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Abstract

Database systems maintain integrity of the stored information by ensuring that modi-

fications to the database comply with constraints designed by the administrators. As

the number of users and applications sharing a common database increases, so does the

complexity of the set of constraints that originate from higher level business processes.

The lack of a systematic mechanism for integrating and reasoning about a diverse set of

evolving and potentially interfering policies manifested as database level constraints makes

corporate policy management within relational systems a chaotic process.

In this thesis we present a systematic method of mapping a broad set of process cen-

tric business policies onto database level constraints. We exploit the observation that the

state of a database represents the union of all the states of every ongoing business pro-

cess and thus establish a bijective relationship between progression in individual business

processes and changes in the database state space. We propose graphical notations that

are equivalent to integrity constraints specified in linear temporal logic of the past. Fur-

thermore we demonstrate how this notation can accommodate a wide array of workflow

patterns, can allow for multiple policy makers to implement their own process centric con-

straints independently using their own logical policy models, and can model check these

constraints within the database system to detect potential conflicting constraints across

several different business processes.

A major contribution of this thesis is that it bridges several different areas of research

including database systems, temporal logics, model checking, and business workflow/policy

management to propose an accessible method of integrating, enforcing, and reasoning

about the consequences of process-centric constraints embedded in database systems. As

a result, the task of ensuring that a database continuously complies with evolving business

rules governed by hundreds of processes, which is traditionally handled by an army of

database programmers regularly updating triggers and batch procedures, is made easier,

more manageable, and more predictable.
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Chapter 1

Introduction

1.1 Background and Motivation

For many businesses, relational database systems (RDBMs) store most of the transactional

data involved in day to day operations. An instance of a corporate database can often

contain the historic outcome of the activities in which an organization engaged in the past,

as well as the current state of individual ongoing business processes. This availability of

the entire ‘business state’ has traditionally made database systems the focal point at which

operational business policies are monitored and enforced, and RDBMs have accomplished

this by maintaining the integrity of the stored information to ensure that modifications to

the database comply with constraints designed by the administrators.

However the ever decreasing cost of storage and the widespread proliferation of database

systems led to a situation where information pertaining to even the smallest (but not

necessarily insignificant) of business events, such as a user clicking on a URL on a web-page

or a user checking his/her account balance, is often recorded as a unique row in a database.

Although the persistence and availability of ever greater information in a database has

significant advantages from a business perspective, it can also lead to significant costs

when a business is required to enforce policies relevant to the information being stored. As

the number of users and applications sharing this common information increases, so does
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the need to make the database system aware of the business logic that governs how data can

be accessed and allowed to change over time. In situations such as health-care, government,

and finance, the continuous enforcement of complex business rules within database systems

is unavoidable because of mandated legislation. It is also in these situations that the

requirements of policies are vague and change often. Even within a particular business

sector, standardized database deployments or schemas rarely exist, and there are no sets

of database level constraints to which every business can adhere. Since each situation is

different, the interpretations of policy requirements that manifest themselves as database

level constraints are also different for every business.

As a result, database administrators and programmers are left with the manual task

to write triggers, check conditions, schedule tasks, and audit procedures that ensure com-

pliance with a given set of rules. In the absence of a systematic method of implementing

business policies within a database system, the end result can often be an unmanageable

and intricate web of integrity constraints as well as hand written procedures derived from

requirements imposed by various operational areas of the business. Implementing database

level constraints that enforce complex situation specific rules is non-trivial, and there is a

visible shortage of research that attempts to automate this process. This task is largely

left to the administrators and consultants specializing in a particular business domain,

and the sheer complexity of this problem has spawned several sub-industries of business

consultancy that revolve around regulatory compliance in domains such as health-care and

finance.

1.2 State of the art

Figure 1.1 presents a generic simplified view of policies pertaining to database systems

and how they move from policy text to implementation. The higher levels (policy layer)

involve interpreting and bringing together the policies that apply to a business. For large

businesses these policies can originate from a multitude of sources, such as taxation au-

thorities, compliance regimes and standards, industry specific consortia, law-enforcement

authorities, and private contractual obligations. These policies are typically specified in
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Figure 1.1: High level overview of how business policies are eventually implemented as
database level constraints

natural language form for businesses to interpret according to their situation. In this

phase questions that need to be addressed by policy administrators almost always pertain

to the application rules for the specific business situation: “Does this policy apply to our

business? How, where and when is it applicable?”

The intermediate specification layer represents the creation of a formalized (actionable

and implementable) interpretation of a policy. At this level, policy rules (when-to-do-

what) are made explicit in order to cover the entire space of business situations that an

organization can encounter. Policy design and reasoning tools are often used to map out
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an easy to understand version of the natural language policies scattered in various source

documents. Database administrators may work closely with the policy administrators to

decide how best to interpret policies and avoid undesirable consequences when they are

eventually programmed as constraints in a DBMS. Note that specifications may not always

be well elaborated and developed in all business situations. In fact, it is likely that for

small organizations this specification layer is fuzzy (or non-existent) and policies are directly

ported into database systems as constraints, without expressing them in an intermediate

specifications layer. However for complex businesses, for example situations involving large

database deployments with many policy administrators, there is inevitably a need for an

intermediate layer, where managers can reason about their proposed policies and examine

them in the context of the larger scale business processes. While some organizations may

use workflows or flow-charts to describe the sequence of steps to be followed throughout a

business and exceptional situations therein, other organizations may prefer to write policies

as Event-Condition-Action (ECA) rules. In other words, there are organization specific

guidelines governing how specifications are created and exchanged between managers for a

particular class of business policies. There is also no universal tool or modelling language

that can adequately address the needs of all classes of policies and the preferences of

different policy makers. Consequently, there is no standardized technique of communicating

specifications to database programmers for implementation.

The lowest level of the diagram (constraint layer) is where the rules contained in the

specifications are implemented. This is done by database programmers who write SQL

triggers, check-constraints, and batch tasks that accomplish the goals of the policy. At

this layer the events, conditions, and actions on business objects contained in a database

system are all translated into source code and can be tested against the specifications.

For a concrete example of the above process, let us consider a hypothetical large re-

tail business in Canada implementing the Eco-tax initiative launched by the Government

of Ontario [117]. The business must comply with the provincial rules that require end-

customers to pay additional fees based on the type of product being purchased. Policy

text in this scenario would include not only the actual legislation, but also any supporting

material, brochures, press releases, etc. released by the Government of Ontario. Corporate

product managers, DBAs, and perhaps even tax lawyers would jointly have to interpret
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the word of the law, looking not only at the legislation but also at the product catalog

in the database, in order to define the types of products and additional fees that need to

be applied. An ambiguity such as “does the eco-tax for tires also apply to bicycle tires,”

which is a rule that possibly goes against the spirit of an eco-tax, would need to be resolved

before specifications in the form of lists of products, types, and sub-categories subject to

the additional fees is derived. Finally the specification will be handed down to the pro-

grammers to implement as explicit program code or sets of constraints and dependencies

on the types of tax/surcharge rules that can be applied to specific types of products.

1.3 The Policy Lifecycle: Inception to Obsolescence

In order to appreciate the contributions of this thesis, it is important to develop a deeper

understanding of the sources of inefficiency in the process of implementing and maintaining

an evolving set of policies within a database system (Figure 1.2). We provide a brief

overview of the major reasons why the current state of the art of database centric policy

management, from the moment it emerges as a business requirement to when it is deemed

unnecessary, is costly and can be significantly improved. At each stage in the policy

lifecycle, we describe the limits of what automation can accomplish and what aspects of

the problem space this thesis aims to address.

1.3.1 Identification and Interpretation

Once a business recognizes that a certain policy needs to be enforced, it needs to identify

(or create) sources of information that offer more details and clarifications on the objectives

of the policy. This can simply be described as the requirements gathering/analysis part

of the policy lifecycle. Policies are interpreted from one or more sources that are often

physical documents. Whether it is an internal memo that discusses the needs to have a

new check condition in a business process or the enactment of legislation that requires

changes to be made in a tax rule in a database, the source (documents, emails, memos,

etc.) forms the core on which the implementation will be based.
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Figure 1.2: A detailed view of the policy-to-constraint translation process. The lifecycle of
policies and business rules in database systems very closely resembles the waterfall model
of software development

Identifying and interpreting natural language policies and then determining their appli-

cability on specific business operations is a significant challenge within the policy lifecycle.

The section of this thesis covering related work (Chapter 2) provides a discussion of auto-

mated methods of deriving formal representations of business rules using natural language

processing (NLP). The lack of reliability and precision in these automated methods makes

them inapplicable in most cases where the implications of misinterpreting policies can be

disastrous. Similarly the domain of policy sources is vast and most NLP solutions to in-

terpreting text containing rules remain as research prototypes designed for certain specific

sources of policy.

There are many ways in which businesses can adapt to this challenge and reduce the

overall cost of policy management. Foremost, an organization can be internally semanti-

cally consistent. For example all members of the sales department could have one interpre-

tation of the customer entity. Similarly, the organization could have semantic mappings

between the common terms used in various functional areas of a business to eliminate

ambiguity among different policy makers. Second, an organization can aim to describe its

policies within a common policy modelling framework. That is to say that an organiza-

tion should try as much as possible to use a single common layer for reasoning about a

given class of policies, so that all policy makers can reason with each other’s policies in
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a consistent manner. For example at an organizational level the decision to use a single

type of process modelling technique to describe its business functions would accomplish

this. If multiple workflow or process modelling techniques are employed within an organi-

zation, then a mapping between the constructs in each should be established so that cross

framework reasoning can be performed at this level before errors are propagated to the

implementation layer. Similarly, consistency in the mechanisms for enforcement should

also be emphasized at the enforcement level for the same reasons.

Observe that these are merely good practices within the context of policy management,

aimed at making interpretation of rules by various policy makers across an organization

easier. These are guidelines for interpreters to follow when translating policies from nat-

ural language into implementable specifications. The overall problem of extraction of

policies from natural language in an automated fashion is intractable. Unsurprisingly this

is because of the same reason many of the classical problems in NLP (such as ontology

extraction, sense disambiguation, entity resolution, context determination, and topic de-

tection) are intractable: the inherent ambiguity in natural languages. As a consequence,

human expertise has always been, and in the foreseeable future will be, required when in-

terpreting policies, rules and laws when applying them to specific situations. Furthermore

it is unreasonable to expect that all policies (external to a business) will one day be written

under one particular semantic interpretation of the world without any ambiguity and will

lead to a single universal interpretation.

The research presented in this thesis is complementary to the problem of automatic

rule extraction and interpretation. It focuses on the implementation of rules derived from

policy within a database system and assumes that the interpretation, regardless of how

it is derived, will be correct. Ideally we see the techniques presented in this thesis to be

adopted by policy administrators at all levels, regardless of the methodology they use to

interpret policies.

1.3.2 Formalizing Policies

Although not a significant issue for small businesses, it is inevitable that an organization

with a complex policy set will have to create an intermediate model for policy rules being
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introduced and assess their impact on the overall operations. For example a workflow or a

process model could be created by a user to describe the rules by which a specific business

process should progress to its conclusion. The task of creating formal models of policy

can often be the most costly phase of the policy-to-constraint translation process, and it

is important to characterize it precisely. Observe that during interpretation, the objective

is largely to identify the scope and sources of policy and data that an organization must

examine in further detail to derive a workable specification. However, during this phase

the rules are interpreted for a particular system and an actionable set of specifications is

generated such that they can be implemented easily. Thus we use the term “formalization”

to mean the conversion of policies into actionable specification from relatively informal

descriptions.

Consider, for example, the introduction of new data retention legislation with which

all businesses must comply. After reading the legislation, a corporate lawyer interprets

it to mean that the organization should delete all personally identifiable information of

customers with whom the organization has had no dealings in the past three years. Note

that the interpretation provides a guideline, but it is not precise enough to be treated as

a specification. For example the words, ‘delete’ and ‘dealings’ are vague terms, and many

such terms may not be directly related to concepts within a database system. Consequently

at this stage (formalization) it is important for managers, DBAs, and corporate lawyers to

examine the given interpretation (perhaps all possible interpretations) and to come up with

actual actions and safeguards (specifications) that, when eventually implemented, comply

with the law.

Mediation and negotiation is often an integral part of achieving a consistent and work-

able specification for a given policy. Proceeding with the aforementioned example, the

simplest implementation of the data retention policy would be to delete all customer enti-

ties that are related to transactions that are more than three years old. However this may

conflict with requirements from other areas of the business. For example, the marketing

department might require that postal codes along with dates and times of customer inter-

actions be preserved indefinitely for research purposes. Similarly, the finance department

might need to store and retain purchase records (amounts, taxes, and shipping address

of customers) for at least six years in case of a tax audit. Clearly in situations where
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shared data is being used by multiple policy makers, there emerges a need to mediate a

formal definition of how a new policy should be converted into a specification such that it

satisfies all policy makers. There are many reasons why the overall process of arriving at

a workable specification is difficult, however the focus of this thesis is on the following two

specific problems:

Business Object and Relational Object Mismatch

When business users and policy makers look at policies, rarely do they have a complete

understanding of how the objects (nouns and verbs) contained in the policy text corre-

spond to rows in tables that are physically stored in a database system and the intricate

relationships that exist between these rows. Even simple tangible concepts, such as an

invoice, can be difficult to describe within a database. The contents of an invoice might be

spread across multiple tables. An invoice could also be broken down into sub-objects such

as line items. In large schemas, complex objects may be scattered across many tables mak-

ing it much more difficult to pinpoint the relationships between its sub-parts. Eliminating

this mismatch between objects referred to in policies and the specific parts of a database

that represent those objects becomes extremely difficult when policies refer to aggregate

data. For example a health care policy may refer to a medical history in several contexts

containing various amounts of information, and each interpretation of this phrase needs to

be properly identified within a database system. Quite often DBAs have to work closely

with policy makers in order to help them narrow down their definition of a policy-relevant

object to what actually exists in a database.

This mismatch between a policy maker’s world view of objects and the database cen-

tric definition of a business object extends to policy actions as well. Policy objectives of

seemingly simple business requirements can be accomplished in various ways. For exam-

ple, instead of ‘deleting’ a record of customer interactions, parts of that information can

be nullified. Equivalently the information can be anonymized; for example, the customer’s

name and address can be changed to that of a fictitious John Doe in the database. The

problem is further exacerbated by the fact that there is no shortage of tools, techniques,

and features available in a modern RDBMs that can be used in conjunction to satisfy
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the requirements of a given interpretation of a policy. When we couple the mismatch

between a single policy maker’s definition of a policy object and an object in a database

system with similar object-relational mismatches across an organization, we can see that

policy formalization and mediation can be a large scale management problem. This is

even more so when policy makers use vastly different logical models to express their policy

sets. This complexity induced by the sheer number of possible implementations of a policy

interpretation makes the DBA a critical part of the policy mediation process.

Conflict Detection and Resolution

Integrating many policies over shared data naturally brings about the possibility of conflict-

ing requirements. Delete-protect conflicts, where one policy maker requires preservation of

data and another requires the destruction of the same data, serve as ideal examples of this

problem. Quite often these conflicts will slip through the modelling and reasoning phase,

either because of a lack of meticulous oversight or the inability to reason across multiple

logical policy models.

1.3.3 Implementation

Once a specification of policies is sufficiently well-defined, it is handed over to database

application programmers for implementation. Their role is to translate the specifications

using the database framework of an organization into actions and safeguards that accom-

plish the goals of the policy being introduced. Database administrators and programmers

need to be aware of the best possible tools and techniques that are available within their

corporate RDBMs to accomplish this translation. In a situation where numerous policy

changes are being introduced at the same time in a database system, it may be beneficial

to chalk out a plan for implementing the new policy requirements. For example, if the

physical schema of the database needs to be modified, then the implications of the change

(such as the impact on logical views) need to be examined carefully. In complex systems

this planning phase will certainly be a costly and time consuming process. The core im-

plementation cost (programming time) associated with writing triggers, check constraints,
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and stored procedure that need to be executed periodically to audit the policy can also

be significant. Since the upper layers of interpreting and formalizing the policy are largely

manual processes, there is little scope for automating the implementation phase.

The lifecycle of a database specific policy (Figure 1.2) has the property that at any

particular phase a policy can be pushed back to the upper layers for re-examination. Con-

sider a policy from a corporate security officer that requires access requests issued to a

database server to be logged for privacy audits. During implementation it is discovered

by programmers that the continuous logging of queries greatly slows down the database

server, which impedes day to day operations. A management decision at this point could

possibly be to re-interpret the policy requirement instead of dedicating more resources for

the database server. For example, the auditor may accept a less data intensive record of

login and logout times as sufficient information for his/her purposes rather than requir-

ing a full log of queries issued by each user. Consequently, the security officer may be

asked to modify the specifications by possibly re-examining and re-interpreting the source

documents pertaining to the policy.

1.3.4 Testing, Deploying, and Monitoring

Systematic testing and deployment of new database level rules is very similar to deploying

a typical software update. Since some policy conflicts within a database system can only

be detected at runtime, the purpose of testing is to detect specific conditions under which

the new policy rules will adversely impact the system. As part of deploying resilient

policies, it is often the case that routines that audit the policies are written independently

thereby increasing the cost of a policy implementation. For example, while one programmer

may implement a mechanism to purge complex records containing private information, a

different programmer may be given the task to write the auditing procedure that verifies

the non-existence of such private information after the original procedure is executed.

Once a policy set is activated, its associated rules and obligations pose a long term

ongoing cost in terms of monitoring. Conflicts and warnings generated by policy rules

may need to be reported, and, depending on the larger business process, various actions

may need to be taken. Automation among these actions, although difficult to verify, is
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relatively easy to implement. Typical examples of these long term monitoring actions

include emailing relevant parties with the details and the findings of the execution of the

policy rule.

1.3.5 Evolution

There are two main aspects to changes in a stable policy set that every business must

consider. Foremost an organization may encounter scenarios where amendments to a policy

may manifest themselves over time. An implementation that is complex invariably requires

more time to modify and thus costs more to maintain. Since the scope of the change in

policies cannot usually be anticipated, even with well-implemented policy sets there is

always the risk of running into a simple change in requirements that can be costly to

implement. Second, we note that corporate databases, like businesses themselves, are

also constantly evolving and subject to new constraints that originate from operational

requirements. For example, a database schema may change as a result of a new application

being developed to support other business requirements. Similarly, new sources of data

that get integrated within a database system may enhance the scope of older policies,

and thus they may require the entire policy lifecycle to be repeated for specific policies.

Again the bottom line is that reducing the ongoing cost of maintaining a complex policy

set, using a systematic way of managing policies within database systems, represents a

significant opportunity for businesses.

1.4 Problem Statement

The envelope of business level policies implemented today within database systems has

vastly expanded from classical integrity and access control constraints to include audit-

ing, usage control, privacy management, and records retention. Traditional integrity con-

straints, for example, asserting that account balances cannot be negative or that ZIP codes,

email addresses, and phone numbers are in a certain format, are essentially static invari-

ants, and their governing rules rarely change. On the other hand, process centric policies
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change continually with business requirements. Temporary changes in business processes,

for example a policy that requires that “for the next two months Jane can only pay an

invoice if it has been approved by John in the Accounting Department,” typically pose

more significant and ongoing costs. Similarly complex temporal constraints, for example,

one that requires that “an employee’s salary cannot increase by over 20% in any two in-

crements,” are much harder for business users to formalize and equally hard to enforce in

a traditional database system that may require changes to the database schema to sup-

port such policies. As users become more aware of the social and business implications

of database technology, the amount, type, and complexity of policies being implemented

within database systems is likely to increase. However, little research has been done in

the database community to address the absence of a systematic methodology for reasoning

about database specific policies, and it remains a substantial area where improvement is

required.

There are major shortcomings in the current state of the art in converting business rules

into database level constraints. Foremost, it is impractical for different classes of users in-

cluding legal experts, business managers and policy makers, database administrators, and

database programmers to communicate and reason over the same policy constructs. Con-

sequently, policy interpretation, formalization (conversion into specifications) and imple-

mentation has to be done by three very different user groups. Conflicts across these three

layers are difficult to detect and costly to isolate, and repairs involving re-interpretation

and mediation can take a long time. The process to convert policy rules to database level

constraints is labour intensive, thus making total compliance at the database level a costly

proposition. Finally, because of the ad-hoc way in which policies and constraints bubble

down to the database from different areas of a business, verification of these constraints

and producing compliance guarantees is infeasible.

A major avenue of improvement that prior work has not examined is that of empowering

business level users and policy makers to develop database level constraints themselves. A

significant hurdle in doing so is that policy makers specializing in various business domains

are not database programmers and thus not capable of writing complex queries and event-

condition-action rules that implement their envisioned policies. Consequently, they have

to rely on database programmers to convert specifications into implementation.
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1.5 Solution Overview

This thesis presents a method of translating informal operational specifications of busi-

ness processes, such as those contained in workflows and process models, into database

level integrity constraints. The fundamental observation exploited in this work is that

databases and business are essentially equivalent state machines and policies can be re-

duced to directives on how these state machines should behave. Just as a sequence of

database transactions can lead it to an inconsistent state with regards to a policy, cer-

tain paths that a business traverses are invalid with regards to compliance with the same

policy. It is argued that a mapping between equivalent paths in these state machines is

easy to establish, even by business users who are not familiar with database terminology.

Furthermore, there exist many ways to create, examine, and reason about these mappings

under different policy scenarios, such as those encountered in business process modelling,

access control, obligations management, records retention and disclosure control. Most

importantly, in each of the above scenarios a policy maker can use his or her favorite visual

model and modelling tool to engineer and create these state space restrictions without

worrying about the ramifications of models created by other policy makers. In essence, the

need to have a DBA acting as a central mediator of policy is virtually eliminated, because

policies can be directly created by the responsible parties in a distributed fashion.

This thesis also demonstrates that once this formal mapping between paths in the

business state space and database state space has been established, automatic translation

of policies into database enforcement actions can be done effortlessly. For a large class of

policies in the aforementioned policy domains, conflicts can also be detected statically, and

proofs of compliance (showing that inter-policy conflicts will never occur) can be generated

by reasoning over the path constraints specified in the policy model. As a consequence, the

middle stages of the policy lifecycle are greatly simplified and the overall cost associated

with managing a large policy set over a database system is significantly reduced.

The above description of the solution can be summarized in the following thesis state-

ment:
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Thesis Statement: Businesses and databases can both be viewed as cor-

responding state machines, and it is feasible to translate the behaviour of a

business, as specified in individual high-level business process specifications,

into database level integrity constraints. Furthermore, the correspondence be-

tween specific parts of a database and a business process can be established

by non-database experts, used to generate the relevant integrity constraints,

and exploited to formally reason about the behaviour of several processes in-

teracting over shared data.

1.6 Contributions of the Thesis

The thesis has two major contributions. First it presents a modeling language for imple-

menting a large class of business level rules as database level temporal integrity constraints.

The specific properties of the language that make it a significant improvement over existing

techniques are as follows:

1. It is highly customizable and applicable in a broad range of scenarios for which

traditional process modeling techniques are inadequate (e.g. temporal access control).

The language extends the state of the art in workflows and business process modeling

and provides much richer constructs for constraint specification over business objects

contained in database systems.

2. The language resembles business workflows and process models, and thus it is easy

to use for business policy makers. It can also serve as a coherent, unified policy

specification layer for a broad class of business objects contained in database systems.

3. The modeling language serves as a specification language and can be automatically

translated into database level temporal integrity constraints. Consequently, con-

straints specified by users can be directly implemented without any DBA assistance

or manual programming.

Second, the thesis introduces and examines the notion of model checking business pro-

cesses within relational database systems. The thesis is the first to attempt to verify the

15



behaviour of the contents of a database in order to make claims about the process that the

changing database represents. Connections between the modelling language presented and

how model interactions can be examined are discussed in thesis. Limits of verification, such

as enforceability of constraints, formulating properties for verification, and issues pertain-

ing to efficiency in verification, are examined. Lastly the role of the DBA in formulating

properties that need verification is discussed, and the implications of conflicting policies

over shared data is examined.

1.7 Terminology and Definitions

The following is a list of terms along with their meaning that are used throughout this

thesis. Every effort is made in this thesis to use these words and phrases in a consistent

manner as specified below:

Policies and Constraints : This thesis uses the word policy in a informal fashion to

mean a set of rules applicable to a business. Policies in the most general sense are

guidelines established to achieve a specified outcome. For example, “access to data

should be restricted to ensure confidentiality and privacy” is a broad policy statement.

Policies are also implementation agnostic. In contrast, the term constraint is used

in this thesis in the classical database theoretic sense, as an integrity constraint or

a data validation check condition within a database system. The notion that these

two can be related (via a correspondence) is examined in Chapter 3.

Workflow or (Business) Process Model : Although from a business perspective these

two terms are differentiated by the granularity in which they specify a repeatable task

(a process often being a more specific notion than a workflow), the reader can consider

them to be interchangeable for the purpose of this thesis. With regards to the work

presented, a workflow or a process model is simply a sequence of steps requiring that

a particular class of objects complies with the mandated business level policies during

its lifecycle.
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Auditing : The term auditing with regards to database systems is used to assert that

a log or a trace of events/actions/updates is being maintained. Consequently, in

the database theoretic sense the term auditing and logging are used interchangeably.

The thesis differentiates this meaning of auditing in databases from its meaning in

business and finance, which is interpreted as ensuring a business complies with some

published policy.

1.8 Outline

The remainder of this thesis is organized as follows. Chapter 2 examines the related work

pertaining to policy management (interpretation, specification, and implementation). In

Chapter 3 we introduce the Database Constraint Modeling Language (DCML), our visual

notation for denoting process-centric constraints in database systems. We present the

semantics and demonstrate, using examples, how informally specified business process

descriptions (such workflows and process models) can be translated into DCML models

over business artifacts contained in a relational database. In Chapter 4 we examine how

DCML models can be implemented as active constraints that monitor and maintain the

integrity of a database with regards to the constraints embedded in them. Issues pertaining

to efficient monitoring of constraints derived from DCML models are examined therein.

Chapter 5 introduces the notion of model checking individual and sets of related DCML

models. A mechanism for identifying conflicting constraints across models is presented,

and the role of the DBA in formulating properties about DCML models that need formal

verification is introduced. In Chapter 6 we critically examine the usability of DCML

in practical situations. We also discuss how DCML could be extended and tailored for

specific applications (types of policies and policy makers) and the limitations imposed by

the design choices available to policy makers. The capabilities of DCML are compared

against traditional workflow modeling languages in this chapter as well. Finally, Chapter

7 concludes this thesis by presenting a case study detailing how DCML could be used to

constrain a database for a real world business process. It discusses avenues of future work

and presents our proposed methodology with which a business can measure and benchmark
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the efficacy of DCML and the associated verification infrastructure against the state of the

art.
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Chapter 2

Related Work

2.1 Outline

The contents of this thesis relate to a large amount of research literature in several ar-

eas of policy management and computer science. Consequently this chapter provides a

brief review of the related research throughout the phases of the policy lifecycle. We in-

troduce terminology used in prior work that is also employed in subsequent chapters and

develop the groundwork for appreciating the research presented in this thesis. First, issues

pertaining to the translation, interpretation, modeling, and reasoning of policies in the ab-

stract are discussed. Then research related to the conversion of policies into database level

constraints is presented. Finally, prominent auxiliary problems such as the testing, verifi-

cation, evolution, maintenance, and obsolescence of constraints embedded within database

systems are presented.

In addition, each subsequent chapter in this thesis is followed by a smaller more precise

related works section that compares and contrasts the specific contributions of this thesis

to prior research. The objective in doing so is to avoid overwhelming the reader with a

large amount of research at different levels of policy management that is complementary

to the contributions of this thesis yet essential to appreciate the avenues of future research

opened by it (Chapter 7). At the same time this organization presents our contributions
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in such a way that they can be easily compared and contrasted with the specific aspects

of prior work.

As mentioned earlier, policies in their broader meaning are simply guidelines estab-

lished to achieve specified business objectives. However, within the context of constraints

embedded in database systems, this thesis classifies constraints according to how they ac-

complish one or both the objectives of (i) a security policy or (ii) a process-centric policy.

Access control, privacy management, and data retention are classical examples of security

policies, whereas integrity constraints on data, for instance the requirement that the cus-

tomer account balance attribute must always be positive, are manifestations of operational,

process-centric policies. The remainder of this chapter is organized around examining past

research on policy management (different aspects of the policy lifecycle) across these two

broad policy objectives. As we go from the start of the policy lifecycle to the end, we

examine research contributions that address the challenges associated with the particular

stage of the policy lifecycle across several subclasses of security and operational business

policies.

2.2 Reasoning with Policies

2.2.1 Policy Identification

Identifying sources of policy is primarily not a computer science problem and is most

closely related to the study of corporate governance, risk management, and compliance

(GRC). Even though GRC encompasses issues related to the management of corporate

information systems, the specific problem of identifying policies is more a legal art than a

technical challenge [128]. Several recent papers [11, 20, 32, 81] and books [151, 96, 143,

78] on GRC have examined the implications of changes in the legal landscape (such as

the introduction of HIPAA [1] and the Sarbanes-Oxley Act [2]) for corporate information

systems. There is indeed growing concern among businesses to be proactive when it comes

to legal compliance and ensuring that risks associated with the ownership and safekeeping

of personal information are minimized. However, policy identification and topics addressing
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how, when and, where policies (and associated non-compliance risks) emerge are clearly

beyond the scope of this thesis. The reader is directed to the above sources for further

reading on these matters. For the remainder of this chapter, we will not question the sources

of policies. Instead we will focus on the way these pre-identified policies are specified and

interpreted for implementation.

Policy specifications, much like software specifications, can be categorized into three

types based on how closely they resemble their implementation. At one extreme we have

policies in natural language, which are usually written in free form text for human con-

sumption. At the other extreme is the implementation, which, in a manner of speaking,

can be considered a policy specification albeit only readable and interpretable by a knowl-

edgeable programmer. In the middle lie a slew of modeling languages for rule analysis

that attempt to bridge the gap between expressivity and actionability for specific situ-

ations. As an example in the domain of security policies, consider a privacy statement

of practices that will be typically written and edited by an administrator or a manager.

This document may also be available on a website for clients and other stakeholders to

view. Since such a document will be broad ranging and govern the overall behaviour of

an organization, other more specific documents may be derived from it to cater to specific

corporate systems such as the email server, corporate document management system, and

corporate database system. Then, these specific documents are converted into rules for

different computer systems, possibly via an intermediate language such as P3P (Platform

for Privacy Preferences). The specifications in these intermediate documents are eventu-

ally handed down as constraints for programmers to implement in their specific systems

across the organization.

2.2.2 Natural Language Processing of Policies

Since interpreting legal documents is an inherently ambiguous and error prone process

that most software engineers are unable to do well [104], one can be misled into believing

that this task can be better accomplished using automated methods. However NLP based

systems that can independently generate perfect models of rule systems from policy text

are currently far from being a reality [27].
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There are several noteworthy papers that have attempted to create structured models

of rules contained in text. For example, Moulin and Rousseau [106, 105] present a syntactic

parser that attempts to extract deontic rules from legal text. Their approach is specially

geared towards prescriptive text, which either explicitly allows or disallows actions to

occur. A similar prolog based rule parser and a proof-of-concept was discussed in the work

of Michael, Ong and Rowe [103] and in Ong’s thesis [116]. The results of both these works

were encouraging; however the lack of broad and rigorous testing across different types of

text leaves much work to be done in these parsing approaches. In contrast, the research

of Xiao et al. [174] takes a much more focused approach. It is largely motivated by the

fact that access control requirements are typically not presented as a separate document to

software developers. Instead access control restrictions are often embedded and scattered

across hundreds of pages of software specifications, making it very difficult to capture

the security specifications of a system during software development. Their approach uses

linguistic analysis in order to identify sentences that relate to access control requirements

contained in a specification document. The claimed accuracy of their proposed sentence

level classification technique ranges between 80% and 90%. Since their goal was to only

identify sentences that relate to access control requirements, the task of building a model

for these requirements is unresolved.

It is generally accepted that a hybrid or human assisted approach to extracting various

policy models is perhaps a much more realistic and effective way to convert natural language

policies into formal models. The most prominent such approaches are those of Kiyavitskaya

et al. [92, 91] and Breaux et al. [28, 27]. Kiyavitskaya and Breaux, together with several

other collaborators, have developed a system that allows for user-guided construction of a

policy model through annotation and identification of subjects, roles, and obligations. The

user is expected to guide the system through the policy corpus interactively as it builds a

formal model of the rules contained therein. Arguably this technique significantly reduces

the chances of misinterpretation and missing policies within text, as human oversight is

ever present.

While user-assisted systems may perform better than either statistical or syntactic

approaches, their adoption has been lackluster. This is most likely because of the inappli-

cability of the proposed research prototypes to real life situations, as well as incompatibility

22



with access control mechanisms deployed in existing systems. One such project that not

only embraces the need for human interaction in policy interpretation, but also attempts

to make it a useful exercise for the user, is SPARCLE [29] (not to be confused with the

SPARQL query language). The objective of SPARCLE is to allow user-assisted parsing

of policy documents with the objective of mapping them to existing (or soon to be im-

plemented) constraints. In the future, developers of SPARCLE hope to allow policies

authored within the system to be plugged into existing policy oriented software. However

the currently published research associated with this project [29, 131, 90, 165] has focused

on HCI and evaluating the usability of semi-automated policy parsing/authoring tools.

Other work that has examined problems associated with policy authoring with little or

no assisted policy parsing include that of Shi and Chadwick, who presented a system for

authoring restricted class of access control policies [141], and De Coi et al., who examined

the authoring of privacy policies for social networks [39]. The former approach is especially

interesting, since it offers an insight into how a controlled natural language, a subset

of a natural language limited in expressivity so that it is easier for formal reasoning,

can offer an ideal compromise in this problem area. Our work acknowledges this overall

compromise in expressivity and usability when it comes to automated policy systems, and

a significant portion of Chapter 6 is dedicated to this discussion. The complementary

(perhaps the logical inverse) problem of generating human readable policies from a set

of formal rules has been examined in the context of network security policies [40]. NLP

techniques have also been employed in examining process-centric policies. For example,

the work of Friedrich et al. [66] looks at the problem of constructing business process

models from their natural language descriptions. Although the technique presented relies

on sentence level parsing, it attempts to capture the links between the sentences in order to

establish continuity for identifying sequential and conditional actions in a business process.

After testing their technique on 47 text-model pairs from industry and texbooks, Friedrich

et al. claim accuracy of 77% for their proposed technique. Similar approaches to extract

and construct UML and use-case diagrams from text have also been studied [145, 146].

It is important that we acknowledge the vast amount of literature pertaining to NLP

in general (i.e., not specific to text containing natural language policies). Several problems

in this area, such as ontology extraction, entity recognition, and sense disambiguation, are
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directly applicable to parsing of business policies. Common themes in the prior work on

processing business policies for rule extraction include the use of a shallow parser or weak

grammars in a template based syntactic/linguistic technique to identify business rules in

policy text. Such techniques take a very simplified view of the corpus and therefore lack

the ability to offer a comprehensive policy interpretation framework for complex rules such

as those governed by temporal operators or a deeper understanding of the problem space.

2.2.3 Policy Modeling Languages

Modeling of policies and processes has two well accepted objectives [46, 148]: (a) Summa-

rization or simplification of policy text into a set of requirements that is easier to consume

than the source documents and (b) formalization, through which it becomes possible to

reason about policies and eventually implement them within various systems of an or-

ganization. Consequently, the most well cited surveys in the areas of policy modeling

[100, 3, 148] have attempted to differentiate modeling languages across these two dimen-

sions. Modeling techniques that are graphical in nature, such as workflows and Petri nets,

often emphasize clarity and simplicity, whereas models that are logic or rule based such as

event-condition-action lists focus on achieving the benefits of formalization. In many cases

a graphical model can have an equivalent logical interpretation and vice versa, offering

a compromise between formalization and simplification. Many modeling techniques have

been proposed in the prior literature, and in this section we provide a brief overview of the

most popular and prevalent ones.

Privacy

The Platform for Privacy Preferences (P3P) [44, 130, 4] is W3C’s privacy preference spec-

ification language, which allows web based exchange of privacy specifications among users

(agents) and different web services. Using P3P, end users can limit the type of information

they wish to communicate with web sites and only do so if the web site promises to use it

for specific purposes. Several popular browsers today, such as Microsoft Internet Explorer,

have built in support for exchanging P3P policies with web servers [41]. According to
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surveys, roughly 15% of the top 5000 visited web sites implement a mechanism for accom-

modating end user P3P policies [156]. Unfortunately since P3P policies are not considered

legal contracts [132], businesses have a very high incentive in over promising or not keeping

promises at all when it comes to acknowledged user privacy preferences.

Enterprise Privacy Authorization Language (EPAL) [13, 134] was a similar attempt

at specifying and exchanging privacy preferences, at a much finer granularity than P3P.

However EPAL was never formally adopted as an OASIS (Organization for the Advance-

ment of Structured Information Standards) standard. EPAL was eventually superseded by

eXtensible Access Control Markup Language (XACML), which, like its predecessor, is a

declarative specification language for access control policies accompanied by a processing

model that specifies how policies are interpreted.

Security and Access Control

Today XACML has been widely accepted as the only comprehensive standard that accom-

plishes the objectives of EPAL, P3P, and several other access control specification languages

that were proposed alongside these. In fact, due to its flexible, XML-like syntax, several

extensions of XACML are now themselves standardized languages for exchanging specifi-

cations. For a comprehensive comparison of XACML with prior languages, the reader is

directed to the work of Anderson [10].

Even though XACML accomplished goals well beyond those for which it was initially

proposed and represents the state of the art in access control policy specification, it has sev-

eral shortcomings. Foremost, XACML is purely a specification language and compromises

heavily on formalization for simplifity (see Listing 2.1 on page 27 for a simple example of a

policy in XACML). Furthermore, XACML does not go far beyond providing an easy to use

specifications framework for attribute based decision making. A typical XACML policy

will specify subjects, actions, objects, and conditions under which actions should be al-

lowed or not allowed, but the interpretation and implementation of these policies in various

systems remains an open problem for the developers of policy vocabulary and developers

of the specific systems. This is perhaps why the database research community has been

impacted very little by the increasing popularity of XACML. The fact that the subjects,
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actions, and objects mentioned in an XACML policy still need to be explicitly mapped

and translated onto individual pieces of data and constraints (at the database level using

traditional grant/deny statements) makes XACML relatively ineffective for conveying any

useful information to a database programmer. Recently there have been attempts made

within the database community, more specifically by Jahid et. al [82, 83], encouraging

database security administrators to encode database level constraints using XACML in

order to exchange and recompile them efficiently across various systems. However they do

not address the question of how to derive database constraints from specifications in the

first place.

