
Energy-Efficient Turbo Decoder

for 3G Wireless Terminals

by

Ibrahim A. Al-Mohandes

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2005

c©Ibrahim A. Al-Mohandes 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Since its introduction in 1993, the turbo coding error-correction technique has generated

a tremendous interest due to its near Shannon-limit performance. Two key innovations of

turbo codes are parallel concatenated encoding and iterative decoding. In its IMT-2000

initiative, the International Telecommunication Union (ITU) adopted turbo coding as a

channel coding standard for Third-Generation (3G) wireless high-speed (up to 2 Mbps)

data services (cdma2000 in North America and W-CDMA in Japan and Europe).

For battery-powered hand-held wireless terminals, energy consumption is a major con-

cern. In this thesis, a new design for an energy-efficient turbo decoder that is suitable

for 3G wireless high-speed data terminals is proposed. The Log-MAP decoding algorithm

is selected for implementation of the constituent Soft-Input/Soft-Output (SISO) decoder;

the algorithm is approximated by a fixed-point representation that achieves the best per-

formance/complexity tradeoff. To attain energy reduction, a two-stage design approach is

adopted.

First, a novel dynamic-iterative technique that is appropriate for both good and poor

channel conditions is proposed, and then applied to reduce energy consumption of the

turbo decoder. Second, a combination of architectural-level techniques is applied to obtain

further energy reduction; these techniques also enhance throughput of the turbo decoder

and are area-efficient. The turbo decoder design is coded in the VHDL hardware description

language, and then synthesized and mapped to a 0.18µm CMOS technology using the

standard-cell approach. The designed turbo decoder has a maximum data rate of 5 Mb/s

(at an upper limit of five iterations) and is 3G-compatible. Results show that the adopted

two-stage design approach reduces energy consumption of the turbo decoder by about 65%.

A prototype for the new turbo codec (encoder/decoder) system is implemented on a

Xilinx XC2V6000 FPGA chip; then the FPGA is tested using the CMC Rapid Prototyping

Platform (RPP). The test proves correct functionality of the turbo codec implementation,

and hence feasibility of the proposed turbo decoder design.

iii

Acknowledgements

I would like to first thank my thesis supervisor, Prof. Mohamed Elmasry. It was through

his patience and invaluable guidance that this work was accomplished. I would also like

to express my appreciation for Prof. Amir Khandani, Prof. Catherine Gebotys, Prof.

Manoj Sachdev, and Prof. Mohamed Sawan for serving as my committee members and

commenting on this work.

I would like to acknowledge the support of our VLSI lab system administrator, Phil

Regier, especially his fast response to technical problems. I would also like to thank my

colleagues in the VLSI lab for their help and advise. Special thanks go to Jonathan Lutz,

now with Motorola Co.

Finally, I send my sincere thanks and great appreciation to my parents and my wife for

their love and support during this work.

iv

Contents

1 Introduction 1

1.1 Thesis Contributions . 2

1.2 Organization . 3

2 Turbo Codes 4

2.1 Digital Communication Systems . 4

2.1.1 Channel Fundamental Limits . 7

2.2 Channel Coding Techniques . 8

2.2.1 Linear Block Codes . 8

2.2.2 Convolutional Codes . 9

2.3 Turbo Codes . 10

2.3.1 Turbo Encoder . 11

2.3.2 Interleaver . 12

2.3.3 Iterative Decoding of Turbo Codes 13

2.4 Standardized Turbo Codes for 3G Wireless Systems 15

3 VLSI Design of Turbo Decoders 19

3.1 Algorithmic-Level Design . 19

3.1.1 MAP Decoding Algorithm . 19

3.1.2 Max-Log-MAP Decoding Algorithm 21

3.1.3 Log-MAP Decoding Algorithm . 23

3.1.4 SOVA Decoding Algorithm . 24

3.1.5 Comparison of MAP and SOVA Iterative Decoding Algorithms . . . 26

v

3.2 Exploration of System Design Space for Turbo Codecs 31

3.2.1 Turbo Decoder Optimization . 32

3.3 Architectures and Design Techniques for Turbo Decoders 37

3.4 Dynamic-Iterative Techniques for Turbo Decoders 40

3.5 Sources of Power and Energy Consumption 43

4 A New Dynamic-Iterative Technique for Turbo Decoders 45

4.1 Quantization of the Log-MAP Turbo Decoder 45

4.1.1 Decoding Performance of the Fixed-Point Approximation 46

4.2 Energy Reduction with Dynamic-Iterative Techniques 46

4.2.1 CRC Stopping Method . 50

4.2.2 HDA Stopping Method . 51

4.3 A New Dynamic-Iterative Technique: CRC-HDD 51

4.3.1 Iteration Stopping Using the CRC Method 52

4.3.2 Introducing a Novel Cancellation Method: HDD 52

4.3.3 The New CRC-HDD Dynamic-Iterative Algorithm 55

4.3.4 Comparing Decoding Performance for CRC, HDA, and CRC-HDD . 57

4.3.5 Comparing Iteration Reduction for CRC, HDA, and CRC-HDD . . 57

4.4 Hardware Complexity of the CRC-HDD Logic 60

4.4.1 Complexity Reduction of the HDD Section 61

5 An Energy-Efficient Design of Turbo Decoder 63

5.1 Architectural-Level Techniques Applied to the Turbo Decoder 63

5.1.1 Algorithm Selection and Quantization 63

5.1.2 Parallelism . 64

5.1.3 A New Operator Reduction Method for the max∗ Logic 64

5.1.4 Normalization of State Metrics . 66

5.1.5 Resource Sharing . 69

5.1.6 Interleaver Design . 70

5.1.7 Double Buffering . 70

5.2 Turbo Decoder Design Hierarchy . 71

vi

6 Synthesis Results 82

6.1 Synthesis Results for a 0.18µm CMOS Standard-Cell Based Turbo Decoder 82

6.1.1 Applying the Architectural-Level Techniques to the Turbo Decoder 82

6.1.2 Energy Reduction with the CRC-HDD Dynamic-Iterative Technique 84

6.1.3 Effect of Memory Integration on the Turbo Decoder 86

6.2 CMOS Layout of the Turbo Decoder Including Memory Blocks 88

6.3 Comparison with State-of-the-Art Turbo Decoders 89

7 FPGA Design and Testing of a Turbo Codec Prototype 93

7.1 The Turbo Codec Design . 93

7.2 FPGA Testing with the CMC RPP Environment 94

8 Conclusion 98

vii

List of Tables

2.1 Puncturing patterns for the turbo code of Figure 2.6 17

4.1 Reduction in iteration number by CRC, HDA, and CRC-HDD techniques . 60

4.2 Typical vs. low-complexity HDD circuit implementations 62

5.1 Results for classical and new implementations of the max∗ logic 67

5.2 Implementation results for the two SM normalization methods 69

6.1 Turbo decoder characteristics at different stages of the design process . . . 84

6.2 Turbo decoder characteristics before and after applying CRC-HDD technique 85

6.3 Memory characteristics for the turbo decoder design 86

6.4 Power/Energy consumption for the static/dynamic-iterative turbo decoder 87

6.5 Characteristics of chips from recent research and proposed implementation 91

7.1 Key characteristics of the turbo codec FPGA 97

viii

List of Figures

2.1 The general model of a digital communication system 5

2.2 A rate 1/2 convolutional encoder . 9

2.3 Trellis diagram for the 1/2 non-systematic encoder in Figure 2.2 11

2.4 General diagram of a rate 1/3 turbo encoder 12

2.5 General diagram of an iterative turbo decoder 14

2.6 Standardized turbo code for 3G wireless systems 16

3.1 Relationship between MAP, Log-MAP, Max-Log-MAP, and SOVA 26

3.2 Comparing (Log-)MAP, Max-Log-MAP, and SOVA 28

3.3 BER vs. Eb/N0 for MAP, SOVA, Max-Log-MAP, and Log-MAP decoders . 29

3.4 FER vs. Eb/N0 for MAP, SOVA, Max-Log-MAP, and Log-MAP decoders . 30

3.5 System design space for turbo codecs . 32

4.1 BER vs. Eb/N0 for floating-point and fixed-point Log-MAP turbo decoders 47

4.2 FER vs. Eb/N0 for floating-point and fixed-point Log-MAP turbo decoders 48

4.3 Frame structure used in 3G wireless CDMA standards 50

4.4 The 8-bit CRC-encoder for cdma2000 and W-CDMA standards 51

4.5 Average HDD vs. Eb/N0 (1024 bits/frame, max. 5 iterations) 54

4.6 Average DHDD vs. Eb/N0 (1024 bits/frame, max. 5 iterations) 54

4.7 The CRC-HDD algorithm . 56

4.8 BER and FER vs. Eb/N0 for CRC, HDA, and CRC-HDD decoders 58

4.9 Average iteration no. vs. Eb/N0 for CRC, HDA, and CRC-HDD decoders . 59

5.1 Parallel processing of two half-frames . 65

ix

5.2 The max∗ operation . 66

5.3 The parallel max state-metric normalization logic 68

5.4 The subtraction-based state-metric normalization algorithm 68

5.5 Design hierarchy of the VHDL-based turbo decoder 72

5.6 Block diagram of the new turbo decoder (td chip) 73

5.7 Block diagram of the Log-MAP SISO decoder (logmap) 75

5.8 RSC encoder state transitions and corresponding parity symbols 76

5.9 Block diagram of the branch metrics calculation (bm calc) unit 77

5.10 Block diagram of the state metrics calculation (sm calc) unit 77

5.11 Block diagram of the LLR calculation (llr calc) unit 78

5.12 Timing diagram for data interleaving/deinterleaving by the controller unit 81

6.1 Floorplan report for the turbo decoder chip 89

6.2 CMOS layout of the 128-bit turbo decoder 90

7.1 Block diagram of the turbo codec system 95

7.2 CMC Rapid Prototyping Platform . 96

x

List of Acronyms

3G Third-Generation

ACS Add-Compare-Select

APP A Posteriori Probability

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BM Branch Metric

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

CDMA Code Division Multiple Access

cdma2000 3G CDMA standard (for year 2000) in North America

CRC Cyclic Redundancy Check

DHDD Decrease in Hard Decision bit-wise Difference

FEC Forward Error Correction

FER Frame Error Rate

HD Hard Decision

HDA Hard Decision Aided

HDD Hard Decision bit-wise Difference

HSDPA High Speed Downlink Packet Access

IMT-2000 International Mobile Telecommunications for year 2000

ITU International Telecommunication Union

xi

LLR Log-Likelihood Ratio

MAP Maximum A Posteriori

ML Maximum Likelihood

RPP Rapid Prototyping Platform

RSC Recursive Systematic Convolutional

RTL Register-Transfer-Level

SCR Sign-Change Ratio

SISO Soft-Input/Soft-Output

SM State Metric

SNR Signal-to-Noise Ratio

SOVA Soft-Output Viterbi Algorithm

W-CDMA 3G (Wideband) CDMA standard in Europe and Japan

xii

List of Symbols

L A priori, or extrinsic, information

La A priori information

β Backward state metric

Eb Bit energy

γi Branch metric for bit i ∈ {0, 1}
B Channel bandwidth

C Channel capacity

Lc Channel reliability factor

η Channel spectral efficiency

R Code rate

fc Correction function for Jacobian logarithm

Le Extrinsic information

α Forward state metric

N Frame (or block) length

g Generator polynomial for convolutional code

x̂ Hard decision for original x

x̃ x interleaved

Λ Log-likelihood ratio (or probability)

N0 One-sided noise power spectral density

Es Symbol energy

xiii

Chapter 1

Introduction

For many digital communication services, bandwidth and transmission power are limited

resources, and it is well known that the use of Forward Error-Correction (FEC) codes

plays a fundamental role in increasing power and spectrum efficiency. However, Shannon

demonstrated in [1] that the development of error-correction techniques with increasing

coding gain has a limit arising from the channel capacity.

Since then, FEC code designers have been looking for new codes that approach as close

as possible the Shannon limit. However, each increased coding gain comes at the expense

of decoder complexity, and its practical feasibility must be evaluated for the available

technologies [2].

A new class of binary parallel concatenated Recursive Systematic Convolutional (RSC)

codes, called turbo codes [3], are capable of achieving power efficiency close to the Shannon

limit. Turbo codes have been adopted by the International Telecommunication Union

(ITU) to effectively improve system capacity for Third-Generation (3G) wireless high-

speed data services (cdma2000 and W-CDMA).

The goal of the ITU is to achieve a harmonized 3G wireless standard that would allow

users to roam anywhere in the world without resorting to multimedia terminals. Despite

being a small part of the overall system, turbo code specifications in the cdma2000 and

W-CDMA systems are designed to have as much commonality as possible toward achieving

this goal [4].

Now, communication system designers have a large spectrum of turbo-code decoders

1

2 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

at their disposal. However, performance and power are usually contradicting metrics;

the decoder with an excellent decoding performance also has a very complex hardware

architecture that results in a large amount of power consumption [5].

By applying high-performance power-reduction techniques in the design of the turbo

decoder, energy consumption of the mobile terminal can be reduced in two ways. The first

one is directly achieved by reducing energy consumption of the turbo decoder, thereby

reducing energy consumption of the entire mobile terminal. The second way is indirectly

derived from the fact that a high performance decoder can decode codes transmitted with

low signal-to-noise ratios (SNR); this allows for the reduction of power emitted by the

transceiver which results in a further energy reduction of the entire mobile terminal. More-

over, the reduction in energy consumption permits the reduction in mobile terminal size

due to three factors. The first one is the use of small-size batteries, which is now possi-

ble because of the reduction in energy consumption. The other two factors include the

reduction in both of the turbo decoder silicon area (due to lower complexity) and the

antenna size (due to lower transmission power). In addition to decoding performance,

energy, and area/size factors, throughput and latency are also considered when applying

power-reduction techniques. When the optimizations of these factors are contradictory,

the best possible tradeoff has to be chosen.

1.1 Thesis Contributions

In this thesis, a new energy-efficient design of a 3G-compliant turbo decoder is proposed.

A two-stage design approach is adopted:

1. A novel low-complexity dynamic-iterative technique that reduces energy of the turbo

decoder at both good and poor channel conditions is proposed.

2. A combination of architectural-level techniques is applied for further energy reduc-

tion; the techniques also enhance throughput of the turbo decoder and are area-

efficient. One of the applied techniques is a novel operator reduction method that

reduces power, area, and critical-path delay of the turbo decoder.

Introduction 3

The new energy-efficient turbo decoder is coded in VHDL, and then synthesized into

0.18µm CMOS, achieving a maximum data rate of 5 Mb/s (with an upper limit of 5

iterations). Results show an energy consumption reduction of about 65% (compared to a

basic implementation), with an energy efficiency of about 4.5 nJ/b/iteration.

To prove feasibility of the proposed turbo decoder design, a prototype is implemented

for the turbo codec (encoder/decoder) on a Xilinx XC2V6000 FPGA. The Xilinx FPGA

is tested using the CMC Rapid Prototyping Platform (RPP) and found to be functionally

correct.

1.2 Organization

The thesis is organized into eight chapters. Chapter 2 provides an introduction to turbo

codes as an efficient error-control coding for transmission over noisy channels. The role

of turbo codes in 3G wireless systems is also presented. In Chapter 3, turbo decoder

algorithms and design techniques are discussed, with an emphasis on iteration reduction

and energy consumption. In Chapter 4, a novel dynamic-iterative technique (CRC-HDD)

is introduced. A fixed-point approximation of the Log-MAP algorithm is also presented.

Chapter 5 discusses architectural-level techniques suggested for improving area, through-

put, and energy efficiency of the turbo decoder. In Chapter 6, key results from a 0.18µm

CMOS implementation of the turbo decoder are detailed. In Chapter 7, the design and

testing of an FPGA prototype for the new turbo codec are presented. Chapter 8 summa-

rizes the results and concludes the thesis, along with suggestions for future work.

Chapter 2

Turbo Codes

Turbo coding is used as a FEC technique for transmission over noisy channels. Turbo codes

have been used over the last decade in different wireless communication systems such as

Code Division Multiple Access (CDMA), deep space, and satellite communication systems.

In the IMT-2000 standard, turbo coding has been chosen by the ITU as a channel coding

technique for 3G wireless high-speed (up to 2 Mbps) data services.

This chapter serves as a background for turbo coding as a channel coding technique.

Also, the standardized turbo codes for 3G wireless communication systems are described.

2.1 Digital Communication Systems

To understand the role of turbo coding as an error-control technique, the general model

of a digital communication system is shown in Figure 2.1. This system consists of three

major parts: transmitter, channel, and receiver. Each of the transmitter and the receiver

has its own components.

The task of the transmitter is to transform the information generated by a source into

a form that can withstand the effects of noise over the communication channel. An infor-

mation source generates message-bearing information (such as words and code symbols) to

be transmitted. The source encoder converts the information source output to a sequence

of binary digits with minimum redundancy. If the source encoder generates rb bits per

second (bps), rb is called the data rate.

4

Turbo Codes 5

 Information
Source

Source
Encoder

Channel
Encoder

Modulator

Channel

Information
Sink

Source
Decoder

Channel
Decoder

Demodulator

Figure 2.1: The general model of a digital communication system

Since channel impairments cause errors in the received signal, the channel encoder is

incorporated to add redundancy to the information sequence. This redundancy is used

to minimize transmission errors. The channel encoder assigns to each message of k bits a

longer message of n bits called a codeword. A good error-control code generates codewords

which are as different as possible from each other. This makes the communication system

less vulnerable to channel errors. Each code word is characterized by a ratio R = k/n < 1,

called the code rate. The data rate at the output of the channel encoder is rc = rb/R

bps. The primary goal of error-control coding is to maximize the reliability of transmission

within the constraints of signal power, system bandwidth, and circuit complexity. It is

achieved by introducing structured redundancy into transmitted signals. This usually

results in a lowered data transmission rate, or an increased channel bandwidth, relative to

an uncoded system [6].

The channel encoder output is not normally suitable for transmission. Therefore, the

modulator is incorporated to match the signal to the channel, to enable simultaneous

transmission of a number of signals over the same physical channel, and to increase the

speed of information transmission. The modulator maps the encoded digital sequences

into a train of short analog waveforms that are appropriate for propagation. An M -ary

modulator maps a block of l binary digits from the channel encoder into one of M possible

waveforms, where M = 2l. The duration of the modulator output waveform is T sec

and is referred to as the signaling interval, whereas rs = 1/T is called the symbol rate.

6 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

The minimum signal bandwidth is equal to rs Hz, where rs = rb/Rl. Modulation can be

performed by varying amplitude, phase, and/or frequency of a sinusoidal waveform called

the carrier.

Channels are transmission media used to carry or store information. Channel examples

include wire lines, microwave radio links over free space, satellite links, fibre optic channels,

and magnetic recording media. Very often the term channel is used to refer to the frequency

range allocated to a particular service such as television or phone channels. Two major

limitations of real channels are thermal noise and finite bandwidth. In addition, mobile

radio channels suffer from multipath propagation, fibre optic cables suffer from signal

dispersion, and magnetic media are exposed to duct and physical damage.

In the receiver, the demodulator typically generates a binary or analog sequence at

its output as the best estimates of the transmitted codeword or the modulated sequence

respectively. The channel decoder makes estimates of the actually transmitted message.

The decoding process is based on the encoding rule and the characteristic of the channel.

The goal of the decoder is to minimize the effects of channel noise. The source decoder

transforms the bit sequence generated by the decoder into an estimate of the source output

sequence and delivers it to the user (information sink).

If the demodulator generates a binary sequence, subsequent channel decoding is called

hard decision decoding. In this case, the three blocks of modulator, channel, and demodu-

lator can be simplified by a discrete channel. The input and output of the discrete channel

are binary sequences at rc bits per sec. If the demodulator output in a given symbol in-

terval depends on the current transmitted signal and not any previous transmission, the

channel is said to be memoryless. If this memoryless channel has equal error probabilities

for the binary symbols 0 and 1, it is called a Binary Symmetric Channel (BSC).

If the demodulator output is quantized into more than two discrete levels or samples

are taken from the analog received baseband signal, the subsequent decoding process is

called soft decision decoding. Hard decisions result in a more irreversible information loss

than soft decisions.

If bandwidth efficiency is essential, combining coding and modulation into a single entity

obtains a more effective signal design. This results in increased noise immunity of the signal

without increasing the channel bandwidth. The combined coding and modulation is called

Turbo Codes 7

trellis coded modulation [6].

2.1.1 Channel Fundamental Limits

For a given channel there is an upper limit on the data rate related to the Signal-to-Noise

Ratio (SNR) and the system bandwidth. Shannon has introduced the concept of channel

capacity, C, as the maximum rate at which information can be transmitted over a noisy

channel [1]. For an Additive White Gaussian Noise (AWGN) channel, channel capacity is

given by the following formula:

C = B log2(1 +
S

N
) bits/sec (2.1)

where B is the channel bandwidth in Hz, and S/N is the average SNR, defined as

S

N
= η

Eb

N0

(2.2)

where Eb/N0 is the bit energy to one sided noise power spectral density, and η is the spectral

efficiency, defined as

η =
rb

B
bits/sec/Hz (2.3)

Another important parameter is the power efficiency defined as the required Eb/N0 to

achieve a specified bit error probability.

