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ABSTRACT

The design techniques of the components on the macro level are established in the scientific community,
however are far behind from the real material performance limits. To obtain those limits, the deeper
understanding of the material structure is required. The methods of a new comonents production through
standard alloying are the basis of the modern material science manufacturing. The design of the materials
with expected required performance limits is the next conceptual step for the materials scientist. As
results, to make this step, the problem of a precise material structure analyses on the microstructural
level is one os the major importance for the next generation materials design. The complexity of the
material structure across the scales(macro-micro) requires a new non deterministic methods for better
understanding of the connectivity betwen a materials performance and material microstructure features.
This work presents a various new research methodologies and techniques of the material microstructure
characterization and numerical design with future applications to the anlyses of the material behavior. The
focus of the particular research was to analyse a new cross correlation function of the material structure
on the micro length scale and develop a novel framework which allows a better understanding of various
important material phenomenas such as failure initiation and recrystallization.
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Chapter 1

General Introduction

Computational methods for material science and engineering can be key tools for advanced alloying and
manufacturing processes. Exponential growth of the computational power is introducing new possibili-
ties for numerical models and their applications. On the other hand, the development of the electron
backscatter di↵raction (EBSD) technique enabled researchers to implement microstructure characteristics
such as grain morphology and crystallographic texture into their numerical models. Experimental EBSD
maps have been directly employed in numerical models (i.e., finite element models) for modeling various
phenomena such as formability, localized deformation, recrystallization. The field of microstructure design
is growing rapidly although a standard is yet to be established. One of the first attempts in this field
was presented by Adams et al. [2], where the design of a compliant beam to maximize the deflection
without plastically deforming the beam was presented. Unfortunately, limited research exists in the field
of materials design. [3, 4, 5, 6]. The main idea of the microstructure sensitive design (MSD) methodology
consists of two separate parts. The first part [3] is the construction of the microstructure hull, which is
a set of all possible 2microstructures used in the optimization. This space can be reduced by the several
methodologies such as Fourier transformations, symmetry operators, di↵erent activities of the slip systems
during the di↵erent load conditions, etc. For the construction of the material hull, Adams [2] developed
a novel technique of material data characterization. The roots of this technique go back to the work of
Bunge [7] in the fields of orientation distribution function analyses and spectral representations of the
crystallographic texture.

The continiuos push for the development of engineered materials provides a challenging opportunity in
the field of materials science for material characterization and design from the perspective of performance
limits and property predictions. The problem of engineering materials at the level of microstructure is
a relatively new and promising field. The major focus of the material microstructure optimization is
to obtain the desired properties for enhanced material performance. In order to achieve this goal, the
material behaviour should be accurately captured at di↵erent scales using various approaches/techniques.
Optimization techniques are the tools to achieve a desirable objective property from all the possible sets
of independent variables (input data). Accordingly, advanced theories in microstructure analyses should
be applied in combination with the most e�cient optimization techniques. It is well known that, through
various processing techniques, it is possible to change both the macroscopic (yield stress, hardening rate,
ductility, etc.) and microscopic (grain morphologies, texture, etc.) properties of materials of materials
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[7, 8]. Thus, these material processing techniques create a potential bridge between the control and design
of the material properties at micro and macro levels1.1). Allmost all modern constitutive models assume

Figure 1.1: Material design across the scales diagram.

that the material deformation behavior depends on the crystal orientation through the resolved critical
shear stress (Schmid law), considering the anisotropy of the single crystals. Other studies have shown
that anisotropy and yield strength of a material depend not only on the texture, but also on the grain
alignment and the number of precipitations in the material [9]. Bunge, in his classical work [7], pointed
out a significant experimental observation, he classified face centered cubic (FCC) metal textures into two
major classes: deformed and annealed textures. Thus observation makes a valuable scientific contribution,
since it provides a connection between microstructural components and manufacturing processes. If one
can predict the correlation between texture components with expected alloy properties, this classification
can be used as an instruction for the possible solutions to obtain the desired texture components and then,
to design the alloy.

1.1 Material Microstructure

Accurate understanding of the connection between the microscopic properties of the material and the
macroscopic behavior of the material is a nontrivial physical problem. Numerical design or engineering of
the microstructure is a problem of constrained optimization. These constraints can be described as the lim-
itations on grain morphologies and the variation in texture that can be achieved through the processing of
the material. Furthermore, microstructure optimization involves extensive computations and experimental
measurements. The real material microstructure consists of various complex structural features (particles,
inclusions, dispersed second faces, etc.). It should be mentioned that, the lower the considered scale of
the microstructure, the more advanced physical model is required to obtain a relationship between the
structure and its properties. In the material microstructures (which are hard to obtain precisely in 3D [10])
the di↵erent length-scales will predict di↵erent expected performance properties. This can be explained
by the fact that the lower is the scale of the microstructure is considered the more general physical model
is required to obtain a connectivity between a structure and properties. The amount of data that should
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be collected for this type of material analyses is significant. For example, for a 1000 ⇥ 1000µm sample
the amount of measured data points with an EBSD step of 2µm is 25 ⇥ 104 measurements, while going
to nano scale requires at least 108 more measurements. This makes the data collection for microstruc-
tural analyses alone a complicated material research problem. To simplify this, the microstructure data
obtained through microscope measurements should be subdivided or clustered by specific phases or states
of the full media (for example grains). However, even these clusters of material perform on a high level
of uncertainty and complexity. The grain morphology as well as the texture is not randomly distributed
and, therefore, not homogenous, which makes the problem of the prediction of the material properties even
more complicated. For example, the grain size in a given material has a lognormal distribution. The ori-
entation of the grains are also anisotropic and this anisotropy is reflected in the preferred crystallographic
orientation, i.e textures. The term microstructure in a particular work is referred to as a combination
of the preferred material crystallography states (texture) and the arrangement of these states, so-called
grains and their geometry (see Fig. 1.2). The color map presented in Fig. 1.2 shows the specific material

Figure 1.2: General representation of the 2D EBSD microstructure map.

cluster phase or so-called grain. The grains are separated by the boundaries, which are assigned based on
misorientation between neighboring pixels. Each color on the map corresponds to an orientation of the
measured pixel and is assigned to a pixels data set with some level of confidence or tolerance. There are
various ways to mathematically represent the orientation space of the texture of a microstructure. One of
the most common approach is assigning an Euler angle triplet (rotation around particular axes) to each
pixel g(�1,�,�2). There are lots of di↵erent representations of the Euler angles which are reducible at the
point of definition of rotation axes. To describe the orientation of a particular grain, the orientation space
is provided with a function(g) presenting a mismatch in a rotation space between two orientations of the
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arbitrary points. The most common separation metric in an orientation space of grains is the misorienta-
tion concept (see Fig. 1.2). However, knowing the misorientation between grains is not usually enough to
identify the basis representation of the texture. This is explained by the symmetry of the crystallographical
space of the material (as can be seen from Fig. 1.2 the orientation and misorientation are matrices). Next,
the disorientation between grains should be calculated to reduce the e↵ect of the symmetry (O) on the
representation of the grains orientations. The disorientation, ✓, represents a unique misorientation of the
specific grain or unit inside the grain according to the minimum possible angle transformation:

min{cos�1(
trace(O(i)gBg

�1
A O(j) � 1)

2
), cos�1(

trace(O(k)gAg
�1
B O(l) � 1)

2
)}, {i, j, k, l = 1, n} (1.1)

where n is a set of all possible symmetric transformation defined for each operator O and A,B are di↵erent
states or grains(for more detailes see [11]). An EBSD map contains a large amount of relative information
about the material at the grain scale; i.e., grain sizes, grain distributions, grain orientations. Furthermore,
varios cross correlations and statistical functions, can be be constructed on this data. Furthermore, varios
cross correlations and statistical functions which could be constructed on this data as will be discussed
further in Sec. 1.2.

Following Fullwood et al. [12] one of the major problems of microstructure design could be quickly
divided numerically into separate research categories. A design problem should be identified with a set of
the optimized target material properties and criteria. Material properties are dependent on the required
performance of the material (energy absorption, failure, etc). Optimization criteria must include observed
(dependent) and arbitrary (independent) variables of the design. For dependent variables (observed) one
can choose certain material properties and microstructural components(texture distribution, grain size
and shape, etc.) as independent variables. Material microstructure should be identified at a certain level
and scale (nano(A), micro(0.1µ), meso(µm) or macro(m)) since homogenization length scale should be
selected for the optimization criteria. A representative material scan size (RSS) should be obtained as
an accurate input of the model and should be consistent with the optimization scheme. RSS can than
be used as an etalon microstructure for the designed representative volume element (RVE) and should
be identified as a building block for the design space. Valid microstructural norms should be studied and
optimized for the problem of RSS-RVE construction (orientation functions, 2-point correlation functions).
Design optimization space should be obtained based on the material RVE. Note, that the design space
is a space representative of all the possible independent variables (microstructures) of the design. The
optimization design space is usually called a microstructure hull. The next step is to find the limits of the
design problem based on the material of interest. A limited set of design properties or property closures
should be associated with the proper norms defined in the optimization space as well as techniques for the
construction of the property closures (optimization algorithms). Each topic mentioned above is a separate
material characterization, design and theoretical problem.

1.2 Microstructure characterization

The analysis of the crystallographic orientation space is usually associated with a large amount of data as
well as significant complexity caused by grain morphologies. Analysis of the data collected by Scanning
Electron Microscopy (SEM) or EBSD is generally problematic due to the large amount of information.
Precise data analysis of the microstructure in a sense of data mining can provide more information about
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data dependencies in the material and can assist in the development of material models with precise
microstructural information for engineering applications. EBSD data is a perfect candidate for the mi-
crostructure data research because of the amount of information it contains. To address this complicated
problem, correlation functions have been employed to characterize complex heterogeneous media. His-
torically, the correlation functions in solid state physics were implied in the work by Cosserat [13]. This
work presented a description of the stress with micro rotations, which introduces the length scale e↵ects
in classical elasticity. In the discussion of the correlation functions, it is important to mention the work
of Beran and McCoy [14], where the authors presented strain gradient analysis of random media showing
the e↵ects of fluctuations in the constants of elasticity on the force field in a statistically homogeneous
medium. The authors presented the dependence of the solution on the length (a distance from the point of
the field to the applied force) introduced in the gradient theory. Considerable amount of research was per-
formed in the field of application of the n-point correlation statistics to the problems of three-dimensional
microstructure reconstructions [15, 16, 17, 18, 19, 20, 21, 22, 23]. A variety of research methodologies were
proposed in these works, namely, Monte-Carlo stochastic optimization, simulated annealing, Fourier space
analysis, etc. In this approach, the main idea is to reconstruct the full microstructure medium from the
n-point correlation statistics using di↵erent optimization and homogenization techniques. The correlation
between particle interactions and the length scale e↵ect were investigated by Glicksman et al. [24] and
Wang et al. [25, 26] where studies of spatial and nearest-neighbor correlations in the polydispersed particle
systems were presented.

Recently, Jiao et al.[27] demonstrated the application of n-point correlation, Sn, and in particular,
S2 (two point correlation) to various practical problems including microstructural analysis for the real
engineering materials, while Neizgoda et al. and Qidwai et al. [28, 29] in their recent works have shown
the application of the 2-point statistics to the analysis of the representative volume element(RVE). They
highlighted the importance of the analytical estimators of the 2-point correlation statistics (see Fig. 1.3)
found for the real microstructure. Also, the gap in the field of obtaining a universal solution for the
statistical descriptors was discussed. It should be mentioned that, statistical analysis of the two-point
correlation function was initially proposed by Corson [30], who used the exponential model (Pij = ↵ij +
�ij exp(�cijRnij)), where Pij is the two-point correlation function, R is the distance vector separating the
two phases i and j, and ↵, �, c and n are the coe�cients obtained by curve fitting to the experimental
data of interest. However, the obtained coe�cients have no physical meaning and have to be evaluated
for di↵erent material data sets. A significant work in the analytical approximation of n-point correlation
statistics was performed by Torquato et al. [31, 32]. As pointed out by Sundararaghavan and Kumar[33],
there is no connection between microstructure related parameters and those, estimated from the correlation
analysis of a given microstructure. Garmestani et al.[34] presented an analytical approximation, which
takes into account the volume fractions Vj of grains with specific discrete set of orientations g:

P (gj |(gi, R)) = Vj + (1� Vj exp(�cijR
n
ij )) (1.2)

The parameters presented in their work are the same curve fitting parameters of initial conditional orien-
tation correlation function (COCF)[30]. This solution improves the fitting procedure but still is a global
approximation, and hence, is not applicable to the real material modeling problems and solutions. An
experimental work to obtain the precise microstructural correlation distribution function descriptor was
presented by Tewari et al.[35]. In this work, they highlighted the complexity of obtaining the two-point
correlation descriptor for measured EBSD data sample and proposed a procedure that can improve the
computational time. They concluded that the observer needs, as a minimum, the 1013 measurements
of the Cartesian distances for a 500 ⇥ 500µm material sample. The proposed procedure was based on
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the usage of the dynamic lookup tables (LUTs) for computing distances and angles. Two-point corre-
lation function was also used for probabilistic modeling of microstructure evolution using Finite Element
Modeling (FEM) in the work of Sundararaghavan et al.[33]. The authors showed the applicability of the
conditional orientation correlation function (COCF), defined as the probability density of occurrence of
a crystal orientation g0 at a distance r from a given orientation g, to their FEM model. A Lagrangian
approach was used to obtain the normalization constraints. However, the major problem with the analysis
based on FEM probabilistic modeling of the microstructure evolution is the computational complexity of
obtaining the COCF for each numerical integration point in the model. The analytical study of the two
point correlation function based on the so-called texture functions in the Fourier space approximations
can be found in the works of Adams et al.[36]. The Fourier space solutions are neither problem specific
nor flexible to the real changes in the material specific microstructures [33]. The analytical solutions for
the cross-correlation texture functions can be employed in a large variety of applications (see Fullwood et
al.[12]), such as long range ordering of texture, two point correlation function construction, representative
scan size (RSS), microstructure based finite element method (FEM) modeling, micro-polar elasticity, etc.

This thesis will present a new theoretical model to determine a functional form for the distance-
disorientation distribution (DDF) (Fig. 1.3). The DDF can be treated as a generalized two-point corre-
lation function. To obtain the DDF, one needs information on both the distance between any two given
pair of points in the microstructure and the disorientation between them is necessary. However, this cal-

Figure 1.3: 3D representation of the distance-disorientation cross correlation function

culation, or any calculation of a two-point correlation function, is very time consuming. To address this
problem, this research proposes to calculate the DDF in two parts. First, one must obtain an analytical
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solution for the geometrical domain (grain morphology and grain distribution) and then combine it with
the crystallographic domain (grain orientation) to aid e�cient quantification of the microstructure for
implementation in engineering analyses of material behavior. After the analytical solution of the DDF
function is obtained, its application will be introduced to the problem of the representative volume element
construction. The next sections will give a brief overview on the problem of the reconstruction methods
widely used in the microstructure design.

1.3 Microstructure reconstruction

Unfortunately, a clear definition, so far, for the RVE in the scientific community [12] does not exist. The
main concept of RVE is to provide the statistically representative domain of the whole media, which can
be representative in the terms of its properties. The latest concepts of the statistical representation were
formulated in the work of Neizgoda et al.[28] and Qidwai et al.[29]. The statistically representative element
in the authors’ formulation is an element, which can be randomly cropped from the material sample and
represent certain properties (for example stress-strain response). This formulation is widely used, although
it is not necessarily enough for defining the RVE. Furthermore, this definition is weak in terms of capturing
localization e↵ects of the material microstructure. It should be mentioned that Shan and Gokhale [40] also
studied the distance disorientation function (DDF) for the nearest neighbors to construct a microstructural
representative volume element (RVE) (1.4).

The problem of the reconstruction of 3D microstructures from stereographically projected EBSD data
is one of the most di�cult ones and, unfortunately, it has not yet been studied in depth. The novel concept
of RVE, presented in this thesis, proposes to treat RVE as a representative of the material (in our case
microstructure), and mechanical response is only a part of the problem of the material representation.
This concept will be introduced in the Chap.4.3.3. Furthermore, the proposed work presents a technique
for the construction of such synthetic RVEs in a 3D space. There is significant motivation to get a 3D
representation of the data observed from a microscope. It is obvious that material characterization and
its anisotropic behavior has to be three dimensional by its nature. Reducing the space of the material
data leads to the loss of the existing correlations. The first important question is to determine which
characteristics can be obtained from the 2D EBSD data, and how they could be quantified. In-depth
study of the EBSD data can be found in the works of Humphreys et al.[41], where the author described,
in detail, the qualitative characteristics of the data that is obtained from a microscope. He describes
such characteristics of material as nearest neighbors grain orientations, average volume fraction of the
grain, texture and its correlation with grain or sub-grain size, the spatial distribution of stored energy in
a sample and the amount of recrystallized grain in the material sample. The work of Humpryes et al. [41]
was systematized later on by Groebert et al. [42]. Groebert gave a list of the main material characteristics,
obtained from the EBSD, in the well-defined list of statistical descriptors measured during the analyses of
the material. Moreover, his work presented the general framework of the synthetic microstructure builder,
based on this descriptors, which is commonly used nowadays. The initial work was proposed by Rollet and
is discussed in his papers [43, 11, 10]. While the global approach can slightly vary, it can still be divided
into three main categories as follows:

1. Generation of the distribution of the initial grains: Create grain distributions within the microstruc-
ture with realistic prediction of grain shapes, sizes and location in the microstructure.
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2. Distribution of the grains inside the material microstructure: Construct grain distribution and their
neighborhood, which are similar to the real material grain structure.

3. Crystallographic orientation assignment: Assignment of the orientations for the grains, which will
minimize the gap between local neighboring misorientation distribution function (MDF) and the
global orientation distribution function(ODF)

The above described framework is the most widely employed tool for the material 3D representation. Over
the past years, significant research was performed in the field of the microstructure reconstruction from
the correlation functions [15, 16, 17, 20, 21, 22]. The main idea is to reconstruct the full microstructure
media, from the n-point (2-point) correlation statistics using di↵erent optimization and homogenization
techniques. The proposed method is a new technique, which combines the reconstruction of the RVE using
the simulated annealing method with the new solution of the 2-point correlation statistic reconstruction
in the 3D microstructure. Note that the method of serial sectioning (SS method) [44] is another approach
of the generation of the material microstructures. However, this method is not applicable so far due to
its high computational cost, and the obtaining the final dimensions of the 3D sample is time consuming.
Another weak point of this method is the non-parametric solution, which the SS method provides due
to the fact that it calculates a new 3D microstructure by stitching the parts of di↵erent EBSD sections
and cannot be recognized as a numerical tool. Discussed 3D microstructure generation techniques will
be used in the presented work as the basis for the future improvement and construction of the new 3D
microstructure. This microstructure will be able to account not only for already existing measurements
obtained from the EBSD, but also a new cross-correlation proposed in this research.

Figure 1.4: General representation of the concept of the representative volume element reconstruction
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1.4 Objetives of the research

The proposed research work will investigate only part of the microstructure design problem due to its
complexity. The general scope of this research is illustrated in the Fig. 1.6. The first block represents
the statistical characterization techniques and new functions, which were developed and implemented in
the numerical framework. One of the major problems that the research presented in this thesis addresses
on the characterization level is: (i) how much data should experimentalists consider while extracting the
EBSD data on the meso scale(µm) and, (ii) what methodology can be applied for that particular problem.
Once the above are addressed, a new question arises; how can this knowledge about representative material
and long range microstructural correlation be used further for the material design and characterization.
For example, if you have a crop of the abstract measured data (black window), what are the minimal
limits of the sub-crop (red window) required for the data being representative of the whole media (1.5 )?
It should be mentioned that the research presented in this thesis will not include the construction of the

m

EBSD sample 4000x4000 

Cropped EBSD window

µ

1000x1000

m

µ

Figure 1.5: General representation of the RSS concept procedure.

optimal microstructure hull and material properties closure, leaving it for future work. Accordingly, the
study presented could be divided into two major research topics:

1. Microstructure characterization

(a) How much material needs to be obtained to be representative for further micro-macro mechanical
analyses?

(b) Does the processing of the material e↵ect the representative dimensions?

(c) Are the existing material analyses techniques is enough for material comparative analyses and
characterization?
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(d) How many grain representations in 3D are required for them to be representative ?

(e) Two examples of microstructure sensitive analyses; failure and recrystallization

2. Microstructure reconstruction and numerical optimization

(a) Integration of the microstructure characterization techniques with existing material-behavior
computational methods

(b) Creation of a precise material microstructure reconstruction in 3D with the new DDF term

(c) Implementation and improvement of the existing material reconstruction optimization schemas

(d) Comparative analyses between di↵erent 3D material microstructures for understanding of the
various material phenomenon

After the development of novel microstructure characterization techniques, the next part of the research
corresponds to the numerical modeling procedures. The new methods of correlation functions analyses
will be discussed with some applications. This part of the work will create the mathematical basis for the
next layer of the research -microstructure reconstruction.