There are, of course, several other policy modeling paradigms, such as Role-Based

Access Control (RBAC) [64, 63, 138] and its temporal extension [25, 88], Label-Based

Access Control (also known as Lattice-Based Access Control or Rule-Based Access Control)

[137, 54], and the classical ACL-Based Discretionary Access Control [139, 58]. A major

shortcoming of the policy modeling techniques in each these paradigms is that they limit

modeling to a few core attributes, such as subject, target, condition, and action. As we

shall see shortly, very few access control policy modeling techniques focus on the set of

business processes and specific situations under which a policy decision is to be made. The

classical motivating example for such flexibility in modeling access control comes from the

domain of health care, where a process (such as handling a medical emergency) may require

that general access control restrictions need to be ignored for specific cases in order to best

serve a patient. Recent proposals, such as Usage-Based Access Control [136, 175], and

Task-Based Access Control [110] have attempted to address this divide by integrating roles

and situation specific attributes together. Unfortunately these proposals only marginally

extend prior approaches with additional attributes and modes of reasoning over situation

specific attributes. The general problems of (a) conveying access control constraints as part

of a business process and (b) mapping these modelled constraints into various systems that

implement them are not addressed in these works.

26



1

2 <Pol i cy Po l i cy Id=”p1” RuleCombiningAlgId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 :permit−o v e r r i d e s ”>

3 <Target>

4 <Subjec t s><AnySubject/></ Sub jec t s>

5 <Resources><AnyResource/></ Resources>

6 <Actions><AnyAction/></ Act ions>

7 </ Target>

8 <Rule RuleId=”Rule1” E f f e c t=”Permit”>

9 <Target>

10 <Subjec t s>

11 <AnySubject/>

12 </ Sub jec t s>

13 <Resources>

14 <Resource>

15 <ResourceMatch MatchId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

16 <Attr ibuteValue DataType=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>

17 StudentLi s t

18 </ Attr ibuteValue>

19 <ResourceAttr ibuteDes ignator

20 Att r ibute Id=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : r e s o u r c e : r e s o u r c e−id ”

21 DataType=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>

22 </ResourceMatch>

23 </ Resource>

24 </ Resources>

25 <Actions>

26 <Action>

27 <ActionMatch MatchId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

28 <Attr ibuteValue

29 DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>read</ Attr ibuteValue>

30 <Act ionAttr ibuteDes ignator

31 Att r ibute Id=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : a c t i o n : a c t i o n−id ”

32 DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>

33 </ActionMatch>

34 </ Action>

35 </ Act ions>

36 </ Target>

37 </Rule>

38 </ Po l i cy>

Listing 2.1: An example of a simple XACML Policy, taken from the Master’s thesis of Jin

[86], explicitly allows anyone to read (action) the Student List (object)
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Data Retention

Data retention is a subfield of records management that deals with the proper safekeeping

and destruction of data according to a scheduled and pre-determined lifecycle [60, 61].

Most businesses today have legal requirements to safeguard their operational records, such

as those used for tax purposes, for a specified number of years. Furthermore many orga-

nizations, such as health care providers, are required by law to remove records from their

system after a certain period of time has elapsed in order to protect the privacy of patients.

Similar legal requirements, when combined with the facts that maintaining a large amount

of sensitive information can be a liability and that possession of certain information such

as incriminating emails can lead to severe losses, has led to a situation where businesses

have started to take a keen interest in formulating and enforcing data retention policies.

The state of the art in specifying retention requirements is essentially attribute-based

retention constraints on classes of business objects. For example, in the domain of docu-

ment management, each document in a corporate enterprise content management system

(ECM) could have a set retention period based on its sensitivity label. Systems such as

OpenText’s LiveLink ECM can use these labels and conditions such as “a document not

being accessed for 7 years” to automatically remove them from the system [43]. Similarly,

policies on emails, such as those present in typical corporate email storage servers (e.g. Mi-

crsoft Exchange Server [42]), are often enforced transparently without users being aware of

them. An example of such as policy could be that emails that are processed/accessed today

will be deleted in 365 days unless labelled as important. We have extensively examined the

notion of what is a record in a database and the implications of protecting and deleting

different types of records stored within relational database systems [15].

2.2.4 Operational Policy Modelling and Management

The term process modelling refers to the holistic study of everyday repeatable business

functions. The hundreds of process modelling techniques, ranging from classical work-

flows and flowcharts to current day extensions of UML diagrams, offer a varying degree

of compromise between ease of comprehension and ease of implementation. The process
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modelling languages that are purely abstract do not contain sufficient detail to delineate

exactly how a process should (or should not) progress further towards its conclusion. In

most cases, the objective of these higher level modeling techniques is to provide a clear,

concise, and simplified graphical (or pictorial) snapshot of a complex multi-stage process

so that managers can analyze it and make improvements. Traditional wisdom suggests

that models created by these techniques are valuable because a non-specialist (such as ad-

ministrative staff or an external consultant) can in a few seconds gather a large amount of

high level information about processes. Moving to the other side of the spectrum, one can

observe that the more concrete process modelling techniques are often workflow oriented,

and they may even specify pre and post conditions for individual business objects that

need to be met as a means of restricting control flow of objects and processes. The aim

of many of these flow oriented languages is to provide deeper insight into processes and

their sub-stages, so that these models can be provided to system developers. However,

the details of the implementation, for example, how each pre/post condition is mapped

onto the implementation level (for example, the specific pre-condition on business objects

stored in a database system), are often not specified. As we move ever closer to implemen-

tation, there can exist implementation specific modeling techniques. Common examples of

modeling techniques that can accomplish automatic model-to-code translation include the

large number of widely used CASE (Computer Aided Software Engineering Tools), ER-

modelling, and UML-to-code extensions for common IDEs, such as IBM Eclipse. These

tools have traditionally generated method stubs for programming languages (including

SQL) based on business level models but can even go as far as generating specific branches

and assertions in program control flow to ensure that the code that is eventually written is

true to the model. The focus of these techniques has remained at source code generation

for programs, rather than database level constraint generation and maintenance.

There is no shortage of process modelling languages and workflow diagram semantics

available today. Several books and surveys have been published, examining the myriad of

very similar techniques for workflow modeling. The interested reader is directed towards

the work of Fischer [65] and van der Aalst et al. [164, 162] as comprehensive sources

that examine workflows and towards the work of Ko et al. [93] for a more recent survey

that attempts to categorize and differentiate many of the proposed workflow modeling
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techniques. In the process modelling community there are also numerous surveys and

books that provide insight not only on the wide array of notation and techniques [76, 7,

69, 99], but also on best practices in the industry [21, 180, 85, 102]. Because of the sheer

number of modeling languages available, the usability and popularity of each one is hard

to gauge. However, the most well cited ones in the literature are invariably graphical and

also have logical interpretations to them. It is very likely because of the lack of a easy-

to-visualize graphical representation that pure logic/functional descriptions of business

processes are not popular among business users. The seemingly simple idea of van der Aalst

et al. to characterize different workflow techniques based on a set of common workflow

patterns [163] has had a prolific impact in this field. Workflow patterns are basically design

patterns that attempt to classify various types of control flow dependencies in workflows.

Examples of these dependencies include sequence (a task must happen before the other),

parallel split (execute multiple tasks in parallel in any order), and synchronize (wait for all

tasks to complete). Although there are other classifications, the seminal work of van der

Aalst proposed 20 such patterns, which are now the gold standard against which different

workflow languages are compared.

In this section we examine only classical approaches to process modelling that have

had impact on the database community when it comes to implementing database level

constraints and assertions. This examination of well understood approaches will lay down

the groundwork for examining specific properties of our proposed method of modelling

database level constraints. To concretize and differentiate the contributions of this thesis

further, at the end of Chapters 3 and 4 we will take a closer look at more recent approaches

in database specific policy modeling and those that more closely share specific characteris-

tics with our proposed technique. In Chapter 6, in order to show that the expressive power

of our proposed modeling technique is broad enough to capture most workflow situations,

we will also revisit the notion of common workflow patterns as introduced by van der Aalst

et al. and examine how our modeling technique provides facilities for implementing these

patterns.
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Entity Relationship Modeling and its extensions

By far the most prolific database modeling technique of today is entity-relationship (ER)

modeling [140]. Although traditional ER diagrams do not capture the deeper procedural

interactions within a business process, they do capture data-centric definitions of business

objects and their relationships to each other. In addition to fleshing out exactly how

business objects will be stored within relational database, ER diagrams provide some very

limited support for the designer to enforce some basic schematic constraint on the logical

structure of the database. These constraints include cardinality and referential integrity

which, for example, can be used to specify that a business object can/should be related to

at most/least some number of other business objects through a certain relationship.

By the late 90s the overwhelming popularity of ER modeling had prompted researchers

to develop a myraid of temporal extensions to ER modeling. Because the original ER model

and its extension (Enhanced Entity Relationship Model [153]) described in practically all

modern database textbooks leave time as an implicit attribute of entities and relationships,

it becomes impossible to reason about time sensitive relationship and temporal constraints

in ER modeling. This represents a significant problem when designing databases that store

historical or time-annotated data, where the valid time of a fact (the time periods in the

past, present, or future where a fact remains true) are fundamentally different from its

transaction time (the time at which the fact was recorded in a database). An example of

this complexity arising from different transaction and valid times can be given in the context

of a seemingly simple data item, namely marital status. Depending on the interpretation,

this attribute can have complex temporal intricacies and constraints associated with it.

For example, every individual must start off as “single” and after their expected date of

marriage is known in a database system, their status from that point in the future will

change to married. If the individual files papers for a divorce with a future effective date

in the application, only from that point onwards will his/her status change to “divorced.”

Similarly there can be inter-related rules and constraints between concepts. For example

once married, a person can never revert to single and must become either divorced or

widowed. In the case a person marries twice but the second spouse subsequently passes

away, precedence rules based on temporality may be applicable to determine which status
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(widowed or divorced) is implied by the sequence of events.

The most recent and well cited survey in the general field of temporal data management

was published in 1999 by Jensen and Snodgrass [84]. It concluded that the dozen or so

temporal entity relationship modeling techniques that had been proposed by 1999 had

seen little to no industrial adoption. In the same year, Gregersen and Jensen published a

much more comprehensive survey comparing various temporal entity relationship modeling

techniques [70]. The following paragraph taken directly from that survey, still holds true

today, and eloquently summarizes the shortcomings of temporal ER modeling techniques:

“In the research community, as well as in industry, it has been recognized

that temporal aspects of database schemas are both prominent and difficult to

capture using the ER model. Put simply, when modeling fully the temporal

aspects, the temporal aspects tend to obscure and clutter otherwise intuitive

and easy-to-comprehend diagrams. As a result, some industrial users simply

choose to ignore all temporal aspects in their ER diagrams and supplement

the diagrams with phrases such as “full temporal support.”The result is that

the mapping of ER diagrams to relational tables must be performed by hand;

and the ER diagrams do not document well the temporally extended relational

database schemas used by the application programmers.” [70]

Bridging the two worlds: Perspective of this thesis

Before going further into process modelling, it is important that we digress a little from our

ongoing discussion of prior work and highlight our perspective on several issues discussed

so far. One of the fundamental shortcomings of prior work in our area has been to consider

data modeling and business process modeling as two separate problems. However this

thesis claims that when it comes to management of constraints within a database system,

these two areas are intricately linked together. This assertion is central to this thesis and

we revisit it in Chapter 3.

Observe that ER diagrams only tell us how data is logically structured in a database,

which attributes to store for different entities, and some basic information about how these

entities relate to each other. Similarly if we are to examine a business process model, we
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will learn how data will be generated and what sequence of conditions need to be met before

a business process concludes. However since the “status” of the process in question is itself

inferrable from data contained in a database, there is automatically an implicit mapping

between the data model and how a business process uses it. Furthermore the notion of time

very elegantly connects the data model and the business process model in the context of

constraints. Even though time is explicit in the data model (storing transaction and valid

times) and implicit in the business process model (by observing that if a process “moves

forward” then some time has elapsed), data itself is constrained by constraints possibly

originating from both these sources (data model or the process model).

This subtle interplay between data modeling, temporality, and progression in business

processes is why a critical examination of both data modeling and process modeling tech-

niques is directly relevant to our work. Furthermore, this relationship gives significant

credence to some form of temporal logic being an ideal tool for specifying process centric

constraints over relational database systems.

BPMN and BPEL

BPMN (Business Process Model and Notation, see Figure 2.1 for an example) currently

represents the state of the art in process modeling and has lately received significant

attention from researchers and the business community alike. At its core BPMN is simply

a process modeling notation very similar to flowcharts and UML activity diagrams. As

of March 2011, the second iteratively improved version of BPMN is an official Object

Management Group (OMG) standard [113]. Wohed et al., have exhaustively analyzed

the capabilities of BPMN under the workflow patterns framework [172], and the book of

White and Miers serves as a comprehensive reference guide for BPMN notation and usage

[170]. Although BPMN may seem to be yet another process modeling language, there are

several reasons why BPMN has revitalized the process modeling community. Foremost

it addressed the criticism that UML activity diagrams (discussed shortly hereafter) have

traditionally focused more on serving the needs of the software engineering community.

The similarities between BPMN and traditional flowcharts gives this argument significant

credibility. In fact, the case has been made that business process diagrams in BPMN are
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Figure 2.1: BPMN diagram for a vending machine. The diamond with a + sign represents
a parallel split. See [112] for a detailed usage guide and many more examples.
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much more amenable for human consumption [179]. Second, BPMN represents a unification

of several notational languages that had been developed by various vendors to serve the

needs of the process modeling community. The solidification of the BPMN specifications

by the members of the OMG brought together many influential organizations and vendors

of process modeling software to agree on a notational standard.

A parallel effort undertaken by the OASIS group has been to develop, standardize, and

promote the Business Process Execution Language (BPEL) (BPEL) [71, 89]. BPEL can be

best described as an XML based description of the control flow of a business process. The

motivation for an XML based extensible language comes from the fact that many business

processes today revolve around numerous independent web-services working together and

passing information back and forth. Consequently a language for orchestrating (monitor-

ing, managing, and enforcing) control flow of information between these services provides

a platform for quickly building applications that support complex business processes. Van

der Aalst et al. in their paper titled “Life after BPEL” [160], have made the criticism that

on the surface BPEL looks like a simple messaging language that connects several web

services (modules in the classical sense) together. However the authors do acknowledge

there are specific features (albeit mostly syntactic) that make BPEL particularly appealing

for mashing together web-services.

Because of the overwhelming support of the process modeling community that these two

standards have received, there has been significant research conducted in mapping BPMN

constructs into BPEL semantics. The objective of such research initiatives is to convert

a business process diagram to its execution language specification and then perhaps to

generate control flow constructs in various programming languages automatically so that a

message passing/orchestration service can be easily built to monitor and enforce a business

process. However these mappings are typically not complete and not sufficiently expressive

to accomodate a wide range of control-flow situations. Furthermore, the mappings can

often come with their own set of problems, including generating BPEL code that is either

too complex and/or too unreadable by humans or that is not easy to trace back to the

original control flow constructs. Nonetheless this is a research area that has the attention

of the business process modeling community. The thesis of Jeroen Blox (2009) provides

a comprehensive review of such techniques, their positive aspects, and shortcomings, and
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Figure 2.2: A simple UML activity diagram for a vending machine

it also proposes Blox’s own BPMN2BPEL translation mechanism [26]. It serves as an

excellent starting point for those interested in research in this direction.

UML and OCL

Graphical modeling of data and processes has also seen significant interest from the software

engineering community. UML (Unified Modeling Language) is commonly used for modeling

objects as well as relational databases. It has recently been extended to include the Object

Constraint Language (OCL) [114], which allows simple invariants on objects to be specified.

OCL can be considered to be a textual addendum to several types of UML diagrams.

The motivation for OCL comes from the fact that objects, relationships, and activities

specified within UML diagrams can be constrained, but neither is it feasible to forcibly

integrate these constraints in one diagram nor can some of them be expressed visually.

Consequently it is often better to express these constraints in plain text that accompanies

a UML diagram. As an example let us say we have two types of objects in a specific

UML diagram namely vehicles and owners (see Figure 2.3), and numerous data (attribute)

specific constraints revolving around different types of licenses for different types of vehicles

as well as different age requirements for different types of licenses. Instead of trying to

express all this information, we can start listing object level invariants one by one, e.g., “if

vehicle.type = “Motorcycle” then IsTrue(LicenseClass(vehicle.owner.license), ≥, ‘M1’).”

A brief explanation of what this constraint means (i.e., a vehicle’s owner must have the

relevant license) can also be provided alongside. It is easy to see how a set of constraints
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Figure 2.3: A simple UML class diagram. Note that the diagram is much richer than
traditional ER diagrams and contains descriptions of functions. Other extensions can
greatly enhances the usability of such modeling for software developers/engineers

written in text provides a much better way of conveying constraints than modeling them

graphically.

Note that simple object level invariants, such as the one discussed above, can be easily

converted into enforceable constraints in many target languages. With regard to SQL

and database systems, Demuth et al. have proposed an extension to OCL for automatic

translation of object level constraints in the modeling language to database level triggers,

provided “object-to-table mappings”1 are available [51, 52]. Badaway and Richta [16] and

Zimbrão et al. [178] have also presented similar mechanisms to translate OCL constraints

to SQL assertions. Although such approaches to constraint generation may seem new in

the context of the recently proposed OCL, in Section 2.3 we observe that template based

constraint generation techniques for database systems were exhaustively studied in the

mid 90s in the context of active database management systems. The very similar research

conducted in the database community more than a decade earlier is perhaps not only more

comprehensive and relevant, but also provides the foundations on which today’s object

level constraints can be embedded in database systems.

A note on Object Relational (OR) Mapping

As alluded to previously, there are major differences between the way system developers

working in the object oriented programming (OOP) paradigm view objects and the way

database programmers view relational structures that store the details of those objects. In

1more appropriately known as object-relational-mapping in the database community
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practice the more we go beyond simple objects and tables, the more convoluted the map-

pings become, and the difference between these two world views become more and more

irreconcilable. The view taken by database developers primarily focuses on efficient stor-

age, management, and optimized retrieval/update of interrelated objects and the complex

processes in which they partake. Furthermore relationships between objects are considered

first class citizens in database design theory, complicating the matter further of how sub-

objects of various classes may be related to each other. Database developers thus often

disregard the notion of derived and sub-class oriented inheritance hierarchies and focus on

normalization and separation of data based on actions and nouns. This in turn requires

a complex web of wrappers to be written (and forever maintained) by a few programmers

who are familiar with both the database schema and the object level view of data, so

that objects and sub-objects can be properly maintained in the database by mapping their

attributes properly at the storage level.

This mismatch has been well recognized as an irreconcilable difference by many promi-

nent researchers in both the database and programming languages communities. The use

of object-relational mapping tools to address these differences is a contentious issue as

well. Having an object-relational mapping layer can often introduce its own set of com-

plications: as a business and its database evolve, these mappings become more and more

complex and time consuming to maintain. Some have even called this ongoing battle to

bridge the two worlds as the “Vietnam of Computer Science” [108]. In this thesis we refrain

from taking sides or even expressing an opinion on this matter. However we do point out

that if an elegant and easy to use method of mapping complex objects and their behav-

ior (processes) to storage level constructs in database systems is ever discovered, then a

“policy-to-relational” mapping would be near trivial to support on top of that framework

as the next logical step. For a deeper look at the problem of object to relational mapping

and the general problem of arbitrary schema-to-schema mappings, the reader is directed

to the works of Bernstein and Sergey [23], Adya et al. [5], Stajano [149] and O’Neil [115]

as comprehensive surveys and excellent starting points for further research in this areas.
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2.3 Logic, Constraints, and Active Database Systems

At this juncture we move from modeling of policies to enforcement of constraints in a

database system. Note that there are several ancillary issues across the policy lifecycle

that we have not yet addressed directly. Conflict detection and resolution are examples

of problems that can either be addressed during the policy modeling phase or left for the

execution engine as a run-time enforcement issue. More often than not, one of the funda-

mental objectives of having a logical policy model in the first place is to detect (or prevent)

as many conflicts as possible before implementation. The role of the implementation en-

gine in such cases is to cater to the exceptional situations where the model is not able to

provide conclusive answers.

A more concrete example is that of a file on disk for which an operating system is

managing permissions. A user and group based policy model may allow the group called

“Administrators” access to an object and deny access to a particular user “John” for the

same object. A trivial conflict could occur if John ever becomes part of the Administrators

group, and consequently a logical policy model often comes with resolution mechanisms,

such as giving preference to negative authorizations. We will examine several such issues

throughout this thesis (conflict detection specifically in Chapter 5). In this section we

present a broader examination of logics behind policy modelling, constraints, and method

of enforcement in database systems.

Active Database Systems

An active database system is a DBMS with support for event detection (monitoring) com-

bined with the facility to execute transactions autonomously [119]. Such a system is

fundamental to the continuous monitoring of business rules and their enforcement. Dur-

ing the 1990s, active databases received significant attention from the database research

community, and many prototypes such as Ariel [73], Starburst [171], SAMOS [68], HiPAC

[47] and ODE [98] were used to demonstrate the applicability and practicality of triggers

as a means for offering event-driven transaction processing. As a result of that research,

most modern relational database systems today support the notion of triggers. A trigger
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is a pre-programmed transaction that can be invoked when a particular condition in the

database is met. User programmed triggers can also be executed based on temporal and

periodic conditions as well as when certain failure conditions are met. Research related to

trigger termination and confluence that emerged during the 90s forms the basis of reason-

ing over a set of event-condition-access (ECA) rules in a database. Since the solidification

of the SQL3/SQL:1999 standard, triggers have become the de-facto means of supporting

user programmed ECA rules within a database system [30].

Automatic generation of triggers to enforce rules in a database system is not a novel

concept. Many of the fundamental constraints pertaining to data integrity, such as primary

key, foreign key, uniqueness, and domain constraints, are, in fact, no different than triggers

on top of relational tables [38]. Even if not explicitly employed by users, triggers are often

transparently defined by a database system to monitor integrity constraints [31] and for

the incremental maintenance of materialized views [72]. The use of triggers as a means

to implement business level policies has also seen widespread adoption [30, 144, 95], and

today most commercial database system have extensive support for user programmable

triggers. In addition to supporting business rule enforcement, the most common uses of

database triggers include alerting, replication (copying modified data to other locations),

auditing (keeping a secure history of updates), and even logging access control events [30].

Although the research in this thesis does not directly concern itself with implementation

of an active database system, it relies heavily on the fundamental framework for event-

condition-action based rule checking provided by database systems. We believe that for a

policy modeling framework to be useful, it must in some way have a direct (and prefer-

ably fully automatable) implementation path to be written as enforceable rules (triggers)

within a database system. Furthermore we will rely on prior literature to propose opti-

mizations with business policy, discover conflicts, and propagate knowledge about policies

(as manifested as triggers/rules) back up to the business level modeling layer.

Since the proposed policy modeling language of choice in this thesis is first order tem-

poral logic of the past and its metric extensions, the work of Chomicki [33] and Toman and

Chomicki [154, 34] is of significant importance, as it lays down the foundations of efficiently

implementing first order linear temporal integrity constraints within relational database

systems. It is worth acknowledging that the aforementioned works still remain state of the
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art in describing the limits of the types of database level constraints that can be efficiently

enforced and the compromise between auxiliary space and efficiency that needs to be made

during implementation. The performance results presented in this thesis (Chapter 4) serve

as yet another practical validation of the above works.

Temporal Logic and Policy Models

Research pertaining to the use of temporal logics in computer science has spanned a pe-

riod of over five decades. However among the various fragments, the linear propositional

fragment of temporal logic (LTL) has received significantly more attention than others.

The popularity of LTL is attributable not only to the fact that computer aided verification

and model checking have their theoretical underpinnings in LTL, but also perhaps to the

simplicity and elegance of LTL. The decidability of propositional LTL was first shown to

be P-SPACE complete by Sistla and Clarke [147]. Recent results have identified several

broader classes of first order metric monodic variants of temporal logic as being decidable

[118, 79]. This thesis directly uses these results to make claims about several problems,

such as conflict detection within a constraint system. A reader who appreciates topics

such as satisfiability and decidability of logics will consequently appreciate the reduction

of several problems in constraint management to these well studied problems. A large

body of work in the area of policy specification using temporal logic, including this thesis,

is motivated by the classical work of Lamport (Temporal Logic of Actions [97]) and by the

seminal work of Pnueli [123, 122].

Using LTL as a policy level tool for specifying temporal access control restrictions [88]

and determining regulatory compliance using historical audit logs [57] have received varying

degrees of attention from researchers. More recently, there has been a push to use metric

first order temporal logic as a unifying layer of policy that is able to support obligation

modeling, Chinese Wall policies, and even data retention policies [19]. However, to the

best of our knowledge, no prior approaches have looked at the problem of integrating data

models and process models to enforce process centric temporal integrity constraints within

database systems. As we shall see in subsequent chapters, there are many challenges faced

when porting a logical policy model into its implementation, which prior works have failed
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to address.

Several researchers have examined the stark resemblance between the problems of

model checking, satisfiability, and variants of the constraint satisfaction problem (CSP)

[24, 169, 62]. The types of constraints examined in the work of Demri and D’Souza [50]

are very similar to those that we examine in our work and that we expect to encounter in

business situations. Their primary result shows that solving constraints specified in linear

temporal logic over certain decidable SMT theories (more specifically the constraint sys-

tems (N, <,=) and (Z, <,=)) is equivalent in computational complexity to that of classic

LTL satisfiability. The link between several problems in database systems and the con-

straint satisfaction problem is also well known to researchers. Many classical problems,

such as containment for conjunctive queries and query answering using views, can be di-

rectly reduced to that of constraint satisfaction [166, 94]. Once again, we will rely on these

classical results to answer several important questions about what class of process-centric

constraints can be accommodated in our proposed model.

If we step further back, we can see that there is also a significant link between busi-

ness process modeling techniques, such as workflows, and state machine oriented analytical

techniques such as Markov Modeling and Petri-Nets. Pesic and van der Aalst have exam-

ined this very resemblance between finite state machines and business process models [121].

However, because of its sheer complexity, these automata-theoretic models have had little

or no impact on the process modeling community. With that being said, analysis of state

oriented systems does relate directly to several problems in policy verification and must be

considered when proposing and analyzing policy models.

Finally, in the context of our own work, we note that the notion of modeling a business

situation as a state machine and then expressing (and checking) path constraints is very

closely associated with formal verification and model checking [36, 22]. There is, in fact, a

direct correspondence between traditional model checking of software systems (specifying

invariants in linear temporal logic, checking for liveness and safety, etc.) and our proposed

model for ensuring business process integrity. In the context of formal verification, the

objective is to verify properties of a system over all possible runs. Although in our work

the lines between a model and its properties (constraints) are blurred, there is a significant

overlap in the context of identifying potential conflicts in the business lifecycle where a
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constraint may be violated.
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Chapter 3

Policy Modelling for Relational

Objects

3.1 Outline

In this chapter we propose a novel way of bringing together business processes and database

constraints using first order temporal logic. In Section 3.2 we discuss the assumptions we

are making about the business situations and databases that must hold for our policy

modeling framework to function. In Sections 3.3 and 3.4 we present a formal description

of our policy model and relate it to integrity constraints specified in linear temporal logic

(LTL) over the history of business objects contained in a database.

Section 3.5 introduces our proposed state-oriented, graphical policy/process modeling

technique for relational database systems (which we call the database constraint modelling

language, or DCML). It is shown that the language is able to represnt constraints specified

in the past-only fragment of linear first order temporal logic. Section 3.6 discusses several

novel aspects of the language and demonstrates, using micro-examples, that a broad class

of process-oriented description of business processes can be easily translated into DCML

models. In Section 3.7 we revisit prior research that is most closely related to the language

presented in this chapter and contrast its features with those of prior approaches. Finally,
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Figure 3.1: A database is a reflection of the complete picture of a business

Section 3.8 concludes this chapter by summarizing its contents and discussing the next

logical step of converting constraint models into actual implementable constraints.

3.2 Premise

Before describing our underlying model for policy enforcement in a relational database, it

is important to draw out a distinction between business policies at the conceptual level

and their equivalents at the database level (Figure 3.1). In most cases the contents of a

database represent the record keeping aspect of compliance with a given set of policies.

To explain this further, let us consider an example where “client consent” is required by a

business for a particular situation, and it is recorded in a database as a binary field (yes

or no). Recording the fact that consent has been received in a database usually serves as

an audit or perhaps an internal check for business applications/processes that require the

client’s consent. If the client requests a service for which his/her private information needs

to be disclosed to third parties, automated systems can check whether the client’s consent

to disclose personal information has been received or not, by simply querying the database.

Thus, the contents of the database reflect the ground truth on which policy decisions are

taken.

The duality between what is recorded in a database and the current state of a business

is critical in our framework. We assume that both the database and a business are, in

a manner of speaking, equivalent state machines that move in lock-step with each other.

In our proposed framework, the following two assertions must hold true in all situations
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where policy-centric mappings to a database rule system need to be established.

Assertion 1: A database state corresponds to a business state and there must always

exist a describable relationship between a change in the business state and the associated

change in the database state.

We define a database state as the contents of a database containing historical and cur-

rent operational records of a business at a specific point in time. Similarly, we define a

business state as an abstract union of the states of all business objects, processes, and

situations that are ongoing and encountered in the past. We use the notion of “correspon-

dence” informally to assert that the changes to a database and changes at the business

level (for example progression in a particular business process) must always be related to

each other. For example, if the contents of a database are impacted by a transaction, then

we must have (in some way) changed the state/reality of the business as it exists. Simi-

larly, if the business state has changed, then that change is immediately made persistent

by updating the contents of the database. In other words, the state of a business and the

state of a database not only relate to each other but also change in sync with each other.

To further formalize the duality, we require that there must exist a correspondence

(“describable relationship”) or a mapping between state changes at the business level and

state changes at the database level. This correspondence may be informal and does not need

to be explicitly documented in natural language, as long as it can be provided by a business

level user or a database administrator. Intuitively this requirement is intended to ensure

that there must exist a sound explanation or a systematic method of explaining business

level concepts and how those concepts behave over time as stored in a database. This is

a critical requirement in actualizing a business policy within a database and conversely

storing and monitoring associated rules within a database system. In our example of client

consent, the relationship may be described by a database administrator or a corporate

privacy expert by interpreting a binary attribute (0 for no consent received and 1 for

consent given). It can perhaps further be elaborated by those experts that changes to

consent (business level state changes of giving or taking away consent) are equivalent to

changes in this binary value associated with each client in the database.

Assertion 2: A policy rule is a path restriction specified in the business state space and
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corresponds to a database constraint which is a path restriction specified on the database

state space.

Once we have established that state changes at both levels (the business concept and

database levels) are essentially the same and a reasonable explanation is available for any

and all such changes, a policy can then be described as a sequence of required (or instead

undesirable) state changes in the business level. For example, a policy could require that

a business state in which a customer’s information is disclosed to a third party without

prior consent should never be reached. Since business rules can be described as legal (or

illegal) state changes at the business concept level, we can now work towards translating

these rules as legal (or illegal) database state changes.

We believe that there are two main advantages of a state-based mapping between logical

policy models and relational database systems. First, we note that databases are by design

complex state machines and typical policy-centric decision making (access control, integrity

checking, etc.) occurs when transactions attempt to access the database in a particular

state or move the database from one state to another. This reasoning applies to the

business world as well, since most traditional business processes progress towards their

conclusion in discrete steps. Second, reasoning over state transitions is a well understood

problem in the context of model checking. Formal properties of state system models, for

example, safety (something bad should never happen) and liveness (something good should

eventually happen) can be easily specified in linear temporal logic and tested against a

formal model of the policy. As we explain in Chapter 4, these temporal properties can also

be automatically translated into database constraints, thereby making implementation

of the originally modeled business policies a seamless process. Thus, this state system

formalism is ideal to capture (make formal) the semantics of a business process.

3.3 Enforcement Model: Moving from Process Mod-

els to Constraint Models

So far, we have used the term “business state” in a very abstract sense to mean the entire

business, and the term “database state” has been used to describe the contents of the
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entire database. However, as pointed out in the introduction of this thesis, we rely on

individual, pre-existing, visual, state-oriented descriptions of business processes (such as

workflows, process models, state charts, etc.) to map out fragments of the business state

space onto fragments of the database state space and then constrain the database state

space appropriately. In other words, instead of attempting to relate the entire business to

the entire database, we restrict ourselves to specific well-understood functions of a business

(and the governing policies associated with those business functions).

The reason for doing so is straightforward. A typical business user can understand the

broad-ranging assertion that a “business is equal to its database.” However, in practice,

the possibly hundreds and thousands of correspondences between various business pro-

cesses and individual tables and rows is likely to be beyond the scope of a single user to

comprehend. In a typical commercial database deployment, no single user can describe

completely and accurately all the complexities in all activities of a business. Similarly, it is

equally likely that a single DBA may not be aware of (or be able to explain) the behaviour

of all parts of a database as it changes over time. Therefore, instead of attempting to map

out two very large and abstract state spaces and then translate rules from one to the other,

we reduce these state spaces so that they are more manageable.

Reducing the state space to smaller and easier to understand fragments has several

advantages. Foremost, visual descriptions of processes are typically readily available, as

they are widely used tools in the businesses and software engineering communities. And

even if processes are not fully documented, business users can provide pictorial descriptions

of business processes (stages, progression through the use of arrows, branches for various

exceptions, termination conditions, etc.) at a very high level, which can then be used as

a basis for database constraints. Thus, such descriptions play the role of providing the

“business state space” for individual business processes in our model. Furthermore, these

process diagrams resemble state machines (see Figure 3.2) and provide significant insight

into the valid (required) behaviour of the associated parts of the database. Finally, we

note that at the level of individual process/workflow/activity, these descriptions are easy

to understand. At the individual process level, the correspondence between changes in the

business level objects and database constructs is much easier to capture. Consequently the

overall process of translating business rules into database constraints is made much easier
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when using one process diagram at a time to guide implementation.

3.3.1 Terminology and Setup

Figure 3.2: A hypothetical process model for expense claim processing describing the stages
(states), actors (users) and actions (transactions) related to an expense claim.

Our overall goal is that of translating constraints from the business world to the

database world. Our approach, as described above, is to do this one process (business

function) at a time. To make our notation consistent, from this point onwards we will use

the term artifact type or (business) object type to refer to a concept about which various

processes are specified. For example, Figure 3.2 is a simplistic example of a “payment

process” on the “expense claim” artifact type. Such process diagrams often embed within

them interpretations of the business policy for the process being outlined. For example, a

policy rule embedded in the above diagram could be that “only a member of the finance

department can issue a payment for an expense claim that is awaiting payment.” Con-

sequently, all individual artifacts of that type (all expense claims) must follow the rules

embedded in the depicted process. Note that we are using the term artifact as it has been

used in prior work1 to mean, broadly, an object of interest to a policy maker.

Similarly, we are using the term process model to represent the large category of visual

state-oriented descriptions of operational business specifications, as discussed in Chapter

2. Although these specifications can include a broad range of diagrams, it is best that

1This is examined in greater detail in Section 3.7. The reader unfamiliar with this term can consider
an artifact to be a holistic view of data relevant to a business activity or process.
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the reader consider these descriptions to be informally specified workflows or flowcharts

(such as the example in Figure 3.2). A more rigorous examination of issues and features of

process description languages that make them more amenable to conversion into database

constraints is presented in Chapter 7. However, for now, the reader should consider them

to be informal state oriented diagrams that have to be given formal meaning as database

constraints. Therefore, we use the term “policy makers” to refer to users who will convert

these informally specified business into database constraints.2

Finally, recall that having these process diagrams is not a strict requirement for con-

straining a database system, as long as a detailed explanation of the behaviour of the

business processes is available. It is of course helpful if this description is available in

visual notation (state oriented and depicting valid progression), as this makes the task of

converting process models into database constraint models significantly easier. Clearly, if

the business states can be easily identified in the database (e.g., the notion of being in the

unpaid business level state maps onto a binary paid flag being zero in the database), then

we can begin to reason about paths an artifact can (should) take across the business state

and how they map onto restrictions on the database state space. However, we point out

that a proficient enough policy maker (who is knowledgeable about a process on an artifact

type) may not need to rely on business level process diagrams to embed constraints on a

database.

3.4 Artifacts in Relational Databases

The first step in converting business rules into database constraints is that a user must

identify artifacts within a database system. The most natural way to do this is to use the

abstraction provided by database views.

Definition 1. An artifact type is a user-defined view over a database schema that captures

all the data required to enforce a business policy.

Definition 2. An artifact is a uniquely identifiable row in an artifact type.

2as opposed to a corporate level policy developers that interpret legislation to develop high level policy
statements
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Figure 3.3: Artifact types (views) essentially serve as a mapping between business concepts
and the physical contents of a database system
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In relational database systems, views are a flexible concept that are able to encapsulate

an arbitrary business object or any collection of individual pieces of information that relate

to a higher level business function. Consequently, a view will define an artifact type, and

all individual artifacts will therefore be elements in the view. To elaborate this concept,

let us consider an e-commerce database that stores transactional information regarding

customer sales and purchases. The Orders, Customers, and Shipments tables in such a

database are assumed as follows:

Customers: (int CST ID, varchar NAME, varchar ADDRESS, . . ., varchar

ADDRESS COUNTRY, varchar TYPE)

Orders: (int ORD ID, int CST ID, int SHIP REF, datetime DATE TIME,

float AMOUNT, bool PAID, bool APPROVED, . . ., varchar NOTES)

Shipments: (int SHIP REF, bool SHIPPED, varchar SHIP METHOD, . . .,

datetime SHIP DATE)

The intent of the Orders table is to store the details of all sales that the business handles.

Each row in this table is uniquely identified by its ORD ID attribute, and the remaining

attributes represent detailed information about the particular order. The Customers table

simply stores the name and address for customers in the database that can place one

or more orders, and the Shipment table is intended to store the logistical information

associated with the orders and customers in the database system.

