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Abstract 

This thesis studies the self-discharge performance of recently developed rechargeable 

hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown 

through a variety of electrochemical and ex-situ analytical techniques that many parts of the 

composite cathode play important roles on the self-discharge of the battery. It was 

determined that the current collector must be passive towards corrosion, and polyethylene 

was identified as the best option for this application. The effect of amount and type of 

conductive agent was also investigated, with low surface area carbonaceous material giving 

best performances. It was also shown that the state of charge has strong effects on the 

extension of self-discharge. More importantly, this study shows that the self-discharge 

mechanism in the ReHAB system involves the cathode active material and contains a 

reversible and an irreversible part. The reversible portion is predominant and is due to 

lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution 

into the electrolyte, which drives the Li
+
 ions out of the solution. The irreversible portion of 

the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the 

presence of the acidic electrolyte, and is much less extensive than the reversible process. 
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Chapter 1 Introduction 

In recent years, there has been an increasing demand for high energy density rechargeable 

batteries for portable electronics and electric and hybrid vehicles applications. Li-ion type 

batteries are good choices for such applications, as well as for electric power load leveling 

systems. As it can be seen in Figure 1. 1 the demand for lithium just for electric vehicle 

batteries will almost triple from 2014 to 2020. 

 

Figure 1. 1 Electric vehicle production and lithium demand for electric vehicle batteries, 2008-

2020
1
 

However, the flammable organic liquid electrolytes used in Li-ion batteries represent a 

safety hazard.
2,3

 One way to overcome this drawback is to use aqueous electrolytes instead of 

the flammable organic electrolytes. In addition to improved safety, the ionic conductivity of 

aqueous electrolytes is typically larger than their organic counterparts. Furthermore, 

manufacture of Li-ion batteries is complicated and expensive, partly due to the electrolyte 

being moisture and air sensitive. Thus, incorporation of aqueous electrolytes in rechargeable 
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lithium batteries greatly reduces production costs by avoiding the strict assembly conditions 

demanded by the organic electrolytes. An aqueous Li-ion battery based on the same 

technological concept developed by Sony was first reported by Dahn’s group in 1994.
4
 They 

used VO2 as a negative electrode and LiMn2O4 as a positive electrode in 5M LiNO3 solution. 

Despite of its poor cyclability, the prospects of that system instigated many studies of similar 

aqueous rechargeable lithium-ion batteries. In the following years, various aqueous lithium-

ion battery technologies have been developed.
5-14

 

A new concept in aqueous rechargeable batteries was developed in Chen’s research 

group.
15

 The combined performance attributes of the Rechargeable Hybrid Aqueous Battery 

(ReHAB) indicates that it constitutes a viable alternative energy storage system, with 

potential to replace the commercial lead-acid system and can be used for large scale energy 

storage applications. Commercialization of this technology, however, depends on the 

investigation of some parameters, one of them being the self-discharge performance of the 

cell. 

In this thesis we have report on the effect of different components of the cathode on 

the self-discharge performance of the ReHAB battery. This work is aimed to evaluate the 

causes for self-discharge in the ReHAB battery. 

 The thesis is divided into 5 chapters: 



 

 3 

Chapter 1 provides an overview of the aqueous rechargeable batteries and objective 

of the research. It also includes the outline of the thesis. 

Chapter 2 reviews the literature about traditional Li-ion batteries, their working 

principles, and cathode materials. Aqueous rechargeable lithium batteries are also appraised. 

The definition of self-discharge is given and the process in 3 different systems is discussed. 

Chapter 3 describes the experimental methodologies and techniques employed in the 

data collection. 

Chapter 4 displays the results obtained and their interpretation.  

Chapter 5 presents the main conclusions of the thesis and suggestions for future work.  
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Chapter 2 Literature Review 

2.1 Li-ion Batteries 

The existence and sustainable development of our modern society is closely tied to 

the development of new/renewable energy sources.
16

 Nowadays, fossil fuels are the main 

source of the world’s energy. However, the diminishing world reserves and detrimental 

environmental effects caused by their combustion, has lead researchers to search for a 

“green” energy source substitute, one that is renewable and carries lower risk to our 

environment.
17,18

 Wind and solar power meet these requirements, but have the drawback of 

energy input and output fluctuation. To circumvent the power fluctuation, energy storage 

devices are often employed in conjunction with intermittent power sources. One of the most 

common energy storage systems is the lead-acid battery. Lead-acid batteries are cheap, stable 

in over-charging conditions, and have low internal impedance which allows them to deliver 

very high currents. On the other hand, lead-acid batteries are very heavy, which prevents 

their usage in portable electronics, and contain the environmental unfriendly lead. In 

addition, lead acid batteries have high self–discharge rates at higher temperature. Li-ion 

batteries have taken much attention of researchers during the last 5 decades. As seen in 

Figure 2. 1, Li-ion batteries exhibit high volumetric and the highest gravimetric energy 

density among the technologies available. Li
+
/Li has a very negative standard reduction 

potential of -3.05V versus a standard hydrogen electrode (SHE) which produces higher 

power and energy density compared with other batteries. As a result, Li-ion batteries meet 
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many requirements for applications in portable electronic devices, as well as in electric and 

hybrid/electrical vehicles.
19,20

 

 

Figure 2. 1 Comparison between volumetric and gravimetric energy density of secondary 

batteries
21

 

In 1991 Sony introduced the commercial lithium-ion battery which is considered the 

most successful and most widely applied portable energy storage system.
22,23

 The energy 

density of commercial Li-ion battery is about twice that of nickel–cadmium or nickel– metal 

hydride batteries, in terms of both weight and volume. In addition, due to the high voltage of 

Li-ion batteries (about 4 V) it is possible to use a single Li-ion cell to power a cell phone. As 

shown in Figure 2. 2, the use of the lithium-ion battery has expanded rapidly and it is 

forecasted to keep increasing over the next 10 years.
24

 Besides portable electronics, Li-ion 
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batteries are being increasingly used in electric-powered vehicles, an environmentally 

friendly mode of transportation expected to grow sharply.
25

 

 

Figure 2. 2 Li-ion batteries usage and forecast
26

 

There are three groups of lithium batteries: lithium metal, lithium-ion and lithium-ion 

polymer. Lithium metal batteries are not rechargeable whereas lithium-ion and lithium-ion 

polymer batteries are rechargeable.
27

 In Li-ion batteries the electrolyte is a lithium salt 

dissolved in an organic solvent. Li-ion polymer batteries use a solid composite polymer as a 

separator which contains the lithium salt electrolyte, either soaked in the polymer or as part 

of its structure. 

2.2 Working Principle of Li-ion Batteries  

There are three main parts in a battery: an anode (which is oxidized), a cathode (that 

is reduced) and an electrolyte. When external load is applied to the cell, electrochemical 
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reduction and oxidation (redox) reactions occur resulting in transfer of electrons from the 

anode to the cathode. This transfer converts the chemical energy stored in the active material 

to electrical energy which flows as current through the external circuit. The chemical energy 

released is determined by the difference between the standard Gibbs free energy chemical 

potential of the two electrodes. In terms of Li-ion batteries, the redox reactions usually result 

from the “lithium insertion” or “lithium intercalation” into appropriate hosts.  As Figure 2. 3 

illustrates, during the charging process Li-ions de-intercalate from the cathode (e.g. LiCoO2) 

and intercalate into the anode (e.g. graphite); during the discharge the reverse process takes 

place. 