In this thesis, first, a new mathematical framework and a quantitative measure for obtaining the
representative scan size will be presented. The framework for obtaining the representative scan is based on
the DDF function and its analysis using information theory norms. A new functional form of DDF statistics
is inherited from the ideas of the population model construction. Next, the parameters for the analytical
solution (logistic distribution curve), which is based on the microstructure morphology, will be estimated.
Instead of the evaluating the exact DDF correlation statistics, the proposed method treats disorientation
as a known fixed parameter (measured from the crystallographic Euler space of the microstructure), and
then, estimates the distance function. The application of the constructed DDF solution based on the grain
morphology is applied to the large EBSD scans of Aluminum and Magnesium samples, and the results are
compared with measured DDF data to validate a new model. After the analytical solution is obtained,
the next chapters will present the application of the new solution to the problem of the 3D microstructure
reconstruction. Di↵erent microstructures, obtained from the new 3D microstructure building procedure,
will be used as a tool to investigate the e↵ects of the representative texture on localization phenomena. The
last chapter of this thesis investigates the techniques of studying incompatibilities, rather than attempting
to explain and validate the results with experiments. The incompatibilities are carefully defined through
the extreme value statistics problem. Di↵erent aspects such as grain boundaries analysis, triaxiality tensor
analysis, the e↵ects of the microstructure sampling on the results of the failure initiation, incompatibilities
are discussed.
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Figure 1.6: General representation of the microstructure design process.
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Chapter 2

On the Determination of the
Minimum Scan Size to Obtain
Representative Textures by Electron
Backscatter Di↵raction

A new method for analyzing microstructure is proposed to evaluate the long range dependence of texture.
The proposed method calculates the average disorientation as a function of distance between data points
as measured by electron backscatter di↵raction patterns. This method gives a measure of clustering of
texture and is used to accurately evaluate the e↵ective grain size. This procedure in conjunction with
Information theory is used to estimate a representative scan size for various materials. Analyses show
that the optimal scan size depends on grain morphology and crystallographic texture. The results also
indicate that on an average the optimal scan size needs to be ar least 10 times the e↵ective grain size in
each direction in length.

2.1 Introduction

Since the introduction of Electron Backscatter Di↵raction (EBSD) patterns four decades ago [45] they
have been used increasingly in materials characterization. Adams and coworkers [46][47] proposed a fast
automated indexing of the EBSD patterns (based on Hough transforms) and increased the data collection
speed. Today EBSD has become an indispensable tool for quantifying microstructure related parameters
like grain morphology, crystallographic texture etc. The increased speed for data acquisition and processing
has led to the ability to gather and analyze enormous amount of data in record time. The technique has a
wide variety of uses spanning over several length scales with step sizes (distance between two observation
points on the scan surface) ranging from few nano-meters [48] to many micrometers. Experimental data
obtained from EBSD has been used in modeling material behavior. Experimentally measured EBSD maps
have been directly employed for modeling recrystallization (3D Monte-Carlo based models [49][50], Cellular
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Automaton based models [51]) as well as deformation using Finite Element Analysis [52][53][54][55] and
Fast Fourier Transforms [56] to name a few.

The resolution at which the data is obtained from the EBSD measurements and the size of the scan
area are determined by the problem at hand. Despite the amount of recent work in the field when it
comes to determining the scan size, Optimal Design of Experiment (ODE) ([57, see]) is lacking. An ideal
scan should contain all the relevant information like grain size, shape and size distribution, micro as well
as macro texture. Schuh et al. [58], for example, while studying grain boundary networks observed that
the measured mass distribution of grain boundary clusters depended on the size of EBSD scan. A small
scan can be obtained at very high resolution but might not be representative of the macro-texture and
grain size/shape distribution. A large high resolution scan on the other hand will contain all the relevant
information but can be wasteful. The goal is to obtain a scan which is representative but is not too large.
Humphreys [59] in his work on quantitative metallography with EBSD gave an estimation on the amount
of data points needed in an EBSD scan for various problems of interest based on speed of data acquisition
and angular and spatial resolution. Wright et al. [60] showed that to have a truly representative texture,
comparable to X-ray di↵raction measurements then one needs observations from 1000 to 10,000 grains.
While Baudin [61] concluded one needs about 1000 orientations for the EBSD texture measurements to
be representative. For phase fraction determination in multiphase materials, Davut and Zae↵erer [62]
showed that to obtain representative measurements one needs to scan at-least 0.275 mm2 with 30,000
points. When the EBSD data is employed as an input to numerical models for deformation and annealing
studies, selecting data which is representative of the bulk material (representative volume element - RVE)
is of prime importance. In this case using an ODE for obtaining the EBSD is essential. For example in
extruded AZ31 samples the crystallographic texture is strong with most normals having basal texture as
can be seen in Fig. 2.1. The scan size which would be representative of the bulk would be smaller than a
sample which has a weaker texture.

Plastic deformation of materials is generally accompanied by crystallographic rotation. The rotation
of one grain has to be correlated to the rotation of its immediate neighbors. The rotation of the neighbors
is in turn tied with the rotation of their neighbors and so on. One has to then go a certain distance from
the first grain so that its influence is not felt. This should lead to some sort of a clustering. In the context
of this work clustering means an ordered distribution (in a Cartesian distance space) of crystallographic
orientation in each grain beyond the nearest neighbors. The amount of such clusters will e↵ectively
determine the amount of area that needs to be scanned to be sure that the data collected by EBSD is
representative to study plastic deformation. For example, as a first approximation, if the cluster size is
5 grains then the EBSD scan should be bigger by a factor greater than 5 times grain radius. One of the
aims of this work is to identify if such a “typical” cluster (orientation cluster) size exists. If it does then
how can it be quantified.

One of the reasons ODE is not used for EBSD acquisition is the nonexistence of a framework to evaluate
the optimization. The objective of this work is to establish such a framework and obtain an optimal scan
size. This will be done by recasting the problem in terms of information theory (details are discussed in
Sec. 2.5).

The main aim of the work presented here is to outline a procedure to obtain a representative scan
size such that it can be applicable to a wide variety of materials. For this purpose in Section 6.2 the
experimental data used in this analysis is presented. The statistic used to obtain the representative scan
size, as a correlation between the distance and disorientation, is described in Section 3.5 and is applied to
the materials presented in Section 6.2. The preliminary results and a qualitative measure to obtain the

14



representative scan size are given in Section 2.4. The mathematical framework and a quantitative measure
for obtaining the representative scan size are presented in Section 2.5. The results and analysis obtained
from using the above on the experimental data are presented in Sections 2.4 and 2.6 respectively.

Figure 2.1: 0001 Pole figure of extruded AZ31 sample showing strong basal texture, highest intensity being
16 times random.

2.2 Experimental data

In Table 2.1 experimental data used in the analysis is presented. The experimental data is for FCC
and HCP materials for various loading conditions. For FCC materials two di↵erent AA5754 aluminum
sheet samples (direct chill-cast and continuous cast, referred to as DC and CC sheets respectively) are
considered. For HCP materials the data from extruded samples of pure Magnesium, Mg+0.5%Ce and
AZ31 are chosen. The data sets encompass a wide range of grain sizes from ⇠14µm (AZ31) to ⇠50µm
(pure Mg). The texture strength1 also shows a wide range from 1.775 for CC sheets to 16.16 for AZ31.
This allows one the opportunity to determine the e↵ects of both grain size and texture strength on the
representative scan size. The EBSD scans for all the samples were obtained using LEO 1450 scanning
electron microscope (SEM) fitted with a TSL EBSD camera. The scan size selected was 1000⇥ 1000 µm ,
apart from AA5754 samples and AZ31 where the scan size was 2000⇥ 2000 µm. The maximum step size,
in the case of Mg+0.5%Ce, of 4.0 µm giving the minimum scan data with > 70000 data points. This is
higher than the 20000 data points recommended by Humphreys [59].

The EBSD data was analyzed using the TSLTMOIM software (Ver. 4.6). The data was cleaned to
remove the bad data points and only data points having a confidence index (CI) above 0.2 were retained for
the analysis. Cleanup was performed using the TSL Grain Dilation feature by setting the grain tolerance
angle to 5� and the minimum grain size to 10 data pixels. Also TSL Neighbour CI Correlation with
minimum confidence index set to 0.2 was employed to remove bad data points. Grains were identified

1defined here as the maximum intensity in pole figures
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with a misorientation tolerance of 10�, using the TSL Single Orientation per Grain set to 10�. That
is all the pixels having a misorientation of less than 10� were grouped together and identified as a grain.
For the analysis, grains with less than 10 data points were excluded. Once grains were identified all the
pixels in the grain were assigned average orientation of the grain. As a result, the misorientation of any
two pixels within a grain is zero. The number of grains in the scans varied from ⇠500 for pure Magnesium
samples to ⇠8500 for DC sheet sample.

Table 2.1: Experimental data.

Material Grain size (µm) using intercept method Texture
strength

EBSD scan size (µm)

Type Condition X Y along X along Y
AA5754 CC 24.77 25.52 1.775 2000 2000
AA5754 DC 21.38 23.94 3.4 2000 2000
Pure Magne-
sium

Tension 0% 45.46 48.67 5.84 1000 1000

Tension 10% 36.30 37.91 5.892 1000 1000
Compression
0%

43.17 48.02 5.411 1000 1000

Compression
20%

32.09 41.48 9.088 1000 1000

Mg+0.5%Ce Compression
0%

20.96 22.78 3.347 1000 1000

Compression
27%

15.88 17.49 5.078 1000 1000

AZ31 extruded 14.59 14.34 16.16 2000 2000

2.3 Distance-disorientation function

Each of the EBSD scans contains a lot of information in it including, but not limited to, overall texture,
grain boundary misorientation, amount and orientation of twins etc. The data can also be further analyzed
to give an indication of the amount of stored energy, lattice strain etc. Each of the subsequent analysis
presented in this work focuses on a particular aspect of the data while ignoring other aspects. The purpose
of this work is to determine the representative scan size (RSS) for that aspect of the data. The term
representative is used to signify a scan size that gives full texture information (not just the micro/macro
texture, but also long range ordering) for the given material, which can be used for future analyses and
processing. With this aim we will present a method to analyze the EBSD data. The input to this method
is the EBSD data set and the output is a statistic that will be later used in conjunction with information
theory to give the desired RSS. We will call this statistic the distance-disorientation function of texture
(DDF for short).

Distance-disorientation function (DDF) gives complete description of distance between any two points
in the EBSD scan and the average disorientation between them. It gives the average disorientation (md)
for all pairs of pixels separated by a distance d. This definition goes beyond the misorientation distribution
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function (MDF) [7] and the misorientation correlation function (MCF) as defined by Beausir et al. [63].
The MDF considers only nearest neighboring pixels in the analysis. The MCF proposed by Beausir et
al. gives the probability density for occurrence of a certain misorientation between pairs of grains at a
certain distance. Beausir et al. limited their analysis to nearest neighbors and hence the analysis is not
suited to obtain “true” distance-disorientation function. It is similar to the orientation correlation function
(OCF) as proposed by Adams et al. [64]. OCF is defined as the joint probability of orientation g occurring
at a point P and orientation g0 occurring at point P 0 such that P and P 0 are separated by a vector r.
The major di↵erence is that DDF definition ignores the specific orientation g and g0 and calculates the
distance-disorientation correlation without directional dependency. Barton and Dawson [65] defined an
intra-granular misorientation tensor by taking the dyadic product of misorientation between two points and
the vector joining them. It is important to mention, that just the disorientation angle alone is not su�cient
to characterize the complexity of the space. However, a quantitative measure of comparison requires the
definition a proper norm. For example, even if the method presented by Barton and Dawson (using dyadic
product would give matrix space) is employed, there is still a need for a proper norm on the complex
matrix space. It should be highlighted that the definition of the distance-disorientation is a definition of
the cross norm [66]. This approach is adopted from functional analyses and is the meaningful approach to
deal with the complexity of the full crystallographic space. In this research work, the cross norm kr|k⌦k
of the tensor product r ⌦ ⌦ is employed . In this approach, r is the vector connecting two points in the
microstructure and is the misorientation. For krk we use the L2 norm, i.e krk = d, the distance, and
for k⌦k we use the disorientation angle [67]. The method of obtaining the crystallographic description of
grain boundary orientations from the Euler space (phi1, Phi, phi2) to the axis-angle representation is well
known and could be found, for example, in the early works of Heinz and Neumann [67]. This approach is
based on finding the minimum rotation angle between two lattices with the misorientation axis located in
the standard stereographic triangle (accordingly to the specific symmetry group).

Vorhauer et al. [68] have presented a similar analysis by analyzing the disorientation as a function of
distance within a ring, determined arbitrarily. Their work used the maximum ring size of ⇠5µm, which is
smaller than their average grain size of ⇠250µm. The procedure adopted in this work to obtain DDF is
depicted in Fig. 2.2. A distance d1 is chosen such that d1 < dmax, where dmax is the maximum distance
between the two pixels in the scan. The average disorientation between all pairs of pixels having a distance
d1 is calculated. A new length d2 is picked and this procedure is repeated for all possible distances. Thus
m(d), the average disorientation between two pixels at a distance d, is given by:

m(d) =

Pall pairs
i (✓i)

Nl
(2.1)

where, Nl is the number of pairs at distance d and ✓i is the disorientation of the ith pair. The procedure
used in this work uses an alternate method to arrive at the same DDF.

First step in calculating the DDF is to obtain a joint distribution function correlating the distance
between a pair of pixels in the scan and the disorientation N(d, ✓) given by:

Nij = number of pairs having a distance di and disorientation ✓j (2.2)

An example of such a distribution is shown in Fig. 2.32. Once a joint distribution is calculated the DDF

2the details in this are fascinating but will not be discussed here to avoid diversion from the main thrust of this work
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Figure 2.2: Obtaining long-range ordering using EBSD maps.

is obtained by averaging the disorientation for each distance. The DDF m(d) is then given by:

mi =

P
j Nij✓jP
j Nij

(2.3)

2.4 Preliminary results

Figure 2.4 shows the result of using the above procedure on the EBSD data obtained from the pure
Magnesium sample with 0% tension. The DDF can be divided onto three parts:

1. The initial steep part for distances smaller than the e↵ective grain size. The slope of this part is
high; even though most sampling pairs are within the same grain, as the distance between sampling
pairs increases the number fraction of pairs that are in di↵erent grains increases rapidly.

2. The tail for higher values of distance. This tail shows the e↵ect of sampling pairs in opposite corners
of the scan area and hence can be specific to the area where the scan is obtained from and may not
be material specific.

3. The intermediate part. This part shows clustering of orientations, if any exists. If the texture
distribution is random then the DDF curve will be very noisy and two DDF curves from scans with
same dimensions will not be identical. This is the part of the DDF curve used to determine the
RSS as it stores the inter-granular ordering information. The RSS is obtained by minimizing the
information mismatch between an ideal (or full) scan and a scan with RSS.
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Figure 2.3: Distribution of distance and disorientation between any two pixels (EBSD data points). The
color is indicative of the number of such pixel pairs having the same distance and same disorientation.

The point on the curve where there is a transition from the steep initial slope can be used as an indicator
of the e↵ective grain size (diameter). To obtain the grain size, the slope of the DDF curve is calculated
at each point. The distance for which the slope of the DDF curve first approaches to its minimum value
is taken as the e↵ective grain size. This particular curve gives the grain diameter of the pure Mg sample
of ⇠120 which is approximately the grain diameter by the intercept method which according to Table
2.13 is ⇠100. The e↵ect of corners of the scan are felt when the dimmin < d < ddiag where, dimmin is
the minimum dimension of the scan (or sub-scan) and ddiag is the diagonal distance of the scan. As the
distance between pixels increases beyond dimmin the number of pairs drops exponentially as a result the
calculated average is susceptible to the local texture. As an extreme case for d = ddiag there are two pairs
of pixels with this distance, one pair at each corner and its opposite corner. Thus the average disorientation
for this distance is the average of two numbers and hence can be di↵erent in di↵erent scans (or sub-scans).
This does not imply that these pixels in the corner are completely ignored. As they are part of a lot of
pairs with distance less than dimmin in the local neighborhood. In the intermediate part the curve shows
first a slight positive slope with a maximum at around 500µm and then a small negative slope.

Figure 2.5 shows the DDF for some of the materials listed in Table 2.1 with particular emphasis on the
region near the transition. The inset shows the entire DDF excluding the tail. Comparison between the
transition points and the grain sizes from Table 2.1 shows a good correlation between the grain sizes from
DDF and the ones calculated using intercept method. The DDF of a small cropped portion of the entire

3grain size reported in Tab. 2.1 is grain radius.
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Figure 2.4: Average disorientation as a function of distance for pure Magnesium extruded rod. Initial
steep part of the DDF is due to sampling inside the grain.

data set shows a more pronounced e↵ect of local clustering. To illustrate this point the EBSD scan obtained
from the sample of pure Mg (0% compression) was subsampled. Two cropped areas of 300⇥ 300µm and
two cropped areas of 500 ⇥ 500µm were selected from random location in the full scan. The DDF for
these 4 sub-scans was obtained. Figure 2.6 shows DDF of the 4 scans along with the DDF for the full
sample. For all the sub-scans the transition point (from steep slope) is the same within acceptable error
implying that the average grain size is similar in all the sub-scans. The two di↵erent 300 ⇥ 300µm scans
have di↵erent functional forms of the DDF as compared to each other as well as the full scan. For example
at a distance 300µm between two pixels in the sample 300–II has a higher value of disorientation than the
sample 300–I showing the influence of the local clustering on DDF. At 300µm there are more pairs with
higher misorientation for 300–I sample as compared to the sample 300–II. The DDFs of samples 500–I and
500–II are closer to each other than those of samples 300–I and 300–II. Neither of these DDFs is close to
the DDF of the full scan. Thus the data in the sub-scans (shown in Fig. 2.6) is not representative of the
entire scan. In other words the RSS for pure Mg sample before deformation is larger than 500 ⇥ 500µm.
The procedure to obtain the RSS using a qualitative method is outlined below.

2.4.1 Heuristic algorithm to obtain RSS

To obtain RSS the following algorithm is used:
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Figure 2.5: E↵ective grain size from DDF for di↵erent materials. E↵ective grain size is obtained when the
slope of the DDF curve changes. Inset: DDF for the entire scan.

1. Crop subsets of the EBSD data.

2. Obtain DDF for the cropped scans.

3. Compare the stitched DDF with the DDF for entire sample (i.e. 1000⇥ 1000µm scan).

4. Repeat, increasing the subscan dimensions, till convergence is achieved. Convergence is evaluated
by comparing the information mismatch with DDF for entire sample.

For each subset of the data multiple sub-scans, DDFX
dim

Y
dim

, at random locations in the microstructure
are cropped. The number of subscans (n) is chosen such that n⇥(subscan size) is the same as the size
of the entire scan. The initial part, sampling within the grain, and the tail of the DDF is removed. The
DDFs are then stitched together. The stitching is done by concatenating the DDFs obtained from the
subscans (DDFX

dim

Y
dim

1, DDFX
dim

Y
dim

2, . . ., DDFX
dim

Y
dim

n) by:

1. shifting the origin of each subsequent DDF (DDFX
dim

Y
dim

2 etc) by the subscan size and

2. adjusting the DDF so that the combined DDF is continuous across boundaries.

This stitching is similar to microstructural stitching of a representative volume element (RVE). The stitched
DDF is then compared to the DDF of the entire scan (entire scan is the 1000 ⇥ 1000µm scan). The
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Figure 2.6: E↵ect of scan size on LRO for pure Magnesium (0% compression) sample.

motivation is to test if sub-scan can be used as basic building block to reconstruct the full data. This
procedure is illustrated in Fig. 2.8.

As stated, only the intermediate part of DDF is considered in conjunction with information theory.
The choice of maximum distance is taken to be dimmin. This denotes the distance between pairs of
points/pixels in the sample. It should be mentioned that not all the pairs that are sampled by this method
are close to the edge of the scan. For example in the extreme case of a square sample (where dimmin

is the same as dimmax) the maximum distance is 1.414 dimmin. Thus the ratio of distance sampled to
the maximum distance is 0.7. Figure 2.7 (below) demonstrates this phenomenon. The domain D is the
original window while domain C{C1, C2, Cn} is the cuto↵ distance. Domain C consists of a set of circles
with diameters dimmin. The pairs are generated from intersections of domains D and C. As can be seen
from Fig. 2.7, this procedure samples pairs that are also internal (i.e. not close to scan edges).

Comparing the DDFs of di↵erent scan sizes shows that the fitting, with full scan, improves as the
sub-scan size is increased. The 900 ⇥ 900µm sub-scan is visibly the closest to the full scan DDF. This
comparison gives a visual estimate of the RSS but is of a qualitative measure. A quantitative measure is
needed to make a reliable comparison of RSS of di↵erent sub-scan sizes. For this the approach used here
is to cast the problem in terms of information theory as explained in detail in section 2.5 below.
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Figure 2.7: Procedure of sampling the EBSD data

2.5 Information Theory

This section presents a new mathematical framework to measure the information mismatch between dif-
ferent EBSD scans with the aim to obtain a quantitative measure to evaluate the RSS. The mathematical
framework allows us to quantify the information stored in the DDF statistic. First DDF, obtained from the
EBSD data, is treated as an information source. Then a proper norm is defined to measure the information
mismatch between di↵erent DDFs. RSS is identified as the scan size which gives asymptotic convergence
of the information norm.

