)

b_transport(trans,10)

t_local = 10 SC_NS

b_transport(trans,10)

t_local = 20 SC_NS

b_transport(trans,0)

wait (20, SC_NS)

t_local = 10 SC_NS

(b) Message Sequence Chart.

Figure 2.5: Example of a Temporally Decoupled Blocking Transport Interface Method.

On the other hand, the non-blocking transport interface is intended to capture the approximately-
timed model (AT) of TLM designs. AT models are useful for architectural analysis as they con-
tain sufficient timing information. The transaction between the initiator and target is broken
down into several phases with each phase having a timing constraint. The phases of the transac-
tion adhere to some underlying communication protocol. The non-blocking transport interface
takes as arguments a reference to the transaction, a phase argument, and a timing delay, and it
returns an enumerated type that conveys whether the transaction object or timing delay has been
modified by the target. The non-blocking interface uses a forward connection from initiator to
target and a backward connection from target to initiator. Similar to the blocking transport, it
is implemented as a virtual function in the abstract non-blocking transport interface class. The

14

1 tlm::sync_enum target::nb_transport_fw(TRANS &trans, tlm_phase & phase,
2 sc_time &delay) {
3

4 perform_operation(trans);
5 delay = sc_time(10, SC_NS);
6 // Notify target module
7 target_event.notify(40, SC_NS);
8 phase = END_REQ;
9 return TLM_UPDATED;

10 }
11

12 tlm_sync_enum initiator::nb_transport_bw(TRANS &trans, tlm_phase &phase,
13 sc_time &delay) {
14

15 if(phase != BEGIN_RESP) {
16 // ERROR
17 }
18 perform_operation(trans);
19 phase = END_RESP;
20 return TLM_COMPLETED;
21 }

(a) Non-Blocking Transport Interface Method Definition.

Initiator Target

nb_transport_fw(trans, BEGIN_REQ, 0)

wait(10,SC_NS)

0 ns

wait(40,SC_NS)

nb_transport_fw(trans,END_REQ,10 SC_NS)
TLM_UPDATED

nb_transport_bw(trans, BEGIN_RESP, 0)

nb_transport_bw(trans,END_RESP,10 SC_NS)
TLM_COMPLETED

(b) Message Sequence Chart.

Figure 2.6: Example of a Non-Blocking Transport Interface Method.

15

possible return values are TLM ACCEPTED, TLM UPDATED, and TLM COMPLETED wherein
TLM ACCEPTED denotes that the target has not modified the parameters of the transaction ob-
ject and timing delay, TLM UPDATED denotes that the target has modified the contents of the
transaction object or incremented the timing delay, and TLM COMPLETED denotes the end of
the transaction. The phases of the base protocol are BEGIN REQ, END REQ, BEGIN RESP,
and END RESP. Figure 2.6 shows an example of a forward and backward non-blocking trans-
port interface methods that are implemented in the target and initiator respectively, along with
the message sequence chart. The thread process in the initiator begins the transaction by first
setting the attributes of the transaction object and invoking the nb transport fw method with the
initial values of the phase and timing delay set to BEGIN RESP and 0 SC NS respectively. As
shown in Figure 2.6, the nb transport fw method is defined in the target module. It performs
some operation on the transaction object and modifies the phase and timing delay to END RESP
and 10 SC NS respectively. It also schedules the activation of the event target event on which
the target module is currently waiting on. Since the target has modified the transaction object,
phase, and timing delay, it returns TLM UPDATED on the return path. The return path is simply
the return value of the function. The nb transport fw interface notifies an event that the target is
sensitive to, which communicates to the initiator via the nb transport bw path with phase set to
BEGIN RESP. On return to the initiator, the initiator suspends itself for a duration of 10 SC NS.
The definition of the backward transport interface is defined in the initiator, which terminates the
transaction by modifying the phase argument to END RESP and returning TLM COMPLETED.

The Direct Memory Interface (DMI) is a core interface that allows initiators to directly access
a target’s memory area without having to rely on the transport interface. The Debug Interface is
a convenient interface that allows performing transactions to the target via the transport interface
without having to perform any synchronizations with the SystemC scheduler. The OSCI TLM-
2.0 [22] provides a data structure aimed at modeling memory mapped buses. This data structure
is termed as the generic payload, and it consists of fields such as read/write command, address,
data, and burst width. In order to provide interoperability between TLM designs, the generic
payload is usually the transaction object that is communicated between initiators and targets via
the interfaces.

2.2 Graphics Processing Units

Graphics Processing Units (GPUs) are massively parallel processors capable of performing si-
multaneous integer and floating-point computations. The need for GPUs and its architectural
design has been shaped by the demand to perform multiple floating-point calculations per video
frame for the gaming industry. This has resulted in GPU designs to primarily dedicate their sil-

16

icon area towards computational units resulting in packing more simpler compute cores in the
given area. This architectural difference supports the capability of GPUs to perform simulta-
neous compute operations in less time over traditional CPUs. However, the GPU architecture
cannot be considered as a panacea design for all types of computations and therefore, there are
types of computations that are better suited on the CPU due to the presence of additional micro-
architectural features. In the next sections, I shall present a complete overview of the GPU
architecture, and discuss about the CUDA programming model for NVIDIA GPUs.

M
e
m

o
ry

 C
o
n
tr

o
ll
e
r

M
e
m

o
ry

 C
o
n
tr

o
ll
e
r

Interconnect

Global Device Memory (GDDR)

SM SM SM

SM SM SM

GPC
SP SP SP

SP SP SP

SP SP SP

LD
ST

LD
ST

LD
ST

SFU

SFU

SFU

Instruction Cache

Warp Scheduler

Register File

Shared Memory

Dispatch Queue Dispatch Queue

Operand Collector

FP Unit INT Unit

Result Queue

PCI Express Bus

GPC: Graphics Processing Cluster
SM: Streaming Multiprocessor
SP: Streaming Processor
LD/ST: Load/Store Unit
SFU: Special Function Unit
FP Unit: Floating Point Unit
INT Unit: Integer Unit

Figure 2.7: Generic NVIDIA GPU Architecture.

2.2.1 Architecture

Figure 2.7 illustrates the architecture of a generic NVIDIA GPU. The architecture can be broken
down to three levels: Graphics Processor Clusters (GPCs), Streaming Multiprocessors (SMs),
and Streaming Processors (SPs). The GPCs house a number of SMs (four SMs in each GPC in

17

Figure 2.7), and each GPC is connected to other GPCs via some interconnect. The SMs in turn
house a number of SPs. Over the years, the number of SPs packed into each SM for different
generations of GPU designs has increased consistently resulting in more throughput. A SM
consists of a thread issue unit that issues threads in an in-order manner, special function units,
and an on-chip shared memory. Usually, the number of threads that a single SM can manage
is about 1024 threads. A SP is a very simple core that consists of a floating-point unit and an
integer unit. The simplicity of the SP is key to packing more compute cores for accelerating
parallel computations.

2.2.2 CUDA Programming Model

The CUDA programming model is an extension to the C language with support for single instruc-
tion multiple data (SIMD) style of parallel computation and synchronization. It is a proprietary
framework by NVIDIA and applicable for NVIDIA GPUs. Figure 2.8 illustrates a vector addi-
tion example written using CUDA with which I shall use to describe the phases of the CUDA
programming model and highlight some important extensions.

The CPU is responsible for initializing and allocating memory for the data structures required
for computation on the GPU device. The cudaMalloc calls that are denoted in Lines 24-26 are
extensions to the C malloc functions, and initialize the data structures in the global memory of
the GPU. The cudaMemCpy calls in Lines 28-29 transfer data between the CPU memory region
and the designated GPU global memory region. The final argument to the cudaMemCpy call
indicates the direction of transfer. An argument of the form cudaMemcpyHostToDevice indicates
the direction of transfer from the host (CPU) to the device(GPU), and cudaMemcpyDeviceToHost
represents the direction of transfer from device (GPU) to host (CPU).

The function vecAdd is the data-parallel computation executed on the GPU, and it is launched
with a certain thread hierarchy as shown in Lines 31-32. The thread hierarchy is composed
of blocks and grids. Thread blocks are three-dimensional arrangement of threads, and grids
are two-dimensional arrangement of blocks. For the example shown, the function vecAdd is
launched with 2 thread blocks each with 512 threads. On launching vecAdd on the GPU, control
is transfered to the GPU for execution. Since the CUDA programming model follows a SIMD
style of parallel computation, the function vecAdd, which is defined in Lines 6-10, is replicated
for each thread and each thread accesses an exclusive portion of the data structures using the
thread identifier as index. Threads within a thread block are bunched into groups of 32 threads
called warps. All threads in a warp execute in lock-step on the same instruction but on different
data. Thread divergence within a warp due to thread identifier dependent conditions results in
serialization of warp execution. The synchronization of threads within a thread block is carried

18

1 #include <cuda_runtime.h>
2 #include <cuda.h>
3

4 #define SIZE 1024
5

6 __global__ void vecAdd(int *gpu_a, int *gpu_b, int *gpu_out) {
7 unsigned int i = threadIdx.x ;
8 gpu_out[i] = gpu_a[i] + gpu_b[i];
9 __syncthreads();

10 }
11

12 int main(int argc, char *argv[]) {
13 int *a;
14 int *b;
15 int *gpu_a;
16 int *gpu_b;
17 int *out_sum;
18 int *gpu_sum;
19

20 a = (int*)malloc(SIZE*sizeof(int));
21 b = (int*)malloc(SIZE*sizeof(int));
22 out_sum = (int*)malloc(SIZE*sizeof(int));
23

24 cudaMalloc((void**)&gpu_a, sizeof(int)*SIZE);
25 cudaMalloc((void**)&gpu_b, sizeof(int)*SIZE);
26 cudaMalloc((void**)&gpu_sum, sizeof(int)*SIZE);
27

28 cudaMemcpy(gpu_a, a, SIZE*sizeof(int), cudaMemcpyHostToDevice);
29 cudaMemcpy(gpu_b, b, SIZE*sizeof(int), cudaMemcpyHostToDevice);
30

31 dim3 grid(2, 1, 1);
32 dim3 block (512, 1, 1);
33

34 vecAdd<<<grid, block>>>(gpu_a, gpu_b, gpu_sum);
35 cudaDeviceSynchronize();
36 cudaMemcpy(out_sum, gpu_sum, SIZE*sizeof(int), cudaMemcpyDeviceToHost);
37 cudaFree(gpu_a); cudaFree(gpu_b); cudaFree(gpu_sum);
38 free(a); free(b); free(sum);
39 return 0;
40 }

Figure 2.8: Vector addition code in CUDA.

out using the syncthreads() function. On completion of vecAdd on the GPU, control returns
back to the CPU and the result of the computation is copied back to the host memory region
using the cudaMemCpy call.

The CUDA memory model consists of different types of memories that have varying impact
on the code’s execution time on the GPU. The global memory is a read/write memory that is
common to all threads executing across the GPU. The latency of transferring data to the global
memory via the slow PCI express bus is a bottleneck in most GPU applications. This is cause for
concern as in some cases it overshadows the fast computation time that the GPU provides. I revert
to this point when I discuss about the proposed technique for accelerating SystemC simulations,
and I refer the reader to [23] for an interesting analysis on the contribution of memory copy

19

overhead towards execution time of applications on GPUs. Registers and shared memory are
on-chip memories. Each thread has its own set of the registers, and is typically used to hold
the thread’s frequently used data. Shared memory is allocated to each thread block, and is a
convenient way for threads within a thread block to perform coordinated access to data as it is
much faster compared to accessing global memory. A typical use case for shared memory is
to bring in a chunk of data used frequently from the global memory to the shared memory and
perform computations to this shared block.

20

Chapter 3

Related Work

In this section, I shall introduce previous related works aimed at improving simuation of hard-
ware designs and the tools that aid in analysing, parsing, and representing SystemC designs for
performance analysis and verification purposes. I also discuss previous work aimed at distribut-
ing computations across CPUs and GPUs for general purpose applications.

3.1 Parallel Discrete Event Simulation

There have been several research efforts that propose modifications to the SystemC kernel to
leverage the parallelism offered by multi-processor and multi-core systems. The execution of dis-
crete event simulation kernel on parallel processors is termed as parallel discrete event simulation
(PDES). There are two categories of approaches towards PDES: conservative and opportunistic.
Conservative approaches process events in a causal order, and ensure that no causality violations
occur by constructing algorithms to determine when an event is safe to process. Shumacher et
al. [5], Chandran et al. [7], and Chopard et al. [11] propose conservative approaches for par-
allel simulation of synchronous SystemC models on CPUs. The proposed effort by Chopard et
al. [11] places the SystemC scheduler on one node, and synchronizes the processes executing
on other nodes at every delta-cycle. To maintain a consistent view of simulation time, a mas-
ter node is made responsible to collect timed events and notifying all processes when a timed
event is processed. Schumacher et al. [5] propose a synchronous parallel SystemC scheduler
that executes ready-to-run processes on available cores. Before entering the update phase, the
parallel processes are synchronized, and the channel updates happen in a sequential manner.
Chandran et al. [7] propose a partitioning and grouping of SystemC processes in addition to

21

parallelizing the simulation kernel of SystemC. On the other hand, Mello et al. [8] and Jones et
al. [10] propose opportunistic methods for accelerating the simulation of loosely timed TL mod-
els. However Mello et al. [8] do not support timed and immediate notifications, which prohibits
mixed-abstraction simulation, and re-use of existing TL models using other SystemC events.
Jones et al. [10] enable parallel simulation of mixed abstraction RTL and TL models, however
they require users to explicitly describe temporal constraints to limit temporal decoupling. A
more recent work by Moy [24] proposes a programming model that allows tasks to be spread
across time thereby improving the opportunity for parallel simulation of SystemC TL loosely
timed (LT) models. The key observation made by Moy is that traditional TLM code models the
time taken by a computation by performing the computation and then calling a wait() statement
where the timing argument to wait() call represents the time taken by the computation. This ham-
pers the opportunity for extracting parallelism in TLM models as unlike in RTL models where a
clock tick can place multiple processes in the ready-to-run queue of the SystemC scheduler, Sys-
temC TL models deal with quantitative time. Hence, Moy proposes a SystemC construct of the
form sc during that takes as input a sequence of computation code blocks and a timing parameter.
The sc during construct spreads the computation across the time mentioned in the timing param-
eter. By spreading the computation across time rather than performing the computation and then
suspending the process for a specific time, more opportunities for parallel execution of loosely
timed TLM models can be obtained as overlapping computations in time can be carried out in
parallel provided these computations are independent. For a detailed analysis on the origins of
PDES and some of the efforts related to PDES, I refer the reader to [25].

Recent works on accelerating SpecC simulations have combined parallelizing the simulation
kernel and discovering opportunities for out-of-order execution [26], [27] and [28]. These efforts
rely on sophisticated compiler techniques to statically analyze SpecC models and detect timing
and data hazards on channels, variables, and ports.

In this proposed effort, I use the parallel SystemC scheduler developed by Sinha et al.[17]
that is similar to the one proposed by Schumacher [5] with support for TLM models.

3.2 Accelerating SystemC models using GPUs

Nanjundappa et al. [15] parallelize the simulation of SystemC RTL models on GPUs. Their
work is the first effort to harness the potential of GPUs as platforms for parallelizing hardware
simulations. They propose a methodology to translate SystemC RTL descriptions into CUDA
kernels that preserve the original DE semantics. Their method places each SystemC process on
a distinct CUDA thread belonging to a different warp, in order to minimize the adverse effect
of thread divergence. To model the suspension and activation of SC THREADS, they convert

22

an SC THREAD description to a switch-case statement with synchronization barriers. Vinco
et al. [16], propose an alternative method for simulating SystemC RTL models on GPU. Their
work proposes a process duplication mechanism to improve opportunities for parallel execution
and reduce the number of synchronization barriers compared to the approach by Nanjundappa
et al. [15]. The process duplication mechanism results in the creation of independent data-flows
that can be executed on separate SMs of the GPU. For SystemC models with a large number
of concurrent SystemC processes, the above approaches work well as these concurrent SystemC
processes can be executed on distinct GPU cores [15] or on distinct multiprocessors [16]. How-
ever, these approaches cannot be used to accelerate simulation of SystemC TL models that allow
event and variable timed SystemC wait() calls. This is because current GPUs cannot suspend
their execution and resume execution from the next instruction. Realizing the need to support ac-
celerating SystemC models defined at abstraction levels above the RTL abstraction level, Sinha et
al. [17] propose a CUDA SystemC library to facilitate handling of immediate, timed, and delta
wait() calls, and notifications thereby simulating both RTL and TL models. Their methodol-
ogy generates wrapper functions for processes identified for GPU execution through user-guided
hints, which is responsible for communicating events across concurrent processes. However,
their approach does not take into consideration the program characteristics of the SystemC pro-
cesses that may or may not be beneficial for GPU execution. Moreover, their approach suffers
from frequent memory transfers across the CPU and GPU in the presence of multiple SystemC
scheduler calls (wait() and notify()). This is because the SystemC scheduler calls are handled by
the SystemC scheduler resident on the CPU and therefore, the state of the GPU execution has
to be saved and restored on encountering a SystemC scheduler call. In this thesis, I work on
modifying Sinha et al. [17] approach to take into account of this bottleneck of memory transfer
across CPU and GPU, and relieve the effort involved in identifying processes suitable for CPU
and GPU execution by automating this process. I refer the reader to [29] and [30] for a thorough
investigation on the recent works related to accelerating SystemC simulations on GPUs.

3.3 SystemC Front-Ends

As SystemC is a SLDL that is based on C/C++, it poses a challenge to designers responsible
for building automation and analysis tools to assist in the design and verification process. This
is because analyzing SystemC models requires the ability to parse, represent, and comprehend
SystemC models. Realizing the need for SystemC front-ends and the unavailability of a refer-
ence SystemC front-end, there are several open-source and closed-source front-ends available.
These front-ends can be broadly classified into two categories: static and dynamic front-ends.
Static front-ends use static methods to extract the structural and behavior information of SystemC

23

models and represent the parsed information in an intermediate representation. SystemPerl [31],
KaSCPar [32], Scoot [33], and SystemCXML [34] are examples of static SystemC front-ends.
SystemPerl [31] generates Perl scripts to parse and extract structural information from an input
SystemC model. SystemCXML [34] is another static SystemC front-end that uses the Doxygen
documentation tool to construct an intermediate representation in XML format that captures the
structural information of the SystemC input design. Static parsers that utilize compiler analy-
sis for parsing the SystemC design include ParSysC [35], Scoot [33], Pinapa [36], and PinaVM
[37]. ParSysC [35] utilizes the Purdue Compiler Construction Tool Set (PCCTS), which is a set
of tools designed for creating compilers, to extract structural information of SystemC designs.
Scoot [33] is another static SystemC front-end based on the GCC compiler that extracts struc-
tural information from SystemC models and provides extensions for type-checking and code
re-synthesis for faster simulations. On the other hand, dynamic parsers such as PinaVM [37]
and Pinapa [36] observe that the entire structure of the SystemC model cannot be constructed
from static analysis due to dynamically instantiated modules. Therefore, such parsers extract the
hierarchy of the SystemC model at run-time by executing the elaboration phase of the SystemC
scheduler. PinaVM [37] is a revamped version of Pinapa [36] that utilizes the LLVM framework.
PinaVM [37] extracts additional information of the architecture of the design by analyzing the
bit code generated by the LLVM just-in-time compiler (JIT). Table 3.1 summarizes the capabil-
ities of available SystemC front-ends. For a more in-depth analysis of the available SystemC
front-ends, I refer the reader to [38].

While there are merits in both categories of SystemC front-ends, I believe that a front-end that
distributes the analysis of SystemC models between static and dynamic approaches is beneficial.
It is important to note that none of the previous approaches parse SystemC models described
above the RTL abstraction level such as TL abstraction level. Therefore, I have focused on
developing an open-source static framework for parsing SystemC models defined at the RTL and
TLM levels of abstraction that I hope to integrate with the available dynamic front-ends such
as PinaVM [37]. To my knowledge, HIFSuite [39] supports parsing of SystemC TL models.
However, HIFSuite is a commercial and closed-source tool, and I believe that an open-source
tool is essential to the community and to the tool’s development.

3.4 Mapping Applications Across CPUs and GPUs

With the rising popularity of heterogeneous computing platforms with GPUs, there have been
numerous research efforts to distribute the execution of an application on a heterogeneous com-
puting system. Luk et al. [40] propose an automatic adaptive mapping framework that is built on
top of threading libraries. It maintains a history of the runtime of an application on multi-core

24

SystemC front-end Type of Abstraction Level Technique
front-end Supported

SystemPerl [31] Static RTL Uses Perl scripts
to extract structural information.

SystemCXML [34] Static RTL Extracts structural information
using Doxygen and generates an
intermediate representation of

SystemC model.
ParSysC [35] Static RTL Uses the Purdue Compiler

Construction Tool Set (PCCTS)
for parsing SystemC models.

Scoot [33] Static RTL Uses the GCC compiler for
parsing SystemC models and supports

type-checking and code re-synthesis for
faster simulation.

Pinapa [36] Dynamic RTL Uses the GCC compiler and
executes the elaboration phase
of the SystemC scheduler for

constructing module hierarchy.
PinaVM [37] Dynamic RTL Similar to Pinapa but uses

the LLVM compiler instead.

Table 3.1: Summary of SystemC front-ends.

25

CPUs and GPUs by performing a training run of the application. Using the profile history, they
develop curve fitting equations to determine a near optimal mapping for the same application
with different data sets. A more recent work by Wang et al. [41] propose a scheduling scheme
that is a hybrid between sampling scheduling and splitting scheduling. They break the execution
of the application into several phases and determine a stable partitioning when the variances of
the performance ration of two consecutive executions are small. However, these works do not
address the issue of GPU contention due to concurrent GPU kernel invocations for a heteroge-
neous architecture where a GPU is shared by many CPUs. Gregg et al. [42], address the above
by querying the device during runtime to determine whether the device is utilized and then mak-
ing a decision based on the profiling time scaled by a contention factor. The authors of [43] use
machine learning techniques to extract an optimal mapping of OpenCL kernels on CPU-GPU
based systems in the presence of GPU contention. A recent work by Gohli et al. [44] propose
a static technique that derives a mapping of an application across processors in a heterogeneous
computing system by using Monte Carlo search trees. Diop et al. [45] propose a framework
for executing OpenCL kernels across a GPU cluster using meta-functions that abstract the un-
derlying architecture of the cluster and, thereby allowing the programmer to focus on improving
the algorithm of the application. In this thesis, I focus on developing a straightforward static
approach for determining a mapping of the execution of the SystemC model based on the profile
times of the data-parallel computations considered for GPU execution.

