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ABSTRACT 

Bedload transport studies are essential in the understanding of river forms, functions and 

processes. These studies have been done using various methods over the past century. In 

recent years Radio Frequency Identification Technology (RFID) has become popular with 

researchers to track bedload particles. However, no standard operating procedures are used 

in the implementation of this technology. Methods used for tagging, seeding and tracking 

RFID tracers (RFID transponders inserted into a bedload particle) can introduce variability 

in their detection.  

In this study, RFID tracers were used to study four sites in Laurel Creek in Waterloo, 

Ontario. Two hundred RFID tracers were seeded in each of the four sites.  Following three 

major storm events, the tracers were tracked with an antenna and their locations surveyed. 

The tracers were able to be detected to a precision of 1 m as a transponder used can be 

detected at a maximum of this distance.  

Practical tracking in the field highlighted the need for the understanding of how precisely 

the tag location can be identified. Laboratory experiments were designed and carried out to 

determine the effects of factors (tracer orientation, antenna orientation, tracer size, 

clustering of multiple tracers, burial depth, saturation and submergence of the soil matrix) 

that possibly confounded detection. Of these factors, tracer orientation, clustering and burial 

depths were determined to be the ones that affected detection distances the most. A 

transponder in a vertical orientation was found to have as much as 40% larger range of 

detection than a transponder in a horizontal orientation (i.e., they could be detected from 

further away). Additionally, “skip zones” were identified during laboratory and field 

experiments. These are zones of gaps in the electromagnetic field of the transponder that 

occur directly over the transponder. These zones were experimentally determined to extend 

to approximately 10 cm on each side of the transponder. Therefore, by identifying the skip 

zones, the tracers can be located to a precision of 10 cm; this is an order of magnitude 

smaller than the published detection limit of the transponder.  The precision of detection can 

also be improved by the reduction of the effects of confounding factors. However, the 

improvement in the precision of detection is a tradeoff with the ease of detection. A tagging, 

seeding and tracking protocol is recommended to counter the effects of confounding facto rs.
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1 INTRODUCTION 

 

“Contemplating the lace-like fabric of streams outspread over the mountains we are 

reminded that everything is flowing.” – John Muir in My First Summer in the Sierra (1911) 

From time immemorial, rivers have played an important role in the development of human 

civilization. The earliest societies were formed along river floodplains so that the resources of 

the rivers could be harnessed. Building on floodplains forced these societies to manage and 

engineer the rivers. As populations grew and the demand for land increased, so did the 

management and engineering of rivers.  

Natural rivers in unaltered watersheds are usually in the state of “quasi-equilibrium” and are 

“graded”. Davis (1902) describes graded rivers as mature rivers in a condition of balance 

between erosion and deposition. Rivers in quasi-equilibrium exhibit continuity from their 

headwaters to their mouths and have a hydraulic relationship between stream power (rate at 

which a stream dissipates its energy on bed and banks) and sediment load (Langbein & Leopold, 

1964). Leopold and Maddock (1953) suggest that the interactions between the variables of slope, 

channel velocity, depth and width, bed roughness and bed size particles enable a channel to 

achieve the state of quasi-equilibrium. At this state there is a long-term continuity and a dynamic 

balance between water and sediment loads. Natural rivers maintain this state of dynamic balance, 

readjusting their morphology with time to mitigate natural changes that occur within the 

watershed. However, when engineering works alter these river systems, they can potentially 

cause channel instability and negatively impact the riverine environment (Hey, 1996). The 

negative impacts are a result of changes in hydrologic, sediment and morphological variables 

which largely depend on water and sediment made available from upstream sources. 

Perturbations to the natural rivers in the state of quasi-equilibrium through means of disturbances 

to the water (flood or drought conditions) and sediment supply (causing erosion or aggradation) 

caused by deforestation, dam building, gravel mining, and climate change not only affect the 

local abiotic conditions, but also the riverine ecology and the rich life that is linked to the river 

corridor.  
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River engineering and other anthropogenic changes to the river channel and watersheds have 

caused urban streams to respond with channel incision, widening and even narrowing due to 

aggradation (Annable, Watson, & Thompson, 2012; Booth, 1990; Hammer, 1972; Surian & 

Rinaldi, 2004). These changes can cause a destabilization of the stream network, and hence 

increase the risk posed to urban infrastructure situated on or in proximity to the watercourses. 

However, these urban streams do have the ability to adjust themselves to conditions of quasi-

equilibrium over long periods of time.  

In a review of sedimentation engineering, MacArthur et al (2007) noted that “human settlements 

have increasingly occupied areas more vulnerable to erosion and sedimentation, thus aggravating 

runoff, soil erosion and gullying [sharp erosion on hillsides]”. In order to minimize the effects of 

human activities such as construction of dams and reservoirs, channelization of rivers, and 

landuse developments on the rivers, efforts have been directed to the application of scientific 

principles to the development of environmentally sensitive approaches for managing rivers (Petts 

& Calow, 1996). River restoration approaches are taken to manage rivers and encourage them on 

the path to quasi-equilibrium. Management of rivers also includes the management and 

monitoring of sedimentation processes such as erosion, transport and deposition. The 

management of urban rivers poses a challenge to river practitioners due to the lack of clear 

understanding of the processes that govern channel changes and sediment transport. 

Sediment in rivers can be primarily divided into two categories: wash load and bed material load. 

The wash load is a finer material (fine silts and clay) that remains in suspension during floods. 

Bed material load represents the particulate load present in the channel bed and banks (Dingman, 

2009). The bed material sediment load includes suspended sediment and bedload sediment. 

According to one definition, bedload is the portion of total sediment load that travels within a 

few grain diameters above the channel bed (Einstein, 1950).   

Acquiring sediment data is essential for the management of river systems and the study of 

sediment transport in river systems. Sediment load data, when coupled with erosion studies, 

enables one to quantify upstream erosion, study the effectiveness of channel restoration measures 

used and investigate the stability of channel bed and banks. Since the morphology of a river is 

determined by the hydraulic conditions in a river channel and the sediment in the channel bed 

and banks, it becomes imperative to study bedload sediment to comprehend the changing 
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morphology of a river in response to perturbations such as the changing land-use of a catchment, 

changing flow regimes due to climate change and the change in upstream sediment supply. From 

an ecological perspective, it is essential to study sediment transport as it enables researchers to 

develop their understanding of the interplay of the abiotic (sediment, channel form, etc) and the 

biotic factors (aquatic organisms) in a riverine system. 

Bedload sediment transport is known to be an intermittent process with high variability in time 

and space. Given the variability, obtaining reliable and representative bedload transport data 

through measurement using sampling devices can be challenging. The lack of a sampling scheme 

that can accurately quantify bedload transport makes teasing out long term and large scale 

changes from the available data very difficult.  

In addition to sampling devices, tracers are used to study and quantify bedload transport. The 

location of the tracers used are recorded prior to and after a large flow event. The intrinsic 

properties of the tracers and the change in the location of the tracers with respect to the 

surrounding channel morphology can provide valuable information concerning tracer path 

lengths, the flow events required to the trigger movement and the effect of the tracer properties 

on path lengths. However, most tracers (painted tracers and magnetically tagged tracers) have 

low recovery rates due to their burial in the channel bed (Nichols, 2004). Radio transmitter 

tracers are expensive and need an internal power source which limits the maximum size of the 

tagged particle and the duration of the experiment due to the battery’s lifetime (Lamarre, 

MacVicar, & Roy, 2005).  

In this thesis, a more recent tracer method of Radio Frequency Identification (RFID) tracking is 

studied and employed in an urban stream (Laurel Creek in Waterloo, ON). RFID tracers or 

Passive Integrated Transponder (PIT) tags have a much higher recovery rate than many other 

tracers currently used. They are relatively inexpensive and have a long operational life due to the 

absence of an internal power source. Each tag can be assigned a unique identification code. The 

size of the particle tagged is only limited by the size of the RFID tag. In spite of the obvious 

advantages of RFID tracers, the technology is limited in its use in that it only enables the tracker 

to detect the location of the tracer particle within 1 m. This large range of detection is due to the 

confounding effects of factors such as orientation of the antenna used to identify the tag, 

orientation of the tag itself, depth of burial, submergence of the tag, and its proximity to other 
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tags. Since the earliest use of this technology by Nichols (2004), there have been many 

researchers employing RFID tracking. However, no standard operating procedures for tagging 

and tracking have been developed. 

The objectives of the thesis are to 1) use RFID tags to track sediment movement in an urban 

stream (Laurel Creek in Waterloo, Ontario); 2) identify and quantify confounding factors when 

identifying the location of tracer stones; and 3) recommend a standard tagging procedure to 

improve the precision of tracer detection.  The second chapter is a literature review on sediment 

transport research and on the site selected for this study: Laurel Creek in Waterloo, Ontario. The 

methodologies used in the field and the laboratory are described in the third chapter. The fourth 

and fifth chapters are presentations of field and laboratory results, respectively. The sixth chapter 

is a discussion of the results. Finally, the thesis concludes with remarks and recommendations for 

further improvement of the methodologies.  
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2  BACKGROUND 

 

In this section, the general concepts of bedload sediment transport are outlined, various bed-load 

monitoring practices, particularly the more recent RFID technology are discussed, and the fluvial 

geomorphological effects of urbanization are examined.  

2.1 Sediment transport 

Sediment transport occurs when fluvial forces exerted by water flowing over a bed of sediment 

causes the sediment to become entrained in the water. Local flow conditions, composition of bed 

material and composition and quantity of sediment supplied from local and upstream sources 

contribute to sediment transport at any point along the stream (Hassan & Woodsmith, 2004). The 

process of sediment transport is remarkably complex as motion of the particles not only depends 

on the magnitude of the fluvial process but also on the intrinsic characteristics of the sediment. 

These factors coupled with the uneven bed morphology, turbulence in the water, interaction of 

the sediment particles, and the amount of sediment and water available contribute to the 

complexity and non-linearity of the process. The interplaying of multiple factors also results in 

spatial and temporal variability in sediment transport in uncontrolled water systems (i.e., in rivers 

as opposed to flumes). Transport rate of sediments can be very sensitive beyond an initial 

threshold condition. Despite the complex nature of sediment transport, it has been studied by 

various researchers for over a century, and progress has been made in the field and some 

consensus established in the theory of the initiation of particle motion.  

2.1.1 Incipient Motion 

Incipient motion can be defined as the threshold condition between erosion and sedimentation of 

a single particle. For incipient motion to occur the hydrodynamic moment of forces acting on a 

particle must balance the resisting moment of force contrib uted to by the particle weight (Julien, 

1995).  Traditionally, Shields’ theory has been used to identify threshold conditions for particle 

movement. Numerous flume experiments were conducted by Shields (Shields, 1936) to examine 

incipient motion in sub-angular to very angular sediments of densities varying from 1060 to 4300 

kg/m
3
. Shields expressed incipient grain motion as a dimensionless ratio of the bed-shear stress 

(  ) to submerged grain weight per unit area 
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(    )  
 

where    is sediment density;   is the density of water;   is characteristic grain size; and    is the 

dimensionless bed-shear stress known as Shields parameter. Bed-shear stress    can be defined 

by the DuBoys’ equation ( (DuBoys, 1879) in Dingman (2009)): 

         

where    is the unit weight of water;   is the hydraulic radius; and   is the slope of the channel. 

Shields used dimensional analysis and fluid mechanics to deduce that the Shields parameter    is 

a function of particle Reynolds number     . Shields regime diagram is shown in Figure 1. It 

illustrates the relationship between two dimensionless parameters: Shields Stress    and 

Reynolds Number        

    
    

  
 

where    is shear velocity;    is the median grain size of the surface substrate; and    is the 

kinematic viscosity. 

    √  (
    

 
) 

The Shields’ diagram presented here is a product of modifications by Yalin and Karahan (1979) 

and Julien (1995). A dimensionless particle diameter    is shown in the diagram. 

       [
(   ) 

  
 

]

 
 ⁄
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where     is the median grain diameter and   is the specific gravity of the particle. 

 

Figure 1: Modified Shields' Diagram (Julien, 1995) 

The diagram offers an estimate of the threshold for particle movement (for non-cohesive and 

coarse sediment such as sands and larger). The curve proposed in the diagram defines the 

boundary above which transport is expected to occur.   

Shields (1936) regarded average bed shear stress as the criterion that identifies conditions of flow 

required for incipient motion. However, this criterion does not account for turbulence in flow, 

i.e., velocity deviations from the average velocity that impart force impulses is regarded. Shields’ 

theory presupposed that the critical shear stress    responsible for inducing motion in non-

turbulent flow is solely defined by the angle of internal friction or the angle of repose of single 

grains (Zanke, 2003). Experimental and theoretical analyses by Diplas et al (2008), conversely, 

support the hypothesis that impulse rather than force is the relevant parameter for the incipient 

motion of mobile sediment under limiting conditions of pure lift and pure drag. Thus, the 

inception of motion is largely dependent on fluid forces; however, the distribution of these forces 

is variable in time and space due to turbulence phenomenon such as coherent flow structures and 

macro-eddies. These turbulence phenomena contribute to fluctuations in bed-shear stress and 

enable initiation of motion of bed sediment particles. 
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2.1.2 Bedload Transport 

Sediment load transported in rivers can be divided into bedload and suspended load on the basis 

of transport mechanisms. The component of the load that is transported closer to the stream bed 

through rolling, sliding, and saltating (leaping motions), as shown in Figure 2, is termed as 

bedload sediment. Suspended sediment is the portion of sediment load that is transported above 

the bedload layer and is typically composed of finer particles such as clays, silts and sands. This 

thesis focuses on bedload transport and hence this chapter only discusses the bed load component 

of sediment transport.  

 

Figure 2: Mode of Sediment Transport (modified from Plummer et al, 2003) 

2.1.2.1 Bedload Transport Mechanisms 

There have been various views on mechanisms that govern bedload transport. Factors ranging 

from gravity to near bed turbulence have been considered to control bedload transport. A few 

seminal studies that spurred research into the process of bedload sediment transport are presented 

in this sub-section. Also presented are some of the newer perceptions of bedload transport 

mechanisms.  

The action of tractive forces was one of the first identified causes of bedload transport as 

identified by one of the earliest studies in this field by DuBoys (1879). Though the basic 

approach of tractive forces is still used to compute bedload transport rates, there have been newer 
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developments in the field. Over seven decades after DuBoys’ initial work in this field, Einstein 

(1950) concluded that the motion of bed particles can be quantified by statistical laws and that 

the average distance travelled by a bed particle between consecutive depositional events is 

constant and is independent of the flow condition, rate of transport and the bed composition. For 

a grain of average sphericity, the transport distance was assumed to be 100 grain diameters. As a 

result, if the bed particles were to hop distances greater than a few diameters (vertically), the bed 

particle was no longer a part of the bedload. However, other researchers had a different 

interpretation on saltation. Bagnold (1973) also noted the statistical nature of bedload transport 

and attributed the variation in the movement of individual bed particles in the suspended and 

bedload phase to the randomness of turbulence effects and the contact conditions at the bed 

surface. However, unlike Einstein, Bagnold considered saltation as the primary mechanism of 

bedload transport and regarded rolling of particles over a rough bed to be incipient saltation. He 

also concluded that since saltation occurs in fluids under laminar flow (without turbulence), it 

must occur by means of a process that is independent of hydrodynamic lifts in a turbulent fluid. 

Saltation was thus thought to occur due to gravity (Figure 3 (a) and (c)) and due to successive 

contacts between the solid and the bed or other solids (Figure 3(b)) (Bagnold, 1956; Bagnold, 

1973).  

 

Figure 3: Saltation Mechanisms as postulated by Bagnold (Bagnold, 1956) 

Einstein (1950) recognized that a bed particle was set in motion if the instantaneous 

hydrodynamic lift force overcame the particle weight. Though Bagnold (1956) did attribute the 

initial upward acceleration from the bed to the fluid-dynamic lift, he found this lift force 

insufficient to keep the particle in motion against gravity. More recent research by Niño and 

 arc a (1998) attributes one of the causes of saltation to be the hydrodynamic lifts and vertical 

impulses due to flow turbulence. Once sediment starts moving and sliding along the bed, the 

prevalent mode for bedload transport will most likely be saltation for a range of bed shear 
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stresses ( arc a,     ). Wilson (1987; 1989) found that high shear stresses can set a bed-layer 

thicker the diameter of bed particle or even several layers of the bed in motion as a sheet-flow 

layer. Therefore, bedload transport covers both the motion of individual bed material particles 

and also bed forms moving as a granular fluid flow sheet or a traction carpet. Traction carpets are 

highly concentrated bedload layers that are developed beneath and drive by turbulent overlying 

flows (Sohn, 1997). 

Recently, researchers have also been examining the effects of turbulence on sediment transport. 

Nelson et al (1995) investigated the interaction between near-bed turbulence and sediment 

movement in a spatially non-uniform flow. They found that in non-uniform, and unsteady flow 

scenarios, considerable change in bedload transport processes could be seen with no variation of 

bed shear stress. Therefore, the theory provided by Shields (1936) did not sufficiently explain 

bedload transport in conditions of non-uniform unsteady flows with developing boundary layers. 

Zanke (2003) determined that initiation of motion can be simulated statistically by the random 

combination of an individual grain contact angle and a local instantaneous turbulence regime. 

Sumer et al (2003) performed plane and ripple-covered bed (sand bed) experiments to study the 

effect of turbulence on sediment transport. They found that with 20% increase in turbulence level 

in the bed shear stress of a plane bed, an increase of sediment transport by a factor of 6 was seen 

for a Shields parameter value of 0.085. For a ripple-covered bed, sediment transport rate was also 

noted to increase with the increase in near-bed turbulence. Valyrakis et al (2010) hypothesized 

that a series of impulses occurring at short (relative to their duration) temporal intervals, may act 

synergistically in completely dislodging a grain by rolling. Smart and Habersack (2010) 

measured the different pressures above and below a flat plate in the plane of a gravel riverbed 

and found that particle generated form-drag or lift forces are not necessary for entrainment of a 

particle. They suggested that future studies should also perform direct measurements of near-bed 

pressure as opposed to the measurement of the local shear stress and pressure measurements to 

investigate particle transport and entrainment. Such an investigation was done in a recent study 

by Paiement-Paradis et al (2011) who found that the turbulent variables of instantaneous fluid 

acceleration-deceleration (pressure fluctuations) and vertical normal stress affected the initiation 

of movement of individual bedload particles. The magnitude of streamwise velocity was found to 

affect particle transport by sliding; no relation was found between rolling movements and 
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streamwise velocity. Vertical acceleration was also found to play an important role in the 

transport of particles by sliding.  

2.1.2.2 Transport Equations 

Various researchers have attempted to predict and quantify the capacity of a stream to transport 

sediment by formulating transport equations. Almost all transport models developed were based 

on flume studies and have not necessarily been tested in the field. Depending on the school of 

thought, the conceptualizations of the equations have resulted in different relations. Three such 

conceptualizations are presented below. 

Meyer-Peter and Muller (1948) took an experimental approach to develop their bedload transport 

equation based on tractive force. They studied sediment sizes ranging from 0.4 mm to 30 mm in 

conditions of turbulent flows and developed the following equation for submerged bedload rate 

by weight per unit width (   
 ):  

   
    (  ⁄ )

 
 ⁄ (     )

 
 ⁄  

In the above equation,     and    are defined as follows: 

        

              

where   is the slope which represents energy loss due to water and sediment transport;    is flow 

depth;   is the specific weight of water;    is the bulk specific weight of the sediment; and,    is 

the representative grain size.  

Einstein’s (1950) hypothesis of bedload transport departed from the more common approach of 

expressing bedload transport as a function of excess shear stress and from the idea of formulation 

of a critical condition for the initiation of motion. He developed a transport rate equation and a 

probability function for transport to occur based on experimental results that led him to believe 

that bedload transport occurred in “steps” due to turbulent fluctuations caused when the 

hydrodynamic lift forces were higher than the particle’s submerged weight. Brown (1950) 

presented a simplification of Einstein formula for bedload transport. The Einstein-Brown 

formula is presented below: 
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where    is the transport rate function defined as: 
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where      is the rate of movement of dry bedload weight per unit width,    is the representative 

sediment size for which the median grain size     is often used.   is defined as:  
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Data from flume experiments by other researchers suggest that for values of          ⁄ , the 

relationship between   and   is : 

     (
 

 
)
 

 

Bagnold (1966) used a stream power approach to quantify the bedload transport. He defined 

bedload work rate as the product of available stream power ( ) and bedload transport 

efficiency(   ). Available stream power is the product of mean boundary shear stress ( ) and 

mean flow velocity ( ̅). The bedload work rate is also defined as the product of the submerged 

weight per unit width per unit time and the ratio of tangential shear force to normal force (    ) 

where   is the angle of inclination. Equating the two definitions, he formulated the following 

equation for submerged bedload transport rate by weight per unit width (   
 ): 

   
   (

 

    
)

   

    
 

 

Unfortunately, these equations are not without uncertainty. Predictions of bedload sediment 

through various transport models can vary by orders of magnitude, especially when used without 

proper calibration. These equations are only somewhat successful in natural rivers where the 

effects of topography, planform variability, mixed bed material sizes, and hydraulics are 
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confounding factors. In order to improve the applicability of the transport equations, it is 

essential that the equations be calibrated using field measurements of sediment loads for a range 

of flows for the specific watercourse. Therefore, the usability of transport models largely 

depends on the availability of a large volume of field data which can be difficult to gather given 

that bedload transport does not always occur. Thus, developing a method to gather the essential 

field data in an expedient manner is imperative.     

2.1.2.3 Size Selective Transport 

All riverbeds are composed of a range of sediment sizes which reflect the range of sizes that they 

transport and sort in the process of deposition. This sorting can be observed in stream-wise, 

lateral and vertical directions. Stream-wise sorting can be observed in riffle-pool systems where 

the riffles tend to be composed of coarser substrate whereas the pools tend to be composed of 

finer substrate. Additionally, downstream fining observed in most streams is an example of 

stream-wise sorting. Lateral sorting in a stream cross section can be observed at bends. The 

inside of the bends tend to be finer than the outside of bends where the secondary flow velocities 

scour out the finer particles. Vertical sorting is observed in gravel-bed rivers where armouring 

(coarsening of the top most layer of the bed sediment) due to weaning with lower flow regimes is 

a common phenomenon in non-ephemeral streams. Sediment sorting is the result of the 

differential transport of different sediment sizes (Parker, 2007). A granular physics approach 

adopted by Frey & Church (2011) to categorize transport into three stages: (1) finer material pass 

over a static bed; (2) partial transport of local bed material; and (3) general motion of grains on 

the bed in which all grains are equally apt to move, suggests that the propensity for grains of 

similar size to block each other leads to accumulations of similarly sized grains in restricted 

areas of the channel bed.  

Given the sediment sorting, it is easy to concede that equal mobility in rivers is unlikely. 

Sediment entrainment must be size-selective. Coarser grains are generally harder to move 

because they weigh more than the finer grains; however, because of their protrusion from the 

streambed, they are exposed to more drag than the finer grains and hence can move easily. 

However, these interplaying effects cause the coarser grains to tend to experience lesser 

mobility. This phenomenon is termed the “hiding effect”. A factor to account for this hiding 

effect is often included in equations featuring bedload transport of sediment mixtures.    
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Traditionally, absolute grain sizes that represented the channel substrate were used in excess 

shear stress type bedload equations. To account for selective transport, researchers tested the 

effect of relative grain sizes on the threshold of movement. One such research group of 

Ashworth and Kentworthy (1989) used mean and maximum particle sizes to quantify the 

threshold for particle entrainment in gravel-bed rivers and found that threshold shear stress for 

entrainment depended on relative grain sizes more than absolute grain sizes and that equal 

mobility of both small and large particles could be reached in conditions of high shear stress and 

transport rates.  

Wilcock and McArdell (1993; 1997) defined a new threshold parameter for a region within 

which the condition of partial transport occurs (see Figure 4) to allow for the determination of 

surface-based fractional transport rates. According to their theory of partial transport, not all 

grains within the partially mobilized fraction experience entrainment; all sediments that show 

shear stresses above the newly defined threshold lie within a region of full mobility and are 

entrained on a regular basis. Their research (Wilcock & McArdell, 1993) suggests that the 

transport rate of specific sediment sizes is controlled by both their frequency and the fraction of 

sediments of the same size that remain immobile.  They also suggest that partial transport 

determines the thickness of the active bed layer and hence influences the exchange of pavement 

and sub-pavement layers of the bed, armouring and other sediment sorting (Wilcock & 

McArdell, 1997). 
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Figure 4:  Regions of sediment transport (Wilcock & McArdell, 1993)  

2.1.3 Bedload Measurements 

It is essential to quantify bedload transport rates to design and evaluate stream restoration plans 

and to study the continuity of sediment to ensure that there is no accumulation or erosion. This 

knowledge enables engineers and practitioners to determine the net erosion (only with erosion 

studies) for upstream and local sources, and hence enables them to determine potential problems 

that can be caused by either an excess of sediment load (sedimentation of reservoirs and 

channels, flooding, obstructions in channel flow caused by deposition) or due to the lack of 

sufficient sediment supply (bank and bed erosion). 

The idea of measuring bedload transport is a relatively old one. Various researchers (e.g., 

DuBoys (1879), Smart & Habersack (2010)) have been looking into this subject since the 19
th

 

century and still continue to do so in the 21
st
 century. While the reasons to measure sediment 

loads have remained the same, the methods of measuring bedload have evolved. Bedload 

measurement methods can be divided into direct and indirect methods (Hubbell, 1964). Direct 

methods refer to methods that involve sampling of bed material while it is being transported, 

whereas the indirect methods refer to the use of tracers to monitor the transport of individual 
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particles (Gomez, 1991). However, as noted by Diplas et al (2007), none of these techniques is 

suitable for a wide range of uses. Although bedload measuring techniques have been employed 

for over a century, they are not as widely measured as suspended sediments (Gray, Laronne, & 

Marr, 2010).  

2.1.3.1 Direct Methods 

Typically, bed-load samplers are deployed to determine and study sediment loads and transport 

rates, and data is collected, particularly during high flows. These samplers may be generalized 

into three types: samplers installed into the bed of a channel (pit and trough samplers), manually 

operated portable samplers, and non-intrusive samplers (Diplas, Kuhnle, Gray, Glysson, & 

Edwards, 2007). The latter category falls under the category of indirect method of sampling. 

 Hubbell (1964) classifies the sampling devices into the following types: box or basket, pan or 

tray, pressure difference and slot or pit. Box or basket types of samplers retain sediment 

deposited in due to reduction in flow velocity. This reduction in flow velocity causes sediment to 

be deposited at the entrance and hence reduces the efficiency of the sampler. Pressure-difference 

samplers alleviate this problem as they are designed such that the entrance velocity and the 

velocity of water adjacent to the sampler is approximately the same. Pan or tray samplers retain 

sediment that drops into a slot after it has rolled, slid or skipped up an entrance ramp. Slot or pit 

samplers are installed on the bottom of the bed such that they catch sediment as it moves along 

the streambed. A type of pressure-difference samplers called Helley-Smith samplers (Helley & 

Smith, 1971) developed for the calculation of sediment loads in sedimentation studies are a 

popular choice among researchers and practitioners for measuring bedload transport because 

they can be calibrated to achieve high hydraulic and sampling efficiencies.   

2.1.3.2 Indirect Methods 

Another method to study bed-load transport involves the use of tracers. This method can be 

particularly useful when the channel substrate is predominantly composed of gravels since the 

size of tracers limits the minimum size of particle tagged to the size of gravels. Tracers provide a 

way of characterizing transport parameters and the stochasticity of particle motion itself (Ganti, 

Meerschaert, Foufoula-Georgiou, Viparelli, & Parker, 2010) which was recognized by Einstein 

(1937). Painted rocks, radio transmitters, magnetic clasts, radio nuclides, and radio frequency 

identification (RFID) devices have been used as tracers to monitor and study sediment transport.  
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Bedload-surrogate monitoring technologies such as active sensors (e.g., acoustic Doppler current 

profilers (ADCPs), sonar, radar and smart sensors) and passive sensors (e.g., geophones and 

hydrophones) can be used to study both gravels and sand (Gray, Laronne, & Marr, 2010). 

Sediment transport in sand bed channels is estimated through the study of dimensions and speed 

of bedform movement using ultrasonic sounder data (Gomez, 1991).  

2.1.3.3 Challenges 

Bedload discharge is known to vary in an oscillatory manner such that the mean bedload 

discharge cannot be estimated by a single short-term measurement (Hubbell, 1964). This 

temporal and the spatial variability in the transport of bedload presents a challenge to the design 

of samplers and sampling strategies. Traditionally used direct methods also pose installation and 

retrieval problems especially in conditions of bankfull flows. Additionally, the type of sampler 

used and the placement of the sampler in the stream affect the sampling efficiency (Hubbell, 

1964). Therefore, adequately capturing a representative sample becomes challenging. 

2.2 RFID Technology 

Radio Frequency Identification technology is an automatic (in that the reader is automated 

though it might have to be manually operated) data collection technology that uses wireless radio 

communications to uniquely identify objects and people without a line of sight (TI, 2012). This 

technology was employed as early as the 1940s by the allied forces to identify their WWII 

aircrafts. Later in the 1960s, the technology was then used in employee badges to enable 

automatic identification of people for security purposes (Want, 2006). In recent times, with the 

decrease in the cost of manufacturing and development of the technology, its application has 

varied from labeling airline luggage to tracking fish movements.  

2.2.1 Theory 

The RFID system consists of two parts: the transponder (or tag) located on the object to be 

identified and the reader (or interrogator or receiver) which contains both a transmitter and a 

receiver (Finkenzeller, 2003). There are two types of RFID tags (or transponders): active and 

passive. The passive tags are of interest to this research due to their small size and long 

operational life compared to active tags. A passive RFID tag is primarily comprised of a 

semiconductor chip which stores information, a capacitor and an antenna to send and receive 

signals, all of which are hermetically sealed in a glass vial (Figure 5). The RFID tags referred to 
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henceforth in the thesis shall be passive tags unless mentioned otherwise. The power required to 

activate an RFID tag is supplied by the reader and the reader displays the data encoded on the 

tag. The structure of encapsulation of the transponder changes depending on its application. The 

transponder shown in Figure 5 specifically shows the schematic of a glass transponder which 

was used in this study.   

 

Figure 5: Schematic of a Glass Transponder (Finkenzeller, 2003) and TI RFID Tags used in the study 

RFID tags can be further classified into Low Frequency (LF), High Frequency (HF), Ultra High 

Frequency (UHF) and Microwave based on the frequency of operation (Ranasinghe & Cole, 

2008). LF RFID tags use a near field design approach in which power is delivered from the 

reader to the transponder through magnetic induction. They generally operate at a frequency less 

than 135 kHz. The tags used in this study operate at 134.2 kHz.  

For a reader to be able to communicate with a tag, it is essential that the tag receive sufficient 

power for its activation (Finkenzeller, 2003). The zone within which the transfer of energy and 

information between tag and reader takes place is termed as the interrogation zone. The 

maximum linear distance between which the reader receives an interrogation signal (radio signal) 

from the tag is termed read range in this thesis. The dimensions of the 3-dimensional 

interrogation zone are governed by the power received by the tag from the reader. Though the 

power emitted by the reader is constant, its strength decays by a factor of the inverse cube of the 

distance between the reader and the tag (Lehpamer, 2012). Factors such as antenna diameter also 

play a role in the power of the antenna. For larger antennae, the power may stay constant for a 



19 

 

certain distance before it starts to decay. The interrogation zone changes its shape depending on 

the orientation of the transponder with respect to the antenna. 

Figure 6c and Figure 6d show the theoretical interrogation zone of the reader antenna in vertical 

and horizontal tag orientations (Figure 6a and Figure 6b), as provided by the manufacturers of 

the antenna (Aquartis, 2011) used in this study.  

 

Figure 6: Theoretical Antenna Fields (interrogation zones modified from Aquartis, 2011) 

2.2.2  RFID Application in Measuring Sediment Transport 

Since the first use of RFID technology in tracking bedload sediment (Nichols, 2004), various 

researchers have used this technology to study sediment transport in various environments, as 

listed in Table 1. The use of passive RFID transponders in tracers has been favoured by these 

researchers since these tracers have high recovery rates and long life; they can be detected even 

when buried so long as the antenna is within the read range; they can be assigned unique 

identification codes; and, they are inexpensive compared to active radio transmitters. RFID 

tracers have been used to study bedload displacement distances, tracer frequency distributions 

and variability in tracer dispersions (Liébault, Bellot, Chapuis, Klotz, & Deschâtres, 2011), 

bedload transport around deflectors (Carre, Biron, & Gaskin, 2007), large woody debris in rivers 

(MacVicar, et al., 2009), sediment mobility in a specific morphology (MacVicar & Roy, 2011), 

effects of dams on sediment in river delta, (Miller, Warrick, & Morgan, 2011), and structures of 

active sediment layers (Miller & Warrick, 2012). 

Figure 6a 

Figure 6b 

Figure 6c 

Figure 6d 
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Table 1: List of previous RFID research papers  

Reference Environment # of Tags 

Nichols, M. H. (   4) Rivers (Ephemeral) 1 4 

Lamarre, H. et al (   5) River ( ravel Bed)   4 

Carre, D. M. et al (    ) River 11  

Lauth, T.J. & Papanicolaou, A.N. (   8) Flume - 

Lauth, T.J. & Papanicolaou, A.N. (   9) Flume 5  

MacVicar, B. et al. (   9) River (Large)   4 

Schneider, J. et al (  1 ) River (Mountain)  98 and     

Liebault, F. et al (  11) River (Mountain) 451 

Miller, I. M. et al (  11) River (Delta) 1 8 

MacVicar, B.J. & Roy, A. . (  11) River ( ravel Bed)  99 

Miller, I. M. & Warrick, J. A. (  1 ) Mixed Beach (Littoral) 54 

Bradley, N. D. & Tucker,  .E. (  1 ) River (Mountain) 893 

Papanicolaou, A.N. et al (  1 ) Flume - 

 

Though all the researchers use the same technology, the method of usage is not necessarily the 

same. There are no standard operating procedures for tagging and tag detection. Confounding 

factors which influence tag detection present challenges in standardizing RFID bedload tracking, 

unlike the standardization of RFID identification of animals. ISO standards 11784, 11785 and 

14223 contain the code structure of the radio-frequency identification code for animals.  

Similarly, there are ISO standards for freight containers. However, though they attempt at 

standardizing encoding of tags for a specific purpose, the ISO standards don’t describe tagging 

and tag identification procedures. The standards also do not note performance standards for any 

RFID technology. Such standardization procedures, though far from being detailed standard 

operating procedures, are steps in the right direction. Unfortunately, there are no encoding, 

tagging, detection or performance standards in existence for bedload tracking. Given the use of 

the RFID technology by multiple research groups throughout the world, in the fields of sediment 

transport through fluvial and lacustrine systems, it would be beneficial for the procedures for 
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tagging and tracking to be standardized. Standardization of these procedures can also enable new 

research groups to adopt the use of RFID technology with relative ease.   

Lamarre, MacVicar and Roy (2005) determined a vertical detection distance of 0.5 m and a 

lateral detection range of 0.4 m ± 0.06 m. Based on controlled laboratory experiments, Schneider 

et al (2010) found that the read range of the mobile 50 cm diameter loop antenna varied 

depending on the sediment saturation condition. They also note that the stone material around the 

transponder can also affect the read range. Lamarre et al (2005)  recognized that when multiple 

tagged articles were in the same interrogation range, interference in signal contributed to errors 

during detection. Lauth and Papanicolaou (2008) considered factors such as burial depth, 

proximity to other particles, and transponder orientation important while testing RFID systems in 

a flume. Background electromagnetic interference has also been identified as a factor that can 

affect the reading range (Lauth & Papanicolaou, 2009). Papanicolaou et al. (2012) also studied 

the effects of the medium between the transponder and antenna. They found that water and air 

were similar in their influence on signal strength; gravels did not cause large signal decay; sands 

caused the greatest signal decay. Benelli and Pozzebon (2013) examined a variety of low 

frequency RFID tags under water in conditions of varying conductivities and found that long 

glass tags could be read in a range of distances from 0.48 cm and 0.63 cm. Based on the 

available literature, it is safe to conclude that there are many factors that affect the precision of 

detection. 

2.3 Urbanization 

Lane (1955) established the following proportionality for channels that maintain dynamic 

equilibrium: 

         

where  ,  ,   , and     are the channel forming discharge, channel bed gradient, bed-material 

discharge and the median grain size of the bed material, respectively. Perturbations in the 

channel lead to changes in the equilibrium conditions that dictate Lane’s equation. Urbanization 

has the potential to affect all four parameters in Lane’s equation. Urban development has 

transformed river landscapes by changing hydrologic (dictated by   in Lane’s equation) and 

sedimentologic (dictated by   and    in Lane’s equation) regimes causing a range of 

morphologic adjustments (Chin, 2006) such as channel incisions and quasi-equilibrium channel 
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expansions (Booth, 1990). Schumm (1969) studied morphological effects on rivers due to human 

activities and developed the following relationships between the controlling factors of channel 

discharge and bed-material discharge, and the channel dimension parameters such as channel 

width ( ), depth ( ), meander wavelength ( ), slope ( ) and sinuosity ( ):  

    
      

  
 ;      

      

  
;    

   
      

    
;    

   
      

    
 

 The plus and minus exponents indicate an increase or decrease of the respective parameters. 

Thus, channel discharge is directly proportional to channel width, depth and meander 

wavelength, and inversely proportional to its slope. Similarly, bed-material discharge is directly 

proportional to channel width, meander wavelength and slope, and is inversely proportional to 

channel depth and sinuosity.  

2.3.1 Effects of urbanization on hydrologic and sedimentologic regimes 

Urbanization is known to increase the peak discharges of storm runoff due to the increase in 

impervious area. Uncontrolled urbanization can also increase the duration of flows (Pomeroy, 

Postel, O'Neill, & Roesner, 2008). The increase of peak discharge with increase in urbanization 

has been documented in studies by Leopold (1968) and Hollis (1975). Studies on rivers in the 

Philadelphia area by Hammer (1972) established that the duration for which the urban 

development has been in place is directly proportional to the channel size increases. The same 

study also suggested that impact of impervious development is positively related to the channel 

bed slope, hydraulic gradient and the slope of the developed land. Pizzuto, Hession & McBride 

(2000) defined the Hammer number  , in honour of Thomas Hammer’s 19   studies, as a 

function of bankfull discharge     and the basin area   : 

       ⁄  

They found that the Hammer number for urban stream channels is significantly larger than that 

of rural stream channels, which implies that the urban channels have adjusted their size and 

overall frictional characteristics in order to convey the increased peak discharges created by 

impervious surfaces,. Based on their research on two physically similar watersheds but with 

differing land-uses (urbanizing and rural/agricultural) in east-central Pennsylvania, Galaster et al 

(2006) determined that the relationship between the peak discharge and basin area is likely non-
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linear. The effects on the channel’s morphological characteristics are further discussed in sub-

section 2.3.2. 

The sediment load available is influenced by the land-use of the upstream and headwater 

portions of the river. Urbanization of watersheds generally leads to a reduction of sediment 

supply from the watershed due to reduced availability of non-impervious area that could 

contribute overland erosion. Urbanization can also have indirect impacts on the sedimentologic 

regime of a watershed. Anthropogenic works of dam construction, channelization (hardening of 

channel bed and banks) and sediment mining that alter sediment flux (Surian & Rinaldi, 2004) 

typically increase with urbanization. Channel disturbances that cause excess stream power (a 

function of flow, slope and the specific weight of water) to occur in relation to the available 

sediment supply can cause the degradation of channel beds (Simon & Rinaldi, 2006).  

Interestingly, Pizzuto, Hession & McBride (2000) found that urbanization did not significantly 

affect the simplified Shields parameters which are based on bankfull depth and median grain size 

(Chang, 1988); it is at bankfull discharge events that bed material is likely to be transported 

(Pizzuto, Hession, & McBride, 2000). This suggests that bedload transport occurs at bankfull 

stage in both urban and rural watersheds. However, Annable, Watson & Thompson (2012) found 

that the channel beds of urbanized gravel-bed rivers tended to be armoured and hence a reduction 

in the volume of bed material transported was observed. A study by Trimble (1997) shows that 

stream channels (that have not been hardened) contributed to the sediment yield of an arid 

urbanizing watershed as a result of increased storm runoff. In humid watersheds, according to a 

study by Bledsoe and Watson (Bledsoe & Watson, 2001), channel instability increases with 

increases in stream power associated with imperviousness as low as 10 to 20%. The effects of 

urbanization on the sedimentologic regime can be minimal depending on the type of existing 

native sediment substrate in the channel. One study found that the watersheds dominated by 

coarse or cohesive stream bed materials show less sensitivity to changes in erosion potential due 

to urbanization (Pomeroy, Postel, O'Neill, & Roesner, 2008). 

2.3.2 Effects of urbanization on channel morphology 

In combination with the changes in the hydrologic regime in the watershed, the sedimentologic 

changes to a system cause morphological impacts on a stream channel. Many recent studies have 

associated increased urban runoff with channel enlargement (Colosimo & Wilcock, 2007; 
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Galster, Pazzaglia, & Germanoski, 2008). Gregory (1987) found that the typical channel 

enlargement ratios range from 1.0 to 4.0 in the world’s urbanizing rivers. Channel enlargement 

ratios are based on channel areas. Gregory, Davis & Downs (1992) observe that the channel 

enlargement downstream of a perturbation does not necessarily take place uniformly along the 

channel. One of the governing factors of channel enlargement is the sediment load being carried 

(Chin, 2006). An examination of the in-channel sediment storage characteristics can be used as 

indicators of the extent of channel adjustment due to urbanization (Colosimo & Wilcock, 2007).  

The response to perturbations, especially anthropogenic, can develop over multiple stages of 

channel evolution leading to a stage of quasi-equilibrium (a dynamic state of re-stabilization). 

Simon (1989) outlined a six-stage model describing an incised channel evolution “characterized 

by six process-oriented stages of morphologic development for alluvial channels – pre-modified, 

constructed, degradation, threshold, aggradation and re-stabilization”. He identified the period of 

bed-aggradation as the time during which top-bank widening and channel bed deposition occurs. 

A summary of a channel evolution model as described by Simon (1989), Schumm et al (1984) 

and Biedenharn et al (2007) is presented below (see Figure 7) using a space for time substitution 

which assumes that the changes to a particular location in a channel can be predicted based on 

observations of the changes in the channel as it progresses downstream. 

Type I is located in the upper reaches and has not experienced significant bed or bank erosion or 

sediment deposition. Type II is immediately downstream of Type I; it is over steepened and has a 

sediment transport capacity which exceeds supply and causes active degradation. However, the 

bank height (h) does not exceed critical bank height (hc) and hence there is no geotechnical 

instability. In a channel of Type III, h > hc and therefore, geotechnical instability occurs. There is 

a slight degradation, with channel widening being the dominating process in which the sediment 

transport capacity is reduced. This process initiates sediment deposition. In a Type IV channel, 

geotechnical instability and widening continue at a reduced rate. The increased aggradation 

causes the development of berms. In a Type V channel, dynamic equilibrium i.e., a balance 

between sediment transport supply and capacity is achieved. Berms are covered with riparian 

vegetation and a new compound channel forms within the incised channel which is bounded by a 

smaller floodplain. The older floodplain becomes a terrace.  
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Though the channel evolution model is widely used by river practitioners, it is not without 

defects. The model needs to be adapted to the catchment and stream type of the system under 

consideration.   

 

Figure 7:  Channel Evolution Model (Schumm, Harvey, & Watson, 1984) 

 

2.3.3 Implications for future research  

Curtailing urbanization would effectively eliminate the ongoing adverse effects on a 

watercourse. However, where it is not possible to limit urbanization, development of a process 

based understanding of the effects of change in watershed land-uses on streams is required to 
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ensure protection of streams from degradation (Booth & Jackson, 1997). Studies that document 

the increase in urbanization of watersheds over a long period of time, such as those by Leopold, 

Huppman & Miller (2005) spanning forty-one years, Cruise, Laymon & Al-Hamdan (2010) 

spanning twenty years, and Annable, Watson & Thompson (2012) spanning fifteen years enable 

practitioners to better understand the hydrologic and sedimentologic regimes in urban and 

urbanizing watersheds. Implementation of appropriately designed stream restoration measures 

and storm water management techniques can potentially mitigate the negative impacts of 

urbanization. The approaches taken to restoration can be broadly classified into form-based and 

process-based approaches to design and analyses (Bennett, et al., 2011). In order to create 

appropriate designs, it is imperative that they be based on experience of what works on a long 

term basis. The research project presented in this thesis attempts in part to supplement the current 

understanding of sediment processes in an urban creek with the hope that study will continue in 

the future years so as to establish a thorough understanding of the urban creek system; this will 

enable engineers and decision makers to develop appropriate mitigation measures in similar 

systems, as necessary.   

2.4 Thesis Scope and Objectives 

The aim of this research project is to improve methodologies for the investigation of bedload 

sediment movement through urban streams using RFID technology. The objectives were 1) to 

track sediment movement in an urban stream using RFID transponders; 2) to identify and 

quantify the factors that confound the detection of these tracers, and 3) to develop 

recommendations for a standardized RFID tagging procedure that will improve the precision and 

utility of the technique. Field studies were conducted to meet objective 1 and laboratory 

experiments were conducted to meet objective 2. It should be noted, for field studies, two study 

sites chosen were based on restoration plans by the City of Waterloo so that an evaluation of the 

restoration works could be undertaken. However, since the restoration through the creek was not 

completed within the timeframe of this research project, the evaluation of the restoration works 

is beyond the scope of this thesis. It is anticipated that the baseline data from this research project 

will contribute to a longer term comparative study on urbanization and sediment dynamics in 

rivers. The use of RFID technology made it very evident that the precision of tracking varied and 

often the detected location differed as much as one metre. Therefore, laboratory experiments 
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were undertaken to study the factors that contributed to the variation in detection distances. 

Information from the field and laboratory studies was used to meet objective 3.   
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3 METHODOLOGY 

 

This chapter outlines the field and laboratory methods undertaken to meet the objectives of the 

research project. The section on field methods describes the application of RFID technology in 

the study of sediment transport and the preliminary work required to undertake such a study. 

Background information pertaining to the study site is also presented in this section. The section 

on laboratory methods describes the process undertaken to identify and quantify the factors that 

confound the accurate detection and location of RFID tracers. 

3.1 Field Methods 

For the purpose of this study, four reaches of Laurel Creek (see Figure 8) were studied over a 

period of 18 months. Laurel Creek was chosen for its convenient location and its situation in an 

urbanized watershed (see Figure 9) that contains naturalized areas. The four reaches of the creek 

used in this study were chosen for their easy access, general channel morphology and locations 

with respect to a reach in which restoration works have been carried out by the City of Waterloo. 

In order to compare the sediment transport characteristics in urbanized sections as opposed to 

naturalized sections, two of the four reaches selected are situated in urban parks (Hillside Park 

and Bechtel Park – see Figure 10) where the creek has a greater access to the floodplain as 

compared to the other sites. Access to the sites was an important factor to consider. All the sites 

selected were easily accessible by foot; the sites situated in urban parks were accessible by an 

amphibious all-terrain vehicle for easy transport of RFID tracers. In order to ensure that the 

tracers would not get trapped in bends, it was necessary to seed the tracers in straight reaches. To 

eliminate the effects of changing channel morphology within the seeding section, it was essential 

for the reach to be straight both upstream and downstream of the seeding section. Therefore, 

three of the reaches selected were situated in straight sections. The fourth reach, which was 

located in Bechtel Park, was situated in a meandering section; this site was selected because it 

had been previously restored to a natural state.  

Site reconnaissance of all four reaches (see Figure 11) was conducted in early Fall 2010. During 

reconnaissance, which site characteristics were noted and benchmarks were established. 

Thereafter, routine field work was carried out to collect substrate size information, seed the sites, 
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i.e., introduce tagged sediment in the sites, and to track the tracers. Geomorphic surveys of each 

reach were also undertaken to characterize the morphology of the reaches. Substrate size 

information was collected through pebble counts (using the Wolman Pebble Count Method) and 

grain size analysis of bulk pavement and sub-pavement samples.  

3.1.1 Laurel Creek Background 

The water course chosen for this study, Laurel Creek, is a tributary of the Grand River located in 

the Regional Municipality of Waterloo (Figure 8). At the confluence with the Grand River, 

Laurel Creek has a drainage area of 74.4 km
2
 (GRCA, 1993). The quaternary geology of the area 

is characterized by 45 to 100 metres of glacial deposits over a Salina bedrock formation which 

was deposited in the late Silurian and early Devonian Period (GRCA, 1993; GRCA, 2004). 

Forewell Creek, Beaver Creek, Monastery Creek, and Claire Creek are the main tributaries of 

Laurel Creek. The headwaters of the creek lie in a rural landscape consisting of woodlots and 

wetlands upstream of Laurel Creek Reservoir. Laurel Creek drains into the Grand River. Laurel 

Creek Reservoir is one of the largest storage facilities available within the system. Columbia 

Lake, Laurel Lake and Silver Lake are the other major storage areas located within the Laurel 

Creek drainage system. These three reservoirs are beneficial in regulating the streamflow and 

reducing sediment fluxes during intense storm events. However, the lakes also interrupt bedload 

transport in the creek. All lakes are man-made, built alternately for purposes of supporting 

sawmills (Silver Lake in 1808), flood control, low flow augmentation and pollution abatement 

(Laurel Creek Reservoir in 1966), and recreation and aesthetics (Columbia Lake and Laurel 

Lake).  
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Figure 8: Laurel Creek Watershed Map 

Most of the forested land in the watershed was cleared for agricultural use between the early 

1800s and 1910. A number of mills and mill dams were constructed on the watercourses during 

the 1800s. Since 1910, the watercourses in the watershed underwent periods of change and 

channel stabilization to accommodate the changing flow conditions. Urbanization in the Laurel 

Creek Watershed has occurred primarily since 1946 (GRCA, 1993). As of 1999, almost the 

entire lower watershed is urbanized while the upper watershed is predominantly agricultural land 

as shown in Figure 9. The percent urbanization (as determined by total impervious area) in 1999 

is 37.7%. 
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Figure 9: Laurel Creek Watershed Landuse 

Many reaches of the creek were lined with concrete or gabion baskets as erosion control 

measures. A significant portion (~500 metres) of the watercourse downstream of Silver Lake has 

been channelized. Historically, the watercourse has undergone changes due to straightening and 

channelization, planform alterations, construction of lakes and crossing structures. Of particular 

interest to this study is the changes to channel made in the study reach through Bechtel Park. 