For the purposes of this work the optimal representative scan size is determined using Fisher information
and entropy norm ([69, see]). Fisher information function for regression model, as a conditional expectation
of the likelihood function is given by:

IFisher(✓) = E


@

@✓

�
log f(X, ✓)2

�
|✓
�

(2.4)

Fishers information measures the amount of information that observed variable X carries about an unknown
parameter ✓. E on the right hand side of Eq. 2.4 denotes the expectation value of the terms enclosed in
square brackets. To measure the Fisher information mismatch, or distance in general, in between data
sources one should obtain a proper norm for such a measurement.

Kulback and Leibler [70] constructed a complete norm, KL norm, for the information measurement
between information data sources using Radon-Nikodim theorem from functional analysis. In the discrete
probability space KL norm could be assigned as non symmetric probability distance norm or gain between
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Figure 2.8: DDF for di↵erent scan sizes for pure Magnesium (0% compressed). The DDF curve for 900⇥900
(magenta) is visually the closest to the 1000⇥ 1000 DDF curve (red).

two information sources and takes the form:

KL(p(xi), q(xi)) =
nX

i=1

p(xi) ln
p(xi)

q(xi)
(2.5)

where p(x) and q(x) are probability density functions constructed for the each information source.

Let < ⌦, B, F > be the probability space where ⌦ is the initial probability space constructed on the
sample EBSD data (which includes crystallographic texture and spatial information), B is the event space
(subset of collections of ⌦, this event could be described as the probability of disorientation ✓ij for a
particular distance d) and F is the probability measure with properties of non negativity, normalization
and countable additivity. This probability measure reduces dimensionality of the problem and creates the
possibility of general analysis of given data from the perspective of stochastic processes. It can be written
as:

F⌦ = I⌦ =

Pn
j=1

Pn
i=1 Dij✓ijPn

j=1

Pn
i=1 Dij

(2.6)

Thus F⌦ represents normalized DDF.Dij is the distance between pixel i and pixel j, ✓ij is the disorientation
between them and n is the total number of pixels in the scan area.
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DDF statistics is extracted from the EBSD data. Using this we can calculate the KL divergence which
in turn is used to determine the RSS by minimizing the KL divergence with “full information”. Table 4.1
summarizes the various parameters and variables used in this section.

Another parameter T is added to the probability space, such that {⌦T } is the set of sub-scans having
same dimensions obtained from the full scan ⌦. {⌦T } is obtained by sampling the full data with “method
of sliding windows” [71]. To generate a set of subscans with same dimensions (Xdim, Ydim), first we choose
a center (XC , XC) for the sub scan randomly such that (XC , YC) 2 [Xmax�Xdim/2, Ymax�Ydim/2]. The
subscans are then stitched as discussed before in Sec. 2.4. Then information statistics (I⌦T ) is calculated
for the each ⌦T . Next step is to calculate information mismatch and if this is more than a threshold- we
increase the scan dimensions by 100µm in either X–direction or Y–direction. Figure 2.9 illustrates this
procedure pictorially.

Figure 2.9: Process of sliding window and collecting information from the EBSD sample: Red window
1000⇥1000 µ m shows the constant KL norm through the initial sample 4000⇥4000 µ m. After select-
ing constant entropy window we continue windows analyses until KL norm is minimized with minimum
dimensions (RSS) - green window

The next step is to define a norm between so-called full information distribution and local distribution
(contained in the sub-scan). We would use Kullback -Leibler norm for the probability space that we define
before:

DKL

�
I⌦

full

[i], I⌦T [i]
�
=

nX

i=1

I⌦
full

[i] ln
I⌦

full

[i]

I⌦T [i]
(2.7)

I⌦T is the information statistics gathered from each stochastic process from the sub-scan. I⌦
full

is the
information gained from the 1000⇥ 1000 scan size.

Using the KL divergence and limit theorem of divergence for the entropy we can now construct a
complete mathematical model. For each information space we want to construct topologically optimal
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dense subspace ⌦opt. Optimality is given by:

DKL

�
I⌦

full

, I⌦
opt

�
! 0 (2.8)

Thus I⌦
opt

represents the normalized DDF of the optimal scan. In the present work this information
statistic is the DDF of the intermediate part. The underlying assumption is that EBSD scan of 1000⇥1000
(⌦full) contains the full information. This was verified by asymptotic convergence to low value of KL norm
for larger dimension scans (2000⇥2000 etc.). This procedure is highlighted in Fig. 2.9 using the method
of sliding windows. The scan size with full information is chosen to be 1000⇥1000, because the KL norm
for 1000⇥1000 sample chosen from a random location in the material (for all materials) is similar to the
KL divergence of larger samples. The smaller size for full information makes the problem computationally
tractable. Also, if 1000⇥1000 does not contain the full information then the KL norm will not show
asymptotic convergence for scan sizes less than 1000⇥1000 like the one shown in Fig. 2.10.
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Figure 2.10: K-L divergence for AZ31. The divergence value asymptotically approaches 1e-6 with
300⇥800µm as the representative volume.

The solution in the discrete space could be represented as:

xmin, ymin 2 {x, y} : DKL

�
I⌦

full

, I⌦
opt

(x,y) < ✏
�

(2.9)

✏ is a parameter which determines the convergence. The ✏ value for convergence of KL divergence for
each subscan is based on the full information sample (1000x1000) and is material dependent. This ✏ value
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is the information mismatch between the full sample and any larger scan. From all the possible sample
dimensions ({x, y}) one needs to find the minimum dimensions (xmin, ymin) such that it minimizes the KL
entropy norm (KL divergence), corresponding to minimum values of the scan size along x and y respectively.
Figure 2.10 shows the KL divergence calculated using Eq. 4.5 for various sub-scan sizes of the AZ31 data
set. The quantities being plotted are the scan area (in µm2) along the X–axis and the KL divergence along
the Y–axis. Instead of using the X and dimensions separately the scan area is used as the independent
variable but the KL divergence calculated for each scan depends on the scan dimensions and not scan
area. KL divergence shows the information mismatch between the full information (1000⇥ 1000 scan) and
the information contained in the sub-scan. Figure 2.10 shows that after a scan size of 2.4 ⇥ 104 µm2 the
divergence reaches the asymptotic value of 10�6.

Thus the RSS for AZ31 is a scan size of 2.4⇥104 µm2 which corresponds to a scan size of 300⇥800µm.
Note that the scan size of 2.5⇥ 104 µm2 (500⇥ 500) has higher value of KL divergence. This shows that
one needs more data along the sample Y direction than the sample X direction (800 vs. 300). Obtaining
the optimal solution for RSS was done by creating an automated framework based on parallel codes and
optimization algorithms.

2.6 Discussions

As noted earlier DDF gives complete description of distance between any two points in the EBSD scan
and the average disorientation between them. Minimizing the KL divergence, which is calculated using
the intermediate part of the DDF, maximizes texture information as well as spread of texture throughout
the microstructure. Using DDF with KL divergence gives a mathematical tool to quantitatively determine
when a sub-scan is representative of the full scan. In simple terms the sub-scan is representative of the
full scan when the information contained in the sub-scan is identical to the information contained in the
full scan within accepted error of ✏.

This procedure is repeated for all the materials listed in Table 2.1. The updated table with the RSS
is presented in Table 2.2. Table 2.2 shows that there is a correlation between the grain size and RSS. A
first valuable observation could be made based on the amount of grains in RSS for di↵erent materials and
processes. As it can be seen in Fig. 2.11, the processing of the material changes significantly the amount of
grains required for the RSS. For small grained material the RSS is smaller. However, the amount of grains
will be significant fot some fine grains materials due to their texture strength and processing anisotropy.

To investigate, this RSS is plotted as a function of grain size and is presented in Fig. 2.12 which shows
a linear correlation between RSS and average grain size. The slope of the linear best fit is 14.10.

The DDF can be used to calculate the e↵ective grain size. The value of e↵ective grain size (rDDF ) is
defined as the distance between two pixels at which the slope of DDF changes significantly from a high
value, corresponding to sampling within the grain, to a lower value. The rDDF is obtained by calculating
the slope of the DDF curve and the point where the slope first approaches 0 is taken as the grain size.
rDDF for all the materials presented in Table 2.1 are calculated from their respective DDFs and presented
in Table 2.3. The rDDF is greater than the average grain size measured by the intercept method. The
Fig. 2.12 can be redrawn showing the optimal scan size as a function of rDDF (Fig. 2.13).

The discussion presented above provides a framework for choosing the size of the EBSD scan based on
morphology and size of the grains as well as their relative orientations.
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Figure 2.11: Number of grains in RSS as a function of a scan size.
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Figure 2.12: Optimal scan size as a function of average grain size.
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Figure 2.13: Optimal scan size as a function of rDDF . The data points labeled X–dirn (in red) and Y–dirn
are the dimensions along X–axis and Y–axis respectively of the optimal scan.
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Table 2.2: Experimental data.

Material Grain size (µm) using intercept method Texture
strength

representative scan size (RSS) (µm)

Type Condition X Y along X along Y
AA5754 CC 24.77 25.52 1.775 500 500
AA5754 DC 21.38 23.94 3.4 300 300
Pure Mag-
nesium

Tension 0% 45.46 48.67 5.84 900 900

Tension
10%

36.30 37.91 5.892 900 900

Compression
0%

43.17 48.02 5.411 500 1000

Compression
20%

32.09 41.48 9.088 800 800

Mg+0.5%Ce Compression
0%

20.96 22.78 3.347 500 500

Compression
27%

15.88 17.49 5.078 500 500

AZ31 extruded 14.59 14.34 16.16 300 800

The e↵ect of texture is more complicated to be discerned from the current data. Though the general
trend seems to be that stronger the texture smaller the RSS. The grain size for the two aluminum samples
in Table 2.1 is very similar but the texture of the DC sample is about twice as strong as that of the CC
sample. The RSS for DC is smaller than the RSS of CC. One can be tempted to say that the proportionality
factor of RSS and 1/(texture strength) is close to unity from the aluminum but one has to be cautious as
the texture strength, even though reported as a single number here, has a lot of complexity. The pure Mg
compression data shows another level of complexity when the textures are widely di↵erent. The texture
strength increases when the sample is compressed and the RSS, instead of decreasing, increases (along the
X direction). The pole figures for the 0% compression and 20% compression Mg samples are shown in Fig.
2.14. The texture plots for both the samples are very di↵erent from each other and texture strength alone
is only one factor to represent the overall texture of the samples.

Figure 2.15 shows the combined e↵ect of average grain size and texture strength on optimal scan size.
It shows the RSS on Y–axis plotted against (average grain size)/(texture strength) along the X–axis. The
blue dotted line, used as a guide for the eye, shows that the slope of the best fit line is ⇠37.45. Giving the
following form for evaluating the RSS:

RSS = 37.45 ⇤ grain size

texture strength
+ C1 (2.10)

A 3D plot showing the dependence of RSS on average grain size and texture is included in the supplemen-
tary material as a movie.

These observations are consistent with what can be expected from an information flow point of view.
If two scans have the same size (dimensions) but the grain size of one is smaller than the other then the
amount of information (in terms of discrete orientations) will be higher for the small grained sample. As a
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Material Average grain size intercept
method

Grain size from
DDF

X (rx) Y (ry)
AA5754 CC 24.773 25.513 39.00

DC 21.84 23.936 29.85
pure Magnesium Tension 0% 45.459 48.671 70.23

Tension 10% 36.302 37.913 66.38
Compression
0%

43.171 48.018 60.3

Compression
10%

32.089 41.482 59.09

Mg+0.5%Ce Compression
0%

20.957 22.781 27.18

Compression
27%

15.882 17.493 22.90

AZ31 extruded 14.592 14.344 16.47

Table 2.3: Intercept grain size Vs. grain size from DDF

result a smaller RSS will be required for the sample having small grains. Similarly if a sample has stronger
texture then the spread (variance) of orientation in the individual grains will be smaller. As a result a
smaller subset can have the same amount of information as the bigger set, leading to a smaller RSS.

2.7 Conclusions

• The results presented in this study indicate that for accurate texture analyses, the orientation dis-
tribution function alone is insu�cient. ODF does not include the entire statistical cross correlations
that exist in the data, such as short and long range ordering of texture. Thus, these cross correlations
can only be obtained by employing both ODF and DDF.

• DDF in conjunction with information theory (and in particular KL divergence) can be used to give
a representative scan size for a given EBSD data. This RSS can be used to construct an optimal
design of experiment (ODE) to get the most optimal scan size without collecting excessive amount
of data. DDF data, for the materials studied in this work, suggests that the scan size depends on
average grain size and texture strength. The proportionality is of the following form:

RSS / grain size

/ 1

texture strength

• To be truly free of the clustering e↵ect and hence to obtain a RSS the scan size needs to be bigger
than 10 times the grain size - RSS = 10⇥ grain size. This RSS may be related to long range stress
fields.
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(a) 0% compressed (b) 20% compressed

Figure 2.14: Comparing the texture for the 0% compressed and 20% compressed pure Mg samples.

• Scan area alone is not a su�cient quantity to determine the RSS. Both the asymmetry in the grain
size and texture give rise to asymmetry in the RSS. Thus by extension RSS along RD-TD cross
section is not enough to determine the RSS for RD-ND cross section.

• The RSS obtained from such an analyses should be used as an input to generate 3D microstructures
as well as modeling ( crystal plasticity, recrystallization etc.). The RSS can also be used as building
blocks of much larger samples.

This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and General Motors of Canada. The authors also great-fully acknowledge the High Perfor-
mance Computing Center at the University of Sherbrooke (RQCHP).
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Figure 2.15: Combined e↵ect of average grain size and texture strength on optimal scan size
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Chapter 3

Analytical estimation of
distance–disorientation function of
the material microstructure

This work presents a new functional approach to estimate the distance-disorientation correlation function
of a given microstructure. The proposed approach separates the crystallographic domain into texture de-
fined by its Euler angles (�1,�,�2) and geometrical domain defined by distance distribution function Dij

The crystallographic domain is treated as independent (known) variable and an analytical estimate for the
Euclidian distance distribution function (Dij) is obtained. The proposed analytical solution for the estima-
tion of Dij is based on existing statistical growth models and the logistic probability distribution function
(PDF). The solution is optimized for the measured experimental data and takes into account morphologi-
cal features of the microstructure such as grain volume, grain radii, grain size as well as their distribution
inside the material. An analytical model is proposed for constructing the distance-disorientation func-
tion (DDF) using the estimated Euclidian distance between pixel pairs. The new functional solution is a
highly e�cient way to calculate DDF values, making it suitable for application to the real microstructure
optimization problems. The DDF obtained by using the results of probabilistic solution are validated by
comparing them with the DDF obtained from experimental electron back-scatter di↵raction (EBSD) data.

3.1 Introduction

Increasing need for numerical modelling of material behavior for engineering applications has been ac-
companied by the development of the electron backscatter di↵raction (EBSD) as an indispensable tool
for implementing quantitative microstructure related parameters like grain morphology, crystallographic
texture etc. into the model. Experimental EBSD maps have been directly employed for modeling re-
crystallization, cellular automaton based models as well as deformation using finite element analysis and
fast Fourier transforms to name a few. In such studies, selecting data which is representative of the bulk
material (representative volume element - RVE) is of prime importance. In modeling evolution of material
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behavior of metallic materials undergoing mechanical or thermal treatments, evolution of morphological
and crystallographic features of the grains need to be captured accurately. The changes in one grain have
to be correlated to the changes in its immediate neighbors. The required distances over which input data
has to be implemented in the model e↵ectively determine the amount of area that needs to be scanned
by EBSD measurement to be sure that the data is representative to study the metal behavior. In the
early experimental work of Shechtman et al. [72] it was observed that the orientation ordering is far more
than the grain size. Two-point correlation functions, especially distance disorientation functions (DDF),
have been shown to provide a framework for implementation of quantified microstructural information into
mathematical models. However constructing DDF from EBSD data and implementing them in numerical
models in a computationally tractable manner has been a challenge, limiting the utilization of advanced
experiemntal methods to develop accurate microstructure-based models.

Correlation functions have been used in various fields from early works on scattering theory[73] to
more recent works like the reconstruction of three-phase microstructures[23], where large amounts of
experimental data need quantification in a manner that is amenable to model development. { Historically
the correlation functions in the solid state physics were implied in the work by Cosserat [13]. They
presented description of the stress with micro rotations which introduces length scale e↵ects in classical
elasticity. The Cosserat theory applied for size e↵ects of polycrystals related to their mechanical behavior
is discussed in details in the work of Forrest et.al. [74]. In discussion of the correlation functions it is
important to mention the works of Beran et.al. [75, 14, 76] where authors introduced and developed a
statistical theory of heterogeneous materials. The later implications of statistical theory and specifically
correlation functions were developed and discussed in details for measuring mechanical responce of the
microstructures in the works of McCoy et.al. [77] and Beran et.al.[78].

Considerable research was performed in the field of application of n-point correlation statistics to the
problems of three-phase microstructure reconstructions [15, 16, 17, 18, 19, 20, 21, 22, 23]. The main
idea is to reconstruct the full microstructure media from the n-point correlation statistics using di↵erent
optimization and homogenization techniques. Various research studies of correlation between particle
interactions with the length scale e↵ect were studied and discussed in the experimental and modeling
works of Glicksman et. al. [24] and Wang et.al. [25, 26] . In their research, the authors presented the
study of spatial and nerest-neighboor correlations in a polydispersed particle systems.

The analysis of crystallographic orientation space, measured by electron backscatter di↵raction (EBSD)
technique, is associated with large amount of data on orientation and grain morphologies. Precise analysis
of such microstructure data from the perspective of data mining could provide useful quantitate information
and aid in developing material model with precise microstructural information for engineering applications.
Recently, Jiao et al.[27] showed the application of n-point correlation, Sn, and in particular S2 (two
point correlation) to various practical problems including microstructural analyses for the real engineering
materials. Neizgoda et al. [28] and Qidwai et.al. [29] in their recent works have shown application of
2-point statistics to the analyses of representative volume element (RVE). They highlight the importance
of analitical estimators of 2-point correlation statistics found for the real microstructures and also discuss
the gap in the field of obtaining an universal solution for the statistical descriptors. Torquato et. al [31, 32]
have made some valubale contributions in the analitical approximations of n-point correlation statistics.

Analytical modeling of the two point correlation function was initially proposed by Corson[30] who
used an exponential model:

Pij = ↵ij + �ij exp(�cijR
n
ij ) (3.1)

where Pij is the two point correlation function, R is the distance vector separating the two phases i and j,
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and ↵, �, c and n are coe�cients obtained by curve fitting to the experimental data of interest. However,
the obtained coe�cients have no physical meaning and have to be evaluated for di↵erent material data sets.
As pointed out by Sundararaghavan and Kumar[33] there is no clear connection between microstructure
related parameters and those estimated from correlation analysis of that microstructure.

Garmestani et al.[34] gave analytical approximation which takes into account volume fractions Vj for
grains with specific discrete set of orientations g:

P (gj |(gi, R)) = Vj + (1� Vj exp(�cijR
n
ij )) (3.2)

The parameters presented in their work are the same curve fitting parameters of initial conditional orien-
tation correlation function (COCF)[30]. This solution improves the fitting procedure but still requires a
significant e↵ort for fit all of the coe�cients of the particular model for a particular problem.

Experimental work to obtain precise microstructural correlation distribution function descriptor was
presented by Tewari et al.[35]. The authors presented results and analysis for collecting a two-point corre-
lation data for an Al–Si alloy with di↵erent material extrusion patterns. They highlighted the complexity
of obtaining the two point correlation descriptor for measured EBSD data sample and proposed a proce-
dure that can improve the computational time. They concluded that the observer needs at least 28⇥ 1012

measurements of the Cartesian distances measurements for a 500µm⇥500µm material sample. The pro-
posed procedure is based on the usage of the dynamic lookup tables (LUTs) for computing distances and
angles.

Two-point correlation function was also used for probabilistic modeling of microstructure evolution
during Finite Element Modeling (FEM) in the work of Sundararaghavan et al.[33]. Authors show the
applicability of the COCF, defined as the probability density of occurrence of a crystal orientation g0 at a
distance r from a given orientation g, to their FEM model. A Lagrangian approach was used to obtain the
normalization constraints. However a major problem with analyses based on FEM probabilistic modeling
of the microstructure evolution is the computational complexity of obtaining the COCF for each numerical
integration point in the model.

Shan and Gokhale[40] studied distance disorientation function (DDF) for the nearest neighbors to con-
struct microstructural representative volume element (RVE). DDF is defined as a function which correlates
two pixels in the microstructure at the same distance from each other to the average disorientation between
all such pairs. They measured di↵erent mechanical responses of the fibre material based on the di↵erent
DDF patterns. DDF is concieved as a for of the the two-point correlation function. DDF calculates the av-
erage disorientation between two points while two-point correlation function correlates average probability
for both points being in the same phase. DDF has also been studied as part of the distance-disorientation
statistics on the experimental level by Beausir et al.[63].

The analytical study of the two point correlation function based on so-called texture functions in the
Fourier space approximations could be found in the works of Adams et al.[36]. The Fourier space solutions
are neither problem specific nor flexible to the real changes in the material specific microstructures[33].

The analytical solutions for the cross-correlations texture functions can be employed in a large variety
of applications (see Fullwood et al. [12]) such as, long range ordering of texture, two point correlation
function construction, representative scan size (RSS), microstructure based finite element method (FEM)
modeling, micro-polar elasticity etc.