 

Figure 2. 3 Working principle schematic of Li-ion batteriess 

The following exemplifies the reactions during the charge-discharge: 

Positive electrode: LiCoO2 ↔  Li1-x CoO2 + xLi
+
 + xe

-
 Equation 2. 1 

Negative electrode: 6C + xLi
+
 + xe

-
 ↔ 4 LixC6 Equation 2. 2 
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The original lithium battery uses metallic lithium as the anode. Despite providing the 

highest possible energy for the cell, the formations of lithium dendrites during charging can 

cause short-circuits and represent a safety hazard.  In 1991 graphite was introduced as anode 

to prevent lithium dendrite formation.
28

 It remains as the anode material of choice even 

though many alternatives (such as LiTiO, LiVO, etc) have been investigated.
21

 

2.2.1 Cathode Materials for Li-ion Battery 

The positive electrode in Li-ion batteries is typically a lithium transition-metal 

chalcogenide that can reversibly de/intercalate Li-ion.
17,29,30

  Presently, three types of cathode 

electrode materials are predominantly used, namely: layered oxides (lithium cobalt oxide, 

Figure 2. 4(a)), spinel oxides (lithium manganese oxide, Figure 2. 4(b)) and phosphates 

(lithium iron phosphate, Figure 2. 4(c)). 

LiCoO2 

Layered LiCoO2 was developed by Mizushima in 1980, and after successful 

commercialization, has dominated the lithium batteries market.
31

 Due to the cycling stability, 

high energy density, and low self-discharge of LiCoO2 cathode material, it is heavily 

employed in batteries for laptops, cell phones, and other portable electronics. LixCoO2 has a 

theoretical capacity of 274 mAh/g if all Li is de-intercalated from the cathode. Unfortunately, 

this capacity is not practically achievable due to the structure instability of LiCoO2. As a 

result, only half of Li can be extracted from the cathode, giving a theoretical capacity of 

about 140 mAh/g. The high price and toxicity of Co are additional drawbacks of the LiCoO2 



 

 9 

cathode material. To overcome these limitations, Co has been partially substituted in the 

layered oxide by Mn and/or Ni to form a lithum mixed transition metal oxide (e.g. 

Li(Co0.2Ni0.8)O2, LiCo1/3Ni1/3Mn1/3O2, and LiNi0.5Mn0.5O2).
32,33

 Their capacity is about 

200 mAh/g and they present better cycling life than the non-substituted layered oxide.
20,34

 

LiMn2O4 

In 1983 the spinel LiMn2O4 was introduced as a cathode material for Li-ion 

batteries.
33,35,36

 The operating voltage of LiMn2O4 is 3.95 – 4.1 V and the theoretical capacity 

is 148 mAh/g. Because of its high thermal stability, low cost, and low toxicity, LiMn2O4 is an 

excellent candidate to replace LiCoO2. However, pure lithium manganese oxide has poor 

cycling stability and low rate capability. The capacity fading mechanism of the pure lithium 

manganese oxide has been reportedly related to the Jahn–Teller distortion caused by the 

presence of Mn
3+

 ions. This phase transition from a cubic into a tetragonal crystal structure is 

a first order process and occurs first on the surface of some particles but can expand into the 

full composition of LiMn2O4. Thermodynamically speaking, the system is not at equilibrium. 

Although small, the distortion is big enough to convert the cubic structure into the lower 

symmetry and higher disordered tetragonal structure. Additionally, at the end of discharge 

Mn
3+

 is in high concentration and the following reaction could take place: 

2Mn
3+

(solid) = Mn
4+

(solid) + Mn
2+

(liquid) Equation 2. 3 

When this happens, the Mn
2+

 ions dissolve into the electrolyte and eventually cause loss of 

active material.
37-40
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Two approaches have been proposed to improve the cycling property of LiMn2O4: The first 

method uses electron doping of LiMn2O4, for example partial substitutions of Mn to make 

LiMxMn2-xO4 (M=Co, Mg, Cr, Ni, Fe, Al, Ti and Zn).
41-45

 Results indicate this approach can 

effectively stabilize the spinel structure markedly improves the cycling performance of 

LiMn2O4. However, Mn dissolution is observed as a result of interfacial side reactions 

between electrodes and electrolytes during the charge/discharge process. This happens when 

acids like hydrogen fluoride (HF) are formed in the electrolyte due to reactions of electrolyte 

salt fluorinated anions with trace amounts of waters and/or solvent oxidation products. 

The second method constitutes in coating the LiMn2O4 with a thin layer of inactive oxide 

(e.g. ZrO2, Al2O3, SiO2 and MgO).
46-51

 The surface treatment of spinel LiMn2O4 decreases 

the surface area directly in contact with the electrolyte and retards or prevents the side 

reactions which cause Mn dissolution. 

LiFePO4 

In the last 15 years, olivine-type lithium metal phosphates have been intensely 

investigated as cathodes for rechargeable lithium batteries, in attempts to overcome many of 

the weaknesses inherent to earlier materials.
52

 Lithium metal phosphates with olivine-

structure (phospho-olivines) of general formula LiMPO4 (M = Fe, Mn, Co, and Ni) were first 

identified as cathode materials for lithium-ion batteries by Goodenough’s team in 1997.
53

 

Olivines require additional treatment with conductive aids to perform at reasonable capacities 

because of their low conductivity, due to the robust covalent bonding of PO4
-
. However, 



 

 11 

phospho-olivines are characterized by nearly flat oxidation-reduction voltage curves, long 

cycle life, superior resistance to overcharge, higher thermal stability and lower cost than 

cobalt and manganese oxides.  LiFePO4 is the only commercially available olivine, and must 

be calcined in an oxygen-free environment where particle surfaces are modified to 

incorporate a conductive layer of carbon or Fe3P. LiFePO4, in particular, has already found 

widespread applications in industry due to its reasonable voltage of 3.5 V and theoretical 

capacity of 170 mAh/g, low cost and low toxicity, and high thermal stability.
29,30

 Because of 

its substantial potential, much research effort has been directed towards optimizing synthesis 

routes for LiFePO4 cathodes. A variety of techniques have been developed to control particle 

size and morphology and improve the electrical conductivity. However, the practical specific 

charge capacity of LiFePO4 is about 130 mAh/g and, because discharge occurs at about 3.5 V 

vs. Li/Li
+
 (lower than for LiCoO2), it is less attractive for high power applications. On the 

other hand, this makes the material less reactive towards electrolytes, which reduces specific 

charge fading. Lithium extraction from LiFePO4 occurs in the form of a FePO4 growing 

shell, and a shrinking LiFePO4 core. This insertion reaction is a two-phase reaction between 