Also of interest are the historic and the proposed restoration works to be carried out in Hillside 

Park. Figure 10 shows the locations of these parks in the watershed.  
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Figure 10: Location of Bechtel Park and Hillside Park 

Laurel Creek in Bechtel Park was rehabilitated in two phases between 1993 and 1995. The first 

phase included erosion control mitigations at a historic landfill site which was threatening the 

sanitary effluent pipe from the wastewater treatment plant (between Hillside and Bechtel parks). 

The second phase included channel realignments to increase stream sinuosity, creation of pools 

and riffles, vortex weirs and bioengineering techniques with live vegetation walls to reduce 

erosion (Anderson, 2008).  

According to a historic geomorphic assessment done by Stantec Consulting Ltd., (2010) using 

historic air photos from 1930, 1945, 1955, 1978, 2000 and 2006, channel straightening in the 

study area through Hillside Park occurred between 1945 and 1955. This straightening led to a 

29% reduction in channel length. In 2009, Laurel Creek rehabilitation through Hillside Park was 
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proposed as a part of a larger project that involved upgrading of a sewer system to the 

wastewater treatment plant (WWTP). The rehabilitation proposed included removal of in-stream 

barriers that cause fish passage issues under low flows, replacement of a pedestrian bridge over 

the creek, replacement of gabions with bioengineering measures, lowering of an exposed sewer 

trunk (Forewell Trunk Sewer) located in Laurel Creek downstream of the confluence of Laurel 

and Forewell Creeks. The project was completed in the fall of 2012. Further restoration projects 

to remove concrete debris from the abandoned sewer near the WWTP, have also been 

recommended by Stantec Consulting Ltd. The field component of this project establishes 

baseline data on Laurel Creek for future studies on the effectiveness of the restoration works.   

3.1.2 Preliminary Site Assessments 

As a part of the preliminary assessment, the four reaches to be studied were delineated (Figure 

11) during a desktop analysis that included a review of aerial photos of the study area. 

Additionally, geomorphic surveys of the specific sites were performed to morphologically 

characterize the system. The geomorphic surveys included longitudinal profiles through the 

reaches and two cross sections that demarcate the upstream (start) and the downstream (end) 

locations of the seeding site in each reach. Table 2 shows a summary of the geomorphic 

characteristics of the four study reaches. 

Table 2:  Geomorphic Characteristics of Study Reaches 

Site 1 2 3 4 

Location 
Immediately 

north of 
Bridgeport Rd. 

Immediately 
downstream of 
University Ave 
East. through 
Hillside Park 

Immediately 
downstream of a 
pedestrian bridge 

in Hillside Park 

Upstream of a 
pedestrian bridge 

in Bechtel Park 

Land Use Residential Residential Urban Park Urban Park 

Seeding Site Length (m) 18.3 33.3 21.2 19.0 
Reach Slope (%) 0.520 0.056 0.286 0.24 
Local Slope (%) 1.26 0.29 0.36 1.00 

Bankfull Width (m) 9.20 9.86 11.01 10.85 
Bankfull Depth (m) 0.41 0.69 0.48 0.5 

D50 (mm) 36.6 12.6 7.2 27.7 

D84 (mm) 72 76 56 113 

Rosgen Classification B4 F4 F4 B4 
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Figure 11: Locations of the Study Reaches 

A longitudinal profile of the surveyed portion of creek through Site 1 is shown in Figure 12. The 

longitudinal profile of the surveyed portion of Laurel Creek through Hillside Park (including 

Sites 2 and 3) and Bechtel Park (Site 4) is shown in Figure 13 and Figure 14.  

 

Figure 12: Longitudinal Profile through Site 1  

:) 
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Reach 1 of Laurel Creek is composed of the straight portion of the creek beginning immediately 

downstream of Bridgeport Road. The seeding site selected within this reach is located on a riffle 

and is approximately 18 m long. Reach 2 is a straight part of Laurel Creek located at the start of 

Hillside Park immediately downstream of University Avenue. This reach has the lowest slope of 

all reaches studied. Reach 3 is located immediately downstream of a pedestrian bridge in Hillside 

Park and extends to the confluence with Forewell Creek. Reach 4 is located in Bechtel Park 

approximately 100 m upstream of the pedestrian bridge in the park and extends down to the 

bridge. The seeding site within this reach is located on a riffle and partially on a run.  

 

Figure 13: Longitudinal Profile through Hillside Park 

 

Figure 14: Longitudinal Profile through Bechtel Park 
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3.1.3 Field Work Preparation 

Initial site walks and field reconnaissance were conducted to identify site access areas, potential 

spots for locating benchmarks, identifying potential seeding reaches and to determine the bed 

material sizes. Benchmarks were then established along the creek to reduce the time taken to 

survey the locations of tagged rocks following a flood event. Each benchmark was an iron rebar 

with a piece of flagging marking the benchmark number. Benchmarks were established upstream 

and downstream of each seeding site on the right and left banks. Additional benchmarks were 

established approximately 200 m downstream of the seeded reach. The benchmarks were 

surveyed using a second order differential GPS. A list of benchmark locations and elevations can 

be found in Appendix A. 

Rocks for PIT-tagging were purchased from local landscape supply companies. The rocks were 

hand selected such that their sizes and lithology (primarily limestone) were similar to those in 

Laurel Creek. Rocks of sizes ranging from phi classes of -4.5 (22.6 mm) to -7.5 (180 mm) were 

selected. Table 3 shows the breakdown of the number of rocks in each size category. The lower 

bound on the range of particle sizes for tagging is limited by the size of the tag, while the upper 

bound was limited by the largest particle size found at the site during pebble counts and what 

seemed to be a realistic choice in terms of the size that was expected to be transported.   

Table 3: Size Distribution of Rocks 

Rock Size 
# of 

Rocks 
Tag Size Bin Size Lower Bound Upper Bound 

 
mm Φ mm φ 

1 22.6 -4.5 32 -5.0 43 Small 

2 32 -5.0 45 -5.5 49 Small 

3 45 -5.5 64 -6.0 40 Large 
4 64 -6.0 90 -6.5 28 Large 

5 90 -6.5 128 -7.0 20 Large 
6 128 -7.0 180 -7.5 20 Large 

 

Each rock was drilled with either a hammer drill or a drill-press. A drill press was used for the 

smaller rocks because the smaller limestone rocks were prone to breakage. However, for the 

larger rocks, a hammer drill was used because it was faster. Masonry drill-bits  

  
” wide and   

 
” 
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long were used. The rocks were drilled on the face that posed least resistance. Typically, this 

meant that the rocks were drilled along either a-axis or b-axis. For the smaller rocks, drilling 

through the a-axis was necessary to accommodate the entire tag. The rocks were then tagged 

with a PIT-tag and sealed with silicone caulking. Prior to tagging, each tag was programmed 

with a unique identification code. The mass, volume and size (along a, b, and c axes) of the 

tagged rocks were then determined. Bin sizes 1 and 2 were tagged with the smaller RFID tags 

(23 mm); larger tags (32 mm) were used for the remaining bin sizes. Figure 15 shows two drilled 

rocks and the two different sizes of tags used. The tag number for each rock was written on each 

rock for quick visual identification during rock placement in the stream.  

 

Figure 15: Drilled rocks and RFID tags 

3.1.3.1 Seeding Strategy 

Each site was seeded with 200 PIT-tagged rocks in the spring of 2011. Sites 1 and 2 were seeded 

on April 7, 2011. Sites 3 and 4 were seeded on April 15, 2011 and April 16, 2011, respectively. 

A total of 800 tagged rocks were used in the field study. The rocks were seeded in 20 cross-

sections at each seeding site with 10 rocks in each cross section. Since the creek is of non-

uniform width, with the maximum bankfull width of a reach ranging from 8.5 m to 13.5 m in the 

study sites, the distance between the tagged rocks was often < 0.6 m. The idea behind using large 

number of tagged rocks in a small section was to ensure that the section of the creek bed chosen 

for seeding was represented thoroughly.  

The representation of the actual bed particles by matching the sizes of introduced tagged rocks to 

those already present in the bed was important since in-situ material was not used for tagging and 
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seeding. For the purposes of proper representation, data acquired from pebble counts and grain 

size analysis was put to use. To simplify the process, 200 particles with the same grain size 

distribution were seeded in each reach. This grain size distribution was matched to that of Site 4. 

This site was chosen as it contained the coarsest fraction of all sites as shown in Table 4. Though 

Site 1 has a larger median grain size, the larger D84 values in Site 4 indicated that coarser 

sediment was likely transported through this reach at some point before bed armouring. There 

seemed to be a possibility for the coarser fraction to move in large flood events. Additionally, the 

morphology of the creek at Site 4 was more “developed” than Site 1. The presence of point bars, 

a developed “riffle-pool” sequence, easy access to floodplain and large riparian areas in Site 4 as 

compared to Site 1 meant that the channel was in the state of continuously evolving through 

aggradation and erosion without a constrained corridor as was observed in Site 1. In order to 

determine what material was most likely transported by competent floods, Klingemann surface 

sampling method was employed to sample substrate from a point bar located immediately 

upstream of the seeding location at Site 4.  Both pavement and sub-pavement samples were 

collected. The grain size distribution of the collected samples is shown in Figure 16.  

Table 4: Summary Size Parameters of Channel Substrate 

Category Site 1 Site 2 Site 3 Site 4 

D16 (mm) 10.8 2.3 0.6 5.8 
D35 (mm) 26.4 7.3 4.0 15.2 
D50 (mm) 36.6 12.6 7.2 27.7 
D84 (mm) 72 76 56 113 
D95 (mm) 115 180 90 230 
D100 (mm) 362 512 512 1024 

 

After the particle size distribution of Site 4 was chosen, a piecewise polynomial function was 

used to fit the pebble count data. The particle size distribution ranging from 22.6 mm to 1024 

mm was truncated to 180 mm and the higher end and was matched to imitate the piecewise 

polynomial function as close as possible. This distribution is shown in Table 3 and Figure 17. 

The general shape of the distribution was followed expect at the upper end, i.e., the last two size 

classes. Size class 5 has fewer particles than size class 6. However, for a reasonable sample size 

(minimum 10% of total samples), it was necessary that that last two size classes contain a 

minimum of 20 seeded rocks. Particles, particularly the spherical ones, in the range of 16 to 22.6 
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mm were not used because they were prone to breakage during the drilling process. Elongated 

(rod shaped) particles of this range were less prone to breakage. However, they did not bear 

resemblance to the shape of those in the field. Therefore, this range was ignored.         

 

Figure 16: Grain Size Distribution of Bulk Samples from Site 4 

 

At the outset of this study, a single grain size distribution was chosen for the sake of simplicity; 

however, in hind sight, to represent the bed accurately, it would have been more appropriate to 

customize the grain size distribution of the seeded particles according to each reach instead of 

applying the same size distributions to all reaches in the creek. Additionally, the lower sizes 

classes (11.3 mm to 22.6 mm) could also have been represented with the utilization of smaller 

RFID tags measuring 12 mm; however, the author was unaware of the availability of these tags 

at the beginning of the study. The smaller size fractions that the bedload also comprises of are 

under-represented in this study. 
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Figure 17: Size Distribution of Particles in Bechtel Park (Site 4) 

Once a particle size distribution was determined, the next step was to determine the pattern in 

which the particles would be seeded. Figure 18 shows the seeded rocks from rows 1 through 20 

for Site 3. The rocks are ordered from left bank to right bank going from left to right in the 

picture.  The column of rocks on the left show rocks seeded from rows 1 through 10 and those on 

the right show rocks from rows 11 to 20. These rocks were used in the third site. The same 

distribution pattern was used for the other three sites. The size distribution of the rocks was such 

that each size category was placed along a cross-section.  Figure 19 shows a visual distribution 

of the rocks placed in a seeding reach. Alphabets from ‘a’ to ‘j’ indicate the positions along a 

cross-section. Numbers from 1 to 20 indicate the cross-sections (rows) of rocks in a seeding 

reach. The numbers in the coloured boxes indicate the size category or the bin size to which the 

rocks belong.   

Figure 20 shows the four different shapes of rocks used as tracers. The shapes (Disc, Sphere, 

Blade, and Rod) follow Zingg’s classification system (Zingg, 1935) as found in ( arc a,     ) is 

based on the ratios of the long (a axis), intermediate (b axis) and the short axes (c axis) of the 
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rocks. Most of the rocks (42%) used in the study were spherical. 31% of the rocks ware disc-like. 

Rod like particles and blade like particles composed 19% and 8%, respectively.   

 

Figure 18: Site 3 - Seeded Rocks 

 

Figure 19: Size-distribution of rocks in a seeding reach 
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Figure 20: Tracer Shape (Zingg’s classification) 

 

3.1.4 Tracking Events 

 

The rocks were tracked on three separate occasions. The dates on which seeding and tracking 

were undertaken on each site is listed in Table 5. Sites 2 and 3 could not be tracked during the 

second and the third tracking events because they were inaccessible due to construction. To 

prevent the loss of tagged rocks during construction through these sites, the rocks were extracted 

immediately after the first tracking event.  

Table 5:  Seeding and Tracking Dates 

Event Site 1 Site 2 Site 3 Site 4 

Seeding April 7, 2011 April 7, 2011 April 15, 2011 April 16, 2011 

Tracking 1 August 11, 2011 July 25, 2011 July 27, 2011 August 10, 2011 

Tracking 2 October 26, 2011 - - November 2, 2011 

Tracking 3 June 19, 2012 - - June 20, 2012 

 

Tracking events generally followed a bankfull flow event during the period of study. Tracking 

could not be undertaken until the flows from the bankfull events had receded to flows that were 
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safe to wade in. Figure 21 shows the discharge data as obtained from the Water Survey of 

Canada flow gauge 02GA024 situated at Weber St. Bridge over Laurel Creek (less than 500m 

upstream of Site 1).  The figure also shows the dates of seeding and the tracking events. Tracking 

was conducted using a Leoni RFID antenna from Aquartis. Once a position of a tagged rock was 

determined, its position was surveyed using a total station. Due to the large range in the reading 

distance of the antenna, as discussed on Section 2.2, the surveyed location does not necessarily 

provide an accurate location of the tag. 

 

Figure 21: Laurel Creek Discharge at Site 1 

3.2 Lab Methods 

A box filled with sediment (the “sandbox”) was constructed to perform the lab tests designed to 

help determine the effects of certain factors that confound tracer detection. The sandbox (8’ x 8’ 

x 4’) was waterproofed before being filled in with ~ 3 cubic yards of granular A material. Since 

the box had to be strong enough to hold gravel and water, steel banding around the box was used 
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to reinforce the sides. Figure 22 is a collage of the pictures of sandbox under construction. The 

top left picture (a) shows the bottom frame of the sandbox. The next picture (b) is that of the 

constructed bottom and 2 sides. The third picture (c) is that of a completely constructed sandbox 

lined with multiple sheets of polyethylene to render the sandbox waterproof. The picture also 

shows steel banding along the sides of the box. The bottom left picture (d) shows a  ’ long pipe 

placed in the corner of the box. The pipe was used to house a tube attached to a sump pump that 

could drain the sandbox after ‘wet’ experiments.  The bottom middle picture (e) shows the box 

being filled with granular A mix and the last picture (f) is that of the completely constructed 

sandbox.  

 

Figure 22: Photos of Sandbox Construction 

The RFID system used in the sandbox is the same system as that described in sections 2.2 and 

3.1. A total of 36 rocks, 6 rocks for each of the 6 phi class bins (Table 3) were used for 

laboratory experiments.   

3.2.1 Experimental Design 

Experiments were designed to study the general range of the antenna, the effect of tagged rock 

size on the detection distance, the effect of antenna and rock orientations on the detection 

distances, the effect of the moisture conditions of the substrate (dry, wet – at saturation, wet – 

(a) (b) (c) 

(d) (e) (f) 
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under submerged conditions) and the depth at which the tagged rock is buried on the detection 

distance. Experiments were also designed to study the detection distances when more than one 

tag was present in an interrogation zone. Certain zones of no detection were identified in the 

field sites. These zones of no detection or “skip zones” were also studied in the lab experiments. 

Lastly, some of the experiments performed in the laboratory were repeated in the field to test the 

repeatability of the results in a field setting. 

3.2.2 Antenna Tests 

As noted by Nichols (2004) and as observed in Laurel Creek field tests, the orientation of the 

antenna affects the signal pick-up and, hence, the maximum detection distance. Antenna tests 

were designed with different orientations to account for the different detection ranges and to 

quantify the differences in the orientation. Table 6 shows lists the various characteristics of the 

antenna tests. The tests can be broadly categorized into two categories: those with the tagged 

rock in horizontal and vertical orientations. The horizontal orientation of the rock refers to the 

positioning of the rock such that the tag in the rock is parallel to the plane of the soil substrate 

that it is placed on or within. Typically, this meant that the rocks were placed such that their a-

axes were parallel to the soil substrate. For vertical orientations, the rocks were placed such that 

their tags were perpendicular to the plane of the soil substrate. Detection ranges for test numbers 

1 to 24, as shown in Table 6, were measured along the plane parallel to the plane of the soil 

substrate. Detection ranges for tests 25 to 31 were measured at an angle and “through the air”. 

These tests were designed to give a “normal” projection of the detection range of the antenna 

through space. All distance measurements were taken from the “tip” of the antenna. The tip of 

the antenna is that portion of the antenna that has a black plastic pipe around the aluminum 

housing. All tests were performed with the antenna held at a distance of  ” above the ground 

with the antenna held parallel to the surface of the soil.  

The general axis of measurement is shown in Figure 23. A total of six antenna tests are shown in 

the figure. These tests were conducted for all lab experiments whereas tests not shown in the 

figure were only performed for selected experiments. In each of the picture, the position of the 

rock is indicated by an orange flag. The yellow ruler shown in the photographs correspond to the 

x-axis. The naming convention used for the tests describes the orientation of the tag with respect 

to the soil surface (i.e, horizontal – H, or vertical – V), the angle of measurement (0˚, 45˚ or 90˚ 
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with respect to the y axis) and the orientation of the antenna (a – antenna tip tangential to the tag 

with the antenna’s centroid offset from the centroid of the tag by a distance of the radius of 

antenna, b – antenna tip farthest from the tag, c – antenna’s plane placed perpendicular to the 

surface of the soil with the antenna tip at the bottom. Tests 25 through 31 listed in Table 6 were 

given names to reflect the plane and angles along which measurements were taken.  

Table 6:  Description of Antenna and Rock Orientations for various tests 

Tests  Rock Antenna Angle Antenna Orientation 
  Orientation in x-y in x-z in y-z with respect to 
# Name Horiz./Vert. Plane plane plane Ground "tip" 

1 H-0 Horizontal along y - - Parallel Forward 
2 H-45 Horizontal At 45° - - Parallel Forward 
3 H-90 Horizontal along x - - Parallel Forward 
4 H-0b Horizontal along y - - Parallel Backward 
5 H-45b Horizontal At 45° - - Parallel Backward 
6 H-90b Horizontal along x - - Parallel Backward 
7 H-0c Horizontal along y - - Perpendicular Bottom 
8 H-45c Horizontal At 45° - - Perpendicular Bottom 
9 H-90c Horizontal along x - - Perpendicular Bottom 
10 H-0a Horizontal along y - - Parallel Tangential 
11 H-45a Horizontal At 45° - - Parallel Tangential 
12 H-90a Horizontal along x - - Parallel Tangential 
13 V-0 Vertical along y - - Parallel Forward 
14 V-45 Vertical At 45° - - Parallel Forward 
15 V-90 Vertical along x - - Parallel Forward 
16 V-0b Vertical along y - - Parallel Backward 
17 V-45b Vertical At 45° - - Parallel Backward 
18 V-90b Vertical along x - - Parallel Backward 
19 V-0c Vertical along y - - Perpendicular Bottom 
20 V-45c Vertical At 45° - - Perpendicular Bottom 
21 V-90c Vertical along x - - Perpendicular Bottom 
22 V-0a Vertical along y - - Parallel Tangential 
23 V-45a Vertical At 45° - - Parallel Tangential 
24 V-90a Vertical along x - - Parallel Tangential 
25 H-z Horizontal - along z - Parallel Forward 
26 H-xyz Horizontal At 45° At 45° At 45° Parallel Forward 
27 H-yz Horizontal along y - At 45° Parallel Forward 
28 H-xz Horizontal along x At 45° - Parallel Forward 
29 V-z Vertical - along z - Parallel Forward 
30 V-xyz Vertical At 45° At 45° At 45° Parallel Forward 
31 V-yz Vertical along y - At 45° Parallel Forward 
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Figure 23: Photographs of Antenna for various tests 

3.2.3 Experiments 

This section details the experiments performed in the laboratory. All experiments were 

performed in the sandbox except for the orientation test experiments which were performed on 

the concrete floor of the laboratory.   

3.2.3.1 Antenna Range and Uniformity 

To reduce the amount number of laboratory tests conducted, a preliminary test was conducted to 

examine the uniformity of the antenna’s range. If the antenna detection ranges could be found to 

be more or less equivalent in all four quadrants, testing could be limited to one quadrant and 

similar results could be expected for other three quadrants. The transponders were placed at the 

centre of the sandbox. Lateral detection distances were recorded along the horizontal and the 

vertical axes parallel to the soil surface in all four quadrants. Measurements were also recorded 

at a 45° angle from both x and y axes in each quadrant. Thus, a total of eight readings were taken 

for each tag. A total of 25 bare tags each of small and large sizes were tested.  

3.2.3.2 Effect of Tag Orientation 

To study the effects of tag orientation on detection ranges, 25 bare tags of each size (large and 

small) were tested. This set of experiments was performed by placing the tags on the concrete 

floor surface of the laboratory (not in the sandbox) to ensure that the positioning of the bare tags 
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were not affected by the undulations on the surface of sand and gravel mixture in the sandbox. 

The tags’ orientations with respect to the surface were tested, i.e., the tags were placed 

horizontally (with the long axis of the tag placed parallel to the test surface) and vertically (with 

the long axis of the tag placed perpendicular to the test surface). For each of these orientations, 0, 

and 0a tests were performed. In addition to horizontal and vertical orientations, the positioning of 

the tag with respect to the direction to which the copper turnings within the transponder were 

pointing was also changed and its effects on the detection distance were studied. The orientation 

was labeled “north” when the end of the transponder with the copper turnings was faced away 

from the antenna, and the orientation was named “south” when the end with the copper turnings 

faced toward the antenna. Tests H-0, H-0a, V-0, and V-0a were performed for both north and 

south orientations on all 25 small and 25 large tags. 

3.2.3.3 Effects of Rock Size 

One possible confounding factor in the establishment of definitive detection ranges for RFID 

tags was identified to be the size of the rock into which the tag was inserted. To study this 

potential confounding factor, thirty six tagged rocks (six rocks from each of six size categories 

identified in Table 3) were tested. Rocks from the first two size categories were tagged with 

small tags and the rest of the rocks were tagged with large tags. All 31 tests listed in Table 6 

were performed for the large tags. For the small tags, only tests H-0, H-45, H-90, H-0a, H-45a, 

H-90a, Hxyz, and their corresponding vertical tests were performed. The rocks were placed in 

the sandbox such that the tag was at the soil surface. For this configuration, the rocks had to be 

partially embedded so that the tags in horizontal orientation were aligned to the soil surface, and 

the tags in vertical orientation were placed so that half of the tag was exposed out of the soil.   

3.2.3.4 Effects of Burial depths 

To determine if the burial of tags affected detection ranges, tagged rocks were buried at depths of 

3”, 6”, 1 ” and 18”, and a number of tests, (H-0, H-45, H-90, H-0a, H-45a, H-90a, Hxyz, and 

their corresponding vertical tests) were performed for 24 tagged rocks (12 small tags and 12 

large tags). The tagged rocks were buried under thick polythene bags filled to a 3” width with 

substrate from the sandbox. The bags were placed on a wire mesh attached to ropes for ease in 

lifting and lowering the bags. The time taken to perform each test was reduced by avoiding 

having to dig through the sandbox to place the tagged rock at a particular depth, covering the 
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rock with substrate and repeating this process for every rock for each orientation test. 

Additionally, by placing the tagged rocks at the same location between the bags for each test for 

a certain burial depth, repeatability of the tests were ensured. Any errors that could have been 

introduced through having varying degrees of compaction of the substrate above the tagged rock 

were also eliminated by using bags whose compaction did not vary greatly between tests. 

However, continued burial tests led to gradual degradation of the box.  

3.2.3.5 Effects of Saturation and Submergence 

Laboratory experiments to study the dampening effect of water on the detection range were 

performed by filling the sandbox to the point of saturation, and carrying out H-0, H-45, H-90, H-

0a, H-45a, H-90a, Hxyz, and their corresponding vertical tests. These tests were repeated with 

the level of water in the sandbox being kept constant at 6” above the soil surface. These saturated 

and submerged tests were performed for 12 tagged rocks (large tags), which were placed at 

surface level and at a depth of 6”. Saturated tests were also performed for tagged rocks placed at 

a depth of 1 ”. Tagged rocks (12 small tags) were tested at the surface level under conditions of 

saturation.   

For the buried saturated/submergence tests, the same “bag-approach” described in the previous 

section was used.  To ensure that substrate inside the bags was saturated, the polythene bags 

were pierced to allow for flow of water. To prevent the soil from leaking out of the bags, the 

polythene bags were put into burlap sacks. Figure 24 is a series of photographs that show the 

preparation of the sandbox for testing and the conditions within the sandbox during the buried 

and wet tests. The top left picture (Figure 24 a) shows a dug hole into which a blue recycle box 

(Figure 24 b) was placed to maintain the shape of the hole. The next figure (Figure 24 c) shows 

polythene bags filled with substrate placed into the blue box. The rulers were arranged over these 

bags for the measurement of detection distances. Holes were pierced through the blue box and 

the bags (Figure 24 d) to allow for seepage in the wet tests. The pierced bags were placed in 

burlap sacks (Figure 24 e). Figure 24 f shows wire mesh with rope handles that were used to 

lower the substrate bags into the blue box. Figure 24 g and Figure 24 h show setup for a wet test. 

In the wet tests, flags were placed to mark positions of the rock and the ends of the blue box. 

Finally, a completed setup with 6” depth of standing water is shown in Figure 24 i. The rulers for 
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measurement were set in place at a depth that allowed for easy reading using large rocks. This 

was essential because the visibility through the murky waters was poor.        

 

Figure 24: Photographs of Sandbox: Preparation for Burial and Wet Tests  

3.2.3.6 Skip Zones 

The presence of skip zones was first identified in the field. Lab tests were performed to quantify 

the skip zones. Tests were performed on a wooden board placed in the sandbox (see Figure 25). 

Two large tags and two small tags were tested. Each tag was tested in the north and south 

orientations. Additionally, each test was conducted with the tag placed at 4 rotational positions. 

The tags were rotated along their long axes by 90° for each test. The test procedure consisted of 

moving the antenna parallel to the plane of the wooden surface and parallel to the long axis of 

the tag, offset from the tag by a distance of 2 cm. The offset distance was arbitrarily chosen to 

keep the antenna from making physical contact with the tag. The distances at which the antenna 

beeped were recorded.  
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Figure 25: Skip Zone Testing 

3.2.3.7 Effects of Clusters 

Another possible confounding factor in the determination of detection distances is the presence 

of one or more tagged rocks in the interrogation zone of another. Preliminary tests found that the 

effect of clusters is difficult to fully quantify, even in laboratory conditions. For this reason, the 

simplest configuration of clusters of two rocks was employed to study how the presence of more 

than one tag in the interrogation zone could change the detection range. For this purpose, one 

tagged rock was left stationary, i.e., in the same position throughout the entire experiment. The 

second rock (movable rock) was placed at different locations and the detection distances were 

recorded by performing tests H/V-0, H/V-45 and H/V-90. The stationary tagged rock was 

located at the origin of the axes of measurement whereas the movable tagged rock was placed 

along the x axis (90°), the y axis (0°) and at a 45° angle between the x and y axes. Along each of 

these axes, the movable rock was tested at distances ranging 0 to 100 cm from the stationary rock 

at increments of 5 cm. At each test location, the orientations of the tags were changed. A total of 

four sets of tests (HH, HV, VH, and VV) were performed by changing between horizontal (H) 

and vertical (V) orientations. The first and last alphabets in the test names represent the 

stationary and the movable rocks, respectively, e.g., HV indicates that the stationary rock was in 

a horizontal orientation while the movable rock was positioned in a vertical orientation.  

It is important to note that the detection distances recorded were that of the stationary rock. 

During the process of carrying out a test, the antenna sometimes did not pick up the signal for the 
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stationary rock till it actually passed over the rock. In these circumstances, the detection 

distances were recorded as negative numbers. 

A total of twelve sets of experiments were performed involving 3 axes of rock positioning with 4 

combinations of rock orientations. For each of the twelve sets of experiments, twenty one 

measurements (i.e., measurement at each of 21 discrete distances between the stationary and the 

movable rocks) were taken. A test set up showing test VV with the movable rock situated along 

y axis (0°) 50cm from the stationary rock is presented in Figure 26. The blue arrows show the 

three axes along which measurements were made for each test.  

 

Figure 26: Cluster Test VV Setup with Rock Position at 0° 

The measured detection distances from each cluster test were compared to a baseline. The 

baseline detection distance,  , is the detection distance of the stationary rock of the same tagged 

rock without another tagged rock in its interrogation zone. The metric    ⁄  , i.e., half the 

detection distance of the tagged rock (without another in its vicinity) was used to study the 

results. A sample results figure (see Figure 27) shows the     ⁄  line for the three axes of 

measurement. The results for the tests shown (VV-0°, 45°, and 90° for Rock Position at 0°) were 

normalized by     ⁄ . The movable tagged rock was moved along the 0° axis; both rocks were 

placed in the vertical position. The measurements for tests VV-0°, 45°, and 90° are plotted in 

blue, red, and magenta. Each of these lines represents 21 discrete measurements. The abscissa for 

VV-0° 

 

 

VV-90° 



53 

 

each of the lines represents the distance between the stationary and the movable rocks. The 

ordinate for each of the lines represents the normalized distance. 

 

 

Figure 27: Sample Figure for Cluster Tests VV-0°, 45°, and 90° for Rock Position 0° 

 

3.2.3.8 Field ‘Lab’ tests 

Some field experiments were also performed to confirm the lab results. The experiments were 

performed in the Bechtel Park site of Laurel Creek on a point bar directly upstream of Site 4 on 

the right bank. Tests H-0, H-45, H-90, H-0a, H-45a, and H-90a, and the corresponding vertical 

tests were performed for six rocks tagged with small tags and 12 rocks tagged with large tags. 

For these tests, the rocks were placed on the surface under dry and saturated conditions. The tests 

were conducted with the large tagged rocks placed on the surface of the gravel bar. However, the 

small tagged rocks were tested under both conditions – with the rocks placed on the surface and 

with the rocks partially embedded in the gravel bar such that the tag in the rock was aligned to 

the surface of the gravel bar. Surface tests were also performed on rod, disc and wedge shaped 
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tags (Figure 28). In addition to the surface tests, buried tests were also performed for six rocks 

tagged with small tags. Burial tests were performed at 3”, 6”, and 1 ”.   

 

Figure 28: Rod, Disc and Wedge Shaped Tags Tested in the Field 
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4 FIELD RESULTS 

 

The results of the three tracking events discussed in Section 3.1 are presented in this chapter. 

Relevant survey data are presented in Appendix A. The effects of properties of individual tracers 

on transport within the four study reaches are presented. Table 7 presents a summary of recovery 

rates of each tracking event in all sites. Recovery rates reported in Table 7 are the ratio of tracers 

found to the number of tracers originally seeded, expressed as a percentage. Rates presented for 

all events are relative to the seeding event. More tagged rocks were found in the third tracking 

event than the second event. As mentioned previously, Sites 2 and 3 could only be tracked once 

due to site access limitations.  

Table 7: Summary of Recovery Rates  

Event Site 1 Site 2 Site 3 Site 4 

Tracking 1 97.0% 93.5% 95.0% 98.0% 

Tracking 2 81.5% - - 82.5% 

Tracking 3 91.5% - - 92.0% 

Average 90.0% 95.0% 95.0% 90.8% 

 

As expected, the average recovery rates of the tagged particles were fairly high, i.e., over 90%. 

These results are comparable with those obtained by Bradley and Tucker (2012), whose lowest 

recovery rate is 93% for a total of 893 PIT tagged coarse gravel clasts in a four year period of 

study. 

 

4.1 Overview of Tracer Movement 

In this study, movement (or mobility) is defined as the change in location of a tracer rock by a 

minimum distance of 1 metre; therefore, if the location of the tracer differed from its original 

location by less than 1 metre, it was considered not to have moved. This distance was chosen as 

the minimum required for movement to have taken place, since the Aquartis antenna can detect a 

tag from up to a distance of 1 meter (Aquartis, 2011). The drawback of this definition of 

movement is that displacements of less than 1 metre were not included in the determination of 

path lengths. An improved tracking method would have been required to quantify tracer 

movement measuring less than 1 metre; investigations leading to the development of such 
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method were the focus of subsequent laboratory experiments, whose results are presented in 

Section 5. It should also be noted that path lengths is defined in this study as simple two 

dimensional Euclidean distances (i.e., a straight line between two points in space). In reality, the 

tracers are likely to have followed more complicated and potentially tortuous trajectories of 

displacement along the sinuous channel length; however, quantifying such movement is beyond 

the scope of the study. 

 

During each tracking event, the location of each tracer was surveyed and the distance each tracer 

had moved from its initial seeding location was calculated. Summary statistics for the movement 

of all tracers at each site were calculated for each tracking event and are presented in Table 8. 

Tracking events 1, 2 and 3 are represented by the abbreviations T1, T2, and T3, respectively. The 

number of tracers that moved in each tracking event is noted in the column entitled “Nm”. The 

largest discharge rate recorded by the WSC gauge 02GA024 preceding the tracking event is also 

presented in the table. The largest floods occurred between the seeding event and the first 

Tracking event, and between the second and the third tracking event. 

 

Table 8:  Summary Statistics of Tracer Movement 

    
 

  
Path length from initial seeding location 

(m) 

Site Event 
Flow 

(m3/s)* Nm (%Nm) 
Mean ± Standard 

Error Minimum-Maximum 

1 

T1 16.5 89 (44.5 %) 5  ±  0.6 1  -  28.3 

T2 11.8 87 (43.5 %) 4.9  ±  0.6 1  -  28.5 

T3 16.1 127 (63.5 %) 5  ±  0.6 1  -  41.5 
2 T1 16.5 34 (17.0 %) 2.7  ±  0.5 1  -  18.8 

3 T1 16.5 82 (41.0 %) 10.8  ±  1.3 1  -  50.3 

4 

T1 16.5 105 (52.5 %) 6.7  ±  1.1 1  -  74.7 

T2 11.8 92 (46.0 %) 4.2  ±  0.3 1  -  15.0 

T3 16.1 104 (52 %) 8.7  ±  1.3 1  -  74.7 
* Flow was measured at the WSC gauge station located between Sites 1 and 2. 

The largest travel distances were observed in sites 3 and 4. The highest numbers of mobile 

tracers were observed in sites 1 and 4. Site 2 experienced the least movement with only 34 of the 
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200 tracers experiencing mobility, possibly on account of this site being a deposition zone. The 

highest mean tracer path length was observed at Site 3. The maximum distance travelled by a 

tracer was 74.7 m. This tracer was detected in Site 4 during both the first and the third tracking 

events, but not in the second tracking event.  

A map showing tracer movement in sites 1, 2, 3, and 4 are shown in Figure 29, Figure 30, Figure 

31, and Figure 32, respectively. The x and the y axes in the figures refer to the easting and the 

northing (measured in metres), respectively, of the surveyed points. Aerial photos of all four sites 

showing the location of the tracers are provided in Appendix B for reference.  

 

 

Figure 29: Particle Tracking in Site 1 
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Figure 30: Particle Tracking in Site 2 

 

Figure 31: Particle Tracking in Site 3 
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Figure 32: Particle Tracking in Site 4 

4.2 Path Length and Size Classes 

Particle transport can be very size selective. The results in this section examine the relationship 

between the various size classes of tracers and their path lengths. Generally, it was expected that 

the smaller size classes would travel the farthest and larger size classes would travel the least. 

However, results in this section show that the relationship between size and path length was not 

linear. 

4.2.1 Site 1  

Figure 33 shows the normalized path lengths (       
 ⁄ ) and percent of mobility (  ) plotted 

against normalized grain sizes (    ⁄ ) as per the approach of Church and Hassan (1992) 

MacVicar and Roy (2011). The path lengths and percent mobility for each tracking event are 

calculated with respect to the tracer location from the previous tracking event.  
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Figure 33: Path length and mobility versus particle size comparisons of various scenarios in chronological order 

at site 1 

The percent of mobility is the percentage of tracers that moved out of all the tracers recovered in 

a given tracking event. Normalized path length is the geometric mean distance travelled by a 

certain size class normalized by the geometric mean distance travelled by the median size group 

of the surface material. The median size group of the surface material was determined using 

pebble counts (See Appendix A) and the distances travelled by tracers of the same size class as 

the median size group were used to determine the geometric mean distance travelled by the 

median size group of the surface material (LD50’). The grain size (D) was normalized using the 

median b axis diameter of the surface material (D50) since this is the layer of grains that normally 

gets entrained in the sediment transport process and makes up the bed structure. For this site, the 

path lengths were normalized to the geometric mean of the path length of the second size class. 

The second tracking event showed the lowest recovery rates (as shown in Table 7) and also 
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showed the least mobility. During this event, no particle of the fourth size class was observed to 

have moved. As expected, the percent of mobility (the percentage of tracers that moved at least 1 

m) was the highest for the first tracking event. The percent of mobility dropped for subsequent 

events. It is interesting to note that with an increase in size, the path length dropped, except for 

the anomalous fifth size class. This supports the hypothesis that smaller rocks are mobilized 

more easily than larger rocks that need higher shear stresses to be moved.  

Figure 34 shows the same metrics as in the previous figure. However, the metrics for tracking 

events are plotted with respect to the location of the tracers at seeding. The percent mobility was 

the highest for the third tracking event. This suggests that particles that did not move during 

previous events moved in the subsequent events. As noted previously, the path lengths generally 

decreased with increasing particle size. However, the particles in the fifth size class had a greater 

path length.  

 

Figure 34: Path length and mobility versus particle size comparisons between seeding and tracking scenarios at 

site 1 
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4.2.2 Site 2 

Figure 35 shows the normalized path lengths and the probability of motion for the various size 

classes in Site 2. Only the first four size classes showed movement. This site was observed to be 

a depositional zone. The first and the fourth size classes showed the Figure 37most movement. 

The sizes classes in between showed the least movement. The percent of mobility declined with 

the increase in the size of the particles.  

 

Figure 35: Path length and mobility versus particle size at site 2 

4.2.3 Site 3 

Figure 36 shows the normalized path lengths and the probability of motion for the various size 

classes in Site 3. In general, percent mobility and path length declined as the particle size 

increased. 
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Figure 36: Path length and mobility versus particle size at site 3 

4.2.4 Site 4 

Figure 37 shows normalized path lengths and percent of mobility of particles of various size 

classes for Site 4. The path lengths and percent mobility plotted in Figure 37, for each tracking 

event, are calculated with respect to the tracer location from the previous tracking event. The 

path lengths were normalized to the geometric mean of the first size class for Site 4. Particle 

recovery was the lowest in the second tracking event. The largest mobility was observed in the 

first tracking event and the lowest mobility was observed in the second tracking event. It is 

possible that the low recovery rate affected the percent mobility results since the particles that 

did move could have remained undetected. The largest path lengths were observed for the first 

two tracking events and the smallest path lengths were observed for the third tracking event. The 

first tracking event occurred after the seeding event and after two large flood events. When the 
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tracers were initially seeded, they were placed loosely on the creek bed. Therefore, the path 

lengths measured reflect the movement of the particles from a “free” state. During the 

subsequent measurements, the particles would have been incorporated into the native sediment 

matrix and hence were not in a “free” state. They also would have faced hindrance to motion 

posed by other neighbouring particles. It is interesting to note that all particles recovered from 

the sixth size class experienced motion between the seeding event and the first tracking event. 

The path length for this size class was also the highest as recorded during the first tracking event. 

For the subsequent tracking events, it is likely that the particles from the higher size classes got 

trapped by surrounding sediment and were unable to move as far as the smaller size classes. 

 

Figure 37: Path length and mobility versus particle size comparisons of various scenarios in chronological order 

at site 4 
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Figure 38 shows the same metrics as in the previous figure. However, the metrics for tracking 

events are plotted with respect to the location of the tracers at seeding. Though the recovery rate 

for the second tracking event was not high, the particles of all size classes except the second size 

class in Site 4 moved the most between the first and the second tracking events, as can be seen 

by inspection of normalized path lengths. 

 

 

Figure 38: Path length and mobility versus particle size comparisons between seeding and tracking scenarios at 

site 4 
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5 LAB RESULTS 

Raw data from lab tests can be found in Appendix C. 

5.1 Tag Orientations 

In the tag orientation tests, the tags were oriented either horizontally (i.e., parallel) or vertically 

(i.e., on its end) with respect to the soil surface. In addition to changing the orientation of the tag 

with respect to the soil surface, the tag was also oriented according to the copper orientations, 

i.e., in “south” and “north” directions as mentioned in section 3.2.3.2. Notched box and whisker 

plots in Figure 39 show the results from the orientation tests. The wide box plots represent the 

large tags whereas the thin boxplots represent the small tags. Plots are shown for H0, H0a, V0, 

and V0a tests (see Table 6 in section3.2.2 for descriptions of these tests). Test names are 

followed by “S” and “N”, which are indicative of the copper orientation. 

The large tags had a larger detection range. Tags that were vertically oriented typically showed a 

larger detection distance for both small and large tags. Tags oriented in the “south” direction also 

showed a larger detection distance. A comparison of the results for the 0 and 0a tests in the 

horizontal orientations shows that detection ranges are approximately 5 cm lower for the offset 

test, where the centroid of the antenna was offset by a distance of the radius of the antenna from 

the centroid of the tag. Conversely, tests with the tags in vertical orientation showed that the 

detection ranges obtained for the offset tests were higher for small tags; however, no appreciable 

differences were observed for large tags. 
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Figure 39: Tag Orientation: Small and Large Tags 

5.2 Tracer Size 

Results for the rocks tagged with large tags are presented in Table 9. Single factor ANOVA tests 

were performed to determine whether the 4 different tagged rock size categories, all using the 

large (32 mm) RFID tag, show statistically different detection ranges. The ANOVA tests were 

performed for each individual antenna test. The null hypothesis of the test was that the means of 

the populations of all size groups are the same. The results from the ANOVA tests are provided 

in Table 9 and tests where the difference was significant at a 5% significance level are 

highlighted. A comparison of the calculated and the observed F statistic resulted in the failure to 

reject the null hypothesis for twenty two of the thirty one tests. The null hypothesis was rejected 

for tests H-90c, V-0, V-0b, V-45a, V-45b, and Vxyz, thereby implying either that the means of 

the four populations may be the same for most of the tests, or that the tests were not sensitive 

enough to detect differences in detection range. However, from a practical perspective, rocks 
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sizes can be deemed to be have no significant effect on the detection range of the antenna for 

most tests. 

Table 9: ANOVA test results summary 

 
Tests 

Fcrit = 3.098 
Fobs 

 
p-value 

 
Variance 

H-0 2.971 0.86 45.90 
H-45 0.540 0.66 67.13 
H-90 1.311 0.30 74.74 
H-0b 0.192 0.90 32.61 

H-45b 0.687 0.57 50.13 
H-90b 0.664 0.58 69.82 
H-0c 2.971 0.06 54.60 

H-45c 2.798 0.07 389.55 
H-90c 4.117 0.02 293.51 
H-0a 0.593 0.63 57.64 

H-45a 2.039 0.14 33.37 
H-90a 1.492 0.25 47.80 

V-0 4.486 0.01 5.45 
V-45 2.912 0.06 8.85 
V-90 2.407 0.10 14.70 
V-0b 8.465 0.00 10.29 

V-45b 5.949 0.00 14.43 
V-90b 2.943 0.06 16.64 
V-0c 0.530 0.67 36.22 

V-45c 0.245 0.86 31.59 
V-90c 1.069 0.38 12.91 
V-0a 1.150 0.35 6.76 

V-45a 3.482 0.04 8.55 
V-90a 2.393 0.10 12.22 

H-z 1.249 0.32 57.98 
H-xyz 0.459 0.71 47.43 
H-yz 2.803 0.07 17.77 
H-xz 1.883 0.17 164.68 
V-z 0.841 0.49 13.93 

V-xyz 3.983 0.02 109.51 
V-yz 3.041 0.05 84.97 
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5.3 Clusters 

The results from the cluster experiments are presented in this section.  

Figure 40 shows the results from experiments HH with the movable rock moved along the 0° 

axis. The blue, red and magenta lines show the detection distances measured for tests HH-0°, 

HH-45°, and HH-90°, respectively. It should be recalled that for tests at the 0° axis, the antenna 

was moved toward the stationary rock along the 0° axis; similarly, for the 45° axis, the antenna 

was moved toward the stationary rock along the 45° axis, etc. The axes shown by the three blue 

arrows are indicative of the distance between the stationary rock and the movable rock, which 

ranges from 0 to 100 cm. Each grid cell in the figure is equivalent to 10 cm. The axes 

perpendicular to the previously mentioned axes represent the detection distances (as illustrated 

by the green double ended arrows). It should be noted that the detection distances are not 

necessarily always positive; the distance at which the tag was detected was assigned a negative 

value for every test where the antenna did not detect the presence of the tag before crossing it. As 

a point of reference, the   ⁄  line is provided. The   ⁄  line indicates 50% of the detection 

distance for the stationary tracer without interference from a second tracer (i.e., the movable 

tracer). Figure 41 to Figure 46 present detection distance results in the same manner as presented 

in Figure 40.  

As mentioned previously,   is the distance at which the stationary rock would be detected in the 

absence of the movable rock for tests HH-0°, HH-45°, and HH-90°. When both rocks are placed 

in horizontal orientations along the 0° axis, the results show that when the distance between the 

movable and the stationary rock increase beyond 50 cm, the detection distances steadily 

increased leading to the magnitude of  .   
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Figure 40: Cluster Test Results: HH-0°, 45°, and 90° for Rock Position 0° 

Results shown in Figure 41 are for experiments conducted with the horizontally oriented 

stationary and vertically oriented movable tagged rocks. Negative readings were obtained when 

the distances between the two rocks were greater than 50 cm. It is interesting to note that large 

fluctuations occur within the 50 cm distance, which incidentally is roughly equal to the diameter 

of the antenna. A possible reason for the fluctuations could be, up to the 50 cm mark, the two 

rocks are situated within the physical boundary of the antenna and the antenna might 

intermittently pick up signals from either of the rocks. In general, it was observed that as the 

distance between the rocks increased, the detection distance tended towards the   ⁄  line.   
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Figure 41: Cluster Test Results: HV-0°, 45°, and 90° for Rock Position 0° 

Figure 42 (a) and Figure 42 (b) show the results for VH and VV tests, respectively. Some 

fluctuations in detection distances were noted for cases where the distances between the two 

rocks were smaller. For the VH-90° test, the results were very peculiar in that the detection 

distances did not seem to differ with changing distances between the rocks.  

  

Figure 42: Cluster Test Results for Rock Position 0°: (a): VH-0°, 45°, and 90°; (b) VV-0°, 45°, and 90° 

Tests: HV1, HV2, HV3

Tests: VH1, VH2, VH3 Tests: VV1, VV2, VV3

(a) (b) 
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Figure 43 (a) and Figure 43 (b) show results for tests HH and HV, respectively, with the movable 

rock placed along the 45° axis. The trends followed by the detection distances were similar for 

both sets of tests. HH-90° and HV-90° had the largest fluctuations in detection distance out of all 

tests where the distances between the rocks were less than 50cm. 

  

Figure 43: Cluster Test Results for Rock Position 45°: (a): HH-0°, 45°, and 90°; (b) HV-0°, 45°, and 90° 

Figure 44 (a) and Figure 44 (b) show results for tests VV and VH, respectively, with the movable 

rock placed along the 45° axis. The detection distances measured along 0° and 90° axes 

approached   (twice the distance depicted by the dashed line   ⁄ ) when the movable rock was 

placed in a horizontal orientation and moved along the 45° axis, perhaps due to a decrease in 

interference as the rocks move apart. Similar results were obtained when the movable rock was 

placed in a vertical orientation. However, in this case, the detection distances only approached 

the   value when the distance between the rocks was greater than 80 cm. In both VH and VV 

experiments, it is interesting to note that the tests along the 45° axis yielded detection distances 

not greater than the   ⁄  value. It is unclear as to whether greater values would have been attained 

if the distances between the two tagged rocks were to increase beyond the 1m distance used in 

these experiments.                                                                                                                                                                                                                                                                                                                                                                       

Tests: HH1, HH2, HH3 Tests: HV1, HV2, HV3

(a) (b) 
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Figure 44: Cluster Test Results for Rock Position 45°: (a): VH-0°, 45°, and 90°; (b) VV-0°, 45°, and 90° 

Figure 45 (a) and Figure 45 (b) show results for tests HH and HV, respectively, with the movable 

rock placed along the 90° axis. The detection distances measured along 0° and 45° axes for both 

HH and HV tests showed similar trends in that they systematically increased to attain the value 

of   before dropping to   ⁄ . The 90° tests did not show a clear trend but largely showed a 

fluctuating trend in the results.  

 

Figure 45: Cluster Test Results for Rock Position 90°: (a): HH-0°, 45°, and 90°; (b) HV-0°, 45°, and 90° 

Tests: VH1, VH2, VH3 Tests: VV1, VV2, VV3

Tests: HH1, HH2, HH3 Tests: HV1, HV2, HV3

(a) 

(a) 

(b) 

(b) 
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Figure 46 (a) and Figure 46 (b) show results for tests VH and VV, respectively, with the movable 

rock placed along the 90° axis. Detection distances measured along 0° axis for both tests VH and 

VV showed a more or less a consistent measurement of distance  . Measurements made along 

the 90° axis for test VV showed that with the increasing distance between the rocks, the 

detection distance approached the   ⁄  value.  