Within the above schema the user may define several artifact types as views. For

example, the views defined by the following SQL queries are all valid definitions for an

artifact type SalesOrder:

(a) SELECT ∗ FROM Orders NATURAL JOIN Customers NATURAL JOIN Shipments

(b) SELECT ∗ FROM Orders NATURAL JOIN Customers

WHERE AMOUNT >= 100 AND AMOUNT <= 1000

(c) SELECT ∗ FROM

Orders NATURAL JOIN Customers NATURAL JOIN Shipments

WHERE ADDRESS COUNTRY = ‘‘CANADA’’ AND SHIP METHOD = ‘‘UPS’’

Note that from a business perspective each row in the above views may be uniquely

identified as a sales order artifact that was (or is currently) being processed by the business.
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Views (b) and (c) impose criteria on the artifact types being defined and therefore will only

contain SalesOrder artifacts that match their respective predicates. Although all of the

above are valid definitions of business artifacts, there may be scenarios where each of these

definitions may serve a special purpose for an individual policy maker. For example, view

(a) may be used to enact policies that apply to all sales orders, but view (c) may be of

specific interest to a regional sales manager for Canada, who may want to impose specific

policies on orders that are shipped to Canada via UPS. Also note that since artifact types

are view definitions over the schema, individual artifacts are not necessarily physically

stored in a database. Consider a more complex artifact type, SalesTotals, defined by the

following view generating query:

SELECT

YEAR(DATE TIME), ADDRESS COUNTRY, SUM(AMOUNT) TOTAL

FROM Orders NATURAL JOIN Customers

WHERE PAID = true

GROUP BY YEAR(DATE TIME), ADDRESS COUNTRY

Observe that each artifact in the above view will represent the yearly sales for a par-

ticular country that may be derived from many individual rows that contribute towards

the total. Such artifacts may be relevant to marketing and advertising policies that target

customers in regions where sales are low.

3.4.1 State of an Artifact

For each object/artifact type contained in a database, policy makers (or their delegates)

may define arbitrarily many boolean functions that group individual artifacts together for

policy purposes. This implicitly defines a state space in which states correspond to subsets

of the functions that evaluate to true (when applied to individual artifacts). However,

rather than considering all functions simultaneously, we propose the following definition:

Definition 3. For any boolean function F defined over the attributes of the artifact type,

an artifact is in state F, or is in the F state, if F evaluates to true.

Note that an individual artifact can be in many different states at the same time,

provided it satisfies the functions associated with each of the states. For example, consider
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the view definition (a) from the example presented earlier. A function on the attributes of

this view could be defined as follows:

DEFINE STATE Unpaid (SalesOrder)

WHERE (PAID = false AND REVIEWED = false AND SHIPPED = false)

Implicitly, the meaning of this functional state definition is that a sales order artifact

is in the Unpaid state if all three of its paid, reviewed, and shipped attributes are false.

Similarly, we can define states Paid and Shipped as follows, where an artifact may be in

neither, one, or both of these states:

DEFINE STATE Paid (SalesOrder)

WHERE (PAID = true AND REVIEWED = true)

DEFINE STATE Shipped (SalesOrder)

WHERE (shipped = true)

States for more complex and derived artifact types can be defined in precisely the same

way. The following defines the state LowSalesVolume for the SalesTotal artifact type as

one where the total sales volume is less than 10,000:

DEFINE STATE LowSalesVolume(SalesTotal)

WHERE (TOTAL <= 10000)

We can summarize the notions of artifact types and states as follows. Views are used

to define artifact types or object types. A single artifact or object is an element in the

view. A named boolean function defined on the attributes of the artifact type is used to

determine whether a particular artifact belongs to that named state, and the states of an

artifacts are dependent on the particular assignment of its attributes. For example, if x

is an artifact of type V , or equivalently x = (a1, a2, . . . , an) ∈ V , where V is a view over

a database schema, then for a labeled state S with its appropriate conditional function, x

is said to belong in state S if and only if S(a1, a2, . . . , an) evaluates to true. To further

simplify our notation, we will write x ∈ S if and only if S(x).
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3.4.2 Restricting the Database State Space

Once policy makers have identified business artifact types and further defined states of

interest that individual artifacts can be in, all that is required is to establish the associated

restrictions in the state space. Note that under this setup we have reduced a potentially

very large database state space to a compact, user-defined state space specific to a business

artifact type being examined. Moreover, since this state space at the database level was

quite possibly derived from a workflow or process model, it should be similar in size (number

of stages in the workflow) and behaviour (legal/illegal paths in the business level workflow).

The only task left is that of establishing path restrictions within the database artifact state

space that mimic policies and legal paths in the business process model.

To accomplish this we rely on classical first order temporal logic [122]. An example of

a temporal constraint on the Sales Order artifact type defined earlier could be that “an

artifact can only reach the paid state if it was previously in the approved state,” where

both paid and approved are boolean functions defined on the artifact type. The motivation

for restricting state transitions for specific artifact types comes from the fact that these

restrictions are embedded in process models such as the one presented in Figure 3.2 on page

50, and it is these flow oriented constraints when fully captured that delineate a business

process.

3.4.3 Formal Model

Using terminology that is consistent with prior work [122, 97, 19, 123, 24, 79, 147], we

provide a formal interpretation of our policy model that employs temporal integrity con-

straints over uniquely identifiable tuples in database views. Since we are considering con-

straint enforcement over a temporal database (and temporal objects therein), we assume

the presence of the infrastructure to track changes to the attributes of individual artifacts.

In our model we consider the domain of time to be isomorphic to a finite set of ordered

natural numbers (0, 1, 2, . . . , c), where c represents the current or most recent transaction

time. Each artifact has its own finite history that can be considered as a temporally ordered

sequence of changes made to the attributes of the artifact since its inception:
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Definition 4 (Artifact History). The history of an artifact is a mapping from natural

numbers representing time to ordered tuples of the form {(t, a1t, a2t, . . . , ant)}, where each

ait is the value of the attribute ai at time t.

Therefore, the history of an individual artifact with n attributes can be considered

an ordered sequence of tuples starting at t = 0 (artifact inception) and ending at t = c

(current or most recent time). Note that artifact histories are not combined or intertwined

in anyway. That is, each individual artifact history (timeline) is retained independent of

other histories in the database. We use the shorthand notation of depicting the history

of an artifact A as: A0, A1, A2, . . . , Ac. The same can be viewed in its expanded form as

follows:
A0 : (0, a10, a20, . . . , an0)

A1 : (1, a11, a21, . . . , an1)

A2 : (2, a12, a22, . . . , an2)

. . .

Ac : (c, a1c, a2c, . . . , anc)

(3.1)

Approaches to maintain individual artifact histories (e.g., auxiliary tables and delta-encoding)

are examined in detail in Chapter 4. However, for now we assume that a database is capable

of tracking changes to individual artifacts and utilize the above abstraction for constraint

enforcement.

As is the case in implemented database systems, the number of attributes of the artifact

type, n, is finite and the domains of each of the ai are assumed to be finite as well. Thus,

there is always a finite amount of history that is contained in a database for every artifact.

Definition 5 (Constraint). A constraint in our model is a Linear Temporal Logic (LTL)

formula defined using the attributes of an artifact type but interpreted (enforced) over the

history of all artifacts of that type.

All artifact histories must comply with all the constraints defined on their respective

artifact types and a constraint on an artifact type cannot be selectively enforced on a few

artifact histories only. To specify constraints we use LTL formulas with past connectives
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only (Past-LTL). This is a natural choice in database systems, since enforcement decisions

can be made with certainty by looking at the past history of an artifact only. The interpre-

tation of these constraints (i.e., the enforcement model discussed in detail in Chapter 4) can

be summarized as follows: Given an update to an artifact A, we consider the history entry

that would be committed to disk if this update were allowed to happen. That is, we check

for each artifact being impacted that its anticipated history A0, A1, . . . , Acurrent, Anext is a

valid trace for all the constraints specified over A’s artifact type. If the resulting trace is

valid, then the transaction is allowed, i.e., Anext is accepted as the new history entry for

the artifact, otherwise the artifact stays unchanged as Acurrent.

To accommodate restrictions over different domains, constraints are specified using

Constraint Linear Temporal Logic (CLTL) [173, 17, 24, 49, 48, 50]. CLTL extends LTL

and adds a spatio-temporal aspect to the logic by allowing constraints to be specified over

domains with well-defined operators as propositions in the logic. For example •(x < y) is

a CLTL formula interpreted over the domains of x and y and a definition of the operator

<. We use traditional operators (<, ≤, =, 6=, ≥,>) for well known (finite fragments

of) domains {N,Z,R,Q} to specify constraints. Operators on complex domains, such as

(=) on the domain of Strings (varchars in SQL), are used in their intuitive programmatic

interpretation (i.e., string comparison). Note that we can adopt this interpretation because

our domains are assumed to be finite. Consequently, we can treat database level attribute

types (e.g., varchars/strings, floating point) as finite subsets of a well ordered domain, such

as Z, and then define operators such as equality to mimic the behaviour of the appropriate

database functions.

The definitions of the past LTL operators utilized to constrain the history of artifacts

are consistent with prior literature and are as follows:

1. CLTL formulas SA, ¬SA, SS ∧ SB and SA ∨ SB evaluate as true iff the conditions,

specified as constraints over the appropriate domains, hold true

2. •SA (previously SA) is true at instant t iff t > 0 and SA is true at instant t− 1

3. SA since SB is true at instant t iff for some s, 0 ≤ s < t, SB is true at instant s, and

for every u, s < u ≤ t, A is true at instant u.
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4. �SA (sometime in the past) is true at instant t iff true since SA at instant t

5. �SA (always in the past) is true at instant tiff ¬�¬SA at instant t

Thus, constraints specified using CLTL are extended LTL constructs and are inter-

preted in the same manner as classical LTL constraints. It is important to recognize that

constraints are specified over an artifact type but enforced on all individual artifacts’ his-

tories of that type. For example, consider the following constraint defined on the sales

order artifact type defined earlier:

paid⇒ •(¬paid ∧ amount > 0)

It forms a temporal constraint using two attributes from different domains (boolean and

floating point, as derived from the view specifications). It specifies that if an artifact’s

paid attribute is currently true, then it must be the case that previously the same boolean

attribute was false and the amount attribute was greater than zero. Note that this con-

straint is specified using the attributes of the artifact type and then enforced on all artifact

histories.

It is important to recognize that the CLTL constraints are always interpreted over the

history that would result as a consequence of the “next” entry being added. That is, a given

constraint is always checked over (A0, A1, . . . , Acurrent, Anext). In the above example, if a

new entry in the artifact history is being appended (Anext) in which the boolean attribute

paid is true, then condition ¬paid ∧ amount > 0 must hold on Acurrent before Anext is

allowed into the history. In other words, enforcement is done by continuously monitoring

the impact of the next (to-be-written) entry in the artifact history and ensuring that the

resulting history is compliant with the constraint specified.

As is common in database systems, we adopt a strict model of compliance, where all

the user-specified CLTL constraints on all artifact types must independently hold for all

individual artifacts. This is especially relevant to situations where a database transaction

modifies several different artifacts at the same time. In such cases we require that each of

the individual histories being appended remains compliant with all the constraints defined

over their respective artifact types.
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3.4.4 Starting and Ending Artifact Lifecycles

Time in our model is finite and isomorphic to the natural numbers (including t=0), and

the temporal operators in LTL refer to time implicitly. Within this model we require a

mechanism to constrain the way artifacts can be created to start their lifecycles. More

formally, we need a mechanism outside traditional LTL to restrict the values of the artifact

explicitly at t=0, the time at which the artifact is created. To do so, we define a special

non-temporal constraint φS(A) that is interpreted for the artifact at t=0 only. Users can

define φS(A) as the function that represents the starting state of an object. For example,

consider the following definition of φS(A):

φS(SalesOrder) : ¬reviewed ∧ ¬paid ∧ ¬shipped ∧ amount > 0

Note that since φS(A) is required to be non-temporal, it cannot (and in the above

example, does not) contain any temporal operators. This is because the definition of

φS(A) is a constraint only on the artifact at time zero (A0) and can be interpreted as

an initialization requirement for all artifacts of a given type. In the above example, the

initialization requires that all Sales Order artifacts when logically created (at t=0) must

not be reviewed, not be paid, not be shipped, and must have a non-negative amount. Also

note that defining φS(A) is optional, as policy makers may not want to restrict the way

artifacts begin their lifecycles. Consequently, in such cases φS(A) is defined as the true

function, and therefore all artifact histories trivially comply with φS(A) allowing artifact

attributes to take any values at t=0.

Conversely, policy makers may want to consider the logical deletion of artifacts and

therefore constrain that special time in the history in some way. To denote the “end of

an artifact’s lifecycle,” we transparently augment the definition of an artifact to include a

termination attribute/marker denoted as φ. The history of the artifact is thus now defined

as the following sequence:

{(t, a1t, a2t, . . . , ant, φ)}

where each ait still denotes the value of the attribute ai at time t, but a new boolean

attribute φ denotes whether the history of the artifact, at t, has been terminated or not.
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At any history entry, if φ is false, then the object has (at that point in time) not been

logically erased from the database, and therefore its history can be appended further.

If, however, φ is true, then the object is considered to have concluded its lifecycle and

“actions” or “changes” to it (i.e., an Anext different from Acurrent) should be rejected. In

other words, once an object reaches its “dead” or termination state, signified by φ being

set to true, it should forever be preserved in that “dead” state. To accomplish, this we

transparently add two CLTL constraints for every artifact:

(1) : •φ⇒ φ

(2) : φ⇒
∧
ai∈A

•ai = ai

The net result of these two constraints is that (1) if previously the φ marker was set,

then it must remain set and (2) all attributes retain their previous values when φ is set

to true. As a consequence of these constraints, we eliminate the possibility of changes

to the attributes of the artifact from the moment it logically ended its lifecycle. Note

carefully that constraint (2) is also applicable at the first time instance φ is set true, and

thus it ensures that if an artifact’s lifecycle is being terminated, then that is the only event

happening. In other words, constraint (2) implies that an artifact can not change attribute

values and set its lifecycle termination marker at the same time.

Also note that since φ is introduced transparently, it is not directly available to policy

makers and therefore cannot be used to define additional constraints. In subsequent sec-

tions we will provide an interface through which rules about lifecycle termination can be

implemented by allowing the use of φ indirectly and in limited circumstances. The mech-

anism we have adopted (end of lifecycle marker) is similar to prior work where history

during the “logical existence” of an artifact is forever preserved. Other approaches, such

as deleting the entire history of the object at lifecycle termination, are also possible (i.e.,

we could remove all traces of the artifact ever existing in the first place). However, we do

not explore such alternatives in this thesis.
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3.5 State Transitions and Database Level Workflows

In this section we introduce a visual constraint modeling language for artifact lifecycles

represented in a database. Note that in an unrestricted database, one with no rules or poli-

cies, individual artifacts can change freely, and therefore their attributes and membership

in each of the pre-defined states can change freely from one point in time to another. We

repeat once again that the purpose of using a mechanism such as CLTL is essentially to

specify a particular sequence of artifact attribute value changes as being valid or invalid,

which in turn will reflect how individual artifacts can change state. Our proposed visual

notation mimics statecharts and sequential workflows but also establishes a one-to-one link

between restrictions in first order logic and restrictions in the visual notation for database

centric artifact lifecycle management.

3.5.1 Visual Constraint Notation

Figure 3.4: Simple Exit Restriction between the Paid and Unpaid States

Our diagrammatic convention for specifying database level CLTL constraints resembles

traditional workflow and process modelling techniques in that the notion of a ‘state’ re-

sembles that of a stage in a business process. One such state is represented by a labelled

box or rectangle on a constraint diagram. As described earlier, an artifact (representing

an individual instance of a business process) is in a given state if it satisfies the func-

tion defined on the attributes of the artifact type to be in that state. We use lines with

varying arrows (connectors at different ends) as connections between the states to imply

some path restrictions associated with two states. For all such connections there is formal

interpretation as a CLTL constraint on the artifact history.

Consider the diagram in Figure 3.4 involving two states on SalesOrders that we had

defined earlier. For brevity we have omitted the actual function definitions associated with
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the states and instead referred to them via their state name/label. There is a connector

with a three pronged arrow at the Unpaid side and a direct connection to the Paid state.

The logical interpretation derived by this arrow in the diagram can be read from Table 3.1:

If a SalesOrder artifact is in the Unpaid state at time t, and does not satisfy the condition

to be in the Unpaid state at time t+ 1, then it must satisfy the condition to be in the Paid

state at time t+ 1. The LTL equivalent can also be specified by simply reading Table 3.1

as follows:

(•Unpaid(SalesOrder) ∧ ¬Unpaid(SalesOrder))⇒ Paid(SalesOrder)

If we unwrap the states using their definitions, we can write the temporal constraint as

the following implication on the boolean attributes of the view:

(•(¬paid ∧ ¬reviewed ∧ ¬shipped) ∧ ¬(¬paid ∧ ¬reviewed ∧ ¬shipped))

⇒ (paid ∧ reviewed)

The notation presented below represents the basic constructs of our proposed graphical

database constraint modeling language (DCML):

Visual Notation and LTL Interpretation

Multi-Way Exit Restriction

•A(x) ∧ ¬A(x)

⇒
B(x) ∨ C(x)

If an artifact was in state A at time t and does not

satisfy the condition to be in state A at time t+ 1, then

it must satisfy the condition to be in state B or state

C at time t + 1. Note that the graphical notation only

depicts a 2-way exit restriction leading to states B or

C, but the notation can be extended and used to specify

exit restrictions in which the OR conditional arrows end

towards n different states where n ≥ 1. In such cases

the artifact must satisfy the condition to be in at least

one state on the right hand side at time t+ 1.

Continued on next page

63



Visual Notation and LTL Interpretation

Entry Restriction

(B(x) ∧ ¬ •B(x))⇒ •A(x)

If an artifact is in state B at time t, and does not satisfy

the condition to be in state B at time t − 1, then it

must satisfy the condition to be in state A at time t−1.

Note that this constraint can be considered the dual

of the exit restriction. A multi-way entry restriction

can be created by specifying several entry restrictions

originating from one state and ending in many others.

Never Eventually Reach

�A(x)⇒ ¬B(x)

If an artifact was ever in state A, it should never satisfy

the condition to be in state B.

Disallow Exit

�A(x)⇒ A(x)

If an artifact was ever in state A, it should still be in

state A

Guard Attribute:

A(x)

⇒
•attribute = attribute

While the artifact is in state A, the value of the specified

attribute(s) should remain unchanged. In other words,

whenever the artifact satisfies A(x), it should also satisfy

•ai = ai for the specified attribute i

Continued on next page
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Visual Notation and LTL Interpretation

Invariant Attribute:

•attribute = attribute

since

A(x)

Once the artifact is in state A, the value of the specified

attribute(s) should forever remain unchanged. In other

words, if the artifact ever satisfies A(x), it should from

that point onwards, make the specified attribute invari-

ant, i.e., the attribute does not change its then assigned

value in subsequent history entries.

Table 3.1: Basic path restrictions and their equivalent temporal assertions. Note

that each state has an associated boolean function specified over the attributes of

the artifact type. In our notation we use shorthand notation S(x) to denote the

application of the function of the state S to the attributes of the artifact x.

The notation presented above gives a formal meaning in CLTL to each of the diagrammatic

conventions used in specifying a DCML diagram. For example, the following augmented

version of the two state DCML diagram presented in Figure 3.4 embeds two additional

constraints using the notation presented in Table 3.1:

Figure 3.5: A more complex set of restrictions between the Paid and Unpaid States
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In addition to the constraint present in the original DCML diagram (Figure 3.4), three

other constraints are embedded in Figure 3.5. First, let us examine the double headed

arrow ending in the Paid state, which imposes an entry restriction that can be interpreted

from Table 3.1 as follows:

(Paid(SalesOrder) ∧ ¬ • Paid(SalesOrder))⇒ •Unpaid(SalesOrder)

The above implication can be expanded using the definitions of Paid and Unpaid functions

and is very similar to the one presented earlier for Figure 3.4. The net result is that now

there is both an entry and an exit restriction between the Unpaid and Paid states, and these

constraints must now independently hold true for all SalesOrder artifacts. Informally (in

the business sense), we can describe the interplay of both these constraints simultaneously

as follows: An artifact can only move from the Unpaid state to the Paid state and if an

artifact arrives in the Paid state it must have come there from the Unpaid state. Having

both an entry and an exit restriction between the two states makes the transition system

much more rigid in its flow/direction.

In addition to the above discussed two constraints, there are two invariant constraints in

Figure 3.5 that make the reviewed and paid attributes immutable when the artifact reaches

the Paid state. The invariant constraint for the reviewed attribute can be interpreted using

Table 3.1 as follows:

(•reviewed = reviewed) since Paid(SalesOrder)

or equivalently by expanding the definition of the Paid function as:

(•reviewed = reviewed) since (paid ∧ reviewed)

Similarly, the diagram also requires that the paid attribute also is invariant (unchange-

able) when an artifact reaches the Paid state. Note that because embedded in the state

definition is the requirement that paid = true (i.e., if an artifact is in the Paid state its

attribute paid will be true), a natural consequence of the above constraint diagram is that

if an artifact ever reaches the Paid state its paid attribute will remain true from that point
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onwards in all history entries.

We summarize this section by emphasizing that our proposed database constraint mod-

eling language tries to mimic the notion of states and path constraints as they exist in

classical workflow and process modelling languages. However, because the language is

formally related to CLTL, it can produce complex visual models that may be difficult to

understand for the reader not familiar with temporal logic. Furthermore, we do not make

the claim that the visual-CLTL notation that we have presented covers all possible LTL

style flow constructs. However, it will serve as the basis on which generic visual-CLTL

mappings can be established by policy makers specializing in various domains. We shall

discuss improvements and extensions to this notation in subsequent chapters and propose

various fragments of DCML for specific situations. However, the above proposed DCML

notation should suffice for now in explaining and highlighting the benefits of database level

visual constraint modeling in general.

3.5.2 Artifact Lifecycle Constraints

Initialization Constraints

To support the notion of constraining the start of artifact lifecycles in a database visually,

we denote the non-instantiation of an artifact using a special state φS. Transitions from

the state φS into any other state are considered as initializations, and therefore they are

used in our framework to define the function φS(A) which, as mentioned in Section 3.4.4,

needs to be interpreted at t=0. Furthermore, we only allow multi-way exit restrictions

originating from φS in our diagrammatic convention and interpret them slightly differently

than the visual-LTL semantics of exit restrictions presented in Table 3.1.

Consider the two exit restrictions from φS presented in Figure 3.6. From the diagram

we see that there are two exit constraints as follows: (1) if an object exits φS, it must

enter state D, and (2) if an object exits φS it must enter either state B or state C (or

both). Both these constraints must independently hold true. Since φS(A) is interpreted

non-temporally at t=0, in our notation we simply combine these two constraints to define

the initialization function φS(A) as the conjunction of all the individual exit restrictions
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Figure 3.6: Two different exit restrictions originating from φS.

on φS. Consequently in the above example, φS(A) := D(A) ∧ (B(A) ∨ C(A)). In case the

policy maker does not wish to restrict the instantiation of artifacts, s/he can choose not

to use φS in the DCML diagram at all, in which case φS(A) will be implicitly defined as:

φS(A) := true

and thus place no restrictions on the attributes of the artifact.

We can thus summarize the discussion of φS by pointing out that it is essentially the

“uninitialized state” from which only exit restrictions are possible. Each of these individual

restrictions must concurrently hold true, and we interpret them at t=0 only by using them

to define the function φS(A).

Going off-diagram

In cases where an artifact can begin its lifecycle (A0) in an unrestrained fashion, it is

important to recognize that the notion of an artifact “existing” is different from an artifact

being in a user defined state. In general, it is possible that the attribute values of an

artifact at time i (i.e., Ai) do not satisfy the requirements of being in any user defined

states (i.e., all state functions defined on the artifact type are false for the assignment of

attribute values of A at time i). In such cases, provided that φ is false as well at time i,

the artifact logically exists but is considered to be “off-diagram” (i.e., not present in any

of the states defined on a DCML diagram).

Similarly, as artifacts can change values arbitrarily throughout their existence, they can
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also go off-diagram at various points in time to possibly reappear back in DCML diagrams

in a different set of states. Consequently the reader should consider the notion of a “user

defined state space” as the set of values an artifact can take such that the particular

assignment of attributes ensures existence of the object in at least one state. In many

situations it may be important to constrain the behaviour of artifacts (i.e., their attribute

values) such that they do not go off-diagram but conform to well established paths in their

respective user defined state spaces.

Lifecycle termination

Figure 3.7: An entry restriction specifying that an artifact entering φE (the “dead state”)
must previously have been in state A. The visual constraint can be interpreted by using
DCML (Table 3.1) and the definition of the state φE as: (φ ∧ ¬ • φ)⇒ A(x)

The notion of the “end state” for an artifact’s lifecycle is much simpler to describe.

Such a state labelled φE (Figure 3.7) can simply be defined by the function φ. In other

words, φE is a special state in which the lifecycle termination marker is set to true. Because

the attribute φ can not be referenced by policy makers and we had implicitly required all

attributes to become guarded invariants as a consequence of φ being true (Section 3.4.4),

no special interpretation is required for this state for any CLTL constructs introduced in

Table 3.1. In other words, not withstanding the definition of the state function associated

with φE, it can be treated as a regular state for constraint modeling purposes.

Policy makers can add entry restrictions towards φE as constraints by which an artifact’s

lifecycle can terminate (i.e., delineate situations in which an artifact can enter the end

state). Figure 3.7 is one such example where an object’s lifecycle can only be terminated

provided that it was previously in state A. Because of the implicit constraints on φE

introduced in Section 3.4.4, any other DCML constructs applied on this state will be
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trivially always true, as the implicit constraints will never allow those constraints to be

relevant. For example, exit is not possible from φE because (a) the termination marker

cannot be unset, and (ii) the artifact can not change in any way. Thus, an exit constraint

from φE is never relevant because the left hand side of the CLTL assertion/implication for

such a constraint is never true.

3.5.3 Example

A more complete state space diagram that mirrors the lifecycle of a SalesOrder could be

created by a policy maker as depicted in Figure 3.8. The standard method of implementing

such a constraint diagram is quite simply to reject database transactions that violate any

one of the five constraints (labelled 1 through 5 in Figure 3.8) for any artifact history.

Figure 3.8: A set of restrictions relating and stitching together multiple states of the Sales
Order artifact type.

Note the idea of stitching together states to define the proper flow in a process carries

from the graphical/visual descriptions of business processes into DCML diagrams. How-

ever, there are many differences that arise when protecting illegal database state space

traversals. For example, “going back” to previous states is implicity not allowed in process

models and business workflows (see constraint (5) in Figure 3.8). However, such implicit

restrictions need to be made explicit in DCML. The next subsection examines various such

issues and challenges posed by employing DCML to construct database level constraints.
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3.5.4 Workflow Modelling in RDBMs

One of the benefits of looking at constraints as restrictions on the state space of database

views is that there is often a very obvious and direct mapping from the business state

space to the database state space available to be exploited. Database programmers and

administrators do not need to spend countless hours modeling and examining constraint

systems on their own, but can very well look directly at workflows and process models on

which business managers rely. In fact, when using pre-existing workflows as the drivers for

embedding constraints in database systems, there are two tasks of significance that need

to be done: (a) establish a view oriented definition of the artifact being examined, and (b)

identify how the attributes of an object in the view change as a business process progresses

forward.

Figure 3.9: A hypothetical process model / workflow for expense claim processing. There
are several similarities between a business oriented diagram and its equivilant for database
systems presented in Figure 3.10.

The problem of identifying policy-centric views whose state space matters to policy

makers is essentially the same problem as object relational modeling. Figures 3.9 and 3.10

provide an example of this naturally occurring correlation between workflows as envisioned

by business users and DCML diagrams. The fact that in the context of business work-

flows the two diagrams are similar is no coincidence, because they should have the same

states and aspects of flow (progress) among them. Since the DCML notation is relatively

straightforward for many users to comprehend, we believe that once a definition of the ar-

tifact is agreed upon, business users themselves can visually create and edit these database

constraint diagrams without the need for input from the database administrator.
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Figure 3.10: A database centric policy model with LTL constraints defined between the
state of an expense claim view. The diagram corresponds to the workflow presented in
Figure 3.9. Each labelled transition (1,2,3,4) represents a unique constraint specified in LTL
that all objects in the view must adhere to. In a typical implementation, any transaction
that violates any constraint for any artifact will immediately be rejected or rolled back.

3.6 Complex Workflow Construction

3.6.1 Multi-state Flow Constraints

Figure 3.11: Two constraints on an object implying that if an artifact/object reaches state
A, it must have previously been in states B and C (simultaneously)

One of the advantages, as well as a source of analytical complexity, of our modeling

language arises from the fact that objects can enter and exit multiple states asynchronously.

Figure 3.11 gives an example of a constraint diagram in which an object is required to

trace multi-state paths. Note that the two temporal assertions derived from the model,

A(x) ∧ ¬ • A(x) ⇒ •B(x) and A(x) ∧ ¬ • A(x) ⇒ •C(x), both must independently

hold true. Also note that these two constraints indirectly apply an interesting subset

relationship/constraint between states B and C requiring that objects reaching state A

must previously be part of the implicitly defined state B ∩ C. Although there may be

situations where such implicit constraints can be difficult to comprehend, we will shortly

show that this independent enforcement of each temporal assertion has significant benefits

in policy management.
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3.6.2 Multiple Paths and Progression

Figure 3.12: Multiple models of how an object can behave during different phases in its
lifecycle can be independently created and temporal assertions across them can be enforced
independently of other models.

Another benefit of allowing objects to be in multiple states at the same time is that

different stakeholders’ in an organization can freely describe their own relevant portions

of the object lifecycles. Furthermore, they can do so without concerning themselves with

the definitions of states used by other policy makers. For example, let us consider Figure

3.12 and observe that based on the constraints present, given a single update operation,

an object can fail (or begin) to satisfy conditions to be in different states across both

path 1 and path 2. More specifically, an object that is initially in states A1 and B1, can

after an update, not change state configuration at all or make progress according to the

constraints in either or both paths. Each of these paths could have been created on a fresh

clean canvas by a different policy maker, without the knowledge of the other. Since each

constraint on each canvas is independently enforced on the history, many different DCML

diagrams specifying constraints on a single artifact type can either be viewed together or

independently.

3.6.3 Decentralized Workflow Modeling

The ability of objects to traverse multiple paths at the same time allows us to give a much

broader meaning to the notion of an object lifecycle. Figure 3.13 presents an extended

version of our running example of an expense claim. The diagram illustrates how three

different departments of a business might have specified three different constraint diagrams

on the same object. The figure shows that (1) the data entry staff must ensure that newly
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Figure 3.13: Individual constraint diagrams do not necessarily need to model all aspect of
an objects lifecycle. The figure shows three separate constraint diagrams each accomplish-
ing different objectives.

created expense claims are always in the Awaiting Approval state, (2) all claims that are

deleted must previously have been in existence for seven years or never paid, and (3)

financial integrity of the document (i.e., approval before payment and not marking a claim

as unpaid after payment) is maintained. In short, Figure 3.13 represents the situation

where three different DCML canvases on a single artifact type are viewed together on the

same diagram. The different components of a broader state system show that we can

model various intermediate phases in an object lifecycle without (necessarily) attempting

to combine them in a single diagram. Thus, different policy makers can start constraining

the same artifact in the context of different policies without having to consider all possible

constraints imposed by other policy makers.

The flexibility of drawing out these constraint diagrams in a distributed fashion allows

different policy makers to take charge of different aspects of constraints. Their roles can, of

course, certainly overlap; for example, it may very well be the case that the states labeled

“Awaiting Approval” and “Under Review” are logically equivalent or that the sub-process

associated with advancing the expense claims from Awaiting Approval to Under Review

states is handled elsewhere by another department of the business.
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Single universal DCML diagram

In our formal model we have defined an artifact lifecycle as the sequence of values taken by

an artifact (from t=0 to when the attribute φ becomes true). Each artifact of a given type

has one such lifecycle, and various policy makers can arbitrarily define their own states

for an artifact type and then enact restrictions between these states so that all artifact

lifecycles will comply with these restrictions. However, we must emphasize that the notion

of each policy maker having their own DCML canvas/diagram is merely a helpful illusion.

This is because all constraints specified on an artifact type are equally applicable on all

individual artifact histories. The fact that constraints are separately imposed on states

defined on two different DCML canvases has no bearing on their logical meaning over the

history.

Consequently, there is no difference between bringing the individual disconnected com-

ponents/canvases onto one diagram (as done in Figure 3.13) or viewing them separately. In

a manner of speaking, one can argue that there always exists only one unified (integrated)

DCML diagram for every artifact type defined in a database of which different segments

or “components” can be created/viewed by different policy makers responsible for that

portion. This unified DCML diagram is essentially the union of all the different canvases

used by various policy makers to define states and constraints on a given artifact type.

There are many benefits to this kind of flexibility, and foremost among them is that of

simplification and reduction of the state space into a more component oriented view. Just

because each policy maker can define their own states does not mean they always have to.

Several policy makers can share states and their definitions, so that they can branch from

one point in their lifecycle to a point in the others’ lifecycles. There are, of course, diffi-

culties that can manifest in this situation, and much of Chapter 4 is devoted to discussing

problems such as state overlap, state (un)reachability, and conflicting constraints.

Unified Instantiation and Termination

Finally a point that should become apparent by now is that, since an artifact lifecycle is

instantiated (t=0) and terminated only once, the special states φS and φE have the same
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definition regardless of their presence in various graphical sub-components of the unified

DCML diagram for an artifact type. In other words, every policy maker who wishes to

use either of these states to constrain artifact lifecycle instantiation and termination uses

(shares) the same universal interpretation and definition of these states.

3.6.4 Generalized Path Constraints and Sub-formulas

Figure 3.14: Constraint 1 being used as a state or a condition that needs to have happened
in the past.

A common requirement in enforcing workflow policies is that of specifying conditional

paths that require reasoning about a sequence of events. For example, consider the con-

straint that an object should never reach state C if it has sometime in the past reached

state B directly from state A. Since this is a constraint involving three different states, it

is impossible to draw it out as a ‘direct link’ between two states.

Graphically we propose that such constraints be modeled as reifying a path as a state.

Observe that these “transitions,” as introduced in Table 3.1 on page 65, are all rules spec-

ified between two states, however we can also consider these rules as general requirements

that must have happened in the past to invoke other rules. Consider constraint 2 (C2) in

Figure 3.14 as an example. It uses constraint 1 (C1), B(x) ∧ ¬ •B(x)⇒ •A(x), as a sub-

formula to specify a conditional constraint that essentially requires that if the transition

from A to B took place for an object in the past, then that object should never reach state

C. More formally, (C2) specifies the following temporal assertion:

(�C1)⇒ ¬C(x)

and since (C1) is defined as B(x) ∧ ¬ •B(x)⇒ •A(x), we get:
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�(B(x) ∧ ¬ •B(x)⇒ •A(x))⇒ ¬C(x)

This elegance of linear temporal logic allows the use of a conditional assertion as a sub-

condition to create larger, more complex assertions and to repeat the process by chaining

it as many times as necessary to create conditional paths in policy-centric workflows. Fur-

thermore, it allows us to easily go back and forth between complex assertions in temporal

logic and equivalent graphical representations (constraint diagrams) without losing any

information.

3.6.5 Link between Graphical Constraints and LTL

Assertion 3: A constraint diagram can be converted into a set of assertions in first order

constraint linear temporal logic.

Because each aspect of our proposed DCML notation has a formal meaning in CLTL

over the artifact history, policy makers can also see their constraint diagrams as a sim-

ple list of their temporal assertions of the form pre–condition(x) =⇒ post–condition(x)

specified over the state configuration of the object. The choice of viewing all state oriented

restrictions and detailed state conditions on an object definition in a single diagram, as

separate graph components, or as a list of logical assertions in first order temporal logic is

left to the user, and the ability to change from one to the other is a strength of the model.

From an operational perspective, we believe that not only will policy makers benefit

from a company-wide unified definition of business objects in a relational database, but

also that such definitions already exist within high level corporate workflows. Business

users are generally aware of the necessary conditions for objects to be in particular states

and can independently translate complex business workflows that are pertinent to their

business functions into portions (fragments) of DCML diagrams. Whether a single policy

maker chooses to focus on a particular path in the corporate level object workflow to model

or the association between two arbitrary states depends largely on what policy objectives

are to be accomplished. In the next few chapters we exploit the above close association
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between CLTL and constraint diagrams and examine in detail the framework for reasoning

and implementation that it provides.

3.7 Related Work

In this chapter we presented a method of translating business process-centric workflows

onto a state space defined by a set of functions over a database view. The use of a

state space to describe possible outcomes (runs of a system) is a well known technique

in computer science (e.g. Finite State Machines, Kripke Structures, etc.). The relation-

ship between database state changes and changes in real world business situations has

been acknowledged by researchers in various communities. For example, several prominent

database textbooks have referred to the correspondence between reality and the database

when discussing the closed world assumption. Similarly, much of the work done in the

context of ECA and workflows is fundamentally grounded in the notion that events hap-

pening at discrete times move the system from various start states to some end states.

The relative novelty of our approach lies in defining such a state space for elements of

a database view. Relational views provide a very flexible abstraction for examining the

contents of a database and thus can be tailored to accommodate reasoning over a wide

variety of business processes.

3.7.1 Declare Workflow System

As discussed earlier, many researchers have proposed the use of LTL based modeling lan-

guages for constraints. However, the most similar modeling approach to ours is that taken

by the Declare Project [59, 101, 161, 120]. Declare is a workflow modeling environment

that also proposes a visual LTL notation for restrictions between different stages (tasks) in

a workflow. The most significant differences between Declare and our proposed notation

arise primarily because of the differences in target audiences between generic workflow

modeling and monitoring systems and relational database systems.