FePO4 and LiFePO4. Each of these phases is highly stoichiometric with a very low 

concentration of mixed-valence states and, therefore, has a poor electric conductivity.
20,53,54
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Figure 2. 4 Structures of (a) LiCoO2, (b) LiMn2O4 and (c) LiFePO4
52

 

2.3 Aqueous Rechargeable Lithium Batteries 

Li-ion technologies lead the battery market, being used in applications from portable 

electronics to hybrid or electric vehicles. However, some challenges remain in the technology 

which is especially detrimental for large device applications, one of them being safety. Li-ion 

batteries use flammable organic electrolytes, which are not stable in air and can easily catch 

fire. During the 2008 Beijing Summer Olympic incidents caused by explosions of Li-ion 

cells in battery pack powered electric buses were reported. More recently, in the fall of 2013, 

a Tesla S car powered by Li-ion batteries caught fire in USA. These incidents (Figure 2. 5) 

and many others were caused by the liquid electrolyte.
2
 In an attempt to overcome these 

problems Dahn and co-workers introduced the aqueous lithium rechargeable batteries 

(ARLB).
4,13

 In addition to better safety, preparation of ARLB cells is cheaper compared to 

the Li-ion batteries, because there is no need for a controlled environment to handle the 

aqueous electrolyte. 
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Figure 2. 5 Accidents with Li-ion batteries 

The operational voltage of an ARLB is limited by the potentials for oxygen and 

hydrogen evolution because of the aqueous electrolyte. Figure 2. 6 show how the potential of 

oxygen and hydrogen evolution differs by changing the pH of the electrolyte. In the case of 

Dahn’s cell, LiMn2O4 and VO2 were used as cathode and anode, respectively, and an 

aqueous 5.0 M solution of LiNO3 and about 0.001 M in LiOH were electrolytes. Addition of 

a small amount of base to LiNO3 solution promoted stabilization of the cathode material by 

preventing the following side reaction: 

Lix(Host)+ xH2O= Host + xLiOH(aq) +x/2H2(g) Equation 2. 4 

The presence of the base also adjusted the standard potential for the system to an average 

voltage 1.5 V.
4
 



 

 14 

 

Figure 2. 6 The potentials of the indicated reactions versus the standard hydrogen electrode 

(SHE) in acidic and basic solutions 
4
 

Figure 2. 7 illustrates how the potential for lithium intercalation into cathode 

materials relates with oxygen and hydrogen evolution.
55

 This diagram aids in the selection of 

suitable cathode and anodes for ARLB, which could be in the range of 2 to 4 V vs. Li/Li
+ 

depending on the pH of the electrolyte.
4
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Figure 2. 7 The potential electrode materials which could be used for aqueous rechargeable 

lithium-ion batteries 
56

 

After ARLB was introduced, various papers have been published regarding the use of 

aqueous electrolyte in Li intercalation systems.
13,57-69

 One of them, by Manickan and co-

workers, describes the lithium insertion into manganese dioxide electrode in a MnO2/Zn 

aqueous battery, using a LiOH solution as an electrolyte.
70-76

 Their results show that when 

LiOH is used as an electrolyte, Li intercalated into the cathode upon discharge. This is 

strikingly different from the traditional alkaline battery, which uses KOH solution as 

electrolyte and in which the discharge products are MnOOH, Mn2O3 or Mn3O4. In a review 

article, Xia and others have discussed the challenges on ARLB and possible solutions.
56

 One 

of the problems is the possible reaction of the cathode intercalation compound with oxygen. 

To mitigate this problem, oxygen should be eliminated from the electrolyte. A comparison of 

several aqueous battery systems is presented in Table 2. 1. The LiMn2O4/AC system shows 
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excellent cycling performance even at high current density.
56

 However, it has lower energy 

density than the other systems. 

Table 2. 1 Comparisons of cycling properties of ARLB under different test conditions
56

 

Battery system 
Current density 

[mA cm
-2

 ] 

Charge/discharge 

rate 

[C] 

Capacity 

retention 

[%/# Cycles] 

LiMn2O4 – (B)VO2 0.69  0.1 Failed/25 

LiCoO2 – LiV3O8 3.4  1 36/100 

LiNi0.81Co0.19O2 – LiV3O8 1   40/100 

LiMn2O4 – TiP2O7  0.1 37/25 

LiMn2O4 – LiTi2(PO4)3  0.1 36/25 

LiMn2O4 – VO2 60 mAh g
-1

  74/50 

Li[Ni1/3Co1/3Mn1/3]O2 – 

LiV3O8 
0.2   55/10 

LiMn0.05Ni0.05Fe0.9PO4/C – 

LiTi2(PO4)3 
0.2   52/50 

LiFePO4 – LiTi2(PO4)3 
0.1  0.125 85/50 

6  6 90/1000 

LiMn2O4/AC 6  10 95/20 000 

2.3.1 Rechargeable Hybrid Aqueous Battery 

In an attempt to circumvent the problems associated with the anode side of ARLB, a 

new system was developed from Chen’s research group.
15

 The Rechargeable Hybrid 

Aqueous Battery (ReHAB) consists of a LiMn2O4 cathode and Zn foil anode, with a mixture 

of lithium and zinc chloride aqueous solutions used as electrolyte. It was named hybrid 

because cycling involves two active species, lithium and zinc ions, which replace each other 

in the electrolyte. For example when charging the system, Li ions are extracted from the 

cathode and dissolve into the electrolyte. Concomitantly, Zn
2+

 ions leave the electrolyte and 

deposit on the Zn foil. The reverse processes occur during the discharge as shown in Figure 

2. 8. 
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Figure 2. 8 Working principle schematic of ReHAB
15

 

 The charge-discharge profile of the cell (Figure 2. 9(a)) clearly depicts the two-phase 

de/intercalation reactions of lithium into/from the spinel structure of LiMn2O4. A cell using 

pure LiMn2O4 can be cycled at 4C for 1000 cycles maintaining 95% of the initial capacity 

(Figure 2. 9(b)). When doped LiMn2O4 is used as active material, the cell can sustain 4000 

charge/discharge cycles at 4C retaining 95% of the initial capacity (Figure 2. 9(c)). The 

estimated energy density of the system is 50-80 Wh/kg, which is comparable to traditional 

aqueous systems such as Lead-acid batteries.  
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Figure 2. 9 (a) Charge-discharge profile of ReHAB, (b) and (c) cycling performance of using 

non-doped and doped LiMn2O4 electrode, respectively
15
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2.4 Self-discharge process 

Self-discharge is a process that decreases the capacity of a cell without flow of 

current through an external circuit. In a simple analogy, as shown in Figure 2. 10, it’s like 

leaking water from a bottle. High self-discharge is a disadvantage for battery systems 

because they need to be often charged to maintain a full state of charge. Ultimately, high self-

discharge of the battery decreases the cell life. For example, if a cell can be cycled to 

withstand 300 charge/discharge cycles with one daily charge; it can be used for about one 

year. If the same cell displays high self-discharge, such that it needs to be recharged 2 or 3 

times a day, it only lasts for about 4 to 6 months. 