26

Chapter 4

systemc-clang: A Framework for Static
Analysis of SystemC RTL and TL Models

This chapter presents systemc-clang, an extensible open-source framework for analyzing Sys-
temC models defined at the RTL and TL abstraction levels.

4.1 systemc-clang Tool Flow

clang/LLVM AST of
SystemC model

Intermediate
Representation

systemc-clang
pluginsystemc-clangSystemC

model

Ports and Sockets
VisitFieldDecl

TLM Core IF
VisitCXXMemberCallExpr

Wait/Notify Calls
VisitCallExpr

Netlist
VisitFunctionDecl
VisitMemberExpr

VisitCXXMembercallExpr

SystemC Processes
VisitCXXMethodDecl
VisitMemberExpr

Figure 4.1: systemc-clang Tool Flow [46].

Figure 4.1 shows the tool flow of systemc-clang[18]. The input to systemc-clang is the Ab-
stract Syntax Tree (AST) of the SystemC model generated by the LLVM/clang [47] framework.
To extract the necessary structural and behavioral information present in the input SystemC
model, systemc-clang dispatches a number of virtual functions of the form VisitNode(Node*)
to visit AST nodes of interest. For example, VisitCXXMethodDecl(CXXMethodDecl*) is a vir-
tual method that visits methods of a C/C++ class, which is used by systemc-clang to extract

27

SystemC processes constituting a SystemC module. The structural and behavioral information
extracted by systemc-clang are stored as intermediate representations (IRs) that can be queried
and analyzed to extract further information. To query the IRs, systemc-clang provides applica-
tion programming interfaces (APIs) that can be used by systemc-clang plugins to perform further
analysis on the parsed information. Before going into the details of the tool, I introduce the basic
classes and features of clang that are utilized by systemc-clang.

clang constructs Description
CXXRecordDecl Derived from base class Decl.

Represents a C/C++ class or structure.
CXXMethodDecl Derived from base class Decl.

Represents a method of a C/C++ class.
MemberExpr Derived from base class Stmt.

Represents a member of a C/C++ class or structure.
CallExpr Derived from base class Stmt.

Represents a call to a function.
PointerType Derived from base class Type.

Represents pointer declarators.
VisitMemberExpr Visits AST node of type MemberExpr.

VisitCallExpr Visits AST node of type CallExpr.
VisitCXXMethodDecl Visits AST node of type CXXMethodDecl.
VisitCXXRecordDecl Visits AST node of type CXXRecordDecl.

Table 4.1: Fundamental clang classes and methods.

4.2 clang Basics

The abstract syntax tree (AST) is the primary input to systemc-clang that is parsed to build the
IRs and carry out analysis. The ASTContext class holds all the information about the AST for a
translation unit, which is a basic unit of compilation. It provides the entry point to the AST via
the function getTranslationUnitDecl(). To traverse the AST obtained from the getTranslationUnit-
Decl() function, clang provides two AST visitor classes: ASTVisitor and RecursiveASTVisitor.
An AST visitor is a class that traverses the AST. The difference between the ASTVisitor and
RecursiveASTVisitor class is that the RecursiveASTVisitor class performs a pre-order depth-first
traversal of the AST in a recursive manner. systemc-clang uses the RecursiveASTVisitor class

28

for traversing the AST as this class is a public API, and it is has been subjected to many im-
provements by the clang community. The RecursiveASTVisitor class internally uses the ASTVisi-
tor class. The RecursiveASTVisitor class provides virtual functions of the form VisitNode(Node*),
that visits nodes of type Node. For instance, VisitCXXMethodDecl(CXXMethodDecl*) is a virtual
function that visits AST nodes of type CXXMethodDecl. The return type associated with the visit
functions determines whether to continue traversing the AST or not. A return type of true will
continue traversing the AST.

The base classes of clang [48] are Stmt, Decl, and Type. The Stmt class represents a C/C++
statement. It is a base class for many derived classes such as CompoundStmt, which repre-
sents a group of statements and IfStmt, which represents an if/then statement. The Decl class
represents a C/C++ declaration of a variable, function, class, structure etc. Classes such as
FunctionDecl that represents a function declaration and CXXRecordDecl that represents a C/C++
class/struct/union declaration are derived from the Decl base class. The Type class represents
C/C++ types. Classes such as PointerType and ArrayType that represent pointer declarators and
array declarators respectively are derived classes of the Type class. Table 4.1 summarizes the
basic and derived clang classes along with some additional virtual functions provided by Recur-
siveASTVisitor class.

4.3 Extraction of Structural and Behavioral Information

In this section, I highlight some of the structural information that is extracted by systemc-
clang using examples wherever necessary. In the following subsections I describe the extrac-
tion methodology of systemc-clang by highlighting some examples of the structural information
extracted. Table 4.2 tabulates all the information systemc-clang extracts from a given SystemC
model.

29

Information Type Properties
Modules Module Name

Processes Process Type, sensitivity, properties
such as payload information and wait() calls

Ports Port Name, Port Access Type, Data Type
Events Event Name

Class Members Member Name, Member Type

Sockets Socket Name, Protocol Type, Data bus
Width, Socket Type, Callback Methods

wait() Calls Type of wait(), Duration of wait(),
Event Name

Event Notification Calls Type of event notifications, Duration of
event notifications, and Event Name.

Local Variables Variable Name, Variable Type

TLM Payload

Payload Pointer, Command, Address,
Data Pointer, Data Length, Streaming

Width, Byte Enable Pointer, DMI
Allowed, Initial Response Status,

Extensions

TLM Core Interface
Socket Name, Interface Type, Payload

Pointer, Delay Argument, Phase Argument
Starting address, Ending Address

Table 4.2: Summary of information extracted by systemc-clang from a SystemC model.

4.3.1 Extraction of SystemC modules

Modules are the basic building blocks of a SystemC design. Figure 4.2a, shows a partial AST
dump of a SystemC module declaration, and the FindSCModule class implemented in systemc-
clang. Relevant information in the AST and in the class definition are highlighted. Since the
modules are defined as SC MODULE, which is a C/C++ class, the FindSCModule class uses
the VisitCXXRecordDecl(CXXRecordDecl*) to identify SC MODULE declarations. To identify
SC MODULES, systemc-clang iterates over an identified CXXRecordDecl node and checks if
its base class type is sc core::sc module. It can be observed from the highlighted AST shown
in Figure 4.2a that the AST node type of SC MODULE(dff) is CXXReordDecl. On identifying
the SC MODULE, the name of the module is extracted using the getIdentifier() function. Figure
4.2b shows the FindSCModule class definition of systemc-clang responsible for identifying the
SC MODULES.

30

1 CXXRecordDecl 0x4893f10 struct dff
2 |-public ’::sc_core::sc_module’:’class sc_core::sc_module’
3 |-CXXRecordDecl 0x48940d0 struct dff
4 |-FieldDecl 0x4894220 clk ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’
5 |-FieldDecl 0x4894330 i_data ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’
6 |-FieldDecl 0x489fcc0 o_data ’sc_out<_Bool>’:’class sc_core::sc_out<_Bool>’

(a) SC MODULE AST.

1 class FindModule:public RecursiveASTVisitor<FindModule>{
2 public:
3 FindModule(CXXRecordDecl*, llvm::raw_ostream&);
4 ˜FindModule();
5 // Typedefs declarations
6

7 //Virtual methods from RecursiveASTVisitor class
8 virtual bool VisitCXXRecordDecl(CXXRecordDecl *decl);
9

10 // Member declarations
11 private:
12 CXXRecordDecl* _decl;
13 string _moduleName;
14 bool _isSystemCModule;
15 }

1 bool FindModule::VisitCXXRecordDecl(CXXRecordDecl *d) {
2 for (CXXRecordDecl::base_class_iterator
3 bi = _decl->bases_begin(),
4 be = _decl->bases_end();
5 bi != be; ++bi) {
6 QualType q = bi->getType();
7 string baseName = q.getAsString();
8 if (baseName == "::sc_core::sc_module"){
9 _isSystemCModule = true;

10 IdentifierInfo *info = _decl->getIdentifier();
11 if (info != NULL) {
12 _moduleName = info->getNameStart();
13 }
14 }
15 }
16 if(_isSystemCModule == false) {
17 return false;
18 }
19 return false;
20 }

(b) FindModule class in systemc-clang.

Figure 4.2: Extraction of SystemC modules by systemc-clang.

4.3.2 Extraction of SystemC ports

systemc-clang extracts information regarding the direction and data-type of ports. For instance,
for a port of the form sc in〈bool〉, systemc-clang will report it to be an input port of boolean
type. Figure 4.3a shows the AST for port declarations inside a SystemC module. To extract in-
formation regarding the ports, systemc-clang dispatches the VisitFieldDecl(FieldDecl*) function
to traverse the AST node representing port declarations as shown in Figure 4.3b. The portType
data type holds the mapping of the port name with the data type. The three portTypes repre-
sent input, output, and inout ports. From the AST shown, the ports clk, i data, and o data are
identified. TLM-2.0 sockets are identified in a similar manner by traversing AST nodes of type
FieldDecl.

4.3.3 Extraction of TLM-2.0 core interfaces

Since the TLM-2.0 core interfaces are implemented as user-overridable functions that belong to
an abstract interface class, systemc-clang identifies the TLM-2.0 core interfaces used by inspect-
ing AST nodes of type CXXMemberCallExpr. For the identified transport interface methods, the

31

1 FieldDecl 0x59eb020 clk ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’
2 FieldDecl 0x59eb130 i_data ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’
3 FieldDecl 0x59f6b30 o_data ’sc_out<_Bool>’:’class sc_core::sc_out<_Bool>’

(a) SystemC Ports AST.

1 class FindPorts: public RecursiveASTVisitor<FindPorts> {
2 public:
3 FindPorts(CXXRecordDecl*, llvm::raw_ostream&);
4 ˜FindPorts();
5

6 // Typedef Declarations
7

8 // Virtual methods from RecursiveASTVisitor class
9 virtual bool VisitFieldDecl(FieldDecl*);

10

11 // Member Declarations
12 private:
13 portType _inPorts;
14 portType _outPorts;
15 portType _inoutPorts;
16 };
17 }

1 bool FindPorts::VisitFieldDecl(FieldDecl* fd) {
2 QualType q = fd->getType();
3 string fname;
4 if (IdentifierInfo *info = fd->getIdentifier()) {
5 fname = info->getNameStart();
6 }
7

8 const Type* tp = q.getTypePtr();
9 FindTemplateTypes* te = new FindTemplateTypes();

10 te->Enumerate(tp);
11

12 argVectorType args = te->getTemplateArgumentsType();
13 argVectorType::iterator ait = args.begin();
14

15 if (args.size() == 0) {
16 return true;
17 }
18 if (ait->first == "sc_in") {
19 _inPorts.insert(kvType(fname, te));
20 }
21 else if (ait->first == "sc_out") {
22 _outPorts.insert(kvType(fname, te));
23 }
24 else if (ait->first == "sc_inout") {
25 _inoutPorts.insert(kvType(fname, te));
26 }
27 return true;
28 }

(b) FindPorts class in systemc-clang.

Figure 4.3: Extraction of SystemC ports by systemc-clang.

transaction object, timing delay, and phase argument is identified. Figure 4.4a and 4.4b show
the AST node of the non-blocking forward transport interface and the FindCoreInterface class
definition respectively. The arguments to the transport interface method such as the transaction
object, timing delay, and protocol phase are extracted for each transport interface method.

4.3.4 Extraction of SystemC processes

SystemC processes are identified by inspecting the constructor of the SystemC module as the
SystemC process type and sensitivity list for the process are defined in the constructor of the
module. Figure 4.5a shows the partial AST of the D-flip flop SystemC module constructor. It
can be observed that the SystemC process dFlipFlop is defined as a SystemC thread process,
and it is sensitive to the rising edge of the clock. The constructor of the SystemC module is
obtained by traversing AST nodes of CXXMethodDecl and typecasting to CXXConstructorDecl
type, which represents a C++ constructor. Since SystemC processes are member functions of the

32

1 CXXMemberCallExpr 0x5e59168 ’enum tlm::tlm_sync_enum’
2 |-MemberExpr 0x5e59088 ’<bound member function type>’ ->nb_transport_fw 0x5d473a0
3 | ‘-ImplicitCastExpr 0x5e591a8 ’class tlm::tlm_fw_nonblocking_transport_if <class tlm::

tlm_generic_payload, class tlm::tlm_phase>
4 *’ <UncheckedDerivedToBase (virtual tlm_fw_nonblocking_transport_if)>
5 | ‘-CXXOperatorCallExpr 0x5e59048 ’class tlm::tlm_fw_transport_if<struct tlm::tlm_base_protocol_types

> *’
6 | |-ImplicitCastExpr 0x5e59030 ’class tlm::tlm_fw_transport_if<struct tlm::tlm_base_protocol_types>

()(void)’ <FunctionToPointerDecay>
7 | | ‘-DeclRefExpr 0x5e59008 ’class tlm::tlm_fw_transport_if<struct tlm::tlm_base_protocol_types> *(

void)’ lvalue CXXMethod 0x5dd4ca0
8 ’operator->’ ’class tlm::tlm_fw_transport_if<struct tlm::tlm_base_protocol_types> *(void)’
9 | ‘-ImplicitCastExpr 0x5e58fd0 ’class sc_core::sc_port_b<class tlm::tlm_fw_transport_if<struct tlm

::tlm_base_protocol_types> >’
10 lvalue <UncheckedDerivedToBase (tlm_initiator_socket -> tlm_base_initiator_socket -> sc_port ->

sc_port_b)>
11 | ‘-MemberExpr 0x5e58fa0 ’tlm_utils::simple_initiator_socket<AT_typeB_initiator, 32>’:
12 ’class tlm_utils::simple_initiator_socket<struct AT_typeB_initiator, 32, struct tlm::

tlm_base_protocol_types>’ lvalue ->socket0x5e48940
13 | ‘-CXXThisExpr 0x5e58f88 ’struct AT_typeB_initiator *’ this
14 |-UnaryOperator 0x5e590f8 ’tlm::tlm_generic_payload’:’class tlm::tlm_generic_payload’ lvalue prefix ’*’
15 | ‘-ImplicitCastExpr 0x5e590e0 ’tlm::tlm_generic_payload *’ <LValueToRValue>
16 | ‘-DeclRefExpr 0x5e590b8 ’tlm::tlm_generic_payload *’ lvalue Var 0x5e4e6f0 ’trans’ ’tlm::

tlm_generic_payload *’
17 |-DeclRefExpr 0x5e59118 ’tlm::tlm_phase’:’class tlm::tlm_phase’ lvalue Var 0x5e4e7b0 ’phase’ ’tlm::

tlm_phase’:’class tlm::tlm_phase’
18 ‘-DeclRefExpr 0x5e59140 ’class sc_core::sc_time’ lvalue Var 0x5e4e860 ’delay’ ’class sc_core::sc_time’

(a) SystemC Non-Blocking Transport AST.
1 class FindCoreInterfaceType: public RecursiveASTVisitor<FindCoreInterfaceType>{
2 public:
3 FindCoreInterfaceType(CXXMethodDecl*, llvm::raw_ostream&);
4 ˜FindCoreInterfaceType();
5

6 // Typedefs Declarations
7

8 // Virtual methods from RecursiveASTVisitor class
9 virtual bool VisitCXXMemberCallExpr (CXXMemberCallExpr*);

10

11 // Member Declarations
12 private:
13 CXXMethodDecl *_d;
14 };
15 }

1 bool FindCoreInterfaceType::VisitCXXMemberCallExpr(CXXMemberCallExpr *ce) {
2 if(ce->getMethodDecl()->getNameAsString() == "b_transport" ||
3 ce->getMethodDecl()->getNameAsString() == "get_direct_mem_ptr" ||
4 ce->getMethodDecl()->getNameAsString()=="invalidate_direct_mem_ptr") {
5 transportType = ce->getMethodDecl()->getNameAsString();
6 if(CXXOperatorCallExpr *co = dyn_cast<CXXOperatorCallExpr>
7 (ce->getImplicitObjectArgument()->IgnoreImpCasts())) {
8 FindArgument fa(co->getArg(0)->IgnoreImpCasts());
9 socketName = fa.getArgumentName();

10 }
11 // Extract payload and delay arguments
12 Properties *p = new Properties(transportType, payloadName, delay);
13 _socketTransportMap.insert(socketTransportPairType(socketName, p));
14 }
15 else if (ce->getMethodDecl()->getNameAsString() == "nb_transport_fw" ||
16 ce->getMethodDecl()->getNameAsString() == "nb_transport_bw") {
17

18 transportType = ce->getMethodDecl()->getNameAsString();
19 if(CXXOperatorCallExpr *co = dyn_cast<CXXOperatorCallExpr>
20 (ce->getImplicitObjectArgument()->IgnoreImpCasts())) {
21 FindArgument fa(co->getArg(0)->IgnoreImpCasts());
22 socketName = fa.getArgumentName();
23 }
24 //Extract payload, delay, and phase arguments
25 Properties *p = new Properties(transportType, payloadName, phase, delay);
26 _socketTransportMap.insert(socketTransportPairType(socketName, p));
27 }
28 return true;
29 }

(b) FindCoreInterface class in systemc-clang.

Figure 4.4: Extraction of TLM-2.0 Core Interfaces by systemc-clang.

33

1 -CXXMemberCallExpr 0x57df548 ’class sc_core::sc_process_handle’
2 |-MemberExpr 0x57df2c8 ’<bound member function type>’ ->create_thread_process 0x4d735f0
3 | ‘-CallExpr 0x57df2a0 ’class sc_core::sc_simcontext *’
4 | ‘-ImplicitCastExpr 0x57df288 ’class sc_core::sc_simcontext *(*)(void)’
5 <FunctionToPointerDecay>
6 | ‘-DeclRefExpr 0x57df250 ’class sc_core::sc_simcontext *(void)’ lvalue Function 0x4d9dd00
7 ’sc_get_curr_simcontext’ ’class sc_core::sc_simcontext *(void)’
8 |-ImplicitCastExpr 0x57df598 ’const char *’ <ArrayToPointerDecay>
9 | ‘-StringLiteral 0x57df2f8 ’const char [10]’ lvalue "dFlipFlop"

10 |-CXXBoolLiteralExpr 0x57df330 ’_Bool’ false
11

12 ‘-CXXOperatorCallExpr 0x57e06a0 ’class sc_core::sc_sensitive’ lvalue
13 |-ImplicitCastExpr 0x57e0688 ’class sc_core::sc_sensitive &(*)(class sc_core::sc_event_finder &)’
14 <FunctionToPointerDecay>
15 | ‘-DeclRefExpr 0x57e0630 ’class sc_core::sc_sensitive &(class sc_core::sc_event_finder &)’
16 lvalue CXXMethod 0x4c7c150
17 ’operator<<’ ’class sc_core::sc_sensitive &(class sc_core::sc_event_finder &)’
18 |-MemberExpr 0x57e0440 ’class sc_core::sc_sensitive’ lvalue ->sensitive 0x4e44bd0
19 | ‘-ImplicitCastExpr 0x57e0420 ’class sc_core::sc_module *’ <UncheckedDerivedToBase (sc_module)>
20 | ‘-CXXThisExpr 0x57e0408 ’struct dff *’ this
21 ‘-CXXMemberCallExpr 0x57e04e8 ’class sc_core::sc_event_finder’ lvalue
22 ‘-MemberExpr 0x57e04b8 ’<bound member function type>’ .pos 0x4faf000
23 ‘-ImplicitCastExpr 0x57e0510 ’const class sc_core::sc_in<_Bool>’ lvalue <NoOp>
24 ‘-MemberExpr 0x57e0488 ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’ lvalue ->clk 0x57d2930
25 ‘-CXXThisExpr 0x57e0470 ’struct dff *’ this

(a) SC MODULE constructor AST.

1 class FindEntryFunctions: public RecursiveASTVisitor<FindEntryFunctions> {
2 public:
3 FindEntryFunctions(CXXRecordDecl* d,llvm::raw_ostream& os);
4 ˜FindEntryFunctions();
5 // Typedefs Declarations
6

7 // Virtual methods from RecursiveASTVisitor class
8 virtual bool VisitStringLiteral(StringLiteral *l);
9 virtual bool VisitCXXMethodDecl(CXXMethodDecl *d);

10 virtual bool VisitMemberExpr(MemberExpr *e);
11

12 // Member Declarations
13 private:
14 CXXRecordDecl *_d;
15 CXXMethodDecl* _entryMethodDecl;
16 Stmt* _constructorStmt;
17 };
18 }

1 bool FindEntryFunctions::VisitMemberExpr(MemberExpr *e) {
2 switch (pass) {
3 case 2: {
4 string memberName = e->getMemberDecl()->getNameAsString();
5 if (memberName == "create_method_process") {
6 _procType = METHOD;
7 }
8 else if (memberName == "create_thread_process") {
9 _procType = THREAD;

10 }
11 else if (memberName == "create_cthread_process") {
12 _procType = CTHREAD;
13 }
14 break;
15 }
16 default: break;
17 }
18 return true;
19 }

1 bool FindEntryFunctions::VisitStringLiteral(StringLiteral *s) {
2 switch(pass) {
3 case 2: {
4 _entryName = s->getString();
5 ef = new EntryFunctionContainer();
6 // Set process name, type, and
7 // constructor body for ef
8 if(_procType != 0) {
9 _entryFunctions.push_back(ef);

10 }
11 break;
12 }
13 case 3: {
14 break;
15 }
16 default: break;
17 }
18 return true;
19 }

1 bool FindEntryFunctions::VisitCXXMethodDecl(CXXMethodDecl *md) {
2 _otherFunctions.push_back(md);
3 switch(pass) {
4 case 1: {
5 if (CXXConstructorDecl* cd = dyn_cast<CXXConstructorDecl>(md)) {
6 const FunctionDecl* fd = NULL;
7 cd->getBody(fd);
8 if (cd->hasBody()) {
9 _constructorStmt = cd->getBody();

10 }
11 }
12 break;
13 }
14 case 2: {
15 break;
16 }
17 // Cases to extract additional information
18 default: break;
19 }
20 return true;
21 }

(b) FindEntryFunction class in systemc-clang.

Figure 4.5: Extraction of SystemC processes by systemc-clang.

34

SystemC class sc module, the processes are identified by traversing the node of CXXMember-
CallExpr and retrieving their member declarators to check whether the process is a SC METHOD,
SC CTHREAD or SC THREAD. The process type is identified by retrieving the member declara-
tion of the SystemC process, and comparing with the strings create thread process for SC THREADS,
create method process for SC METHOD, and create cthread process for SC CTHREADS. Fig-
ure 4.5b shows the FindEntryFunction class of systemc-clang responsible for extracting SystemC
processes.

