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Abstract

The efficiency of compiling high-level quantum algorithms into instruction sets native
to quantum computers defines the moment in the future when we will be able to solve
interesting and important problems on quantum computers. In my work I focus on the
new methods for compiling single qubit operations that appear in many quantum algo-
rithms into single qubit operations natively supported by several popular architectures.
In addition, I study several questions related to synthesis and optimization of multiqubit
operations.

When studying the single qubit case, I consider two native instruction sets. The first
one is Clifford+T; it is supported by conventional quantum computers implementing fault
tolerance protocols based on concatenated and surface codes, and by topological quantum
computers based on Ising anyons. The second instruction set is the one supported by
topological quantum computers based on Fibonacci anyons. I show that in both cases one
can use the number theoretic structure of the problem and methods of computational alge-
braic number theory to achieve improvements over the previous state of the art by factors
ranging from 10 to 1000 for instances of the problem interesting in practice. This order of
improvement might make certain interesting quantum computations possible several years
earlier.

The work related to multiqubit operations is on exact synthesis and optimization of
Clifford+T and Clifford circuits. I show an exact synthesis algorithm for unitaries gen-
erated by Clifford+T circuits requiring exponentially less number of gates than previous
state of the art. For Clifford circuits two directions are studied: the algorithm for finding
optimal circuits acting on a small number of qubits and heuristics for larger circuits opti-
mization. The techniques developed allows one to reduce the size of encoding and decoding
circuits for quantum error correcting codes by 40-50% and also finds their applications in
randomized benchmarking protocols.
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Chapter 1

Introduction

Quantum computing is a computing paradigm harnessing the inherent complexity of phys-
ical systems described by the laws of Quantum Mechanics. The number of variables needed
to describe the results of experiments involving such physical systems scales exponentially
with the number of subsystems. There are examples of interesting and important prob-
lems that can be solved asymptotically more efficiently on a quantum computer than on a
classical one.

A quantum compiler is a program or a set of programs for a classical computer that
addresses the following problem: given a high level description of a quantum algorithm (the
procedure for solving a certain problem on a quantum computer) find a way to execute it on
a specific quantum system. For the algorithm to be executed on a specific quantum system,
the quantum compiler must produce a description of a procedure that is executed by a
classical hardware controlling the quantum system. In addition, the procedure should be
as efficient as possible. We use the term “quantum compiling” to denote a set of problems
arising when creating a quantum compiler.

Building a quantum computer is a hard problem and the resources available for quantum
computation will be very limited for a long period of time. It is important to harness as
much computational power as possible taking into account the limited number of qubits
(the limited size of a quantum computer’s registers and memory) and computation time
available. The efficiency of a quantum compiler is one of the factors that defines how
early in the future we will be able to benefit from having a quantum computer. Our goal
is to demonstrate different methods and ideas that lead to improvements in the amount
of resources needed by factors between two and thousands depending on the quantum
compiling problem type and size considered.



To describe the set of problems we are solving and identify resources we are minimizing
we examine typical examples of quantum computer architectures. The design of modern
quantum computer architectures is directly related to the main challenges of building a
quantum computer. To show the context in which quantum compiling problems appear
we consider examples of interesting quantum algorithms, and a protocol useful for bench-
marking a quantum computer.

1.1 Quantum computer architectures

One of the main challenges on the way of building a quantum computer is a precise and
accurate control of quantum systems. On one hand, a quantum system used for a compu-
tation must be isolated from the environment to be protected from noise. On the other
hand, interactions with some external physical system are needed for the system’s control.
Naively one may assume that solving bigger instances of problems on a quantum computer
requires more accurate control of a quantum system used for the computation, and that
progress in the field of quantum computing will always be limited by this factor. Indeed,
larger instances of the problem require more elementary operations and the overall im-
precision of the computation is estimated as a sum of imprecisions of elementary steps.
Fortunately, it is possible to overcome this issue either by running a fault-tolerance pro-
tocol, or by using quantum systems with topological degrees of freedom. Next we look at
the examples of quantum computer architectures dictated by both solutions to the issue.

1.1.1 Quantum computer running fault-tolerance protocol

Quantum Threshold Theorems are one of the important steps towards practical quantum
computing [65, 3]. The main implication of the theorems is that if one can achieve a
level of accuracy above a certain threshold (or, in other words, error rate below a cer-
tain value), then arbitrary precision quantum computation can be performed with only
poly-logarithmic overhead. These result are based on using the theory of Quantum Error
Correcting Codes. Recently it was shown that the same could be achieved with only a
constant overhead using certain families of codes [30, 33]. Usually the proof of a quan-
tum threshold theorem is constructive — it describes a way how to perform an arbitrary
precision computation given a quantum computer with some fixed error rate below the
threshold. In other words, the proof describes a fault-tolerance protocol.

The fault tolerance protocol describes a way to get the basic operations needed for
a quantum computation with a sufficiently high level of accuracy. It introduces redun-



dancy by encoding one logical qubit using several physical qubits and includes methods
for initializing logical qubits, performing gates and getting measurement results with much
lower noise levels. Measurement and state preparation in this case are usually limited to
measurement in the computational basis and preparation of |0) state. The set of gates
that can be executed fault-tolerantly is limited to a discrete set; the Clifford+T gate set
is one of the most common gate sets provided by fault tolerant protocols. An example of
a quantum computer architecture running fault tolerance protocol is shown on Figure 1.1;
more details on this architecture can be found at [40].

[ Quantum algorithm ]

Circuit
optimization

7

Clifford+T gates, logical qubits, logical measurements
4
[ Fault-Tolerance protocol ]

Sinle qubit
circuit
synthesis

Physical qubits, one and two qubit gates, measurements
4
[Hardware: physical qubits and control operations]

Figure 1.1: Simplified layered architecture of a quantum computer running fault-tolerance
protocol. White rectangles show functionalities provided by lower levels to upper levels.
White circles show quantum compiling problems that must be solved to execute quantum
algorithm using services provided by lower levels.

The Pauli and Clifford groups are crucial in the theory of Quantum Error Correction
and Fault Tolerance. In addition, unitaries from these groups are usually easy to implement
fault-tolerantly. We discuss this in more detail after the definitions of the Pauli and Clifford
groups.



The single qubit Pauli group is generated by:

(01 (1 0 ior [ €9 0
e (002 (50 ) (0.

Any element of the single qubit Pauli group can be written as e*X*(V7Z2) where b(j) are
zero or one. For example, the Pauli matrix Y is equal to iXZ. The Pauli group acting on
n qubits is the group of the following tensor products

X7 @ XPE) 760 o @ XPErmD 7 - for b(5) € {0,1}, ¢ € [0, 27)
equivalently it is a group generated by all possible global phase operators €/*I, and the
Pauli matrices X and Z acting on k-th qubit for k =1,...,n.

The Clifford group on n qubits is a group of unitaries that maps elements of the n qubit
Pauli group to themselves by conjugation. Equivalently this is a group generated by the
Hadamard(H), Controlled-NOT(CNOT), Phase(P) gates and ¢*I where

() (1)

The Controlled-NOT with a control on the first qubit and target on the second qubit is
represented by the unitary matrix:

1000
0100 147 -7

NOTwz=19 9 0 1 :%(8”(—2)@)(
0010

Similarly one can define CNOT)}, ; with control on k-th qubit and target on j-th qubit.

Definition 1.1.1. The Clifford gate set on n qubits is the set of Hadamard, Phase and
single qubit Pauli gates acting on each qubit together with CNOTy, ; for k,j from 1,....,n
and k # 7.

The details of logical Clifford gate implementations depend on the quantum error cor-
recting code used in the fault-tolerance protocol. The most simple situation is when most
of the Clifford gates can be implemented transversally (see Figure 1.2). The procedures
for implementing Clifford gates when using the surface code are also relatively simple [23].

A quantum computer that supports only initialization of its registers to the states of
computational basis, Clifford gates and measurements can be simulated classically due to

4
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Figure 1.2: Example of transversal implementation of a logical CNOT gate. Qubits 1-3
encode the first logical qubit and qubits 4-6 the second.

the Gottesman-Knill theorem[60]. In other words, the mentioned set of operations is not
universal for quantum computation. This issue is solved by adding one gate that is outside
of the Clifford group to the gate set. The most common single qubit gate used for this

purpose is a T gate:
1 0 ;
T:=  Cg =4,
( 0 C8 ) CS

We discuss the question of gate set universality in more details in Section 2.

Definition 1.1.2. The Clifford+T gate set on n qubits is the set of T gates acting on each
qubit together with the gates from Clifford gate set on n qubits.

In many common fault-tolerance protocols, such as those based on a surface code, the T
gate can only be implemented using magic state distillation [23]. The distillation protocol
requires the use of extra qubits, includes measurement, state preparations and requires
much longer time to be executed in comparison to the time needed for Clifford gates. For
this reason the aim of many methods described in this work is to minimize the number of
T gates. To be concise we call the number of T gates used for a certain task the T-count.

In summary, we consider a quantum computer running fault-tolerance protocol that
supports initialization of its registers to a |0) state, gates from a Clifford+T gate set and
measurements of qubits in a computational basis. The cost of running the algorithm on
such a computer is dominated by the number of T gates used to run the algorithm. This
cost model is very rough. For example, it does not take into account the geometry of the
quantum computer. However, it serves as a good first order approximation for estimating
resources needed to run quantum algorithms.



1.1.2 Topological Quantum Computer

The advantage of a topological quantum computer is that many or all gates can be made
fault-tolerant by hardware design; however designing this type of computer is an even
harder problem and is currently much less developed than the approach to a quantum
computing based on using fault-tolerance protocols.

Non-Abelian anyons are quasi particles used for topological quantum computation.
The name “anyon” related to the fact that they have different exchange statistics from
Bosons and Fermions. When two anyons are exchanged their wave function can pick up
an arbitrary phase in contrast to no extra phase for bosons and minus one for fermions.
This interesting property is due to the fact that anyons are quasi particles that exist only
in two-dimensional physical systems. If one particle is moved around the other in three
dimensions its trajectory is topologically equivalent to a point — it can be continuously
transformed

Topological quantum computation is performed by moving anyons around each other.
The resulting transformation of the particles” wave function implemented by such move-
ments depends only on the topological properties of particles’ trajectories. Dependence
of the transformation only on the topological properties is crucial for achieving fault tol-
erance. The result does not depend on small perturbations in the particles trajectories.
More details on the topic can be found in [64].

Braids and the braid group are mathematical objects describing topological properties
of anyons’ trajectories. Here we discuss them informally, but on a level sufficient for this
work. To describe a braid on n strands let us fix n distinct point on the plain. Now
consider a continuous motion of n particles starting from the mentioned n points and
ending at the same n points. The particle that started at some point can end up at any
other point. Two braids are equivalent if the world lines of particles of one braid can be
continuously transformed into world lines of the particles of the other braid. Figure 1.3
shows an example of two equivalent braids on three strands. Two braids are composed by
stacking one on top of the other (see Figure 1.4).

Any n-strand braid can be represented using n—1 generating braids o, and their in-
verses. Braid oy, involves only movement of the k'™ and (k+1)™ particles. In Figure 1.5 we
show braids generating all braids with three strands. This gives a way to represent braids
in abstractly using the braid group. The braid group on n strands is a group with n—1
generators o such that the following identities hold

{O‘kO'j =00k, |k —j] >2

OkOk+10k = Of4+10k0k41

6
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Figure 1.4: Composition of braids
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Figure 1.5: Generators of braids on three strands and their inverses. On the right near
each braid corresponding particles” moves are shown.

Any braid can be represented as a word in the braid group.

Fibonacci anyons are one of the simplest non-abelian anyons that can simulate an
arbitrary quantum computation [24]. They are predicted to exist in physical systems in a
fractional quantum Hall state, at filling fraction p = 12/5 [58]. The method for engineering
physical a system such that it is described by Fibonacci anyons was recently proposed in
[56]. Now we briefly describe how to simulate an arbitrary quantum algorithm using
Fibonacci anyons.

To define a qubit we use three Fibonacci anyons. In the Fibonacci model there are only
two types of particles. We denote them by 0 and 1. Zero corresponds to the vacuum and
1 corresponds to the actual excitation. The important part of any non-abelian Fibonacci
anyon model is fusion rules. It describes which type of particle we get if we consider a
composite system of two particles. When we consider a system of two fermions we get a
boson. For Fibonacci anyons the situation is more interesting and the fusion rule is

I1x1=0+1.

This means that if we consider a system of two 1 particles the type of resulting particle
can be either 0 or 1. When we combine 0 with 1 we always get 1. On Figure 1.6 we
show the states of three Fibonacci anyons corresponding to a computational basis. Grey
circles denote 1 particles. The black oval around first two particles and the number near it
shows the type of the first two particles combined. Determining the type of the system of
particles is a projective measurement. If we measured that the type of first two particles
is zero, than in all subsequent measurements we will find that their type is also zero.

Single qubit operations are performed by moving the three anyons around each other.
Any possible way to move them corresponds to a braid that completely defines the single
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Figure 1.6: Encoding a qubit using three Fibonacci anyons

unitary being applied. To find a unitary corresponding to any braid it is sufficient to know
unitaries for generators o; and oy of the three strand braid group. We use o1, 05 to denote
the corresponding unitaries

1 0 ir
o1 = CIGO ( 0 <-170 ) 7C10 =e€ /5- (1].)

It is convenient to express oy using a Fusion matrix F', which is one of the parameters
defining the Fibonacci anyon model:

F= ( \;F \_/z ) L0y = Fo, F. (1.2)

We will see later that any single qubit unitary can be approximated by unitaries o; and
0y within an arbitrary precision.

Note that the Hilbert space of three Fibonacci anyons has three dimensions. When
we are interested in single qubit operations, we ignore the subspace spanned by |nc) (see
Figure 1.6). Both oy, 04 leaves this subspace and the subspace spanned by |0), |1) invariant.
The Hilbert space corresponding to n anyons has the number of dimensions equal to the
(n+1)" Fibonacci number. Therefore when we want to simulate a two qubit operations we
deal with a four dimensional subspace (computational subspace) of the thirteen dimensional
Hilbert space. Some of the unitaries corresponding to braid group generators take us
outside of computational Hilbert space. This phenomena is called leakage. Any operator
on the computational subspace can be approximated within arbitrary precision using anyon
braiding [64]. This implies that leakage can always be made arbitrary small.

In summary, in a topological quantum computer based on Fibonacci anyons each qubit
is encoded using three anyons and unitaries are performed by moving anyons around each



o— QFTT —

—— U jU? HU¥ B U YV—r=

Figure 1.7: Quantum circuit for the phase estimation algorithm [60].

other. The natural way to define the cost function for a unitary implementation is the
number of anyons’ moves needed to implement it. In this work we are going to look at
methods for finding asymptotically optimal implementation of single qubit unitaries.

1.2 Examples of tasks performed on a quantum com-
puter

1.2.1 Integer factoring

Shor’s integer factoring algorithm [60, 69] is the one of the most widely known algorithms
for quantum computers. Here we review the main building blocks of its part that must
be executed on a quantum computer (an order finding algorithm). We also discuss which
elementary gates are needed to implemented it and what are the challenges of mapping
the algorithm on one of the quantum computer’s architectures presented above.

The circuit for a quantum part of the Shor’s algorithm (see Figure 1.7) preforms phase
estimation procedure with . .
U? y) = [#*'y mod N)

where N is a number being factored by the algorithm and z is a number for which we are
looking for the minimal natural number m such that 2™ = 1(mod N). The first part of
the circuit involving Controlled-U 2" corresponds to a modular exponentiation. This part
can be performed by a circuit consisting of O(n?) Toffoli, CNOT and X gates for n being a
number of bits needed to represent N[44]. The Toffoli gate is a three qubit gate with two

10
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Figure 1.8: Quantum circuit for Quantum Fourier Transform [60] (up to inputs-outputs
reordering). The circuit’s building blocks are Hadamard and Controlled-R), gates, where

1 0
Ry = ( 0 e2mi/2" )

control qubits and one target qubit. Its action on computational basis states is defined by
the following relation

TOF |Cl, Cg,t> == |Cl, Co, (t D (Cl VAN CQ)))

where ¢y, co are control qubits and ¢ is a target qubit.

0) DD Il DD
10 4Ry | = & D
&) —

Figure 1.9: A circuit for Controlled-Ry, [43]. Groups of three Toffoli gates implement
Controlled-SWAP gate. First qubit from the top is an ancillary qubit, the second is a
target and the third is a control qubit.

The second part of the circuit on Figure 1.7 is the inverse of Quantum Fourier Transform

(QFT). The more detailed circuit for QFT is shown on Figure 1.8. It consists of Hadamard
and Controlled- Ry gates where
1 0
Ry, = ( 0 e2mi/2" ) .

Note, that Controlled-R; can be implemented using Toffoli gates and Rj gates using the
circuit on Figure 1.9. In summary, to execute integer factoring on a quantum computer

11



with a certain architecture we need to know how to execute Toffoli, CNOT , X, Hadamard
and Ry,

A quantum computer running fault tolerance protocol described in Section 1.1.1 sup-
ports Clifford4+T gates. In particular, CNOT ,X and Hadamard gates are natively sup-
ported by it and are very cheap to implement. Toffoli gate requires seven T gates without
using ancillary qubits and measurements [28] and can be implemented using four T gates
otherwise [39]. Unitaries Ry cannot be expressed exactly using Clifford+T gates when k
is greater than three and must be approximated. Finding approximations with an opti-
mal T-count is one of the questions studied in this work. Its detailed discussion starts in
Chapter 2 and is further developed in Chapters 3,4, and 5.

When using a topological quantum computer based on Fibonacci anyons none of the
gates mentioned above can be implemented exactly. In this work we focus on approximation
of single qubit gates including X, Hadamard and Rj. In Chapter 2 we discuss our approach
to the problem and its relevance to compiling multi qubit gates. The approach is further
developed and evaluated in Chapter 6.

1.2.2 Chemistry simulation

One example of the Quantum Chemistry problem that can be solved efficiently on a quan-
tum computer, and in many cases interesting in practice, is finding the energy of a molecule
in a certain state [42]. We focus on the part of the problem related to the electronic struc-
ture of the molecule. In other words, we assume that the Born-Oppenheimer approximation
is used. We briefly discuss the approach to the problem using Second Quantization. We
also highlight quantum compiling challenges when using this approach.

To find a contribution to the molecule energy from electrons we need to encode their
state into the qubits of a quantum computer and then measure the observable we are
interested in — the part of the molecule’s Hamiltonian corresponding to the electrons. The
second part is achieved using the Phase Estimation procedure (Figure 1.7) with unitary U
corresponding to the time evolution of the Hamiltonian. When the Second Quantization
is used for a molecule with M spin-orbitals the Hamiltonian is obtained using the Jordan-
Wigner transformation [61] and contains N = O(M?*) terms Hy [42]. To perform the
evolution according to the Hamiltonian the Trotter-Suzuki formula

et Xk Hi oy (e—iHlét . e—z'HNat)t/&

is used. It allows one to reduce the evolution to a series of evolutions according to each
term of the Hamiltonian separately. Each unitary e*%* can be implemented using at most
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O(M?) gates [61] including CNOT and Controlled-R,(¢), where

ip)2
Rz((b) = < 60 e—9¢/2 > :

Examples of circuits and resource estimates for the case when the water molecule is con-
sidered can be found in [71].

In summary, quantum compiling challenges for problems related to quantum chemistry
are similar to integer factoring. The difference is that in chemistry simulation algorithms
single qubit rotations are used much more frequently. Therefore the amount of overall
resources required is more sensitive to the optimality of single qubit rotations’ implemen-
tation. Problems related to quantum chemistry require less qubits to achieve interesting
results, in comparison to integer factoring. This implies that methods for efficient compil-
ing of single qubit operations will be especially important at the time when first (small)
fault-tolerant quantum computers are built.

1.2.3 Randomized benchmarking

Another interesting and important question related to building a quantum computer is:
“How to evaluate them, once we built one?”. Randomized benchmarking protocols is one
of the solutions to the problem. They are already used today to evaluate the quantum
information processors (experimental implementations of physical systems having several
qubits)[25, 17, 67]. One of the main advantages of randomized benchmarking protocols
over the other approaches (such as, for example, Quantum Process Tomography [12]) is
their scalability. We briefly describe a randomized benchmarking protocol (following [53])
and show how its implementation can benefit from the access to optimal Clifford circuits.

The randomized benchmarking protocol consists of a series of experiments. In each
experiment, first the sequence C', ..., Cy of Clifford unitaries chosen uniformly at random
is applied and then unitary (C-...-Cy)T is applied, so the overall transformation is identity
in the ideal (noise free) case. After this transformation, the overlap between original and
final state is measured. By averaging over different choices of random sequences C', . .., Cl,
the average fidelity Fyy is obtained. Next, the sequence Fly is fit to the model which allows
one to find an average error rate of Clifford unitaries. To execute a random Clifford unitary
one decomposes it into a sequence of Clifford gates. For example, into CNOT , Hadamard,
Phase and single qubit Pauli gates. The efficiency of the decomposition defines the time
needed for randomized benchmarking experiments. In Chapter 8 we discuss methods for
finding optimal or close to optimal decompositions of Clifford group unitaries acting on up
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to five qubits. We also discuss a heuristic that uses a database of optimal Clifford unitaries
to optimize larger circuits.
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Chapter 2

Approximate synthesis

In the previous Chapter we provided examples showing that many operations used in
quantum algorithms cannot be expressed exactly using the operations supported by the
discussed architectures of quantum computers. However, both architectures provide capa-
bilities for universal quantum computation. The Clifford+T gate set and the Fibonacci
gate set (the gate set supported by a topological quantum computer based on Fibonacci
anyons) are approzimately universal. A gate set is called approzimately universal if for any
unitary and for any precision ¢ there exists a circuit over the gate set approximating the
unitary within precision €. The corresponding problem in quantum compiling is a problem
of finding a circuit that implements a given unitary within the required precision. We call
it an approximate synthesis problem. In this chapter we review known approaches to the
problem and propose a new approach to solving it. The new approach is developed and
evaluated in the next chapters.

The Solovay-Kitaev algorithm [44, 18] is a general solution to the approximate synthesis
problem for any approximately universal gate set. For approximation precision ¢, it outputs
the circuit of the size O(log®>%"(1/¢)) and can be executed on a classical computer using
O(log*>™(1/¢)) arithmetic operations [18]. Now we give a short description of the algorithm
to discuss the drawbacks of using it in practice.

Consider a special unitary U acting on a d dimensional Hilbert space. Let the set V be
a finite subset of SU(d) such that any element of SU(d) can be approximated by a product
of unitaries from V with arbitrary precision. The Solovay-Kitaev algorithm consists of two
stages. In the first stage one builds an e-net of SU(d) (a set such that for any element
of SU(d) there is an element of the set within distance e from it) using the products of
elements of V. In the second stage the balanced group commutator decomposition is used
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to achieve arbitrary quality of approximation using the e-net of fixed size. This stage is
recursive; here we provide an example when the algorithm is used with recursion depth one.
First an approximation Uy of U is found using the e-net and U is represented as UyA where
A is guaranteed to be within distance € from the identity. Next, unitary A is approximated
using a group commutator VW VIWT within precision ¢;6%/2. Finally one approximates
W,V using some elements Wy, Vj of e-net. As a result, the product UO%WOVJWJ (which
can be represented as a product of elements of V) approximates U with precision cye®/2.
In summary, with one recursive step the quality of approximation can be improved from
€ to c2e%/? using five times longer product of unitaries from V. This gives the scaling
O(log*%"(1/¢)) for the circuit size, because log(5)/log(3/2) ~ 3.97.

The actual constants hidden behind the big-O notation depend on the Solovay-Kitaev
algorithm implementation. The important factor is the accuracy of the ¢ net used. For
example, the use of a canonical form for single qubit Clifford+T circuits allowed authors
of [7] to improve the results of running the Solovay-Kitaev algorithm by several orders of
magnitude in comparison to the implementation by [18]. Using the e-net with average
quality of approximation 1073 instead of the e-net with average quality of approximation
107! allows one to achieve approximation quality 5-10~* by using around 150 T gates
instead of the order of 10° T gates. Similar improvements of the Solovay-Kitaev algorithm’s
implementation were reported in [49]. They were achieved by building a better e-net using
the ideas of Chapter 3. The other drawback of the Solovay-Kitaev algorithm is the big
jumps in the quality of the approximations it produces when using a different number of
recursion steps.

The related question is: what is the best quality of approximation that can be achieved
using the set of approximately universal unitaries )V when approximating elements of
SU(d)? The volume argument [50, 32] implies that for any e there always exists an element
of SU(d) that requires ©2(log(1/¢)) gates to be approximated. This suggest that the best
result one can hope for is to be able to approximate any element of SU(d) using O(log(1/¢))
elements of the set V. In [32] gate sets that allow one to achieve scaling O(log(1/¢)) are
called efficiently universal. In the next section we discuss the relation between efficiently
universal gate sets and the spectral gap problem. We will conclude that both Clifford+T
and Fibonacci gate sets are efficiently universal.

2.1 Efficient universality

It was shown in [32] that efficient universality follows from the spectral gap property of
the averaging operator over the set of unitaries V forming a finite approximately universal
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gate set. Later in [8, 9] it was shown that if matrices in V have entries that are algebraic
numbers (roots of a non-zero polynomial with rational coefficients) then the corresponding
averaging operator has a spectral gap property. For example, this is the case for Fibonacci
and Clifford +T gate sets. Now we briefly discuss why the spectral gap property implies
efficient universality.

The averaging operator is a Hermitian linear operator defined on functions from L?(SU(d))
(functions on SU(d) that are square integrable with respect to the Haar measure) as follows

(A) (g) = —

= 37 > (Vg + f(VTg).

Vey

The largest eigenvalue of the averaging operator is 1 and the corresponding eigensubspace
contains all constant functions in L?(SU(d)). Operator A has the spectral gap property
if the supremum over eigenvalues of A over the orthogonal complement of the constant
functions is less than 1. Let V" be the set of products of unitaries from V of length n.
Importantly, the spectral gap property implies that the average of function f over the
elements of V" and their inverses (which is equal to A™f) converges to the integral of
f with respect to the Haar measure exponentially fast. Now we show how this implies
efficient universality of V.

Suppose we want to approximate unitary U with precision €. Consider two closed balls
in SU(d). The first ball has radius €/2 and its center is at the identity. The second ball has
the same radius and its center is at UWT. If for some element W from V" the balls intersect
this implies that U can be approximated with precision £ by product of n unitaries from
V. The statement that the balls intersect can be written using the characteristic function
x of the first ball ( the function that is equal to zero everywhere outside the ball, and equal
to 1 inside it). The intersection of the balls being non-empty for some W is equivalent to
the following integral over Haar measure being positive

/ (mm 3 x(WU*g>+x<W*U*g>> dg

Wweyn

Note that the normalized sum (which is equal to A™x) in the integral converges to the
volume of the €/2-ball exponentially fast due to the spectral gap property. The volume of
the ball is proportional to e¥~!. Therefore to ensure that the integral above is positive
it is sufficient to choose n of the order log(1/¢). For more details on this see Theorem 1

in [32].

The other interesting corollary of the discussed results is related to a quite general
class of gate sets. Consider the gate set consisting of Clifford gates and any gate that a) is
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not in the Clifford group and b) has entries which are algebraic numbers. It is efficiently
universal. This follows from the fact that such a gate set is approximately universal [59].
This is, for example, the case for Clifford+Toffoli gate set.

One of the aims of this work is to develop a constructive method for finding approx-
imations that require O(log(1/e)) gates for single qubit Clifford+T and Fibonacci gate
sets. The results of Chapter 6 provide an alternative proof of the fact that the single qubit
Fibonacci gate set is efficiently universal. Similar result for the single qubit Clifford+T
gate set was shown in [68] and relies on results developed in Chapter 3. Next we review
approaches to approximate synthesis developed specifically for Clifford+T and Fibonacci
gate sets.

2.2 Approximate synthesis with Clifford+T

So far we have considered the problem of approximate synthesis in the setting when a
unitary operation acting on some number of qubits is approximated by a finite set of
unitaries acting on the same number of qubits. In this section we consider approximation
using a more general set of operations involving the use of ancillary qubits initialized to
a certain states (usually called resource states), measurements and classical feedback. We
review methods for solving an approximate synthesis problem in this more general setting.