 

Figure 2. 10 Schematic of self-discharging cell
77

 

Self-discharge processes can be tested in a load-free state for a fixed time. For 

batteries, self-discharge can be evaluated by looking at the capacity loss over time. In the 

case of supercapacitors, measurement of self-discharge is done by following the voltage 

decay over time. 
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2.4.1 Self-discharge in Li-ion Batteries 

Charged batteries have high Gibbs free energy, so there is a thermodynamic driving 

force for self-discharge. Two self-discharge reactions are possible in a Li-ion cell; one is 

chemical and the other electrochemical. Because of their high reactivity, charged cells can 

undergo side reactions easily, and factors such as purity of the active material or electrolyte, 

and the specific surface area of the active electrodes, conductors, binders or separators can 

have decisive effect on their self-discharge performance. These reactions are mostly 

irreversible while electrochemical reactions are reversible. For example, lithium re-

intercalation can lead to self-discharge of Li-ion batteries, as has been demonstrated by many 

researchers who have studied all the different factors which could affect self-discharge of 

these cells.
78-81

 

R. Yazami and Y. Ozawa have studied the kinetics of self-discharge in the Li-ion 

battery using the Galvanostatic Intermittent Titration Technique (GITT) method.
82

 Figure 2. 

11 show the GITT at 25°C alongside the open circuit voltage (OCV) data at 70°C. The trends 

are similar, but during the OCV the potential drops faster at the beginning. The authors 

concluded that the self-discharge is associated with two factors. The first factor is the lithium 

re-intercalation into the cathode which is a reversible reaction. The second factor is the phase 

transition from a spinel to a tetragonal structure,which is an irreversible reaction. 
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Figure 2. 11 OCV curves used to determine the electrode composition during aging
82

 

In Li-ion batteries self-discharge may occur due to electrolyte decomposition. The 

decomposition occurs if the electrolyte is not stable at higher potential, since it might oxidize 

at the cathode or reduce at the anode.
14,83

 Tarnopolskiy et al. studied the influence of 40 

different electrolyte additives on the self-discharge of Li-ion batteries (Table 2. 2).
84

 Among 

the additives, succinic anhydride showed positive influence on the self-discharge. The 

authors proposed the mechanism shown in Figure 2. 12 to explain the influence of the 

additive. Figure 2. 12(a) shows that during the open circuit potential, the electrolyte 

decomposes due to the higher voltage and Li-ions are re-intercalated back to the cathode. The 

succinic anhydride prevents or thwarts this process by forming a solid electrolyte interphase 

(SEI) on the surface of the cathode (Figure 2. 12(b)). The SEI will protect the cathode from 

the re-intercalation and will lower the self-discharge of the cell. 
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(a) (b) 

Figure 2. 12 Schematic illustration of the (a) oxidative electrolyte decomposition at the cathode 

surface and (b) of a protective SEI layer on the cathode surface
84

 

 

Table 2. 2 Different tested compounds and the corresponding percentage in the base electrolyte 

solution (1 MLiPF6 in EC:DMC, 1:1). The tendency of the influence on the self-discharge is 

indicated by ‘+’, ‘0’, or ‘–’ for a beneficial, almost none, or a detrimental effect, respectively
84

 

 Tested compound Concentration of 

additive/% 

Influence on self-

discharge 

1 Poly(ethylene glycol) methylether 

methacrylate 

0.5; 1; 4 – 

2 Methyl allyl piperidinium-1,3 TFSI 1; 5; 20 – 

3 Methylmethacrylate 1 – 

4 Pyrrole 1 – – 

5 Biphenyl 0.1 – 

6 Methyl allylpyrrolidinium FSI 5 – – 

7 Methyl allylpyrrolidinium BF4 1; 5 – 

8 Tetrahydrothiophene 4 0 

9 3-Bromo-4-methoxy benzonitrile 1 – 

10 4,40-Dimethoxyoctafluorobiphenyl 1 – 

11 5-Chloro-2-methoxypyridinea 1 – – 

12 Fluoroethylene carbonate 4 0 

13 Difluoroethylene carbonate 4 0 

14 Trifluoroethylene carbonate 4 – 
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15 Bis(trifluoromethyl)ethylene carbonate 4 0 

16 1,3-Propane sultone 4 0 

17 Tris(trimethylsilyl)borate 2; 5 0 

18 Tris(trimethylsilyl)phosphite 2; 5 0 

19 Trimethylsilyltriflate 4 – 

20 Bis(trimethylsilyl)malonate 4 – 

21 Ethylmethylsulfone 4 0 

22 Dimethyl sulfone 4 0 

23 Methyl methanesulfonate 4 0 

24 Sulfolane 4 0 

25 1,3,2-Dioxathiolane 2,2-dioxide 4 – – 

26 Tetramethoxytitanium 4 – 

27 1,2-Propyleneglycol sulfite 4 – 

28 Lithium bis(oxalate)borate (LiBOB) 4 – 

29 Lithium difluoro(oxalate)borate 4 – 

30 Tetrafluorosuccinic anhydride 4 – 

31 Ethylene sulfite 4 – 

32 Succinic anhydride 1; 2;  4; 6; 8 ++ 

33 Methyl succinic anhydride 0.5; 4; 8 0 to + 

34 Diglycolic anhydride 6 – 

35 Maleic anhydride 1; 4 – 

36 2,2-Dimethyl succinic anhydride 1  

37 2-(Trifluoroacetamido) succinic anhydride 0.5 – 

38 2-Methylene succinic anhydride 0.5 – 

39 Nonenylsuccinic anhydride 0.5 – – 

40 Dodecenylsuccinic anhydride 0.5 – – 
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Effect of Carbons on self-discharge in Li-ion batteries 

Carbons play an important role on self-discharge of the cell, due to surface area and 

particle size. Takashi Utsunomiya and co-workers have studied different carbons as a 

negative electrode, in order to see how they influence on self-discharge of the battery.
85

 

Three carbons were chosen: hard carbon (HC), artificial flake graphite (AFG) and spherical 

natural graphite (SNG) with surface area of 3.1 m
2
/g, 21.7m

2
/g and 3.4m

2
/g, respectively. 

Batteries were assembled using these carbons as a negative electrode, and then self-discharge 

of the cells was identified from the open circuit voltage, capacity loss of the cell during the 

storage period. From the charge/discharging profiles, they have observed that the columbic 

efficiency of first cycle for hard carbon was lower than those of two other carbons. This 

indicates the irreversible capacity of hard carbon would be based not only on the SEI 

formation but also on the loss of lithium species inside the carbon material. From these 

results they have concluded that the self-discharging rate was in the order of AFG < HC < 

SNG for every storage temperature. This order of the self-discharging rate at the same 

temperature relates to the specific surface area of the carbons. Therefore higher specific 

surface area and higher storage temperature lead to higher self-discharging rate. They also 

have studied graphite with different particle sizes.
79

 From the results at high temperature the 

graphite with smaller particle size showed higher self-discharge rate. 
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2.4.2 Self-discharge in Lead-acid batteries  

Lead–acid batteries are related to the ReHAB systems in many aspects, namely: 

1. As in the ReHAB, the electrolyte is an acidic sulfate based aqueous solution; 

2. Lead-acid batteries use the same separator; 

3. The anode operates under a dissolution/deposition process;  

4. Oxygen and hydrogen evolution are significant side reaction processes. 

The first reports about self-discharge of lead-acid batteries were published in 1882.
86

 

The positive and negative electrodes of lead-acid batteries are not very stable in the acidic 

electrolyte. The discharged electrodes (lead sulfate) are more stable than the charged state
86

. 