Shannon’s channel coding theorem guarantees the existence of codes that can achieve

an arbitrary small probability of error if the data transmission rate rb is smaller than the

channel capacity. Conversely, for a data rate rb > C, it is not possible to design a code

that can achieve an arbitrary small error probability.

This fundamental result shows that noise sets a limit on the data rate but not on the

error probability, as widely believed before. Although the theorem does not indicate how to

design specific codes that achieve maximum possible data rate at an arbitrary small error

probability, it has motivated the development of a number of error-control techniques [6].

By substituting S/N from (2.2) into (2.1) and observing that ηmax = C/B, the minimum

required Eb/N0 for an error-free transmission is given by

Eb

N0

≥ 2η − 1

η
(2.4)

8 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

If the bandwidth is not limited (i.e., B →∞ or ηmax → 0), then

lim
ηmax→0

Eb

N0

= ln 2 = −1.59 dB (2.5)

Hence, theoretically, the minimum required Eb/N0 for error-free transmission is −1.59 dB

[6, 7, 8].

2.2 Channel Coding Techniques

Various error-control codes have been used in the channel coding and decoding stages of

wireless communication applications (e.g., deep space, CDMA, and satellite communica-

tions). Two main categories are linear block codes and convolutional codes. Other codes

are derived from these two categories, and include serial concatenated codes and turbo

codes (also called parallel concatenated convolutional codes).

The strength of an error-control code is measured by its coding gain. For a coded

system, coding gain is defined as the reduction in SNR over an uncoded system to achieve

the same Bit Error Rate (BER).

2.2.1 Linear Block Codes

An (n, k) block encoder transforms a message of k bits into a message of n bits. The

important feature of a block code is that a codeword depends only on the current input

message and not on any previous message; i.e., the encoder is a memoryless device. In an

(n, k) block code, there are 2k distinct messages. Since there is a one-to-one correspondence

between a message and a codeword, there are also 2k distinct codewords. The code rate

R = k/n determines the amount of redundancy.

An (n, k) block code is linear if

• the component-wise modulo-2 sum of two codewords is another codeword, and

• the code contains the all-zero codeword.

A linear systematic block code has the additional feature that the message itself is part

of the codeword. In addition to the k-digit message sequence the codeword contains an

Turbo Codes 9

(n−k)-digit parity check sequence. This format allows the direct extraction of the message

from the codeword.

The hamming distance between two codewords is defined as the number of places in

which these codewords differ. The minimum hamming distance or minimum distance of a

code is defined as the smallest hamming distance between any two different codewords in

the code. This implies that for a linear block code, the minimum distance is the smallest

weight (number of ones in a codeword) of the nonzero codewords in the code. The minimum

distance parameter determines the error correction and detection capability of a code.

2.2.2 Convolutional Codes

An (n, k, m) convolutional encoder has k input bits, n output bits, and m memory ele-

ments (m-bit shift register). Each output bit is the modulo-2 sum (XOR operation) of

the current input bit and some or all of the previous m input bits. Then, the n output

bits are multiplexed to produce the codeword. A systematic convolutional encoder has the

additional feature of producing the input message as part of the output codeword. The

structure of a rate 1/2 non-systematic non-recursive convolutional encoder is illustrated in

Figure 2.2.

c v

v(1)

v(2)

Figure 2.2: A rate 1/2 convolutional encoder

At time l, the input to the encoder is cl and the output is a code block,

vl = (v
(1)
l v

(2)
l)

10 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

The connections between the shift register elements and the modulo-2 adders can be de-

scribed by generator sequences or generator polynomials

g(1) = (g
(1)
0 g

(1)
1 g

(1)
2) = (101)2 = (5)8 or g1(D) = 1 + D2

g(2) = (g
(2)
0 g

(2)
1 g

(2)
2) = (111)2 = (7)8 or g2(D) = 1 + D + D2

In other words,

g = (g(1), g(2)) = (5, 7)8 or g(D) = [g1(D) g2(D)] = [1 + D2 1 + D + D2]

The term convolutional code comes from the observation that the ith output sequence,

where i = 1, 2, represents the convolution of the input sequence and the ith generator

sequence

v(i) = c ∗ g(i), i = 1, 2

where ∗ denotes the convolution operator.

The encoder state transitions can be represented graphically by a trellis diagram. A trel-

lis diagram is derived from the encoder state diagram by tracing all possible input/output

sequences and state transitions. The encoder is trellis terminated if the final state is the

same as the initial state for a specific frame length N . Figure 2.3 shows the trellis diagram

of the convolutional encoder described in Figure 2.2, assuming trellis termination with

N = 6.

2.3 Turbo Codes

Turbo codes, also known as Parallel Concatenated Convolutional Codes (PCCC) [9], and

serial concatenated codes [10] concatenate two codes to achieve a good tradeoff between

coding gain and decoding complexity.

Serial Concatenated Convolutional Codes (SCCC) use two codes in series separated by

an interleaver. This approach has been adopted in space communications, with convolu-

tional code as the inner code and low redundancy Reed-Solomon block code as the outer

code. The primary reason for using a concatenated code is to achieve a low error rate with

an overall decoding complexity that is lower than the one required for a single code with

Turbo Codes 11

00

11

00 00 00 00

10

01

11

01

10 10

01

00

11
11

00

01

10 10

01

00

11
11

11

01

10

11

 cl = 1

cl = 0

S00

S01

S10

S11

t0 t1 t2 t3 t4 t5 t6

Figure 2.3: Trellis diagram for the 1/2 non-systematic encoder of Figure 2.2 (trellis termi-

nated, frame length N = 6)

the same decoding performance. An interleaver is incorporated between the two codes to

decorrelate the received symbols that are affected by burst errors generated by the inner

decoder.

Turbo codes exploit a similar idea of connecting two codes and separating them by an

interleaver [3]. The difference between turbo codes and serial concatenated codes is that,

in turbo codes, two identical RSC codes are connected in parallel in the turbo encoder.

Also, a long interleaver is used in turbo encoders to generate a concatenated code with

a long block length, leading to a large coding gain. The turbo decoder consists of two

RSC component decoders separated by interleavers and deinterleavers. The component

decoders are based on a Soft-Input/Soft-Output (SISO) decoding algorithm, such as the

Soft-Output Viterbi Algorithm (SOVA) or the Maximum A Posteriori (MAP) probability

algorithm. A number of iterations are required by the turbo decoder to produce a BER as

low as 10−5 – 10−7 at an SNR close to the Shannon capacity limit [6].

2.3.1 Turbo Encoder

A turbo encoder is formed by parallel concatenation of two RSC encoders separated by a

random interleaver [3]. The encoder structure is called parallel concatenation because the

two encoders operate on the same set of input bits, rather than one encoder encoding the

output of the other. A block diagram of a rate 1/3 turbo encoder is shown in Figure 2.4.

12 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

RSC
Encoder 1

RSC
Encoder 2

Interleaver

c v0

v1

v2 c ˜

Figure 2.4: General diagram of a rate 1/3 turbo encoder

The generator matrix of a rate 1/2 constituent RSC code can be represented as

g(D) = [1
g1(D)

g0(D)
]

where g0(D) and g1(D) are respectively feedback and feedforward polynomials with degree

m. In the encoder, the same information sequence is encoded twice but in a different order.

The first RSC component encoder operates directly on the input sequence c, of length N ,

and has two outputs. The first output v0 is equal to the input sequence c since the

encoder is systematic. The other output is the first parity check sequence v1. The second

RSC encoder accepts the interleaved information sequence c̃ as input. Only the parity

check sequence v2 of the second encoder is transmitted. The information sequence and the

parity check sequences of the two RSC component encoders are multiplexed to generate

the turbo code sequence. Outputs from both RSC constituent encoders can be punctured

and/or repeated to produce different code rates other than the direct 1/3 code rate.

For turbo encoders, either or both of the constituent RSC encoders is trellis terminated.

Trellis termination means driving the encoder to the all-zero state. This is required at the

end of each block to ensure that the initial state for the next block is the all-zero state.

2.3.2 Interleaver

The interleaver in turbo coding is a pseudo-random block scrambler defined by a permu-

tation of N elements with no repetitions.

Turbo Codes 13

The first role of the interleaver is to generate a long block code from small memory

convolutional codes. Secondly, the interleaver decorrelates the inputs to the two SISO com-

ponent decoders so that an iterative suboptimum decoding algorithm based on information

exchange between the two component decoders can be applied. If the input sequences to

the two component decoders are decorrelated, there is a high probability that after correc-

tion of some of the errors by one decoder, some of the remaining errors become correctable

by the other decoder.

In a pseudo-random interleaver, a block of N input bits is read into the interleaver and

read out pseudo-randomly. The pseudo-random interleaving pattern must be available at

the decoder as well [6].

2.3.3 Iterative Decoding of Turbo Codes

Turbo and serial concatenated codes can be decoded by either an A Posteriori Probability

(APP) method or a Maximum Likelihood (ML) method. The practical importance of

turbo and serial concatenated codes lies in the availability of a simple suboptimal decoding

algorithm [3].

The iterative turbo decoder consists of two constituent SISO decoders serially connected

via an interleaver, identical to the one in the encoder, and a corresponding deinterleaver,

as shown in Figure 2.5.

The first SISO decoder takes as input the received information sequence r0 and the

received parity sequence r1, both generated by the first RSC encoder. Then, the decoder

generates a soft-output (extrinsic information) which is interleaved and used to produce an

improved estimate of the intrinsic information sequence at the input of the second SISO

decoder.

The other two inputs to the second SISO decoder are the interleaved received informa-

tion sequence r̃0 and the received parity sequence produced by the second RSC encoder

r2. The second decoder also produces a soft output (extrinsic information) which, after

deinterleaving, is used to improve the estimate of the intrinsic information sequence at

the input of the first SISO decoder. The decoder performance can be improved by this

iterative operation, relative to a single operation of a serial concatenated decoder. The

feedback loop is a distinct feature of this decoder and the term turbo code is derived from

14 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

 Deinterleaver

SISO

Decoder 2

SISO

Decoder 1

Interleaver

Interleaver

Deinterleaver

r0

r1

r2

Le1 Le2

�

c

r0

ˆ

˜

Figure 2.5: General diagram of an iterative turbo decoder

the principle of the turbo engine.

After a certain number of iterations, the soft outputs of both decoders stop making

further performance improvements. Then, the second SISO decoder creates hard decisions,

ĉ, that are deinterleaved. The hard decision detector and deinterleaver can be swapped to

reduce memory usage.

The two identical component decoders can be based on either the MAP, an APP de-

coding algorithm, or the SOVA, an ML decoding algorithm. Therefore, there are two

general categories of turbo decoders in relation to component decoder type: MAP and

SOVA iterative turbo decoders.

The SOVA decoder has a lower complexity than that of the optimum MAP decoder,

but the MAP decoder has a better decoding performance. Modified versions of the MAP

Turbo Codes 15

algorithm have been developed to achieve a near-optimum performance with a much lower

complexity than the original MAP algorithm.

The Max-Log-MAP replaces multiplications and exponentiations in the original MAP

by additions, and comparisons by logarithmic approximations; however, this comes at

the expense of degrading decoding performance. The Log-MAP algorithm employs a more

accurate logarithmic approximation by using lookup tables; it gives a decoding performance

better than that of the SOVA, with a small additional complexity compared to that of the

Max-Log-MAP. The performance is not far from that of the original MAP [6].

Consequently, most VLSI implementations are based on the Log-MAP algorithm which

achieves an excellent tradeoff between complexity (hence area and power consumption) and

decoding performance.

2.4 Standardized Turbo Codes for 3G Wireless Sys-

tems

Figure 2.6 illustrates the structure of standardized turbo-codes for 3G wireless systems [4].

For both RSC encoders,

g = (g0, g1, g2) = (1011, 1101, 1111)2 = (13, 15, 17)8

where g0 is the feedback polynomial, and g1 and g2 are the feedforward polynomials. The

turbo code shown in Figure 2.6 is used in the cdma2000 standard [11], proposed by the

TIA in USA, for high-speed (above 14.4 kbps) data services. Rate 1/2, 1/3, and 1/4 turbo

codes are realized with appropriate puncturing patterns from Table 2.1.

For the UTRA/W-CDMA, proposed by ETSI in Europe and ARIB in Japan, the same

constituent code is used for the rate 1/3 turbo code. Other code rates are obtained by

a “rate matching” process, where coded bits are punctured or repeated accordingly [12].

The turbo code in Figure 2.6 is the result of an extensive simulation study [4].

For both of the 3G wireless systems, cdma2000 and UTRA/W-CDMA, turbo codes are

terminated in a similar way. To enforce the trellis back to the all zero state, tail bits come

from the contents of the shift registers, as shown by the dotted lines in Figure 2.6.

16 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

 x(t)

y0(t)

y1(t)

y'0(t)

y'1(t)

Interleaver

x'(t)

Figure 2.6: Standardized turbo code for 3G wireless systems (dotted lines effective for

trellis termination only)

Moreover, because of the turbo interleaver, the contents of the shift register at the

beginning of trellis termination are different for both constituent encoders. Therefore, for

the standardized turbo code with eight state constituent codes, a total of 3 × 2 = 6 tail

bits are required to terminate both encoders.

For the sake of description, it is assumed that the first three tail bits are used to termi-

nate the upper constituent encoder, whereas the last three tail bits are used to terminate

the lower constituent encoder [4].

The standardized turbo interleavers for the two systems belong to the same general

class of interleavers in that they share the following properties:

1. A small number of “mother interleavers” are specified, from which interleavers of

Turbo Codes 17

Table 2.1: Puncturing patterns for the turbo code of Figure 2.6

Rate 1/2 1/3 1/4

x(t) 11 11 11

y0(t) 10 11 11

y1(t) 00 00 10

x′(t) 00 00 00

y0′(t) 01 11 01

y1′(t) 00 00 11

medium size are derived by pruning [13] unnecessary indexes. Pruning means ig-

noring an index that results in an invalid address because it exceeds the range of

interest.

2. The mother interleavers can be viewed as two-dimensional matrices, where the entries

are written into the matrix row by row and read out column by column.

3. Before reading out the entries, intra- and inter-row permutations are performed.

cdma2000 and UTRA/W-CDMA turbo interleavers differ from each other in the exact

specifications of intra- and inter-row permutations and in the matrix dimensions of the

mother interleavers [4].

There are several reasons why turbo codes are particularly suited for high-speed data

services of 3G wireless systems:

1. At high speeds, sufficiently long blocks of data can be accumulated (e.g., within a

frame of 10 or 20 ms) without causing substantial delay in the system. Turbo codes

become more and more effective as block (or interleaver) size increases because of

spectral thinning (i.e., the multiplicity of “neighbour” codewords becomes smaller as

the interleaver size gets larger) [9].

2. For 3G high-speed data services, error-free data transmission is accomplished by

Automatic Repeat Request (ARQ) protocol implemented in higher layers. As a

18 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

result, the more appropriate figure of merit is Frame Error Rate (FER), rather than

BER. The performance difference between turbo and convolutional codes becomes

even larger when the codes are compared in terms of FER as opposed to BER [14].

For turbo codes, however, the power of the code increases significantly as the frame

size increases due to spectral thinning.

3. With fast power control, turbo codes are more effective as an FEC technique for

3G wireless systems. Indeed, without any power control, the performance advantage

of turbo codes over convolutional codes decreases considerably. Power control is an

important feature for the success of CDMA systems, which have been selected for

3G wireless technology.

Chapter 3

VLSI Design of Turbo Decoders

As stated in Chapter 2, turbo codes have been selected as a channel coding standard for

3G wireless high-speed data services. However, turbo decoding is a relatively complex

task, hence consuming a considerable amount of area and energy of the entire mobile

terminal. To obtain an efficient decoder implementation without degrading the required

decoding performance, the system design space needs to be explored on multiple levels

(e.g., algorithmic, architectural, gate, and circuit).

3.1 Algorithmic-Level Design

As discussed in Chapter 2, there are two main algorithms that can be used in the component

SISO decoders of the turbo decoder. These are the MAP decoding algorithm, based on

APP probabilities, and the SOVA decoding algorithm, based on ML probabilities. Both

algorithms use the iterative technique to enhance decoding performance. In addition, there

are lower-complexity variations of the original MAP decoding algorithm such as Max-Log-

MAP and Log-MAP.

3.1.1 MAP Decoding Algorithm

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, also known as symbol-by-symbol MAP

algorithm (MAP algorithm for short), is optimal for estimating the states or outputs of

19

20 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

a Markov process observed in white noise [15]. In the following, a brief overview of the

algorithm is given[16].

Let the state of the encoder at time k be Sk, taking the values from 0 to 2M−1, where

M is the encoder memory order. The bit dk is associated with the transition from step

k − 1 to step k. It is assumed that the data frame length is N , and that the encoder is

trellis terminated. The goal of the MAP algorithm is to provide us with the ratio of the

APP of each information bit dk being 1 to the APP of it being 0. The following is obtained

Λ(dk) = ln
Pr{dk = 1|yk}
Pr{dk = 0|yk} = ln

∑
Sk

∑
Sk−1

γ1(yk, Sk−1, Sk) · αk−1(Sk−1) · βk(Sk)∑
Sk

∑
Sk−1

γ0(yk, Sk−1, Sk) · αk−1(Sk−1) · βk(Sk)
(3.1)

where the forward recursion of the MAP can be expressed as

αk(Sk) =

∑
Sk−1

∑
i∈{0,1} γi(yk, Sk−1, Sk) · αk−1(Sk−1)∑

Sk

∑
Sk−1

∑
i∈{0,1} γi(yk, Sk−1, Sk) · αk−1(Sk−1)

α0(S0) =

{
1 for S0 = 0

0 otherwise
(3.2)

and the backward recursion as

βk(Sk) =

∑
Sk+1

∑
i∈{0,1} γi(yk+1, Sk, Sk+1) · βk+1(Sk+1)∑

Sk

∑
Sk+1

∑
i∈{0,1} γi(yk+1, Sk, Sk+1) · αk(Sk)

βN(SN) =

{
1 for SN = 0

0 otherwise
(3.3)

The branch transition probabilities are given by

γi[(y
s
k, y

p
k), Sk−1, Sk] = p(ys

k|dk = i) · p(yp
k|dk = i, Sk, Sk−1) ·

q(dk = i|Sk, Sk−1) · Pr{Sk|Sk−1}; i ∈ {0, 1} (3.4)

The value of q(dk = i|Sk, Sk−1) is 1 if bit i is associated with the transition from state

Sk−1 to state Sk, and 0 otherwise. Pr{Sk|Sk−1} represents the a priori information of bit

dk: In case of no parallel transitions, Pr{Sk|Sk−1} = Pr{dk = 1} if q(dk = 1|Sk, Sk−1) = 1,

and Pr{Sk|Sk−1} = Pr{dk = 0} if q(dk = 0|Sk, Sk−1) = 1.

VLSI Design of Turbo Decoders 21

3.1.2 Max-Log-MAP Decoding Algorithm

The MAP algorithm, in its original form, is difficult to implement because of numerical

representation of probabilities and non-linear operations such as exponentiations and mul-

tiplications [16]. To avoid these problems, the logarithms of γi[(y
s
k, y

p
k), Sk−1, Sk], αk(Sk),

and βk(Sk) are taken instead.