Declare takes a broad, but simplistic, view of LTL constraints in workflows. States in
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Declare do not necessarily represent the data contained in artifacts but can mean ‘tasks’

that may have restrictions among them. An example of a feature that our approach does

not explicitly support3 is that tasks A and B could have a “not co-existence constraint”

in Declare, meaning that they should never both be done. Being a general workflow

modeling system, Declare does not restrict itself to specifying constraints using the past

behavior of system and users can specify constraints about the future that resemble liveness

properties (“something must eventually happen”). This is in contrast with constraints

within database system that must always be enforceable on finite traces of a state space

history.

There are several other differences arising from a database centered approach to visually

depicting LTL constraints that, in general, business oriented workflow diagrams cannot

accommodate. One such feature not present in Declare is that, in addition to an artifact

being in multiple states in multiple lifecycles, it can actually go “off-diagram.” If an artifact

does not satisfy the condition to be in any user defined state, then it still exists but is not

part of any state on any specific diagram. Note carefully that the notion of going “off-

diagram,” i.e., not being part of any user defined states, is different from object deletion

or lifecycle termination. In DCML, artifacts can “disappear” and “reappear” at different

states that are unconstrained, thereby defying traditional notions of workflows. Similarly,

the states φS and φE are interesting anomalies that do not comply with the classical notion

of an initializer or a start/end state in workflows that Declare attempts to model. Finally,

we note that our proposed modeling language achieves significantly more extensibility than

Declare through generalized (conditional) path constraints, as discussed in Section 3.6.4.

3.7.2 Integrated Data and Constraint Model

One of the major differences between our work and prior attempts is that we have essentially

made the data model and constraint model inseparable. In order to circumvent the problem

of establishing object-to-table mappings [52, 51], our model requires policy level objects and

3Yet. By the end of Chapter 6 the reader will hopefully be convinced that it is easy to come up with
visual/graphical semantics such that our proposed technique of mapping LTL constraints can go beyond
state oriented constraints.
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artifacts to be declaratively defined on the underlying database schema. In fact, policy

relevant business objects can only be defined as a logical mapping: that is, a business

artifact in our model is defined as a tuple in a relational view over a database with a

fixed schema. Our motivation for this is that complex business records, such as invoices

and sales reports, are often viewed as objects by policy makers, but the data contained

therein may reflect the execution of a complex set of queries involving temporal parameters

[14]. Consequently, any reasonably powerful policy modeling system that is able to express

constraints over complex business artifacts stored in a database needs to accommodate not

only the underlying database schema (mapping), but also the actual data definitions and

the queries used to generate these records.

3.7.3 Artifact Centric Process Modeling

Even in a mature field such as process modeling, we continue to see significant activity

and major contributions. In recent years, increasingly many researchers have accepted that

workflow style (process-centric) models for processes should be only a part of a much larger

artifact-centric or data process modeling paradigm [109, 56]. Whereas traditional process

modeling techniques focused on a process, such as online-ordering, and attempted to define

its properties and lifecycle, the artifact centric process modeling paradigm attempts to

aggregate many of these processes under a single umbrella denoted as an artifact. Although

there does not exist a formal definition of an artifact, it can be considered as a collection

of any and all data related to a particular entity or goal of an organization. For example, a

customer, patient-visit, or Fedex delivery could be artifacts within some enterprise. From

a business modeling perspective, the strict definition of an artifact is rather irrelevant, as

any information that is needed as part of the tasks associated with the artifact can be

included in it, and the segregation of data among artifacts is a business level decision left

for the managers [135, 109]

Our research adopts a similar view of the world when looking at database systems.

We consider everything relevant to a business (or a set of business policies) as a business

artifact. Furthermore, we believe the best interpretation of an “artifact” in a database

system is as a logical view defined over a database schema. Depending on users’ needs,
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this view can be tailored to the task at hand: it may strictly define a single tuple used

for policy-centric decision making or define several policy relevant objects concurrently.

Observe that just as artifacts have no real boundaries, multiple views can also overlap

(partially contain) each other. Similarly, we find it convenient to denote a single business

artifact as one particular logical view in a database system, even though we could argue

that an artifact could be the intersection, union, or cross product of many different and

even unrelated views. We believe that our work largely complements the modeling efforts

of the BPM community and offers a path to implementation of business constraints related

to artifacts and their specific lifecycle components within database systems.

3.8 Summary

There is clearly a tradeoff between low level specifications and higher level models: the

closer a rule model is to lower level database constructs, such as queries, integrity con-

straints, and triggers, the more straightforward it is to deploy; and a model that is more

abstract will generally be ambiguous but easier for policy makers to create, exchange, and

comprehend. In this chapter we proposed a modeling language that strikes a balance in

this spectrum, with its goal being seamless automatic generation of ECA constraints in a

database as well as ease of use for policy administrators.

Our contribution is not simply to offer yet another business level rule modeling language.

The existing process modeling techniques, such as state transition diagrams, flowcharts,

data flow modeling, and workflow modeling, are sufficiently adequate in their own con-

text. However because of the lack of a modeling language specifically for database systems

(i.e., one that restricts the database state space or manages flow/progression of artifact

behaviour), we present our own visual-to-CLTL notation called DCML. The most signifi-

cant benefit of using this intermediate language is that, instead of directly constraining the

database in SQL, policy experts (i.e., those who are not DBAs) familiar with a minimal

degree of temporal logic can now convert high level workflows into artifact level constraint

systems in the database.

In subsequent chapters we make the case for our modeling language being sufficiently
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expressive to encapsulate most business process modelling techniques. Chapter 4 will dis-

cuss how these visual-CLTL models can be directly implemented as temporal integrity

constraints in practical database management systems. We will also present a much more

complex case study that exemplifies how a real life process can be converted into a coher-

ent DCML diagram. Most importantly, we will also demonstrate how common workflow

patterns can be accommodated in our database-centric policy modeling technique so that

business users can easily convert their pre-existing workflows into database level workflows.

82



Chapter 4

From Specification to

Implementation

In this chapter, we examine how constraints specified in DCML can be implemented in an

off-the-shelf relational database system. The work presented builds on the comprehensive

examination of issues pertaining to the efficient implementation of LTL constraints done

by Chomicki [33] and Toman and Chomicki [154, 34]. Our analysis shows that in most

SQL-99 compliant commercially available RDBMSs, an efficient implementation of LTL

constraints requires no changes (source code modifications) to the database engine.

We present synthetic benchmarks and results of our implementation of CLTL con-

straints, showing very little compromise in transaction processing efficiency and minimal

storage overhead. Characteristics of real world DCML diagrams that impact how efficiently

certain constraints can be monitored in database system are also examined.

Our results support the prior research in this area and show that, even when business

artifacts are part of an exorbitantly large number of concurrent workflows (making them

subject to an extraordinary amount of constraints), a modern RDBMS can handle heavy

transaction loads over such artifacts without a noticeable performance penalty in trans-

action processing. We conclude this chapter with suggestions for optimization of DCML

constraint systems, including guidelines that can help system administrators create and

monitor an efficiently implementable set of constraints.
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4.1 Framework for Monitoring State Changes

4.1.1 Terminology

Before discussing implementation and efficiency concerns, we introduce terminology that

will allow us to measure and benchmark the types of constraint systems generated by

DCML. For a particular artifact type V , we denote SV = {S1, S2, . . . , SN} as the finite

set of all user-defined states for artifacts of type V . Recall that each of S1 through SN

represents a function that returns true or false for an assignment of an artifact’s attribute

values at any given point in time. We also know that at any given point in time, an artifact

may belong to multiple labeled states if it satisfies more than one of these state conditions.

In order to determine which states an artifact x is in, we will denote the state configuration

of x, SC(x) to be an ordered binary string (or bit vector) of length |SV |. A zero at position

i in the state configuration of an object x implies that Si(x) is false and that the object

does not belong to state Si. Similarly a one at position i in the state configuration of an

object x implies that Si(x) is true and that the object belongs to state Si.

This abstraction allows us to reason about the policy-relevant conditions that an object

meets at a particular point in time, without being concerned with the actual attribute

values of the object. Note that the set of possible state configurations for any artifact

is always finite (2|SV |). We can better observe this in an example, where S1, S2, and S3

are the only states defined system-wide for policy modeling on an artifact type. For this

three-state scenario, the state space is denoted by a set of binary triples: {(000), (001), . . . ,

(111)}. Recall that a state configuration of all zeros does not imply that the object does

not exist but rather that it is in none of the user specified states in SV (i.e., “off-diagram,”

as discussed in Section 3.5.2).

It stands to reason that the more complex a description of a process model is, the

more stages/states it will have. As a consequence “longer” and more complex business

process models, when translated into DCML diagrams, will also have a higher number of

states and possible state configurations (|SV | and 2|SV | respectively). Thus, this abstraction

allows us to capture a dimension (i.e., number of states) across which we can benchmark

the implementation of DCML models in database systems, and relate it more generally to
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workflow length and complexity.

In order to reason over various state configurations of an artifact during its lifecy-

cle, we define an artifact’s state configuration history (SCH) as the time-stamped se-

quence of state configurations in which it existed. If we denote the state configuration

of an artifact at time t as SC(xt), then the state configuration history is the ordered set

{(t0, SC(x1)), (t1, SC(x2)), . . . , (tc, SC(xc))}, where c is the most recent (current) time-

stamp.

The state configuration history is similar to the history of attribute values of an artifact.

However, it comprises a single binary field whose length is equal to the number of user-

defined states, and therefore it is very likely to be much more compact than the artifact

definition itself. Given the semantics defined for DCML diagrams in Table 3.1 on page 65,

a complete history of artifact values is never explicitly required for constraint enforcement.

This is because constraints specified in DCML do not concern themselves with the actual

attribute values an artifact took in the past but instead look at the consequences (resulting

state configuration) of changes to those attribute values. Attribute values, when temporally

referenced in DCML constructs (as guards and invariants), are only interpreted on the

current and next time steps in the history. Therefore, maintaining a detailed history of

attribute values that an artifact took in the past does not provide any benefits. Instead

it is sufficient to store only whether a state condition was met or not at a given point

in time in the past to enforce constraints. In other words, instead of physically storing

the entire artifact history, which can contain large and complex attributes (strings and

integers), we only need to store a compact bit-vector like representation of the policy

relevant conditions (states) that an artifact satisfied at each time step. This space savings

has significant consequences, which will be examined shortly.

4.1.2 Maintaining Artifact Histories

Since artifact types are defined as views, the constituent values of a single artifact can be

stored in multiple base tables in a database. In this section we describe how a history that

is spread across multiple source tables can be captured and maintained. We do so with
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INV ID LASTUPDATE CST ID AMOUNT SHIPPED PAID APPROVED ... NOTES
... ... ... ... ... ... ... ... ...

19846 13/05/12 14:27:04.244 764 59.95 NO YES YES ... Shipping Delay
19847 29/05/12 22:18:05.263 589 129.97 YES YES YES ... N/A

... ... ... ... ... ... ... ... ...
19986 17/05/12 01:25:35.849 798 299.97 NO NO NO ... Awaiting Payment

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
19995 19/05/12 07:58:05.119 798 299.97 NO YES NO ... Pending Approval

... ... ... ... ... ... ... ... ...

Table 4.1: A fragment of a typical invoice table: Each row uniquely represents the current
status of an invoice. In this particular example we can see the contents of four invoices
(19846, 19847, 19986, and 19995), all of which were last updated in May of 2012.

the following example, where a database has two tables, Invoice and Customer, and an

artifact type as a natural join between the two tables defined as follows:

CUSTOMER: (int CST ID, varchar NAME, varchar ADDRESS, . . ., varchar

ADDRESS COUNTRY, varchar CST TYPE)

INVOICE: (int INV ID, datetime LASTUPDATE, int CST ID, float AMOUNT,

bool SHIPPED, bool PAID, bool APPROVED, . . ., varchar NOTES)

InvoiceProcessing ARTIFACT:

SELECT INV ID, CST ID, ADDRESS COUNTRY, CST TYPE,

SHIPPED, PAID, APPROVED

FROM CUSTOMER JOIN INVOICE

ON INVOICE.CST ID = CUSTOMER.CST ID

Tables 4.1 and 4.2 depict what an audit trail of invoices would look like and present

an example of an auxiliary relation used for auditing purposes. For illustrative purposes

we depict the full attribute level history of InvoiceProcessing artifacts. All new invoices

(without any prior history) are directly inserted into the invoice table (Table 4.1). An

auxiliary relation called InvoiceAudit is implicitly defined in the database to keep a log of

changes to invoices (Table 4.2). If an existing invoice is modified (i.e., a row in the invoice

table is updated) the original values of that row are inserted as-is into the audit table before

the modifications to that row are persisted with the current time as the LASTUPDATE
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INV ID LASTUPDATE CST ID AMOUNT SHIPPED PAID APPROVED ... NOTES
... ... ... ... ... ... ... ... ...

19846 11/05/12 23:34:15.077 764 59.95 NO NO NO ... Awaiting Payment

19847 12/05/12 08:34:05.235 589 129.97 NO NO NO ... Awaiting Payment
... ... ... ... ... ... ... ... ...

19846 12/05/12 14:19:37.665 764 59.95 NO YES NO ... Pending Approval
19847 12/05/12 16:57:03.187 589 129.97 NO YES NO ... Pending Approval

... ... ... ... ... ... ... ... ...
19995 19/05/12 07:58:05.119 798 299.97 NO NO NO ... Awaiting Payment
19847 21/05/12 16:57:03.187 589 129.97 NO YES YES ... Shipping Delay

... ... ... ... ... ... ... ... ...

Table 4.2: A fragment of the “audit table” for the base invoice table (See Table 4.1). The
rows represent older rows from the original table, therefore requiring an extended primary
key. Such tables are append-only and only accessible to highly privileged users.

field. This mechanism ensures that the valid time of facts can be preserved by recording

successive transaction times. A similar audit table for the customer table could also be

introduced if changes to a customer’s data were significant in a business policy or there

was some business need to audit past customer addresses. For example, it is conceivable

that a customer changes address multiple times while his/her invoice is being processed,

thus requiring special steps in the invoice processing workflow.

In many regulated businesses the continuous auditing and logging of row level database

modifications is commonplace. The business applications, their users, and even program-

mers are often not aware of the database storing a history of changes through auxiliary

relations, nor even the fact that such tables exist. Procedures to create these auxiliary

relations and the relevant auditing triggers on base data automatically are widely adopted

in the commercial use of databases [107]. It is also important to point out that the audit

information may not be exclusively used for compliance but could also be used for ana-

lyzing and improving the performance of a business. For example, in this scenario audit

information could be mined to determine the most significant causes for delays in invoice

processing or the average wait time between payment and shipping. There are also space

optimized ways of maintaining an audit trail, such as delta-encoding, which only stores

the attributes that were modified in a given update. We defer their discussion to Section

4.3. However, we can summarize the key points of this subsection by noting that auditing
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(keeping a history) of a complex artifact that is spread across in multiple tables is simply

a matter of auditing its respective constituent tables and that data logging triggers are the

method of choice to maintain audit trails.

4.1.3 Lifecycle Management

Since the InvoiceProcessing artifact is defined as an inner join between the Customer and

Invoice tables, an audit-table for the InvoiceProcessing artifact is conceptually no different

than an inner join of the two individual audit tables. In fact, even when an artifact is

defined as a multi-way join among many tables, the requirement of uniqueness of individual

rows therein provides us the ability to recreate the history of the artifact by combining

the relevant underlying audit tables. The only caveat is that we now have to consider the

latest of all LASTUPDATE timestamps in each constituent base table history as the last

time at which the entire artifact was updated.

Separating histories of constituent tables brings about an interesting consequence in

interpreting certain changes in artifact history. To elaborate on one such problem, let us

consider the case where we have an invoice currently being processed and it is associated

with a customer named Alice. Let us also say that Alice has changed her address several

times, so she has a customer history and so does the given invoice. Now imagine that

midway through processing this particular invoice, for some reason, it has to be assigned

to a different customer (Bob). Figure 4.1 depicts this change happening at timestamp 4.

If we consider the invoice alone, there is nothing extraordinarily special going on in its

history, as only one attribute of the invoice (CST ID) was changed. Similarly both the

customers have their own relevant histories, which are completely unaffected. However,

note that an artifact is uniquely identified by a pair of invoice and customer identifiers,

which means that at time 4 the history of the particular invoice as it was associated with

Alice (facts A, B, and C) is terminated. At the same time our model ensures that φ is

set to true and the same unique artifact will forever remain in the dead state never to

reappear. Also, at the very same time, a new invoice-customer pair is added, starting a

new artifact history for the invoice as it is associated with Bob and thus beginning a new

artifact lifecycle (D, E, F). In other words, an artifact in this scenario is an invoice as it
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Figure 4.1: An invoice can be associated with one customer at any given point in time.
Changing the associated customer has no significant consequence on the complete history
of an invoice (A,B,C,D,E,F) but the old history of the artifact (A,B,C) terminates and a
new one starts (D,E,F) at time 4.
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relates to single customer, and one such artifact lifecycle terminates while a new one is

instantiated at timestamp 4 (provided φS(A) for that artifact holds as well).

The key point in the scenario depicted in Figure 4.1 is that, even though there is

only one invoice, it can interact in multiple artifact level lifecycles. Thus, business policy

makers and DBAs catering for all possible exceptions in a business workflow should be

aware of the intricacies of modifying data and its implications on the history of not only

individual objects but the collective processes they participate in. In order to keep our

example simple and straightforward, we shall assume that invoice numbers and customer

numbers are assigned only once and cannot change over time. This assumption of unique

object/artifact identifier is embedded as a requirement in the model as described in Section

3.4.3 and, when combined with the fact that each artifact has only one lifecycle significantly

simplifies enforcement related issues. Finally, we point out that a state configuration

history is only a layer of simplification on top of traditional auditing, and it too can be

derived from the underlying audit-tables by simply evaluating the boolean state conditions

over the recorded facts.

4.1.4 Materialization of State Configuration Histories

An alternative to continuously (re)creating the entire artifact state configuration history

from the underlying base tables (at every update) is to materialize and maintain it. In

other words, we can forgo keeping a physical audit trail of artifact values if we only store

the audit trail of states that an artifact was present in. Database systems, such as IBM’s

DB2 and Oracle’s 11g, offer direct support for triggers over views using the infrastructure

developed for the incremental maintenance of materialized views, and these triggers can

be used to log and determine the validity of all updates to an artifact’s state configuration

history automatically.

There are several major advantages to such offloading of the task of monitoring changes

to artifacts (views) to the database engine and use the capability to trap (examine) and

reject those changes. Foremost, we can exploit the facilities provided by the database engine

to monitor views instead of writing complex triggers on the base tables to do so (this task

is essentially made redundant). It can be argued that user-programmed triggers would be
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far less efficient than those implemented and executed by a database engine to monitor

materialized views, especially in a scenario where a large number of these overlapping

artifacts (views) are defined for enforcing business rules. Since the database engine is

well aware of the entire schema, it can better isolate irrelevant updates and therefore

minimize the transaction processing overhead caused by the monitoring of artifacts. In

fact, given a certain workload, modern database systems can provide guidance into whether

materialization will have a positive impact on transaction processing [177], and they can

even automatically materialize specific portions of base relations in anticipation of peak

workload conditions [176].

Second and more importantly, we can choose to materialize the state configuration

history instead of “recalculating” it at every decision point regarding Anext. That is, instead

of continuously logging changes to base tables, we can (i) only log the changes relevant to

specific artifacts and (ii) only log all changes relevant to the state configuration history of

those artifacts. With regards to point (i), note that, since the state configuration history is

itself a type of mini audit-log for artifacts, we can avoid auditing complete tables and only

maintain history entries for specific artifacts subject to constraints. With regards to point

(ii), materialization of the state configuration history only also avoids change tracking for

irrelevant changes to artifacts. For example, an invoice may be physically updated, but

not in a way that impacts any of the business states that it is in. Thus, from a workflow

and constraint perspective, there may be no need to audit changes that do not impact the

states an artifact is in.

Between these two options (materialization and derivation), there is of course a trade-

off between extra storage space (involved in storing the state configuration history) and

processing time (evaluating the boolean conditions to re-derive it). We will examine this

tradeoff between methods of maintaining a state configuration history in Section 4.2, when

we present our benchmarks for monitoring and maintenance of such histories. For now,

we assume that a logically correct history for all artifacts is available for policy-centric

decision making, and we note that mechanisms to monitor changes to database systems

are commonly available to do so.
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4.1.5 Checking Individual Constraints

Given the availability of a state configuration history for artifacts, the final piece of the

puzzle lies in continuously examining it for policy violations. The key to enforcement lies

in the observation that a temporal formula in CLTL can also be treated as a validation

query over a finite history. Compliance of a database with a constraint in CLTL is thus

equivalent to trapping transactions that change the state configuration of artifacts and

checking whether the resulting change will lead to a sequence in which the negation of

the constraint is satisfied. Transactions that do not violate any constraint are allowed to

commit, and those that violate one or more constraints are aborted.

The method (algorithm) to verify and validate histories is straightforward. It relies

on directly interpreting temporal operators (as described in Section 3.4.3) in first order

logic and then issuing SQL queries (recursively) over the history to evaluate them. If the

query returns true for a constraint / CLTL formula, then the constraint is valid on the

history. Algorithms and detailed descriptions of their implementations (including opera-

tors to accommodate metric-temporal constraints) have been repeatedly presented in prior

literature, (see [154, 34, 33, 75, 18]) and we omit their discussion from this thesis.

4.2 Measuring Policy Overhead

The most widely cited implementation of first order temporal integrity constraints im-

plemented as SQL triggers, which reject (roll-back) transactions if a first order temporal

integrity constraint is not met, was presented by Toman and Chomicki [34]. The work in-

troduced the use of result memoization to check past temporal integrity without examining

the entire history of an object. A simple example of memoization can be demonstrated with

the condition �SA. Determining whether sometime in the past a complex event happened

can require us to trace the entire history of an artifact. Moreover, re-determining whether

the same complex event has already happened at every update can slow down the process

of constraint checking. In many cases it may be easier to store details about complex events

in the past alongside the artifact. In other words, we can make the fact that “something

has happened in the past (or not happened in the past)” an inseparable part of the object
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in question, instead of rediscovering this fact by traversing the history every time an object

is updated. Toman and Chomicki demonstrated that such a technique allows us to check

constraints much more efficiently with at most a polynomial (in terms of formula length)

amount of extra space. The performance results we now present augment the work done

by Toman and Chomicki, and our work distinguishes itself by focusing on issues specific to

the problem of implementing LTL constraints that originate from DCML diagrams. Fur-

thermore we provide actual benchmark test results in the context of a modern database

system.

There are two sources of overhead on which we focus in our tests. Foremost is the

trade-off between space and time, that is, the design decision to store the state configura-

tion history or to re-create it from the audit logs whenever needed. Second is the actual

processing time for verification of constraints, including the time spent to check if an object

is in a particular state or not. Our tests show that, in typical transactional databases in

which real-time constraints need to be enforced, the space overhead incurred by material-

izing a state configuration history alongside the audit trail of an object will be negligible.

In addition the processing penalty of checking typical business conditions on objects (state

conditions) is almost non-existent, as the information needed to make policy-centric deci-

sions is available in memory and relative to the actual cost of writing results onto disk, the

cost of in- memory processing/checking of constraints is almost immeasurable.

For our tests we considered the business definition of a typical invoice or purchase order

artifact as specified in the TPC-H benchmark to guide us. The Transaction Processing

Council (TPC) publishes several open schemas and benchmarks that are well known in the

database community. We used the TPC-H benchmark schema and tested against business

scenarios of varying complexity by considering corporate workflow (pertaining to a single

artifact) of size 128 states, 512 states and 1024 states. Since TPC-H does not describe

specific business processes, these states were synthetically created. For our tests we used

TPC-H databases of sizes 1GB and 10GB on an Intel Core 2 Duo based machine with 4GB

RAM running Microsoft SQL Server 2008.
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4.2.1 Storage Overhead

Motivation

Although having as many as 1024 states in a corporate workflow pertaining to a single

object is very unlikely, it does represent a plausible upper bound on the number of bits

required by the state configuration history. Observe that the state configuration history

is a compact representation of an object’s membership in all user defined states. Even

in our extreme case, 1024 true/false results are essentially 1024 bits of information (128

bytes), and this is still less space than a single text-based comment field associated with

a typical object such as a purchase order (144 character/byte comment field in the TPC-

H specifications). Furthermore, we believe that since TPC-H is a synthetic performance

benchmark, the size of an invoice or line item row in the TPC-H benchmark is an extremely

conservative representation of real life business objects and their storage requirements,

especially in the presence of large text fields used, for example, for notes and comments.

Consequently even when considering a corporate workflow of 1024 independent states with

no exploitable similarities (i.e., the truth/falsehood of one state condition has no bearing

on the truth/falsehood of any other), an extraordinarily large relative storage burden (the

ratio of the size of the state configuration to the size of the actual object) will perhaps

never be encountered in real life situations. More surprisingly, our test results showed that

even when this ratio is taken to extremes by considering the consequence of having tens of

thousands of states, a database under typical transactional loads will not suffer significant

performance degradation.

Test Setup

To measure the impact of additional storage on the day to day operations of a transac-

tional database system, we conducted several tests by adding variable length bit vectors

alongside artifacts and measuring the time taken to complete typical database transactions

(inserts, deletes, and updates). These bit vectors essentially represented different length

state configurations, which in turn represented the number of states that were defined on

an artifact, which in turn were a proxy for the complexity of workflows defined over such
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artifacts.

Results

Our tests showed that, in general, appending additional binary fields to relations causes

no performance degradation for random updates. In fact we were able to go well beyond

our extreme case and reached 10,000 states before noticing any significantly measurable

difference. The rationale behind there being no additional cost to tacking on a large bit-

vector is clear in hindsight. A random update to a row in the invoice or line item table

in the database causes only one page to be physically accessed and committed to disk.

Thus, as long as the state configuration can be accommodated within the same page as

the object being updated, the cost of writing/flushing this page to disk will not increase.

Since the cost of fetching and writing a page is consistent in both conditions and also the

most significant component of a transaction, there is no observable difference in time taken

to complete a transaction. In most database deployments a page size of 4KB (32,768 bits)

is common. We believe that even for the most complex workflows, this limit will never

be reached, and the actual storage of the state configuration does not pose significant

transactional costs.

Note that our objective was solely to test whether a system under a transactional load

(high-update situation where a random invoice or line-item is impacted) is stressed by the

additional overhead of writing the state configuration alongside the object. There are,

however, situations where it might be preferable (for example, a non-random workload,

sequential scans, etc.) to store the history in a completely separate database (i.e., an

extension of the independent audit-trail option discussed in Section 4.1.4). This would

provide the additional benefit of securely isolating the audit trail from the operational data.

Furthermore, if the audit-database is on a separate disk then the performance penalty

incurred for different types of workloads (mix between various types of read and write

queries) can be better managed.
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4.2.2 Computational Overhead

Motivation

For each transaction that modifies an artifact, we require that the new state configuration

be calculated and then compared against the old state configuration(s) to ensure that all

specified constraints are being met. We anticipate that in many situations where states for

business level policy conditions share common variables, we will not have to incur the cost

of checking every state conditional independently. For example, consider a workflow for

invoices with two states called, paid and unpaid, with the conditions, “paid = true” and

“paid = false” respectively. Observe that we need to check only one of these conditions to

conclude the state configuration for both states.

In business situations where a large number of states exist in the policy model, it is

very likely that many of them will share the same variables, and thus checking whether an

object belongs to several states may be accomplished much more quickly than performing

the test for each condition independently. Similarly, while the state configuration is being

computed, we can simultaneously check whether a particular constraint is violated or not

and prune the space of possible constraint violations dynamically. These optimizations

aside (discussed further in Section 4.3), in our tests we took a pessimistic stance by as-

suming that there are no avenues of optimization available for the database engine/query

compiler to exploit.

Test Setup

We conducted tests to measure the computational overhead of dealing with varying num-

bers of constraints in a policy model. We noted earlier that there are many mechanisms

present in database systems that can be used to monitor the implications of an update

such as check constraints, triggers, and constraints on materialized views. Our tests were

designed to explore the costs associated with repeatedly calculating the state configura-

tion, and our objective in this section is to provide a reference for comparing the practical

computational costs of two of these possible techniques in light of a varying number of

assertions specified in first order temporal logic.
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Figure 4.2: Time taken by a SQL server trigger to complete simple in-memory if-then
styled checks grows linearly with an extremely high overhead per check. Very quickly
these checks become the bulk/bottleneck in trigger processing. A C++ procedure however
responds in a very predictable fashion where performing the exact same in-memory checks
has no bearing on the total cost of the transaction.

Once again we used the number of states (one condition per state) as a proxy for the

amount and degree of workflow complexity: 0 states (to represent no computational over-

head as a measure of baseline costs), 128 states, 512 states, and 1024 states. Under this test

setup, adding an extra state essentially means incurring the cost of an additional synthet-

ically designed check to see whether an object belongs to that state or not. These checks

were designed to simulate traditional business level string and arithmetic comparisons (such

as “status = paid”, “shipcode = M”, “amount ≥ 250”, and “shipinstruct=overnight”) that

a system will be expected to do to determine an object’s presence in each state. These

tests were performed sequentially and the results of being present in one state provided

no information to determine whether the object will (or will not) be present in any other

state. Thus, there was no scope for optimization.
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Results

Our hope was that we would be quickly able to demonstrate a very obvious fact about

calculating the state configuration history. That is, determining whether an object belongs

to a particular state through a simple check (SQL if-condition), where all the necessary

data to do so is already in memory, would pose no transactional cost. After all, simple one

line statements (“status=paid” or “amount ≥ 5”) on data that is already memory-resident,

even when repeated thousands of times, should not be comparable to disk writes (which are

several orders of magnitude slower than memory/CPU operations and dominate database

transaction costs).

Our results (depicted in Figure 4.2) show that, contrary to what was expected, SQL

based triggers, as implemented in Microsoft SQL Server 2008, are extremely inefficient at

performing even the most basic operations on primitive data types. We observed a linear

correlation between time taken to execute and the number of synthetically designed checks

(essentially IF-statements in SQL to compare attributes against static values). At 1024

states Microsoft SQL Server took upwards of ten seconds to complete one invocation of

such a sequence of checks. Our attempts to identify the cause of this significant slow down

caused by increasing the number of in-memory operations was hampered by the lack of

instrumentation provided by SQL Server to analyze the execution of triggers. Note that

at 1024 checks our source code for a typical trigger was around 100KB, and we were able

to verify that SQL Server was not re-compiling the trigger at every invocation. We were

also able to confirm that the delay was purely in the execution of the compiled code (i.e.,

not waiting on disk or other resources). Our conclusion here is that for some reason the

compiled code being generated for trigger processing was far more inefficient than expected.

These results were not unique to Microsoft SQL Server and similar results demonstrating

poor execution performance of SQL code were found when using IBM’s DB2 database

server.

Fortunately, most database systems (including Microsoft SQL Server) allow the ex-

ecution of externally written procedures, that is, executing a memory-resident program

outside the database engine, and exchanging relevant parameters for analysis. Programs

in a language such as C++ can be called upon to do any form of work if the database/SQL
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execution engine is not adequate1. Such techniques are commonly used in scientific appli-

cations, where external programs such as MatLab and R are used to perform data analysis

and store the results back in a database. When such an approach is adopted (moving the

if-conditions into an external C++ program), there is no discernable increase in the time

to test 1024 state conditions than to perform no tests at all.

We conclude that although methods for automatic generation of SQL level triggers have

been well examined in prior literature, implementing them efficiently (i.e., in a manner that

does not immensely slow down the system) is anything but straightforward. Because of

the vast differences in SQL execution behavior and how different database engines handle

trigger code, an LTL constraint to SQL trigger generator will need to be optimized for

each individual database product. That being said, this customization will require little

effort but a lot of familiarity with the performance quirks of a given database engine.

4.3 Optimizations

During the course of this Chapter, we briefly discussed several sources of optimization and

cost savings. In this section we provide more details on how they can be practically used

and discuss their overall benefit.

4.3.1 State Space Reduction

Using LTL constraints as the logical representation for enforcement of business level policies

allows us to reduce policy verification and validation to well known problems related to

static (query) analysis. The most obvious optimization through static analysis comes

from eliminating unsatisfiable states. An unsatisfiable state is one which an object can

never attain by virtue of the definition of the state alone (that is, no assignment of the

attributes of an artifact can satisfy the condition of the state). The problem of determining

satisfiability of a state is equivalent to solving the underlying SMT/SAT problem on the

1either using a call to pre-compiled memory resident DLL (extended stored procedures) or the interface
provided by the xp cmdshell call in SQL Server: see [150, 87] for reference and usage
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Figure 4.3: Different users may be interested in different paths of complex workflows
(shown in different colours). States where these paths intersect may need to be negotiated
together, jointly defined, or at the very least collapsed together to make enforcement more
efficient.

attributes of the artifact. Note that the cost of determining whether each state is satisfiable

has to be incurred only once during static analysis of the constraints and can save significant

time in repetitive checking of an unsatisfiable state condition during run time.

Furthermore, an unsatisfiable state most likely represents an error on the part of the

users of the system, as they have no use in constraint modeling and thus should not be

defined. It is perhaps wise to report such states to the policy maker so that s/he can

resolve any errors associated with the incorrect assumption that the state under question

is meaningful for policy purposes.

Similarly, merging states that are “equivalent” across different models (sub-components

of a unified DCML diagram) created by different policy makers can also be a significant

cost saving measure (see Figure 4.3), where states are equivalent if and only if the same

set of attribute values cause their respective functions to be true and false. In other words,

the associated state functions of two equivalent functions are rewrites of each other. Once

again, demonstrating the equivalence of two arbitrary constraints specified on a set of (non-

boolean) attributes is not trivial but can under many circumstances (e.g., finite domains)

be reduced to the problem of classical boolean/propositional equivalence.
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Figure 4.4: Temporal inconsistency (dead end).

Figure 4.5: An indirectly specified containment restriction.

4.3.2 Constraint Analysis and Sanity Checking

Since the graphical model and its logical representation have a strict one-to-one corre-

spondence, any reasoning that can be applied to first order temporal formulas can also be

reflected in the graphical model and vice versa. Consider the graphical constraint model

presented in Figure 4.4. Constraint (1) mandates that all objects exiting state A must

reach state B, •A(x) ⇒ B(x), and (2) specifies that after reaching state A, an object

should never reach state B, B(x) ⇒ ¬�A(x). By transitivity we get, •A(x) ⇒ ¬�A(x),

interpreted as, previously A implies never in the past A, which is an inconsistent (unsatis-

fiable) temporal formula. What this means is that the transition to B simply cannot take

place and neither can the object leave state A. Thus state A could potentially represent

an unintentional dead end in the workflow for the object. We hypothesize that such in-

consistencies will emerge as the result of human error, poor policy planning, or conflicting

policies.

Note that the problem demonstrated in Figure 4.4 (dead end) has no bearing on the

actual definition of the states A and B. More specifically we did not have to look at the

definitions of A(x) and B(x) to come to the conclusion that A cannot be exited. It is merely

the way two constraints interact that an interesting result about a workflow emerged.

Furthermore, the fact that •A(x)⇒ ¬�A(x) is unsatisfiable is trivial to see visually in this

diagram. However, as large diagrams with hundreds of state and constraints are integrated,

the detection of these abnormalities becomes challenging. In subsequent chapters we will
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demonstrate that LTL satisfiability solvers, armed with guidance on what to detect, can

play a role in significantly reducing policy and reachability errors by considering hundreds

of temporal implications concurrently. The appropriate results in many cases can help

simplify constraint diagrams.

In fact, additional reasoning about constraint-oriented workflows can play a significant

role in simplification of constraint systems. The overall objective of analyzing constraint

interplay is primarily to identify “interesting” facts about logically correct constraint sys-

tems that can lead to avenues of optimization in constraint-oriented workflows. An example

of such analysis is presented in Figure 4.5, where constraint (1) specifies the assertion that

B(x)∧¬•B(x)⇒ •A(x), while constraint (2) specifies the assertion •C(x)∧¬C(x)⇒ B(x).

If we interpret these implications, we come to the conclusion that an object that leaves

state C must arrive in state B and any object that arrives in state B must have previously

been in state A. Therefore, objects in state B must have previously been in both state A

and state C at the same time. This of course raises several questions related to containment

of states, that is how closely is being in state A related to being in state C? Are either

of those states fully contained in the other? Furthermore if the analysis of the conditions

of A and C shows a contradiction (for example A ∩ C being empty) then we may have a

problem in the form of a logical inconsistency, that makes state B unreachable.

Two important observations about logical reasoning that concerns business level policy

modeling need to be made here. First, we note that it is unlikely that any single policy

maker will make egregious modeling errors such as the ones described above. This is

because each individual constraint diagram will most likely be a mapping of a business

process that does not suffer from these problems. However, as constraint diagrams from

various policy makers are merged together to create a final implementation model (set of

logical assertions), the need to resolve such conflicts by automated reasoning is ever present.

Furthermore, during this constraint integration phase, there are significant avenues of

optimization through eliminating and combining constraints derived by different policy

makers in a business to ensure the resulting set of assertions being continually checked in

a database system is minimal.

Second, we note that our ability to reason over these logical constraints is restricted

by many factors, including the view (object) definitions, domains of the attributes, func-
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tions used to define states, etc. For arbitrary queries, domains, and state conditions, the

problems of determining containment, closure, and intersection are well known to be un-

decidable. However, we believe that a significant number of business object definitions will

involve the use of simple conjunctive queries and operators that are relatively simple to

reason with. Logical analysis of assertions in these situations will not only be a tractable

problem but will also lead to significant optimization and reduction of the number of con-

straints that need to be checked per transaction. A more comprehensive discussion of the

computational cost and tools available to optimize/model check a given set of assertions

in first order logic is presented in Chapter 5.

We conclude this section by pointing out that these optimizations are one-time costs

and in typical operations need to be incurred only when a new constraint is introduced in

the system. Furthermore, we argue that it is unlikely that new individual constraints will

impact all known properties about a complete system, and thus the scope of analysis with

new constraints will require minimal incremental analysis for optimization.

4.4 Summary and Related Work

4.4.1 Active Database Systems

There are many aspects associated with the development and use of active database sys-

tems that have over time been encapsulated and abstracted by modern database engines.