 

Figure 46: Cluster Test Results for Rock Position 90°: (a): VH-0°, 45°, and 90°; (b) VV-0°, 45°, and 90° 

Table 10 shows the summary of the   ⁄  values and the various tests for which the values are 

valid. Since the   ⁄  value is of the half of the value of the detection distance for the stationary 

rock without any other rock in its interrogation zone, the values for tests HH are also valid for 

HV. Similarly, the values for tests VV and VH are the same. The   ⁄  values do not change for 

different rock axis position. 

Table 10: Summary Results from the Cluster Tests 

Parameters Horizontal Vertical 

  H-0° H-45° H-90° V-0° V-45° V-90° 

Detection Dist. (cm)  22 21 7.5 45 44 42 
 

 ⁄  Value (cm) 11 10.5 3.75 22.5 22 21 
Valid for Tests HH, HV HH, HV HH, HV VH, VV VH, VV VH, VV 

 

Tests: VH1, VH2, VH3 Tests: VV1, VV2, VV3

(a) (b) 
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5.4 Burial Depths 

The results from burial tests under horizontal and vertical orientations for small tags are shown 

in Figure 47 and Figure 48, respectively, in the form of box and whisker plots. Test results for 

large tags in horizontal and vertical orientations are shown in Figure 49 and Figure 50, 

respectively. Tests H and V, shown in the legend, correspond to tests H-xyz and V-xyz, 

respectively. 

A visual observation of the box and whisker plots of small tags placed in horizontal orientation 

generally shows a decreasing trend, i.e., there was an observable decrease in detection range with 

an increase in burial depth, particularly at the 18” depth. For test H-90°, an observable decrease 

in detection range was even seen with the burial depth as small as 3”. However, the detection 

ranges for tags buried in 3” of soil was larger than those when the tags were placed on the 

surface. Horizontal tests for large tags showed mixed results with an increase in detection ranges 

as the burial depth increased for some tests, a decrease in detection range for other tests, and an 

increase followed by a decrease for other tests. For the large tags in vertical orientation, the tests, 

with the exception of test V, showed a decrease in detection distance with a 3” burial depth 

followed by an increase in detection distance around the 6” burial depth and a subsequent 

decrease in detection distance for burial depths beyond 6”. For small tags in vertical orientation, 

similar results were observed.  



 

76 

 

 

Figure 47: Small Tags - Horizontal Tests 

 

Figure 48: Small Tags - Vertical Tests 
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Figure 49: Large Tags - Horizontal Tests 

 

Figure 50: Large Tags - Vertical Tests 
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5.5 Saturation and Submergence 

Results for large tagged rocks buried in 6” of soil under dry, saturated and submerged conditions 

are shown in Figure 51 for horizontal tests and in Figure 52 for vertical tests. Saturation and 

submergence did not seem to have an impact on the detection distance for the horizontal tests 

given the variability within each test. It also was noted that, for the horizontal tests, there was a 

large amount of variability in the results between different tests within a given saturation 

condition. However, for the vertical tests, the detection distances were smaller when the tags 

were submerged, than for the dry conditions for all tests except for test V. Unlike the horizontal 

tests, there was little variability in the results between different tests at the same saturation 

condition for all tests expect for test V.  

 

 

Figure 51: 6" buried results for dry, saturated and submerged tests (horizontal) 
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Figure 52: 6" buried results for dry, saturated and submerged tests (vertical) 

5.6 Antenna Range – Uniformity 

Antenna range uniformity tests were performed on 25 large and 25 small tags by placing them at 

the centre of the sandbox at a horizontal orientation that was parallel to the ordinate axis of the 

sandbox. Figure 53 and Figure 54 show a schematic representative of the sandbox with the 

detection distances plotted. The detection distances were normalized by the largest dimension 

obtained for a particular test. As is evident in the two figures, for both large and small tags, the 

distribution of the detection range and hence the field is slightly elongated circle. Further testing 

is required to confirm the shape of the antenna`s range.  
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Figure 53: Antenna Range - Large Tags 

 

Figure 54: Antenna Range - Small Tags 
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5.7 Skip Zones 

Two skip zones were detected for each tag (four tags were tested: two small and two large tags). 

These skip zones are shown in black bars in Figure 55 for the north orientation and in Figure 56 

for the south orientation of a small tag. The patterns in the results shown for the small tag are 

typical for the other three tags tested as well. The skip zones for different rotation angles are also 

shown. However, the positioning of the skip zone did not change by a large amount given the 

errors expected while measuring the skip zone distances. It is interesting to note that one of the 

two skips is much smaller than the other and is on the same side as the end of the transponder 

where the copper turnings are located. 

 

Figure 55: 'North' Orientation Skip Zone Demarcations for a small tag 

 

Figure 56: 'South' Orientation Skip Zone Demarcations for a small tag 
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A range of distances within which skip zones were identified, for each tag, was determined and 

is shown in Figure 57. Tags 1 and 2 are small tags and tags 3 and 4 are large tags. It is evident 

that skip zones can be found at least 10 cm on either side of the tag, thus the location of the tag 

can be narrowed down to 10 cm by using the skip zones to identify the location of the tag.  

 

Figure 57: Skip Zone Distances 

 

5.8 Comparison with field tests 

Figure 58 shows comparative box and whisker plots of results from field and lab experiments for 

tests H-0°, H-45°, H-90° and H-xyz. Results for tests H-0a, H-45a, H-90a and H-xyz are shown 

in Figure 59. Corresponding results for vertical tests are shown in Figure 60 and Figure 61.  

A comparison of the field and lab tests with tags placed in horizontal orientation showed that 

results generally compared well, with the exception of H-90 tests conducted with the tags buried 

at a depth of 3”. The results obtained from offset tests conducted for tags buried at a depth of 1 ” 

also did not compare well. Unfortunately, it cannot be said with certainty whether the lab results 

yield higher or lower detection distances than the field tests. 

A comparison of field and lab test results for tags in vertical orientation yield interesting results. 

The field results for tags at a depth of 6” consistently produced detection distances that were less 

that those obtained in the lab for tests V-0, V-45, V-90, V-0a, V-45a and V-90a. The results of 
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tags at 3” depth were not comparable for the offset tests (V-0a, V-45a, and V-90a). Though the 

results between 3” and 6” are not necessarily comparable, the field and lab results agreed fairly 

well for surface and 1 ” depth tests. 

 

Figure 58: Comparison of Lab and Field Tests - Horizontal Orientation - Set 1 
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Figure 59: Comparison of Lab and Field Tests - Horizontal Orientation - Set 2 

 

Figure 60: Comparison of Lab and Field Tests - Vertical Orientation - Set 1 
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Figure 61: Comparison of Lab and Field Tests - Vertical Orientation - Set 2  
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6 DISCUSSION 

Field and laboratory results are discussed in this chapter in the first two sections. The 

implications of the results on the procedure of tagging, seeding and tracking RFID tracers to 

study bedload transport are also discussed. 

6.1 Discussion of Field Results  

RFID tracers were used to track coarse bedload sediment in Laurel Creek. Results from four 

study sites and a total of ten tracking events (in all sites combined) over a span of fourteen 

months (the period between seeding and the final tracking event) show recovery rates between 

81.5% and 98%. As previously mentioned in Chapter 4, the recovery rates are comparable to 

those in other studies involving RFID tracers. Therefore, the idea that RFID tracking is an ideal 

tracking technique in urban streams is corroborated.  

Inspection of Figure 29, Figure 30, Figure 31, Figure 32, and Table 8 shows that tracer 

movement was larger in some sites than in others. Specifically, the smallest movement was noted 

in Site 2. Low movement was also seen in Site 1. Sites 3 and 4 showed the largest movements, 

averaging 10.8 m and 8.7 m, respectively, for the final tracking events for each site.  

A visual reconnaissance of Site 1 showed that the bed of this site is fairly armoured. One would 

expect that in an armoured bed scenario, the loosely placed tracers on top of the bed would move 

a greater distance during the first flush of a flood event since the tracers would move better over 

a less mobile bed before they get incorporated into the bed matrix. In subsequent flood events, as 

the tracers get incorporated into the bed matrix, it would be expected that the tracers would not 

move much. However, this was not true of Site 1 where a larger mobility for all sizes classes, 

except the fourth size class, was observed in the third tracking event than the first tracking event. 

Therefore, the number of floods experienced between the first and the third tracking event may 

not have been sufficient to incorporate the tracers into the bed matrix; study of the relationship 

between imbrication and travel of tracers in Laurel Creek and other urban watercourses is an area 

for potential future study.  

A visual reconnaissance of Site 2 showed that it is positioned in a deposition zone. Therefore, 

there was a high likelihood of tracers being buried over by bed material during the recession of 

flood events. In fact, during the tracking, it was noted that 83 tracers out of the 187 tracers that 
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were detected could not be physically located and it is hypothesized that they were buried given 

that almost all other located tracers were physically recovered at the end of the study after much 

digging. The burial by other sediment likely made it difficult for the tracers to move, particularly 

the larger tracers which showed the least mobility and path lengths.  

Site 3 is located in an urban park, where the watershed in the immediate proximity to the site is 

largely natural, with a better access to floodplain than the first two sites. A visual reconnaissance 

during low flows showed evidence of an active channel bed. The largest average path lengths out 

of all the sites were noted at this site, particularly for the first three size classes. Although the 

percent mobility of these classes only ranged between 40% and 85%, the path lengths were the 

same or larger than those of the median surface material at the site. The larger size classes 

showed the lowest mobility and path lengths. As it stands now, there is insufficient data, given 

that data for only one tracking event could be collected through this site, to draw conclusions as 

to how the channel down-cutting had left previously buried Forewell Sewer trunk crossing the 

creek exposed. The effectiveness of the restoration efforts undertaken by the City of Waterloo 

can be studied in subsequent RFID tracking studies for which this study provides a baseline.  

Site 4 is also located in an urban park, although in a wider floodplain than Site 3. The riffle 

portion of the seeding site was armoured with large rocks holding the riffle in place. The largest 

percent mobility was noted in the first tracking event, as expected in the case when tracers are 

seeded on the surface of a bed. However, even though the largest percent mobility was observed 

in the first tracking event, it was interesting to note that the largest path lengths were observed 

during the second tracking event (which showed the lowest percent mobility), where the distance 

moved by size classes 1, 3 and 4 were the same as those moved by the median grain size.  

It must be noted that the field results from Laurel Creek presented are preliminary. Typically, in 

order to establish bedload transport characteristics of a watercourse, years of bedload monitoring 

is required. Therefore, the results presented form the baseline data for a continued long-term 

research. In the future, it would be valuable to obtain tracking data between each individual flood 

event in order to potentially relate the channel discharge to the tracer movements.  
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6.2 Discussion of Laboratory Results 

The laboratory experiments were geared towards confirming what factors confound an accurate 

detection of the location of tracers. The results show that tracer orientation, submergence and the 

presence of other tracers are all factors that affect the detection of the tracers.  

6.2.1 Tracer Orientation and Tracer Sizes 

The experiments conducted clearly show that the detection distances are largely influenced by 

the orientation of the tag with respect to the antenna. The results presented in Figure 39 are 

presented in a summary table (Table 11) showing the average and standard deviation (n=25) of 

the detection distance of each combination of tracer size and test. On an average when the tags 

were oriented in a horizontal fashion, the detection range is 68% and 62% smaller than those for 

tags in a vertical orientation for 23mm and 32mm tags, respectively. Similarly, it can also be 

noted that the south orientation of the tag (i.e., when the copper turnings within the transponder 

are located closest to the antenna) shows an average of a 15% increase in detection range than 

those in the north orientation, for 23 mm tags in the horizontal orientation. The increase in the 

detection range for 23 mm tags in the vertical orientation is only 7%. Similar results can be noted 

for the 32 mm tags. The effect of the direction of the copper turnings within the transponder, 

with respect to the antenna, when the transponder is placed in a vertical orientation is not as 

pronounced as when the transponder is placed in a horizontal orientation. The most interesting 

results of these tests here are those that highlight the magnitude of the difference in detection 

ranges between the horizontal and the vertical tests. These results strongly point to the changing 

shape of the interrogation zone when the orientation of the tag with respect to the antenna 

changes. 

Table 11: Summary detection distances (cm) 

Tests H0-N H0-S H0a-N H0a-S 

23 mm tags 25.1 ± 2.8 29.8 ± 2.5 38.7 ± 4.2 43.8 ± 2.9 

32 mm tags 31.7 ± 3.1 36.8 ± 3.3 45.5 ± 4.7 51 ± 4.4 

Tests V0-N V0-S V0a-N V0a-S 

23 mm tags 44.4 ± 1 49.3 ± 1.4 67.5 ± 1.5 70.2 ± 14 

32 mm tags 54.5 ± 2.7 58.8 ± 2.6 76.2 ± 2.5 78.9 ± 15.7 
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It is hypothesized that the shape of the field, as shown in Figure 6, affects the magnitude of the 

detection range. The vertical orientation of the tag produces an elongated field which makes for 

an easier detection. From an in-field usage perspective, easier detection also implies decrease in 

the accuracy of the tracer location. Therefore, the orientation in which the tag is installed should 

depend on the on the scale of the study. For example, a study of bedload material travel distances 

in a small section of a watercourse would require accurate determination of tracer location. For 

such studies, a horizontal orientation of the tracer with respect to the antenna is desirable. Since 

it is not possible to predict with a 100% certainty which way the tracer will orient itself, the only 

possible method of increasing the likelihood of the tracer orienting in the desirable direction is to 

install the tracer in a suitable manner. Therefore, in a rod or a disc or a blade shaped particle, the 

tracer can be installed along the a-axis However, if the precision in detection of the exact 

location is not required to be within 0.5m, it will be more useful if the tracer orientation with 

respect to the antenna is vertical. This orientation will allow for a quicker detection and hence 

will require the installation of the transponders along the c axis of the particle.  

The tests on orientations were done with bare tags, i.e., simply the transponders. It was necessary 

to confirm that the insertion of the transponders into stones of various phi classes would not 

affect the detection distances. To check whether the size of the tracer (a particle containing a 

transponder) affected the detection distances, various tests were conducted on tracers belonging 

to six phi classes and results have been reported in Table 9. An examination of these results 

shows that for the majority of the tests, tracers belonging to all size classes have the same 

average detection distance. The tests for which this conclusion did not hold true are H-90c, V-0, 

V0b, V-45b and V-45a. It is possible that for the vertical orientations, the conclusions did not 

hold true because of the manner in which the detection distances were measured. Though the 

tracer was buried up to half it’s a-axis length (as shown in Figure 62), this method may have 

affected the measured detection distance by changing the portion of the field above the surface. 

To ensure comparability, the measurements should have been taken from the centre of the 

transponder within the tracer so that the detection distances measured would be for fields centred 

at the same point in space. Therefore, it can be hypothesized that it was not the mass of rock 

around the transponder that caused a change in detection distance but rather it was the manner in 
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which the measurements were taken, particularly in the vertical orientations due to the nature of 

the shape of the field. Possibly, the only reason why the mass of the rock around the tracer would 

affect detection distances would be if the composition of the rock contains a significant portion 

of a conductive substance that could distort the shape of the electromagnetic field. Given these 

assumptions and results, further testing for other confounding factors were conducted by 

amalgamating the various phi classes which resulted in an increased degrees of freedom in all 

further experiments.  

 

Figure 62: Tracers (shown in brown) of different phi classes showing their detection fields (shown in blue) 

6.2.2  Burial, Saturated and Submerged Conditions 

Based on results shown in Section 5.4 for both small (23 mm) and large (32 mm) tags, that under 

the conditions of vertical orientation, the detection distances reduce for tests at the surface to 

tests at 3” below the surface, thereafter, the distances increase for tests at 6” and then a steady 

decline in detection distance is observed with the increase of burial depth. A possible reason for 

this non-linear pattern of detection distance with respect to burial depth could be the shape of the 

electro-magnetic field. As is illustrated by the conceptual diagram, Figure 63, the ring portion of 

the field could be picked up by the antenna when the tag is at the surface. However, when the tag 

is at a depth of 3”, the antenna may pick up the thinner portion of the smaller lobe which causes 
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a drop in the magnitude of the detection distance. As the tracer is buried deeper (at 6”), the 

antenna picks up the thicker portion of the lobe. Thereafter, with increasing burial depth, the 

diameter of the lobe that can be detected by the antenna thins out and thus magnitude of the 

detection distance subsequently reduces.  

Similarly, the relationship between detection distances and burial depth for the horizontally 

positioned tests can be due to the shape of the electro-magnetic field in this orientation. Further 

testing is required to determine the how the shape of the field influences the detection range in 

the horizontal tests. While at the same burial depth, in general, the different vertical tests resulted 

in a similar average detection distances, the horizontal tests registered slightly varying average 

detection distances. This confirms that the shape of the field under horizontal orientation is more 

anisotropic than in vertical orientation.  

Additionally, it must be noted that though a distinct change in pattern can be observed in the 

magnitude of detection range with respect to the burial depth, the magnitude of change likely is 

not affected by the sediment material. The confounding effect of burial is likely due to the 

sediment physically limiting the portion of the field that is accessible to the antenna. 

 

Figure 63: Conceptual diagram (not to scale) of the antenna field under vertical orientation for various burial 

depths 
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Tests for large tags buried at a depth of 6” under conditions of saturation and submergence (i.e., 

standing water at a depth of 1 ” above the ground surface) showed that the presence of water can 

reduce detection range for vertically oriented tags. Table 12 shows a summary of test results 

shown in Figure 51 and Figure 52. For the purposes of summarization, results from tests H-0, H-

45, H-90, H-0a, H-45a and H-90a were pooled for the horizontal results and similarly results 

from tests V-0, V-45, V-90, V-0a, V-45a and V-90a were pooled for the vertical results. For each 

of these tests, a sample size of 12 tracers was used. Table 12 shows that for the vertical tests, the 

detection distances reduce with an increase in water content; whereas, for the horizontal tests, 

submergence and saturation had no significant effect on detection distance given the variability 

in the data. Figure 64 illustrates the setup of the experiment for vertically oriented tags. The 

possible retardation of detection distance with the increase of water content could be due to the 

dispersion of the signal. It is possible that each time the electromagnetic field passes through a 

different phase/medium, it distorts, thus producing a different zone of detection. In the first case 

(dry condition), the signal has to travel between two phases, air and a dry soil matrix. In the 

second case, the signal has to travel through air and a saturated soil matrix. In the third case 

(submergence), the signal has to travel between water and a saturated soil matrix. It is possible 

that water distorts the electromagnetic field in such a way that the detection range is reduced; 

however, it is interesting to note that the difference in the horizontal orientations is almost 

negligible compared to the vertical orientation. The reason why detection distance is impacted by 

submergence when tags are in vertical orientation but not in horizontal orientation is unknown 

and further research is need to investigate this phenomenon. Since dry conditions yield the 

highest values for detection distance, tracking of tracers would be easier on the exposed portions 

of the channel bed such point and median bars. Therefore, if the tracking of tracers after flood 

events is delayed to a point such that more of the channel perimeter is exposed, higher recoveries 

and a more successful tracking could be achieved. In addition to the potential increase in 

recovery, the increased visibility through the water after suspended sediment concentrations 

decrease post storm and water depths lower would also make tracking easier.  
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Table 12: Summary table showing average and standard deviation (in cm) of detection distances for horizontal 

and vertical tests for dry, saturated and submerged conditions 

Tests Dry Saturated Submerged 

Horizontal 36.2 ± 14.7 33.5 ± 10.4 32.4 ± 10.8 

Vertical 54.1 ± 4.5 48.3 ± 11.2 28.7 ± 12.7 

 

 

Figure 64: Conceptual diagram showing the three conditions of burial tested (dry, saturated and submerged) 

 

6.2.3 Clustering Effects 

Clusters of tracers, in a configuration as simple as two tracers, can impact the measurement of 

detection distances. In this section the nature of the confounding effect of the clusters on 

detection distances is briefly discussed for a few of the test results. Figure 65 shows the cases for 

which the impact of clustering on detection distances are discussed. Three cases (a – c) were 

taken from the results for HH-0, HH-45, and HH-90 tests with the movable tracer on the 0° axis. 

Case d is taken from the results for HV-0, HV-45, HV-90 tests with the movable tracer on the 0° 

axis. These results seem to indicate that the impact of the distance between the tracers on the 

detection distances is erratic, at least until some minimum separation between the tracers is 

reached. However, there are a number of factors which might explain variability in the detection 

distance. Consider Figure 66, which illustrates the results and is based on the approach adopted 

by Chapuis et al (In Review). The figure shows the zero interference detection zones for the 
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stationary and the mobile tracers in light grey, the antenna loop, and the axes of measurements. 

The sweep direction is represented by the bold dashed line. 

 

Figure 65: Influence of clustering on detection limits for two sets of experimental results ( 

Figure 40 on the right and Figure 41 on the left) 

 

 

Figure 66: Examples of cluster experiments with cases a – d corresponding with those identified on Figure 65 

From Figure 66, it is evident that for the antenna loop to pick up the signal of the stationary 

tracer, the loop has to be in contact with the field of the stationary tracer. These conceptual 

illustrations show that factors such as the shape of the electromagnetic fields, the overlapping of 

the fields of the tracers, and the position of the antenna loop with respect to the tracers all may 

impact the detection distances as two tracers are moved closer together. A takeaway from these 

experiments on clusters is that seeding tracers in close proximity is not advisable. The density of 
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seeded particles must be considered carefully during the stages of experimental design to avoid 

clustering effects that could confound detection of each tracer.  

6.2.4 Skip Zones 

The existence of skip zones detected during tracking surveys in Laurel Creek was confirmed by 

laboratory testing. Two distinct skip zones were found in the laboratory tests. However, since the 

distance between these zones is only a few centimeters, the recognition of two distinct zones in 

the field might not be possible every time. The two zones together extend to approximately 10 

cm on either side of the tag from its either tip. Therefore, by identifying the extent of the skip 

zones in the field can enable the researcher to identify the location of the tag within an error 

range 10 cm, which is a vast improvement over the previously used 1m error range used in the 

tracking surveys for Laurel Creek in this study. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

 

RFID technology was used to track bedload particles in four sites in Laurel Creek. In the field 

component of the study, movement of tracers was tracked during up to three tracking events. 

Three tracking events were conducted for Sites 1 and 4. Only one tracking event was conducted 

for Sites 2 and 3. For the field component of this study, movement of a tracer was considered to 

have taken place if the displacement of the tracer from its previous position was greater than one 

meter. This distance was chosen as it is the maximum distance at which the antenna used could 

detect a 32 mm RFID transponder. In order to improve the precision of detection, i.e., to consider 

displacements less than one meter as genuine displacements, the accuracy of the location of the 

detected tracer had to be improved. Various laboratory experiments were conducted to determine 

the how various factors affected a precise detection of tracer location, and hence determine the 

best procedure for tagging, seeding and tracking tracers.  

Observations from the field studies are as follows: 

 The average recovery rate of the RFID tracers was found to be over 90% even after 

multiple tracking events. This high recovery rate attests to the success, and the ease of 

use of RFID technology.  

 The tracers were found to have travelled as much as 75 m from the original location.  

 Generally, the tracer path length decreased with an increase in tracer size.  

 Some interesting trends in tracer mobility and path lengths with respect to size classes 

were noted. Further field tracking is required to establish definite trends in bedload 

transport and quantitatively determine the amount of transport. 

The conclusions from the laboratory studies are as follows: 

 The detection ranges were largest for a vertical orientation of the transponder, i.e., when 

the longest axis of the transponder was perpendicular to the loop of the antenna. The 

transponders in a horizontal orientation yielded detection distances as much as 40% lower 

than those in vertical orientation. 
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 The size of the tracer was found to have no effect on the detection distance. Similarly, 

conditions of saturation and submergence (when the tracer was placed in a horizontal 

orientation) did not show a significant effect on the detection distances. However, a 

vertical placement of the tracer under conditions of submergence, the detection distances 

is 47% lower than the detection distance of a vertically oriented tracer in dry conditions.  

 

 Burial depth was found to affect detection distances. When tracers in vertical orientation 

were buried, the detection distances reduced for tests at the surface to tests at 3” below 

the surface, thereafter, the distances increase for tests at 6” and then a steady decline in 

detection distance is observed with the increase of burial depth. Mixed results were seen 

for tracers in horizontal orientation and further testing is required to determine the how 

the shape of the field influences the detection range in the horizontal tests. It is 

hypothesized that the confounding effect of burial is likely due to the sediment physically 

limiting the portion of the field that is accessible to the antenna.  

 

 Clusters of tracers, in a configuration as simple as two tracers, were found to impact the 

measurement of detection distances. Factors such as the shape of the electromagnetic 

fields, the overlapping of the fields of the tracers, and the position of the antenna loop 

with respect to the tracers may impact the detection distances as two tracers are moved 

closer together. Further research is required to precisely determine how each factor 

affects the detection distances. 

 

 Experiments highlighted for the first time the existence of skip zones that have been 

previously quickly suggested by manufacturers (Aquartis, 2011) but never properly 

identified nor quantified. Skip zones should theoretically allow a more precise detection 

(<10 cm error) of the transponder location. In practice, the complex shape of the 

detection zone might conflicts with this use of the skip zone. Users may also rely on 

another antenna type rather than solely the skip zone (Carre et al., 2007, Bradley & 

Tucker, 2012, Chapuis et al., in rev.). 
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 The shape of the electromagnetic field of a transponder changes depending on the 

orientation of the transponder with respect to the antenna. The shape of the 

electromagnetic field of the transponders (“donut shape” of detection zones given by 

manufacturers (Texas Instruments, 1996; Aquartis, 2011) for a vertical transponder) may 

help explain some of the results obtained. However, further research is required to 

establish the how the shape of the field changes when one or more confounding factors 

are present. 

 

 This research is most significant because it rigourously quantifies the detection distance 

and confounding factors related to sediment tracking using RFID technology which is 

now a widely utilized technique. For accurate determination of mobility and accurate 

quantification of step length, the determination of precise location is required.  

The implications and recommendations as a result of the conclusions presented above are as 

follows. 

 Tagging procedure should use a consistent method for tag installation, depending on the 

purpose of the study. For a quick detection of tracers, the tag should be installed along the 

c-axis. For a precise detection of it, the tags should rather be drilled along the a-axis.  

 

 The determination of precise locations will enable researches to conduct detailed flume 

studies and field studies relating bedload movement to micro-topography and clustering 

patterns. Studies of larger temporal and spatial scales that do not require determination of 

precise location of tags will also benefit from this work because it helps to reduce 

uncertainty related to field conditions and inconsistencies in technique.  

 

 The first survey is often considered as not significant because the seeding is not a 

“natural” process. If it is possible, practitioners might want to pay attention to reproduce 

the imbrications of natural particles to limit the unnatural placement of tracers. In 

addition, seeding of tracers might avoid clustering in case of a low-energy river that 

might not be able to spread tracers as soon as the first flood event occurs. An evenly 

spaced grid might to be the best way to limit shadowing effects after the first flood. 
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 During the process of tracking, one must pay attention to the “skip zones”. The detection 

of such zones when the tracer is favourably oriented can allow for not only a quick 

detection but also for an accurate determination of tracer location. 

 

 Additional research would be beneficial in quantifying the various confounding factors 

which may affect detection distances.  
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APPENDIX A – FIELD DATA 

 

Table A1: Tracer Characteristics 

 
Tag # 

Seeding 
site 

Grain 
Size Bin 

# 

Tag 
Type 

Rock# (3 
digits) 

a b c Mass Volume 

      
cm cm cm g mL 

211015 033847 2 1 1 15 4.3 3 1.9 55.65 20.0 

211035 03385B 2 1 1 35 4.4 3.1 2.2 58.9 24.0 

252161 03D901 2 5 2 161 11.1 11 8.1 1905.4 692.2 

221077 035F95 2 2 1 77 5.5 4.3 2 89.74 37.0 

262187 04002B 2 6 2 187 19 12.4 8.7 4129.8 2440.8 

211037 03385D 2 1 1 37 5 3.1 2.2 70.98 31.0 

211034 03385A 2 1 1 34 3.9 3.2 2.6 65.74 28.0 

211039 03385F 2 1 1 39 4.9 3 2.9 95.45 34.0 

221058 035F82 2 2 1 58 3.8 3.8 3.6 118.99 45.0 

242140 03B1DC 2 4 2 140 9.2 6.8 5.3 495.2 192.0 

221066 035F8A 2 2 1 66 5.3 3.5 2.3 75.07 32.0 

221054 035F7E 2 2 1 54 6.6 4.4 3.5 181.83 66.0 

211027 033853 2 1 1 27 4.2 2.5 1.8 37.18 16.0 

252164 03D904 2 5 2 164 10.9 9.4 6 867.5 312.7 

221056 035F80 2 2 1 56 5.4 4.5 3 129.16 48.0 

242148 03B1E4 2 4 2 148 11.3 7 6.4 885.6 322.0 

252174 03D90E 2 5 2 174 12 11.6 5.6 1426.5 537.4 

221051 035F7B 2 2 1 51 5.3 4 2.7 111.29 40.0 

252166 03D906 2 5 2 166 14.3 9.1 5.5 1033.2 376.2 

221063 035F87 2 2 1 63 5.3 4.4 3.6 138.63 55.0 

232099 038AA3 2 3 2 99 7.2 5.8 4.2 298.29 107.0 

221047 035F77 2 2 1 47 5.6 3.5 2.2 84.43 34.0 

211021 03384D 2 1 1 21 4.5 3.1 2.8 50.98 20.0 

242144 03B1E0 2 4 2 144 9.3 7 4.1 507.4 200.0 

221090 035FA2 2 2 1 90 4.3 3.6 3 58.86 30.0 

232096 038AA0 2 3 2 96 6.9 5.5 4 234.72 90.0 

242134 03B1D6 2 4 2 134 10.7 8 3.4 473.7 188.0 

232101 038AA5 2 3 2 101 6.1 5.5 3.3 195.93 73.0 

211014 033846 2 1 1 14 4 2.5 2 43.62 17.0 

252175 03D90F 2 5 2 175 15 9.8 7.5 2404.6 890.8 

252173 03D90D 2 5 2 173 13.2 10.6 8.8 1882.7 684.0 

232094 038A9E 2 3 2 94 8.5 5.6 3.7 315.91 119.0 

232130 038AC2 2 3 2 130 7.6 4.6 4.3 257.72 40.0 
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211036 03385C 2 1 1 36 4.2 3 2.5 48.17 21.0 

232102 038AA6 2 3 2 102 7.1 6.9 2.9 230.77 88.0 

221064 035F88 2 2 1 64 5.8 4.5 4.2 182.65 71.0 

232129 038AC1 2 3 2 129 7.2 6.1 3.5 224.21 97.0 

211043 033863 2 1 1 43 8.5 3.2 2 149.88 58.0 

262191 04002F 2 6 2 191 21.3 14.7 10.8 4815.6 3030.0 

232107 038AAB 2 3 2 107 7.5 5.3 4.6 265.63 99.0 

211041 033861 2 1 1 41 5.7 2.5 2.1 52.26 21.0 

242152 03B1E8 2 4 2 152 11.5 6.6 4.5 618.3 238.0 

221055 035F7F 2 2 1 55 4.2 3.3 2.5 63.15 26.0 

232122 038ABA 2 3 2 122 7.7 6.4 3.9 238.62 92.0 

211013 033845 2 1 1 13 4.9 3.1 2.7 65.89 27.0 

211002 03383A 2 1 1 2 4.5 2.9 2 41.09 17.0 

211011 033843 2 1 1 11 4 3 2.1 37.23 15.0 

221067 035F8B 2 2 1 67 5 3.5 3 105.32 40.0 

232131 038AC3 2 3 2 131 5.2 4.6 2.3 99.95 83.0 

221048 035F78 2 2 1 48 5.8 3.6 2.6 84.04 35.0 

221057 035F81 2 2 1 57 5.7 3.8 3.1 143.33 56.0 

211023 03384F 2 1 1 23 4 2.7 1.8 44.89 18.0 

242135 03B1D7 2 4 2 135 16.1 8.3 5.3 1201.2 451.0 

221089 035FA1 2 2 1 89 5.5 4.5 2.5 134.59 50.0 

252167 03D907 2 5 2 167 14.4 10.3 6.9 1759.2 625.4 

242155 03B1EB 2 4 2 155 9.5 8 5.4 682.3 270.0 

221078 035F96 2 2 1 78 5.9 4.3 3.5 135.03 50.0 

242138 03B1DA 2 4 2 138 7.9 6.1 4.8 369.4 155.0 

221060 035F84 2 2 1 60 5.5 4.4 2.6 100.24 40.0 

211016 033848 2 1 1 16 3.8 2.6 1.8 38.27 15.0 

232123 038ABB 2 3 2 123 6.5 5.2 2.7 131.81 49.0 

221053 035F7D 2 2 1 53 5.6 4.2 2.7 78.23 31.0 

211006 03383E 2 1 1 6 4.7 2.7 1.8 46.39 20.0 

252179 03D913 2 5 2 179 14.3 10.4 6.8 1703.6 618.9 

221070 035F8E 2 2 1 70 5.8 4.2 2.5 87.64 36.0 

232127 038ABF 2 3 2 127 6 5.3 4.1 230.54 88.0 

242136 03B1D8 2 4 2 136 11.3 7.8 3.8 646 232.0 

262198 040036 2 6 2 198 22 16.5 7.9 4702.6 2216.4 

211003 03383B 2 1 1 3 3.3 3.1 2 41.38 17.0 

242159 03B1EF 2 4 2 159 11.1 8.2 6.5 882.7 322.0 

242142 03B1DE 2 4 2 142 11.1 8.2 3.1 580.9 215.0 

232114 038AB2 2 3 2 114 6.6 4.7 4.6 222.64 86.0 

221052 035F7C 2 2 1 52 6 4.2 3.8 167.91 64.0 

232119 038AB7 2 3 2 119 6.1 5.3 3 168.92 67.0 

221072 035F90 2 2 1 72 5 4.4 3 115.24 43.0 

252176 03D910 2 5 2 176 16 9.6 7.3 1945.9 684.0 
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211022 03384E 2 1 1 22 4.4 3.2 2 39.69 16.0 

242139 03B1DB 2 4 2 139 9 7 4.6 443.8 175.0 

232097 038AA1 2 3 2 97 4.8 4.6 2.1 88.64 35.0 

262193 040031 2 6 2 193 15.3 10.4 6.2 2849.5 1739.4 

252180 03D914 2 5 2 180 11.4 9.6 6.6 1443.7 527.7 

232113 038AB1 2 3 2 113 6.9 6 4.6 286.75 106.0 

221049 035F79 2 2 1 49 4.6 3.6 2.5 77.21 31.0 

211026 033852 2 1 1 26 4 2.4 1.9 41.61 19.0 

211033 033859 2 1 1 33 3.6 2.3 1.7 30.76 13.0 

211019 03384B 2 1 1 19 4.2 3.2 2 41.47 16.0 

221065 035F89 2 2 1 65 3.9 3.9 2.7 64.37 30.0 

221069 035F8D 2 2 1 69 5.5 4.3 3.7 101.18 40.0 

211009 033841 2 1 1 9 5 3 2 55.17 23.0 

242143 03B1DF 2 4 2 143 13.3 7.6 5 838.1 297.0 

262181 040025 2 6 2 181 19.6 15.5 9.7 4908.5 2721.4 

232106 038AAA 2 3 2 106 6.4 5 3.6 159.73 66.0 

221080 035F98 2 2 1 80 5.8 4.5 3.4 176.32 63.0 

242133 03B1D5 2 4 2 133 12.5 7.4 4.3 722.1 270.0 

221083 035F9B 2 2 1 83 5.2 4.3 4.1 137.73 57.0 

221081 035F99 2 2 1 81 4.5 3.5 2.7 64.87 26.0 

262183 040027 2 6 2 183 16.8 14.8 6.6 3545.7 1851.6 

221045 035F75 2 2 1 45 6 3.9 3 143.91 56.0 

211017 033849 2 1 1 17 4.7 3.1 2.5 56.4 23.0 

242137 03B1D9 2 4 2 137 11.7 8 4.3 667.6 255.0 

242151 03B1E7 2 4 2 151 11.8 7.5 4 656.1 207.0 

242156 03B1EC 2 4 2 156 11 6.8 4 523.6 204.0 

252168 03D908 2 5 2 168 11.8 10.6 4.9 752.5 298.0 

232098 038AA2 2 3 2 98 5.9 4.6 3.5 150.79 61.0 

242150 03B1E6 2 4 2 150 11 7 5.1 651.9 205.0 

262186 04002A 2 6 2 186 15.8 14.6 9 3286 2525.0 

211020 03384C 2 1 1 20 3.7 2.4 2.3 48.84 22.0 

232104 038AA8 2 3 2 104 7 6.1 3.5 204.77 82.0 

221088 035FA0 2 2 1 88 6.3 3.7 2.2 94.49 37.0 

211025 033851 2 1 1 25 3.8 2.6 2.4 40.28 17.0 

262182 040026 2 6 2 182 18.9 18 13 7955 3647.2 

262197 040035 2 6 2 197 16.2 15.3 13.5 5308.5 3787.5 

232115 038AB3 2 3 2 115 7 4.3 2.8 139.01 53.0 

242149 03B1E5 2 4 2 149 10.2 8 5.8 773.6 290.0 

211018 03384A 2 1 1 18 3.5 2.9 1.5 32.26 13.0 

252162 03D902 2 5 2 162 11.5 10.2 9.3 1710.5 618.9 

262195 040033 2 6 2 195 19.6 13.7 6.2 3707.4 1739.4 

232117 038AB5 2 3 2 117 6.5 4.7 3.1 162.65 63.0 

221086 035F9E 2 2 1 86 4.4 3.9 3.5 91.97 37.0 
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211038 03385E 2 1 1 38 5.3 2.9 2.3 61.81 24.0 

232118 038AB6 2 3 2 118 6.4 4.6 3.5 159.61 62.0 

221091 035FA3 2 2 1 91 6.3 4.3 3.4 139.38 58.0 

262184 040028 2 6 2 184 18.7 14.2 7.5 3268.1 2104.1 

211010 033842 2 1 1 10 5.3 3.2 2.1 61.69 23.0 

252171 03D90B 2 5 2 171 9.3 8.5 8.1 1278.6 457.6 

232095 038A9F 2 3 2 95 7.5 5.1 3.8 232.69 89.0 

242160 03B1F0 2 4 2 160 10 7.5 6 851 317.0 

262189 04002D 2 6 2 189 15.7 14 7.1 3311.4 1991.9 

232110 038AAE 2 3 2 110 6.3 4.6 3.7 140.55 53.0 

211040 033860 2 1 1 40 4.3 3 2.1 55.72 22.0 

221068 035F8C 2 2 1 68 5.2 4.1 3.5 118.67 45.0 

211007 03383F 2 1 1 7 5.2 3.1 2 64.63 25.0 

211024 033850 2 1 1 24 4 3.1 2.7 65.68 26.0 

221074 035F92 2 2 1 74 5.2 4.3 3.6 129.89 51.0 

232112 038AB0 2 3 2 112 5.3 4.5 3.2 148.77 55.0 

221076 035F94 2 2 1 76 6 4.4 2.7 120.63 45.0 

211028 033854 2 1 1 28 4 3 2.3 45.49 22.0 

242146 03B1E2 2 4 2 146 11 7.9 6.5 903.8 335.0 

252172 03D90C 2 5 2 172 14.3 10.5 7.8 1793.9 651.4 

232103 038AA7 2 3 2 103 7.3 6 3.1 213.12 84.0 

221082 035F9A 2 2 1 82 5.5 4.4 2.9 110.74 41.0 

242153 03B1E9 2 4 2 153 8.5 8 6.2 841.4 310.0 

221062 035F86 2 2 1 62 4.6 3.6 2.9 61.93 25.0 

232109 038AAD 2 3 2 109 7.1 5.1 4.7 295.92 117.0 

221073 035F91 2 2 1 73 4.3 3.6 2.1 47.75 19.0 

262194 040032 2 6 2 194 19.8 14.1 10.8 3981.9 3030.0 

221079 035F97 2 2 1 79 6.5 3.7 3.4 136.55 52.0 

211042 033862 2 1 1 42 3.7 3.1 2.3 52.56 21.0 

242145 03B1E1 2 4 2 145 10.2 7.5 6.5 776.7 290.0 

242158 03B1EE 2 4 2 158 13 8 4.8 974.2 377.0 

262192 040030 2 6 2 192 16.7 16 12.9 5437.8 3619.1 

221059 035F83 2 2 1 59 5.4 4.2 2.4 93.51 36.0 

232124 038ABC 2 3 2 124 6 5.5 3.3 174.89 69.0 

242147 03B1E3 2 4 2 147 12.9 7.6 4.8 874.6 331.0 

211029 033855 2 1 1 29 3.9 2.7 1.8 43.26 20.0 

232108 038AAC 2 3 2 108 8.2 5.3 3.9 326.24 120.0 

221084 035F9C 2 2 1 84 5 3.8 2.7 87.09 34.0 

211001 033839 2 1 1 1 5.1 3.1 2.2 67.58 27.0 

252169 03D909 2 5 2 169 12.5 9.2 8.7 1774.8 659.6 

242141 03B1DD 2 4 2 141 8 7 5.7 503.9 205.0 

262199 040037 2 6 2 199 19.4 13.2 10.1 4221.3 2833.6 

262190 04002E 2 6 2 190 15.8 10.1 6.3 2604.6 1767.5 
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262200 040038 2 6 2 200 17.1 14.1 8.5 4033.6 2384.7 

211012 033844 2 1 1 12 3.7 2.9 2.3 43.51 16.0 

232111 038AAF 2 3 2 111 7 6.5 3.4 226.24 87.0 

252163 03D903 2 5 2 163 13.6 11.4 7.5 1923.7 710.1 

232126 038ABE 2 3 2 126 6.2 5.3 3.7 183.74 71.0 

221075 035F93 2 2 1 75 5.3 3.9 2.9 114.14 43.0 

211030 033856 2 1 1 30 4.9 3 2.5 64.11 25.0 

232100 038AA4 2 3 2 100 5.6 5.5 2.9 197.39 73.0 

232116 038AB4 2 3 2 116 5.4 4.7 2.5 98.4 38.0 

221050 035F7A 2 2 1 50 5.5 4.1 3 106.98 41.0 

211005 03383D 2 1 1 5 5.8 3 2.4 79.48 31.0 

252170 03D90A 2 5 2 170 11 9.4 9 1662.4 587.9 

221061 035F85 2 2 1 61 3.7 3.3 3.2 79.27 32.0 

262185 040029 2 6 2 185 16.7 15.6 4.1 2683.1 1150.3 

252177 03D911 2 5 2 177 14 9 8.3 1556.6 570.0 

232105 038AA9 2 3 2 105 6.9 5.6 2.5 158.61 66.0 

221092 035FA4 2 2 1 92 4 3.3 2.2 42.83 20.0 

211031 033857 2 1 1 31 4 3.2 1.9 45.29 18.0 

211032 033858 2 1 1 32 4.6 2.8 1.5 43.26 18.0 

211004 03383C 2 1 1 4 3.3 2.6 2.1 33.68 14.0 

221071 035F8F 2 2 1 71 4.6 3.3 2.1 45.91 21.0 

232132 038AC4 2 3 2 132 7.4 5.1 3 210.48 69.0 

242157 03B1ED 2 4 2 157 10.5 7.4 5.4 806 297.0 

221044 035F74 2 2 1 44 4.1 3.7 3.3 103.05 40.0 

262196 040034 2 6 2 196 18.8 15.6 5.3 2849.5 1486.9 

262188 04002C 2 6 2 188 21 14.3 7.5 4388.2 2104.1 

232120 038AB8 2 3 2 120 5.5 4.9 2.6 106 41.0 

221085 035F9D 2 2 1 85 4.4 4 3.1 84.29 35.0 

221087 035F9F 2 2 1 87 5.4 4.1 3.6 133.75 49.0 

232093 038A9D 2 3 2 93 8.7 4.5 3 217.76 85.0 

252178 03D912 2 5 2 178 13 12.5 6.7 1675.3 631.9 

211008 033840 2 1 1 8 4.3 3.2 2.5 52.45 22.0 

221046 035F76 2 2 1 46 4.7 3.3 3 71.67 30.0 

232121 038AB9 2 3 2 121 7.4 5.2 3.1 196.06 76.0 

232125 038ABD 2 3 2 125 6.2 6 4.1 210.45 78.0 

232128 038AC0 2 3 2 128 6.7 5.5 4 188 87.0 

242154 03B1EA 2 4 2 154 10 7.9 5.1 580.6 230.0 

252165 03D905 2 5 2 165 13.2 9.3 6.4 1119.1 395.8 
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Table A2: Survey Benchmarks 

Point # Northing Easting Elevation Description 

     18 4814569 540710.8 308.8055 21_L 
19 4814565 540698.2 308.4875 22_R 
20 4814616 540658.2 308.9642 20_R 
21 4814625 540641.8 309.0297 18_R 
22 4814632 540645.9 308.8241 17_L 
23 4814628 540661.9 308.6329 19_L 
24 4814268 539210.7 316.4372 7_L 
25 4814266 539225 316.7059 8_R* 
26 4814298 539224.6 316.7079 10_R 
27 4814295 539213.3 316.0471 9_L* 
28 4814761 539314.4 314.8995 12_R 
29 4814772 539304.2 315.3323 11_L 
30 4814788 539321.2 315.1519 13_L 
31 4814778 539333.3 314.858 14_R 
32 4814902 539401.6 315.0201 16_R 
33 4814908 539389.4 314.9985 15_L 
34 4814240 539210 317.6242 X_CUT_DS_UNI 
35 4812986 538959.5 319.9675 25_L 
36 4812970 538962.1 320.1278 23_L 
37 4812969 538981.6 319.5438 24_R 
38 4812990 538981.5 319.4737 26_R 
39 4812943 538971.8 320.6753 BRIDGE 
40 4813203 539087 320.148 1_L* 
41 4813216 539105.1 319.3967 3_L 
42 4813320 539249.3 320.0753 5_L 
43 4813306 539259.9 319.8305 6_R 
44 4813203 539114.6 319.2691 4_R 
45 4813190 539098.4 320.3379 2_R* 

647 4814616 540690.5 309.7657 PED_BRIDGE 
P336 4814632 540646 308.745 17L_resection 
P337 4814616 540658.2 308.966 20R_resection 
P338 4814624 540641.8 309.001 18R_resection 
P339 4814659 540606.5 309.345 4U_R_resection 
P340 4814672 540624.2 308.91 4U_L_resection 
P341 4814650 540637.2 309.354 4D_L_resection 
P342 4814642 540620.3 309.189 4D_R_resection 
P369 4814616 540690.4 309.735 PED__BRIDGE_resection 
P370 4814614 540688.5 309.727 on_PED__BRIDGE_STN_SETUP 

STN_RESECTION 4814583 540695.3 308.59 RESECTION 
P372 4812990 538981.5 319.446 26l resect 
P538 4812990 538981.5 319.445 1C_26R_Recheck 
P539 4812986 538959.5 319.971 1C_25L_Recheck 
P676 4812979 538971.6 317.772 1C_REBAR-IN-CHANNEL 
P687 4813075 538951.3 317.494 41_L 
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P688 4813107 538964.7 317.546 42_R 
1455 4814789 539353 314.846 30_R 
1443 4814803 539338.8 314.74 29_l 
1254 4814774 539335.9 314.834 28_R 
964 4814791 539310.1 315.763 13L_JUNE 
965 4814807 539327.4 315.356 29L_JUNE 

1063 4814296 539214.1 316.801 9l_ts 
943 4814759 539290.1 314.041 PED_BRIDGE 
849 4814783 539359.5 315.163 MANHOLE 

 

Table A3a: Laurel Creek Survey Profile – Site 1 

Point # Northing Easting Elevation Description 

     P447 4812890 538966.8 317.652 1C_THAL 

P446 4812892 538966.8 317.607 1C_THAL 

P445 4812893 538966.9 317.566 1C_THAL 

P444 4812895 538967.2 317.583 1C_THAL 

P443 4812897 538967.7 317.549 1C_THAL 

P442 4812898 538967.8 317.579 1C_THAL 

P441 4812900 538967.8 317.568 1C_THAL 

P440 4812901 538968.2 317.576 1C_THAL 

P439 4812902 538968.7 317.596 1C_THAL 

P438 4812903 538969 317.521 1C_THAL 

P437 4812905 538968.9 317.56 1C_THAL 

P436 4812906 538969.2 317.591 1C_THAL 

P435 4812908 538969.2 317.594 1C_THAL 

P434 4812909 538969.1 317.595 1C_THAL 

P433 4812911 538969.8 317.521 1C_THAL 

P432 4812912 538969.8 317.615 1C_THAL 

P431 4812914 538970 317.703 1C_THAL 

P430 4812915 538970.5 317.7 1C_THAL 

P429 4812916 538970.6 317.707 1C_THAL 

P428 4812917 538971.1 317.751 1C_THAL 

P427 4812919 538971.3 317.741 1C_THAL 

P426 4812921 538971.5 317.704 1C_THAL 

P425 4812922 538971 317.737 1C_THAL 

P424 4812923 538970.1 317.772 1C_THAL 

P423 4812924 538969.5 317.746 1C_THAL 

P422 4812926 538969 317.748 1C_THAL 

P421 4812926 538969 317.817 1C_THAL_C_U 

P420 4812944 538970.7 317.722 1C_THAL_C_D 
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P419 4812945 538971.7 317.714 1C_THAL 