By taking the logarithm of γi[(y
s
k, y

p
k), Sk−1, Sk] derived in (3.4) and inserting

p(ys
k|dk = i) =

1√
πN0

· e− 1
N0

[ys
k−xs

k(i)]2

p(yp
k|dk = i, Sk, Sk−1) =

1√
πN0

· e− 1
N0

[yp
k−xp

k(i,Sk,Sk−1)]2
(3.5)

we obtain the following expression for q(·) = 1

ln γi[(y
s
k, y

p
k), Sk−1, Sk] =

2ys
kx

s
k(i)

N0

+
2yp

kx
p
k(i, Sk, Sk−1)

N0

+

ln Pr{Sk|Sk−1}+ K (3.6)

Since the constant K cancels out in the calculation of ln αk(Sk) and ln βk(Sk), it can

be ignored. Notice that N0 must be estimated to correctly weigh the channel information

with the a priori probability Pr{Sk|Sk−1}.
For ln αk(Sk), we get

ln αk(Sk) = ln


∑

Sk−1

∑

i∈{0,1}
eln γi[(y

s
k,yp

k),Sk−1,Sk]+ln αk−1(Sk−1)


−

ln


∑

Sk

∑
Sk−1

∑

i∈{0,1}
eln γi[(y

s
k,yp

k),Sk−1,Sk]+ln αk−1(Sk−1)


 (3.7)

To simplify the solution, the following approximation is used:

ln(eδ1 + . . . + eδn) ≈ max
i∈{1...n}

δi (3.8)

22 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

maxi∈{1...n} δi can be calculated by successively using n− 1 maximum functions over only

two values. From now on, we will use the notation: γ̄(·) = ln γ(·), ᾱ(·) = ln α(·), and

β̄(·) = ln β(·). Eventually, we obtain

ᾱk(Sk) = max
(Sk−1,i)

{γ̄i[(y
s
k, y

p
k), Sk−1, Sk] + ᾱk−1(Sk−1)} −

max
(Sk,Sk−1,i)

{γ̄i[(y
s
k, y

p
k), Sk−1, Sk] + ᾱk−1(Sk−1)} (3.9)

and similarly,

β̄k(Sk) = max
(Sk+1,i)

{γ̄i[(y
s
k+1, y

p
k+1), Sk, Sk+1] + β̄k+1(Sk+1)} −

max
(Sk,Sk+1,i)

{γ̄i[(y
s
k+1, y

p
k+1), Sk, Sk+1] + ᾱk(Sk)} (3.10)

The second terms are a consequence of the derivation from (3.2) and (3.3); omitting

them has no effect on the value of the output of the Max-Log-MAP algorithm since these

normalization terms will cancel out in (3.11). Similarly, an approximation of the log-

likelihood reliability of each bit dk can be given as follows

Λ(dk) ≈ max
(Sk,Sk−1)

{γ̄1[(y
s
k, y

p
k), Sk−1, Sk] + ᾱk−1(Sk−1) + β̄k(Sk)} −

max
(Sk,Sk−1)

{γ̄0[(y
s
k, y

p
k), Sk−1, Sk] + ᾱk−1(Sk−1) + β̄k(Sk)} (3.11)

To be used in a turbo decoder, the output of the Max-Log-MAP algorithm, Λ(dk), is

split into three terms (extrinsic, a priori, and systematic components). We begin with

defining

γ̄i′(yp
k, Sk−1, Sk) = ln p(yp

k|dk = i, Sk, Sk−1) + ln q(dk = i|Sk, Sk−1) (3.12)

By inserting this into (3.11), we obtain

Λ(dk) ≈ [max
(Sk,Sk−1)

{γ̄1′(yp
k, Sk−1, Sk) + ᾱk−1(Sk−1) + β̄k(Sk)}+

ln p(ys
k|dk = 1) + ln Pr{dk = 1}]−

[max
(Sk,Sk−1)

{γ̄0′[yp
k, Sk−1, Sk] + ᾱk−1(Sk−1) + β̄k(Sk)}+

ln p(ys
k|dk = 0) + ln Pr{dk = 0}] (3.13)

VLSI Design of Turbo Decoders 23

which can be written as

Λ(dk) ≈ max
(Sk,Sk−1)

{γ̄1′(yp
k, Sk−1, Sk) + ᾱk−1(Sk−1) + β̄k(Sk)} −

max
(Sk,Sk−1)

{γ̄0′[yp
k, Sk−1, Sk] + ᾱk−1(Sk−1) + β̄k(Sk)}+

4ys
k

N0

+ L(dk) (3.14)

The first two terms comprise the so-called extrinsic information, the third term is

the systematic component, and the last term is the a priori component. The extrinsic

information is easily obtained by subtracting the systematic and the a priori components

from the output Log-Likelihood Ratio (LLR), Λ(dk). The extrinsic information of the

current decoding stage will be used as the a priori information, L(dk), in the next decoding

stage.

We need to determine the a priori information, ln Pr{Sk|Sk−1}, in (3.6). If q(dk =

1|Sk, Sk−1) = 1, then

L(dk) = ln
Pr{dk = 1}
Pr{dk = 0} = ln

Pr{Sk|Sk−1}
1− Pr{Sk|Sk−1} (3.15)

hence, ln Pr{Sk|Sk−1} = L(dk)− ln(1 + eL(dk)). Using (3.8), this can be approximated to

ln Pr{Sk|Sk−1} ≈ L(dk)−max[0, L(dk)] (3.16)

If q(dk = 0|Sk, Sk−1) = 1, then

L(dk) = ln
Pr{dk = 1}
Pr{dk = 0} = ln

1− Pr{Sk|Sk−1}
Pr{Sk|Sk−1} (3.17)

hence, ln Pr{Sk|Sk−1} = − ln(1 + eL(dk)). Similarly, it can be approximated to

ln Pr{Sk|Sk−1} ≈ −max[0, L(dk)] (3.18)

3.1.3 Log-MAP Decoding Algorithm

Because of the approximation in (3.8), the Max-Log-MAP algorithm is sub-optimal and

yields an inferior soft-output than that of the MAP algorithm. The problem is to exactly

24 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

calculate ln(eδ1 + . . . + eδn). This problem can be solved by using the Jacobian logarithm

[16]

ln(eδ1 + eδ2) = max(δ1, δ2) + ln(1 + e−|δ2−δ1|) = max(δ1, δ2) + fc(|δ2 − δ1|) (3.19)

where fc(·) is a correction function. By using recursion, it can be proven that

ln(eδ1 + . . . + eδn) = ln(eδ + eδn) = max(δ, δn) + fc(|δn − δ|),
where δ = ln(eδ1 + . . . + eδn−1) (3.20)

When deriving the Log-MAP algorithm, all maximizations over two values are aug-

mented with the correction function. As a consequence, by correcting, at each step, the

approximation made by the Max-Log-MAP, we have preserved the original MAP algorithm.

By calculating fc(·), we lose some of the low complexity of the Max-Log-MAP algorithm.

The correction function in (3.19) can be implemented using a lockup table. It is found in

[16] that excellent results can be obtained with eight stored values and |δ2 − δ1| ranging

between 0 and 5.

3.1.4 SOVA Decoding Algorithm

The Viterbi algorithm (VA), in its MAP form, is described in [17]. It searches for the

ith-state sequence S(i), and thus the desired information sequence d(i), by maximizing over

i the APP

P (S(i)|y) = p(y|S(i)) · P (S(i))

p(y)
(3.21)

Since y is fixed, the following is equivalently maximized:

P (y|S(i)) · P (S(i)) (3.22)

The maximization is realized in the code trellis, when for each state s and each time k,

the path with the largest probability, i.e., ML, p(S
(i)
j≤k,y

(i)
j≤k) is selected. This probability

can be obtained by multiplying the branch transition probabilities associated to path i.

They are γj(s′(i), s(i)) for 1 ≤ j ≤ k and are similar to those defined by (3.4). Since

VLSI Design of Turbo Decoders 25

the maximum is not changed if the logarithm is taken, the same metric computation can

be performed as described for the forward recursion of the Log-MAP algorithm. For the

metric of the ith path at time k,

Mk(s
(i)) = Mk−1(s′(i)) +

1

2
Lc(y

s
kx

s(i)

k + yp
kx

p(i)

k) +
1

2
L(dk)x

s(i)

k

where Lc = 4
Es

N0

for AWGN channel (3.23)

This slight modification of the metric of the VA in (3.23) incorporates the a priori

information about the probability of the information bits. The SOVA can be implemented

in the register exchange mode or in the trace-back mode. It will be described now for the

latter mode using the log-likelihood algebra [18].

It is desirable to obtain the soft output for bit d̂k, which the VA decides after a delay

δ. The VA proceeds in the usual way by calculating the metrics for the ith path using

(3.23). For each state, the VA selects the path with the larger metric Mk(s
(i)). At each

time k + δ, the VA has selected the ML path with index iδ and has discarded the other

path with index iδ
′ ending at this state. Along the ML path iδ, which decides the bit d̂k,

δ + 1 non-surviving paths il
′ with indices l = 0, . . . , δ have been discarded. The metric

difference is defined as

∆l
k = Mk+l(S

(il))−Mk+l(S
(i′l)) ≥ 0 (3.24)

It is shown in [19] that the L-value of the hard decision d̂k is approximated by

L(d̂k) ≈ d̂k · min
l=0,...,δ

∆l
k (3.25)

Thus, we have the same hard decisions as the classical VA, and the reliability of the

decisions is obtained by taking the minimum of the relevant metric differences along the

ML path.

From (3.23) and (3.24), we find

∆l
k = (M

(1)
j<k −M

(2)
j<k) + (M

(1)
k<j<k+l −M

(2)
k<j<k+l) +

1

2
Lcy

p
k(x

p(1)

k − xp(2)

k) +

1

2
Lcy

s
k[d̂k − (−d̂k)] +

1

2
L(dk)[d̂k − (−d̂k)] (3.26)

26 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Therefore, the minimum value in (3.25) has the same structure. Thus, the SOVA output

in its approximate version in (3.25) has the format

LSOVA(d̂k) = Lcy
s
k + L(dk) + d̂k · {first 3 items in (3.26)}︸ ︷︷ ︸

Le(d̂k)

(3.27)

Similar to the Log-MAP algorithm, the output LLR consists of three components:

systematic (first term), a priori (second term), and extrinsic information (last term). Also,

extrinsic information of the current decoding stage, which is produced by subtracting the

first two terms from the output LLR, is used as a priori information in the next decoding

stage.

3.1.5 Comparison of MAP and SOVA Iterative Decoding Algo-

rithms

The relationship between MAP, Log-MAP, Max-Log-MAP, and SOVA turbo decoding

algorithms is illustrated in Figure 3.1 [16].

Log-MAP � MAP Max-Log-MAP SOVA

Log & Max

Correction
Function

Figure 3.1: Relationship between MAP, Log-MAP, Max-Log-MAP, and SOVA

From the previous discussion, it can be seen that the Max-Log-MAP algorithm and the

SOVA work with the same metric. If only the hard decisions are considered, the algorithms

are identical; however, they behave in different ways in computing the information returned

about the reliability of decoded bit dk. The SOVA considers only one competing path

per decoding step; i.e., for each bit dj, it does not consider all the competing paths but

only the survivors of the Viterbi algorithm. To be taken into account in the reliability

estimation, a competing path must join the path chosen by the Viterbi algorithm without

being eliminated.

VLSI Design of Turbo Decoders 27

A comparison of (Log-)MAP, Max-Log-MAP, and SOVA is illustrated in Figure 3.2

[16]. The MAP includes all paths in its calculation but splits them into two sets: those

that have an information bit one, at step j, and those that have an information bit zero;

it returns the LLR of these two sets. The only thing that changes from step to step is the

classification of the paths into the respective sets. Due to the Markov properties of the

trellis, the computation can be done recursively. In contrast, the Max-Log-MAP looks at

only two paths per step: the best with bit zero and the best with bit one at transition j; it

then outputs the difference of the log-likelihoods. However, from step to step, one of these

paths can change, but one will always be the ML path. The SOVA will always correctly

find one of these two paths (the ML path), but not necessarily the other, since it may be

eliminated before merging with the ML path. There is no bias on the SOVA output when

compared to that of the Max-Log-MAP algorithm; only the former will be noisy.

Comparing decoding performance for the previously discussed decoding algorithms, it

is found that [16]:

• The (Log-)MAP decoder is the best, followed by the Max-Log-MAP and SOVA.

• For a few iterations or for a small SNR, Max-Log-MAP and SOVA significantly

degrade with respect to the (Log-)MAP.

• With an increasing number of iterations or with increasing SNR, the Max-Log-MAP

approaches the (Log-)MAP.

Furthermore, for small memories the SOVA is roughly half as complex as the Log-MAP

algorithm [16, 18].

Figures 3.3 and 3.4 compare the decoding performance of the four algorithmic imple-

mentations of the turbo decoder for both low and high number of iterations. Figure 3.3

shows BER vs. Eb/N0 for the four algorithmic choices with both two and five iterations.

Similarly, Figure 3.4 shows FER vs. Eb/N0 for the four algorithmic choices of the turbo

decoder with both two and five iterations. These simulations are based on a rate 1/3 turbo

code with generator polynomial g = (13, 15)8, which is suitable for 3G wireless systems.

From the performance graphs, it is evident that the MAP and Log-MAP have better

performance than the SOVA and Max-Log-MAP. The results are in agreement with the

conclusions found in [16, 18], as previously discussed.

28 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Figure 3.2: Comparing (Log-)MAP, Max-Log-MAP, and SOVA [16]

From the previous discussion, the Log-MAP algorithm is selected for implementation

since it has the best tradeoff between decoding performance and decoder complexity. It has

the same high decoding performance as the highly-complex original MAP; however, this

comes at some additional complexity, compared to that of the low decoding performance

Max-Log-MAP and SOVA.

VLSI Design of Turbo Decoders 29

−1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R MAP
SOVA
Max−Log−MAP
Log−MAP

(a)

−1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R MAP
SOVA
Max−Log−MAP
Log−MAP

(b)

Figure 3.3: BER vs. Eb/N0 for the MAP, SOVA, Max-Log-MAP, and Log-MAP turbo

decoders with: (a) 2 iterations, (b) 5 iterations (rate 1/3, g = (13, 15)8, 1024 bits/frame,

2000 frames)

30 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

−1 −0.5 0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
E

R

MAP
SOVA
Max−Log−MAP
Log−MAP

(a)

−1 −0.5 0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
E

R

MAP
SOVA
Max−Log−MAP
Log−MAP

(b)

Figure 3.4: FER vs. Eb/N0 for the MAP, SOVA, Max-Log-MAP, and Log-MAP turbo

decoders with: (a) 2 iterations, (b) 5 iterations (rate 1/3, g = (13, 15)8, 1024 bits/frame,

2000 frames)

VLSI Design of Turbo Decoders 31

3.2 Exploration of System Design Space for Turbo

Codecs

Although turbo codes have been employed in wide-band (3G) mobile radio systems, turbo

decoders are relatively complex for implementation. To obtain efficient decoder implemen-

tations, the system design space needs to be explored on multiple levels. In this section,

the system design space is explored with focus on the implementation-dependent part. The

design decisions are rated regarding complexity, throughput, and power consumption.

Although iterative decoding is significantly less complex than optimal decoding, it

remains a computationally complex task due to the iterative use of costly component

decoders. Even the use of the sub-optimal Max-Log-MAP algorithm [16] for component

code decoding results in considerably high computing performance needs. First order

complexity estimations reveal approximately 1500 MOPS for a user data rate of 2 Mbps,

assuming constraint length K = 3 codes and five iterations [20].

In order to achieve complexity reduction, simplifications can be attempted at different

abstraction levels (e.g., system, architecture, register-transfer, gate, and transistor levels).

However, the optimization potential is, in general, closely related to the abstraction level.

Application knowledge can be exploited to significantly simplify high-level specifications

towards lower implementation complexity, where low-level design representations, in most

cases, lack this opportunity. Thus, cost efficient turbo-decoder implementations require

system design space exploration before mapping the algorithmic-level specification onto

hardware or DSP.

Figure 3.5 depicts the system design space for turbo codecs. It is comprised of a

service-dependent part and an implementation-dependent part. The components of the

turbo-code encoder directly define the service dependent part of the system design space:

component codes, puncturer, and interleaver. This is underlined by only the encoder

being defined by standardization bodies. Although the required number of iterations is

implementation-dependent, this number may also depend on the service to realize different

qualities of service. The number of iterations is either static or dynamically determined

during decoding after evaluation of some criteria [21].

Component RSC codes are decoded with the MAP algorithm or with the SOVA. When

32 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

 Turbo-Codes

Component Codes Puncturing Interleaving Iterations Component Code
Decoder

Extrinsic Information
Coupling

Static Dynamic MAP SOVA Berrou Robertson

Survivor
Truncation

Quantization

Quantization
Windowing

Log-Domain

Data Reuse Service-dependent
Codes

Implementation-dependent
Codes

Figure 3.5: System design space for turbo codecs [20]

implementing MAP or SOVA, the designer has to choose among several implementation

options which reduce computational complexity, increase throughput, and/or reduce power

consumption. Extrinsic information coupling (for the feedback) is performed according to

Berrou’s original method [3] or rather directly as proposed by Robertson [21].

The FEC control has to sustain certain BERs for given SNRs: BER = f(SNR). How-

ever, implementation options influence this function. Due to the lack of a comprehensive

turbo-code theory, the degradation has to be validated by simulation and traded off against

implementation complexity [20]. Results of the influence of service-related parameters, such

as component codes, puncturing, and interleaving, on the BER are beyond the scope of

this discussion, and the focus is on implementation-dependent parameters.

3.2.1 Turbo Decoder Optimization

The complexity of the turbo decoder (TD) is a function of the component code decoder

(CD) and the number of iterations (IT):

OTD = f(CD, IT) (3.28)

VLSI Design of Turbo Decoders 33

where the complexity of the component code decoder (CD) depends on operator strength

(OS), amount of data reuse (DR), parallelism (P), and quantization (Q):

OCD = f(OS, DR, P, Q) (3.29)

In this subsection, design tradeoffs with respect to these parameters are discussed.

Also, extrinsic information coupling and intricacies of software implementations are briefly

addressed [20]:

1. Component decoder (CD) optimization:

(a) Operator strength (OS):

Mainly two alternatives have been proposed for formulating the SOVA: trace-

back and register exchange structures [18, 22]. These induce different imple-

mentation architectures. The superior performance of turbo-decoding with the

MAP algorithm is clearly demonstrated in [23, 16]; hence, the SOVA is excluded

from the following discussion.

In addition, implementation complexities of the MAP and SOVA do not differ

significantly. As per the discussion in Section 3.1 about the iterative decoding

algorithms, it is found that the Log-MAP is equivalent in decoding performance

to the original MAP, avoids its numerical problems, and is easier to implement

due to operator strength reduction [20, 24]. Thus, from an implementation point

of view, the MAP should always be implemented in the logarithmic domain.

Further simplification yields the Max-Log-MAP by omitting the correction term

of the Jacobian algorithm; however, this degrades the performance.

As for the Max-Log-MAP, the inner loops of the forward and backward recur-

sions of the Log-MAP comprise an add-compare-select (ACS) operation, but the

add operation hereby additionally involves the evaluation of the correction term

of the Jacobian algorithm. This correction term is best computed by using a

lookup table, but this requires additional memory access and an extra logic for

each ACS. The memory accesses can be traded for area (assuming a hardware

implementation) if the lookup table is implemented as a combinational logic

block. Either way, decoding speed decreases and power consumption increases

for most target architectures.

34 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

(b) Data reuse (DR):

Calculations independent of the decoding iteration can be performed only once,

and the intermediate results can be used in each MAP iteration: In case of

a trellis transition, the corresponding branch metric of the (Max-)Log-MAP

calculates as a sum of terms depending on the received symbols and the a priori

(hence previous stage extrinsic) information [16]. Equation (3.6) is rewritten to

clarify this point:

γ̄i[(y
s
k, y

p
k), Sk−1, Sk] =

2ys
kx

s
k(i)

N0

+
2yp

kx
p
k(i, Sk, Sk−1)

N0

+ ln Pr{Sk|Sk−1} (3.30)

The a priori information ln Pr{Sk|Sk−1} changes after each MAP iteration,

whereas the terms stemming from the received symbols ys
k and yp

k remain con-

stant during the entire decoding process of one data block. Therefore, pre-

calculation of constant terms and performing, e.g., five decoding iterations (with

two SISO decoders each) saves approximately 20% of the computational com-

plexity. The total memory size does not increase, as the pre-calculated interme-

diate terms replace the received symbols [20].

(c) Parallelism (P) and pipelining:

The inherent parallelism of turbo-decoders can be exploited to nearly arbitrarily

tradeoff area for speed and power consumption.

On the top-most level, the component decoders can be arbitrarily pipelined

(i.e., functionally parallelized). The amount of additional buffer memory hereby

depends on the pipeline depth.

On the component (SISO) decoder level, the functional units can be paral-

lelized to some extent. For example, the functional units of the SISO decoder

include the branch metric, forward and backward state metric, and soft-output

(LLR) calculation. An obvious solution is to parallelize the branch metric with

the forward state metric calculation, and the backward state metric with the

soft-output calculation. Compared to a serialized solution, this approximately

doubles the throughput. Adding a second branch metric calculation unit and

a second soft-output calculation unit again doubles the throughput; this is de-

scribed as follows. For the first half of the data block, each of the forward

VLSI Design of Turbo Decoders 35

and backward state metric calculation units is parallelized with a branch met-

ric calculation unit. For the second half, each state metric calculation unit is

parallelized with a soft-output calculation unit [20, 25].

Parallelism, on an additional level, is introduced by observing that the decoding

of a data block in a component decoder can be divided into the decoding of a

set of overlapping sub-blocks. This is called the “sliding window technique” or

“windowing” [20, 25]. Windowing permits to further increase the throughput

or to minimize the required memory size. For the window overlap being small

compared to the window size, serial window processing reduces the required

memory size by the ratio of block size to window size, while retaining through-

put. In contrast, parallel window processing increases throughput by the same

factor, while memory size remains constant.

On a lower level, the trellis butterflies (ACS sections) can obviously be processed

in parallel during forward and backward recursion. It is quite evident that

throughput, area, and power consumption increase according to the degree of

parallelism.

When the parallelism of turbo-decoding is exploited, many tradeoffs are possi-

ble to obtain an optimal architecture. However, the impact of parallelism, at

different levels, on memory size and structure is complex and should be carefully

watched.

(d) Quantization (Q) and normalization

Quantization and normalization are ways to decrease the bit-width of a fixed-

point approximation of a turbo-decoder. Each saved bit has a significant impact

on area and power consumption of the decoder implementation. Memory can

also be saved since the bit-width of the values is reduced. A good tradeoff

between decoding performance and decoder complexity (hence area and power

consumption) is desired.

2. Effect of the number of iterations (IT):

Depending on the quality of the channel and the demanded quality of service, the

number of decoding iterations can be varied dynamically in order to save power.

36 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

However, the decoder has to be designed to handle the worst case. Many power

saving techniques have been suggested in recent research: Some of these techniques

are based on power-down mode [26] and some use voltage scaling [26] to save power

consumption. Alongside one of these two techniques, there has to be a stopping

criterion for further decoding iterations. Some of the stopping criteria compare soft-

outputs and/or extrinsic information to some predefined thresholds, some compare

hard decisions (decoded bits) of the current and previous iterations, and some use

Cyclic-Redundancy-Check (CRC) checksums.