The process of obtaining the representative scan size using the optimization of the DDF was presented
in the resent work of Brahme et.al.[79]. Using the information theory norms and optimization algorithms,
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they presented a methodology to measure the information mismatch between two scans with di↵erent
sizes. Furthermore, the authors demonstrated that, for di↵erent materials, orientation and misorientation
distribution functions are not enough to describe the short and long ordering cross-correlation within the
texture in order to obtain a representative scan.

Hence it is of practical interest to obtain the functional form for DDF as a form of the cross-correlation
function of the COCF and two-points correlation function as they can be applied to modeling of the precise
material microstructure evolution.

This work presents a new theoretical model to determine a functional form for distance-disorientation
distribution (DDF). To obtain the DDF, one needs information on both the distance between any two
given pair of points in the microstructure and the disorientation between them. This calculation, or any
calculation of a two-point correlation function, is very time consuming. To address this problem research
proposes to calculate the DDF in two parts; first obtaining an analytical solution for the geometrical domain
(grain morphology and grain distribution) and then combining it with the crystallographic domain (grain
orientation) to aid e�cient quantification of the microstructure for implementation in engineering analysis
of material behavior.

The first part of the work focuses on EBSD DDF analysis and statistical tests for the proposed solution
(logistic distribution). The new functional form of DDF statistics is inherited from the ideas of the
population model construction (Sec.3.3 and 3.3.2).

Next, the method to estimate the parameters for the analytical solution (logistic distribution curve)
which is based on the microstructure morphology is presented. Instead of evaluating the exact DDF
correlation statistics, the proposed method treats disorientation as a known fixed parameter (measured
from the crystallographical Euler space of the microstructure and provided with the disorientation as a
proper norm) and then estimates the distance function. The microstructure morphology analysis is used to
obtain the estimators for standard deviation (�) and mean (µ) required for the logistic curve for modelling
distance distribution separately from the disorientation function (Sec. 3.4). Finally, the application of the
constructed DDF solution based on the grain morphology is applied to large EBSD scans from Al and Mg
samples and results are compared with measured DDF data to validate the new model (Sec. 3.5).

3.2 Experimental data

The EBSD data used in this study was acquired from magnesium and AA5754 aluminum sheet samples,
using a LEO 1450 scanning electron microscope (SEM) fitted with a TSL EBSD camera. The EBSD
data was analyzed using the TSLTMOIM software (Ver. 4.6). The data was cleaned, {using grain dilation
method with single iteration, neighbor CI correlation and single orientation per grain, to remove the bad
data points and only data points having a confidence index (CI) above 0.2 were retained for the analyses.
Grains were identified with a disorientation tolerance of 10�. Thus, the pixels having a disorientation of
less that 10� were grouped together and identified as a grain. For the analyses, grains with less than 10
data points were excluded. Once grains were identified all the pixels in the grain were assigned average
orientation of the grain. As a result, the disorientation of any two pixels within a grain is zero. The two
materials, Mg and aluminum, with there di↵erent crystallographic systems (FCC and HCP respectively)
were used to test the applicability of the functional form. The aluminum data was obtained from a direct
chill cast and rolled aluminum sheet with grain size of 21 : 38µm and 23 : 94µm along the X and Y
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direction respectively. For this sample, the step size for the EBSD map was 5µm and the texture strength
was 3.4. The magnesium data was for an extruded pure magnesium rod with grain size of 45 : 46µm and
48 : 67µm along X and Y directions respectively. A step size of 2µm was employed for the EBSD map and
the texture strength was 5:84. The number of grains in the scans varied from ⇠500 for pure Magnesium
samples to ⇠8500 for the Aluminum sheet sample. Data analyses were done using the IBM SPSS Statistics
(version 20.0) packages.

3.3 Analytical model construction

3.3.1 Distance-disorientation function

Distance-disorientation function[79] statistics (Eq. 3.3) provides full information about the dependency of
the distance between any two points (�ij) in the EBSD scan and as well as the average disorientation
(⇥ij) between them. In its discrete form the DDF function could be re-written as:

DDF =

Pn
i=1

Pn
j=1 �ij⇥ijPn

i=1

Pn
j=1 �ij

(3.3)

DDF represents the full correlation information between the distance (�ij) and the disorientation (⇥ij).
The average disorientation for all pairs of pixels, i and j, separated by a distance �ij where the sum is
over all grains and all pixels within each grain is given by equation 3.3. The procedure employed in this
study to obtain the DDF (exact DDF from experimental measurements) is shown schematically in Fig.
3.1. A vector with distance, d1, is chosen such that d1 < dmax, where dmax is the maximum distance
of vector connecting any two pixels in the scan. The average disorientation between all pairs of pixels
having a distance d1 is calculated. A new length d2 is picked and this procedure is repeated for all possible
distances.

It should be mentioned that, this definition of DDF goes beyond the misorientation distribution function
(MDF)[7] and the misorientation correlation function (MCF) as presented by Beausir et al.[63]. The MDF
considers only nearest neighboring pixels in the analysis while the MCF proposed by Beausir et al. gives the
probability density for occurrence of a certain disorientation between pairs of grains at a certain distance.
The DDF is similar to the orientation correlation function (OCF) as proposed by Adams et al. [64] where
OCF is defined as the joint probability of orientation g occurring at a point P and orientation g0 occurring
at point P 0 such that P and P 0 are separated by a vector r. However, the major di↵erence between
the two approaches is that, the DDF definition ignores the specific orientation g and g0 and calculates
the distance-disorientation correlation. Barton and Dawson[65] defined an intra-granular misorientation
tensor by taking the dyadic product of misorientation between two points and the vector joining them.
The DDF, as defined in this work, refers to a cross norm ([66]) of the misorientation tensor and is extended
to any two points in the microstructure. Vorhauer et al.[68] have presented a similar definition of the DDF
by investigating the disorientation as a function of distance within a ring, determined arbitrarily. Their
work used the maximum ring size of ⇠5µm, which was smaller than their average grain size (⇠250µm).
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Figure 3.1: Procedure for determining DDF in Eq. 3.3
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3.3.2 Obtaining �ij based on the Population Model concept

Using the method discussed in previous section to calculate DDF is very time consuming. The method
proposed in this section is to decouple the geometric domain and the crystallographic domain. i.e. recast
the Eq. 3.3 in the following form:

DDF =

PN
i=1

PN
j=1 Dij✓ij

PN
i=1

PN
j=1 Dij

(3.4)

where N is the number of grains in the geometric domain (microstructure). Dij now refers to a
distribution of distances between a pair of pixels belonging to grains i and j respectively, and ✓ij
refers to the disorientation ([80]) between the average orientations of the two grains (as a result ✓ii = 0).
Once the functional form of Dij is obtained then the DDF can be calculated using Eq. 4.3. It

Employing distance as the independent parameter requires the determination of a proper functional
form of the clustering metric(Dij). The population model is used to obtain functional description of the
Dij distribution, between any given pair of grains from the EBSD data. The population model was first
proposed by Pierre Fran Verhulst in 1897 [81] who studied how fast population grows in a domain with
respect to time. He proposed a relation between the growth (W ), growth rate (Ẇ ), saturation limit (⌦)
and time t. Verhulst considered a model of the population growth of the form:

Ẇ (t) = �W (t)(⌦�W (t)) (3.5)

where ⌦ denotes the upper limit or saturation level of growth (W ), as t �! 1, and � is the proportionality
constant given by � = Ẇ (t) /W (t). Growth is proportional to both the population already attained, W (t),
and to the remaining room for further expansion, ⌦ � W (t). Verhulst has shown that, population W (t)
follows a logistic curve:

W (t)CDF = ⌦
exp(↵+ �t)

1 + exp(↵+ �t)
(3.6)

Further this function was re-derived and used in various statistical applications as logistic cumulative dis-
tribution function (CDF) [81]. The density of the logistic CDF through the parametrization and derivation
of the equation 3.6 takes the form:

W (t, µ, s)PDF =
e�(t�µ)/s

s(1 + e�(t�µ)/s)2
=

1

4s
sech2

✓
t� µ

2s

◆
(3.7)

where t is the sample variable, µ is mean and s is parameter proportional to standard deviation.

Proposed research is based on the well-known model of the population growth, providing completely new
application to the Microstructure analyses field. In this study, W (t) will represent the growth of distances
between pairs of points 2 {ij} such that indices i and j represent a pair of grains in the microstructure. For
any two given pair of grains in the entire sample, W (t) increases from 1 to the saturation limit of ⌦. The
saturation limit in the proposed model is reached when all the possible pairs (of points) in those two grains
are accounted for (Fig. 3.2). This growth, W , can be identified withDij (accumulated statistics for distance
distribution between each pixel within the grain pair). In the Fig. 3.2, the sequence Gk1..Gkn ! Gk+1

represents the pixels inside the particular grain Gk+1. Thus, the Dij between two grains 1 and 2, D12, is
obtained by taking all pairs {kl} so that k 2 {G01..G0n ! G1} and l 2 {G11..G1n ! G2} (G1 is the first
grain in a sequence etc..).
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G1n−>G2
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..G0n−>G1

G11

G12

Figure 3.2: Visual representation of distance growth (population) within points growth in the grain G1
and G2.

The entire {Dij |i, j 2 N ; i 6= j} is a compilation of probability density functions (PDF’s) between
individual grain pairs (for fixed i and j). For Aluminium and Magnesium Dij data for all pairs of grains
has smooth tails and is symmetric around the mode. PDF (as a function of distance) derived from EBSD
data for Aluminum and Magnesium data is shown in Figs. 3.3, 3.4. Each data distribution histogram is
similar to both normal and logistic distributions PDFs. The tails of the distribution are heavier than those
expected for a normal distribution. To examine the validity of the underlying hypothesis that Dij between
each grain pair is close to the logistic PDF statistical tests can be done.

Results for,Dij , from experimental data can be analysed using statistical methods Kolmogorov-Smirnov
(KS) tests. This is done to determine if the Dijs calculated from EBSD data are distributed logistically. Q–
Q (quantiles plots) and P–P (probabilities-probabilities) plots can be generated for the logistic distribution.
The P–P plot shows the relationship between cumulative expected probability and cumulative measured
probability and is a measure of how close two distribution functions are on the same axes[82]. If the plots
follow linear behavior with slope = 1 then the distributions are close or almost identical. The Q–Q plot
represents the quantiles (regular intervals of the distribution function) of two distributions on the same
plot. The P-P probability plot is more sensitive to deviances near the mean of the distribution while the
Q–Q plot is more sensitive to deviances in the tails of the distribution. The P–P and Q–Q plots for Dij

distribution data for Magnesium, are presented in Figs. 3.5 and 3.6 respectively. The outliers of the Q–Q
plot for Magnesium data indicates the mismatch of the tails fit which is the most complicated part of any
distribution as an extreme value data. The skewness of tails and mismatch of the fit is visually pronounced
for Mg data in the plots (3.4,3.10) the distance distribution plots The P–P and Q–Q plots for Al data sets
are similar to those for Magnesium.
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Figure 3.3: Dij (µm) for random subset of grain pairs in Aluminum.
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Figure 3.4: Dij (µm) for random subset of grain pairs in Magnesium.
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Figure 3.5: P–P Logistic plot for Magnesium sample
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Figure 3.6: Q–Q Logistic plot for Magnesium sample

The visual data analyses (Fig. 3.3, Fig. 3.5, Fig. 3.6) shows good fit between the PDF values obtained
from the experimental EBSD data and calculated logistic PDF values. The next step is to check the
statistical reliability of the assumption that Dij data is representative of the logistic curve PDF. The
logistic density curve after re-parametrization of Eq. 3.7 is given by:

f(x;µ,�
p
2/⇡) =

⇡

�4
p
2
sech2

✓
⇡

2
p
3

x� µ

�

◆
(3.8)

where, µ and � are the mean and devitation of the data x[81]. To check that hypothesis we use Kolmogorov-
Smirnof (K-S)[82] tests for the random Dij sets from EBSD data. KS test shows how the two underlying
probability distribution data sets di↵er. One set is the Dij calculated from EBSD data and the second
set is the Dij obtained from logistic curve by using equation 3.8. The parameters µ and � are calculated
from the EBSD data and refer to mean distance and deviation in the distance. Measured Dij data set
is matched to the calculated logistic PDF dat set. This is followed by checking if Dij data is logistically
distributed. The significance of the K-S test for ⇠103 grain pairs for the di↵erent data collections (distance
distributions between randomly chosen grain pairs) is that this permits the rejection of the null hypothesis
that data sample is not logistically distributed. The complete analysis of full data collected from the EBSD
scans with modeled data based on the proposed logistic solution is presented in section 3.5, which also
includes the discussion on parameter estimate of the logistic curve solution for obtaining the Dij function
from microstructure.
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3.4 Parameter Estimation

The major drawback of Corson’s model 3.1 is the estimation process of the fitting parameters. As already
pointed out, those parameters have no physical significance and have to be estimated for each new data set
during regression analyses. The problem of fitting and estimating parameters is re-formulated here in the
terms of the logistic model where the fitting parameters can be derived from microstructure morphology.

The presented logistic solution will be more natural than the one presented in the Corson’s model if:

1. µ and � can be fit to any microstructure based only on the material sample grain morphology,

2. µ and � can then be re-used without any statistical pre-processing and parameter fitting for other
samples and materials based on their grain morphology only. i.e. once the dependance of µ and �
on grain morphology is determined for one material then the form of the dependance can be used
for any other material.

To illustrate how the statistical parameters µ and � can be given a geometrical meaning based on the
microstructure descriptors, the connection between grain morphology and parameters of the statistical
functional model (Eq. 3.6) is examined below by treating the grains as the convex shapes with a log-
normal distribution in the 2D space [83] and µ and � representing the distance between grain centers of
mass and average radius of each grain respectively.

Firstly, the distance statistics for each grain pair should be collected from the measured EBSD data.
Magnesium and Aluminum data was randomly sampled by grain pairs and average distance was calculated
for a di↵erent grain pairs (µt) as well as deviation from the average distance (�t- ’true’). After the a priori
statistics for parameters is calculated, the a posterior estimates based on the grain morphologies was
obtained and compared with a priory. Starting with a prior data, sample standard deviation(�t) was
obtained from the measured data (�t) using:

�t =

vuuut

0

@ 1

Mp

MX

i,j=1

(dij � µd)
2

1

A (3.9)

where µd is average distance between all the pixels pairs within fixed grain pair

µd =
1

Mp

M
pX

i=1

dij (3.10)

dij corresponds to the measured distance between each pair of points within a fixed grain pair, and Mp

is the number of all pixel pairs within the particular fixed grain pair(in case if Gp1 Gp2 is the amount of
pixels in grain G1 and G2 the Mp=Gp1 ⇥ Gp2). The calculated data for �t and µt - a prior measured
estimates will be used next as major dependent regression variable, weather morphological estimates will
be used as an independent ones.

For two, randomly chosen grains, it can be seen (Fig.3.7) that the variation in the distance between
each pixel pair within two grains is related to variation of the distance between the grain centers. Figure
3.7 shows a schematic representation of the estimation process of µ and � from the grain morphology.
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Note, that centers of grains can be estimated, without any loss of information, by the geometrical center
of mass of all coordinates with respect to the number of the points (EBSD pixels) inside the grain Eq.
3.11.

The center of the ith grain is estimated as:

hCii =
1

M

X
xk, k = 1..M (3.11)

where xk are the coordinates of the kth point in the particular grain, and M is the number of points (EBSD
pixels) within the grain. The deviation from the average distance µ can be expected to be a function of
the individual radius of the two grains.

µm = dist
⇣
hCii , hCij

⌘
(3.12)

Standard deviation � should depend logically on the grain shapes and average distance inside the grain
(radius). Analyses of the data shows that � is strongly dependent on the grain shape.

The first guess on � estimation can be made that its linearly dependent on the grain radii for each of
the particular grain pair. One can find linear coe�cients to estimate � based on this assumption using
the linear regression model. From the experimental data �t can be found as the solution of the system of
equations with unknown coe�cients in the form:

�t = ciri + cjrj + ✏ij (3.13)

where ci are unknown coe�cients, ri, rj are the radii of grains i, j, �t are the true deviation obtained
from EBSD data (using Eq. 3.9), and ✏ij is an error term of the estimated solution. Radii (ri and rj) are
calculated from the assumption that grains are orbicular so that:

ri =

r
sVi

⇡
(3.14)

where Vi is a the number of points inside the grain with index i and s is the EBSD step size. This approach
has been found e↵ective for a variety of grain sizes with microstructures having shape anisotropy up to
0.70 (rimin : rimaj). It should be mentioned that the analysis presented could easily be extended to
grains having higher anisotropy by considering them as ellipses instead of spheres. This approach would
require taking the radius of the grain as an average of each ellipsoidal major-minor axis (to take into
account directional anisotropy of the microstructure). (ri =

1
2 (rimaj + rimin)). The result for this type

of anisotropic microstructure and morphological solution estimations will be shown in the next section.

Based on the grain structure the morphological deviation �m can be estimated using the coe�cients
ci = cj = 1

2 with ✏ij (misfit between predicted on grain morphology and calculated from sample) being
in admissible interval for approximation ([0.1 : 7] % ) for any grain pair. The radius for each grain can
be calculated from the spherical equivalent radius of the grain with area Vi. Accordingly, the proposed
relation to obtain �m is given by;

�m =
1

2
(ri + rj) =

r
s

4⇡
(
p
Vi +

p
Vj) (3.15)
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Figure 3.7: Visual representation of morphological estimations of the � and µ between data pixel

where Vi,j represents the total amount of points in the grain with indices i, j and s is the EBSD step
size. It is important to highlight the need of the morphological estimators for the proposed solution if
one can calculate it out from the real data. To obtain morphological estimators you need to make 3
calculations - get the amount of point within each grain(Vi) - out of that you can directly calculate all the
descriptors- average radii for each grain (ri,rj) and grain centers(Cij). The di↵erences between predicted
and measured parameters (obtained from the EBSD data) for di↵erent grains are analyzed by constructing
a linear regression model.

�t = �1�m + ✏1 (3.16)

µt = �2µm + ✏2 (3.17)

The regression model shows linear dependency between �t and �m as well as between µt and µm. Results
of the regression model for the Magnesium sample (1000 ⇥ 1000µm) are presented in Figs. 3.8 and 3.9.
The independent axes data for �t and µt obtained from the EBSD scan as a priory is showing a clear fit
with estimated from the morphology (�m and µm). Aluminum data, not plotted for brevity, also showed
similar results.

To give a quantitive data fit characterization the average error for the both fits was calculated. The
resutls shown that the error for µm(✏1) is 0.5% and for �m(✏2) is 7%, with linear fit coe�cients (�1 and
�2) close to 1. The error in �m measurement is higher due to the assumption that the grain shapes
are spherical, as against having a random convex shape, while calculating the radii. The quality of the
solution can be improved by improving mechanism to estimate the grain radii. Despite this, the proposed
morphological estimators provides good prediction of the DDF curve as shown below. The comparison of
Dij obtained from the morphological parameters and the one calculated from EBSD data is presented in
Fig. 3.10. The results show a very good match for a random grain pair selected from the micsostructure,
proving the e↵ectiveness of the new functional model.
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Figure 3.8: µ regression line fit plot for Mg data

Figure 3.9: � regression line fit plot for Mg data

50



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 850  855  860  865  870  875  880  885  890

p
ro

b
a
b

il
it

y

Distance (µm)

Real data for Mg sample distances distribution
Logistic curve based on the morphological estimators

Figure 3.10: Dij in micrometers constructed for the random grain pair in magnesium
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Figure 3.11: Morphological parameters of the analytical solution based on the single grain

When parameters � and µ are estimated based on the grain morphology, the distance distribution
function Dij could be expressed, using Eqns. 3.8, 4.9 and 4.8, in the analytical form as:

Dij = Vij
⇡s

�m4
p
2
sech2

✓
⇡

2
p
3

xm � µm

�m

◆
(3.18)

where µm and �m are the morphological estimators obtained above and x is the variable from the modelling
interval. The set of distances xm is populated from the any of two grains i and j as:
xm 2 [Gi

min . . . G
i
max]. The Gi

min corresponds to a left border of the principal axes of the elliptical grain
estimation and Gi

max is a right border of the principal axes(Gi
min,G

i
max are directly obtained from EBSD

data) as shown in Fig. 3.11).

Each distribution generation point xm in the discrete form is obtained as:

xi
m

l+1
= xi

m
l

+ s (3.19)

where l is a index set described as: l = {1.. bGmax

�G
min

c
s }.

The proposed scheme for obtaining Dij distribution based on the functional form in Eq. 3.18, be-
sides being a mathematically compact representation of material characteristics, also gives a powerful
tool for problems associated with microstructure modeling and characterization from the perspective of
computational e�ciency. The next section describes an application of the proposed model for obtaining
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Distance-Disorientation Function [79].

3.5 Distance-Disorientation Function
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Figure 3.12: Aluminum DDF’s for a 1000⇥ 1000µm sample

In this section, instead of calculating all distances within each cluster, the DDF is modelled by using
the grain morphologies. Equation 4.3 is expressed as:

DDF =

PN
j=1

PN
i=1 D

m✓ij
PN

j=1

PN
i=1 D

m
ij

(3.20)

Dm
ij is Dij calculated by using the morphological parameters and is given by Eq. 3.18 as

Dm
ij = Vij

⇡s
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Figure 3.13: Magnesium DDF for a 1000⇥ 1000µm sample
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Figure 3.14: Magnesium 20% compression EBSD scan with high grain anisotropy in compression direction
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Figure 3.15: Magnesium DDF for a 1000⇥ 1000µm 20 % compression sample
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Dm
ij is a logistically distributed random variable for a particular point xm inside the grain, Vij is the cross

size of the grain pairs i and j and Vij = Vi ⇥ Vj . This product(Vij) is the gain in e�ciency for the each
data cluster (grain) for distance calculation. Thus, instead of calculating the distances between each pixels
within a given grain pair Vij times, the logistic curve is modeled and then is only normalized for Vij .