In lead-acid batteries, a process called “sulfation” which causes self-discharge has been 

identified.
87

 During cell discharging, lead sulfate is produced and if the cell is deeply 

discharged it would be very difficult to convert lead sulfate back to the lead or lead oxide. 

During storage, lead reacts with electrolytes and forms lead sulfate, which is hard to remove 

from the surface of negative electrodes.
87,88

 To prevent this reaction, additives (such as boric 

acid, citric acid and stearic acid) must be added to the electrolyte. Alternatively, stable lead 

alloys are employed in place of pure lead as anode materials. Small amounts of Sb, Ca, Sn, 

Al and Ag metals are alloyed with lead, to make for better negative electrodes.
89

 

Wenzl has described another side reaction in lead-acid batteries.
90

 It is called the 

redox-shuttle reaction and occurs when impurities (such as iron) are present in the electrolyte 

or electrode. The following reactions may take place during the open circuit potential: 
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Positive electrode: PbO2 + 3H
+
 + HSO

-
4

 
+ 2Fe

2+
 → PbSO4 + 2H2O + 2Fe

3+
 Equation 2. 5 

Negative electrode: Pb + HSO
-
4 + 2Fe

3+
→ PbSO4 + H

+
 + 2Fe

2+
 Equation 2. 6 

 Additionally, PbO2 can also react with the separator producing carbon dioxide, as 

described by the following reaction: 

PbO2 + H2SO4 + ‘separator’ → PbSO4 + H2O + ‘damaged separator’ + CO2 Equation 2. 7 

Hence, although not as strict as lithium ion batteries, the manufacture of lead-acid 

cells demands careful attention to details; since there are many factors that can affect the self-

discharge characteristics. 

2.4.3 Self-discharge in supercapacitors  

Electrochemical capacitors (ECs), also called supercapacitors or ultracapacitors, are 

charge storage devices similar to batteries. Charge can be store in a Faradaic reaction as 

pseudo-capacitance or on the interphase of an electrode/electrolyte as double layers. In 

double layer EC, carbons with high surface area are used as electrode materials. The high 

surface area is very important because charge storage depends on it.  However, double layer 

EC have lower energy density compared with pseudo-capacitive EC and batteries. 
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Figure 2. 13 Voltage and Energy drop during the OCV in supercapacitors
90

 

The self-discharge process in ECs is similar to that of batteries. Self-discharge is the 

spontaneous decline in voltage over time (Figure 2. 13).
90-92

 Conway et al. proposed three 

mechanisms through which self-discharge of energy storage devices may occur, he also 

derived models which describe the predicted voltage profile for each mechanism:
90,93

 

(i) An activation-controlled Faradaic process, where the decline of voltage (V or Vt) 

versus log time would give a straight line: 

 Equation 2. 8 

 Equation 2. 9 

A, F, R – constants; C – capacitance; i0 – exchange current density 

T – absolute temperature, α – charge transfer coefficient,  

t – time, τ – an integration constant, Vi – initial charging potential 
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This model describes the self- discharge due to the Faradaic reaction of a species which is 

either at high concentration in the cell (e.g. electrolyte decomposition) or is attached to the 

surface (e.g. oxidation/reduction of a carbon surface functionality). 

(ii) A diffusion controlled Faradaic process where the potential would decline with 

the square root of t: 

 Equation 2. 10 

D – the diffusion coefficient of the redox species, 

z – the charge, c0 – the initial concentration, A – the electro active area. 

Small amounts of impurities in electrolytes would cause the redox shuttle reaction, by 

moving from one electrode to the other. (e.g. an Fe shuttle reaction) (Figure 2. 14). 

(iii) Ohmic leakage currents or a ‘short circuit’ cause the discharge of the cell even 

when there is no external current flowing. This type of leakage occurs because of impurities 

or some mistakes made while producing the cells. 

 

Figure 2. 14 Schematic diagram of a redox shuttle process 
90
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Chapter 3 Experimental 

3.1 X-ray Diffraction 

X-ray diffraction (XRD) is a widely used technique to determine the crystal structure 

of materials. Diffraction occurs when radiation is scattered by a regular array of scattering 

centers. The mechanism of scattering can be explained as the interaction of a photon of 

electromagnetic radiation with an electron in an atom. Because the wavelength of x-rays is in 

the same range as chemical bonds, the atoms in a crystalline structure act as the scattering 

center. Figure 3. 1(a) shows the conditions for diffraction x-rays by a simple crystal lattice, 

which are governed by Bragg’s law: 

 
Equation 3. 1 

d – the spacing between two adjacent planes of atoms, n – the order of diffraction, 

λ – the wavelength of the electromagnetic radiation, θ – the scattering angle. 

 

 

(a) (b) 

Figure 3. 1 (a) geometry for diffraction of x-radiation, (b) relationship of the Bragg angle (θ) 

and the experimentally measured diffraction angle (2θ) 
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The angle θ is also called the Bragg’s angle and 2θ is referred to as the diffraction 

angle (which is experimentally measured) (Figure 3. 1(b)).  The magnitude of the interplanar 

spacing is related to the Miller indices for the plane (h, k, l), which are the reciprocal of the 

cartesian coordinates of the plane. For instance, the relationship of the cubic system is: 

 Equation 3. 2 

a – the lattice parameter 

The schematic of the experiment in XRD is shown in Figure 3. 2. The diffraction 

patterns of the samples are recorded through the scanning radiation detector to the computer. 

Afterwards, the sample profiles can be analyzed by the computer software comparing it to a 

large collection of known diffraction patterns.
94

 

 

Figure 3. 2 A schematic of the XRD experiment 

In this work, XRD (D8 Discover, Bruker Co)(Figure 3. 3) using Cu Ka 1.5418 nm 

and LynxEye detector was used to determine the LiMn2O4 crystalline structure.  Charged, 
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discharged or self-discharged batteries were disassembled and cathode electrodes were 

removed. Washed with deionized water, dried cathode electrodes were then scanned from 

10° to 80° degree with 0.05°degree increments. 