P418 4812946 538972.6 317.717 1C_THAL 

P417 4812946 538973.1 317.646 1C_THAL 

P416 4812947 538973.2 317.675 1C_THAL 

P415 4812948 538973.1 317.681 1C_THAL 

P414 4812950 538973.2 317.702 1C_THAL 

P413 4812951 538973.3 317.675 1C_THAL 

P412 4812953 538973.2 317.636 1C_THAL 

P411 4812954 538973.2 317.631 1C_THAL 

P410 4812955 538973.2 317.627 1C_THAL 

P409 4812956 538972.4 317.608 1C_THAL 

P408 4812957 538972 317.561 1C_THAL 

P407 4812958 538971.4 317.552 1C_THAL 

P406 4812960 538971.4 317.575 1C_THAL 

P405 4812962 538971.1 317.565 1C_THAL 

P404 4812963 538970.8 317.572 1C_THAL 

P403 4812965 538970.7 317.561 1C_THAL 

P402 4812966 538970.6 317.569 1C_THAL 

P401 4812967 538970.5 317.558 1C_THAL 

P400 4812968 538970.4 317.581 1C_THAL 

P399 4812970 538970.2 317.557 1C_THAL 

P448 4812981 538968.7 317.496 1C_THAL 

P449 4812983 538968.3 317.488 1C_THAL 

P450 4812984 538968.1 317.499 1C_THAL 

P451 4812985 538967.8 317.501 1C_THAL 

P452 4812987 538967.9 317.489 1C_THAL 

P453 4812988 538967.5 317.556 1C_THAL 

P454 4812989 538967.3 317.483 1C_THAL 

P455 4812990 538967.2 317.551 1C_THAL 

P456 4812992 538967.2 317.476 1C_THAL 

P457 4812994 538966.5 317.474 1C_THAL 

P458 4812996 538966.3 317.471 1C_THAL 

P459 4812998 538966.4 317.475 1C_THAL 

P460 4812999 538966.6 317.469 1C_THAL 

P461 4813001 538966.7 317.44 1C_THAL 

P462 4813003 538967 317.441 1C_THAL 

P463 4813004 538967 317.423 1C_THAL 

P464 4813006 538966.7 317.415 1C_THAL 

P465 4813008 538966.5 317.369 1C_THAL 

P466 4813009 538966.7 317.343 1C_THAL 

P467 4813010 538966.4 317.346 1C_THAL 

P468 4813011 538966.3 317.363 1C_THAL 

P469 4813012 538966.4 317.336 1C_THAL 
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P470 4813013 538966.5 317.33 1C_THAL 

P471 4813014 538966.2 317.324 1C_THAL 

P472 4813016 538965.9 317.306 1C_THAL 

P473 4813017 538965.5 317.321 1C_THAL 

P474 4813019 538964.7 317.36 1C_THAL 

P475 4813021 538964.1 317.323 1C_THAL 

P476 4813023 538963.8 317.317 1C_THAL 

P477 4813025 538963.2 317.304 1C_THAL 

P478 4813026 538962.7 317.302 1C_THAL 

P479 4813028 538962.1 317.259 1C_THAL 

P480 4813030 538961.6 317.248 1C_THAL 

P481 4813032 538961.2 317.252 1C_THAL 

P482 4813033 538961.1 317.286 1C_THAL 

P483 4813035 538960.9 317.312 1C_THAL 

P484 4813037 538960.7 317.28 1C_THAL 

P485 4813039 538960.5 317.236 1C_THAL 

P486 4813040 538960.4 317.196 1C_THAL 

P487 4813041 538960.2 317.227 1C_THAL 

P488 4813043 538959.7 317.154 1C_THAL 

P489 4813044 538959.2 317.13 1C_THAL 

P490 4813046 538958.9 317.135 1C_THAL 

P491 4813047 538959.1 317.232 1C_THAL 

P492 4813048 538959.2 317.249 1C_THAL 

P493 4813049 538958.8 317.243 1C_THAL 

P494 4813050 538958.6 317.318 1C_THAL 

P495 4813050 538958.2 317.257 1C_THAL 

P496 4813051 538958 317.261 1C_THAL 

P497 4813051 538958.2 317.278 1C_THAL 

P498 4813052 538958.5 317.209 1C_THAL 

P499 4813053 538958.3 317.228 1C_THAL 

P500 4813054 538958.3 317.128 1C_THAL 

P501 4813055 538958 317.074 1C_THAL 

P502 4813056 538957.7 317.019 1C_THAL 

P503 4813057 538957.5 317.08 1C_THAL 

P504 4813058 538957.1 317.115 1C_THAL 

P505 4813059 538956.9 316.959 1C_THAL 

P506 4813061 538956.6 316.958 1C_THAL 

P507 4813062 538956.2 316.948 1C_THAL 

P508 4813064 538955.9 316.948 1C_THAL 

P509 4813065 538955.5 317.038 1C_THAL 

P510 4813067 538955 317.007 1C_THAL 

P511 4813069 538954.3 316.965 1C_THAL 

P512 4813071 538954 317.011 1C_THAL 
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P513 4813073 538954 316.942 1C_THAL 

P514 4813075 538954.2 316.959 1C_THAL 

P515 4813077 538954.2 316.926 1C_THAL 

P516 4813078 538953.9 316.954 1C_THAL 

P517 4813079 538953.7 316.936 1C_THAL 

P518 4813081 538953.7 316.955 1C_THAL 

P519 4813083 538953.6 316.96 1C_THAL 

P520 4813083 538953.6 316.961 1C_THAL 

P521 4813084 538953.7 316.938 1C_THAL 

P522 4813086 538953.5 316.927 1C_THAL 

P523 4813087 538953.5 317.056 1C_THAL 

P524 4813088 538953.8 316.978 1C_THAL 

P525 4813089 538953.9 317.008 1C_THAL 

P526 4813090 538954.1 317.099 1C_THAL 

P689 4813090 538955.2 316.981 1C_THAL 

P690 4813092 538955.6 316.928 1C_THAL 

P691 4813094 538956.5 316.937 1C_THAL 

P692 4813096 538958.1 317.01 1C_THAL 

P693 4813097 538959.3 317.041 1C_THAL 

P694 4813099 538960.4 317.094 1C_THAL 

P695 4813100 538961.9 317.033 1C_THAL 

P696 4813101 538962.7 317.017 1C_THAL 

P697 4813103 538964.2 317.086 1C_THAL 

P698 4813104 538965.5 317.082 1C_THAL 

 

Table A3b: Laurel Creek Survey Profile – Site 2 and Site 3 

Point # Northing Easting Elevation Description 

     864 539218.8 4814249 315.2961 THAL 

865 539221 4814264 315.2415 THAL 

866 539221 4814274 315.2388 THAL 

867 539222.1 4814283 315.1899 THAL 

868 539223.3 4814287 314.9736 THAL 

869 539219.2 4814296 315.067 THAL 

870 539218.2 4814305 315.069 RC 

871 539215.4 4814315 314.8126 THAL 

872 539211.7 4814322 314.5208 THAL 

873 539209 4814327 314.6472 THAL 

874 539204.7 4814332 314.9214 THAL 

875 539204.1 4814333 315.0073 THAL 

876 539197.7 4814345 314.7036 THAL 
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877 539203.9 4814330 315.5003 TP1 

878 539197.4 4814347 314.5905 THAL 

879 539193.6 4814354 314.8802 THAL 

880 539189 4814364 314.8239 THAL 

881 539188 4814367 315.1343 RC 

882 539185.3 4814372 314.8817 THAL 

883 539183.3 4814378 314.9745 THAL 

884 539180.5 4814382 315.0101 THAL 

885 539178.1 4814389 314.9651 THAL 

886 539174.1 4814399 315.3147 RC 

887 539170.7 4814407 315.2615 RC 

888 539174.1 4814396 315.6642 TP2 

889 539177.6 4814406 316.3541 XS 

890 539176.9 4814405 316.1612 XS 

891 539176 4814405 315.2322 XS 

892 539173.3 4814405 315.0411 XS 

893 539170.5 4814405 315.0416 XS 

894 539168.2 4814403 315.2364 XS 

895 539168 4814403 316.094 XS 

896 539154.5 4814506 315.2486 TP3 

897 539165.2 4814402 316.742 XS 

898 539153.9 4814503 314.8378 THAL 

899 539172.5 4814407 315.2515 RC 

900 539154.8 4814498 314.4224 THAL 

901 539171.4 4814415 314.871 THAL 

902 539156.4 4814491 314.9448 RC 

903 539169.6 4814423 314.8858 THAL 

904 539158.1 4814484 314.6013 THAL 

905 539168.5 4814430 314.9211 THAL 

906 539160.1 4814474 314.9665 THAL 

907 539167.1 4814436 314.8269 THAL 

908 539161.2 4814463 315.0354 THAL 

909 539165 4814443 314.8441 THAL 

910 539162.7 4814454 314.8857 THAL 

911 539151.2 4814518 314.7181 THAL 

912 539150.1 4814528 314.5626 THAL 

913 539149.2 4814539 314.8549 RC 

914 539146.3 4814548 314.3514 THAL 

915 539145.2 4814555 314.2862 THAL 

916 539143.9 4814561 314.4508 THAL 

917 539142.2 4814568 314.8231 THAL 

918 539140 4814584 314.8097 RC 

919 539137.5 4814593 314.4458 THAL 
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920 539135.3 4814604 314.4524 THAL 

921 539133.2 4814615 314.3498 THAL 

922 539127.5 4814642 316.0952 TP4 

923 539133.2 4814619 314.4047 THAL 

924 539132.7 4814636 314.3464 THAL 

925 539135.9 4814643 314.5567 THAL 

926 539141.3 4814652 314.577 RC 

927 539152.8 4814659 314.427 THAL 

928 539165.3 4814664 314.2872 THAL 

929 539176.3 4814669 314.2596 THAL 

930 539183.2 4814674 314.0356 THAL 

931 539194.1 4814681 314.1803 THAL 

932 539201.9 4814687 314.2143 THAL 

933 539204.9 4814688 314.8134 TP5 

934 539207 4814694 314.2041 THAL 

935 539215.1 4814701 314.3105 THAL 

936 539225.9 4814708 314.1922 THAL 

937 539235.9 4814716 314.1527 THAL 

938 539246.3 4814723 314.2097 THAL 

939 539253.3 4814729 314.3106 THAL 

940 539260.2 4814734 314.0483 THAL 

941 539265.5 4814739 314.3724 RC 

942 539278.8 4814749 314.1888 THAL 

943 539290.1 4814759 314.0412 PED_BRIDGE 

944 539295.6 4814763 313.6896 THAL 

945 539199.1 4814700 315.8452 XS 

946 539201 4814697 315.6172 XS 

947 539201.7 4814696 315.2509 XS 

948 539202 4814696 314.6033 XS 

949 539203.7 4814694 314.1822 XS 

950 539206.6 4814691 314.1423 XS 

951 539208 4814689 314.3013 XS 

952 539208.3 4814688 315.5232 XS 

953 539208.9 4814687 315.5934 XS 

954 539301.4 4814767 314.631 TP6 

955 539296.7 4814770 313.5913 THAL 

956 539303.5 4814775 313.8555 THAL 

957 539314.3 4814786 314.2057 THAL 

958 539326.3 4814795 313.9534 THAL 

959 539335.4 4814804 313.9493 THAL 

960 539345.6 4814818 313.9977 THAL 

961 539355.7 4814830 314.0308 THAL 

962 539361.2 4814837 313.962 THAL 
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963 539359.9 4814835 314.4198 TP7 

964 539310.1 4814791 315.763 13L_JUNE 

965 539327.4 4814807 315.3556 29L_JUNE 

966 539362.1 4814841 313.7002 THAL 

967 539364.5 4814850 313.7187 THAL 

968 539365.5 4814857 313.7949 THAL 

969 539366.5 4814865 313.9619 THAL 

970 539368.3 4814871 313.8195 THAL 

971 539370.3 4814877 313.862 THAL 

972 539371.9 4814884 313.8161 THAL 

973 539374.2 4814893 313.856 THAL 

974 539375.7 4814898 313.8165 THAL 

975 539373.2 4814898 314.4187 TP8 

976 539367 4814895 316.2106 XS 

977 539368.6 4814895 315.9296 XS 

978 539369.2 4814894 315.5534 XS 

979 539369.8 4814893 314.1336 XS 

980 539370 4814892 314.0427 XS 

981 539371.4 4814891 313.989 XS 

982 539372 4814891 313.8244 XS 

983 539373.4 4814890 313.848 XS 

984 539375 4814889 313.7455 XS 

985 539376.6 4814888 313.9039 XS 

986 539377.5 4814888 313.9746 XS 

987 539377.6 4814888 314.6894 XS 

988 539377.8 4814887 314.7126 XS 

989 539378 4814888 315.4609 XS 

990 539379 4814887 315.3965 XS 

991 539371.9 4814891 313.8785 CONFL_FORWELL 

992 539367.2 4814890 313.9714 FORWELL 

993 539376.7 4814895 313.8235 THAL 

994 539380.2 4814903 313.7012 THAL 

995 539383 4814912 313.6251 THAL 

996 539386.3 4814921 314.1251 SEWER 

997 539412.6 4814975 313.8285 TP9 

998 539386.4 4814922 313.7628 THAL 

999 539388.6 4814930 313.6604 THAL 

1000 539411.1 4814976 313.3277 THAL 

1001 539392.5 4814940 313.8987 RC 

1002 539396 4814947 313.58 THAL 

1003 539401.2 4814958 313.4207 THAL 

1004 539406.9 4814968 313.4245 THAL 

1005 539416.1 4814983 312.9086 THAL 
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1006 539420.4 4814990 313.3125 THAL 

1007 539428.8 4814997 313.1833 THAL 

1008 539439 4815007 313.2924 THAL 

1009 539447.8 4815017 313.2764 THAL 

1010 539457 4815027 313.4188 RC 

1011 539467.3 4815039 313.2599 THAL 

1012 539479.4 4815050 313.3528 THAL 

1013 539488.2 4815060 313.5387 TP10 

1014 539496.7 4815061 313.0938 THAL 

1015 539503.9 4815065 312.8172 THAL 

1016 539513.2 4815069 312.7895 THAL 

1017 539523.6 4815073 313.2327 RC 

1018 539536.5 4815078 313.0808 THAL 

1019 539544.9 4815082 312.964 THAL 

1020 539553.1 4815084 312.6804 THAL 

1021 539567.2 4815088 312.3978 THAL 

1022 539577.9 4815092 312.9156 THAL 

1023 539587.6 4815096 312.8187 THAL 

1024 539598 4815100 313.1776 TP11 

1025 539604.9 4815098 312.9143 THAL 

1026 539623.5 4815099 312.8938 RC 

1027 539639.8 4815099 312.4337 THAL 

1028 539652.7 4815099 312.751 RC 

1029 539670.4 4815098 312.7182 SEWER 

1030 539671.5 4815098 312.2045 THAL 

1031 539690.1 4815095 312.6806 TP12 

1032 539678.2 4815097 312.3751 THAL 

1033 539685.2 4815095 312.4557 RC 

1034 539693.8 4815091 311.811 THAL 

1035 539706.3 4815085 311.401 THAL 

1036 539713.3 4815079 312.1727 THAL 

1037 539721.6 4815074 311.3262 THAL 

1038 539726.8 4815070 311.6083 THAL 

1039 539732.4 4815066 312.0985 THAL 

1040 539738.7 4815061 311.653 THAL 

1041 539745.5 4815055 311.6741 THAL 

1042 539751.3 4815049 312.0464 THAL 

1043 539760.9 4815042 312.0753 THAL 

1044 539765.4 4815039 311.854 THAL 

1045 539770.8 4815035 312.2637 THAL 

1046 539780.6 4815028 311.8549 THAL 

1047 539790.8 4815023 311.845 THAL 

1048 539804 4815013 312.2494 TP13 
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1049 539814.5 4815009 311.8292 THAL 

1050 539823.1 4815004 311.6817 THAL 

1051 539827.5 4815001 311.5454 THAL 

1052 539832.3 4814999 311.571 THAL 

1053 539841.8 4814993 311.3847 THAL 

1054 539847.9 4814991 311.4429 THAL 

1055 539857.1 4814987 311.5494 THAL 

1056 539864.6 4814984 311.788 THAL 

1057 539870.8 4814984 311.8546 RC 

1058 539867.9 4814980 312.5741 TP14 

1059 539880.8 4814985 311.6621 THAL 

1060 539890.2 4814987 311.7664 RC 

1061 539901.6 4814990 311.4386 THAL 

1062 539908.5 4814994 312.9365 TP15 

 

Table A3c: Laurel Creek Survey Profile – Site 4 

Point # Northing Easting Elevation Description 

     P699 4814680 540606.3 307.857 4C_THAL 

P700 4814679 540607.2 307.816 4C_THAL 

P701 4814678 540608.2 307.813 4C_THAL 

P702 4814678 540609 307.912 4C_THAL 

P703 4814677 540609.9 307.895 4C_THAL 

P704 4814676 540610.8 307.897 4C_THAL 

P705 4814675 540611.8 307.92 4C_THAL 

P706 4814674 540612.4 307.988 4C_THAL 

P707 4814673 540613.2 308.043 4C_THAL 

P708 4814672 540614.1 308.019 4C_THAL 

P709 4814670 540614.6 308.082 4C_THAL 

P710 4814669 540615.7 308.105 4C_THAL 

P711 4814668 540616.6 308.15 4C_THAL 

P712 4814667 540617.2 308.153 4C_THAL 

P713 4814667 540618.1 308.133 4C_THAL 

P714 4814666 540619.1 308.154 4C_THAL 

P715 4814665 540619.9 308.194 4C_THAL 

P716 4814664 540620.9 308.196 4C_THAL 

P717 4814662 540621.6 308.206 4C_THAL 

P718 4814661 540622.1 308.197 4C_THAL 

P719 4814660 540622.6 308.228 4C_THAL 

P720 4814658 540623 308.207 4C_THAL 

P721 4814657 540623.3 308.239 4C_THAL 



125 

 

P722 4814656 540623.2 308.205 4C_THAL 

P723 4814654 540623.4 308.205 4C_THAL 

P724 4814653 540623.6 308.19 4C_THAL 

P725 4814652 540623.7 308.191 4C_THAL 

P726 4814650 540623.6 308.153 4C_THAL 

P727 4814648 540624.1 308.045 4C_THAL 

P728 4814647 540624.8 307.91 4C_THAL 

P729 4814645 540625.4 307.845 4C_THAL 

P730 4814644 540626.2 307.84 4C_THAL 

P731 4814643 540626.9 307.814 4C_THAL 

P732 4814642 540627.8 307.782 4C_THAL 

P733 4814641 540628.8 307.667 4C_THAL 

P734 4814640 540629.8 307.651 4C_THAL 

P735 4814639 540630.2 307.623 4C_THAL 

P736 4814639 540630.9 307.645 4C_THAL 

P737 4814637 540631.5 307.636 4C_THAL 

P738 4814636 540632.2 307.606 4C_THAL 

P739 4814635 540633 307.571 4C_THAL 

P740 4814635 540633.5 307.554 4C_THAL 

P741 4814634 540634.4 307.543 4C_THAL 

P742 4814634 540635.1 307.527 4C_THAL 

P743 4814633 540636.1 307.521 4C_THAL 

P744 4814632 540637 307.439 4C_THAL 

P745 4814631 540637.8 307.429 4C_THAL 

P746 4814631 540638.5 307.439 4C_THAL 

P747 4814631 540639.4 307.478 4C_THAL 

P748 4814630 540640.2 307.493 4C_THAL 

P749 4814630 540641.3 307.484 4C_THAL 

P750 4814630 540642 307.491 4C_THAL 

P751 4814629 540643 307.487 4C_THAL 

P752 4814629 540643.7 307.51 4C_THAL 

P753 4814629 540644.6 307.493 4C_THAL 

P754 4814629 540645 307.513 4C_THAL 

P755 4814628 540646.1 307.525 4C_THAL 

P756 4814628 540647 307.596 4C_THAL 

P757 4814627 540648.3 307.705 4C_THAL 

P758 4814627 540649.2 307.785 4C_THAL 

P759 4814626 540650.4 307.859 4C_THAL 

P760 4814625 540651.6 307.939 4C_THAL 

P761 4814625 540652.2 307.943 4C_THAL 

P762 4814624 540653.1 307.922 4C_THAL 

P763 4814624 540653.1 307.866 4C_THAL 

P764 4814623 540653.5 307.871 4C_THAL 
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P765 4814622 540654.2 307.902 4C_THAL 

P766 4814622 540655 307.916 4C_THAL 

P767 4814622 540656.5 308.012 4C_THAL 

P768 4814621 540657.9 308.043 4C_THAL 

P769 4814621 540659.4 307.983 4C_THAL 

P770 4814621 540659.8 307.936 4C_THAL 

P771 4814621 540660.2 308.135 4C_THAL 

P772 4814621 540660.5 308.003 4C_THAL 

P773 4814621 540661.2 308.03 4C_THAL 

P774 4814621 540662.5 308.055 4C_THAL 

P775 4814620 540663.9 308.012 4C_THAL 

P776 4814620 540665.4 308.042 4C_THAL 

P777 4814620 540666.4 307.821 4C_THAL 

P778 4814620 540667.1 307.726 4C_THAL 

P779 4814620 540667.8 307.762 4C_THAL 

P780 4814620 540668.2 307.823 4C_THAL 

P781 4814619 540669 307.893 4C_THAL 

P782 4814619 540670.4 307.924 4C_THAL 

P783 4814619 540672.1 307.961 4C_THAL 

P784 4814618 540673.8 307.864 4C_THAL 

P785 4814618 540675.4 307.939 4C_THAL 

P786 4814617 540676.8 307.888 4C_THAL 

P787 4814617 540677.8 307.815 4C_THAL 

P788 4814617 540679.5 307.804 4C_THAL 

P789 4814617 540681.1 307.818 4C_THAL 

P790 4814617 540682.2 307.776 4C_THAL 

P791 4814617 540683.2 307.721 4C_THAL 

P792 4814617 540683.2 307.721 4C_THAL 

P793 4814617 540683.8 307.656 4C_THAL 

P794 4814617 540684.6 307.65 4C_THAL 

P795 4814616 540685.4 307.67 4C_THAL 

P796 4814615 540685.9 307.677 4C_THAL 

P797 4814614 540686.4 307.709 4C_THAL 
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Table A4a: Sediment Substrate Data: Pebble count Site 1 

 

  

Pebble Count

d/s of Bridgeport Road

Site 1

Pebble Count

mm 04-Nov-10

S/C Silt/Clay <.062 1

SAND Very Fine 0.062-0.125

Fine 0.125-0.25 2

Medium 0.25-0.50

Coarse 0.50-1.0 1

Very Coarse1.0-2 3

GRAVEL Very Fine 2-4 2

Fine 4-5.7 1

Fine 5.7-8 1

Medium 8-11.3 6

Medium 11.3-16

Coarse 16-22.6 12

Coarse 22.6-32 15

Very Coarse32-45 17

Very Coarse45-64 19

COBBLES Small 64-90 13

Small 90-128 3

Large 128-180 2

Large 180-256 1

BOULDER Small 256-362 1

Small 362-512

Medium 512-1024

Large 1024-2048

Large-Very Large1024-2048

BDRK
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Table A4b: Sediment Substrate Data: Pebble count Site 2 

 

  

Pebble Count

University and Marsland - Highland Park

Site 2

Pebble Count

mm 15-Oct-10 03-Nov-10

S/C Silt/Clay <.062

SAND Very Fine 0.062-0.125

Fine 0.125-0.25

Medium 0.25-0.50 1 2

Coarse 0.50-1.0 3 3

Very Coarse1.0-2 4 2

GRAVEL Very Fine 2-4 4 3

Fine 4-5.7 3 4

Fine 5.7-8 4 5

Medium 8-11.3 5 4

Medium 11.3-16 6 7

Coarse 16-22.6 2 3

Coarse 22.6-32 4 2

Very Coarse32-45 5 2

Very Coarse45-64 3 2

COBBLES Small 64-90 2 2

Small 90-128 3 1

Large 128-180 5

Large 180-256 1

BOULDER Small 256-362 2

Small 362-512 1 1

Medium 512-1024

Large 1024-2048

Large-Very Large1024-2048

BDRK
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Table A4c: Sediment Substrate Data: Pebble count Site 3 

 

  

Pebble Count

Highland Park - d/s of ped bridge

Site 3

Pebble Count

mm 15-Oct-10 03-Nov-10

S/C Silt/Clay <.062

SAND Very Fine 0.062-0.125

Fine 0.125-0.25 1

Medium 0.25-0.50 5 8

Coarse 0.50-1.0 6 7

Very Coarse1.0-2 2 4

GRAVEL Very Fine 2-4 2

Fine 4-5.7 7 6

Fine 5.7-8 1 2

Medium 8-11.3 2 2

Medium 11.3-16 5

Coarse 16-22.6 2 3

Coarse 22.6-32 2 4

Very Coarse32-45 4 1

Very Coarse45-64 10 4

COBBLES Small 64-90 2 3

Small 90-128

Large 128-180 1 2

Large 180-256 1

BOULDER Small 256-362

Small 362-512 1

Medium 512-1024

Large 1024-2048

Large-Very Large1024-2048

BDRK
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Table A4d: Sediment Substrate Data: Pebble count Site 4 

 

  

Pebble Count

Bechtel Park

Site 4

Pebble Count

mm 04-Nov-10

S/C Silt/Clay <.062 3

SAND Very Fine 0.062-0.125

Fine 0.125-0.25 1

Medium 0.25-0.50 1

Coarse 0.50-1.0 2

Very Coarse1.0-2 4

GRAVEL Very Fine 2-4 2

Fine 4-5.7 1

Fine 5.7-8 8

Medium 8-11.3 7

Medium 11.3-16 3

Coarse 16-22.6 7

Coarse 22.6-32 11

Very Coarse32-45 8

Very Coarse45-64 12

COBBLES Small 64-90 5

Small 90-128 1

Large 128-180 4

Large 180-256 8

BOULDER Small 256-362 1

Small 362-512

Medium 512-1024 1

Large 1024-2048

Large-Very Large1024-2048

BDRK
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Table A4d: Sediment Substrate Data: Sieve Analysis 

 

 

Sieve Analysis

Sample taken at Laurel Creek Site 4 on the upstream point bar

Same location where field - "lab" tests were performed

Wet Mass (kg): 12.295 13.285 5.49 masses include bag weight

Dry Mass (kg): 5.505 11.49 12.505 dry mass: mass lost to water and transferring loss (includes glass pieces, debris, and so)

Mass sieved (g): 2632 2814.5 2938.8 2646.6 3105.7 2892.3

φ Size (mm)

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2

-6.0 63 0 0 0 0 0 0

-5.5 45 270.6 88.2 252.4 0 0 0

-5.0 31.5 207 283.3 92.3 139.5 139.7 117.6

-4.5 22.4 687.1 719 348.8 281.9 332 230.9

-4.0 16 509.7 771.8 338.8 286.9 325.4 253.4

-3.5 11.2 366 393.1 269.9 292.5 376.1 281.6

-3.0 8 244.3 215.6 247.3 239.1 281.6 264.3

-2.7 6.3 100.3 98.8 159.3 158.7 174.6 167.4

-2.0 4 109.5 113.1 265.4 249.6 298 308.6

-1.5 2.8 45.3 47.4 176.1 178.2 205 222.4

-1.0 2 24 24 142.4 145.8 170.8 191.3

-0.5 1.4 14.2 13.9 109.6 115.3 140.8 155.3

0.0 1 8.3 7.9 96.8 100.6 120.7 132.6

0.5 0.71 6 5.8 111 115.2 141.3 147.7

1.0 0.5 4.6 4.5 94.3 98.5 119.1 126.6

1.5 0.355 6 6 104.7 107.5 131.6 133

2.0 0.25 6.6 7.9 65.3 68.5 77.3 82.5

2.5 0.180 4.4 4.5 28 28.9 31.6 34.9

3.0 0.125 3 3.3 14.5 15.1 16.2 17.6

3.5 0.090 1.5 1.5 6.3 6.2 6.2 7

4.0 0.0625 1.2 1.1 4.7 4.6 4.6 5.4

4.5 <0.063 1.4 1.3 6.8 7 6.4 7

Sample Retained (g)

Pavement Sub-Pavement 1 Sub-Pavement 2
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Table A5a: Seeding Survey – Site 1 

point # east north elev desc Tag # 

83 538968.2 4812974 317.5519 section_d 111001 

197 538970.7 4812985 317.4775 section_p 111002 

182 538968.8 4812984 317.516 section_n 111003 

79 538971.7 4812974 317.5232 section_d 111004 

86 538966.3 4812974 317.5782 section_d 111005 

173 538967.9 4812983 317.4694 section_m 111006 

181 538969 4812984 317.476 section_n 111007 

51 538970.1 4812971 317.5498 section_a 111008 

205 538972 4812986 317.5266 section_q 111009 

114 538966.9 4812977 317.5254 section_g 111010 

158 538970.7 4812983 317.5024 section_l 11011 

230 538968.3 4812987 317.4628 section_s 111012 

119 538970.1 4812978 317.4747 section_h 111013 

214 538965.1 4812986 317.426 section_q 111014 

123 538967.1 4812978 317.5478 section_h 111015 

90 538970.2 4812975 317.4966 section_e 111016 

130 538969.2 4812979 317.4863 section_i 111017 

169 538970.2 4812983 317.4657 section_m 11018 

136 538965.1 4812979 317.5729 section_i 111019 

68 538971.1 4812973 317.4941 section_c 111020 

155 538965.6 4812982 317.497 section_k 111021 

132 538968 4812979 317.4731 section_i 111022 

105 538966.8 4812976 317.5577 section_f 111023 

231 538967.6 4812987 317.4825 section_s 111024 

164 538966.6 4812982 317.4583 section_l 111025 

52 538969.5 4812970 317.5248 section_a 111026 

180 538969.5 4812984 317.4652 section_n 111027 

208 538970 4812986 317.5137 section_q 111028 

74 538967.7 4812973 317.5728 section_c 111029 

131 538968.7 4812979 317.489 section_i 111036 

232 538966.7 4812987 317.4793 section_s 111031 

108 538971.8 4812977 317.5015 section_g 111032 

50 538970.8 4812971 317.5324 section_a 111033 

91 538969.5 4812975 317.5361 section_e 111034 

65 538966 4812972 317.6219 section_b 111035 

219 538968.9 4812987 317.4723 section_r 111030 

147 538971.9 4812982 317.453 section_k 111037 

57 538973 4812972 317.5163 section_b 111038 

92 538968.8 4812975 317.5106 section_e 111039 

186 538971.3 4812985 317.4694 section_o 111040 



133 

 

223 538965.6 4812986 317.4404 section_r 111041 

97 538972.8 4812976 317.5783 section_f 111042 

46 538973.7 4812971 317.5464 section_a 111043 

104 538967.5 4812976 317.5247 section_f 121044 

171 538969 4812983 317.4842 section_m 121045 

48 538972.6 4812971 317.5472 section_a 121046 

62 538967.9 4812972 317.5558 section_b 121047 

99 538971 4812976 317.5317 section_f 121048 

55 538966.2 4812970 317.6651 section_a 121049 

81 538970.1 4812974 317.5164 section_d 121050 

140 538969.7 4812981 317.4533 section_j 121051 

56 538973.6 4812972 317.5266 section_b 121052 

95 538966.5 4812975 317.5897 section_e 121053 

135 538966.2 4812979 317.5438 section_i 121054 

240 538968.1 4812988 317.4495 section_t 121055 

107 538972.5 4812977 317.5292 section_g 121056 

118 538970.9 4812978 317.5028 section_h 121057 

121 538968.6 4812978 317.4768 section_h 121058 

179 538970 4812984 317.4699 section_n 121059 

102 538968.9 4812976 317.5101 section_f 121060 

192 538966.5 4812984 317.4422 section_o 121061 

236 538971.1 4812988 317.4327 section_t 121062 

168 538970.6 4812983 317.4751 section_m 121063 

218 538969.6 4812986 317.4993 section_r 121064 

157 538971.1 4812983 317.4711 section_l 121065 

183 538968 4812984 317.4864 section_n 121066 

241 538967.5 4812988 317.4535 section_t 121067 

207 538970.8 4812986 317.4617 section_q 121068 

96 538965.6 4812975 317.5798 section_e 121069 

67 538972.5 4812973 317.5296 section_c 121070 

201 538967.9 4812985 317.4617 section_p 121071 

144 538967.4 4812981 317.5034 section_j 121072 

129 538969.8 4812979 317.4422 section_i 121073 

244 538965.3 4812988 317.4415 section_t 121074 

233 538966 4812987 317.4673 section_s 121075 

93 538967.6 4812975 317.5455 section_e 121076 

133 538967.7 4812979 317.5031 section_i 121077 

222 538966.2 4812986 317.4441 section_r 121078 

190 538968.3 4812985 317.4819 section_o 121079 

185 538966.2 4812984 317.4196 section_n 121080 

53 538968.6 4812970 317.6092 section_a 121081 

196 538971.4 4812985 317.4645 section_p 121082 

146 538965.7 4812981 317.5171 section_j 121083 
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70 538970.4 4812973 317.4782 section_c 121084 

194 538965.3 4812984 317.4171 section_o 121085 

110 538970.1 4812977 317.4916 section_g 121086 

88 538972.1 4812975 317.5092 section_e 121087 

229 538969.1 4812987 317.4866 section_s 121088 

64 538966.7 4812972 317.6253 section_b 121089 

225 538971.9 4812987 317.5108 section_s 121090 

59 538970.8 4812972 317.5051 section_b 121091 

142 538968.6 4812981 317.522 section_j 121092 

220 538968 4812987 317.4504 section_r 132093 

243 538966.1 4812988 317.4701 section_t 132094 

239 538968.8 4812988 317.4442 section_t 132095 

89 538971 4812975 317.501 section_e 132096 

111 538969.1 4812977 317.4779 section_g 132097 

178 538970.4 4812984 317.4981 section_n 132098 

167 538971 4812983 317.4877 section_m 132099 

202 538967.1 4812985 317.4459 section_p 132100 

139 538970.1 4812981 317.4787 section_j 132101 

143 538968 4812981 317.4894 section_j 132102 

134 538967.1 4812979 317.5236 section_i 132103 

189 538969.1 4812985 317.4564 section_o 132104 

117 538971.8 4812978 317.4858 section_h 132105 

94 538967.3 4812975 317.5346 section_e 132106 

120 538969.3 4812978 317.4967 section_h 132107 

217 538970.4 4812987 317.4663 section_r 132108 

80 538971 4812974 317.491 section_d 132109 

156 538971.8 4812983 317.4918 section_l 132110 

184 538967.2 4812984 317.4745 section_n 132111 

128 538970.4 4812979 317.4485 section_i 132112 

73 538968.4 4812973 317.571 section_c 132113 

206 538971.4 4812986 317.482 section_q 132114 

78 538972.4 4812974 317.52 section_d 132115 

85 538966.9 4812974 317.5586 section_d 132116 

82 538969.3 4812974 317.573 section_d 132117 

152 538968.4 4812982 317.4882 section_k 132118 

221 538967.1 4812987 317.4589 section_r 132119 

125 538966 4812978 317.549 section_h 132120 

228 538969.7 4812987 317.456 section_s 132121 

242 538966.8 4812988 317.4625 section_t 132122 

161 538968.5 4812982 317.5012 section_l 132123 

170 538969.6 4812983 317.48 section_m 132124 

193 538966 4812984 317.4363 section_o 132125 

215 538971.8 4812987 317.5122 section_r 132126 
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234 538964.9 4812987 317.4233 section_s 132127 

77 538972.9 4812974 317.5277 section_d 132128 

71 538969.6 4812973 317.536 section_c 132129 

106 538966.4 4812976 317.5337 section_f 132130 

175 538966.4 4812983 317.4354 section_m 132131 

66 538973.2 4812973 317.5188 section_c 132132 

203 538966.1 4812985 317.4457 section_p 142133 

87 538972.9 4812975 317.5481 section_e 142134 

204 538965.2 4812985 317.438 section_p 142135 

210 538968.7 4812986 317.4968 section_q 142136 

149 538970.6 4812981 317.4985 section_k 142137 

148 538971.3 4812982 317.4555 section_k 142138 

198 538970 4812985 317.477 section_p 142139 

72 538969.1 4812973 317.5834 section_c 142140 

116 538965.3 4812977 317.6293 section_g 142141 

191 538967.7 4812985 317.4616 section_o 142142 

60 538970 4812972 317.5092 section_b 142143 

162 538967.8 4812983 317.4819 section_l 142144 

124 538966.5 4812978 317.5503 section_h 142145 

112 538968.1 4812977 317.5554 section_g 142146 

199 538969.4 4812985 317.4751 section_p 142147 

141 538969.1 4812981 317.4868 section_j 142148 

176 538971.9 4812984 317.4917 section_n 142149 

115 538966.4 4812977 317.5643 section_g 142150 

103 538968.2 4812976 317.5316 section_f 142151 

150 538969.9 4812982 317.4876 section_k 142152 

187 538970.6 4812985 317.4951 section_o 142153 

235 538971.9 4812988 317.5128 section_t 142154 

153 538967.6 4812982 317.4912 section_k 142155 

69 538970.4 4812973 317.4944 section_c 142156 

98 538971.9 4812976 317.5681 section_f 142157 

137 538972.1 4812980 317.474 section_j 142158 

101 538969.5 4812976 317.5161 section_f 142159 

54 538967.5 4812970 317.583 section_a 142160 

63 538967.3 4812972 317.5786 section_b 152161 

165 538965.8 4812983 317.4489 section_l 153162 

216 538971.1 4812987 317.4628 section_r 153163 

127 538971.4 4812979 317.4352 section_i 152164 

224 538964.9 4812986 317.4452 section_r 152165 

61 538968.8 4812972 317.5411 section_b 152166 

58 538971.9 4812972 317.5266 section_b 152167 

47 538973.1 4812971 317.5545 section_a 152168 

109 538971 4812977 317.4833 section_g 152169 
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538965.7 4812988 316.8516 1_170 

 76 538966.3 4812973 317.6078 section_c 152171 

209 538969.3 4812986 317.5242 section_q 152172 

122 538967.9 4812978 317.5064 section_h 152173 

151 538969.2 4812982 317.4785 section_k 152174 

227 538970.3 4812987 317.4396 section_s 152175 

188 538969.8 4812985 317.4772 section_o 152176 

163 538967.1 4812982 317.4695 section_l 152177 

100 538970.3 4812976 317.4973 section_f 152178 

75 538966.9 4812973 317.5553 section_c 152179 

174 538967.4 4812983 317.4703 section_m 152180 

213 538965.9 4812986 317.4428 section_q 162181 

159 538970.1 4812982 317.479 section_l 162182 

195 538971.8 4812986 317.4775 section_p 162183 

226 538971.2 4812987 317.4448 section_s 162184 

212 538966.9 4812986 317.4474 section_q 162185 

211 538968 4812986 317.5404 section_q 162186 

49 538971.7 4812971 317.5305 section_a 162187 

237 538970.2 4812988 317.4235 section_t 162188 

160 538969.4 4812982 317.5059 section_l 162189 

154 538966.3 4812982 317.5003 section_k 162190 

138 538971.1 4812981 317.4801 section_j 162191 

238 538969.4 4812988 317.4591 section_t 162192 

84 538967.5 4812974 317.5487 section_d 162193 

166 538971.8 4812983 317.5575 section_m 162194 

200 538968.6 4812985 317.4577 section_p 162195 

145 538966.8 4812981 317.4743 section_j 162196 

126 538965.2 4812978 317.5688 section_h 162197 

172 538968.4 4812983 317.4489 section_m 162198 

113 538967.6 4812977 317.5149 section_g 162199 

177 538971.1 4812984 317.4898 section_n 162200 
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Table A5b: Seeding Survey – Site 2 

point # east north elev desc Tag # 

408 539221.72 4814288.22 315.0427 section_uq 211001 

290 539219.22 4814270.84 315.2512 section_ue 211002 

313 539216.16 4814273.16 315.2308 section_ug 211003 

433 539218.85 4814292.91 315.1833 section_us 211004 

424 539218.46 4814289.55 315.2148 section_ur 211005 

307 539221.34 4814271.80 315.2307 section_ug 211006 

381 539221.07 4814281.76 315.1704 section_un 211007 

335 539224.05 4814275.25 315.2841 section_uj 211008 

318 539220.64 4814272.95 315.2505 section_uh 211009 

373 539219.50 4814280.08 315.2047 section_um 211010 

291 539218.27 4814271.03 315.2218 section_ue 211011 

414 539218.09 4814287.79 315.3098 section_uq 211012 

289 539219.92 4814270.62 315.2287 section_ue 211013 

273 539215.85 4814269.90 315.2366 section_uc 211014 

264 539214.79 4814269.70 315.3455 section_ub 211015 

304 539215.75 4814272.68 315.2141 section_uf 211016 

346 539223.01 4814276.91 315.2312 section_uk 211017 

364 539217.90 4814278.96 315.2593 section_ul 211018 

331 539218.01 4814274.65 315.2147 section_ui 211019 

354 539216.92 4814278.09 315.2202 section_uk 211020 

267 539221.39 4814268.49 315.2458 section_uc 211021 

322 539216.93 4814273.88 315.199 section_uh 211022 

296 539222.41 4814270.71 315.3262 section_uf 211023 

382 539220.22 4814281.60 315.1821 section_un 211024 

357 539222.99 4814278.60 315.2388 section_ul 211025 

329 539219.88 4814274.41 315.24 section_ui 211026 

256 539222.19 4814267.38 315.3119 section_ub 211027 

386 539224.17 4814283.48 315.1705 section_uo 211028 

405 539217.80 4814285.63 315.2295 section_up 211029 

419 539220.76 4814290.02 315.1268 section_ur 211030 

431 539219.85 4814292.98 315.1438 section_us 211031 

432 539219.31 4814292.90 315.1514 section_us 211032 

330 539218.97 4814274.49 315.1852 section_ui 211033 

250 539219.44 4814267.66 315.2669 section_ua 211034 

245 539223.22 4814266.59 315.3454 section_ua 211035 

278 539220.68 4814269.56 315.2473 section_ud 211036 

249 539220.47 4814267.28 315.2577 section_ua 211037 

369 539222.27 4814280.25 315.2214 section_um 211038 

251 539218.46 4814268.02 315.2672 section_ua 211039 

379 539222.44 4814281.73 315.1934 section_un 211040 
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285 539223.30 4814269.64 315.3718 section_ue 211041 

397 539222.53 4814285.91 315.0124 section_up 211042 

282 539216.93 4814270.50 315.2272 section_ud 211043 

437 539222.07 4814296.13 315.3091 section_ut 221044 

345 539224.33 4814276.64 315.2928 section_uk 221045 

403 539218.67 4814285.80 315.259 section_up 221046 

266 539222.27 4814268.43 315.3269 section_uc 221047 

294 539215.43 4814271.98 315.2827 section_ue 221048 

328 539220.73 4814274.09 315.2583 section_ui 221049 

423 539218.96 4814289.70 315.1707 section_ur 221050 

261 539218.02 4814268.58 315.2389 section_ub 221051 

317 539221.45 4814272.84 315.2804 section_uh 221052 

306 539222.53 4814271.64 315.2917 section_ug 221053 

255 539223.19 4814267.26 315.3789 section_ub 221054 

287 539221.33 4814270.06 315.2474 section_ue 221055 

258 539220.59 4814267.81 315.2458 section_ub 221056 

295 539223.39 4814270.65 315.4003 section_uf 221057 

252 539217.53 4814268.18 315.2842 section_ua 221058 

401 539219.28 4814286.37 315.2485 section_up 221059 

303 539216.58 4814272.35 315.2193 section_uf 221060 

426 539217.63 4814289.38 315.3347 section_ur 221061 

392 539219.74 4814283.40 315.1836 section_uo 221062 

263 539216.17 4814269.07 315.1972 section_ub 221063 

280 539218.92 4814269.98 315.2097 section_ud 221064 

332 539217.09 4814274.74 315.1716 section_ui 221065 

254 539215.05 4814268.93 315.2707 section_ua 221066 

292 539217.46 4814271.25 315.2327 section_ue 221067 

380 539221.88 4814281.82 315.1843 section_un 221068 

334 539215.65 4814275.25 315.1982 section_ui 221069 

309 539219.02 4814272.39 315.2106 section_ug 221070 

434 539218.41 4814292.79 315.2093 section_us 221071 

320 539218.91 4814273.30 315.2192 section_uh 221072 

394 539218.51 4814283.40 315.1893 section_uo 221073 

383 539219.69 4814281.65 315.1798 section_un 221074 

418 539221.36 4814290.06 315.0961 section_ur 221075 

385 539218.23 4814281.89 315.2186 section_un 221076 

247 539222.21 4814266.75 315.2866 section_ua 221077 

301 539217.95 4814271.77 315.2239 section_uf 221078 

396 539223.14 4814286.09 314.9061 section_up 221079 

339 539220.05 4814275.38 315.2226 section_uj 221080 

343 539217.40 4814275.99 315.1449 section_uj 221081 

390 539221.10 4814283.19 315.2347 section_uo 221082 

341 539218.49 4814275.75 315.1497 section_uj 221083 
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407 539222.32 4814288.23 315.1185 section_uq 221084 

441 539219.68 4814295.98 315.1711 section_ut 221085 

368 539222.85 4814280.04 315.2299 section_um 221086 

442 539219.06 4814295.88 315.2004 section_ut 221087 

356 539223.61 4814278.42 315.2159 section_ul 221088 

298 539220.37 4814271.18 315.2251 section_uf 221089 

269 539219.76 4814268.86 315.257 section_uc 221090 

371 539220.78 4814280.19 315.1825 section_um 221091 

430 539220.36 4814293.11 315.1064 section_us 221092 

443 539218.33 4814295.78 315.2387 section_ut 232093 

276 539222.31 4814269.36 315.3284 section_ud 232094 

375 539218.05 4814280.31 315.2565 section_um 232095 

270 539218.92 4814269.25 315.2599 section_uc 232096 

324 539215.60 4814274.29 315.161 section_uh 232097 

351 539219.05 4814277.54 315.2282 section_uk 232098 

265 539223.38 4814268.19 315.4113 section_uc 232099 

420 539220.21 4814289.73 315.1968 section_ur 232100 

272 539216.77 4814269.73 315.2216 section_uc 232101 

279 539219.53 4814269.85 315.2354 section_ud 232102 

389 539221.87 4814283.14 315.1832 section_uo 232103 

355 539224.13 4814278.38 315.2375 section_ul 232104 

429 539220.92 4814292.93 315.1464 section_us 232105 

338 539220.51 4814275.49 315.2262 section_uj 232106 

284 539215.11 4814271.12 315.3091 section_ud 232107 

406 539223.09 4814288.42 315.2049 section_uq 232108 

393 539218.97 4814283.46 315.1481 section_uo 232109 

378 539222.99 4814281.70 315.1976 section_un 232110 

415 539217.57 4814287.80 315.4339 section_uq 232111 

384 539219.04 4814281.76 315.2186 section_un 232112 

327 539221.57 4814273.88 315.2458 section_ui 232113 

316 539222.59 4814272.82 315.3209 section_uh 232114 

360 539220.36 4814278.78 315.1963 section_ul 232115 

422 539219.45 4814289.61 315.1774 section_ur 232116 

367 539223.70 4814280.06 315.1957 section_um 232117 

370 539221.49 4814280.18 315.2066 section_um 232118 

319 539219.90 4814273.21 315.2452 section_uh 232119 

440 539220.24 4814296.04 315.1548 section_ut 232120 

333 539216.64 4814274.70 315.1815 section_ui 232121 

288 539220.63 4814270.31 315.2354 section_ue 232122 

305 539223.87 4814271.65 315.3847 section_ug 232123 

402 539219.20 4814285.95 315.3137 section_up 232124 

417 539222.10 4814290.40 315.1512 section_ur 232125 

342 539218.05 4814275.80 315.1829 section_uj 232126 
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310 539218.18 4814272.49 315.2295 section_ug 232127 

444 539217.83 4814295.77 315.2349 section_ut 232128 

281 539217.98 4814270.30 315.242 section_ud 232129 

277 539221.25 4814269.42 315.2317 section_ud 232130 

293 539216.65 4814271.63 315.2358 section_ue 232131 

435 539217.92 4814292.60 315.2706 section_us 232132 

340 539219.29 4814275.64 315.1673 section_uj 242133 

271 539217.97 4814269.48 315.2374 section_uc 242134 

297 539221.28 4814270.96 315.2553 section_uf 242135 

311 539217.40 4814272.66 315.1704 section_ug 242136 

347 539222.03 4814277.22 315.217 section_uk 242137 

302 539217.36 4814271.89 315.1734 section_uf 242138 

323 539216.36 4814274.05 315.1983 section_uh 242139 

253 539216.38 4814268.48 315.2695 section_ua 242140 

410 539220.38 4814288.11 315.1532 section_uq 242141 

315 539223.90 4814272.86 315.3864 section_uh 242142 

336 539222.82 4814275.34 315.3152 section_uj 242143 

268 539220.63 4814268.69 315.2411 section_uc 242144 

398 539221.86 4814285.88 314.9992 section_up 242145 

403 539218.67 4814285.80 315.259 section_up 242146 

404 539218.32 4814285.77 315.2404 section_up 242147 

259 539220.08 4814267.96 315.2799 section_ub 242148 

362 539219.29 4814279.01 315.214 section_ul 242149 

352 539218.46 4814277.72 315.2328 section_uk 242150 

348 539220.99 4814277.22 315.2384 section_uk 242151 

286 539222.28 4814269.69 315.3109 section_ue 242152 

391 539220.42 4814283.14 315.1613 section_uo 242153 

445 539217.28 4814295.88 315.238 section_ut 242154 

300 539218.65 4814271.55 315.2651 section_uf 242155 

349 539220.03 4814277.30 315.2084 section_uk 242156 

436 539217.33 4814292.48 315.322 section_us 242157 

399 539221.06 4814285.88 315.0876 section_up 242158 

314 539215.64 4814273.27 315.2324 section_ug 242159 

376 539224.56 4814281.56 315.2519 section_un 242160 

246 539223.12 4814266.56 315.3625 section_ua 252161 

365 539217.30 4814278.92 315.2782 section_ul 252162 

416 539222.63 4814290.52 315.1701 section_ur 252163 

257 539221.35 4814267.65 315.257 section_ub 252164 

363 539218.45 4814278.99 315.2779 section_ul 252165 

262 539217.18 4814268.79 315.2653 section_ub 252166 

299 539219.52 4814271.33 315.2247 section_uf 252167 

350 539219.60 4814277.37 315.2675 section_uk 252168 

409 539220.98 4814288.23 315.1293 section_uq 252169 
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425 539218.11 4814289.49 315.3164 section_ur 252170 