Note that any multiqubit unitary can be expressed using CNOT gates and single qubit
unitaries [5, 2, 57]. We focus on the approximation of single qubit unitaries. Furthermore,
any single qubit unitary can be expressed as a product R.(a)HR.(B)HR.(vy), so it is
sufficient to solve the approximation problem for operators R, (¢). Also, as we have seen in
the previous Chapter, R,(¢) is one of the most frequently used single qubit unitaries when
constructing quantum algorithms. These are the reasons why all the methods reviewed
further in this section focus on operators R, (¢).

The method proposed in [44] requires O(log(1/¢)) ancillary qubits and the following
resource state to achieve precision 27"

1 2mij
n = —_— e 2n
|¢ ,1 > \/2_n ;:0:

To simulate R, (%) using the state |1, 1) it is sufficient to perform the circuit in Figure 2.1.
Unitary U, performs initialization of qubits 2,...,n + 1 to a binary representation of [

controlled on the first qubit, and the adder performs the following transformation

[0 17) = 1) [(I + j) mod 27)..
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2n + 1

Adder

Ul Ul

Figure 2.1: Simulating RZ(QQ’T,fl) using adder circuit and a resource state. First qubit is a

target, qubits 2,...,n + 1 are initialized to |0), qubits n 4+ 2,...,2n + 1 are initialized to
the Fourier state [1y,1).

Taking into account that |I) [1),1) is an eigenstate of the modular addition circuit with
eigenvalue eF we get the required result. A circuit for U; can be implemented using at
most n CNOT gates and the adder can be implemented using O(n) T gates and O(n)
ancillary qubits [20]. The interesting detail of this method is that resource state can
be reused to implement a series of rotations. Most of the complexity of this method is
“moved” into the resource state preparation. An efficient approach to preparation of the
state |¢,1) using O(nlog(n)) Toffoli gates is discussed in [36]. The next method takes the
idea of moving the cost of the approximation procedure into the state preparation stage
to a further extreme.

) € —‘ M,

L(10) + 1)) — O Rz((—=1)"9)[¢)

Figure 2.2: Circuit that applies R,(¢) or R,(—¢) probabilistically. The operator applied
is indicated by the measurement outcome M, .

In [41] authors propose the method based on the circuits with measurement and the
classical feedback to simulate R.(¢). The main building block of their circuit is shown
on Figure 2.2. The circuit performs either R,(¢), or R.(—¢) with probability 1/2. The
measurement, outcome indicates which of the two was the case. If undesirable rotation
R.(—¢) is performed, the correction by R.(2¢) is applied using the same circuit. Such a
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procedure requires a series of resource states \%(!0} +€2"?|1)). The analysis in the paper
shows that the procedure on average succeeds after a constant number of steps and each
of them requires only CNOT, measurement and classical feedback. This is an example
of the approach where all the complexity is moved into the state preparation phase. In
contrast to the method based on the adder, this one “consumes” resource states. The
circuit on Figure 2.2 is also studied in [21], but the main focus of the work is the protocol
for preparation of the required resource states. In particular, it is shown that the overall
cost of the protocol has a better scaling O(log" ™ (1/¢)) than the cost of the circuits obtained
using the Sololay-Kitaev algorithm.

0) 4 Ru(91) Ri(¢1)
0) 4 Ru(92) Ri(¢»)
) [ —iX]

Figure 2.3: Circuit implementing R,(¢) for ¢ ~ ¢2¢3/8 when ¢; and ¢, are small. The
operator R,(¢) is implemented when both measurement outcomes are 0. Otherwise the
circuit implements a unitary from the Clifford group.

The other interesting class of circuits similar to the circuit on Figure 2.2 is the repeat
until success circuits. Similar to the one on Figure 2.2, they perform the required operation
only with a certain probability of success. The success is also indicated by the measurement
outcome. The difference is that in the case of failure they apply a Clifford operation to
the input state which can be undone cheaply. Therefore such a circuit can be repeated
on the input state until it succeeds. In [72] the authors shows how to use this type
of circuit to make the cost of approximating single qubit rotations depend more on the
relative precision than on the absolute precision. Small relative precision of approximation
is common for quantum chemistry simulations [72]. Figure 2.3 shows the circuit that allows
one to implement unitary R,(¢) := HR,(¢)H for ¢ ~ ¢?¢2/8 when ¢; and ¢ are small.
The circuit allows one to implement the mantissa and the exponent part of ¢ separately.
The work [72] also contains an efficient way of constructing R, (¢) for very small values of
¢ to implement the exponent part R.(¢1). The circuit for the mantissa part R,(¢2) can
be found using any other method for approximating R, operators.

The authors of [62](the work that coined the name “repeat until success”) also use
repeat until success circuits to construct very cost efficient approximation of R, operators.
The average T-count required to implement R, rotation scales as 1.31log,(1/e) — 2.79 and
uses a fixed number of ancillary qubits. However the method relies on a brute force search
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and is limited to approximation precision € > 107%. This is better than using naive brute
force to find optimal approximations of R, with single qubit Clifford+T circuits. In the
latter case one is limited to precision € > 107*. The T-count of optimal single qubit
approximations scales as 3.067log,(1/¢) — 4.32. In Chapter 5 we develop a method that
allows one to find T-optimal single-qubit approximations with precision down to e = 1071°.

Some of the reviewed methods achieve the scaling O(log(1/¢)) of T-count or close to
it, by using measurements or resource states. However, they have disadvantages. For
example, the method based on an adder circuit requires O(log(1/¢)) ancillary qubits. This
might be a problem when the size of a quantum computer is limited. Methods relying on
resource states of the form |0) + €'**" |1) require an efficient procedure for the preparation
of the resource states. The method based on approximating R, (¢) with repeat until success
circuits is limited by computational resources available for a brute force search. Finally,
the constructive proof of the corollary from a spectral gap property for Clifford+T gate
set is interesting on its own. It could be a first step towards simplifying results in [8] or
providing a better intuition about them. A construction was discovered in [68] and is based
on results of Chapter 3. The author describes a probabilistic algorithm for finding a single
qubit Clifford+T circuits with T-count scaling 4log(1/¢) + C. The statement about the
algorithm runtime relies on a conjecture regarding the frequency of prime numbers of the
form 8n + 1. In Chapter 4 we describe an algorithm discovered before [68]. It uses extra
ancillary qubits and achieves T-count scaling O(log(1/¢)) to approximate R, (¢) operators.
The algorithm provably has probabilistic polynomial runtime. The result relies on the
efficient algorithm for solving the four squares Diophantine equation [66] and the Prime
Number Theorem. This was achieved using the new approach to approximating unitary
operators described later in this chapter.

2.3 Approximate synthesis with Fibonacci gate set

The methods described in the previous section are not applicable to the Fibonacci gate set
because they implicitly rely on the fact that X, CNOT, and Toffoli gates can be exactly
implemented. Finding a braid approximating CNOT gate is a separate challenge when
compiling for Fibonacci gate set. The straightforward approach to the problem is to use
the Solovay-Kitaev algorithm. Recall that we are using six Fibonacci anyons to simulate
two qubits and the corresponding computational subspace is embedded into the thirteen
dimensional Hilbert space of six anyons. To find an approximation of any two qubit gate
we will need to write down representations of the five generators of the six strand braid
group as unitaries acting on the thirteen dimensional Hilbert space. In theory, it is possible
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to apply the Solovay-Kitaev algorithm in this situation. In practice, it might be difficult
to build a large enough e-net to achieve reasonable circuit sizes. This is one of the reasons
why alternative methods were developed [35].

/
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Figure 2.4: Compiling two qubit gates for Fibonacci anyons using weaves. Reprinted from
[35].

At a high level, the idea developed in [35] is to reduce the problem of finding approxi-
mations of two qubit gates to a problem of finding approximations of a single qubit gates
using a special type of braids called weaves. A weave is a type of braid in which positions
of all particles except one are fixed and the remaining particle is moved around the other
particles. The top part of Figure 2.4 shows a three strand weave. Consider now four
particles. By moving two of them we can perform a controlled unitary operation. If the
topological charge of the two particles is zero, nothing happens. If the topological charge
is one, we perform some unitary transformation defined by weave. This implies that the
algorithm for finding efficient approximations of single qubit unitaries with braids leads to
an efficient algorithm for approximating two qubit unitaries. We do not consider synthesis
with weaves and the application of it to the multi qubit case in this work. In Chapter 6 we
develop techniques that allow one to approximate single qubit unitaries using generic braids
using O(log(1/¢)) generators of the braid group. The ideas discussed can be generalized
to weaves. The generalization is presented in the second version of [46].
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2.4 Number theoretic method

The main idea of the number theoretic method is to split the approximation procedure
into two stages (Figure 2.5). In the first stage we approximate an arbitrary unitary with
a unitary that can be exactly represented using the gate set we are working with. For
brevity we call exactly representable unitaries exact unitaries. In the second stage we find
a circuit for an exact unitary. Ideas and methods from number theory are used to describe
which unitaries are exact, to find circuits implementing exact unitaries and also to find
exact unitaries approximating arbitrary ones.

Unitary, precision &
v
[ Approximation algorithm ]
v
Exact Unitary
v
[Exact synthesis algorithmJ
_
Circuit

Figure 2.5: The generic scheme of the number theoretic method for approximating uni-
taries.

Rings of algebraic integers are used to describe the exact unitaries. Exact unitaries
corresponding to Clifford+T gate set are described using the ring

Z[(s] = {ao + a1Cs + azls + asCy | a; €Z,j=0,... ’3} (g = e/,

The following theorem characterizes single qubit exact unitaries over the Clifford+T gate
set.

Theorem 2.4.1. A single qubit unitary can be exactly represented using the Clifford+T
gate set if and only if it has the following form

€ —y*C§ ' y/ ro
U[I7y,]€] = y :C*Cg y L = 5 Y = ﬁn?x7y EZ[Cg],k,TlEZ.
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Note that elements of the form z'/v/2" are elements of the ring Z[i, 1/v/2] and alternatively
the theorem above can be stated as: “A single qubit unitary can be exactly represented
using Clifford+T gate set if and only if it its entries are from the ring Z[i, 1/v/2]”. Exact
unitaries corresponding to single qubit gates from the Fibonacci gate sets are described
using the ring

Z[Gro) := { a0 + arCio + a2lfy + a3y | a; € Z,j =0,...,3} (1o == e’/

Note that we need only four integers to describe elements of Z[(1o] because ¢, = —1 +
Cio — €& + (35 The characterization of exact unitaries is the following

Theorem 2.4.2. A single qubit unitary can be exactly represented using the Fibonacci gate
set if and only if it has the following form

VT 5-1
Viz,y, =(yj; y_ﬁ%{)),x,yezmo]m: f2 .

In particular, it is not difficult to see now that Pauli X gate cannot be implemented
exactly using the Fibonacci gate set. The proofs of both theorems about exact unitaries
are constructive. In Chapters 3,6 we provide efficient exact synthesis algorithms for finding
circuits corresponding to exact unitaries and prove their correctness.

Exact synthesis algorithms rely on the complexity measure defined for exact unitaries.
The complexity measure is a function of the unitary that indicates what circuit length is
needed to implement the given exact unitary. In the case of the Clifford+T gate set it is
related to the smallest denominator exponent(sde). The function sde is defined on numbers
of the form

(a +V/2b) /2" (2.1)

where a, b, m are integers. For a given number, the value of sde is equal to the smallest
non-negative m such that the number can be written in the form (2.1). We define the
complexity measure for exact unitaries over Clifford+T gate set as:

w(U[z,y, k]) := sde|z|. (2.2)

For the Fibonacci gate set the complexity measure is defined using an automorphism (-)®
of Z[(10]. The automorphism is defined as

(C10)® = ¢y, (a)® = a, for all a € Z.
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Input: U — exact unitary Input: U — exact unitary
1: procedure EXACT-SYNTHESIZE(U) 1: procedure EXACT-SYNTHESIZE(U)

2: g < u(U),C <« (empty circuit) 2: g < u(U),C « (empty circuit)

3: while g >3 do 3: while g >1 do

4: J < arg minje{17...78}u(HTjU) 4: J <+ argminjeqy 10}M(~7:TjU)

5: U« HTU, g + p(U) 5 U<+ FT'U,g + n(U)

6: Add HT8 to the beginning of C 6 Add FT'977 to the beginning of C

T end while 7 end while

8: Lookup circuit C,. for U 8 Find k, j such that U = ¢§,77

9: Add C, to the beginning of C' 9: Add ¢F,T7 to the beginning of C
10: end procedure 10: end procedure
Output: C — circuit over (H, T) Output: C — circuit over (F,T)

(a) Clifford+T gate set (b) Fibonacci gate set

Figure 2.6: Exact synthesis algorithms.

This is sufficient to compute the action of the automorphism on any element of Z[(s] because
it must respect the addition and multiplication operations. The complexity measure for
exact unitaries over the Fibonacci gate set is defined as:

p(V[w, v, k]) = (Jul?)*.

The larger the value of a complexity measure, the larger a circuit needs to be to implement
the given exact unitary.

In the main loop of the exact of synthesis algorithms (Figure 2.6) the complexity mea-
sure of the unitary is reduced on each iteration. This is achieved by multiplying the unitary
by matrices from a small set and choosing the one that reduces the complexity measure
the most. A part of the circuit implementing the unitary is recovered on each iteration.
The set of matrices that is used to reduce the complexity measure for the Clifford+T gate
set is HT*. For the Fibonacci gate set this set of matrices is F7* where

T:((l) C(I)O)’F:<\;F ﬁ)77‘:{120(01)3’]::&0010201

Our results on single qubit exact synthesis are summarized by the following theorems.

Theorem 2.4.3. Given exact unitary U the exact synthesis algorithm for the Clifford+T
gate set outputs an (H,T) circuit that implements U. The circuit size is in O(u(U)). The
algorithm requires O(u(U)) arithmetic operations.

25



Theorem 2.4.4. Given exact unitary U the exact synthesis algorithm for the Fibonacci
gate set outputs an (F,T) circuit that implements U. The circuit size is in O(log(u(U))).
The algorithm requires O(log(u(U))) arithmetic operations.

In Chapter 3 we prove a stronger result about the Clifford+T exact synthesis algorithm.
We slightly modify the algorithm to guarantee the optimality of circuits produced by it.
The result about the exact synthesis algorithm for the Fibonacci gate set is proved in
Chapter 6. It is important for the second stage of our method that we can estimate the
complexity of an exact unitary without running the exact synthesis algorithm.

In the second stage of the number theoretic method we need to approximate an arbitrary
unitary with an exact one. Consider an example of approximating R,(¢). To measure
quality of the approximation we use a global phase invariant distance

d(U,V) := /1 — |tr(UVT)] /2.

In the case of approximating R,(¢) the expression for the distance simplifies as follows:

URD), Ul o) = (1 [Relaeorzg ),

ARG, Ve k) = (1 [Re(uenrag™

We see that the quality of approximation depends only on the one entry of the unitary.
To approximate R.(¢) we first chose z to achieve required precision and next find y such
that Ulz,y, k] or V[x,y, k] is a unitary.

To reconstruct a unitary we use the theory of relative norm equations [14]. In the case
of the Clifford+T gate set we are dealing with the relative norm equation between Z|[(s]
and its real subring Z[v/2]. Suppose that 2 can be written in the form z’/v/2" for 2’ from
Z[Cs). We look for y in the form //+/2" for y from Z[(s]. To ensure that Ulz,y, k] is a

unitary the following must hold

ly|> = A+ BV2, for A+ BV2=2"— |z]>. (2.3)

The function absolute value squared is a relative norm between Z[(s] and Z[v/2]. The
equation above is called a relative norm equation. In the case of the Fibonacci gate set we
are dealing with the relative norm equation between Z[(1o] and its real subring Z[7]. The
relative norm equation that we need to solve in this case is

ly|> = A+ Br, for A+ Bt = (1—|z*)/T.
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Both relative norm equations are well studied in the literature. They are not solvable for
an arbitrary right hand side. This is one of the challenges that one needs to deal with when
reconstructing the unitaries. The other challenge is that solving relative norm equations
is as hard as factoring. There are several ways to overcome these challenges.

The first way presented in Chapter 4(for Clifford+T gate set) uses a constant number
of ancillary qubits. The use of ancillary qubits allows one to get more freedom while
attempting to reconstruct the unitary and relies on the exact synthesis algorithm for multi
qubit unitaries developed in [26] and improved in Chapter 7. In this case the reconstruction
problem is reduced to the four square Diophantine equation

P +E+dP=A

which always has a solution. Even more there is a probabilistic polynomial time algo-
rithm [66] for finding a solution.

The method for solving the Diophantine equation relies on interesting number theoretic
results. We can rewrite the four square equation as:

la+ib]* = A—c —d*

One case when the equation above is solvable is when the right hand side is a prime number
of the form 4n + 1. Furthermore it can be solved efficiently, taking time polynomial in the
number of bits of the right hand side. It turns out that if we choose ¢ and d at random
this happens quite frequently. This is related to the prime number density theorem, which
shows that there are approximately N/log(V) primes that are less than N. It implies that
we will need O(log(N)) trials before we succeed. We can also check that the right hand
side is a prime number using a primality test. This can be done in polynomial time. It is
interesting to note that the equation above can be considered as a norm equation for the
Gaussian integers Z[].

The second way proposed in [68] uses the idea similar to the one used to solve the four
square Diophantine equation. The author proposes a polynomial time algorithm which
solves equation (2.3) in the special case when A% — 2B? is a prime number of the form
8n—+1. The second part of his solution is the procedure that allows one to efficiently sample
entries = of Ulx,y,0] which give quality of approximation e. Each sample corresponds to
a different instance of the relative norm equation. Similar to the prime number theorem,
the author conjectures that the number of instances when A% — 2B? is a prime number
of the form 8n + 1 scales as O(N/log(N)) for N proportional to 1/e. He concludes that
an easy instance of the relative norm equation can be found after O(log(1/¢)) trials. This
results in the efficient algorithm for finding an approximation with single qubit Clifford+T
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circuits which requires no ancillary qubit. It saturates the lower bound 4log,(1/¢) + C on
the T-count required to achieve the quality of approximation € up to an additive constant.

At a high level, we use a similar approach to develop the algorithm for finding approx-
imations using the Fibonacci gate set (see Chapter 6). The number of gates in circuit pro-
duced by the algorithm to the achieve quality of approximation ¢ saturates an asymptotic
lower bound Q(log(1/¢)). The algorithm runtime is polynomial in O(log(1/¢)) (subject to
a conjecture similar to the one mentioned above). The results of Chapter 6 also provide
an alternative proof to the fact that the Fibonacci gate set is efficiently universal.

The third way of overcoming challenges related to the relative norm equations is to
rely on the computational power available. In Chapter 5 we find optimal approximations
using the Clifford+T gate set by enumerating all possible x that gives required quality of
approximation (starting from the best ones) and solve all instances of the relative norm
equation. The approach developed requires less resources than the naive brute force search
(the only approach known so far that can guarantee the optimality of approximations).
We were able to reach precision 107'° using computational resources available today.

The number theoretic methods allow us to significantly improve efficiency of approx-
imating single qubit operations. In the following Chapters we will develop the required
technical tools and perform more thorough evaluation of the method. For the Clifford+T
gate set the comparison to the method based on an adder circuit requires more detailed
analysis. The advantage of one method over the other might depend on the particular im-
plementation of the fault-tolerant protocol and architecture details. One such comparison
was recently performed in [38]. For the Fibonacci gate set the number theoretic method
gives an improvement by factors between 10 and 1000 for the range of precision 107° and
1073 over the Solovay-Kitaev algorithm which was the state of the art for this gate set.
Performance of different methods for approximating single qubit unitaries is summarized
in Table 2.1.
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Table 2.1: Comparison of different methods for single qubit unitary approximation. Num-
ber of gates, depth and classical runtime are non-deterministic for some of the methods.
In this case their average is reported in the table. For Clifford+T gate set the number of

gates reported in the table corresponds to the number of T gates.

Name and Number of gates Classical Number Resource Gate

Reference and depth runtime of ancillae state set

Solovay-Kitaev O(log®?"(1/¢)) O(log®™(1/¢)) 0 no any

[44, 18] O(log®?"(1/¢))

Brute force O(log(1/¢)) O((1/e)%) 0 no Clifford+T

[22] O(log(1/z))

Phase kickback O(log(1/¢)) O(log(1/¢)) (log(1/e)) yes Clifford+T

[44] O(loglog(1/¢)) [37]

PAR o(1) O(log(1/¢)) 0(1) yes Clifford+T

[41] o)

States ladder o(1) - 0(1) yes Clifford+T

[21] o)

[10] O(log*(1/¢)) O(log(1/¢)) 0 no Fibonacci
O(log?(1/¢))

[47], O(log(1/¢)) O(log® (1/¢)) 2 no Clifford+T

Chapter 4 O(log(1/€))

[68] 4log(1/e) + O(1) O(log®(1/e)) 0 no Clifford+T

4log(1/e) + O(1)

[48], ~ 3log(1/e)) + O(1) O(1/e) 0 no Clifford+T

Chapter 5 ~ 3log(1/e)) + O(1)

[66] 3log(1/¢e)) + O(1) O(log®(1/¢)) 0 no Clifford+T

3log(1/2)) + O(1)
[46], O(log(1/¢)) O(log®(1/e)) 0 no Fibonacci
Chapter 6 O(log(1/€))
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Chapter 3

Exact synthesis for the Clifford+4T
gate set

In this chapter we prove Theorem 2.4.1 and Theorem 2.4.3 related to the exact synthesis
of single qubit unitaries over the Clifford+T gate set. The theorems are corollaries of
a stronger result. We prove that the exact synthesis algorithm (Algorithm 1) produces
circuits with the minimal number of Hadamard and T gates over the single qubit Clifford+T
gate set G (the gate set consisting of Hadamard, T, TT, P, PT, and Pauli-X, Y, and Z gates).
We define integer-valued quantities h(U) and ¢(U) as the minimal number of Hadamard
and T gates over all circuits implementing U. We call a circuit H- or T-optimal if it contains
the minimal number of H or T gates, correspondingly. The following theorem also relates
h(U) and t(U) to the complexity measure p(U) (equation 2.2) introduced in Chapter 2.

Theorem 3.0.5. Let U be a 2 x 2 unitary over the ring Z[\%, i| with a matriz entry z such

that sde(|z|?) > 4. Algorithm 1 produces a circuit that implements U over G with:
1. the minimal number of Hadamard gates and h(U) = u(U) — 1, and

2. the minimal number of T gates and t(U) = p(U) — (I mod 2) — (j mod 2), where
and j are chosen such that h((HT'UT/H) = pu(U) + 1.

We also demonstrate how to use the exact-synthesis techniques to improve the imple-
mentation of the Solovay-Kitaev algorithm. They allow us to build a higher quality e-net.
To evaluate the improvement we compare our implementation of the Solovay-Kitaev algo-
rithm to the implementation by Dawson. Taking into account the progress achieved by
the number theoretic methods this improvement to the Solovay-Kitaev algorithm is more
of pedagogical value than of practical value.
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3.1 Reducing unitary implementation to state prepa-
ration

In this section we discuss the connection between state preparation and implementation of
a unitary by a quantum circuit. In the next section, we prove the following result:

Lemma 3.1.1. Any single-qubit state with entries in the ring Z[\%, i] can be prepared using
only H and T gates given the initial state |0).

We first establish why Lemma 3.1.1 implies that any single-qubit unitary with entries

in the ring Z[\%, i] can be implemented exactly using H and T gates.

Observe that any single-qubit unitary can be written in the form

ot it 1
z —w'e .

( w et ) ,Z,W E Z[E,z],k =0,1,...,7.
where * denotes the complex conjugate. The determinant of the unitary is equal to €'
and belongs to the ring Z[LQ, i] when all entries of the unitary belong to the ring Z[\/ii, il.

It turns out that the only elements in the ring with the absolute value of 1 are (¥ for
integer k. We postpone the proof; it follows from techniques developed in Section 3.4 and
discussed at the end of the appendix. For now, we conclude that the most general form of
a unitary with entries in the ring is:

Ulz,w, k] = ( - _lf*gg)

w2y

We next show how to find a circuit that implements any such unitary when we have a
circuit that prepares its first column given the state |0). Suppose we have a circuit that

prepares state < 5) ) . This means that the first column of a unitary corresponding to the
circuit is ( 5} ) and there exists an integer k' such that the unitary is equal to:

< —W*Cs/
w2 )

We can synthesize all possible unitaries with the first column (z, w)t by multiplying the
unitary above by a power of T from the right:

z —W*Cgl TR — [ 7 —w*(d
wo 2"(g w2k '
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Table 3.1: First four elements of sequence (HT)" |0)

Jwro=(2) ()

> e (7)) (1)
sl (770) e (1)
e () e (Ve )

This also shows that given a circuit for state preparation of length n we can always find a
circuit for unitary implementation of length n + O(1) and vice versa.

3.2 Sequence for state preparation

We start with an example that illustrates the main ideas needed to prove Lemma 3.1.1.
Next we formulate two results, Lemma 3.2.3 and Lemma 3.2.4, that the proof of Lemma
3.1.1 is based on. Afterwards, we describe the algorithm for decomposition of a unitary
with entries in the ring Z[\%, i] into a sequence of H and T gates. Finally, we prove Lemma
3.2.3. The proof of Lemma 3.2.4 is more involved and it is shown in Section 3.3.

Let us consider a sequence of states (HT)" |0). It is an infinite sequence, since in the
Bloch sphere picture unitary HT corresponds to rotation over an angle that is an irrational
fraction of . Table 3.1 shows the first four elements of the sequence.

There are two features in this example that are important. First is that the power
of V2 in the denominator of the entries is the same. We prove that the power of the
denominator is the same in the general case of a unit vector with entries in ring Z[\%, il.

The second feature is that the power of v/2 in the denominator of |z,|? increases by
1 after multiplication by HT. We show that in general, under additional assumptions,
multiplication by H (T ’“) cannot change the power of v/2 in the denominator by more than
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1. Importantly, under the same additional assumptions it is always possible to find such
an integer k that the power increases or decreases by 1.
We need to clarify what we mean by power of v/2 in the denominator, because, for
v .3
example, it is possible to write \% as %

in the denominator of a number from the ring Z[\%, i] is not well defined. To address this

As such, it may seem that the power of v/2

issue we consider the subring Z [(g] of ring Z[\%, i] and the smallest denominator exponent.
These definitions are also crucial for our proofs.

It is natural to extend the notion of divisibility to elements of Z [(g]: = divides y when
there exists 2’ from the ring Z [(s] such that zz’ = y. Using the divisibility relation we can
introduce the smallest denominator exponent and greatest dividing exponent.

Definition 3.2.1. The smallest denominator exponent, sde (z,x), of base x € Z [(s] with
respect to z € Z[\%, i| is the smallest integer value k such that za* € Z[(s]. If there is no
such k, the smallest denominator exponent is infinite.

For example, sde(1/4,v/2) = 4 and sde (2\/5, \/5) = —3. The smallest denominator
exponent of base v/2 is finite for all elements of the ring Z[\%, i]. The greatest dividing
exponent is closely connected to sde.

Definition 3.2.2. The greatest dividing exponent, gde (z, z), of base x € Z [(g] with respect
to z € 7 [(g] is the integer value k such that z* divides z and x does not divide the quotient
% If no such k exists, the greatest dividing exponent is said to be infinite.

For example, gde (z, (§') = oo, since (§ divides any element of Z [(g], and gde (0, x) = co.
For any non-zero base = € Z [(s], when gde and sde are finite they are related via a simple
formula:

z
sde (E,x> =k —gde(z,x). (3.1)
This follows from the definitions of sde and gde. First, the assumption gde (z,z) = ko
implies sde (ﬁ, x) > k — ko. Second, the assumption sde (fk, a:) = ko implies gde (z,x) >
k+ kq. Since both inequalities need to be satisfied simultaneously, this implies the equality.
Further in the text we use notation sde(.) and gde(.) for sde and gde of base /2.

We are now ready to introduce two results that describe the change of the sde as a
result of the application H (T)" to a state:

i - z-l—w{éC
HT ( w ) - Z_wgg .
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Lemma 3.2.3. Let ( 5} ) be a state with entries in Z[\%, i] and let sde (|z|2) > 4. Then,

for any integer k:

k
1 < sde ‘+_wés
NG

The next lemma states that for almost all unit vectors the difference in (3.2) achieves
all possible values, when the power of (g is chosen appropriately.