4.3.5 Extraction of TLM-2.0 generic payload attributes

The TLM-2.0 generic payload is a data structure with attributes that reflect memory-mapped bus
protocols. It is used as the transaction object for communication between initiators and targets
in TLM-2.0 designs. Based on the underlying communication protocol, the initiators and targets
modify the attributes of the generic payload. The attributes of the generic payload are set us-
ing member functions of the payload class such as set command() to set read/write command,
set address() to specify the starting address of the target memory map, and set response status()
to specify the status of the transaction protocol. Figure 4.6a shows the AST node of the generic
payload data structure, and Figure 4.6b shows the class definition for the FindPayloadCharacter-
istics class of systemc-clang. The AST nodes of two member functions of the generic payload
class namely set command and set address are shown in Figure 4.6a.

4.3.6 Extraction of suspension and notification calls

The calls to SystemC scheduler via wait() and notify() are extracted from each identified Sys-
temC process by traversing AST nodes of type CallExpr, which represents a C/C++ function
call. The type of wait() and notify() call such as delta, timed, or delayed are identified by inspect-
ing the arguments passed to the wait() and notify() calls. Figures 4.7a and 4.7b illustrates the AST
node description of different wait() and notify() calls and the FindWaitNotify class definition of
systemc-clang. The information regarding the wait() and notify() calls along with the sensitivity
list extracted are the building blocks towards building the behavioral intermediate representation.

4.3.7 Extraction of netlist

On extracting all the SystemC modules present in the input SystemC model and the architectural
components for each module, the top level module that contains the module instantiations and

35

1 CXXMemberCallExpr 0x4f9ca88 ’void’
2 |-MemberExpr 0x4f9ca30 ’<bound member function type>’ ->set_command 0x4c36310
3 | ‘-ImplicitCastExpr 0x4f9ca18 ’tlm::tlm_generic_payload *’ <LValueToRValue>
4 | ‘-DeclRefExpr 0x4f9c9f0 ’tlm::tlm_generic_payload *’ lvalue Var 0x4f9b580
5 ’trans’ ’tlm::tlm_generic_payload *’
6 ‘-ImplicitCastExpr 0x4f9cab8 ’tlm::tlm_command’:’enum tlm::tlm_command’ <LValueToRValue>
7 ‘-DeclRefExpr 0x4f9ca60 ’tlm::tlm_command’:’enum tlm::tlm_command’
8 lvalue Var 0x4f9bb10 ’cmd’ ’tlm::tlm_command’:’enum tlm::tlm_command’
9

10 CXXMemberCallExpr 0x4f9cb68 ’void’
11 |-MemberExpr 0x4f9cb10 ’<bound member function type>’ ->set_address 0x4c365d0
12 | ‘-ImplicitCastExpr 0x4f9caf8 ’tlm::tlm_generic_payload *’ <LValueToRValue>
13 | ‘-DeclRefExpr 0x4f9cad0 ’tlm::tlm_generic_payload *’ lvalue Var 0x4f9b580
14 ’trans’ ’tlm::tlm_generic_payload *’
15 ‘-ImplicitCastExpr 0x4f9cbb0 ’sc_dt::uint64’:’unsigned long long’ <IntegralCast>
16 ‘-ImplicitCastExpr 0x4f9cb98 ’int’ <LValueToRValue>
17 ‘-DeclRefExpr 0x4f9cb40 ’int’ lvalue Var 0x4f9b910 ’adr’ ’int’

(a) TLM-2.0 generic payload AST.
1 bool FindPayloadCharacteristics::VisitCXXMemberCallExpr(CXXMemberCallExpr *ce) {
2 if(MemberExpr *me = dyn_cast<MemberExpr>(ce->getCallee()->IgnoreImpCasts())) {
3 if(DeclRefExpr *de = dyn_cast<DeclRefExpr> (me->getBase()->IgnoreImpCasts())) {
4 Payload *p = new Payload(_command, _address, _dataPtr, _dataLength,
5 _streamingWidth, _byteEnablePtr, _DMIAllowed, _responseStatus);
6 }
7 }
8 if(ce->getMethodDecl()->getNameAsString() == "set_command") {
9 FindArgument fa(ce->getArg(0)->IgnoreImpCasts());

10 _command = fa.getArgumentName();
11 }
12 else if (ce->getMethodDecl()->getNameAsString() == "set_address") {
13 FindArgument fa(ce->getArg(0)->IgnoreImpCasts());
14 _address = fa.getArgumentName();
15 }
16 // Test for all member functions in the generic payload class
17 return true;
18 }

1 class FindPayloadCharacteristics: public RecursiveASTVisitor<FindPayloadCharacteristics> {
2 public:
3

4 FindPayloadCharacteristics(CXXMethodDecl*, llvm::raw_ostream&);
5 ˜FindPayloadCharacteristics();
6 // Typedefs Declarations
7

8 // Virtual methods from RecursiveASTVisitor class
9 virtual bool VisitCXXMemberCallExpr(CXXMemberCallExpr *ce);

10

11 // Member Declarations
12 private:
13 CXXMethodDecl* _d;
14 };
15 }

(b) FindPayloadCharacteristics class in systemc-clang.

Figure 4.6: Extraction of TLM-2.0 Core generic payload characteristics by systemc-clang.

36

1 CXXMemberCallExpr 0x424ad60 ’void’
2 ‘-MemberExpr 0x424ad30 ’<bound member function type>’ .notify 0x38d26a0
3 ‘-DeclRefExpr 0x424ac90 ’class sc_core::sc_event’ lvalue Var 0x423e620 ’ev’ ’class sc_core::sc_event’
4

5 CXXMemberCallExpr 0x424aea0 ’void’
6 |-MemberExpr 0x424ae70 ’<bound member function type>’ .notify 0x3905f20
7 | ‘-DeclRefExpr 0x424ad88 ’class sc_core::sc_event’ lvalue Var 0x423e620 ’ev’ ’class sc_core::sc_event’
8 |-ImplicitCastExpr 0x424aed8 ’double’ <IntegralToFloating>
9 | ‘-IntegerLiteral 0x424ae28 ’int’ 6

10 ‘-DeclRefExpr 0x424ae48 ’enum sc_core::sc_time_unit’ EnumConstant 0x3797550 ’SC_NS’ ’enum sc_core::
sc_time_unit’

1 CXXMemberCallExpr 0x424b060 ’void’
2 |-MemberExpr 0x424b030 ’<bound member function type>’ ->wait 0x38ada60
3 | ‘-ImplicitCastExpr 0x424b098 ’class sc_core::sc_module *’ <UncheckedDerivedToBase (sc_module)>
4 | ‘-CXXThisExpr 0x424b018 ’struct dff *’ this
5 |-ImplicitCastExpr 0x424b0b8 ’double’ <IntegralToFloating>
6 | ‘-IntegerLiteral 0x424afd0 ’int’ 10
7 ‘-DeclRefExpr 0x424aff0 ’enum sc_core::sc_time_unit’ EnumConstant 0x3797550 ’SC_NS’ ’enum sc_core::

sc_time_unit’
8

9 CXXMemberCallExpr 0x424b3c0 ’void’
10 |-MemberExpr 0x424b390 ’<bound member function type>’ ->wait 0x38ad460
11 | ‘-ImplicitCastExpr 0x424b3f0 ’class sc_core::sc_module *’ <UncheckedDerivedToBase (sc_module)>
12 | ‘-CXXThisExpr 0x424b378 ’struct dff *’ this
13 ‘-ImplicitCastExpr 0x424b410 ’const class sc_core::sc_event’ lvalue <NoOp>
14 ‘-DeclRefExpr 0x424b350 ’class sc_core::sc_event’ lvalue Var 0x423e620 ’ev’ ’class sc_core::sc_event’

(a) wait() and notify() calls AST.
1 class FindWaitNotify: public RecursiveASTVisitor<FindWaitNotify> {
2 public:
3

4 FindWaitNotify(CXXMethodDecl*, llvm::raw_ostream&);
5 ˜FindWaitNotify();
6 // Typedefs Declarations
7

8 // Virtual methods from RecursiveASTVisitor class
9 virtual bool VisitCallExpr(CallExpr* expr);

10

11 // Member Declarations
12 private:
13 CXXMethodDecl* _entryMethodDecl;
14 };
15 }

1 bool FindWaitNoify::VisitCallExpr(CallExpr* e) {
2 if (e->getDirectCallee()->getNameInfo().getAsString() == string("wait")) {
3 // Extract wait call arguments such as wait duration and event.
4 }
5 if (e->getDirectCallee()->getNameInfo().getAsString() == string("notify")) { //
6 // Extract notify call arguments such as notify duration and event.
7 }
8 return true;
9 }

(b) FindWaitNotify class in systemc-clang.

Figure 4.7: Extraction of wait() and notify() calls by systemc-clang.

37

1 CXXOperatorCallExpr 0x41bd110 ’void’
2 |-ImplicitCastExpr 0x41bd0f8 ’void (*)(const in_if_type &)’ <FunctionToPointerDecay>
3 | ‘-DeclRefExpr 0x41bd070 ’void (const in_if_type &)’ lvalue CXXMethod 0x398a520 ’operator()’ ’void (

const in_if_type &)’
4 |-MemberExpr 0x41bd000 ’sc_in<_Bool>’:’class sc_core::sc_in<_Bool>’ lvalue .clk 0x41ae890
5 | ‘-DeclRefExpr 0x41bcfd8 ’struct dff’ lvalue Var 0x41bcd70 ’dff1’ ’struct dff’
6 ‘-ImplicitCastExpr 0x41bd188 ’const in_if_type’:’const class sc_core::sc_signal_in_if<_Bool>’ lvalue <

NoOp>
7 ‘-ImplicitCastExpr 0x41bd158 ’in_if_type’:’class sc_core::sc_signal_in_if<_Bool>’ lvalue <

DerivedToBase (sc_signal -> sc_signal_inout_if -> sc_signal_in_if)>
8 ‘-DeclRefExpr 0x41bd030 ’class sc_core::sc_clock’ lvalue Var 0x41bc840 ’sig_clk’ ’class sc_core::

sc_clock’
9

10 ‘-ImplicitCastExpr 0x41bd2e8 ’const in_if_type’:’const class sc_core::sc_signal_in_if<_Bool>’ lvalue <
NoOp>

11 ‘-ImplicitCastExpr 0x41bd2c0 ’in_if_type’:’class sc_core::sc_signal_in_if<_Bool>’ lvalue <
DerivedToBase (sc_signal_inout_if -> sc_signal_in_if)>

12 ‘-DeclRefExpr 0x41bd1f8 ’sc_signal<_Bool>’:’class sc_core::sc_signal<_Bool, 0>’ lvalue Var 0
x41bcb60 ’sig_i_data’ ’sc_signal<_Bool>’:’class sc_core::sc_signal<_Bool, 0>’

13

14 ‘-ImplicitCastExpr 0x41bd4a8 ’class sc_core::sc_signal_inout_if<_Bool>’:’class sc_core::
sc_signal_inout_if<_Bool>’ lvalue <DerivedToBase (sc_signal_inout_if)>

15 ‘-DeclRefExpr 0x41bd358 ’sc_signal<_Bool>’:’class sc_core::sc_signal<_Bool, 0>’ lvalue Var 0x41bccc0
’sig_o_data’ ’sc_signal<_Bool>’:’class sc_core::sc_signal<_Bool, 0>’

(a) Port bindings AST.
1 class FindPortBinding: public RecursiveASTVisitor<FindPortBinding> {
2 public:
3

4 FindPortBinding(FunctionDecl*, llvm::raw_ostream&);
5 ˜FindPortBinding();
6

7 // Typedef Declarations
8

9 // Virtual methods from RecursiveASTVisitor Class
10 virtual bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr*);
11

12 // Member Declarations
13 private:
14 };

1 bool FindMemberExpr::VisitMemberExpr(MemberExpr* e) {
2 DeclarationNameInfo di = e->getMemberNameInfo();
3 _name = di.getAsString();
4 Expr* base = e->getBase();
5

6 if (DeclRefExpr* de = cast<DeclRefExpr>(base)) {
7 DeclarationNameInfo di = de->getNameInfo();
8 _moduleInstanceName = di.getAsString();
9 }

10 return true;
11 }
12

13 bool FindDeclRefExpr::VisitDeclRefExpr(DeclRefExpr* e) {
14 DeclarationNameInfo di = e->getNameInfo();
15 _name = di.getAsString();
16 return true;
17 }

1 bool FindPortBinding::VisitCXXOperatorCallExpr(CXXOperatorCallExpr* e) {
2 const Expr* arg0 = e->getArg(0);
3 FindMemberExpr me(const_cast<Expr*>(arg0), _os);
4 const Expr* arg1 = e->getArg(1);
5

6 FindDeclRefExpr fe(const_cast<Expr*>(arg1), _os);
7

8 PortBindContainer* pb = new PortBindContainer(me.getName(),
9 me.getModuleInstanceName(),

10 fe.getName(), e);
11 return true;
12 }

(b) FindPortBinding class in systemc-clang.

Figure 4.8: Extraction of port bindings by systemc-clang.

38

port connections is identified. This is usually the sc main() function. The sc main() function is
identified by identifying AST nodes of type FunctionDecl and comparing the name of the func-
tion with the string sc main. Port connections in SystemC can be carried out either by name or by
position. For the D Flip-Flop example in Section 2.1.1, dff dff1(clk,i data,o data) is an example
of a port connection by position wherein the signals clk, i data, and o data should match the port
declaration order in the module definition. On the other hand, dff1.clk(clk), dff1.i data(i data),
dff1.o data(o data) is an example of a port connection by name. Figures 4.8a and 4.8b show
the AST node for named port connections for the D-flip flop example and the class definition
of FindPortBindings class of systemc-clang responsible for extracting the netlist. If dynamically
instantiated modules are present in the SystemC module, systemc-clang cannot extract the entire
module hierarchy as it relies on static analysis for extracting structural and behavioral informa-
tion.

It is important to note that the time taken for systemc-clang to complete parsing the input
SystemC module is proportional to the size of the AST. However, this can be mitigated by taking
advantage of clang’s precompiled headers that precompiles common set of headers into one
precompiled header.

4.4 Intermediate Representation for Structural Information

The intermediate representation (IR) is a collection of classes that stores the parsed information
with additional methods to query and display the AST node for the parsed information. It is
maintained at three levels: global, module, and process level.

Process

GenericPayload
-PayloadName

-Address
-Command

...

…

0..*

WaitCall
-WaitType
-Duration

-EventName
-ASTPtr

…

0..*

NotifyCall
-NotifyType
-Duration

-EventName
-ASTPtr

...

0..*

TransportIf
-SocketName
-TransportType

-Delay
-InitialPhase

-ASTPtr
...

0..*

LocalVar
-VarName
-VarType
-ASTPtr

...

0..*

Figure 4.9: IR maintained at the process level [46].

Figure 4.9 shows the class diagram of the IR maintained at the process level. At this level,
the sensitivity list, information regarding wait() and notify() calls, generic payload settings, and

39

SystemC Module
-ModuleName

-ASTPtr
+addEvents()
+addSignals()
+addPorts()

+addProcess()
+addSockets()

+addDataMembers()
+getAST()

Sockets
-SocketName
-SocketType
-CallBack
-ASTPtr

+getName()
+getSocketType()
+getCallBack()

+getAST()

0..*

DataMembers
-MemberName
-MemberSize

-ASTPtr
+getName()
+getType()
+getSize()
+getAST()

0..*

Events
-EventName

-ASTPtr
...

0..* Ports
-PortName

-TemplateTypes
-ASTPtr

+getName()
+getTemplateType()

getAST()

0..*

Processes
-ProcessName
-ProcessType
-ProcessProp
-Sensitivity
-ASTPtr

...

0..*

Signals
-SignalName

-TemplateTypes
-ASTPtr

+getName()
+getTemplateTypes()

+getAST()

0..*

Figure 4.10: IR maintained at the module level [46].

local variables defined in the process are stored. At the module level, information regarding the
core interfaces, properties of channels (ports, signals, and sockets) in terms of data types and
data widths, processes, data members, and member functions are maintained. This is shown in
Figure 4.10.

At the global level, the hierarchy of the design in terms of signal bindings between module
instances and the specified simulation time are recorded as shown in Figure 4.11. The key advan-
tage of the IR is that for each information parsed, a pointer to the AST node is also stored, which
allows interested developers to perform further analysis of the SystemC model AST through the
use of systemc-clang plugins.

4.5 Intermediate Representation for Behavioral Information

In this section, I shall describe the IR maintained for representing the behavioral information
of a SystemC model. In the previous sections, I showed how the sensitivity list and calls to
wait() and notify() are extracted by systemc-clang for a SystemC module. systemc-clang makes
use of this information to construct the IR for behavioral information. It maintains the behavioral
IR for each SystemC process present in the SystemC module. Figure 4.12a illustrates a simple
SystemC process with some wait() and notify() calls. I use this example to list the transformations
for building the behavioral IR.

40

SystemC Model
+Modules
+Netlist

+GlobalEvents
+ASTPtr

+addModule()
+addNetlist()
+addEvent()
+getAST()

0..1

0..*

Simulation
Time

-SimTime
-TimeUnits
-ASTPtr

+getSimulationTime()
+getAST()

SystemC Modules

Netlist
+SignalNames

+ModuleInstances
+PortBindings
ASTNetlistPtr
+getNetList()
+getAST()

0..1

Figure 4.11: IR maintained at the global level [46].

4.5.1 Generation of Suspension-CFG

The first step towards generating the behavioral IR is transforming the control flow graph (CFG)
of the SystemC process into a Suspension-CFG. Definition 1 provides a formal definition of a
CFG of a program.

Definition 1. A CFG of a program is a graph representation of the program G = 〈V,E〉 where
the vertices of the graph V denote the basic blocks, and edges E between basic blocks represent
the control flow between basic blocks. A basic block is a sequence of code statements with one
entry point and one exit point.

A Suspension-CFG retains the control flow of the CFG, but splits basic blocks containing
wait() calls into multiple basic blocks with the wait() call in a separate basic block.

Definition 2 provides a formal definition of Suspension-CFG.

Definition 2. A Suspension-CFG of a SystemC process is a control-flow graph G = 〈V,E〉
where the basic blocks can be of one of the following types: TV = {ENTRY,EXIT,REG, SUS}
such that ∀v ∈ V , if type(v) = SUS then |S| = 1 where S represents the sequence of statements
present in a basic block of the Suspension-CFG.

The basic blocks in a CFG are categorized into four groups: ENTRY , EXIT , SUS, and
REG. ENTRY and EXIT blocks correspond to the first and last basic blocks of the CFG
respectively. Basic blocks with wait() calls are broken down into a series of REG blocks and
SUS blocks. A SUS block contains a single statement, which is the wait() call. The remaining

41

1 void thread_process() {
2 sc_uint<4> a;
3 B6,B1: while(true) {
4 B5: a = in.read();
5 if(a > 5) {
6 B4: out.write(4);
7 wait(5, SC_NS);
8 }
9 B3: else {

10 wait(2, SC_NS);
11 }
12 B2: ev1.notify(3, SC_NS);
13 wait(ev2);
14 out.write(1);
15 }
16 }

(a) SystemC process example.

ENTRY

B6

B5B3

B4

B2

B1

EXIT

(b) Control-Flow-Graph
for example.

ENTRY

B6

B5B3

B41

B42

B21

B22

B23

B1

EXIT

(c) Suspension-
CFG for example.

Figure 4.12: Transformation of CFG to Suspension-CFG.

blocks are categorized as regular blocks or REG blocks. REG blocks include condition state-
ments, loops, and general C/C++ statements. Figure 4.12b and 4.12c shows the construction of
the Suspension-CFG of the SystemC process from its CFG. The CFG shown in Figure 4.12b
is obtained from parsing the SystemC process shown in Figure 4.12a using clang. In Figure
4.12b, the calls to wait() reside in basic blocks B4, B3, and B2. Therefore, these blocks need
to be split such that the wait() call resides in a separate basic block. Algorithm 1 describes the
transformation from the CFG to Suspension-CFG. To aid in understanding the algorithm, Table
4.3 tabulates the functions used in Algorithm 1 and their functionality.

Function Name Input Output Description of Functionality
hasWait Basic block of CFG {True, False} Returns true if the basic block of

CFG has a wait call.
type Basic block of CFG {REG, ENTRY, EXIT} Returns type of basic block.

splitVertex Basic block of CFG Sequence of basic blocks Splits a basic block with a wait
call into sequence of basic blocks.

Table 4.3: Description of functions used in Algorithm 1.

The algorithm begins by picking each vertex v in the CFG and constructing the sets Ein

and Eout, which denote the set of incoming and outgoing edges at v. It then checks whether
the vertex has a wait() call via the function hasWait(v). If a wait() call exists, the algorithm

42

Algorithm 1: Construction of Suspension-CFG from CFG.
/* Initial declarations */
Let G = 〈VG, EG〉 be the CFG of the SystemC process.1

Let V ← VG and E ← EG.2

foreach v ∈ VG do3

Let Ein ← {(vi, vj) ∈ E : vj = v}4

Let Eout ← {(vi, vj) ∈ E : vi = v}5

if hasWait(v) ∧ type(v) = REG then6

[v1, v2, . . . , vk]← splitVertex(v)7

Efrom ← {(vi, v1) : ∀(vi, vj) ∈ Ein}8

Esplit ← {(vl, vl+1) : ∀l ∈ [0, k − 1]}9

Eto ← {(vk, vj) : ∀(vi, vj) ∈ Eout}10

V ′ ← {vl : ∀l ∈ [0, k − 1]}11

V ← V ∪ V ′ − {v}12

E ← Efrom ∪ Esplit ∪ Eto − Ein − Eout13

end14

end15

return 〈V,E〉16

splits the vertex into k vertices. For each wait() call, splitV ertex(v) will generate a maximum
of three additional vertices to denote the statements executed before the wait() call, statements
executed after the wait() call, and the wait() call itself. All previous incoming edges to vertex v
are now connected to the first vertex generated by the splitV ertex(v) and all outgoing edges
are now connected to the last vertex generated by splitV ertex(v). Intermediate vertices are
linked together as shown in Line 9. The original vertex and its incoming and outgoing edges
are substituted by the set of vertices and the new edges formed. For SystemC processes that are
SC METHODS, the Suspension-CFG is the original CFG with an additional vertex that denotes
a wait() call based on the sensitivity list. In other words, a SC METHOD can be modeled as a
SC THREAD that suspends when signals in its sensitivity list do not change.