3. Regarding extrinsic information coupling, the Robertson’s method is recommended

over the original Berrou’s method. Robertson’s method is computationally less com-

plex, performs as well, and does not require knowledge of the extrinsic information

distribution parameters. For example, this saves up to 30% logic area for the FPGA

implementation in [20].

4. For a software implementation of a turbo-decoder, it is essential to find a formulation

of the algorithm that fits best to the given core and memory architecture, which

are highly depending on the target device. This can be achieved by application

of common data and control flow transformations. Since turbo-decoding is a data-

flow dominated application, memory mapping and register assignment are important

issues for the resulting performance. For multiple memory banks and multiport

memory, parallel transfers highly increase the bandwidth. A skillful arrangement of

the data within the memory simplifies the memory access order and allows easier

addressing modes, leading to incremental addressing for example.

The performance of pure software implementations is below the requirements for high

data rate applications. Hardware implementations outperform software implementa-

tions, but they lack flexibility. Therefore, to achieve the high performance of hardware

implementations and flexibility of software solutions, a hardware/software co-design

can be used. In this mixed hardware/software implementation, performance-critical

parts are implemented in hardware and flexibility-critical parts are implemented in

software [20].

VLSI Design of Turbo Decoders 37

3.3 Architectures and Design Techniques for Turbo

Decoders

In the last few years, a number of architectures and design techniques have been proposed

by researchers to reduce power consumption, enhance decoding performance, reduce la-

tency, and/or increase throughput of turbo decoders. The following is a brief overview of

some of the work published to achieve such goals.

In [27], a suite of MAP-based turbo decoding algorithms with energy-quality tradeoffs

for AWGN and fading channels is presented. These algorithms are derived by applying

approximation techniques such as pruning the trellis, reducing the number of states, scaling

the extrinsic information, applying sliding window, and early termination on the MAP-

based algorithm.

In [28], a register-transfer-level (RTL) 12-bit fixed-point turbo decoder based on the

Log-MAP algorithm is designed and simulated using VHDL as the hardware description

language. The implemented RTL model is verified by comparing its parameters with those

obtained from a C-language implementation of the same turbo decoder.

In [29], circuits and an IC implementation of a four-state, block length 16, three-metal

one-poly 0.35µm CMOS analog turbo decoder with a fully programmable interleaver are

presented. The IC is tested at 13.3 Mb/s, has a 1.2 µs latency, and consumes 185 mW on

a single 3.3V power supply, resulting in an energy consumption of 13.9 nJ per decoded bit.

The core area is 1131.2 × 1257.9 µm2. Mismatch simulations show that the circuits are

viable for decoder lengths up to a few hundred information bits.

In [30], a radix-4 Log-MAP turbo decoder for high-speed 3G mobile data terminals

is described. The Log-MAP core processes two received symbols per clock cycle using

a windowed radix-4 architecture, doubling the throughput for a given clock rate over a

similar radix-2 architecture. The chip is fabricated in 0.18µm CMOS, operates at a peak

clock frequency of 145 MHz at 1.8V, and dissipates 956 mW when decoding continuous 10.8

Mb/s High Speed Downlink Packet Access (HSDPA) [31] data streams. Power is reduced

using the 1/2-iteration hard decision assisted stopping criterion [32] (to as low as 189 mW

for 10.8 Mb/s). The rate 1/3 decoder has an energy efficiency of 10 nJ/b/iteration when

operating at 24 Mb/s (145 MHz). The decoder core is 14.5 mm2 and contains 410k gates

38 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

of logic and 0.45Mb of SRAM.

In [33], the segmented sliding window approach and two other types of area-efficient

parallel decoding schemes are proposed. The application of pipeline-interleaving technique

to parallel turbo decoding architectures is also presented.

In [34], a 3GPP-compliant channel decoder chip supporting both data and voice calls in

a unified turbo/Viterbi architecture is described. For voice services, the decoder can process

over 128 voice channels encoded with rate 1/2 or 1/3, constraint length 9, convolutional

codes. For data services, the turbo decoder is capable of processing any mix of rate 1/3,

constraint length 4, turbo encoded data streams with an aggregate data rate of up to 2.5

Mb/s with 10 iterations per block (or 4.1 Mb/s with six iterations). The chip is fabricated

in 0.18µm six-layer metal CMOS technology, has an active area of 9 mm2, and has a peak

clock frequency of 110.8 MHz at 1.8V (nominal). Power consumption is 306 mW when

turbo decoding a 2-Mb/s data stream with ten iterations per block and eight voice calls

simultaneously.

In [35], a fully synthesizable VHDL turbo decoder model is developed and logic synthesis

is performed for a five-metal 0.25µm CMOS standard cell library with a supply voltage

of 2.5V; allocated memories are dual-port synchronous static RAM. In addition, memory

partitioning techniques for the interleaver memory are described.

In [36], a Log-MAP based turbo decoder for 3GPP W-CDMA mobile systems is de-

signed and implemented in FPGA. The memory requirements are investigated and opti-

mized from two aspects: (1) an alternative called state metric difference-storing method

is proposed to save forward and backward state metric memory by up to one-third, (2)

the interleaver address memory is reduced by repeating the address calculation at each

iteration. The FPGA prototype operates at 42 MHz, has a decoding rate of up to 2.1

Mb/s with five iterations. The decoder is also synthesized for a 0.25µm CMOS standard

technology; it has a maximum clock frequency of 92 MHz and the core logic is about 42k

gates.

In [37], different memory optimizations for the MAP class of decoding algorithms are

investigated. It turns out that it is not possible to present one decoder structure as being

optimal. In fact, there are several tradeoffs which depend on the specific turbo code, the

implementation target (hardware or software), and the selected cost function. The authors

VLSI Design of Turbo Decoders 39

end up with a parametric family of optimized algorithms from which the designer can

choose.

In [2], several VLSI turbo decoder architectures are highlighted and compared in terms

of complexity and performance. The impact on VLSI complexity of system parameters,

such as state number, number of iterations, and code rate, is evaluated for different solu-

tions. The results of this architectural study are then exploited for the design of a specific

Log-MAP decoder, implementing a serial concatenation scheme with 2/3 and 3/4 codes;

the designed circuit occupies 35 mm2 and supports a 2 Mb/s data rate.

In [38], a low-power architecture of SOVA-based turbo decoder is proposed by adopting

the Scarce State Transition (SST) scheme. Register Exchange Survival Memory Unit (RE-

SMU) and Systolic block are used in the implementation of the SOVA decoder for high

throughput and low latency.

In [39], a low-complexity multi-stage-pipeline turbo-code encoder and decoder archi-

tecture for wireless mobile communication applications is proposed. The turbo decoder

is based on the Log-MAP algorithm and the complex channel statistic estimation process

is simplified with minor performance degradation. Furthermore, a simple decision logic

(based on the difference in hard decisions at previous and current iterations) is used for

early iteration termination; then the turbo decoder goes into power-down mode.

In [40], finite precision effects on the performance of turbo decoders are analyzed and

the optimal word length of variables is determined considering tradeoffs between perfor-

mance and hardware cost. The paper shows that the performance degradation from the

infinite precision is negligible if four bits are used for received bits and six bits for extrinsic

information. A state metric normalization method (based on subtraction of a selected

constant value) is also discussed. Furthermore, a power-down technique based on a group

of decoding criteria is used for early termination of iterations. These criteria are (1) com-

paring extrinsic information against a preset value, (2) comparing LLR outputs against a

preset value, (3) observing difference in the number of ones (in hard decisions) at previ-

ous and current iterations, and (4) observing sign similarities between extrinsic and LLR

values. According to [41], this decoder is designed and fabricated using a 0.25µm CMOS

standard-cell library and has a core area of 2.32 × 1.72 mm2. The deocder is suitable for

3G W-CDMA systems with a 2 Mb/s data rate.

40 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

In [42], a power-efficient application specific VLIW (Very Long Instruction Set) pro-

cessor for turbo decoding is designed. In this architecture, there are three levels of design:

(1) a VLIW processor is generated from a C-language description with the A|RT1 Designer

tool, (2) a SISO decoder is embedded in the VLIW processor as an ASU (Application Spe-

cific Unit) generated by a high-level synthesis tool, (3) the data-path Processing Units (PU)

in the ASU, used to perform forward, backward, and soft-output calculations, are specified

in VHDL and synthesized by a logic-synthesis tool. The VLIW-based turbo decoder is

implemented on an FPGA and runs at 2 Mb/s data rate.

Current communication systems can incorporate a high level of integration of multiple

modules on a single chip, i.e., System On Chip (SOC). Hence, a turbo codec (i.e., turbo

encoder and decoder) can be implemented as software or hardware Intellectual Property

(IP) cores that can be embedded as building blocks, alongside other components, such as

filters and demodulators, on a single-chip communication system. These IP cores have a

high degree of design flexibility to suit various applications and customer needs. Examples

of turbo encoder/decoder cores can be found in [43, 44, 45].

3.4 Dynamic-Iterative Techniques for Turbo Decoders

Many criteria have been suggested in the research to stop further decoding iterations when

satisfying certain conditions, hence reducing power dissipation significantly. The stopping

criteria can be categorized into two groups:

• Stopping techniques based on the improvement of channel quality. Some of these

techniques are discussed, as follows:

1A|RT stands for Algorithm-to-Register-Transfer; the A|RT tools have been acquired by ARMR©

VLSI Design of Turbo Decoders 41

◦ Cross-Entropy (CE) criterion, suggested in [18], as follows:

T (i) ≈
∑

k

|∆Le
(i)
2 (ûk)|

2

e|Λ
(i)
1 (ûk)|

, where

∆Le
(i)
2 (ûk) = Λ

(i)
2 (ûk)− Λ

(i)
1 (ûk) = Le

(i)
2 (ûk)− Le

(i)
1 (ûk) ,

Λ
(i)
k , Le

(i)
k are the LLR and extrinsic info respectively

of SISO decoder k ∈ {1, 2} at iteration i. (3.31)

In [18], it is shown that further iterations can be stopped if T (i) ≤ (10−2 ∼
10−4) · T (1). This method is complex to implement because of the non-linear

operations involved and the use and storage of real numbers.

◦ Sign-Change-Ratio (SCR) criterion, suggested in [46], as a simplification of the

CE method in [18] according to the relation:

T (i) ≈ δi · C(i), where δi is a constant,

C(i) is the number of sign changes between

Le
(i−1)
2 (û) and Le

(i)
2 (û) (3.32)

Further iterations can be stopped when C(i) ≤ (0.01 ∼ 0.06)·C(1). This method

is much simpler than the CE method but involves real number operations and

memory storage of integers.

◦ Hard-Decision-Aided (HDA) criterion, also suggested in [46], this method com-

pares the hard decisions (i.e., decoded bits) of current and previous iterations.

This method involves only binary operations and the storage of N bits (i.e.,

hard decisions of previous iteration), where N is the frame length. This method

is also used in [5, 39], as it was discussed in Section 3.3. From the same dis-

cussion, it can be seen that the stopping conditions suggested in [40, 41] are

directly/indirectly extracted from the SCR and HDA criteria (i.e., testing ex-

trinsic information, LLR, and/or hard decisions).

42 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

• Stopping techniques based on the calculation of CRC checksum values are used in

[47, 48, 49]. Since CRC checksums are part of the 3G wireless (Wide-band CDMA)

standard, no overhead is required at the encoder part. The CRC checksum circuit

adds a small overhead complexity to the turbo decoder, especially for long-frame

sizes. At each decoding iteration up to the maximum number of iterations, if the

CRC checksum of the decoded frame passes, further iterations are stopped; otherwise

next iteration is executed.

A cancellation method is suggested in [48] to complement the CRC stopping method.

In this method, further iterations are cancelled (i.e., decoding is stopped) if the decoding

results do not converge to the correct result. This method works as follows: Up to the

maximum number of iterations, if the CRC checksum fails, the mean value of the LLRs

of current iteration (µ) is calculated and the difference between this mean and that of the

previous iteration (∆µ = µ− µold) is calculated. If µ < µth or ∆µ < ∆µth, cancel further

iterations; otherwise execute next iteration.

Alongside these iteration stopping/cancellation techniques, there are two methods to

save power at the idle time of the turbo decoder circuit or processor. These methods are

power-down [26] and voltage scaling [26]:

• The power-down method is straightforward, and it means that the decoder circuit

or processor (in case of software implementations) goes into a power-down mode

when no further iterations are required. In this mode, voltage and frequency (thus

time assigned for each iteration) are fixed. The turbo decoder implementations in

[39, 40] apply the power-down mode alongside a stopping technique to save power

consumption.

• The voltage scaling method uses different voltage supplies, and in some cases different

frequencies, based on the expected number of decoding iterations. In [48], a voltage

scaling (VS) heuristic is developed for programmable architectures. This technique

changes the voltage and frequency of each iteration according to the remaining num-

ber of iterations. In [49], the VS heuristic is based on channel estimation which

adds complexity overhead, hence more power consumption, to the turbo decoder.

VLSI Design of Turbo Decoders 43

According to [50], channel estimation can be eliminated with a small degradation to

decoding performance; hence, the VS heuristic cannot be used for such a case.

3.5 Sources of Power and Energy Consumption

There are three major sources of power dissipation in digital CMOS circuits which are

summarized by the following equation [26]:

Ptot = pt · (CL · V · VDD · fCLK) + Isc · VDD + Ileakage · VDD (3.33)

The first term represents the switching component of power, where CL is the loading

capacitance, fCLK is the clock frequency, and pt is the probability that a power consumption

transition occurs (the activity factor). However, for conventional CMOS circuits, the

voltage swing, V , is the same as the supply voltage, VDD. The second term is due to

the direct-path short circuit current, Isc, which arises when both the NMOS and PMOS

transistors are simultaneously active, conducting current directly from supply to ground

[51, 52]. Finally, leakage current, Ileakage, which can arise from substrate injection and

sub-threshold effects, is primarily determined by fabrication technology considerations [53].

The dominant term in a “well-designed” circuit is the switching component, and low power

design thus becomes the task of minimizing pt, CL, VDD, and fCLK, while retaining the

required functionality.

Power-delay product can be interpreted as the amount of energy expended in each

switching event (or transition) and is thus particularly useful in comparing the power

dissipation of different designs. If it is assumed that only the switching component of the

power dissipation is important, then it is approximated by [26]

Energy/Transition ≈ Ptot/fCLK = Ceffective · V 2
DD (3.34)

where Ceffective is the effective capacitance being switched to perform a computation and is

given by Ceffective = pt · CL.

The quadratic dependence of energy on voltage makes it clear that operating at the

lowest possible voltage is most desirable for minimizing the energy consumption; unfor-

tunately, reducing the supply voltage comes at the cost of a reduction in computational

44 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

throughput. Also in many cases, the designer has no control over the supply voltage (e.g.,

when using a standard-cell CMOS library).

Energy can be reduced at the algorithmic, architectural, gate, and/or circuit levels.

Most of the energy reduction comes at both the algorithmic and the architectural levels.

Using a low complexity algorithm can reduce energy consumption dramatically. Parallelism

and pipelining techniques, memory organization, and component-level design are examples

of architectural level design. For the turbo decoder, quantization and normalization of soft

data and metric parameters have important effects on energy computation. A great amount

of energy consumption can be reduced if further decoding iterations are stopped upon

satisfying some criteria that indicate decoding performance enhancement; these techniques

are called dynamic-iterative techniques. The decoder goes into power-down mode for the

unused iterations. Another choice used with dynamic iterative techniques is voltage scaling

(VS), but the VS circuits (e.g., DC-DC converters) have large area penalties, and are

usually not available for standard cell CMOS designs.

Energy can be reduced at the gate level using techniques such as clock gating and

toggle filtering to directly reduce switching activity, and hence total energy consumption.

Low-power/low-energy algorithms and architectures reduce the switching activity indi-

rectly (e.g., by reducing the number of operations and/or memory transactions). Circuit-

level techniques are not practical for complex designs such as turbo decoders, where the

standard-cell design approach is usually used.

Chapter 4

A New Dynamic-Iterative Technique

for Turbo Decoders

In this chapter, a novel low-complexity dynamic-iterative technique is proposed to reduce

the energy consumption of the Log-MAP–based turbo decoder. The performance and

complexity of the new technique are compared to those of other state-of-the-art dynamic-

iterative techniques.

4.1 Quantization of the Log-MAP Turbo Decoder

As discussed in Section 3.1, the high-performance low-complexity Log-MAP decoding algo-

rithm is chosen for implementation of the constituent SISO decoders of the turbo decoder.

The Log-MAP decoding algorithm cannot be implemented in VLSI without proper

quantization and normalization:

• For the quantization part, it is found in [40, 41] that the following word-lengths give

an optimum tradeoff between hardware cost, hence area and energy consumption, and

decoding performance: 4:2 bits for received inputs, 6:2 bits for extrinsic information,

7:2 bits for branch metrics, and 9:2 bits for state metrics, where the q:f format refers

to q total quantization bits of which f bits are used as a fraction. In addition, 10:2

bits are chosen for LLR soft outputs.

45

46 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

• For normalization, a simple method is utilized: At each time instant, all input state

metrics are normalized by subtracting the minimum state metric calculated at the

previous time instant, thus avoiding arithmetic overflow.

• A lookup table is used for the correction term of the Log-MAP algorithm, where 4:2

bits are used for the lookup table input (4-bit addresses) and 0:3 bits for lookup table

outputs. Therefore, 16× 3 bits are required for the lookup table implementation.

4.1.1 Decoding Performance of the Fixed-Point Approximation

Figures 4.1 and 4.2 show comparisons of decoding performance of the original Log-MAP

turbo decoder and the Quantized and Normalized Log-MAP turbo decoder (QN-Log-

MAP), according to the previously mentioned parameters. The performance is measured

in terms of BER or FER vs. Eb/N0 (dB). The FER, rather than BER, is the perfor-

mance figure-of-merit for high-speed data services of 3G wireless systems (W-CDMA and

cdma2000).

For simplicity, these simulations and all subsequent simulations are based on a rate

1/3 turbo code with generator polynomial g = (13, 15)8, which is suitable for 3G wireless

systems. The performance in terms of BER vs. Eb/N0 is shown in Figure 4.1 for the Log-

MAP and QN-Log-MAP turbo decoders. The performance in terms of FER vs. Eb/N0 is

shown in Figure 4.2 for the Log-MAP and QN-Log-MAP turbo decoders.

From Figures 4.1 and 4.2, it is evident that the fixed-point version of the Log-MAP

(QN-Log-MAP) is close in performance to the original floating-point Log-MAP. At high

SNRs, the QN-Log-MAP turbo decoder becomes more comparable in performance to the

Log-MAP turbo decoder when increasing the number of decoding iterations (especially

> 3).

4.2 Energy Reduction with Dynamic-Iterative Tech-

niques

If the number of iterations is fixed regardless of channel conditions, then a large amount

of energy is wasted by executing several redundant iterations. At good channel conditions

A New Dynamic-Iterative Technique for Turbo Decoders 47

−1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R iter. 1
iter. 2
iter. 3
iter. 4
iter. 5

(a)

−1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R iter. 1
iter. 2
iter. 3
iter. 4
iter. 5

(b)

Figure 4.1: BER vs. Eb/N0 for (a) Log-MAP (b) QN-Log-MAP turbo decoders (rate 1/3,

g = (13, 15)8, 1024 bits/frame, 2000 frames, 5 iterations)

48 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

−1 −0.5 0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
E

R

iter. 1
iter. 2
iter. 3
iter. 4
iter. 5

(a)

−1 −0.5 0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
E

R

iter. 1
iter. 2
iter. 3
iter. 4
iter. 5

(b)

Figure 4.2: FER vs. Eb/N0 for (a) Log-MAP (b) QN-Log-MAP turbo decoders (rate 1/3,

g = (13, 15)8, 1024 bits/frame, 2000 frames, 5 iterations)

A New Dynamic-Iterative Technique for Turbo Decoders 49

(i.e., high SNRs), the correct frame can be obtained after a few iterations, and further

iterations that increase energy consumption are redundant. On the other hand, if the

channel conditions are poor (i.e., at low SNRs), a correct frame cannot be reached after

several iterations; hence, a large amount of energy is consumed without decoding the

correct frame. The total energy consumed by the turbo decoder (over a specific period

of decoding time or for a specific number of received frames), Etot, can be defined by the

following equation:

Etot = Eit · nit (4.1)

where Eit is the energy consumed per iteration, and nit is the total number of iterations

used by the turbo decoder. For fixed-iterative techniques, nit is constant. For dynamic

iterative techniques nit is variable, hence

Etot ∝ nit (4.2)

From this relation, total energy consumption of the turbo decoder can be reduced

by applying techniques that stop or cancel unnecessary iterations from being executed,

and then forcing the turbo decoder into power-down mode for these unused iterations.

Several techniques to stop redundant iterations have been discussed in the previous chapter.