) — sde (]z\g) <1 (3.2)

Lemma 3.2.4. Let ( 5} ) be a state with entries in Z[\/Li, i| and let sde (]2\2) > 4. Then,
for each number s € {—1,0,1} there ezists an integer k € {0,1,2,3} such that:

me< 2)—&k04%=s.

These lemmas are essential for showing how to find a sequence of gates that prepares
a state with entries in the ring Z[\/ii, i] given the initial state |0). Now we sketch a proof
of Lemma 3.1.1. Later, in Lemma 3.2.6, we show that for arbitrary v and v from the ring

Z[\%,i] the equality |u|? + |v|?> = 1 implies sde(|u|?) = sde(|v|?), when sde (|u|*) > 1 and
sde (]v|2) > 1. Therefore, under the assumptions of Lemma 3.2.3, we may consider the sde

of a single entry in any given state. Lemma 3.2.4 implies that we can prepare any state

z+wek

V2

using H and T gates if we can prepare any state ( Z ) such that sde(|z[?) < 3. The set

of states with sde(|z]?) < 3 is finite and small. Therefore, we can exhaustively verify that
all such states can be prepared using H and T gates given the initial state |0). In fact, we
performed such verification using a breadth first search algorithm.

The statement of Lemma 3.2.4 remains true if we replace the set {0, 1,2, 3} by {0, —1, —2, —3}.
Lemma 3.2.4 results in Algorithm 1 for decomposition of a unitary matrix with entries in
the ring Z[\/Li,i] into a sequence of H and T gates. Its complexity is O (sde(|z|?)), where
z is an entry of the unitary. The idea behind the algorithm is as follows: given a 2 x 2
unitary U over the ring Z[\%, i] and sde > 4, there is a value of k in {0, 1,2, 3} such that
the multiplication by HT* reduces the sde by 1. Thus, after n — 4 steps, we have expressed

U=HTMH.. HTkU',

where any entry z’ of U’ has the property sde (|z’ |2) < 4. The number of such unitaries
is small enough to handle the decomposition of U’ via employing a breadth-first search
algorithm.
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We use 1y, (U) to define the smallest length of a circuit that implements U.

Corollary 3.2.5. Algorithm 1 produces circuit of length O(ng,(U)) and uses O(ngp,(U))
arithmetic operations. The number of bit operations it uses is O(ng,(U)).

Proof. Lemma 3.2.6, proved later in this section, implies that the value of sde (HQ) is the
same for all entries of U when the sde of at least one entry is greater than 0. For such

unitaries we define sde/” (U) = sde (|2’ |2), where 2’ is an entry of U. The remaining special

case is unitaries of the form
0 ¢k G 0
G 0)°\0 ¢/

We define sdel” to be 0 for all of them. Consider a set S, 3 of optimal H and T circuits

for unitaries with sde"'2 < 3. This is a finite set and therefore we can define N3 to be the
maximal number of gates in a circuit from S,y 3. If we have a circuit that is optimal and

its length is greater than N3, the corresponding unitary must have sdel!” > 4. Consider
now a unitary U with an optimal circuit of length n, (U) that is larger than N5. As it
is optimal, all its subsequences are optimal and it does not include H?. Let Ny 3 be the
maximum of the number of Hadamard gates used by the circuits in Spp 3. An optimal

MJ + N3 Hadamard gates and, by Lemma 3.2.3,

circuit for U includes at most { 5

sdel”” of the resulting unitary is less than or equal to Ny 3+ 3 + LMJ We conclude
that for all unitaries except a finite set:

sdel (U) < Ngs+3+ {MJ .

2
From the other side, the decomposition algorithm we described gives us the bound
ny (U) < N3+ 4-sdel” (V).
We conclude that n, (U) and sdel” (U) are asymptotically equivalent. Therefore the algo-
rithm’s runtime is O (n, (U)), because the algorithm performs sdel” (U) — 4 steps.

We note that to store U we need O (sde"|2 (U )) bits and therefore the addition on each

step of the algorithm requires O (sdeH2 (U )) bit operations. Therefore we use O(ngpt(U )
bit operations in total. O
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This proof illustrates the technique that we use in Section 3.5 to find a tighter connec-
tion between sde and the circuit implementation cost, in particular we prove that circuits
produced by the algorithm are H- and T-optimal.

Algorithm 1 Decomposition of a unitary matrix with entries in the ring Z[\%, il.

210 211 V2’ Z]'
S3 — table of all unitaries over the ring Z[\%,i], such that sde of their entries is less
than or equal to 3, Gy := H, G, := TH, G, := PH, G5 := ZT'H
Output: Sequence S,,; of H and T gates that implements U.
Sout — Empty
s < sde(|z0]?)
while s>3 do
state<—unfound
for all k£ € {0,1,2,3} do
while state = unfound do
2o  top left entry of HT*U
if sde (|z0|?) = s — 1 then
state = found
add G}, to the end of S,,;
s  sde (|2 ]?)
U+ HT*U
end if
end while
end for
end while
lookup sequence S, for U in S3
add S,en, to the end of S,
return S,

Input: Unitary U = ( 00 ~o1 > with entries in the ring Z[-=

We next prove Lemma 3.2.3. In Section 3.3 we use Lemma 3.2.3 to show that we can
prove Lemma 3.2.4 by considering a large, but finite, number of different cases. We provide
an algorithm (Algorithm 2) that verifies all these cases.

We now proceed to the proof of Lemma 3.2.3. We use equation (3.1) connecting sde
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and gde together with the following properties of gde. For any base z € Z [(s]:

gde (y + ¢/, x) > min (gde (y,2) , gde (¢, x)) (3.3)
gde (yz*,2) = k +gde (y,z) (base extraction) (3.4)
gde (y,x) < gde (v, ) = gde (y + ¢/, x) = gde (y,z) (absorption). (3.5)

It is also helpful to note that gde (y,x) is invariant with respect to multiplication by (g
and complex conjugation of both x and y.

All these properties follow directly from the definition of gde; the first three are briefly
discussed in Section 3.4. The condition gde (y,z) < gde (v, z) is necessary for the third
property. For example, gde (\/§ +2, \/5) # gde (\/5, \/5)

There are also important properties specific to base v/2. We use shorthand gde (+) for

gde (,\/5)

gde (z) = gde (|x|2 ,2) (3.6)
0 < gde (Jz[*) — 2gde (z) < 1

gde <Re (ﬁxy*)) > E (gde (|m|2) + gde (|y|2))J (3.8)
gde (|2|") = gde (Jy[*) = gde (v) = gde (y). (3.9)

Proofs of these properties are not difficult but tedious; furthermore, for completeness
they are included in Section 3.4. We exemplify them here. In the second property, in-
equality (3.7), when = = (g the left inequality becomes equality and for (s + 1 the right
one does. When we substitute z = (g, y = (s + 1 in the second to last property, inequality

(3.8), it turns into 0 = |1], so the floor function r — |r] is necessary. For the third
property it is important that Re (x/ﬁxy*) is an element of Z [(s] when z,y itself belongs to
the ring Z [(s]. In contrast, Re (zy*) is not always an element of Z [(g], in particular, when
r = (3,y = (s+ 1. In general, gde () = gde (y) does not imply gde (|:L‘|2) = gde (|y|2) For

instance, gde (Gs + 1) = gde (Gs), but [¢s + 1|* =2+ v2 and [¢s|* = 1.
In the proof of Lemma 3.2.3 (page 34) we use x = z (\/§)Sde(z) Y = w (\/§)Sde(w) that

are elements of Z [(s]. The next lemma shows an additional property that such x and y
have.

Lemma 3.2.6. Let z and w be elements of the ring Z[\%,i] such that |z|” + |w|* = 1 and
sde (z) > 1 or sde (w) > 1, then sde (z) = sde (w) and for elements x = z (ﬂ)Sde(Z) and

y=w (\/ﬁ)Sde(w) of the ring Z [(s] it holds that gde (\xﬁ) = gde (]y\Q) <1.
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Proof. Without loss of generality, suppose sde (z) > sde (w). Using the relation in equation
(3.1) between sde and gde, expressing z and w in terms of z and y, and substituting the
result into equation |z|* + |w|* = 1, we obtain

2(sde(z)—sde(w)) 2sde(z)
iy (v2) = (v2)" =k

Substituting z = x/ (V2) ) into formula (3.1) relating sde and gde, we obtain gde (x) =
0, and using one of the inequalities (3.7) connecting gde (|[L’|2) and gde () we conclude
that gde (|x\2) < 1. Similarly, gde (\y[2) < 1. We use the absorption property (3.5) of

gde (+) to write:
ade <\y!2 (\/§>2(5de(Z)—sde(w))> _ ode (\x|2) '
Equivalently, using the base extraction property (3.4):
gde (|y|2) + 2 (sde (z) — sde (w)) = gde (|x|2) :
Taking into account gde (|x|2) < 1 and gde (|y|2) < 1, it follows that sde (z) = sde (w). O
In the proof of Lemma 3.2.3 we turn inequality (3.2) for difference of sde into an

inequality for difference of gde (|a:\2) and gde (|z + y|2). The following lemma shows a
basic relation between these quantities that we will use.

Lemma 3.2.7. If 2 and y are elements of the ring Z[(s] such that |x|* + |y|* = (ﬁ)m,
then )
gde (|z + y]Z) > min (m, 1+ b (gde (’{[‘2) + gde (|y‘2))J) :

Proof. The first step is to expand |z + y|* as |z|> + |y|* + v2Re (v2zy*). Next, we apply
inequality (3.3) to the gde of the sum, and then the base extraction property (3.4) of the
gde. We use equality gde (|x|2 -+ |y|2) = m to conclude that

gde (|z + y|2) > min (m, 1+ gde (Re <\/§xy*>>> :

Finally, we use inequality (3.8) for gde (Re (\/ixy*)) to derive the statement of the lemma.
O

Now we collected all tools required to prove Lemma 3.2.3.
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Proof. Recall that, we are proving that for elements z and w of the ring Z[\%, i| and any
integer k it is true that:
z+wek

—1 < sde

Using Lemma 3.2.6 we can define m = sde(z) = sde (w(é“) and v = (§z (ﬂ)m and
Yy = w (\/§)m Using the relation (3.1) between gde and sde, and the base extraction
property (3.4) of gde we rewrite the inequality we are trying to prove as:

2
) — sde (|z|2) < 1, when sde (|z|2) > 4.

1 < gde (|Jz + y|2) — gde (|x|2) <3.

It follows from Lemma 3.2.6 that gde (|x\2) = gde (]y|2) < 1. Taking into account |z|* +

\y|2 = \/§2m and applying the inequality proved in Lemma 3.2.7 to x and y we conclude
that:
gde (|z + y|2) > min (2m, 1 + gde (|x|2)) :

The condition m > 4 allows us to remove taking the minimum on the right hand side and
replace it with 1+ gde (|:E]2) This proves one of the two inequalities we are trying to show,
1 < gde (o + y[2) —gde (\x|2) To prove the second inequality, gde (|z + y[2) —gde (\x|2) <
3, we apply Lemma 3.2.7 to the pair of elements of the ring Z [(s], z + y and x — y. The

conditions of the lemma are satisfied because |z + y|* + |z — y|* = \/ﬁz(mﬂ). Therefore:
1
gde (4 ]z[%) > min (2 (m+1),1+ b (gde (|z +y|*) + gde (Jz — y[Q))J) :

Using the base extraction property (3.4), we notice that gde (4 |:13|2) = 4 + gde (|:13|2) It
follows from m > 4 that 2(m +1) > 4 + gde (\x|2) As such, we can again remove the
minimization and simplify the inequality to:

3+ gde (|x|2) > E (gde (|z + y|2) + gde (Jz — y[2))J .

To finish the proof it suffices to show that gde (]x + y|2) = gde (\:U — y\2). We establish

an upper bound for gde (|:1: + y\z) and use the absorption property (3.5) of gde. Using the
non-negativity of gde and the definition of the floor function we get:

2 (34 gde (\x!2)) +1 > gde (Jz + y\2) :
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Since gde (|x]2) <1, gde (|Jz + y\2) < 9. Observing that 2 (m + 1) > 9 we confirm that

gde (jz — ) = gde (V2" — |o 4+ yP) = gde (jz +yP)
O

To prove Lemma 3.2.4 it suffices to show that gde(|z + Cé“y’z) — gde(|z|*) achieves all
values in the set {1,2,3} as k varies over all values in the range from 0 to 3. We can split
this into two cases: gde(|z|*) = 1 and gde(|z|*) = 0. We need to check if gde(!x + Cé“yf)
belongs to {1,2,3} or {2,3,4}. Therefore, it is important to describe these conditions in
terms of x and y. This is accomplished in the next Section.

3.3 Quadratic forms and greatest dividing exponent

We first clarify why it is enough to check a finite number of cases to prove Lemma 3.2.4.
Recall how the lemma can be restated in terms of the elements of the ring Z [(s]. Next we
illustrate why we can achieve a finite number of cases with a simple example using integer
numbers Z. Then we show how this idea can be extended to the elements of the ring Z [(]
that are real (that is, with imaginary part equal to zero). Finally, in the proof of Lemma
3.2.4, we identify a set of cases that we need to check and provide an algorithm to perform
it.

As discussed at the end of the previous Section, to prove Lemma 3.2.4 one can consider
elements z and y of the ring Z [(s] such that |z|* + |y|* = 2 for m > 4. We know from
Lemma 3.2.3 that there are three possibilities in each of the two cases:

e when gde(|z|*) = 0, gde(|z + C§y|2) equals to 1,2, or 3,
e when gde(|z]?) = 1, gde(|z + C§y|2) equals 2,3, or 4.

We want to show that each of these possibilities is achievable for a specific choice of

ke {0,1,2,3}.

We illustrate the idea of the reduction to a finite number of cases with an example.
Suppose we want to describe two classes of integer numbers:

e integer a such that the gde (a?,2) = 2,
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e integer a such that the gde (a?,2) > 2.

It is enough to know a?mod 23 to decide which class a belongs to. Therefore we can
consider 8 residues a mod 2% and find the classes to which they belong. We extend this idea
to the real elements of the ring Z [(s], being elements of the ring Z [(s] that are equal to

their own real part. Afterwards we apply the result to }JJ + C§y|2, that is a real element of

Z[Gs]-

We note that the real elements of Z [(s] are of the form a-++/2b where a and b are integer
numbers. An important preliminary observation, that follows from the irrationality of v/2,
is that for any integer number ¢

gde (¢) = 2gde (¢, 2) . (3.10)

The next proposition gives a condition equivalent to gde (a + \/§b) = k, expressed in terms
of gde (a,2) and gde (b, 2):

Proposition 3.3.1. Let a and b be integer numbers. There are two possibilities:

e gde (a + \/§b) is even if and only if gde (b,2) > gde (a,2); in this case, gde (a,2) =
gde (a +/20) /2.

e gde (a+ \/§b) is odd if and only if gde (b,2) < gde(a,2); in this case, gde (b,2) =

(gde (a + \/§b) — 1) /2.

Proof. Consider the case when gde (b,2) < gde(a,2). Observing, from equation (3.10),
that gde (a) is always even, gde (a) > gde (v/2b), and by the absorption property (3.5) of
gde we have gde (a + \/ﬁb) = gde (\/§b) Using the base extraction property (3.4) of gde
and the relation (3.10) between gde (+) and gde (-, 2) for integers we obtain gde (a + v/2b) =
1 + 2gde (b,2). The other case similarly implies gde (a + \/§b) = 2gde (a,2). In terms of
real elements of the ring Z [(g], this results in the following relations:

Ay = {ede (b,2) < gde (a,2)} € Bi = {gde (a+ v2b) is even},

Ay = {gde (b,2) > gde (a,2)} C By = {gde (a + \/§b> is odd} .
We note that each pair of sets {A;, Ay} and {Bj, By} defines a partition of real elements
of the ring Z [(s]. This completes the proof since for partitions {4, Ay} and {By, By} of

some set, the inclusions A; C By, Ay C By imply A; = By and Ay = Bs. O
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To express }x + C§y|2 in the form a+ v/2b in a concise way, we introduce two quadratic
forms P (-) and @ () with the property:

lz|* = P (x) + v2Q (z). (3.11)

Given that x, an element of Z [(s], can be expressed in terms of the integer number coor-
dinates as follows, T = x¢ + z1(s + 72(3 + 3¢5, we define the quadratic forms as:

P (x) == aj + 2] + a3 + 23, (3.12)
Q () =z (x1 — x3) + 22 (21 + x3) . (3.13)

Let us rewrite the equality gde (|x + y|2) = 4 in terms of these quadratic forms and the
gde of base 2. Using Proposition 3.3.1 we can write:

gde (P (a: + ng) ,2) =2,
gde (Q (z+ (y),2) > 2.

Similar to the example given at the beginning of this section, we see that it suffices to
know the values of the quadratic forms modulo 23. To compute them, it suffices to know
the values of the integer coefficients of x and y modulo 23. This follows from the expression
of the product (gy in terms of the integer number coefficients:

(8 (y1 + yols + y3Ce + y4C§’) = —ys + y1Gs + 1285 + ysG,

and from the following two observations:

e integer number coefficients of the sum of two elements of the ring Z[\%, i] is the sum
of their integer number coefficients,

e for any element of Z [(3], =, the values of quadratic forms P (x) and @ (z) modulo 23
are defined by the values modulo 2* of the integer number coefficients of z.

In summary, to check the second part of Lemma 3.2.3 we need to consider all possible values
for the integer coefficients of x and y modulo 23. There are two additional constraints on
them. The first one is |z|* + |y|* = 2. Since we assumed m > 4, we can write necessary
conditions to satisfy this constraint, in terms of the quadratic forms, as:

P(x)=—P(y) (mod 23) ,
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Q () = -Q(y) (mod2*).
The second constraint is gde (|x|2) = gde (|y|2) and gde (|m|2) < 1. To check it, we use the
same approach as in the example with gde (]:1: + y|2) =4.

We have now introduced the necessary notions required to prove Lemma 3.2.4.

Proof. Our proof is an exhaustive verification, assisted by a computer search. We rewrite
the statement of the lemma formally as follows:
Im >4 st |z + |y|* = 27,

gj: (x>y>€Z[<8]XZ[C8] ' },jE{O,l},

gde (z) = gde (y) = j
for all (z,y) € G;,for all s € {1,2,3} there exists k € {0,1,2,3} (3.14)
such that gde (}x + Cé“y!z) =547

The sets G; are infinite, so it is impossible to perform the check directly. As we illustrated
with an example, equality gde <‘x + C§y|2> = s+7 depends only on the values of the integer

coordinates of # and y modulo 23. If the sets G; were also defined in terms of the residues
modulo 23 we could just check the lemma in terms of equivalence classes corresponding to
different residuals. More precisely, the equivalence relation ~ we would use is:

3 3
Soa, Yyt EL forall p e {0,1,2,3} 1 1, = y, (mod 2%) .
p=0

p=0

To address the issue, we introduce sets Q; that include G; as subsets:

(z,y) EZ[G] X Z[G] | gde(z) =gde(y) =
Q; = P(z)+P(y) =0(mod2®) »,5€{0,1}.
Q (z) + Q (y) = 0(mod 2%)

Therefore, in terms of the equivalence classes with respect to the above defined relation ~
the more general problem can be verified in a finite number of steps. However, the number
of equivalence classes is large. This is why we employ a computer search that performs
verification of all cases. To rewrite (3.14) into conditions in terms of the equivalence classes
it suffices to replace G; by Q,, replace x and y by their equivalence classes, and replace
Z [(s] by the set of equivalence classes Z [(g] / ~.

Algorithm 2 verifies Lemma 3.2.4. We use bar (e.g., T and 7) to represent 4-dimensional
vectors with entries in Zg, the ring of residues modulo 8. The definition of bilinear forms,
multiplication by (g and the relations gde (||2) =1,2,3,4 extend to T and . We imple-
mented Algorithm 2 and the result of its execution is true. This completes the proof. [
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Algorithm 2 Verification of Lemma 3.2.4.
Output: Returns true if the statement of Lemma 3.2.4 is correct; otherwise, returns false.
> Here, G4 is the set of all residue vectors Z such that
gde(z) = j, P () = a,Q (T) = .
for all zy,x9,23,24 € {0,...,7} do > generate possible residue vectors;
T < (ZL‘l, To, T3, ZL‘4)
J < gde(|7[*), a ¢ P (7) b+ Q (7)
if j€{0,1} then
add 7 to G .

end if

end for

for all j € {0,1},a, € {0,7},b, € {0,7} do
ay < —azmod8, b, < —b, mod 8 > consider only those pairs that
for all (7,7) € Gja,p, X Gja,p, do > satisfy necessary conditions;

for all d e {1,2,3} do
state < unfound
for all k€ {0,1,2,3} do
T+ 7+ ¢y
if gde(|7]) =d +j then
state < found
end if
end for
if state = unfound then
return false
end if
end for
end for
end for
return true

3.4 Properties of the greatest dividing exponent

Here we prove properties of the greatest dividing exponent that was defined and used in
Section 3.2. We first discuss the base extraction property (3.4) of gde and then proceed
to the proof of special properties of gde (-, \/5) The base extraction property simplifies

proofs of all statements related to gde (-, \/5)
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Proposition 3.4.1 (Base extraction property). If x,y € Z[(s|, then for any non negative
integer number k
gde (yz*,2) = k + gde (y,z) .

Proof. Follows directly from the definition of gde. O]

The base extraction property together with non-negativity of gde provide a simple
formula to lower bound the value of gde: if 2% divides y then gde (y, ) > k. Inequality for
gde of a sum (3.3) follows directly from this—az™®(edew.2).ede(v’2)) divides y +1/. The proof
of absorption property (3.5) follows easily, as well.

Now we prove properties of gde specific to base v/2. Instead of proving them for all
elements of Z [(g] it suffices to prove them for elements of Z [(s] that are not divisible by
V2. We illustrate this with an example gde (x, \/5) = gde (\x|2 , 2). We can always write

x =2 (\/ﬁ)gde(x). By the definition of gde, v/2 does not divide 2. By substituting the
expression for x into gde (|x|2 , 2) and then using the base extraction property we get:

gde (|7]*,2) = gde <|x’|2,2> + gde (m, \/5) .

Therefore, it suffices to show that gde (|x’ |2,2) = 0 when /2 does not divide #/, or,
equivalently, when gde (2') = 0.

The quadratic forms defined in Section 3.3 will be a useful tool for later proofs. Bilin-
car forms that generalize them are important for the proof of relation for gde (Re (zy*)).
Effectively, we only need the values of the mentioned forms modulo 2. For this reason, we
also introduce forms that are equivalent modulo 2 and more convenient for the proofs.

We define function F (-,-) for z,y € Z [(s] as follows:

F (x,y) == xoyo + x1y1 + T2y2 + 3Y3.

Note that the following equality holds, and provides some intuition behind the choice
to introduce F (-, -):

Re (zy*) = F (z,y) + %F <\/§Jz,y> :

Using formula v/2 = (5 — (3 we can rewrite multiplication by V2 as a linear operator:

V21 = V2(z) 1 wot+a1 Gt 13423 = (11 — 23)+ (0 + 1) Gt (21 + 3) G+ (2 — 20) &
(3.15)
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In particular, it is easy to verify that:
F <\/§I, y) = (21 — x3) Yo + (w0 + 22) Y1 + (¥1 + 23) Yo + (T2 — T0) Y3,
and, substituting y = =z,
F <\/§x,:1:) =2(z1 —x3) T2+ 2 (11 + 73) T = 2Q (),

which corresponds to the earlier definition shown in equation (3.13). The definition of
F (-,-) written for z = y results in an earlier definition (3.12). This shows how F'(-,-)
generalizes and ties together previously introduced P(-) and Q(-).

Furthermore, in modulo 2 arithmetic the following expressions hold true:

P (z) = (x1 + z3) + (20 + 22) (mod 2) (3.16)
Q (z) = (z1 + 23) (xo + 22) (mod 2) (3.17)
F (V2r,y) = (o +a9) (o + 1) + (@0 +22) (3 +30) (mod2). (3.18)

It is easy to verify these equations by expanding the left and right hand sides.
The next proposition shows how we use equivalent quadratic and bilinear forms.

Proposition 3.4.2. If gde (x) = 0 there are only two alternatives:
o P(x) is even and Q () is odd,
e P(x) is odd and Q (x) is even.

Proof. The equality gde (z) = 0 implies that 2 does not divide v/2z. Using expression
(3.15) for /22 in terms of integer coefficients we conclude that at least one of the four
numbers x) +x%, xy+x), must be odd. Suppose that 2} +x% odd. Using formulas (3.16,3.17)
we conclude that the values of P(x) and Q(x) must have different parity. The remaining
three cases are similar. ]

An immediate corollary is: gde () = 0 implies gde (|.r|2 ,2) = 0. To show this it suffices
N 2 . .
to use expression (3.11) for |z|” in terms of quadratic forms.

We can also conclude that v/2 divides z if and only if 2 divides |x]2 Sufficiency follows
from the definition of gde. To prove that 2 divides \:c|2 implies v/2 divides x, we assume
that 2 divides |z|* and v/2 does not divide x, which leads to a contradiction. This also
results in the inequality gde (|x\2) < 1 when gde (z) = 0.

We use the next two propositions to prove the inequality for Re (ﬂxy*)
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Proposition 3.4.3. Let gde (z) = 0:

o if V2 divides |x|* then P (x) is even and Q (z) is odd,
e if /2 does not divide |z|* then P (x) is odd and Q (x) is even.

Proof. As discussed, the previous proposition implies that v/2 divides y if and only if 2
divides |y|>. We apply this to |z|*. By expressing |#|* in terms of the quadratic forms we
get:

jof* = P (2)* +2Q (2)° + 2V2P (2) Q (x) .
We see that 2 divides |:15|4 if and only if 2 divides P (:E)2, or, equivalently, v/2 divides ]1\2
if and only if P (z) even. Using the previous proposition again, this time for =, we obtain
the required result. O

Proposition 3.4.4. Let gde (z) = 0 and gde (y) = 0. If /2 divides |z|° and /2 divides
|y|2 then /2 divides Re (ﬂxy*)

Proof. By the previous proposition, v/2 divides \x!z and v/2 divides ]y\2 implies that @ (x)
and @ (y) are odd. Formula (3.17) implies that in terms of the integer number coefficients

of z and y integer numbers zy + x3, xo + T2, Y1 + Y3, Yo + Yo, are all odd. Expressing
Re (v22y*) in terms of F (-, ),

Re (ﬂxy*) =V2F (z,y)+ F (ﬁx,y) ,

and using expression (3.18), we conclude that 2 divides F (ﬁx,y); therefore v/2 divides
Re (\/§xy*) O]

Now we show gde (Re (v2zy*)) > |4 (gde (!x|2) + gde (|y\2))J As we discussed in the
beginning, we can assume gde (z) = 0 and gde (y) = 0 without loss of generality. This
implies gde (|:17|2) < 1 and gde (|y|2) < 1. The expression |1 (gde (|x|2) + gde (|y|2))J
can only be equal to 0 or 1. The second one is only possible when gde (|x|2) =1 and
gde (]y\2) = 1, in which case the previous proposition implies gde (Re (ﬂxy*)) > 1. In
the first case inequality is true because of the non-negativity of gde.

We can also use quadratic forms to describe all numbers z in the ring Z[\%, i] such that

\z|2 = 1. Seeking a contradiction, suppose sde (z) > 1. We can always write z = (\/g)k
where k = sde (z) and gde (z) = 0. From the other side |z|* = P (z)++v/2Q () = 2*. Thus
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we have a contradiction with the statement of Proposition 3.4.2. We conclude that z is
an element of Z [(g]. Therefore we can write z in terms of its integer number coordinates,
2 = 204 21(s + 22 + 23¢3. Equality |z|* = 1 implies that F (z,2) = 22 4 22 4+ 22 + 22 = 1.
Taking into account that z; are integer numbers we conclude that z € {C§ k=0,... ,7}.

3.5 Exact synthesis algorithm optimality

Proof of Theorem 5.0.5. 1: H-optimality. Using brute force, we explicitly verified that
the set of H-optimal circuits with precisely 3 Hadamard gates is equal to the set of all
unitaries over the ring Z[\%,i] with sde(|z|*) = 4. Suppose we have a unitary U with

sde(|z]*) = n > 4. With the help of Algorithm 1 we can reduce it to a unitary with
sde(|z]*) = 4 while using n — 4 Hadamard gates to accomplish this. As such, there exists
a circuit with n — 1 Hadamard gates that implements U.