4.5.2 Generation of Suspension Labeled Transition System

The Suspension-CFG provides a syntactic representation of the SystemC process; however it
does not elicit the execution semantics of the SystemC process. In particular, the execution
semantics of the SystemC process include the paths formed by the basic blocks that execute
between suspension points and the actions that trigger the execution of these paths between sus-
pension points. Representing such semantics allows for better analysis, in particular for deter-

43

mining GPU executable code and easier source-to-source translation. The Suspension Labeled
Transition System represents the behavior of SystemC processes, and it is modeled as a labeled
transition system (LTS) with states indicating calls to wait() and transitions between states as
code that is executed between wait() calls that are triggered based on some actions. Definition 3
formalizes the Suspension Labeled Transition System (SLTS).

Definition 3. A suspension labeled transition system (SLTS) of a SystemC process labeled over a
finite set of symbolsA is a 5-tuple 〈Q, q0, L, V, T 〉 whereQ is the set of suspension states, q0 ∈ Q
is the initial state, L is the set of actions that determine firing of transitions between suspension
states, V is the set of all basic blocks in the Suspension-CFG, and T is the set of transitions.
A SLTS of a SystemC process is constructed from the Suspension-CFG of the SystemC process
denoted as G = 〈V,E〉.

An action that triggers a transition between two suspension states is a boolean expression
where the operators are relation and/or logical operators and the operands in the boolean ex-
pression are members of the finite set of symbols A. A transition t ∈ T is a 4-tuple 〈qs, B, g, qf〉
where qs, qf ∈ Q denote the start and final states of the transition respectively, B is a sequence
of basic blocks executed between qs and qf denoted as B = (v0, v1,, vn) where ∀0 ≤ i < n
such that n ∈ N: vi ∈ V and 〈vi, vi+1〉 ∈ E, and g ∈ L is the action that triggers the transition.

ENTRY

B6

B5B3

B41

B42

B21

B22

B23

B1

EXIT

(a) Suspension-
CFG for example in
Figure 4.12a.

q0 q1 q2 q3

a : 〈q0, [B6, B5, B41], true ∧ (a > 5), q1〉
b : 〈q1, [B21], true, q3〉
c : 〈q2, [B21], true, q3〉
d : 〈q3, [B23, B1, B6, B5, B41], true ∧ (a > 5), q1〉
e : 〈q3, [B23, B1, B6, B5], true ∧ (a ≤ 5), q2〉
f : 〈q0, [B6, B5], true ∧ (a ≤ 5), q2〉

a

f

c

b
d

e

(b) Suspension Labeled Transition System constructed
from Suspension-CFG.

Figure 4.13: Transformation of Suspension-CFG to Suspension Labeled Transition System.

44

Figure 4.13b shows the Suspension Labeled Transition System for the example shown in Fig-
ure 4.12a. The Suspension Labeled Transition System is built from the corresponding Suspension-
CFG generated. Algorithm 2 describes the transformation of the Suspension-CFG to Suspen-
sion Labeled Transition System. To aid in understanding Algorithm 2, Table 4.4 tabulates the
functions used in Algorithm 2 and their functionality.

Function Name Input Output Description of functionality
getEntryBlock Suspension-CFG Basic Block of Returns the entry basic

Suspension-CFG block of Suspension-CFG.
type Basic block of {REG, SUS, ENTRY, EXIT} Returns type of basic block.

Suspension-CFG
newState Basic block of State of Creates a state of the

Suspension Labeled Suspension Labeled Suspension Labeled
Transition System Transition System Transition System.

symbolicPaths Pair of basic blocks of Set of paths Generates a set of all possible
Suspension-CFG paths between source and

that denote source and destination basic blocks.
destination

getState Basic block of State of Returns state of
Suspension-CFG Suspension Labeled Suspension Labeled

Transition System Transition System.
hasCondition Basic block of {True, False} Returns true if basic block

Suspension-CFG has condition for execution.
conjunctionAction Sub-graph of Conjunction of actions Conjuncts the actions

Suspension-CFG associated with the
execution of the sub-graph.

getPostBlocks Basic block of Sequence of basic blocks Returns the sequence of basic
Suspension-CFG blocks executed after input basic

block in Suspension-CFG.

Table 4.4: Description of functions used in Algorithm 2.

The input to the algorithm is the Suspension-CFG generated in Algorithm 1. The suspension
blocks identified in the Suspension-CFG are first allocated states as shown in Line 3. For the
example provided, the suspension blocks B42, B3, and B22 are annotated with the states q1, q2,
and q3 respectively. The initial state of the transition system is q0. The sets L and T that denote
the set of actions encountered and set of transitions between states respectively are initially set
to empty. For a pair of suspension points v1 and v2, the algorithm first retrieves the set of all
possible paths between v1 and v2. The problem of path enumeration is a tedious one, as the
number of paths in a program increases exponentially in the size of the program. In this thesis,
I do not employ heuristics to improve the path enumeration process. Consider the transition
from suspension block B22 to B42. There exists only one possible path between these two

45

Algorithm 2: Construction of Suspension Labeled Transition System
/* Initial Declarations */
Let ventry ← getEntryBlock(G)1

Let VSUS ← {v : ∀v ∈ V, type(v) = SUS}2

Let Q← {q : ∀v ∈ VSUS ∪ {ventry}, q ← newState(v)}3

Let T ← ∅4

forall v1, v2 ∈ VSUS ∪ {ventry} do5

Let P ← symbolicPaths(v1, v2)6

Let qs ← getState(v1), qf ← getState(v2)7

Let B ← ∅8

Let P ← ∅9

forall p ∈ P do10

Let G′ ← {v : ∀v ∈ blocks(p), hasCondition(v) = true}11

B ← getPostBlocks(v1)12

Let g ← conjunctionAction(G′)13

T ← T ∪ {〈qs, B, g, qf 〉}14

end15

end16

return 〈Q, q0, L, V, T 〉17

suspension points of the form [B23,B1,B6,B5,B41]. The states associated with the suspension
blocks v1 and v2 are identified using getState. In this case qs is q3 and qf is q2. The algorithm
begins constructing the Suspension Labeled Transition System by picking each possible path
from P , and constructing a set of blocksG′ that are predicated by some condition. The conditions
across all these conditional blocks in a path are accumulated in the set g. For this transition to
happen, the condition in basic blockB5 should not evaluate to true. In other words, the condition
a > 5 should evaluate to false for this transition. Therefore, the conjunction of the actions for
this transition is true ∧ (a ≤ 5). Variables and constants encountered in this transition are
accumulated in the set A. The basic blocks executed between the two suspension points in a path
can be viewed as the execution of blocks occurring after the suspension point v1 or before the
suspension point v2. Since, the algorithm begins with the entry node of the Suspension-CFG,
the set B is constructed by inspecting the blocks executed after v1. In this case the set B for this
transition consists of the basic blocks [B23, B1, B6, B41]. The set of transitions is updated with
the initial and final states of the transition denoted by qs and qf , the conjunction of actions g, and
the basic blocks B.

The behavioral IR is key towards analyzing SystemC modules for performance. In the follow-
ing chapter, I further extend the expressiveness of the Suspension Labeled Transition System to

46

capture details necessary to decide a partitioning of a SystemC model for execution on multi-core
CPUs and GPUs.

4.6 systemc-clang Plugins

systemc-clang provides a convenient feature for performing further analysis of SystemC mod-
els through plugins. Interested developers can further analyze the SystemC model by writing
systemc-clang plugins that interact with the IRs and the information present in them. A systemc-
clang plugin is created by inheriting the SystemCConsumer class, which is responsible for car-
rying out the parsing of the SystemC model and generating the IR. By inheriting the SystemC-
Consumer class, the plugin has access to the IR, and by overriding a virtual function provided
by the parent class, the developer can perform further traversals and analysis on the AST nodes
available in the IR. Currently, systemc-clang provides a performance analysis plugin for detect-
ing opportunities for out-of-order execution in SystemC based on the method proposed by Chen
et al. [26]. While their work focuses on SpecC, which is another SLDL similar to SystemC,
the plugin is based for SystemC designs. This systemc-clang plugin augments the behavioral IR
with information regarding the time-stamps at which transitions between suspension points are
scheduled by the SystemC scheduler. This information can be easily extracted using the informa-
tion of the wait() and notify() calls as these scheduler calls influence the simulation time. For my
proposed technique, the analysis, partitioning, and translation of SystemC models for execution
across multi-core CPUs and GPUs are implemented as systemc-clang plugins.

4.7 Summary of systemc-clang

systemc-clang is an open-source static framework for parsing and analyzing SystemC models
defined at both the RTL and TL abstraction levels. It is based on the clang/LLVM frame-
work. It extracts both the structural and behavioral information of an input SystemC model
and stores the information extracted in appropriate IRs. In order to facilitate the interaction with
the IRs for further analysis, systemc-clang provides a convenient feature in the form of systemc-
clang plugins to query the IRs. systemc-clang is available for download and development at
http://anikau31.github.io/systemc-clang/.

47

http://anikau31.github.io/systemc-clang/

Chapter 5

Accelerating Simulation of
Mixed-Abstraction SystemC Models on
Multi-Core CPUs and GPUs

In this chapter, I present a technique for accelerating mixed-abstraction SystemC simulations
across multi-core CPUs and GPUs. The proposed technique is implemented as systemc-clang plu-
gins SCuitable and CUDA-Gen that generates a suitable mapping of SystemC processes for ex-
ecution across multiple CPUs and GPUs, and translates the GPU identified portions to CUDA
respectively.

5.1 SCuitable: A systemc-clang plugin for generating a map-
ping of a SystemC model for execution on multi-core CPUs
and GPUs

SCuitable is a systemc-clang plugin that identifies a partitioning of a SystemC model for execu-
tion across multiple CPUs and GPUs. Since SCuitable is a systemc-clang plugin, it has access to
the behavioral and structural IRs maintained by systemc-clang. In order to analyze the SystemC
model for performance evaluation, SCuitable extends the behavioral IR maintained by systemc-
clang. These extensions are described in the following sections.

48

5.1.1 Extensions to the Suspension Labeled Transition System

Previous efforts by Nanjundappa et al. [15] and Vinco et al. [16] utilized the GPU to accelerate
SystemC simulations by executing concurrent SystemC processes on distinct threads and distinct
dataflows on distinct thread-blocks, respectively. These approaches scale well with the number
of concurrent processes due to the presence of a large number of compute cores on the GPU.
However, the execution time of a program on the GPU is dependent on the program’s control
flow characteristics. For instance, a program that exhibits intensive control flow divergence or
contains data dependent computations would perform slower on the GPU than on a single general
purpose core. This is because a GPU core is a simple in-order core devoid of any sophisticated
micro-architectural features such as branch predictors and re-order buffers otherwise present
in general cores. Therefore, utilizing the GPU for executing data-parallel computations and
multi-core CPUs for task parallelism is more beneficial over utilizing the GPU for just task
parallelism as it addresses the execution of concurrent processes by issuing them on on multiple
general purpose cores and execution of large data-parallel computations on the GPU. However,
GPUs are shared resources and are treated as I/O devices. Since there could be a number of
concurrent data-parallel portions suitable for GPU execution, choosing a subset of these data-
parallel portions to execute on the GPU is critical towards improving the simulation time. This
is because for a computing system with a single GPU, data-parallel computations scheduled
for execution by concurrent CPU threads are executed serially on the shared GPU 1. Hence,
there is a need to identify transitions across all SystemC processes present in the input SystemC
model that overlap in simulation time and identify the data-parallel computations contesting
for the shared GPU resource across these overlapping transitions. Therefore, the extensions to
the behavioral IR augment the transitions with the earliest possible time-stamp that the SystemC
scheduler can schedule the transition for execution, and annotate the transitions with data-parallel
computations.

Augmenting the Labeled Transition Suspension System with timing details

For a SystemC model with static lengths to wait() and notify() calls, it is possible to determine
the earliest time-stamps at which the SystemC scheduler can schedule the transitions. This is
because wait() calls are the only scheduler calls that advance simulation time. The time-stamp at
which a transition is scheduled is denoted as a tuple of the form ts,d = 〈s, d〉 where s denotes the

1The new Kepler GPUs from NVIDIA have more than one connection to the shared GPUs allowing simultaneous
kernels invoked from multiple simultaneous CPUs to execute concurrently on the GPU. However, the experimenta-
tion and algorithms proposed in this thesis are for the Tesla generation of NVIDIA GPUs and applicable to the GPU
generations before the Tesla generation.

49

simulation time and d denotes the delta-cycle at which transition is scheduled by the SystemC
scheduler. Table 5.1 tabulates the different SystemC wait() calls and their effect on the simulation
time.

Wait Type Simulation Time Increment
wait(k, UNITS) 〈s+ k, d〉

wait(SC ZERO TIME) 〈s, d+ 1〉
wait(event) 〈k, d〉 for immediate notifications (event.notify())

〈s+ j, d〉 for timed notifications (event.notify(j, SC NS))
〈s, d+ 1〉 for delta notifications (event.notify(SC ZERO TIME))

Table 5.1: SystemC wait() calls, and effect on simulation time.

For a single SystemC thread process, transitions following a timed wait of the form wait(k,
UNITS) will be scheduled at s+ k simulation cycles where s is the current simulation time prior
to the wait() call. For an event based wait() call of the form wait(e), where e is an sc event, the
simulation time advance is determined by the event notification. For an immediate notification,
transitions following the wait(e) will be scheduled by the scheduler at simulation time-stamp k
where k is the time at which the transition containing the event notification is scheduled. For a
timed notification, transitions following the wait(e) will be scheduled at simulation time-stamp
s + j, where j denotes the time argument of the delayed notification, and s denotes the current
simulation time. Transitions following delta wait() calls of the form wait(SC ZERO TIME), are
resumed in subsequent delta-cycles that do not advance the simulation time.

Since the SystemC scheduler is responsible for synchronization across all processes, the or-
dering of wait() and notify() calls is important to avoid any livelock and deadlock situations. For
example, Figure 5.1a shows a SystemC model with two threads with some calls to wait() and
notify(). The simulation of such a model does not terminate because process p1 waits on an
event that is never notified. Therefore, this process continues to wait on event e1, and therefore
the instruction to stop the simulation sc stop() is never executed. Figure 5.1b shows a SystemC
process that terminates but functions incorrectly by prematurely ending the simulation as the
SystemC scheduler cannot determine the next time advance. This is because both processes
wait on events for which the notifications appear after the suspensions. Therefore, I focus on
accelerating SystemC simulations that are functionally and temporally correct.

Algorithm 3 describes the algorithm for generating the Global Suspension Labeled Transi-
tion System. A Global Suspension Labeled Transition System binds all the Suspension Labeled
Transition Systems present in a SystemC model, and annotates each transition across all Sus-
pension Labeled Transition Systems with the earliest time the SystemC scheduler can schedule

50

1 #include "systemc.h"
2

3 SC_MODULE(module) {
4

5 sc_event e1, e2;
6

7 SC_CTOR(module) {
8 SC_THREAD(p1);
9 SC_THREAD(p2);

10 }
11

12 void p1() {
13 while(true) {
14 wait(SC_ZERO_TIME);
15 wait(1, SC_NS);
16 e2.notify();
17 wait(5, SC_NS);
18 }
19 }
20

21 void p2() {
22 while(true) {
23 wait(e1);
24 wait(10, SC_NS);
25 sc_stop();
26 }
27 }
28 };
29

30 int sc_main(int argc, char *argv[]) {
31

32 module m("m");
33 sc_start();
34

35 return 0;
36 }

(a) SystemC livelock example.

1 #include "systemc.h"
2

3 SC_MODULE(module) {
4

5 sc_event e1, e2;
6

7 SC_CTOR(module) {
8 SC_THREAD(p1);
9 SC_THREAD(p2);

10 }
11

12 void p1() {
13 while(true) {
14 wait(SC_ZERO_TIME);
15 wait(e1);
16 e2.notify();
17 wait(5, SC_NS);
18 }
19 }
20

21 void p2() {
22 while(true) {
23 wait(e2);
24 wait(10, SC_NS);
25 e1.notify();
26 }
27 }
28 };
29

30 int sc_main(int argc, char *argv[]) {
31

32 module m("m");
33 sc_start();
34

35 return 0;
36 }

(b) SystemC deadlock example.

Figure 5.1: Examples of incorrect SystemC code.

51

Algorithm 3: Construction of Global Suspension Labeled Transition System
/* Initial declarations */
Let Q← ∅, V ← ∅, EL← ∅1
foreach s ∈ S do2

foreach t ∈ T do3
ts,d = 〈 8, 8〉4

end5
end6
Enqueue(Q′, q0), V ← V ∪ {q0}7
while Q 6= ∅ do8

q ← Dequeue(Q′)9
foreach s ∈ S do10

foreach t ∈ T such that qs = q do11
Let T ′ be the set of transitions such that qf = q.12
Apply f(q, ts,d, T ′)13
if qf 6∈ V then14

Enqueue(Q′, qf), V ← V ∪ {qf}15
end16
if isEvent(qs) then17

if t(e) ∈ EL then18
〈i, j〉 = EL(e), ts,d = 〈i, j〉19
if qf 6∈ V then20

Enqueue(Q′, qf), V ← V ∪ {qf}21
end22

end23
else24

Enqueue(Q′, q)25
end26

end27
if t contains an event notification then28

EL← EL ∪ 〈e, ts+k,d〉29
end30

end31
end32

end33

52

it. The methodology for determining the earliest time-stamps for execution is based on the tech-
nique proposed by Chen et al. [26] for SpecC designs. The algorithm uses a modified breadth-
first search algorithm to update the transitions with timing information. It maintains a queue Q′

that queues the states traversed in the Global Suspension Labeled Transition System, and the set
V that holds all the visited states. It also maintains a set EL that holds the events notified in a
transition along with the earliest time-stamp possible for the event notifications. The algorithm
begins by first setting the time tuples for each transition across all Suspension Labeled Transition
Systems present in the SystemC model to 〈 8, 8〉. Since all SystemC processes are placed in the
ready-to-run queue by the SystemC scheduler at the initialization phase, I use q0 to collectively
denote the initial states for all SystemC processes. This initial state is the first state enqueued into
Q′. The head of Q′ is dequeued and compared with the starting state qs of transitions across all
Suspension Labeled Transition Systems. The state dequeued is denoted as q. A set T ′ is main-
tained by the algorithm that holds all the transitions that have q as the final state. In other words
T ′ holds the set of transitions that are incoming to the state q. For the identified transitions and
the type of wait() call, the function TimeAdvance is applied, whose definition is given below.

f(q, ts,d, T
′) =

〈0, 0〉 : IsInitial(q) = True
min(t′s,d ∈ T ′) + 〈k, 0〉 : IsT imed(q) = True
min(t′s,d ∈ T ′) + 〈0, 1〉 : IsDelta(q) = True
ts,d : otherwise

The functions IsInitial(q), IsT imed(q), and IsDelta(q) return the type of wait() call of the
suspension state q.

Figure 5.2 shows two SystemC processes and the Global Suspension Labeled Transition Sys-
tem assuming that these are the only two SystemC processes present in the SystemC model. The
initial state q0 is marked in black, the shaded states represent the states of SystemC process p1
and the unshaded states represent the states of SystemC process p2. The states are annotated
with the wait() calls. When the state dequeued is the initial state q0, the transitions exiting from
this state are executed first and therefore, their ts,d is set to 〈0, 0〉. The transitions a and b from
the initial state q0 are annotated with time-stamp 〈0, 0〉. For timed wait() calls, ts,d is determined
by adding k to the minimum time-stamp among all incoming transitions, where k is the duration
of the wait() call. Since, SystemC provides a range of time resolutions, appropriate conversions
between resolutions are carried out, which are not shown in the algorithm. In Figure 5.2, the state
q1 is a timed wait() call of duration 〈5, SC NS〉. Since there is only one transition with qf = q1,
the earliest time at which transitions c and d are scheduled is at 5 SC NS.

For delta wait() calls of the form wait(SC ZERO TIME), the delta-cycle of the current sim-
ulation time is incremented by one. On calculating the earliest time at which the transition is
scheduled by the SystemC scheduler, the state qf , which is the final state of the transition, is

53

1 void p1() {
2 while(true) {
3 // Code Block 1
4 wait(5, SC_NS);
5 e2.notify(4, SC_NS);
6 if(condition) {
7 wait(6, SC_NS);
8 // Code Block 2
9 }

10 else {
11 wait(10, SC_NS);
12 //Code Block 3
13 }
14 wait(e1);
15 //Code Block 4
16 }
17 }
18

19 void p2() {
20 while(true) {
21 wait(e2);
22 //Code Block 5
23 wait(20, SC_NS);
24 //Code Block 6
25 e1.notify();
26 //Code Block 7
27 }
28 }

(a) Example of 2 SystemC threads.

q0

q1wait(5, SC NS)

q2wait(6, SC NS)

q3wait(10, SC NS)

q4wait(e1)

q5 wait(e2)

q6 wait(20, SC NS)

a : 〈q0,, q1, 〈0, 0〉〉
b : 〈q1,, q5, 〈0, 0〉〉
c : 〈q1,, q2, 〈5, 0〉〉
d : 〈q1,, q3, 〈5, 0〉〉
e : 〈q2,, q4, 〈11, 0〉〉
f : 〈q3,, q4, 〈15, 0〉〉
g : 〈q4,, q1, 〈29, 0〉〉
h : 〈q5,, q6, 〈9, 0〉〉
i : 〈q6,, q5, 〈29, 0〉〉

a b

c

d

e

f

g

h i

(b) Global Suspension Labeled Transition Sys-
tem for the example.

Figure 5.2: Examples of SystemC threads and their corresponding timed Suspension Labeled
Transition Systems.

54

enqueued into Q′ and added into the set V . Notice that the piecewise function f(q, ts,d) does
not have handle the case of event based wait() calls. This is because the transition following an
event wait() call is dependent upon the notification of the event. Therefore, for event wait() calls,
a check for the event in the event list EL is done to extract the earliest time the notification for
the event is scheduled. The event list EL holds the earliest notification timestamps of events as
shown in lines 28-29. For immediate notifications of the form e.notify(), the event list is updated
with the event and the current time-stamp of the transition. In other words, the k added to the
simulation time is 0. For delayed notifications of the form e.notify(k, UNITS), the event list is
updated with the event and current time-stamp of transition advanced by k units. The delayed
notification on event e2 in Line 5 of Figure 5.2a is updated in the event list EL with the entry
〈e2, 9 SC NS〉 as the transition that executes the notification is scheduled at 5 SC NS and the
delayed notification is scheduled 4 SC NS later. Therefore, the transition h from qs, which is
waiting on event e2, is scheduled at 9 SC NS. If the event entry for an event based wait() call is
not available in the event litEL, the queueQ′ is not updated with the final state for that transition.
Instead, the same state is enqueued into the queue. For the state q4 that waits on event e1, the time
at which the transition g is scheduled cannot be determined without determining the scheduling
time of transition i as this transition executes the notification of event e2. Therefore, in the ex-
ecution of the algorithm for such an example, the algorithm will enqueue and dequeue state q4
till the transition i updates the event list EL with the scheduling time of the event notification to
event e2. The algorithm iterates till the queue Q′ is empty.