 

Figure 3. 3 XRD machine (D8 Discover) 

3.2 Brunauer-Emmett-Teller  

Brunauer-Emmett-Teller (BET) is the most common method used to analyze the 

surface area, porosity and pore distribution of micro and mesoporous materials.
95,96

 The 

technique is based on the physical adsorption of nitrogen or helium at low, constant 

temperatures. By measuring the gas uptake (adsorption) upon increasing partial pressure of 

the gas over a dry powder sample, and the release of gas (desorption) at decreasing partial 
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pressures, the surface area of the sample can be determined. The main equations governing 

this method are the following: 

 Equation 3. 3 

W – molecular weight of gas adsorbed 

P/P0 – relative pressure 

Wm – weight of adsorbate as monolayer 

C –BET constant 

From the plot 1/[W(P/P0)-1] against P/P0, one can calculate Wm, which is equal to 

 Equation 3. 4 

where “s” is the slope and “i” is the intercept of the curve. The the total surface area can then 

be calculated from:
97-99

 

 Equation 3. 5 

 N - Avogadro's number (6.023x10
23

) 

M - Molecular weight of adsorbate 

Acs - Adsorbate cross sectional area (16.2Å
2 

for Nitrogen) 
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The specific surface area of the sample is a ratio of the total surface area and the weight of 

the sample: 

 Equation 3. 6 

In this thesis, BET (Figure 3. 4) was used to determine the specific surface area of the 

different carbonaceous materials, which were used as conductive agents. Liquid nitrogen 

(boiling temperature of 73K) was used as the adsorbate. Before measurement, all of the 

samples were degassed at 303K for one hour. 

 

Figure 3. 4 BET machine (ASAP 2020) 

3.3 Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS), also known as AC impedance 

methods, are widely used to characterize the electrode processes and complex interfaces. EIS 

is an experimental technique which measures the small sinusoidal (AC) current (or voltage) 

signal of known amplitude and frequency (the perturbation) to an electrochemical cell at a 
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steady bias potential (or current). EIS is also used to monitor AC amplitude and phase 

response of the cell. From the measurement information about the interface, its structure and 

reactions taking place can be inferred. Equivalent circuit analysis of the EIS response 

provides information on electrode properties like bulk resistance, charge transfer resistance, 

diffusion and double layer capacitance, etc.
100,101

 The following equation shows the 

relationship between AC voltage and frequency: 

 Equation 3. 7 

Et – the potential at the time t, E0 – the amplitude of the signal, ω – the angular frequency. 

Angular frequency ω (expressed in radians/second) can be associated with the frequency f 

(expressed in hertz): 

 Equation 3. 8 

In a linear system, the response signal can be described as: 

 Equation 3. 9 

Combining equations 3.7, 3.8 and 3.9 into Ohm's Law, the impedance of the system can be 

calculated as: 

 Equation 3. 10 

Using Euler’s relationship: 

 Equation 3. 11 

the impedance can be treated as a complex function: 

 Equation 3. 12 
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Hence, the EIS measurements can be represented graphically through relations 

between the imaginary and real parts of the impedance (Figure 3. 5). This plot is known as 

the “Nyquist or Argand plot”, where the low frequency data is shown on the right and high 

frequency data is shown on the left. The angle between the vector Z and the x-axis is known 

as the phase angle. 

 
Figure 3. 5 Nyquist plot

100
 

Figure 3. 6 shows the correlation between the frequencies (time domain) with the 

physical phenomena taking place in Li-ion batteries.
101
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Figure 3. 6 Schematic representations of Li-ion mass transfer phenomena which occur in Li-ion 

battery electrodes and their respective Nyquist plots
101
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EIS measurements were performed over the frequency range from 0.1 Hz to 1.0 MHz 

(VMP3 potentiostat/galvanostat, Bio-Logic Instruments) using the Swagelok
TM

 type cells, as 

shown in Figure 3. 7. 

 

Figure 3. 7 Schematic of EIS measurement test 

3.4 Preparation of the cells 

Composite cathodes were prepared by mixing 80 wt% of LiMn2O4 (MTI 

Corporation), 10 wt% conductive additives (Super P-Li and KS6 Graphite from Timcal, and 

Ketjen Black, EC300J, Akzo Nobel) and 10 wt% polyvinylidene fluoride (PVDF, Kynar, 

HSV900) binder. All components were dispersed in N-methyl-2-pyrrolidene (NMP, Sigma-

Aldrich, 99.5% purity) and mixed by Planetary Centrifugal Mixer “Thinky Mixer” (AR-100, 

THINKYUSA) for 2 minutes. The resulting slurry was cast on a current collector, namely 

graphite foil (Alfa Aesar, 99.8% (metal basis)), stainless steel (Thin Metal Sales), or 

conductive polyethylene film (All-Spec), and then vacuum dried at 60°C for a maximum of 

12 hours. Cathode discs of 12 mm diameter were then cut out of the film and soaked in the 
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electrolyte solution under reduced pressure to ensure complete wetting of the material. 

Swagelok
TM

 type (Figure 3. 8a) cells were assembled, using wet cathode disc, zinc metal 

discs as anode, and absorbed glass mat (AGM, NSG Corporation) separator wetted with the 

electrolyte. The mixture of 2M ZnSO4 and 1 M Li2SO4 solutions with pH=4 were used as the 

liquid electrolyte.  

3.5 Self-discharge tests 

Self-discharge performance tests of the ReHAB cells were performed at room 

temperature in Swagelok
TM

 type cells using a computer controlled battery tester 

(BTS5V5mA, Neware). The cells were galvanostatically cycled for three cycles using 0.25 C 

equivalent rate (1C = 130 mAh g
-1

) between 1.4 and 2.1 V vs. Zn/Zn
+2

 for three cycles, 

charged to 2.1V, then at a charge state left in open circuit voltage (OCV) for 1 day with 

continued monitoring of the cell voltage. After the OCV period, the cells were discharged to 

1.4V and then cycled for another three cycles, to determine the amount of capacity lost 

during the self-discharge and whether or not this loss is reversible. The schematic 

representation of the self-discharge test is shown in Figure 3. 8(b). 
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(a) (b) 

 Figure 3. 8 (a) Swagelok
TM

 type battery, (b) Schematic of the self-discharge test 

For all experiments, the batteries were assembled as described above, the differences 

in the cathode composition and the cell structures are summarized in the following tables: 

Effect of different state of charge 

Active material Conductive agent Binder 
Act.mat : Cond.ag.:  

Bind. 
Current collector 

LiMn2O4 Super P-Li PVDF 90:5:5 Polyethylene film 

Effect of current collector 

Active material Conductive agent Binder 
Act.mat : Cond.ag.:  

Bind. 
Current collector 

LiMn2O4 Super P-Li PVDF 80:10:10 Stainless steel foil 

    Graphite foil 

    Polyethylene film 

Effect of different amount of active material 

Active material Conductive agent Binder 
Act.mat : Cond.ag.:  

Bind. 
Current collector 

LiMn2O4 Super P-Li PVDF 80:10:10 Polyethylene film 

   85:7.5:7.5  

   90:5:5  

 

 

0 500 1000 1500 2000

1.5

1.8

2.1

Time, min

V
o
lt

ag
e,

 V

OCV for 24h



 

 40 

Effect of different conductive agents 

Active material Conductive agent Binder 
Act.mat : Cond.ag.:  

Bind. 
Current collector 

LiMn2O4 KS6 Graphite PVDF 90:5:5 Polyethylene film 

 Super P-Li    

 Ketjen Black 300    

3.6 Float charge current 

A float charge current test was performed by charging the cell to 2.1V and holding it 

at that voltage for 24 hours, after which the current drop was recorded. 
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Chapter 4 Results and Discussion 

4.1 Studies of self-discharge on the ReHAB 

 No data is yet available on the self-discharge properties of ARLB. Given the novel 

character of the ReHAB technology and consequent lack of information on the possible 

mechanisms involved in the self-discharge, there was the need to look into the self-discharge 

behavior of different systems like Li ion batteries, lead-acid batteries and supercapacitors, in 

order to compare the results found from the ReHAB system. In the studies presented herein, 

the effect of different parts of the cathode (including current collectors) on the ReHAB self-

discharge properties were investigated. 