Among these methods are CE [18], SCR [46], HDA [46, 5, 39], CRC [47, 48, 49], and other

statistical methods that depend on extrinsic and/or LLR soft outputs [5, 39]. Either the

power-down [5, 39] mode or voltage-scaling [48, 49] mode is used to save power consumption

during the unused time slots. Because voltage-scaling techniques require either specific

programmable architectures or specific circuitry that cannot be mixed with the current

single-supply standard-cell CMOS libraries, such techniques are not investigated in this

thesis. Therefore, the power-down mode is used to save power consumption during the idle

iteration periods; hence reducing energy consumption of the turbo decoder. Most of the

current dynamic-iterative techniques use a complex circuitry and/or additional memory.

Also, all these methods, except the method in [48], consider enhancing energy consumption

at good channel conditions only; hence, a considerable amount of energy is still consumed if

the channel conditions are poor. The cancellation method suggested in [48] for poor channel

conditions (discussed in Section 3.4) involves calculation and storage of averages extracted

from LLR soft outputs; hence, this method is not energy efficient. From this discussion

50 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

and the more detailed one in Section 3.4, it is found that the CRC and HDA techniques,

along with power-down mode, are the lowest-complexity dynamic-iterative techniques.

4.2.1 CRC Stopping Method

CRC coding is part of the 3G wireless standard (W-CDMA and cdma2000) [11, 12]. CRC

parity bits are added before turbo coding, leading to the frame structure in Figure 4.3.

Information Bits F T

F = Frame quality control (CRC)
T = Encoder tail bits

Figure 4.3: Frame structure used in 3G wireless CDMA standards

At the receiver, the CRC can be combined with turbo decoding to detect correct frames

early and stop redundant iterations. The W-CDMA and cdma2000 3G standards specify

CRC parity bit sizes to be 8, 12, 16, or 24 (W-CDMA only). For example, the 8-bit CRC

generator polynomial used in both cdma2000 and W-CDMA is

g(D) = D8 + D7 + D4 + D3 + D + 1 (4.3)

For larger CRC bit sizes, cdma2000 and W-CDMA employ different generator polynomials.

Figure 4.4 illustrates the 8-bit CRC encoder structure of (4.3).

The CRC decoder has a similar structure to that of the CRC encoder, but the switches

are up for all the received (N + F) bits. The CRC checksum is calculated by adding the

last F bits stored in the shift register. If the CRC checksum is zero, a correct frame is

reported. Therefore, after each turbo-decoding iteration, a CRC checksum is calculated

for the resulting frame (i.e., hard decisions). If the checksum is zero, further iterations are

stopped and the turbo decoder goes into power-down mode. The circuit complexity of the

CRC-checksum circuit is simple. It includes an F -bit shift register, a maximum of F XOR

gates, and an F -bit modulo-2 addition circuit (e.g., F -bit OR or NOR gate can be used

to detect the all-zero CRC syndrome).

A New Dynamic-Iterative Technique for Turbo Decoders 51

 Input

Output
0

0 - Switches: up for the first N info bits,
 down for the last F (= 8) CRC bits

- Shift register initialized to the all 1’s state

D0 D1 D2 D3 D4 D5 D6 D7

Figure 4.4: The 8-bit CRC-encoder for cdma2000 and W-CDMA standards [11, 12]

4.2.2 HDA Stopping Method

The HDA method was described in Section 3.4. At each decoding iteration, each decoded

bit is compared to the corresponding bit resulting from previous iteration. The number of

bit differences between current and previous iterations is counted. If it is less than or equal

to a predefined threshold (small integer ≥ 0), further decoding iterations are stopped and

the decoder goes into power-down mode. This technique is based on the observation that

the number of differences between decoded bits from consecutive iterations decreases when

the output converges to the correct frame. At some small threshold value of Hard Decision

Difference (HDD), the output frame can be considered to be correct. It is found that 1% of

the frame length is a good approximation for the HDD threshold (HDDth). The complexity

of the HDA circuit is simple. It includes bit-comparisons (XOR gates), bit-additions (using

counter/incrementor), an integer-comparison, and an integer storage of the threshold-value.

The obvious disadvantage of this method compared to the CRC method is that it usually

involves an additional iteration, and thus a larger energy consumption. Also, the accuracy

of this method depends on the threshold value set, which can be observed with simulation.

4.3 A New Dynamic-Iterative Technique: CRC-HDD

The low-complexity CRC and HDA methods, discussed in Section 4.2, can be used as

stopping techniques at good channel conditions (i.e., high SNRs) only. These methods

cannot cancel unnecessary decoding iterations at poor channel conditions (i.e., low SNRs),

hence a large amount of energy is still consumed at such cases without decoding the correct

52 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

data frame. So far, there is only one cancellation technique that is suggested in [48]. As

discussed in Section 4.2, this method has the complexity of calculating the average of all

LLR soft outputs which increases power consumption per decoding iteration, and hence

total energy consumption of the turbo decoder. In addition, the accuracy of this method

depends on proper selection of threshold values required by the algorithm, and it is reported

in [48] that this method implies a degradation in FER.

A novel dynamic-iterative technique is proposed in this work. The new technique uses

the CRC checksum method to stop redundant iterations at good channel conditions and

a novel method based on hard decision differences (HDD) to cancel unnecessary iterations

at poor channel conditions. To save energy consumption of the turbo decoder, it goes into

power-down mode for the idle iteration periods.

4.3.1 Iteration Stopping Using the CRC Method

The CRC method is used to stop redundant decoding iterations upon detection of correct

data frame (when the CRC checksum is zero). This method is chosen for the stopping

part due to its 3G compatibility and its lower number of iterations compared to that

of the HDA method. The CRC method works well at good channel conditions, but, at

poor channel conditions, the correct data frame cannot be detected and the maximum

number of iterations is used. As a result, a large amount of the decoder energy is still

wasted. In addition, if most of those unnecessary iterations can be cancelled, an Automatic

Repeat Request (ARQ) can be sent earlier to the transmitter, hence reducing delays in

processing received data. Therefore, a new low-complexity cancellation method is proposed

to complement the CRC method (for poor channel conditions).

4.3.2 Introducing a Novel Cancellation Method: HDD

A novel low-complexity method is proposed to cancel further decoding iterations that do

not converge to the correct data frame. Before explaining the new cancellation method,

we will define some terms:

HD (Hard Decisions): The set of decoded bits (i.e., frame) at each iteration.

A New Dynamic-Iterative Technique for Turbo Decoders 53

HDD (Hard Decisions Difference): The number of bit differences between HD data from

previous and current iterations, i.e.,
∑N−1

i=0 (HDprev,i ⊕ HDcurr,i)

DHDD (Decrease in HDD): HDDprev − HDDcurr

At each decoding iteration, if the CRC circuit cannot detect a correct data frame

(i.e., a non-zero checksum), a novel low-complexity cancellation method is used to detect

divergence of the output from the correct data frame. At some threshold value, this

method stops further decoding iterations. This cancellation method, like the HDA stopping

method, depends on bit-differences between hard decisions (i.e., decoded frames) resulting

from consecutive decoding iterations.

This new cancellation method will be called HDD-aided (or HDD in short), derived from

the fact that it depends on changes in HDD values (rather than changes in HD values, as in

the HDA method). Consequently, the new combined stopping/cancellation technique will

be called CRC-HDD (CRC for stopping and HDD for cancellation). Although the terms

stopping and cancellation have the same meaning of halting further decoding iterations,

stopping is used to indicate that further iterations are stopped based on a successful de-

tection of the correct data frame (which usually happens at good channel conditions), and

cancellation is used to indicate that further iterations that do not converge to the correct

data frame are cancelled (which usually happens at poor channel conditions).

The new HDD cancellation method (as part of the suggested CRC-HDD dynamic-

iterative technique) is based on observation of the following: firstly, the relation between

averages of HDD values and SNR (shown in Figure 4.5), and secondly, the relation between

averages of DHDD values and SNR (shown in Figure 4.6). For simplification, HDD values

for the cancelled iterations are approximated to zero; this approximation has no significant

effect on the final results.

From Figure 4.5, it can be seen that average HDD is inversely proportional to SNR.

From this observation, we can possibly extract some HDD threshold and cancel iterations

above this threshold, hence below some SNR. However, this method proves to be inaccurate

because the variances of observed HDD values around their averages are found to be high.

This means either degradation of FER at high SNRs or inefficient cancellation at low SNRs.

Instead of taking averages of HDD values, DHDD values from consecutive iterations

are considered. Figure 4.6 shows that the relation between average DHDD and SNR is

54 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

−1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

E
b
/N

0
 [dB]

A
ve

ra
ge

 H
D

D
 [b

its
]

1024 bits/frame
max. 5 iterations

Figure 4.5: Average HDD vs. Eb/N0 (1024 bits/frame, max. 5 iterations)

−1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

E
b
/N

0
 [dB]

A
vg

er
ag

e
D

H
D

D
 [b

its
]

1024 bits/frame
max. 5 iterations

Figure 4.6: Average DHDD vs. Eb/N0 (1024 bits/frame, max. 5 iterations)

A New Dynamic-Iterative Technique for Turbo Decoders 55

proportional at low SNRs and inversely proportional at high SNRs. Also, it is found that

the variances of observed DHDD values around their averages are small. From these obser-

vations, some DHDD threshold can be extracted to cancel iterations below that threshold.

To avoid a sever performance degradation due to the decreasing phenomena of DHDD in

the high SNR range, the CRC stopping method must be applied before the new cancella-

tion method in the execution order of the dynamic-iterative algorithm. In addition, a new

DHDD value cannot be available before the third iteration, thus further minimizing the

chance of an incorrect cancellation (decoding performance of the new dyanmic-iterative

technique is discussed in Section 4.3.4).

The newly developed method is efficient in cancelling iterations at low SNRs only.

By combining this new method with the CRC method, the HDD method cancels a large

fraction of the unnecessary iterations at low SNRs (below DHDD threshold), and the CRC

method stops redundant iterations at high SNRs (at zero CRC checksums). In the new

combined CRC-HDD technique, at each decoding iteration, the CRC zero-checksum is

tested first, and if it fails the calculated DHDD value is compared to the DHDD threshold.

Setting the DHDD threshold value at 1% of the frame length leads to a high cancellation

efficiency. Note that a cancellation cannot occur before the third iteration, where the first

DHDD value can be calculated.

4.3.3 The New CRC-HDD Dynamic-Iterative Algorithm

Figure 4.7 illustrates the CRC-HDD dynamic-iterative algorithm applied to turbo decoders.

As shown in the flowchart, after calculation of LLR values, hard decision (HD) output bits

are estimated. If the iteration number is less than the maximum, HDD, DHDD, and

CRC checksum are calculated. If CRC checksum is equal to zero, decoding is stopped.

Otherwise, the algorithm checks if DHDD is less than or equal to DHDDth, and stops

decoding if the condition is satisfied. It is noteworthy that the DHDD check cannot happen

before the third iteration. If both checks fail, the algorithm stores the current HD and

HDD values in special buffers, for use in the following calculations, before proceeding to

the next iteration.

The CRC-HDD method requires a low-complexity logic to be added to the turbo de-

coder. The HDD section requires a maximum of N (= frame length) bit comparisons to

56 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Execute a turbo
decoding iteration

Calculate hard decisions, HD
(decoded frame)

If iter =
max_iter

Yes

No

Calculate HDD =
Σi (HDi ⊕ prevHDi)

Calculate DHDD =
prevHDD − HDD

Calculate CRC
checksum

If CRC
checksum = 0

Yes

No

If iter > 2 &
 DHDD

�
 DHDDth

Stop
decoding

Yes

No

Stop
decoding

Stop
decoding

valid after
1st iter.

Set (Store)
PrevHD = HD

PrevHDD= HDD

Go to next iteration

valid after
2nd iter.

Figure 4.7: The CRC-HDD algorithm

A New Dynamic-Iterative Technique for Turbo Decoders 57

calculate HDD, a signed subtraction to calculate DHDD, and a magnitude comparison

between the calculated and threshold DHDD values. Also, memory storage is required

for the following: previous HD and HDD values, and DHDD threshold. The number of

operations and memory size used in the additional logic are marginal compared to those

required for the SISO Log-MAP component decoders, interleavers, and deinterleavers.

4.3.4 Comparing Decoding Performance for CRC, HDA, and

CRC-HDD

The CRC [47], HDA [46], and the proposed CRC-HDD dynamic-iterative methods are

applied at the system-level to a rate 1/3 Log-MAP turbo decoder with generator polynomial

g = (13, 15)8. Different frame lengths are used over the SNR range {−1, 2} dB with a

maximum number of five iterations and DHDDth set to 1% of the frame length. The three

techniques are applied to an encoder/decoder system modeled in the C language, with

about 10M bits as encoder input and an AWGN channel model.

Decoding performance simulations are applied to turbo decoders using the three tech-

niques to verify that the new CRC-HDD technique is close in performance to other low-

complexity dynamic-iterative techniques (CRC and HDA). Figure 4.8(a) shows the BER

vs. Eb/N0 for the three techniques applied to a rate 1/3 Log-MAP turbo decoder with

1024 bits/frame and a maximum of five iterations; Figure 4.8(b) shows the FER vs. Eb/N0

for the three methods applied to the same decoders.

From Figure 4.8, it can be seen that the performance of the turbo decoder using the

new technique is close to that of the decoder using the CRC method and better than that

of the decoder using the HDA method.

4.3.5 Comparing Iteration Reduction for CRC, HDA, and CRC-

HDD

The three methods are also compared in terms of percent reduction in iterations. Figure

4.9 shows the average number of iterations vs. Eb/N0 for the CRC, HDA, and CRC-

HDD Log-MAP turbo decoders for 1024-bit frames and a maximum of five iterations. As

58 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

−1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

HDA
CRC
CRC−HDD

1024 bits/frame
max. 5 iterations

(a)

−1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
E

R

HDA
CRC
CRC−HDD

1024 bits/frame
max. 5 iterations

(b)

Figure 4.8: (a) BER vs. Eb/N0 (b) FER vs. Eb/N0 for rate 1/3 Log-MAP turbo decoder

with the CRC, HDA, and proposed CRC-HDD dynamic-iterative techniques

A New Dynamic-Iterative Technique for Turbo Decoders 59

observed from the graph, the CRC-HDD technique is superior in iteration reduction to the

CRC and HDA techniques.

−1 −0.5 0 0.5 1 1.5 2
2

2.5

3

3.5

4

4.5

5

E
b
/N

0
 (dB)

A
ve

ra
ge

 N
o.

 o
f I

te
ra

tio
ns

HDA
CRC
CRC−HDD

Overall avg. no. of iterations:
HDA: 4.1795 (~83.59%)
CRC: 3.9354 (~78.71%)
CRC−HDD: 3.0859 (~61.72%)

[1024−bit frames, max. 5 iterations]

Figure 4.9: Average number of iterations vs. Eb/N0 for rate 1/3 Log-MAP turbo decoders

with the CRC, HDA, and proposed CRC-HDD dynamic-iterative techniques

Table 4.1 compares the percent reduction in iterations for turbo decoders using the

CRC, HDA, and CRC-HDD dynamic-iterative techniques and employing different frame

lengths. From Table 4.1, it is observed that the proposed CRC-HDD technique saves

at least 35% of iterations compared to the static-iterative case (reduction increases for

shorter frame lengths). It is also observed that the reduction given by the CRC-HDD

method is more than 2.2 times the reduction given by the HDA method and more than 1.6

times the reduction given by the CRC method. If the effects of static power consumption

and dynamic-iterative circuit complexity are ignored, a corresponding reduction in energy

consumption is expected. For deep sub-micron technologies, the static power effects cannot

be ignored, and more accurate figures for power/energy reduction has to be measured after

hardware realization.

60 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Table 4.1: Percent reduction in the number of iterations by the CRC, HDA, and proposed

CRC-HDD dynamic-iterative techniques

Percent reduction in iterations

Dynamic-iterative 192 b/fr. 384 b/fr. 768 b/fr. 1024 b/fr. 5114 b/fr.

technique 12b-CRC 16b-CRC 16b-CRC 24b-CRC 24b-CRC

HDA [46] 19.46% 17.81% 16.90% 16.41% 15.18%

CRC [47] 26.41% 23.96% 21.90% 21.29% 18.46%

Proposed CRC-HDD 43.18% 40.75% 39.02% 38.28% 35.69%

4.4 Hardware Complexity of the CRC-HDD Logic

Hardware complexity of the proposed CRC-HDD dynamic-iterative technique depends on

frame length, N , and CRC-parity bit length, F . The complexity can be calculated in terms

of memory bits and bit-level operations required.

For the CRC part, we need an F -bit register and a maximum of F 2-bit XOR gates

for the CRC decoder (see Figure 4.4), and F -bit OR/NOR gate (or its equivalent) for the

zero-checksum detection.

For the HDD part, we need N bits for the HD (decoded frame) buffer, 2-bit XOR

gate(s) for N bit-wise comparisons of current and previous HD values, dlog2 Ne-bit counter

(incrementor) and dlog2 Ne-bit buffer for current and previous HDD values respectively,

(dlog2 Ne+1)-bit signed subtractor to calculate DHDD, dlog2(0.01N)e bits to store DHDDth

value, and (dlog2 Ne+ 1)-bit magnitude comparator to check if DHDD ≤ DHDDth.

We see that the CRC part has the same hardware complexity as that of the typical

CRC technique, and the HDD part has a slightly larger complexity than that of the HDA

technique because of the additional HDD buffering and subtraction. To reduce power

consumption of the CRC-HDD circuit, a complexity reduction is suggested for the HDD

part.

A New Dynamic-Iterative Technique for Turbo Decoders 61

4.4.1 Complexity Reduction of the HDD Section

To reduce hardware complexity of the HDD circuit, hence complexity of the CRC-HDD

algorithm, the following techniques are applied to the new design:

1. To avoid using an additional N -bit buffer to store the current (recently-calculated)

HD value used for comparison with the previously-buffered HD value, an address

latch can be used to store the deinterleaving address, hence allowing reading from

then writing to the same HD memory location on two consecutive clock cycles. An

additional dlog2 Ne-bit buffer is required for the deinterleaving address latch.

2. The number of memory bits and bit-operations of the HDD part can be reduced (thus

reducing switching activity which contributes to power consumption) by extracting

maximum values of HD and HDD through simulations. Using simulations for the

400 and 1024-bit frames, we find that the following values give the same accuracy as

the full-length solution that was discussed earlier:

Minimum 0.1N bit-wise comparisons of HD previous and current frames (i.e., further

comparisons are stopped if 0.1N bit-differences have been discovered), dlog2(0.1N)e-
bit counter (incrementor) and dlog2(0.1N)e-bit buffer for current and previous HDD

values respectively, (dlog2(0.1N)e + 1)-bit signed subtractor to calculate DHDD,

dlog2(0.01N)e bits to store DHDDth value, and dlog2(0.01N +1)e-bit magnitude com-

parator to check if DHDD≤ DHDDth, where DHDD is range-limited to dlog2(0.01N+

1)e-bit unsigned values.

Table 4.2 summarizes the hardware complexity in terms of memory bits and bit-level

operations for both typical (non-optimized) and low-complexity implementations of the

HDD circuit used in the proposed CRC-HDD technique.

62 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Table 4.2: Comparison between typical and low-complexity implementations of the HDD

circuit for different frame lengths (= N bits)

Typical Low-complexity

HDD implementation HDD implementation

General N = N = General N = N =

400 1024 400 1024

Memory N + 2 · dlog2 Ne 420 1048 dlog2 Ne+ 23 28

bits + dlog2(0.01N)e 2 · dlog2(0.1N)e+

dlog2(0.01N)e
Comp. N + dlog2 Ne 410 1035 (0.1 → 1)N + 43 → 106 →

+ 1 dlog2(0.01N + 1)e 403 1028

Bit Subt. dlog2 Ne+ 1 10 11 dlog2(0.1N)e+ 1 7 8

opers. Total N + 2 · dlog2 Ne 420 1046 (0.1 → 1)N + 50 → 114 →
+ 2 dlog2(0.1N)e+ 1 + 410 1036

dlog2(0.01N + 1)e

Chapter 5

An Energy-Efficient Design of Turbo

Decoder

5.1 Architectural-Level Techniques Applied to the Turbo

Decoder

In this chapter, several architectural-level techniques applied to the turbo decoder design

are explained. These VLSI techniques aim at reducing power/energy consumption, in

addition to improving throughput and silicon area, of the turbo decoder.

5.1.1 Algorithm Selection and Quantization

As discussed in Chapter 3, the Log-MAP algorithm gives the best tradeoff in terms of de-

coding performance and implementation complexity. Therefore, it is chosen as the decoding

algorithm for the constituent SISO decoders. Nonetheless, the floating-point Log-MAP al-

gorithm is still complex and difficult to realize into hardware. Therefore, the fixed-point

approximation (as discussed in Chapter 4) is used for sampled input data, arithmetic calcu-

lations, and intermediate results. For quantization values, the notation n:q is used, where

n represents the total number of bits and q represents the number of bits in the fractional

part. The quantized values are as follows: 4:2 for soft (sampled) inputs, 7:2 for branch

63

64 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

metrics, 9:2 for state metrics, and 6:2 for extrinsic information. These fixed-point val-

ues represent an optimal tradeoff between decoding performance and area/power of turbo

decoder implementations [40].