The event monitoring and view maintenance facilities provided in a modern DBMS, for

the most part, hide the complexity associated with building an efficient event detection

infrastructure. Cochrane et al. [38] have provided a very detailed description of how trig-

gers and events are implemented in relational database systems. Their work summarizes

the trigger related features offered by most commercial DBMSs and provides an overview

of their implementation. It is interesting to note that, even if not explicitly employed by

administrators, triggers are still widely used constructs, often transparently placed by a

database system to monitor integrity violations and for the incremental maintenance of

materialized views. Many active database prototype systems have been discussed in the
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research community, and many lessons from this research have been adopted in commercial

database systems. The most well cited academic prototypes include Ariel [73], Starburst

[171], SAMOS [68], HiPAC [47] and ODE [98]. A comprehensive survey of the above,

including their specific termination, confluence, and determinism properties, is available

[119] and serves as an excellent starting point for further research in this area.

4.4.2 Constraint Systems

In the context of enforcement of a large number of constraints, it is plausible that there are

avenues for exploiting the interference between constraints. We briefly alluded to the fact

that quite often, for example if two states are disjoint, checking for presence in one or the

other is adequate to make a conclusion for both. There is in fact a large body of work in

the area of analysis of predicates to optimize for precisely these types of situations, where

re-writing and re-organizing conditions can lead to significant savings during runtime. In

databases systems analysis of predicates is a well understood problem in the context of

query optimization [77] and event detection [74]. For a detailed overview of how analysis

of predicates and optimal rewriting of predicates is exploited in a commercial DBMS, the

reader is directed to a white paper published by SAP/SYBASE [152]. Most importantly,

the notion of predicate analysis is inseparably linked with compilers and instruction set

execution within modern microprocessors [142]. Although a comprehensive discussion of

optimizations through constraint analysis is beyond the scope of this thesis, we believe that

advances in compiler technology, which transparently optimizes checking of constraints,

will eliminate any need for users to analyze constraints manually and re-organize them for

efficient processing during run-time.

We also briefly touched upon the need to analyze properties about the constraint sys-

tems developed by the users, that is, to examine the set of constraints from a visual or

workflow perspective. Many problems such as satisfiability, state reachability, and work-

flow dead-ends can perhaps be manifestations of complex policy design errors and should

therefore be reported to the policy makers. Much of Chapter 5 is dedicated to similar

issues, and we delay further discussion until then.
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4.4.3 Summary

In this chapter we examined how to implement constraints derived from our visual con-

straint modeling language. Much of the research in this area was conducted by researchers

in active database systems. Our work presents a bridge from the graphical representation of

constraint systems that we proposed to well understood methods of implementing tempo-

ral integrity constraints via a space optimized and policy relevant audit trail for individual

artifacts. In addition, we analyzed the impact of the business use of such constraints and

concluded that, for transactional workloads where individual objects are interacted upon,

a database suffers no (or a small constant) penalty over and beyond auditing costs for the

enforcement of such constraints.
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Chapter 5

Reasoning over Constraint Systems

So far we have discussed constraint specification (Chapter 3) and enforcement (Chapter

4). In this chapter we examine challenges associated with testing constraint systems and

answering questions about the possible future(s) of artifacts when subject to a set of DCML

constraints (e.g., whether an artifact subject to a constraint systems can ever violate an

operational requirement).

Constraints embedded in DCML diagrams are a set of enforceable restrictions specified

in constraint temporal logic using past operators only. However, when reasoning about the

future, the notion of enforceability is replaced by that of satisfiability, and thus we need to

extend our logic such that statements about the possible future(s) of artifacts can be easily

constructed and verified. In this chapter we consider the full past and future fragment

of CLTL and include the temporal operators X (◦), G (♦) and F (�) to represent next

time, always, and some time in the future, respectively. Note that these operators are

part of classical LTL and thus are also part of CLTL, but since they were not relevant for

the specification and enforcement aspect of constraints, we delayed their introduction until

now. It shall become evident in this chapter that CLTL restricted to the past is well suited

for specifying constraints and restricting the state space for artifacts. However, reasoning

about the future is best (most naturally) done using future operators and constructs that

allow users to perform forward reasoning in time.

This chapter is organized as follows. In Section 5.1 we demonstrate how the verifica-
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Figure 5.1: Constraints in all DCML canvases are first integrated at the artifact level
(unified artifact constraint diagram/system). Although these constraints are specified over
the artifact type, they are enforced over all artifacts contained in the database system.

tion of properties pertaining to a set of constraints can be reduced to problem of CLTL

satisfiability. We present a method of constructing a CLTL SAT problem, which, when

solved, allows us to determine if a user-specified property of the artifact lifecycle can be

met under the constraints enacted on the artifact type. While Section 5.1 focuses on veri-

fication of properties of a set of constraints associated with a single artifact type, Section

5.2 examines the problem of verifying properties across several interacting artifact types.

Finally 5.3 summarizes this chapter and briefly discusses research most closely associated

to the work presented in this chapter.

5.1 Model Construction

5.1.1 Terminology

Figure 5.1 summarizes our constraint integration methodology, showing how various DCML

constraint canvases are brought together for monitoring and enforcement. Recall that in

Chapter 3 we introduced the notion of different policy makers having separate canvases

for constraint specification on a single artifact type. Our main reason for doing so was to

allow for the distribution and separation of constraint specification responsibilities among

different policy makers. However, there is always a single “unified” DCML diagram per

artifact type that combines the DCML canvases drawn out by individual policy makers.
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With this approach we can reason about the possible behaviour of artifacts at different

levels (i.e., at the individual canvas level, the unified constraint system level, and the

physical storage/database level). To distinguish reasoning at various levels we define the

constraint systems at these levels as follows:

Definition 6. A canvas constraint system (CCS) is a CLTL formula that is formed by the

conjunction of all individual constraints embedded in a single DCML canvas.

Definition 7. An artifact constraint system (ACS) is a CLTL formula that is formed by

the conjunction of all canvas constraint system(s) acting on an artifact type.

Recall that each visual construct in DCML introduced in Chapter 3 (Table 3.1 on page

65) embeds one or more restrictions specified in CLTL over the artifact type. Many such

restrictions can be embedded in a single DCML canvas created by a single policy maker.

If we take the constraints in one such canvas and simply combine them into one logical

formula, that is, conjoin each assertion derived from interpreting the graphical notation,

we will have achieved a CCS that represents all the constraints in a single canvas. Note

that since each artifact must comply with all constraints independently, it must therefore

comply with the single combined formula as well.

Similarly, we can collect all the canvases in one unified constraint diagram and this

leads us to the notion of an ACS. Note that there is always only one ACS per artifact type,

and it represents all the constraints specified by different policy makers on that artifact

type. This combined constraint must forever hold true in all individual artifact histories

of the type. In other words the ACS captures all the constraints on an artifact type, and

each individual artifact’s history must comply with the ACS.

This naturally leads us to the definition of a database level constraint system that

in some way represents the interaction of all artifact level constraint systems for all user

defined artifact types. Note however that we cannot simply combine CLTL constraints

specified over disparate objects/domains onto a database via a simple conjunction. Con-

sequently, we defer the discussion of a database level constraint system until Section 5.2.

Note that, from this point onwards, we will use the terms CCS and ACS instead of a

DCML canvas and a unified DCML diagram for an artifact, since these terms more for-

mally represent the visual notation in CLTL.
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Figure 5.2: A set of restrictions relating and stitching together different states of an artifact
(names shorted to U, P and S). An interpretation of this diagram given on a constraint-
by-constraint basis could be that (1) if an artifact gets paid it must have been previously
unpaid, (2) if an artifact gets shipped it must have previously been paid and (3) a shipped
artifact’s lifecycle can never be terminated.

The terminology can be best illustrated through an example. Figure 5.2 depicts a

DCML canvas where the InvoiceProcessing artifact (as defined in Section 4.1.2) must go

through a restricted set of stages during its lifecycle. To convert this canvas into CLTL

constraints, we can once again rely on the notation-to-CLTL mapping provided in Table

3.1 on page 65. In our example we use the short-hand notation of the first letter of the state

to denote the function associated with that state applied on the artifact attributes. The

resulting constraints derived from each of the constraints labelled 1 through 3 in Figure

5.2 are as follows:

Constraint 1

P ∧ ¬ • P ⇒ •U
“If the artifact is in state P and it was previously not in state P, then it must have

previously been in state U.”

Constraint 2

S ∧ ¬ • S ⇒ •P
“If the artifact is in state S and it was previously not in state S, then it must have

previously been in state P.”

Constraint 3
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�S ⇒ ¬φE
“If the artifact was ever in state S, then it should not be in state φE.”

Thus by Definition 6, the CCS for Figure 5.2 is the following single CLTL formula that

has to forever hold true in the history of individual artifacts of the specified type:

CCS1(A) := [P ∧ ¬ • P ⇒ •U ] ∧ [(S ∧ ¬S)⇒ •P ] ∧ [�S ⇒ ¬φE] (5.1)

If there are k different CCSs acting on an artifact, then, by Definition 7, the ACS can

be defined as follows:

ACS :=
k∧
i=1

CCSi

The reader should observe that an ACS is a conjunction of all the if-then conditions

that are created by different policy makers. Each of these if-then conditions is equally

enforceable in a compliant history of an individual artifact. Thus, an ACS reduces all the

constraints embedded in various DCML canvases acting on an artifact to a single CLTL

formula.

5.1.2 The What and Why of Verification

The question of why verification really matters was comprehensively addressed in Chapter

1, where we pointed out that one of the major reasons why policy management in database

systems is very expensive is that the unintended consequences of various interacting con-

straints are hard to isolate. Not only can constraints interfere with each other, but they

can also interfere with established business objectives and practices pertaining to various

artifacts. For example, an incorrectly implemented constraint may cause legal (required)

paths in an artifact lifecycle to be un-traversable. More importantly, proving (to savvy

auditors or to internal managers responsible for specific processes) that unintended con-

sequences of a set of constraints can never occur is extremely difficult when constraints
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are programmed in an ad-hoc fashion. To this end, the ability to verify and prove that

“something bad” cannot happen is vitally important.

Therefore we need to be able to define what this “something bad” is before we can

verify that it never happens. We have already demonstrated that CLTL restricted to past

operators is an expressive logic for specifying enforceable constraints over artifact histories.

However, we now claim that CLTL is sufficiently expressive to describe invariants about

artifacts that may warrant verification. Consider our running example of the InvoicePro-

cessing artifact and a situation where a policy maker wants to verify if there can ever (in the

future) exist a “shipped invoice that is subsequently marked as unpaid”, s/he could write

that check condition as an LTL assertion F(•S ∧ ¬U). Similarly the concerned individual

can check formulas that specify complex paths in the workflow. For example, if s/he wanted

to determine whether it is possible for an artifact to comply with (traverse) the transition

from state S1 to S3 after being in state S2, then the formula F(S3 ∧ •(S1 ∧�S2)) could be

used to represent that particular sequence of state changes.. Thus, it should be apparent

that linear temporal logic can also be used to describe invariants, check-conditions, or some

prescribed behaviour of artifacts that may warrant verification.

Construction of a CLTL SAT problem

Having written formulas that specify properties (or invariants) about artifacts, then the

next natural step is to ascertain whether these formulas can (ever) be true or not. We can

phrase this problem as follows: Given a set of constraints applicable on an artifact type

(i.e., an artifact constraint system) and a property that warrants verification, can there

ever exist an artifact history, that (a) complies with the artifact constraint system and

(b) in which the property is true? In other words can the ACS and the property both be

satisfied at the same time?

Although this phrasing of the problem reduces the notion of verification of a user-

specified property about an artifact to CLTL satisfiability, there are a few more steps left

in completing the construction of the LTL satisfiability problem before it can be fed into

a CLTL solver for meaningful results. Foremost, note that the ACS does not capture the

implicit constraints introduced to manage artifact lifecycle instantiation and termination.
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Recall Section 3.4.4 starting on page 60 in which two implicit constraints regarding termi-

nation of lifecycles were introduced for every artifact. To simplify our construction we will

denote these lifecycle termination constraints as Cφ:

Cφ := (•φ⇒ φ) ∧ (φ⇒
∧
ai∈A

•ai = ai) (5.2)

We remind the reader that the restrictions embedded in Cφ were placed to ensure that

(i) once the implicitly introduced lifecycle termination marker (φ) is set to true, it forever

remains true and (ii) the attribute values of the artifact never change from that point

onwards. These restrictions were placed to ensure that an object cannot change once it is

in the “dead state.”

Finally, recall the instantiation constraint φS(A) introduced in Section 3.5.2 starting

on page 67, and note that it was used to represent an instantiation function that is to be

interpreted only for t=0. With this last component in hand we can completely specify our

CLTL SAT problem as follows:

φS(A) ∧G[ACS ∧ Cφ] ∧ F(CheckCondition) (5.3)

Note that this CLTL formals is intuitive to understand and requires the solver to find

a history/run in which three conditions are satisfied:

• φS(A): The history must satisfy the artifact instantiation constraint.

• G[ACS ∧ Cφ]: Forever (or Globally), the history must comply with the constraints

in the ACS and the termination constraints.

• F(CheckCondition): Subsequent to satisfying the instantiation constraint, sometime

in the Future (or eventually), the CheckCondition must become true.
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In other words we are requiring a SAT solver to traverse all possible legal artifact

lifecycles and determine if (eventually) the specified condition/property can hold true for an

artifact subject to a given ACS. If the above formula is satisfiable, then the CheckCondition

can be met and the “something bad” that the designer of the CheckCondition wanted to

avoid can happen.

Example

Consider our running example of the InvoiceProcessing Artifact and the check condition

introduced earlier: “can a previously shipped invoice be marked as unpaid.” This condition

was formulated as F(•S ∧ ¬U). The ACS for our example was given in Formula 5.1

and Cφ was described in Formula 5.2. Since the constraint diagram did not restrict how

InvoiceProcessing artifacts can be created/instantiated φS(A) is considered to be true. The

resulting SAT problem is as follows:

true

∧

G[(P ∧ ¬ • P ⇒ •U ] ∧ [(S ∧ ¬S)⇒ •P ] ∧ [�S ⇒ ¬φE] ∧ [•φ⇒ φ] ∧ [φ⇒
∧
ai∈A

•ai = ai]]

∧
F[•S ∧ ¬U ]

(5.4)

Note that the above formula is a simple substitution of the various parts in formula

5.3. For visual clarity we have broken the formula into three different lines. Line one is the

initialization, which is unrestricted (i.e., an artifact can take any values to start). Line two

is the set of global constraints that the artifact must satisfy. These constraints include not

only the operational business rules (contained in the ACS) but also the termination con-

straints (last two conjuncts in line two). Finally, line three introduces an aspect about the

future that the solver must include for while abiding by the rules embedded in the previous
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two lines. That is, in the legal (compliant) future subsequent to artifact instantiation, can

the specified CheckCondition be true?

5.1.3 Bounded Satisfiability and Model Checking

Model checking can informally be described as the process of verifying a given property ψ

(often specified in LTL) against a given state system M . A typical model checker encodes

the system specification (usually, but not necessarily, in an abstract/meta programming

language) and the given property into a satisfiability problem of the form M ∧ ¬ψ. In

other words, the execution/traversal of the state space of the model of a system and

checking if ψ holds in all executions is reduced to the problem of determining if there

exists a particular run in which ψ does not hold. A well accepted observation in the model

checking community is that execution state spaces can become very large, and it is often

the case that violating runs are relatively small. Thus, it may be preferable to check only

executions of a bounded length k for violations of the property and gradually increase this

length. The process is repeated with increasing values of k (i.e., increasing the execution

lengths) until a counter-example is found or k becomes too large and makes the problem

difficult to solve given the available computing resources.

Note that there is a significant resemblance between model checking and CLTL satisfi-

ability when model itself is a CLTL constraint. This is evident from formula 5.3, where we

can see that the set of constraints enforceable on an artifact describe the model and the

CheckCondition describes the property. That is, the conjunction of the instantiation con-

straints, ACS, and the termination constraints describe fully the model. The requirement

that the CheckCondition is eventually met is introduced for a SAT solver to complete

the process of verification. Furthermore, if we limit the number of timesteps (sequences

of successive attribute assignments to an artifact) that a solver is allowed to consider, we

naturally arrive at the notion of bounded satisfiability or k-satisfiability.

Today, many modern model checkers have direct support for the specification and anal-

ysis of CLTL formulas, and thus they can act as k-satisfiability checkers for CLTL formulas.

If not readily available, support for the analysis of CLTL formulas can be introduced via

encodings. For example, Cunha has described an automated method of encoding LTL
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formulas as an Alloy model [45], and Rozier and Vardi [133] demonstrate a mapping in the

SPIN [80] and NuSMV [35] model checkers.

We believe that there are two main reasons why a model checker is best suited for the

task of verifying constraint systems: efficiency and ease of use. Modern model checkers

have seen tremendous research interest and provide an extremely efficient environment for

the types of constraints that are generated using DCML. They can leverage the strengths

of highly engineered SMT solvers that have direct support for reasoning over constraints

specified using typical business domains/operators such as integers and strings. However,

a much stronger argument in favour of relying on model checkers is that of accessibility.

Model checkers are often accompanied by various analysis tools that allow users to explore,

optimize, and augment their models in various ways. This is a perhaps a direct result of

the popularity of model checking and growth in the community using/supporting it. Thus,

reducing our problem to model checking allows us to exploit not only the efficiencies via

technical improvements in this field (SMTs, for example), but also to benefit from soft

improvements that will eventually help business users understand the results of a problem

in a complex policy system.

A note on Zot

In our examples and in the case study presented in this thesis we construct models in

the Zot model checker. Zot [124] is a model checking tool geared towards checking the

bounded satisfiability for metric CLTL formulas specified over decidable theories and has

now been available for more than seven years. Because of its simple LISP-like syntax and

the ease of interpreting violating runs (artifact histories or attribute assignments). The

main reasons we rely on Zot for constructing and verifying the examples presented in this

thesis is that Zot requires very little setup and initialization. Zot can be coupled with

several SMT solvers, and users of Zot can almost immediately begin writing assertions in

linear temporal logic and verifying them. Consider the following example of a constraint

system specified in the CLTL specification language:

(counter = 0) ∧G(counter = •counter + 1) ∧ F(counter > 5) (5.5)
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Intuitively we can see that the constraint system above does the same three things

that our SAT construction for verification does. It (a) initializes a variable called counter

with the value of zero, (b) requires that forever/globally (G) the value of the counter is

one higher than it was in the previous time step, and (c) that sometime in the future

(eventually or F) the value is greater than 5. This model is trivially satisfiable in 6 time

steps. The Zot model for this CLTL formula presented below is essentially a mirror image

of the formula:

(asdf:operate ’asdf:load−op ’ae2zot)

(use−package :trio−utils)

(define−tvar ’counter ∗int∗)

(defvar modelconstraints

(alw

([=]

(−V− counter)

([+] (past (−V− counter) 1) 1)

)

)

)

(defvar check condition

(

somf

([>] (−V− counter) 5)

)

)

(ae2zot:zot 10

(

&&

([=] (−V− counter) 0)

modelconstraints

check condition

)

:logic :QF UFLIA

)

Listing 5.1: A simple example of a Zot model of a CLTL formula. For simplicity we have

split it into three parts, namely modelconstraints, checkcondition and initialization.

The first two lines are are required to initialize Zot for CLTL satisfiability checking.

The only variable used in this example, counter, is defined in the third line. There is
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only one model constraint, and it requires that always (globally) the value of the counter

is one higher than it was one timestep in the past (note that arithmetic operators are

enclosed in square brackets and -V- is used to refer to the value of a variable). Like LISP,

the constraints are specified in prefix notation (that is, the operator is followed by its

operands). The check condition requires that sometime in the future (somf / F) the value

of the counter becomes greater than 5. Finally, when both the model and check conditions

are specified, Zot is run for a bound of 10 relying on the logic/theory of quantifier-free

linear integer arithmetic (QF UFLIA) to check whether there exists a run for which the

starting condition, the model constraint, and the check condition are all met.

The output of executing Zot paired with a solver (Z3) is straightforward as well. It is

essentially a run that complies with all the constraints. The output for the above model

is presented below:

−−−SAT−−−
LOOPEX = TRUE

I LOOP = 10

−−−−−− time 1 −−−−−−
COUNTER = 0

−−−−−− time 2 −−−−−−
COUNTER = 1

−−−−−− time 3 −−−−−−
COUNTER = 2

−−−−−− time 4 −−−−−−
COUNTER = 3

−−−−−− time 5 −−−−−−
COUNTER = 4

−−−−−− time 6 −−−−−−
COUNTER = 5

−−−−−− time 7 −−−−−−
COUNTER = 6

−−−−−− time 8 −−−−−−
COUNTER = 7

−−−−−− time 9 −−−−−−
COUNTER = 8

−−−−−− time 10 −−−−−−
∗∗LOOP∗∗

COUNTER = 9

−−−−−− end −−−−−−
Evaluation took:

0.131 seconds of real time

0.046800 seconds of total run time (0.031200 user, 0.015600 system)

35.88% CPU
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287,516,718 processor cycles

758,440 bytes consed

Listing 5.2: Output of the Zot model showing a run in which counter exceeds the value of

5. In case of an unsatisfiabile formula Zot returns only with UNSAT.

Complete Example in Zot

Finally we conclude this section by converting the SAT problem in Formula 5.2 into a Zot

model. The Zot encoding for this model is once again straightforward and is given below:

(asdf:operate ’asdf:load−op ’eezot)

(use−package :trio−utils)

;Variables used: PAID, UNPAID, SHIPPED, PHI

(defvar Instantiation Constraints

(!! (−P− PHI))

)

(defvar Termination Constraints

(&&

;Previously PHI implies currently PHI

(alw ;Always or Globally

(

−>
(past (−P− PHI) 1) ;Previously PHI

(−P− PHI); Currently PHI

)

)

;PHI implies all attributes retain previous values

(alw

(

−>
(−P− PHI)

(&&

(|| (&& (−P− PAID) (past (−P− PAID) 1)) (&& (!! (−P− PAID)) (!! (past (−P− PAID) 1))))

(|| (&& (−P− UNPAID) (past (−P− UNPAID) 1)) (&& (!! (−P− UNPAID)) (!! (past (−P− UNPAID) 1))))

(|| (&& (−P− SHIPPED) (past (−P− SHIPPED) 1)) (&& (!! (−P− SHIPPED)) (!! (past (−P− SHIPPED) 1))))

)

)

)

)

)
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(defvar Model Constraints

(&&

(alw

(

−>
(&&

(−P− PAID)

(past (!! (−P− PAID)) 1)

)

(past (−P− UNPAID) 1)

)

)

(alw

(

−>
(&&

(−P− SHIPPED)

(past (!! (−P− SHIPPED)) 1)

)

(past (−P− PAID) 1)

)

)

(alw

(

−>
(somp (−P− SHIPPED))

(!! (−P− PHI))

)

)

)

)

(defvar check condition

(somf

(

&&

(−P− UNPAID)

(past (−P− SHIPPED) 1)

)

)
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)

(eezot:zot 10

(

&&

Instantiation Constraints

Termination Constraints

Model Constraints

Check Condition

)

)

Listing 5.3: The complete Zot model for the example discussed in this section. For sim-

plicity each of the states is considered to be a boolean variable.

Observe that there is very little effort required to encode the entire constraint system

as a Zot model, as each connection between two states maps to an individual constraint

in the ACS (Model Constraints). This entire process is made convenient by the ability

to separate sub-formulas into different components and the direct availability of temporal

and logical operators in the Zot modelling language. A general purpose DCML diagram

to Zot model translator can easily be developed using the rules presented in Table 3.1 on

page 65.

5.2 Database Level Constraint Analysis

So far our discussion of verification of properties about constraint systems has focused on

a single artifact. Figure 5.3 depicts this situation, where multiple policy makers working

on different canvases (but still using the same variables) create a set of constraints visually.

Since each DCML canvas is associated with the same artifact type, these constraints can

be integrated together in an ACS (or equivalently a unified DCML diagram) and then

properties formulated about the artifact that warrant verification. Figure 5.4 depicts a

significant benefit of this approach of “unit testing” smaller lifecycles (or portions thereof)

embedded in various CCSs before integrating them into one large system of constraints.
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Figure 5.3: Different policy makers can work with the same definition of an artifact type to
specify different (sub)constraint diagrams. Because of the way these systems are designed
integration of constraints over a single artifact type (conjunction of constraints) poses no
challenge.

Figure 5.4: Different policy makers can work on individual components of the lifecycles of
artifacts. These lifecycles can be unit-tested and eventually be integrated as one unified
artifact constraint system.
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5.2.1 Defining Conflicts and Errors

Before we proceed to examining issues in database level constraint analysis (i.e., verification

of properties across several different artifact types), it is important that we define precisely

the term conflict as it pertains to an artifact’s lifecycle and the notion of check conditions

specified as properties in CLTL.

Let us consider a situation where the CheckCondition created by a user represents a

“desirable property” of an artifact. An example of a desirable property for our Invoice-

Processing artifact could be as follows: it should be possible for an invoice to get paid

(F(paid)). In other words, the constraints imposed by policy makers should allow for in-

voices to get paid. If however this CheckCondition is unsatisfiable when tested against

the constraint model, then the artifact lifecycle is over-constrained. Next consider the op-

posite situation, where the CheckCondition represents an “undesirable property,” such as

earlier example of an invoice that is marked as shipped and then subsequently marked as

unpaid. If this particular CheckCondition is satisfiable then we essentially have a situation

where the artifact lifecycle is under-constrained. Note that typically the notion of conflicts

(i.e., conflicting constraints enacted by error) most directly relates to the over-constrained

situation.

Although in both the above scenarios we posed a CLTL satisfiability problem, the

result (satisfiability or unsatisfiability) can lead us to very different conclusions about the

situation. This is because the the CheckCondition represents a condition similar to liveness

in the first situation and safety in the second. However, from this point onwards we will use

the terms policy level error and policy level conflict interchangeably to imply a situation

where one of the outcomes (satisfiable or unsatisfiable) on a CheckCondition is interpreted

as a negative result in terms of accomplishing a business objective.

5.2.2 Cross-artifact Reasoning

So far we have examined constraints specified on a single artifact and seen that canvas

constraint systems on the same artifact can be very easily brought together in an artifact

constraint system. However, when integrating artifact level constraint systems across mul-
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tiple base tables, several issues arise which make a direct conjunction of different artifact

constraint systems difficult. To provide a concrete example of the intricacies involved in the

verification of multi-artifact properties across the contents of the database, let us consider

three tables (two of which were previously introduced) and two new artifact definitions

that share the new common table:

CUSTOMER: (int CST ID, varchar NAME, varchar ADDRESS, . . ., varchar

ADDRESS COUNTRY, varchar CST TYPE)

INVOICE: (int INV ID, datetime LASTUPDATE, int CST ID, float AMOUNT,

bool SHIPPED, bool PAID, bool APPROVED, . . ., varchar NOTES)

SHIPMENT: (int SHIP REF, datetime LASTUPDATE, int CST ID,

datetime SHIPMETHOD, . . ., varchar NOTES)

To keep this example to the point, we shall omit drawing out individual states/diagrams

and only consider constraints in CLTL. Let us consider the following two artifacts and their

respective constraint systems. For further simplicity, each ACS has only one constraint in

it.

OrderShipment Artifiact: SELECT * FROM INVOICE NATURAL JOIN SHIPMENT

Constraint 1: If an invoice is worth less than $1000, do not use the

“overnight” shipping method.

Constraint 1 in CLTL : •(amount ≤ 1000 ∧ ¬shipped)⇒
¬(shipped ∧ shipmethod =“overnight”)

CustomerShipment Artifiact: SELECT * FROM CUSTOMER

NATURAL JOIN SHIPMENT

Constraint 2: Purchases for business customers must be

shipped overnight.

Constraint 2 in CLTL : (cst type =“Business”∧shipped)⇒
(shipmethod =“overnight”)
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This scenario is extremely simple and can be summarized as follows. A policy maker

from the Sales department has established a policy (constraint 1) on the OrderShipment

artifact that requires that low valued invoices, those valued less than $1000, must not

be shipped using the overnight shipping method. At the same time the customer service

department has a policy (constraint 2) on the CustomerShipment artifact that requires that

in order to receive high priority all business customers’ purchases must only be shipped

using the fastest method possible, which is overnight shipping. It is important to keep

in mind that although this is an extremely simple and concocted example, such a system

of requirements could emerge quite commonly in business situations. For example, either

constraint 1 or constraint 2 could have been present and a new policy directive may now

require that the other be implemented as well.

Error Detection and Virtual Artifacts

Observe that both these constraints are independently correct and enforceable. However,

the end result is that if a business customer purchases items of value less than $1,000,

there is no way for that order to be shipped. This implication will not be easily apparent,

since the two constraints are enforced over different combinations of tables (i.e., different

artifact types). A customer can have many shipment records as long as these records in

their lifecycle meet constraint 2, and, independently, orders can have associated shipment

records as long as these records in their own lifecycle meet constraint 1. However, it is only

when we examine all three entities (a shipping record for a given customer’s invoice) at the

same time and formulate a proper argument (in the form of a temporal property/assertion)

about them that we can reach meaningful conclusions about the interplay of shipping

different valued orders by business customers.

In other words, if we consider the question of whether there exists a way to ship a low

valued order placed by a business customer, across all three tables, the obvious unsatisfia-

bility result will follow. It is important to note that when examining only two tables at a

time we leave the attributes of the third table as free variables in any SAT problem. Since

the two-table at a time approach does not fully model the three-table situation at hand,

it is incapable of broader level reasoning regardless of the properties checked against it.
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Figure 5.5: A database with 3 tables and three artifacts that join on the shaded variables
(A4, B1 and C1). Reasoning over artifacts AB and BC does not capture reasoning over the
broader model represented by the artifact ABC. This is because individually, models over
the artifacts AB and BC are agnostic to the attributes not represented in them. The shaded
variables represent a join condition, which in CLTL can be expressed as Join(A,B) :=
¬(•φS ∨ U(φE)) ⇒ [(•A = A) ∧ (A = B)]. A join condition between A and B requires
that if the artifact was not previously in φS and not going to φE in the next time step,
then the previous value of A is the present value of A and the present value of A is the
present value of B. Thus variables A and B are joined once at the first time step and will
perpetually retain the same value in all executions explored by the model checker.
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Consider the abstract visual depiction of this example presented in Figure 5.5. Observe

that constraints defined on the artifact AB are only applicable on the attributes of Tables

A and B, and similarly constraints defined on artifact BC have no direct bearing on the

attributes of Table A. From a verification perspective, properties and assertions written

against each of these artifacts pose the questions of whether there exists:

1. a pair of elements from table A and B that join on A4 and B1 and fail to comply

with a given assertion or;

2. a pair of elements from table B and C that join on B1 and C1 and fail to comply

with a given assertion.

Therefore, in situations where the reasoning is restricted to a given set of tables, the

model and property under question do not consider constraints that exist in other poten-

tially related artifacts. To address this issue, the user that is attempting to verify policies

has to ask the right question across several tables and essentially force the join condition

to be true: That is, for the given constraint model across all three tables, can there exist

tuples from tables A, B, and C, that simultaneously join on A4, B1 and C1 and also fail to

comply with a given assertion. By forcing the join, the user has extended the constraint

model (view ABC in Figure 5.5) and expanded the vocabulary (list of attributes) on which

assertions can be verified. We denote such views that represent artifacts or interactions

between artifacts that are not explicitly defined for policy purposes as virtual artifacts.

At this point it should be apparent that the quality of the conclusions drawn about the

behavior of a database system will be only as good as the quality of the individual policy

models and the questions posed against them. Furthermore, properties checked against

individual artifact constraint systems may provide significant insight to the individual

models, but these properties are not sufficient for reasoning over the entire database. To

properly reason across several artifacts, we have to examine all base tables that they refer

to and then introduce individual constraints and appropriate joins clauses for each of the

related pairs of artifacts.

Complicating the situation even further is the fact that when several artifact constraint

systems are integrated together over a database, there is no inherent notion of correctness
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derivable from the properties specified on the individual artifact constraint systems. For

example, in the given set of specifications that we just discussed, there was no assertion

mandating that all orders should be “shippable,” and it may very well be the case that

business users are required to have a minimum purchase of $1,000 or higher for their

order to be processed. Thus, it is impossible to know whether what seems like an obvious

problem in the integrated model (virtual artifact) is actually a cause for concern or just a

well thought out consequence. As a result we have to rely on the users/testers to provide an

encompassing definition of what should happen (definition of a broader/virtual artifact as

depicted in Figure 5.5 and desirable properties thereof) in the combined set of constraints

acting on a database.

5.2.3 Making Life Easier for the DBA

The main challenge in the integration of various artifact level constraint system is that

of developing global models (virtual artifacts) within a database, integrating individual

constraints applicable on these models, and then specifying properties to validate over

these sets of models and constraints. This problem shares several aspects of similarity

with that of unit-testing/system-testing in software engineering and compositional model

checking [37]. In all of the above cases, users accomplishing these tasks require a significant

understanding of the system that is being modeled (constrained). Here the word user

refers to a tester or an auditor of the database level constraints, and the expectations

from him/her are no different than a typical software tester. S/he must have a thorough

understanding of the system’s expected behaviour and be able to articulate possible avenues

of failure in the appropriate testing language (CLTL).

Although we claimed earlier that many policy makers can diagrammatically formulate

artifact lifecycles on their own, we now have to acknowledge that there will be far fewer

power users who will be assigned the role to verify global properties about the interplay of

artifact constraints systems. Additionally, these power users will have to report potential

problems back to the original policy makers and play an active role in mediating conflicts.

The most likely candidates for this job will be database administrators who need to be

aware of the intricacies involved in temporal reasoning and possess knowledge regarding
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the business intent of the entities and relationships present in the database.

Developing Database Level Constraint Models

Developing test cases against complex systems consisting of several components is clearly

not an easy task, and it may even be considered an art. Without trivializing the problem

we can see that there are many immediate directions that a DBA can follow in verifying

properties about the interacting lifecycles of various artifacts.

In most situations, the source of contention will invariably be the data that is shared

among several artifacts. Clearly if a relational schema has clusters of unrelated tables, then

it stands to reason that the constraints in one isolated set of tables should not interfere

with another. As the example presented in Figure 5.5 showed, joins across tables in the

artifacts definition typically leads to the sharing of underlying data across many different

artifact definitions. In the case of Figure 5.5, a broader model (virtual artifact ABC) had

to be defined so that it encompasses both artifacts and is capable of expressing (unifying)

constraints on both artifacts and simultaneously reasoning over them.

Unfortunately, there is no formal algorithm that can generate global models that will

be of interest to a given tester. Carefully sifting through combinations of smaller systems

that can be progressively integrated is a task left to the judgement of the DBA.

Development and Verification of Complex Properties

Let us say that a DBA/tester is able to identify a situation like the one presented in Figure

5.5 and that a model that encompasses multiple artifact constraint systems is readily

available. The discovery of conflicts still requires that appropriate properties be formulated

against this model. In many situations these properties can be developed by looking at

system specifications. Consider, in light of our running example, the emergence of an

overarching requirement of the model (somewhat similar to a liveness property), requiring

that, for all types of customers and amounts, an order should be able to eventually reach

the shipped state. Since this requirement cannot be met in our example, we have a conflict.
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Note that this is the first time we have introduced a quantifier (universal quantification

over the domain of customer types and amounts) in our scope of reasoning. In the next

chapter we go into greater detail about the implications of having a quantifier-free con-

straint specification language and our reasoning for choosing the particular fragment that

we have. For now we only point out that these properties that a tester/auditor may want

to verify need not be in the same quantifier-free fragment of LTL that we proposed for

constraint diagrams. In fact, the tester can rely on as much expressivity as the situation

requires. For our constraint system specified over finite domains, we can repeatedly ask

a solver for every combination (cross product) of types of customers and amounts in the

invoice to identify runs where the order is shipped. Although this is not a very efficient

approach, we will invariably encounter the situation in which a business customer orders

goods of less than $1,000, leading to an unsatisfiability/unreachability condition for the

shipped state. In practice, the knowledge about the underlying domains and relevant the-

ories help us avoid exhaustive enumeration. Knowledge about the theory of linear integer

arithmetic can lead us to conclude (as it would for a programmer testing a piece of code)

that testing only boundary conditions ($999, $1000 and $1001) is sufficient to make sound

conclusions.

The knowledge about domains is of significance during this stage. We have already

assumed that the model tester (DBA) is a highly capable person. Thus, it stands to

reason that s/he should be free to introduce additional domain knowledge to augment or

further restrict the model if it leads to better (faster or more efficient) reasoning. For

example, instead of enumerating over all possible strings, a DBA can make his/her life

easier and restrict enumeration of shipping methods and customer types over a short list

of possibilities defined either in the constraint system itself or available from within the

database. By giving the tester utmost flexibility (much more than the designers of the

canvas constraint systems had), we can certainly provide a bigger and better arsenal of

tools for him/her to exploit. However the flip side of this is that it expands the scope of

responsibilities, making the job of the DBA even harder when there are no set criteria for

correctness.
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5.3 Summary and Related Work

In the previous chapter we looked at how a given a set of constraints in DCML can be en-

forced. In addition, we examined several issues pertaining to the feasibility of enforcement.

In contrast, this chapter made the case that developing a “correct” system of constraints

at either the artifact level or the database level is an extremely challenging task. Although

empowering business users to create constraint diagrams on their own is a noble idea and

reduces the burden on a single authority to monitor/manage a database, it is certainly not

without its perils. We observed that even though the developed constraints will always

be enforceable, the end result of integrating many constraints and enforcing them can be

the introduction of latent problems that may need to be identified before implementation.

Thus, we distinguished the notions of enforcement and correctness and brought forward

the idea of testing a system of constraints.

Underneath the infrastructure for reasoning that we presented is a very simple obser-

vation: A database in its purest form is a set of unrestricted tuples. It is essentially a

“universal model,” as described by Rozier and Vardi [133], where tuples can “move” or

switch between any arbitrary values as time progresses. It is only when we start assign-

ing meaning to the different attributes, give them domains, give interpretations to joins

among these tuples, add constraints (primary key, foreign key, domain constraints, asser-

tions, checks etc.) that we start to build a scenario that restricts the universal model to

suit a particular situation. Our approach augments a database with additional constraints

specified in CLTL that are applicable over the lifecycle of a single unique combination of

such tuples.