Now consider an H-optimal circuit C' that implements U. Using brute force, we estab-
lished that if C' has less than 3 Hadamard gates, then sde(|z|”) is less than 4. Suppose
C contains m > 3 Hadamard gates. Its prefix, containing 3 Hadamard gates, must also
be H-optimal, and therefore sde(|z|*) of the corresponding unitary is 4. Now, using the
inequality from Lemma 3.2.3, we conclude that sde( |z|2) of the unitary corresponding to
C is less than m + 1. This implies n < m + 1. Since we already know that m < n — 1,
we may conclude that m = n — 1 and m is the number of Hadamard gates in the circuit
produced by Algorithm 1 in combination with the brute force step.

2: T-optimality. To prove T-optimality we introduce a normal form for circuits over G.
We call a circuit HT-normal if there is precisely one T gate between every two H gates and,
symmetrically, precisely one H gate between every two T gates. It is not difficult to modify
Algorithm 1 to produce a circuit in HT-normal form while preserving its H-optimality.
To accomplish that, first, recall that HT? = HZT' and that all circuits generated during
the brute force stage are both H-optimal and in the HT-normal form. Second, any circuit
produced by the algorithm is H-optimal and does not contain a non-H-optimal (up to
global phase) subcircuit HT?H = HPH = (sPHP.

We will show that any H-optimal circuit in HT-normal form is also T-optimal. We start
with a special case of HT-normal circuits—those that begin and end with the Hadamard
gate, in other words, those that can be written as HS{H...HS H, and are H-optimal. Let
U be a unitary corresponding to this circuit. Due to HT-normality, each S; contains
exactly one T gate, the number of T gates in the circuit is k, and h(U) = k + 1; therefore,
t(U) < h(U) — 1. To prove that t(U) = h(U) — 1, it suffices to show that ¢t(U) > h(U) — 1.
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Let us write a T-optimal circuit for U as CyTC;T...TC. Each subcircuit C, implements
a unitary from the Clifford group. Each unitary from the single-qubit Clifford group
can be implemented using at most one H gate (recall, that we are concerned with the
implementations up to global phase), therefore h(U) < t(U) + 1, as required.

In the general case, consider a circuit obtained by Algorithm 1 and implementing a
unitary V' with h(V) > 3 that is H-optimal and written in HT-normal form and show
that it is T-optimal. We can write it as SgHS H ... HS,HS; ;. By Lemma 3.2.4 we can
always find such [ and j that C :=HT!SqHS,H.. HS,H S, T'H is also an H-optimal
circuit. Indeed, according to Lemma 3.2.4, using the connection between sde(-) and h(-)
described in the first part of the proof, given h(V) = k + 1 we can always find [ such that
h(HT'V) = k + 2. From the other side, circuit HT'SoHS,H. . . HS,HS;;; contains k + 2
Hadamard gates and therefore is H-optimal. We repeat the same procedure to find j.

Considering the different possible values of [ and j allows to complete the proof of the
Theorem. This is somewhat tedious, and we illustrate how to handle different cases with
a representative example of [ = 3 and 7 = 2. In such a case, we can rewrite circuit C' as
C" =HTPSoHS H. . HS HS, . 1PH. We conclude that Sy must have zero T gates and Sy
must have one T gate. Otherwise subcircuits HTPSoH and HS; 1 PH will not be H-optimal.
As such, we reduced the problem to the special case considered above, therefore circuit C”
is T-optimal and SoHS{H. . . HS HS; ., is T-optimal as its subcircuit. In the general case,
the following formula may be developed t (V) = h(U) — 1+ (I mod 2) 4+ (j mod 2). O

3.6 Experimental results

Table 3.2 summarizes the results of first obtaining an approximation of the given rotation
matrix by a unitary over the ring Z[\%, i] using our implementation of the Solovay-Kitaev
algorithm [18, 44], and then decomposing it into a circuit using the exact synthesis Al-
gorithm 1 presented in this chapter. We note that the implementation of our synthesis
Algorithm 1 (runtimes found in the column fgecomp) is significantly faster than the im-
plementation of the Solovay-Kitaev algorithm used to approximate the unitary (runtimes
reported in the column ¢,p,.0,). Furthermore, we were able to calculate approximating
circuits using 5 to 7 iterations of the Solovay-Kitaev algorithm followed by our synthesis
algorithm. The total runtime to approximate and decompose unitaries ranged from ap-
proximately 11 to 600 seconds, correspondingly, featuring best approximating errors on
the order of 107°°, and circuits with up to millions of gates. Actual specifications of all
circuits reported, as well as those synthesized but not explicitly included in the Table 3.2,
due to space constraints, may be obtained from http://qcirc.iqc.uwaterloo.ca/.

49


http://qcirc.iqc.uwaterloo.ca/

log , ( # gates)

1 e e o
6 Voo I
r Vol \
_e 40 o
sL _ ,j_j/:';’—' B
I )
///4/)"’ _,/—:,/:;/_-"_'_- u
- o eEEET
@ ,)/.’ i //:i’/__’_-—"
4 / s ///l’I’.
sr =l
RO S Pra
o .‘,/ //::__‘/,,_
IS e
3F R // /‘/
/4/ //‘.",/
?, b e U Dawson's SK Ours SK
) ' s
noo -T2
e R.(x/ 16) ° -
2k f‘ ow
o R(n/64) | - @ —— |- —_m—-
o
é o o
L R.(7/256) | .- @ - | - —m—-
R, (x/1024) | ... .. ® | R
S S R SN @ V)
2 4 6 8 10 12 14

Figure 3.1: Comparison between ours and Dawson’s implementations of the Solovay-Kitaev
algorithm. Vertical axis shows log;, of the number of gates and horizontal axis shows
log,, (1/€), where € is the projective trace distance between unitary and its approximation.

On each step Algorithm 1 chooses from one of four small circuits: H, HT, HT? (=HP),
and HT? to reduce sde. In practice, the Pauli-Z gate is often easier to implement than
cither Phase or T gate. The cost of P and TT gates is usually the same as that of the
respective P and T gates. We took this into account by writing circuit HT? using an
equivalent and cheaper form HZTT. This significantly reduces the number of Phase gates
required to implement a unitary. If there is no preference between the choice of P or Z, or
P is preferred to Z, the HPT could be used in place of HT?.

The RAM memory requirement during the unitary approximation stage for our imple-
mentation is 2.1GB. In our experiments we used a single core of the Intel Core i7-2600
(3.40GHz) processor.

We performed a comparison to Dawson’s implementation of the Solovay-Kitaev algo-
rithm (see Figure 3.1) available at http://gitorious.org/quantum-compiler/. We ran
Dawson’s code using the gate library {H, T} with the maximal sequence length equal to
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i
Table 3.2: Results of the approximation of R, () = “ 0 (i)@ by our implementation.
e

Column N; contains the number of iterations used by the Solovay-Kitaev algorithm, n,—
total number of gates (sum of the next four columns), ny—mnumber of T and TT gates,
ng—number of Hadamard gates, np—number of P and PT gates, np;—number of Pauli
gates (note that the combined number of Pauli-X and Pauli-Y is never more than three
for any of the circuits, so np; is dominated by Pauli-Z gates), dist—trace distance to
approximation, t,,,r.,—time spent on the unitary approximation using the Solovay-Kitaev
algorithm (in seconds), fgecomp—time spent on the decomposition of the approximating
unitary into circuit, per Algorithm 1 (in seconds). Circuit specifications are available at
http://qcirc.iqc.uwaterloo.ca/.

LU [ | ne [ ow [ne [ [ dist | tapror | taceoms |
0 54 22 23 2 7 8.05585 x 10~* || 0.08827 | 0.00020
1 344 136 136 | 3 | 69 | 9.57729 x 1076 || 0.12163 | 0.00080
R. (&) 2 || 1414 | 564 564 | 3 | 283 | 1.97877 x 1077 || 0.38928 | 0.00326
3 || 7769 | 3086 | 3087 | 3 | 1593 || 1.08884 x 10710 || 0.98522 | 0.01954
4 || 35456 | 14170 | 14171 | 2 | 7113 || 3.00267 x 10715 || 3.05440 | 0.12384
0 72 28 29 1 14 || 9.59916 x 10~* || 0.08822 | 0.00023
1 344 136 137 | 3 | 68 1.79353 x 10~° | 0.12143 | 0.00081
R.(3s) || 2 || 1588 | 634 634 | 4 | 316 | 3.67734 x 1077 || 0.39048 | 0.00368
3 || 7519 | 3004 | 3005 | 2 | 1508 || 4.23657 x 10~0 || 0.98045 | 0.01890
4 || 34388 | 13722 | 13722 | 2 | 6942 | 1.32046 x 1074 || 2.86740 | 0.11832
0 71 28 29 2 12 5.06207 x 10~ || 0.01819 | 0.00023
1 326 136 136 | 2 | 52 1.08919 x 10~° | 0.05474 | 0.00079
R.(5%) || 2 | 1389 | 566 567 | 3 | 253 | 2.00138 x 10~7 || 0.30498 | 0.00332
3 || 7900 | 3174 | 3175 | 3 | 1548 || 2.91716 x 1070 || 0.91405 | 0.02060
4 || 38188 | 15290 | 15291 | 1 | 7606 | 8.87785 x 10~'° || 2.98030 | 0.13545
0 76 30 29 2 15 || 3.62591 x 10~* || 0.01749 | 0.00023
1 319 126 126 | 2 | 65 1.95491 x 10=° || 0.05171 | 0.00075
R.(55) | 2 || 1722 | 680 680 | 2 | 360 | 2.76529 x 10~7 || 0.30618 | 0.00396
3 || 8122 | 3242 | 3242 | 2 | 1636 || 1.87476 x 10710 || 0.92576 | 0.02109
4 || 34974 | 13992 | 13992 | 1 | 6989 || 5.66762 x 10~ || 3.16060 | 0.11920
0 0 0 0 0 0 2.16938 x 1073 || 0.08622 | 0.00005
1 264 106 105 | 2 | 51 5.57373 x 107° || 0.13615 | 0.00063
R. (&) || 2 || 1541 | 622 | 622 | 3 | 294 | 1.74595 x 10~7 || 0.23445 | 0.00366
3 ]| 6791 | 2722 | 2722 | 157| 1346 | 5.39912 x 10~ || 0.82811 | 0.01703
4 || 32983 | 13188 | 13188 | 1 | 6606 || 5.54995 x 10716 || 2.98480 | 0.11494
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22 and tile width equal to 0.14. During this experiment, the memory usage was around 6
GB. For the purpose of the comparison gate counts for our implementation are also pro-
vided in the {H, T} library (Z=T* and P=T?). We used the projective trace distance to
measure the quality of approximation as it is the one used in Dawson’s code. Because of
the larger e-net used in our implementation we were able to achieve better approximation
quality using fewer iterations of the Solovay-Kitaev algorithm. Usage of The GNU Multiple
Precision Arithmetic Library allowed us to achieve precision up to 10~°° while Dawson’s
code encounters convergence problem when precision reaches 1078, The latter explains the
behaviour of the last set of points in the experimental results for Dawson’s code reported
in Figure 3.1.

Two other experiments that we performed with Dawson’s code are a resynthesis of the
circuits generated by it using our exact decomposition algorithm. We first resynthesised
circuits that were generated by Dawson’s code using the {H,T} library. In most cases, the
gate counts reduced by about 10-20% (our resulting circuits were further decomposed such
as to use the {H, T} gate library). In the other experiment we used {H, T, P, Z} gate
library with Dawson’s implementation. In this case, we were able to run Dawson’s code
with the sequences of length 9 only, and it used 6 GB of memory. The gate counts, using
our algorithm, decreased by about 40-60%.
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Chapter 4

Asymptotically optimal
approximations with the Clifford+T
gate set

In this chapter we describe an algorithm that approximates the R,(¢) operator using two
ancillary qubits and O(log(1/e)) gates to achieve the quality of approximation . The
algorithm has a provably probabilistic polynomial runtime and relies on the probabilistic
polynomial time algorithm for solving the four squares Diophantine equation.

In the second part of this chapter we show that in the worst case one needs O(log(1/¢))
gates to approximate a unitary even when using the constant number of ancillary qubits.
This result was originally shown in [50] and we provide the proof for completeness.

4.1 Main result

We focus on the approximation of the following operator:
A(e®) - a|0) + B 1) — a|0) + Be [1).

which is equal to R,(¢) up to a global phase.

There are two main steps in our algorithm:

1. Find a circuit C' consisting of Clifford and T gates such that the result of applying
C to |00) is close to € |00).
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2. Apply circuit C' controlled on the first qubit to perform a transformation close to:

 [000) + B]100) — a |000) + B¢ [100) .

The net effect of such transformation may be described as the application of A(e?) to
the first qubit. To accomplish the first step we approximate €*® |00) with a four dimensional

vector |v) with entries in the ring Z [i, \/AE] We then employ an algorithm for multiple

qubit exact synthesis to find a circuit C' that prepares |v) starting from |00) using at most
one ancilla qubit. It was shown in [4] that any circuit using Clifford and T gates can
be transformed into its exact (meaning no further approximation is required) controlled
version with only a linear overhead in the number of gates, and using at most one ancilla
qubit in the state |0) that is returned unchanged. Our analysis shows that, however, on
this step we do not need to use this additional ancilla. The resulting total number of
ancillae is thus at most two.

4.1.1 Approximating € |00)

The key is the reduction of the approximation problem to expressing an integer number as
a sum of four squares. In particular, we are looking for an approximation of:

€' 100) = (cos (¢) + isin (¢),0,0,0)

by a unit vector:

lv) = Qik (|2"cos (¢)| +1i|2"sin(¢)],0,a + ib,c +id),

where k € N;a,b,c,d € Z. Without loss of generality we can assume that 0 < ¢ < 7. The
power k of the denominator determines precision of our approximation and complexity of
the resulting circuit. As |v) must be a unit vector, the remaining four parameters (a, b, c,
and d) should satisfy the integer equation:

a’ + b+ +d* =45 — | 2" cos (¢)J2 — [2*sin (¢)J2

Lagrange’s four square theorem states that this equation always has a solution. Fur-
thermore, there exists an efficient probabilistic algorithm for finding a solution. For the
right hand side M it requires on average O(log?(M)loglog M) operations with integers
smaller than M. It is described in Theorem 2.2 in [66]. We get a reduction to such a
simple Diophantine equation at the expense of using two qubits instead of one.
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Furthermore, in estimating the classical complexity of the algorithm for finding the
approximating circuit, we will rely on the observation that

48 — |2 cos (QS)JQ — |2 Sin(gb)J2 <4x 284+ 0(1) € 02,

4.1.2 Precision and complexity analysis
Let us introduce v = ([2* cos (@) | + i [2¥sin (¢)]) /2 and express |v) as:
[v) = ~7[00) +[1) @ |g) -
The application of the circuit C' controlled on the first qubit will transform (« 0) + 5 [1)) ®

|00) into:
o |000) 4 B |100) 4+ 3]01) ® |g) .

The distance of the result to the desired state o [000) + Be® |100) is:

V18 =3I + 18 9P

< \2/—,?, therefore the first term in the sum above is in

By the choice of v we have |’y — e
O(1/2%). The norm squared of |g) equals 1 — |y|°. The complex number v approximates
e?, and the distance of its absolute value to identity can be estimated using the triangle
inequality:

= Je]] < - €.

Therefore, 1 — |y is in O(1/2%). In summary, the distance to the approximation is in
O(1/20-5).

The same estimate is true if we consider the circuit C as a part of a larger system. In
this case we should start with the state (a|¢g) ® |0) + S ]¢1) ® 1)) ®]00). Similar analysis
shows that the distance to the approximation remains O(1/2%°%).

As shown in [26], it is possible to find a circuit that prepares |v) using O(k) Clifford
and T gates ([26], Lemma 20 (Column lemma)). The classical complexity of constructing
a quantum circuit implementing |v) is in O(k). In the controlled version of this circuit
the number of gates remains O(k) ([4], Theorem 1). In summary, we need O(log(1/¢))
gates to achieve precision €. The complexity of the classical algorithm for constructing the
entire approximating circuit is thus dominated by complexity of finding a solution to the
Diophantine equation, which is in O(log?(1/¢) loglog(1/¢)).
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4.1.3 How many ancillae are needed?

A straightforward calculation shows that the number of ancillae used is three. However,
we can get over using only two ancillae. To understand how, we need to go into the details
of the proof of Lemma 5 (Column lemma) from [26]. It shows how to find a sequence of
two-level unitaries of type X, T~ (iH)T™, and W [26] and length O(k) that allows to
prepare a state with the denominator 2¥. A controlled version of the two level unitary is
again a two level unitary. In [26], Lemma 24, it was also shown that any such unitary
required can be implemented using no extra ancillae. Therefore, the controlled version of
the circuit C' will not use any additional ancilla and we need only two of them in total.

4.2 Lower bound on the number of gates when ancil-
lae are allowed

Lemma 4.2.1. Let G be a universal gate set, and let My be a set of unitaries, that simulate
a unitary V acting on n qubits, using m ancillary qubits:

My ={U €U (2"™) U (|0) @1¢)) = [0) @ (V[¢))} -
Then, for any € there always exists a unitary V (€) such that the number of gates from G
needed to construct a unitary within the distance € to My ) is in Q(log(1/¢)).
We use the volume argument similar to the one presented in [32].

Let N = 2", p be the distance induced by Frobenius norm and p be the Haar measure
on U (N). For the unitary U we define the volume of its e-neighbourhood as:

v(Ue)=p{V eUN)|p(My,U) <e}.

Let G* be the set of all unitaries that can be constructed using k gates from the library
(. Suppose that for any unitary V we can find a unitary U from G* within the distance
¢ from My,. This implies:

p(UN) < Y v(Ue) < |G| maxv(Use).
UeGk

We will show that the volume v (U, €) is upper bounded by Cpe® *. for some constant Cj,

therefore: U (V)
1

k> ——1 — 7. 4.1

~ log |G| og( CoeN? ) (4.1)
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We next show how to estimate v (U, ¢). Let Uy be a submatrix of U defined as follows:
Uo := {{ei| @ (0D U (|0) @ |ej) }

where {|e;) } is the standard (computational) basis in C(/V). Taking into account that the
distance p is induced by Frobenius norm, we write p (U, My) > p (Up, V). Therefore:

v(U,e) = pu{Vip(My,U) <e} < u{Vl]p (U, V) <e}.

Let us define V,,,;,, to be a unitary closest to Uy. To estimate v (U, ¢) it suffices to con-
sider the case when p (Vjun,Up) < e. The distance p is unitarily invariant, therefore

p <VWTMU0, I) < e and

(VIp (U, V) < e} = {V\p (VWZMUO, v) < g} .

From the triangle inequality,

p(I,V)<p (VnthOaI> T (V%mUm ’

we conclude that

{V|p (v,LmUO, v) < g} C {V|p(I,V) < 22}

Finally,
v(Ue) < u{Vip(1,V) < 2}

As shown in [32], there exists a constant Cy such that the volume of the ball {V|p (I,V) < 2¢}
is less than CyeV”.

Estimate (4.1) on k shows that we need circuits of the size at least Q(log(1/¢)) to cover
the full group U (V). If k is chosen in such a way that the inequality (4.1) does not hold,
due to the volume argument, there exists a unitary V' (¢) such that it is not possible to
approximate any unitary from My () with precision ¢ using at most £k gates.
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Chapter 5

Practical approximations with the
Clifford+T gate set

In this chapter we describe the algorithm for finding optimal approximations of single
qubit rotations R.(¢) using the Clifford+T get set. The algorithm is based on exact
synthesis results from Chapter 3. With the exact synthesis results we reduce the problem
of finding the best approximation by a Clifford and T circuit to the problem of finding
the best approximation by an exact unitary. We call this problem the Closest Unitaries
Problem (CUP). The algorithm runtime and memory usage scales exponentially with the
T-count of the unitaries used for approximation. However, the algorithm proposed is much
more efficient that naive brute force search [22]. It allows us to achieve the quality of
approximation 107! using the computational resources available today. The naive brute
force search can only reach the quality of approximation 10™* [22].

5.1 Closest Unitaries Problem

Now we state the Closest Unitaries Problem more formally and briefly discuss why it is
easier to solve this problem than the similar problem involving circuits. Recall that we use
the global phase invariant distance to measure the quality of approximation. It is defined
on single qubit unitaries as

d(U,V) = /1—|tr(UV1)] /2.

Our aim is to find the best approximation using at most the given number of T gates. To
restrict the set of exact unitaries we use for approximation we introduce a T-count. For
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a given exact unitary U its T-count ¢(U) is the minimal number of T gates required to
implement U up to a global phase when using the Clifford and T gate library. In other
words, U can be written in the form

e“CyTC,T ...C,TC, 1, where C; is a Clifford unitary

for n = t(U) and cannot be written in the form above when n < t(U).

Problem 5.1.1. CUP[n, ¢| (Closest Unitaries Problem) is a problem of finding:

e the distance €[n, ¢| between R.(¢) and the set of exact unitaries with T-count at most
n)

e the subset Din, @] of all exact unitaries with T-count at most n and within distance
eln, @] from R.(¢); T-count of all elements of D[n,p| must be minimal.

The requirement for elements of D[n, ¢| to have minimal possible T-count is non-trivial.
This is because the set of all exact unitaries with T-count at most n and within distance
e[n, ¢] from R,(¢$) may contain unitaries with different T-count. We provide an example
of this situation in the next subsection.

A naive brute-force solution to CUP[n, ¢] [22] requires one to enumerate all exact
unitaries with T-count at most n. Our algorithm allows us to significantly reduce the size
of the search space used for solving CUP[n, ¢] when ¢[n—1, ¢] is known. Informally, if one
has already solved CUP[n—1, ¢] there is no need to solve CUP[n, ¢] from scratch: one just
needs to check if using exact unitaries with T-count at most n instead of exact unitaries
with T-count at most n—1 allows them to improve the quality of approximation over
previously achieved e[n—1, ¢]. It is much easier to accomplish this when approximating by
unitaries than when approximating by circuits. In the next section we describe in more
details the problem that we need to solve in addition to CUP[n—1, ¢] to find the solution
to CUP[n, ¢]. We call this problem the Restricted Closest Unitaries Problem.

5.2 Restricted Closest Unitaries Problem

We introduce the notion of minimal unitaries that is crucial for the definition of Restricted
Closest Unitaries Problem (RCUP) and use it to show the relation between CUP and
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RCUP. The definition of minimal unitaries is motivated by the fact that the distance
between the exact unitary Ulzx,y, k] and R,(¢$) can be simplified as

A(R.(8), Ule,y, k]) = V 1= [Re(weier2¢ %) (5.1)

In particular, we see that the distance depends only on z but not on y. We say that
unitary Ulz,y, k] is minimal if its T-count is equal to the minimum of the T-count over
all unitaries of the form Ulx,y', k] for ¢/ from Z]i, \/Lﬁ] Here is an example of minimal and

not minimal unitaries that we found when approximating R, (7/16):
U[3+5¢s—3¢3—2¢8, —2+2¢3—3¢3, 01/8,
U[3+5¢s—3C3—2G8,  3—2¢s+2G3,0]/8, (s 1= €™/

The first unitary has T-count ten and the second twelve. We state RCUP using the notion
of minimal unitaries as following:

Problem 5.2.1. RCUPIn, ¢, 6] (Restricted Closest Unitaries Problem) is a problem of
finding:

o The distance €[n, ¢, 0] between R,(¢) and the set of minimal exact unitaries within
distance § from R,(¢) and with T-count equal to n (in the case that there is no such
unitary we define g[n, ¢, ] =9),

e The set Din, ¢, 0] of minimal exact unitaries within distance €[n, ¢, d] from R,(¢p) and
T-count equal to n.

The next Lemma shows the relation between CUP and RCUP.

Lemma 5.2.2. CUP[n, ¢] reduces to CUP[n—1, ¢] and RCUP|n, ¢, d] for 6 =e[n—1,¢] as
following:

o Ife[n,¢,0] > e[n—1,¢] then n, ¢| = e[n—1, @]
and Dn, ¢] = D[n—1, ¢|

e [fe[n,d,0] < e[n—1,¢| then e[n, ¢| = €[n, ¢, J]
and Dn, ] = Din, ¢, ?].
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Proof. There are two alternatives for given n, ¢: using unitaries with T-count n in addition
to unitaries with T-count n—1 either allows one to achieve better approximation quality or
does not. In the first case the only possibility is e[n, ¢, §] < e[n—1, ¢], in the second case —
eln, ¢, 0] > e[n—1, ¢|. By definition D[n, ¢] contains only minimal unitaries, and condition
eln, ¢] < eln—1,¢] implies that all unitaries in D[n, ¢] must have T-count equal to n.
Therefore, we conclude that D[n, ¢,d] = D[n, ¢| when €[n, ¢, 6] < e[n—1, ¢]. It is also not
difficult to see that if using unitaries with T-count n does not improve the approximation
quality then Din, ¢] = D[n—1, ¢). O

Usually in practice one is interested in solving the set of problems CUP[n,¢| for
n between 0 and N where N is defined by amount of computing resources available.
Lemma 5.2.2 shows that this task is equivalent to solving the set of RCUP[n, ¢, 4,] for
n in the same range as above and properly chosen d,,.

5.3 Algorithm

In this section we present an algorithm for solving RCUP|n, ¢, 6] and prove its correctness.
In the previous section we noticed that the distance between R.(¢) and exact unitary
Ulz,y, k] depends only on x, k. Our algorithm searches for approximations of x instead of
directly searching for U|x,y, k]. This motivates the definition of T-count for the elements
of Zli, \/Li]
tr(x) = min {t(U[x,y, k])| U[z,y, k] — exact unitary}

If the minimum above is taken over the empty set we define t;(z) = co. In other words,
this means that there is no unitary over the ring Z[i, \/Li] such that z is its entry. We
discuss the conditions on z that guarantee the existence of Ulx,y, k] later in Section 5.5.
Function ¢ (z) is useful for both the algorithm description and the proof of its correctness.
It has several properties:

Proposition 5.3.1. T-count for elements of Zli, \/Li] has the following properties:
e T-count of any minimal unitary Ulx,y, k] is ti(x),
o 11(2) = tkmoa2(7),

o ti(x) = (),

o if4<t(r) < oo
then ty.(z)=sde(|z|?)—2+(sde(|z|*)+k)mod 2.
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The function sde (the smallest denominator exponent) is defined on numbers of the

form
(a + v2b)/vV2" (5.2)

where a,b, m are integers. For a given number, the value of sde is equal to the smallest
non-negative m such that the number can be written in the form (5.2).

To solve RCUP(n, ¢, ] we go through elements = of Z[i, \/Li] such that t;(z) = n in an
efficient way. There are two sources of efficiency: we split the search problem into two
smaller subproblems (the search for real and imaginary parts of ) and take into account
the necessary conditions that real and imaginary parts of the solutions must satisfy. The
latter further shrinks the search space. In more detail, the properties of ¢x(x) imply that
we only need to consider k equal to zero and one and limit the set of possible x using the
relation between t;(x) and sde. The next proposition shows constraints on x that can be

obtained in this way.
Proposition 5.3.2. Let x be from Zli, \/LQ] and ty(z) > 4 then x can be written as (ag +
V2bg + i(ay +V/2b1))/V/2™ for integers aj, by, m the following conditions hold:

o m < [(ti(z) +5)/2],

o aZ+ 202 < 2™ a2 4+ 2b2 < 2™

Note that we separated conditions on integers ag, by and aq,b; defining the real and
imaginary parts of x. The other set of constraints follows from the inequality

\/1 — ’Re(:veid)ﬂc’gkm) <4

(see (5.1)) and leads to additional constraints on a;, b; that are also separate for the real
and imaginary parts of x:

Proposition 5.3.3. Let x = (ap + V2bo +iay + \/§b1))/\/ 2m for integers aj, b; and non-
negative integer m and |z|> < 1. If \/1 — |Re(ze=")| < § < 1 then the following conditions
hold:

o [(ag+ v/2by) — cos(8)v/27| < §v/2m+1,
o [(ar +v/2b)) — sin(8) V2| < 5v/27H,
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In the first part of the algorithm (Fig. 5.1) we build arrays of a;, b; satisfying conditions
from Propositions 5.3.2,5.3.3 by calling the FIND-HALVES (Fig. 5.2) procedure. In addi-
tion, in FIND-HALVES we compute contributions ¢,. and ¢;,, from the real and imaginary

parts of = to \/1 — ‘Re(xei¢/zfgk/2) . More details on this are provided by the following

proposition:

Proposition 5.3.4. Let 6 < 1/2 and let x = (ag + /20y + i(ay + v/2b1))/v/2™ for integers
a;,b; and non-negative integer m. If the following holds:

o |(ag + v/2by) — cos(0)v/27| < §v/2mH
o [(ar+v2by) —sin()V27] < §v/2mH,

then

(V1= [Re(ze=))*V2™ = g1 + €im,
re = cos(0)(v/2™ cos(B) — (ag + bov/'2)),
Eim = sin(0)(v/2m sin(6) — (a1 + b1v/2)).