For the rest of the analysis in this work the normal curve will be used instead of the logistic curve to
calculate the DDF for the EBSD to increase the computational e�ciency[81]. In this study, instead of
estimating the Dij as a logistic curve, the same estimators used for logistic curve of � and µ are employed:

Dm
ij = Vij

1

�m

p
(2⇡)

exp

✓
�(x� µm)2

2�2
m

◆
(3.21)

Eq. 3.18 is used to calculate the Dij between a given pair of grains i and j. Similarly ✓ij can be obtained for
the same pair. This procedure is repeated for all grain pairs in microstructure to obtain {Dij} and {✓ij}.
Then using Eq. 4.3 the DDF for the entire microstructure is calculated. Figures 3.12 and 3.13 present the
results of the DDF so calculated by using the parameters obtained from the morphology analysis. Both
Magnesium and Aluminum data show good fit between calculated (using Eq. 4.3) and exact DDFs, using
procedure outlined in section 3.3.1. The di↵erence in the predicted and exact DDFs in the tail of the
data on the right side is an artifact due to the corner and edge grains getting cut in the EBSD data. The
step size (s) for Aluminum is 5µm while the average grain size (R) is around 25µm. The step size for

Magnesium is 2µm and the average grain size is 50µm. Thus, for every pixel loss there is
�
s
R

�2
loss of

information. For Aluminum this is 1
25 while for Magnesium it is 1

625 . Thus, at the edges, there is more
information loss in the Aluminum scan compared to the Magnesium scan. The DDF, calculated using the
morphological parameters is comprised of N ⇥ N number of grain pairs. Each pair contributes a Dm

ij to
DDF according to Eq. 3.20, and each Dm is logistically distributed. It is concluded since that DDF for the
entire sample shows a good match with the exact DDF, the functional form proposed for Dm

ij (Eq. 3.18)
is both robust and is statistically representative.

3.5.1 Computational e�ciency

The proposed method significantly improves the computational e�ciency to obtain the DDF. For example,
for Mg data, the method provides a speed-up by a factor of 105 for the calculations of the distance between
particular grain pairs (not including calculations of the grains morphologies). Thus for the entire sample,
with the assumption of ⇠500 grains leading to 105 grain pairs, the speed-up would be a factor of 1010.
This speed-up in the estimate of the DDF enables integration of the DDF in modeling of microstructure,
such as crystal plasticity finite element method (CPFEM)[33]. The proposed method takes less than a
minute on an average (for 1000µm⇥ 1000µm) sample on a personal computer (PC). The mismatch error
between experimentally obtained (using EBSD) DDF and stochastically estimated DDF is less than 0.1%
(estimated using the KL norm as described in [79]) which is significantly small compared to the errors
presented in the work of Baniassadi et al.[23] who report the average error to be 8%.

3.6 Conclusions

In this research, a new functional form for the distance–disorientation distribution (DDF) is proposed and
underlying theoretical considerations are discussed. The proposed framework is based on the de-coupling
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of the crystallographic domain (treating it as an independent variable), and the geometrical domain for the
two point correlation function. The crystallographic domain consists of the disorientations ✓ij , obtained
from grain orientations ('1,�,'2). The geometrical domain consists of grain morphologies and grain
distributions inside the material. The analysis leads to the following conclusions:

(i) Statistical analyses show that data for Dij is logistically distributed.

(ii) Logistic curve parameters were estimated based on the geometrical domain of the microstructure,
obtained from EBSD, making this approach applicable to any material. The mean and deviation of
the logistic distribution are the distance between grain centers d (Eq. 4.9), and average of the two
grain radii 1

2 (ri + rj) (Eq. 4.8), respectively.

(iii) For validation of the new theoretical model, the distance–disorientation function for Aluminum and
Magnesium data were estimated using the new functional model. Comparisons between experimental
(EBSD) DDF data and the DDF simulated from the probabilistic curve show good fit.

(iv) Functional solution based on the logistic curve and its morphological parameters reduces the com-
putational complexity of obtaining the two-point correlation function and increases the e�ciency by
a factor of 1010.
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Chapter 4

On the reconstruction of the 3D
representative volume element from
the distance-disorientation
correlation function

This chapter presents the application of 3D cross-correlation microstructure reconstruction implemented
into a representative volume element (RVE) to facilitate microstructure engineering of materials. This
has been accomplished by developing a new methodology for reconstructing three dimensional (3D) mi-
crostructure using experimental two dimensional (2D) electron backscatter di↵raction (EBSD) data. The
proposed methodology is based on the analytical representation of the generalized form of the two point
correlation function – the distance disorientation function (DDF). The microstructure reconstruction is
done by extending the simulated annealing techniques to perform a three term reconstruction with a min-
imization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the
3D representative volume element (RVE) containing the relevant microstructure information for accurately
computing the mechanical response of solids on the meso-scale(grain is a unit structure) level, especially
when local microstructural variations influence global response of the material as in the case of fracture
initiation.
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4.1 Introduction

Solid state material behavior such as grain growth and recrystallization, fatigue and failure, etc [84,
85, 86] depend on the three dimensional microstructure characteristics. There is significant interest in
obtaining accurate three-dimensional (3D) representation using experimentally measured data; however
this is one of the most di�cult material characterization problems. One of the important requirements for
the reconstructed data is that it should be representative of the whole medium in so far as the physical
properties of the material are concerned. The complexity comes from the problem of dimensionality of the
reconstructed data and limitations of the experimental techniques for obtaining data.

Electron backscatter di↵raction (EBSD) data provides a quantitative description of the microstruc-
tural features of solids with the limitation that most often the data is collected from two dimensional
surfaces. New serial sectioning techniques and improvement of the computational resources have made
it possible to obtain 3D EBSD data sets for certain materials. However, as it has been demonstrated
in the works of [87, 79, 12, 28] that any 3D reconstruction must be based on in-depth studies of mate-
rial properties and full understanding of the complexity of the existing cross-correlations in the material.
[41] have described the qualitative characteristics of the data correlations obtained from the microscopy.
They considered the nearest neighbor grain orientations, average volume fraction of the grain, texture and
its correlation with grain or subgrain size, the spatial distribution of stored energy in a sample and the
amount of recrystallized grains in the material for the 3D reconstruction. [42] work constitutes the general
framework for the synthetic microstructure builder which was initially developed by [88] and discussed
in details in ([43]). It is shown that there can be considerable di↵erences in the results obtained from
material modeling depending on what data is used and how the microstructure is reconstructed. Kanit
et al. [89] have studied the e↵ects of RVE size on the elastic and thermal material properties and shown
that the variations in the RVE size can have significant e↵ect on the computed properties. Finding the
microstructure size that can accurately represent the mechanical response of the material is one of the
important problems in the crystal plasticity finite element model (CPFEM) simulations [33] . Any realis-
tic prediction with the CPFEM model requires accurate representation of the microstructure. There are
various studies on the e↵ects of microstructure representation on the micro and macro-mechanical predic-
tions with CPFEM [90, 86, 85]. Significant amount of research has been reported on 3D microstructure
reconstruction from correlation functions [15, 16, 17, 91, 20, 92, 21, 22]. A large variety of methodologies
have been proposed, i.e., gaussian fields, cellular automata, simulated annealing, just to name a few. The
main idea is to reconstruct the full microstructure from the n-point (or 2-point) correlation functions
using di↵erent optimization and homogenization techniques. In the recent research works of Torquato
group [37, 38, 39] the significant work was done in the field of the detailed characterization of the two
point correlation function reconstruction mechanisms and its analyses. Torquato et al. in the latest stud-
ies [38, 39] highlighted the problem of the degeneracy associated with the two-point correlation statistics
and shown valuable techniques for the solution of this complicated problem. Following Torquato et al. -
degeneracy of the two point correlation statistics could be expressed in terms of the configuration entropy.
As mention in the [38] all space transformations which keeps the distance constant such as translation
and rigid rotation can provide the set of non unique microstructures with the almost identical two point
correlation function measure. This types of the microstructures are called trivial. The focus of his par-
ticular research [38] was to classify and obtain a metric for the non trivial microstructures (could not be
obtained from each other by any set of described transformations). The methodology of the solution for
the non-triviality problems is based on the Monte-Carlo optimization techniques and minimization of the
information content of the two-point correlation function statistics. The proposed study will focus on the
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similar problems highlighted by Torquato et al. but from the di↵erent angle of view. Instead of analyzing
the degeneracy of the two point correlation statistics for simplified two-phase systems, the problem of the
non-trivial microstructure reconstruction will be treated as the problem of obtaining the microstructure
with the representative volume which can be with a certain limitations accepted as the informatively full
microstructure for the specific material. One of the established concepts of RVE is to provide the sta-
tistically representative domain of the whole microstructure which could be representative in the terms
of specific properties according to the homogenization level and techniques. The latest concept of the
weighted statistical representation of the microstructure (WSVEs) was formulated by [28] and [29]. The
statistical representative element in the Niezgoda et al. formulation represents the element which could be
randomly extracted from the material sample to represent certain properties, such as stress-strain response
or specific elastic properties etc. The concept of RVE considered in this research represents the amount of
grains, their cross-correlations and morphological features. The new method proposed below combines the
known approaches of 2D image reconstruction based on the basic statistical descriptors with a new method
for reconstructing the RVE from the 2-point correlation statistics ([87]). For the first time, the methods
of functional form statistics is extended from the 2D EBSD case ([87]) to a 3D space using the same grain
morphological analyses as for the 2D case. The optimization method developed by [43] as the basis to
generate the 3D microstructure is followed. In ideal case, the representative volume element for a material
depend upon the type of microstructure and material anisotropy (inhomogeneity in grain distribution and
grains morphology, material imperfections, processing history etc.). A statistically homogenous material,
with the grain size as a characteristic material unit, is assumed in this study. Representative scan size
(RSS) of [79] is used for the two-dimensional experimental EBSD measurements. Once the 2D EBSD RSS
is obtained, it is applied to the 3D reconstruction of an RVE. The improvement of the RVE reconstruction
includes an additional e↵ect due long range ordering (calculated through distance-disorientation function
(DDF)). Using long range ordering in the calculation should reflect on the physical phenomena that are
influenced by grain interactions (such as stress triaxiality). DDF is a generalized form of the two-point
correlation function that includes already known and established nearest neighbor analyses statistics and
misorientation distribution function statistics ([63]). DDF computes the average disorientation between
two points while two-point correlation function correlates average probability for both points being in the
same phase. DDF combines the misorientation distribution function (MDF)([93, 94]), orientation distri-
bution function (ODF) ([95, 93]), statistical error minimization, and the cross-correlation e↵ects of the
distance-disorientation function statistics.

In this chapter, first the experimental EBSD data collected from the real material is presented. Then
the DDF and analytical model implemented in the microstructure builder (m-builder) are discussed. The
DDF minimization between real EBSD data and constructed 3D microstructure is the new optimization
added to the existing simulated-annealing energy optimization model. This is followed by the construction
of the mathematical model to improve the microstructure reconstruction algorithm.

4.2 Experimental data

The EBSD data used in this study was acquired from AA5754 aluminum sheet samples, using a LEO 1450
scanning electron microscope (SEM) fitted with a TSL EBSD camera. The EBSD data was analyzed
using the TSLTMOIM software (Ver. 4.6). The data was cleaned, using grain dilation method with single
iteration, neighbor CI correlation and single orientation per grain, to remove the bad data points and
only data points having a confidence index (CI) above 0.2 were retained for the analyses. Grains were
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identified with a disorientation tolerance of 10�. Thus, the pixels having a disorientation of less that 10�

were grouped together and identified as a grain. For the analyses, grains with less than 10 data points
were excluded. Once grains were identified all the pixels in the grain were assigned average orientation of
the grain. As a result, the disorientation of any two pixels within a grain is zero. The data was obtained
from a direct chill cast and rolled aluminum sheet with grain size of 21.38µm and 23.94µm along the X
and Y direction respectively. For this sample, the step size for the EBSD map was 5µm and the texture
strength was 3.4. The number of grains in the scans was ⇠8500 for the sample.

4.3 3D RVE reconstruction

The 3D RVE microstructure generation is broadly divided into two major components, grain structure
generation and assignment of texture to the generated grain strain structure.

4.3.1 Grain structure generation

Crystal geometry was approximated based on the assumption that, for aluminum polycrystalline materials,
grains shapes could be approximated by the ellipsoids [43]. Each ellipsoid could be completely defined by
its semi axes: ⇣x

a

⌘2
+
⇣y
b

⌘2
+

⇣z
c

⌘2
 1 (4.1)

The procedure of grain structure genration inside the microstructure is based on the works of Saylor et.
al[88] and Brahme et. al[43] and is based on the mechanism of fitting ellipsoids. Briefly, the procedure
works by first generating a set of ellipsoids with given dimensions, which follows a set distribution. Out
of these a subset is retained that gives the best volume filling and least overlap. Then using the centers of
these ellipsoids as seeds the final grain structure is grown using a cellular automaton.

4.3.2 Texture assignment

Initial texture assignment to the generated microstructure is performed by assigning a random orientation
to each grain. Using this texture assignment and experimental measurements for texture the ODF and
MDF are calculated (fm and fm(�)). The error term � is calculated as the mismatch between the
experimental data (fe) and simulated (fm) so that:

� =
i
maxX

i

(fm(g)i � fe(g)i)
2 +

j
maxX

j

(fm(�g)j � fe(�g)j)
2

where i sums over the microstructure orientations and j sums over the misorientations. Note, that distri-
bution function f is defined on g - a local state in a polycrystal ( can be described in a Euler orientation
space �1, Phi,�2) and �g can be described for a neighboring crystals as a mismatch characteristics in a
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Euler space(misorientation ). This error term is usually associated with so called energy of the system
for simulated-annealing [91] or Metropolis-Monte Carlo type optimization algorithms [96, 97] After the
error � or system energy is calculated, the next step is to minimize the mismatch between computed
and experimental data. Metropolis-Monte Carlo approach for optimization is applied. An orientation
change is employed randomly based on the given probability of success or failure of change of the error
(�(�) = �i+1 � �i) according to the given probability density function:

P =

⇢
1 ��  0

exp
����

T

�
�� � 0

(4.2)

where �i and �i+1 are the errors calculated on the current (i) and next (i+1) iteration step and T is a
temperature parameter controlled by the algorithm and usually described by the polynomial spline model.
This optimization method, known as simulated annealing, is widely used in the problems of microstructure
optimization [15, 16, 17, 20, 21, 22].

The microstructure reconstruction method proposed in this research is based on the distance-disorientation
function analytical solution presented by [79] and [87]. Distance-disorientation function essentially pro-
vides a complete description of distance between any two points of microstructural data and the average
disorientation between them [79]. The DDF represents the average disorientation (✓ij) for all the pairs of
pixels separated by a distance Dij . This definition goes beyond the misorientation distribution function
(MDF) [7] and the misorientation correlation function (MCF) as defined by [63]. The main concept of
the analytical solution as mentioned before is to decouple the geometric domain and the crystallographic
domain. in the following form:

fDDF =

PN
i=1

PN
j=1 Dij✓ij

PN
i=1

PN
j=1 Dij

(4.3)

where N is the number of grains in the geometric domain (microstructure). Dij refers to a distribution of
distances between a pair of pixels belonging to grains i and j respectively, and ✓ij refers to the disorientation
between the average orientations of the two grains (i.e., ✓ii = 0). Once the functional form ofDij is obtained
then the DDF can be calculated using Eq. 4.3.

The changes in proposed microstructure builder are based on the idea that grain morphologies and
arrangement of the grains orientations in the polycrystalline material should be characterized not only by
combination of the distribution of the volume fraction f(g) (ODF) and f(�g) (MDF) but also on the fDDF .
Using Information Theory and norms developed in the recent works of [79, 87] a new error term, �DDF , is
introduced to the model of microstructure optimization. According to the results presented in the work of
[79], to construct precise microstructure, instead of using EBSD scan of a random size representative scan
size (RSS) data should be employed as initial input. Instead of calculating ODF and MDF ; the mismatch
between 3D reconstructed sample and EBSD the mismatch in the grain locations and their orientations
(mismatch between DDF of 3D structure and DDF of RSS EBSD) are taken into account, so that;

�DDF =
#pairsX

k

����f l
DDF (g)k � fRSS

DDF

����
KL

(4.4)

where k is the sum over the all grains pairs. The new term fDDF is a DDF correlation function for the 3D
material microstructure and fRSS

DDF is a DDF obtained for the material sample RSS. Figure 4.1 presents
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a schematic representation of the 3D microstructure reconstruction with di↵erent statistical estimators
collected from the EBSD data (MDF, ODF and DDF ).

Figure 4.1: Global procedure of the 3D synthetic microstructure reconstruction. ODF, MDF and DDF
are used as inputs to construct the 3D microstructure from the 2D scan area.

The comparison between the two DDF’s - for the RSS of Aluminum (500⇥ 500 µm) data and
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(200⇥200⇥ 50 µm ) DDF 3D reconstructed without DDF optimization data are presented in the Fig.
4.2.

Figure 4.2: DDF’s for the EBSD sample (500⇥ 500µm) and for non optimized 3D microstructure (200⇥
200⇥ 50µm)

As it can be seen from the Fig. 4.2 the non optimized microstructure shows deviations from the RSS
EBSD DDF. The proposed solution for the 3D microstructure reconstruction is based on removing this
gap. �DDF is the loss of information, in terms of the distance disorientation function, between measured
EBSD and 3D reconstructed data. The norm for the error approximation that will be used in this work is
a norm defined in the study of [79]:

DKL (I⌦
EBSD

[i], I⌦T [i]) =
nX

i=1

I⌦
EBSD

[i] ln
I⌦

EBSD

[i]

I⌦T [i]
(4.5)

where I⌦T (fDDF for the problem) is the information statistics gathered from each iteration of the 3D
optimization algorithm. I⌦

EBSD

(fRSS for the problem) is the cross-correlation information obtained from
the representative scan size EBSD material sample. The is measuring statistical mismatched between the
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2D and 3D data, however this is the valid statistically homogenized microstructure constraint commonly
used in community. Each calculation of the DDF for the 3D microstructure requires calculations of more
than 1015 distances. In case of the extreme ratio of data dimensions, the functional form of DDF should be
used in order to calculate cross correlation function in 3D. After each step, when texture components are
updated, the DDF mismatch between RSS and 3D sample needs to be recalculated using the functional
form:

fDDF =

Pm
j=1

Pn
i=1 f

ij
mrph✓ijPm

j=1

Pn
i=1 Nij

(4.6)

where

f ij
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1

�m

p
(2⇡)

exp

✓
�(x� µm)2

2�2
m

◆
(4.7)

In the given functional form, �m and µm are morphological estimators of the grains inside the microstruc-
ture. According to [87] the estimators for the �m can be obtained by:

�m =
1

2
(ri + rj) = (

3s

4⇡
)

1
3

(Vi
1
3 + Vj

1
3 ) (4.8)

where Vi,j represents the amount of points in the grain with indices i,j and s is the EBSD step size. The
deviation from the average distance µm was estimated accordingly to [87] without DDF optimization and
can be extended to a 3D space as:

µm = dist
⇣
hCii , hCij

⌘
(4.9)

the center of the ith grain (Ci) is estimated as:

hCii =
1

m

X
xk, k = 1..m (4.10)

where xk are the coordinates of the kth point in the particular grain, m is the number of points within
the 3D grain, µm is a distance between ellipsoids centers and �m is an average of the ellipsoids radii. The
visual representation of the morphological estimators of distance-disorientation function is presented in
the Fig. 4.3. In this figure ellipsoids represents the two randomly picked grains with di↵erent orientation
in the 3D microstructure. Now the �DDF term can be recalculated in the form of the new methodology
as:

�DDF =
#pairsX

k

����f l
DDF (g)k � f⌦

RSS

����
KL

=
nX

i=1

f⌦
RSS

ln
f⌦

RSS

f⌦
DDF

[i]
(4.11)

where is the f⌦
RSS

is the DDF information statistics gathered from the 2D representative scan size (500⇥
500), and f⌦

DDF

[i] is the information statistics gathered from the 3D scan at the each algorithm iteration
i.

The functional form of DDF captures various important microstructural characteristics that are in-
trinsic to the material. As discussed in [87] the functional solution is captures the morphological aspects
of the grains within the structure:

1. local anisotropy of the grain morphology - the higher is a mismatch of the geometrical estimator -
the more mismatch in the functional estimator.
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2. anisotropy in the grain location in a 3D space (alignment of the grains in the space)

3. e↵ects of the EBSD step size on the quality of the estimator(the smaller step size produces better
estimators of the distance- disorientation function)

Figure 4.3: Visual representations of the morphological estimators (in red) of the distance-disorientation
function in a 3D space

After the functional form and the new optimization term is defined, the total error of the system to be
optimized through a simulated annealing algorithm takes the form:

�total =
i
maxX

i

(fm(g)i � fe(g)i)
2 + (4.12)

j
maxX

j

(fm(�g)j � fe(�g)j)
2 + (4.13)

+
nX

i=1

f⌦
RSS

ln
f⌦

RSS

[i]

f⌦T

DDF

[i]
(4.14)

The error evolution according to the new optimization schema is shown in the Fig. 4.4. Note that the
error optimization control mechanism for the new procedure provided a good convergence rate for both
total amount of success steps and DDF optimization as well.