A consequence of our choice to use CLTL to specify constraint systems is that the prob-

lem of verification of such systems is essentially reduced to CLTL satisfiability and model

checking. Several surveys and text books on model checking have been published, and it

would be a digression to discuss them. In addition to the work done with Rozier, Vardi has

on two different occasions pointed out the similarities between the research conducted in the

areas of satisfiability and model checking and the connections therein to database systems.

He demonstrated that CSP/SAT problems can be reduced to several problems in query

analysis and vice-versa [166]. Later he noted that many database-centric problems, such
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as serializability of transactions, can be framed as model checking problems [167]. Several

other authors have also presented work modeling the behaviour of concurrently running

transactions and testing their behaviour [9, 53]. Note that our foremost goals were that

of interpreting workflows, constraint specification, and enforcement in database systems.

However the additional infrastructure of verification through model checking comes as an

additional benefit that results from our choice of language to develop constraint systems.

The idea of using model checking (and reasoning over state systems in general) to

abstractly identify inconsistencies in business processes has also been explored several times

[121, 158, 56, 12]. Our work is similar and relies on a establishing a mapping between

workflows and enforceable constraint systems while simultaneously enabling verification

over these constraint systems. Most importantly, our approach distinguishes itself by being

concrete, and attempts to reason at the level of individual database level rows instead of

abstractly defined business objects.
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Chapter 6

Usability, Limitations and Extensions

In this chapter we revisit the goals we set in the introduction and examine several unan-

swered questions about the usability, limitations, and extensibility of our proposed tech-

nique for enforcement and static reasoning with constraints. We demonstrate that policy

makers can extend DCML to suit their particular needs and introduce a broad range of

constraints to transfer their business level workflows over to a database. Recall that in

Chapter 3 we presented a limited number of constraints with different notations (arrow

ends) to define DCML (Table 3.1 on page 65). In this chapter we will make the case for

an extended situation-specific DCML toolkit that can be customized for users attempting

to enforce various types of policies in relational database systems.

There is a fine balance between extensibility and usability that is often determined by

the limitations of a complete system. In our case the three topics are closely related by

the logical formulation of our solution. This chapter takes a closer look at this relationship

and highlights some important observations. As was the case in the previous chapter, we

take a broad meaning of the word “user” and consider the notion of usability from both a

policy creation/visualization and policy testing/management perspective.

This chapter is divided into four sections. In Section 6.1 we take a closer look at the key

determinants of expressivity of constraints in our proposed framework. We examine the

impact of the expressivity of the underlying query language used to define artifact types

(SQL) and the expressivity of the language used to describe constraints over artifacts
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(CLTL). In addition we discuss how the interplay between these two imposes limitations

and impacts the overall usability of an LTL-based visual constraint modeling language such

as DCML. In Section 6.2 we consider three possible extensions of DCML. These extensions

add a significant amount of expressivity in the types of constraints that can be enforced on

artifacts while maintaining the overall usability of DCML. In Section 6.3 we take a more

formal look at workflow languages and demonstrate that DCML (and, more generally,

LTL) is sufficiently expressive to capture the control flow characteristics of most modern

workflow languages. We rely on the work done by van Der Aalst et al. [163] to characterize

the features present in workflow languages as “patterns.” It is shown that most workflow

patterns (specifically those relevant to a single class of objects, i.e., a single artifact type)

can be mirrored in an LTL- based visual constraint modeling language such as DCML.

Finally, Section 6.4 summarizes and concludes this chapter.

6.1 On Usability and Complexity

The reader familiar with model checking and the relationship between SQL queries and

first order logic will have observed that there are three major determinants of complexity

that impact how efficiently polices can be enforced and if they can be statically (and

meaningfully) verified. They are as follows:

• the expressiveness of the view (query) that defines an artifact type,

• the complexity of the artifact constraint system, and

• the complexity of the check condition that requires verification.

Chapter 4 examined issues pertaining to the complexity of the artifact definition and

the impact of the types/frequency/coverage of updates issued against the database on

efficiency in constraint enforcement. It analyzed the compromise between storage space

and computational efficiency that the database administrators may have to face. The

problems related to the efficient monitoring of a database for LTL constraint enforcement

are well known in the database community in the context of triggers and materialized view
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Figure 6.1: Restricting the state space of n-tuples defined over a database requires that
we analyze the implications of how these tuples are derived. For example, if the query
defining the view is unsatisfiable the entire constraint system is essentially meaningless. For
arbitrary unrestricted queries, determining satisfiability is well known to be undecidable.
Similarly, when sufficiently expressive views are utilized, reasoning over constraints that
cannot be mapped back onto the physical contents of the database is severely impeded.
Even though such constraints may be enforceable, they provide limited knowledge about
the possible behaviour contents of a database.

maintenance. Chapter 5 addressed the problem of verification of properties over artifacts

that are subject to a set of complex constraints. However, there remain several questions

regarding the expressiveness of the artifact type (view) definition language (i.e., SQL), the

expressiveness of the constraint specification language (i.e., CLTL), and how they impact

our ability to gain meaningful insight about the constraint systems that have yet to be

addressed.

Figure 6.1 captures many of the issues that emerge because of the mapping from the

artifact as a uniquely identifiable n-tuple to the contents of the database over which it is

defined. The primary purpose of having this layer of indirection is to provide each policy
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maker with a clean snapshot of a specific class of business objects (artifact type) scattered

in different tables. The benefits of doing so (primarily simplification and distribution of

roles and responsibilities) have been repeatedly stressed in this thesis. However, we need

to address the fact that ill-defined views (artifact types) can lead to significant difficulties

(discussed shortly hereafter) in verifying properties about ill defined artifacts.

Most of the examples of artifact types presented in this thesis have been simple, every-

day businesses objects, such as invoices, sales records, etc. The contents of such artifacts

are directly stored in the database and do not require any operations (manipulations or

modifications) to be captured in a view. The reader familiar with first order logic and

relational algebra will recognize that such views are defined using conjunctive SPJ (Select-

Project-Join) queries and are also referred to in the literature as existential queries. Their

key advantage is that they make the connection between existence/counter-example gen-

eration much easier to be understood. This is due to the fact that, when considering

SPJ-based artifact types, a direct connection to constituent rows is available to explain the

history of artifacts.

It is generally accepted that many “typical business records” can be captured using

SPJ views. In this thesis we will not delve into why SPJ views are technically much eas-

ier to reason with than more expressive views. The reader is however directed to prior

classical work that have done substantial analysis on the satisfiability and decidability of

classes of queries under varying assumptions (e.g., [94]). However, we argue that technical

limitations aside, there are major non-technical limitations imposed by the use of com-

plex views to define artifacts, specify constraints over them and interpret the meaning of

those constraints for policy makers. We will demonstrate that, in the context of policy

verification, restricting artifact definitions to conjunctive queries (or the related notion of

updatable views) provides the perfect balance of usability and complexity for the class of

business level constraints we have targeted in our work.

6.1.1 Meaningful Constraints over Complex Views

To illustrate the “meaningfulness” of constraints over complex views, let us consider Figure

6.1 and an artifact that contains the aggregate function SUM() over an integer attribute
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in a database table. One can argue that we have gone beyond the capabilities of first-order

logic by using aggregate functions, but it is important to note that we have only done

so in defining the artifact. Reasoning about the possible values this sum can take is still

practical.

It is important to recognize that a constraint on the sum of a set of values does not

constrain any of the individual values of items in a set. For example, if the sum of a set of

values is required to be less than zero, the set itself is not restricted in any way and can

contain any number of positive and negative values, provided they collectively add up to

an amount less than zero. For the purposes of verification, constraints specified over such

derived attributes will be meaningless and have no bearing on how the actual data values of

a single artifact behave. Nonetheless, even though we lose the strong connection between

a database state space and the artifact state space when going beyond conjunctive/SPJ

queries we can (a) still enforce constraints on complex artifacts and (b) perform some

reasoning at the level of the artifact.

6.1.2 Complex Functions and Constraints over Sets

However there is a big caveat here: through the use of non-trivial functions, we also lose our

ability to reason across constraint systems. For instance, consider the case where one policy

maker in one constraint system requires that all individual values for a given attribute in

a table will forever be less than zero and another policy maker in a different constraint

system (enacting constraints on a different but related artifact type) requires that the

aggregate of the same values must forever be greater than zero. Since an off-the-shelf SAT

solver / model checker has no knowledge about the theory of sums over unbounded sets, it

is impossible to correctly verify whether a set of values can satisfy both these constraints.

In other words, in the current framework we cannot integrate these two constraint systems

without bounding the set size and encoding the equivalent finite problem in a SAT solver.

Verification in such situations can thus only be accomplished when we have available

proper frameworks (theories) for reasoning with the appropriate functions. This, of course,

also includes the infrastructure to model temporal properties over arbitrary sets of variables

and not just a single tuple. In addition to summation, user-programmed functions pose
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the same problem. If the model checker is augmented to reason over such functions, then

clearly the query language to define artifacts can be also extended. That will, in turn, allow

us to formulate properties over systems that interact with each other through constraints

on the underlying data. However, without this additional infrastructure, complex set-

oriented functions in the constraint systems on their own will have limited usability (i.e.,

only at the level of an artifact) and in general be unable to provide guarantees to testers

of a system attempting to bring together different constraint systems.

6.1.3 A Case for Reduced Complexity

A much stronger argument in favour of avoiding arbitrary complexity lies in the exami-

nation of how typical business workflows and process models are organized and why the

proposed class of logic/constraints is ideal to support them. When specifying CLTL con-

straints over SPJ views, we have (i) restricted ourselves to a single existential quantifier

in first order logic (i.e., verification questions that ask whether there can exist an illegal

sequence of history entries for a single object) and (ii) only allowed the use of temporal

operators over atomic propositions in DCML.

Note that with regards to point (i), the lack of the universal quantifier restricts us

to reason over the existence of a single artifact (or virtual artifact) in isolation. This is

convenient for users because most policy situations emerging from workflows consider only

the lifecycle of single class of objects. In other words, since all instances of a workflow

follow the same set of rules, finding one instance that violates those rules is sufficient to

discover an error.

Point (ii) above relates to the fact that arbitrary use of temporal and arithmetic opera-

tors within propositions is avoided in our constraint system construction. When defining a

particular state, the object is “frozen” to its “current” values. For example, using DCML

a constraint such as •(x < y) can be generated because at a particular point in time we

can compare attributes of an artifact using the < operator and refer back to that state

condition being met as part of a state transition. That is, a policy designer can define a

state where the current value of x is less than the current value of y and refer back to this
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state implicitly when embedding restrictions in LTL. However, given the way we have de-

fined DCML, a state itself cannot be defined by arbitrarily using temporal and arithmetic

operators, e.g., (•x < �y) cannot be defined. Thus, a state in which the previous value

of x was less than some prior value of y cannot be modeled by the visual construction

notation. Consequently, one can argue that from a technical standpoint some expressivity

and flexibility in reasoning (well within the capabilities of a model checker as exhibited by

Listing 5.2 on page 118) is perhaps unnecessarily lost.

We believe that this “lost expressivity” provides enormous usability for the users of such

a policy management framework. The biggest gain in usability comes from the fact that

canvas constraint systems become very closely related (visually) to path-oriented workflows

rather than exotic automata. “States” directly relate to stages in a business process, and

these stages are themselves identifiable based on the properties of a business object. The

most appropriate real-world analogy to this situation is that of an assembly line, where

a worker familiar with the process can look at a widget (and the widget alone) at any

time and determine what stage of the assembly process it is in. This restriction precludes

potentially some exotic class of business processes that have loops in them and the number

of times an object has been through a specific loop is of significance for future decision

making. Our work, however, focuses on the more common situation: by looking at an

object’s attributes alone, a policy designer is able to identify what stage of the workflow

it is in. Consequently by not providing the additional expressivity, we ensure that the

mapping from business level workflow states to artifact states is straightforward and easy

to accomplish for the most common class of workflows. In the next section we discuss

how the overall expressiveness of systems of DCML constraints can be increased on a

situation-specific basis.

6.2 Enhanced Constraint Systems

6.2.1 Extending the DCML Toolkit

The previous sections should lead the reader to appreciate that there are indeed many

issues that lie at the intersection of usability and technical limitations in our proposal. By
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Figure 6.2: An example of a workflow constraint that mandates, in addition to the exit
restriction, that the user updating the object (causing it to go from State A to State B)
must belong to specified user group.

the end of this chapter, we will be able to summarize them and provide a clearer description

of the scope of features that can be supported and the specific limitations they introduce.

To illustrate the broader point and at the same time strengthen our proposed model, we

now present what we consider “usable extensions” of DCML, which provide a significantly

increased array of policy enforcing/modelling tools accompanied by limited compromise in

usability. We focus on three such extensions, and in each case we discuss the benefits and

consequences of providing the additional facility to policy makers.

6.2.2 Metadata and Temporal Access Control

So far we have focused on enacting and reasoning over policies on artifacts whose contents

are directly available in the underlying tables of a database. However additional metadata

regarding individual objects in a database may be useful for policy making. Most database

systems can store, alongside the history of an artifact, additional details such as the user

name, user group, role, and purpose of the transaction that initiated the change in an

artifact. The instrumentation to store this metadata alongside artifacts can easily be

embedded in the underlying triggers that maintain the artifact history. The definition of

the relevant view/artifact/object history in such situations can be visualized as follows:

ObjectHistory = (ID, timestamp,A1, A2, . . . , AN , user, usergroup, txntype,

application, . . . , purpose)

The additional attributes user, usergroup, etc. represent metadata from the event

acting on the object. Transactional metadata is often of great value to auditors, and many
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business processes rely on knowledge about users, purposes, and types of transaction to

move these processes forward in different directions. Consequently, many classes of business

policies are specifically related to not only the contents of an artifact before and after an

update, but also to the user or the application committing that change (Figure 6.2). Other

examples of such policies include specifications that require “expense claims of over $50 in

value must be approved by the user named Wendy” or “if an invoice is being moved from

the not shipped state to the shipped state, then the change must have been initiated by a

user in the logistics user group.”

Process-oriented temporal access control restrictions are generally very difficult to

model in languages that are not state oriented. However, if artifacts’ histories were to

encapsulate access control events as part of their definitions, then we can easily define

states based on conditions associated with this additional metadata. Consequently, we

could integrate process-centric, temporal access control models with business process mod-

els, and they could be validated/tested within the same constraint system.

Furthermore, within the framework of policy/artifact constraint systems, we can also

accommodate a mix of temporal and non-temporal access control policy models. Appli-

cations of such systems include situations where different paths are taken in the lifecycle

of an object based on the privileges of certain individual users. Once an object takes a

particular path at such a juncture, it need no longer be restricted by the initial access

control constraint. For example, this could be applied when a critical decision needs to

be taken by a user who has an elevated access control privilege specific to that process

(such as a supervisor), but subsequent to this decision the process need not be restricted

in terms of access control. Similarly, access control event chaining can be accomplished

in a manner similar to generalization of state-oriented constraints, allowing us to specify

complex conditional temporal access control constraints, such as “expense claims can only

be paid out by employees in the finance department, if they have previously been approved

by an employee of the administration department.”
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Limitations

Implementing temporal access constraints requires very little effort in addition to augment-

ing definitions of artifacts to store historical metadata. Once the triggers that maintain

histories of artifacts are modified, additional metadata can be treated as regular attributes

to define states and enact policies. Thus, access control restrictions are rephrased as data

integrity restrictions constraining how the artifact can evolve.

However, there is a major caveat for policy makers attempting to reason over such

constraint systems. This business process level reasoning does not eliminate the underlying

access control layers present in the database server and the operating system. That is, if

an independent access control mechanism within the database engine explicitly rejects a

modification, then whether a constraint system allows it or not becomes irrelevant. The

temporal access control restrictions within a constraint system essentially augment the

access control rules already present, and a transaction is required to pass both levels of

constraints. The above fact implies that the job of the DBA is made more challenging when

verifying properties about constraint systems involving access control. More specifically,

the DBA must also incorporate the behaviour of the database and operating system level

access control systems.

Fortunately, in most modern database systems the access control layer is relatively sim-

ple to model. It primarily consists of GRANT/DENY statements for INSERT, UPDATE,

and DELETE operations on tables for specific users and group. The implications of each

of these conditions has to be integrated with the constraint systems. For example, if a

particular user does not have permission to modify rows from a particular table, this re-

striction must be appropriately transferred as a CLTL restriction on the appropriate views

involving the table in question. In case of INSERT and DELETE permissions, the corre-

sponding restrictions will be modelled by restricting φS(A) and/or never entering φE, if the

transaction is initiated by a certain user/usergroup. In case of UPDATE, we will require

a global assertion (G) mandating that a specific user is unable to modify the artifact.
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Figure 6.3: An example of a workflow level constraint to enforce an enhanced exit restriction
that requires that the change taking an artifact from state A to state B must take place
within 7 days.

v

Read access to the database

It is also important to remind the reader that our focus is restricted to maintaining integrity

only; privacy restrictions are not supported. This is in contrast to general-purpose access

control, which deals with restricting both the ability to modify data and the ability to read

data. Since read requests generally do not impact objects/workflows and (in the classical

sense) cannot violate integrity constraints, we do not address this topic.

However, we note that if a database system is “logging access requests,” i.e. a database

is maintaining a history of outcomes to read/write permissions requests handled by the

underlying access control engine, then implementing temporal restrictions based on a se-

quence of reads/writes is plausible. A business scenario that could justify such a feature is

one that requires separation of duties: “if a user has accessed certain parts of the database

or made certain modifications in the past, deny the current access request.”

6.2.3 Metric Temporal Logics

Metric Temporal Logics (MTL) or real-time logics are natural extensions of temporal logic

where operators are enhanced to include timed restrictions (Figure 6.3). Whereas LTL re-

ferred to time implicitly (previously, next, etc.), MTL allows for precisely timed conditions

(within some t time periods). A business specification requiring that “a payment must be

made within 7 days of approval” is one that lends itself to be modeled in metric temporal

logic. Extended operators in such logics operate on a well-defined notion of the domain

143



of time. MTL operators also look similar to LTL operators, for example �x and •x are

typically interpreted as sometime in the past x time units and exactly x time units ago,

respectively.

However unlike propositional temporal logic and CLTL, there are many different metric

temporal logics that have been proposed to cater for very specific situations. For example,

in metric interval temporal logic (MITL) the operator �[x,y] can be used to specify an

interval of time in the past (between x and y time units in the past) in which a condition

must hold true. Similarly MITL can be further extended to include windowed periodicity,

and the MPITL operator �[x,y,z] can be used to specify that a condition must hold true

for a time period of y − x starting at every zth time period in the past. The business

use cases for such complex metric temporal logics are rare. Even though in our search

for examples we did not encounter workflows that specifically employed complex metric

logics, we can hypothesise that they do manifest themselves in situations where calendar-

style time periods need to be identified. For example, a business may want to identify a

recurring set of dates in the future to hold meetings, such as the 27th day of every third

month unless it falls on a Sunday. Similarly a business may conduct an inventory audit

during the second last week of every quarter, and thus specific procedures for introducing

new inventory might need to be followed during that time period. Disclosure rules during

the “quiet” period before sensitive financial information is released is another example of a

recurring business situation that might require different database-level rules to be enforced.

One can easily imagine many more examples.

Fortunately, the problem of satisfiability for many fragments of metric temporal logic

is no more difficult than the satisfiability of non-metric temporal logic. The key lies in

recognizing that a metric operator over k-time periods can be encoded as k-nested applica-

tions of non-metric temporal operators. Similarly, if time is treated as a persistent integer

t (as is the case in many computer systems), one can encode CLTL formulas that explicitly

refer to t to represent MTL formulas. For a comprehensive discussion of these encodings,

the reader is directed to the very recently published works of Pradella et al., in which

they describe how an existing bounded model checker / SAT solver can be used check the

bounded satisfiability of MTL formulas [125, 126]1. For a recent survey summarizing the

1Pradella et al. are also the authors of the Zot BMTL solving toolkit [124]
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known decidability and satisfiability results for various fragments of MTL, the reader is

directed to the work of Ouaknine et al. [118].

Moving into the Future

Although the infrastructure of metric temporal logic fits nicely into the notion of specifi-

cation and verification of constraints, the restrictions imposed by the original setup still

hold. Notably, constraint specification must be restricted to past metric temporal oper-

ators only. This is to avoid real-time constraints that are un-enforceable, for example,

a situation where “something must happen within x time units into the future” and the

database system just sits idle/offline causing a trivial violation through the passage of

time. Future metric operators can of course again be used during verification to specify

conditions that need to be tested against a system of enforceable constraints specified on

the past.

6.2.4 Constraint Systems for Auditing Only

Our final application is auditing in place of constraint enforcement. This is a trivial

application having two major benefits. It imposes minimal transactional overhead (i.e., no

run-time monitoring costs in addition to keeping an audit log, which most mission critical

processes do anyway) and requires extremely little effort to implement by internal/external

auditors. DBAs, programmers, and all users/applications can continue to interact with the

database under any other constraint regime. However, periodically a copy of a database

(that contains a history of all artifacts) is taken and run against various process-centric

constraint systems to check for any violations in the past.

In other words, all that is done is to check periodically if constraint violations have

already occurred or not. By doing so, violations are not prevented and neither is there a

proof that they can never happen, but an organization can, in theory, periodically check

its current database for compliance and remedy the situation.

In addition to the above, this process can be made part of a formal audit by an external

compliance officer. The application greatly simplifies the actual job of auditing violations.
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Instead of having to write complex temporal queries over the database schema to check

if specific types of violation occurred, these queries can be built visually using the state-

to-state constraint mapping notation that we have presented. Thus, we propose that

constraint systems can also be used as a stand-alone query building and database auditing

tool.

6.3 Converting Workflows into Constraint Systems

So far, we have asserted the ability of a CLTL based constraint language, such as DCML

(or a variant thereof), to capture the control flow semantics of a large class of business

processes. In this section we analyze a taxonomy of common control flow constructs found

in workflow languages and show how their behaviour can be emulated in CLTL. Thus, we

demonstrate that the features present in most modern workflow languages can be easily

accommodated in our proposed LTL-based constraint modeling language.

The definitive work on analyzing common “patterns” exhibited in workflows was done

by Van Der Aalst et al. [163], who identified 20 patterns pertaining to the flow of control

present in many commonly used workflow languages. Since the publication of their work,

these patterns have become the gold standard by which workflow languages (visual or

lexical) are compared. The reader familiar with LTL and these patterns will be well aware

that LTL is a far richer specification language than visual workflows and may find the

following reductions trivial. In the subsequent discussion we will refer to these patterns by

their names and abbreviations (P1 through P20 [163]).

6.3.1 Basic Control Flow Patterns

Pattern P1 (sequence) requires that a task is completed before another startsm and we have

already discussed two variants of this pattern in our examples (exit and entry restrictions

in Table 3.1 on page 65). Patterns P2 (parallel split), P4 (exclusive choice), P6 (multiple

choice)m and P16 (deferred choice) are essentially dependencies between 1 state and N
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Figure 6.4: A one-to-n pattern specified in DCML where n=3. The constraint can define
a dependency between the state X in the previous timestamp and the presence in any/all
of A, B, and/or C in the next timestamp.

other states as depicted in Figure 6.4. For parallel split, we can interpret the constraint as

the LTL formula as:

•X ⇒ A ∧B ∧ C (6.1)

Exclusive choice (P4) from X to A, B, or C but not any two of them together can be

described in LTL as follows:

•X ⇒ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) (6.2)

Similarly, multiple choice (P6) is essentially any combination of A, B, and C in the post-

condition and equivalent to exit-restrictions in DCML. Deferred choice (P16) is intended to

ensure that the process moves on in other respects and the choice between any combination

of A, B, and/or C is not made immediately. Since our framework allows an artifact/process

to be in multiple states at one time, the object can stay in state X and otherwise progress

outside the choice framework of any multi-choice patterns.

Note that some workflow languages can implicitly require that all states/stages be

mutually exclusive. Constraints on state transitions in such cases can be accommodated

by ensuring that formulas are interpreted slightly differently. The correct LTL equivalent

of such workflows languages would be •precondition ⇒ ¬precondition ∧ postcondition,

ensuring that the process moves out of a state when a “choice” at a workflow decision
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Figure 6.5: A generic n-to-one pattern where n=3. The diagram is a mirror of Figure 6.4.
The notation can be introduced in DCML to represent constraints of the type specified in
Equations 6.1 or 6.2.

point is made. Also note that the examples above (Equations 6.1 and 6.2) only have three

“exit states” or choices and that it is trivial to extend them to choices between n-states.

Pattern P17 (interleaved parallel routing) is essentially a special case of ordering several

tasks, where some can be run in parallel but others need to be completed sequentially.

Once again P17 can be accommodated by chaining together several pre-condition implies

post-condition style LTL restrictions.

Patterns P3 (synchronization), P5 (simple merge), P7 (synchronization merge), and

P8 (multiple merge) are essentially n-to-one constraints in LTL (depicted in Figure 6.5).

These can be captured in LTL by simply rearranging the post-conditions and pre-conditions

described earlier. For example, a simple merge can be described as:

X ⇒ •(A ∧B ∧ C) (6.3)

The purpose of different types of synchronization patterns is to accommodate various

choice patterns described earlier and to model different wait/proceed requirements. Pattern

P9 (discriminator) is closely related to sync/merge patterns, in that it allows workflows to

proceed further after any single pre-condition is met. It too is simply modeled by meeting

any of the conditions through n OR-clauses.

Pattern P10 (arbitrary cycles) is directly supported because an artifact can cycle back

and forth between any two states. In the characterization of Van Der Aalst et al. the issue

of bounds in such cycles is not addressed. As mentioned in Section 6.1.3, our modelling
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language can be extended to support bounded loops and counters via the use of temporal

operators in state definitions. However, the standard DCML presented in Chapter 3 only

allows for cycles between states without bounding the number of such cycles.

Pattern P11 (explicit/implicit termination) is supported as well. Either an artifact can

transition to φ explicitly (from potentially any other state) or simply forever remain in a

state that the policy designers can designate as a terminating/archival state. The support

for patterns P19 (cancel task) and P20 (cancel case) can also be described in a similar

fashion, because any particular branch in the constraint system taken by an object can

be abandoned (i.e., does not proceed further) or cancelled (explicitly terminated) at any

time. That is, an object can reach a conclusion for every split/choice made or not progress

towards any particular path taken, thereby effectively cancelling the subtask in a larger

workflow.

Pattern P18 (milestone) is a check condition in workflows that forms a checkpoint for

further processing, ensuring that regardless of the prior workflow behaviour, the condition

specified in the milestone should be met before proceeding further (see Figure 3.14 on page

76 for an example). The term “milestone” in workflow patterns is used synonymously with

a “condition,” and thus any state in a constraint diagram directly represents a milestone.

6.3.2 Multiple Instance (MI) Patterns

In the characterization of workflows proposed by Van Der Aalst et al., there are four

patterns that pertain to multiple instances: P12 (without synchronization), P13 (with a

priori design-time knowledge), P14 (with a priori run-time knowledge), P15 (without a

priori run-time knowledge). Since the intent of these patterns was to capture semantics

where the independent processes interact (can be spawned and joined) within a single

workflow, it is difficult to associate them directly with constructs in our language, which is

aimed directly at restricting the lifecycle of a single artifact type. We do, however, argue

that when these patterns are interpreted in a broader sense (as opposed to just threads of

execution), many of these patterns are applicable in constraint systems.

Foremost, we note that even though a constraint system describes lifecycles of arti-

facts, many different artifacts can concurrently trace different parts of this lifecycle. So if
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Pattern Name Supported

P1 Sequence Yes

P2 Parallel Split Yes

P3 Synchronization Yes

P4 Exclusive Choice Yes

P5 Simple Merge Yes

P6 Multi-Choice Yes

P7 Structured Synchronizing Merge Yes

P8 Multi-Merge Yes

P9 Structured Discriminator Yes

P10 Arbitrary Cycles Yes

P11 Implicit Termination Yes

P12 Multiple Instances without Synchronization Yes*

P13 Multiple Instances with a Priori Design-Time Knowledge Yes*

P14 Multiple Instances with a Priori Run-Time Knowledge No*

P15 Multiple Instances without a Priori Run-Time Knowledge No*

P16 Deferred Choice Yes

P17 Interleaved Parallel Routing Yes

P18 Milestone Yes

P19 Cancel Task Yes**

P20 Cancel Case Yes

Table 6.1: A summary of the capabilities of our model under the workflow patterns frame-
work as proposed by Van Der Aalst et al. [163]. *P12-P15 have to be interpreted in the
non-traditional sense to be applicable. **P19 is interpreted as a task within the same
workflow/canvas

an artifact contains within it n sub-artifacts, we could potentially model the lifecycle of

individual interactions of these n objects.

In our examples of invoices and sales orders, these lifecycles were completely indepen-

dent and could not “communicate” with each other (e.g., one invoice could not “share

variables” with another, as done by concurrently running threads). Thus, on the surface

it may seem as if multiple instance patterns cannot be supported. However, as mentioned

above, we can broaden the description of an artifact by including within the definition

interactions between a bounded number of similar process-oriented concepts. For example,
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Figure 6.6: Visual notation (lines, boxes, etc.) serve as templates for various LTL based
control flow restrictions in a workflow. For example, the above newly introduced arrow
could be interpreted as an LTL restriction specifying that “A implies always in the past B”
with its logical interpretation as A⇒ �B. Such constraints cannot be modelled in visual
workflow languages used in everyday business situations and thus require more intimate
knowledge of LTL on the part of policy makers.

we can model “pairs of invoices” as artifacts (via a self join) and thus argue that with a pri-

ori knowledge about the number/type of concurrent sub-processes (n=2 when examining

all pairs), we can construct complex workflows that model interactions between multiple

same-type artifacts.

Building a constraint system for these oddly interacting artifacts is non-trivial, but

the end result does somewhat conform to the notion of reasoning with multiple instances

with a priori design time knowledge. We still cannot “spawn” tasks within workflows in

the traditional sense, since that would require taking actions on the database, and, as

discussed earlier, that functionality is beyond the scope of this work. Thus, we argue that

in some circumstances we can accomplish a priori reasoning over multiple instances. We

also note that ours is not the first instance where these patterns have to be interpreted

such that they can be accommodated over a proposed modeling language. Prior work has

had to make similar interpretations on what such MI interactions would mean in a scenario

that is not directly relatable to traditional pictorial workflows [67].

6.3.3 A Note on Notation

In this chapter, we have discussed several ways in which our originally proposed DCML

semantics (Table 3.1 on page 65) can be extended to accommodate the needs of policy

makers in a broad range of scenarios. The extensions for which we specifically depicted

visual notation include metric temporal constraints (Figure 6.3 on page 143) and temporal

access control constraints (Figure 6.2 on page 140).
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We wish to point out that the purpose of proposing pictorial representations of such

constraints was make a broader point that an LTL/state-oriented constraint system is an

extremely flexible tool that can be adopted to suit the needs of individual policy makers

in a large number of situations. Since DCML is very closely related to LTL, a wide range

of constructs can be introduced into the modeling language to extend DCML. Figure 6.6

above presents one final example of such visual constraints.

In this work we deliberately choose not to present and promote a definitive all encom-

passing extended DCML/LTL constraint system toolkit. There are two major reasons why

we refrain from suggesting the holy grail of LTL constraint system restrictions and only dis-

cuss possibilities for extending DCML. Foremost is the fact that visual notation is best left

for policy designers (or graphic designers) to create. Choosing the right arrow-heads, type

of lines, and colours to use is best left for the users that work in the trenches of workflows

and corporate policy management. Consequently, if users of our proposed technique want

to re-interpret different arrows for their own needs, they are free to do so. Secondly, it would

go against the principles of extensibility, customizability and, separation/distribution of

responsibilities to propose a standard one-size-fits-all set of state-oriented restrictions and

call it a universal toolkit. Examples such as Figure 6.6 above have repeatedly shown that

there is a lot LTL can do which goes beyond traditional workflows, and thus there should

be room for database level constraint system designers to extend their toolkits according

to the specific situation that they are in and to tailor it for specific audiences. Our main

goal in introducing fixed semantics for DCML in this thesis is to demonstrate the overall

usability of an LTL based visual constraint modeling language.

6.4 Summary and Conclusions

In this chapter we examined several issues that lie at the intersection of usability and

limitations of our proposed constraint modeling framework. We observed that there are

three key factors that need to be considered when attempting to extend the proposed

infrastructure: artifact type complexity (view complexity), constraint system complexity,

and the complexity of the property that warrants verification. We discussed three specific
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extensions and examined how each of these factors played a role in enforcement and verifi-

cation. Metric temporal logic [8] was an obvious first choice to examine since it is directly

supported by modern LTL model checkers / SAT solvers and very intuitively provides

additional expressiveness in temporal logic. Next we examined the problem of specifying

process-oriented temporal access control restrictions [111, 129]. We showed that transac-

tion related meta-data can be made an integral part of the artifact and thus can be used to

rephrase access control restrictions as restrictions on the history/evolution of an artifact.

We pointed out limitations that must be adhered to and caveats for DBAs verifying prop-

erties on and across these enhanced artifact constraint systems. In our final example of

usability, we argued that the visual depiction of constraint systems can be used for auditing

(i.e., building auditing queries) requiring very little buy-in from system administrators.

Along the way we hope to have made clear several important points about usability

and extensibility. Our framework can easily accommodate the majority of workflow pat-

terns used in modern workflows and can go well beyond simple flow-oriented restrictions,

especially in situations where various extended fragments of LTL are employed together.

Even within one fragment, a wide array of restrictions that do not correspond to traditional

workflows can be modelled. We pointed out that with such flexibility, it is unlikely that a

single set of restrictions can accommodate the needs of all policy makers. Thus, the task

of proposing a definitive set of visual restrictions on a drawing canvas is best left to DBAs

and corporate policy makers for their specific situations. We believe that there are par-

allels between our proposed modelling language and meta-modelling languages presenting

an approach that can be tailored to specific applications. We believe that like-minded user

groups and policy makers should thus be allowed to create and share various customized

toolkits along with interpretations of constraints for their specific needs.
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Chapter 7

Case Study: Form GC179

In this chapter we present a real-world business process and examine in detail how complex

operational constraints can be translated from their visual and textual descriptions into

DCML models. Section 7.1 provides the necessary background and identifies the source

documents from which policy specifications are taken for this case study. It also highlights

our aims, objectives, and assumptions. In Section 7.2 we present in detail the business

process being examined. Section 7.3 then presents our interpretation of the business process

in DCML. Section 7.4 generalizes the specific case study presented in this chapter and

highlights several variables that were either not fully captured by the example presented

or cannot be captured in one case study alone. It presents a comprehensive cost-benefit

analysis of our proposed constraint modeling, enforcement, and verification infrastructure

which can be used to measure its true usefulness. Finally, Section 7.5 concludes this chapter

by providing a brief summary of this chapter.

7.1 Background

The payroll responsibilities for the Government of Canada are handled by the department

of Public Works and Government Services (PWGS). The Regional Pay System (RPS)

operated by PWGS administers the payroll for more than 300,000 employees of the federal
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government within 110 departments and agencies. The system operated by PWGS is the

largest payroll deployment in Canada, and it performs approximately 8.9 million financial

transactions annually valued at roughly $17 billion Canadian Dollars [127].

One specific function of this payroll system is to interact with various departments and

handle requests for extra pay made by the employees of the government. Form GC179

(also known as the The Extra Duty Pay/Shiftwork Report and Authorization Form) is the

designation given to a formal request for additional salary (typically in lieu of overtime

services rendered) made by an employee of the Government of Canada. For various reasons,

including security, privacy, and accessibility, each department of the government can design,

maintain, and manage its own GC179 form/template. The only major requirement in

handling such forms is that the final request for cash payments must be exported into

the RPS operated by PWGS Canada. We speculate that for most departments of the

federal government, GC179 requests are completed and processed electronically. However,

examples of conditions under which flexibility in handling GC179 requests is required

include situations where employees are unable to access a paper form or a computer (such

as in remote field operations). Some departments of the government offer alternative means

of handling GC179 requests for their employees. For example, the Department of Finance

allows its employees to accrue vacation time instead of receiving taxable cash salary for the

overtime service rendered [55]. In short, there is no standardized GC179 form or associated

process across the federal government.

Consequently, each department of the Government of Canada must design its own set

of policies, rules, and processes for handling GC179 requests. It stands to reason that

the various HR related databases operated by the departments of the government must be

subject to certain rules developed internally. Most importantly, each department is subject

to audits conducted by other branches of the government, such as the Treasury Board of

Canada (TBC) and the Office of the Auditor General. Naturally, such audits scrutinize the

published practices of every department and verify that the data regarding pay administra-

tion complies with the published practices. In addition, the branches of Government that

oversee and audit the operations of others’ also publish their own interpretations of legisla-

tion in the form of policy directives and guidelines on how to handle various processes. For

example, the policy suite published by the TBC [155] contains a host of policies that each
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department of the government should consider before developing its own internal rules.

The suite includes recommendations and guidelines on many employee related issues, such

as fairness in pay and working conditions, as well as handling of financial matters when it

comes to employees. Although departments can use these policy suites as guidelines, they

are not specification documents delineating specific business processes, and therefore there

is no single policy document that specifies how a GC179 request should be handled.

The challenge of compliance with overtime-pay related rules for a department of gov-

ernment is three-fold: (1) design a coherent and workable set of rules to handle GC179

requests, (2) ensure that the rules do not conflict with the overall policy directives of the

Government of Canada, and (3) ensure that the record keeping aspect of the department

(database) is compliant with the designed rules. The case study presented herein exam-

ines the above three aspects of compliance in handling GC179 requests within one specific

department of the Government of Canada.

7.1.1 Purpose of the Study

Our goal in this chapter of the thesis is to highlight the usability and usefulness of our pro-

posed constraint modeling language (DCML) and the associated verification infrastructure.

We do so by accomplishing two specific objectives: (i) demonstrating that a typical busi-

ness process (in our case represented by the handling of GC179 requests), when codified by

business users in terms of process models, flowcharts, and associated textual descriptions

of the process, can be easily mapped onto a DCML diagram; and (ii) demonstrating that

the implementation and verification of DCML constraint models that represent real world

situations can be accomplished by users with minimal technical understanding of CLTL.

Thus, we hope to show that the framework presented in this thesis is practical, efficient,

and easy to use for database systems that store information about real business processes.