5.1.2 Parallelism

Parallelism is done at two hierarchical levels:

• Parallel architectures are built for the low-level branch metric (BM), forward and

backward state metric (SM), and log-likelihood-ratio (LLR) calculation units by as-

signing one unit to each state instead of sharing units among states in the trellis

structure. The parallel execution by these units increases throughput by the number

of states (eight for the 3G decoder), but this occurs at the expense of area and power

consumption.

• To further increase throughput, an additional level of parallelism can be applied by

simultaneously processing the two halves of the data block (frame) [20, 25]. For this

purpose, double units of BM, SM (forward and backward), and LLR are introduced

into the architecture. This further doubles the throughput, again at the expense of

more area and power. Figure 5.1 illustrates the parallel processing of two half-frames

(one begins with forward recursion while the other begins with backward recursion,

then reversing rules at the next recursion).

By superimposing the two parallelism techniques, throughput is theoretically increased

by 16 (when ignoring complexity of the SM normalization logic). The side effects of

area and power consumption for the parallel architecture can be reduced by applying

the following three architectural-level techniques.

5.1.3 A New Operator Reduction Method for the max∗ Logic

There are three major operations in the Log-MAP turbo decoding algorithm: BM calcu-

lation, SM calculation, and LLR calculation. Each of these operations involves the max∗

operation, defined by the following Jacobian approximation (see also (3.19)):

max∗(a, b) = max(a, b) + fc(|a− b|)

An Energy-Efficient Design of Turbo Decoder 65

N

BM (�) & SM (� or �) calculation/storage

� , �

� , �

� , � ext

� , � ext

SM calculation & extrinsic info calculation/storage

Figure 5.1: Parallel processing of two half-frames (one is in forward recursion while the

other is in backward recursion)

where fc(x) = ln(1 + e−x) can be represented by a small lookup table (with 16 entries);

max∗ can be applied to more than two arguments by using recursion (similar to the max

operation).

The calculation of absolute values in such operations increases the critical-path delay

of the turbo decoder (also increases area and power consumption). This calculation of

absolute values (abs logic) can be avoided by doubling the lookup table (LUT) size (to

32 entries) and adding an extra (sign) bit to the LUT input address (to account for both

positive and negative values of a− b). Results show that the new design of the max∗ logic

has shorter propagation delay, lower power consumption, and smaller silicon area. Figure

5.2 depicts both the classical (with abs logic) and the new (no abs logic) versions of the

max∗ logic. In the diagram, the abs and LUT blocks (bounded by the dashed rectangular

area) are replaced by a double-sized LUT (as explained above). In the suggested double-

sized LUT, the LUT contents are repeated for positive and negative addresses that have

the same magnitude.

A comparison of area, power, and delay for both classical and new implementations

of the max∗ logic is summarized in Table 5.1. Three versions of the max∗ logic (with

input lengths of 6, 10, and 11 bits) are required for BM, SM, and LLR calculation units,

respectively. Results are produced using VHDL synthesis with SynopsysR© Design Compiler.

66 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

—

a

b

z

abs LUT

max +

Replaced by a double-sized LUT

a–b

Figure 5.2: The max∗ operation (in the new design, the abs logic and the 16-entry LUT

are replaced by a 32-entry LUT)

The minimum 0.47ns reduction in max∗ delay (as observed from Table 5.1) leads to about

1.4ns reduction in critical-path delay of the turbo decoder (max∗ appears three times in

the LLR delay path); this increases the maximum clock frequency and hence increases the

data rate, or throughput, of the turbo decoder. The small reductions in area and power

are magnified throughout the turbo decoder due to the repetition of max∗ logic in the

doubled parallel structures for BM, SM, and LLR calculation (max∗ duplication factor

= 2× (1{BM}+ 8{SM}+ 14{LLR}) = 46).

5.1.4 Normalization of State Metrics

The calculation of current forward and backward state metrics, at each trellis stage, re-

quires the addition of branch metrics to previous state metrics. Over time, this leads to

an arithmetic overflow and produces erroneous results; hence, a normalization method is

required. Two state-metric normalization methods are discussed and compared in terms

of silicon area, power consumption, and propagation delay.

The first state-metric normalization method calculates the maximum SM value (using

recursive calls of the max logic), stores that value in a buffer, and, on next trellis stage,

subtracts it from all input SMs of the SM calculation logic. In [54], the SMs are normalized

by subtracting the minimum value of the previous SMs. The serial call of max incurs a long

delay in the critical-path of the turbo decoder. This delay can be reduced in the parallel

implementation of state metric units by using a parallel max structure (for eight state

metrics, only three stages of 2-input max units are needed instead of seven for the serial

An Energy-Efficient Design of Turbo Decoder 67

Table 5.1: Results for classical and new implementations of the max∗ logic

Synthesis result max∗ with abs logic max∗ without abs logic

6-bit:

Area (µm2) 1594 1399

Power (mW) 3.85 3.33

Delay (ns) 3.45 2.83

10-bit:

Area (µm2) 2765 2289

Power (mW) 6.57 5.38

Delay (ns) 4.48 3.98

11-bit:

Area (µm2) 3009 2492

Power (mW) 7.17 5.93

Delay (ns) 4.82 4.35

max structure). Figure 5.3 illustrates the parallel structure for an 8-input max calculation

logic.

Another method that proves more efficient in terms of area, propagation delay, and

power consumption works by comparing all new SM values against a threshold value. If

any SM exceeds the threshold, a constant value is subtracted from all SM values to prevent

arithmetic overflow in next stages. The threshold value and the subtracted constant are

chosen as 100% and 50%, respectively, of the highest value for SM quantization (i.e., 2q−f−1

and 2q−f−2, respectively, for a q:f quantization). The SM normalization method in [40] is

similar, but both values are chosen as 50% of the highest value for SM quantization (i.e.,

2q−f−2). Figure 5.4 shows the subtraction-based state metric normalization algorithm.

The two SM normalization methods based on the parallel-max architecture and the

subtraction-based algorithm are VHDL-synthesized and compared in terms of area, power,

and propagation delay, as shown in Table 5.2. From the table, we find that the subtraction-

based SM normalization method has a much lower silicon area (about four times), power

68 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

max

max

max

max

max

max

max

SM0

SM1

SM2

SM3

SM4

SM5

SM6

SM7

SMmax

Figure 5.3: The parallel max normalization logic used in the first design of parallelized SM

units (3-stage delay for eight inputs)

subt_flag := 0

FOR EACH SM(i)

IF SM(i) >= SM_th THEN

subt_flag := 1

END IF

END FOR

IF subt_flag = 1 THEN

FOR EACH SM(i)

SM(i) := SM(i) - SM_subt

END FOR

END IF

Figure 5.4: The subtraction-based state-metric normalization algorithm (used in the final

design of parallelized SM units)

consumption (5.3 times), and propagation delay (2.8 times) than those of the other normal-

ization method. Consequently, it is chosen for final implementation of the turbo decoder.

An Energy-Efficient Design of Turbo Decoder 69

Table 5.2: Implementation results for the two SM normalization methods

Synthesis result parallel max-based subtraction-based

Area (µm2) 11473 2858

Power (mW) 31.72 6.03

Delay (ns) 5.12 1.78

5.1.5 Resource Sharing

Another way to reduce area and power consumption of the turbo decoder is to apply

resource sharing. Similar to the parallelism discussed in Section 5.1.2, resource sharing can

also be applied at two levels of the design hierarchy:

• Both forward and backward SM units can be shared over the two subsequent recur-

sions in each Log-MAP SISO decoder (in the parallel case of processing two half-

frames, only two SM units, one forward and one backward, are required instead of

four). Since those SM units are parallel structures of the basic one-state SM units, a

large reduction in area and power consumption will result.

• On a higher level, instead of using two Log-MAP SISO decoders (one processing a

half-iteration while the other one is idle), one Log-MAP SISO decoder is shared.

The double Log-MAP scheme wastes a large silicon area of the decoder (almost

double that of the shared scheme); the scheme also dissipates more power, even

when applying low-power techniques (since leakage power consumption is always

generated). Therefore, sharing one Log-MAP SISO decoder over two half-iterations

is more area and power efficient.

This two-level resource sharing technique has no effect on throughput while reducing

area and power consumption of the turbo decoder.

70 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

5.1.6 Interleaver Design

There are two popular categories of interleavers/deinterleavers: ROM-based and RAM-

based. The former is usually based on patterns pre-generated by a random address gener-

ation software and programmed on a ROM. The latter calculates the addresses once (for

every change of frame length) and stores the values in a RAM that is used throughout

the decoding process (as long as received frames have the same length). A 3G-compliant

interleaver should work with frame lengths between 40 and 5114 bits [12]. To allow for

design flexibility, a RAM-based interleaver is implemented. Since the 3G interleaver uses

a mother interleaver of at least 512 bits [4], a minimum initial latency of 512 clock cycles

is introduced (even in the case of short frame lengths, e.g., 128 bits). Initial latency is

determined by the larger of mother interleaver length and the block length multiplied by

the reciprocal of code rate; e.g., for a rate 1/3 turbo decoder and frame length of 1024-bit,

the initial decoding latency is 3072 (1024× 3) cycles.

5.1.7 Double Buffering

In the final design of the turbo decoder, double buffering of soft-input data is employed

to increase throughput of the turbo decoder. In other words, soft-input data memories

are doubled to eliminate decoding delays between consecutively-received frames, thus in-

creasing data throughput (or bit rate) of the turbo decoder. Double buffering works as

follows: while one group of previously-stored soft-input data buffers is accessed by the

turbo decoder for processing of the current data frame, a new set of soft-input data is

stored in the other buffer group to allow for processing of the next frame immediately

after the current frame is decoded. Hence, time delays are eliminated in the decoding of

sequentially-received data frames.

An Energy-Efficient Design of Turbo Decoder 71

5.2 Turbo Decoder Design Hierarchy

The turbo decoder is coded in VHDL, and then synthesized into a 0.18µm CMOS standard-

cell based, or gate-level, design using SynopsysR© Design Compiler. Figure 5.5 shows the

design hierarchy for the VHDL-based turbo decoder. The Register-Transfer-Level (RTL)

model of the turbo decoder is structural and VHDL-based. Each VHDL design unit is

described by an ENTITY (describing interface) and an ARCHITECTURE (describing be-

haviour, dataflow, and/or structure). The VHDL design units, except VirageR© behavioural

RAM models, are Synopsys-synthesizable. The following is a brief description of each de-

sign unit in the turbo decoder structural RTL model.

td chip

This is the top-level unit of the turbo decoder design. It contains the turbo decoder core

logic (td core) and the Virage-compiled RAMs. The I/O pads are added to the design

after synthesis. Figure 5.6 shows the block diagram for the new turbo decoder (td chip).

RAMs

The VirageR© memory compiler generates both black-box RAM modules for synthesis and

behavioural VHDL models for simulation.

td core

The turbo decoder core (td core) consists of the main turbo decoder logic (turbo dec) and

supporting logic for buffering and serialization of input/output data to/from the decoder

(io logic).

io logic

The decoder support logic (io logic) has three blocks: recs calc for scaling input data

using the channel reliability factor, Lc (defined in (3.23)), buff indata for demultiplexing

and double-buffering of soft-input data, and ser outdata for serializing hard decision data

from the HD buffer.

72 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

��
�
�
�
� �

��
�
�
�
�	

�
�

� �
�
� �
�
� �

� �
��
�
�
�
	
�

�
�
��
�
� �
�
�
� �

	
� �
�
�
��
�
� �

�	
�

�
�
�
� �

� �
�
�
�
�

� �
� �
� �

�
�
�
� �
�
��
	
�

� 	
�
�
�
� �

�
�
�
�
�
� �

�
�
�
�
�
	
�

�
��
�
�
	
�

�
�
�
�
� �

��
� �
�
�
� �

�
�
�
�
�
� �

� �
�
�
�
�
�

� �
��
�
�
�

� �
�
�
�
�
�

� �
��
�
�
�

� �
�
�
�
�
�

� �
��
�
�

� �
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�

��
�

�
�
�

�
��
�
�
�
�
�
�
�
�
�
�
�

Figure 5.5: design hierarchy of the VHDL-based turbo decoder (Design units, except the

black-box RAM modules, are equivalent to VHDL entities)

An Energy-Efficient Design of Turbo Decoder 73

�
�
�
�
�
�
�

�
��
	

�
�
�

�

� �
�
�
�
� �
�

�
�
�
�
�
� �
�

� �
� �

�
�
�
�
� �
�

�

�
�
�

�
�
�
�

�
� �

�
�
�
�
�
�
�

�
��
�
�
�
�

� �
�
�
�
� �
�

�
�
�
�
�
� �
�

�
!
"
##

$
!
"
##

%
�
�
�

�
�� �

&
'

(
�
�

� �
� �

�
�
�
�
� �
�

�

�
�
�

(
�
�

�
)
�
* �

(
�
�

+

�
)
�
* �

(
�
�

,

'
�
� �
�
�

�
�
�� -
�
��
�
�

�
.
�

(
�
�

+

/
�

+

(
�
�

+

/
�

,

(
�
�

+

�
.
�

(
�
�

,

/
�

+

(
�
�

,

/
�

,

(
�
�

,

�
01
2
34
3

�
01
2
5
"
06

'
�
� �
�
�
�
��
�
�

'
�
� �

�
7
8
� �
� /
� �
9
� �
�
:

�
8
;
� �
;
8
<<
�

�
�
�

�
�
)

�
� �

�
)
�

� �
�

� �
)
�
�=

>

)

�
� �

�
� �

�
)

�
�

$
!
"

�
!
"

�
!
1

$
!
1

7
�
7
)
�
�=

7
�
� �
)
�
�=

�
� /
>
�

(
�
�

?
�
� �

(
�
�

�
�
7
7
�
@

(
�
�

�
�
7
7
�
+

(
�
�

� �
;
8
<<
)
�
�

�
�)
�

A B
C

C
1
2

2D
0#
3D
"
D 1

�
8
�

�
� �
)

�
�

.

�
�
)

.
�
)
� �

�
01
2
5
"
0E

$
01
2
34
3

$
01
2
5
"
06

$
01
2
5
"
0E

Figure 5.6: Block diagram of the new turbo decoder (td chip)

74 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

turbo dec

The main turbo decoder logic (turbo dec) contains instances of the following design blocks:

the control logic (controller), the Log-MAP SISO decoder (logmap), the 3G interleav-

ing/deinterleaving address generator (intrlv), the hard decision calculation logic (hd clac),

the extrinsic info calculation logic (le calc), the CRC decoding logic (crc dec), and the

hard decision bit comparison logic (hda dec). The logmap unit is instantiated only once

by applying resource sharing. There are two instances of both hd clac and le calc units,

since the Log-MAP decoder processes two half-frames in parallel.

logmap

The Log-MAP SISO decoder logic (logmap) instantiates three metric calculation units: the

branch metrics unit (bm calc), the forward/backward state metrics unit (sm calc), and the

LLR estimation unit (llr calc). Each of the three metric calculation units has instances

of a suitable fixed-point version of the max∗ calculation logic (fxpMax star<xx>), where

xx equals 6, 10, or 11 bits and represents the fixed-point length of the max∗ inputs. Each

of the fxpMax star<xx> units instantiates a compatible fixed-point version of the max

calculation logic (fxpMax<xx>). Since the Log-MAP decoder processes two half-frames

in parallel, it has two instances of each of the three metric calculation units. Figure 5.7

shows the block diagram for the Log-MAP SISO decoder (logmap). Figure 5.8 illustrates

the relation between trellis states and their next states for both 0 and 1 input bits of a 3G

RSC encoder (code rate = 1/2, g = (13, 15)8); also shown are the corresponding output

parity symbols (for BPSK modulation, −1 and +1 are equivalent to parity bits 0 and 1,

respectively). State transitions and their output parity mappings are stored in LUTs and

retrieved (by the Log-MAP decoder control logic) for state and branch metric calculations.

Each sm calc unit is shared between the forward and backward recursions.

bm calc

Figure 5.9 shows the block diagram for the branch metrics calculation (bm calc) unit.

The bm calc unit is a parallel implementation of the branch metrics described by (3.6)

(see also supporting equations (3.16) and (3.18), where max is replaced by max∗). In the

bm calc block diagram, par b0[state] and par b1[state] represent parity symbols associated

An Energy-Efficient Design of Turbo Decoder 75

��
�
����� ��

�
�����

��
�
����� ��

�
�����

��	
�
����� ��	

�
�����

���

�
��

�

�	
�
� ���

�
��

�

�	
�
� ���

�
��

�

�	
�
� ���

�
��

�

�	
�
�

�
�
	��
�
���

�
�
	��
�

�	

�
�
�
�
�

�
�
	��
�
���

�
�
	��
�

�	

�
�
�
�
�

������
��
�����	���

�����
��������

������
��
�����	���

�����
��������

����	��
������

���

����	��
������

���

���

�
�
�
�
�
� ���

�
�
�
�
�
�

��
��
��
�����	���
�����
��������

����	��
��
��
���

������
��
�����	���

�����
��������

������
��
�����	���

�����
��������

����	��
������

���

 �
�
��
�����	���
�����
��������

����	��
 �
�
���

�
�
�
�
��

�
�
�
�

!"#$%&

!"#$%'

("#$%&

("#$%'

)��
	�����
�
	����
�	�

����	��
��
�����	���
�����
��������

��* 	�

�
�

Figure 5.7: Block diagram of the Log-MAP SISO decoder (logmap)

with trellis state transitions from a state indexed by state with input bits of 0 and 1,

respectively. These values (shown in Figure 5.8) are retrieved from LUTs in the Log-MAP

decoder (as mentioned earlier).

76 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

�
�

�
�

�

�

�

�
�

�

�
�

�

�

�
�

�
�

�
�

�
�

�

�

����� ����
�
�����

Figure 5.8: RSC encoder state transitions and their corresponding output parity symbols;

g = (13, 15)8 (solid lines represent 0-input bit transitions and dashed lines represent 1-input

bit transitions)

sm calc

Figure 5.10 shows the block diagram for the state metrics calculation (sm calc) unit. The

sm calc unit is a parallel implementation of both forward and backward static metrics

described by (3.9) and (3.10), respectively, where max is replaced by max∗. In addition,

sm calc generates forward or backward path metrics for the llr calc unit.

An Energy-Efficient Design of Turbo Decoder 77

����

x

x

�
�
�

�

���
�
	�
����
�

���

���

���
�
	�
����
�

����������
�����

����������
�����

������
����
�

������
����
�

����������
����
�	���
����
�
��
��������
�� �

Figure 5.9: Block diagram of the branch metrics calculation (bm calc) unit

�������������

�����	�������

������
��
���
� �

��������
�����������

���
�
��
��������������
������������������� �

�
���������

������������

�
����	����

����	�������

���� ������
 ��
�����
�

������������

����	�������

Figure 5.10: Block diagram of the state metrics calculation (sm calc) unit

llr calc

Figure 5.11 shows the block diagram for the LLR calculation (llr calc) unit. The llr calc

unit is a parallel implementation of the log-likelihood ratio described by (3.11), where max

is replaced by max∗. The 8-input max∗ parallel structure, in the llr calc block diagram, is

similar to the parallel max structure in Figure 5.3, except that max units are replaced by

max∗ units.

78 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

������������

����	�������

������
��
���
�

���
�
��
��������������
������������������� �

��
����

����

�����
�
��
�
 ����������

!"#$%!&'&()

!"#*%!&'&()

!"#$%$)

!"#$%*)

!"#$%+)

!"#$%,)

!"#$%-)

!"#$%.)

!"#$%/)

!"#$%0)

��
����

����

!"#*%$)

!"#*%*)

!"#*%+)

!"#*%,)

!"#*%-)

!"#*%.)

!"#*%/)

!"#*%0)

�
�
���

��
��������
�������������������������

Figure 5.11: Block diagram of the LLR calculation (llr calc) unit

hda dec

The hda dec unit compares two (current HD) bits generated by the two hd calc units and

two corresponding (previous HD) bits read from the HD buffer and generates two decision

bits (0 if compared bits are the same and 1 otherwise). At each cycle of valid HD bits, the

controller uses the two comparison bits to calculate HDD and DHDD values required by

An Energy-Efficient Design of Turbo Decoder 79

the CRC-HDD algorithm.

crc dec

At the end of each iteration, the crc dec unit calculates CRC checksum for the buffered

HD frame. After being instructed by the controller (start crc dec = 1), the crc dec reads

bit by bit from the HD buffer until the CRC checksum is generated. When the controller

receives a valid signal (crc out valid = 1) from crc dec, it compares the CRC checksum

against zero (as required by the CRC-HDD algorithm).

intrlv

The interleaving address generation (intrlv) unit is based on the cdma2000 specification for

turbo interleavers [11]. W-CDMA turbo interleavers [12] differ from cdma2000 interleavers

in the exact specification of intra- and inter-row permutations and the matrix dimensions

of the mother interleavers. The general properties of 3G interleavers were discussed in

Section 2.4. For cdma2000, the mother interleavers have matrix dimensions of 32 rows by

n columns, where n is an integer between 4 and 10. The following are the steps required

by the 3G interleaving address generation algorithm [4]:

1. shuffle rows in bit reversal order (i.e., 0, 16, 8, . . . , 23, 15, 31)

2. for each row, permute elements according to: x(j + 1) = (x(j) + c) mod 2n, where

x(0) = c and c is a row-specific value from a table lookup

3. read the new addresses column-by-column and exclude (prune) invalid addresses from

the mother interleaver to get the desired interleaver size.