Augmenting the Global Suspension Labeled Transition System with data-parallel com-
putations

In order to identify the data-parallel segments that can be executed on the GPU, SCuitable re-
quires the user to annotate the data-parallel segments. With the help of Polly [50], a clang tool
for polyhedral optimizations, this can be automated as well; however, I intent to integrate this
with SCuitable as future work. The identification of the data-parallel segments is carried out by
annotating them with a C++ macro of the form GPU EXEC (T, S) where T denotes the execu-
tion time of the data-parallel computation on a general purpose core, and S is the speedup of
this data-parallel computation on the GPU. For instance, a macro of the form GPU EXEC(54, 5)
conveys that the data-parallel execution takes 54 ms to compute, and that the GPU execution of
the same is 5 times faster. that the speedup is intended to convey the speedup of the computation
on the GPU, and does not take into account the time taken for transferring the data between CPU
and GPU. The data-parallel segments of a transition are a subset of the basic blocks of execution
in the transition. For the identified data-parallel computations, SCuitable extracts the data-type
and size of the variables involved. It calculates a measure of the time taken to transfer the data

55

between the CPU and GPU by analyzing the variables read/written to in the data-parallel com-
putation. Currently, SCuitable uses the data transfer latency measures for the NVIDIA C2075
Tesla GPU. However, these measures can be configurable to suit other platforms.

Currently, CUDA kernels executing on the GPU do not possess the ability to suspend and
resume their execution. Therefore, in this approach, synchronization of SystemC processes using
wait() and notify() calls are carried out by the SystemC scheduler residing on the CPU. Hence,
a data-parallel execution marked for GPU execution with wait() and notify() calls must transfer
control back to the CPU on encountering a scheduler call. To resume execution on the GPU after
the scheduler call, the state of the GPU computation has to be transferred to the CPU prior to the
scheduler call and transferred back to the GPU after the scheduler call. Therefore, the calculation
of the data transfer overhead between the CPU and GPU for a data-parallel computation should
take into account the effect of scheduler calls present in the data-parallel computation.

1 for (unsigned int i = 0; i<100; i++) {
2 // Code Block 1
3 for (unsigned int j = 0; j<100; j++) {
4 // Code Block 2
5 wait(1, SC_NS);
6 }
7 }

(a) Code snippet with wait() call in inner loop.

1 for (unsigned int i = 0; i<100; i++) {
2 // Code Block 1
3 for (unsigned int j = 0; j<100; j++) {
4 // Code Block 2
5 }
6 wait(1, SC_NS);
7 }

(b) Code snippet with wait() call in outer loop.

Figure 5.3: Position of wait() calls in loops.

Figure 5.3 illustrates two situations in which the wait() call is positioned at different loop
levels. In Figure 5.3b, the wait() call is executed 100 times as the outer loop bound is 100.
Therefore, to measure the latency of data transfer for the computation, the data transfer overhead
between the CPU and GPU is scaled by 100. In Figure 5.3a, the wait() call is positioned in
the inner loop. Since the inner loop is executed for a total of 100 ∗ 100 = 10000, the data
transfer latency between the CPU and GPU is multiplied by 10000. The data transfer overhead
and the execution time of all the data-parallel computations on the GPU determines the mapping
of the data-parallel computations across multi-core CPUs and GPUs. To identify which data-
parallel segment executes on the GPU, a boolean flag isGPU is set to True/False for each data-
parallel computation. When isGPU is set to True, then the corresponding data-parallel segment
is translated for execution on the GPU. The boolean flag is set by the GPUMAP algorithm
discussed in the Section 5.1.4. The definition for the Global Suspension Labeled Transition
System for a SystemC model is provided in Definition 4.

Definition 4. Let p1 and p2 be the SystemC processes present in a SystemC model. Let SLTS1 =
〈Q1, q01, L1, V1, T1〉 be the SLTS that represents SystemC process p1 and SLTS2 = 〈Q2, q02, L2, V2, T2〉

56

be the SLTS that represents SystemC process p2. The Global Suspension Labeled Transition Sys-
tem (GSLTS) of the SystemC model is given by the parallel compositionGSLTS = SLTS1||SLTS2 =
〈Q, q0, L, V, T 〉 where:

Q = Q′
1 × Q′

2 ∪ {q0} is the set of suspension states such that Q′
1 = Q1 − {q01} and

Q′
2 = Q2 − {q02}.

q0 is the initial state.

L = L1 ∪ L2 is the set of actions that triggers transitions between suspension states.

V = V1 ∪ V2 is the set of basic blocks representing the SystemC model.

T = T ′
1 ∪ T ′

2 ∪ T ′
0 is the set of transitions such that T ′

1 = T1 − T01 and T ′
2 = T2 − T02.

T0i is the set of all transitions with start state q0i. More formally, T0i is denoted as {t =
〈qsi, Bi, gi, qf i〉 ∈ Ti | qsi = q0i}. Therefore, T ′

i denotes the set of transitions that do not
have q0i as the initial state. T ′

0 is the set of initial transitions with initial states qs = q0.
More formally, T ′

0 is denoted as {t′0 | Let ti ∈ T0i such that ti = 〈qsi, Bi, gi, qf i〉, then t′0i =
〈q0, Bi, gi, qf i〉}.

A transition t ∈ T is a 5 tuple 〈qs, 〈B, isGPU〉, g, ts,d, qf〉 where qs, B, g, and qf have the same
meaning introduced in Definition 3. isGPU is a boolean flag that indicates whether the basic
block B is identified for GPU execution, and ts,d denotes the earliest time-stamp at which the
transition can be scheduled for execution by the SystemC scheduler. ts,d is represented as a tuple
of the form ts,d = 〈s, d〉 where s represents the simulation time and d denotes the delta cycle.

5.1.2 Assumptions and Requirements for SCuitable

Before describing the partitioning algorithm for executing a SystemC model across multiple-
core CPUs and GPUs, I list down two assumptions and requirements necessary for SCuitable to
generate a mapping.

• Calls to wait() and notify() should be static.
By knowing the duration of wait() and notify() calls, the Global Suspension Labeled Tran-
sition System can be constructed, and therefore, overlapping data-parallel computations

57

contending for the shared GPU can be identified.

• Static loop bounds for all data-parallel computations.
Loop bounds for all data-parallel computation should be static in order to calculate the ef-
fect of data transfer overhead between the CPU and GPU towards the total execution time.

5.1.3 Partitioning a SystemC model for execution on multi-core CPUs and
GPUs

In the previous sections, I described the construction of the Global Suspension Labeled Tran-
sition System necessary for the performance analysis of SystemC models. These modifications
are key in identifying overlapping transitions, and the data-parallel segments available for GPU
execution in these overlapping transitions. Since the GPU is a shared resource, data-parallel
segments scheduled simultaneously for execution on the GPU by multiple CPU threads results
in serialized execution on the GPU. Therefore, the identification of a subset of concurrent data-
parallel computations for GPU execution that balances the overhead of serial execution and the
benefits of fast kernel execution on the GPU is necessary for realizing simulation gains using
GPUs. The identification of the best selection of data-parallel segments to execute on the GPU
can be considered as a 0-1 knapsack problem. For heterogeneous computing systems with more
than one GPU, the identification process can be extended to a multiple 0-1 knapsack problem. In
this work, I consider heterogeneous computing systems with single GPU systems. Before dis-
cussing the proposed technique for determining a partitioning of a SystemC module for execution
on multi-core CPUs and GPUs, I provide a brief overview of the proposed technique.

Overview

Figure 5.4 provides an overview of the proposed parallel co-simulation of SystemC mixed-
abstraction models across multi-core CPUs and GPUs. The co-simulation methodology can be
divided into two phases: the analysis stage, and the translation and co-simulation stage.

Figure 5.5 illustrates the analysis stage of the proposed methodology. The input SystemC
model consists of six SystemC processes labeled as sc process a, sc process b, sc process c,
sc process d, and sc process e. For the input SystemC model, the AST of the model is extracted
using the clang/LLVM framework. systemc-clang extracts the necessary structural information

58

SystemC Model
Structural

and
Behavioral Analysis

GPU Suitability
 Analysis

CUDA
Translation

SystemC and
CUDA Compilation

Co-Simulation of
SystemC Model

on
CPU-GPU

Analysis Stage Translation and Co-Simulation Stage

Figure 5.4: Methodology for accelerating mixed-abstraction SystemC models.

and generates the structural and behavioral IRs. Using the behavioral IR, the systemc-clang plu-
gin SCuitable generates a Global Suspension Labeled Transition System with the transitions
augmented with data-parallel segments and earliest time-stamps that the SystemC scheduler can
schedule them. Based on a set of rules and constraints, the data-parallel segments are analyzed
for GPU execution benefit, and marked for GPU execution. The set of rules and constraints for
deciding which data-parallel segments are executed on the GPU are described in Section 5.1.4.
For the SystemC model example provided in Figure 5.5, assume that the SystemC processes
sc process a and sc process b contain data-parallel segments suitable for GPU execution.

sc_process a
sc_process b
sc_process c
sc_process d
sc_process e

SystemC Model

clang/LLVM AST of
SystemC Model

Behavioral IR

Structural IR

systemc-clang Analysis

SystemC processes with
data-parallel segments for

SystemC processes for
CPU execution

{sc_process a, sc_process b}

{sc_process c, sc_process d,
sc_process e}

Global Suspension-Automaton
augmented with data-parallel

segments

SCuitable: GPU Suitability Analysis

Figure 5.5: Analysis stage of proposed methodology.

Figure 5.6 illustrates the translation and co-simulation stage of the proposed methodology.
For SystemC processes with data-parallel segments marked for GPU execution in the analysis
stage, CUDA kernels for the identified data-parallel segments are generated by the systemc-
clang plugin CUDA-Gen. The algorithm for CUDA-Gen is described in Section 5.2. Following
the translation stage, the compilation stage compiles the SystemC model with the nvcc and g++
compilers to generate a single CPU-GPU binary that is executed on the heterogeneous platform.
I use the parallel SystemC library developed by Sinha et al. [17] for compiling the SystemC
model that launches ready-to-run processes on available multiple CPU cores present in the het-
erogeneous platform. The specifics of the parallel SystemC library is decribed in the next section.

59

SystemC processes with
data-parallel segments for

GPU execution

SystemC processes for
CPU execution

{sc_process a, sc_process b}

{sc_process c, sc_process d,
sc_process e}

CUDA kernels for
data-parallel segments in

{sc_process a, sc_process b}

CUDA Runtime
Library

nvcc
compiler

Parallel SystemC
Library

g++
compiler

GPU Binary

CPU Binary

Linker
GPU-CPU

Binary

CUDA-GEN: CUDA Translator

CPU0 CPU1

CPU2CPU3

GPU

SystemC and CUDA Compilation CPU-GPU
Co-Simulation

Figure 5.6: Translation and co-simulation stage of proposed methodology.

Parallel SystemC Scheduler

The sequential SystemC scheduler is parallelized similar to the one proposed by Schumaker et
al. [5], with support for immediate and delayed wait() and notify() calls. The reference SystemC
scheduler maintains a queue of ready-to-run processes. Processes from this queue can be picked
by the SystemC scheduler in any order for execution. Since these processes are ready-to-run
in the current simulation time, with the availability of multiple cores, these processes can be
executed on different cores. Therefore, the parallel SystemC scheduler spawns ready-to-run pro-
cesses on multiple cores. Figure 5.7 illustrates the parallel SystemC scheduler used. In order to
maintain consistent behavior of the channels shared between modules, the evaluate-update phase
of the parallel SystemC scheduler enforces a barrier synchronization, resulting in a serialized
update to the channels. To support TL abstraction models, the parallel SystemC scheduler is
extended to support immediate notifications. Processes activated by immediate notifications are
scheduled to run in the same delta-cycle by the SystemC scheduler. Therefore, these new ready-
to-run processes have to be added to the ready-to-run queue. The event notifications by processes
are added to the shared event queue. To prevent any race conditions on the shared event queue,
the parallel SystemC scheduler uses shared locks. Processes activated by immediate notifications
are then executed in parallel on the available multiple cores. The parallel SystemC scheduler un-
dergoes multiple iterations of executing ready-to-run processes on the available multiple cores
until there are no more ready-to-run processes in the current delta-cycle. From here on, the
parallel SystemC scheduler proceeds according to the reference implementation.

Simulation of data-parallel segments on the GPU

The identified data-parallel segments are translated into CUDA kernels for GPU execution. The
execution of a CUDA kernel currently does not have the ability to suspend its execution and

60

Start of
Simulation

Initialize and
Execute

Processes

Ready-to-Run=0?

Update the
values

of signals

Delta events
generated?

Add to Ready-
To-Run
Queue

Update
simulation time

Time triggered
events?

Execute process

Process
immediate

events

End of
Simulation

Yes

No

Yes

No

Initialization Phase

Evaluate Phase

Update Phase

Yes

No

Ready-to-Run
Queue

Wait Queue

Immediate
Notifications

Execute on
multiple cores

Figure 5.7: Parallel SystemC scheduler.

resume from the next instruction. Therefore, if the data-parallel segments contains wait() or no-
tify() calls, the CUDA kernel transfers control back to the CPU as all the event scheduling and
synchronization across concurrent SystemC processes are carried out by the SystemC scheduler,
which executes on the CPU. CUDA kernels are asynchronously launched on the GPU. In other
words, after a CUDA kernel is launched for execution on the GPU, control is immediately re-
turned back to the CPU. However, in order to maintain consistent evaluation of channels across
all concurrent SystemC processes, the kernel calls are made blocking such that control returns to
the CPU only after the kernel has completed its operation. Hence, for a transition with a data-
parallel segment marked for GPU execution, the suspension of the SystemC process is scheduled
by the SystemC scheduler only after all computation in the transition is completed.

5.1.4 Problem Statement

The load of a processor at time-stamp ts,d can be defined as the number of data-parallel com-
putations assigned to it. More formally, let Di be the set of data-parallel computations assigned

61

Variable Description
cmax ∈ R+ Maximum makespan value of concurrent data-parallel

segments at time-stamp ts,d.
m ∈ N Number of CPUs present in the system.
n ∈ N Number of GPUs present in the system.
d ∈ N Number of concurrent data-parallel segments at time-stamp ts,d.
pk CPU processing time of data-parallel segment k
gk GPU processing time of data-parallel segment k

xi,j ∈ {0, 1} Denotes whether data parallel segment i ∈ [0, d]
executes on processor j ∈ [0,m+ n]

Table 5.2: Variables and constants used in ILP formulation of GPUMAP .

to processor i at time-stamp ts,d. The load of processor i at time-stamp ts,d is calculated as
li =

∑
d∈Di

t(d), where t(d) is the time taken to process data-parallel segment d on processor i.

The makespan of the set of concurrent data-parallel segments at time-stamp ts,d is then defined
as cmax = max(li) ∀i ∈M where M is the set of CPUs and GPUs present in the heterogeneous
platform.

I denote the problem of identifying a mapping of a set of concurrent transitions at a time-
stamp ts,d for execution across CPUs and GPUs as GPUMAP , and provide an integer linear
programming (ILP) formulation for GPUMAP . Table 5.2 tabulates the variables and constants
used in the formulation.

minimize cmax

subject to
m+n∑
j=1

xi,j = 1,∀i ∈ [1, d]

d ≤ m

where cmax = max(
d∑

i=1

(xi,jpi + xi,kgi))∀j ∈ [1,m],∀k ∈ [1, n]

Constraint 1 ensures that each data-parallel segment i is assigned to one and only one CPU or
GPU. As a result, a data-parallel segment cannot execute on more than one processor. Constraint

62

2 limits the number of concurrent data-parallel segments at time-stamp ts,d to be less than or equal
to the number of CPUs available in the system. This implies that the algorithm for generating the
mapping of concurrent data-parallel segments across CPUs and GPUs does not take into account
the effect of context switching and load balancing between CPUs by the underlying OS.

The target here is to determine the optimal makespan value. Setting a constant makespan
value does not provide the optimal mapping. This is because, different combinations of execu-
tions across CPUs and GPUs result in different makespan values. Therefore, a search for the
makespan value resulting in an optimal mapping is required.

Algorithm 4 describes an approach that performs a search for an appropriate candidate make-
span, and applies a greedy heuristic for determining which data-parallel computations execute
on the GPU based on a candidate makespan that is assumed to be optimal. The greedy heuris-
tic is identical to the greedy 0-1 knapsack algorithm that treats the GPU as a knapsack and the
candidate makespan as the capacity of this knapsack. The algorithm first identifies concurrent
transitions in the Global Suspension Labeled Transition System. Concurrent transitions are tran-
sitions that are scheduled by the SystemC scheduler at the same simulation time-stamp. These
concurrent transitions are updated into the set CT . The identification of concurrent transitions
can be done by picking a transition in the Global Suspension Labeled Transition System and
comparing its earliest scheduled time-stamp with the earliest scheduled time-stamps of other
transitions. For each collection of concurrent transitions ct ∈ CT , the algorithm next calculates
a range of makespan values 〈u, l〉 from which a candidate makespan value is selected. Initially,
the upper limit of this makespan range is set as the sum of the maximum processing times of
all concurrent data-parallel computation in ct. Data-parallel computations in the collection of
concurrent transitions ct are added to the set D′. A candidate makespan value c is determined by
applying a binary search procedure on 〈u, l〉. The algorithm then calls the function MAP , which
takes as input the candidate makespan c, the set of concurrent data-parallel computations D′, the
current minimum makespan value c′, and the mapping map = 〈DCPU , DGPU〉. c′ and map are
initialized to u and 〈∅, ∅〉 respectively. The function MAP generates a mapping of data-parallel
computations across CPUs and GPUs based on the candidate makespan. Algorithm 5 describes
the MAP function.

The MAP function is responsible for generating a mapping of concurrent data-parallel seg-
ments for execution across CPUs and GPUs. The MAP algorithm described in Algorithm 5 and
the experimentation carried out in this thesis assumes a single GPU system or n = 1. However,
it can be extended for multi-GPU systems. The MAP function first categorizes GPU only data-
parallel computations and CPU only data-parallel computations based on the candidate makespan
c. If the candidate makespan is greater than the GPU processing time of a data-parallel compu-
tation, that data-parallel computation is not considered for GPU execution. The data-parallel
computations identified as candidates for GPU execution are arranged in non-increasing order

63

Algorithm 4: GPUMAP -Greedy algorithm.
/* Initial declarations */
Let GS denote the Global Suspension Labeled Transition System of the SystemC model.1

Let u and l denote the upper and lower limits of the range R respectively.2

GS′ ← GS3

CT ← ∅4

foreach t ∈ GS′ do5

ct← ∅6

ct← ct ∪ {t}7

Remove t from GS′8

foreach t′ ∈ GS′ do9

if ts,d = t′s,d then10

ct← ct ∪ {t′}11

Remove t′ from GS′12

end13

end14

CT ← CT ∪ {ct}15

end16

l = 017

u = 018

foreach ct ∈ CT do19

D′ ← ∅20

u = u+
∑
d∈ct

max(p(d), g(d))
21

c′ = u22

map← 〈∅, ∅〉23

D′ ← D′ ∪ d ,∀d ∈ ct24

while u 6= l do25

c = (u+ l)/226

x =MAP (c,D′, c′,map)27

if x = true then28

l = c′29

else30

u = c′31

end32

end33

end34

64

Algorithm 5: MAP (c,D′,m,map) function
/* Initial declarations */
Let DGPU represent the set of GPU mapped data-parallel computations and DCPU represent the1

set of CPU mapped data-parallel computations.
DGPU ← ∅ , DCPU ← ∅2

foreach d ∈ D′ do3

if g(d) ≤ c then4

isGPU(d) = True5

end6

end7

foreach d ∈ D′ do8

if g(d) > c then9

isGPU(d) = False10

end11

end12

Arrange D′ in order of non-increasing acceleration factor α(d) = p(d)/g(d) ∀d ∈ D′ such that13

isGPU(d) = True
foreach d ∈ D′ such that isGPU(d) = True do14

if g(d) < c then15

c = c− g(d)16

DGPU ← DGPU ∪ {d}17

end18

end19

foreach d ∈ D′ −DGPU do20

Schedule across CPUs to minimize load balance.21

isGPU(d) = False22

DCPU ← DCPU ∪ {d}23

end24

if c′ > makespan(DCPU , DGPU) then25

c′ = makespan(DCPU , DGPU)26

map = 〈DCPU , DGPU 〉27

Return True28

end29

Return False30

65

of acceleration factors α(d) = p(d)/g(d). Arranging the data-parallel computations in non-
increasing order improves the search strategy for determining an optimal makespan value and
prioritizes data-parallel segments with maximum benefit from GPU execution to execute on the
GPU. From the ordered list, each data-parallel computation is assigned to the GPU until the max-
imum candidate makespan c is reached. The remaining data-parallel computations are assigned
to the CPUs using a simple load-balancing algorithm as all the CPUs are identical. The makespan
for this mapping is then compared with the current minimum makespan value. If the makespan
for the mapping is less than the minimum makespan value, the minimum makespan value and
the mapping is updated with the current makespan value and the mapping, and the function re-
turns True. If the makespan for the mapping is larger than the minimum makespan value, the
minimum makespan value and mapping are not changed, and the function returns False. For a
return value of True, the range is updated with the upper limit changed to the current makespan
value. This is to probe for lower makespan values. On the other hand, a return value of False
indicates that the candidate makespan does not satisfy the constraints. In this case the lower limit
of the range is updated with the current makespan value. Since for each collection of overlapping
transitions at time-stamp ts,d, the makespan is optimized to be as low as possible, the simulation
time of the of the entire SystemC model is optimized for faster execution time.

To further augment the understanding of Algorithm 4 and 5, I describe the execution of Algo-
rithm 4 and 5 with an example of a Global Suspension Labeled Transition System for a SystemC
model that is shown in Figure 5.8 with some concurrent data-parallel segments annotated with
CPU and GPU profiling times.

In Figure 5.8, transitions a, k, and b are scheduled for execution by the SystemC scheduler at
the same time-stamp ts,d, and have data-parallel segments that can execute on the GPU. Similarly
transitions e, l, and h are transitions that are scheduled for execution at the same time-stamp
t′s,d by the SystemC scheduler, and have data-parallel segments suitable for execution on the
GPU. Using the transitions a, k, and b, I illustrate the execution of Algorithms 4 and 5, and
arrive at a mapping of the data-parallel segments present in these transitions for execution across
CPUs and GPUs that results in the fastest execution time for this set of concurrent transitions.
Tables 5.3, 5.4, 5.5, and 5.6 tabulate the values of the candidate makespan value c, the makespan
range, the current minimum mapping of data-parallel segments across CPUs and GPUs, and the
current minimum makespan value c′ associated with the current minimum mapping for different
iterations of the execution of the Algorithms 4 and 5.