We believe that the chosen example is representative of a large class of sequential business

processes. To further support our claims, the workflow and associated constraints presented

are taken directly from publicly available sources without significant alteration.
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7.1.2 Information Sources and Assumptions

Many departments of the government regularly publish the findings of internal and ex-

ternal audits. For the specific case of handling GC179 requests, several departments, in-

cluding Veterans Affairs Canada, Agriculture and Agri-Food Canada, and the Department

of Finance Canada have made their GC179 audit reports and findings publicly available

[6, 55, 168]. Typically, these reports serve the purpose of increasing transparency. However,

the information contained in these audits about the processes and specific safeguards that

should (and are) in place represents an ideal testing ground of converting process-centric

business rules onto database level constraints.

In this thesis we focus on the specific case of the Department of Finance, which, among

many of its duties, is responsible for preparing the budget of Canada and handling the

financing/borrowing operations of the Government of Canada in financial markets. Our

primary reason for choosing the Department of Finance’s audit report for handling overtime

pay requests [55] is that it is the most comprehensive of its kind. More specifically, it

(a) explicitly lists and details the various checks and constraints on the processing of

GC179 requests, (b) provides rationale in developing constraints by linking them to high

level policy objectives as published by the Treasury Board of Canada, and (c) contains

visual/graphical depictions of the business processes associated with GC179 requests.

In short, the report comes very close to being a specifications document created by the

department, by virtue of it containing most of the information required to convert business

processes into database level constraints. The only significant aspect of information missing

from the report is the description of a database schema (table structure and data fields)

of the HR database of the Department of Finance. Therefore, the only major assumption

on our part is that of extracting a list of data fields and attributes (more specifically, an

artifact type definition) relevant to the processing of GC179 requests based on the details

presented in the report.
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Figure 7.1: GC179 overtime request handling process model taken from Appendix 2 in
Department of Finance Audit of Leave and Overtime Report [55].
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7.2 Process Model and Flowchart

The process model for handling GC179 requests, taken directly from Department of Finance

Audit of Leave and Overtime Report [55], is presented in Figure 7.1. The model can be

traced from top-left, where an employee completes a GC179 form, to the bottom-right,

where data is exported into the RPS and a cheque is cut for the employee. The description

of this process and specific constraints are summarized below.

1. All GC179 requests are handled electronically and can be created in the system in

two ways. After completing the overtime work, an employee can either complete a

GC179 request or the same can be completed by a designate of the employee. In case

a designated employee files the GC179 request, it must subsequently be reviewed and

cross-checked by the employee named on the GC179. This additional step must be

done electronically as a discrete and separate event. However, there is no explicit

requirement that the actual transaction that marks a GC179 request as cross-checked

is performed by the employee named on the request. GC179 requests can be marked

as cross-checked by the designate, as long as this is done in a separate transaction.

The purpose of the additional step is to ensure (at least in theory) that the designate

actually confirms the details with the employee after creating a GC179 request.

2. All GC179 requests require supervisor approval before they can be processed. Even

if the GC179 request was pre-approved, it must be reviewed to ensure that the scope

of the request matches that of the pre-approval. In addition, an employee can not

be his or her own supervisor, and once a supervisor approval is given, the details of

the request can no longer be altered by the employee unless the request is explicitly

“sent back” to the employee for amendments. Finally, a supervisor can only approve,

permanently reject, or send back the request and can not alter it in any other way. If

amendments to the request are required they must be made by the named employee

or his/her designate in a manner described in point (1) above.

3. GC179 requests that have received supervisor approval must then be authorized by

an employee that is the Section 34 Authority in the department, as designated in the

Financial Adminstration Act of Canada (1985). The designated Section 34 Authority
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for a department are one or more employees that are responsible for the overall

financial oversight. The purpose of this approval is to ensure that the charge/claim

is properly documented, reasonable, and necessary. The employee acting as the

Section 34 Authority must be different from both the employee named in the GC179

request and the supervisor of that employee. Once again, the Section 34 Authority

can only approve, permanently reject, or send back the request and can not alter it

in any other way. If amendments to the request are required, they must be made by

the named employee or his/her designate in a manner described in point (1) above.

4. GC179 requests that receive Section 34 approval are then processed by an HR ad-

ministrator of the department. Employees can be compensated for overtime in two

ways: cash or vacation hours (eight vacation hours are treated as an extra day of

vacation). Employees must choose at the time of completing a GC179 request how

they wish to be compensated.

(a) If an employee requests vacation hours, a calculation is made by the HR staff

to determine how many vacation hours should be accrued. This is done on a

case-by-case basis because the multiple applied to overtime hours to determine

vacation hours can change depending on circumstances (e.g., overtime pay rules

may be different for regular weekends and statuary holidays). The final number

of accrued hours calculated is verified by a comptroller of records and then added

to the total number of available vacation hours on record for the employee.

(b) If cash payment for overtime is requested, then the HR staff calculates (based

on the employee’s pay rate or yearly salary) the appropriate amount to be paid

for this GC179 request. This calculation is verified by a comptroller of financial

records and then made ready for export into RPS. Once RPS has processed

the payment, it returns a payment identifier, which is then associated with this

GC179 request, and no subsequent changes are allowed to the request.

5. GC179 requests that have not yet been processed by HR can be deferred back to the

employee or designate for changes. This is typically done when any of the supervisor,

Section 34 Authority, or the HR staff is not satisfied with the request and its associ-

ated details. When a request is deferred back to the employee it loses its supervisor
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and Section 34 approvals and must go through the process (including cross checking

if necessary) once again.

6. GC179 requests that have not yet been processed by HR can also be permanently

rejected. Once a GC179 request is rejected, it can not be modified in any way.

Therefore, all processing on such requests is terminated and they are forever archived.

7. There is also an alternate process for employees who have accumulated a large amount

of vacation hours to “cash them out.” A written request must be received from the

employee, which must then be scrutinized by the Section 34 Authority (for availability

of funds and reasons for the request), and then subsequently forwarded to HR. An

employee in HR will re-examine one or more prior GC179 requests for which vacation

hours were awarded, subtract the vacation hours from the employee’s remaining

vacation hours, perform the appropriate salary calculations, and make the salary

data ready for export into RPS. Before the data is exported into RPS and a cheque

is cut, it must be verified by a comptroller.

7.3 Implementation

7.3.1 Artifact and State Definitions

Since the audit report does not specifically mention the internals of the database operated

by the Department of Finance, we assume that the attributes listed in Table 7.3.1 define

the GC179 artifact type completely. We believe that most database designers will treat

a GC179 request as a strong entity, and thus the artifact definition will only consist of a

selection on a single table. Constraints (DCML diagrams) will therefore be applicable on

a single sequence of assignments to these attributes.

From the description of the process given in Section 7.2, we extrapolate that, at a high

level, there are 3 different phases in the lifecycle of a typical GC179 request: (i) data entry,

(ii) managerial approvals and (iii) HR/back-office processing. Based on our reading of the

process, we have identified 13 distinct states involved in the processing of GC179 artifacts

162



Attribute Name Type Details
GC179 ID int Unique identifier of the request
EMP ID int Employee ID of the beneficiary
FILLED BY EMP ID int Employee ID of the designate (if any)
CROSS CHECKED bit Request cross-checked by the benefi-

ciary?
DETAILS varchar Details associated with the request
CHANGES REQUIRED bit Does request/form data need editing?
APPROVAL SUPERVISOR EMP ID int Employee ID of the supervisor
SEC34 AUTHORITY EMP ID int Employee ID of Sect. 34 Authority
HR EMP ID int Employee ID of the person who per-

formed the vacation/salary calculation
HOURS ACCRUED float Vacation hours credited in lieu of over-

time
CASH PAYMENT AMOUNT float Cash paid in lieu of overtime
HR-PAYROLL TXN ID int Transaction identifier for the payroll /

HR calculation record
EXPORTED TO RPS bit Request exported into RPS?
PAYOUT REQUESTED bit Was a cash payment requested?
COMPTROLLER EMP ID int Employee ID of Sect. 33 Authority /

Comptroller
PMT ID int Transaction ID of the payment made to

the beneficiary by the RPS
LASTUPDATE EMP ID int Employee ID of the person who last

modified the request

Table 7.1: Attributes of the GC179 artifact
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DCML State Explanation and Purpose
φS Uninitialized State
FILLED BY DESIGNATE Request completed by a designated employee

and awaiting verification.
SELF FILLED Request completed by employee (no cross

checking required). Awaiting supervisor ap-
proval.

CROSS CHECKED Request cross checked and awaiting supervi-
sor approval.

CHANGES REQUIRED Request deferred back to employee for
amendments.

REJECTED (φE) Request permanently rejected (artifact life-
cycle terminated).

APPROVED BY SUPERVISOR Request approved by supervisor and awaiting
Section 34 approval.

APPROVED BY SECT34 AUTHOR-
ITY

Approved by Section 34 Authority and await-
ing HR processing

VACATION HOURS CALCULATED Vacation hours calculated and request is
awaiting comptroller review.

CASH PAY CALCULATED Cash pay calculated and request is awaiting
comptroller review.

DATA EXPORTED TO RPS Comptroller review completed and data ex-
ported to payroll system.

HOURS ACCRUED Comptroller review completed and hours ac-
crued to employee vacation record.

PAYMENT MADE Payment confirmation received by RPS.

Table 7.2: States of GC179 artifact
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in the above three phases. They are listed in Table 7.3.1. Our interpretation given to the

states is very intuitive and augments the visual process model presented in Figure 7.1. In

the next section we provide our DCML diagrams for each of these phases.

7.3.2 DCML Diagrams

Phase 1: Data Entry

Figure 7.2: Data Entry Phase of the GC179 lifecycle

Figure 7.2 summarizes the data-entry phase of handling GC179 requests in DCML

and Figure 7.3 presents it in full with all the states fully defined. There are only three

constraints during this phase and they are as follows:

1. Initialization: A GC179 artifact can be instantiated in either the SELF FILLED or

FILLED BY DESIGNATE states.

2. Cross Checking: When leaving the FILLED BY DESIGNATE state, an artifact must

either enter the CROSS CHECKED state or the CHANGES REQUIRED state.
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Figure 7.3: Data Entry Phase of the GC179 lifecycle - Complete DCML Canvas. The
attributes and their required values that differentiate one state from the others are high-
lighted in bold font
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3. Amending GC179 requests: A request in the CHANGES REQUIRED state, when

leaving this state, can only go to the SELF FILLED, FILLED BY DESIGNATE or

the REJECTED states.

There are some important observations that need to be pointed out. Foremost, under

the designed constraint system a value of zero is assumed to be unassigned. For example,

when the artifact is instantiated (either in the SELF FILLED or FILLED BY DESIG-

NATE states), the Section 34 Authority for it is required to be zero. The value of zero

is used to imply that the Section 34 approval has not yet been given. When this value

becomes positive in the lifecycle of the artifact, then the assigned value will be interpreted

as the employee identifier of the Section 34 Authority that approved the request. Note

that a similar interpretation is given to the EMP ID attribute (representing the employee

identifier of the person named on the request). In either of the instantiation states, this

attribute must be positive, which is then interpreted to imply that an employee ID has

been assigned or must be associated with every GC179 request at instantiation time.

Both the instantiation states (FILLED BY DESIGNATE and SELF FILLED) require

that upon reaching either of them the attributes GC179 ID, EMP ID and FILLED BY EMP ID

become invariants. Therefore, during the lifecycle of an individual GC179 artifact, these

variables will retain the values they are assigned during instantiation.

Also note that the state conditions are defined to ensure that an artifact that is in

the SELF FILLED state is also in the CROSS CHECKED state. This is because self-

filled GC179 requests do not require an explicit cross checking and thus are ready to

move on to the next phase of processing. However, an artifact that is in the FILLED BY

DESIGNATE state must explicitly transition to the CROSS CHECKED (via a change

in the CROSS CHECKED attribute). Similarly, the state CHANGES REQUIRED is

distinguished by the boolean attribute CHANGES REQUIRED, and all artifacts exiting

this state must have this flag unset before progressing further. Constraint 3 ensures this and

accomplishes the business objectives requiring that a GC179 request that has been “sent

back” to the employee for amendments must be examined by the employee or designate

(to be corrected in some way) before being put back in the processing pipeline.
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Phase 2: Managerial Approvals

This phase of the process involves managerial review of the GC179 request, and the only

two revelent states in this phase are APPROVED BY SUPERVISOR and APPROVED BY

SECT34 AUTHORITY. As before, Figure 7.4 presents a DCML canvas that summarizes

the constraints in this phase, and Figure 7.5 fully defines the states.

Note that during this Phase of processing, there are several ways in which the artifact

can be “pushed back” in its lifecycle to Phase 1. For example, the request may be deemed

to be incomplete or inadequate by the supervisor, by the Section 34 Authority, or by

the HR coordinator. In each of these cases, the artifact is moved to the CHANGES

REQUIRED state which, the way we have segregated states, is not explicitly part of Phase

2. Consequently, we include some states from Phase 1 to depict fully constraints that take

the artifact to the prior phase of processing. A brief summary of the constraints presented

in Figures 7.4 and 7.5 is as follows:

Figure 7.4: Managerial Approvals Phase of the GC179 lifecycle. Two states that were not
previously fully defined are introduced and their interaction with prior states is summarized

1. Supervisor Approval: A GC179 request can only arrive in the APPROVED BY

SUPERVISOR state if it was previously in the CROSS CHECKED state. Ob-
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Figure 7.5: Managerial Approvals Phase of the GC179 lifecycle - Complete DCML Canvas

serve from the function defining the APPROVED BY SUPERVISOR state that AP-

PROVAL SUPERVISOR EMP ID must be set to a positive value. In addition, there

are constraints on who can modify the artifact (i.e., who can provide the supervisor

approval) that ensure that the supervisor is different from the employee named on

the request. Finally, to ensure that a supervisor only provides approval and does not

materially modify the request, all other variables are guarded (sub-container labelled

G) in the APPROVED BY SUPERVISOR state.

2. Leaving the APPROVED BY SUPERVISOR state: Constraint (2) in Figures 7.4

and 7.5 ensures that an artifact leaving the APPROVED BY SUPERVISOR state
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must only be able to go to one or more of REJECTED, CHANGES REQUIRED

or APPROVED BY SEC34 AUTHORITY states. But since each of these states is

non-intersecting, i.e., the functions associated with any two of these states cannot be

satisfied at the same time, an artifact can only be in one of them when it leaves the

APPROVED BY SUPERVISOR state. Thus, combined with the guard conditions in

constraint (1), this further restricts which attributes modifications must take place

in order for an artifact to exit towards a particular state.

3. Entering the APPROVED BY SEC34 AUTHORITY state: Constraint (3) is an

entry restriction similar to constraint (1). Note that while constraint (2) implied

that when leaving the APPROVED BY SUPERVISOR state an artifact may go

to the APPROVED BY SEC34 AUTHORITY state, constraint (3) requires that

if an artifact enters the APPROVED BY SEC34 AUTHORITY state it must have

been previously been in the APPROVED BY SUPERVISOR state. The net result of

constrants (2) and (3) is somewhat similar to the micro-example presented in Section

3.5 on page 65. Once again the key differentiator of the exit state (APPROVED BY

SEC34 AUTHORITY) is that the SEC34 AUTHORITY EMP ID must be positive

(i.e., assigned) implying approval by the employee responsible for financial oversight

in the department. To ensure that the Section 34 Authority only provides the specific

approval and does not materially modify the request, all other variables are guarded

in the APPROVED BY SEC34 AUTHORITY state.

Phase 3: HR and Back-office Processing

The final phase of handling GC179 requests and the associated constraints are depicted

in Figures 7.6 and 7.7. Recall from Section 7.2 that GC179 requests that have received

Section 34 approval must go through one final review and approval by an HR coordinator

responsible for handling the payroll and vacation records for employees. The calculation

determining overtime salary or the equivalent in vacation hours is performed as part of

this review. Once completed the request can no longer be rejected and must proceed to

payment or accrual of vacation hours.

Constraint (1) in Figures 7.6 and 7.7 restricts what can happen to artifacts that have
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Figure 7.6: HR and back-office processing phase of the GC179 lifecycle.

received Section 34 approval. More specifically, such artifacts can either be permanently

rejected, sent back to the employee for amendments, or move forward in processing to-

wards payment or vacation hours being accrued for the employee. Constraints (2) and

(3) ensure that if a calculation for vacation hours or cash payment respectively has been

completed, then the artifact must have previously been in the APPROVED BY SEC34

AUTHORITY state. Since the states VACATION HOURS CALCULATED and CASH

PAY CALCULATED are by definition mutually exclusive an artifact can only progress in

one of the directions based on the value of the PAYOUT REQUESTED flag.

Constraints (4-5) together have the net effect of ensuring that an artifact waiting for

comptroller review in the VACATION HOURS CALCULATED state can only move to the

HOURS ACCRUED state and an artifact moving into the HOURS ACCRUED state must

have previously been in the VACATION HOURS CALCULATED state. This does not

preclude the calculation of hours accrued to be corrected or repeated, since the artifact will

remain in the VACATION HOURS CALCULATED states if this happens. For example,

if the comptroller discovers an error, the HR coordinator can still correct the relevant

field of the artifact (HOURS ACCRUED) to a different non-negative value while ensuring

that the artifact remains in the VACATION HOURS CALCULATED. However, both
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Figure 7.7: HR and back-office processing phase of the GC179 lifecycle - Complete DCML
Canvas.
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these constraints are necessary to ensure that the path between these two states is strictly

followed and the object does not “escape” by going off diagram. Similarly, constraints

(6-7) and (8-9) accomplish the same objective of ensuring that an object only transitions

between the two states linked by these constraints.

Observe that there is extensive use of guards and invariant conditions in the four major

states of interest in this phase. The purpose of guarding a significant number of variables

is to ensure that the HR coordinator does not modify critical information that s/he is not

authorized to change. Because requests that have passed the last stage of review can not be

sent back for amendments, a significant number of attributes are made invariants as soon

as the calculation for pay or vacation hours is completed. The key variables that are made

immutable pertain to the earlier phases of processing and include those used to determine

whether the request needs changes (CROSS CHECKED and CHANGES REQUIRED),

the approval supervisors identifiers (APPROVAL SUPERVISOR EMP ID and SEC34

AUTHORITY EMP ID), and the method of remuneration requested by employee. Sim-

ilarly, once the comptroller review is completed (in the states HOURS ACCRUED and

DATA EXPORTED TO RPS), additional variables pertaining to processing are made in-

variants. Finally, in the case a cash payment is requested, the last variable to be modified

is PMT ID, which is returned by the payroll system external to the department.

7.3.3 The GC179 Constraint System

The single unified DCML constraint diagram that brings together the three phases of pro-

cessing GC179 requests is presented in Figure 7.8. The Zot code generated by translating

each visual constraint into CLTL is provided in Appendix A. The translation of DCML to

Zot was done according to the semantics of DCML presented in Table 3.1 on page 65.

To illustrate how this translation can be accomplished (and automated in the future

using a visual modeling tool), we now examine a two-state fragment of the complete GC179

artifact constraint system in further detail. The canvas we consider consists of the DATA

EXPORTED INTO RPS and PAYMENT MADE BY RPS states (bottom right of Figure

7.8) and is presented in Figure 7.9. The definition of the DATA EXPORTED INTO RPS
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Figure 7.8: Unified DCML Diagram for GC179 requests. See Appendix A for the same
model translated into Zot code for verification.
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Figure 7.9: DCML canvas consisting only of the Data Exported to RPS and Payment Made
by RPS states. Embedded in this canvas are two constraints pertaining to state transitions
(exit and entry restrictions labelled 13 and 14 respectively) and four invariant constraints.

state can be read directly from the diagram:

exported to rps ∧ hr–payroll txn id > 0 ∧ comptroller emp id > 0 ∧ pmt id = 0

∧ lastupdate emp id = comptroller emp id
(S2)

Similarly, the function defining the PAYMENT MADE BY RPS state can also be read

from the canvas as follows:

pmt id > 0 (S2)

A GC179 request is in the DATA EXPORTED INTO RPS or PAYMENT MADE BY RPS

states if the above functions (S2 and S2 respectively) evaluate to true for the attributes

of the artifact. Note that these states are mutually exclusive because of the conditions

applicable on the pmt id attribute in their respective functions. Thus, at any point in

its history, an artifact can only be present in one of these states. The constraints in this

DCML canvas can now be read using the templates provided in Table 3.1 on page 65.

Constraint 13 (exit restriction) is interpreted as (•S1 ∧ ¬S1 ⇒ S2) and Constraint 14

(entry restriction) is interpreted as (S2∧¬•S2 ⇒ •S1). There is an invariant constraint on

the PAYMENT MADE BY RPS state which can be interpreted in CLTL as (•pmt id =

pmt id since S2). Similarly there are three invariant constraints on the DATA EXPORTED
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INTO RPS state. They are as follows: (i) (•exported to rps = exported to rps since S1),

(ii) (•hr–payroll txn id = hr–payroll txn id since S1) and, (iii) (•comptroller emp id =

comptroller emp id since S1). The complete canvas constraint system for Figure 7.9 is

simply the conjunction of all of the above constraints, and for brevity we omit depicting

them in a single conjoined formula.

In a very similar fashion we can construct the artifact constraint system (the complete

constraint model for GC179 artifacts) by interpreting the DCML notation and combining

individual constraints depicted in the complete DCML diagram (Figure 7.8). This complete

constraint model is provided in Appendix A using Lisp. As a final step, the constraint

system can be translated into a form that is enforceable by an SQL engine [33, 154, 34].

7.3.4 Verification Results

We were able to generate several (un)satisfiability results to verify the correctness of the

behaviour of GC179 artifacts as they evolve in a database. The following statements on

the model were formally verified and tested in the Zot model checker, using the CLTL

conditions provided in Appendix A:

1. Can an artifact reach the HOURS ACCRUED state while its PAYOUT REQUESTED

attribute is true? In other words, can vacation hours be awarded for a GC179 request

for which the employee has requested cash payment?

2. Can a GC179 request for which the employee initially requested a cash payment ever

be paid in vacation hours? In other words, can changes to the method of remuneration

be made after the request is created?

3. Can the comptroller of records reject the request?

4. Can the request be sent back twice to the employee for changes?

5. Can the request be sent back to the employee for amendments after HR approval

(i.e., from the VACATION HOURS CALCULATED or CASH PAY CALCULATED

states)?
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6. Can a request for payment be exported to the RPS without Section 34 Approval?

7. Can the employee act as the HR coordinator for his/her own GC179 request?

Note that each of the above statements, when tested against the model, has to be

interpreted over the attributes of the GC179 artifact in CLTL. As discussed in Chapter 5,

this task will be handled by either a database administrator or a policy testing expert who

(a) understands the business process associated with the artifact, and (b) can formalize the

above statements in constraint temporal logic. We believe that the formal equivalents of

the above statements (presented in Appendix A) make it apparent that formulating such

properties is not overly challenging. At the same time they provide significant insight on

the behaviour of artifacts stored in the database, highlighting situations where an artifact

is either over-constrained or under-constrained.

7.3.5 Summary

In Chapter 6 we showed that DCML (and more generally, CLTL) is capable of capturing

constraints embedded in a broad class of visual, state oriented descriptions of business

processes. Our reasoning was based on the fact that individual workflow patterns can

be emulated within LTL constructs. In this section we presented a complete real world

business process and its translation into its equivalent in DCML.

Note that DCML is, by design, also a constraint specification language. As a result,

the complete specification of a DCML model (e.g., Figure 7.8) can be large, contain many

intricately connected states, and perhaps somewhat overwhelming for a single reader. We

believe that this is not a shortcoming of the language, but rather an issue of entropy, that

is, Figure 7.8 contains substantially more information about the business process than is

contained in Figure 7.1. Throughout this thesis we have emphasized the fact that large

systems of constraints, whether they are presented visually, in natural language, or in

source code, are challenging for unfamiliar readers to understand. Consequently, breaking

down even moderately long business processes (such as the one presented in this section)

into smaller and more manageable portions is critical to enhance the usability of process
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modeling techniques. DCML accomplishes this goal through the use of smaller canvases

that integrate easily.

7.4 Will it Work in Practice?

A common criticism of research in the area of policy management is that it fails to answer

the following simple question: How useful is the idea being presented? Many proposals in

this area present a compelling framework and demonstrate usability in a range of scenarios.

Some (such as this thesis) will even present case studies based on real life situations to

make an argument for the usability of the proposed technique. However, what is typically

lacking from such proposals is a comprehensive blueprint using which other researchers can

conduct true and fair usability assessments of the proposed policy management system.

In this section we provide quantitative and qualitative guidelines against which use-

ability and applicability of DCML and its associated verification infrastructure can be

compared against other techniques. We do so by presenting a general road map of how

DCML can be utilized in practice. In addition, we highlight how additional real-world case

studies can be conducted and what specific questions would need to be answered to make

broad claims about the usability of DCML. We believe that the discussion presented will

serve to guide researchers attempting to implement and test the efficacy of our proposed

database-oriented policy management system.

The basic requirements to implement and test a policy management system specifically

geared towards database systems are as follows:

• Database: A schema, data, and the typical query workload are the most basic re-

quirements.

• Business Processes : There should be available descriptions of processes and the em-

inent need to enforce or audit them. Ideally these descriptions should be in a visual

notation (similar to workflows), but one may need the co-operation of users in con-

verting textual process description into workflows.
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• Users : The case study requires domain experts who can serve as corporate policy

makers (e.g., lawyers and accountants), policy implementers (users who convert poli-

cies into database constraint systems) and policy verification experts or infrastructure

managers (e.g., DBA or auditors).

For any case study to be realistic, the above three resources (and specific sub-components)

need to be available and accessible. We believe that there will be no major differences

among the characteristics of databases that store information about everyday business

processes. That is, databases storing records for typical business functions (HR, Sales,

etc.) will have similar overall design characteristics. Similarly, since LTL is sufficiently

expressive to capture wide ranging workflow semantics, the types and complexity of work-

flows that various organizations use will also not pose a significant challenge, provided

users are able to interpret them for conversion into DCML. However, as elaborated in

subsequent sections, the variability in technical skill among different types of users, both

within a single organization and across organizations in different industries, will perhaps

be the most significant factor in making claims regarding usability.

7.4.1 The Process

The overall challenge of testing usability of any policy management system is that of

following the steps toward enforcement described in Chapter 1 and illustrated in Section

7.1. In the specific case of DCML, there are substantial setup and initialization costs that

have to be incurred before any rewards can be reaped. For a set of business processes that

need to be enforced in the database, the appropriate artifact definitions need to be created

and agreed upon by the DBA and policy makers. Then a specific extension or variant of

DCML (e.g., ones that may include metric or temporal access control restrictions) need

to be agreed upon for various process types. In this stage the DBA will select particular

fragments of CLTL and assign meaning to them in the visual state-constraint notation

for individual sub-classes of policy makers. Then, policy makers (departmental power

users, policy experts for specific areas, or programmers specializing in different areas of

compliance) need to be engaged and taught how to create constraint diagrams over artifacts
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of interest. These users will then construct visual constraint diagrams over database level

artifacts. Finally, a database administrator, armed with intimate knowledge about the

business and the database, can begin the task of verifying interactions among multiple

constraint systems.

One can argue that such a method introduces several points of error in the interpreta-

tion of the specification by involving many different actors. However, a large amount of

anecdotal evidence collected during our research suggests that this is unavoidable. Man-

aging a web of ECA rules (essentially similar to a large number of “pre-condition implies

post-condition” rules generated by DCML) written by tens of different programmers will

also over time become an impossible and expensive proposition. More importantly, the

transparency of being able to identify precisely which constraint maps onto which transi-

tion in a workflow provides significant reduction in the cost of long term maintenance and

evolution of policies.

It is thus best if we analyze both the traditional and our proposed approaches in the

context of quantitative and qualitative metrics. The next section provides a summary of

the factors that need consideration. The discussion presented is by no means complete but

is sufficient to highlight the major questions that require resolution in order to make an

assessment of usefulness.

7.4.2 Assessing a Policy Management Framework

The four major categories of cost that we consider relevant are as follows: (1) setup, (2)

interpretation of policies, (3) implementation of constraints, and (4) extracting compliance

guarantees.

Setup

Most database programmers are familiar with writing triggers, constraints, and assertions.

Thus, there is practically zero setup time in the “no-framework” approach and a program-

mer can begin interpreting a policy document over the schema without delay. However, in
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the context of our proposal, artifact definitions have to be agreed upon and various frag-

ments of CLTL have to be made ready in visual notation for different departmental policy

makers. Depending on the complexity of the organizational workflows and the database

schema, this process can either be time consuming or trivial.

There are some quantifiable metrics during setup that can be identified as relevant

indicators of overall cost. For example, the amount of overlap among artifacts and the

average number of workflows applicable on a single artifact definition represent information

that could be of interest to future researchers. These indicators are invariably related to

the business and how its data storage requirements impact the structural complexity of

the database schema. Similarly, the type, structure, and formulation of CLTL constraints

preferred by system administrators can also provide insight into how users who may not be

familiar with temporal logic respond to the framework. We have to keep in mind that most

of the complexity associated with CLTL is hidden to the policy makers through the use of

visual notation. However, the DBA or the equivalent supervisory team that decides on a

particular fragment of CLTL may itself have to learn about temporal logic and eventually

make decisions on notation, types of constraints, and the assumptions under which the

framework will be presented and explained to individual policy makers.

Since most quantifiable determinants of cost and complexity are situation-specific (i.e.,

dependent on policy makers, system administrators, and the complexity of the business),

it may be difficult to assess their correlation to the overall setup cost and make generalized

statements about their impact. Most notably, individual biases towards certain types of

constraints, processes, and workflows in one industry can lead us to make incorrect broad

judgements that may not be applicable in other situations. Nonetheless, we hypothesize

that if a comprehensive real-life examination of the usability of temporal logics in busi-

ness situations is conducted, many of these soft indicators of complexity and cost can be

identified and discussed in greater detail.

Interpretation

In Chapter 3 we argued that there are many advantages to everyday business users being

empowered to express their policies on top of database level artifacts. Intuition suggests
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that business users (not necessarily programmers) have intimate knowledge about policies,

and if they can directly implement or modify constraints on a database, then significant

cost savings can be realized.

To verify our intuition, it is essential to separate the notion of cost during the policy

interpretation phase into two components: (a) reduction in incorrect interpretations, and

(b) speed or ease of interpretation. In the traditional approach a programmer, if uncertain

about the interpretation, must interact with a business user familiar with the given policy

for guidance. Thus, the process is not only slower but arguably incurs a higher risk of errors

through the involvement of multiple parties. Similarly, we note that high level business

policy documents that contain descriptions and specifications of constraints rather than

their formal interpretations are best understood by non-programmers. So a business user

seems to be best qualified to read policy documents and interpret them in an error-free

manner.

Unfortunately, to verify the above hypothesis is far from easy. Putting the “no-

framework” approach against an artifact and LTL-constraint-system approach requires

that we conduct an analysis of the interpretation capabilities of a programmer against

those of a business user. Furthermore, we assume that this business user has now been

properly trained in developing constraint systems and that this experiment is conducted

in a controlled situation. This assessment is extremely difficult to replicate across several

situations. Ideally, we want to be able to make claims about the correctness of an average

programmer’s interpretation of a policy document on a database against those made by a

business user over a set of pre-defined artifacts and to identify how long the process takes

in each case.

Implementation

An examination similar to that presented in the interpretation phase extends into imple-

mentation. Once again, we want to pit a programmer against a policy maker. However, as

alluded to earlier, at and beyond this phase, the infrastructure of a comprehensive policy

modeling framework will likely outperform any manual approach. Practically all met-

rics ranging from run-time efficiency of code to time taken in development and testing of
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constraints will favour an automated code generation system geared towards a particular

database engine.

Nonetheless, it is important to measure this cost so that it can be offset against the

initial setup time. Note that, from a cost savings perspective, the programming hours that

are saved during implementation should be much higher than the administrative hours

during setup. We have to draw out this distinction since different users cost a business

different amounts per hour of effort. Thus, an accurate assessment of time saved requires

that we measure the time taken by programmers to create triggers for enforcing business

rules derived in the previous phase against a time of near-zero in the automated approach.

Maintenance

Maintenance of a set of policies and business rules can be described as the removal of certain

constraints and/or the introduction of new ones. The process of maintenance is ongoing and

not different from repeating the interpretation and implementation phases. Note, however,

that the one-time setup cost incurred under the artifact/LTL-constraint framework now

gets further amortized over the lifetime of a business and the database. Consequently, we

need to test the hypothesis, first presented in Chapter 3, that the marginal cost to make

changes to a policy/constraint system in the “no-framework” method is much higher (and

progressively increases with the complexity of the policy set) when compared to the same

marginal cost in the artifact/constraint-LTL approach.

Compliance Guarantees and Supporting External Audits

The final aspect in which the usefulness of our proposal needs to be evaluated is in its ability

to generate compliance guarantees and to provide some level of assurance to internal and

external auditors.

When examining the related problems of governance, risk, and compliance (GRC) in

Chapter 2, we observed that it is often difficult to predict what auditors will look for

in an given database. Thus, it is imperative to self audit and ensure that there are no

inconsistencies within corporate processes. Chapter 5 subsequently revealed that there are
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no standardized notions of correctness, inconsistencies, and conflicts when artifact level

policies interact. Thus, internal corporate compliance officers in conjunction with DBAs

need to rigourously test and subsequently prove that the constraints on a database can

never lead to undesirable consequences.

Since we cannot predict what an auditor will be looking for, the question of which

properties warrant formal verification is best left for experts in corporate GRC. However,

we can focus on the question of how to complete the verification process. Formal verification

of hand written code is challenging but still accomplishable. Our proposed system, on

the other hand, has significant advantages of automating this process and reducing it to

satisfiability and model checking (k-satisfiability). However, many questions about artifact

constraint systems and verification remain unanswered. For example, how large do we

expect these “typical workflows” to be, and how many variables, conditions, and types of

functions will be involved in the state definitions. Earlier we had stipulated that these

workflows rarely exceed 100 or so states, and analysis of a 1000 states represented an

extreme case. Such statements would either be supported or refuted in a longitudinal

study.

There are several other issues that were not addressed when evaluating the efficiency of

generating proofs in our framework. Foremost is the issue of an upper bound for k when

the notion of k-satisfiability was introduced in the context of bounded model checking. We

alluded to the fact that workflows typically have a maximum “diameter” that essentially

represents the longest possible non-looping sequence of state changes in which an artifact

can partake. Thus, it would be reasonable to consider that diameter as an upper bound

for k. However, without actually having a solid understanding of real-world user-generated

constraint systems, it is difficult to directly assess the feasibility of this upper bound. If

the time required to model check properties over workflows exceeds user expectations, then

certainly a wide variety of issue open up and many possible optimizations and simplifica-

tions may have to be examined. Along the same lines are questions pertaining to the

interpretation of unsatisfiability results, that is, how best to explain these results to users

(e.g., interpreting the least unsatisfiable cores) and the possible fixes for conflicts.

An important metric associated with compliance is that of policy coverage. Coverage is

a measure that divides the number of policies that a system can implement and reason over
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by the total number of policies to which a business is subject. Thus, it is important that

we measure the proportion of constraints that can be covered in our framework relative to

those that would require a more complex logic for reasoning (e.g., calendar and periodicity

constraints). This would provide significant insight into the applicability of a system built

around linear temporal logic and possible future extensions.

7.5 Summary and Conclusion

In this chapter we presented a case study highlighting the challenges in converting business

processes into a set of database constraints. We then presented a summary of what we

believe would be the key areas in which our proposed constraint implementation and man-

agement infrastructure can be measured against the existing state of the art. This chapter

should have convinced the reader that assessing the viability of any policy and constraint

management framework in all settings is extremely difficult. However, we speculate that

a longitudinal study on the usability of DCML (or more generally, LTL) in everyday busi-

ness situations, such as, specification to constraint translation, will reveal many additional

concerns that we have not presented in our examination. Having a handle on these “un-

known unknowns” will certainly improve our understanding of users’ view of constraints

and workflows. Consequently, we believe that taking on this massive challenge of proving

usability of a visual-CLTL constraint notation is a significant and worthy avenue of further

research in this area.
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Chapter 8

Conclusions and Future Work

This chapter concludes this thesis by summarizing the thesis in Section 8.1 and briefly

discussing avenues of further research in Section 8.2.

8.1 Summary and Conclusion

This thesis presents a framework for modeling, implementing, and verifying process-oriented

constraints in database systems (Figure 8.1). Our work is motivated by the fact that emerg-

ing requirements for compliance and auditing will inevitably put relational databases under

the microscope of savvy auditors. These auditors are likely to go beyond ensuring that

there are no violations of published rules in the current instance, and thus businesses will

inevitably need to ensure that their databases will forever remain compliant with a given

set of rules, while seamlessly supporting everyday business functions.

This thesis builds on a large amount of infrastructure presented in prior work. However

the elegance of our approach lies in its simplicity and the particular way in which the

three areas of workflows, temporal integrity constraints, and model checking fit together

to solve a problem of extreme significance. We observe that at the surface, databases

are collections of arbitrary n-tuples that can evolve in a completely unrestricted fashion.

However, it is only when we begin to restrict individual portions of a database based
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Figure 8.1: A high-level overview of how DCML can be used to implement constraints in
database systems. Since business process descriptions exist in varying formats (top of the
policy stack), we propose the use of an intermediate constraint specification layer within
the database. We denote this as the database constraint modeling layer, in which first
order temporal integrity constraints are used to stitch together states derived from the
knowledge contained in the process models / workflows. Using DCML, we can then easily
implement these constraints and verify a broad range of properties about the interaction
of these constraint systems.
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on business processes, that a framework of constraints and verification becomes available

to answer critical questions. We strongly believe that in the near future there will be

increasing need to verify the behaviour of how databases evolve with regards to business

rules. The complexity of software systems and their nature of being black-boxes in business

environments make the database the key piece of operational evidence on which an auditor

can focus. Thus, generating compliance guarantees on the behaviour of the database will

be critical in ensuring that a business holds true to its claims of following the published

processes.