The procedure of DDF optimization while optimization step is presented in the Fig. 4.5. The conver-
gence of the DDF is clearly seen for each optimization step. The successful step brings down the curve
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Figure 4.4: Error control with the new fDDF term due to Monte Carlo optimization
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from the initial value to the optimized value. Comparison of the results of the new 3D microstructure
modeling (sample size 200⇥ 200⇥ 50µm) and old microstructure, for the aluminum DC sample procedure
are presented in Fig. 4.6. It can be seen that, e↵ect of the distance-disorientation minimization changes
the texture. It was shown in the work of [79] that the ODF is not enough to describe all the texture
cross correlations which exist inside the material sample. The algorithm of optimizing DDF in the 3D mi-
crostructure in the simple description is re-ordering grains inside the structure close to their location. This
leads to optimized microstructure having relatively the same percentage of the main texture components
(main orientations).

As it can be seen from Fig. 4.7, the locations of the grains (starting from the nearest neighbors and
including long range correlation e↵ects) are di↵erent. The di↵erences in a neighbor grain locations are
highlighted by the smaller arrows to show that grains with similar orientations and misorientations in
both microstructures have switched their locations on the local scale. The global change (between two
microstructures) in the orientations of the grains are highlighted by larger arrows. It can be seen that,
statistically the same components are represented in both of the microstructures, which is logical due to
ODF minimization with the same EBSD data, however there are variations in the grain locations inside
the material and their local texture-component correlations as well.

4.3.3 RVE construction

In this section the problem of the RVE and application of RVE are discussed. Note that problem of
constructing 3D microstructure that have always been linked with the number of crystallographic textures
should be taken to obtain the optimal representative minimum volume element (that can store all relevant
texture information within a certain domain of interest). If the minimum block can be constructed than it
can be used to build a microstructure of any size with representative texture information. The scale where
the representative texture will be searched is limited to the meso scale of the material microstructure.
Thus the unit structure which represents the material is a grain. For the specific case presented in this
research the range fot the grain size is 20�50µm - the minimum and maximum grain size for the aluminum
AA5754DC.

The procedure of reconstruction of the RVE (see Fig. 4.12) is based on finding optimal dimensions
(xopt, yopt, zopt) of the 3D building block which satisfies the minimization of the information norm mismatch
between RSS and synthetic microstructures so that:

xopt, yopt, zopt 2 {x, y, z} : �DDF =
nX

i=1

f⌦
RSS

ln
f⌦

RSS

f⌦T

DDF

[i]
< ✏ (4.15)

where ✏ is a parameter which determines the convergence of the minimization mismatch. The ✏ value for
convergence of KL norm for each subscan is based on the full information sample of the particular material
(in the present case 500x500µm for Al 5754 RSS) and is material dependent. Table 4.1 summarizes all the
terms and their definitions used to identify the RVE.

The ✏ value is the information mismatch (optimal ✏ = 5⇥10�6 is chosen from the work of [79]) between
the 3D microstructure with certain test dimensions(randomly chosen) and obtained representative scan
size (RSS). Thus, obtaining an RVE is a two step procedure; (i) obtain an RSS for a given material (using
Brahme et al methods) and then we extend them to a 3D case to obtain an RVE.
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Figure 4.5: DDF curves behavior due to simulating annealing optimization 200⇥200⇥50µmmicrostructure
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(a) initial microstructure (b) DDF non optimized microstructure

(c) DDF optimized microstructure

Figure 4.6: Comparing of the micro structures (200x200x50µ m) with and without DDF control.

Table 4.1: Terminology

Symbols Significance variables
✓ij Disorientation between pixel pair

i and j
(Euler angles)i,j

Dij distance between the pixels xi and xj

f⌦
RSS

EBSD DDF data for representa-
tive scan

{(Euler angles)i, xi}

f⌦
DDF

DDF data for 3D microstructure {(Euler angles)i, xi}
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Figure 4.7: Changes in the two microstructures after optimization.

(a) initial EBSD microstructure
ODF

(b) non optimized microstructure
ODF

(c) optimized microstructure
ODF

Figure 4.8: Comparing of the ODF’s (200x200x50 µ m) with and without DDF control of initial mi-
crostructure ODF.
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Figure 4.9: initial EBSD microstructure MDF

Figure 4.10: non optimized microstructure MDF
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Figure 4.11: optimized microstructure MDF

Starting from an initial small box 20 ⇥ 20 ⇥ 20µm with a certain step, the optimal dimensions
(xopt, yopt, zopt) need to be determined that it minimizes the KL entropy norm between DDF of the RSS
data and DDF of the 3D reconstructed data.

The cross-correlation statistics between the reconstructed microstructure and the measured EBSD data
is compared until the acceptable convergence (5⇥10�6) of the information norm is achieved. Then the ob-
tained dimensions, which gives the same small constant KL entropy value are chosen to be a representative
for a volume element. The procedure which is applied for validation of the RVE was initially presented by
[79] for finding RSS and applied the original methodology to the third dimension.

4.3.4 RVE characterization

The characterization of the RVE was performed by analyses of the cross-correlation (DDF) between op-
timized and non optimized microstructures was done by separating them into di↵erent microstructural
categories.

Table 4.2: Table of the base microstructures considered: representative scan size (RSS), RVE size optimized
3D: Mper, periodic non optimized 3D: Mnper, non optimized 3D microstructure: Mpnopt

Microstructure Dimensions(µm ) Grains Avg. Grain Size Elements
RSS 500x500 513 25 250000
Mopt 200x200x50 215 23.1 16000
Mper 600x600x150 3200 23.1 432000
Mnper 600x600x150 3200 25.1 432000
Mpnopt 600x600x150 3200 23.1 432000

The table 4.2 shows the microstructures for the validation and RVE characterization (dimensions
and numbers vary from material to material). These categories are formal and used in the research to
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Figure 4.12: Procedure of obtaining optimal dimensions of the representative volume element
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Figure 4.13: Construction of the periodic microstructure of any size based on the RVE building block.

show di↵erences or similarities in the cross-correlations for optimized and non optimized microstructures.
Periodic structures are suggested as a point of interest of reconstruction (from the RVE). The procedure of
the microstructure characterization is based on the comparison of the RVE microstructure with the larger
periodic microstructures and smaller microstructures that were not optimized. The main hypothesis of
design is that the non-optimized 3D microstructure should show higher DDF information mismatch. The
following key steps are proceeded to validate the di↵erent 3D microstructures.

1. Join microstructures periodically to build a relatively larger size periodic microstructure.

2. Obtain DDF statistic for di↵erent types of the microstructures.

3. Construct DDF statistics functions for the microstructure.

4. Check ( for each microstructure) the DDF of the 3D microstructures from the stitched RVE’s should
match stitched microstructure that is not optimized should not match the experimental EBSD DDF
curve as well as the RVE DDF.

The DDF curves obtained for the designed microstructure are presented in the Fig. 4.14. The results
show that (Fig. 4.14) the optimized RVE microstructures consist the same amount of information as larger
periodic microstructure and 3D microstructure from the non optimized building block does not capture
all information.

The results show that DDF curves of the microstructure constructed from the RVE blocks match with
the DDF of the experimental data and the large 3D microstructure that is not optimized(green, blue curves
Fig. 4.14). The measured KL entropy norm between optimized 3D RVE blocks is the order of 10�6 [79]
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Figure 4.14: Comparative curve of the DDF functions for the RSS EBSD data and modelled 3d periodic
(optimized and non optimized) microstructures with the RVE building block
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while the microstructure built from the non RVE elements shows variations in the KL norm of the order of
(10�4). This results seems very interesting if coming back to the Torquato problem [38] of the degeneracy
of the two-point correlation functions. The microstructure which consistent of this building blocks is
showing an informational degeneracy in terms of the K-L norm. In other words, any sub crops with RVE
sized out of this microstructure will show comparably insignificant information mismatch measured for a
DDF statistics as a two-point correlation function.

4.3.5 Numerical Modelling with the RVE microstructure

In this section, the numerical model presented by [98] is employed in simulations of uniaxial tension with
the RVE. They developed a user defined material subroutine (UMAT) based on elastic-viscoplastic crystal
plasticity model. For brevity, details of this model will not be discussed in this section. Simulations
of the uniaxial tension tests are performed on the aluminum ally(AA) alloy with optimized (RVE) and
non-optimized (non-RVE) 3D microstructures. Optimized microstructure represents RVE with dimensions
(200⇥ 200⇥ 50µm), while the non-RVE sample has bigger dimensions (600⇥ 600⇥ 150µm).

To further investigate the di↵erences between the optimized and non-optimized microstructures, stress-
triaxiality, a established measure commonly used to simulate fracture [99, 100] is calculated, so that:

�tr = ��hydr

�eq
(4.16)

where �hydr is the hydrostatic stress and �eff is the Von Mises equivalent stress.

�eff =

r
3

2
sijsij (4.17)

where sij are the components of the stress deviator. The stress deviator, �dev can be written as:

�dev = �ij �
1

3
(tr�)I (4.18)

where the �ij is a Cauchy stress tensor and I is the identity matrix . Figures 4.16 - 4.15 represent
the stress triaxiality distribution within the microstructure for the deformed material samples after 18%
uniaxial tension. In these simulations the hot spots are identified as a elements which have higher stress
triaxiality than average through the sample. Simulations show that the stress-triaxiality hot spots location
on surface are di↵erent for the optimized and the non optimized microstructures. Furthermore, the surface
hot spots distribution of the optimized microstructure which takes into account distance ordering of the
texture initially observed to be closer than for non optimized generated microstructure. However there
is no clear vision of the hot spots, particularly changes in the distance between localization clusters of
the stress inhomogeneity. To further investigate, the stress triaxiality distribution is plotted and analyzed
through the whole sample in the deformed structure ( Figures 4.15 - 4.16).

Modelling show that the hot spots are much closer and packed for the case of optimized microstructure
where the location of the grains are correlated to their orientation. It can be seen from the results, that
optimal microstructure shows more concentration(localized) of the stress-triaxiality hot spots than the
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Figure 4.15: On surface stress triaxiality distribution based on the material tension FEM modelling for
optimized microstructure
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Figure 4.16: 3D map of the hot spots of stress triaxiality distribution inside the non optimized microstruc-
ture
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non optimal microstructure. This is due due to the imposed texture ordering since the same boundary
conditions are applied for the both models.

To quantify this behavior the distances between hot spots clusters are measured inside the material
microstructure as a two point correlation function with respect of the stress-triaxiality function. In other
words, the frequency of the higher stress triaxiality values, appearing in a particular fixed distance inside
the material sample is estimated. The norm being introduced is similar to the DDF function but applied
for the case of stress triaxiality between material points and the distance instead of disorientation ✓ij .
Thus the maximum of the stress triaxiality value between any two points i and j can be rewritten as

⇢tr =
maxi,j(�tr

ij

)Dm
ijP

Dm
ij

(4.19)

where Dij is the same distance-distribution function estimated between any two pixels within a grain pair
as defined before (see 3.21). Using the same functional estimator for the Dm

ij function final correlation
takes the form:
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This functional form estimation of the Dij function is critical in terms of computational complexity and
makes this expensive calculation possible in general. After constructing the frequency function a measure
of the frequencies of the hot spots inside the material sample can be obtained. This approach will provide
some insight on the influence of the quality of the optimized microstructure on the frequency of the hot
spots �tr occurring at the closest distance to each other. Accordingly, the following steps are performed
to see if a correlation exists;

1. generate two di↵erent 3D microstructures with di↵erent DDF errors

2. calculate stress triaxiality frequency distribution function ⇢tr

3. check the hypothesis that smaller error between DDF leads to closest distribution of the frequencies
of the stress-triaxiality hot spots inside the material.

The concept is the following: the more precise position of the grains should show more precise localization
of the stress-triaxiality hot spots. The criteria can be rewritten as:

dist⇢tr(max⇢tr) & | DDFerr & (4.21)

The result of modeling are presented in the Fig 4.17. The numerical analyses show that the location of
the �tr hot spots are strongly dependent on the microstructures. As it can be seen from the Fig. 4.17 the
minimum distance of the higher concentration of the hot spot frequencies (⇢tr) is smaller(57 µm) for the
microstructure with smaller DDF optimization threshold limit(DDF err=0.083 (⇥10�5)). It can be seen
that expected hypothesis is satisfied: the precision of the DDF optimization is in positive correlation with
minimum distance of the hot spots location. Optimized RVE texture is actually minimizing mismatch
between textural components locations inside the microstructure. This agrees well with the conclusions
presented by [85] where it was demonstrated that the location and intensity of �tr hot spots is strongly
influenced by grain interactions.
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Figure 4.17: Stress triaxiality frequency distribution cross-correlation function ⇢tr obtained for di↵erent
microstructures with di↵erent optimization errors
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4.4 Conclusions

In this research a new framework for 3D cross-correlation analysis is presented. The study is based on
the analytical construction of the DDF. The analytical model gives a possibility to calculate the distance-
disorientation statistics in the 3D microstructure. The application of the functional form solution of the
DDF applied to the 3D microstructure cross-correlation analyses and reconstruction is the first results
presented in the literature for the sample dimensions much larger than a grain size.

The method of functional form statistics is extended from the 2D EBSD case to a 3D space using
the same grain morphological analyses presented in the recent research of Staraselski et al. [87]. The
framework developed by Rollett et al. [43] was extended using the new cross-correlation formulation as a
basis optimization method to reconstruct the synthetic microstructure for the 3D data.

Finally, after constructing mathematical model and improving the computational part of the mi-
crostructure builder, the new microstructure is employed in a CPFEM analyses. Predictions show, that
for nearly identical uniaxial tension stress-strain curves, the locations and intensities of a stress triaxiality
hot spots are significantly di↵erent in the simulations with the di↵erent microstructure reconstructions.
Thus, accurate representation of the 3D microstructure is critical in polycrystalline metals.
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Chapter 5

The e↵ect of the representative data
on the modeling of dynamic
recrystallization in magnesium alloys

The recrystallized texture obtained from the DRX model depends on the size of the EBSD scan. In
this work, the e↵ect of the representative scan size (RSS) on such important characteristics of DRX as
nucleation sites and their distribution, grain growth and the final texture is analyzed. Di↵erent scan sizes
are taken as input for the crystal plasticity finite element framework in order to compare the simulation
results of the RSS and non-RSS scans used to model DRX phenomenon. Both microstructure evolution
and the final texture prediction are shown for AZ31 magnesium alloy. The present research seeks an answer
to the question of how precise should the quantity of the input data be while modeling DRX?

5.1 Introduction

DRX accompanying deformation can enhance formability beyond what can be accomplished due to in-
creased slip activity and grain boundary sliding at elevated temperatures. DRX removes new defects
continuously and extends the stress-strain curve to high strain values without hardening. Once the mate-
rial is loaded at elevated temperatures deformation is accommodated either by slip or twinning till a critical
value is reached. After this critical value (⇢c), the material starts showing some degree of recrystallization,
of a new undeformed grain in a highly deformed zone (nucleation) and (b) growth of the nucleus at the
expense of deformed matrix. Unlike static recrystallization (SRX), the dislocation content during DRX
evolves with time both in the matrix and the recrystallized region. Thus understanding and characteriza-
tion of nucleation and growth by modeling the dislocation content by crystal plasticity methods provides a
method to model DRX. DRX has been modeled in the past using cellular automata (see Raabe et al., [101]
) (CA) methods that use a phenomenological model such as Kocks and Mecking law [102] to calculate the
change in dislocation density, which cannot account for local evolution of deformed microstructure that
determine the nucleation sites. This study presents a coupled FE model to compute local evolution of
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deformation in a sample of AA5754 aluminum sheet that uses microstructural data from EBSD maps as
input and accounts for the known operative deformation mechanisms. A nucleation criterion is developed
and implemented into an existing in-house crystal plasticity finite element (CPFEM) model to predict the
new in the microstructure reconstruction and ⇢ tensor determination for basal and nonbasal slip systems
in HCP Mg alloys are discussed to make this approach applicable to Mg alloys that need to be processed
at elevated temperatures for enhanced formability where DRX becomes important. After the e↵ect of the
threshold of the critical value on nucleation of the new grains is shown for Aluminum, the e↵ect of the
representative scan size on the modeling of the DRX in Magnesium is presented.

5.2 Nucleation of Dynamic Recrystallization

The concept of recrystallization nuclei as initiators of growth based on the dislocation density was intro-
duced in the works of Cahn et al. [103]. The major assumption was to identify subregions with high
dislocation density mismatch with surroundings within the grain across all neighboring grains. Two main
concepts of nucleation and growth have been accepted in the literature: (i) pre-existing nucleation sites,
which grow under deformation; (ii) nuclei are not instantaneous, but evolve during deformation. Experi-
mental observations of Humphreys [104] show that subgrain grows sweeping away dislocations and leaving
relatively clean grain. In order to satisfy to the mechanical instability, grains with lower dislocation content
surrounded by neighbours with higher dislocation density are to be chosen. In order to implement this
nucleation criterion, first, dislocation density was calculated from the plastic part of the strain gradient,
which is obtained from the crystal plasticity part of the model. The dislocation density is calculated based
on the local crystal frame for each slip system ↵ using its descriptive vectors s(↵) (slip plane normal) and
m(↵) (slip direction).

Geometrically necessary dislocation (GND) density is taken into account and its screw and edge parts
are calculated using the shear strain � on each slip system following the arsenlis [105] equation:

⇢↵GN(e)b = �r�↵ ·m↵ = ��↵
,ks

↵
k (5.1)

⇢↵GN(s)b = r�↵ · n↵ = �↵
,kn

↵
k (5.2)

where (e) and (s) are for edge and screw parts of dislocation density respectively, and n↵ = s↵ ⇥ m↵.
Equations 5.2 are re-derived from the Nye’s tensor ([106]), projecting the total deformation gradient as
defined earlier on the particular slip plane and direction. This formulation gives more representative
information about the contribution of particular slip plane to the dislocation density. The total GND
density tensor can be consequently obtained from:

⇢↵ =
q
(⇢↵GN(s))

2 + (⇢↵GN(e))
2 (5.3)

The nucleation criterion is based on the di↵erence (”jump”) in the dislocation density (DDT) between
the neighbouring elements i and j, and is calculated:

d⇢ = k⇢ik � k⇢jk (5.4)

The critical value of d⇢c is chosen depending on the maximum value of the dislocation density and takes
into account extreme value statistics for a given data. The critical value of the d⇢ controls the amount
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of nucleation sites as well as final texture. The smaller the value of the threshold, the more nucleation
sites will be defined as potential nuclei. In the proposed model, the nucleation sites are not limited to the
oriented growth or nucleation, however, new grains are not formed during recrystallization process. That
means that new nucleation sites can be obtained due to deformation and new nuclei are defined in this
model as deformed states of existing grains. Due to inhomogeneous distribution of dislocation density in
the material (as discussed below), it is important to accurately implement it in the numerical model.

5.3 E↵ect of the threshold value on the recrystallized nuclei tex-
ture

Figure 5.2 shows the evaluated ⇢ tensor on a synthetic microstructure EBSD data from an annealed
Aluminum 5754 aluminum sheet using procedure described in the previous section. Since the actual
reconstructed microstructure obtained by this method is not unique, i.e. the nearest neighbor grains can
be rearranged, two di↵erent microstructures that have the same statistical grain size, orientation and
misorientation distributions were constructed as shown in Fig.5.1, marked MI and MII respectively.

(a) Microstructure MI (b) Microstructure MII

Figure 5.1: Initial microstructure MI and MII

The Figure 5.2 represents the evaluated ⇢↵ in arbitrary units for each element in the microstructure.
The value of ⇢↵ depends on the local value of the deformation, i.e. the higher values of ⇢↵ correspond to
the higher dislocation content but do not imply a higher likelihood of nucleation. The local mismatch or
jump in the dislocation density is calculated and is reported as an average value d⇢↵ in each element. And
this value is then used as an indicator of nucleation probability.

The two microstructures were subjected to uniaxial tension along the rolling direction (RD), which
coincides with X-axis. The methodology of nuclei selection was applied to both microstructures and was
analyzed after 20 % of total elongation along RD. The dislocation content ⇢↵ and the average jump in
dislocation content d⇢↵ are evaluated at each integration point of the finite element.

The contour plots of the d⇢↵ distribution for both MI and MII microstructures are shown in Figure
5.3 (a) and (b) respectively. Comparing these figures (Fig. 5.3 (a) and (b)), it can be seen that the
two microstructures give a very di↵erent distributions of d⇢↵. This is due to the di↵erences in the local
microstructure, which results in di↵erent slip system activity, and hence, in di↵erent local deformation
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Figure 5.2: Dislocation density ⇢ tensor in a 3D space for the microstructure MI

distribution. A high value of d⇢↵ in a particular location implies that such a region in the microstructure
has higher ⇢↵ and is surrounded by regions with lower ⇢↵ or vice versa. The latter case corresponds
to a possible nucleation site for a recrystallized grain as it denotes that the region of interest has lower
dislocation content than its surrounding matrix and it can grow to reduce the stored work, thus, to lower
the total energy of the system. By selecting an appropriate threshold value, of d⇢C one can have a method
of identifying nucleation sites. If a region in the microstructure has d⇢↵ higher than a certain predetermined
threshold,d⇢C , then, it will be identified as a nucleus.