In the next steps of the algorithm we enumerate x from 7|3, \/Li] satisfying the necessary
conditions. We start with those that give the best approximations, in other words the

smallest value of \/1 — )Re(meiWQCS_k/Q) . For each candidate x we compute t;(x) using

procedure MIN-T-COUNT. When z with the required T-count is found, procedure ALL-
UNITARIES finds all minimal exact unitaries of the form Ulz,y, k] and the algorithm
terminates. Details on MIN-T-COUNT and ALL-UNITARIES are provided in Section 5.5.

It is important to note that step 8 of the algorithm (Fig. 5.1) is performed efficiently.
We first choose tuples corresponding to the real parts such that ¢,. belongs to the interval
I = [, 1] and then, for each ., choose tuples with €, in the interval [ag—&., 1 —&pe)-
The proofs of the propositions presented above are tedious and we postpone them to
Section 5.4. Now we use them to prove the correctness of the algorithm.

Theorem 5.3.5. The RCU-Algorithm (Fig. 5.1) solves RCUP[n, ¢,d] — the Restricted
Closest Unitaries Problem with T-count equal to n, angle ¢ and threshold § when n > 4
and § < 1/2.
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Proof. We first formally describe the output of the algorithm (¢*,9) and then prove that
it is indeed the solution to RCUP[n, ¢, 6]. Let us define 6, = =& — % for k = 0,1 and the
following sets:

K}

Sk = {x ‘tk(ac) =n, /1 — [Re(ze=)| < 5} :

We first consider the case when at least one of the Sj is non-empty and show that the
algorithm outputs a pair (¢*,d) such that

e* = min(e}, €}), where

£ = min{\/l — |Re (ze~k)| ‘ x € Sk} :

Let us also denote by 0, the elements of Sy within distance e* from R,(¢). It is not difficult
to see that at least one of the 0 is non-empty.

By the definition of Sy, the value €* is in the interval [0, §]. Therefore on some iteration
of the while loop €* will belong to interval I and will be in the list €q,...,e5;. Indeed,
suppose that Oy« is non-empty and x is its element. In other words z is such that tx«(x) = n
and /1 — |Re(ze~ )| = ¢*. Proposition 5.3.2 implies that = can be represented as

(ag + boV2 + ay + byin/2) /2™, for m = | (n + 1)/2] + 2.

¢

Propositions 5.3.2, 5.3.3 imply that integers a;, b; satisfy following the inequalities

(a0 + \/§b0) — cos(Op )V 2m| < V/2mH1§
|(a1 + \/§b1) — sin(fy )v2m| < /om+1§,

This implies that after executions of procedure FIND-HALVES, for

Ere = V27 cos(0) (v/2m cos(0) — (ag + bov/2))
Eim = V27 sin(0)(v/2m sin(0) — (a; + b1v/2))

the triples (g, ao,bo) and (g4, a1, by) belong to L.y and Ljy, g+ correspondingly. Now
from Proposition 5.3.4 we conclude that €* = ¢, + &;,,, and therefore tuple (¢*, ag, by, a1, by)
belongs to array A and €* is in list €q,...,e),. Let mg denote the position of £* in the
list. When the for loop reaches m = my the algorithm will terminate. It is not difficult
to see that the algorithm does not terminate before: this would contradict the minimality
of €*. The only way for the the algorithm to terminate earlier is if there is an x such that
V1 —|Re (zpe~i)| < e* and ty.(x) = n.
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The procedure ALL-UNITARIES is designed to output the set

0= U {Cé’U[x,y,k:] cymn

k
g

U ak:ay € Z[%%]}

=0,1
=0,7
where by U™ we denote the set of all exact minimal unitaries.

Let us now show that (¢*,0) is the solution to RCUP[n, ¢,d]. Suppose that the set
Din, ¢,0] is not empty and let Ulx, y, k] be some element of the set such that the distance
to it from R.(¢) is minimal. The distance can be expressed as:

AR(9), Ul oK) = |1~ [Refeerzg )| < o

Proposition 5.3.1 implies that ¢x(z) = n because Uz, y, k] is a minimal unitary with T-
count n. Now we show that we can make k£ equal to zero or one. Indeed, let us write
k = ko + 2s where kg is either zero or one, then

Re(:z:ei‘z’ﬂ(gkﬂ)

= [Re(agze 2o/

Again using Proposition 5.3.1 we see that t;(x(§) = n. In addition, we have

A(R-(6), Ul y, k]) = /1~ [Re((x¢)e%)|.

This implies that z(§ is in S, and £* is less then or equal to [n, ¢, d]. Now we show that
e* > €[n, ¢, 0]. Suppose that J, is non-empty for some k¢ and let = be one of its elements.
Then, we have tg,(z) = n and there exists a y from Z][i, \%] such that unitary Ulzx,y, ko
is minimal with T-count n. We also notice that d(R,(¢), U[z,y, ko|) = €* which concludes
the proof of equality £* = ¢[n, ¢, J].

Next we show that d coincides with the set D[n, ¢, d]. Consider some element ({U [z, y, k]
of 0. The set D[n, ¢, ] contains any unitary U together with all unitaries (U, therefore it
is enough to show that Ulz,y, k| is in D[n, ¢, d]. The fact that Ulz,y, k| is a minimal uni-
tary and t(x) = n implies that U[z, y, k] has T-count n. On the other hand, by definition
of O we have that d(R,(¢), U|x,y, k]) = * which shows that 0 is a subset of D[n, ¢, §]. Let
us now show that Dn, ¢, d] is a subset of 0. Let Ulz, y, k] be an element of D[n, ¢,d]. We
first note that Ulz,y, k] can be equivalently written as (§U[x(g °, y(s °, k—2s]. We chose s
in such a way that ky = k—2s is either zero or one. We note that Ulx(g®, y(s®, ko] is a
minimal unitary and therefore ¢, (x(s*) = n. Distance d is global phase invariant, which
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implies d(R.(¢),Ulx(s®, ys °, ko]) = €* and \/1 — |Re (z(5%e~#)| = *. We conclude
that z(g* is in Ok, and Ulz(g®, y(s °, k — 2s] is in 0. It is not difficult to see from the defi-

nition of d that if U is in d then for any integer ¢ unitary (JU is also in 0. This concludes
the proof of the equality D[n, ¢,d] = 0.

It remains to handle the special case when the problem has no solutions. Suppose that
Din, ¢,0] is an empty set. It is not difficult to show that this implies that both S} are
empty and vice-versa using the ideas from the main part of the proof. O

The restrictions on n and § in the theorem statement are not significant. It is much
easier to solve CUP[n, ¢] directly when n < 4. From our numeric experiments we found
that D[3, ¢] is always less than 0.1376 therefore each time RCUP[n, ¢, 0] is used it is used
with parameter 0 < 1/2.

It is possible to make the FIND-HALVES procedure (Fig. 5.2) slightly more efficient.
We found that the length of the interval [@min, Gmax] in it is usually less than 1/2 therefore
the internal for loop can be replaced with the function round. It is also not difficult to see
that the while loop of the procedure can be easily parallelized. In our implementation of
the algorithm we benefit from both of these observations.

5.4 Technical details

In this section we prove Propositions 5.3.1-5.3.4. First we need to recall some useful
results and definitions from Chapter 3. It is possible to extend sde on exact unitaries as
sde(Ulz,y, k]) = sde(]x|?). The following result relates it to a unitary T-count:

Lemma 5.4.1 (Corollary of Theorem 3.0.5). Let U be a unitary over Zl[i, \/Li] such that

sde(U) > 4 and j,1 be integers such that sde(HT'UT'H) = sde(U) + 1, then
t(U) =sde(U) — (jmod 2) — (I mod 2).
Now we provide proofs of all the propositions.
Proof of Proposition 5.3.1. The first property follows directly from the definition of 4 (z)
and minimal unitaries. To prove the second one we notice that multiplication by the

Phase gate P := diag{1,i} does not change the T-count of a unitary and Ulx,y, k|P =
Ulx,y, k + 2|; the definition of ¢;(x) implies tx(z) = tgy2(x). To prove the third one we
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notice that (sU|z,y, k| = U[Csx, (sy, k + 2]. To prove the fourth property let us consider
minimal unitary Uz, y, k]. Its T-count is at least 4 and therefore it requires at least three
Hadamard gates to be implemented. This implies that sde(Ulx, y, k]) is greater than four.
Lemma 5.4.1 applies to Uz, y, k] and implies that there are three possible values of t(x)

sde(Ulx,y, k]) — 2,sde(U[x,y, k]) — 1,sde(U[z,y, k]).

A minimal unitary cannot have T-count equal to sde(U[z,y, k]). Indeed, if this were true
the unitary TU|[z,y, k]T" equal to Ulz, y(s, k] would have T-count sde(U|x, y, k]) —2 which
contradicts the minimality of Ulz,y, k]. Now we show that the T-count of Ulx,y, k] is
completely defined by the parity of sde and k. The determinant of U|x, y, k] is equal to (f.
In addition, the T-count of Uz, y, k| must have the same parity as k because the T gate is
the only gate in a Clifford+T library with determinant equal to an odd power of (g. For
example, if sde is odd and k is even the T-count can only be equal to sde(Ulz,y, k]) — 1.
By considering other possible parities we get the required expression for ¢ (x). O

Proof of Proposition 5.3.2. Any x from Z]i, \/Li] can be written as (ag 4+ v/2by + i(a; +
V2b1))/v/2™. Let us choose m to be minimal. Integer m must be positive, otherwise
either cannot be an entry of the unitary or its T-count must be zero. Note that at least
one of the a; in the expression must be odd, otherwise m is not minimal. It is useful to
expand |z|* as

(a2 + a?) + 2(b2 4+ b?) 4+ 2v/2(agbo + a1 b;)

2m '

If one of the a; is odd and the other one is even we get sde(|z|?) = 2m. Let us now consider
the case when both a; are odd. In the case that by, b, have different parity we get

(ag + a3) + 2(b3 + b3) = 0mod 4, agby + a1b; = 1 mod 2

and conclude that sde(|z|?) = 2m — 3. In the other case, when by, by have the same
parity, we get (a3 + a?) + 2(b3 + b3) = 2mod 4 and sde(|x|?) = 2m — 2. In the worst case
2m — 3 < ti(x) 4+ 2 which gives us a bound on m.

To prove the second part of proposition we consider minimal unitary a Ulz,y, k] and
note that |z|> and |y|? can be expressed as

(w0 + V221) /2™, (yo + V2y1) /2™

The equality |z|> + |y|*> = 1 implies o + yo = 2™. Using the non-negativity of yy we get
7o = (ag + a1) +2(bg + by) < 27

which leads to bounds on a;, b;. []
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Proof of Proposition 5.5.3. First we show that |z — ¢ < /20. We expand |z — e|?
and note that |z < 1 implies |z — €] < 2 — 2Re(ze™ ). Then we get the bound
2—2Re(ze™ ")) < 262 from /1 — |[Re(ze~"?)| < § < 1. Second, as for any complex number
z, absolute values of its real and imaginary parts are less than |z|, from |z — €| < /26 we

conclude:
[(ao + v/2bg) — cos(0)v/2m| < v/2m+1§
(a1 4 V/2by) — sin(0)v/27| < V/2m+1§

O

Proof of Proposition 5.5./. First we show that Re(re™®) > 0. Inequalities for the real
and imaginary parts of v/2m(z — €) imply |z — €| < 2§ and |z| > 1 — 2. Using that
|z — €®? = 1+ |2]?> — 2Re(ze ™) we conclude that Re(ze ) > 1 — 2§ which is always
non-negative when § < 1/2.

Second, we use Re(ze™%) > 0 to write

(VT = TReae )27 =
V2™ (1 — cos(0)Re(z) — sin()Im(x)).

By replacing 1 with cos(#)? + sin(#)? we come to the required conclusion. O

5.5 Norm equations

In this section we discuss mathematical tools required to compute tx(z) (procedure MIN-
T-COUNT) and to enumerate all minimal exact unitaries with top-left entry x — unitaries
of the form Uz, y, k| (procedure ALL-UNITARIES). Alternatively these two problems can
be reformulated using equation

yl2 =1 - Jo? (5.3)

which expresses that U[z,y, k] must be a unitary matrix. Proposition 5.3.1 implies that it
is easy to find ¢;(z) when the equation above has a solution for some y from Z[3, \/LE] The
problem of enumerating all unitaries is directly related to enumerating all the solutions of
the equation above.

We reduce equation (5.3) to a relative norm equation between two rings of algebraic
integers:
Z(Gs) := {ao + arCs + ax(§ + a3 | a; € Z} (g =1
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and its real subring Z [\/5} = {a + b\/ﬂ a,be Z}. Indeed x and y can be expressed as
2/ /2" and o/ /v/2" where z’ and y are from Z [(s]. Equation (5.3) can be rewritten as

Y|P =2"— o' = A+ BV3 ez [ V3] (5.4)

which is a special case of a relative norm equation well studied in the literature[14, 13].
Conditions when this equation is solvable and methods for enumerating its solutions are
well known. Algorithms required for this are implemented in the package PARI/GP [16].
Next we give a brief simplified overview of results related to equation (5.4).

Symmetries of equations frequently provide useful insights about their solvability. As
it was observed in [68], the automorphism of Z [(s] and its real subring Z [v/2] defined as

(G)® = =G, (V2)* = —V/2,(a)* =a, foracZ

is useful when studying equation (5.4). It is not difficult to check that mapping (-)*
preserves addition, multiplication and commutes with complex conjugation and | - |?.
Therefore, if y' is a solution to equation (5.4) then (3')® must be a solution to equa-
tion (A + Bv2)* = A — By/2. This implies that the necessary condition for equation (5.4)
to be solvable is

A+BV2>0,A—BV2>0. (5.5)

However, as we will see below, this condition is not sufficient.

The problem of solving the relative norm equation can be reduced to a set of subprob-
lems. Suppose that A+ By/2 can be written as a product (A; + B1v/2)(As + B2v/2) and y;
are solutions to the relative norm equation with right-hand side A; + Bj\/§. In this case
Cryrya, CEutya, Coynys, Chytys are solutions to equation (5.4). More generally, any element
A+ BV2of Z [\/5] can be represented as:

k(0) & k(N) 1 (M
/3OO o

where v is a unit in Z [\/ﬂ (such element of Z [\/ﬁ] that u(u)® = 1) and §; are such that
€;(&;)® are prime numbers of the form 8n =41 and p; are prime numbers of the form 8n =+ 3.
This is related to the general theory of quadratic extensions and classification of primes
into ramified, split and inert (see Chapter 3.4 of [15]). When the necessary condition (5.5)
holds the right hand side can be represented as

k(0) .k k l l
(V2= 1) Ov2 g™ g p ! (5.6)
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where §f(j ) and (§f(j))’ are positive. Here v/2 — 1 is a fundamental unit of Z [\/5] (for
results on unit groups of quadratic extensions see Chapter 3.4.2 of [15]). The condition
(5.5) implies that the sum k(0) 4 /(0) must be even. The equation with right—hand side
A+ Bv/2 is solvable if and only if each of the equations |y/|> = k(] Y= p; "9 is solvable.
Next we discuss the solvability of the equations above in more detalls

When k() and [(j) are even the equations obviously have a solution. Equation |y/|* = ¢;
has a solution if and only if £(£)*® is a prime of the form 8n+1. A probabilistic polynomial
time algorithm for finding a solution to it can be found in [68]. In this case, in the theory of
cyclotomic number fields, it is said that prime £(£)® splits completely [70]. The solvability
of equation |y/|? = p; is related to two subrings of Z[(s] : Z[iv/2] and Z[i]. When p;
has form 8n—3 it splits in Z[i]. In other words, there is a solution to the equation of the
form y'=a %+ bi for a, b integers. When p; has form 8n+3 it splits in Z[iv/2] — there is a
solution to the equation of the form y'=a = ibv/2. Both cases can be solved in probabilistic
polynomial time (see Chapter 4.8 [13]).

When decomposition (5.6) is known the solution to the equation (5.4) can be found
efficiently. The problem of finding the decomposition can be reduced to factoring integers.
We note that mapping N () := £(€)* is multiplicative and applying it to (5.6) gives us
integer

(— 1O O ()0 (€PN pe,

Therefore by using integer factorlng we can find N(&;),k(7).p;,l(j). Recall that NV (§;) are
prime numbers of the form 8n 41 and p; are prime numbers of the form 8n £ 3. Numbers
¢; can be found in probabilistic polynomial time using the algorithm from Chapter 4.8 [13]
which is also a part of PARI/GP [16]. Therefore to implement the predicate IS-SOLVABLE
in the MIN-T-COUNT procedure (Fig. 5.3) it is sufficient to first check the necessary
conditions (5.5). If they hold, compute the norm N of the equation right-side, and find

N(&),k(7),pj,1(j). Return TRUE if there is no N (§;) of the form 8n — 1 such that k() is
odd, and FALSE otherwise.

To demonstrate how to enumerate all the solutions to (5.4) we provide an example.
Consider the equation:

/|2 = 1828037034 — 1292617 383v/2.
The norm A of the right-hand side is 2 - 193 - 2297 - 32. We find that equation can be

rewritten as
/2= (V21" -v2- (15— 4v2) - (53 — 16v/2) - 3

The general form of the solution is

Y = (V2= 1)y Y Yo Y, Y € {y;,y )
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where yo = 1 — Cs, 1 = =1 =3 + G — 2¢§, y2 = 3 — 6Cs — 2¢2 + 2¢8, ys = 1 £ iV/2.
We do not consider complex conjugation of 3, because (yo)* = (3yo. This is related to
the fact that two is the only ramified prime in Z [(g] [70]. Taking into account that k can
take values from zero to seven we find that there are 64 different solutions to the example
equation. To implement ALL-UNITARIES procedure we need to factorize the right-hand
side of the relative norm equation (5.4), find all possible solutions of it as in the example
above, write down all the unitaries and pick those which are minimal.

5.6 Experimental results

In this section we report empiric estimates of our algorithm performance and quality of
approximations produced by the algorithm. We study memory, processing time required
by our algorithm and precision achieved by it. For our experiments we used a high per-
formance server with eight Quad-Core AMD Opteron 8356 (2.30 GHz) processors and 128
GB of RAM memory. Our current algorithm implementation completely utilizes the pro-
cessing power of the server and runs 32 threads in parallel. The binary and the source
code are available at https://code.google.com/p/sqct/. We also discuss experimental
verification of our algorithm’s implementation.

To get the estimates for the time and memory required to run our algorithm we found T-
optimal approximations of R, rotations by angles of the form 27k/1000 for k = 1, ..., 1000.
We used circuits with up to 109 T gates for the approximation. The only known algorithm
that gives the same optimality guarantees as our algorithm is a naive brute force search [22].
Let Npps and tgps be the number of records and user time needed for brute force search.
Since the number of unitaries with T-count at most n scales as 192 - (3 - 2" — 2) [55]
both log,(Ngrs) and log,(tgrs) equal to n up to an additive constant. The most memory
consuming part of our algorithm is the FIND-HALVES procedure. The base two logarithm
of the number of records it produces scales as 0.17n + 5.07 on average and as 0.25n + 3.15
in the worst case (Fig. 5.4). On Fig. 5.5 we see that FIND-HALVES is also the most
time consuming part of the algorithm and, on average, logarithm base two of the time in
milliseconds required to run the procedure scales as 0.21n — 10.41. Though our algorithm
requires an exponential amount of time and memory, the constants in the exponent are
between four and five times better than for naive brute force search. This allows us to find
T-optimal approximations with precisions up to 107'° using modern computers. This is
sufficient for most applications, as we discussed before.

On average, the number of T gates needed to achieve a given quality of approximation
e scales as 3.067 log(1/e) — 4.322 (Fig. 5.6). The knowledge of this scaling is important for
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estimating the resources required to run quantum algorithms having R, rotations as their
building block. The best previous estimate was based on values of log,(1/¢) less then 14
due to the inefficiency of the naive brute force approach [22].

We computed optimal circuits for R, rotations by angles 7/2% for k = 3,...,27. This
set of rotations is used in the Quantum Fourier Transform which is a common building
block for many quantum algorithms. We found approximations reaching precision up to
10~ (Fig. 5.8). To make a direct comparison to [68] we also found optimal approximations
of R,(0.1) using up to 153 T gates and reaching precision 3.18-107!6 (Fig. 5.7). Computing
all the approximations of R,(0.1) took us 33.2 hours in total (user time). Our circuits are
around 25% shorter than those obtained using the algorithm from [68]. All optimal circuits
found by our algorithm are available online at https://code.google.com/p/sqct/.

To verify the implementation of our algorithm, we implemented a naive brute-force
search algorithm that also solves Closest Unitaries Problem. We ran both algorithms to
find all optimal approximations of rotations R,(27k/1000) for k£ € [0,1000) with at most
18 T gates. For this set of inputs algorithms produce identical results. The verification
procedure is a part of SQCT 0.2 and can be executed via the command line option “-B”.
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Input: n,¢,0 > n — T-count, R,(¢) — target rotation
Lm<+ |[(n+1)/2]+2
2: for k=0,1do

3:
4:

5:

6

L,cr < FIND-HALVES(cos(¢ — 7k/8),m, 0)
Lims. < FIND-HALVES(sin(¢ — wk/8), m, §)
> (described on Fig. 5.2)
end for
. Interval I < [0, o] > Pick o > 0 based on L.k, Lim k

7. while 1 N [0,4] # @ do

8:

10:
11:
12:
13:
14:
15:

16:
17:

18:
19:
20:
21:
22:
23:
24:

Find an array A of tuples (g, ag, by, a1, b1, k) s.t.:
® (Epe, g, by) from Ly
® (Eim, a1, by) from Ly,
ec=c..+eimand e € INJ0,J]
Sort A by ¢ in ascending order
€1 < ... < ey + all distinct € that occur in A
for j =1to M do
0+ @
for all (¢;,ap,bo,a1,b1) € A do
2 ag + bov/2 +i(a; + b1V2)
ng <~ MIN-T-COUNT(2', m, k)
> (computes t;(z'/+/2™), see Sec. 5.5)
if n = ng then
0 < 0 U ALL-UNITARIES(2', m, k)
> (enumerates minimal unitaries
> Ulx'/v/2™,y, k], see Sec. 5.5)
end if
end for
if 0 # @ then
return (¢;,0) > Solution
end if
end for
Replace I = [ag, 1] by I = [on, 201 — )

25: end while
26: return (6, 9) > No solutions
Output: (£%,0° )

n Yn,g

Figure 5.1: RCU-Algorithm: the algorithm for RCUP[n, ¢, d].
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Input: ,0 e R,meZ,m>0
1. procedure FIND-HALVES(«, m, J)

2:

10:
11:
12:
13:
14:
15:
16:

W av2m e + §y/2m

b+ |—v2m]

v an/2m — b2 > true on every step
R+—o

while b < [v/2™] do
Umin = [V — €], max = |V + €]
for all a € [amin, Gmax] N Z do > See Sec. [*]
if a® + 2b% < 2™ then > for discussion
R+ RU{((x —a)W,a,b)}
end if
end for
bb+1,x+x—+2
end while
Sort R by first element in ascending order
return R

17: end procedure

Figure 5.2: FIND-HALVES procedure. Finds all numbers of the from a + v/b that sat-
isfy conditions |ay/2™ — (a 4+ bv/2)| < §v/2™, a® + 26> <= 2™. Returns a list of tuples
(V2= (an/2m — (a + by/2)),a, b) sorted by first entry.
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Input: 2’ = ag + bov/2 + i(ay + b1v/2),m,k € Z,m > 0
1: procedure MIN-T-COUNT(z',m, k)
2 a+bv2 e 2™ — |22 s < sde(|2']?/2™)
if s <4 then
return oo
end if
if IS-SOLVABLE(a++/2b) then
return s — 2 + (k4 s)mod 2
else
return oo
10: end if
11: end procedure
Output: n

Figure 5.3: MIN-T-COUNT Procedure. Outputs t,(z'/+/2™) if it is greater or equal to 4
and oo otherwise.

32 T T T T T T T T T T T
| o Inean ]
281 017 + 5.07 ]
24 | - max -
| |—0.252 4 3.15 i
—~ 20| :
Z L |
= 16+ o
g b |
< e |
: »eﬁ;:‘;;q °°°°°°°°° ;
L | | | | | | | | | | | 17

0 20 40 60 80 100 120

T-count

Figure 5.4: Scaling of the number of records found by FIND-HALVES procedure when exe-
cuting RCU P algorithm for a given T-count. Graph shows average and maximum number

of records per given T-count. The data is aggregated over T-optimal approximations of R,
rotations by angles 27k /1000 for & = 1,...,1000.

75



20 T T T T T T T T T T T

T
18 | |-FIND-HALVES ——0.21z — 10.41 | |
16 | |-MERGE-HALVES ——0.162 — 4.73 ||
14 | |- MIN-T-COUNT B
< 127 i
%‘B 10 B il
- 8 i
6 i
41 i
20 i
O | |
0 20 40 60 80 100 120

T-count

Figure 5.5: Average user time ¢ (milliseconds) required to run different parts of RCUP
algorithm for a given T-count. Each point on the graph was obtained by averaging over
T-optimal approximations of R, rotations by angles 27k /1000 for k = 1,. .., 1000.

T T 1 T T T 1 T T T 1 T T T T 7T
mean
—3.067r — 4.322
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o0
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0 5 10 15 20 25 30 35 40
z=log,(1/¢)

Figure 5.6: Scaling of a circuit T-count required to achieve given approximation precision €.
Each point on the graph shows average precision that can be achieved when using circuits
with given T-count. The average is taken over T-optimal approximations of R, rotations
by angles 27k /1000 for k= 1,...,1000.
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Figure 5.7: Scaling of a circuit T-count required to achieve given precision € when approx-
imating R,(0.1).
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Figure 5.8: Scaling of a circuit T-count required to achieve given approximation precision
e. Graph shows average precision that can be achieved when using circuits with given T-
count and maximal T-count required to achieve given precision. The results are aggregated
over T-optimal approximations of R, rotations by angles 7/2* for k = 3,...,27.
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Chapter 6

Single qubit approximation with the
Fibonacci gate set

In this chapter we develop all the technical tools required to solve the approximate synthesis
problem for the Fibonacci gate set using a number theoretic method. First we prove
Theorem 2.4.2 and Theorem 2.4.4 related to the exact synthesis of single qubit unitaries
over the Fibonacci gate set. Next we develop a probabilistic algorithm for approximating
single qubit unitaries by exact unitaries. As a result we show how to approximate any
single qubit unitary with precision € using a circuit of length O(log(1/¢)). On average the
circuit is found in time polynomial in log(1/¢) (subject to Conjecture 6.3.4). At the end of
the chapter we provide the numerical evidence supporting Conjecture 6.3.4 and evaluate
the implementation of the approximation algorithm. We show that the algorithm finds
circuits that are only around 20% longer than optimal ones found using the brute force
search. We also estimate that the algorithm produces shorter circuits than the Solovay-
Kitaev algorithm. The circuits we find are 10 times shorter for precision 1071 and 1000
times shorter for precision 1073° than those found by the Solovay-Kitaev algorithm (see
Figure 6.13).

6.1 Exact synthesis algorithm

The goal of this section is two-fold: first, to classify all single-qubit unitaries that can
be implemented exactly by braiding Fibonacci anyons and second, to describe an efficient
algorithm for finding a circuit that corresponds to a given exactly implementable unitary.
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We start by introducing rings of integers and use them to describe the most general form
of exactly implementable unitaries. Next, we introduce a complexity measure over the
unitaries by using ring automorphisms. Finally, we describe the exact synthesis algorithm:
a process, guided by the complexity measure, to find a circuit for an exactly synthesizable
unitary.