374 539218.81 4814280.17 315.2143 section_um 252171 

388 539222.40 4814283.24 315.2212 section_uo 252172 

275 539223.59 4814269.04 315.4042 section_ud 252173 

260 539218.81 4814268.28 315.2649 section_ub 252174 

274 539214.83 4814270.30 315.3225 section_uc 252175 

321 539217.57 4814273.69 315.1926 section_uh 252176 

428 539221.65 4814293.31 315.1589 section_us 252177 

446 539216.42 4814295.92 315.2968 section_ut 252178 

308 539220.33 4814272.14 315.211 section_ug 252179 

326 539222.69 4814273.86 315.3083 section_ui 252180 

337 539221.60 4814275.46 315.2273 section_uj 262181 

358 539221.92 4814278.67 315.2039 section_ul 262182 

344 539216.47 4814276.12 315.1704 section_uj 262183 

372 539220.01 4814280.18 315.1591 section_um 262184 

427 539222.39 4814293.37 315.3499 section_us 262185 

353 539217.27 4814277.89 315.1774 section_uk 262186 

248 539221.34 4814267.01 315.2543 section_ua 262187 

439 539220.82 4814296.17 315.2091 section_ut 262188 

377 539223.95 4814281.82 315.1806 section_un 262189 

412 539218.89 4814287.85 315.2498 section_uq 262190 

283 539215.95 4814270.82 315.2589 section_ud 262191 

400 539220.44 4814286.05 315.1832 section_up 262192 

325 539223.90 4814273.83 315.3965 section_ui 262193 

395 539217.84 4814283.47 315.2252 section_uo 262194 

366 539224.17 4814280.16 315.2644 section_um 262195 

438 539221.41 4814296.07 315.2177 section_ut 262196 

359 539221.10 4814278.83 315.1909 section_ul 262197 

312 539216.90 4814272.80 315.2102 section_ug 262198 

411 539219.43 4814287.97 315.2162 section_uq 262199 

413 539218.42 4814287.74 315.3242 section_uq 262200 
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Table A5c: Seeding Survey – Site 3 

surveyed 
point # 

corrected 
point # east north elev desc Tag # 

648 648 539324.7 4814776 313.2935 SECTION_HILL_A 311001 

699 699 539328.1 4814779 313.4184 SECTION_HILL_F 311002 

810 810 539334.9 4814787 313.5168 SECTION_HILL_Q 311003 

833 832 539334.9 4814790 313.5178 SECTION_HILL_S 311004 

659 659 539325 4814777 313.3524 SECTION_HILL_B 311005 

788 788 539335 4814785 313.378 SECTION_HILL_O 311006 

771 771 539331.8 4814786 313.5509 SECTION_HILL_M 311007 

681 681 539325.4 4814779 313.4811 SECTION_HILL_D 311008 

816 816 539331.2 4814792 313.4262 SECTION_HILL_Q 311009 

822 821 539334.6 4814788 313.5576 SECTION_HILL_R 311010 

826 825 539332.5 4814791 313.3993 SECTION_HILL_R 311011 

782 782 539331.8 4814787 313.5952 SECTION_HILL_N 311012 

834 833 539334.1 4814790 313.4007 SECTION_HILL_S 311013 

685 685 539323.6 4814781 313.5144 SECTION_HILL_D 311014 

652 652 539323.1 4814778 313.327 SECTION_HILL_A 311015 

799 799 539335.2 4814786 313.4189 SECTION_HILL_P 311016 

760 760 539331.9 4814784 313.4885 SECTION_HILL_L 311017 

783 783 539331.1 4814788 313.5763 SECTION_HILL_N 311018 

670 670 539325.3 4814778 313.4371 SECTION_HILL_C 311019 

732 732 539328.8 4814784 313.5291 SECTION_HILL_I 311020 

707 707 539323.1 4814784 313.4721 SECTION_HILL_F 311021 

688 688 539327.7 4814778 313.364 SECTION_HILL_E 311022 

749 749 539332.1 4814783 313.3433 SECTION_HILL_K 311023 

807 807 539330.2 4814792 313.4841 SECTION_HILL_P 311024 

692 692 539325.7 4814780 313.5637 SECTION_HILL_E 311025 

775 775 539329.3 4814788 313.4492 SECTION_HILL_M 311026 

766 766 539327.9 4814788 313.4123 SECTION_HILL_L 311027 

733 733 539328.1 4814785 313.5697 SECTION_HILL_I 311028 

710 710 539328.7 4814781 313.4354 SECTION_HILL_G 311029 

653 653 539322.7 4814778 313.3832 SECTION_HILL_A 311030 

734 734 539327.4 4814785 313.5487 SECTION_HILL_I 311031 

693 693 539325.2 4814781 313.593 SECTION_HILL_E 311032 

725 725 539326.1 4814785 313.5063 SECTION_HILL_H 311033 

738 738 539331.9 4814782 313.3528 SECTION_HILL_J 311034 

721 721 539328.7 4814783 313.5058 SECTION_HILL_H 311035 

757 757 539326.9 4814788 313.4912 SECTION_HILL_K 311036 

716 716 539324.9 4814785 313.4746 SECTION_HILL_G 311037 

676 676 539322.4 4814781 313.5214 SECTION_HILL_C 311038 

667 667 539321.4 4814781 313.4821 SECTION_HILL_B 311039 
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694 694 539324.5 4814781 313.564 SECTION_HILL_E 311040 

784 784 539330.4 4814788 313.4806 SECTION_HILL_N 311041 

654 654 539322.2 4814779 313.4012 SECTION_HILL_A 311042 

835 834 539333.9 4814791 313.3763 SECTION_HILL_S 311043 

742 742 539329.4 4814784 313.5387 SECTION_HILL_J 321044 

698 698 539328.6 4814779 313.3875 SECTION_HILL_F 321045 

839 838 539337.9 4814788 313.4788 SECTION_HILL_T 321046 

709 709 539329.3 4814781 313.4188 SECTION_HILL_G 321047 

781 781 539332.3 4814786 313.5542 SECTION_HILL_N 321048 

650 650 539323.9 4814777 313.3532 SECTION_HILL_A 321049 

843 842 539335.9 4814790 313.4662 SECTION_HILL_T 321050 

701 701 539326.8 4814781 313.4844 SECTION_HILL_F 321051 

690 690 539326.9 4814780 313.4241 SECTION_HILL_E 321052 

785 785 539329.8 4814789 313.4494 SECTION_HILL_N 321053 

669 669 539325.7 4814777 313.38 SECTION_HILL_C 321054 

731 731 539329.3 4814783 313.5058 SECTION_HILL_I 321055 

809 809 539335.5 4814787 313.4431 SECTION_HILL_Q 321056 

792 792 539332.5 4814788 313.5618 SECTION_HILL_O 321057 

821 820 539335.4 4814788 313.5309 SECTION_HILL_R 321058 

794 794 539331.3 4814789 313.467 SECTION_HILL_O 321059 

695 695 539323.9 4814782 313.5643 SECTION_HILL_E 321060 

770 770 539332.3 4814785 313.4928 SECTION_HILL_M 321061 

658 658 539325.3 4814776 313.2912 SECTION_HILL_B 321062 

748 748 539332.5 4814782 313.3127 SECTION_HILL_K 321063 

704 704 539325.1 4814782 313.5737 SECTION_HILL_F 321064 

661 661 539324.1 4814778 313.3762 SECTION_HILL_B 321065 

744 744 539328 4814786 313.5395 SECTION_HILL_J 321066 

798 798 539335.6 4814786 313.4524 SECTION_HILL_P 321067 

720 720 539329.5 4814782 313.4678 SECTION_HILL_H 321068 

735 735 539326.9 4814786 313.4555 SECTION_HILL_I 321069 

825 824 539333.1 4814790 313.4004 SECTION_HILL_R 321070 

796 796 539330.2 4814790 313.4431 SECTION_HILL_O 321071 

844 843 539335.5 4814791 313.4212 SECTION_HILL_T 321072 

655 655 539321.7 4814779 313.4284 SECTION_HILL_A 321073 

657 657 539320.5 4814780 313.4499 SECTION_HILL_A 321074 

672 672 539324.2 4814779 313.4505 SECTION_HILL_C 321075 

697 697 539322.4 4814783 313.4745 SECTION_HILL_E 321076 

827 826 539332.1 4814792 313.4312 SECTION_HILL_R 321077 

723 723 539327.5 4814784 313.5671 SECTION_HILL_H 321078 

832 831 539335.6 4814789 313.5416 SECTION_HILL_S 321079 

847 846 539334.2 4814792 313.3486 SECTION_HILL_T 321080 

773 773 539330.5 4814787 313.5673 SECTION_HILL_M 321081 

759 759 539332.6 4814784 313.3657 SECTION_HILL_L 321082 



 

144 

 

737 737 539325.7 4814787 313.4638 SECTION_HILL_I 321083 

664 664 539322.9 4814779 313.4838 SECTION_HILL_B 321084 

803 803 539332.6 4814789 313.5492 SECTION_HILL_P 321085 

683 683 539324.4 4814780 313.5264 SECTION_HILL_D 321086 

706 706 539323.6 4814783 313.4751 SECTION_HILL_F 321087 

836 835 539333.5 4814792 313.3833 SECTION_HILL_S 321088 

746 746 539326.8 4814787 313.476 SECTION_HILL_J 321089 

666 666 539322.1 4814780 313.4758 SECTION_HILL_B 321090 

712 712 539327.4 4814783 313.5327 SECTION_HILL_G 321091 

787 787 539328.9 4814790 313.4802 SECTION_HILL_N 321092 

780 780 539333 4814786 313.5469 SECTION_HILL_N 332093 

804 804 539332 4814790 313.4308 SECTION_HILL_P 332094 

758 758 539333.1 4814783 313.3156 SECTION_HILL_L 332095 

791 791 539333.2 4814787 313.5619 SECTION_HILL_O 332096 

741 741 539329.9 4814784 313.5057 SECTION_HILL_J 332097 

745 745 539327.5 4814786 313.4575 SECTION_HILL_J 332098 

719 719 539330.2 4814782 313.3912 SECTION_HILL_H 332099 

763 763 539329.8 4814787 313.549 SECTION_HILL_L 332100 

722 722 539328.1 4814783 313.5339 SECTION_HILL_H 332101 

842 841 539336.5 4814789 313.5179 SECTION_HILL_T 332102 

769 769 539333.1 4814784 313.4096 SECTION_HILL_M 332103 

820 819 539335.9 4814787 313.5079 SECTION_HILL_R 332104 

831 830 539336.1 4814788 313.5578 SECTION_HILL_S 332105 

837 836 539333.2 4814792 313.4042 SECTION_HILL_S 332106 

786 786 539329.3 4814789 313.4471 SECTION_HILL_N 332107 

823 822 539334.1 4814789 313.5481 SECTION_HILL_R 332108 

772 772 539331.1 4814786 313.5628 SECTION_HILL_M 332109 

808 808 539336 4814786 313.4921 SECTION_HILL_Q 332110 

795 795 539330.8 4814790 313.4337 SECTION_HILL_O 332111 

675 675 539322.9 4814780 313.4823 SECTION_HILL_C 332112 

777 777 539328.1 4814790 313.4536 SECTION_HILL_M 332113 

727 727 539325.1 4814786 313.486 SECTION_HILL_H 332114 

708 708 539329.8 4814780 313.3692 SECTION_HILL_G 332115 

845 844 539335.1 4814791 313.4159 SECTION_HILL_T 332116 
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Table A5d: Seeding Survey – Site 4 

surveyed east north elev desc Rock# 

447 540616.9 4814662 308.2679 SECTION_BECH_a 1 

531 540622.9 4814656 308.1856 SECTION_BECH_I 2 

498 540619.1 4814657 308.28 SECTION_BECH_F 3 

587 540621.4 4814649 308.1624 SECTION_BECH_O 4 

598 540622.5 4814648 308.1544 SECTION_BECH_P 5 

451 540619.7 4814663 308.2444 SECTION_BECH_a 6 

487 540617.8 4814658 308.2797 SECTION_BECH_E 7 

469 540619.8 4814660 308.2626 SECTION_BECH_C 8 

480 540621.5 4814660 308.2521 SECTION_BECH_D 9 

452 540620.4 4814663 308.2568 SECTION_BECH_a 10 

620 540624.6 4814647 307.9634 SECTION_BECH_R 11 

570 540623.5 4814652 308.1368 SECTION_BECH_M 12 

581 540624.5 4814651 308.1651 SECTION_BECH_N 13 

559 540622.1 4814653 308.2182 SECTION_BECH_L 14 

458 540618 4814661 308.2584 SECTION_BECH_B 15 

624 540626.9 4814648 308.0983 SECTION_BECH_R 16 

537 540619.4 4814653 308.2897 SECTION_BECH_J 17 

631 540625.3 4814647 307.9976 SECTION_BECH_S 18 

565 540626.8 4814654 308.3462 SECTION_BECH_L 19 

632 540625.9 4814647 308.1135 SECTION_BECH_S 20 

475 540625.3 4814662 308.3536 SECTION_BECH_C 21 

453 540621 4814663 308.225 SECTION_BECH_a 22 

466 540624.5 4814663 308.3164 SECTION_BECH_B 23 

491 540621.7 4814659 308.2571 SECTION_BECH_E 24 

484 540624.6 4814661 308.3365 SECTION_BECH_D 25 

492 540622.3 4814660 308.2231 SECTION_BECH_E 26 

509 540620.6 4814657 308.279 SECTION_BECH_G 27 

520 540621.6 4814657 308.249 SECTION_BECH_H 28 

532 540623.6 4814656 308.2056 SECTION_BECH_I 29 

582 540625.1 4814652 308.1901 SECTION_BECH_N 30 

583 540625.5 4814652 308.1571 SECTION_BECH_N 31 

606 540628.5 4814651 308.3048 SECTION_BECH_P 32 

533 540624.2 4814657 308.1997 SECTION_BECH_I 33 

609 540623.7 4814648 308.0093 SECTION_BECH_Q 34 

493 540623.5 4814660 308.2295 SECTION_BECH_E 35 

548 540620.8 4814653 308.2464 SECTION_BECH_K 36 

506 540627.5 4814660 308.2848 SECTION_BECH_F 37 

615 540627.7 4814650 308.254 SECTION_BECH_Q 38 

574 540626.7 4814654 308.3272 SECTION_BECH_M 39 

633 540626.4 4814647 308.0662 SECTION_BECH_S 40 
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556 540627.5 4814655 308.3335 SECTION_BECH_K 41 

524 540625 4814658 308.2663 SECTION_BECH_H 42 

515 540626.3 4814659 308.2841 SECTION_BECH_G 43 

530 540622.1 4814656 308.2074 SECTION_BECH_I 44 

508 540619.5 4814657 308.316 SECTION_BECH_G 45 

457 540617.2 4814661 308.2809 SECTION_BECH_B 46 

569 540622.6 4814652 308.1301 SECTION_BECH_M 47 

468 540618.6 4814660 308.2692 SECTION_BECH_C 48 

497 540618 4814657 308.2548 SECTION_BECH_F 49 

500 540621.3 4814658 308.2769 SECTION_BECH_F 50 

511 540622.6 4814658 308.2121 SECTION_BECH_G 51 

608 540622.9 4814648 308.1098 SECTION_BECH_Q 52 

489 540619.9 4814659 308.3425 SECTION_BECH_E 53 

547 540619.9 4814653 308.201 SECTION_BECH_K 54 

494 540624.3 4814660 308.2779 SECTION_BECH_E 55 

519 540620.6 4814656 308.2661 SECTION_BECH_H 56 

449 540618.2 4814662 308.2735 SECTION_BECH_a 57 

637 540623.9 4814645 308.0614 SECTION_BECH_T 58 

641 540626.3 4814646 307.9158 SECTION_BECH_T 59 

522 540623.3 4814657 308.2018 SECTION_BECH_H 60 

580 540623.6 4814651 308.0933 SECTION_BECH_N 61 

534 540625.1 4814657 308.3035 SECTION_BECH_I 62 

591 540624.6 4814650 308.1234 SECTION_BECH_O 63 

558 540621.3 4814652 308.1816 SECTION_BECH_L 64 

471 540622 4814661 308.1757 SECTION_BECH_C 65 

482 540622.9 4814661 308.2126 SECTION_BECH_D 66 

630 540624.7 4814647 307.9544 SECTION_BECH_S 67 

597 540621.8 4814648 308.1826 SECTION_BECH_P 68 

454 540621.7 4814663 308.2351 SECTION_BECH_a 69 

619 540624 4814647 308.0061 SECTION_BECH_R 70 

460 540619.7 4814661 308.3016 SECTION_BECH_B 71 

463 540622.2 4814662 308.2018 SECTION_BECH_B 72 

503 540624.2 4814659 308.2371 SECTION_BECH_F 73 

593 540625.9 4814651 308.1635 SECTION_BECH_O 74 

496 540626.5 4814661 308.3017 SECTION_BECH_E 75 

634 540627 4814648 308.1028 SECTION_BECH_S 76 

541 540623.3 4814655 308.1832 SECTION_BECH_J 77 

572 540624.9 4814653 308.1352 SECTION_BECH_M 78 

456 540623.5 4814664 308.2532 SECTION_BECH_a 79 

465 540623.9 4814663 308.318 SECTION_BECH_B 80 

623 540626.3 4814648 308.0805 SECTION_BECH_R 81 

602 540625.6 4814650 308.169 SECTION_BECH_P 82 

505 540626.5 4814660 308.2907 SECTION_BECH_F 83 
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626 540628.7 4814649 308.2893 SECTION_BECH_R 84 

584 540626 4814652 308.1757 SECTION_BECH_N 85 

642 540626.9 4814646 308.0215 SECTION_BECH_T 86 

543 540624.7 4814656 308.2503 SECTION_BECH_J 87 

645 540628 4814647 308.1609 SECTION_BECH_T 88 

536 540627.6 4814658 308.3179 SECTION_BECH_I 89 

586 540628.3 4814653 308.2595 SECTION_BECH_N 90 

545 540626.3 4814656 308.3266 SECTION_BECH_J 91 

595 540627.7 4814652 308.3253 SECTION_BECH_O 92 

507 540618.3 4814656 308.2536 SECTION_BECH_G 93 

540 540622.5 4814655 308.1577 SECTION_BECH_J 94 

518 540619.7 4814656 308.2994 SECTION_BECH_H 95 

568 540621.7 4814651 308.137 SECTION_BECH_M 96 

640 540625.5 4814646 307.8291 SECTION_BECH_T 97 

467 540617.4 4814660 308.2618 SECTION_BECH_C 98 

557 540620.5 4814652 308.2024 SECTION_BECH_L 99 

478 540619.9 4814660 308.3016 SECTION_BECH_D 100 

512 540623.3 4814658 308.1879 SECTION_BECH_G 101 

553 540624.9 4814655 308.1937 SECTION_BECH_K 102 

607 540622.2 4814647 308.1636 SECTION_BECH_Q 103 

643 540627.3 4814647 308.084 SECTION_BECH_T 104 

490 540620.8 4814659 308.3027 SECTION_BECH_E 105 

529 540621.2 4814655 308.2755 SECTION_BECH_I 106 

618 540623.3 4814647 308.1207 SECTION_BECH_R 107 

479 540620.9 4814660 308.2725 SECTION_BECH_D 108 

579 540622.9 4814651 308.1315 SECTION_BECH_N 109 

621 540625.2 4814648 308.0404 SECTION_BECH_R 110 

544 540625.3 4814656 308.2265 SECTION_BECH_J 111 

481 540622.3 4814661 308.2046 SECTION_BECH_D 112 

472 540622.8 4814661 308.2014 SECTION_BECH_C 113 

474 540624.4 4814662 308.3547 SECTION_BECH_C 114 

483 540623.8 4814661 308.3014 SECTION_BECH_D 115 

571 540624.3 4814653 308.1864 SECTION_BECH_M 116 

585 540627.1 4814653 308.3729 SECTION_BECH_N 117 

590 540623.7 4814650 308.0927 SECTION_BECH_O 118 

535 540626.3 4814657 308.2854 SECTION_BECH_I 119 

616 540628.6 4814650 308.291 SECTION_BECH_Q 120 

622 540625.7 4814648 308.0655 SECTION_BECH_R 121 

521 540622.6 4814657 308.1731 SECTION_BECH_H 122 

486 540626.1 4814662 308.3361 SECTION_BECH_D 123 

594 540626.4 4814651 308.1993 SECTION_BECH_O 124 

576 540628.2 4814654 308.2388 SECTION_BECH_M 125 

562 540624.5 4814654 308.1669 SECTION_BECH_L 126 



 

148 

 

629 540624.1 4814646 307.9883 SECTION_BECH_S 127 

526 540627.2 4814658 308.3294 SECTION_BECH_H 128 

635 540627.5 4814648 308.1013 SECTION_BECH_S 129 

644 540627.7 4814647 308.1321 SECTION_BECH_T 130 

495 540625.4 4814660 308.2972 SECTION_BECH_E 131 

603 540626.2 4814650 308.179 SECTION_BECH_P 132 

549 540621.8 4814653 308.2387 SECTION_BECH_K 133 

599 540623.2 4814649 308.0575 SECTION_BECH_P 134 

538 540620.5 4814654 308.277 SECTION_BECH_J 135 

542 540623.8 4814655 308.1884 SECTION_BECH_J 136 

517 540618.6 4814655 308.2692 SECTION_BECH_H 137 

550 540622.8 4814654 308.1678 SECTION_BECH_K 138 

600 540623.8 4814649 308.0614 SECTION_BECH_P 139 

551 540623.6 4814654 308.1947 SECTION_BECH_K 140 

588 540622.1 4814649 308.0888 SECTION_BECH_O 141 

525 540625.9 4814658 308.3456 SECTION_BECH_H 142 

488 540619 4814658 308.2917 SECTION_BECH_E 143 

461 540620.3 4814662 308.2364 SECTION_BECH_B 144 

611 540625.1 4814649 308.0913 SECTION_BECH_Q 145 

470 540620.9 4814661 308.2849 SECTION_BECH_C 146 

513 540623.9 4814659 308.2289 SECTION_BECH_G 147 

563 540625.1 4814654 308.1971 SECTION_BECH_L 148 

604 540627.1 4814650 308.3436 SECTION_BECH_P 149 

473 540623.5 4814662 308.2762 SECTION_BECH_C 150 

554 540625.7 4814655 308.2116 SECTION_BECH_K 151 

499 540620.2 4814658 308.2974 SECTION_BECH_F 152 

592 540625.2 4814651 308.1608 SECTION_BECH_O 153 

455 540622.5 4814663 308.2039 SECTION_BECH_a 154 

502 540623.3 4814659 308.2346 SECTION_BECH_F 155 

636 540629.2 4814649 308.2995 SECTION_BECH_S 156 

504 540625.5 4814660 308.2738 SECTION_BECH_F 157 

577 540621.1 4814650 308.1996 SECTION_BECH_N 158 

516 540627.7 4814659 308.319 SECTION_BECH_G 159 

605 540627.9 4814651 308.3224 SECTION_BECH_P 160 

564 540625.6 4814654 308.1785 SECTION_BECH_L 161 

448 540617.5 4814662 308.2967 SECTION_BECH_a 162 

617 540622.5 4814646 308.1729 SECTION_BECH_R 163 

477 540618.6 4814659 308.2514 SECTION_BECH_D 164 

628 540623.6 4814646 308.0774 SECTION_BECH_S 165 

510 540621.5 4814658 308.2856 SECTION_BECH_G 166 

523 540623.9 4814657 308.2342 SECTION_BECH_H 167 

610 540624.3 4814648 308.0236 SECTION_BECH_Q 168 

459 540618.7 4814661 308.294 SECTION_BECH_B 169 
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589 540623.2 4814650 308.0689 SECTION_BECH_O 170 

625 540627.4 4814648 308.0803 SECTION_BECH_R 171 

552 540624.3 4814655 308.1828 SECTION_BECH_K 172 

646 540628.8 4814647 308.2755 SECTION_BECH_T 173 

575 540627.4 4814654 308.3831 SECTION_BECH_M 174 

528 540620.1 4814655 308.2993 SECTION_BECH_I 175 

596 540628.6 4814652 308.3696 SECTION_BECH_O 175 

566 540627.6 4814655 308.2749 SECTION_BECH_L 176 

501 540622.4 4814659 308.2005 SECTION_BECH_F 177 

476 540617.4 4814659 308.2703 SECTION_BECH_D 178 

462 540621.6 4814662 308.2184 SECTION_BECH_B 179 

464 540623 4814663 308.2515 SECTION_BECH_B 180 

578 540622 4814650 308.1621 SECTION_BECH_N 181 

560 540623.1 4814653 308.147 SECTION_BECH_L 182 

601 540625 4814649 308.1318 SECTION_BECH_P 183 

450 540619 4814662 308.2778 SECTION_BECH_a 184 

627 540623.3 4814645 308.0897 SECTION_BECH_S 185 

638 540624.2 4814645 308.0356 SECTION_BECH_T 186 

539 540621.5 4814654 308.2395 SECTION_BECH_J 187 

567 540620.8 4814651 308.1875 SECTION_BECH_M 188 

527 540619.1 4814654 308.2141 SECTION_BECH_I 189 

555 540626.6 4814655 308.3507 SECTION_BECH_K 190 

573 540625.5 4814653 308.1813 SECTION_BECH_M 191 

485 540625.2 4814662 308.4343 SECTION_BECH_D 192 

612 540625.7 4814649 308.1202 SECTION_BECH_Q 193 

613 540626.3 4814649 308.1023 SECTION_BECH_Q 194 
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Table A6a: Tracking Survey 1 – Site 1 

point # east north elev desc Rock # 

1717 538966.9 4812976 317.5746 1_001 1 

      1825 538967.9 4812984 317.4441 1_003 3 

1702 538971 4812974 317.4965 1_004 4 

1705 538973 4812975 317.5981 1_005 5 

      1753 538964.9 4813012 317.3564 1_007 7 

1674 538969.2 4812970 317.5347 1_008 8 

1850 538965.2 4812986 317.3862 1_009 9 

1729 538966.5 4812978 317.5617 1_010 10 

1773 538970.7 4812982 317.4595 1_011 11 

1763 538969 4812991 317.4433 1_012 12 

1755 538966.4 4813006 317.3985 1_013 13 

1851 538965.6 4812986 317.4505 1_014 14 

1727 538966.5 4812979 317.5386 1_015 15 

1750 538969.2 4812979 317.492 1_016 16 

1840 538967.3 4812987 317.4605 1_017 17 

1807 538970 4812984 317.4491 1_018 18 

1744 538972.1 4812980 317.5046 1_019 19 

1688 538971.1 4812973 317.4753 1_020 20 

1856 538966.1 4812983 317.4263 1_021 21 

1760 538965.9 4812996 317.4565 1_022 22 

1721 538966 4812975 317.548 1_023 23 

1818 538968.9 4812988 317.4196 1_024 24 

1830 538966.7 4812982 317.4743 1_025 25 

1690 538969.5 4812973 317.5253 1_026 26 

1806 538970.4 4812985 317.4594 1_027 27 

      1694 538966.7 4812972 317.5908 1_029 29 

      1766 538965.9 4812993 317.4705 1_031 31 

1683 538973.3 4812973 317.5268 1_032 32 

1673 538970.7 4812971 317.5277 1_033 33 

1699 538968.9 4812974 317.5416 1_034 34 

1677 538966.1 4812971 317.6277 1_035 35 

1765 538969.7 4812990 317.4317 1_036 36 

1770 538971.3 4812981 317.4476 1_037 37 

1670 538972.8 4812972 317.5565 1_038 38 

1733 538968 4812978 317.5188 1_039 39 
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      1708 538971.6 4812976 317.4735 1_042 42 

1668 538973.8 4812971 317.5802 1_043 43 

1718 538966.5 4812976 317.5461 1_044 44 

1767 538968.5 4812989 317.4503 1_045 45 

1667 538973.4 4812971 317.5437 1_046 46 

1698 538967.9 4812974 317.5364 1_047 47 

1711 538970.2 4812976 317.4772 1_048 48 

1676 538966.3 4812970 317.645 1_049 49 

1692 538969.2 4812973 317.518 1_050 50 

1808 538969.8 4812984 317.4789 1_051 51 

1669 538973.7 4812972 317.5639 1_052 52 

1722 538965.6 4812975 317.5854 1_053 53 

1776 538970.3 4812981 317.4499 1_054 54 

1764 538969.1 4812991 317.4513 1_055 55 

1707 538972.2 4812977 317.4965 1_056 56 

1738 538969.8 4812978 317.4539 1_057 57 

1828 538967.2 4812981 317.4978 1_058 58 

1778 538969.2 4812981 317.4722 1_059 59 

1842 538967.2 4812988 317.4664 1_060 60 

1761 538966.7 4812996 317.4359 1_061 61 

1796 538971.9 4812988 317.5091 1_062 62 

1775 538970.6 4812983 317.466 1_063 63 

1802 538970 4812986 317.4405 1_064 64 

1774 538970.7 4812983 317.4653 1_065 65 

1762 538967.5 4812994 317.4326 1_066 66 

1756 538966.5 4813002 317.3722 1_067 67 

1790 538971.1 4812985 317.4534 1_068 68 

1706 538972.5 4812976 317.5406 1_069 69 

1684 538972.8 4812973 317.5091 1_070 70 

1834 538967.2 4812985 317.4237 1_071 71 

1827 538966.9 4812981 317.5031 1_072 72 

1749 538969.4 4812980 317.4743 1_073 73 

1824 538967.8 4812985 317.4503 1_074 74 

1843 538966.4 4812987 317.4418 1_075 75 

1720 538967 4812975 317.566 1_076 76 

1728 538967.1 4812979 317.529 1_077 77 

1844 538966.5 4812987 317.4679 1_078 78 

1815 538969.3 4812986 317.4327 1_079 79 

1855 538966 4812983 317.4175 1_080 80 

1714 538968.3 4812975 317.5238 1_081 81 

1791 538971.7 4812985 317.4857 1_082 82 

1771 538972 4812982 317.5082 1_083 83 
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1700 538969.8 4812974 317.5099 1_084 84 

1854 538965.8 4812984 317.4168 1_085 85 

1737 538969.5 4812977 317.4794 1_086 86 

1703 538971.4 4812975 317.4749 1_087 87 

      1693 538967.3 4812973 317.5669 1_089 89 

1849 538964.7 4812986 317.4104 1_090 90 

1672 538971.3 4812971 317.5027 1_091 91 

1841 538967.6 4812988 317.4641 1_092 92 

1819 538968.3 4812988 317.4195 1_093 93 

1758 538964.8 4812999 317.4546 1_094 94 

1816 538969.2 4812988 317.4412 1_095 95 

1712 538970.6 4812975 317.4853 1_096 96 

1736 538968.7 4812977 317.4922 1_097 97 

1804 538970.4 4812985 317.4725 1_098 98 

1787 538971.4 4812984 317.4666 1_099 99 

1823 538967.7 4812985 317.4479 1_100 100 

1780 538968.9 4812982 317.4673 1_101 101 

1837 538967 4812986 317.4523 1_102 102 

1726 538966 4812979 317.5479 1_103 103 

1811 538969.6 4812985 317.4924 1_104 104 

1740 538971 4812978 317.4649 1_105 105 

1719 538966.6 4812975 317.5591 1_106 106 

1779 538968.1 4812981 317.4534 1_107 107 

1793 538971.2 4812986 317.5137 1_108 108 

1701 538970.1 4812974 317.4968 1_109 109 

1785 538971.8 4812984 317.5069 1_110 110 

1838 538966.9 4812987 317.4812 1_111 111 

1747 538970.4 4812979 317.4508 1_112 112 

1716 538967.6 4812976 317.5683 1_113 113 

1792 538971.8 4812986 317.5174 1_114 114 

1687 538971.5 4812973 317.4882 1_115 115 

1696 538966.1 4812974 317.5752 1_116 116 

1752 538968.4 4812980 317.4943 1_117 117 

1832 538966.6 4812984 317.4423 1_118 118 

1754 538965.4 4813009 317.3447 1_119 119 

1724 538965.2 4812978 317.5825 1_120 120 

1801 538970.3 4812987 317.4414 1_121 121 

1759 538966.5 4812998 317.4267 1_122 122 

1822 538968.4 4812986 317.4613 1_123 123 

1809 538969.4 4812984 317.4778 1_124 124 

1833 538966.7 4812984 317.4314 1_125 125 

1846 538964.7 4812987 317.4158 1_126 126 
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1845 538965.6 4812987 317.4347 1_127 127 

1686 538972 4812973 317.5106 1_128 128 

1691 538968.8 4812973 317.5196 1_129 129 

1742 538972 4812978 317.494 1_130 130 

1831 538966.6 4812983 317.4384 1_131 131 

1682 538972.7 4812973 317.5309 1_132 132 

1812 538968.9 4812985 317.4273 1_133 133 

1704 538972.4 4812975 317.5044 1_134 134 

1852 538966.1 4812985 317.4193 1_135 135 

1817 538969.5 4812988 317.4441 1_136 136 

1777 538969.8 4812981 317.4946 1_137 137 

1772 538970.8 4812981 317.457 1_138 138 

1803 538970.6 4812986 317.4745 1_139 139 

1734 538968.3 4812979 317.5088 1_140 140 

1741 538971.6 4812978 317.4914 1_141 141 

1810 538969.4 4812984 317.4766 1_142 142 

1680 538969.8 4812972 317.5238 1_143 143 

1839 538967 4812987 317.4456 1_144 144 

1725 538966 4812978 317.5829 1_145 145 

1732 538967.5 4812978 317.5293 1_146 146 

1805 538969.9 4812986 317.4513 1_147 147 

1751 538968.8 4812980 317.461 1_148 148 

1788 538971.9 4812984 317.4984 1_149 149 

1723 538965.3 4812977 317.5607 1_150 150 

1715 538968 4812976 317.5417 1_151 151 

1783 538969.8 4812983 317.4676 1_152 152 

1789 538971.4 4812985 317.4629 1_153 153 

1847 538964.8 4812987 317.4192 1_154 154 

1829 538966.9 4812982 317.4936 1_155 155 

1689 538970.3 4812973 317.4879 1_156 156 

1710 538970.7 4812976 317.5046 1_157 157 

1745 538971.3 4812980 317.5102 1_158 158 

1713 538968.9 4812976 317.4962 1_159 159 

1675 538967.6 4812970 317.55 1_160 160 

1678 538967.1 4812972 317.563 1_161 161 

1857 538965.9 4812982 317.4275 1_162 162 

1794 538971.7 4812987 317.4898 1_163 163 

1746 538970.8 4812980 317.4586 1_164 164 

1848 538965.5 4812986 317.4191 1_165 165 

1679 538968 4812972 317.4903 1_166 166 

1671 538971.9 4812972 317.5173 1_167 167 

1666 538973.6 4812970 317.5774 1_168 168 

1739 538970.2 4812978 317.4954 1_169 169 
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1769 538965.7 4812988 316.8516 1_170 170 

1685 538973 4812974 317.5039 1_171 171 

1814 538969.6 4812986 317.4653 1_172 172 

1730 538967 4812978 317.5374 1_173 173 

      1799 538971 4812988 317.4539 1_175 175 

1797 538970.8 4812989 317.4208 1_176 176 

1757 538966.1 4813001 317.4208 1_177 177 

1735 538968.6 4812978 317.488 1_178 178 

1695 538966.2 4812973 317.5662 1_179 179 

1835 538967 4812985 317.4531 1_180 180 

1836 538966.8 4812986 317.4338 1_181 181 

1782 538970 4812982 317.4938 1_182 182 

1853 538964.9 4812984 317.3844 1_183 183 

1795 538971.6 4812987 317.4669 1_184 184 

1820 538968 4812987 317.4484 1_185 185 

1821 538968.1 4812986 317.4734 1_186 186 

1681 538970.9 4812972 317.4876 1_187 187 

1798 538971 4812988 317.4369 1_188 188 

1781 538969.2 4812983 317.4823 1_189 189 

1859 538965.6 4812981 317.4974 1_190 190 

1748 538969.9 4812980 317.4548 1_191 191 

1800 538970.4 4812988 317.4414 1_192 192 

1697 538966.9 4812974 317.5765 1_193 193 

1784 538971.7 4812983 317.4823 1_194 194 

1813 538969.1 4812986 317.4632 1_195 195 

1858 538965.6 4812981 317.5006 1_196 196 

1743 538971.2 4812979 317.4706 1_197 197 

1826 538968.2 4812983 317.4534 1_198 198 

1731 538967 4812977 317.5687 1_199 199 

1786 538971.1 4812984 317.4876 1_200 200 
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Table A6b: Tracking Survey 1 – Site 2 

point # east north elev desc Rock # In stream (*) 

1237 539222.0 4814288.0 315.083 2_001* 1 * 

1215 539220.6 4814277.4 315.2325 2_002* 2 * 

1098 539216.2 4814275.0 315.1693 2_003 3 
 1247 539218.7 4814293.6 315.1183 2_004* 4 * 

1243 539218.4 4814290.2 315.2124 2_005* 5 * 

       1131 539221.4 4814281.8 315.173 2_007 7 
 1209 539224.2 4814275.1 315.3472 2_008* 8 * 

1101 539220.7 4814274.5 315.2399 2_009 9 
 1122 539219.6 4814281.2 315.207 2_010 10 
 1107 539218.0 4814272.2 315.1795 2_011 11 
 

       1189 539220.0 4814270.8 315.2581 2_013* 13 * 

1198 539217.3 4814272.0 315.2213 2_014* 14 * 

1173 539215.0 4814269.3 315.2903 2_015* 15 * 

       1221 539223.6 4814278.7 315.2524 2_017* 17 * 

1217 539217.8 4814278.3 315.2529 2_018* 18 * 

1211 539218.3 4814277.3 315.2032 2_019* 19 * 

1212 539217.0 4814277.8 315.2598 2_020* 20 * 

1188 539221.2 4814270.5 315.2448 2_021* 21 * 

1201 539216.9 4814273.6 315.2114 2_022* 22 * 

1193 539222.4 4814270.6 315.1302 2_023* 23 * 

1132 539220.7 4814281.6 315.2025 2_024 24 
 1218 539223.0 4814278.9 315.2252 2_025* 25 * 

1185 539220.7 4814269.8 315.2713 2_026* 26 * 

       

       1236 539219.0 4814286.4 315.2762 2_029* 29 * 

1241 539220.8 4814290.1 315.1538 2_030* 30 * 

1246 539220.1 4814293.2 315.1115 2_031* 31 * 

1205 539217.0 4814274.3 315.2131 2_032* 32 * 

1214 539219.8 4814277.5 315.2631 2_033* 33 * 

1162 539218.8 4814269.9 315.2213 2_034 34 
 

       

       1180 539220.8 4814267.6 315.2833 2_037* 37 * 

1130 539222.3 4814280.2 315.0131 2_038 38 
 1183 539219.8 4814268.9 315.2336 2_039* 39 * 

1229 539222.4 4814282.0 315.2354 2_040* 40 * 
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1187 539223.3 4814270.0 315.3744 2_041* 41 * 

1235 539222.6 4814286.6 314.9892 2_042* 42 * 

1106 539217.2 4814271.7 315.2227 2_043 43 
 1251 539222.0 4814295.9 315.2542 2_044* 44 * 

1216 539224.3 4814276.6 315.2728 2_045* 45 * 

       1179 539223.3 4814267.9 315.3287 2_047* 47 * 

1197 539215.8 4814272.2 315.2298 2_048* 48 * 

1208 539220.6 4814274.1 315.2379 2_049 49 
 1244 539218.8 4814290.9 315.1819 2_050* 50 * 

1176 539218.1 4814268.7 315.228 2_051* 51 * 

1203 539221.5 4814272.7 315.3136 2_052* 52 * 

1171 539222.3 4814271.5 315.3022 2_053* 53 * 

1077 539223.2 4814267.0 315.277 2_054 54 
 1186 539222.1 4814269.8 315.2532 2_055* 55 * 

1182 539220.8 4814269.2 315.2504 2_056* 56 * 

1192 539223.4 4814270.7 315.3337 2_057* 57 * 

1068 539218.0 4814269.0 315.2608 2_058 58 
 1149 539220.4 4814285.9 315.1481 2_059 59 
 1200 539217.0 4814273.3 315.2488 2_060* 60 * 

1151 539217.9 4814290.7 315.2766 2_061 61 
 1231 539219.9 4814283.7 315.284 2_062* 62 * 

1174 539216.5 4814269.2 315.2246 2_063* 63 * 

1191 539218.8 4814270.0 315.257 2_064* 64 * 

1222 539217.9 4814278.9 315.2826 2_065* 65 * 

1172 539215.5 4814268.9 315.2724 2_066* 66 * 

1105 539217.2 4814271.1 315.2491 2_067 67 
 1125 539221.8 4814282.1 315.2232 2_068 68 
 1206 539215.9 4814274.5 315.2164 2_069* 69 * 

1103 539219.4 4814272.5 315.1758 2_070 70 
 1245 539218.5 4814292.7 315.248 2_071* 71 * 

1202 539218.9 4814273.1 315.2401 2_072* 72 * 

1232 539218.6 4814284.1 315.2047 2_073* 73 * 

1233 539219.7 4814284.4 315.1507 2_074* 74 * 

       

       1177 539222.1 4814267.6 315.2078 2_077* 77 * 

1195 539218.2 4814271.4 315.2479 2_078* 78 * 

1234 539222.9 4814286.2 315.0135 2_079* 79 * 

1100 539219.9 4814275.5 315.207 2_080 80 
 

       

       1210 539219.2 4814276.9 315.1952 2_083* 83 * 
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1238 539222.4 4814288.4 315.1255 2_084* 84 * 

1249 539219.9 4814295.7 315.1975 2_085* 85 * 

1225 539223.1 4814279.9 315.2391 2_086* 86 * 

1248 539219.1 4814295.6 315.2162 2_087* 87 * 

1219 539223.6 4814278.3 315.2308 2_088* 88 * 

1194 539220.6 4814271.4 315.2727 2_089* 89 * 

1199 539220.1 4814272.3 315.2294 2_090* 90 * 

1126 539220.8 4814282.2 315.2072 2_091 91 
 1253 539220.3 4814293.7 315.1248 2_092* 92 * 

1169 539217.2 4814299.0 315.2557 2_093 93 
 1078 539222.3 4814269.3 315.3024 2_094 94 
 1223 539218.2 4814279.9 315.2746 2_095* 95 * 

1181 539219.0 4814269.4 315.2558 2_096* 96 * 

1089 539215.8 4814274.3 315.152 2_097 97 
 1213 539218.9 4814277.7 315.2373 2_098* 98 * 

1178 539223.2 4814267.6 315.4327 2_099* 99 * 

1239 539219.7 4814289.4 315.1884 2_100* 100 * 

1175 539217.0 4814269.2 315.2592 2_101* 101 * 

1069 539219.8 4814269.8 315.2307 2_102 102 
 1134 539221.8 4814283.2 315.2005 2_103 103 
 1220 539223.9 4814278.3 315.2721 2_104* 104 * 

       1118 539220.6 4814278.4 315.2124 2_106 106 
 1190 539215.1 4814271.2 315.3616 2_107* 107 * 

1147 539222.9 4814288.2 315.0967 2_108 108 
 1137 539219.3 4814284.5 315.1618 2_109 109 
 1227 539222.6 4814281.3 315.2228 2_110* 110 * 

1148 539217.6 4814287.9 315.3884 2_111 111 
 1226 539218.0 4814281.7 315.2276 2_112* 112 * 

1102 539221.7 4814273.9 315.2893 2_113 113 
 1093 539222.4 4814272.8 315.2912 2_114 114 
 1128 539220.2 4814279.7 315.1845 2_115 115 
 1240 539219.3 4814289.5 315.1878 2_116* 116 * 

1224 539223.6 4814279.5 315.1614 2_117* 117 * 

1121 539221.4 4814280.5 315.2181 2_118 118 
 1092 539219.9 4814273.3 315.2167 2_119 119 
 1250 539220.8 4814295.9 315.2802 2_120* 120 * 

1207 539216.4 4814274.7 315.2108 2_121* 121 * 

1080 539220.6 4814270.4 315.275 2_122 122 
 1170 539223.4 4814271.7 315.3243 2_123* 123 * 

1139 539219.3 4814286.4 315.2862 2_124 124 
 1242 539222.2 4814290.4 315.1291 2_125* 125 * 

1099 539218.0 4814275.9 315.1662 2_126 126 
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1083 539218.3 4814272.9 315.2493 2_127 127 
 1252 539217.3 4814297.4 315.2754 2_128* 128 * 

1104 539218.1 4814270.3 315.2194 2_129 129 
 1079 539221.2 4814269.6 315.2918 2_130 130 
 1196 539216.9 4814271.7 315.2444 2_131* 131 * 

1152 539217.8 4814292.8 315.2463 2_132 132 
 1096 539219.1 4814275.7 315.2168 2_133 133 
 1184 539218.0 4814269.1 315.2715 2_134* 134 * 

1086 539221.2 4814271.1 315.2262 2_135 135 
 1084 539217.2 4814272.6 315.2427 2_136 136 
 1163 539221.8 4814277.3 315.2071 2_137 137 
 1091 539218.3 4814275.9 315.14 2_138 138 
 1087 539216.3 4814274.1 315.1855 2_139 139 
 1067 539216.3 4814268.5 315.2618 2_140 140 
 1146 539220.5 4814288.2 315.1346 2_141 141 
 1204 539223.6 4814272.8 315.4517 2_142* 142 * 

1112 539222.7 4814275.2 315.324 2_143 143 
 1161 539220.5 4814269.1 315.2119 2_144 144 
 1141 539222.0 4814286.1 315.0405 2_145 145 
 1140 539217.8 4814285.6 315.2485 2_146 146 
 1136 539218.7 4814285.6 315.2778 2_147 147 
 1159 539219.9 4814268.0 315.2069 2_148 148 
 1108 539219.4 4814279.0 315.2115 2_149 149 
 1115 539218.5 4814277.7 315.208 2_150 150 
 1119 539221.0 4814277.2 315.2331 2_151 151 
 1160 539222.4 4814269.6 315.2998 2_152 152 
 1230 539220.4 4814282.8 315.3255 2_153* 153 * 

1157 539217.2 4814295.9 315.2264 2_154 154 
 1070 539218.6 4814271.5 315.2339 2_155 155 
 1109 539220.5 4814277.4 315.2213 2_156 156 
 1153 539217.7 4814292.9 315.2553 2_157 157 
 1135 539218.9 4814285.9 315.2997 2_158 158 
 1085 539215.6 4814273.0 315.1987 2_159 159 
 1165 539224.5 4814281.4 315.2853 2_160 160 
 1066 539222.2 4814266.3 315.3587 2_161 161 
 1164 539217.2 4814278.8 315.2675 2_162 162 
 1166 539222.6 4814290.6 315.183 2_163 163 
 1076 539221.3 4814267.5 315.2446 2_164 164 
 1116 539218.5 4814279.2 315.2812 2_165 165 
 1064 539217.2 4814268.9 315.2309 2_166 166 
 1074 539219.7 4814271.4 315.1825 2_167 167 
 1113 539219.6 4814277.3 315.2257 2_168 168 
 1145 539221.0 4814287.8 315.0969 2_169 169 
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1150 539218.3 4814289.7 315.2528 2_170 170 
 1124 539219.0 4814280.6 315.2299 2_171 171 
 1127 539222.5 4814283.1 315.2416 2_172 172 
 1081 539223.2 4814268.8 315.3671 2_173 173 
 1065 539218.7 4814268.4 315.2688 2_174 174 
 1158 539215.0 4814270.3 315.3225 2_175 175 
 1088 539217.7 4814273.8 315.1987 2_176 176 
 1167 539221.7 4814293.2 315.1277 2_177 177 
 1168 539216.4 4814296.1 315.3363 2_178 178 
 1071 539220.5 4814272.0 315.2141 2_179 179 
 1095 539222.6 4814273.8 315.3179 2_180 180 
 1111 539221.5 4814275.6 315.2495 2_181 181 
 1120 539221.7 4814278.8 315.2054 2_182 182 
 1097 539216.5 4814276.0 315.1571 2_183 183 
 1117 539220.3 4814279.8 315.2175 2_184 184 
 1154 539222.2 4814293.3 315.2254 2_185 185 
 1114 539217.5 4814277.8 315.1734 2_186 186 
 1082 539220.8 4814267.1 315.2166 2_187 187 
 1156 539220.9 4814296.2 315.2319 2_188 188 
 1228 539223.8 4814281.7 315.2375 2_189* 189 * 

1143 539219.0 4814287.8 315.262 2_190 190 
 1075 539216.1 4814270.7 315.2312 2_191 191 
 1138 539221.2 4814286.1 315.077 2_192 192 
 1094 539223.5 4814273.8 315.4158 2_193 193 
 1133 539217.9 4814283.3 315.2266 2_194 194 
 1129 539223.8 4814280.0 315.2396 2_195 195 
 1155 539221.4 4814296.2 315.2575 2_196 196 
 1110 539221.0 4814278.8 315.2138 2_197 197 
 1073 539216.9 4814272.7 315.2481 2_198 198 
 1144 539219.2 4814288.2 315.2401 2_199 199 
 1142 539218.3 4814287.6 315.2997 2_200 200 
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Table A6c: Tracking Survey 1 – Site 3 

point # east north elev desc Rock # In stream (*) 

1367 539329.4 4814781 313.4033 3_001* 1 * 

1364 539328.7 4814780 313.3895 3_002* 2 * 

1453 539355.9 4814812 313.3251 3_003* 3 * 

1410 539335.8 4814791 313.3952 3_004* 4 * 

       1425 539341.9 4814793 313.3162 3_006* 6 * 

       1363 539327.7 4814781 313.4872 3_008* 8 * 

1350 539331.6 4814792 313.4043 3_009 9 
 1449 539353.1 4814809 313.3275 3_010* 10 * 

1398 539332.6 4814791 313.3944 3_011* 11 * 

1394 539333.7 4814788 313.5918 3_012* 12 * 

       1356 539324 4814781 313.4937 3_014* 14 * 

1361 539326.5 4814781 313.5292 3_015* 15 * 

1436 539353.2 4814801 313.1234 3_016* 16 * 

1437 539354.6 4814802 313.2819 3_017* 17 * 

1388 539331.3 4814788 313.4959 3_018* 18 * 

       1343 539331.7 4814787 313.5731 3_020 20 
 1255 539323.2 4814784 313.4393 3_021 21 
 1377 539331.5 4814782 313.2986 3_022* 22 * 

1427 539342.3 4814794 313.3505 3_023* 23 * 

1390 539330.3 4814792 313.4613 3_024* 24 * 

1444 539348.9 4814805 313.2872 3_025* 25 * 

1391 539331.2 4814790 313.4001 3_026* 26 * 

1381 539327.9 4814788 313.4201 3_027* 27 * 

1401 539333.8 4814790 313.4199 3_028* 28 * 

1409 539336.9 4814789 313.5288 3_029* 29 * 

       1376 539328 4814786 313.5183 3_031* 31 * 

1382 539331.2 4814787 313.586 3_032* 32 * 

1369 539326.1 4814785 313.5158 3_033* 33 * 

1405 539336.9 4814787 313.5069 3_034* 34 * 

1451 539361.1 4814818 313.3464 3_035* 35 * 

1375 539326.7 4814788 313.461 3_036* 36 * 

1359 539324 4814785 313.449 3_037* 37 * 

1322 539324.4 4814783 313.4958 3_038 38 
 1355 539321.6 4814781 313.4681 3_039* 39 * 