4.2 Effect of different current collectors 

An electrode current collector can play a significant role in the various self-discharge 

processes, especially in flood batteries (cells with the electrodes immersed in liquid 

electrolytes).
102

 Since the current collector may get in contact with the electrolyte solution, 

risk of side-reactions is augmented.  In this study, three different current collectors were 

investigated: stainless steel foil (SS), graphite foil (Gr) and polyethylene film (PE).  

Figure 4. 1 illustrates the self-discharge performance of cells with different current 

collectors that were kept in the OCV condition for several days. As depicted in Figure 4. 2, 

the cells with SS exhibit significantly more capacity loss (46 % and 66 % after 3 and 15 days 

respectively) than the cells with graphite and PE. Visual observation of the electrodes, as 
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seen in Figure 4. 3 revealed that the edges of SS are tarnished, indicative of a corrosion 

process taking place. The acidic character of the electrolyte used and presence of iron in the 

stainless steel account for the corrosion side reactions, which are likely responsible for the 

poor self-discharge performance of the cells with SS current collectors.  

The cells using the graphite current collector exhibited improved performance than 

those with SS, but also deteriorated more than those using polyethylene. The graphite foil 

grade was 99.7% metal basis, with 100 ppm of leachable chlorides which are likely iron type 

contaminant. It is inferred that these contaminants may be responsible for the side reactions 

with electrolytes, which caused some long term capacity loss. 

Despite the contribution from the current collectors observed by the different 

behavior of the cells, the initial overall trend is similar for all three collectors, with a common 

large voltage drop observed almost immediately at the beginning of the OCV periods. Hence, 

other mechanisms must play a role on the ReHAB self-discharge. Based on the results 

presented thus far, the PE current collector was selected in order to begin the evaluation of 

other factors. 
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Figure 4. 1 Voltage drop over time for three different current collectors 

 

 

Figure 4. 2 Capacity loss versus self-discharge time 
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Figure 4. 3 Stainless steel foil after the test 

4.3 Effect of Conductive Additive 

4.3.1 Amount of Carbon 

 The effects of the amount of conductive additive in the cathode on the ReHAB self-

discharge properties were studied.  In these tests, Super P-Li and the ratio of conductive 

additive to the binder was kept constant at 1:1. Figure 4. 4 show the typical voltage drop over 

time of ReHAB cells with different amounts of active material, during OCV conditions. The 

cells containing 5% of carbon performed better than those with 7.5% and 10%, and the 

difference increases gradually over time. Carbonaceous materials have quite large surface 

areas which make them more probe to undergo side reactions.
81

 Evaluation of the self-

discharge rate of ReHAB cells using carbon of different surface area is thus needed and is 

presented in the following session. Based on the data presented so far, it can be concluded 

that by reducing the amount of conductors, the self-discharge of the cells could be reduced 

(Table 4. 1). The lowest level of 5% carbon was then adopted for the remainder of the tests. 
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(a) (b) 

Figure 4. 4 Voltage drop plateau of (a) 1 day and (b) 3 days of OCV for different amount of 

carbons 

 

Table 4. 1 Summary of voltage drop and remained capacity after days of OCV for different 

amount carbons  

 80:10:10 85:7.5:7.5 90:5:5 

 Voltage (V) Capacity 

(%) 

Voltage (V) Capacity 

(%) 

Voltage (V) Capacity 

(%) 

1day 1.93(8%) 91 1.94(7.6%) 92 1.95(7%) 93 

3days 1.92(8.7%) 84 1.92(8.5%) 86 1.94(7.7%) 89 

15days 1.89(10%) 53 1.90(9.4%) 68 1.91(9%) 71 

4.3.2 Type of Carbon 

In order to evaluate the effect of the surface area of the conductive agent, three different 

carbonaceous materials were selected (see Table 4. 2). As seen in Figure 4. 5 Voltage drop 

plateau of (a) 1 day, (b) 3 days of OCV and (c) float charge current profile, (d) capacity lost 

over time for different carbons (a) and (b), the higher the surface area of the conductive 

additive, the higher the voltage drop of the cells. This is reflected on the self-discharge of the 

cells after the OCV periods as demonstrated by the bar graph in Figure 4. 5 (c), which shows 

that KB300 has the worst performance by losing 40% and 45%, after 1 and 3 days of OCV 

respectively.  The float charge current test, accomplished by maintaining the charged cells at 
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2.1 V for 1 day and observing the current drop (Figure 4. 5 (d)), shows that the KS6 has the 

lowest current density and KB300 the highest, indicating occurrence of more side reactions 

when carbon of higher surface area is used.
79

 Hence, it can be inferred that high surface area 

conductive additives tend to promote the occurrence of side reactions that lead to the cell 

self-discharge. 

Table 4. 2 BET surface areas of different of carbonaceous materials 

Carbon BET surface area (m
2
/g) 

KS6 17.7986 

SP-Li 60.3388 

KB300 785.7095 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. 5 Voltage drop plateau of (a) 1 day, (b) 3 days of OCV and (c) float charge current 

profile, (d) capacity lost over time for different carbons 
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AC impedance spectra of electrodes with different carbons (Figure 4. 6) were taken 

before cycling the cell after charge, after 1 day of OCV, and after discharge (see full 

experiment description in section 3.3, on page 33), corroborate the aforementioned results. 

The spectra of the cathodes are similar for the fresh and fully charged cells. After the OCV 

period (Figure 4. 6 (c)), the cells with carbon of lowest surface areas show the lowest charge 

transfer resistance.  

 

  
(a) (b) 

  
(c) (d) 

Figure 4. 6 EIS profile of ReHAB cathodes with different carbons: (a) fresh cell; (b) after 

charge; (c) after OCV for 1 day; d) after discharge. 
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Figure 4. 7.  The results show that the resistance of the self-discharged cell indeed rests in 

between that of the discharged and charged states.  

 

Figure 4. 7 EIS profiles of ReHAB cathode with Super P-Li. 
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is higher for larger differences of chemical potential of Li, i.e. larger difference in 

composition of the charged state (Li1-xMn2O4) to the fully discharged state (LiMn2O4). 

Hence, at least part of the self-discharge process seems to be directly related to the Li
+
 

intercalation/de-intercalation into/from the active material. To further investigate this 

supposition, x-ray diffraction of cycled cathodes was performed. 