For the purpose of this section it is more convenient to consider the elementary gates

T: ! ! aF: ’ \/F aT:\/5_17CIO:€2i7T/10-
0 Cio VT T 2

instead of o7 and o9 (see equations (1.1),(1.2)). We call a circuit composed of F,T and
C10Z gates an (F, T )-circuit, where Z is the identity gate and (10Z is a global phase gate.
The following relations imply that any unitary that is implementable by an (F, T )-circuit
is also implementable by a (o7, 03)-circuit and vice-versa:

o1 = (Clol—)67-7, T = (ClOI)2(01)3>

6.1
09 — ((101)6.77'7.7:, .F = (<102)40'10'20'1. ( )

For the applications considered in this work the global phase gate (1¢Z is irrelevant.

Two rings are crucial for the exact synthesis algorithm: Z[(i0] and Z[7]. It is not
difficult to check that both definitions presented in the main text are correct: the sets
defined above are both rings. It is straightforward to check that both sets Z [(1o] and Z [7]
are closed under addition. To show that both sets are closed under multiplication it is
sufficient to check the following equalities:

Go=—1+Co—C(H+¢y Go=-1, 7?=1-1.

The equality 7 = (3, — (3, implies that Z[r] is a subring of Z [(;o]. Both rings are well
studied in algebraic number theory.

The proof of Theorem 2.4.J. We first show that any single qubit unitary over the Fibonacci
gate set can written as follows

oyt
YT  —ar

Let us first note that both F and 7 are unitaries of the form above. The product of a
unitary V[z,y, k| and F or T also can be again expressed in the form above. This shows

Vie,y, k| = ( ) , T,y € Z[Cio)-
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that any unitary corresponding to a circuit consisting of the F and T gates can be written
as V[z,y, k]. The required statement follows from this, because o7 and o5 can be expressed
in terms of F and T gates.

The proof of the converse statement follows from Theorem 6.1.3 proved later in this
section. O

Recall that, an automorphism of Z [(3o] that plays a fundamental role in the construction
of the exact synthesis algorithm is the mapping

() : Z[Ci0) = Z[Cro) such that ¢§ = ¢3. (6.2)

By definition, a ring automorphism must preserve the sum and the product. For example,
we find that

(@)= () - (@) = QP - ()=
Taking into account that ¢ = 741 (i.e., ¢ is from Z [7]) we see that (.)*® restricted on Z [7]

is also an automorphism of Z [r]. The other important property of automorphism (.)* is
its relation to complex conjugation (which is another automorphism of Z [(10]):

(*)® =z, (6.3)

For example, this implies the equality (z*)* = (2*)*, which is used in several proofs in this
work. It also implies that |z*|* = (Jz|*)* because |z|* = zz*. Recall that, the complexity
measure £ is defined as p (u) = (|ul?)*.

The notion of the Gauss complexity measure [52] G (u) := p (u) + |u|” is a useful tool
in our proofs. The example in Figure 6.1 illustrates the intuition behind G and p. It is
always the case that p(u) < G (u) < p(u) + 1. The following proposition summarizes
important properties of the Gauss complexity measure.

Proposition 6.1.1. For any x from Z[Cy], the Gauss complezity measure G (x) is an
integer, and there are four possibilities:

a
b

c then x € {TC{“O, go(fo} .k — 1integer,

I~~~

(z) =0

G (z) =2, then x = (¥, for k — integer,
(z) =3
(z) =5

~— ~— ~—
@Q
8

and G (a + bCio + cCEy + d(3y) <5/2(a® + b* + & + d?).
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n Unp, G (U’n>
0 1 1

1 Cto — o 3

2 2 — (o + ¢y 13

3

—3+5C0 —2¢ — 1 57

Figure 6.1: Values of the Gauss complexity measure for the family of unitaries
Ultin, U, kn) = (FT)", for n from {0,1,2,3}.

Proof. As observed in [52], G (a + bCig + cC3y + d(3y) is a positive definite quadratic form
when viewed as a function of a, b, ¢, d. We found by direct computation that it takes integer
values when a, b, ¢, d are integers, its minimal eigenvalue is 1/2 and its maximal eigenvalue
is 5/2. This implies an upper bound on G in terms of a,b, ¢, d and an inequality

G (a+bCio + c(y +dCy) = (a® +b° + &+ d?) /2.

The implication in (a) follows immediately from above. The inequality also allows us to
prove the proposition by considering a small set of special cases

(a,b,c,d) € S ={-3,-2,-1,0,1,2,3}*.

In all other cases, G (a+ blio + (3, + d¢3)) is greater than eight, which corresponds to
alternative (d). To finish the proof it is sufficient to exclude quadruples corresponding to
0, ¢y, T ¢k from S and find that the minimum of G (a + bCyo + (3 + d(3y) over the
remaining set is 5. O]

To prove the correctness of the exact synthesis algorithm (Figure 2.6) we need the
following technical result.

Lemma 6.1.2. For any u,v from Z[Cy) such that p(u) > 2, there exists ko(u,v) such

that:

(@) p((u+ o)) fulu) < Cy <1,

®) e ((w+ ™oy Ju(u) < 5 (V5 — 1)+ ro(u (w),
where ro(z) is in O(1/x)
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If in addition p (u) > 4, there exist ky(u,v) such that:

(&) p((u+Co" ")) () < Cr <1,

(@) g ((ut G o)) Ju(u) < @ — /@) + rilp (),

where ri(z) is in O(1/x)
For any k, the ratio p ((u + (&o)7) /1 (u) is upper bounded by @*(1 + /T)%.

We first prove that the exact synthesis algorithm is correct and efficient and then
proceed to the proof of Lemma 6.1.2. Theorem 2.4.4 is the corollary of the following
theorem.

Theorem 6.1.3. For any exact unitary U over the Fibonacci gate set:

1. the exact synthesis algorithm (Figure 2.0) terminates and produces a circuit that
implements U,

2. n, the minimal length of (F,T)-circuit implementing U, is in O(log(u (U))),

3. the algorithm requires at most O(n) arithmetic operations and outputs an (F,T)-
circuit with O(n) gates

Proof. The termination of the while loop in the algorithm follows the fact that by Lemma
6.1.2 the complexity measure of U strictly decreases by a constant factor. Indeed, from
Figure 2.6 consider ratio u (FT?V) /u(V) . If we denote the upper left entry of U, by
u and the lower left by vy/7, then the ratio is precisely equal to the one considered in
Lemma 6.1.2. By picking j that minimizes p (F77V) we ensure that implications (a) and
(b) of the Lemma hold. After the loop execution we have p (V') < 2. By relation between
p and G we have G (u) < 2 and according to Proposition 6.1.1, the only possible values
of G of the upper left entry u of U are either 0 or 2. There is no exactly synthesizable
unitary with u = 0. In other words, there is no v from Z [(y0] such that equation 7]v|> =1
is solvable. The only remaining case is u (u) = 2. By Proposition 6.1.1, u must be a power
of (19, therefore V' must be representable as (f;,77. Correctness of the algorithm follows
from the fact that during the algorithm execution at steps 3 and 6, it is always true that
U = UgV, where Ugs denotes a unitary that is implemented by circuit C'. This implies that
any exactly synthesizable unitary U can be represented as an (F, 7T )-circuit.
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Now we prove the second and the third statements. Taking into account that F? =T
and 710 = 7, any exact unitary can be represented as the following matrix product

¢Rm1) k() rh(m=1) pyrk(m=2) k() (6.4)

where k(j) are from {0,...,9}. The exact synthesis algorithm produces the circuit that
leads precisely to representation (6.4) and m in this case is the number of steps performed
by the algorithm. Lemma 6.1.2 implies that m is upper bounded by log;(u (U)) + ¢1, as

2

%(\4/5 —1)? < 1/3. This gives an upper bound on the length of the circuit produced by
the algorithm and also on n, the minimal possible length of any circuit that implements

U.

Consider now representation (6.4) obtained from a minimal length (F, 7 )-circuit im-
plementing U. We prove a bound on p (U) by induction. First, by direct computation,
i (FTHO) is less than three. Next, we introduce V; = FTHU=D  FTHO and by the
third part of Lemma 6.1.2 find

p(FTHOV;) < @1+ V)P (V) -

We note that multiplication by (fémH)Tk(m) does not change the complexity measure and
conclude that log(x (U)) is upper bounded by some linear function of m. It is not difficult

to see that m is less than n. This finishes the proof of the theorem. O

The important property of automorphism (-)® used below is its relation to complex
. . e N . . . ) 2\e
conjugation (z*)* = x*. In particular, it implies that |u®|” = (Ju|")*.

Proof of Lemma 6.1.2. To estimate ratio u ((u + (fyv)7) /p (u) we first expand | (u + (fyv)*® ?
and see that it is equal to

\u']2 + \v'\2 + 2Re(u®(v*)* 1’03’“).

Here we used that ¢, = (3. It is convenient to introduce
. . * o2

gio . U (v_) S
[us] \ Jv*] Jus|”

ke |2
[t G0y 4 oRe (io-amm) v (6.5)

In terms of o, €*® we find

ju?]
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It is always possible to choose ko(u,v) and k;(u,v) such that for k = ko(u,v) and k =
2k1(u,v) the right hand side of the equation above is upper bounded by fo(«) :=1+ a —
2y/acos(m/10) and fi(a) := 1+ a — 2y/acos(m/5) correspondingly. Next we note that «
is a function of y (u). Indeed, |u|* + 7 |v|* = 1 implies

2 2\e 02 |2
L= ([ul” +7[v[")* = |u*]" = v

We find that o = 7(u (u)—1) /1 (u). To obtain estimates (a), (¢) we notice that fo(a(u (u)))
and fi(a(u(u))) are both monotonically decreasing functions of u (u). Therefore we can
choose Cy to be the value of fy(a) when p(u) = 2 and Cy to be value of fi(a) when
p(u) = 4. In both cases we find by direct computation that Cy and C are strictly less

than 1. To prove (c¢) and (d) we define ro(u(u)) = ©*fola(u(u)) — %2(\75 — 1)? and
ri(p(u) = @* fi(a(p(u) — ¢*(¢ — /). Again by direct computation we find that 7 2(x)

are in O(1/x). O

6.2 Norm Equation

In this section we summarize the tools needed to reconstruct an exact unitary given one
of its entries. This is a crucial part of the approximation algorithm presented in the next
section. As we will discuss, in the most general setting this problem is hard. Here we are
in particular interested in identifiying the instances of the problem that can be solved in
probabilistic polynomial time. We present efficient algorithms for both: the identification
of an “easy” instances and solving them. This is a short summary of a more detailed
discussion of this topic presented in [46].

There are two distinct cases of an exact unitary reconstruction problem and both are
reduced to the problem of finding = from Z [(y0] such that

|z|? = & for € from Z[1].

The first case is when we are interested in finding an exact unitary V{u, v, k| given u and
the second is when we given v; in the first case we find v by solving the equation with
¢ = ¢(1 — |ul?) and in the second we find u by considering ¢ = 1 — 7|v|>. The equation we
introduced called a relative norm equation because mapping | - |? from Z [(0] to Z[7] is a
relative norm of a relative extension Z [(10] /Z [7].

We first discuss how to identify “easy” instances of the problem. We present an ef-
ficiently computable criterion for these instances summarized on Figure 6.2. The key
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Input: ¢ € Z|7]
1. procedure EASY-SOLVABLE(¢)
2: if £ <0or&® <0 then

3: return FALSE

4: end if

5: n < NT(§)

6: while n = Omod 5 do
7 n <« n/b

8: end while

9: if n = 1mod5 then
10: return IS-PRIME(n)
11: else

12: return FALSE

13: end if

14: end procedure
Output: TRUE if ¢ is an easy and solvable instance of the problem: find x from Z [(y0]
such that |z]* = & FALSE otherwise.

Figure 6.2: Procedure EASY-SOLVABLE. Checks if the given instance of the norm equa-
tion can be solved in polynomial time.

observation for this and for solving the more general instances of the problem is that | - |2
is a multiplicative function. In other words, if the right-hand side of the equation can be
written as & - & we can find solutions for each & and combine them to get solution to
the original equation. For this reason, the relation of divisibility on elements of Z [7] is
one of the basic tools we are using. We say that & divides ¢ if there exist & from Z 7]
such that £ = £&. As usual, we use notation & |£ for this relation. In this case we also
write {&=0mod &y, or, more generally 7;=n, mod &; when &;|(n2 — 11). The alternative way
of understanding the divisibility of elements of Z [7] is using an algebraic norm of Z 7]

N, (@ +b7) := (a +b7)(a + b7)* = a® — ab — b°.

It turns out that & |€ if and only if N, (&) |V, (§). This way we can think about divisibility
of elements of Z [r] using more familiar notion of divisibility of usual integers. Using N,
we define the most basic instances of the norm equation problem — elements of Z [r] such
that their algebraic norm /N, is a prime number. It turns out that they are not just basic
but are the ones that can be solved in probabilistic polynomial time (as we show later in
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this section). We call an instance of the problem “easy” if for the right-hand side £
Ni(§) = 5"p, where n is an integer and p is prime. (6.6)

We use a polynomial time primality test (subroutine IS-PRIME in procedure EASY-
SOLVABLE) to efficiently determine if the instance is “easy”.

The following conditions are necessary and sufficient for an “easy” instance of the
equation to be solvable:

e £>0,">0

e p =5n+ 1 for integer n.

Condition & > 0 required because |z|? is always positive. The same must hold for £°
because |x°|? = (|z|*)® (this follows from the relation between automorphism (-)® and
complex conjugation discussed in Section 6.1). The condition on p is more involved and
we will discuss it further in this section. All these conditions are checked by procedure
EASY-SOLVABLE; if EASY-SOLVABLE returns TRUE there exists a solution to the norm
equation that can be found efficiently.

Now we discuss an efficient method for solving “easy” instances of the problem. The
representation (6.6) of N, (&) implies that & itself can be represented as & (2—7)". It is not
difficult to find that IV, (2—7) = 5. However, an element 2—7 is not the only element of Z [7]
with an algebraic norm 5 and it is not obvious a priori that the mentioned representation
of ¢ always exists. We postpone the discussion of this until we introduce the required
mathematical concepts further in the section. The problem of solving an “easy” instance
is now reduced to two subproblems. The first one is to solve |z|* = 2 — 7. Tt is not difficult
to check that (o + (j, is a solution. The second subproblem is |z|> = & where N, (&) is
prime. The rest of the section is devoted to finding a solution to it in an efficient way.

To find a solution efficiently we exploit the relation between norm equations and divis-
ibility on a deeper level. This time we need a relation of divisibility defined on elements
of Z [C10], which can be defined similarly to the way we did it for Z [r]. We rewrite the
equation as

r-xt=&.

If there is a solution x this will mean that x divides & when they both considered as
elements of Z [(19]. Therefore we need to search for the solution to the norm equation
inside the set of possible divisors of &;. As & is prime in Z[7] this suggests there are
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not too many possible divisors. To make this intuition precise we need to understand the
relation of divisibility a bit deeper.

Consider an example with usual integers. Suppose p is prime and integer p’ divides it.
There are only two possibilities for p': it is either p or —p. In other words, p’ is unique
up to a factor —1 — a unit of the ring of integers Z. One can also say that p is the only
divisor of p non equal to 1 up to invertible elements of Z. The situation is very similar
in the ring Z [7]. Its set of units is a set of all elements u such that N, is equal to 1 and
for each u there is an inverse that is equal to u®. Any unit u can be represented as +7"
for integer n. Procedure UNIT-LOG shows an efficient way of finding this representation
which will be useful for us later. Consider now 7 from Z [7] such that N, (n) is prime. It is
possible to show that if 1’ from Z [r] divides n then 1’ equals to s7™n for s equal to 1 or —1
and integer n. Now we can provide some high-level idea as to why the representation (6.6)
for N, implies that £ can be always written as £ (2 — 7)™. For given n with prime algebraic
norm there is at most one other prime that has the same algebraic norm and is not equal
to n up to a multiplication by unit. If there is one it equals to n®*. The only case when 7*
is equal to 7 up to a unit is when n =2 — 7.

Moving from divisibility in Z [7] to Z [(10] gives us more freedom. For example, 2 — 7 is
divisible by (19 + (fo- It is not difficult to check that (o + ¢y is purely imaginary, therefore
there is no contradiction to our previous observation that 2 — 7 is divisible only by itself
up to a unit when divisibility is considered over Z [r]. Condition N, (§;) = 5n + 1 ensures
that there exists element z of Z [(10] such that z,x is equal to & up to multiplication by
a unit in Z [7]. Finding z, is a key step in solving the norm equation. Once it is done we
get |z,|? = u& for some unit w in Z[r]. Conditions £ > 0 and £* ensure that unit u is a

square of some other unit v and therefore |z,v[* = &;.

To find x, we construct an element z of Z [(10] with the following properties

o &tzandé f2"

o &z2*

If the conditions above are satisfied either x, or z} must divide both & and z and we
can find x, by using the algorithm for Greatest Common Divisor in Z [(19] (Procedure
BINARY-GCD). To ensure that the first group of conditions is satisfied we search for z in
the form M + 19+ (i, for M — integer. The key here is that ;o +(f, is a purely imaginary
number and divisibility of z or z* by ¢ would imply that & divides (1o + ¢}, which is not
possible. The second condition can be rewritten as

M+ (2-71).
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Input: unit u =a+b7 € U(Z[7])
1. procedure UNIT-DLOG(u)

2: s« 1,k«+0

3: if a < 0 then

4: a4 —a; b+ —b; s+ —s

5: end if

6: w—ab

7 while |u| > 1 do

8: if 4 > 1 then

9: (a,b) < (bya—b); k+ k—1
10: else

11: (a,b) < (a,a —b); k< k+1
12: end if

13: W< ab

14: end while > |u| =1 here

15: match v = a + b7 with one of the {#1, 47, £7% +771}
adjust s, k accordingly

16: return (s, k)

17: end procedure

Output: (s, k) such that s = —1,1,k — integer and u = s7*

Figure 6.3: Procedure UNIT-DLOG. Finds a discrete logarithm of the unit u. The
procedure runtime is in O(log(max{|al,|b|})). Reprinted from [46]

We reduce a problem of finding integer M to a problem of taking square root modulo
p which can be solved in probabilistic polynomial time by the Tonelli-Shanks Algorithm
(procedure TONNELI-SHANKS). Primality of N, (&) implies that there exist ¢ such that
t = 7mod¢;. Even more, it can be computed in polynomial time (procedure TAU-TO-
INT). This implies that & |M? + (2 — t) which is equivalent to p|M? + (2 — t); this can be
written as M? = (2 —t) mod p. In other words, M is a square root of (2 —¢) modulo p; its
existence follows from the condition p = 5n + 1.

To conclude that we can solve “easy” instances in probabilistic polynomial time it
remains to show that the greatest common divisor of two elements of Z [(10] can be found
in polynomial time. The BINARY-GCD procedure corresponds to such an algorithm based
on [11].
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Input: a + br € Z 7], assume EASY-SOLVABLE(a + b7) is TRUE
1: procedure SOLVE-NORM-EQUATION((a + b7)
> Find integer n and prime p such that N(a + br) = 5"p

2: n<+0

3: while (2 — 7)|a + b7 do

4: a+br < (a+b1)/(2—7)

5: n+<n+1

6: end while > N, (a+br)=0p
> Solve the norm equation for prime righthand side

7: p < N;(a+bT) > p is prime

8: t < (TAU-TO-INT(a + b7) — 2) mod p

9: M <« TONELLL-SHANKS(t, p) > M? = tmod p

10: 2, ¢ BINARY-GCD(a + br, M —(C1o+Ch))
> (Cro + Cfo)Z =T7—2

11: u+ (a+br)/|z,)? > — unit, u > 0, u® >0
12: (s,m) <= UNIT-DLOG(u) >s=1,m—even
13: return 7™/%((19 + ()M,

14: end procedure
Output: z from Z[(yo) such that |x|* = a + b7

Figure 6.4: Procedure SOLVE-NORM-EQUATION. Finds a solution to an ”easy “ instance
of the norm equation in probabilistic polynomial time. Based on the similar procedure
from [46].

6.3 Approximation

In this section we combine methods developed in previous sections and describe an al-
gorithm for approximating unitaries of the form R.(¢), R.(¢) and R,(¢)X with (F,T)-
circuits (or equivalently, (o, 09)-circuits). Using this method we can approximate any
single qubit unitary as it can always be represented as R,(a;)R,(as)R.(c3). We consider
the class of unitaries R,(¢)X separately because it includes a commonly used Pauli X gate.
Recall that we measure the quality of approximation ¢ using the global phase-invariant dis-
tance

d(U, V) =+/1—|tr(UV?)] /2. (6.7)

The quality of approximation ¢ defines the problem size. Our algorithm produces circuits
of length O(log(1/¢)) which meets the asymptotic worst-case lower bound [32] for such a
circuit. The algorithm is probabilistic in nature and on average requires running time in
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Input: a+br € Z[7],a + br — prime
1. procedure TAU-TO-INT(a + b7)

22 p<+ Ny(a+0br) > GCD(p,b) =1
3. (u,v) « EXTENDED-EUCLIDEAN(b, p)
4: return —aumod p > bu+ (v(a—b7))(a+br) =1

5: end procedure
Output: m — integer such that m = 7mod (a + b7)

Figure 6.5: Procedure TAU-TO-INT. Finds an integer m such that m = 7 mod (a + b7).
The procedure runtime is in O(log(max{|al, |b|})).

O(log®(1/¢)) to find an approximation where ¢ is a constant close to but smaller than 2.0,
according to our empirical estimates .

We first discuss all details of the algorithm for approximating R,(¢) and then show
how the same tools allow us to find approximations of R.(¢)X.

There are two main stages in our algorithm: the first stage approximates R,(¢) with
an exact unitary V[u, v, 0] and then uses the exact synthesis algorithm (Figure 2.6) to find
a circuit implementing V'|u, v,0]. The second stage is completely described in Section 6.1;
here we focus on the first stage.

The expression for the quality of approximation in the first case simplifies to

d(R.(6), V[u,v,0)) = /1 — [Re(uei®/?)].

We see that the quality of approximation depends only on u, the top left entry of V[u, v, 0].
Therefore, to solve the first part of the problem it is sufficient to find u from Z [(;0] such that
/1 — |Re(ue'?/2)| < . However, there is an additional constraint that must be satisfied:
there must exist a v from Z [(10] such that V]u, v, 0] is unitary, in other words the following
equation must be solvable:

[v]* = &, for &= p(1 — [uf’). (6.8)

This is precisely the equation studied in Section 6.2. As discussed, in general the problem
of deciding whether such a v exists and then finding it is hard. It turns out, however, that
in our case there is enough freedom to pick (find) “easy” instances and obtain a solution
in polynomial time without sacrificing too much quality.

There is an analogy to this situation: it is well known that factoring a natural number
into prime factors is a hard problem. However, checking that the number is prime can be
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Input: ¢ — defines R.(¢), ¢ — precision
1: C+ \/g0/4
2: m < [log (Ce)] +1
3: Find k such that § = —¢/2 — 7k/5 € [0, 7/5]
4: not-found < true, u <— 0,v <= 0
5. while not-found do
6 ug < RANDOM-SAMPLE(0, ¢, 1) > See Figure 6.7
T (0 = |uol)
8 fl < EASY-FACTOR(¢)
9:  if EASY-SOLVABLE(f!) then

10: not-found <« false

11: u 4 ¢ T

12: v < 7"SOLVE-NORM-EQUATION(¢)
13: end if

14: end while
15: C' < EXACT-SYNTHESIZE(V [, v,0])
Output: Circuit C such that d(C, R,(¢)) < e

Figure 6.6: The algorithm for approximating R,(¢) by an (F, T )-circuit with O(log(1/¢))
gates and precision at most €. Runtime is probabilistically polynomial as a function of

log(1/e).

done in polynomial time. In other words, given a natural number N one can efficiently
decide if it is an easy instance for factoring. Now imagine the following game: one is given
a uniformly chosen random number from the interval [0, N] and one wins each time they
can factor it. How good is this game? The key here is the Prime Number Theorem. It
states that there are ©(NN/log(/N)) primes in the interval [0, N]. Therefore one can win
the game with probability at least (1/log(/N)). In other words, the number of trials one
needs to make before winning scales as O(log(V)). In our case the situation is somewhat
similar and N is of order 1/e.

At a high level, during our approximation procedure (Figure 6.6) we perform a number
of trials. During each trial we first randomly pick a u from Z [(;0] that achieves precision &
and then check that the instance of the norm equation can be easily solved. Once we find
such an instance we compute v and construct a unitary V[u, v, 0].

We generate a random element u from Z[(jo] that has the desired precision using
procedure RANDOM-SAMPLE. To achieve a better constant factor in front of log(1/¢)
for the length of the circuit we randomly chose ug = up™ instead of u. It is easy to recover
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Input: § — angle between 0 and 7 /5, ¢ — precision, r > 1
1: procedure RANDOM-SAMPLE(,¢,r) > See Fig. 6.8
2: C <+ \/p/(4r)

m <+ [log, (Cer)| +1

N < [¢™]

Ymin < r@™(sin(f) — e (V4 — €2 cos() + esin(6)) /2)

Ymaz < T (sin(6) + ¢ (V4 — €2 cos(6) — esin(0)) /2)

Tmaz < 7™ (1 — €2/2) cos(f) — e4/1 — &2 /45sin(h))

Te ¢ Tmaz — 1E20™ /(4 cos(0))

Pick random integer j from [1, N — 1]

10: Y < Ymin + J(Ymaz = Ymin) /N

11: a, + 7b, < APPROX-REAL(y/v/2 — 7,m) > Fig. 6.9
122 x4 x.— ((ay + byT)V2 — T — Ypin) tan(0)
13: a; + 7b, < APPROX-REAL(x, m) > Fig. 6.9

14: return a, + 7b, + /7 — 2(a, + 7b,)
15: end procedure

Figure 6.7: The algorithm for picking a random element of Z [(1o] that is in the dark grey
region in Figure 6.8. Number of different outputs of the algorithm is in O(1/¢).

was T =@ 'and u = ugr™.

In Figure 6.8, when r = 1, the light grey circular segment corresponds to such wug that
V{u,v,0] is within € from R,(¢). The element wg is a complex number and, as usual, the
x-axis of the plot corresponds to the real part and the y-axis to the imaginary part. All
random samples that we generate belong to the dark grey parallelogram and have the form
az+b,7+1v2 — 7(a, +b,7) (note that iv/2 — 7 is equal to (19 + (7, and belongs to Z [C1)).
We first randomly choose an imaginary part and then a real part. To find an imaginary
part we randomly choose a real number y and then approximate it with v/2 — 7(a, + b,7)
using the APPROX-REAL (Figure 6.9) procedure. Once we find v2 — 7(a, + b,7), we
choose the z-coordinate as shown in Figure 6.8 and approximate it with a, + b, 7.

The problem of approximating real numbers with numbers of the form a+bz for integers
a,b and irrational z is well studied. The main tool is continued fractions. It is also well
known that Fibonacci numbers {F, },

FOZOaFlzLFn: n—1+Fn—27n22a

are closely related to the continued fraction of the Golden section ¢ and its inverse 7.
The correctness of procedure APPROX-REAL (Figure 6.9) is based on the following very
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Figure 6.8: An e-region and visualization of variables used in RANDOM-SAMPLE proce-
dure (Figure 6.7).

well-known result connecting 7 and the Fibonacci numbers; we state it in a convenient
form and provide the proof for completeness.

Proposition 6.3.1. For any integer n

and F, > (¢" —1)//5.

Proof. First we define the family of functions {f,} such that fi(z) = x and f,(z) =
1/(1+ fo_1(x)) for n > 2. Tt is not difficult to check that f,(7) = 7. It can be shown by
induction on n that f,(1) is equal to F,,/F, 1. Therefore, to prove the first part of the
proposition we need to show that

|fu(T) = fua(D)] < 7"/ 1.

We proceed by induction. The statement is true for n equal to 1. Using the definition of
fn it is not difficult to show

[fot1(T) = ot (D] = frrd (7) fria (1) [fu(7) = ()]

Using f,+1 = 7 and the inequality for |f,(7) — f.(1)| we complete the proof of the first
part.
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Input: x — real number, n — defines precision as 7"~ }(1 — 7")

1. procedure APPROX-REAL(z,n)

2: p Foq+ Foiq > F,, — Fibonacci numbers
3 u— (=1)"E, v (=1)"F_4 >up+vg =1
4 ¢+ |zq]

5: a < cv+pleu/q|

6: b cu—qlcu/q|

7 return a + 7b

8: end procedure

Output: a+ b7 s.t. [ — (a+b7)] <7711 —77),|b] < "

Figure 6.9: The algorithm for finding integers a, b such that a 4+ br approximates the real
number z with precision 777 1(1 — 77) .