This work contributes to the state of the art in several different ways. Foremost, it

presents an easy to use mechanism that enables the average business user to harness the

power of linear temporal logic to visually map out process-centric constraints within a

database. Constraints such as process-centric access control were previously well outside

the domain of an average user to specify, but our framework makes it easy to implement

and maintain constraints in the context of databases. Furthermore, it offers the ability

to automatically enforce complex rules, which may have been formulated by non-technical

users, as well as allowing a more savvy class of users (internal auditors or DBAs) to

verify properties about the interactions of these rule systems. The work is not without

its limitations, with a major impediment being the high initial setup cost. However, once

a formal framework of artifact definitions and logical-to-visual LTL constraints is agreed

upon for a given database, the cost savings achieved over time in modeling, implementing,

and verifying complex process-centric constraints will be far greater in magnitude than the

initial setup cost.

8.2 Future Work

In Chapter 7 we examined in detail the challenges associated with assessing the usability

of a visual-LTL constraint modeling framework. We believe that a longitudinal study on

the usability of LTL in business situations represents a significant avenue of future work.

In addition, this thesis did not present a complete visual policy modeling software suite for

DCML, and we envision that such a tool will help in conducting a case study on usability.
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If users are able to graphically draw out DCML models and visualize their own templates

of constraints, they may be able to significantly improve their understanding of LTL. The

level of insight provided by such a tool will go well beyond assessing the usability of LTL

for the users who create DCML models. In fact, it may also provide the much needed

insight into the users who will be testing/verifiying large integrated constraint systems,

and system administrators responsible for auditing and enforcement.

In addition to the above, there are lines of future work within database systems research

that we believe to be promising. Our work attempts to connect databases and workflows

via state systems that represented integrity constraints specified in LTL. Many new ques-

tions arise if we relax the notion of consistency and try to establish connections between

workflows and probabilistic state systems such as Bayseian networks and Markov chains.

We now provide a brief discussion of these research topics.

8.2.1 Probabilistic Reasoning in Database Level Workflows

Recall that in our infrastructure there is no inherent value or reward associated with com-

pliance. All constraints are equally important and failing to meet even a single constraint

is deemed unacceptable. However, if we relax this restriction and associate some level of

utility or reward with different paths in a business process, we can then introduce the

notion of meeting specific goals and targets. In a general model we can assign values to

particular paths and state traversals and attempt to restrict or block paths that lead to

less than maximum achievable utility.

We can see many situations where the benefit of selectively (perhaps based on a prob-

ability function) allowing a transaction that violates a particular “soft-constraint” may

outweigh the costs associated with total compliance. As an example, consider an airline

business in which each plane has a fixed passenger carrying capacity. The airline has al-

ready identified for certain routes the probability distribution for how many passengers

do not show up for their flight or cancel at the last minute. In an effort to minimize the

number of empty seats for each flight, the airline wishes to selectively violate the constraint

that the number of tickets sold must be no greater than the number of seats on the plane,

in the hope that the number of no-shows will make the plane run at full capacity. The
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airline has developed a model for the risk (cost associated with providing hotel stay, refund,

liability, brand image destruction, etc.) for each passenger who does not get boarded, in

the event that the number of passengers who show up for their flight exceeds the plane’s

passenger carrying capacity. How does such a model get encoded as a set of utility-based

constraints in a database?

Since a database contains much historical information about the context in which a

certain decision is made, the challenge is to encode such models in terms of those decisions.

In theory, as a database evolves, so will the parameters of the model, and the decision

making process will keep improving to achieve higher total utility.

8.2.2 History Mining and Process Discovery

A database contains a wealth of information pertaining to business processes, and a signif-

icant amount of knowledge about these processes is embedded in various object histories.

Transactional databases that handle many similar tasks store histories (or artifact oriented

event-logs), which can exhibit common patterns that are ready to be exploited in different

ways. The idea of automatically creating visual and/or logical descriptions of processes

from logs is not new. Processing mining techniques have been examined in great detail in

the workflow community, and the reader is directed to the book by van der Aalst [159] as a

comprehensive reference. Open source tools, such as ProM [157], are also readily available

to aid users in discovering process models from event logs.

However, methods of visualizing processes based on specific needs of database auditors

and policy makers is an area that has not received much attention. Databases introduce

a significant level of complexity in the problem of event/log mining. For example, we

pointed out in Chapter 5 that the history of a given unique row in a table is different from

the history of the joins in which it participates. There are several issues pertaining to

the interplay of concurrent (possibly related) processes that makes the problem interesting

when examined from a database perspective.

Consequently we believe that examining the role of various users and different discovery

objectives (auditing, implicit constraint discovery in processes, etc.) in the context of
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databases is an excellent topic for further research. Note that compliance generally deals

with restricting the state space of a system, whereas process mining attempts to explore

and explain this restricted space. However, both can be used in conjunction, for example,

to discover variances and interesting behaviour within the restricted state space. Thus,

discovery of processes as envisioned in databases can provide us significant insight into how

compliance is achieved. It can also reveal avenues of deviation from published processes

and lead to additional constraints on a system for even more rigorous compliance.
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Appendix A

Zot Model for GC179

Complete Zot Model for the GC179 example presented in Chapter 7
(asdf:operate ’asdf:load−op ’ae2zot)

(use−package :trio−utils)

;booleans do not need to be explicitly defined in ZOT

(define−tvar ’GC179 ID ∗int∗)
(define−tvar ’EMP ID ∗int∗)
(define−tvar ’FILLED BY EMP ID ∗int∗)
;(define−tvar ’CROSS CHECKED ∗bool∗)
;(define−tvar ’CHANGES REQUIRED ∗bool∗)
(define−tvar ’APPROVAL SUPERVISOR EMP ID ∗int∗)
(define−tvar ’SEC34 AUTHORITY EMP ID ∗int∗)
(define−tvar ’HR EMP ID ∗int∗)
(define−tvar ’HOURS ACCRUED ∗int∗)
(define−tvar ’CASH PAYMENT AMOUNT ∗int∗)
(define−tvar ’HR−PAYROLL TXN ID ∗int∗)
;(define−tvar ’EXPORTED TO RPS ∗bool∗)
;(define−tvar ’PAYOUT REQUESTED ∗bool∗)
(define−tvar ’COMPTROLLER EMP ID ∗int∗)
(define−tvar ’PMT ID ∗int∗)
(define−tvar ’LASTUPDATE EMP ID ∗int∗)

;DEFINITIONS OF STATES

(defvar S Filled By Designate

(

&&

;State conditions

([>] (−V− GC179 ID) 0)
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([>] (−V− EMP ID) 0)

([>] (−V− FILLED BY EMP ID) 0)

(!! (−P− CROSS CHECKED))

(!! (−P− CHANGES REQUIRED))

([=] (−V− APPROVAL SUPERVISOR EMP ID) 0)

([=] (−V− SEC34 AUTHORITY EMP ID) 0)

([=] (−V− HR EMP ID) 0)

([=] (−V− CASH PAYMENT AMOUNT) 0)

([=] (−V− HOURS ACCRUED) 0)

([=] (−V− HR−PAYROLL TXN ID) 0)

(!! (−P− EXPORTED TO RPS))

([=] (−V− COMPTROLLER EMP ID) 0)

([=] (−V− PMT ID) 0)

;Access Control

([!=] (−V− FILLED BY EMP ID) (−V− EMP ID))

([=] (−V− LASTUPDATE EMP ID) (−V− FILLED BY EMP ID))

)

)

(defvar S Self Filled

(

&&

;State conditions

([>] (−V− GC179 ID) 0)

([>] (−V− EMP ID) 0)

([>] (−V− FILLED BY EMP ID) 0)

(−P− CROSS CHECKED)

(!! (−P− CHANGES REQUIRED))

([=] (−V− APPROVAL SUPERVISOR EMP ID) 0)

([=] (−V− SEC34 AUTHORITY EMP ID) 0)

([=] (−V− HR EMP ID) 0)

([=] (−V− CASH PAYMENT AMOUNT) 0)

([=] (−V− HOURS ACCRUED) 0)

([=] (−V− HR−PAYROLL TXN ID) 0)

(!! (−P− EXPORTED TO RPS))

([=] (−V− COMPTROLLER EMP ID) 0)

([=] (−V− PMT ID) 0)

;Access Control

([=] (−V− FILLED BY EMP ID) (−V− EMP ID))

([=] (−V− LASTUPDATE EMP ID) (−V− EMP ID))

)

)

(defvar S Cross Checked

(

&&

(−P− CROSS CHECKED)

(!! (−P− CHANGES REQUIRED))
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([=] (−V− APPROVAL SUPERVISOR EMP ID) 0)

)

)

(defvar S Changes Required

(

&&

(!! (−P− CROSS CHECKED)) ;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
(−P− CHANGES REQUIRED);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
([=] (−V− APPROVAL SUPERVISOR EMP ID) 0)

([=] (−V− SEC34 AUTHORITY EMP ID) 0)

([=] (−V− HR EMP ID) 0)

([=] (−V− CASH PAYMENT AMOUNT) 0)

([=] (−V− HOURS ACCRUED) 0)

([=] (−V− HR−PAYROLL TXN ID) 0)

(!! (−P− EXPORTED TO RPS))

([=] (−V− COMPTROLLER EMP ID) 0)

([=] (−V− PMT ID) 0)

)

)

(defvar S Approved By Supervisor

(

&&

([>] (−V− APPROVAL SUPERVISOR EMP ID) 0);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
([=] (−V− SEC34 AUTHORITY EMP ID) 0);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− APPROVAL SUPERVISOR EMP ID))

([!=] (−V− EMP ID) (−V− APPROVAL SUPERVISOR EMP ID))

)

)

(defvar S Approved By Sect34 Authority

(

&&

([>] (−V− SEC34 AUTHORITY EMP ID) 0);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
([=] (−V− HR EMP ID) 0)

;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− SEC34 AUTHORITY EMP ID))

([!=] (−V− EMP ID) (−V− SEC34 AUTHORITY EMP ID))

([!=] (−V− APPROVAL SUPERVISOR EMP ID) (−V− SEC34 AUTHORITY EMP ID))

)

)

(defvar S Vacation Hours Calculated

(

&&
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([>] (−V− HR EMP ID) 0);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
([=] (−V− CASH PAYMENT AMOUNT) 0)

([>] (−V− HOURS ACCRUED) 0)

(!! (−P− PAYOUT REQUESTED))

(!! (−P− EXPORTED TO RPS))

([=] (−V− PMT ID) 0)

([=] (−V− COMPTROLLER EMP ID) 0)

;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− HR EMP ID))

)

)

(defvar S Cash Pay Calculated

(

&&

([>] (−V− HR EMP ID) 0);∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
([>] (−V− CASH PAYMENT AMOUNT) 0)

([=] (−V− HOURS ACCRUED) 0)

(−P− PAYOUT REQUESTED)

(!! (−P− EXPORTED TO RPS))

([=] (−V− PMT ID) 0)

([=] (−V− COMPTROLLER EMP ID) 0)

;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− HR EMP ID))

)

)

(defvar S Hours Accrued

(

&&

(!! (−P− EXPORTED TO RPS))

([>] (−V− HR−PAYROLL TXN ID) 0)

([>] (−V− COMPTROLLER EMP ID) 0)

;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− COMPTROLLER EMP ID))

)

)

(defvar S EXPORTED TO RPS

(

&&

(−P− EXPORTED TO RPS)

([>] (−V− HR−PAYROLL TXN ID) 0)

([>] (−V− COMPTROLLER EMP ID) 0)

([=] (−V− PMT ID) 0)

;Access Control

([=] (−V− LASTUPDATE EMP ID) (−V− COMPTROLLER EMP ID))
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)

)

(defvar S PAYMENT MADE

(

&&

([>] (−V− PMT ID) 0)

)

)

(defvar S Rejected

(

&&

(−P− PHI)

)

)

(defvar model guards and invariants

(

&&

(;S Self Filled

alwf

(

−>
S Self Filled

(

&&

;Future Invariants

(alwf ([=] (−V− GC179 ID) (futr (−V− GC179 ID) 1)))

(alwf ([=] (−V− EMP ID) (futr (−V− EMP ID) 1)))

(alwf ([=] (−V− FILLED BY EMP ID) (futr (−V− FILLED BY EMP ID) 1)))

)

)

)

(;S Cross Checked

alwf

(

−>
S Cross Checked

(

&&

;Guarded Variables

([=] (−V− SEC34 AUTHORITY EMP ID) (past (−V− SEC34 AUTHORITY EMP ID)

1))

([=] (−V− HR EMP ID) (past (−V− HR EMP ID) 1))

([=] (−V− CASH PAYMENT AMOUNT) (past (−V− CASH PAYMENT AMOUNT) 1)
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)

([=] (−V− HOURS ACCRUED) (past (−V− HOURS ACCRUED) 1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))

(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−
P− EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&&

(!! (−P− PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

)

)

)

(;S Filled By Designate

alwf

(

−>
S Filled By Designate

(

&&

;Future Invariants

(alwf ([=] (−V− GC179 ID) (futr (−V− GC179 ID) 1)))

(alwf ([=] (−V− EMP ID) (futr (−V− EMP ID) 1)))

(alwf ([=] (−V− FILLED BY EMP ID) (futr (−V− FILLED BY EMP ID) 1)))

)

)

)

(;S Approved By Supervisor

alwf

(

−>
S Approved By Supervisor

(

&&

;Guarded Variables

(|| (&& (−P− CROSS CHECKED) (past (−P− CROSS CHECKED) 1)) (&& (!! (−P−
CROSS CHECKED)) (!! (past (−P− CROSS CHECKED) 1))))

(|| (&& (−P− CHANGES REQUIRED) (past (−P− CHANGES REQUIRED) 1)) (&&

(!! (−P− CHANGES REQUIRED)) (!! (past (−P− CHANGES REQUIRED) 1))))

([=] (−V− SEC34 AUTHORITY EMP ID) (past (−V− SEC34 AUTHORITY EMP ID)

1))

([=] (−V− HR EMP ID) (past (−V− HR EMP ID) 1))

([=] (−V− CASH PAYMENT AMOUNT) (past (−V− CASH PAYMENT AMOUNT) 1)

)

([=] (−V− HOURS ACCRUED) (past (−V− HOURS ACCRUED) 1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))
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(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−
P− EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&&

(!! (−P− PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

)

)

)

(;S Approved By Sect34 Authority

alwf

(

−>
S Approved By Sect34 Authority

(

&&

;Guarded Variables

(|| (&& (−P− CROSS CHECKED) (past (−P− CROSS CHECKED) 1)) (&& (!! (−P−
CROSS CHECKED)) (!! (past (−P− CROSS CHECKED) 1))))

(|| (&& (−P− CHANGES REQUIRED) (past (−P− CHANGES REQUIRED) 1)) (&&

(!! (−P− CHANGES REQUIRED)) (!! (past (−P− CHANGES REQUIRED) 1))))

([=] (−V− APPROVAL SUPERVISOR EMP ID) (past (−V−
APPROVAL SUPERVISOR EMP ID) 1))

([=] (−V− HR EMP ID) (past (−V− HR EMP ID) 1))

([=] (−V− CASH PAYMENT AMOUNT) (past (−V− CASH PAYMENT AMOUNT) 1)

)

([=] (−V− HOURS ACCRUED) (past (−V− HOURS ACCRUED) 1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))

(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−
P− EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&&

(!! (−P− PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

)

)

)

(;S Vacation Hours Calculated

alwf

(

−>
S Vacation Hours Calculated

(
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&&

;Guarded Variables

(|| (&& (−P− CROSS CHECKED) (past (−P− CROSS CHECKED) 1)) (&& (!! (−P−
CROSS CHECKED)) (!! (past (−P− CROSS CHECKED) 1))))

(|| (&& (−P− CHANGES REQUIRED) (past (−P− CHANGES REQUIRED) 1)) (&&

(!! (−P− CHANGES REQUIRED)) (!! (past (−P− CHANGES REQUIRED) 1))))

([=] (−V− APPROVAL SUPERVISOR EMP ID) (past (−V−
APPROVAL SUPERVISOR EMP ID) 1))

([=] (−V− SEC34 AUTHORITY EMP ID) (past (−V− SEC34 AUTHORITY EMP ID)

1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&&

(!! (−P− PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−
P− EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

;Future Invariants

(alwf (|| (&& (−P− CROSS CHECKED) (futr (−P− CROSS CHECKED) 1)) (&& (!! (−
P− CROSS CHECKED)) (!! (futr (−P− CROSS CHECKED) 1)))))

(alwf (|| (&& (−P− CHANGES REQUIRED) (futr (−P− CHANGES REQUIRED) 1))

(&& (!! (−P− CHANGES REQUIRED)) (!! (futr (−P− CHANGES REQUIRED)

1)))))

(alwf ([=] (−V− APPROVAL SUPERVISOR EMP ID) (futr (−V−
APPROVAL SUPERVISOR EMP ID) 1)))

(alwf ([=] (−V− SEC34 AUTHORITY EMP ID) (futr (−V−
SEC34 AUTHORITY EMP ID) 1)))

(alwf (|| (&& (−P− PAYOUT REQUESTED) (futr (−P− PAYOUT REQUESTED) 1))

(&& (!! (−P− PAYOUT REQUESTED)) (!! (futr (−P− PAYOUT REQUESTED)

1)))))

(alwf ([=] (−V− CASH PAYMENT AMOUNT) (futr (−V−
CASH PAYMENT AMOUNT) 1)))

(alwf ([=] (−V− PMT ID) (futr (−V− PMT ID) 1)))

)

)

)

(;S Cash Pay Calculated

alwf

(

−>
S Cash Pay Calculated

(

&&

;Guarded Variables

(|| (&& (−P− CROSS CHECKED) (past (−P− CROSS CHECKED) 1)) (&& (!! (−P−
CROSS CHECKED)) (!! (past (−P− CROSS CHECKED) 1))))

(|| (&& (−P− CHANGES REQUIRED) (past (−P− CHANGES REQUIRED) 1)) (&&
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(!! (−P− CHANGES REQUIRED)) (!! (past (−P− CHANGES REQUIRED) 1))))

([=] (−V− APPROVAL SUPERVISOR EMP ID) (past (−V−
APPROVAL SUPERVISOR EMP ID) 1))

([=] (−V− SEC34 AUTHORITY EMP ID) (past (−V− SEC34 AUTHORITY EMP ID)

1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&&

(!! (−P− PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−
P− EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

;Future Invariants

(alwf (|| (&& (−P− CROSS CHECKED) (futr (−P− CROSS CHECKED) 1)) (&& (!! (−
P− CROSS CHECKED)) (!! (futr (−P− CROSS CHECKED) 1)))))

(alwf (|| (&& (−P− CHANGES REQUIRED) (futr (−P− CHANGES REQUIRED) 1))

(&& (!! (−P− CHANGES REQUIRED)) (!! (futr (−P− CHANGES REQUIRED)

1)))))

(alwf ([=] (−V− APPROVAL SUPERVISOR EMP ID) (futr (−V−
APPROVAL SUPERVISOR EMP ID) 1)))

(alwf ([=] (−V− SEC34 AUTHORITY EMP ID) (futr (−V−
SEC34 AUTHORITY EMP ID) 1)))

(alwf (|| (&& (−P− PAYOUT REQUESTED) (futr (−P− PAYOUT REQUESTED) 1))

(&& (!! (−P− PAYOUT REQUESTED)) (!! (futr (−P− PAYOUT REQUESTED)

1)))))

(alwf ([=] (−V− HOURS ACCRUED) (futr (−V− HOURS ACCRUED) 1)))

)

)

)

(;S Hours Accrued

alwf

(

−>
S Hours Accrued

(

&&

;Future Invariants

(alwf (|| (&& (−P− EXPORTED TO RPS) (futr (−P− EXPORTED TO RPS) 1)) (&&

(!! (−P− EXPORTED TO RPS)) (!! (futr (−P− EXPORTED TO RPS) 1)))))

(alwf ([=] (−V− HR−PAYROLL TXN ID) (futr (−V− HR−PAYROLL TXN ID) 1)))

(alwf ([=] (−V− COMPTROLLER EMP ID) (futr (−V− COMPTROLLER EMP ID) 1)

))

)

)

)

(;S EXPORTED TO RPS
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alwf

(

−>
S EXPORTED TO RPS

(

&&

;Future Invariants

(alwf (|| (&& (−P− EXPORTED TO RPS) (futr (−P− EXPORTED TO RPS) 1)) (&&

(!! (−P− EXPORTED TO RPS)) (!! (futr (−P− EXPORTED TO RPS) 1)))))

(alwf ([=] (−V− HR−PAYROLL TXN ID) (futr (−V− HR−PAYROLL TXN ID) 1)))

(alwf ([=] (−V− COMPTROLLER EMP ID) (futr (−V− COMPTROLLER EMP ID) 1)

))

)

)

)

(;S PAYMENT MADE

alwf

(

−>
S PAYMENT MADE

(

&&

;Future Invariants

(alwf ([=] (−V− PMT ID) (futr (−V− PMT ID) 1)))

)

)

)

)

)

(defvar Instantiation Constraints

( &&

(!! (−P− PHI)) ;Lifecycle not terminated and

(|| S Self Filled S Filled By Designate); Must be in at least one of the starting states

)

)

(defvar Termination Constraints

(&&

;Previously PHI implies currently PHI

(alw ;Always or Globally

(

−>
(past (−P− PHI) 1) ;Previously PHI

(−P− PHI); Currently PHI
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)

)

;PHI implies all attributes retain previous values

(alw

(

−>
(−P− PHI)

(&&

([=] (−V− GC179 ID) (past (−V− GC179 ID) 1))

([=] (−V− EMP ID) (past (−V− EMP ID) 1))

([=] (−V− FILLED BY EMP ID) (past (−V− FILLED BY EMP ID) 1))

(|| (&& (−P− CROSS CHECKED) (past (−P− CROSS CHECKED) 1)) (&& (!! (−P− CROSS CHECKED)) (!!

(past (−P− CROSS CHECKED) 1))))

(|| (&& (−P− CHANGES REQUIRED) (past (−P− CHANGES REQUIRED) 1)) (&& (!! (−P−
CHANGES REQUIRED)) (!! (past (−P− CHANGES REQUIRED) 1))))

([=] (−V− APPROVAL SUPERVISOR EMP ID) (past (−V− APPROVAL SUPERVISOR EMP ID) 1))

([=] (−V− SEC34 AUTHORITY EMP ID) (past (−V− SEC34 AUTHORITY EMP ID) 1))

([=] (−V− HR EMP ID) (past (−V− HR EMP ID) 1))

([=] (−V− HR−PAYROLL TXN ID) (past (−V− HR−PAYROLL TXN ID) 1))

([=] (−V− HOURS ACCRUED) (past (−V− HOURS ACCRUED) 1))

([=] (−V− CASH PAYMENT AMOUNT) (past (−V− CASH PAYMENT AMOUNT) 1))

(|| (&& (−P− PAYOUT REQUESTED) (past (−P− PAYOUT REQUESTED) 1)) (&& (!! (−P−
PAYOUT REQUESTED)) (!! (past (−P− PAYOUT REQUESTED) 1))))

(|| (&& (−P− EXPORTED TO RPS) (past (−P− EXPORTED TO RPS) 1)) (&& (!! (−P−
EXPORTED TO RPS)) (!! (past (−P− EXPORTED TO RPS) 1))))

([=] (−V− COMPTROLLER EMP ID) (past (−V− COMPTROLLER EMP ID) 1))

([=] (−V− PMT ID) (past (−V− PMT ID) 1))

([=] (−V− LASTUPDATE EMP ID) (past (−V− LASTUPDATE EMP ID) 1))

)

)

)

)

)

(defvar modelconstraints

(

&&

(; Constraint 2

alwf

(

−>
(

&&

(past S Filled By Designate 1)
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(!! S Filled By Designate)

)

(|| S Cross Checked S Changes Required S Rejected)

)

)

(; Constraint 3

alwf

(

−>
(

&&

(past S Changes Required 1)

(!! S Changes Required)

)

(|| S Filled By Designate S Self Filled S Rejected)

)

)

(; Constraint 4

alwf

(

−>
(

&&

(!! (past S Approved By Supervisor 1))

S Approved By Supervisor

)

(past S Cross Checked 1)

)

)

(; Constraint 5

alwf

(

−>
(

&&

(past S Approved By Supervisor 1)

(!! S Approved By Supervisor)

)

(|| S Approved By Sect34 Authority S Rejected S Changes Required)

)

)

(; Constraint 6

alwf

(
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−>
(

&&

(!! (past S Approved By Sect34 Authority 1))

S Approved By Sect34 Authority

)

(past S Approved By Supervisor 1)

)

)

(; Constraint 7

alwf

(

−>
(

&&

(past S Approved By Sect34 Authority 1)

(!! S Approved By Sect34 Authority)

)

(|| S Vacation Hours Calculated S Cash Pay Calculated S Rejected S Changes Required)

)

)

(; Constraint 8

alwf

(

−>
(

&&

(!! (past S Vacation Hours Calculated 1))

S Vacation Hours Calculated

)

(past S Approved By Sect34 Authority 1)

)

)

(; Constraint 9

alwf

(

−>
(

&&

(!! (past S Cash Pay Calculated 1))

S Cash Pay Calculated

)

(past S Approved By Sect34 Authority 1)

)

)
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(; Constraint 10

alwf

(

−>
(

&&

(!! (past S Hours Accrued 1))

S Hours Accrued

)

(past S Vacation Hours Calculated 1)

)

)

(; Constraint 11

alwf

(

−>
(

&&

(past S Vacation Hours Calculated 1)

(!! S Vacation Hours Calculated)

)

(|| S Hours Accrued)

)

)

(; Constraint 12

alwf

(

−>
(

&&

(!! (past S EXPORTED TO RPS 1))

S EXPORTED TO RPS

)

(past S Cash Pay Calculated 1)

)

)

(; Constraint 13

alwf

(

−>
(

&&

(past S Cash Pay Calculated 1)

(!! S Cash Pay Calculated)

)
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(|| S EXPORTED TO RPS)

)

)

(; Constraint 13

alwf

(

−>
(

&&

(!! (past S PAYMENT MADE 1))

S PAYMENT MADE

)

(past S EXPORTED TO RPS 1)

)

)

(; Constraint 14

alwf

(

−>
(

&&

(past S EXPORTED TO RPS 1)

(!! S EXPORTED TO RPS)

)

(|| S PAYMENT MADE)

)

)

)

)

(ae2zot:zot 10

(

&&

Instantiation Constraints

Termination Constraints

modelconstraints

model guards and invariants

;Check conditions described in Section 7.3.4

;(somf (&& S Hours Accrued (−P− PAYOUT REQUESTED) )); −− Check 1

;(somf (&& (−P− PAYOUT REQUESTED) (somf S Hours Accrued) )); −− Check 2

;(somf (&& S Cash Pay Calculated (futr (−P− PHI) 1)) ); −− Check 3

;(somf (&& S Changes Required (somf (&& (!! S Changes Required) (somf S Changes Required)) ))); −−
Check 4

;(|| (somf (&& S Cash Pay Calculated (somf S Changes Required)) ) (somf (&&

S Vacation Hours Calculated (somf S Changes Required)) )) ;−− Check 5

207



;(somf (&& S PAYMENT MADE ([=] (−V− APPROVAL SUPERVISOR EMP ID) 0))) ;−− Check 6

;(somf (&& ([=] (−V− HR EMP ID) (−V− EMP ID)) ([>] (−V− HR EMP ID) 0) ))−− Check 7

)

:logic :QF UFLIA

)
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[135] Ksenia Ryndina, Jochen M. Küster, and Harald Gall. Consistency of business process

models and object life cycles. In Proceedings of the 2006 International Conference

on Models in Software Engineering, MoDELS’06, pages 80–90, Berlin, Heidelberg,

2006. Springer-Verlag.

[136] Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation access

control. Computer Network Security, pages 17–31, 2003.

223



[137] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, 1993.

[138] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-

based access control models. Computer, 29(2):38–47, 1996.

[139] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice.

Communications Magazine, IEEE, 32(9):40–48, 1994.

[140] Peter Pin shan Chen. The entity-relationship model: Toward a unified view of data.

ACM Transactions on Database Systems, 1:9–36, 1976.

[141] Leilei Shi and David W. Chadwick. A controlled natural language interface for

authoring access control policies. In Proceedings of the 2011 ACM Symposium on

Applied Computing, SAC ’11, pages 1524–1530, New York, NY, USA, 2011. ACM.

[142] John W. Sias, Wen-Mei W. Hwu, and David I. August. Accurate and efficient predi-

cate analysis with binary decision diagrams. In Proceedings. 33rd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 112–123, 2000.

[143] M.G. Silverman. Compliance Management for Public, Private, or Non-Profit Orga-

nizations, ISBN:9780071496407. McGraw-Hill Education, 2008.

[144] Eric Simon and Angelika Kotz Dittrich. Promises and realities of active database

systems. In Proceedings of the 21th International Conference on Very Large Data

Bases, VLDB ’95, pages 642–653, San Francisco, CA, USA, 1995. Morgan Kaufmann

Publishers Inc.

[145] Avik Sinha, Amit Paradkar, Palani Kumanan, and Branimir Boguraev. An Analysis

Engine for Dependable Elicitation on Natural Language Use Case Description and

its Application to Industrial Use Cases. In IBM Technical Report, 2008.

[146] Avik Sinha and Paradkar Paradkar. Use Cases to Process Specifications in Business

Process Modeling Notation. In 2010 IEEE International Conference on Web Services

(ICWS), pages 473–480, july 2010.

224



[147] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear

temporal logics. Journal of the ACM (JACM), 32(3):733–749, 1985.

[148] Morris Sloman and Emil Lupu. Security and management policy specification. Net-

work, IEEE, 16(2):10–19, 2002.

[149] Frank Stajano. A Gentle Introduction to Relational and Object Oriented Databases.

Olivetti & Oracle Research Laboratory, Cambridge, UK, 1998.

[150] Jones Steve. Return Values from XP-CMDSHELL, 2010.

[151] Anthony Tarantino. The Governance, Risk, and Compliance Handbook: Tech-

nology, Finance, Environmental, and International Guidance and Best Practices,

ISBN:04700958. Wiley Press, Hoboken, NJ, USA, 2008.

[152] SQL Anywhere Engineering Team. Query Processing Based on SQLAnywhere 12.0.1

Architecture, Mar 2012.

[153] Bernhard Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-

nology, ISBN:3540654704. Springer, 2000.

[154] David Toman and Jan Chomicki. Implementing temporal integrity constraints using

an active DBMS. In Active Database Systems: Proceedings of the Fourth Interna-

tional Workshop on Research Issues in Data Engineering, pages 87–95. IEEE, 1994.

[155] Treasury Board of Canada Secretariat Canada. Treasury Board Policy Suite -

http://www.tbs-sct.gc.ca/pol/index-eng.aspx.

[156] CyLab: Carnegie Mellon University. 2006 Privacy Policy Trends Report. 2006.

[157] Process Mining Group Eindhoven Technical University. ProM: Process Modeling

Workbench.

[158] Wil van der Aalst. Making Work Flow: On the Application of Petri Nets to Busi-

ness Process Management. In Proceedings of the 23rd International Conference on

Applications and Theory of Petri Nets, ICATPN ’02, pages 1–22, London, UK, UK,

2002. Springer-Verlag.

225



[159] Wil van der Aalst. Process Mining - Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011.

[160] Wil Van der Aalst, Marlon Dumas, A Ter Hofstede, Nick Russell, H Verbeek, and

Petia Wohed. Life after BPEL? Formal Techniques for Computer Systems and

Business Processes, pages 35–50, 2005.

[161] Wil van der Aalst, Maja Pesic, and H. Schonenberg. Declarative workflows: Balanc-

ing between flexibility and support. Computer Science - Research and Development,

23:99–113, 2009.

[162] Wil van der Aalst, Arthur ter Hofstede, and Mathias Weske. Business process man-

agement: A survey, isbn:3540403183. Business Process Management, pages 1019–

1019, 2003.

[163] Wil van der Aalst, Arthur H. M. Ter Hofstede, Bartek Kiepuszewski, and Alistair P

Barros. Workflow patterns. Distributed and parallel databases, 14(1):5–51, 2003.

[164] Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods, and

Systems. MIT Press, Cambridge, MA, USA, 2004.

[165] Kami Vaniea, Clare-Marie Karat, Joshua B. Gross, John Karat, and Carolyn Brodie.

Evaluating assistance of natural language policy authoring. In Proceedings of the 4th

Symposium on Usable Privacy and Security, SOUPS ’08, pages 65–73, New York,

NY, USA, 2008. ACM.

[166] Moshe Y. Vardi. Constraint satisfaction and Database Theory: a tutorial. In Pro-

ceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, pages 76–85. ACM, 2000.

[167] Moshe Y. Vardi. Model checking for database theoreticians. In Database Theory,

ICDT 2005, pages 1–16. Springer, 2005.

[168] Veterans Affairs Canada. Employee Compensation Audit,

http://www.veterans.gc.ca/pdf/deptReports/2010-may-eca.pdf.

226



[169] Toby Walsh. SAT v CSP. Principles and Practice of Constraint Programming (CP

2000), pages 441–456, 2000.

[170] Stephen A White and Derek Miers. BPMN modeling and reference guide, ISBN:

0977752720. Future Strategies Inc., 2008.

[171] Jennifer Widom. The starburst active database rule system. Knowledge and Data

Engineering, IEEE Transactions on, 8(4):583–595, 1996.

[172] Petia Wohed, Wil van der Aalst, Marlon Dumas, Arthur ter Hofstede, and Nick

Russell. On the suitability of BPMN for Business Process Modelling. Business

Process Management, pages 161–176, 2006.

[173] Frank Wolter and Michael Zakharyaschev. Spatio-temporal representation and rea-

soning based on rcc-8. In In Proceedings of the 7th Conference on Principles of

Knowledge Representation and Reasoning, KR2000, pages 3–14. Morgan Kaufmann,

2000.

[174] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Automated

extraction of security policies from natural-language software documents. In Pro-

ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, FSE ’12, pages 12:1–12:11, New York, NY, USA, 2012.

ACM.

[175] Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. A usage-

based authorization framework for collaborative computing systems. In Proceedings

of the 11th ACM Symposium on Access Control Models and Technologies, pages 180–

189. ACM, 2006.

[176] Jingren Zhou, P.-A. Larson, J. Goldstein, and Luping Ding. Dynamic Materialized

Views. In 23rd IEEE International Conference on Data Engineering, pages 526–535,

2007.

[177] Daniel C Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M Lohman,

Roberta J Cochrane, Hamid Pirahesh, Latha Colby, Jarek Gryz, Eric Alton, et al.

227



Recommending materialized views and indexes with the IBM DB2 design advisor.

In International Conference on Autonomic Computing, pages 180–187. IEEE, 2004.

[178] Geraldo Zimbrão, Rodrigo Miranda, Jano Moreira de Souza, Mario H Estolano,

and Francisco P Neto. Enforcement of business rules in relational databases using

constraints. In Proceedings of XVIII Simposio Brasileiro de Bancos de Dados/SBBD

2003, pages 129–141, 2003.

[179] Michael zur Muehlen and Danny T Ho. Service process innovation: a case study of

BPMN in practice. In Proceedings of the 41st annual International Conference on

System Sciences, pages 372–372. IEEE, 2008.

[180] Michael zur Muehlen and Jan Recker. How much language is enough? Theoretical

and practical use of the business process modeling notation. In Advanced Information

Systems Engineering, pages 465–479. Springer, 2008.

228


	Introduction
	Background and Motivation
	State of the art
	The Policy Lifecycle: Inception to Obsolescence
	Identification and Interpretation
	Formalizing Policies
	Implementation
	Testing, Deploying, and Monitoring
	Evolution

	Problem Statement
	Solution Overview
	Contributions of the Thesis
	Terminology and Definitions
	Outline

	Related Work
	Outline
	Reasoning with Policies
	Policy Identification
	Natural Language Processing of Policies
	Policy Modeling Languages
	Operational Policy Modelling and Management

	Logic, Constraints, and Active Database Systems

	Policy Modelling for Relational Objects
	Outline
	Premise
	Enforcement Model: Moving from Process Models to Constraint Models
	Terminology and Setup

	Artifacts in Relational Databases
	State of an Artifact
	Restricting the Database State Space
	Formal Model
	Starting and Ending Artifact Lifecycles

	State Transitions and Database Level Workflows
	Visual Constraint Notation
	Artifact Lifecycle Constraints
	Example
	Workflow Modelling in RDBMs

	Complex Workflow Construction
	Multi-state Flow Constraints
	Multiple Paths and Progression
	Decentralized Workflow Modeling
	Generalized Path Constraints and Sub-formulas
	Link between Graphical Constraints and LTL

	Related Work
	Declare Workflow System
	Integrated Data and Constraint Model
	Artifact Centric Process Modeling

	Summary

	From Specification to Implementation
	Framework for Monitoring State Changes
	Terminology
	Maintaining Artifact Histories
	Lifecycle Management
	Materialization of State Configuration Histories
	Checking Individual Constraints

	Measuring Policy Overhead
	Storage Overhead
	Computational Overhead

	Optimizations
	State Space Reduction
	Constraint Analysis and Sanity Checking

	Summary and Related Work
	Active Database Systems
	Constraint Systems
	Summary


	Reasoning over Constraint Systems
	Model Construction
	Terminology
	The What and Why of Verification
	Bounded Satisfiability and Model Checking

	Database Level Constraint Analysis
	Defining Conflicts and Errors
	Cross-artifact Reasoning
	Making Life Easier for the DBA

	Summary and Related Work

	Usability, Limitations and Extensions
	On Usability and Complexity
	Meaningful Constraints over Complex Views
	Complex Functions and Constraints over Sets
	A Case for Reduced Complexity

	Enhanced Constraint Systems
	Extending the DCML Toolkit
	Metadata and Temporal Access Control
	Metric Temporal Logics
	Constraint Systems for Auditing Only

	Converting Workflows into Constraint Systems
	Basic Control Flow Patterns
	Multiple Instance (MI) Patterns
	A Note on Notation

	Summary and Conclusions

	Case Study: Form GC179
	Background
	Purpose of the Study
	Information Sources and Assumptions

	Process Model and Flowchart
	Implementation
	Artifact and State Definitions
	DCML Diagrams
	The GC179 Constraint System
	Verification Results
	Summary

	Will it Work in Practice?
	The Process
	Assessing a Policy Management Framework

	Summary and Conclusion

	Conclusions and Future Work 
	Summary and Conclusion
	Future Work
	Probabilistic Reasoning in Database Level Workflows
	History Mining and Process Discovery


	Zot Model for GC179
	References