Algorithm 4 first calculates an artificial upper bound u, which is the sum of the maximum
execution times of the data-parallel segments on CPUs and GPUs (Line 21). For the concurrent
transition set {a, k, b}, this upper bound is u = 145 + 70 + 30 = 245. Therefore, the initial
range from which the candidate makespan is determined is [0, 245]. The candidate makespan c is
determined using a binary search, c = (0+ 245)/2 = 122.5 (Line 26). This candidate makespan

66

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

Transition CPU (ms) GPU (ms) Acceleration Factor
a 145 18 2.5
k 50 70 0.7
b 25 30 0.8

a b

k

e

l

h

im

j

c

d

f

g

j

n

Figure 5.8: Example of Global Suspension Labeled Transition System with profiling times of
concurrent data-parallel segments.

value along with the initial empty mapping and minimum makespan value c′, which is initially set
to the upper bound, are passed as parameters to the functionMAP (Line 27). The functionMAP
performs a pre-processing stage by determining data-parallel segments exclusive for CPU or
GPU execution by comparing the candidate makespan value with their CPU and GPU execution
times (Lines 3-12). For c = 122.5, data-parallel segment on transition a cannot be considered for
CPU execution as its CPU execution time is greater than that of the candidate makespan value.
Therefore, a has to be executed on the GPU. The remaining data-parallel segments on transitions
b and c can be considered for execution on both CPU and GPU. Data-parallel segments identified
for GPU execution are then arranged in non-increasing order of acceleration factor (Line 13).
The order obtained is a > b > k. Treating the GPU as a knapsack and c as the capacity of the
knapsack, it can be observed that executing all the data-parallel segments on the GPU results
in a makespan value less than the candidate makespan value (18 + 70 + 30 = 118 < 122.5)
(Lines 14-19). This makespan value in addition is also less than the current minimum makespan
value c′ = 245. Therefore, the mapping and the makespan value are updated such that all data-
parallel segments in the set of concurrent transitions {a, k, b} are executed on the GPU, and the
minimum makespan value is updated to 118 (Lines 25-28). The functionMAP returns a boolean
value of true to GPUMAP resulting in an update to the range. The upper value of the range is
update to the new makespan value resulting in a new range [0− 118]. Since the upper and lower
ranges do not match, the algorithm continues to search for a new minimum candidate makespan
value (Line 25). Table 5.4 tabulates the new range, candidate makespan value, current minimum

67

mapping, and current minimum makespan value for this iteration of the algorithm. For the new
candidate makespan value c = 59, it can be observed that data-parallel segment in transition b
cannot be executed on the GPU. Hence, only a and c are eligible for GPU execution. For the
candidate makespan c = 59, a mapping that executes data-parallel segments in transitions a and
b on the GPU and k on the CPU results in a makespan of max(18 + 30, 50) = 50, which is less
than c = 59. Moreover, this mapping’s makespan value is also less than the current minimum
makespan value c′ = 118. Therefore, both the mapping and the minimum makespan values are
updated with data-parallel segments a and b on GPU and k on CPU, and c′ = 50. The MAP
function returns true and the range is updated with the upper range set to the current minimum
makespan value of 50. For the new candidate makespan value of c = (0 + 50)/2 = 25, notice
that the data-parallel segment in transition b can neither be executed on the CPU or on the GPU
as its execution time is larger than c on both the CPU and GPU. Therefore, any mapping of the
data-parallel segments in the transitions set {a, b, k} will be more than the candidate makespan.
Therefore, MAP will return false for this candidate makespan, and the lower bound of the
range is updated with 50 as the best possible mapping with the candidate makespan of 25 will
result in a makespan of 50. The algorithm terminates at this point as the upper and lower bounds
of the range are equal. The mapping stored as the current minimum mapping when the algorithm
terminates is the best mapping possible with the fastest execution time.

5.2 CUDA-Gen: A systemc-clang plugin for translating iden-
tified GPU portions to CUDA

Once a mapping of data-parallel segments across concurrent transitions is determined, the trans-
lation of the identified GPU data-parallel segments to CUDA begins. The translation to CUDA
is done by a systemc-clang plugin CUDA-Gen. The input to CUDA-Gen is the augmented
Global Suspension Labeled Transition System with the isGPU flag set appropriately for all
data-parallel segmentsby GPUMAP . Algorithm 6 describes the translation algorithm.

The algorithm begins by first iterating through the Global Suspension Labeled Transition
System of the input SystemC model, and identifying data-parallel computations set for GPU ex-
ecution by SCuitable. Two sets RHS and LHS are maintained that hold the variables read from
and written to in a data-parallel segment. As SystemC data-types and the generic-payload data-
structure do not have associated CUDA data-types, these data-types need to be transformed into
CUDA data-types. Conversion of SystemC data-types to CUDA data-types has been previously
investigated by the authors of [51]. However, due to the closed-source nature of the CUDA data-
type library proposed in [51], I use a straightforward approach for the data-type conversion. For

68

Parameter Value
Makespan range [0− 245]

Candidate makespan value (0 + 245)/2 = 122.5
Current minimum makespan value 245

Current minimum mapping GPU = ∅, CPU = ∅.

Table 5.3: Initial value of parameters.
Parameter Value

Makespan range [0− 118]
Candidate makespan value (0 + 118)/2 = 59

Current minimum makespan value 118
Current minimum mapping GPU = {a, b, k}, CPU = ∅.

Table 5.4: Parameters after first pass of Algorithms 4 and 5.
Parameter Value

Makespan range [0− 50]
Candidate makespan value (0 + 50)/2 = 25

Current minimum makespan value 50
Current minimum mapping GPU = {a, b}, CPU = {k}.

Table 5.5: Parameters after second pass of Algorithms 4 and 5.
Parameter Value

Makespan range [50− 50]
Candidate makespan value N/A

Current minimum makespan value 50
Current minimum mapping GPU = {a, b}, CPU = {k}.

Table 5.6: Parameters after final pass of Algorithms 4 and 5.

69

Algorithm 6: Translation of SystemC model into CUDA
/* Initial declarations */
Let GS be the Global Suspension Labeled Transition System of the input SystemC model.1

Let LHS be the set of LHS assignment variables for a data-parallel segment.2

Let RHS be the set of RHS assignment variables for a data-parallel segment.3

foreach t ∈ GS do4

foreach d ∈ t such that isGPU(d) = True do5

LHS ← ∅6

RHS ← ∅7

LHS ← LHS ∪ getLHSVariables(d)8

RHS ← RHS ∪ getRHSVariables(d)9

ConvertDataType(LHS ∪RHS)10

GPUAllocate(LHS′ ∪RHS′)11

CopyFromCPUToGPU(LHS′ ∪RHS′)12

genThreadHierarchy()13

genCUDAKernel()14

genCUDASynchronize()15

CopyFromGPUToCPU(LHS′)16

end17

end18

70

arbitrary data-widths such as sc uint〈6〉, which represents an unsigned integer of data-width of 6
bits, the corresponding CUDA data type is an unsigned integer which is anded with 63. In other
words, for arbitrary data-widths of width N , the corresponding CUDA datatype is anded with
2N − 1. CUDA-Gen currently does not support conversion of sc logic data-types to CUDA. For
the generic payload information, a similar GPU data-structure is maintained, and the fields of the
generic payload information accessed in a data-parallel section identified for GPU execution are
copied to the fields of the GPU data-structure version of the generic payload. The CUDA data-
types are allocated on the GPU global memory via the GPUAllocate function. The algorithm
transfers the data from the CPU to the GPU for all the variables read/written in the data-parallel
segment. The thread hierarchy for the data-parallel segment is determined by investigating the
loop bounds of all the nested loops in the data-parallel segments. For the NVIDIA Tesla C2075
GPU model, the number of threads that can be launched in a thread block is 512. If the col-
lected loop bound in a data-parallel segment is less than 512, a single block with loop bound as
the number of threads in a block is launched. For a collected loop bound greater than 512, the
loop bound is rounded to the nearest multiple of 512, and the number of blocks is obtained by
dividing the rounded number by 512. The kernel for the data-parallel segment is generated using
the genCUDAKernel function. The kernel ensures that the loop bound constraints in the original
data-parallel code are satisfied by preceding the main body of the kernel with a condition on
the thread identifiers. In order to ensure consistency of the signals during the evaluate-update
phase, the CPU thread invoking the GPU kernel is made to wait for the return of the kernel
execution before proceeding to execute the remainder of the transition. The CUDA kernel syn-
chronization with the CPU is handled by the genCUDASynchronize call. The variables updated
in the data-parallel segment are copied back to their CPU counterparts using the CopyFromG-
PUToCPU function. Notice that the function only copies back variables that have been modified
in the data-parallel segment. This is done by identifying variables read and written to in the data
segment using the functions getLHSV ariables and getRHSV ariables as shown in Lines 9 and
10. This optimization helps in reducing the effect of the memory copy transfer overhead between
the CPU and GPU as only necessary data is copied between the CPU and GPU. In Chapter 6, I
highlight the effect of this optimization for the image processing TLM benchmarks.

71

Chapter 6

Results

In this chapter, I evaluate the efficiency of systemc-clang, and the speedups obtained from dis-
tributing the execution of a SystemC model over multi-core CPUs and GPUs. I also compare the
proposed methodology with the previous works of Nanjundappa et al. [15] and Vinco et al. [16]
for accelerating SystemC RTL designs.

6.1 Efficacy of systemc-clang

The efficiency of systemc-clang is measured by its ability to extract all the structural and be-
havioral information present in the input SystemC model. Currently, I measure systemc-clang’s
efficiency by manually comparing the SystemC model and the behavioral and structural infor-
mation generated by systemc-clang. For instance, for an input SystemC model, I manually list
the SystemC modules, the SystemC processes for each SystemC module, the signals and ports
for each SystemC module, and the TLM-2.0 related information present. I compare the above
with the report generated by systemc-clang and, measure how much structural and behavioral
information systemc-clang extracts for the given model. I use the SystemC RTL benchmark suite
S2CBench [19], a complete TLM model from Doulous [52], and five in-house developed TLM
image processing models for measuring systemc-clang’s efficiency.

6.1.1 S2CBench: A SystemC RTL Benchmark Suite

The S2CBench [19] benchmark suite consists of twelve benchmarks written in SystemC at the
RTL abstraction level. The benchmarks present in this suite cover a wide variety of applica-

72

tions ranging from security to signal processing. For the SystemC RTL designs, I evaluate
systemc-clang on its ability to extract all the structural and behavioral information informa-
tion present in the SystemC model. Table 6.1 tabulates the benchmarks and the efficiency of
systemc-clang in identifying and extracting the structural and behavioral information present
in the model. The term SC in Table 6.1 is short for SystemC. I define efficiency as the num-
ber of SystemC constructs systemc-clang identifies over the number of constructs present in the
SystemC model. The SystemC constructs considered for measuring the efficiency of systemc-
clang for SystemC RTL designs are SystemC modules, processes, ports, signals, and SystemC
scheduler calls (wait()).

Benchmark # of SC # of SC # of SC # of SC # of wait()
modules processes ports signals calls

ADPCM 2/2 3/3 8/8 3/3 7/7
AES Cipher 2/2 3/3 10/10 5/5 7/7

Decimation Filter 2/2 3/3 20/20 10/10 8/8
Disparity Estimation 2/2 3/3 32/32 15/15 15/15

FFT 2/2 3/3 20/20 10/10 13/13
FIR 2/2 3/3 10/10 5/5 7/7

Interpolation Filter 2/2 3/3 12/12 6/6 7/7
Kasumi Cipher 2/2 4/4 10/10 5/5 9/9
MD5C Cipher 2/2 3/3 16/16 8/8 11/15

Quicksort 2/2 3/3/ 8/8 4/4 7/7
IDCT 2/2 3/3 18/18 9/9 1/3

Snow 3G Cipher 2/2 3/3 8/8 4/4 7/7
Sobel Filter 2/2 3/3 8/8 4/4 8/8

Table 6.1: Efficiency of systemc-clang on S2CBench.

The general structure of the benchmarks present in S2CBench consist of two modules, which
represent the testbench and the main benchmark. The testbench module consists of two Sys-
temC processes responsible for reading the input data and writing the output data. The main
benchmark module contains processes responsible for performing the benchmark function. As
observed from Table 6.1, systemc-clang identifies all the Systemc modules and processes present
in all the S2CBench benchmarks. The data-types of the ports and signals are SystemC specific
data-types such as sc uint and sc fixed. systemc-clang identifies all the signals and ports used
in addition to the data-types for each benchmark efficiently. The behavioral information of a
SystemC model is built using the wait() and notify() call information present in the model. For

73

all benchmarks except MD5C Cipher and IDCT, the number of wait() calls present in the bench-
marks match the number reported by systemc-clang. For the MD5C and IDCT benchmarks,
some of the wait() calls are called from class methods that are not registered as SystemC pro-
cesses in the SystemC module constructor. systemc-clang extracts wait() and notify() calls from
methods registered as SystemC processes in the module’s constructor. For such cases, systemc-
clang can be configured to identify wait() and notify() calls in all methods of a SystemC module.

Table 6.2 tabulates the time taken by systemc-clang to build the structural and behavioral IR
for the benchmarks present in the S2CBench benchmark suite.

Benchmark Time taken to Time taken to Time taken to
build AST (sec) build structural IR (sec) build behavioral IR (sec)

ADPCM 14.3 0.7 0.02
AES Cipher 13.3 0.7 0.01

Decimation Filter 37.5 1.5 0.04
Disparity Estimation 15.3 0.7 0.05

FFT 34.6 1.4 0.02
FIR 13.3 0.7 0.006

IDCT 16.3 0.7 0.006
Interpolation Filter 37.6 1.4 0.01

Kasumi Filter 15.3 0.7 0.02
MD5C Cipher 14.3 0.7 0.007

Quicksort 13.4 0.6 0.004
Snow 3G Cipher 15.3 0.7 0.008

Sobel Filter 13.3 0.7 0.008

Table 6.2: Time taken by systemc-clang to build structural and behavioral IRs for S2CBench
benchmark suite.

6.1.2 A Complete AT TLM model from Doulous

Doulous is a consultancy company that provides training and resources for hardware designers.
With regard to SystemC, Doulous plays an active role in developing tutorials and reference manu-
als for SystemC designs. The SystemC Language Reference Manual for TLM 2.0 standards [22]
was developed by Doulous. To evaluate systemc-clang’s ability to parse TLM-2.0 models, I use
the complete approximately-timed model (AT) model [52] developed by Doulous. The AT model
consists of 2 initiator types and 5 target types connected by an interconnect. Since the model is an

74

approximately-timed model, the transport interface used is non-blocking. The initiator and tar-
get modules use the simple convenience sockets simple initiator socket and simple target socket
respectively. The interconnect component uses the convenience multi passthrough sockets. The
payload communicated via the transport interfaces is the generic payload. systemc-clang ex-
tracts the attributes of the generic payload set by the initiator and target. Table 6.3 tabulates the
structural and behavioral information extracted by systemc-clang for the AT example. For the AT

Property Effectiveness of systemc-clang
of SystemC modules 8/8
of TLM 2.0 Sockets 9/9

of TLM 2.0 Socket Register Callbacks 13/13
Identification of TLM-2.0 Generic Payload �X

Identification of Core Interfaces
Non-Blocking Forward Transport Interface �X

Non-Blocking Backward Transport Interface �X
Blocking Transport Interface �X

DMI Interface �X
Debug Interface �X
of wait() calls 4/4

of notify() calls 11/11

Table 6.3: Efficiency of systemc-clang on complete AT model from Doulous.

model, systemc-clang correctly identifies the initiators, targets, and interconnect modules. The
sockets and the underlying interfaces between initiators, targets and the interconnect are also cor-
rectly identified by systemc-clang. Note that although the input model is an approximately-timed
model, and therefore, the transport interface used should be non-blocking, systemc-clang reports
the presence of a blocking transport interface method definition. Since the AT example provided
by Doulous is meant to serve as an example for interested developers, the interconnect sockets are
registered with the blocking interface for developers to experiment with different coding styles
and interfaces. Moreover, none of the targets or initiators communicate the payload information
using the blocking transport interface. For this example, systemc-clang identified the wait() and
notify() calls present in the model. However, the arguments to the wait() and notify() calls could
not be determined statically, as the duration of the wait() and notify() calls are based on variables.

Table 6.4 tabulates the time taken by systemc-clang to build the structural and behavioral IRs
for this AT model.

75

Time taken to Time taken to Time taken to
build AST (sec) build structural IR (sec) build behavioral IR (sec)

26.8 1.2 0.01

Table 6.4: Time taken by systemc-clang to build structural and behavioral IRs for complete AT
model.

6.1.3 TLM Image Processing Case Studies

I developed two image processing case studies at the TLM abstraction, and measure the effi-
ciency of systemc-clang on these case studies. The two image processing case studies are a
Canny edge detector, and a JPEG decoder. The Canny edge detector model is written in both the
loosely-timed modeling style and the approximately-timed modeling style. The JPEG decoder is
modeled using the loosely-timed modeling style. In addition, I also use WeiWei Chen’s loosely-
timed model of the JPEG encoder [53] to evaluate systemc-clang. Tables 6.5, 6.6, 6.7, and 6.8
tabulates the efficiency of systemc-clang on these image processing case studies.

The Canny edge detection model is a popular edge detection algorithm that uses a combina-
tion of filters to detect edges in an image. The algorithm first applies a Gaussian filter on the
image to reduce the noise present in the image. It then calculates the gradient and direction for
each pixel using a Sobel filter. The Sobel filter convolves the blurred image with two 3×3 ker-
nels to extract the gradient intensity and direction in the horizontal and vertical directions. Once
the gradient intensities and directions for each pixel are identified, a non-maximum suppression
filter is applied that retains pixels on identified edges with maximum gradient values. To further
remove noise, a hysteresis filter is applied on the detected images, which discards pixels below
a certain threshold. The SystemC implementation of the Canny edge detection has four modules
for each filter and two additional modules to handle reading data from input image and writing
data to the output image. In the TLM sense, the module responsible for reading the values of
input picture acts as the initiator, and the rest of the modules act as targets. The filters are im-
plemented as SC THREADS in each SystemC module. It can be observed from Tables 6.5 and
6.6 that systemc-clang identifies all the necessary SystemC constructs for building the structural
and behavioral IR.

The JPEG file format is a widely used compressed image file format. I developed a JPEG
decoder model using the LT style of modeling that takes as input a JPEG image and decompresses
it into a BMP file. The stages of the JPEG decoder are entropy decoding, dequantizing, inverse
DCT, and color reordering. In the SystemC implementation, these are implemented as normal
class methods that are called by a SystemC process. Similar to the canny edge detection model,
in the TLM sense, the initiator is the module responsible for reading the input picture and the

76

Property Efficiency of systemc-clang
SystemC Modules 6/6
SystemC Processes 6/6

Identification of Non-Blocking Transport Interface �X
Identification of Generic Payload �X

of wait() calls 6/6
of notify() calls 0/0

Table 6.5: Efficiency of systemc-clang for AT Canny Edge Detection Model.

Property Efficiency of systemc-clang
SystemC Modules 6/6
SystemC Processes 6/6

Identification of Blocking Transport Interface �X
Identification of Generic Payload �X

of wait() calls 1/1
of notify() calls 0/0

Table 6.6: Efficiency of systemc-clang for LT Canny Edge Detection Model.

target modules are the stages of the JPEG decoder. For this model, systemc-clang was able to
identify all the necessary information for building the structural and behavioral IR.

The JPEG color encoder by WeiWei Chen [53] compresses BMP images to JPEG. It consists
of the same set of steps as the JPEG decoder, but executed in reverse. The structure of the
SystemC version of the JPEG color encoder treats each function of the encoder as a SystemC
process implemented in its own SystemC module. Therefore, the number of SystemC processes
and modules present in this case study is higher than my implementation of the JPEG decoder.
From Table 6.7 it can be observed that systemc-clang identifies all the structural and behavioral
information present in the JPEG encoder model.

Table 6.9 tabulates the time taken by systemc-clang to generate the structural and behavioral
IRs for the above SystemC TLM image processing benchmarks.

77

Property Efficiency of systemc-clang
SystemC Modules 12/12
SystemC Processes 7/7

Identification of Blocking Transport Interface �X
of wait() calls 4/4

of notify() calls 0/0

Table 6.7: Efficiency of systemc-clang for LT JPEG Encoder Model.

Property Efficiency of systemc-clang
SystemC Modules 4/4
SystemC Processes 4/4

Identification of Blocking Transport Interface �X
of wait() calls 1/1

of notify() calls 0/0

Table 6.8: Efficiency of systemc-clang for LT JPEG Decoder Model.

6.2 Acceleration of SystemC RTL models

In this section, I compare previous related work by Nanjundappa at al. [15] and Vinco et al.
[16] for accelerating SystemC RTL simulation using GPUs. Recall that the technique proposed
by Nanjundappa et al. [15] converts each SystemC process present in the model into a state
machine that is executed by a thread on the GPU. Since each process can have varying control
flow, each process is executed by a thread in a different warp to eliminate the effect of thread
divergence within a warp. On the other hand, Vinco et al. [16] propose generating independent
data-flows from a SystemC model that are executed on separate streaming multiprocessors on
the GPU. This reduces the overhead of frequent synchronization between threads at the cost of
code duplication. For the remainder of the text, I refer the work of Nanjundappa et al. [15] as
SCGPSim and that of Vinco et al. [16] as SAGA. To the best of my knowledge, these are the only
two research efforts that propose utilizing the GPU for accelerating SystemC RTL simulations. I
compare SCGPSim and SAGA with the proposed technique, SCuitable, using benchmarks from
the S2CBench benchmark suite. Each benchmark is run for a million simulation cycles. The
specifications of the target platform used in the experimentation is described in Table 6.10.

78

Benchmark Time taken to Time taken to Time taken to build
build AST (sec) build structural IR (sec) build behavioral IR (sec)

LT Canny Edge Model 13.4 0.6 0.04
AT Canny Edge Model 13.3 0.7 0.01

LT JPEG Decoder 13.2 0.8 0.02
LT JPEG Encoder 14.3 0.7 0.01

Table 6.9: Time taken by systemc-clang to build structural and behavioral IRs for SystemC TL
image processing case studies.