To show the second part it is enough to use the well-known closed form expression for
Fibonacci numbers F, = (¢" — (=7)")/v/5.

O

At a high level, in procedure APPROX-REAL we approximate 7 with a rational number
p/q and find the approximation of x by a rational of the form a+bp/q. To get good resulting
precision we need to ensure that b(T — p/q) is small, therefore we pick b in such a way that
|b| < q/2. The details are as follows.

Lemma 6.3.2. Procedure APPROX-REAL (Figure 6.9) outputs integers a,b such that
|z — (a+b7)| < 771 —7"), |b] < " and terminates in time polynomial in n.

Proof. First, the identity F,, F, ; — F? = (—1)" for Fibonacci numbers implies uv +
pq = 1. Next, by choice of ¢ we have |zq — ¢| < 1/2, therefore |z — ¢/q| < 1/2¢q. By
Proposition 6.3.1, 1/2q is less than 77v/5(1 — 7™)/2; it remains to show that c/q is within
distance 7" /2 from a + br by the triangle inequality. By choice of a,b we have ¢ = aq + bp
and
¢/q = (a+bT)| = |bl [T —p/ql.

Using Proposition 6.3.1, equality ¢ = F,4; and inequality |b| < ¢/2 we conclude that
le/q — (a+br)| < 77/2.

The complexity of computing the n'* Fibonacci number is polynomial in n. Assuming
that the number of bits used to represent x is proportional to n all arithmetic operations
also have complexity polynomial in n. O]
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There are two main details of the RANDOM-SAMPLE procedure we need to clarify.
The first is that the result is indeed inside the dark grey parallelogram on Figure 6.8. This
is achieved by picking real values x,y far enough from the border of the parallelogram
and then choosing the precision parameter m for APPROX-REAL in such a way that
a, + by7(close to z) and a, + b,7(close to y/+/2 — t) stay inside the parallelogram.

The second important detail is the size of resulting coefficients a,, b, a,, b,. It is closely
related to the number of gates in the resulting circuit. Therefore it is important to establish
an upper bound on the sizes of the coefficients. The following lemma provides a rigorous
summary:

Lemma 6.3.3. When the third input r > 1, procedure RANDOM-SAMPLE has the fol-
lowing properties:

o there are O(1/e) different outputs and each of them occurs with the same probability,

e the procedure outputs an element ug of Z [C10] from the dark grey parallelogram P in
Figure 0.8,

e the complexity measure p of ug is in O(1/e).

Proof. By construction, the algorithm produces N — 1 outputs with equal probability. It
is not difficult to check that N is in O(1/e). We first show that the outputs are all distinct
and their y coordinate iS in [Ymin, Ymaz)- This follows from an estimate

|y - (ay + byT)| v 2 -7 S (ymaz - ymm)/zN

because each randomly generated y is at least distance (Ymaz — Ymin)/N from any other
randomly generated y and also Ymin, Ymaz- 1O show the estimate we use the result of
Lemma 6.3.2 and check that

Tm_l(]' - Tm) \% 2—1T S (ymaz - ymzn)/ZN

which is straightforward, but tedious. We concentrate only on terms that are first order
in € (we use < and 2 to emphasize this):

71— 1™) < Cer, (Ymaz — Ymin) /2N 2 € cos(6)r. (6.9)

The constraint on 6 gives cos(d) > ¢/2. From Cv2 — 71 < ¢/2 we conclude that the
inequality is true for the terms that are first order in €.
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To show that the procedure output belongs to the parallelogram P, it is sufficient to
check that a, + b,7 is within distance p™re?/4 (half of the parallelogram height) from
Te — (ay + byT — Ymin) sin(#). Again using Lemma 6.3.2, it is sufficient to show that

7L — ™) < pMre? /4.

We again analyze the expression up to the first order terms in €. We note that ¢™re?/4 =
£/(4CT); combining it with the inequality above, using (6.9) and C' = /¢/(4r), we con-
clude that all outputs of the algorithm are inside parallelogram P.

To show the last property, we note that by Lemma 6.3.2 both |b,|, |b,| are bounded by
©™. The same is true for |a,|, |a,|. Indeed, |z, |y| are both of order ¢™ and

lay| S ly/vV2 —1 —b,7|+ Cer, |z, S |v— by7| + Cer.

This implies that if we write ug as Y, ax(fy each integer aj will be of order ¢™ which is
the same as O(1/¢). Using the upper bound on the Gauss complexity measure G (ug) in
terms of «ay from Proposition 6.1.1 we conclude that G (ug) and p(ug) is in O(1/¢). O

The technical tools that we have developed so far are sufficient to verify that our
approximation algorithm achieves the required precision and produces circuits of length
O(log(1/¢)). The remaining part is to show that on average the algorithm requires O(log®(1/¢))
steps. It relies on the following conjecture, similar in nature to the Prime Number Theorem:

Conjecture 6.3.4. Let w(M) be the number of elements & from Z 7| such that N,(§) is a
prime representable as 5n + 1 and less than M, then w(M) is in ©(M/log(M)).

The conjecture defines the frequency of easy instances of the norm equation during the
sampling process. Finally we prove the main theorem.

Theorem 6.3.5. Approzimation algorithm (Figure 6.6) outputs a (F,T)-circuit C' of
length O(log(1/¢)) such that d(C, R,(¢)) < e. On average the algorithm runtime is in
O(log®(1/¢)) if Conjecture 6.3./ is true.

Proof. First we show that the algorithm achieves the desired precision and produces a
(F,T)-circuit of length O(log(1/¢)). Both statements follow from Lemma 6.3.3. It is
not difficult to check that the light gray segment on Figure 6.8 defines all uy such that
d(V[ugr™Ck,v,0], R.(¢)) is less than . Therefore, by picking samples from the dark grey
parallelogram P, we ensure that we achieve precision €. The value of the Gauss complexity
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measure is in O(1/¢), therefore by Theorem 6.1.3 the length of the resulting circuit is in
O(1/log(e)).

There are two necessary conditions for predicate EASY-SOLVABLE to be true:

(1) N,(&) is prime and equals 5n + 1 for integer n,

(2) £> 0,8 >0.

Let pp; be the probability that the first condition is true when we choose ¢ uniformly
at random and N.(§) is bounded by M. Following Conjecture 6.3.4, we assume that py,
is in O(1/log(M)). In our case M is of order p*™ and therefore the probability of getting
an instance solvable in polynomial time is in O(1/log(1/¢)).

Now we show that the second condition is satisfied by construction. Part £ > 0 is
trivial because procedure RANDOM-SAMPLE always generates ug such that |ug| < ¢™.
For the second part we use Proposition 6.1.1 and note that for non-zero ug7" the value of
the Gauss complexity measure is

G (uo") = [(uo™™)** + [uoT"[* > 2.
We conclude that |(u7")*|* > 1 which gives
£ = 7 ([ (ugr™)" P ~ 1) > 0

as required.

In summary, checking that an instance of £ is easily solvable can be done in time
polynomial in log(1/e) using, for example, the Miller-Rabin Primality Test, the average
number of loop iterations is in O(log(1/¢)), an instance of the norm equation when ¢ is
prime can be solved in time that is on average is in O(log?(1/¢)) for some positive d.
We conclude that on average the algorithm runs in time O(log®(1/¢)) for some positive
constant c. [l

The algorithm for approximating R,(¢)X (Figure 6.10) can now be easily constructed
based on ideas discussed above. First we simplify the expression for the distance

d(V]u,v,0], R,(¢)X) = \/1 — /T |Re(vei(¢/2+m/2)]
and notice that in this case it depends only on the bottom left entry of the unitary V{u, v, 0].

Now u and v have opposite roles in comparison to the algorithm for approximating R, (¢).
Again, to get a better constant factor in front of log(1/¢) in the circuit size, we randomly
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Input: ¢ — defines R.(¢)X, ¢ — precision
L r < /0,0 < /o/(4r)
m <+ [log_(Cer)] + 1
Find k such that 0 = ¢/2 4+ 7/2 — 7k /5 € [0, 7/5]
not-found < true, u <— 0,v < 0
while not-found do
ug < RANDOM-SAMPLE(0, ¢, 1) > See Figure 6.7
£ ™™ — 7 |ug|”
if EASY-SOLVABLE() then
not-found <« false
v < ™ ug
u < 7"SOLVE-NORM-EQUATION(¢)
end if
13: end while
14: €'« EXACT-SYNTHESIZE(V [, v,0])
Output: Circuit C such that d(C, R,(¢)X) < ¢

— = =
o= 2

Figure 6.10:  The algorithm for approximating R.(¢)X by an (F,T)-circuit with
O(log(1/¢)) gates and precision at most . The runtime is probabilistic polynomial as
a function of log(1/¢).

pick vy such that d(V[u, p™vo, 0], R.(¢)X) < e. We use procedure RANDOM-SAMPLE
to generate random vy. When calling the procedure, we set the third input parameter r to
/@ to take into account that bottom left entries of exact-unitaries are rescaled by factor
/7. Once we picked vy we check that there exist an exact unitary with bottom right entry
v = 7T™vg4/7. In other words we solve norm equation

lu|* = & for € =1 — 7]

The necessary condition £* > 0 is always satisfied because 1 + p|v®|* is always positive.
Once we find an “easy” instance of the norm equation we solve it and construct an exact
unitary that gives the desired approximation. Our result regarding the approximation
algorithm for R,(¢)X is summarized by the following theorem.

Theorem 6.3.6. Approzimation algorithm (Figure 6.10) outputs a (F,T)-circuit C' of
length O(log(1/¢)) such that d(C, R,(¢)X) < e. On average the algorithm runtime is in
O(log®(1/¢)) if Conjecture 6.3./ is true.

The proof is completely analogous to the proof of Theorem 6.3.5 and we do not present
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it here. We also discuss a method for approximating

cos(8/2) —sin(6/2)
R, =
() (sin(¢/2) cos(¢/2) )

by using the same round off method for real numbers, but reducing a problem to solving
a different norm equation. This is particularly useful for finding an approximation to the
Hadamard gate. We first observe that the distance between Ulu,v,0] and R,(¢) can be
simplified as:

\/1 — |Re(u) cos(¢/2) + Re(v)y/7 sin(¢/2)|.

We find real parts of v and v by rounding off cos(¢/2) and sin(¢/2) using APPROX-REAL
procedure. Imaginary parts of u and v must satisfy the following equation:

(2 — 7)(Im(u)* + 7Im(v)*) = 1 — Re(u)* — TRe(v)?.

When the right-hand side is divisible by 2 — 7, the problem reduces to the relative norm
equation defined by polynomial X?+7. To solve it we rely on PARI/GP. In this case we are
not seeking a right-hand side that is easy instance, but one that is divisible by 2 — 7. Our
experiments show that this does not degrade the performance. We can also approximate,
for example, iR, (¢). Two examples of this rotation, iF and iX, are important building
blocks for implementing multi-qubit gates [35].

6.4 Experimental results

In this section we evaluate the approximation quality of our algorithm as a function of
(01, 09)-circuit size (depth) and the algorithm runtime. We not only confirm the results
established in previous sections, but also show that constants hidden in the big-O notation
are quite reasonable, making our algorithm useful in practice.

We experiment over several input sets of input unitaries and precisions, as summarized
in Table 6.1. Each experiment is performed similarly. First, we request an approximation
of a set of unitaries for certain precisions. In some experiments, we run the algorithm for
the same unitary and precision several times to see the influence of the probabilistic nature
of the algorithm on the result. Next, we aggregate collected data for a given precision
by taking the mean, min or max of the parameter of interest over the set of all unitaries
considered in the experiment. We compare to a Brute Force Search algorithm, from which
we request an approximation of the set of unitaries that outputs the best precision that can
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Unitaries Precisions Runs per

Name formula kmin  kmae |formula ki Kmee | unitary
U-RZ-SMALL | R.(%%) 1 1-10%| 107" 2 14 1
U-RZ-BIG R.(ZE) 1 4-10%| 107" 2 30 1
RZ-HIGH R.(Z) 2 6-10' [ 107* 2 100 |10
U-RZ-LOW R.(3%%) 1 1-10%|107%/8 8 12 1
U-RZ R.(3%) 1 1-10% | — — — —
U-RZX-BIG | R.(Z5)X 1 4-10% | 107% 2 30 1
U-RZX-LOW | R.(35)X 1 1-10%[107%8 8 12 1
U-RZX R(F)X 1 1-10* | — — - =
X-HIGH X — - 107k 2 100 | 500

Table 6.1: Sets of inputs used for the experiments.

be achieved using at most N o gates for each input angle. The largest N for our database
is 25. In this case we aggregate collected data for a given N.

We implemented our algorithm using C++4. There are two third-party libraries used:
PARI/GP[16] which provides a relative norm equation solver and primality test, and
boost::multiprecision which includes high-precision integer and floating-point types. All
experimental results described in this section were obtained on a computer with Intel Core
i7-2600 (3.40GHz) processor and 8 GB of RAM. Our implementation does not use any
parallelism.

6.4.1 Quality Evaluation

We evaluate the approximation quality of our algorithm on four large sets of inputs. Two
of them are used to evaluate the approximation quality of R,(¢) rotations and the other
two for R.(¢)X. For both rotation types, one set covers uniformly the range of angles
[0, 27] (U-RZ-BIG, U-RZX-BIG) and the other one includes rotations that are particularly

important in applications. For R.(¢) rotations, we study angles ¢ of the form 7 used

in the Quantum Fourier Transform (input set RZ-HIGH); for R.(¢)X, we look at the
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quality of the Pauli X gate approximation (input set X-HIGH). The results are presented
in Figure 6.11. In addition to the average number of gates, we show minimal and maximal
number of gates needed to achieve the required precision, which demonstrates the stability
of the quality of our algorithm.

One of the baselines we compare the quality of our algorithm to is Brute Force Search.
We built a database of optimal (oy, 09)-circuits with up to 25 gates and used it to find
optimal approximations of unitaries from datasets U-RZ and U-RZX. The highest average
precision that we were able to achieve is around 10~2°. We evaluated our number theoretic
algorithm on the same range of precisions; the results are presented in Figure 6.12. For our
algorithm, the average coefficient in front of log,,(1/¢) is only 18% larger than the average
for the optimal approximations of R,(¢) and 40% larger for R,(¢)X.

Figure 6.13b shows the exponential scaling of the number of optimal circuits with a
given number of (07, 02) gates and confirms that the Brute Force Search becomes infeasible
exponentially quickly. In summary, our algorithm finds circuits for unitaries R,(¢) and
R.(¢)X exponentially faster than Brute Force Search and with very moderate overhead.

The previous state-of-the-art method for solving the unitary approximation problem
for the Fibonacci braid basis in polynomial time is the Solovay-Kitaev algorithm. The
Solovay-Kitaev algorithm can be applied to any gate set and does not take into account
the number theoretic structure of the approximation problem. Here we provide a rough
estimate of its performance when approximating using (o, 09)-circuits.

We consider approximation using special unitaries in this case. The version of the
Solovay-Kitaev algorithm described in [18] boosts the quality of the approximation provided
by a fixed-size e-net. It is crucial for the overall estimate to find the quality provided by an
epsilon net depending on the maximal size of the optimal circuit in it. We use the scaling
of the size of our database (Figure 6.13b) of optimal circuits and a rough volume argument
to get the estimate.

Consider the problem of approximating states, which is the same as approximating
single-qubit special unitaries. Our € net should cover the Bloch sphere with overall surface
area 47. Each state will cover roughly an area of the sphere equal to we?. Therefore, for
n being the size of the longest circuit:

7T€210(0.275I+0.592)/2 ~ 47'('

We divide the estimate for the number of unitaries by two to get the estimate for the
number of states. This is because there are only up to global phase two distinct exact
unitaries of the form Uz, y, k| for given x,y (for k=0 and k=1). Other values of k can be
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reduced to 0 or 1 using the identity (§U[z,y, k| = U[z(§, y(§, k + 2s]. We also assume that
Ulz,y, k] and Ulz(g, y(§, k] have very similar cost.

The database we are using in other experiments includes circuits with up to 25 gates
and requires around 5GB of RAM to be built. In our estimate for the performance of the
Solovay-Kitaev algorithm we assume that with enough engineering effort one can build a
database with up to 30 gates. Our estimates result in the following:

logo(1/e,) ~ 0.137n — 0.155,log;(1/e30) ~ 3.97
n(log,o(1/e,)) >~ 7.27¢ + 1.127.

The estimate is more optimistic in comparison to results of our Brute Force Search as now
we consider the full special unitary group instead of its subsets R.(¢) and R,(¢)X. With
these numbers in hand, we use the analysis of the Solovay-Kitaev algorithm in [18].

Figure 6.13 compares our estimates for the size of circuits produced by the Solovay-
Kitaev algorithm and the sizes from running our algorithm. In particular, for precision
107 our algorithm produces twenty times smaller circuits and for precision 1073°, one
thousand times smaller circuits, which corresponds to the difference between the algorithms
with respective scalings in O(log®?"(1/¢)) and O(log(1/¢)).

6.4.2 Performance evaluation

Our experiments confirm that the algorithm described in the paper has a probabilistic
polynomial runtime. In addition, constants and the power of the polynomial are such that
our algorithm is practically useful. In Figure 6.12¢ we show the runtime of different parts
of our algorithm. The approximation part corresponds to the runtime of the algorithm
approximating unitaries R,(¢) by exact unitaries (Figure 6.6), excluding time needed
to solve the norm equation; the synthesis part corresponds to the runtime of the exact
synthesis algorithm that produces an (F,T)-circuit; the resynthesis part corresponds to
the runtime of peephole optimization performed on (o, o9)-circuits obtained from (F,T)-
circuits using identities from Section 6.1.

We separately show the runtime of the relative norm equation solver because for our
implementation we used a generic solver which is a part of the PARI/GP library (function
rnfisnorm [16]). Since the library documentation does not describe the function perfor-
mance in detail, we performed an evaluation to confirm that it is polynomial time on “easy”
instances of the problem. We also rely on another PARI/GP function ispseudoprime to
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perform a primality test. It is a combination of several probabilistic polynomial time pri-
mality tests [16]. The runtime of the primality test is included in the approximation part
of the figure.

Our claim about the approximation algorithm runtime depends on Conjecture 6.3.4;
Figure 6.12d shows the number of trials performed in the main loop of the approximation
algorithm before finding an easy instance. The scaling of the average number of trials
shown in the figure supports the conjecture. To perform peephole optimization [63] we
used the database of optimal (o7, 09)-circuits with up to 19 gates which has size 85.7 MB.

High-precision integer and floating-point data types are necessary to implement our
algorithm. We use cpp_int and cpp_dec_float from boost::multiprecision library. The
number of bits used by these types can be specified at compile time. This allows us to
avoid dynamic memory allocation when performing arithmetic operations; much faster
stack memory is used instead. For this reason, runtime scaling (Figure 6.12¢) of our code
is a function of the number of arithmetic operations, and not of the bit size of numbers
used in the algorithm.

In Figure 6.13a we show how the runtime of our algorithm changes when using different
arithmetic types on the same set of inputs. The first pair of types — 512 bit integers and
200 decimal digits floating-point numbers — is sufficient for precision up to 1073°, the
second pair — 1024 bits and 400 decimal digits — for precision up to 10~7°. Figure 6.12c
shows runtime scaling for different parts of our algorithm in more detail when using the
second pair of types. This shows that our algorithm is practical and can readily be used as
a subroutine when compiling quantum algorithms with large numbers of different single-
qubit operations.
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Figure 6.11: Number of o gates needed to achieve the quality of approximation € using
the Number Theoretic Algorithm on sets of inputs U-RZ-BIG, U-RZX-BIG, RZ-HIGH,
X-HIGH (see Table 6.1). Includes approximation of X gate and R, rotations used in the
Quantum Fourier Transform.
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Figure 6.12: (a),(b) comparison of the number of o gates needed to achieve the quality
of approximation e using the Number Theoretic Algorithm (NTA) and using Brute Force
Search (BFS). Input sets U-RZ-LOW and U-RZX-LOW were used for the NTA and U-RZ,
U-RZX for BFS; (c) average runtime of parts of the NTA, using U-RZ-BIG input set; (d)
number of trials performed in the main loop of the NTA before an “easy” instance was
found, using U-RZ-BIG input set. See Table 6.1 for input set descriptions.
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Figure 6.13: (a) runtime of the Number Theoretic Algorithm when using dif-
ferent arithmetic data types. Type
boost::multiprecision::cpp_int with MinDigits and MaxDigits set to IN; type fIN corresponds
to boost::multiprecision::cpp_dec_float with Digits10 set to IN; (b) number of distinct (up to
a global phase) unitaries, such that their optimal implementation requires given number of
o gates. (c),(d) comparison of the estimated size of circuits produced by the Solovay-Kitaev
algorithm (SKA) and the Number Theoretic Algorithm (NTA).

iN corresponds to a signed,
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Chapter 7

Multiple qubit exact and
approximate synthesis for the
Clifford+T gate set

In this chapter we apply the number theoretic method to the approximation of multiple
qubit unitaries using the Clifford+T gate set. B. Giles and P. Selinger[26] showed that any n
qubit unitary over the ring Z [i, 1/\/5} with entries of the form ((a—i—bx/§)~H’(c—i—cl\/§))/\/§'i
can be synthesized exactly using at most one ancilla. However, their synthesis method
requires O (3%"nk) gates, which is far from information theoretic bounds. The doubly
exponential scaling of the circuits size with the number of qubits destroys the potential
advantages of using the number theoretic method for multiple qubit unitaries. In this
chapter we propose an exact synthesis method that uses two ancillae and requires O (4"nk)
gates.

We also apply the proposed exact synthesis method to the approximate synthesis of
unitaries acting on multiple qubits and show that any n qubit unitary can be approximated
with precision € using at most O (4"n (log (1/¢) + n)) Clifford and T gates and two ancillae.
Our procedure results in a slightly larger asymptotic number of gates in comparison to first
using an asymptotically optimal decompositions of an n qubit unitary into O (4") single
qubit unitaries and CNOT gates[57, 2] and then approximating each single qubit unitary
with Clifford and T circuit. The second approach requires O (4™n (log (1/€) +n)) gates
to achieve precision €. Both approaches are asymptotically optimal when the number
of qubits is fixed, according to the lower bounds established in [50, 32]. However, our
decomposition is more directly related to the structure of the initial unitary and may be
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beneficial in two cases: when the unitary is partially specified, or when most of the entries
of the unitary are over the ring Z [z’, 1/ \/5] . In contrast to decompositions used in [2, 57, 60]
our decomposition does not require taking square roots. We use only addition, subtraction
and multiplication by 1//2; these operations preserve elements of Z [i, 1/ \/ﬂ .

The main results of the chapter are summarized in the following theorems:

Theorem 7.0.1. Any n qubit unitary can be approximated within Frobenius distance &
using O (4™n (C'log (1/€) + n)) Clifford and T gates and at most two ancillae.

Theorem 7.0.2. Anyn qubit unitary with entries of the form ((a+bv/2)+i(c+dv/2))/v/2"
can be ezxactly implemented using O (4"nk) Clifford and T gates using at most two ancillae.

To prove both results we use a variant of the Householder decomposition which expresses
a matrix as a product of reflection operators and a diagonal unitary matrix. In our case the
diagonal unitary matrix is always the identity. We define a reflection operator constructed
from a unit vector |¢) as Rjyy = I —2[¢) (0|. Our structure-preserving decomposition is
given by the following lemma:

Lemma 7.0.3. Let U be a unitary acting on n qubits and let {uy, ..., usm} be the columns
of U. The unitary U can be simulated using the unitary

U'=10){(1]@U+ 1) (0| @ U
Unitary U’ is a product of reflection operators constructed from the family of unit vectors
[wi) = (1) @ 17) £10) @ u)) /V2, forj=1,....2"

Proof. By direct calculation we check that U’ maps |1) ® |¢) to |0) @ U |¢) for any n qubit
state |¢) . Next we observe that |wji> are eigenvectors of U’ with eigenvalues 1. Defining
Pji to be projectors on subspaces spanned by ‘w]i> and using the spectral theorem we
express U’ as Z?; (P —P;). Since 2311 (P + P;) is the identity operator and all
projectors Pji are orthogonal we can write:

on on
U'=1-2) P =][(U-2P).
j=1 j=1
The right hand side is a product of 2" reflection operators, as required. O
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It is not difficult to see that if |u;) has coordinates in the computational basis over
the ring Z [i,1/ \/ﬂ then the unit vector ‘w]i> also does. This is the reason we call our
decomposition structure-preserving. Exactly synthesizing a reflection operator is not more
difficult than exactly preparing corresponding unit vector:

Lemma 7.0.4. Any reflection operator R)y where |¢) has coordinates in the computational
basis of the form ((a+bv/2) +i(c+dv/2))/v/2" can be implemented using O (2"nk) Clifford
and T gates and at most one ancillae.

Proof of lemma 7.0.4. Note that URpU = Ryrjoy. Therefore, to implement the reflection
operator with corresponding unit vector |¢) it is enough to find a U that prepares |¢)
starting from |0) . The column lemma [26] provides a construction for U requiring O (2"nk)
Clifford and T gates and one ancilla. Unitary Rjg) is a multiple controlled Z operator and
can be implemented with O (n) gates and one ancilla, for example using the construction
from [60]. We conclude that we need O (2"nk) Clifford and T gates in total to implement
Ryg). -

Now we have all results required to prove Theorem 7.0.2:

Proof of theorem 7.0.2. The construction from lemma 7.0.3 allows one to simulate an n
qubit unitary using one ancilla and 2" reflection operators. The unit vectors corresponding
to each reflection operator have coordinates of the form ((a + bv/2) + i(c + dv/2))/ V2
in the computational basis. According to lemma 7.0.4 these reflection operators can be
implemented using one ancilla and O (2"nk) Clifford and T gates. Therefore we need
O (4™nk) Clifford and T gates and at most two ancillae to implement the unitary exactly.

O

To show the approximation result we use the decomposition above and then approx-
imate each reflection operator separately. First we note the following relation between
approximating reflection operators and their corresponding unit vectors:

Proposition 7.0.5. The distance induced by the Frobenius norm between two reflection
operators is bounded by the Euclidean distance between corresponding unit vectors as:

Ry = Rigy || o, < 2V21100) = 1)l -

To prove the proposition it is enough to use the definition of the Frobenius norm
||A||2FT = Tr (AAT), express ||R|w> — R|¢>Hi,r in terms of |(qz5|1/1)|2, use that Re (¢[y) <
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[(@|1)| and express Re (¢[t)) in terms of ||[1) — |¢)]|*. Next we show how to approximate
arbitrary reflection operator by at most two reflection operators with corresponding unit
vectors over the ring Z [i, 1/ \/ﬂ

Lemma 7.0.6. Any n qubit reflection operator Ry can be approzimated within Frobenius
distance € by the product of two reflection operators, such that coordinates in the computa-
tional basis of corresponding unit vectors have the form (a +bv/2+ ci + di/2) /2™ where
m(e) = [n/2]+ O (log(1/¢)) and using at most one ancilla. If unit vector |1) has at least
two coordinates in the computational basis equal to zero it is sufficient to use one reflection
operator and no ancilla s required.

Proof of lemma 7.0.6. First we construct the approximating unitary in a special case where
no ancilla are required. Consider the reflection operator Ry. Let {ay} be the coordinates
of |¢) in computational basis. First we consider the case when |¢)) has at least two zero
entries, say «; and ;. We use an idea similar to [47] and define the approximating unitary
as a reflection operator R4y corresponding to the vector

a+bi . c+di >
l9) = om 7) + o D+ D Belk),
k=1, k5,1
2m , [ 2™]
B = 2" Reay ;mz [2"Ima ,a,b,c,d € Z.

The norm of |¢) must be equal to 1, therefore:

on
a2+b2+c2+d2:4m<1_ > \ﬁ,§|> (7.1)

k=1, k#j,l

The Diophantine equation above always has a solution according to Lagrange’s four-square
theorem and it can be efficiently found using a probabilistic algorithm[66] that has runtime
polynomial in number of bits required to write the right hand side of equation (7.1).