Table 4. 3 Summary of voltage drop and capacity retention of ReHAB cells after 1 day at OCV 

at the different SOC 

Initial Voltage 2.1V 2.05V 2.0V 

Variable 
Voltage 

(V) 

Capacity 

(%) 

Voltage 

(V) 

Capacity 

(%) 

Voltage 

(V) 

Capacity 

(%) 

Value 1.93(8.2%) 90 1.93(5.7%) 93 1.93(3.3%) 96 

4.5 Ex-situ X-ray Diffraction Studies of ReHAB  

 Ex-situ x-ray diffraction (XRD) analysis was performed on the cathodes of cells 

disassembled after one day of self-discharge, and after charge and discharge at constant 

current (Figure 4. 8). The results show that the lines of the (311), (222), and (400) planes of 

LiMn2O4 of the self-discharged cells shift towards lower diffraction angles, thus indicating 

lithium re-intercalation into the spinel framework, which results in an increase in lattice 

parameter.
84

 The line at 34.5
o
, of the PE current collector, does not change with state of 

charge of the cells. 
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(a) 

 
(b) 

Figure 4. 8 XRD profile of (a) after discharged, self-discharged and charged cell and (b) PE 

current collector 
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These results denote that at least part of the self-discharge is due to Li
+
 re-

intercalation into LiMn2O4, according to the following reaction: 

Li1-xMn2O4 + xLi
+
 +xe

-
 → LiMn2O4 Equation 4. 1 

To further confirm this assumption, a cell was discharged at very low equivalent rate 

(0.01C) until the 1.925 V (voltage reached by cells on OCV for 1 day) was reached.  This 

was done to simulate the slow self-discharge process under controlled current. As seen in 

Figure 4. 9 (a), the voltage profiles of the two cells do not overlap, although the trends are 

similar. The difference reflects the fact the rate used for the constant current experiment was 

higher than the rate of self-discharge. Nevertheless, the capacity lost after self-discharge is 

close to the capacity lost when discharging at low rate (6% and 9%, respectively). 

Additionally, as depicted in Figure 4. 9 (b), ex-situ XRD analysis reveals no significant 

difference between the diffractograms of the two electrodes.  

  

(a) (b) 

Figure 4. 9 (a) Voltage drop profile and (b) XRD pattern of self-discharged cell and cell 

discharged at low rate  
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In addition to the aforesaid data, inspection of the cells capacity after OCV periods 

indicate that the self-discharge process is largely due to a reversible mechanism, since almost 

full initial capacity is recovered after 15 days of OCV (Figure 4. 10). 

 

Figure 4. 10 Discharge capacity vs cycle number 
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103

 The authors showed that replacement of the zinc 

anode with lithium led to better stability of the cells. In the case of the ReHAB system, in 
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4.6 Stability of LiMn2O4 in the electrolyte 

 In addition to the reactions discussed in the previous sections, decomposition of 

LiMn2O4 in the electrolyte could also be interpreted as self-discharge. However, this type of 

reaction would cause loss of active material and would be responsible for the small 

irreversible loss of capacity observed. The stability of the spinel active material in the 

electrolyte was evaluated by comparing the XRD pattern of the fresh material with the 

powder obtained after immersion in the electrolyte solution at 60 
o
C for one week. Figure 4. 

11 shows a decrease in intensity of the lines of LiMn2O4, indicating reduction of crystallinity 

of the material. This may be caused by the dissolution of the LiMn2O4 into the electrolyte. 

According to Hunter’s reaction, LiMn2O4 is not stable in an acidic medium undergoing the 

following decomposition:
51

  

2LiMn
3+

Mn
4+

O4 + 4H
+
 → 3λ-MnO2 +Mn

2+
 +2Li

+ 
+ 2H2O Equation 4. 2 

Since the incorporated electrolyte was acidic, the above reaction could take place. The XRD 

pattern of LiMn2O4 treated with an electrolyte shows a new line at 2 ~45
o
, likely due to 

MnO2.
51

 To circumvent this problem, many researchers have tried to coat the surface of the 

LiMn2O4 particles with inactive metal oxides (e.g. ZnO).  
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Figure 4. 11 XRD profile of pure LiMn2O4  and soaked LiMn2O4 for a week 
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Figure 4. 12 Float charge current profile at different temperature 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

The effect of different components of the cathode on the self-discharge properties of the 

new ReHAB system has been studied.  A series of electrochemical experiments and 

supporting ex-situ analysis shed important light on the mechanisms responsible for reversible 

and irreversible capacity loss of the ReHAB cell. The following summarizes the main 

conclusions: 

 The type of current collector being used plays a significant role on self-discharge. 

Corrosion of the current collector foils is the reaction responsible for this effect, 

due to Fe ions shuffling into the electrolyte and acting as a reaction catalyst 

during the open circuit voltage time. Of the three different current collectors 

studied, conductive polyethylene shows the best resistance to corrosion, followed 

by graphite and stainless-steel. 

 High amounts of conductive agents promote more self-discharge side-reactions. 

As shown by BET analysis, float charge current tests, and EIS data, the high 

surface area of the carbonaceous materials are responsible for this effect. Thus, 

lower amounts of conductivity enhancers of low surface areas reduce the self-

discharge of the cells.  
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 At full charge, the cells are very active and are less stable towards self-discharge. 

In addition, oxygen generation due to electrolyte hydrolysis is augmented at full 

charge. Hence, by reducing the state of charge, these problems can be minimized.  

 Ex-situ XRD analysis of fresh and cycled ReHAB active material indicate that Li 

re-intercalation back into the cathode is responsible for reversible self-discharge 

of the cells. This is likely driven by Zn dissolution into the electrolyte. 

 XRD analysis revealed instability of the cathode materials in the acidic 

electrolyte, which  appears to cause irreversible loss of capacity during OCV 

periods, due to decomposition of LMO according to the reaction: 

2LiMn
3+

Mn
4+

O4 + 4H
+
 → 3λ-MnO2 +Mn

2+
 +2Li

+ 
+ 2H2O 

5.2 Future Work 

The results presented in this thesis represent the first step in understanding the self-

discharge process in the new ReHAB system. Although of paramount importance to develop 

this technology, with direct impact on the advance of commercialization efforts, it is by no 

means conclusive.  On the contrary, this thesis raises issues that should be addressed in the 

future, such as: 

1. What is the impact of the self-discharge reactions on the storage life of the ReHAB 

cells? 
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2. Would surface coated LiMn2O4 display better self-discharge performance than the 

commercial material used in this thesis? What would the best coating material and 

conditions be? 

3. Can the Zn anode be effectively substituted by an alternative Zn
2+

 intercalating 

material, such as activated carbon? If so, would the system have good 

electrochemical and self-discharge properties?  

4. The results suggested that surface area of the conductive additives plays an 

important role on the self-discharge.  Therefore, the effect of the cathode active 

material, surface area, and particle size - LiMn2O4 and others - on the self-discharge 

properties of the ReHAB system must also be evaluated. 
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