Processor Intel Xeon E5645
Number of cores 6

Hyper-Threading Enabled No
Frequency 2.40 GHz

Operating System Linux Ubuntu 12.04
GPU Tesla C2075

Number of CUDA cores 448
Frequency of CUDA core 1.15 GHz

CUDA Driver Library Version 5.0

Table 6.10: Specifications of the heterogeneous platform used for experimentation.

6.2.1 3-stage Pipeline

The 3-stage pipeline is a simple SystemC example, in which the SystemC processes model the
pipeline stages. The SystemC processes are implemented as SC METHODS that are sensitive to
the positive edge of a clock. A total of 5 SystemC processes are activated by the positive edge
of the clock. Each process performs some arithmetic operation and the result of the operation is
forwarded to the next stage in the pipeline. The computation involved in each SystemC process
is minimal. Table 6.11 tabulates the execution time and speedups of the simulation with five
concurrent processes using using the methods of SAGA, SCGPSim and SCuitable.

It can be observed that for five concurrent processes, none of the approaches performs bet-
ter than the sequential simulation. Of the three, SCuitable does worse because the computation
involved in each SystemC process is minimal, and therefore, the context switching overhead
and synchronization of the concurrent threads dominates the total execution time. For SAGA
and SCGPSim, the GPU utilization is too low to observe any simulation benefits. For 5 con-
current processes, SCGPSim launches 5 CUDA threads for each SystemC process, while SAGA

79

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

5 1 3 0.3 2.7 0.4 14 0.07

Table 6.11: Comparison of SAGA, SCGPSim, and SCuitable for 3-Stage Pipeline.

launches only one CUDA thread. For the SAGA approach, the entire 3-stage pipeline constitutes
a data-flow. Therefore, multiple instances of the 3-stage pipeline are executed on distinct stream-
ing multiprocessors on the GPU. Figure 6.1 shows the simulation benefits offered by the three
approaches over the sequential simulation when the number of concurrent SystemC processes in-
creases. It can be observed that both SAGA and SCGPSim provide a speedup of approximately 4
over sequential simulation while SCuitable does not show any simulation benefit over the sequen-
tial simulation. This is because, the effect of the thread synchronization and context switching
between threads continues to dominate the execution time of the SystemC model resulting in
sub-optimal speedups. SCGPSim and SAGA on the other hand accelerate the simulation of the
3-stage pipeline model as the number of compute cores available on the GPU device is abundant
and no context switching takes place between the threads running on the different CUDA cores.
Moreover, the effect of synchronization between CUDA threads is minimal due to the simple
nature of the computation carried out by each thread.

6.2.2 AES Cipher

The Advanced Encryption Standard (AES) is a standardized encryption algorithm developed for
encrypting military transactions. In each cycle, the algorithm works on a 4×4 matrix of bytes
and a set of 128 bit keys. The number of transformations required to encrypt the input plain text
is set to 10 in this SystemC implementation of the AES cipher.

In each iteration, a set of four operations is applied on the input plain text block: combining
each element in the 4×4 matrix with a block of the key using a bitwise XOR operation, replac-
ing each element with another using a look-up table, shifting the three lower rows for a certain
number of steps (in this implementation, the number of steps is set to four), and a mixing opera-
tion that combines bytes in a column of the 4×4 matrix. In this AES implementation, these four
operations are executed 10 times each in the same clock cycle. Table 6.12 tabulates the speedup
of the AES simulation algorithm with 3 and 6 concurrent processes.

The amount of computation done by the SystemC process responsible for the algorithm is
high compared to the other SystemC processes responsible for generating the stimulus and ac-

80

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40 45 50R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim
SAGA

SCuitable

Figure 6.1: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for 3-Stage Pipeline Model.

cumulating the final encoded text. In addition, the SystemC process responsible for the algo-
rithm contains data-dependent conditionals making the control flow of the algorithm intricate. A
CUDA core responsible for the algorithm will perform poorly compared to a CPU core due to
its simple, in-order pipelined architecture. Therefore, both SAGA and SCGPSim perform poorly
as both allocate a CUDA core to implement the algorithm. On the other hand, SCuitable exe-
cutes the stimulus, display, and the cipher algorithm on distinct CPU cores, resulting in a higher
speedup over SAGA and SCGPSim. As the cipher algorithm is placed on a separate CPU core,
the execution of the algorithm can leverage the architectural features provided by the core. How-
ever, the GPU is not exploited by the AES cipher algorithm due to the unavailability of any
beneficial data-parallel computations. For three and six concurrent processes, SCuitable pro-
vides a speedup of 2.3 and 3.3 respectively over the sequential simulator. Figure 6.2 illustrates
the scalability of SAGA, SCGPSim, and SCuitable with increasing number of concurrent Sys-
temC processes. The execution time of the AES cipher simulation using SAGA and SCGPSim
remains constant as the number of compute cores is larger than the number of concurrent Sys-
temC processes. Therefore, the benefits of SAGA and SCGPSim should be apparent when the

81

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30

R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim
SAGA

SCuitable

Figure 6.2: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for AES Cipher Algorithm.

number of concurrent SystemC processes is sufficiently high. SCuitable demonstrates increas-
ing speedups with increase in the number of concurrent SystemC processes. For an AES cipher
model with 30 concurrent SystemC processes, SCuitable provides a speedup of 4 over sequential
simulation. It is important to note that Nanjundappa et al. [15] use a pipelined AES cipher Sys-
temC model to highlight the simulation benefits of SCGPSim. The AES SystemC model used in
the experimentation is an unpipelined one.

6.2.3 Kasumi Cipher

The Kasumi Cipher is another block cipher used in the wireless communication domain, which
works on 64-bit inputs and a block key size of 128 bits. Similar to the AES Cipher, the core
of the Kasumi cipher algorithm is computationally intensive. Table 6.13 tabulates the relative
speedup of the Kasumi cipher algorithm using the proposed techniques of SAGA, SCGPSim,
and SCuitable. The table shows the speedup of the model with four concurrent processes. A
similar trend is observed for the Kasumi Cipher, wherein SAGA and SCGPSim do poorly and do

82

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 34 1955 0.02 1929 0.02 15 2.3
6 69 1955 0.04 1929 0.04 21 3.3

Table 6.12: Comparison of SAGA, SCGPSim, and SCuitable for AES Cipher Algorithm

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

4 35 2700 0.01 2710 0.01 13 2.7

Table 6.13: Comparison of SAGA, SCGPSim, and SCuitable for Kasumi Cipher Algorithm.

not show any simulation benefits over sequential simulation. SCuitable on the other hand, shows
a 2.7 speedup over the sequential SystemC simulator. The mapping returned by SCuitable for the
Kasumi cipher model executes it across multi-core CPUs only due to the unavailability of any
data-parallel segments for GPU execution. Figure 6.3 shows the relative speedup of SCGPSim,
SAGA, and SCuitable as a function of the number of concurrent SystemC processes. Similar to
the AES Cipher, the speedups of SAGA and SCGPSim are suboptimal because of the amount
of computation offloaded to a CUDA thread. However, the benefits of SAGA and SCGPSim
should become apparent on further increasing the number of concurrent SystemC processes.
SCuitable shows good speedups with increase in number of concurrent SystemC processes over
the sequential implementation of the algorithm as the computation is executed across multiple
cores present. The highest speedup obtained by SCuitable over sequential simulation is around
4.3.

6.2.4 FIR Filter

The finite impulse response (FIR) filter is an important digital filter for digital signal processing
(DSP) algorithms. The output of the filter is the weighted sum of the current and previous inputs.
To increase the computation done per clock cycle, I increase the number of filter taps used for
calculating the output. Tables 6.14, 6.15 and 6.16 tabulate the speedups of a 15-tap, 512-tap, and
a 1024-tap FIR filter using the SAGA, SCGPSim, and SCuitable approach.

A n-tap filter performs n multiply-and-accumulate operations in a single cycle. For the 15-
tap filter, all the approaches perform poorly with respect to the sequential simulation. In the

83

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 0.2 4.4 0.05 4 0.05 1 0.2
6 0.6 4.4 0.14 4 0.15 1.4 0.4

Table 6.14: Comparison of SAGA, SCGPSim, and SCuitable for 15-tap FIR Filter.

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 9 412 0.02 305 0.03 6 1.5
6 20 412 0.05 305 0.07 9 2.2

Table 6.15: Comparison of SAGA, SCGPSim, and SCuitable for 1024-tap FIR Filter.

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 17 826 0.02 609 0.03 11 1.5
6 35 826 0.04 609 0.06 14 2.5

Table 6.16: Comparison of SAGA, SCGPSim, and SCuitable for 2048-tap FIR Filter.

84

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40

R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim
SAGA

SCuitable

Figure 6.3: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for Kausmi Cipher Algorithm.

case of SCuitable the overhead in spawning and synchronizing threads across multiple cores
dominates the total execution time. Even on increasing in the number of concurrent processes,
the simulation benefits of SCuitable do not come into effect as shown in Figure 6.4, which plots
the relative speedups of the three approaches as the number of concurrent processes increases.
Although the effect of context switching and load balancing do not contribute to the execution
time of SCGPSim and SAGA approaches, both do not provide much simulation benefit due to
the amount of computation done by a single compute core. However, for 1024-tap and 2048-
tap FIR filters, SCuitable provides a speedup of 2 and 3 respectively over sequential simulation.
This is because the amount of computation done by the processes is high, and therefore, the
speedup benefit of distributing the computation across multiple CPUs diminishes the effect of
context switching and thread spawning by the underlying operating system. With increase in the
number of the concurrent processes, the simulation speedup offered by SCuitable increases to 4x
for both types of filters. Although the number of threads executed on the CUDA core increases
with the increase in the number of concurrent SystemC processes, SAGA and SCGPSim do
not provide any simulation benefits when the number of concurrent SystemC processes is 50.
This is because the intricate computation of the cipher algorithm assigned to a CUDA thread

85

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 10 15 20 25 30R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim 15-tap
SAGA 15-tap

SCuitable 15-tap
SCGPSim 1024-tap

SAGA 1024-tap
SCuitable 1024-tap
SCGPSim 2048-tap

SAGA 2048-tap
SCuitable 2048-tap

Figure 6.4: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for different FIR filters.

overshadows the parallelism benefit. However, with further increase in the number of concurrent
SystemC processes, the simulation benefits of SAGA and SCGPSim should be observed.

6.2.5 Sobel Filter

The Sobel Filter is used in image processing algorithms for edge detection. It consists of two
3×3 operators that calculate the gradient and direction for each pixel. The Sobel filter algorithm
is ideal for GPU execution as determining the gradient and direction for each pixel can be pro-
cessed independently. Tables 6.17, 6.18, and 6.19 tabulate the speedups of the Sobel filtering
algorithm for image sizes 128× 128, 512×512, and 1024×1024 image dimensions respectively.

For each image dimension, the gradient and direction of an entire row of pixels is calculated
in a single clock cycle. For the SCGPSim and SAGA approaches, the Sobel filter convolution
computation is assigned to a single compute thread. As the image size increases, the convolu-
tion computation increases resulting in more work assigned to a CUDA thread. Therefore, both

86

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 8 253 0.03 232 0.03 8 1
6 17 253 0.07 232 0.07 18 0.9

Table 6.17: Comparison of SAGA, SCGPSim, and SCuitable for 128×128 Sobel Filter.

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 31 930 0.03 1015 0.03 15 2.1
6 64 930 0.07 1015 0.06 23 2.8

Table 6.18: Comparison of SAGA, SCGPSim, and SCuitable for 512×512 Sobel Filter.

SAGA and SCGPSim do not show good speedups across all image sizes. SCuitable on the other
hand, maps the convolution computation to the GPU. Therefore, with increasing image sizes,
the speedups obtained from SCuitable get better due to the abundant number of compute cores
available for carrying out the convolution computation. For large images, SCuitable provides a
speedup of 4 over sequential simulation. Figure 6.5 plots the relative speedup of the three ap-
proaches over sequential simulation with increasing number of concurrent SystemC processes.
For clarity, Figure 6.6 plots only the SAGA and SCGPSim speedups with increase in number of
concurrent SystemC processes. It can be observed that SCGPSim does better than SAGA with
increasing number of SystemC processes as the number of threads launched for computation by
SCGPSim is more than that of SAGA. For 30 concurrent processes, SAGA launches 10 threads
while SCGPSim launches 30 threads for each of the 30 concurrent processes. SCuitable scales
well with the number of concurrent SystemC processes; however its speedup is limited by the
serialization of the CUDA kernel executions invoked by multiple simultaneous SystemC pro-
cesses. For large images, SCuitable provides a speedup of 6.6 over sequential simulation when
the number of concurrent processes is 30.

6.3 Acceleration of SystemC TLM models

In this section, I describe the simulation benefits SCuitable offers over the traditional uni-threaded
SystemC scheduler for TLM designs. Since the parallel SystemC scheduler version is developed

87

Processes SystemC SAGA SCGPSim SCuitable
Execution Execution Speedup Execution Speedup Execution Speedup
Time (sec) Time (sec) Time (sec) Time (sec)

3 60 2009 0.03 1864 0.03 18 3.3
6 124 2009 0.06 1864 0.07 31 4

Table 6.19: Comparison of SAGA, SCGPSim, and SCuitable for 1024×1024 Sobel Filter.

for SystemC-2.2, I modify the image processing case studies described in Section 6.1 to use
TLM-1.0 constructs.

6.3.1 Canny Edge Detector

As described in Section 6.1, the Canny edge detection algorithm is a multi-stage edge detection
algorithm. The stages of the algorithm are Gaussian blurring, Sobel filtering, non-maximum
suppression, and hysteresis filtering. Each filter is implemented as a separate SystemC process.
All of the above processes are suitable for GPU execution as these filters work on indepen-
dent pixels. Tables 6.20 and 6.21 tabulate the execution times and speedup of the loosely-timed
and approximately-timed models of the Canny edge detection algorithm respectively. The algo-
rithm is executed on three different images of varying sizes. The sizes of the images used are
1024×1024, 2048×2048, and 4096×4096.

For the loosely-timed model, the filter operations on the image are performed one after the
other. Each filter operation works on a sub-image and suspends itself for a duration of t time units
by calling wait (t ,SC NS). The amount of time that a filter suspends itself is adjusted based on
the intensity of the computation. In this version of the Canny edge detection model, the Gaussian
filter contains the most intensive computation and the non-maximum suppression filter has the
least computation. Since the communication interface used is a blocking interface, each filter
operation proceeds only when the channel connecting the modules is populated with data. For
the LT model, SCuitable returns a mapping such that all the filter operations are executed on the
GPU for all image sizes. From Table 6.20, the speedup obtained over sequential simulation is 4.5,
8.3, and 8.1 for small, medium, and large images respectively. To highlight the optimal mapping
returned by SCuitable, Table 6.20 also tabulates the speedups obtained from other mappings.

For the AT model of the Canny edge detection algorithm, all the filter operations proceed
in a pipelined fashion. For this AT model, SCuitable generates a mapping different from the LT
model due to the presence of multiple data-parallel segments contending for the GPU at the same
time. Across all different image dimensions, the Gaussian and Sobel filter operations are placed

88

0

1

2

3

4

5

6

7

5 10 15 20 25 30R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim 128 x 128 image
SAGA 128 x 128 image

SCuitable 128 x 128 image
SCGPSim 512 x 512 image

SAGA 512 x 512 image
SCuitable 512 x 512 image

SCGPSim 1024 x 1024 image
SAGA 1024 x 1024 image

SCuitable 1024 x 1024 image

Figure 6.5: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for Sobel filter on different image dimensions.

on the GPU and the non-maximum suppression and hysteresis filters are executed on the CPU.
Table 6.21 tabulates the execution time and speedups of the approximately-timed model of the
Canny edge detector. The mapping returned by SCuitable provides a speedup of 3.7, 4.1, and 4.9
over sequential simulation for small, medium, and large images. To highlight the optimality of
the mapping returned by SCuitable, Table 6.21 also tabulates the speedups obtained for different
mappings. As observed, the mapping returned by SCuitable provides the most benefit.

89

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 30R
el

at
iv

e
S

pe
ed

up
 o

ve
r

S
eq

ue
nt

ia
l S

im
ul

at
io

n

Number of Concurrent Processes

SCGPSim 128 x 128 image
SAGA 128 x 128 image

SCGPSim 512 x 512 image
SAGA 512 x 512 image

SCGPSim 1024 x 1024 image
SAGA 1024 x 1024 image

Figure 6.6: Comparison of relative speedups of simulations of SAGA, SCGPSim, and
SCuitable over sequential SystemC simulation for different FIR filters.

6.3.2 JPEG Decoder

The JPEG Decoder takes as input a JPEG image and decompresses it into a BMP image. I
develop two versions of the decoder: a color decoder and a black/white decoder. These two
versions of the JPEG decoder are written in the LT modeling style. The stages of the decoder
involve entropy decoding, dequantizing, inverse DCT, and color reordering. Tables 6.22 and
6.23 tabulate the speedup of the JPEG color and black/white decoders modeled in the loosely-
timed coding style. The evaluation of the case study is carried out using three concurrent image
streams of image dimensions 4506×3379, 1000×1000, and 200×200. The mapping returned by
SCuitable places the dequantizing and color conversion stages of the JPEG decoder for execution
on the GPU.

Table 6.22 tabulates the execution time and speedup of the LT JPEG color decoder model.
The mapping returned by SCuitable provides a speedup of 9, 9.2, and 10.5 over sequential simu-
lation for small, medium, and large image dimensions. To highlight the optimality of the mapping
returned by SCuitable, Table 6.22 also tabulates the speedup of placing either the dequantizing

90

Image SystemC SCuitable SCuitable Mapping 1 Mapping 2 Mapping 3
Dimensions (sec) (sec) Speedup Speedup Speedup Speedup

Small 22 5 4.5 4.2 3.4 3
Medium 100 12 8.3 7.8 6.2 4.7

Large 480 59 8.1 7.5 5.2 3.7

Table 6.20: Execution times and speedup of LT model of Canny edge detection model.

Image SystemC SCuitable SCuitable Mapping 1 Mapping 2 Mapping 3
Dimensions (sec) (sec) Speedup Speedup Speedup Speedup

Small 26 6 4.3 1.9 2 3.7
Medium 100 21 4.5 2 2 4.1

Large 374 70 5.3 3.3 2 4.9

Table 6.21: Execution times and speedup of AT model of Canny edge detection model.

stage or the color conversion stage on the GPU shown as Mapping 1 and Mapping 2 respectively.
Table 6.23 tabulates the execution time and speedup of the LT JPEG black/white decoder model.
The mapping returned by SCuitable for this model is similar to that returned for the JPEG color
decoder model. From Table 6.23, the speedup achieved by SCuitable over sequential simulation
is 11 for small images, 9.5 for medium images, and 10.8 for large images. In comparison to the
other possible mappings, the one SCuitable returns is optimal.

Effect of memory transfers between CPU-GPU

The slow PCI-Express bus connecting the CPU and GPU acts as an impediment to the execution
time of applications running on the GPU. In order to mitigate the effect of slow memory transfer
between the CPU and GPU, the CUDA-Gen plugin only copies data back to the CPU that have
been modified in the data-parallel segments executed on the GPU. To highlight the effect of
the data transfer overhead Figures 6.7, 6.8, 6.9, 6.10 show the contribution of the data transfer
overhead towards the GPU execution time for the optimized and unoptimized versions of the
TLM image processing case studies.

Figures 6.7 and 6.8 show the data transfer overhead for the unoptimized and optimized ver-
sions of the Canny edge detector model. In the unoptimized version of the Canny edge detec-
tion model, the contribution of the data transfer overhead to the GPU execution time for small,
medium, and large image dimensions is 54%, 44%, and 40% respectively. The data transfer in
the unoptimized version includes transferring read-only data from the GPU in addition to the

91

Small Image Medium Image Large Image

CUDA Kernel Execution Time

CPU-GPU Memory Transfer Overhead

46%
54% 56%

44%

60%

40%

Figure 6.7: Data transfer overhead contribution to GPU execution in unoptimized Canny edge
detection model.

Small Image Medium Image Large Image

CUDA Kernel Execution Time

CPU-GPU Memory Transfer Overhead

47%
53%

64%

36%

70%

30%

Figure 6.8: Data transfer overhead contribution to GPU execution in optimized Canny edge
detection model.

92

Image SystemC SCuitable SCuitable Mapping 1 Mapping 2
Dimensions (sec) (sec) Speedup Speedup Speedup

Small 45 5 9 7.5 1.7
Medium 130 14 9.3 7.4 1.8

Large 452 43 10.5 9.8 1.9

Table 6.22: Execution times and speedup of LT model of JPEG color decoder.

Image SystemC SCuitable SCuitable Mapping 1 Mapping 2
Dimensions (sec) (sec) Speedup Speedup Speedup

Small 42 3 11 8.5 1.9
Medium 124 13 9.5 6 2.1

Large 420 42 10.8 7.8 1.5

Table 6.23: Execution times and speedup of LT model of JPEG black/white decoder.

modified data. On optimizing the model to copy only modified data back to the CPU, the con-
tribution of the data transfer overhead reduces to 53%, 36%, and 30% for small, medium, and
large images respectively. The performance benefits of the optimization has a drastic impact on
the simulation of the Canny edge detection model for large and medium images.

Figures 6.9 and 6.10 show the contribution of the data transfer overhead to the GPU execution
time for the unoptimized and optimized versions of the JPEG decoder model. In the unoptimized
version of the model, the data transfer overhead contributes significantly to the total GPU ex-
ecution time. For small, medium, and large images, the data transfer overhead contributes to
86%, 93%, and 96% of the total GPU execution time. However, optimizing the design to transfer
only the modified data to the CPU results in a reduction of the contribution of the data transfer
overhead to 90% and 74% for medium and large images respectively. For small images, the
optimization does not affect the contribution of the data transfer overhead.

6.4 Summary

From the results, it can be observed that the type of computation executed on the GPU im-
pacts the total execution time of the simulation of SystemC models. Due to the simple in-order
pipelined architecture of a CUDA compute core, executing a code with intricate control-flow
characteristics can perform worse on the GPU. SCGPSim and SAGA do not take into consid-
eration the program characteristics beneficial for execution on the GPU. These methods use the

93

GPU for task parallelism by executing each SystemC process or data-flow on a CUDA compute
core. For the above benchmarks, with the exception of the 3-stage pipeline, SAGA and SCGP-
Sim do not provide simulation benefits due to the amount of computation carried out by a CUDA
thread. However, it is important to note, that SCGPSim and SAGA should perform better for
pipelined SystemC models. For instance, if the AES cipher SystemC model is modified such
that the ten rounds required for encoding a plain-text key are pipelined, SCGPSim and SAGA
should provide better simulation benefits as the number of SystemC processes increases,thereby
increasing the opportunity to use more CUDA compute cores for computation. SCuitable on
the other hand, decides on a mapping of th execution of a SystemC model based on the control
flow characteristics. For all the benchmarks mentioned in the previous section with reasonable
amount of computation, SCuitable provides simulation benefits over the sequential simulation.
By utilizing the multiple CPUs for executing ready-to-run concurrent tasks, and the GPUs for
performing data-parallel computations, both task parallelism and data-parallelism present in the
SystemC model are exploited.