1360 539326.2 4814783 313.5718 3_040* 40 * 
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1387 539330.5 4814788 313.4681 3_041* 41 * 

1258 539322.3 4814779 313.424 3_042 42 
 1415 539335.1 4814792 313.3722 3_043* 43 * 

1450 539359 4814816 313.3825 3_044* 44 * 

1368 539329.9 4814780 313.3507 3_045* 45 * 

1442 539344 4814794 313.381 3_046* 46 * 

1365 539329.1 4814780 313.4327 3_047* 47 * 

1423 539338.4 4814793 313.2582 3_048* 48 * 

       1431 539347.8 4814801 313.2853 3_050* 50 * 

1429 539344.4 4814797 313.273 3_051* 51 * 

1386 539333.8 4814786 313.4673 3_052* 52 * 

1338 539329.9 4814789 313.419 3_053 53 
 1419 539338.5 4814791 313.3963 3_054* 54 * 

1417 539336.3 4814791 313.3519 3_055* 55 * 

1454 539368.2 4814825 313.3104 3_056* 56 * 

1393 539332.9 4814789 313.5432 3_057* 57 * 

1316 539338 4814790 313.4304 3_058 58 
 1392 539332.1 4814790 313.4782 3_059* 59 * 

1324 539325.1 4814783 313.5523 3_060 60 
 

       1406 539337.3 4814787 313.5129 3_062* 62 * 

1407 539338.3 4814788 313.4735 3_063* 63 * 

1328 539325.1 4814782 313.5383 3_064 64 
 1430 539345.8 4814799 313.2827 3_065* 65 * 

1380 539328.8 4814788 313.4422 3_066* 66 * 

       1408 539337.7 4814789 313.5353 3_068* 68 * 

1372 539326.7 4814786 313.491 3_069* 69 * 

1402 539334.1 4814791 313.374 3_070* 70 * 

1389 539329.7 4814791 313.4397 3_071* 71 * 

1421 539336.9 4814792 313.3346 3_072* 72 * 

1354 539321.9 4814779 313.4268 3_073* 73 * 

1260 539320.4 4814780 313.4499 3_074 74 
 1420 539337.6 4814791 313.3729 3_075* 75 * 

1357 539321.8 4814783 313.515 3_076* 76 * 

1397 539332.4 4814792 313.4402 3_077* 77 * 

1333 539329.8 4814786 313.5436 3_078 78 
 1418 539338.4 4814790 313.3968 3_079* 79 * 

1413 539334.3 4814792 313.3554 3_080* 80 * 

1345 539333.1 4814790 313.4571 3_081 81 
 1432 539351.2 4814798 313.2126 3_082* 82 * 

1371 539325.5 4814787 313.5039 3_083* 83 * 
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1320 539323.1 4814780 313.4202 3_084 84 
 1399 539333.7 4814789 313.5326 3_085* 85 * 

1411 539335.2 4814790 313.471 3_086* 86 * 

1256 539323.6 4814783 313.4596 3_087 87 
 1412 539334 4814792 313.3774 3_088* 88 * 

1374 539326.8 4814787 313.4181 3_089* 89 * 

1319 539322.4 4814780 313.4146 3_090 90 
 1362 539327.2 4814782 313.5461 3_091* 91 * 

1336 539328.9 4814790 313.4732 3_092 92   

1452 539361.8 4814818 313.3452 3_093* 93 * 

1347 539332.3 4814790 313.4341 3_094 94 
 1384 539334 4814784 313.3091 3_095* 95 * 

1447 539353.8 4814808 313.2866 3_096* 96 * 

1301 539333 4814787 313.5711 3_097 97 
 1373 539327 4814786 313.4342 3_098* 98 * 

       1379 539329.6 4814787 313.5076 3_100* 100 * 

1339 539344.5 4814799 313.2155 3_101 101 
 1448 539354.2 4814809 313.2862 3_102* 102 * 

1428 539344.1 4814794 313.3373 3_103* 103 * 

1424 539340.8 4814792 313.2692 3_104* 104 * 

1445 539352.7 4814806 313.2869 3_105* 105 * 

1403 539333 4814792 313.3968 3_106* 106 * 

1337 539329.3 4814790 313.4049 3_107 107 
 1346 539334.7 4814790 313.4935 3_108 108 
 1342 539331.2 4814787 313.5448 3_109 109 
 1400 539336.7 4814787 313.479 3_110* 110 * 

1351 539330.9 4814790 313.3821 3_111 111 
 1321 539323.3 4814781 313.4484 3_112 112 
 1335 539328.1 4814790 313.4337 3_113 113 
 1370 539325 4814786 313.483 3_114* 114 * 

1366 539329.6 4814780 313.3525 3_115* 115 * 

1414 539335.6 4814792 313.347 3_116* 116 * 

       1383 539333 4814785 313.4551 3_118* 118 * 

1327 539326.8 4814780 313.397 3_119 119 
 1395 539333 4814790 313.4272 3_120* 120 * 

1378 539328.7 4814787 313.4791 3_121* 121 * 

1340 539326.6 4814783 313.5673 3_122 122 
 1422 539338.5 4814792 313.326 3_123* 123 * 

1341 539327.8 4814784 313.5568 3_124 124 
 1358 539323 4814783 313.4379 3_125* 125 * 

1267 539326.7 4814779 313.3812 3_126 126 
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1266 539326.7 4814778 313.3274 3_127 127 
 1325 539327.2 4814783 313.5333 3_128 128 
 1323 539325.5 4814782 313.5654 3_129 129 
 1330 539326.2 4814786 313.381 3_130 130 
 1416 539335.6 4814793 313.3872 3_131* 131 * 

1329 539322.4 4814782 313.425 3_132 132 
 1396 539331 4814792 313.4747 3_133* 133 * 

1273 539327.9 4814780 313.3867 3_133 133 
 1314 539332.7 4814793 313.4758 3_134 134 
 1274 539326 4814782 313.5715 3_135 135 
 1307 539335.2 4814787 313.4979 3_136 136 
 1385 539334.8 4814784 313.3792 3_137* 137 * 

1275 539324.6 4814783 313.56 3_138 138 
 1304 539334.6 4814786 313.4323 3_139 139 
 1331 539328 4814787 313.3924 3_140 140 
 1297 539333.6 4814789 313.5571 3_141 141 
 1294 539332.2 4814789 313.5499 3_142 142 
 1284 539331.3 4814784 313.4937 3_143 143 
 1259 539321.3 4814779 313.4634 3_144 144 
 1278 539326.3 4814784 313.5682 3_145 145 
 1334 539331.5 4814781 313.2083 3_146 146 
 1310 539333.3 4814786 313.4942 3_147 147 
 1344 539333.8 4814788 313.5414 3_148 148 
 1426 539340.7 4814795 313.2738 3_149* 149 * 

1276 539324.8 4814785 313.4588 3_150 150 
 1352 539331.5 4814790 313.3416 3_151 151 
 1268 539327.8 4814779 313.3682 3_152 152 
 1285 539331.7 4814783 313.3059 3_153 153 
 1348 539330.8 4814791 313.3981 3_154 154 
 1280 539325.4 4814786 313.4568 3_155 155 
 1290 539330.5 4814786 313.5573 3_156 156 
 1289 539329.9 4814786 313.5559 3_157 157 
 1332 539329.1 4814787 313.4626 3_158 158 
 1272 539327.4 4814780 313.4733 3_159 159 
 1269 539323.6 4814780 313.4764 3_160 160   

1263 539325.6 4814778 313.3439 3_161 161 
 1279 539326.7 4814785 313.5553 3_162 162 
 1281 539330.7 4814782 313.3937 3_163 163 
 1261 539321.9 4814781 313.4844 3_164 164 
 1288 539328.6 4814788 313.4231 3_165 165 
 1262 539323.6 4814779 313.3588 3_166 166 
 1264 539325.7 4814778 313.3362 3_167 167 
 1326 539327.3 4814782 313.467 3_168 168 
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1271 539323.2 4814780 313.4789 3_169 169 
 1318 539328.1 4814782 313.4855 3_170 170 
 1308 539335.6 4814790 313.531 3_171 171 
 1265 539326.7 4814777 313.338 3_172 172 
 1293 539327.5 4814789 313.4252 3_173 173 
 1309 539336 4814788 313.4967 3_174 174 
 1295 539328.8 4814789 313.4494 3_175 175 
 1298 539329.2 4814786 313.5524 3_176 176 
 1306 539336.2 4814787 313.4791 3_177 177 
 1349 539331.7 4814792 313.4716 3_178 178 
 1404 539333.1 4814793 313.4544 3_179* 179 * 

1317 539337.6 4814789 313.5103 3_180 180   

1299 539333.5 4814784 313.2645 3_181 181 
 1283 539330.7 4814783 313.4231 3_182 182 
 1303 539333.4 4814791 313.3879 3_183 183 
 1302 539332.8 4814787 313.5639 3_184 184 
 

       1270 539322.9 4814782 313.5016 3_186 186 
 1313 539338.2 4814789 313.4699 3_187 187 
 1296 539333.3 4814789 313.5284 3_188 188 
 1282 539331.4 4814781 313.2764 3_189 189 
 1291 539331.1 4814786 313.5486 3_190 190 
 1300 539333.7 4814785 313.3618 3_191 191 
 1292 539329.9 4814788 313.476 3_192 192 
 1257 539323.6 4814777 313.3124 3_193 193 
 1287 539327.6 4814788 313.3871 3_194 194 
 1311 539337.3 4814789 313.507 3_195 195 
 1312 539330.1 4814790 313.4164 3_196 196 
 1277 539325.7 4814784 313.5545 3_197 197 
 1315 539332.4 4814790 313.3842 3_198 198 
 1286 539326.3 4814788 313.491 3_199 199 
 1305 539331.8 4814791 313.3857 3_200 200 
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Table A6d: Tracking Survey 1 – Site 4 

point # east north elev desc Rock # 

1537 540618 4814660 308.2415 4_001 1 

1473 540623.2 4814656 308.1601 4_002 2 

1480 540619.5 4814657 308.3056 4_003 3 

1635 540621.5 4814648 308.161 4_004 4 

1521 540627.9 4814642 307.7864 4_005 5 

1529 540658.4 4814622 308.0344 4_006 6 

1482 540618.9 4814656 308.2643 4_007 7 

1626 540623 4814651 308.1455 4_008 8 

1544 540621.4 4814659 308.2655 4_009 9 

1560 540621.7 4814659 308.2644 4_010 10 

      1522 540629.2 4814642 307.6989 4_012 12 

1501 540624.8 4814650 308.1105 4_013 13 

1493 540622.6 4814651 308.1361 4_014 14 

1536 540618.4 4814660 308.269 4_015 15 

1510 540626.9 4814649 308.1284 4_016 16 

1623 540620 4814653 308.2232 4_017 17 

      1609 540627.2 4814653 308.4102 4_019 19 

1513 540626.1 4814647 308.0059 4_020 20 

1464 540623.8 4814662 308.2965 4_021 21 

1533 540621.4 4814662 308.2419 4_022 22 

1550 540625.6 4814663 308.3336 4_023 23 

1561 540621.9 4814658 308.2395 4_024 24 

1557 540624.5 4814661 308.3028 4_025 25 

1559 540622.6 4814659 308.2236 4_026 26 

1528 540656.7 4814623 308.0673 4_027 27 

1524 540637.4 4814633 307.585 4_028 28 

1578 540623.6 4814655 308.1784 4_029 29 

1498 540625.3 4814651 308.1409 4_030 30 

1628 540625.5 4814651 308.204 4_031 31 

1617 540629 4814649 308.316 4_032 32 

1576 540624.1 4814656 308.1962 4_033 33 

      1577 540623.9 4814656 308.1988 4_035 35 

1527 540641.4 4814630 307.5237 4_036 36 

1470 540625.8 4814659 308.2835 4_037 37 

1616 540628.1 4814649 308.2866 4_038 38 

1607 540627 4814653 308.3276 4_039 39 

1661 540626.5 4814646 307.9243 4_040 40 
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1602 540627.7 4814655 308.2786 4_041 41 

1587 540624.6 4814655 308.2062 4_042 42 

1598 540625.8 4814657 308.3067 4_043 43 

1486 540622.2 4814655 308.2183 4_044 44 

1569 540619.9 4814656 308.2832 4_045 45 

1542 540617.1 4814660 308.2574 4_046 46 

1518 540626.3 4814645 307.7474 4_047 47 

1479 540619.2 4814658 308.2937 4_048 48 

1564 540618.4 4814657 308.2721 4_049 49 

1566 540621.4 4814658 308.2915 4_050 50 

1572 540622.8 4814657 308.1768 4_051 51 

1643 540623 4814648 308.1022 4_052 52 

1565 540620.3 4814657 308.2865 4_053 53 

1490 540620.3 4814653 308.2116 4_054 54 

1467 540624.3 4814660 308.3046 4_055 55 

1485 540621 4814655 308.3143 4_056 56 

1456 540618.4 4814661 308.2871 4_057 57 

1662 540624.3 4814644 308.0992 4_058 58 

1523 540633.1 4814637 307.7241 4_059 59 

1472 540623.6 4814656 308.1978 4_060 60 

1627 540623.4 4814651 308.142 4_061 61 

1584 540624.8 4814656 308.2369 4_062 62 

1502 540624.5 4814650 308.0961 4_063 63 

1642 540623.4 4814648 308.0232 4_064 64 

      1555 540623.3 4814660 308.283 4_066 66 

1516 540626.1 4814644 307.7812 4_067 67 

1659 540625 4814645 307.8751 4_068 68 

1532 540622.2 4814664 308.1793 4_069 69 

1665 540685.6 4814605 307.9664 4_070 70 

1487 540622.1 4814656 308.26 4_071 71 

1460 540622.3 4814662 308.1892 4_072 72 

1567 540624.2 4814659 308.1887 4_073 73 

1649 540626.1 4814648 308.0849 4_074 74 

1574 540626.1 4814659 308.2655 4_075 75 

1511 540627.3 4814647 308.1195 4_076 76 

1582 540623.2 4814655 308.1644 4_077 77 

1500 540625.4 4814652 308.1655 4_078 78 

1530 540623.7 4814664 308.1821 4_079 79 

1548 540624.1 4814663 308.3188 4_080 80 

1654 540626.3 4814646 307.9526 4_081 81 

1506 540626.1 4814649 308.1261 4_082 82 

1471 540626.6 4814660 308.2896 4_083 83 
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1618 540628.6 4814649 308.3034 4_084 84 

1630 540626.3 4814651 308.2347 4_085 85 

1515 540626.7 4814645 307.8602 4_086 86 

1583 540624.8 4814655 308.2109 4_087 87 

1656 540628 4814646 308.0756 4_088 88 

1601 540627.4 4814656 308.3118 4_089 89 

1606 540628.3 4814652 308.2911 4_090 90 

1608 540626.7 4814652 308.3572 4_091 91 

1613 540629 4814650 308.3114 4_092 92 

1568 540618.3 4814656 308.2893 4_093 93 

1594 540622.8 4814654 308.1787 4_094 94 

1645 540623.2 4814647 308.1023 4_095 95 

1492 540621.8 4814651 308.1352 4_096 96 

1519 540628.6 4814646 308.0427 4_097 97 

1538 540618 4814659 308.2781 4_098 98 

1625 540620.5 4814652 308.2106 4_099 99 

1552 540619 4814659 308.2841 4_100 100 

1570 540623.3 4814657 308.1956 4_101 101 

1586 540625.2 4814655 308.1983 4_102 102 

1644 540622.5 4814647 308.1362 4_103 103 

1655 540626.8 4814646 307.9953 4_104 104 

1477 540620.9 4814657 308.3028 4_105 105 

1622 540621.7 4814654 308.2248 4_106 106 

1646 540624 4814646 308.023 4_107 107 

1562 540621 4814659 308.3282 4_108 108 

1631 540623.1 4814650 308.0989 4_109 109 

1514 540625.6 4814646 307.8904 4_110 110 

1585 540625.3 4814656 308.2007 4_111 111 

1546 540622.1 4814661 308.1767 4_112 112 

1545 540622.4 4814661 308.1761 4_113 113 

1465 540624.1 4814661 308.3024 4_114 114 

1466 540623.7 4814661 308.25 4_115 115 

1497 540623.6 4814652 308.1362 4_116 116 

1629 540626.5 4814652 308.2515 4_117 117 

1526 540640.7 4814632 307.6681 4_118 118 

1599 540626.5 4814657 308.3171 4_119 119 

1615 540628.6 4814649 308.3204 4_120 120 

1512 540626.5 4814648 308.1227 4_121 121 

1474 540622.6 4814656 308.2374 4_122 122 

1551 540626.3 4814662 308.3528 4_123 123 

1505 540626.3 4814650 308.1467 4_124 124 

1605 540628.6 4814653 308.2874 4_125 125 

1496 540624.3 4814652 308.128 4_126 126 
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1525 540637.9 4814632 307.4843 4_127 127 

1600 540626.5 4814658 308.3515 4_128 128 

1620 540628.2 4814647 308.2241 4_129 129 

1653 540627.2 4814647 308.0668 4_130 130 

1468 540625.2 4814660 308.3029 4_131 131 

1640 540626.3 4814649 308.1084 4_132 132 

1494 540622.7 4814652 308.1539 4_133 133 

1641 540623.9 4814648 307.9629 4_134 134 

1489 540620.8 4814653 308.247 4_135 135 

1592 540623.7 4814654 308.1702 4_136 136 

1579 540619.3 4814655 308.2054 4_137 137 

1647 540624.5 4814648 307.9089 4_138 138 

1657 540625.5 4814645 307.8477 4_139 139 

1495 540623.4 4814652 308.1677 4_140 140 

1637 540622.3 4814649 308.16 4_141 141 

1539 540625.9 4814657 308.3861 4_142 142 

1636 540621.9 4814649 308.1354 4_143 143 

1458 540620.2 4814661 308.2787 4_144 144 

1648 540625.1 4814648 308.0523 4_145 145 

1488 540621.6 4814656 308.256 4_146 146 

1571 540623.7 4814657 308.2099 4_147 147 

1589 540625.4 4814654 308.1587 4_148 148 

1621 540627.3 4814650 308.2436 4_149 149 

1463 540623.2 4814662 308.2836 4_150 150 

1588 540625.4 4814655 308.1579 4_151 151 

1478 540620.4 4814658 308.3303 4_152 152 

1504 540625.5 4814649 308.0942 4_153 153 

1462 540623.5 4814661 308.2867 4_154 154 

1558 540623.4 4814659 308.2035 4_155 155 

1619 540629.4 4814648 308.2725 4_156 156 

1469 540625 4814659 308.2938 4_157 157 

1634 540621.4 4814649 308.1423 4_158 158 

1575 540627.8 4814659 308.3017 4_159 159 

1611 540628 4814650 308.2802 4_160 160 

1632 540622.4 4814650 308.085 4_161 161 

1595 540623.6 4814653 308.1384 4_162 162 

1503 540624.9 4814649 308.1046 4_163 163 

1535 540619.5 4814661 308.3035 4_164 164 

1658 540623.9 4814645 308.0465 4_165 165 

1660 540624.4 4814645 308.0412 4_166 166 

1624 540621.9 4814654 308.2074 4_167 167 

1491 540621.1 4814651 308.157 4_168 168 

1580 540619.3 4814654 308.2497 4_169 169 
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1603 540627 4814654 308.3203 4_170 170 

1499 540625.6 4814653 308.1735 4_171 171 

1556 540625.6 4814661 308.3885 4_172 172 

1507 540625.6 4814649 308.067 4_173 173 

1508 540626.5 4814649 308.1159 4_174 174 

      1610 540628.3 4814652 308.264 4_175 175 

1596 540624.2 4814653 308.174 4_176 176 

1517 540625.4 4814645 307.8284 4_177 177 

1639 540627.1 4814649 308.1599 4_178 178 

1663 540621.9 4814661 308.2105 4_179 179 

1573 540625.4 4814658 308.3608 4_180 180 

1590 540625.6 4814653 308.203 4_181 181 

1457 540617.7 4814661 308.2752 4_182 182 

1650 540623.2 4814646 308.0684 4_183 183 

1554 540617.3 4814659 308.2623 4_184 184 

1651 540624.5 4814646 307.8605 4_185 185 

1476 540621.7 4814657 308.2668 4_186 186 

1593 540623.5 4814654 308.1698 4_187 187 

1652 540625.1 4814646 307.8665 4_188 188 

1543 540619.6 4814660 308.3466 4_189 189 

1638 540623.5 4814649 308.0615 4_190 190 

1509 540627.6 4814648 308.1155 4_191 191 

1520 540628.1 4814646 308.0583 4_192 192 

1591 540624.4 4814654 308.1979 4_193 193 

1612 540628.4 4814650 308.3139 4_194 194 

1581 540620.2 4814654 308.2619 4_195 195 

1604 540627.6 4814654 308.2719 4_196 196 

1475 540622.2 4814657 308.2311 4_197 197 

1549 540625 4814662 308.326 4_198 198 

1459 540621.6 4814662 308.1827 4_199 199 

1461 540623 4814662 308.2675 4_200 200 
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Table A7a: Tracking Survey 2 – Site 1 

point # easting northing elev desc Rock # 

      

      P120 538968.3 4812984 317.453 4A_003 3 

P35 538970.7 4812974 317.483 4A_004 4 

P34 538973.1 4812974 317.572 4A_005 5 

P141 538968.1 4812987 317.471 4A_006 6 

P169 538965 4813012 317.318 4A_007 7 

P9 538969.6 4812971 317.504 4A_008 8 

P128 538965.4 4812986 317.421 4A_009 9 

P85 538966.9 4812980 317.546 4A_010 10 

P92 538970.9 4812982 317.462 4A_011 11 

P160 538969.9 4812992 317.447 4A_012 12 

P166 538965.8 4813006 317.345 4A_013 13 

P129 538966.4 4812986 317.444 4A_014 14 

      P83 538969.2 4812981 317.491 4A_016 16 

P154 538967.7 4812989 317.482 4A_017 17 

P109 538970.5 4812985 317.488 4A_018 18 

P79 538971.8 4812980 317.47 4A_019 19 

      

      P55 538965.5 4812976 317.594 4A_022 22 

      

      

      P28 538969.7 4812973 317.524 4A_026 26 

P107 538971 4812985 317.541 4A_027 27 

      P54 538966.5 4812975 317.587 4A_029 29 

      P162 538965.7 4812994 317.469 4A_031 31 

P58 538971 4812977 317.495 4A_032 32 

P8 538971.1 4812971 317.53 4A_033 33 

P42 538969.3 4812975 317.534 4A_034 34 

P20 538966.2 4812971 317.623 4A_035 35 

P157 538970.4 4812990 317.453 4A_036 36 

      P15 538972.9 4812972 317.678 4A_038 38 

P71 538967.9 4812978 317.517 4A_039 39 

P106 538972.2 4812985 317.565 4A_040 40 
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      P48 538971.6 4812976 317.514 4A_042 42 

            

P53 538967.1 4812975 317.556 4A_044 44 

P155 538968.7 4812990 317.457 4A_045 45 

P7 538973 4812971 317.57 4A_046 46 

P63 538967.5 4812978 317.538 4A_047 47 

P57 538969.8 4812977 317.489 4A_048 48 

P11 538965.8 4812970 317.655 4A_049 49 

P50 538968.4 4812976 317.573 4A_050 50 

      P16 538973.7 4812972 317.574 4A_052 52 

P44 538965.3 4812974 317.65 4A_053 53 

      P159 538968.8 4812991 317.439 4A_055 55 

P59 538972.2 4812977 317.521 4A_056 56 

      P89 538967.8 4812981 317.511 4A_058 58 

P90 538969.6 4812981 317.5 4A_059 59 

P147 538967.2 4812988 317.484 4A_060 60 

      P150 538972 4812988 317.546 4A_062 62 

      

      P95 538971.4 4812983 317.528 4A_065 65 

P161 538968.1 4812994 317.423 4A_066 66 

P165 538965.3 4813002 317.385 4A_067 67 

      P49 538973 4812976 317.576 4A_069 69 

P33 538973.1 4812974 317.638 4A_070 70 

P117 538966.6 4812985 317.459 4A_071 71 

P88 538967 4812981 317.564 4A_072 72 

      P152 538965.5 4812989 317.472 4A_074 74 

P143 538966.6 4812987 317.47 4A_075 75 

P45 538967 4812975 317.558 4A_076 76 

      P153 538966.9 4812989 317.497 4A_078 78 

P132 538969.3 4812986 317.446 4A_079 79 

P114 538965.9 4812984 317.434 4A_080 80 

P75 538967.8 4812979 317.508 4A_081 81 

      P93 538971.9 4812982 317.5 4A_083 83 
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P36 538969.6 4812974 317.513 4A_084 84 

P116 538965.7 4812985 317.516 4A_085 85 

P70 538969.5 4812978 317.493 4A_086 86 

P39 538971 4812974 317.52 4A_087 87 

      P43 538967.3 4812974 317.57 4A_089 89 

      P13 538971 4812972 317.527 4A_091 91 

P140 538968.6 4812988 317.464 4A_092 92 

P148 538968.7 4812988 317.439 4A_093 93 

P164 538964.3 4813000 317.434 4A_094 94 

P139 538969.8 4812988 317.461 4A_095 95 

P41 538971 4812975 317.487 4A_096 96 

P60 538968.2 4812977 317.583 4A_097 97 

P108 538970.7 4812985 317.464 4A_098 98 

      P119 538968.2 4812985 317.469 4A_100 100 

      P158 538966.7 4812990 317.47 4A_102 102 

      P121 538969.8 4812985 317.48 4A_104 104 

P65 538970.2 4812978 317.482 4A_105 105 

P56 538966.5 4812976 317.558 4A_106 106 

      P125 538971.4 4812986 317.461 4A_108 108 

P32 538970.4 4812974 317.488 4A_109 109 

P105 538972.1 4812984 317.519 4A_110 110 

      P77 538970 4812979 317.474 4A_112 112 

P52 538967.3 4812975 317.54 4A_113 113 

P124 538971.7 4812986 317.492 4A_114 114 

P26 538971.7 4812973 317.501 4A_115 115 

P37 538965.6 4812973 317.626 4A_116 116 

      P113 538967.3 4812985 317.451 4A_118 118 

P168 538965.4 4813010 317.382 4A_119 119 

P73 538965.1 4812978 317.597 4A_120 120 

P134 538970.7 4812987 317.46 4A_121 121 

P163 538966.2 4812997 317.45 4A_122 122 

P133 538970 4812987 317.452 4A_123 123 

P101 538969.8 4812983 317.477 4A_124 124 

      P151 538964.4 4812988 317.516 4A_126 126 
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P144 538965.6 4812987 317.447 4A_127 127 

P25 538972.3 4812974 317.502 4A_128 128 

P31 538968.5 4812973 317.521 4A_129 129 

P68 538972.4 4812978 317.565 4A_130 130 

P126 538970.6 4812986 317.407 4A_131 131 

P23 538972.7 4812973 317.513 4A_132 132 

P111 538969 4812984 317.456 4A_133 133 

P40 538972.5 4812975 317.547 4A_134 134 

      

      

      

      P123 538971 4812986 317.446 4A_139 139 

P76 538968.9 4812979 317.506 4A_140 140 

P67 538971.9 4812978 317.509 4A_141 141 

P110 538969.9 4812985 317.474 4A_142 142 

P12 538969.9 4812972 317.527 4A_0143 143 

P142 538967.2 4812987 317.494 4A_144 144 

P72 538966.5 4812977 317.577 4A_145 145 

      

      P84 538968.5 4812980 317.503 4A_148 148 

P103 538972 4812984 317.522 4A_149 149 

      P51 538967.9 4812976 317.516 4A_151 151 

P96 538969.3 4812983 317.479 4A_152 152 

P122 538971.4 4812985 317.446 4A_153 153 

P145 538965 4812987 317.441 4A_154 154 

P99 538966.8 4812982 317.463 4A_155 155 

P27 538970.8 4812973 317.501 4A_156 156 

P47 538970.8 4812976 317.491 4A_157 157 

P82 538970.8 4812981 317.493 4A_158 158 

P46 538968.8 4812975 317.538 4A_159 159 

P10 538968 4812970 317.566 4A_160 160 

P21 538967.2 4812972 317.561 4A_161 161 

P100 538966.1 4812982 317.516 4A_162 162 

P135 538971.5 4812987 317.491 4A_163 163 

P80 538970.9 4812980 317.485 4A_164 164 

P127 538965.7 4812986 317.467 4A_165 165 

P19 538969.2 4812972 317.527 4A_166 166 

P14 538972.1 4812972 317.523 4A_167 167 

P6 538973 4812971 317.561 4A_168 168 

P66 538970.8 4812978 317.502 4A_169 169 
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P146 538965.4 4812987 317.465 4A_170 170 

P24 538973.3 4812974 317.576 4A_171 171 

      P74 538967.2 4812978 317.589 4A_173 173 

P112 538968.3 4812984 317.476 4A_174 174 

P137 538971.2 4812987 317.459 4A_175 175 

P156 538970.6 4812989 317.451 4A_176 176 

P167 538964.7 4813008 317.336 4A_177 177 

P64 538969 4812977 317.516 4A_178 178 

P30 538966.1 4812973 317.611 4A_179 179 

P118 538967.5 4812985 317.458 4A_180 180 

P130 538967.3 4812986 317.466 4A_181 181 

P91 538970.2 4812982 317.485 4A_182 182 

P115 538965.9 4812984 317.411 4A_183 183 

P136 538972 4812987 317.53 4A_184 184 

      P131 538968 4812986 317.493 4A_186 186 

      P149 538971 4812988 317.434 4A_188 188 

P97 538968.4 4812983 317.518 4A_189 189 

P86 538964.9 4812980 317.584 4A_190 190 

P81 538969.8 4812980 317.48 4A_191 191 

P138 538970.5 4812988 317.442 4A_192 192 

P38 538967.2 4812974 317.557 4A_93 193 

P94 538972 4812982 317.518 4A_194 194 

      P87 538966.3 4812981 317.471 4A_196 196 

P78 538971.1 4812979 317.461 4A_197 197 

P98 538968.1 4812983 317.477 4A_198 198 

P61 538967.6 4812977 317.551 4A_199 199 

P102 538971 4812983 317.477 4A_200 200 
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Table A7b: Tracking Survey 2 – Site 4 

point # northing easting elev desc Rock # 

P175 4814660 540617.4 308.295 4B_001 1 

P241 4814655 540623 308.194 4B_002 2 

P220 4814657 540619.1 308.308 4B_003 3 

P308 4814649 540621.5 308.119 4B_004 4 

      

      P223 4814656 540618.8 308.264 4B_007 7 

P288 4814650 540622.6 308.146 4B_008 8 

P191 4814660 540621.5 308.299 4B_009 9 

P207 4814659 540621.9 308.287 4B_010 10 

      

      P302 4814651 540624.6 308.119 4B_013 13 

P287 4814652 540621.9 308.174 4B_014 14 

P176 4814660 540617.7 308.278 4B_015 15 

P327 4814648 540626.8 308.095 4B_016 16 

P273 4814653 540620.4 308.199 4B_017 17 

      P256 4814654 540627 308.335 4B_019 19 

P326 4814647 540625.9 308.097 4B_020 20 

P196 4814662 540624.9 308.344 4B_021 21 

P173 4814663 540621 308.209 4B_022 22 

      P216 4814658 540622.1 308.307 4B_024 24 

P200 4814661 540624.5 308.376 4B_025 25 

P203 4814660 540621.2 308.309 4B_026 26 

      

      P239 4814655 540623.8 308.188 4B_029 29 

      P295 4814652 540626 308.152 4B_031 31 

      P238 4814656 540624.4 308.239 4B_033 33 

      P242 4814654 540622.4 308.219 4B_035 35 

      P228 4814659 540626 308.295 4B_037 37 

P265 4814649 540627.8 308.268 4B_038 38 

P260 4814653 540627 308.348 4B_039 39 
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P252 4814655 540627.4 308.31 4B_041 41 

P277 4814655 540624.6 308.187 4B_042 42 

P235 4814657 540625 308.256 4B_043 43 

P240 4814655 540622.4 308.242 4B_044 44 

P222 4814655 540619.3 308.287 4B_045 45 

P174 4814661 540617.2 308.29 4B_046 46 

      P205 4814658 540619.1 308.313 4B_048 48 

P204 4814657 540618.3 308.274 4B_049 49 

      P230 4814657 540622.6 308.232 4B_051 51 

P317 4814648 540622.7 308.138 4B_052 52 

P219 4814657 540620 308.297 4B_053 53 

      P209 4814659 540624.7 308.281 4B_055 55 

P247 4814655 540621.2 308.24 4B_056 56 

P171 4814661 540618.8 308.307 4B_057 57 

      

      P229 4814657 540623.2 308.232 4B_060 60 

P301 4814651 540623.8 308.133 4B_061 61 

P271 4814655 540625 308.194 4B_062 62 

P304 4814650 540624.3 308.111 4B_063 63 

P316 4814648 540623.1 308.11 4B_064 64 

P190 4814660 540621 308.313 4B_065 65 

P202 4814660 540622.7 308.181 4B_066 66 

      

      P172 4814663 540621.9 308.223 4B_069 69 

      P232 4814656 540622.3 308.253 4B_071 71 

P185 4814661 540621.6 308.227 4B_072 72 

P213 4814659 540624.3 308.235 4B_073 73 

      P227 4814658 540625.5 308.324 4B_075 75 

      P276 4814654 540623.3 308.178 4B_077 77 

P292 4814653 540624.8 308.175 4B_078 78 

P181 4814663 540623.9 308.313 4B_079 79 

P182 4814663 540624.1 308.344 4B_080 80 

      

      P212 4814659 540625.9 308.272 4B_083 83 
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P269 4814649 540629.1 308.368 4B_084 84 

P303 4814651 540625.7 308.115 4B_085 85 

      P248 4814656 540624.6 308.197 4B_087 87 

      P251 4814657 540627 308.348 4B_089 89 

P258 4814652 540627.9 308.285 4B_090 90 

P261 4814652 540626.6 308.367 4B_091 91 

P267 4814650 540628.9 308.35 4B_092 92 

P221 4814656 540618.3 308.264 4B_093 93 

P275 4814654 540623 308.2 4B_094 94 

P319 4814646 540622.6 308.142 4B_095 95 

P286 4814651 540621.4 308.127 4B_096 96 

      P188 4814659 540617.7 308.315 4B_098 98 

P284 4814651 540620.9 308.188 4B_099 99 

P187 4814659 540618.8 308.327 4B_100 100 

P236 4814656 540623.2 308.196 4B_101 101 

P278 4814654 540624.9 308.195 4B_102 102 

P318 4814647 540622 308.227 4B_103 103 

P334 4814646 540627 308.052 4B_104 104 

P218 4814657 540620.8 308.325 4B_105 105 

P274 4814653 540622.4 308.229 4B_106 106 

P321 4814646 540623.7 308.07 4B_107 107 

P224 4814657 540621.3 308.321 4B_108 108 

P299 4814650 540622.9 308.116 4B_109 109 

P332 4814646 540625.7 307.848 4B_110 110 

P249 4814656 540625.3 308.284 4B_111 111 

P193 4814661 540622.5 308.219 4B_112 112 

P192 4814660 540622.1 308.237 4B_113 113 

P195 4814661 540623.8 308.264 4B_114 114 

P201 4814661 540623.7 308.306 4B_115 115 

P291 4814652 540624.2 308.174 4B_116 116 

P262 4814652 540626.7 308.334 4B_117 117 

      P234 4814658 540626.1 308.346 4B_119 119 

P268 4814650 540628.8 308.306 4B_120 120 

P333 4814645 540626.7 307.865 4B_121 121 

P225 4814657 540622.6 308.254 4B_122 122 

P198 4814663 540626.3 308.386 4B_123 123 

P328 4814649 540626.6 308.096 4B_124 124 

P257 4814653 540627.8 308.262 4B_125 125 

P290 4814652 540623.9 308.169 4B_126 126 
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      P233 4814658 540627.1 308.338 4B_128 128 

P324 4814647 540627.7 308.129 4B_129 129 

P335 4814646 540627 308.052 4B_130 130 

P210 4814660 540625.1 308.3 4B_131 131 

P310 4814650 540626.4 308.254 4B_132 132 

P283 4814652 540622.1 308.165 4B_133 133 

P315 4814648 540623.8 308.026 4B_134 134 

P245 4814654 540620.8 308.244 4B_135 135 

P289 4814651 540623.3 308.186 4B_136 136 

P243 4814654 540619.4 308.21 4B_137 137 

P314 4814648 540624.1 308.014 4B_138 138 

      P296 4814651 540622.9 308.143 4B_140 140 

P307 4814649 540621.3 308.171 4B_141 141 

P237 4814656 540625.7 308.385 4B_142 142 

P306 4814649 540621.9 308.142 4B_143 143 

P179 4814662 540620.2 308.292 4B_144 144 

P322 4814648 540625.8 308.054 4B_145 145 

P231 4814656 540621.9 308.274 4B_146 146 

P214 4814658 540623.4 308.207 4B_147 147 

P279 4814654 540625.1 308.163 4B_148 148 

P266 4814650 540626.6 308.231 4B_149 149 

P194 4814661 540623 308.248 4B_150 150 

P255 4814654 540626.6 308.382 4B_151 151 

P206 4814658 540620.1 308.329 4B_152 152 

      P186 4814661 540619.8 308.346 4B_154 154 

P208 4814660 540624.1 308.234 4B_155 155 

P270 4814649 540629.5 308.283 4B_156 156 

P211 4814660 540625.7 308.276 4B_157 157 

P297 4814649 540621.3 308.197 4B_158 158 

P250 4814657 540626.7 308.315 4B_159 159 

P263 4814650 540627.6 308.338 4B_160 160 

P298 4814649 540622.1 308.136 4B_161 161 

P300 4814650 540623.5 308.12 4B_162 162 

P309 4814649 540624.6 308.141 4B_163 163 

P178 4814660 540618.9 308.321 4B_164 164 

P329 4814646 540623.4 308.093 4B_165 165 

      P272 4814653 540621.5 308.257 4B_167 167 

P285 4814651 540620.7 308.215 4B_168 168 

P244 4814654 540619 308.216 4B_169 169 
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P254 4814654 540627 308.34 4B_170 170 

P294 4814652 540625.4 308.155 4B_171 171 

P199 4814662 540625.3 308.359 4B_172 172 

P313 4814649 540625.2 308.137 4B_173 173 

P312 4814649 540626.2 308.131 4B_174 174 

      P259 4814651 540627.9 308.375 4B_175 175 

P281 4814653 540624.6 308.144 4B_176 176 

      P311 4814649 540626.7 308.224 4B_178 178 

      P226 4814658 540625.3 308.366 4B_180 180 

P293 4814653 540624.9 308.129 4B_181 181 

P170 4814661 540617.4 308.282 4B_182 182 

P320 4814646 540623 308.118 4B_183 183 

P189 4814659 540617.6 308.289 4B_184 184 

P330 4814645 540624.5 307.964 4B_185 185 

P217 4814658 540621.5 308.314 4B_186 186 

P282 4814653 540624 308.166 4B_187 187 

P331 4814646 540625 307.903 4B_188 188 

P177 4814660 540618.8 308.332 4B_189 189 

P305 4814649 540623.5 308.102 4B_190 190 

P323 4814647 540626.7 308.071 4B_191 191 

P325 4814647 540627.5 308.171 4B_192 192 

P280 4814653 540624.2 308.154 4B_193 193 

P264 4814650 540628.3 308.313 4B_194 194 

P246 4814654 540619.5 308.209 4B_195 195 

P253 4814654 540628 308.328 4B_196 196 

P215 4814658 540622.9 308.2 4B_197 197 

P197 4814662 540625.1 308.356 4B_198 198 

P184 4814661 540622.4 308.21 4B_199 199 

P183 4814662 540623.2 308.309 4B_200 200 
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Table A8a: Tracking Survey 3 – Site 1 

point # easting northing elev desc Rock # 

P577 538967.3 4812975 317.561 1C_001 1 

P675 538970.6 4812989 317.45 1C_002 2 

P630 538968.2 4812986 317.492 1C_003 3 

P556 538970.6 4812974 317.503 1C_004 4 

P562 538972.9 4812975 317.587 1C_005 5 

P648 538968 4812987 317.474 1C_006 6 

P686 538965.2 4813025 317.257 1C_007 7 

P529 538969.5 4812971 317.536 1C_008 8 

P624 538965.2 4812986 317.446 1C_009 9 

P603 538967.4 4812980 317.528 1C_010 10 

P612 538970.2 4812984 317.495 1C_011 11 

P672 538969.2 4812993 317.473 1C_012 12 

P682 538966.4 4813006 317.409 1C_013 13 

P626 538966.1 4812986 317.466 1C_014 14 

P606 538967.3 4812980 317.541 1C_015 15 

P390 538970 4812982 317.496 1C_016 16 

P664 538967.1 4812989 317.488 1C_017 17 

P617 538970.4 4812985 317.498 1C_018 18 

P395 538971.8 4812981 317.479 1C_019 19 

P557 538970.8 4812974 317.513 1C_020 20 

P608 538965.5 4812983 317.437 1C_021 21 

P684 538963 4813005 317.449 1C_022 22 

P583 538965.8 4812976 317.581 1C_023 23 

P667 538968.6 4812989 317.493 1C_024 24 

      P553 538969.7 4812974 317.538 1C_026 26 

      P646 538970.2 4812988 317.462 1C_028 28 

P582 538966.2 4812976 317.6 1C_029 29 

      P681 538964.5 4813004 317.449 1C_031 31 

P567 538971.1 4812978 317.514 1C_032 32 

P540 538970.4 4812971 317.546 1C_033 33 

P594 538968.9 4812977 317.543 1C_034 34 

P532 538966.2 4812971 317.632 1C_035 35 

P670 538970 4812992 317.461 1C_036 36 

P394 538971.2 4812982 317.478 1C_037 37 

P546 538972.6 4812973 317.544 1C_038 38 

P598 538967.9 4812979 317.541 1C_039 39 
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P652 538966.6 4812987 317.481 1C_041 41 

P564 538971.4 4812977 317.569 1C_042 42 

P528 538973.6 4812972 317.571 1C_043 43 

P590 538966.4 4812978 317.594 1C_044 44 

P665 538968.1 4812989 317.5 1C_045 45 

P544 538972.7 4812972 317.588 1C_046 46 

P605 538967.7 4812980 317.533 1C_047 47 

P574 538969.8 4812978 317.515 1C_048 48 

P531 538966.4 4812971 317.619 1C_049 49 

P575 538969.1 4812977 317.558 1C_050 50 

      P545 538973 4812972 317.558 1C_052 52 

P584 538965.4 4812975 317.602 1C_053 53 

P610 538969.4 4812982 317.493 1C_054 54 

P669 538969 4812991 317.455 1C_055 55 

P568 538972.3 4812978 317.55 1C_056 56 

P596 538969.7 4812978 317.482 1C_057 57 

P386 538967.3 4812982 317.538 1C_058 58 

P377 538969.5 4812983 317.506 1C_059 59 

P660 538967.2 4812988 317.51 1C_060 60 

P680 538964.5 4813004 317.46 1C_061 61 

P644 538971.8 4812989 317.527 1C_062 62 

      P639 538969.5 4812987 317.484 1C_064 64 

P375 538970.5 4812983 317.528 1C_065 65 

P674 538967.2 4812995 317.449 1C_066 66 

P679 538967.1 4813002 317.416 1C_067 67 

P634 538971.5 4812986 317.484 1C_068 68 

P563 538972.4 4812976 317.549 1C_069 69 

      P627 538966.9 4812985 317.48 1C_071 71 

P380 538967.2 4812983 317.492 1C_072 72 

P388 538969.2 4812982 317.503 1C_073 73 

P662 538965.7 4812989 317.498 1C_074 74 

P658 538966.8 4812988 317.474 1C_075 75 

P580 538967.1 4812977 317.568 1C_076 76 

P599 538967.4 4812979 317.561 1C_077 77 

P663 538966 4812990 317.492 1C_078 78 

P641 538969.5 4812987 317.476 1C_079 79 

P621 538966.3 4812984 317.462 1C_080 80 

P604 538968 4812980 317.521 1C_081 81 

P376 538970.1 4812983 317.562 1C_082 82 

P374 538971.2 4812983 317.524 1C_083 83 
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P559 538969.5 4812974 317.524 1C_084 84 

P625 538965.8 4812986 317.463 1C_085 85 

P597 538968.3 4812979 317.504 1C_086 86 

P558 538970.6 4812974 317.524 1C_087 87 

      P587 538965.9 4812978 317.601 1C_089 89 

P653 538964.4 4812986 317.51 1C_090 90 

P542 538971.2 4812972 317.548 1C_091 91 

P649 538967.9 4812987 317.496 1C_092 92 

P666 538968.6 4812989 317.487 1C_093 93 

P678 538965.1 4813000 317.483 1C_094 94 

      P560 538970.8 4812976 317.53 1C_096 96 

P593 538968.4 4812978 317.537 1C_097 97 

P633 538970.7 4812986 317.506 1C_098 98 

P616 538971.3 4812986 317.504 1C_099 99 

P628 538967.9 4812986 317.499 1C_100 100 

P611 538969.4 4812983 317.509 1C_101 101 

P673 538966.4 4812992 317.485 1C_102 102 

P607 538966.4 4812980 317.559 1C_103 103 

P640 538969.2 4812987 317.488 1C_104 104 

P572 538970.5 4812979 317.469 1C_105 105 

P586 538966.3 4812977 317.572 1C_106 106 

P379 538967.8 4812983 317.51 1C_107 107 

P636 538971.3 4812987 317.465 1C_108 108 

P554 538970.2 4812974 317.53 1C_109 109 

      P659 538967.1 4812988 317.482 1C_111 111 

P398 538970.2 4812979 317.475 1C_112 112 

P578 538967.4 4812976 317.578 1C_113 113 

      P549 538971.8 4812974 317.546 1C_115 115 

P537 538965.7 4812974 317.606 1C_116 116 

P602 538968.1 4812980 317.533 1C_117 117 

P620 538966.7 4812984 317.456 1C_118 118 

P683 538965 4813009 317.384 1C_119 119 

P589 538965.7 4812979 317.613 1C_120 120 

P642 538970.4 4812987 317.489 1C_121 121 

P677 538966.7 4812998 317.428 1C_122 122 

P647 538968.8 4812987 317.488 1C_0123 123 

      P622 538966.2 4812985 317.464 1C_125 125 

P656 538964.3 4812988 317.508 1C_126 126 



183 

 

P657 538965.9 4812987 317.48 1C_127 127 

P550 538971.4 4812974 317.493 1C_128 128 

P535 538968.5 4812974 317.561 1C_129 129 

P570 538971.9 4812979 317.517 1C_130 130 

P381 538966.5 4812983 317.465 1C_131 131 

P548 538973.1 4812974 317.568 1C_132 132 

P618 538968.4 4812984 317.463 1C_133 133 

P561 538971.8 4812976 317.526 1C_134 134 

P623 538965.5 4812985 317.449 1C_135 135 

P668 538969.4 4812989 317.461 1C_136 136 

P389 538969.4 4812982 317.495 1C_137 137 

P391 538970.5 4812982 317.488 1C_138 138 

P638 538970.6 4812986 317.498 1C_139 139 

P601 538968.4 4812979 317.54 1C_140 140 

P569 538971.4 4812978 317.536 1C_141 141 

      P541 538970.4 4812972 317.538 1C_143 143 

P661 538966.6 4812988 317.495 1C_144 144 

P588 538965.8 4812978 317.587 1C_145 145 

P592 538967.6 4812978 317.557 1C_146 146 

      P387 538968 4812981 317.517 1C_148 148 

P614 538971.6 4812985 317.501 1C_149 149 

P585 538965.7 4812977 317.6 1C_150 150 

P579 538966.9 4812976 317.569 1C_151 151 

      P615 538971.7 4812985 317.51 1C_153 153 

P654 538964.3 4812987 317.54 1C_154 154 

P382 538966.5 4812983 317.495 1C_155 155 

P552 538970.2 4812973 317.517 1C_156 156 

P566 538970.7 4812977 317.501 1C_157 157 

P396 538970.5 4812981 317.493 1C_158 158 

P576 538968.8 4812976 317.527 1C_159 159 

P530 538967.1 4812971 317.593 1C_160 160 

P533 538967.1 4812972 317.581 1C_161 161 

P383 538965.8 4812982 317.507 1C_162 162 

P635 538971.4 4812986 317.515 1C_163 163 

P392 538969.7 4812981 317.481 1C_164 164 

      P534 538968.8 4812972 317.558 1C_166 166 

P543 538971.2 4812972 317.525 1C_167 167 

P527 538973.3 4812971 317.562 1C_168 168 

P573 538970.4 4812978 317.496 1C_169 169 
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P655 538964.8 4812988 317.484 1C_170 170 

P547 538972.6 4812974 317.539 1C_171 171 

P632 538969.7 4812986 317.509 1C_172 172 

P591 538967 4812978 317.579 1C_173 173 

P619 538967.8 4812984 317.467 1C_174 174 

P643 538971.6 4812987 317.507 1C_175 175 

P671 538970.7 4812991 317.472 1C_176 176 

P685 538964.9 4813020 317.303 1C_177 177 

P595 538968.9 4812978 317.541 1C_178 178 

P600 538967.5 4812979 317.538 1C_179 179 

            