In our implementation of the 3G interleaver, these three steps are looped on a cycle-by-

cycle basis rather than performing complete matrix operations in sequence; hence, a new

mother interleaver address is calculated at every clock cycle (either passed to output or

pruned) until all the mother interleaver addresses are generated. With this hardware im-

plementation, the interleaver latency (in cycles) is equal to the mother interleaver size (i.e.,

≥ 512 for cdma2000 interleavers). The interleaving addresses are generated only once after

starting (or restarting) the turbo decoder, and the addresses are stored by the intrlv unit in

80 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

the interleaving address RAM. As long as the turbo decoder receives frames of equal length,

the interleaving address RAM can be used for all subsequent interleaving/deinterleaving

operations of the turbo decoder. A variable-size 3G interleaving address generation unit,

that can be set to any interleaver size less than 8192, is also implemented (compatible with

the W-CDMA requirement that interleaver/frame length is between 40 and 5114 bits).

The intrlv unit instantiates a modulo-2n addition unit (Artd acuAddMod) for intra-row

permutations (step 2 of the 3G interleaving address generation algorithm).

controller

The controller unit includes the control logic for the turbo decoder units and memories.

It controls memory access for the following: reading double-buffered soft input data, read-

ing from and writing to extrinsic info buffers, storing hard decisions into HD buffer, and

reading interleaving addresses from interleaving address memory. It also creates Log-

MAP decoder control cycles and multiplexes/demultiplexes data from/to the shared Log-

MAP decoder (logmap) unit. In addition, the controller includes control logic for the

CRC-HDD dynamic-iterative algorithm including: checking CRC checksum, increment-

ing/buffering HDD values, calculating/checking DHDD value, halting decoding for an ap-

propriate number of cycles if the dynamic-iterative technique is enabled and any one of

the stopping/cancellation conditions is met. Figure 5.12 demonstrates how the controller

handles interleaving and deinterleaving required by the turbo decoder. To allow for data

read/write to occur on the same cycle as reading the interleaving address, three clocks are

required: main clock (main clk), interleaving address memory clock (intlv clk), and data

memories clock (mem clk). Interleaving requires writing data into memory in a sequen-

tial order then reading it according to interleaving addresses, while deinterleaving requires

writing data according to interleaving addresses then reading it in a sequential order.

An Energy-Efficient Design of Turbo Decoder 81

���

������
�
���

	
	
�
���

�����
�
��	�

������
�
��	�

�����
�
��	����
��

�����
�
��	�������

������
�
��	����
��

������
�
��	�������

�����
�
��	�

������
�
��	�

�����
�
��	����
��

�����
�
��	�������

������
�
��	����
��

������
�
��	������

���

������
�
���

	
	
�
���

����
��������	�������
�����������

����������
��
���������
������
��
������
�������������������
�����������

����������
��
���������
����
���
��
������

Figure 5.12: Timing diagram for data interleaving/deinterleaving by the controller unit

Chapter 6

Synthesis Results

6.1 Synthesis Results for a 0.18µm CMOS Standard-

Cell Based Turbo Decoder

The proposed turbo decoder is coded in VHDL, and then synthesized and optimized into

standard cells from the Virtual SiliconR© Technolgy (VST) library, targeting the TSMCR©

0.18µm six-metal CMOS process. The delay and area results are produced using SynopsysR©

Design Compiler. To calculate power consumption, back-annotated switching activity

data are extracted from RTL simulation; then SynopsysR© Power Compiler uses this data

to calculate power consumption. Soft-input data are generated for RTL and gate-level

simulations from an AWGN channel model with an SNR range of −1 to 2 dB, highlighting

various channel conditions.

6.1.1 Applying the Architectural-Level Techniques to the Turbo

Decoder

The new energy-efficient design of the turbo decoder is implemented in incremental steps,

applying at each step some of the architectural-level techniques discussed in Chapter 5.

The design steps are detailed as follow:

1. In the basic design, each of the low-level resources (BM, SM, and LLR units) deals

82

Synthesis Results 83

with one state at a time (each trellis bit stage needs eight states). In addition,

the basic design uses two separate Log-MAP SISO decoders (each processing a half-

iteration). In each half-iteration, forward and backward recursions are executed

in a serial order. The state metrics are normalized by subtracting maximum SM

(calculated at the previous bit stage) from each input state metric to the SM unit.

A ROM-based interleaver is used in this basic design.

2. In this design step, the throughput is doubled by processing two half-frames in parallel

(one is working in the forward direction while the other is working in the backward

direction, and vice versa at the next recursion). However, this comes at the cost of

doubling the number of BM, SM, and LLR units.

3. To further increase the throughput, BM, SM, and LLR units are extended to process

all the eight states at one cycle using parallel elements of the add-compare-select

(ACS) logic. For SM units, since all state metrics are generated in parallel, the

maximum SM (used for SM normalization in the next bit stage) can also be calculated

at the same clock cycle. A parallel structure for max calculation is introduced to

reduce critical-path delay (using three stages of max calculation instead of seven in

the serial structure).

4. To reduce propagation delay and area of the maximum-value calculation (max) logic

introduced in the SM units, a simpler normalization method is used. In this normal-

ization method, a constant value is subtracted from all state metrics if one of the

state metrics exceeds a threshold. This method is area, power, and delay efficient.

To further reduce critical-path delay, power, and area of the turbo decoder, a new

design of the max∗ logic (used in BM, SM, and LLR units) uses a double-length (32

entries) LUT (by including entries for both positive and negative inputs) to eliminate

the complex absolute-value calculation (abs) logic. Double buffering is introduced in

this stage to increase throughput of the turbo decoder.

5. In the last design step, resource sharing is introduced: at one level, two SM units

are shared between both forward and backward recursions; at a higher level, one

Log-MAP SISO decoder is shared between two half-iterations (instead of two SISO

84 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

decoders, one working while the other being idle). For flexibility, a 3G-compatible

RAM-based interleaver is incorporated into the design.

Table 6.1 summarizes the turbo decoder design characteristics measured at each in-

cremental step in the design process. By looking closely at the results, steps 1 and 2 do

not achieve the minimum data rate of 2 Mb/s required for 3G wireless data applications.

Step 3 achieves that goal (with a maximum data rate of 3.7 Mb/s) but at the expense of

a much larger area and power consumption and even a longer critical delay (which limits

the maximum clock frequency). After applying the techniques introduced in steps 4 and 5,

when compared to step 3 (the highly-complex parallel structure), area is reduced by about

71% and power consumption by about 30% (energy by about 48%). Now, the decoder can

operate at data rates up to 5 Mb/s (with five decoding iterations), improving the decoder

energy efficiency by about 48% compared to the basic implementation (i.e., step 1), at 2.9

nJ/b/iteration. With the 3G-compatible RAM-based interleaver, the turbo decoder can

work with 3G block lengths (40–5114 bits).

Table 6.1: Turbo decoder characteristics at different stages of the design process

Design Area Power Max. clock Data rate Energy

step (mm2) (mW) freq. (MHz) (Mb/s) (nJ/b/iter.)

1 0.155 8.44 100 0.3 5.63

2 0.263 17.24 100 0.6 5.75

3 2.250 103.62 88.5 3.7 5.60

4 1.137 76.68 100 5.0 3.01

5 0.658 72.39 100 5.0 2.90

6.1.2 Energy Reduction with the CRC-HDD Dynamic-Iterative

Technique

The CRC-HDD dynamic-iterative method, proposed in Chapter 4, is applied to the architecturally-

optimized design, discussed in Section 6.1.1, to further reduce power/energy consumption

Synthesis Results 85

by stopping or cancelling decoding at an earlier point. The CRC-HDD algorithm was

shown in Figure 4.7. For high SNRs (i.e., good channel conditions), the CRC logic is able

to stop redundant iterations after detection of a correctly-decoded frame (CRC checksum

= 0). For low SNRs (i.e., poor channel conditions), the HDD logic (based on observing

changes in hard Decision bit-wise differences) cancels execution of remaining iterations that

never leads to correct frame decoding. The CRC-HDD method proves to have marginal

effect on decoding performance (as discussed in Chapter 4). When there are no more active

iterations for processing, the turbo decoder goes into a sleep (power-down) mode to reduce

switching activity, and hence dynamic power.

Table 6.2 summarizes the turbo decoder design characteristics before and after apply-

ing the CRC-HDD dynamic-iterative technique. The first row shows results produced after

applying the afore-mentioned architectural-level techniques, with a static number of five

decoding iterations applied to all data frames. The second row shows results after ap-

plying the CRC-HDD dynamic-iterative logic, with an upper limit of five iterations. The

results show an additional power/energy reduction by about 26% after adding the CRC-

HDD dynamic-iterative logic, compared to the static-iterative design. The final design

has an enhanced energy efficiency of 2.16 nJ/b/iteration (about 62% total energy reduc-

tion, compared to the basic implementation). From Table 6.2, we find that the additional

dynamic-iterative logic has a small effect on the turbo decoder core area.

Table 6.2: Turbo decoder design characteristics before and after applying the CRC-HDD

dynamic-iterative technique

Design phase Area Power Max. clock Data rate Energy

(mm2) (mW) freq. (MHz) (Mb/s) (nJ/b/iter.)

Static-iterative 0.658 72.39 100 5.0 2.90

CRC-HDD

dynamic-iterative 0.705 53.89 100 5.0 2.16

86 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

6.1.3 Effect of Memory Integration on the Turbo Decoder

The VirageR© Custom-Touch Memory Compiler (CTMC) tool is used to generate cus-

tomized 0.18µm CMOS RAM models for the turbo decoder. The compiled RAM models

are used for both simulation and synthesis of the VHDL-based turbo decoder design. Be-

havioral and VITAL models are used for behavioral and gate-level simulations respectively,

whereas Synopsys database files are used for synthesis (including area and power calcula-

tions). Table 6.3 lists the main characteristics of the Virage-complied RAMs used in the

turbo decoder design.

Table 6.3: Memory characteristics for the turbo decoder design

Memory units How many bit-size (rows × cols.) Access type

BM 2 N × 56 dual-port

SM 2 (N/2)× 72 single-port

Extrinsic 2 N × 6 dual-port

Interleaving 1 N × dlog2 Ne dual-port

Soft-input 6 N × 4 dual-port

HD 1 N × 2 dual-port

From Table 6.3, it can be seen that all RAMs, except SM RAMs, are chosen as dual-

port to allow for data parallelism (i.e., processing two half-frames at a time, as discussed

in Chapter 5). Also, we notice that the HD RAM is 2-bit wide although only one bit is

used for hard decisions; this is due to the fact that VirageR© CTMC has a limit of 2-bit

minimum width for its complied memories. Nonetheless, the memory-reduction technique

discussed in Section 4.4.1, part 1, is applied to prove that the additional buffer for storing

previous HD data can be avoided. In addition, the logic reduction techniques discussed in

Section 4.4.1, part 2, are applied to the design to reduce the HDD circuit complexity.

A standard-cell based 0.18µm CMOS version of the turbo decoder is synthesized with

compiled memory modules for a block size of 128-bit. The synthesis results reveal that the

design (before routing and adding pads) has an area of about 1.93 mm2, out of which the

memory blocks occupy about 63%. To reduce memory area of the turbo decoder, techniques

Synthesis Results 87

such as the sliding-window algorithm [55] can be used, but this thesis focusses on energy

reduction (in addition to area and throughput optimizations) of the turbo decoder core.

The sliding-window algorithm while reducing memory sizes for branch and state metrics,

it sacrifices some decoding performance. The algorithm effect on power consumption can

be studied only after implementation (we would still have the same number of memory

accesses plus the additional complexity of the algorithm).

The new turbo decoder design has an additional feature of enabling or disabling its

dynamic-iterative behaviour through an en dyn it signal, hence allowing for calculation of

power consumption for both static (en dyn it = 0) and dynamic (en dyn it = 1) iterative

cases. Table 6.4 shows the turbo decoder static and dynamic power consumptions (with a

nominal 1.8V supply) for both logic states of the en dyn it signal.

Table 6.4: Power/Energy consumption for the static/dynamic-iterative turbo decoder

Dynamic Power Static Power Total Power Energy

en dyn it = (mW) (µW) (mW) (nJ/b/iter.)

0 (static-iterative) 165.063 24.48 165.087 6.60

1 (dynamic-iterative) 111.223 24.48 111.247 4.45

From Table 6.4, it is evident that static, or leakage, power represents only 0.015%

and 0.022% of total power for static and dynamic iterative decoders, respectively, and is

independent of the dynamic-iterative technique being applied or not. This leads to the

conclusion that the dynamic-iterative technique, affecting only dynamic power consump-

tion, still plays an important role in the reduction of power, and energy, consumption of

the turbo decoder in a deep sub-micron technology such as 0.18µm CMOS.

The numbers in table 6.4 indicate that the power/energy reduction produced by the

CRC-HDD dynamic-iterative technique is about 33%, which is larger than the case when

the memories are not taken into account (since the technique reduces the switching activi-

ties for both arithmetic calculations and memory accesses). For the 128-bit turbo decoder,

results show that for both cases of the en dyn it signal, the memory consumes about

45% of total power consumption. Although the effects of memory access on power con-

88 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

sumption are not measured when applying the architectural-level techniques discussed in

Chapter 5 (results shown in Table 6.1), a higher power/energy reduction at that design

phase can be predicted if the effects of memory access are included. Taking this into con-

sideration, the additional dynamic-iterative reduction of 33% would lead to a total energy

reduction of at least 65%. This is analyzed as follows: 0.52 (energy ratio after applying the

architectural-level techniques) × 0.67 (energy ratio after applying the proposed CRC-HDD

dynamic-iterative technique) ≈ 0.35 (energy ratio between the basic implementation and

the architecturally-optimized dynamic-iterative implementation).

6.2 CMOS Layout of the Turbo Decoder Including

Memory Blocks

The layout is done for the 128-bit turbo decoder using CadenceR© tools. The synthesized

gate-level design is saved from SynopsysR© Design Compiler as a Verilog netlist file and

imported into Cadence design tools. The Cadence tools involved are: Encounter (floor-

planning, power planning, and placement of memory blocks and pads); PKS (standard

cell placement and clock tree synthesis); Silicon Ensemble (power and net routing); Design

Framework II (hosting a set of tools including: Virtuoso for schematic/layout editing, Diva

for DRC and LVS, and stream file (GDSII) generation). Mentor GraphicsR© Calibre DRC

is also used for DRC.

The floorplan report for the chip layout, generated by Silicon Ensemble is shown in

Figure 6.1. As shown in the report, the total cell area (standard cells + memory blocks

+ pads) has a utilization (total cell area / die area) of 77.82%; the remaining die area is

occupied by power and net routing. Out of a total cell area of about 3,800,388 µm2, there

is a standard cell area of about 738,606 µm2 (19.44%), and an area occupied by memory

blocks of about 1,205,282 µm2 (31.71%); the remaining cell area (48.85%) is occupied by

power, I/O, and corner pads. The die area is 4,883,700 µm2 (2,230µm × 2,190µm), or

about 4.88 mm2. The turbo decoder has an active area (i.e., the area before adding pads)

of about 3.03 mm2. Figure 6.2 shows the chip layout of the turbo decoder.

Synthesis Results 89

VERIFY FLOORPLAN STATUSONLY ;

#. VERIFY FLOORPLAN STATUSONLY ;

BEGIN Floorplan Status Report:

core: 254 rows; length 169091340; area 1041602654400.

core: 25174 cells; length 119903520; area 738605683200; 71% of rows.

core: 25174 placed cells; length 119903520; area 738605683200; 71% of rows.

pad: 0 rows; length 0; area 0.

pad: 304 cells; length 6960000; area 1635600000000; 0% of rows.

pad: 304 placed cells; length 6960000; area 1635600000000; 0% of rows.

corner: 0 rows; length 0; area 0.

corner: 4 cells; length 940000; area 220900000000; 0% of rows.

corner: 4 placed cells; length 940000; area 220900000000; 0% of rows.

VLC_SITE_hdss1_64x72cm4: 0 rows; length 0; area 0.

VLC_SITE_hdss1_64x72cm4: 2 cells; length 355240; area 231268344800; 0% of rows.

VLC_SITE_hdss1_64x72cm4: 2 placed cells; length 355240; area 231268344800; 0% of rows.

VLC_SITE_hdss2_128x56cm4: 0 rows; length 0; area 0.

VLC_SITE_hdss2_128x56cm4: 2 cells; length 830880; area 493924924800; 0% of rows.

VLC_SITE_hdss2_128x56cm4: 2 placed cells; length 830880; area 493924924800; 0% of rows.

VLC_SITE_hdss2_128x2cm8: 0 rows; length 0; area 0.

VLC_SITE_hdss2_128x2cm8: 1 cells; length 283280; area 35143716800; 0% of rows.

VLC_SITE_hdss2_128x2cm8: 1 placed cells; length 283280; area 35143716800; 0% of rows.

VLC_SITE_hdss2_128x4cm8: 0 rows; length 0; area 0.

VLC_SITE_hdss2_128x4cm8: 6 cells; length 1699680; area 268923369600; 0% of rows.

VLC_SITE_hdss2_128x4cm8: 6 placed cells; length 1699680; area 268923369600; 0% of rows.

VLC_SITE_hdss2_128x6cm4: 0 rows; length 0; area 0.

VLC_SITE_hdss2_128x6cm4: 2 cells; length 830880; area 114711292800; 0% of rows.

VLC_SITE_hdss2_128x6cm4: 2 placed cells; length 830880; area 114711292800; 0% of rows.

VLC_SITE_hdss2_128x7cm4: 0 rows; length 0; area 0.

VLC_SITE_hdss2_128x7cm4: 1 cells; length 415440; area 61310635200; 0% of rows.

VLC_SITE_hdss2_128x7cm4: 1 placed cells; length 415440; area 61310635200; 0% of rows.

Total cell area: 3800387967200; die area: 4883700000000.

Utilization for all cells: 77.82%.

END Floorplan Status Report

Figure 6.1: Floorplan report for the turbo decoder chip generated with Silicon Ensemble;

Length (Area) units are 0.001µm (0.000001µm2)

6.3 Comparison with State-of-the-Art Turbo Decoders

To highlight the energy efficiency of the techniques we applied to the proposed turbo

decoder (both static-iterative and new CRC-HDD dynamic-iterative), the turbo decoder

implementation is compared to fabricated chips in 0.18µm CMOS that have recently been

presented in the literature. Both works are published by teams from Bell Labs, Lucent

90 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Figure 6.2: CMOS layout of the 128-bit turbo decoder (Snapshot from Virtuoso Layout

Editor)

TechnologiesR© [30, 34].

Table 6.5 presents the design characteristics for the turbo decoders in the literature

and our proposed turbo decoder implementation. The different lines in the table for each

chip refer to different energy consumptions and data rates resulting from changing clock

frequency and/or number of iterations. The two chips work with different 3G block lengths

by applying a sliding window of 40 bits, hence reducing memory size. The chip in [34]

Synthesis Results 91

supports both voice and data using a unified turbo/Vitebi architecture. As seen from the

table, our proposed turbo decoder design is superior in energy efficiency (at both static

and iterative modes), compared to other state-of-the-art turbo decoders (by about 34% or

more compared to [30] and by about 54% or more compared to [34]). Furthermore, the

active area (area without pads) of the proposed turbo decoder is smaller than the active

areas of the two Bell Labs’ chips.

Table 6.5: Key characteristics of turbo decoder chips from recent research work and the

proposed turbo decoder implementation

Chip or design Active area Power Clk. freq. Data rate No. of Energy

(mm2) (mW) (MHz) (Mb/s) iters. (nJ/b/iter.)

[30] 14.5 1450 145 24 6 10.0

956 86.4 10.8 8 11.1

228.6 20 2 10 11.4

[34] 9 58 17.5 0.384 10 15.1

292 88 2.048 10 14.3

Proposed design:

a) static-iterative

3 165.1 100 5 5 6.6

b) CRC-HDD

dynamic-iterative 111.2 100 5 ≤ 5 4.5

The comparison between the new turbo decoder design (resulting from VHDL synthe-

sis and measured using Synopsys Power Compiler) and the two fabricated chips from Bell

Labs is approximate rather than accurate. The output pads are represented by 20pF loads,

to have as close resemblance as possible to a real chip load when measuring power con-

sumption. Assuming a 10–20% margin of error between results from synthesis/simulation

and physical chip testing, the new design is still superior in terms of energy efficiency. The

error margin is a function of different parameters including fabrication technology, testing

environment, accuracy of synthesis tools, standard cell libraries, and memory models. In

92 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

addition to energy efficiency, data throughput requirement is another important parameter

in the design of turbo decoders, e.g., the new 3GPP-HSDPA standard [31] requires a high

data throughput of 10.8 Mb/s.

Chapter 7

FPGA Design and Testing of a Turbo

Codec Prototype

A prototype for the new turbo codec (encoder/decoder) design is implemented on a XilinxR©

XC2V6000 FPGA chip. The Xilinx chip is tested for functionality using a Rapid Proto-

typing Platform (RPP) supplied by the Canadian Microelectronics Corporation (CMC).