94

Small Image Medium Image Large Image

CUDA Kernel Execution Time

CPU-GPU Memory Transfer Overhead

14%

86%

7%

93%

4%

96%

Figure 6.9: Data transfer overhead contribution to GPU execution in unoptimized JPEG decoder
model.

Small Image Medium Image Large Image

CUDA Kernel Execution Time

CPU-GPU Memory Transfer Overhead

14%

86%

10%

90%

26%

74%

Figure 6.10: Data transfer overhead contribution to GPU execution in optimized JPEG decoder
model.

95

Chapter 7

Future Work and Conclusions

In this chapter, I describe the potential future work extensions to this thesis, and provide a sum-
mary of the work carried out in this thesis.

7.1 Future Work

In this thesis, I investigated the use of multi-core CPUs and GPUs for accelerating mixed-
abstraction SystemC simulations. The proposed method analyzes a SystemC model using the
systemc-clang framework, and decides a mapping of the SystemC model for execution across
multiple core CPUs and GPUs using a parallelized version of the SystemC scheduler. In the
following subsections, I list some opportunities for future work using the framework developed
in this thesis.

7.1.1 NVIDIA Kepler GPU Architectures

The new Kepler GPU architecture [54] provides a variety of interesting features in addition to
an increase in the number of compute cores that can be exploited for further accelerating the
simulation of SystemC models.

Dynamic Parallelism

Previous generations of GPUs including the one used in the experimentation for this thesis, do
not allow CUDA threads on the GPU to spawn further CUDA threads. This results in an under

96

Image Size SCGPSim
Tesla GPU Kepler GPU

Execution Speedup Execution Speedup
Time (sec) Time (sec)

Small 232 0.03 11 0.7
Medium 930 0.03 16 1.9

Large 1864 0.03 22 2.7

Image Size SAGA
Tesla GPU Kepler GPU

Execution Speedup Execution Speedup
Time (sec) Time (sec)

Small 253 0.03 16 0.5
Medium 1015 0.03 24 1.3

Large 2009 0.03 32 1.9

Table 7.1: Preliminary results of executing the SystemC model of Sobel filter on Kepler GPUs
using SCGPSim and SAGA approaches.

utilization of the GPU device as not all compute cores are utilized for execution. The dynamic
parallelism feature in the Kepler GPU architecture [55] allows CUDA threads executing on the
GPU to spawn further threads for computation on the GPU. In other words, dynamic parallelism
provides the ability to perform both task parallelism and data parallelism simultaneously. The
previous methodologies of SCGPSim and SAGA use the GPU for carrying out task parallelism
by allocating a CUDA thread for a SystemC process. In Section 6.2, it was observed that for
the RTL benchmarks with reasonable amount of computation done per clock cycle, SAGA and
SCGPSim performs poorly. In particular, for SystemC models that consist of data-parallel seg-
ments such as the Sobel filter, SAGA and SCGPSim do not utilize the GPU for exploiting the
data parallelism present in the computation but allocate a single CUDA thread to handle the data-
parallel computation. However, with dynamic parallelism, the CUDA thread responsible for the
Sobel filter computation can now launch further CUDA threads to exploit the data parallel com-
putation present on the GPU. Preliminary results for executing the SystemC model of the Sobel
filter on the Kepler GPU using the approaches of SAGA and SCGPSim are shown in Table 7.1.
The execution times and speedups tabulated in Table 7.1 reflect the benefits of combining the
dynamic parallelism feature with the approaches of SAGA and SCGPSim.

It can be observed that the approaches of SAGA and SCGPSim do drastically better on the
Kepler GPUs than on the Tesla GPUs as the data parallel section of the Sobel Filter handled by

97

the CUDA thread can spawn further threads thereby parallelizing the data-parallel segment on
the GPU. With dynamic parallelism, the speedup improvement of SCGPSim and SAGA over
that of running on the Tesla GPU is 89% and 62% respectively. Therefore, one of the extensions
I envision for this work is determining which technique (SCGPSim, SAGA, and SCuitable)
to use based on the specifications of the heterogeneous computation platform provided. This
would require integrating the algorithms and methodologies of SCGPSim and SAGA as plugins
to systemc-clang and querying the specifics of the heterogeneous system before determining a
mapping of the SystemC model for execution.

Memory Optimizations

In this thesis, I assume that the data-parallel segments used for computation on the GPU involve
array sizes that can fit in the global memory of the GPU device. However, this may not always
be true as it is quite likely that industrial grade SystemC models deal with data sizes larger than
the allowable GPU global memory size. Note that previous methodologies of SCGPSim and
SAGA also implicitly assume that the data set required for computation is within the limits of
the global memory space available on the GPU. The problem of executing general models on
GPUs that require more memory than that available on the GPU has been studied in [56]. I
intend to integrate their approach and modify it for co-simulating SystemC models across multi-
core CPUs and GPUs. Moreover, with the introduction of read-only data caches in the Kepler
GPU architecture, constant references can be allocated on this cache resulting in faster access
time. Therefore, there are opportunities for memory optimizations that utilize the GPU memory
hierarchy in a much efficient way.

Concurrent Kernel Execution from Different CPU Threads

Previous generations of GPUs consist of only one connection between the cluster of CPUs and
the shared GPU. This results in a serialized execution of the CUDA kernels that are simultane-
ously invoked by different CPU threads. Recall from Section 5.1.4 that the heuristic algorithm
adopted by SCuitable for generating a mapping of SystemC model for execution across multiple
CPU cores and GPUs takes into account of this serialization on the GPU. However, the Kepler
architecture provides an improved feature termed Hyper-Q [55], that provides 32 connections
between the cluster of CPUs and the shared GPU resulting in concurrent kernel execution on
the GPU from different CPU cores. Using this feature improves the opportunity for executing
more data-parallel segments on the GPU for SCuitable as different CPU cores with overlapping
data-parallel segments can now utilize the GPU.

98

7.1.2 CUDA library for TLM-2.0 transport interfaces

The CUDA kernel invocation by the host can be made to resemble the operation of the TLM-
2.0 transport interfaces. For instance, CUDA kernels by default are asynchronous in nature. In
other words, once a CUDA kernel is invoked, the program control returns back to the host. This
is similar to the non-blocking transport interface provided in the TLM-2.0 library wherein the
initiator transports the payload information to the target and program control immediately returns
back to the initiator as the non-blocking transport interface cannot contain wait() calls. Therefore,
an asynchronous CUDA kernel invocation is similar to the non-blocking interface with the host
as initiator and the GPU device as target. On the other hand, a CUDA kernel call can be made
blocking by calling the cudaDeviceSynchronize() function that explicitly blocks the host from
executing until the CUDA kernel has completed its computation on the GPU. Therefore, through
the cudaDeviceSynchronize() call, a CUDA kernel invocation can be made to behave as TLM-
2.0 transport interfaces. Combining the above with the CUDA library developed by Sinha et al.
[17] for carrying out wait() and notify() calls on the GPU, a CUDA library for TLM-2.0 interfaces
is possible. Any transport interface operations on the transaction payload that are data-parallel
can be exploited on the GPU using such a library.

7.1.3 Support for APUs and OpenCL

The PCI-Express bus connecting the CPU and GPU is a bottleneck that affects the execution
time of an application executing on the GPU. Towards the end of Section 6.3, I highlighted the
contribution of the memory copy transfer overhead between the CPU and GPU across the PCI-
Express bus to the total execution t ime on the GPU. It is quite possible that the benefit of the
fast execution of the main kernel computation on the GPU is diminished by the data transfer
overhead between the CPU and GPU. Therefore, there are variants of heterogeneous systems
that combine the GPU and CPU on a single chip. Such heterogeneous systems are termed as
Accelerated Performance Units (APUs). The AMD Fusion is an example of an APU. APUs
resolve the issue of memory transfer overhead at the cost of fewer compute cores. There is almost
negligible data transfer overhead as the memory is shared between the CPU and GPU. However,
the number of compute cores available for execution is reduced compared to a standalone or
dedicated graphics card. I intent to support this framework for APUs as well by modifying the
optimization goals appropriately and developing a new systemc-clang translation plugin for the
OpenCL programming framework, which is used to program the AMD APUs.

99

7.2 Conclusion

In this thesis, I investigate the use of multi-core CPUs and GPUs for co-simulating mixed-
abstraction SystemC models. Previous approaches ([15] and [16]) proposed methods for acceler-
ating RTL SystemC models by assigning each SystemC process to a CUDA thread or each inde-
pendent data-flow to a CUDA thread block respectively. These efforts do not take into considera-
tion the code structure of the program as CUDA cores are simple in nature and therefore, handle
intensive control flow code poorly compared to CPUs. In this thesis, I work on improving the
approach proposed by Sinha et al. [17], which also proposes accelerating TLM SystemC mod-
els, by identifying segments of the SystemC model can be executed on the GPU and multi-core
CPUs. For this, I develop an open-source static framework called systemc-clang that analyzes
RTL and TLM SystemC models, and systemc-clang plugins SCuitable and CUDA-Gen that are
responsible for generating a mapping of data-parallel segments to be executed on the multi-core
CPUs and GPUs and performing the source-to-source translation of the identified data-parallel
segments to CUDA respectively. The SystemC scheduler used by the SCuitable framework is
a parallelized SystemC scheduler with support for TLM SystemC models. For SystemC RTL
designs with reasonable computation, SCuitable does better over the previous methods of SAGA
and SCGPSim, and for TLM models, SCuitable provides a maximum speedup of 11 over se-
quential simulation.

100

References

[1] J. Bergeron, Writing testbenches: functional verification of HDL models. Kluwer Academic
Publishers, 2000.

[2] T. Ziehe, “Software process improvement (spi) guidelines for improving software,” 1996.

[3] Open SystemC Initiative, “SystemC.” http://www.systemc.org.

[4] “IEEE Standard SystemC Language Reference Manual,” IEEE Std 1666-2005, 2006.

[5] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC: Synchronous Paral-
lel SystemC Simulation on Multi-core Host Architectures,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system syn-
thesis, CODES/ISSS ’10, (New York, NY, USA), pp. 241–246, ACM, 2010.

[6] B. Chopard, P. Combes, and J. Zory, “A conservative approach to systemc parallelization,”
in Proceedings of the 6th international conference on Computational Science - Volume Part
IV, ICCS’06, (Berlin, Heidelberg), pp. 653–660, Springer-Verlag, 2006.

[7] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Parallelizing SystemC kernel for
fast hardware simulation on SMP machines,” in Proceedings of the 2009 ACM/IEEE/SCS
23rd Workshop on Principles of Advanced and Distributed Simulation, PADS ’09, (Wash-
ington, DC, USA), pp. 80–87, IEEE Computer Society, 2009.

[8] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation of SystemC TLM 2.0
compliant MPSoC on SMP workstations,” in Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, (3001 Leuven, Belgium, Belgium), pp. 606–
609, European Design and Automation Association, 2010.

[9] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory, “Relaxing synchronization in a
Parallel SystemC Kernel,” Parallel and Distributed Processing with Applications, Interna-
tional Symposium on, vol. 0, pp. 180–187, 2008.

101

[10] S. Jones, “Optimistic parallelisation of SystemC,” tech. rep., Universite Joseph Fourier:
MoSiG DEMIPS, 2011.

[11] B. Chopard, P. Combes, and J. Zory, “A Conservative Approach to SystemC Paralleliza-
tion,” in Computational Science ICCS 2006 (V. Alexandrov, G. van Albada, P. Sloot, and
J. Dongarra, eds.), vol. 3994 of Lecture Notes in Computer Science, pp. 653–660, Springer
Berlin / Heidelberg, 2006.

[12] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level simulation with GP-
GPUs,” in Proceedings of the 46th Annual Design Automation Conference, DAC ’09, (New
York, NY, USA), pp. 557–562, ACM, 2009.

[13] B. Wang, Y. Zhu, and Y. Deng, “Distributed time, conservative parallel logic simulation on
GPUs,” in Proceedings of the 47th Design Automation Conference, DAC ’10, (New York,
NY, USA), pp. 761–766, ACM, 2010.

[14] Y. Zhu, B. Wang, and Y. Deng, “Massively parallel logic simulation with GPUs,” ACM
Trans. Des. Autom. Electron. Syst., vol. 16, pp. 29:1–29:20, June 2011.

[15] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim: a fast SystemC
simulator on GPUs,” in Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, ASPDAC ’10, (Piscataway, NJ, USA), pp. 149–154, IEEE Press, 2010.

[16] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi, “SAGA: SystemC acceleration on GPU
architectures,” in Proceedings of the 49th Annual Design Automation Conference, DAC ’12,
(New York, NY, USA), pp. 115–120, ACM, 2012.

[17] R. Sinha, A. Prakash, and H. D. Patel, “Parallel Simulation of Mixed-abstraction SystemC
Models on GPUs and Multicore CPUs,” in proceedings of ACM Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 455–460, IEEE, 7 2012.

[18] Anirudh Mohan Kaushik, “A SystemC Parser using clang.”
http://anikau31.github.io/systemc-clang.

[19] B. Schaffer, “S2cbench: Synthesizable SystemC Benchmark Suite.”
http://www.s2cbench.org/.

[20] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the ground up. Springer,
2004.

[21] F. Ghenassia et al., Transaction-level modeling with SystemC. Springer, 2005.

102

[22] O. S. Initiative, “OSCI TLM-2.0 user manual,” online] http://www. systemc. org, 2008.

[23] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate CPU vs. GPU per-
formance without the answer,” in Performance Analysis of Systems and Software (ISPASS),
2011 IEEE International Symposium on, pp. 134–144, IEEE, 2011.

[24] M. Moy, “Parallel programming with SystemC for loosely timed models: A non-intrusive
approach,” in Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’13, (San Jose, CA, USA), pp. 9–14, EDA Consortium, 2013.

[25] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM, vol. 33, pp. 30–53,
Oct. 1990.

[26] W. Chen, X. Han, and R. Domer, “Out-of-order parallel simulation for esl design,” in De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 141–146, march
2012.

[27] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-core parallel simulation of system-
level description languages,” in Proceedings of the 16th Asia and South Pacific Design
Automation Conference, ASPDAC ’11, (Piscataway, NJ, USA), pp. 311–316, IEEE Press,
2011.

[28] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-core parallel simulation of system-
level description languages,” in Proceedings of the 16th Asia and South Pacific Design
Automation Conference, ASPDAC ’11, (Piscataway, NJ, USA), pp. 311–316, IEEE Press,
2011.

[29] M. Nanjundappa, A. Kaushik, H. Patel, and S. Shukla, “Accelerating SystemC simulations
using GPUs,” in High Level Design Validation and Test Workshop (HLDVT), 2012 IEEE
International, pp. 132–139, Nov 2012.

[30] V. Bertacco, D. Chatterjee, N. Bombieri, F. Fummi, S. Vinco, A. Kaushik, and H. D. Patel,
“On the use of GP-GPUs for accelerating compute-intensive EDA applications,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pp. 1357–1366, March
2013.

[31] W. Snyder, “SystemPerl-a perl library for SystemC,” 2006.

[32] FZI Microelectronic System Design, “KaSCPar - Karlsruhe SystemC Parser
Suite.” http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-
tools-kascpar-examples.

103

[33] N. Blanc, D. Kroening, and N. Sharygina, “Scoot: A tool for the analysis of SystemC
models,” in Tools and Algorithms for the Construction and Analysis of Systems, pp. 467–
470, Springer, 2008.

[34] D. Berner, J.-P. Talpin, H. D. Patel, D. Mathaikutty, and S. K. Shukla, “SystemCXML: An
exstensible SystemC front end using XML.,” in FDL, pp. 405–409, Citeseer, 2005.

[35] R. Drechsler, G. Fey, C. Genz, and D. Grosse, “SyCE: an integrated environment for sys-
tem design in SystemC,” in Rapid System Prototyping, 2005. (RSP 2005). The 16th IEEE
International Workshop on, pp. 258 – 260, june 2005.

[36] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: an extraction tool for Systemc
descriptions of systems-on-a-chip,” in Proceedings of the 5th ACM international conference
on Embedded software, pp. 317–324, ACM, 2005.

[37] K. Marquet and M. Moy, “Pinavm: a Systemc front-end based on an executable intermedi-
ate representation,” in Proceedings of the tenth ACM international conference on Embedded
software, pp. 79–88, ACM, 2010.

[38] K. Marquet, M. Moy, and B. Karkare, “A theoretical and experimental review of SystemC
front-ends,” 2010.

[39] N. Bombieri, G. D. Guglielmo, M. Ferrari, F. Fummi, G. Pravadelli, F. Stefanni, and A. Ven-
turelli, “HIFsuite: tools for hdl code conversion and manipulation,” EURASIP J. Embedded
Syst., vol. 2010, pp. 4:1–4:20, Jan. 2010.

[40] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pp. 45–55, IEEE, 2009.

[41] Z. Wang, L. Zheng, Q. Chen, and M. Guo, “CAP: co-scheduling based on asymptotic
profiling in CPU+GPU hybrid systems,” in Proceedings of the 2013 International Workshop
on Programming Models and Applications for Multicores and Manycores, PMAM ’13,
(New York, NY, USA), pp. 107–114, ACM, 2013.

[42] C. Gregg, J. Brantley, and K. Hazelwood, “Contention-aware scheduling of parallel code for
heterogeneous systems,” in 2nd USENIX Workshop on Hot Topics in Parallelism, HotPar,
(Berkeley, CA), June 2010.

[43] D. Grewe and M. F. OBoyle, “A static task partitioning approach for heterogeneous systems
using opencl,” in Compiler Construction, pp. 286–305, Springer, 2011.

104

[44] M. Goli, J. McCall, C. Brown, V. Janjic, and K. Hammond, “Mapping parallel programs
to heterogeneous CPU/GPU architectures using a monte carlo tree search,” in Evolutionary
Computation (CEC), 2013 IEEE Congress on, pp. 2932–2939, IEEE, 2013.

[45] T. Diop, S. Gurfinkel, J. Anderson, and N. E. Jerger, “Distcl: A framework for the dis-
tributed execution of OpenCL kernels,” in Proceedings of the 2013 IEEE 21st International
Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Sys-
tems, MASCOTS ’13, (Washington, DC, USA), pp. 556–566, IEEE Computer Society,
2013.

[46] A. Kaushik and H. D. Patel, “SystemC-clang: An open-source framework for analyzing
mixed-abstraction SystemC models,” in Specification Design Languages (FDL), 2013 Fo-
rum on, pp. 1–8, Sept 2013.

[47] LLVM Team, “The LLVM Compiler Infrastructure.” http://www.llvm.org.

[48] clang Team, “clang: a C language family Frontend for LLVM.” http://www.clang.llvm.org.

[49] N. Harrath and B. Monsuez, “SystemC Waiting State Automata,” Int. J. Crit. Comput.-
Based Syst., vol. 3, pp. 60–95, Jan. 2012.

[50] LLVM Team, “The LLVM Compiler Infrastructure.” http://polly.llvm.org/.

[51] N. Bombieri, F. Fummi, V. Guarnieri, F. Stefanni, and S. Vinco, “HDTLib: an efficient
implementation of SystemC data types for fast simulation at different abstraction levels,”
Design Automation for Embedded Systems, vol. 16, no. 2, pp. 115–135, 2012.

[52] J. Aynsley, “A complete AT SystemC TLM example,” 2009.
https://www.doulos.com/knowhow/systemc/tlm2/at example/.

[53] W Chen, “A JPEG Colour Encoder in SystemC.” https://github.com/weiweichen/systemc-
jpeg.

[54] NVIDIA, “Nvidia’s next generation cuda compute architecture : Kepler gk110,”
2012. http://www.nvidia.ca/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf.

[55] NVIDIA, “CUDA Dynamic Parallelism Programming Guide,” 2012.
https://developer.nvidia.com/.

105

[56] N. Satish, N. Sundaram, and K. Keutzer, “Optimizing the use of GPU memory in appli-
cations with large data sets,” in High Performance Computing (HiPC), 2009 International
Conference on, pp. 408–418, Dec 2009.

[57] S. Fine and A. Ziv, “Coverage directed test generation for functional verification using
bayesian networks,” in Design Automation Conference, 2003. Proceedings, pp. 286–291,
June 2003.

106

	List of Tables
	List of Figures
	Introduction
	Main Contributions
	Organization of Thesis

	Background
	SystemC
	Overview of the Building Blocks of SystemC
	SystemC Simulation Kernel
	Transaction Level Modeling (TLM) in SystemC

	Graphics Processing Units
	Architecture
	CUDA Programming Model

	Related Work
	Parallel Discrete Event Simulation
	Accelerating SystemC models using GPUs
	SystemC Front-Ends
	Mapping Applications Across CPUs and GPUs

	systemc-clang
	systemc-clang Tool Flow
	clang Basics
	Extraction of Structural and Behavioral Information
	Extraction of SystemC modules
	Extraction of SystemC ports
	Extraction of TLM-2.0 core interfaces
	Extraction of SystemC processes
	Extraction of TLM-2.0 generic payload attributes
	Extraction of suspension and notification calls
	Extraction of netlist

	Intermediate Representation for Structural Information
	Intermediate Representation for Behavioral Information
	Generation of Suspension-CFG
	Generation of Suspension Labeled Transition System

	systemc-clang Plugins
	Summary of systemc-clang

	Accelerating Simulation of SystemC Models
	SCuitable: A systemc-clang plugin for generating a mapping of a SystemC model for execution on multi-core CPUs and GPUs
	Extensions to the Suspension Labeled Transition System
	Assumptions and Requirements for SCuitable
	Partitioning a SystemC model for execution on multi-core CPUs and GPUs
	Problem Statement

	CUDA-Gen: A systemc-clang plugin for translating identified GPU portions to CUDA

	Results
	Efficacy of systemc-clang
	S2CBench: A SystemC RTL Benchmark Suite
	A Complete AT TLM model from Doulous
	TLM Image Processing Case Studies

	Acceleration of SystemC RTL models
	3-stage Pipeline
	AES Cipher
	Kasumi Cipher
	FIR Filter
	Sobel Filter

	Acceleration of SystemC TLM models
	Canny Edge Detector
	JPEG Decoder

	Summary

	Future Work and Conclusions
	Future Work
	NVIDIA Kepler GPU Architectures
	CUDA library for TLM-2.0 transport interfaces
	Support for APUs and OpenCL

	Conclusion

	References