By Proposition 7.0.5, to estimate the distance between the reflection operator and its
approximation it is enough to estimate the square of the distance between |¢) and |¢p) . We
approximated each non-zero entry with precision 2-™v/2, therefore

)~ 12 < 2" (27VB) + 477 (@ + 8+ 4 ).
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The second summand of the right hand side of the inequality above can be estimated as:

2m 2m

1= > 1El = > (ledl =15

k=1, k#j,l k=1, k#j,l

> lewl = 18l (low] + 18])

k=1, k3,1

< 272 Z (Jol + [Be])

k=1, k#£j,l

< 27my/2(2-277).

IA

We used the Cauchy—Schwarz inequality to estimate sums involving |ay| and |Bx|. For
example:

27L
> ol <var
k=1, k#£j,l

In summary we get:
|||¢> - |¢>||2 <2 gn—2m + 2\/§ . 9(n/2=m)

By choosing m = [n/2 + log, (1/£%)]+5 and using Proposition 7.0.5 we get || Rjy) — Rjg) HFT <
€ when ¢ < 1.

In the case when all entries of [¢) in the computational basis are non-zero, we add
an ancilla and express the reflection around [¢)) using two reflection operators with unit
vectors that can be approximated without using ancilla:

LRy = Lel,-20L®|Y) (Y
I ® I, — 2 (|0) (0] + [1) (1]) ® ) (]
= Rjoy) Ry

Now we have all tools needed to prove Theorem 7.0.1:

Proof of theorem 7.0.1. We use the construction from lemma 7.0.3 to simulate an n qubit
unitary using one ancilla and 2" reflection operators. The unit vectors corresponding to
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each reflection operator have at least two zero coordinates in the computational basis,
therefore we can use lemma 7.0.6 to approximate each reflection with a reflection operator
without using ancillae with precision 27"¢. Unit vectors of each approximating reflection
have entries of the form (a+bv/2+ ci +div/2) /2™ for m (n,e) = [5n/2] +O (log (1/¢)) .
Each reflection operator requires one ancillae and O (2"n - m (n, €)) Clifford and T gates ac-
cording to lemma 7.0.4. Therefore, in total we need two ancillae and O (4"n (log (1/€) 4+ n))
Clifford and T gates to approximate the unitary within Frobenius distance ¢. O

Our improved method for multiple qubit exact synthesis outputs circuits with an expo-
nential number gates as a function of the number of qubits. This improves the previously
known method[26] which requires doubly exponential number of gates. Further improve-
ments over our result may be possible: for example, removing the factor of n from the
expression O (4™n (log (1/¢) +n)) . Furthermore, our improved multiple qubit exact syn-
thesis algorithm leads to an alternative algorithm for multiple qubit approximate synthesis,
which may also lead to practical advantages in some cases.
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Chapter 8

Clifford circuits optimization

In this chapter we describe the algorithm for finding optimal circuits for Clifford unitaries
acting on a small number of qubits. As we discussed in Chapter 1 it is useful for implement-
ing the randomized benchmarking protocols. We also use the optimal implementations of
Clifford operations acting on a small number of qubits in peephole optimization [63] of
larger Clifford circuits. Peephole optimization is a heuristic approach to circuit optimiza-
tion that relies on the access to the database of optimal circuits for a set of unitaries acting
on the small number of qubits. The larger the database available the better peephole opti-
mization will perform. Therefore it is important to be able to build as large a database of
optimal circuits as possible given limited memory and computational power available. We
address this practical issue in several ways. First, we represent Clifford unitaries using a
small number of bits. Second, we compress the search space by using equivalence classes of
unitaries. Finally, we store only the necessary information about equivalence classes needed
to recover the optimal circuit for any unitary in the database. We find optimal Clifford
circuits for up to four qubits, optimal Clifford circuits up to input/output permutation for
up to five qubits, and optimize larger Clifford circuits by a factor of roughly two.

The two optimality measures that we consider are the minimal number of Clifford gates
required and the minimal depth of the circuit implementing the given unitary. For brevity,
we call them the gate count and the depth of the unitary. Our ideas extend to other
optimality measures, such as the weighted gate counts/depth.

In addition, we apply the ideas developed in this chapter to find an optimal encoding
circuit for the [[5,1,3]] five-qubit error correcting code. This method can be applied to
synthesize encoding circuits for other error correcting codes that use a small number of
qubits.
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8.1 Clifford unitaries representation

Compact representation of any unitary that can be computed by a Clifford circuit is a direct
consequence of the fact that it maps elements of the n qubit Pauli group to themselves by
conjugation. Taking into account the identity Y = ¢XZ, it suffices to know the action by
conjugation of the n-qubit unitary on 2n Pauli matrices. The result of the application of
the circuit to each Pauli matrix can be encoded using 2n + 1 bits [1]. Each single-qubit
Pauli matrix can be encoded in two bits, as follows:

I~ (0[0),X ~ (1]0), Z ~ (0]1) Y ~ (1]1).
It is convenient to separate X and Z parts when encoding larger circuits:
I[~(0/0),X ~ (1]0),-T® X ~ (01]00]1) .

One additional bit shown at the end is used to encode the overall overall phase, here
restricted to £1. For any unitary the sign can be adjusted by applying the round of Pauli
gates at the end of the computation. In most of our applications this can be done for free.
As a result, we will consider only the 2n x 2n part of the encoding matrix. Commutativity
relations between Pauli matrices are preserved under conjugation and induce additional
constraint on the encoding matrix—it must be symplectic (a square block matrix M =

C

BTD = DB, and ATD — CTB = I). Furthermore, the canonical decomposition theorem
[1] shows that any binary symplectic matrix encodes some Clifford circuit.

A B
( I ) is called symplectic iff the following three conditions hold: ATC = CT A,

The above matrix representation can be efficiently updated [1] when adding new gates
to the end of an existing circuit. Computationally, adding a gate requires updating one or
two columns of the encoding matrix. In particular, the application of the Phase gate to
qubit k corresponds to the addition modulo 2 of column k to column n+ &, the Hadamard
gate on qubit k corresponds to exchanging columns k£ and n + k, and the CNOT gate
with control k and target j corresponds to the addition of column k to column j and the
addition of column n + j to column n + k. An empty Clifford circuit corresponds to the
identity matrix. These rules suffice to determine the 2n x 2n binary symplectic matrix
encoding the unitary computed by a given Clifford circuit.

For linear reversible circuits (those composed only with CNOT gates) it suffices to
store only the top left n x n part of the binary symplectic matrix. The described procedure
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for updating columns immediately implies that the binary symplectic matrix for linear
reversible circuits should be of the following form:

(315)

As the matrix must be symplectic, we have AT B = I (per third equation in the definition),
which uniquely determines B given A. Therefore, we can store linear reversible unitaries
more efficiently than a generic Clifford operation.

8.2 Algorithms

The main challenge in our approach to finding optimal circuits is coping with the size
of the search space, that grows very rapidly, as illustrated in Table 8.1. The size of the
database for Clifford unitaries acting on n qubits reported in this table is calculated using
the following formula: 4n? x Ng/n!, where 4n? corresponds to the storage space (in bits)
required by a single unitary, N¢ is the number of elements in the respective Clifford group,
and the division by n! corresponds to the estimated reduction due to the input/output
relabelling invariance (n! marks a maximal possible reduction, therefore the entire figure
provides a lower bound on the size of the database).

Our algorithm is based on Breadth First Search. The number of distinct unitaries
computed by Clifford circuits grows as 20("*)  We address the resulting challenge in several
ways. First, each node of the search tree corresponds to an equivalence class of unitaries
instead of the unitary itself. Second, we use the meet in the middle technique to avoid
building the full tree [27]. Finally, we use a special data structure to store the search tree
in a compact way. It is described in more details in Section 8.2.

The equivalence relation we use to reduce the size of the search space is the following:
two unitaries are equivalent if they can be computed by circuits that are the same up
to simultaneous relabelling of their inputs and outputs. Both gate count and depth of a
unitary are invariant with respect to such simultaneous relabelling. During the search we
store only a canonical representative of each class. For n inputs this results in a reduction
of the number of unitaries to be stored by a factor of approximately n!. The number of
unitaries corresponding to the same canonical representative is not always n!, but this is
the most common case. In particular, the fraction of four-qubit unitaries that have less
than 24 (= 4!) elements in their equivalence class is less than 9.7 x 107°. To search for
five-qubit optimal Clifford circuits we used the equivalence relation corresponding to the
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’ G ‘ n ‘ Ne¢ ‘ Sizeg,(GB) ‘
3 1,451,520 1.01 x 1073
Sp | 4 47,377,612,800 14.71
5 | 24,815,256,521,932,800 | 2.41 x 10°
ai 6 20,158,709,760 0.12
7| 163,849,992,929,280 185.44

Table 8.1: G — group: Sp — symplectic part of Clifford group, GI — group gener-
ated by linear reversible circuits; n — number of qubits, Ng — size of the corresponding

group, Sizeg, — lower bound on the size of the database taking into account input/output
relabelling (GB).

independent relabelling of the inputs and outputs, in other words, we ignored SWAP gates.
This further shrinks the search space, but the results are suboptimal in the scenario when
SWAP has a non-zero cost.

The idea of the meet in the middle (MiM) technique is based on the optimality of
subcircuits of any optimal circuit. Given a database DB. of all unitaries with the cost
at most ¢, MiM allows us to find optimal circuits for unitaries with the cost at most 2c.
Suppose we are looking for an optimal circuit computing a unitary f with cost c+d < 2c.
We can always split the optimal circuit into two optimal circuits with d and c¢ gates.
Therefore, there always exists a unitary ¢ with cost d < ¢ such that its composition with
f has cost ¢, and it is in our database. We can find g by trying all unitaries from the
database and checking if g o f is also in the database. In the worst case, using meet in the
middle increases the time required to find a circuit by a factor proportional to the size of
DB,, in comparison to using the database DBs.. At the same time, meet in the middle
significantly reduces the required memory. For example, in the case of four qubits the
maximal number of gates required is 17 and the size of the database is 14.72 GB. Using
the database with optimal circuits up to 9 gates reduces the required memory to just 108
MB. Meet in the middle is vital for the search of optimal five-qubit Clifford circuits up
to input/output permutation. In this case, the size of the full database would have been
about 2.41 x 10° GB.
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Figure 8.1: The number of unique Clifford unitaries on 2, 3, and 4 qubits per optimal gate
count and depth.

Computing canonical representative

To find the canonical representative with respect to the simultaneous relabelling of the
inputs and outputs we compute all elements of the equivalence class, encode them as bit
strings, and find the minimum. We need to go though all possible permutations. This is
accomplished by applying a single transposition at each step. Exchanging inputs £ and
j of an n-qubit Clifford circuit corresponds to swapping columns and rows of the binary
symplectic matrix. The pair of columns (k, k + n) must be swapped with (7,7 + n), the
pairs of rows with the same indexes must be swapped also. Internally we represent each
binary matrix as an array of integers. Each integer corresponds to a column of the binary
symplectic matrix. We precompute the required transpositions of the bit strings of length
2n and use a lookup table to speed up the swapping of rows of the binary symplectic
matrix.

When we allow the independent relabelling of the inputs and outputs we apply a more
efficient procedure for canonical representative computation. In most cases we have (n!)?
representatives corresponding to the same equivalence class. First we find all n! represen-
tatives corresponding to the different row permutations '. Then we store columns k and
k + n together in one bit string and sort the resulting bit strings using a sorting network.
This gives a canonical representative with respect to the column permutation for a fixed

1By row permutation we mean a permutation acting simultaneously on first n rows and rows n +
1,...,2n.
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Figure 8.2: The number of unique Clifford unitaries on 2, 3, and 4 qubits per optimal
number of controlled-Z gates.

row permutation. Finally, we encode the representative for each row permutation as a bit
string and find the minimum.

We apply the same idea for linear reversible circuits. To exchange two inputs k& and j
we just need to swap columns k£ and j and rows k and j of the matrix encoding the circuit.
This approach also extends to partially specified matrices.

Implementation details

The main bottleneck in our search is the amount of memory available. In addition to using
the canonical representation, we tried to minimize the memory overhead caused by the
data structures. Here we describe the details of the gate count optimal search. The same
ideas were adopted for depth optimal search and can be extended to more general cost
functions. We did not set out to study all possible optimizations in a systematic way. We
present a set of solutions that allowed us to obtain the results in a reasonable amount of
time and designed our software to be scalable enough to support different types of search.

Possible costs of unitaries belong to a short range of integer values. Once we found
all unitaries with some fixed cost we store them as a sorted array. We call it a layer. It
allows us to quickly lookup unitaries with a given cost, however, it is expensive to ensure
consistency of this data structure when inserting new elements into it. When searching for
unitaries with specific cost we use C++ set container to store only unique elements. We
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build layers one by one. To build the layer k£ we pick an element of the layer kK — 1—we call
it a parent unitary. Then we compose it with all possible gates and check if the resulting
unitary was not found earlier. The only possible costs of the resulting unitary are k, k — 1,
or k — 2. If we get cost less than k — 2 this contradicts the knowledge that the cost of
the parent unitary is indeed k& — 1. Therefore, during the search we need to keep only
two previous layers in the memory. We repeat the procedure for all unitaries in the layer
k — 1. It can be executed in parallel for several parent unitaries. Only the addition of the
unitaries with cost k to the set container must be synchronized. After the layer was built
we copy the content of the set container into the sorted array and start building a new
layer.

Finally, we describe how to find a circuit using the precomputed layers. If we find that
a unitary belongs to layer k this means that there exists a circuit with k gates computing
the unitary. Therefore, by removing the last gate in the circuit we obtain an optimal
circuit with k& — 1 gates which corresponds to a unitary with cost £k — 1. By composing
the source unitary with all possible gates and checking the cost of the result we identify
the last gate in the optimal circuit. We proceed further in a similar fashion, until we
reach the canonical representative of the identity. In the case when we relabel inputs and
output simultaneously we always get an identity in the end. When relabelling of inputs
and outputs is independent we obtain a circuit that is composed entirely of SWAP gates
that represents a permutation of the inputs.

119



8.3 Experimental results

In this section we describe the results of our search together with the optimization exper-
iments that rely on the databases of the optimal circuits we found. For the experiments
that require more than 8 GB of RAM memory we used a high performance server with
eight Quad-Core AMD Opteron 8356 (2.30 GHz) processors and 128 GB of RAM memory.
These are the experiments involving 4- and 5-qubit Clifford unitaries. For all other exper-

iments we used a machine with a single quad-core Intel Core i7-2600 (3.40 GHz) processor
and 8 GB of RAM.

Distribution of the optimal circuits

We found optimal circuits for Clifford unitaries acting on 2 to 4 qubits (Figs. 8.1, 8.2) and
optimal linear reversible circuits acting on up to 6 qubits. In both cases we found both
circuits with the optimal gate count and those with the minimal depth. For the case of
Clifford unitaries we also found circuits with optimal number of controlled-Z gates (i.e.,
replacing the CNOT with the controlled-Z gate in the elementary gate set).

Distributions reported in Figs. 8.1, 8.2 are interesting for the randomized benchmarking
of quantum information processing systems. The benchmarking protocol [54] involves the
application of a large number of randomly chosen Clifford unitaries. Knowledge of the
distribution of the number of gates allows us to estimate the average time required for
each experiment, and evaluate its feasibility due to, e.g., the effects of the decoherence.
Using optimal circuits also minimizes the time required for the experiment. Finally, this
data may be used to estimate the average fidelity of the two-qubit gates used to perform
the benchmarking protocol. This is because it is based on the knowledge of the average
number of two-qubit gates used [25]; the latter follows directly from our results.

Five-qubit Clifford unitaries

The search for five-qubit unitaries up to input/output order is challenging, but it is still
tractable using modern computers. The number of different unitaries on five qubits is
about 2.4 x 10'" (Table 8.1). We need 100 bits to store each group element. Factoring out
simultaneous relabelling of inputs and output allows us to reduce the size of the database
by a factor of approximately 120. However, one still needs at least 2.41 x 10° GB to store
the full database in this case. To allow the search of any 5-qubit Clifford unitary up to
input/output order we allowed the independent relabelling of the inputs and outputs of

120



N
AV

)

) —{ |

)14] T ’_Iw
) &

)

\
Fan)
\
Fan)
\

=

;[ﬂ'
e

Figure 8.4: Optimal encoding circuits for the five-qubit code: (left) depth optimal circuit,
depth=>5; (right) circuit with the minimal number of gates, being 11 gates. Input marked
|1} corresponds to the state being encoded.

Figure 8.5: Encoding circuit for the five-qubit code used in [51]. The two-qubit gate
corresponds to e *4%7/* Eight of them are required to implement the encoding circuit.

the circuits and used the meet in the middle [27] approach. We synthesized all 5-qubit
unitaries that use up to 11 gates which allowed us to search for unitaries that require up
to 22 gates. It is unknown what is the maximum number of gates needed to implement
any 5-qubit Clifford unitary. We ran an experiment to estimate the distribution of the
number of gates required to implement a unitary. We used the algorithm described in [19]
to generate uniformly distributed random Clifford unitaries and found their gate count.
The distribution of the number of gates for 5-qubit unitaries, shown in Fig. 8.3, was
obtained using 20,000 samples. We used the Hoeffding inequality [34] to estimate errors
for confidence level 0.999. Based on the above calculation, we concluded that the use of
the 11-layer database and the meet in the middle approach should allow finding optimal
circuits for any 5-qubit Clifford unitary up to input/output order.
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Peephole optimization

We used the database of the optimal 4-qubit Clifford circuits to perform peephole opti-
mization. Briefly, peephole optimization works as follows [63]. First, choose a pivot gate
from the circuit and enumerate all subcircuits including it and acting on the number of
qubits less or equal to 4 (otherwise, some small parameter of choice, which in our case was
4). Next, for each subcircuit find its cost and the optimal cost of the unitary that it com-
putes. When beneficial, replace the less efficient subcircuit with its optimal version. This
procedure is repeated until it is no longer possible to reduce the cost of some subcircuit
corresponding to some pivot element.

When enumerating subcircuits we take into account that some gates commute and
we can build larger subcircuits by moving gates. This requires us to examine the whole
circuit at each step and results in quadratic complexity of the algorithm in the number of
gates in the circuit. In practice, the algorithm runtime depends on the circuit structure.
Furthermore, for large size circuits a different and more efficient algorithm may be employed
to find suitable subcircuits, including limiting the “window” in which the gates are to be
found (limiting this window to a constant size results in the reduction of the algorithm
complexity from quadratic to linear). We did not investigate this further since in practice
the subcircuit extraction algorithm with unbounded window did not take very long to
complete for the circuits we tried. A more detailed description of the peephole optimization
may be found in [63], along with a description of the version of the algorithm that produces
slightly worse results, but requires linear time in the number of gates.

We applied peephole optimization to encoding circuits for quantum error correcting
codes (QECCs). To obtain an encoding circuit for QECC one starts with the stabilizer
generators of the code and applies an algorithm that produces the encoding circuit. We
implemented two algorithms. The first one is a version of the canonical decomposition
theorem [1] for stabilizers that produces stages of CNOT, H, and P gates (Algorithm
1). The second one (Algorithm 2), taken from [29], produces circuits that do not have
an expressed staged structure. Table 8.2 summarizes the results of our experiment with
codes from [31]. The code for these experiments was not parallelized. Applying peephole
optimization to the circuits produced by Algorithm 2 results in a reduction of the number
of gates by 45-53%.
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Optimal encoding circuit for five-qubit quantum error correcting
code

Using a slightly modified version of our algorithm we found a depth optimal circuit for the
five-qubit [[5, 1, 3]] error correcting code. This code encodes one qubit and corrects any
single qubit error. In this case only first four out of 10 lines of the binary symplectic matrix
are specified. We first found depth optimal circuits that produce matrices with different
first four lines. The problem has an extra degree of freedom—the addition of lines of the
binary symplectic matrix to each other does not change the code. In other words, left
multiplication of the specified part of the binary symplectic matrix by a 4 x 4 invertible
binary matrix leaves the code unchanged. Search for all four-bit optimal linear reversible
circuits gave us a database of all 4 x 4 invertible binary matrices. We used it to go through
all matrices equivalent to the one that defines the five-qubit code. Depth and gate count
optimal circuits found are shown in Fig. 8.4. One of the best previously known circuits is
illustrated in Fig. 8.5. Our approach may also be used to synthesize optimal circuits for
other quantum error correcting codes that use a small number of qubits.

Conclusions

We explored the limitations of the brute force search for optimal circuits implementing Clif-
ford and linear reversible unitaries. Using typical memory and processing power available
today, it is possible to search for up to four-qubit optimal Clifford unitaries and six-qubit
linear reversible unitaries. We also demonstrated that additional assumptions allow to
search for optimal Clifford unitaries with up to five qubits. It is possible to make further
assumptions resulting in greater sub-optimality, but reducing the size of the search space.
For example, one may allow to apply Hadamard gates to each output in the end of the
circuit for free. This will further reduce the size of search space by approximately 2", where
n is the number of qubits. It is easy to come up with canonical form computation for this
case. Of course, circuits produced by the algorithm will not be exactly optimal. However,
the results will be very close to optimal if the cost of Hadamard gates is small. If we do not
have the symmetry between all qubits we will have to deal with the larger search space.

Using lookup in our database as a part of the peephole optimization shows that this is
an efficient and promising approach for the optimization of larger Clifford circuits.
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‘ Table 8.2:  The results of ap-

285 | 387 | 205 || 22.2707 | 6.57012 | Plication of the peephole op-

timization to encoding circuits
for Quantum FError Correcting

codes. [[n,k,d]] denotes the code

that uses n physical qubits, en-

codes k logical qubits and has

distance d, ¢, — number of gates

in the circuit obtained using Al-
gorithm k, ¢, — number of

gates in the circuit after appli-

cation of the peephole optimiza-

tion using the database of 4-

qubit optimal Clifford circuits,

tro, — runtime of peephole op-

timization software (in seconds,
user time, using single core of In-

tel Core 17-2600) as applied to

the circuits produced by the Al-

gorithm k.

’ Code H c1 ‘610 Cy ‘CQO tio ‘ tao-
| [[25,1,9] | 440

[26,1,9]] || 444 | 287 | 389 | 207 || 22.8359 | 7.97804
[126,4,8]] || 500 | 336 | 528 | 250 || 30.073 | 18.6791
[27,1,9]] || 592 | 396 | 479 | 241 | 31.8254 | 15.1547
127,2,9]] || 559 | 377 | 568 | 295 || 39.9342 | 18.5159
[27,3,9]] || 566 | 373 | 566 | 274 || 38.629 | 10.6849
[27,4,8]] || 504 | 335 | 530 | 252 || 28.0685 | 22.9666
[27,8,6]] || 498 | 341 | 558 | 305 | 45.949 | 15.2595
[27,9,6]] || 453 | 310 | 588 | 305 || 32.2922 | 17.1963
127,10,5]] || 428 | 293 | 563 | 293 | 59.7698 | 10.5993
[27,11,5]] || 409 | 279 | 541 | 295 | 29.6078 | 12.5559
[128,0,10]] || 652 | 446 | 526 | 248 | 45.3604 | 18.2336
[[28,1,10]] || 660 | 446 | 531 | 284 | 41.0448 | 13.5861
[128,2,10]] || 666 | 427 | 592 | 285 | 44.143 | 16.4625
128,3,9]] || 570 | 378 | 568 | 276 | 60.009 | 10.2351
129,0,11]] || 726 | 479 | 597 | 288 || 63.5229 | 12.0342
[[29,1,11]] || 709 | 477 | 572 | 294 | 59.994 | 10.7589
[29,2,10]] || 670 | 430 | 594 | 287 | 42.623 | 19.8844
129,3,9]) || 574 | 380 | 570 | 278 || 59.022 | 12.6315
[29,4,8]] || 512 | 341 | 534 | 256 || 30.7405 | 30.2718
129,5,7]] || 492 | 305 | 518 | 263 || 29.5458 | 31.1485
129,6,7]] || 602 [ 409 | 577 | 318 || 52.8024 | 14.8819
[129,7,6]] || 549 | 376 | 593 | 298 | 28.9031 | 20.17

[29,8,6]] || 488 | 318 | 576 | 313 | 45.6243 | 10.709
[30,0,12]] || 813 | 524 | 662 | 310 || 71.1554 | 18.601
[30,1,11]] || 713 | 479 | 574 | 296 | 60.7773 | 12.9511
[[30,2,10]] || 674 | 432 | 596 | 289 | 39.7054 | 24.7658
[30,4,8]] || 516 | 349 | 536 | 258 || 34.0143 | 34.5184
130,8,7]] || 627 | 425 | 707 | 378 || 75.6614 | 22.7352
[ ]

| [[40,30,4]) || 452 | 311 | 679 | 362 |

198.226 | 41.9046 |
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Chapter 9

Conclusions

There are two main themes in this work. The first theme is bringing new tools to quantum
compiling. This includes the exact synthesis algorithms for unitaries, the theory of relative
norm equations and continued fractions. Combining these tools allows one to solve the
approximate synthesis problem in an efficient way and to find approximations that are
remarkably close to the optimal. Contributions by the author of this work and his collab-
orators were originally published in several papers [49, 47, 48, 45, 46]. Other important
contributions to the topic include [26, 68, 6]. This results in significant reduction of re-
sources needed to execute quantum algorithms fault-tolerantly using the Clifford+T gate
set or on a topological quantum computer based on Fibonacci anyons. Interestingly, for the
Clifford+T gate set, very similar reduction in the number of resources can be achieved by
taking a different approach (developed in parallel with the number theoretic method) and
summarized in [38]. For the Fibonacci gate set we achieved the improvement by factors
from 20 to 1000 for the range of precisions 1071% to 107" in comparison to the previous
state of the art.

The second theme is related to finding optimal solutions to quantum compiling problems
(Chapters 5,8). The resources required for these methods usually scale exponentially with
the precision or the number of qubits used. However, we find that these methods are
useful in a practical setting. For example, the method developed in Chapter 5 allows us to
find circuits that are on average 25% shorter than those produced by the polynomial time
algorithm that solves the same problem [68], and we handle precision of approximation
down to 107'. We also demonstrated that one can find optimal circuits for Clifford
unitaries acting on up to four qubits. We showed how to use this to reduce the number of
gates used in encoding circuits by 40%-50%. The success of using these practical methods
depends not only on the theoretical ideas behind them, but also on the quality of their
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implementation. The implementation defines how small the constants behind the big O are
and how far one can push one idea or the other. As the field of quantum compiling becomes
more and more mature, the role of these details might become more and more pronounced.
For these reason the implementation of the algorithm described in Chapter 5 is available
on the Internet as an open source project at http://code.google.com/p/sqct.

There are many interesting questions left in quantum compiling. The unified framework
for the number theoretic method is one of them. It would be interesting to develop a
unified approach to describing exact synthesis algorithms. This is, probably, one of the
most serious bottlenecks on the way to the generalization of the number theoretic method.
The theory of relative norm equations is very well developed and can be applied in far
more general situations. The other obstacle could be the difference between the round-off
procedure used for the Clifford+T gate set [68] and the Fibonacci gate set. In the first
case one needs to do extra work to satisfy the necessary condition for the norm equation to
be solvable. In the second case the necessary condition is satisfied automatically and one
can just use continued fractions to find the approximation. The approximation procedure
from [68] might be related to the Minkowski theorem from the geometry of numbers. It
will be interesting to investigate this connection further.

The more general question is where the next big resource reduction is possible. There
are several interesting directions which one might investigate. The first one is related to
understanding what is the necessary overhead when designing different parts of a fault tol-
erant protocol. One of the possible ways to address the question is new methods for proving
the threshold theorems that take into account more detailed noise models of the hardware
used. The second direction, is the design of parts of quantum algorithms that accounts for
more refined cost models. The automatic resource estimation tools for quantum algorithm
will be useful for this task. It could be the case that different architectures will require
different ways of designing algorithm building blocks. For example, it is not possible to
implement reversible circuits using the Fibonacci gate set exactly. For this reason, the
adders based on Quantum Fourier Transform could be more suitable for this architecture.
The third interesting direction is a more generic framework for circuit synthesis methods
based on resource states. The specific question that could be interesting in this direction
is finding tight lower bounds for multiple qubit state preparation when using Clifford+T
or Fibonacci gate sets.

I look forward to the next advances in quantum compiling. This field is crucial for
harnessing the power of quantum computers as soon as the first moderately large quantum
computers are built.
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