P651 538966.9 4812986 317.466 1C_181 181 

      P609 538965.1 4812984 317.452 1C_183 183 

P637 538971.6 4812987 317.497 1C_184 184 

P650 538968.4 4812987 317.516 1C_185 185 

P629 538967.9 4812986 317.458 1C_186 186 

P551 538970.8 4812973 317.496 1C_187 187 

P645 538971 4812988 317.466 1C_188 188 

P378 538968.5 4812983 317.525 1C_189 189 

P385 538965.8 4812981 317.516 1C_190 190 

P393 538970.1 4812981 317.472 1C_191 191 

P631 538968.7 4812986 317.485 1C_192 192 

P536 538966.6 4812974 317.564 1C_193 193 

P373 538971.8 4812983 317.517 1C_194 194 

      P384 538965.2 4812981 317.508 1C_196 196 

P397 538971.2 4812980 317.463 1C_197 197 

      P581 538967 4812977 317.611 1C_199 199 

P613 538970.7 4812985 317.518 1C_200 200 
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Table A8b: Tracking Survey 3 – Site 4 

point # northing easting elev desc Rock # 

P809 4814660 540617.4 308.319 4C_001 1 

P880 4814655 540622.6 308.233 4C_002 2 

P824 4814657 540619.3 308.3 4C_003 3 

P926 4814648 540621.6 308.225 4C_004 4 

P971 4814639 540632 307.795 4C_005 5 

P980 4814622 540659 308.051 4C_006 6 

P822 4814656 540618.9 308.276 4C_007 7 

P921 4814651 540623.1 308.19 4C_008 8 

P830 4814659 540621.3 308.315 4C_009 9 

P831 4814659 540621.7 308.293 4C_010 10 

P977 4814625 540656 308.126 4C_011 11 

P970 4814641 540631.3 307.833 4C_012 12 

P917 4814651 540625.3 308.186 4C_013 13 

P905 4814652 540621.8 308.21 4C_014 14 

P810 4814660 540617.7 308.314 4C_015 15 

P954 4814648 540627 308.13 4C_016 16 

P901 4814653 540619.8 308.207 4C_017 17 

      P833 4814653 540627.1 308.422 4C_019 19 

P953 4814647 540626.1 308.059 4C_020 20 

P839 4814661 540623.9 308.305 4C_021 21 

P805 4814663 540621 308.225 4C_022 22 

P800 4814663 540625.8 308.445 4C_023 23 

P829 4814658 540621.6 308.34 4C_024 24 

P840 4814661 540624.4 308.338 4C_025 25 

P849 4814659 540623 308.13 4C_026 26 

P979 4814623 540656.6 308.04 4C_027 27 

P978 4814625 540655.1 308.108 4C_028 28 

P872 4814656 540623.1 308.205 4C_029 29 

P915 4814651 540624.5 308.152 4C_030 30 

      P889 4814650 540629.3 308.456 4C_032 32 

P873 4814656 540623.8 308.229 4C_033 33 

P973 4814630 540639.8 307.46 4C_034 34 

P981 4814618 540659.5 308.161 4C_035 35 

P976 4814626 540653 307.99 4C_036 36 

      P853 4814650 540626.9 308.282 4C_038 38 

P876 4814652 540626.8 308.388 4C_039 39 
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P834 4814655 540627.2 308.352 4C_041 41 

P895 4814654 540624.3 308.184 4C_042 42 

P857 4814657 540625.2 308.3 4C_043 43 

P881 4814656 540621.9 308.278 4C_044 44 

P916 4814650 540621.9 308.162 4C_045 45 

P807 4814660 540617.5 308.28 4C_046 46 

P969 4814642 540629.2 307.703 4C_047 47 

P825 4814657 540619.4 308.305 4C_048 48 

P820 4814657 540618 308.281 4C_049 49 

P828 4814658 540620.8 308.337 4C_050 50 

P870 4814658 540623 308.213 4C_051 51 

P947 4814648 540623.2 308.111 4C_052 52 

P826 4814657 540619.8 308.326 4C_053 53 

P902 4814652 540620.1 308.208 4C_054 54 

P842 4814660 540624.5 308.317 4C_055 55 

P877 4814655 540621.8 308.265 4C_056 56 

      P963 4814644 540624.5 308.058 4C_058 58 

P975 4814629 540646.6 307.752 4C_059 59 

P869 4814658 540623.7 308.222 4C_060 60 

P920 4814651 540623.9 308.142 4C_061 61 

      P931 4814649 540624.9 308.127 4C_063 63 

P946 4814647 540623.5 308.101 4C_064 64 

P816 4814660 540620.4 308.339 4C_065 65 

P837 4814661 540622.7 308.218 4C_066 66 

P964 4814644 540626.1 307.816 4C_067 67 

P957 4814645 540625 307.889 4C_068 68 

P804 4814664 540622.2 308.241 4C_069 69 

 
4814605 540685.6 

  
70 

P884 4814656 540622.1 308.279 4C_071 71 

P818 4814662 540621.8 308.208 4C_072 72 

P846 4814659 540624 308.224 4C_073 73 

      P845 4814659 540625.8 308.283 4C_075 75 

P966 4814646 540627.9 308.076 4C_076 76 

P943 4814647 540625.1 307.967 4C_077 77 

P912 4814652 540624.9 308.189 4C_078 78 

P798 4814664 540623.7 308.265 4C_079 79 

P803 4814663 540623.3 308.27 4C_080 80 

      P933 4814649 540626 308.189 4C_082 82 

P844 4814659 540626.4 308.297 4C_083 83 
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P892 4814648 540628.1 308.268 4C_084 84 

      P965 4814645 540626.6 307.881 4C_086 86 

P874 4814656 540624.9 308.233 4C_087 87 

P960 4814647 540627.4 308.105 4C_088 88 

P859 4814657 540626.9 308.383 4C_089 89 

P864 4814653 540628.4 308.275 4C_090 90 

      P890 4814650 540629.5 308.448 4C_092 92 

P821 4814656 540618.3 308.312 4C_093 93 

P896 4814655 540623.2 308.197 4C_094 94 

P949 4814646 540623.1 308.132 4C_095 95 

P904 4814651 540621.3 308.192 4C_096 96 

P967 4814646 540628.6 308.109 4C_097 97 

P811 4814660 540618 308.29 4C_098 98 

P903 4814651 540620.4 308.232 4C_099 99 

P812 4814659 540618.6 308.272 4C_100 100 

P879 4814656 540622.6 308.253 4C_101 101 

P875 4814655 540625.5 308.238 4C_102 102 

P948 4814647 540623 308.167 4C_103 103 

P961 4814646 540626.9 308.085 4C_104 104 

P882 4814657 540621.7 308.292 4C_105 105 

P930 4814648 540623.7 308.057 4C_106 106 

P951 4814646 540623.9 308.047 4C_107 107 

P885 4814655 540621.1 308.299 4C_108 108 

P922 4814650 540622.7 308.15 4C_109 109 

P955 4814646 540625.5 307.869 4C_0110 110 

P868 4814656 540625.8 308.462 4C_111 111 

P848 4814660 540622.8 308.195 4C_112 112 

P832 4814660 540622 308.219 4C_113 113 

P838 4814661 540623.1 308.237 4C_114 114 

P841 4814660 540623.6 308.292 4C_115 115 

P914 4814652 540624.2 308.152 4C_116 116 

P854 4814651 540626.7 308.296 4C_117 117 

P974 4814630 540643.4 307.53 4C_118 118 

P852 4814657 540626 308.344 4C_119 119 

P888 4814650 540628.2 308.333 4C_120 120 

      P878 4814656 540622.5 308.258 4C_122 122 

P801 4814662 540626 308.385 4C_123 123 

P935 4814649 540626.2 308.13 4C_124 124 

P862 4814654 540628.5 308.323 4C_125 125 

P913 4814652 540624.2 308.217 4C_126 126 
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P972 4814631 540638.8 307.413 4C_127 127 

P860 4814656 540627.2 308.201 4C_128 128 

P893 4814648 540628.4 308.301 4C_129 129 

P939 4814647 540627.3 308.069 4C_130 130 

P835 4814661 540625.4 308.357 4C_131 131 

P940 4814649 540626.7 308.137 4C_132 132 

P906 4814652 540622.1 308.226 4C_133 133 

P945 4814648 540623.8 308.013 4C_134 134 

P900 4814654 540620.3 308.289 4C_135 135 

      P823 4814655 540618.9 308.274 4C_137 137 

P944 4814647 540624.3 307.964 4C_138 138 

P962 4814645 540625.6 307.824 4C_139 139 

P928 4814649 540623.1 308.118 4C_140 140 

P924 4814648 540622.2 308.154 4C_141 141 

P858 4814657 540625.5 308.387 4C_142 142 

P923 4814649 540621.9 308.213 4C_143 143 

P806 4814662 540620.6 308.259 4C_144 144 

P942 4814648 540625.5 308.077 4C_145 145 

P883 4814656 540621.5 308.302 4C_146 146 

P850 4814659 540623.8 308.24 4C_147 147 

P909 4814653 540624.8 308.179 4C_148 148 

P936 4814649 540626.6 308.214 4C_149 149 

      P855 4814655 540625.1 308.195 4C_151 151 

P827 4814658 540620.4 308.318 4C_152 152 

P934 4814650 540625.5 308.143 4C_153 153 

P836 4814662 540623.9 308.343 4C_154 154 

P856 4814658 540623.4 308.177 4C_155 155 

P891 4814649 540629.4 308.329 4C_156 156 

P843 4814660 540625.8 308.29 4C_157 157 

P919 4814650 540621.3 308.195 4C_158 158 

P861 4814655 540627.5 308.386 4C_159 159 

P887 4814651 540627.5 308.344 4C_160 160 

P925 4814648 540622.5 308.159 4C_161 161 

P929 4814648 540623.8 308.09 4C_162 162 

P932 4814649 540624.8 308.154 4C_163 163 

P817 4814661 540619.3 308.329 4C_164 164 

P959 4814645 540624.2 308.015 4C_165 165 

P958 4814645 540624.7 307.961 4C_166 166 

P897 4814654 540622.5 308.235 4C_167 167 

P918 4814650 540620.9 308.211 4C_168 168 

P899 4814654 540619.1 308.281 4C_169 169 
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P866 4814654 540626.2 308.454 4C_170 170 

P911 4814652 540625.1 308.201 4C_171 171 

P802 4814661 540625.6 308.375 4C_172 172 

P941 4814648 540625.8 308.134 4C_173 173 

      

      P865 4814652 540628.7 308.344 4C_175 175 

P908 4814652 540623.6 308.16 4C_176 176 

P956 4814645 540625.4 307.853 4C_177 177 

P937 4814649 540626.6 308.135 4C_178 178 

P867 4814653 540626.4 308.438 4C_179 179 

P851 4814658 540625.1 308.299 4C_180 180 

P910 4814653 540625.7 308.203 4C_181 181 

P808 4814661 540618.2 308.307 4C_182 182 

P950 4814646 540623.1 308.087 4C_183 183 

P813 4814659 540617.5 308.331 4C_184 184 

P968 4814642 540628.4 307.724 4C_185 185 

      P907 4814653 540623.2 308.174 4C_187 187 

P952 4814646 540624.8 307.913 4C_188 188 

P815 4814660 540619.7 308.338 4C_189 189 

P927 4814650 540623.1 308.131 4C_190 190 

P938 4814648 540627.5 308.137 4C_191 191 

P894 4814647 540628.2 308.223 4C_192 192 

      P886 4814651 540628 308.377 4C_194 194 

P898 4814655 540619.9 308.285 4C_195 195 

P863 4814653 540628 308.266 4C_196 196 

P871 4814658 540622.8 308.229 4C_197 197 

P799 4814663 540625 308.345 4C_198 198 

P819 4814662 540622.3 308.238 4C_199 199 

P847 4814659 540623.3 308.234 4C_200 200 
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APPENDIX B – TRACER MAPS 

 

This appendix contains tracer maps.  

 



191 

 

  



 

192 

 

 



193 

 



 

194 

 



195 

 

  



 

196 

 

  



197 

 

  



 

198 

 

  



199 

 

  



 

200 

 

  



201 

 

  



 

202 

 

  



203 

 

APPENDIX C – LAB DATA 

 

Table C1 23 mm Tag Orientation Tests 

         

Tag#  
H0-
N H0-S H0a-N H0a-S V0-N V0-S V0a-N V0a-S 

800001 28 30 39.5 41 46 49 68 75 
800002 28 30.5 36 39 45 48 69 68 
800003 27 29 40 44 44 51.5 68 75 

800004 21 35.5 26 45 43 51 71 74 
800005 26 31 41 43 44 48 69 3.5 
800006 31 36 30 44 45 48 68.5 71 
800007 24 30 37 42 44 49 66.5 74 
800008 25 32 36.5 43 45 48 68 75 
800009 21.5 30 35 44 43.5 50 65 75 
800010 28 33 42 41 45 52 67 73.5 
800011 27.5 30.5 37 44.5 44 49.5 66.5 72 
800012 25.5 31 40.5 45 46 49 67 73 
800013 31 29 38 41 45 50 69 71.5 
800014 23 29 45 44 44 51 70 72.5 

800015 27 30 45.5 35 45 51 67.5 75 
800016 25 24 45 43 44.5 51 65.5 73.5 
800017 25 28 38 47 44 50 64.5 73 
800018 23 29 39.5 47 46 50 69 73 
800019 22 28 39.5 44.5 44 48.5 66.5 74.5 
800020 23 30 39 48 42 48 67 72 
800021 25 27.5 39.5 46 44 49 68 74 
800022 22.5 28 41.5 45 45 48 68 73 
800023 23 28 38 46 44 49 67 72.5 
800024 24 28.5 38.5 46 43 47 66 71 

800025 22 28 40 48 44 47 66 70 

 

  



 

204 

 

Table C2 32 mm Tag Orientation Tests 

         

Tag#  
H0-
N H0-S H0a-N H0a-S V0-N V0-S V0a-N V0a-S 

900001 34 35 51 54 55 55 77 78 
900002 33.5 37 52 55 55 58 76 79 
900003 28 36.5 44.5 55 55 58 78 78 
900004 34 37 50 53.5 53 58 75.5 78 
900005 32 35 47 53 55 58.5 75.5 79 
900006 30 38 46.5 53.5 54.5 59 77 78 
900007 28 37 47 51.5 55 58 76 78 
900008 35 35.5 50.5 55 54 59 77 79 

900009 32.5 37.5 45.5 54.5 55 58 76 78 
900010 30.5 40 47.5 53 55 59 76.5 79 
900011 32 38 45.5 50.5 55 59.5 76 78 
900012 31 36 44 50 55 58 77 79 
900013 33.5 39 45.5 49 55 59.5 76.5 79 
900014 35 39 42 51.5 56 60 77 79 
900015 34.5 34 45.5 51 54.5 58 75.5 78.5 
900016 27 38 46 51.5 54 59 75.5 79 
900017 32 32 45 51 53 59 75 79.5 
900018 33 37.5 44.5 52 55 60 77.5 79 
900019 31 36 43.5 47.5 54 58 76.5 80 

900020 33 39 43 49 55 58 77 78 
900021 31 37 46 48 54 60 76 81 
900022 29 37.5 43.5 49.5 54.5 58 74.5 78 
900023 31 34 42 41 53 59 75 80 
900024 33 38 49 49.5 56 59.5 76 79 

900025 32 35.5 42.5 53.5 53 59.5 76 80 
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Table C3 Characteristics of Tagged rocks 
   

       Rock # Rock Size (cm) Tag Size 

Decimal Hexadecimal 
   a-
axis 

b -
axis c-axis     

100001 186A1 4.2 3.1 1.9 

SM
A

LL 
23 mm 

100002 186A2 4.3 3.1 2.4 

100003 186A3 5.2 3.1 2.2 

100004 186A4 3.8 2.8 2 

100005 186A5 3.7 2.5 2 

100006 186A6 3.7 3.1 2.7 

200001 30D41 6 4.3 3.3 

200002 30D42 6 4.5 2.7 

200003 30D43 6.5 3.7 2.6 

200004 30D44 4.6 4.1 3.4 

200005 30D45 4.5 3.6 3.2 

200006 30D46 5.1 4.2 3.1 

300001 493E1 8.3 5.8 4.4 

LA
R

G
E 

32 mm 

300002 493E2 7.1 5.3 3.3 

300003 493E3 7 6 3.7 

300004 493E4 6.7 5.7 4.8 

300005 493E5 6.1 5.6 2.6 

300006 493E6 6.1 5.7 4.1 

400001 61A81 10.9 7.8 6.3 

400002 61A82 9.2 6.6 6 

400003 61A83 8.4 6.4 3.9 

400004 61A84 8.4 6.8 4.4 

400005 61A85 7.3 6.9 5.4 

400006 61A86 7.3 7.2 6 

500001 7A121 14.1 10.6 7.6 

500002 7A122 11.1 9.3 5.7 

500003 7A123 11.2 9.5 6.8 

500004 7A124 11.5 10.9 8.4 

500005 7A125 12.8 9.5 8.3 

500006 7A126 11.7 9.1 4.8 

600001 927C1 16.9 13 9.5 

600002 927C2 16.1 14.2 8.5 

600003 927C3 17.6 14.3 10.3 

600004 927C4 18.4 14.3 9 

600005 927C5 16.6 13 7.3 

600006 927C6 20.7 15.5 2.4 
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Table C4 Horizontal Tests for 4 sizes classes of rocks (Surface Tests) 

 
Bins 3 and 4 contain tracers with 23 mm tags; Bins 5 and 6 contain tracers with 32 mm tags 

              Horizontal Tests H-0 H-45 H-90 H-0b H-45b H-90b H-0c H-45c H-90c H-0a H-45a H-90a 

  Rock 1 25.0 6.5 25.5 24.0 7.5 25.0 76.0 32.5 60.0 27.7 26.8 18.4 
  Rock 2 33.0 33.5 12.0 30.5 30.0 6.0 79.0 71.0 10.0 23.8 32.1 28.6 
Bin 3 Rock 3 40.5 31.5 9.0 37.0 32.0 13.0 76.0 37.0 62.0 36.6 36.6 30.4 
  Rock 4 41.0 39.5 30.5 41.5 38.0 29.0 74.0 68.0 30.5 37.6 38.5 35.7 

  Rock 5 40.0 38.0 26.5 40.0 33.0 22.0 75.0 62.0 29.0 35.3 33.9 34.8 
  Rock 6 20.0 24.5 10.5 21.5 22.5 11.0 76.0 81.0 55.0 15.6 26.8 26.0 

  Rock 1 36.0 34.0 13.0 34.0 30.0 12.5 63.0 42.0 30.0 34.8 38.0 28.6 
  Rock 2 37.0 34.5 4.0 37.0 30.5 12.0 74.0 34.5 17.5 33.9 34.8 29.5 
Bin 4 Rock 3 23.0 17.0 20.0 21.0 18.0 27.5 77.0 62.0 23.0 23.4 23.4 16.0 
  Rock 4 37.5 38.0 27.0 39.5 34.0 22.0 62.0 56.0 10.0 37.6 34.8 27.7 
  Rock 5 35.0 29.0 11.0 33.0 29.5 12.0 77.0 52.0 8.0 33.0 30.4 21.7 
  Rock 6 35.5 35.5 14.0 35.0 36.0 23.0 75.0 63.5 10.5 28.6 34.8 29.5 

  Rock 1 23.0 21.0 28.0 29.0 18.0 31.5 80.0 75.0 23.5 18.8 23.4 16.8 
  Rock 2 35.5 29.0 2.5 35.0 27.0 7.5 64.0 10.0 15.0 37.6 26.8 26.0 
Bin 5 Rock 3 29.0 26.5 12.0 28.0 22.0 10.0 67.0 41.0 25.0 33.5 23.8 22.5 
  Rock 4 38.0 30.5 7.5 34.5 29.0 8.5 69.0 10.0 6.0 34.8 31.2 27.7 
  Rock 5 30.5 25.0 3.5 30.0 27.0 4.0 75.0 43.0 17.0 31.2 29.9 22.5 
  Rock 6 34.0 25.0 10.0 32.0 20.5 12.5 53.0 46.0 5.0 32.1 28.6 19.2 

  Rock 1 38.0 29.0 5.0 38.5 26.5 2.0 70.0 45.0 22.0 37.6 35.7 30.4 
  Rock 2 38.0 34.0 21.0 40.0 36.0 19.0 76.0 60.5 12.0 29.0 33.0 31.2 
Bin 6 Rock 3 17.0 14.0 19.0 26.0 22.0 26.0 81.0 73.0 48.0 19.2 21.7 15.2 

  Rock 4 35.0 35.0 20.5 33.0 32.0 20.5 74.0 73.5 30.0 22.5 29.5 25.1 
  Rock 5 28.0 20.0 23.0 32.0 31.0 20.0 85.0 78.0 4.0 29.0 23.0 18.4 
  Rock 6 29.0 24.0 24.0 34.0 22.0 21.5 84.0 66.0 14.0 25.5 26.8 20.0 
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Table C5 Vertical Tests for 4 sizes classes of rocks (Surface Tests) 

 
Bins 3 and 4 contain tracers with 23 mm tags; Bins 5 and 6 contain tracers with 32 mm tags 

              Vertical Tests V-0 V-45 V-90 V-0b V-45b V-90b V-0c V-45c V-90c V-0a V-45a V-90a 

  Rock 1 53.5 47.0 44.0 53.0 48.0 44.5 54.0 67.0 70.0 53.9 50.6 49.6 
  Rock 2 55.0 55.0 59.0 56.0 54.0 57.0 67.0 64.0 59.5 52.4 53.4 60.0 
Bin 3 Rock 3 53.5 56.5 53.0 50.0 51.5 52.5 64.0 69.5 64.0 53.4 53.9 49.1 
  Rock 4 55.0 55.0 54.0 51.0 54.0 55.0 63.0 66.0 60.5 54.8 54.3 54.8 

  Rock 5 56.5 56.0 57.0 53.0 55.0 56.0 61.0 63.0 61.5 57.2 54.8 51.5 
  Rock 6 59.5 60.0 56.0 59.0 58.0 58.5 58.0 59.0 61.0 58.1 61.0 61.9 

  Rock 1 59.0 58.0 56.0 58.5 56.5 52.0 62.5 66.0 63.0 56.2 58.1 54.3 
  Rock 2 56.0 54.5 54.0 56.0 56.0 54.0 66.0 72.0 64.0 53.9 53.4 52.4 
Bin 4 Rock 3 57.5 53.0 54.0 55.0 53.0 59.0 67.0 70.0 65.0 53.4 50.6 53.4 
  Rock 4 57.5 59.0 61.5 58.0 60.0 61.0 60.0 55.0 55.0 53.4 56.2 56.7 
  Rock 5 54.0 55.5 54.0 57.0 53.0 55.0 67.0 70.0 61.0 53.4 55.3 54.3 
  Rock 6 55.5 57.0 56.0 57.0 59.0 57.0 69.0 65.5 57.0 49.6 54.8 56.2 

  Rock 1 57.0 60.0 54.0 57.0 59.0 52.0 66.5 69.0 59.0 56.2 58.1 56.7 
  Rock 2 54.0 56.5 56.0 56.0 56.0 58.0 64.0 67.0 62.0 49.6 53.4 56.2 
Bin 5 Rock 3 56.0 59.0 56.5 59.0 58.5 59.0 63.0 62.0 55.0 49.6 54.3 56.2 
  Rock 4 55.0 55.0 58.0 58.5 58.0 57.0 65.0 71.0 65.0 57.2 56.2 56.2 
  Rock 5 59.5 57.0 57.0 58.5 57.5 59.0 52.0 51.0 58.0 57.2 57.6 54.8 
  Rock 6 56.0 56.5 57.5 57.0 57.0 59.0 66.0 65.0 60.0 53.4 53.4 55.3 

  Rock 1 59.0 55.5 59.0 59.0 56.0 59.0 73.0 62.0 57.0 56.2 57.6 57.6 
  Rock 2 62.5 64.5 61.5 63.5 61.5 61.0 67.5 65.0 58.5 57.6 60.0 60.0 
Bin 6 Rock 3 59.0 59.5 54.0 62.0 56.5 56.0 49.0 54.0 59.0 58.1 59.1 56.2 

  Rock 4 59.5 63.5 63.5 61.0 64.5 65.0 73.0 68.5 56.0 52.9 61.0 62.9 
  Rock 5 57.0 58.0 57.0 56.0 60.0 58.5 68.0 71.5 62.0 53.9 56.2 55.3 
  Rock 6 59.0 62.0 60.5 60.0 64.5 61.0 57.0 61.0 63.5 56.2 58.6 61.0 
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Table C6 Horizontal and Vertical Tests not parallel to the axis  (Surface Tests) 

 

         Experiment Names H-z H-xyz H-yz H-xz V-z V-xyz V-yz 

  Rock 1 46.5 25 58 54.5 74 29 39 
  Rock 2 50.5 59 63.5 29 74 30 31 
Bin 3 Rock 3 43 45 64 44 76 26 23 
  Rock 4 42 60 65 15 76.5 30 22.5 
  Rock 5 45 50.5 63 11 71.5 28 38 
  Rock 6 64 52.5 59.5 28 73 33 37 

  Rock 1 41 46.5 59 28.5 77.5 24 31.5 
  Rock 2 39.5 50.5 62 18 76 18 24 

Bin 4 Rock 3 61.5 44.5 50.5 34 76 15 23 
  Rock 4 50.5 54.5 59.5 26.5 63 43 38 
  Rock 5 49.5 45.5 59 28 72 20 24 
  Rock 6 54.5 53 62 20 73 31 28 

  Rock 1 59 47 62 31.5 75 34 24 
  Rock 2 38 45 57 24.5 78 21 21.5 
Bin 5 Rock 3 53 46.5 57.5 8 72 43 36 
  Rock 4 48 46.5 57 9 81 19 30 
  Rock 5 56 50 55 9 74 51 47.5 
  Rock 6 55 40.5 54 31.5 78 34 29 

  Rock 1 58 45 63 0.5 74 40 34 

  Rock 2 46.5 49.5 58 7 76.5 48 43 
Bin 6 Rock 3 63 51 48 10 69 48 55 
  Rock 4 53 53 55 27.5 77 39.5 33 
  Rock 5 58 55 58 14 71.5 30 34 
  Rock 6 58.5 50.5 56 31.5 79.5 47 50.5 

 
Note: Bins 3 and 4 contain tracers with 23 mm tags; Bins 5 and 6 contain tracers with 32 mm 

tags 
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Table C7 Cluster Experiment Results for Dry Lateral Detection with Tracers at 0° axis

HH-0° HH-45° HH-90° HH-xyz HV-0° HV-45° HV-90° HV-xyz VH-0° VH-45° VH-90° VH-xyz VV-0° VV-45° VV-90° VV-xyz

0 cm 16.0 18.0 2.0 2.0 0.5 0.5 0.5 n/a *** 37.0 38.0 40.0 11.0 0.5 43.0 35.0 n/a ††

Switch n n n y y y y n/a n n n y y n ** n ** n/a

5 cm -0.5 -3.5 -4.5 0.0 4.5 2.0 -2.5 2.0 40.0 40.0 39.0 n/a 3.0 2.0 0.5 0.0

Switch y y y y * y y y y n n n n *** y y y y *

10 cm 2.0 3.0 6.0 3.0 -54.5 6.0 -2.0 49.0 3.0 39.0 39.0 0.0 -55.5 4.0 -6.0 5.0

Switch y y n y y y y n y n n y y y y y

15 cm 5.0 4.0 9.0 4.0 14.5 7.5 -4.0 47.0 5.0 4.0 43.0 7.0 -37.0 12.0 2.0 6.0

Switch y y n y y y y n y y n y y y n y

20 cm 9.0 5.0 0.5 0.0 -62.0 -45.5 n/a 46.5 10.0 7.0 37.0 8.0 -32.0 4.0 9.0 10.0

Switch y y n y * y y n *** n y y n y y y n y

25 cm 4.0 2.5 -6.0 6.0 -26.0 -18.0 -1.0 -1.0 6.5 42.0 36.0 26.0 -27.0 12.0 3.0 n/a

Switch y y y y y y y y y n n n y y † n n/a ***

30 cm 14.0 10.0 0.5 17.0 -39.0 -40.0 -49.0 46.0 17.0 11.0 38.0 14.0 -22.0 4.0 23.0 n/a

Switch y y n y y y y n y y n y y y n n ***

35 cm 20.0 19.5 6.0 46.0 -18.0 9.5 -46.5 45.0 22.0 17.0 40.0 29.0 -17.0 -3.0 17.0 0.5

Switch y y n n y y y n y y n y y y n y

40 cm 3.0 19.5 7.0 47.0 -11.0 -33.5 3.5 47.0 26.0 24.0 40.0 9.0 -11.0 -14.0 18.0 5.0

Switch y y n n y y y n y y n y y y n y

45 cm -14.0 22.0 6.0 44.0 -6.0 2.0 6.0 44.0 -11.0 40.0 37.0 12.0 -7.0 -9.0 22.0 6.0

Switch y y n n y y y n y n n y y y n y

50 cm -10.0 -4.0 10.0 44.0 0.5 2.0 3.0 41.0 28.0 43.0 40.0 28.0 0.5 0.5 40.0 12.0

Switch y y n y y y y n y n n n y y n y

55 cm 1.0 18.0 11.5 43.0 2.0 8.0 10.0 46.0 -2.0 47.0 41.0 21.0 -5.0 7.0 32.0 9.0

Switch y n n n y y y n y n n y y y n y

60 cm 3.0 18.0 3.0 44.5 8.0 10.0 12.0 48.5 -1.5 34.0 32.0 23.0 6.0 11.0 37.0 14.0

Switch y n n n y y y n y n n y y y n y

65 cm 6.0 23.0 2.5 24.0 12.0 11.0 12.0 47.0 -1.0 36.0 34.0 25.0 -4.0 11.0 34.0 15.0

Switch y n n n y y n n y n n y y y n y

70 cm 8.0 23.0 0.5 27.0 6.0 12.0 1.0 46.0 8.0 46.0 43.0 21.0 5.0 18.0 39.0 14.0

Switch y n n n y y n n y n n y y y n y

75 cm 9.0 18.0 10.5 29.0 7.0 12.0 7.0 46.0 11.0 44.0 43.5 29.5 5.0 16.5 27.0 13.0

Switch y y ††† n n y y n n y n n n y y n y

80 cm 15.0 25.0 7.0 35.5 11.0 13.0 9.5 44.0 14.0 36.0 35.0 24.0 25.0 22.0 38.0 15.0

Switch y n n n y y n n y n n y y y n y

85 cm 17.0 25.0 9.5 44.0 12.0 18.0 8.0 43.0 18.0 35.0 35.0 25.0 14.0 25.0 39.0 22.0

Switch y n n n y y n n y n n n y y n y

90 cm 15.5 25.0 8.0 43.0 14.0 22.0 10.0 41.0 20.0 37.0 35.0 28.0 13.0 24.0 32.0 24.0

Switch y n n n y y n n y n n n y y n y

95 cm 18.0 23.0 5.0 46.0 15.0 20.0 0.5 44.0 23.0 41.0 40.0 24.0 15.0 23.0 30.0 23.0

Switch y n n n y y n n y n n n y y n n

100 cm 24.0 20.0 9.0 44.0 12.0 17.0 8.0 41.0 25.0 44.0 44.0 30.0 16.5 26.0 27.0 28.0

Switch y n n n y y n n y n n n y y n n

Position 22 At ∞ 22.0 21.0 7.5 45.0 22.0 21.0 7.5 45.0 45.0 44.0 42.0 31.0 45.0 44.0 42.0 31.0

Position 14

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6

Position 7

Position 8

Position 9

Position 10

Position 11

Position 12

Position 13

Position 21

Position 15

Position 16

Position 17

Position 18

Position 19

Position 20
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Notes: Rocks used: Rock#2 Bin#2 - stationary rock; Rock#4 Bin#2 movable rock 

 
Tag was always facing north (0˚) 

 
All distances are in cm. 

 
Switch values: 

  
y = Signal switched from movable rock to stationary rock 

  
n = Signal did not switch from movable rock to stationary rock 

  
* = Stationary rock identified exactly on top of rock 

  
** = Very tight range for stationary rock; no signal for a movable rock  

  
*** = No signal for stationary rock; consistent signal for movable rock 

  

† = Very tight range for  stationary rock; dominant signal is for the 
movable rock 

  
††  = No reading at all!! 

  
††† =  Signal switches  - with gaps (of no signal at all) 
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Table C8 Cluster Experiment Results for Dry Lateral Detection with Tracers at 45° axis

HH-0° HH-45° HH-90° HH-xyz HV-0° HV-45° HV-90° HV-xyz VH-0° VH-45° VH-90° VH-xyz VV-0° VV-45° VV-90° VV-xyz

0 cm 16.0 18.0 2.0 2.0 0.5 0.5 0.5 n/a *** 37.0 38.0 40.0 11.0 0.5 43.0 35.0 n/a ††

Switch n n n y y y y n n n n y y n ** n ** n/a

5 cm 0.0 1.0 0.5 0.5 3.0 5.0 3.0 46.0 42.0 44.0 42.0 0.0 4.0 5.0 1.0 1.0

Switch y y y y y y y ††† n n n n y y y y y

10 cm 3.0 4.0 2.0 4.0 7.5 11.0 8.0 n/a 45.0 41.0 44.0 3.0 8.0 10.0 2.0 0.0

Switch y y y y y y y n/a *** n n n y y y y y

15 cm 2.0 7.0 -45.0 8.0 11.0 -46.0 n/a n/a 0.0 6.0 5.0 6.0 8.0 13.0 -42.5 1.0

Switch y y y y y y n/a *** n/a *** y y y y y y y y

20 cm 5.0 12.0 -42.5 13.0 12.0 -44.5 n/a 0.5 5.0 10.0 1.0 9.0 7.0 -32.0 -37.0 2.0

Switch y y y y y y n/a *** y y y y y y y y y

25 cm 1.0 10.0 0 * 14.0 12.5 -21.0 -25.0 0.5 15.5 10.0 40.0 10.5 13.0 26.0 10.0 0.5

Switch y y y y y † y † y y n y n y y † y † y  † y

30 cm 5.0 18.0 -31.0 22.0 18.0 -21.0 -48.5 0.5 9.0 17.0 42.0 14.0 12.0 -18.0 -22.0 3.0

Switch y y y y y y y y y y n y y y y y

35 cm 10.0 21.0 28.0 23.0 2.0 -42.0 -6.0 0.5 10.0 22.0 42.0 10.0 13.0 -16.0 -22.0 2.0

Switch y y y y y y y y y y n y y y y y

40 cm 7.0 11.0 -22.0 39.0 12.0 -40.0 0.5 0.0 18.0 20.0 42.0 14.0 4.0 -9.0 -6.0 3.0

Switch y y y n y y y y y y n y y y y y

45 cm 10.0 -14.5 -15.5 45.0 3.0 -7.0 -44.5 n/a 21.0 28.0 40.0 6.0 20.0 -6.0 7.0 n/a

Switch y y y n/a y y y n/a *** y y n y y y y n/a ***

50 cm 18.0 -2.0 -2.0 34.0 8.5 -5.0 0.5 0.5 18.0 39.5 39.0 28.0 -1.0 -4.0 -2.0 0.5

Switch y y y y y y y y n ** y n y y y y y

55 cm 20.0 1.0 5.0 46.0 6.0 4.0 3.0 4.0 28.0 35.0 41.0 0.0 8.0 4.0 11.0 5.0

Switch n y n n y y y y y y n y y y y y

60 cm 25.0 4.0 4.0 7.0 7.0 9.0 4.0 11.0 28.0 37.0 43.0 5.0 12.0 9.0 15.0 9.0

Switch n y n y y y y y y y n y y y n y

65 cm 25.0 7.0 8.0 10.0 8.0 5.0 5.0 18.0 38.0 7.0 41.0 5.0 14.0 17.0 15.0 5.0

Switch n y n y y y y y y y n y y y n y

70 cm 27.0 10.0 3.0 11.0 10.0 6.0 3.0 19.0 45.0 11.0 41.0 7.0 17.0 7.0 20.0 6.0

Switch n y n y y y y y n y n y y y n y

75 cm 20.0 10.0 6.0 13.0 11.5 7.0 2.0 27.0 43.0 12.0 33.0 14.0 18.5 9.0 26.0 13.0

Switch n y n y y y y y † n y n y y y y y

80 cm 27.0 15.0 11.0 18.0 14.0 9.0 5.0 29.0 42.0 18.0 42.0 12.0 21.0 11.0 25.0 11.0

Switch n y n y y y y y n y n y y y n y

85 cm 26.0 18.0 7.0 21.0 15.0 10.0 6.0 31.0 45.0 23.0 42.0 18.0 25.0 15.0 35.0 12.0

Switch n y n y y y y y n y n y y y n y

90 cm 30.0 22.0 11.0 25.0 18.0 11.0 7.0 45.0 43.0 23.0 41.0 17.0 26.0 17.0 36.0 18.0

Switch n y n y y y y y n y n y y y n y

95 cm 26.0 23.0 10.0 27.0 18.0 11.0 5.0 41.0 45.0 29.0 40.0 18.0 30.0 19.0 35.0 20.0

Switch n y n y y y n y n y n y y y n y

100 cm 12.5 11.0 7.0 27.0 18.0 16.0 7.0 24.0 43.0 32.0 41.0 23.0 38.5 18.0 36.0 18.5

Switch n y n y n y n y n y n y n y n y

Position 22 At ∞ 22.0 21.0 7.5 45.0 22.0 21.0 7.5 45.0 45.0 44.0 42.0 31.0 45.0 44.0 42.0 31.0

Position 12

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6

Position 7

Position 8

Position 9

Position 10

Position 11

Position 19

Position 20

Position 21

Position 13

Position 14

Position 15

Position 16

Position 17

Position 18
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Notes: Rocks used: Rock#2 Bin#2 - stationary rock; Rock#4 Bin#2 movable rock 
   

 
Tag was always facing north (0˚); tag was not parallel to the axis of measurement 

  
 

All distances are in cm. 
       

 

Switch 
values: 

        
  

y = Signal switched from movable rock to stationary rock 
   

  
n = Signal did not switch from movable rock to stationary rock 

   

  

* = The back of the antenna hoop was directly over the tag tip at the first detection signal from 
stationary rock 

  
** = Very tight range for stationary rock; no signal for a movable rock  

  
  

*** = No signal for stationary rock; consistent signal for movable rock 
  

  
† = Very tight range for  stationary rock; dominant signal is for the movable rock 

 
  

††  = No reading at all!! 
      

  
†††  = On the second trial: no signal for stationary rock and consistent signal for movable rock 
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Table C9 Cluster Experiment Results for Dry Lateral Detection with Tracers at 90° axis

HH-0° HH-45° HH-90° HH-xyz HV-0° HV-45° HV-90° HV-xyz VH-0° VH-45° VH-90° VH-xyz VV-0° VV-45° VV-90° VV-xyz

0 cm 16.0 18.0 2.0 2.0 0.5 0.5 0.5 n/a *** 37.0 38.0 40.0 11.0 0.5 43.0 35.0 n/a ††

Switch n n n y y y y n/a n n n y y n ** n ** n/a

5 cm -8.0 -4.0 0.0 -0.5 5.0 5.0 n/a 42.0 45.0 43.0 40.0 0.0 0.0 5.0 3.0 5.0

Switch y y y y * y y n *** n n n n y y y y y

10 cm 3.0 -2.0 4.0 0.0 3.0 6.0 -54.0 40.0 43.0 44.0 41.0 2.0 2.0 10.0 8.0 16.0

Switch n y y y y y y n n n n y y y y n

15 cm 7.0 -0.5 -4.0 0.0 5.0 6.0 -37.0 39.0 40.0 44.0 40.0 3.0 8.0 12.0 -37.0 -0.5

Switch n y y y y y y n n n n y n y y y *

20 cm 17.0 -1.0 2.0 -0.5 6.0 6.0 -48.0 40.0 43.0 42.0 25.0 3.0 15.0 11.0 -2.5 0.0

Switch n y y y * y y y n n n y y n y y y

25 cm 12.0 2.0 -26.0 4.0 13.0 16.0 0 † n/a 41.0 41.0 42.0 0.5 8.0 19.0 -22.0 -0.5

Switch n y y y n y ††† n/a n/a ᶺ n y ††† n y n y ††† y y

30 cm 21.0 2.0 1.0 1.0 13.0 5.0 -22.0 36.0 45.0 0.0 22.0 0.0 40.0 16.0 2.0 n/a ***

Switch n y y y y y y n n y y y n y y n

35 cm 20.0 4.0 3.0 4.0 16.0 4.0 -17.0 40.0 44.0 2.0 27.0 0.0 34.0 11.0 -17.0 3.0

Switch n y y y y y y n n y y y n y y y

40 cm 20.0 4.0 10.0 7.0 15.0 4.0 -12.0 39.0 45.0 12.0 16.0 4.0 42.0 15.0 -12.0 15.0

Switch n y y y y y y n n y y y n n y n

45 cm 24.0 12.0 10.0 13.0 18.0 9.0 -7.0 41.0 43.0 38.0 21.0 8.0 45.0 8.0 -6.0 8.0

Switch n y y y n y y n n n y y n y y y

50 cm 16.0 4.0 -10.0 9.0 16.0 4.0 0.5 14.0 4.0 34.0 17.5 12.0 40.0 5.0 2.0 15.0

Switch n y y y n y y y n n y y n y y y

55 cm 17.0 13.0 17.0 15.0 20.0 11.0 -14.0 40.0 40.0 13.0 18.0 9.0 40.0 12.0 4.0 7.0

Switch n y y n n y y n n y y y n n y n

60 cm 17.0 12.0 17.0 22.0 18.0 10.0 -1.0 40.0 39.0 25.0 14.0 11.0 42.0 17.0 9.0 9.0

Switch n n y n n y y n n y y y n y y y

65 cm 17.0 16.0 7.0 24.0 15.0 9.0 0.0 37.0 42.0 43.0 40.0 16.0 41.0 22.0 5.0 11.0

Switch n n y n n y y n n n y y n y y y

70 cm 25.0 21.0 2.0 33.0 17.0 12.0 1.0 42.0 42.0 43.0 18.0 15.0 40.0 26.0 10.0 11.0

Switch n n y n n y y n n n y n n y y y

75 cm 20.0 14.0 5.0 27.0 16.0 10.0 0.5 24.0 39.0 42.0 18.0 24.0 38.0 17.0 7.0 12.0

Switch n y y y n y y n n n y y n y y n

80 cm 23.0 22.0 5.0 42.0 24.0 17.0 0.0 42.0 40.0 43.0 28.0 15.0 41.0 32.0 12.0 12.0

Switch n n y n n n y n n n y n n n y y

85 cm 24.0 22.0 10.0 38.0 23.0 22.0 0.0 42.0 40.0 39.0 34.0 18.0 40.0 37.0 15.0 14.0

Switch n n y n n n y n n n y n n n y n

90 cm 24.0 23.0 9.0 39.0 25.0 21.0 6.0 39.0 38.0 40.0 30.0 14.0 40.0 35.0 16.0 13.0

Switch n n y n n n y n n n y n n n y n

95 cm 28.0 24.0 3.0 38.0 23.0 20.0 3.0 39.0 -12.0 42.0 39.0 17.0 40.0 41.0 19.0 16.0

Switch n n y n n n y n n n y n n n y n

100 cm 19.0 14.0 1.0 26.0 17.0 11.0 6.5 24.0 44.0 46.0 43.0 31.0 37.0 36.0 18.0 24.0

Switch n n y n n n y n n n y n n n y n

Position 22 At ∞ 22.0 21.0 7.5 45.0 22.0 21.0 7.5 45.0 45.0 44.0 42.0 31.0 45.0 44.0 42.0 31.0

Position 13

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6

Position 7

Position 8

Position 9

Position 10

Position 11

Position 12

Position 20

Position 21

Position 14

Position 15

Position 16

Position 17

Position 18

Position 19
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Notes: Rocks used: Rock#2 Bin#2 - stationary rock; Rock#4 Bin#2 movable rock 

 
Tag was always facing north (0˚); tag was not parallel to the axis of measurement 

 
All distances are in cm. 

 

Switch 
values: y = Signal switched from movable rock to stationary rock 

  
n = Signal did not switch from movable rock to stationary rock 

  

* = Detected stationary rock signal on the other side of the vertical rock face 
of the stationary rock 

  
** = Very tight range for stationary rock; no signal for a movable rock  

  
*** = No signal for stationary rock; consistent signal for movable rock 

  

†  = The back of the antenna hoop was directly over the tag tip at the first 
detection signal from stationary rock 

  
††  = No reading at all!! 