Figure 5.4 shows the texture plots, which correspond to the orientations of the nucleated grains of the
recrystallized microstructure MII, selected using di↵erent threshold values for d⇢C (in the range d⇢C =
5 ⇥ 10�5 to ⇢C = 4 ⇥ 10�4 in relative units. Figure 5.4(d) has the highest threshold, which resulted in
a few nucleation sites. As a result, the pole figure shows high values for poles with only a few poles.
Figure 5.4 (a) has smallest threshold, and hence, has the most spread in orientations of the nuclei. Clearly,
values of d⇢C = 3⇥ 10�4 and 4⇥ 10�4 provide very few nuclei and the d⇢↵ =5⇥ 10�5 provides too many.
The actual value of the threshold should be in between these bounds. For purposes of comparison of the
recrystallization texture between the two microstructures (MI and MII) a value of d⇢↵ threshold=1.5⇥10�4

is chosen. For comparison of the prediction of the orientations of the nucleated grains produced from the
two microstructures, MI and MII, d⇢↵ was calculated and a threshold value for d⇢↵ =1.5⇥ 10�4 was used
to identify nuclei.

The resultant nuclei texture is shown in Figure 5.5. Comparison with the texture for the same value
of threshold for microstructure MI shows that the predicted texture for both microstructures are similar
despite both of them have very di↵erent distributions of ⇢↵.
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(a) d⇢ distribution for the microstructure MI

(b) d⇢ distribution for the microstructure MII

Figure 5.3: d⇢ distribution for the microstructure MI and MII
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(a) d⇢C = 5⇥ 10�5 (b) d⇢C = 1.5⇥ 10�4

(c) d⇢C = 3⇥ 10�4 (d) d⇢C = 4⇥ 10�4

Figure 5.4: d⇢ distribution for the microstructure MII for di↵erent d⇢C values
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Figure 5.5: d⇢ distribution for the microstructure MI for d⇢C = 1.5⇥ 10�4

5.4 E↵ect of the representative scan size on DRX

The initial EBSD map and pole figures from as-received AZ31 magnesium alloy sheet are given in Fig. 5.6.
The pole figures show a strong basal texture typical for this alloy. The EBSD pattern is mapped into the
finite element mesh with an element size equal to the EBSD step size, 4µm. The grain colors represent
their crystallographic orientation. The average grain size is 15µm.

Di↵erent crops were taken from the initial EBSD map in order to analyze the e↵ect of the structure
size on the results of the DRX simulations in the CPFEM. The following dimensions were considered:

• 100⇥ 100µm with ⇠ 50 grains

• 200⇥ 200µm with ⇠ 190 grains

• 400⇥ 400µm with ⇠ 750 grains

• 800⇥ 300µm with ⇠ 1300 grains

• 800⇥ 800µm with ⇠ 3000 grains

The schematic of the crops from the as-received material’s EBSD map is presented in Fig.5.7. The
dimension of 800 ⇥ 300µm represents the RSS dimensions for AZ31 alloy obtained using the approach
described in the previous section. The RSS for DRX and nucleation site identification are discussed in the
work of Brahme et al. [107] The concept of the RSS constitutes that if the larger structure is taken the
results of the CPFEM simulations will be identical. Therefore, in order to prove the RSS dimensions, the
larger crop of 800⇥ 800µm was taken into account and the results are presented below.

The model of DRX was implemented based on the CPFEM using cellular automata (CA) model and
can be found in the [108]. The CPFEM parameters were calibrated to fit the experimental curve taken
from [109]. After the parameters were obtained, the di↵erent EBSD crops were used as input and simulated
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(a) Initial EBSD IPF map

(b) {0001} and {101̄0} pole figures

Figure 5.6: Initial EBSD IPF map and {0001} and {101̄0} pole figures of AZ31 Mg alloy sheet with strong
basal texture
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Figure 5.7: Schematic of the crops taken for the simulations
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using the same parameters for all of them. A uniaxial tension test was simulated with periodic boundary
conditions. The results below are presented as EBSD IPF maps and pole figures of the recystallized texture
to show the e↵ect of the scan size.

(a) EBSD IPF map (b) {0001} pole figure

Figure 5.8: EBSD IPF map and {0001} pole figure of the recrystallized AZ31 100⇥ 100µm crop

From the Fig.5.8 it is seen that a few nuclei have grown to consume the entire structure. The orientations
of the nuclei are mostly slightly rotated prismatic as plotted in Fig.5.8(b).

(a) EBSD IPF map (b) {0001} pole figure

Figure 5.9: EBSD IPF map and {0001} pole figure of the recrystallized AZ31 200⇥ 200µm crop

However, the di↵erent nucleation sites from the 100⇥ 100µm crop, were identified for the larger 200⇥
200µm structure (Fig.5.9). The EBSD map shows that the sample was nearly fully recrystallized and the
texture looks more random. The results of the 400 ⇥ 400µm crop are presented in Fig.5.10. Random
texture is observed and more nuclei are defines, which can be seen from EBSD map of the recrystallized
texture (5.10(a)).

If the results should be compared to the experimental observations, it is important in crystal plasticity
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model, how qualitatively the textures match both initial and recrystallized. The smaller crops, presented
here have not enough amount of grains to be representative for AZ31 for DRX analysis.

The RSS scan with dimensions 800 ⇥ 300µm gives a pole figure close to the experimentally observed
texture from [1]. The experiments showed that recrystallized texture of AZ31 doesn’t change significantly,
preserving close to basal {0001} texture. Another crop of RSS was taken from the full sample (bottom one
in Fig.5.7) and was run with the same parameters and threshold values. The results are shown in Fig.5.12.
As it can be seen, the pole figures are similar, however, the nuclei orientations are slightly di↵erent for
these crops.

In Figure 5.13, the recrystallized experimental {0001} and {101̄0} pole figures are shown. Figure shows
that simulated DRX texture is in a good agreement with experimental observations.

The number of grains play a significant role while modeling DRX. In order to get reliable results, which
can be compared to the experimental results, enough amount of grains should be considered. In other
words, the input grains should be representative for the material.

Finally, the recrystallized texture was obtained for the larger structure with dimensions 800⇥ 800µm

(a) EBSD IPF map (b) {0001} pole figure

Figure 5.10: EBSD IPF map and {0001} pole figure of the recrystallized AZ31 400⇥ 400µm crop

(a) EBSD IPF map (b) {0001} pole figure

Figure 5.11: EBSD IPF map and {0001} and {101̄0} pole figures of the recrystallized AZ31 representative
scan size(RSS)- 800⇥ 300µm- the crop #1
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(a) EBSD IPF map (b) {0001} pole figure

Figure 5.12: EBSD IPF map and {0001} and {101̄0} pole figures of the recrystallized AZ31 representative
scan size(RSS)- 800⇥ 300µm - the crop #2

Figure 5.13: Experimental {0001} and {101̄0} pole figures of the recrystallized AZ31 taken from [1]

(a) EBSD IPF map (b) {0001} and {101̄0} pole figures

Figure 5.14: EBSD IPF map and {0001} and {101̄0} pole figures of the recrystallized AZ31 with dimensions
800⇥ 800µm
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(Fig.5.14), from where the smaller crops were cut. The same nucleation sites were observed in the full
structure as in the two RSS-sized crops, which can be seen in the EBSD map. The nucleation criterion
depends on the local mismatch in the dislocation content. If the simulated area is representative, the
full required information will be included in it. The pole figures of {0001} and {101̄0} planes, presented
in Fig.5.14 (b), show similar distribution compared to the RSS. Thus, it proves that if the larger than
RSS dimensions are taken, they will result in the similar recrystallized texture. And therefore, there is no
significant reason to take into account as large sample as possible in order to analyze the DRX behaviour,
hence, the local incompatibilities.

5.5 Conclusion

Di↵erent scan sizes were taken as input for DRX model coupled with CPFEM and recrystallized textures
were compared. Magnesium AZ31 alloy was used for the simulations. Representative scan size was
calculated for this particular alloy based on the previous work [79]. The main conclusions of the presented
work are as follows:

1. The nuclei texture will define the DRX texture. The viable nucleation sites grow during DRX con-
suming other grains/elements, and finally, nuclei orientations will be the ones to define recrystallized
texture.

2. The DRX nuclei will grow to fill the microstructure and the average grain size increases. Since the
model takes into account the first cycle of recrystallization, i.e. the grain/element can be recrystal-
lized only one time, the growth will stop as the grains impinge.

3. The nuclei texture for di↵erent scan sizes are di↵erent. It is important to consider representative scan
size while modeling DRX using crystal plasticity. The smaller dimensions can lead to the di↵erent
results, which might not be representative. The results show that the e↵ect of the considered EBSD
data as input to the DRX CPFE model can be significant.

4. The DRX nucleation and growth model along with RSS provides an opportunity to predict DRX
texture and microstructure.
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Chapter 6

On the CPFEM analyses of the
microstructure e↵ects on the
material incompatibilities initiation

This chapter presents the study of the micro-level incompatibilities. The concept of the research is based
on the study of the di↵erent physical incompatibilities phenomena on the so-called meso scale (grain level).
The incompatibilities are carefully defined through an extreme value statistics problem. Di↵erent aspects
are discussed, such as: grain boundaries analyses, triaxiality tensor analyses, e↵ects of the microstructures
sampling on the results of the failure initiation, incompatibilities dynamics during deformation. The new
metric based on the cross-correlation analyses of the stress-triaxiality tensor is presented.

6.1 Introduction

Prediction of the ductile fracture and understanding of the failure initiation mechanisms are one of the
oldest material science problems, and perhaps, one of the most studied. There is a large amount of the
experimental, theoretical and modeling work ([110, 111, 112, 113, 114, 115, 116, 99]) done on the study of
the ductule failure. However, even the basic concepts developed in the literature such as void growth and
coalescence are not well established in the community from the perspective of the initiation of the fracture
[117, 116]. Moreover, there is no clear understanding of the fracture initiation neither from the perspective
of the continuum mechanics, nor from the micro-mechanics (see Das et al. [116]). Understanding of
the fracture mechanisms is a complicated problem due to the experimental techniques for validation are
expensive and time consuming and data deficiency is an well-known issue as well. Another important
problem is in the separation of the factors which leads to the failure. The material phenomenas and
structure are more complicated and advanced than any measurements and techniques that can be applied.
However, it is generally believed that failure initiation mechanisms are controlled and determined by the
incompatibilities in the material ([118, 119, 100, 99]). Incompatibilities can be of the di↵erent nature:
caused by inclusions and particles, which can e↵ect the fracture initiation and crack propagation (shape
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and directionality of the void growth etc.) (as it was reviewed in the works of Thomson et al. and Orlov et
al.[120, 114]); due to the accumulated deformation (stress/strain incompatibilities) [117]; material meso-
scale pre-defined inhomogeneities (distribution of the grain size, grain shape, average misorientation etc.).
To explain the e↵ect of the incompatibilities from the side of the material physics and mechanics there is a
need to explain all of them in the terms of a single metrics. As it was discussed in the work of Ghadbeigi
et al. [117] - strain accumulation and stress triaxiality being one of the measurements of the material
localized deformation and failure cause from the perspective of the physical material incompatibilities.
Therefore, there is no clear criteria of what incompatibilities are dominant for the failure process, which is
commonly recognized [117]. One of the reasons is that validation of the failure is mostly based on the post-
processed data, and it is hard to verify what was the exact reason of fracture initiation and propagation
and as result failure. On the other hand, various failure initiation criteria on micro-level are available
in the literature. Slip accumulation mismatch, incompatibility of the slip or plastic flow between grains,
stress triaxiality distribution, specific grains distribution inside the material (for example ⌃3 boundaries
believed to accumulate more slip incompatibilities in a simple tension) are the criteria, which can be found
in literature.

The presented research work presents an analysis of the measurements and techniques mentioned above
in order to answer the material science questions listed below. (i) How the incompatibilities are di↵erent
for the same microstructure during the same deformation path and for di↵erent microstructures during
the same deformation. (ii) How the incompatibilities are di↵erent for the di↵erent deformation paths?
(iii) Are there any correlation patterns between them? (iv) What is the e↵ect and correlation between the
microstructure features and representations on the di↵erent material incompatibilities metrics. Although
in order to evaluate how the incompatibilities evolve during the deformation process a new metric is
presented. This work does a comparative study of how the di↵erent initial microstructures a↵ect failure.
For this purpose di↵erent microstructure were generated with and without long range texture ordering
and di↵erent strain paths were investigated such as uniaxial tension and simple shear.

6.2 Experimental data

The EBSD data used in this study was acquired from AA5754 aluminum sheet samples, using a LEO 1450
scanning electron microscope (SEM) fitted with a TSL EBSD camera. The EBSD data was analyzed
using the TSLTMOIM software (Ver. 4.6). The data was cleaned, using grain dilation method with single
iteration, neighbor CI correlation and single orientation per grain, to remove the bad data points and
only data points having a confidence index (CI) above 0.2 were retained for the analyses. Grains were
identified with a disorientation tolerance of 10�. Thus, the pixels having a disorientation of less that 10�

were grouped together and identified as a grain. For the analyses, grains with less than 10 data points
were excluded. Once grains were identified all the pixels in the grain were assigned average orientation of
the grain. As a result, the disorientation of any two pixels within a grain is zero. The data was obtained
from a direct chill cast and rolled aluminum sheet with grain size of 21.38µm and 23.94µm along the X
and Y direction respectively. For this sample, the step size for the EBSD map was 5µm and the texture
strength was 3.4. The number of grains in the scans was ⇠8500 for the sample.
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6.3 Concepts of the Analyses

6.3.1 Microstructure design model

In this section, the numerical model presented recently by [98] is employed in the simulations of the uniaxial
tension and simple shear with the di↵erent types of the microstructure. For brevity, details of this model
such as constitutive laws, parameters of the model, calibration and microstructure generation procedures
will not be discussed in this work and can be found in the original work of [98]. The simulations of the
uniaxial tension and simple shear tests are performed on the continuous cast aluminum alloy AA 5754
with optimized (MI) and non-optimized (MII) 3D microstructures as presented in the Table 6.1. The pole
figures for the initial EBSD data and reconstructed are presented in the Figs 6.1, 6.2, 6.3. As we can see
there are aceptable variations of the textural components for both microstructures MI and MII comparing
to the initial data. It is important to mention that the localized textures for both of the microstructures
is di↵erent. This fact will be used in the analyes of the deofmration of the microstructures MI and MII
to see what is the e↵ect of the texture localization on the localization of the incompatibilities in the same
deformation mode.

(a) initial microstructure (b) ODF pole figure of initial ebsd data

Figure 6.1: Initial material ebsd (500x500 µ m) and pole figure .

A table below 6.1 is presenting a base microstructures used for a study with the basic microstructure
descriptors.

In the purpose of particular research, the optimized microstructure is a representative volume element
(RVE) with the dimensions (200⇥200⇥50µm) taking into account long range ordering of the grains. The
element size was chosen to be a 5µm, which is the same as the EBSD step size. The presented dimensions
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Microstructure Dimensions(µm ) Grains Avg. Grain Size pixels/elements
RSS 500x500 513 25 10000
MI 200x200x50 215 25.1 160000
MII 200x200x50 215 25.1 160000

Table 6.1: Table of the base microstructures considered in the research

of the microstructures as well as RVE generation is based on the recent published works in the filed of
the 3D statistical reconstruction and RVE optimization. The next statistical descriptor is taking into
account is a orientation distribution function(ODF). For the statistically homogenized crystal plasticity
formulation it is always important to make sure that ODF of the di↵erent 3D data sets matched, than we
can expect a similar material response behavior.

(a) microstructure MI (b) microstructure MI pole figure

Figure 6.2: Microstructure MI with optimized long range ordering of grains and its pole figure

Each of the microstructures was loaded in the tension and shear test before the failure point for the
Aluminium CC 5754 alloy which is 20% and 70% respectively (see Kang et al. [121]). The details of the
simple shear modeling process are presented in the Fig. 6.4. The shear deformation �shear was obtained
as a ratio H

W , where H is relative displacement of the sample. The initial dimensions of the sample L and
W are kept constant. The direction of the load is shown by arrow on the top surface of the specimen.
After loading the material and extracting the raw data for the analyses, it is always important to have
a clear definition of the filter applied for a data to obtain a representative set of points of interest for a
study. It is even more important, while working with the failure data due to the complexity of identifying
weather the point is standing out of the interest bound or not. Most of the recent physical reviews and
approaches treat data not in the context of such clear formulation. The definition of the data hot spots
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(a) optimized microstructure MII (b) microstructure MII ODF pole figure

Figure 6.3: Microstructure MII without long range ordering of grains and its ODF pole figure

Figure 6.4: Illustrative description of the simple shear deformation mode.
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are dangling in the most of the material science paper which includes data analyses. To clarify that issue
of identification, the next section gives a detailed technique description of the incompatibilities definition
and identification.

6.3.2 Incompatibilities definition

The metrics of the local incompatibilities (�inc and �tr) are chosen as they are widely known and published
in the recent works [122, 85, 123, 124]. It is important to mention that �tr is a local measure (over element),
which shows an anisotropy (or incompatibility) of the hydrostatic pressure over the applied e↵ective stress,
while �inc shows a mismatch in the neighborhood. The �tr is believed to control the growth rate of the
micro void [110, 115, 114, 120]. The mismatch of the accumulated slip across the grain boundaries or
transition of the plastic flow [123], which is directly proportional to the dislocation density mismatch, is
chosen as an incompatibility that could lead to failure.

The characterization of the stress triaxiality (�tr) and the total slip (�tr) incompatibilities was per-
formed for both MI and MII microstructures. The di↵erent microstructures were chosen to show the e↵ect
of the local texture sampling on the localization analysis. The stress triaxiality was calculated for each
finite element as:

�tr = ��hydr

�eq
(6.1)

where �hydr is the hydrostatic stress, �eq is the Von Mises equivalent stress. The mismatch of the accu-
mulated slip was calculated for each element,i, and its neighbors as an absolute value of the di↵erence:

�inc
i =

9X

j=1

12X

↵=1

Z t

0

��(�̇↵
i � �̇↵

j )
�� dt (6.2)

where j goes over all neighboring elements (1..9 for the case), and ↵ goes over all (12) slip systems. The
e↵ect of the slip incompatibility on the failure and its importance on the grain boundary cracking could
be found for example in the works of Gertsman et al., Jaward et al., Shi et al., [125, 118, 124]. After the
tests were performed and the data metrics were extracted from the deformed microstructure, the results
were analyzed from the perspective of the new density metric analyses for �tr and specific boundaries
analysis for the �inc metrics. The microstructure analysis was based on the principal measurements of the
mismatch in the Euler space, so-called a disorientation analysis. The idea is to calculate the disorientation
(✓ij) between each neighbor grain pair (i and j ) with high mismatch in accumulated slip ro see how they
correlate with each other.

6.3.3 Hot spots identification procedure

After microstructures are generated, the uniaxial tension and simple shear tests were performed in order
to analyze the extreme value statistics values (hot spots) for the incompatibilities. The hot spots were
identified for each of the incompatibility (�tr, �inc) consistently using the method presented in the Figs.
6.5, 6.6. First, the data is collected for the entire sample 6.5b, then, the median (�tr = 0.32 for example for
tension case) is obtained as shown in Fig. 6.5b. The data points, which exceed the median are extracted,
and the filtered data is obtained as a standard 5% extreme value statistics.
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(a) Initial distribution of the �tr for the each element of
the microstructure

(b) � of the below the median data with 5% line - filtered
hot spots data line

Figure 6.5: Filtering process for the hot spots identification based on median

(a) Filtered distribution of �tr data (b) Extreme value statistics data PDF of �tr

Figure 6.6: Process of obtaining the data for the hot spot of the incompatibility.
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An example of the filtering data process is presented in Fig. 6.6a. The final distribution of the hot
spots is expected to follow the extreme point statistic of the Weibull distribution as shown in Fig. 6.6b.
The presented distribution is obtained after the modeling 20 % tension for the microstructure MI. For
the consistency, the same technique is applied for both incompatibilities types (i.e. �tr and �inc). The
described procedure is a classical example of the extreme value theory ([126, 119]) and is called point over
threshold (POT) approach in statistics. By following this simple steps,

6.3.4 Correlation function analysis of the incompatibilities

While material deforms, the major changes can happen with the incompatibility clusters (IC): (i) the
clusters will change their shapes, (ii) the location of the IC will change (clusters start merging).(iii) the
clusters might disappear and re-distribute. In order to quantify this behavior, the distances between the
clusters are measured inside the material microstructure using a form of two point correlation function with
respect to the incompatibility function and distance-distribution function. In other words, the frequency of
the incompatibility hot spots’ values that appear in a particular fixed distance inside the material sample
is estimated. The introduced norm is similar to the distance-disorientation correlation function (DDF)
but applied to the case of the IC between any material points instead of the disorientation ✓ij . Thus, the
norm of the value of the IC between any two points i and j can be rewritten as:

⇢tr =
maxi,j(fij)Dm

ijP
Dm

ij

(6.3)

where Dij is the distance distribution estimated between any two points of interest (elements or pixels),
and fij is the observed function of interest(�tr ,�inc). The analysis of the frequency distribution of the
IC is a new concept for the IC study, it includes the evolution of the IC during the dynamic deformation
processand not at the final stage only. The general shape of the frequency curve is presented in the Fig.6.7.
As it can be seen, the frequency of the IC hot spots distribution over the distance has almost identical
shape for di↵erent loads in the scope of the same deformation mode, however, the intensity of the hot spots
changes. This can be explained by the fact that more load activates more localization of the particular
microstructure metrics such as �tr for a case. The curve can be divided by 3 local minima(or maxima),
each of them has its own meaning in the clustering process. First local minima (highlighted by ”2” )
identifies the cluster size, the cluster size is expected to be constant for all the cases and is about (as the
distance of the neighboring elements with step size 5µm 15

p
2 ⇠ 23.6). The next minima point (”3”)

shows the minimal inter-cluster distance, this minima does not change over the amount of deformation,
however, changes in its intensity, which means that amount of the clusters on the minimum distance is
increased.