7.1 The Turbo Codec Design

Figure 7.1 shows the block diagram of the new turbo codec system implemented on the

Xilinx FPGA. A pseudo-noise (PN) sequence generator is implemented with a Linear-

Feedback-Shift-Register (LFSR) to generate a pseudo-random sequence of input bits. A

3G-compatible CRC encoder adds CRC bits to each data frame. A 3G turbo encoder

encodes each input frame sequence according to a generator polynomial g = (13, 15)8 and

a code rate R = 1/3. The encoder outputs are BPSK-modulated (+1 for an encoded bit

1 and −1 for an encoded bit 0). To simplify testing of the codec system, a zero AWGN

noise is assumed, and the channel reliability factor (Lc), used in soft-input data scaling,

is calculated at Eb/N0 = 2 dB. The encoder outputs are stored in three memories for

systemic and parity data. A 3G-compatible interleaving address generator calculates at

startup interleaving addresses for both encoder and decoder. The generated interleaving

addresses are stored into two RAM modules (two identical copies: one for the encoder and

93

94 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

the other for the decoder). Both the encoder systemic data and the decoder soft-input data

are double-buffered to eliminate latency between consecutively-decoded frames. A divide-

by-two clock generator is used to generate two anti-phase clocks (one for encoder/decoder

logic modules and the other for non-interleaving memories) from a faster clock (used to

clock interleaving memories). A data synchronization unit is used to generate start signals

for both encoder and decoder components.

The CRC-HDD dynamic-iterative turbo decoder decodes each frame and the output

hard-decision (HD) data is stored in the HD memory. Other memories are used by the de-

coder for storing branch and state metrics and extrinsic information. For testing purposes,

a special unit compares the data stored in the decoder HD memory to the corresponding

data stored in the encoder systemic memory, and the number of correct bits is stored in

a correct-bit count buffer. At the end of each frame-decoding operation, the number of

correct bits is used to check for a correctly-decoded frame, and a correct-frame count is

incremented by one if the number of correct bits is equal to the frame length. The sys-

tem stops encoding/decoding after completing the pre-assigned number of frames, and the

correct-frame count must stop counting after decoding the last frame. The turbo codec

system is first written in VHDL, and then synthesized using SynopsysR© FPGA Compiler

II. Memory core generation, placement, routing, and FPGA bit-file generation are done

using Xilinx tools.

7.2 FPGA Testing with the CMC RPP Environment

The turbo codec system is implemented on a XilinxR© Virtex-II XC2V6000 chip. The

XC2V6000 FPGA is mounted on the ARMR© Integrator/LT-XC2V6000 logic tile installed

on the RPP V1.0 [56] that is supplied by CMC. The RPP V1.0 is shown in Figure 7.2

and comprises an ARMR© Integrator/AP ASIC Development Motherboard as well as other

supporting components. The turbo codec bit-file, generated using Xilinx tools, is down-

loaded to the XC2V6000 FPGA from a PC connected to the RPP system. The turbo codec

correct-frame count is visually checked using LEDs on the ARM Integrator/IM-LT1 inter-

face module and the ARM Integrator/LT-XC2V6000 logic tile. The turbo codec FPGA

can be asynchronously-reset with a push-button on the logic tile.

FPGA Design and Testing of a Turbo Codec Prototype 95

PN
se
qu
en
ce

ge
ne
rat

or
CR

C
en
co
de
r

3G
 tu
rbo

en
co
de
r

CR
C-
HD

D
tur

bo
de
co
de
r

Int
erl
ea
vin

g
ad
dre

ss
ge
ne
rat

or

sy
s-t
o-H

D
co
mp

ara
tor

Co
rre

ct
bit

co
un
ter

Co
rre

ct
fra

me
co
un
ter

BP
SK

No
ise

ad
dit
ion

Da
ta

sc
ali
ng

Do
ub
le

bu
ffe
rin
g

En
co
de
r

da
ta

bu
ffe
rs

Int
erl
ea
vin

g
ad
dre

ss
bu
ffe
rs

BM
, S

M
&

ex
tr.

inf
o

bu
ffe
rs

So
ft-i
np
ut

bu
ffe
rs

sy
s b

uff
er

du
pli
ca
tio
n

HD
 bu

ffe
r

To
 en

oc
er

& d
ec
od
er

En
co
de
r/D

ec
od
er

sy
nc
hro

niz
ati
on

To
 en

oc
er

& d
ec
od
er

Clo
ck

ge
ne
rat

ion
int
lv_

clk
ma

in_
clk

me
m_

clk

�
�
� �
�
�
��

� �
� 	
�

�
�
��

�
�
�
�
�
��

�

� �
�
� �
�
�
�
��
�
�
�
	 �
�
�
� � �
�

�

� �
�
� �
� �
� �
	�
�
�

� �
�
�
�
�
�
	�
�
�
�

�

� �
�
� �
�
�
�
��
�
� �
	�
�
�

� �
�
�
�
�
�
	�
�
�
�

�
�
��
�
�
�

�
�
�
�
�

�
�
��
�
�
�

rst
_a

��
�
�
�
�
�
�
	�
�
�
��

nr_
of_

co
rre

ct_
fra

me
s

�
�

Figure 7.1: Block diagram of the turbo codec system

96 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

Figure 7.2: CMC Rapid Prototyping Platform

The turbo codec FPGA chip operates at a maximum clock frequency of 35MHz (the

codec logic core works at 17.5MHz), hence providing a data rate of about 870 kb/s at a

maximum of five decoding iterations. 4000 frames are encoded/decoded by the FPGA to

check for correct functionality. The system is found to correctly decode all the encoded

frames, for both 128 and 1024-bit block lengths, at an ideal noise environment (added

noise = 0 and Eb/N0 = 2 dB); hence proving feasibility and correct functionality of the

proposed design for the 3G turbo decoder. Table 7.1 summarizes the key characteristics of

the implemented turbo codec FPGA chip.

The goal of FPGA prototyping of the turbo codec is to test the feasibility of the new

turbo decoder architecture by functional verification. The original goal of the thesis is

FPGA Design and Testing of a Turbo Codec Prototype 97

Table 7.1: Key characteristics of the turbo codec FPGA

Characteristic Value

Interleaver 3G

Block length (bits) 128, 1024

CRC (bits) 12, 24 (3G)

Generator polynomial (13, 15)8

Code rate 1/3

Eb/N0 (dB) 2

Quantization (bits) Soft-input: 4, BM: 7, SM: 9,

LLR: 10, Extrinsic: 6

Dynamic-iterative CRC-HDD

Clock frequency (MHz) Input: 35 {Core: 17.5,

Memories: 17.5 & 35}
Number of iterations ≤ 5

Data rate (b/s) 870k

Number of frames 4000

Equivalent gate count 1,834,435

to study the effects of energy-efficient techniques for turbo decoders on a 0.18µm CMOS

process, including the suggested architectural-level techniques (Table 6.1) and the new

dynamic-iterative technique (Tables 6.2 and 6.4). Due to unresolved problems applying

the new, and then partially-supported, digital design flow from CMC to fabricate a turbo

decoder chip in 0.18µm CMOS along with memory blocks, another necessary alterna-

tive is to verify functionality of the new design using FPGA prototyping. Therefore, the

power/energy study is not repeated during the FPGA design process. In addition, the

CMC RPP, which is the testing environment for the FPGA turbo codec prototype, does

not allow for physical measurement of power consumption.

Chapter 8

Conclusion

Turbo codes have generated a tremendous interest as a FEC technique due to its near

Shannon-limit performance. Since 2000, turbo coding has been adopted as a channel

coding standard for 3G wireless high-speed data services by the 3G standardization bodies

(cdma2000 and W-CDMA). However, turbo decoders consume a considerable amount of

energy, hence affecting their practical application to wireless terminals.

In this thesis, an energy-efficient turbo decoder was designed. A fixed-point version of

the Log-MAP decoding algorithm was chosen for implementation of the constituent SISO

decoder due to its optimized performance-complexity tradeoff. Two design approaches

were applied to reduce energy consumption of the turbo decoder. The first approach in-

volved the application of a novel low-complexity dynamic-iterative technique (CRC-HDD)

to reduce the number of decoding iterations at both good and poor channel conditions. The

majority of dynamic-iterative techniques in the literature are effective only at good chan-

nel conditions. In addition, many of these techniques involve complex operations, hence

sacrificing power consumption. A turbo decoder applying the new technique was modelled

in the C language, and then simulated and compared with decoders applying other low-

complexity techniques. The new dynamic-iterative decoder proved to be superior in terms

of iteration reduction.

The second design approach involved applying a combination of architectural-level tech-

niques to reduce the turbo decoder energy, in addition to optimizing area and throughput.

The turbo decoder was designed to meet both 3G CDMA wireless standards. The proposed

98

Conclusion 99

techniques were applied and results were taken at each design step to show efficiency of such

techniques. Furthermore, the new CRC-HDD dynamic-iterative technique was applied to

the turbo decoder implementation, adding additional improvement in energy efficiency.

The new turbo decoder was coded in VHDL, and then synthesized into a 1.8V 0.18µm

CMOS standard-cell library using Synopsys Design Compiler. Power was calculated using

Synopsys Power Compiler. Compiled memory modules were included for simulation and

synthesis, and Cadence tools were used to generate CMOS layout of the turbo decoder.

The combined design techniques (architectural-level and CRC-HDD) showed a reduction

in energy consumption of the turbo decoder by about 65%. The new energy-efficient

dynamic-iterative turbo decoder is 3G-compatible, and works at a maximum data rate

of 5 Mb/s (with an upper limit of 5 iterations). It has an energy-efficiency of about 4.5

nJ/b/iteration, which is better than other implementations reported in the literature. A

128-bit core (standard cells plus memory blocks) occupies an area of about 3 mm2 in a

0.18µm six-metal CMOS technology.

To prove feasibility of the proposed turbo decoder architecture, a prototype for the new

turbo codec (encoder/decoder) was implemented on a Xilinx XC2V6000 FPGA chip. The

turbo codec FPGA was tested using the CMC Rapid Prototyping Platform (RPP) and

found to be functionally correct.

Future Work

The main goal of this work was to achieve energy efficiency for 3G-compliant turbo de-

coders. Some other research directions are suggested:

• Memory optimization techniques can be explored after applying the sliding window

algorithm [55] to the turbo decoder.

• A dynamically-configurable (programmable) architecture can be investigated for 3G-

compliant turbo decoders.

• The throughput of 5 Mb/s can be increased to higher data rates (e.g., 10.8 Mb/s

required by the new HSDPA standard [31]) by applying more parallelism and/or

pipelining to the turbo decoder architecture (at the expense of more silicon area and

energy consumption).

Bibliography

[1] C. E. Shannon, “A mathematical theory of communications—I & II,” Bell Syst. Tech.

J., vol. 27, pp. 379–423 & 623–656, 1948.

[2] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architectures for turbo

codes,” IEEE Trans. VLSI Syst., vol. 7, pp. 369–379, 1999.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo-codes,” in Proc. ICC ’93, Geneva, Switzerland, May

1993, pp. 1064–1070.

[4] L. N. Lee, A. R. Hammons Jr., F. W. Sun, and M. Eroz, “Application and standard-

ization of turbo codes in third-generation high-speed wireless data services,” IEEE

Trans. Veh. Technol., vol. 49, pp. 2198–2207, Nov. 2000.

[5] S. Hong and W. E. Stark, “Power consumption vs. decoding performance for low

energy wireless communication system design,” in Proc. ICECS ’99, vol. 3, 1999, pp.

1593–1596.

[6] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications. Kluwer Academic

Publishers, 2000.

[7] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer Academic Publishers, 1999.

[8] P. Sweeney, Error Control Coding: An Introduction. Prentice Hall, 1991.

[9] S. Benedetto and G. Montorsi, “Unveiling turbo-codes: Some results on parallel con-

catenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409–428, 1996.

100

Bibliography 101

[10] G. D. Forney Jr., Concatenated Codes. Cambridge, MA: MIT Press, 1966.

[11] Standards for CDMA2000 Spread Spectrum Systems, EIA/TIA IS-2000.1-6.

[12] 3rd Generation Partnership Project; Technical Specification Group Radio Access Net-

work; Multiplexing and channel coding (FDD), 3GPP TS 25.212 V3.4.0 (2000-09).

[13] M. Eroz and A. R. Hammons Jr., “On the design of prunable interleavers for turbo

codes,” in Proc. VTC ’99, Houston, TX, May 16–19, 1999.

[14] L. Lee, M. Eroz, A. R. Hammons Jr., K. Karimullah, and F. W. Sun, “Third generation

mobile telephone systems and turbo codes,” in Proc. 3rd Int. Symp. Multi-Dimensional

Mobile Communications, Melno Park, CA, Sept. 21–22, 1998, invited paper.

[15] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–287,

Mar. 1974.

[16] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a

posteriori algorithms suitable for turbo decoding,” European Trans. Telecomm., vol. 8,

no. 2, Mar.–Apr. 1997.

[17] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268–278, Mar. 1973.

[18] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convo-

lutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, Mar. 1996.

[19] J. Hagenauer, “Source-controlled channel coding,” IEEE Trans. Commun., vol. 43,

no. 9, pp. 2449–2457, Sept. 1995.

[20] F. Berens, A. Worm, H. Michel, and N. Wehn, “Implementation aspects of turbo-

decoders for future radio applications,” in Proc. IEEE Vihec. Tech. Conf. ’99, vol. 5,

Sept. 1999, pp. 2601–2605.

[21] P. Robertson, “Illuminating the structure of code and decoder of parallel concatenated

recursive systematic (turbo) codes,” in Proc. Globecom ’94, Dec. 1994, pp. 1298–1303.

102 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

[22] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft decision outputs and its

applications,” in Proc. Globecom ’89, Nov. 1989, pp. 1680–1686.

[23] P. Jung, “Comparison of turbo-code decoders applied to short frame transmission

systems,” IEEE J. Select. Areas Commun., vol. 14, no. 3, pp. 530–537, Apr. 1996.

[24] J. Sacha and M. Erwin, “The logarithmic number system for strength reduction in

adaptive filtering,” in Proc. ISLPED ’98, Monterey, CA, Aug. 1998, pp. 256–261.

[25] H. Dawid, “Algorithmen und Schaltungsarchitekturen zur Maximum a Posteriori Fal-

tungsdecodeierung,” PhD thesis, RWTH Aachen, Shaker Verlag, Aachen, Germany,

1996.

[26] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low power CMOS digital

design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484, Apr. 1992.

[27] J. Kaza and C. Chakrabarti, “Design and implementation of low-energy turbo de-

coders,” IEEE Trans. VLSI Syst., vol. 12, no. 9, pp. 968–977, Sept. 2004.

[28] Y. Tong, T.-H. Yeap, and J.-Y. Chouinard, “VHDL implementation of a turbo decoder

with Log-MAP-based iterative decoding,” IEEE Trans. Instrum. Meas., vol. 53, no. 4,

pp. 1268–1278, Aug. 2004.

[29] V. C. Gaudet and P. G. Gulak, “A 13.3-Mb/s 0.35-µm CMOS analog turbo decoder

IC with a configurable interleaver,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp.

2010–2015, Nov. 2003.

[30] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4

LogMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in ISSCC 2003 Dig. Tech.

Papers, vol. 1, 2003, pp. 150–151.

[31] 3rd Generation Partnership Project; Technical Specification Group Radio Access Net-

work; UTRA High Speed Downlink Packet Access, 3GPP TR 25.950 V4.0.0 (2001-03).

[32] A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo decoders,” JPL

TMO Progress Report 42-142, Aug. 15, 2000.

Bibliography 103

[33] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed decoding schemes for

turbo decoders,” IEEE Trans. VLSI Syst., vol. 10, no. 6, pp. 902–912, Dec. 2002.

[34] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, L. M.

Davis, G. Woodward, C. Nicol, and R.-H. Yan, “A unified turbo/Viterbi channel

decoder for 3GPP mobile wireless in 0.18-µm CMOS,” IEEE J. Solid-State Circuits,

vol. 37, no. 11, pp. 1555–1564, Nov. 2002.

[35] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural

strategies for low-power VLSI turbo decoders,” IEEE Trans. VLSI Syst., vol. 10,

no. 3, pp. 279–285, June 2002.

[36] X.-J. Zeng and Z.-L. Hong, “Design and implementation of a turbo decoder for 3G

W-CDMA systems,” IEEE Trans. Consumer Electron., vol. 48, no. 2, pp. 284–291,

May 2002.

[37] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of MAP turbo

decoder algorithms,” IEEE Trans. VLSI Syst., vol. 9, no. 2, pp. 305–312, Apr. 2001.

[38] Y. Wang, C. Y. Tsui, and R. S. Cheng, “A low power VLSI architecture of SOVA-

based turbo-code decoder using scarce state transition scheme,” in Proc. ISCAS 2000,

vol. 1, Geneva, Switzerland, 2000, pp. 283–286.

[39] S. Hong, J. Yi, and W. E. Stark, “VLSI design and implementation of low-complexity

adaptive turbo-code encoder and decoder for wireless mobile communication applica-

tions,” in Proc. SiPS ’98, 1998, pp. 233–242.

[40] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of turbo decoder

design for wireless applications,” in Proc. SiPS ’99, 1999, pp. 503–512.

[41] ——, “A K=3, 2Mbps low power turbo decoder for 3rd generation W-CDMA sys-

tems,” in Proc. CICC 2000, May 2000, pp. 39–42.

[42] M. Bekooij, J. Dielissen, F. Harmsze, S. Sawitzki, J. Huisken, A. van der Werf, and

J. van Meerbergen, “Power-efficient application-specific VLIW processor for turbo

decoding,” in ISSCC 2001 Dig. Tech. Papers, 2001, pp. 180–181.

104 Energy-Efficient Turbo Decoder for 3G Wireless Terminals

[43] PCE03 3GPP Turbo Encoder, Version 0.3, Small World Communications, Australia,

Dec. 19, 2000.

[44] PCD03 3GPP Turbo Decoder, Version 0.4, Small World Communications, Australia,

Mar. 1, 2001.

[45] Technical Description of Turbo Product Codes, Version 4.0, Efficient Channel Coding,

Inc., OH, USA, June 1999.

[46] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two simple stopping criteria for turbo

decoding,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117–1120, Aug. 1999.

[47] K. R. Narayanan and G. L. Stüber, “A novel ARQ technique using the turbo coding

principle,” IEEE Commun. Lett., vol. 1, no. 2, pp. 49–51, Mar. 1997.

[48] F. Gilbert, A. Worm, and N. Wehn, “Low power implementation of a turbo-decoder

on programmable architectures,” in Proc. DAC 2001, Asia and South Pacific, Jan. 30

– Feb. 2, 2001, pp. 400–403.

[49] O. Y.-H. Leung, C.-Y. Tsui, and R. S.-K. Cheng, “Reducing power consumption

of turbo-code decoder using adaptive iteration with variable supply voltage,” IEEE

Trans. VLSI Syst., vol. 9, no. 1, pp. 34–41, Feb. 2001.

[50] A. Worm, P. Hoeher, and N. When, “Turbo-decoding without SNR estimation,” IEEE

Commun. Lett., vol. 4, no. 6, pp. 193–195, June 2000.

[51] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact

on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 468–473,

Aug. 1984.

[52] N. Weste and K. Eshragian, Principles of CMOS VLSI design: A systems perspective.

MA: Addison-Wesley, 1988.

[53] R. K. Watts, Ed., Submicron integrated circuits. NY: John Wiley & Sons, 1989.

[54] S. S. Pietrobon, “Implementation and performance of a TURBO/MAP decoder,” Int.

J. Satell. Commun., 1998.

Bibliography 105

[55] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft-output decoding algo-

rithms in iterative decoding of turbo codes,” JPL TDA Progress Report 42-124, Feb.

1996.

[56] (2005) The CMC homepage on the Rapid Prototyping Platform. [Online]. Available:

http://cmc.ca/prod serv/des fab test/design/rapid prototyping system.html

Publications

[1] I. A. Al-Mohandes and M. I. Elmasry, “Iteration reduction of turbo decoders using an

efficient stopping/cancellation technique,” in Proc. ISCAS 2002, May 2002, Scottsdale,

AZ, vol. 1, pp. 609–612.

[2] I. A. Al-Mohandes and M. I. Elmasry, “A new efficient dynamic-iterative technique for

turbo decoders,” in Proc. MWSCAS 2002, Aug. 2002, Tulsa, OK, vol. 3, pp. 180–183.

[3] I. A. Al-Mohandes and M. I. Elmasry, “Design of an energy-efficient turbo decoder for

3rd generation wireless applications,” in Proc. ICM 2003, Dec. 2003, Cairo, Egypt, pp.

127–130.

[4] I. A. Al-Mohandes and M. I. Elmasry, “A low-power 5 Mb/s turbo decoder for third-

generation wireless terminals,” in Proc. CCECE 2004, May 2004, Niagara Falls, ON, vol.

4, pp. 2387–2390.

[5] I. A. Al-Mohandes and M. I. Elmasry, “Low-energy design of a 3G-compliant turbo

decoder,” in Proc. NEWCAS 2004, June 2004, Montreal, QC, pp. 153–156.

[6] I. A. Al-Mohandes and M. I. Elmasry, “An energy-efficient turbo decoder design for 3G

wireless systems,” IEEE Trans. VLSI Syst., submitted for publication.

106