  

††† = tight detection interval for stationary rock; movable rock emits signals 
for a few tight intervals north and south of the stationary rock's signal 

  

ᶺ = no detection of stationary rock. Movable rock detected but stops being 
detected at +2 cm from stationary rock 
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Table C10 Burial Test Results (3" depth) Horizontal Tests

1 2 3 4 5 6 7 8 9 10 11 12

Rock 1 37.5 31.5 6.5 37.0 36.0 -1.0 51.0 14.5 22.4 35.7 38.9 26.7

Rock 2 39.5 32.0 22.5 43.5 33.5 30.2 50.0 56.5 60.0 44.0 34.7 33.9

Bin 1 Rock 3 38.2 35.0 23.5 39.0 39.2 28.0 24.0 19.5 13.0 31.2 36.6 33.0

Rock 4 36.5 25.0 13.5 39.5 26.0 14.0 18.5 11.0 -3.0 33.0 33.5 18.4

Rock 5 37.0 34.0 16.5 34.0 34.0 16.5 21.5 19.0 9.0 30.4 33.9 27.7

Rock 6 13.5 28.5 28.0 10.0 23.5 23.0 10.0 15.0 15.0 28.2 22.5 28.6

Rock 1 34.5 30.0 10.5 36.0 31.5 27.0 20.0 16.5 3.0 30.4 35.7 33.0

Rock 2 32.5 31.0 15.0 35.0 34.5 12.0 54.5 58.0 37.0 31.2 37.6 31.2

Bin 2 Rock 3 45.0 36.0 8.0 37.0 31.0 7.0 25.0 21.0 14.0 44.0 44.9 31.2

Rock 4 39.0 41.0 31.0 37.0 39.0 31.0 21.0 20.0 21.0 29.5 38.5 57.6

Rock 5 32.0 32.0 16.0 34.0 33.5 10.0 20.0 16.5 5.0 32.1 33.0 26.0

Rock 6 35.0 32.0 20.0 37.0 38.0 17.5 21.5 50.0 15.0 35.3 35.7 31.2

Rock 1 38.0 20.0 28.0 47.0 7.0 35.0 69.0 7.0 23.0 42.2 32.1 12.9

Rock 2 42.0 40.0 -1.0 51.5 44.0 2.0 84.0 77.0 8.0 40.3 43.1 33.0

Bin 3 Rock 3 48.0 46.0 32.0 55.0 51.0 9.0 28.0 28.0 29.0 49.6 46.8 44.0

Rock 4 45.0 44.5 32.0 54.0 47.0 13.0 27.0 22.5 17.0 44.0 47.7 44.9

Rock 5 48.0 47.0 40.0 49.0 48.0 38.0 28.0 24.0 27.0 36.6 45.9 44.9

Rock 6 46.0 40.0 18.0 48.0 41.0 19.0 68.0 21.0 9.0 43.1 44.0 29.5

Rock 1 50.5 47.0 11.0 52.0 46.0 33.5 28.0 30.0 36.0 50.1 49.1 38.9

Rock 2 46.0 45.5 5.5 50.5 42.5 30.0 76.0 68.0 10.0 48.7 45.9 41.7

Bin 4 Rock 3 41.5 33.0 15.0 49.5 38.5 14.0 87.5 77.0 41.0 33.0 33.5 22.5

Rock 4 36.5 33.5 11.5 40.5 38.5 25.0 86.5 79.0 55.0 32.6 35.7 26.8

Rock 5 50.0 42.5 3.0 48.0 37.0 30.5 86.0 60.5 23.0 42.2 41.2 25.5

Rock 6 45.0 43.0 1.0 57.0 42.0 9.0 76.0 71.0 25.0 40.3 43.5 40.3

Rock 1 25.0 24.0 41.0 29.0 30.0 49.0 89.0 75.0 66.0 14.5 25.5 22.5

Rock 2 38.0 32.0 21.0 42.5 32.0 25.0 82.0 60.0 29.0 36.6 38.5 26.8

Bin 5 Rock 3 40.0 39.0 23.0 36.0 36.0 14.0 80.0 67.0 42.0 33.0 33.9 18.4

Rock 4 41.0 26.0 24.0 39.5 28.0 29.5 84.0 54.0 25.0 39.4 33.9 21.7

Rock 5 23.0 16.0 39.0 23.0 18.0 45.0 82.0 73.0 55.0 12.2 20.9 29.5

Rock 6 38.0 34.0 23.0 44.0 32.0 26.0 83.0 50.0 25.0 35.7 36.6 22.5

Rock 1 50.0 38.0 19.0 47.0 37.0 12.0 69.0 19.5 6.0 46.8 38.5 31.2

Rock 2 42.0 35.0 15.0 38.0 30.0 23.0 70.0 54.0 30.0 33.0 33.0 28.6

Bin 6 Rock 3 32.0 28.0 2.0 39.0 22.0 36.0 85.0 66.0 42.0 29.5 30.4 21.7

Rock 4 43.0 37.0 25.0 41.0 36.0 4.0 65.0 50.0 9.0 35.7 39.4 33.0

Rock 5 46.0 37.0 7.5 46.0 42.0 12.0 62.0 18.0 9.0 40.3 37.6 33.0

Rock 6 44.0 32.0 6.0 43.4 34.0 24.0 75.0 47.0 13.0 38.5 36.6 23.4

Experiment A Dry Lateral Detection (cm)
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Table C11 Burial Test Results (3" depth) Vertical Tests 
        

              Experiment B Dry Lateral Detection (cm) 

    1 2 3 4 5 6 7 8 9 10 11 12 

  Rock 1 35.0 33.0 32.0 32.0 35.0 33.5 47.5 36.5 39.0 28.6 30.4 31.7 
  Rock 2 40.5 35.0 33.0 39.0 31.0 30.0 45.0 33.0 39.5 30.8 30.8 32.6 
Bin 1 Rock 3 10.5 6.5 28.0 16.0 8.0 29.5 51.5 40.0 36.5 9.4 7.4 6.5 
  Rock 4 34.0 33.0 30.5 32.5 33.0 30.5 40.0 33.0 33.5 33.9 31.2 31.2 

  Rock 5 41.5 36.0 33.0 38.0 36.5 28.5 42.0 33.0 36.0 33.9 31.2 31.2 
  Rock 6 25.0 30.0 35.5 10.5 28.0 36.5 53.0 38.5 34.5 6.8 20.5 33.9 

  Rock 1 39.0 36.0 36.0 29.5 22.0 29.5 44.0 34.0 38.5 33.9 33.9 33.9 
  Rock 2 36.0 34.5 32.0 32.5 8.0 29.0 49.5 38.0 32.0 36.6 31.2 30.4 
Bin 2 Rock 3 31.0 34.0 35.0 33.5 29.0 34.0 48.0 32.0 30.5 6.8 27.7 33.0 
  Rock 4 36.0 33.0 35.0 27.0 29.0 35.0 42.5 32.0 31.5 5.6 12.6 28.6 
  Rock 5 35.0 35.0 34.5 33.0 35.0 34.0 51.0 39.0 38.0 16.8 6.2 34.4 
  Rock 6 37.5 33.5 36.0 10.0 32.0 36.0 48.0 40.0 37.0 5.6 4.8 29.9 

  Rock 1 48.0 48.0 39.5 47.0 42.0 45.5 60.5 42.0 43.0 43.5 41.7 42.6 
  Rock 2 51.0 51.0 35.5 48.0 40.5 36.0 63.0 46.0 48.5 53.9 47.7 40.3 
Bin 3 Rock 3 49.0 49.0 46.0 43.5 35.0 44.0 59.5 41.0 44.0 42.2 39.4 38.9 
  Rock 4 52.0 52.0 44.0 49.5 43.0 46.0 58.0 48.0 49.0 50.6 48.7 46.8 
  Rock 5 55.0 55.0 49.0 46.0 45.0 9.0 64.0 48.5 48.0 51.5 53.4 49.6 
  Rock 6 50.0 50.0 39.0 47.5 36.0 13.5 49.0 43.0 49.0 45.9 44.9 38.0 

  Rock 1 52.5 52.5 53.5 53.5 51.5 47.5 56.0 54.0 54.5 49.6 50.6 49.6 
  Rock 2 48.5 52.0 53.0 50.5 48.0 53.5 63.5 58.0 59.0 48.2 46.8 46.8 
Bin 4 Rock 3 43.0 44.5 52.0 44.0 44.0 54.0 70.0 56.0 48.0 41.2 35.7 47.3 

  Rock 4 41.5 47.0 53.0 40.0 45.0 55.0 64.0 54.0 51.0 32.1 40.8 52.0 
  Rock 5 53.5 52.0 51.0 52.0 51.0 53.5 61.0 54.0 55.5 48.2 51.5 50.6 
  Rock 6 42.5 42.5 43.0 37.0 40.0 46.0 68.0 58.0 53.0 43.1 35.7 38.9 

  Rock 1 51.0 48.0 52.0 48.0 47.0 49.0 62.5 56.0 58.0 47.7 44.9 47.7 
  Rock 2 52.0 49.0 50.0 55.0 44.5 46.0 59.5 50.0 55.0 55.3 49.6 49.1 
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Bin 5 Rock 3 47.0 42.0 43.0 43.0 40.0 46.5 71.0 64.0 57.0 44.5 36.2 44.0 
  Rock 4 52.0 52.0 56.5 54.0 52.0 58.0 66.0 56.0 59.0 52.0 52.0 54.3 
  Rock 5 57.0 52.5 55.5 52.0 52.5 51.5 70.0 63.5 61.0 55.7 50.1 50.6 
  Rock 6 54.0 55.5 61.5 52.5 56.0 60.5 63.0 57.0 59.0 52.0 55.3 57.6 

  Rock 1 49.5 49.0 53.0 48.5 49.0 50.0 58.0 58.0 58.0 47.3 49.1 51.0 
  Rock 2 56.5 57.0 65.0 56.5 58.0 66.0 69.0 68.0 69.0 54.3 58.6 60.0 
Bin 6 Rock 3 51.0 50.5 55.0 52.0 48.5 55.5 49.0 68.0 80.0 46.8 49.6 51.5 
  Rock 4 58.0 58.5 60.0 57.0 58.0 60.0 60.0 59.0 64.0 56.2 61.0 61.9 

  Rock 5 55.0 55.0 56.0 54.0 67.0 58.5 57.0 55.5 61.0 51.5 52.4 52.9 
  Rock 6 63.0 60.0 59.5 62.5 58.0 57.0 68.0 64.0 64.0 57.2 61.0 60.5 
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Table C12 Burial Test Results (3" depth) Other Horizontal and Vertical Tests 

         Experiment C,D Dry Lateral Detection (cm) 

    C D 

    1 2 3 4 1 2 3 

  Rock 1 18 29 37 0.5 46 0.5 13 
  Rock 2 45 38.5 40.5 20 46.5 13 20 
Bin 1 Rock 3 36 37 43 12.5 48.5 8 27 
  Rock 4 19.5 26 37.5 11.5 22 20.5 21 
  Rock 5 33 33 41.5 15.5 24 27.5 33 
  Rock 6 42.5 30.5 34.5 19 38 13.5 11.5 

  Rock 1 38 31 39 0.5 43 22 23 

  Rock 2 21.5 29 40 1 46 10.5 6 
Bin 2 Rock 3 20 28 40 0.5 24 12 14.5 
  Rock 4 27 34 40 18.5 45 15 5 
  Rock 5 45 37 48 0.5 46.5 11 12 
  Rock 6 23 31 40.5 9.5 43 9 7.5 

  Rock 1 32 0 44 39 54.5 15.5 13 
  Rock 2 34 39 57.5 19 53 11 11.5 
Bin 3 Rock 3 35 31 52 23 51.5 13 23.5 
  Rock 4 29 39 55 0 59 15.5 20 
  Rock 5 39 43 53 3.5 60 10 14 
  Rock 6 40 40.5 55 10 57.5 17 21 

  Rock 1 42 34.5 50 26.5 71.5 40.5 41 
  Rock 2 45.5 39 55.5 19.5 61.5 22 24.5 
Bin 4 Rock 3 37.5 43 52 12.5 40 46.5 52 
  Rock 4 44 56 57 42 53 36 20.5 
  Rock 5 20.5 54 53 12 59.5 36 34 
  Rock 6 40.5 49.5 56.5 14.5 66 19.5 12 

  Rock 1 31 47 53 26 69 17 30 
  Rock 2 26 44 55 7 65.5 30.5 34 
Bin 5 Rock 3 53.5 48 57.5 24 67.5 10.5 28.5 
  Rock 4 36.5 27.5 48.5 28 64 32 20 
  Rock 5 29.5 43 55 20 61.5 5.5 14 

  Rock 6 10 35 51.5 13 66.5 45.5 40 

  Rock 1 20 48.5 57 5 63 31 29 
  Rock 2 32 50 53.5 12 76.5 31 36 
Bin 6 Rock 3 53 51 51.5 23 77 52.5 43 
  Rock 4 36.5 56 56 43 72 30 36 
  Rock 5 14 52 56.5 29 73.5 28 35 
  Rock 6 33.5 53 57 18 82 22.5 43 
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Table C13 Burial Test Results (6" depth) Horizontal Tests 

         

  
Dry Lateral Detection 
(cm)         

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 34.0 30.0 -2.0 33.0 30.4 26.4 34.0 
  Rock 2 37.0 33.0 -3.0 30.4 34.4 27.3 39.0 
Bin 1 Rock 3 35.0 33.0 13.0 29.5 33.0 29.0 38.0 
  Rock 4 32.5 24.0 23.0 31.2 28.6 14.1 20.0 
  Rock 5 38.0 33.0 19.0 30.8 34.8 33.5 40.0 
  Rock 6 39.0 30.0 23.0 37.6 37.1 16.8 16.0 

  Rock 1 39.0 36.0 -13.0 30.4 35.7 33.9 41.0 

  Rock 2 32.0 33.0 -11.0 30.4 31.2 22.5 34.0 
Bin 2 Rock 3 41.0 36.0 3.0 35.7 35.7 32.6 36.0 
  Rock 4 38.0 40.0 19.0 36.6 36.6 26.8 38.0 
  Rock 5 39.0 29.5 22.0 37.6 33.0 10.8 16.5 
  Rock 6 39.0 31.0 -6.5 33.9 33.5 20.9 35.0 

  Rock 1 45.0 8.5 43.0 44.9 34.8 10.8 11.0 
  Rock 2 51.5 43.0 11.0 41.7 43.1 32.1 48.0 
Bin 3 Rock 3 52.0 37.0 19.0 48.7 46.8 26.8 39.0 
  Rock 4 55.5 54.0 7.0 47.7 53.4 39.4 53.5 
  Rock 5 56.0 47.0 0.5 49.6 50.6 35.7 47.0 
  Rock 6 40.0 35.0 5.0 34.4 38.5 29.5 46.5 

  Rock 1 50.5 46.0 15.5 49.6 49.6 29.5 42.0 
  Rock 2 5.5 38.0 43.5 34.8 8.1 39.4 45.5 
Bin 4 Rock 3 40.5 26.0 27.0 35.7 32.1 19.2 30.5 
  Rock 4 53.5 49.0 31.0 45.9 47.7 36.6 48.0 
  Rock 5 52.5 41.0 17.0 47.7 46.3 27.7 39.5 
  Rock 6 5.0 48.5 20.5 44.9 45.9 33.9 49.0 
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Table C14 Burial Test Results (6" depth) Vertical Tests 

           Dry Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 39.5 39.0 32.0 37.1 36.6 34.8 18.0 
  Rock 2 43.0 39.0 37.0 39.4 38.9 39.9 6.0 
Bin 1 Rock 3 37.0 32.0 43.5 25.1 31.2 41.7 17.0 
  Rock 4 29.0 26.0 12.0 32.6 28.6 11.1 20.0 
  Rock 5 27.0 36.0 40.0 14.1 27.3 37.6 2.0 
  Rock 6 33.0 31.0 8.0 35.3 30.8 26.4 8.0 

  Rock 1 41.0 37.0 33.0 44.9 35.7 35.3 30.0 
  Rock 2 40.0 40.5 37.0 40.3 39.4 35.7 2.5 

Bin 2 Rock 3 37.0 34.0 4.0 38.5 33.0 41.2 18.0 

  Rock 4 15.5 36.5 37.0 31.2 34.8 35.7 17.5 
  Rock 5 35.0 35.5 26.0 40.8 33.0 34.8 14.5 
  Rock 6 37.0 35.0 37.0 39.4 34.4 38.5 5.0 

  Rock 1 57.5 51.0 48.5 57.6 54.3 48.7 24.0 
  Rock 2 60.0 56.0 54.0 54.3 57.2 54.3 15.0 
Bin 3 Rock 3 51.0 50.5 54.5 53.4 49.6 50.1 15.0 
  Rock 4 44.0 50.5 56.0 44.9 48.2 48.7 20.0 
  Rock 5 57.0 53.0 55.5 53.4 55.3 53.4 12.0 
  Rock 6 57.0 57.0 54.0 54.8 60.0 55.7 5.5 

  Rock 1 50.5 48.0 50.5 50.6 47.7 48.2 4.0 

  Rock 2 62.0 63.0 57.0 57.2 62.9 58.1 22.5 
Bin 4 Rock 3 60.5 55.0 51.5 58.1 57.2 52.4 2.0 
  Rock 4 54.0 56.0 57.5 54.3 54.8 55.3 4.0 
  Rock 5 54.0 42.0 44.0 59.1 52.0 51.5 24.0 
  Rock 6 57.0 60.5 60.5 52.4 57.6 60.0 12.0 
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Table C15 Burial Test Results (12" depth) Horizontal Tests 

         

  
Dry Lateral Detection 
(cm)         

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 43.0 18.5 -9.5 56.2 35.7 20.0 17.0 
  Rock 2 40.0 31.0 n/a 19.2 35.7 23.8 26.0 
Bin 1 Rock 3 36.0 34.5 10.0 0.7 36.6 27.7 32.0 
  Rock 4 32.0 20.5 3.0 20.0 26.8 7.4 7.0 
  Rock 5 35.0 30.0 n/a 31.2 35.7 19.2 21.0 
  Rock 6 35.0 25.0 n/a 34.8 31.2 13.7 12.0 

  Rock 1 39.0 33.0 -14.0 30.4 36.2 24.2 20.0 

  Rock 2 36.0 33.0 n/a 31.2 38.5 23.0 22.5 
Bin 2 Rock 3 39.0 34.0 1.5 36.6 40.3 21.3 15.0 
  Rock 4 37.0 34.0 n/a 32.1 35.7 23.4 24.5 
  Rock 5 36.0 27.0 n/a 30.8 35.3 21.7 20.0 
  Rock 6 38.0 24.0 n/a 36.6 35.7 17.6 20.0 

  Rock 1 45.0 33.0 21.5 47.7 44.0 21.3 33.0 
  Rock 2 46.0 39.0 3.0 41.7 44.0 30.8 39.0 
Bin 3 Rock 3 50.0 49.0 -19.0 36.2 50.1 36.6 41.0 
  Rock 4 48.0 48.0 4.0 41.2 48.2 34.8 48.0 
  Rock 5 55.0 46.0 2.5 52.4 51.5 35.7 36.0 
  Rock 6 49.0 44.5 0.0 35.7 46.8 34.8 43.0 

  Rock 1 47.0 30.0 27.5 45.4 39.4 24.7 34.0 
  Rock 2 48.5 44.0 -25.0 41.2 45.9 29.9 40.0 
Bin 4 Rock 3 49.0 41.0 -17.0 48.7 45.9 29.5 37.0 
  Rock 4 40.0 44.0 33.0 23.4 42.6 40.8 44.0 
  Rock 5 54.0 40.0 24.0 49.6 49.6 21.7 20.0 
  Rock 6 50.0 50.0 3.0 39.9 49.6 39.4 43.0 
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Table C16 Burial Test Results (12" depth) Vertical Tests 

           Dry Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 18.0 16.5 14.0 5.6 12.2 13.7 18.0 
  Rock 2 11.0 9.0 11.0 6.2 5.6 5.1 14.0 
Bin 1 Rock 3 9.0 9.5 11.0 6.2 6.8 8.1 10.5 
  Rock 4 10.0 13.0 15.0 0.7 6.2 11.1 16.0 
  Rock 5 4.0 3.0 10.0 5.1 1.9 2.2 4.0 
  Rock 6 5.0 15.0 11.0 12.2 13.7 12.6 18.0 

  Rock 1 17.0 17.0 12.0 15.2 16.0 14.1 21.0 
  Rock 2 17.5 18.0 14.0 11.5 16.0 16.8 24.0 

Bin 2 Rock 3 20.5 19.5 12.0 10.8 16.4 18.8 24.0 

  Rock 4 21.5 20.0 12.0 11.8 17.6 16.8 25.0 
  Rock 5 13.0 15.0 14.0 6.8 9.4 11.5 20.0 
  Rock 6 14.5 10.5 8.0 14.5 12.9 10.4 14.0 

  Rock 1 21.0 21.0 17.5 13.7 19.2 19.2 33.0 
  Rock 2 15.0 16.0 18.0 46.8 51.5 14.1 26.0 
Bin 3 Rock 3 23.0 23.0 18.0 14.5 21.7 22.1 34.0 
  Rock 4 12.5 15.0 15.0 9.4 10.4 14.5 25.0 
  Rock 5 23.0 24.0 20.5 10.8 20.0 24.7 38.0 
  Rock 6 20.0 17.5 13.5 16.8 17.6 15.2 28.5 

  Rock 1 13.5 13.0 15.0 10.8 10.8 14.5 25.0 

  Rock 2 14.0 15.0 15.5 35.7 38.5 14.1 30.0 
Bin 4 Rock 3 16.0 19.0 23.0 4.0 10.8 20.0 34.0 
  Rock 4 15.0 14.0 13.0 13.7 13.3 11.5 21.0 
  Rock 5 45.0 41.0 23.0 49.1 46.8 5.6 10.0 
  Rock 6 21.0 20.0 17.0 15.2 20.0 18.0 32.0 
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Table C17 Burial Test Results (18" depth) Horizontal Tests 

         

  
Dry Lateral Detection 
(cm)         

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 32.0 24.5 n/a n/a 32.1 10.4 11.0 
  Rock 2 27.0 24.0 n/a n/a 29.5 14.5 11.0 
Bin 1 Rock 3 23.0 25.0 7.0 n/a 23.8 18.4 18.0 
  Rock 4 16.0 n/a n/a 19.2 12.2 n/a n/a 
  Rock 5 27.0 27.0 n/a n/a 21.7 19.2 14.0 
  Rock 6 n/a 25.0 8.0 1.2 n/a 26.0 7.0 

  Rock 1 29.0 9.0 n/a 15.6 27.7 6.8 n/a 

  Rock 2 30.0 16.0 n/a n/a 29.9 6.8 n/a 
Bin 2 Rock 3 31.0 -41.0 n/a n/a 26.0 n/a n/a 
  Rock 4 28.0 -32.0 n/a n/a 26.0 n/a n/a 
  Rock 5 31.0 15.0 n/a 26.0 26.0 10.4 10.0 
  Rock 6 29.0 27.0 n/a n/a 32.1 14.8 6.0 

  Rock 1 41.0 n/a 29.0 50.1 30.8 2.6 n/a 
  Rock 2 49.5 37.5 n/a 49.1 44.0 17.6 12.0 
Bin 3 Rock 3 43.0 20.0 n/a 45.4 36.2 10.4 5.0 
  Rock 4 53.0 40.0 n/a 47.7 51.5 16.8 13.5 
  Rock 5 55.0 41.5 n/a 39.9 49.6 16.0 16.0 
  Rock 6 52.0 41.0 n/a 49.6 50.6 25.5 24.5 

  Rock 1 48.0 37.0 7.0 50.6 38.5 16.4 n/a 
  Rock 2 47.0 33.0 -2.0 51.0 37.1 14.8 n/a 
Bin 4 Rock 3 47.0 35.0 n/a 48.7 41.2 17.6 18.5 
  Rock 4 55.5 43.0 -10.0 51.0 53.9 21.7 17.0 
  Rock 5 51.0 24.0 -10.0 49.1 44.0 10.4 n/a 
  Rock 6 49.5 43.0 n/a 44.9 49.1 23.0 23.0 
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Table C18 Burial Test Results (18" depth) Vertical Tests 

           Dry Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 14.0 18.0 14.0 n/a 9.0 14.8 18.0 
  Rock 2 13.0 11.0 7.0 8.7 10.8 11.5 14.0 
Bin 1 Rock 3 14.0 16.0 10.0 2.0 11.1 12.2 15.0 
  Rock 4 7.0 14.0 12.0 n/a 8.1 15.2 14.0 
  Rock 5 7.0 5.0 4.0 8.7 3.5 3.5 5.0 
  Rock 6 5.0 0.0 -1.0 9.0 3.1 0.3 0.0 

  Rock 1 13.0 11.5 7.0 8.1 10.8 10.1 11.0 
  Rock 2 18.5 17.0 11.0 5.1 15.2 12.9 15.0 

Bin 2 Rock 3 14.0 12.0 12.0 2.6 8.7 10.8 13.0 

  Rock 4 12.0 10.0 8.0 5.1 6.2 7.4 11.0 
  Rock 5 17.0 16.0 10.0 5.1 12.2 15.2 16.0 
  Rock 6 15.0 18.0 15.0 2.6 13.7 15.2 17.0 

  Rock 1 11.0 19.0 25.0 2.6 10.1 19.2 25.0 
  Rock 2 18.0 14.0 11.0 16.0 14.5 12.2 18.0 
Bin 3 Rock 3 20.5 17.0 10.5 22.5 20.0 12.9 15.5 
  Rock 4 17.0 16.0 16.0 14.1 15.6 14.1 19.0 
  Rock 5 22.0 19.0 14.0 19.2 18.4 12.9 19.0 
  Rock 6 10.0 10.0 13.0 9.4 6.8 8.1 13.0 

  Rock 1 16.0 18.0 19.0 11.5 14.8 14.1 20.0 

  Rock 2 17.0 17.0 17.0 12.2 12.6 13.7 18.0 
Bin 4 Rock 3 17.5 20.0 20.0 11.5 16.8 18.0 23.0 
  Rock 4 30.0 33.0 22.0 13.7 27.7 26.8 34.0 
  Rock 5 18.0 15.0 10.0 16.8 17.2 11.1 16.0 
  Rock 6 17.0 20.0 22.0 9.4 13.7 18.4 25.0 
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Table C19 Saturation Test Results (At Surface) Horizontal Tests 
  

           Lateral Detection (cm) 

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 25.0 23.0 2.5 25.5 24.2 20.9 37.0 
  Rock 2 19.0 17.5 12.0 16.4 20.0 17.6 40.5 
Bin 1 Rock 3 26.5 20.0 10.0 21.3 18.8 22.1 41.5 
  Rock 4 20.0 14.0 14.5 24.2 22.5 15.2 30.5 
  Rock 5 22.0 20.5 17.0 23.4 20.5 17.2 40.5 
  Rock 6 25.0 24.0 11.0 23.4 23.8 22.5 40.0 

  Rock 1 28.0 25.0 7.5 26.8 24.7 24.2 39.0 
  Rock 2 25.5 25.0 12.0 22.1 25.1 24.2 44.5 

Bin 2 Rock 3 31.0 29.0 17.5 26.0 27.7 27.3 42.5 

  Rock 4 30.0 24.0 12.0 27.7 28.6 24.2 40.5 
  Rock 5 23.5 20.0 17.5 18.8 18.8 14.5 36.5 
  Rock 6 29.0 26.5 16.5 26.0 26.8 25.1 42.0 

  Rock 1 29.5 15.5 26.5 33.9 26.0 15.2 34.5 
  Rock 2 31.5 30.0 12.5 26.4 29.5 28.2 51.0 
Bin 3 Rock 3 27.0 20.0 25.0 32.6 27.7 18.4 36.0 
  Rock 4 34.0 31.5 17.0 33.0 34.4 31.2 48.5 
  Rock 5 36.5 37.0 24.5 36.2 37.6 37.6 50.5 
  Rock 6 23.5 21.5 25.5 15.2 20.0 20.0 53.5 

  Rock 1 42.0 43.0 37.0 35.7 13.3 37.6 60.0 

  Rock 2 32.5 30.0 9.0 30.4 35.3 30.4 53.0 
Bin 4 Rock 3 27.5 20.5 23.5 26.4 26.8 21.3 50.5 
  Rock 4 30.5 31.0 20.0 28.2 32.1 35.7 57.5 
  Rock 5 36.0 30.5 15.0 38.9 32.6 27.7 51.0 
  Rock 6 35.5 31.0 10.0 29.5 32.1 28.2 53.0 
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Table C20 Saturation Test Results (At Surface) Vertical Tests 

           Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 38.0 39.0 44.5 41.2 37.1 45.4 20.5 
  Rock 2 39.5 40.0 44.0 42.2 41.2 45.9 27.0 
Bin 1 Rock 3 40.0 39.5 46.0 38.5 36.6 44.0 28.0 
  Rock 4 35.0 35.5 40.0 40.8 37.6 40.8 25.0 
  Rock 5 41.5 40.5 46.0 40.8 39.4 44.9 28.0 
  Rock 6 37.5 39.5 44.5 44.0 38.0 44.9 25.5 

  Rock 1 42.5 42.5 45.0 43.1 38.9 44.9 28.5 
  Rock 2 39.0 40.0 47.5 41.2 39.9 44.5 29.0 

Bin 2 Rock 3 38.0 41.5 44.0 41.2 39.4 43.5 15.0 

  Rock 4 36.0 36.0 42.5 39.4 47.7 43.1 11.0 
  Rock 5 42.0 40.5 44.5 44.9 40.3 44.5 16.0 
  Rock 6 43.0 43.5 46.0 43.1 41.7 44.0 25.0 

  Rock 1 38.5 25.0 39.5 49.1 40.3 39.4 42.0 
  Rock 2 52.0 53.0 59.0 56.2 53.4 59.1 23.0 
Bin 3 Rock 3 54.0 52.0 59.0 57.6 53.9 58.1 10.5 
  Rock 4 54.0 53.0 61.5 59.1 56.2 61.9 29.0 
  Rock 5 52.0 51.0 60.0 57.6 54.3 56.7 19.5 
  Rock 6 54.0 54.0 59.5 55.7 51.0 60.5 27.0 

  Rock 1 55.0 56.0 61.5 58.6 55.3 62.4 22.5 

  Rock 2 55.0 54.0 62.5 58.6 53.4 63.4 20.5 
Bin 4 Rock 3 56.5 54.0 61.5 58.6 53.4 61.0 25.5 
  Rock 4 55.0 56.5 62.0 57.6 54.3 60.0 27.5 
  Rock 5 53.5 51.0 59.5 56.7 54.8 60.5 12.5 
  Rock 6 58.5 55.5 60.0 62.9 57.2 59.1 15.0 
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Table C21 Saturation Test Results (6" depth) Horizontal Tests 

           Lateral Detection (cm) 

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 39.0 20.0 31.0 43.1 38.5 14.1 7.5 
  Rock 2 40.0 30.0 1.0 38.9 37.6 31.2 33.5 
Bin 3 Rock 3 40.5 30.0 27.0 42.6 38.9 26.4 25.0 
  Rock 4 45.5 42.0 23.0 42.2 46.3 39.9 41.0 
  Rock 5 45.0 33.0 13.0 44.0 40.3 33.0 32.0 
  Rock 6 35.0 35.0 25.0 26.8 32.6 36.2 35.0 

  Rock 1 43.0 38.0 4.0 42.6 40.3 31.2 51.0 
  Rock 2 44.0 34.0 9.0 44.9 40.8 29.5 40.5 

Bin 4 Rock 3 40.0 28.0 29.0 33.9 33.0 17.6 40.0 

  Rock 4 39.0 34.0 9.0 33.5 36.6 26.8 47.0 
  Rock 5 47.0 42.0 28.0 44.5 47.3 32.1 28.0 
  Rock 6 40.5 39.5 14.5 33.5 37.6 33.9 52.0 

 

Table C22 Saturation Test Results (6" depth) Vertical Tests 

           Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 41.0 43.0 46.0 43.1 44.9 45.4 5.5 

  Rock 2 52.0 47.0 47.0 49.6 54.3 48.7 15.0 
Bin 3 Rock 3 15.0 36.0 47.0 13.3 13.7 41.2 26.5 
  Rock 4 45.0 49.0 50.0 50.6 48.7 48.7 16.0 
  Rock 5 43.0 32.0 43.0 44.0 39.9 35.3 20.0 
  Rock 6 45.5 45.0 49.0 49.1 46.8 43.1 10.0 

  Rock 1 58.0 58.0 62.0 58.1 60.0 59.1 36.0 
  Rock 2 47.0 52.0 55.5 52.4 54.3 55.3 40.5 
Bin 4 Rock 3 58.0 55.0 47.0 59.1 58.1 55.3 32.0 
  Rock 4 5.0 60.0 54.0 50.6 54.3 60.0 20.0 
  Rock 5 46.0 46.0 52.0 52.0 52.9 56.2 42.0 
  Rock 6 55.0 61.0 62.5 53.4 59.1 58.6 25.0 
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Table C23 Saturation Test Results (12" depth) Horizontal Tests 
  

           Lateral Detection (cm) 

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 50.0 25.0 36.5 49.6 43.1 11.8 17.0 
  Rock 2 51.0 45.0 n/a 43.1 48.2 31.7 31.5 
Bin 3 Rock 3 53.0 47.0 -25.5 49.6 51.5 35.7 35.0 
  Rock 4 48.0 42.0 17.0 35.7 45.4 35.3 33.0 
  Rock 5 54.0 36.0 22.0 54.3 46.8 16.8 13.0 
  Rock 6 53.0 42.0 n/a 49.6 47.7 27.3 31.0 

  Rock 1 55.0 50.5 -8.0 52.0 54.3 37.6 35.0 
  Rock 2 58.5 44.0 11.0 55.3 52.4 25.5 25.0 

Bin 4 Rock 3 52.0 40.0 n/a 52.4 44.0 24.7 34.0 

  Rock 4 56.0 43.0 55.0 51.0 55.3 29.5 23.0 
  Rock 5 52.5 12.0 29.5 54.3 41.2 10.8 n/a 
  Rock 6 47.5 43.0 17.5 36.6 44.5 36.6 42.5 

 

Table C24 Saturation Test Results (12" depth) Vertical Tests 

           Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 18.5 21.0 21.0 11.8 17.6 18.0 29.5 

  Rock 2 30.5 30.0 19.5 22.5 28.6 21.7 34.0 
Bin 3 Rock 3 9.5 10.5 16.0 9.7 7.7 9.7 17.5 
  Rock 4 19.0 20.0 18.0 16.0 16.4 17.6 26.0 
  Rock 5 26.0 21.0 13.0 26.0 20.9 16.8 25.0 
  Rock 6 11.0 9.5 12.0 11.1 8.7 7.7 14.0 

  Rock 1 18.0 14.0 10.0 18.8 17.2 12.9 21.0 
  Rock 2 15.5 13.5 14.0 14.5 14.1 13.7 24.0 
Bin 4 Rock 3 17.0 16.0 14.0 16.8 15.6 13.7 26.0 
  Rock 4 17.0 15.5 14.5 16.0 13.7 13.3 24.0 
  Rock 5 11.5 14.5 21.5 8.1 10.8 14.1 24.0 
  Rock 6 11.5 11.0 14.0 11.8 44.9 10.8 19.0 
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Table C25 Submergence Test Results (At Surface) Horizontal Tests 

           Lateral Detection (cm) 

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 35.0 15.0 30.0 32.1 33.0 17.6 32.0 
  Rock 2 39.0 39.0 14.0 31.2 33.9 26.4 53.0 
Bin 3 Rock 3 45.0 34.0 19.0 36.2 30.4 23.8 59.0 
  Rock 4 39.5 37.0 24.0 34.8 31.2 26.0 55.0 
  Rock 5 46.0 366.0 32.0 39.4 44.9 27.3 49.0 
  Rock 6 20.0 17.5 28.5 23.0 39.4 25.1 58.5 

  Rock 1 38.0 36.0 20.5 35.7 25.1 21.7 47.0 
  Rock 2 26.0 36.0 26.0 31.2 26.0 23.4 49.0 

Bin 4 Rock 3 37.0 30.0 13.0 25.1 22.1 21.7 55.0 

  Rock 4 32.0 38.5 31.0 29.9 31.7 29.9 59.0 
  Rock 5 24.5 24.0 14.5 34.4 26.4 19.6 19.5 
  Rock 6 35.0 35.0 12.0 29.5 30.4 27.3 54.5 

 

Table C26 Submergence Test Results (At Surface) Vertical Tests 
  

           Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 55.0 55.0 55.0 58.1 52.4 53.9 27.0 

  Rock 2 40.0 39.0 30.0 36.2 34.8 31.2 38.0 
Bin 3 Rock 3 57.0 58.0 46.0 53.4 53.9 50.1 45.5 
  Rock 4 60.0 58.5 57.0 54.3 56.2 58.1 42.0 
  Rock 5 58.0 59.0 50.0 53.9 53.9 51.5 32.0 
  Rock 6 56.5 56.0 54.0 54.3 54.3 50.6 51.0 

  Rock 1 56.0 60.5 50.0 46.8 47.7 44.9 55.0 
  Rock 2 61.0 57.0 55.0 61.0 55.3 54.3 32.0 
Bin 4 Rock 3 51.0 56.0 55.0 55.7 56.7 54.3 38.0 
  Rock 4 59.0 59.0 57.0 58.1 57.6 52.9 44.5 
  Rock 5 57.5 52.0 55.0 61.5 53.4 54.3 37.0 
  Rock 6 57.5 60.0 52.0 53.4 58.6 48.2 45.0 
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Table C27 Submergence Test Results (6" depth) Horizontal Tests 
  

           Lateral Detection (cm) 

    A1 A2 A3 A10 A11 A12 C2 

  Rock 1 42.0 35.0 25.0 40.3 35.3 21.7 25.5 
  Rock 2 35.0 27.0 5.0 19.2 32.1 23.4 30.0 
Bin 3 Rock 3 40.0 39.0 22.0 33.0 36.2 28.6 36.5 
  Rock 4 46.0 20.0 17.0 32.1 34.8 30.8 33.0 
  Rock 5 44.0 42.0 10.0 30.4 34.8 29.5 33.0 
  Rock 6 41.0 50.0 14.0 33.0 44.9 34.8 39.0 

  Rock 1 40.5 30.0 7.0 34.8 32.1 11.5 24.0 
  Rock 2 46.0 40.0 30.0 35.3 35.7 27.7 34.0 

Bin 4 Rock 3 42.5 37.0 n/a 36.6 35.7 33.9 36.5 

  Rock 4 41.0 40.0 19.0 43.1 45.4 34.8 33.0 
  Rock 5 45.0 35.0 8.0 43.1 37.6 22.5 21.0 
  Rock 6 49.0 34.0 10.0 44.9 39.4 21.3 33.5 

 

Table C28 Submergence Test Results (6" depth) Vertical Tests 

           Lateral Detection (cm) 

    B1 B2 B3 B10 B11 B12 D2 

  Rock 1 18.0 20.0 16.0 13.7 10.8 13.7 33.0 

  Rock 2 32.0 31.0 24.0 1.9 18.0 28.6 46.0 
Bin 3 Rock 3 29.0 27.0 23.0 10.1 14.5 17.6 44.0 
  Rock 4 18.0 19.0 45.0 5.6 17.6 39.4 32.0 
  Rock 5 30.0 47.0 53.0 13.7 35.7 42.2 7.5 
  Rock 6 20.0 16.0 45.0 35.7 27.7 34.8 17.0 

  Rock 1 20.0 32.0 46.0 35.7 24.2 32.1 30.0 
  Rock 2 50.0 45.0 14.0 48.7 44.0 40.3 37.0 
Bin 4 Rock 3 45.0 22.0 18.5 39.4 37.6 13.7 32.0 
  Rock 4 15.0 41.0 35.0 13.7 10.8 36.6 27.0 
  Rock 5 44.0 34.5 24.0 49.1 44.9 22.5 37.5 
  Rock 6 43.0 15.0 38.0 35.7 36.2 24.7 23.0 
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Table C29 Antenna Range Tests (23 mm tags) 
    

           F G H I 

Tag#  F1 F2 G1 G2 H1 H2 I1 I2 

800001 -12 77.5 -23.5 68 12 -63.5 -14 73.5 
800002 -21.5 71 -17 72 7 -55 -17 67.5 
800003 -16.5 74 -19 70 10 -53.5 -14.5 68.5 
800004 -22 77 -17 63 6.5 -57 -15 70 
800005 -16.5 72.5 -15.5 68 0.5 -56.5 -16 70.5 
800006 -12 80 -17 67.5 5.5 -61 -18.5 63 
800007 -20.5 71 -14.5 73 3.5 -57.5 -18.5 68 

800008 -20 72 -12 66 4 -58.5 -16 66 
800009 -18.5 76 -16.5 71 5 -54.5 -16.5 67 
800010 -17 77 -17 69 -1 -53 -18 65 
800011 -16 71 -14 76.5 8 -63.5 -15 62 
800012 -16 78 -9 73.5 5 -54 -19.5 64.5 
800013 -20 74 -16 73 -1 -53 -17.5 62.5 
800014 -16.5 70.5 -17 70.5 2.5 -63 -15 68 
800015 -18 72 -8.5 73 9 -57 -18 63 
800016 -20 73.5 -8 73 7.5 -53.5 -19 64 
800017 -15.5 77 -11.5 77.5 2 -58 -17 68 
800018 -19 76 -9.5 76 7 -60 -20 65 
800019 -18 72.5 -12 72 7 -63 -17.5 68 

800020 -17 72 -15 71 3 -54 -18 68 
800021 -16 72.5 -13 70.5 5 -53 -17 65 
800022 -13 75.5 -8 74.5 11 -68 -18 59 
800023 -15 72.5 -10 71 7 -54 -18 63 
800024 -12 73 -13 76.5 10 -65 -19 59 
800025 -15 76 -14 69.5 10 -55 -14 63 
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Table C30 Antenna Range Tests (32 mm tags) 

           F G H I 

Tag#  F1 F2 G1 G2 H1 H2 I1 I2 

900001 -22 78.5 -18 79 5 -57 -22 64 
900002 -19 80 -17 79 22 -53 -19.5 62 
900003 -23 73 -15.5 78.5 6 -53 -22 65 
900004 -19 74 -14.5 74 1 -63 -26 62 
900005 -22 74 -19 76.5 9 -52 -18 68 
900006 -25 72 -16 74 4 -51.5 -20 61 
900007 -23 76 -15 77.5 11 -63 -20 67.5 

900008 -21 75 -12 75 -2 -55 -19 67 
900009 -26 74.5 -15 73 3.5 -49.5 -16 71 
900010 -21.5 75 -15 74 1 -65 -21 71 
900011 -22 75 -14 77 1 -55 -23 60 
900012 -19.5 74 -14 79 0.5 -54 -19 63.5 
900013 -19.5 76.5 -17 73 6 -56 -16 77 
900014 -21 81 -23.5 74 12 -67 -15 70.5 
900015 -18.5 76.5 -13.5 72 -1 -56 -19 67 
900016 -20 78 -12 78.5 4.5 -61 -23 68.5 
900017 -23.5 71.5 -15 77 0.5 -60.5 -19 66.5 
900018 -25 72 -18 76 2 -57 -24.5 72 
900019 -21 75.5 -18.5 76 3.5 -62 -21 65 

900020 -20 76 -15 75 5 -60 -21 64 
900021 -20.5 75 -24 67 7.5 -61.5 -17 75 
900022 -19 82.5 -18 75.5 5 -61 -17 69.5 
900023 -24.5 77.5 -19 74 2 -67.5 -17 68 
900024 -23.5 80 -15 72 -1 -56 -13.5 61 
900025 -18 73.5 -20.5 71 3 -59 -16 67 
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Table C31 Skip Zones Test Results

Direction

Turn

Tag

800001 -4.5 -7.5 -2.5 -5 -5 -7 -4 -7 -5 1.5 -0.5 -4 -5 1.5 -0.5 -4.5

-2 6 1 8 -1 6 0.5 5 7 8.5 7.5 9.5 6 9 6 7.5

800002 0.5 -4.5 1 6 1 -4 -4.5 -7.5 -4.5 -6 -4 -6 -1 -6 -3.5 -5.5

4.5 7.5 3.5 6.5 6 8.5 0.5 7.5 1.5 6.5 1 6.5 4 7.5 2 6.5

900001 -6 -4.5 -4 0.5 -3.5 1 -7 -5 -3.5 0.5 -2 1 -3.5 -1.5 -4 -0.5

1.5 4.5 4 7.5 4 7 1.5 6.5 5 7 6.5 8 3 6 1 6.5

900002 -5 -2.5 -4 3 -4 2.5 -3.5 4 -0.5 2.5 -3.5 -2.5 0.5 2.5 -4.5 -4

1.5 7.5 5 7.5 6 8.5 6 8 5.5 8 1.5 8 7 8.5 2.5 6

Axes of Reference for the results shown Legend

tag

2 cm gap

+ve -ve

Skip Intervals (cm) for North Copper Tag Orientation Skip Intervals (cm) for South Copper Tag Orientation

0° 90° 180° 270° 0° 90° 180° 270°
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Table C32 Field Tests (Horizontal Tests) on the Surface of a Dry Point Bar of Laurel 
Creek 

   Test A1 A2 A3 A10 A11 A12 C2 

  Rock 1 30.5 27.5 16 23.8 31.2 23 49.5 
  Rock 2 34 28 17.5 29 29 26.8 42.5 
Bin 2 Rock 3 34 31 26 30 32 28 45 
(At 
surface) Rock 4 35 31 23 28 33 30 43 
  Rock 5 24 16 18 21 22 15 36 
  Rock 6 27 28.5 15 23 26.4 24 36 

  Rock 1 11 4 9 5 7 8 44 
  Rock 2 17 12 9 19 14 13 45 

Bin 2 Rock 3 15 21 17 16 16 21 46 
(Exposed) Rock 4 27 25 33 21 26 28 49.5 
  Rock 5 12 9 12.5 5 7 9.4 41 
  Rock 6 24 23 18.5 23 21 21.7 49 

  Rock 1 23 21 14 22 23 19 36 
check--> Rock 2 10 15 21 21 20 21 54.5 
Bin 3 Rock 3 21 11 8 15 15 16 52.5 
(Exposed) Rock 4 17 26 26 15 19 25 49.5 
  Rock 5 31 25.5 23 26 22.1 22 52 
  Rock 6 27 22 7 22 18 21 56 

  Rock 1 40.5 37 31.5 27.3 26 30.4 52.5 

  Rock 2 11.5 8 4 10.1 8 8 48.5 
Bin 4 Rock 3 16 10.5 11 4 11.1 7 51 
(Exposed) Rock 4 30 28.5 23.5 25 28.6 27.3 65 
  Rock 5 24 13.5 9.5 11 17.2 20.9 39.5 
  Rock 6 20 14 8 11 13 5 54.5 

Rod   66 75 45.5 58 44 33.9 157 
Disc*   57 58 59 55 62 58 40 
Wedge**   15.5 11.5 0.5 14.5 14.8 11.5 21 

 

Notes 
  * lettering on top "TI" 

** 
# inscribed on top; tag sitting on wooden ruler. Not on Aluminium. NO signal 
when on Aluminium 

Saturation: On top of bar, Saturation = 0 
Location
: 

 
Bechtel Park, u/s of Site 4; point bar on right bank 
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Table C33 Field Tests (Vertical Tests) on the Surface of a Dry Point Bar of Laurel Creek 

           Test B1 B2 B3 B10 B11 B12 D2 

  Rock 1 43 41 42 40.3 41.2 42 31 
  Rock 2 42 41 40 41 41 37.6 31 
Bin 2 Rock 3 41 40 40.5 38 38 43 31.5 
(At 
surface) Rock 4 40.5 38 37 35 33 31 25 
  Rock 5 36 37 29 38 34 36 18 
  Rock 6 39 41 40 39 36.2 37 28 

  Rock 1 41 41 39 40 40 37 35 
  Rock 2 39 40.5 38 37 37 36 40.5 

Bin 2 Rock 3 40 39 37 38 41 39 28 
(Exposed) Rock 4 40.5 40 39.5 39 40 37 39.5 
  Rock 5 41 40.5 40 40 42 42.2 29 
  Rock 6 42 60 40 38 40 37.6 34 

  Rock 1 47.5 51 50 41 50 50 40 
  Rock 2 52 54 52.5 52 53 52 43.5 
Bin 3 Rock 3 50.5 51 51 48 48 49 43 
(Exposed) Rock 4 53 52.5 51.5 54 51 51 44.5 
  Rock 5 52 51.5 51 51 50.6 53 43 
  Rock 6 53.5 53 52 51 52 51 46 

  Rock 1 53 54.5 56 49.6 54 54.8 39.5 

  Rock 2 51 55 55 48.7 52 55 40.5 
Bin 4 Rock 3 53 53 54 51 49.6 51 47.5 
(Exposed) Rock 4 50 51.5 54 51 49.6 51.5 44.5 
  Rock 5 56 55 53 55 54.8 51.5 41 
  Rock 6 55 53 54 51 55 51 48.5 

Rod   140 137 143 137 138 144.0 67 
Disc   21 27 23 17 9 12 47 
Wedge***   32 31.5 31.5 29.5 27.7 30.4 25.5 

 

Notes: 
 *** On fat base; has groove on tag 

Saturation: On top of bar, Saturation = 0 

Location: 
Bechtel Park, u/s of Site 4; point bar on right 
bank 
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Table C34 Field Tests (Horizontal Tests) on the Edge of a Point Bar of Laurel Creek 
(under conditions of saturation) 

   Test A1 A2 A3 A10 A11 A12 C2 

  Rock 1 31.0 25.0 0.5 27.7 27.7 19.2 40.0 
  Rock 2 37.0 24.5 15.0 24.2 28.6 21.7 37.0 
Bin 2 Rock 3 32.0 31.0 10.0 28.6 32.1 21.7 41.0 
(At 
surface) Rock 4 28.0 25.0 19.0 20.5 26.8 23.8 42.0 
  Rock 5 23.0 15.0 18.0 24.2 16.0 14.1 36.0 
  Rock 6 24.0 25.0 13.5 24.2 30.4 16.0 35.0 

  Rock 1 19.5 9.0 9.0 10.8 8.1 15.2 47.0 
  Rock 2 18.0 13.0 14.0 14.5 14.5 20.0 34.0 

Bin 2 Rock 3 23.0 18.0 22.0 16.0 20.5 27.7 45.0 
(Exposed) Rock 4 19.0 25.0 20.0 20.9 26.8 30.4 44.0 
  Rock 5 15.0 12.0 16.5 19.2 24.2 25.1 29.0 
  Rock 6 25.0 12.0 3.0 22.5 13.7 11.5 46.0 

  Rock 1 9.0 4.5 18.0 8.7 20.9 8.7 47.0 
  Rock 2 28.0 26.0 3.5 18.8 27.7 17.6 51.0 
Bin 3 Rock 3 23.5 13.5 14.0 12.2 12.6 23.8 57.0 
(Exposed) Rock 4 37.0 39.0 26.0 32.1 38.5 35.7 54.0 
  Rock 5 32.0 38.0 30.0 23.8 38.5 34.8 59.0 
  Rock 6 29.0 11.0 8.0 24.2 11.5 13.7 55.0 

  Rock 1 29.5 33.0 27.0 25.5 25.1 23.4 61.0 

  Rock 2 17.5 15.5 6.0 17.6 8.1 22.5 61.0 
Bin 4 Rock 3 16.0 10.0 21.0 26.8 12.2 10.1 42.0 
(Exposed) Rock 4 30.0 24.0 31.0 14.5 18.4 29.9 44.0 
  Rock 5 17.5 16.0 8.0 13.7 14.5 19.2 57.0 
  Rock 6 12.0 9.0 13.0 12.2 23.0 21.3 58.5 

 

Notes: 
 Saturation: At Water's Edge, Saturation = 1 

Location: 
Bectel Park, u/s of Site 4; point bar on right 
bank 
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Table C35 Field Tests (Vertical Tests) on the Edge of a Point Bar of Laurel Creek (under 
conditions of saturation) 

   Test B1 B2 B3 B10 B11 B12 D2 

  Rock 1 34 40 35 35.7 43.1 36.6 34 
  Rock 2 32 33 34 38.5 37.6 36.2 27 
Bin 2 Rock 3 39 35 34 38.0 41.2 40.8 25 
(At 
surface) Rock 4 33 33.5 39 34.4 34.4 38.5 22 
  Rock 5 41.5 39.5 39 39.4 41.2 38.9 28 
  Rock 6 38 39 37 38.5 37.6 36.6 35 

  Rock 1 41 41 40 39.9 40.3 41.2 35 
  Rock 2 41 40 39.5 39.4 35.7 38.9 39 

Bin 2 Rock 3 40 39.5 40 39.4 39.9 40.8 32 
(Exposed) Rock 4 40 40 40 38.9 39.9 39.4 38 
  Rock 5 42 40.5 41 38.9 38.5 35.7 37 
  Rock 6 39 38 40 38.5 34.8 38.5 37 

  Rock 1 49 49 49 48.7 52.4 54.3 34 
  Rock 2 52 50.5 50 49.6 48.7 51.5 43 
Bin 3 Rock 3 51 52 53 50.6 52.4 50.6 36 
(Exposed) Rock 4 51 52 52.5 53.4 48.7 53.4 43 
  Rock 5 51 50 50.5 50.6 49.1 52.0 41 
  Rock 6 50.5 52 51 48.2 51.5 50.1 50 

  Rock 1 53 54 52.5 53.4 52.4 51.5 44 

  Rock 2 52.5 51 50.5 51.5 50.1 50.6 46 
Bin 4 Rock 3 52 52 53 50.6 52.4 52.9 42 
(Exposed) Rock 4 52 50.5 52 51.5 47.7 50.6 50 
  Rock 5 53.5 50.5 50 50.6 51.5 48.7 48 
  Rock 6 55 54 51 54.3 53.4 48.7 50.5 
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Table C36 Field Tests (Horizontal Tests) on the Centre of a Point Bar of Laurel Creek 

           Test A1 A2 A3 A10 A11 A12 C2 

  Rock 1 with backfill 33 34 8.5 27 37 27.3 24.5 
  Rock 1  34 28.5 9 24 31.7 24 26.5 
Bin 2 Rock 2 33 33.5 -0.5 25 38.5 30.8 34 
Depth: 12" Rock 3 32.2 31.5 -0.5 26.0 32.1 26.4 26.5 
  Rock 4 32 37 26 0 34 34 27 
  Rock 5 34 30.5 -3 22 31.2 21 25 
  Rock 6 33 35 -1 21 38 30 23 

  Rock 1 40 33 -6 38 42 27 37 
  Rock 2 30 29 9 26 30 25 37 

Bin 2 Rock 3 38.5 25 6 36.6 37 28 31.5 
Depth: 6" Rock 4 35.5 37.5 23.5 27.7 35.7 35.7 42 
  Rock 5 30.5 22 25 29.5 26 16 22 
  Rock 6 36 38 11.5 29 37 33.9 39 

  Rock 1 36.5 31 3 29.5 30 28 39 
  Rock 2 26 30 13 19 32 27 46 
Bin 2 Rock 3 35.5 31.5 17 32.6 39.4 30 40.5 
Depth: 3" Rock 4 32 29 16 27 32 28 42 
  Rock 5 20.5 15.5 17.5 24.2 19.2 15.6 32 
  Rock 6 29.5 24 15.5 24.2 29 26.0 39.5 

 

Notes: 
     · All tests were without backfill unless otherwise noted. 

· Depth to water table = 27.5cm from top of bar 
 · For 12" test, approximately 4.5cm of water in bottom of 

hole 
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Table C37 Field Tests (Vertical Tests) on the Centre of a Point Bar of Laurel Creek 

           Test B1 B2 B3 B10 B11 B12 D2 

                  
  Rock 1 25 19 11 24 24 16 29.5 
Bin 2 Rock 2 12.5 13.5 15 10.8 11.8 13 20 
Depth: 12" Rock 3 13.5 19 17 8.4 16 18 26.5 
  Rock 4 17.5 18.5 14.5 15.6 15.2 16.8 22.5 
  Rock 5 19 14.5 13 28 16.8 13 19.5 
  Rock 6 13 14 14.5 11 11 11.5 19 

  Rock 1 14 14.5 8 10 16.0 14 30.5 
  Rock 2 31 36 27 36 9 31 10.5 

Bin 2 Rock 3 7 10 27 4 8 12 13 
Depth: 6" Rock 4 12 7 35.5 15 12 30.4 13.5 
  Rock 5 29 7 15 29 27 3 17 
  Rock 6 11 11.5 34 11 11.8 11 23 

  Rock 1 36 42 41 33 34 43 29 
  Rock 2 35 37 36 33 31 33 3 
Bin 2 Rock 3 30 30 32.5 31 23 23.8 16 
Depth: 3" Rock 4 36 43.5 44.5 31 41.7 45.9 11.5 
  Rock 5 43 40 35 39 39 39 32.5 
  Rock 6 39 36.5 35 37 37.6 36 12 

 

Notes: 
     · All tests were without backfill unless otherwise noted. 

· Depth to water table = 27.5cm from top of bar 
 · For 12" test, approximately 4.5cm of water in bottom of 

hole 
 

 

 