The full information about the deformation metric can be obtained from this curve. For example,
the Fig. 6.7 shows that the simple shear test has fewer clusters of �tr, also the size of the simple shear
clusters is the same as those for the tension case. The intensity of the inter-cluster distance is much
lower, which means that the global spread of the �tr value is times less than for the tension case. More
general conclusion can be made: the shear process requires less texture evolution in general deformation.
Analyzing ⇢tr curve behavior, it can be understood how the clusters change with respect to each other,
and how the inter cluster distance changes as well.
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Figure 6.7: ⇢tr density function for di↵erent strain levels tension case

6.4 Results and discussion

6.4.1 Preliminary results

The results of the tension and simple shear tests are presented in the figures 6.8 and 6.9. As it can be seen,
di↵erent microstructures for both strain paths give significantly di↵erent deformed structures. Comparing
simple shear test results at 70% of shear strain (cases a and b) one can see that microstructure MI shows the
strain localization along the middle line from the right side (parallel to the shearing direction). The reason
is that the top part of the structure accommodated more strain, while the bottom part stays almost
undeformed. However, the microstructure MII has almost uniform shear deformation. The deformed
surfaces show that the localizations of �tr and �inc are di↵erent in MI and MII microstructures. It can be
seen also from the Fig. 6.9 that the uniaxial tension shows more hot spots of stress triaxiality than simple
shear test.

Analyzing the same regions in tension and shear, one can see that picture has changed. At 20% of the
tensile strain, the deformed microstructures exhibit high localization of the �tr values and low localization
of the �inc.

Next, it needs to be found out how the incompatibility of the slip transition match with localization
of the �tr for the both cases. Assuming that we have a void initiated at a zone with high level of the
accumulated slip across grains, if we consider the void coalescence failure model, the growth rate of the
void will be controlled by the triaxiality value at the particular point. Zones, where �tr intersect with
the zones of the high value of �inc might lead to the higher probability of crack initiation and its growth
[124, 118].
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(a) 70 % shear �acc localization microstructure MII (b) 70% shear �acc localization microstructure MI

(c) 70% shear �tr localization microstructure MII (d) 70% shear �tr localization microstructure MI

Figure 6.8: Simple shear result for both microstructures ( MI and MII -200x200x50 µ m) in case of the
simple shear. �inc distribution on the top and �tr on the bottom
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(a) 20 % tension �acc localization microstructure MI (b) 20 % tension �acc localization microstructure MII

(c) 20 % tension microstructure �tr localization MI (d) 20 % tension microstructure �tr localization MII

Figure 6.9: Comparing of the micro structures (200x200x50µm) for uniaxial tension test.
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(a) Initial microstructure MI (b) 20 % tension �tr localization microstructure MI

(c) 20 % tension microstructure �acc localization MI (d) 20 % tension ⌃3 boundaries MI

Figure 6.10: Comparing of the tensile microstructure MI grains with the hot spots of �tr and �inc as well
as ⌃3 GB for uniaxial tension test.
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6.4.2 Incompatibilities analyses

It can be seen from the plot that the localization zones for each criteria are di↵erent. Moreover, the
preliminary analysis does not show any correlations between them (Figs.6.11 6.12 ) In order to understand
if a correlation exists, the analysis of the full 3D microstructure with identification of the �tr and �inc

was performed. First, the results of the simple shear and uniaxial tension cases are compared for one
microstructure (namely MI) to see if there is any correlation within the clusters for the di↵erent strain
paths. The results of the 3D projection of the hot spots of triaxiality to a 2D (collapsed by z ) are presented
in the Figures 6.11 6.12.

Figure 6.11: Element of grains identified by high value of the �inc for both shear and tension

As one can see, the elements of the grains identified by high value of the mismatch are di↵erent for
di↵erent strain paths. There is very little correlation between grains that exhibit high mismatch of �inc
or �tr in the same microstructure for the di↵erent loads. The analysis of the grain incompatibility shows
a high disorientation angle between those the grains that have higher incompatibility, ✓ij , for both cases
(tension and shear). Hence, the slip transition across these boundaries is expectedly high.

The next question is how the incompatibilities intersect during the same deformation path 6.16 ??.

There are a few grains that have common incompatibilities for both tension and shear. This result is
supported by the previous works of Das et al.,[116]. The results show that microstructure features that
lead to the localization of the strain (�inc) are di↵erent from those for stress. This might be explained
from the perspective of the failure initiation and propagation mechanisms. As it was shown earlier, the
slip incompatibility is correlated with the high disorientation grains.
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Figure 6.12: Element of grains identified by high value of the �tr mismatch for both shear and tension

Figure 6.13: Disorientation of grains elements identified by high location of the accumulated slip mismatch
�inc. 70 % simple shear case
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Figure 6.14: Disorientation of grains elements identified by high location of the accumulated slip mismatch
�inc. 20 % tension case

As the next step of microstructure research, the boundaries are characterized according to their energy
or specific cite such as lattices structure, which corresponds to the localization of the incompatibilities.
For that purpose, the CSL analysis was performed.

It is already known that fracture might be initiated most likely at the grain scale at the coincidence
site lattices (CSL), which are close to ⌃5 or ⌃3 as the low energy configuration boundaries. This CSL
boundaries rarely exist in the real material due to their complexity. However, they are of the high interest
and focus of the fracture research because of their energy configuration. The results presented in Fig.
6.18 show that after the tension test, the amount of ⌃3 and ⌃5 boundaries within the �inc hot spots,
significantly increased. The density increased to about ⇠ 3 times, which is in a good agreement with the
results obtained in the works of Stein et al. [122].

6.4.3 Dynamics of the �tr localization behavior. Correlation analysis and mi-
crostructure e↵ects

After the preliminary analyses of the deformation hot spots, there is a question of what happens in a
material during the deformation before the failure point. The experimental techniques cannot still answer
the question due to the complexity of this kind of analysis.

This analysis is more complex because the metric should be introduced for the dynamic change of the
incompatibility. First, the analysis of the hot spots on the di↵erent strain levels was done. The results
presented in Figs. 6.20, 6.26 show that �tr hot spots do not evolve significantly during deformation process.
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The localization of the triaxiality occurs at the level of 2% strain and it slightly evolves at the higher
strains (2 � 10% true strain) up to the failure (20%). This observation is also explained due to the
insignificant changes of for the 20% strain. This fact was checked for the simple shear test as well (Fig.
6.26). The pattern is more complicated as the basic clusters do not change during the deformation and
are defined in the preliminary steps.

To quantify this behavior without visual analysis, the distance density cross-correlation tensor, ⇢, is
presented. Dynamics of the incompatibility metrics can be explained based on the figures 6.23, 6.21. From
the Fig. 6.21, which represents the uniaxial tension case, it is clear that the clusters and their locations are
formed at the initial strains. The mismatch between the cluster densities and distance levels is insignificant.
It is clearly seen that after 2% strain level, all the triaxiality hot spot localizations are nearly identical
(the same behavior can be observed in Fig. 6.20 ).

6.4.4 Local texture e↵ect on the deformed microstructure

The idea of the method, which will be presented below, is to identify the e↵ect of the di↵erent microstruc-
tural components on the deformation. As it was already shown, the di↵erent microstructures with di↵erent
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RVE’s give di↵erent deformation localization patterns. Therefore, it is important to determine what has
more e↵ect on the deformation localization - boundary conditions or localization of the specific microstruc-
tural features? How much the matrix a↵ects the localization of the strain and �inc?

To answer this question, the following analysis was performed as presented in Fig.6.24, 6.24. First,
the data for slip localization �inc was extracted and the grains were identified as it was discussed in the
previous procedures. The grains that have an e↵ect on the localized strain partitioning are extracted from
the microstructure in the microstructure block of the smaller size (see Fig. 6.25). Then, the same shear
test simulation with the same boundary conditions was run for the cropped microstructural cube. This
procedure was carried out for both microstructures MI and MII. The results are shown for the microstruc-
ture MI, however, the same pattern was obtained for both microstructures. If the matrix had a significant
e↵ect on the deformation, similar deformation patterns would not be expected (distribution of ✏eff ). And
if the localized deformation is predominately caused by the specific grains (textural e↵ect) one should
expect to see close �inc pattern, as well as deformed grains structures and deformation distribution(✏eff ).

The results of the proposed procedure are presented in Fig. 6.26. The top set presents the zoomed

Figure 6.16: The interception of all hotspots inside the microstructure MI tension case
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(a) Specific low angle ⌃ boundaries for the initial microstructure

(b) Specific low angle ⌃ boundaries for the grains identified by a high value
of the �inc - after 20% tension

Figure 6.18: CSL boundaries analyses after CPLFEM tension and shear case triaxiality.
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(a) Specific low angle ⌃ boundaries for the initial
microstructure

(b) Specific low angle ⌃ boundaries for the grains
identified by a high value of the �inc after 70% shear

Figure 6.19: CSL boundaries analyses after CPLFEM simple shear case.

area of interest (as presented in Fig. 6.25) of the full 200 ⇥ 200 ⇥ 50µm sample. And the bottom set
is the deformed crop with dimensions 50 ⇥ 50 ⇥ 50µm. As it can be seen, each of the patterns of the
deformation is nearly identical (including the local features). The grain deformation structure and Euler
angles (see Fig. 6.26 (a,d)) are similar as well as the distribution of the strain (�eff (c,f)). The analysis of
the Euler angles for the full and cropped structure shows that the ”blue” grain orientation is harder than
the surrounding grains, which have the softer orientations (”red”). This type of neighborhood causes high
strain incompatibility as the softer grains tend to deform more easily than the harder ones.

The similar e↵ect of the localized deformation for the combination of the hard and soft grains was
shown in the work of [98] The results presented show that the localized combination of the hard and
soft grains can have a significant e↵ect on the deformation and strain localization, hence, on the possible
fracture initiation. These results are significantly di↵erent compared to the tension test, where, as it was
shown in the previos section, the same localization of the texture does not cause any specific localization
of �inc or �tr. The results support the conclusion that incompatibilities on the microstructural level are
strongly influenced by the deformation path and there is no universal combination of grains that would
cause the incompatibilities formation during di↵erent strain paths. Thus, the optimized microstructure
can be obtained for the specific deformation load only, and the same microstructure would not give the
same results if it is used for the di↵erent strain path.

6.5 Conclusions

The presented paper suggests the new methods to analyze the incompatibilities occur during the deforma-
tion. As an example, aluminum DC 5754 material was used in the CPFEM simulations. The concept of
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the analysis can be divided into two main categories. First, the identification of the hot spots of the de-
formation, and then, the analysis of the dynamics of their measurements. The presented cross-correlation
analysis, method of hot spots identification and comparison in 3D give a tool for the analysis of the hot
spots localization and their distribution without making any crops of the data or specific points of interest.
One of the goals of the present research was to see the common patterns in the incompatibilities of the
stress and strain (slip) metrics during deformation on the polycrystal level.

Various incompatibilities are analyzed for di↵erent microstructures and the e↵ect of the random sam-
pling is excluded. This was concluded using the analysis of the deformation and localization patterns
rather than making a global conclusions about deformation.

The current research shows the following important results:

1. Localization and incompatibilities of the stress (�tr) and strain (�inc) metrics are not correlated (by
relative position inside the microstructure) during deformation. As it was shown, no correlation
patterns of the incompatibility formation were observed for the di↵erent strain paths. That means
that in the studies of the fracture initiation mechanisms, the microstructural e↵ects, which are
believed to lead to the failure, should be properly treated for the di↵erent strain paths (material
with improved microstructural characteristics can be obtained for the specific load).

However, there are similarities within the metrics of the grains, which cause the incompatibilities,
these are the grains of high disorientation with higher concentration of the specific low energy CSL
boundaries. The presented CPFEM results are in a good agreement with known experimental works
and FEM works, although this work shows the analyses of the deformation dynamics using CPFEM
techniques.
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Figure 6.24: Shear on deformed and underformed grid. Window is presenting the stain localization as
point of interest.
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Figure 6.25: The procedure of obtaining the crop of microstructure with the zone of interest. (localization
of one of the incompatibilities.)

Figure 6.26: Results of the microstructure features (Euler angles, grains a,d ) on the slip incompatibilities
accommodation (b,e) �inc and e↵ective strain ✏eff localization in the case of shear of the full dimensions
microstructure MI and crop of the point of interest with dimensions (50⇥ 50⇥ 50µm).
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2. The dynamics of the incompatibilities during deformation shows that the localization of the de-
formation incompatibilities �tr and �inc, which are strongly correlated with fracture initiation and
propagation, is defined at the small strains (1� 2% of tension and 5� 7% for the simple shear case).
These results are important in understanding of the microstructure control for the improvement of
the material properties. The preliminary results of the work suggest that the failure is pre-determined
on the microstructure level and localization of incompatibilities is mostly influenced by the specific
properties of the polycrystal such as grain distribution and local texture .

3. The microstructural features such as localization of specific orientations have a significant e↵ect
on the localization of the accumulated slip mismatch as well as the localization of the e↵ective
strain ✏eff . As it was shown in simulations, the grains neighboring any specific distribution of the
orientations which are harder to deform have more influence on the deformation than a matrix.
Both of the studied microstructures MI and MII showed the same trend, the localization zone will
deform in the same way irrespective of the matrix �inc and ✏eff . As the result, it was observed
that if the localization formed and slip incompatibility start accumulating, that process becomes
irreversible and by fact could be explained by the lattent hardening phenomena. When some grains
start accumulating and localizing slip - the slip systems in other grains become harder and harder
and require significantly more energy to be activated.
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Chapter 7

Thesis summary

This thesis presents new research methodologies for characterization of material microstructure and ex-
perimental design with advanced applications in the prediction of material behavior during large strain
deformation. The general objective of this research work is the development of novel material microstruc-
ture analyses techniques, which can assist in improving the understanding of the contributions of the local
material behavior (the microstructure) to the initiation of localized deformation and to dynamic recrystal-
lization. Thus, the focus of the research is on the study of the specific material cross-correlation functions
with further implementation into the problems of material response analyses. The study presented in this
thesis; (i) develops new microstructure analyses techniques, (ii) applies these techniques to the problem of
3D microstructure reconstruction methods and, (iii) creates mathematical tools that improve our under-
standing of the relation between the microstructure and the macroscopic performance of a polycrystalline
material.

Chapters (Chap. 2, 3) propose a new method for analyzing the material microstructure to improve our
understanding of the complex physical phenomena that exist in a material on di↵erent length-scales. The
proposed new analytical method is based on the so-called distance-disorientation correlation function of the
microstructure. A systematic study of the distance-disorientation function is proposed to evaluate the long
range dependence of texture. This function calculates the average disorientation as a function of distance
between data points as measured by electron backscatter di↵raction patterns. This novel investigation
technique provides a measure for the clustering of texture and is used to accurately evaluate the e↵ective
grain size. This procedure in conjunction with the Information theory is used to estimate a representative
scan size (RSS) for various polycrystalline materials. Analyses show that the optimal scan size depends
on the grain morphology and the crystallographic texture. The scan area alone is not a su�cient quantity
to determine the RSS. Both the asymmetry in the grain size and assymetry in the texture give rise to
asymmetric RSS. Thus the extension of RSS along the Rolling Direction (RD)-Transverse Direction (TD)
cross section is not enough to determine the RSS for the RD-Normal Direction (ND) cross section. The
RSS obtained from such analysis should be used as an input to generate 3D microstructures as well as in
numerical modeling. The RSS can also be used as building blocks for much larger samples. Accordingly,
the computational integration of the DDF into the existing reconstruction models could improve the
development of accurate synthetic 3D microstructures.

In order to make the next step in microstructure design and sensitive analyses problem, an in-between
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step was required to establish the results for the DDF applicable to microstructure reconstruction. Fol-
lowing the systematic study of the DDF cross-correlation function and establishment of new methods of
obtaining representative grain-level data from the measured EBSD, the analytical solution for the DDF
correlation function is presented (Chap. 3). The need for the analytical solution is motivated by the
complexity of obtaining DDF for real data in reconstruction problems due to a significant amount of cal-
culations required. The proposed solution separates the crystallographic domain into texture defined by its
Euler angles(�1,�,�2) and geometrical domain defined by distance distribution function Dij . The crystal-
lographic domain is treated as independent (known) variable and an analytical estimate for the Euclidian
distance distribution function (Dij) is obtained. The proposed analytical solution for the estimation of Dij

is based on existing statistical growth models and the logistic probability distribution function (PDF). The
solution is optimized for the measured experimental data and takes into account morphological features
of the microstructure such as grain volume, grain radius, grain size as well as their distribution inside the
material. An analytical model is proposed for constructing the distance-disorientation function (DDF)
using the estimated Euclidian distance between pixel pairs. The new functional solution is an extremely
e↵ective way to calculate DDF values, making it suitable for applications to microstructure optimization
and reconstruction problems. The DDF obtained by using the results of the probabilistic solution are
validated by comparison to the DDF obtained from experimental electron back-scatter di↵raction (EBSD)
data. After the complex problem of the integration of the DDF into the computational framework is solved,
the next step in microstructure analyses is to develop a computational framework for a 3D reconstruction,
which incorporates all the new knowledge from DDF.

Chapter 4 of this thesis presents a new technique for reconstructing three-dimensional (3D) microstruc-
ture from two-dimensional (2D) electron backscatter di↵raction (EBSD) data (experimental). The mi-
crostructure reconstruction is performed by extending the simulated annealing techniques to perform a
three-term reconstruction with the minimization of the DDF, which is combined with the new analytical
solution. After establishing the novel 3D reconstruction technique, the methodology similar to the 2D
RSS is employed to determine the 3D representative volume element (RVE). The 3D RVE contains all
the relevant microstructure information for accurately computing the large strain deformation of solids,
especially when local micro-structural variations influence the general response of the material. The new
(generated) microstructures are used as a tool for understanding the e↵ects of the local texture clustering
on the important material phenomena such as initation and propogation of localized deformation and
dynamic re-crystallization.

Chapters (5, 6) present the applications of the RSS and RVE to material design and to predictions
of the material behavior during straining. DRX and micro- localization are chosen as the focus of the
study due to the strong evidence that these two phenomena on the clustering of the micro-structural
properties. The e↵ects of the local texture on the nucleation of the new grains during re-crystallization
are discussed in detail. The importance of the RSS on the modeling of the DRX phenomena is presented
in 5. The application of the RVE is highlighting important observations made recently in the material
design community. Both strain and stress modes are important characteristics of the material failure.
This work demonstrates that a material is as strong as the weakest point inside it (the localization process
is irreversible), and the determination of this weakest points require accurate representation of the 3D
microstructure.
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7.1 Future work Recommendations

The research presented in this thesis o↵ers a latge number of possible directions to be taken in the future.
As a topic of primary importance to the RSS study, the e↵ect of the second phase particles should be
mentioned. As it was shown in Rollet et al. [11] the experimental particle distribution should be included
at the statistical level. The so-called particle correlation function (PCF) should be studied in conjunction
with the already developed numerical frameworks based on the minimization of the information entropy.
There is little doubth that the particle information would change the RSS. The particle distributions will
add another level of non-homogeneity to the scale of analyses for the RSS research, which will improve the
precision of the measurements of the EBSD data used for computational purposes.

After improving the statistical characterization level of the research, the next suggested direction is an
unconstrained parametric optimization study to evaluate the role of various parameters in the microstruc-
ture in the mechanical response. The idea behind this approach is to demonstrate, based on the DDF
parameter space constructed on the axes of main morphological estimators at di↵erent deformation modes,
which of the DDF curves, and corresponding grain distributions and morphologies, can improve and a↵ect
various material performance. This approach coupled with the Crystal Plasticity Finite Element Model
(CPFEM) will enable the evaluation of the e↵ects of the grain morphologies, spatial orientation distri-
butions and certain texture components on the initiation and propagation of non-uniform deformation.
The local strain distribution between the grains can be investigated in detail since neighbor interactions
(interactions of grains within the texture map) are the main factor in determining the spread of the ap-
plied deformation among the crystals. Combining the results from above, the microstructure with the
most optimal mechanical properties can be identified through CPFEM predictions. Those predictions
can be then used to identify material production conditions that would deliver potentially more e↵ective
microstructures. Finally, the CPFEM approach can be employed to determine a micro-scale dependent
relation between the microstructure and the di↵erent material performance metrics (energy absorption
capability, recrystallization, formability, etc.).

——————————————————–
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