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Abstract

Several scientific and technological advancements in radiation oncology have resulted

in dramatic improvements in dose conformity and delivery to the target volumes using ex-

ternal beam radiation therapy (EBRT). However, radiation therapy acts as a double-edged

sword leading to drastic side-effects, one of them being secondary malignant neoplasms

in cancer survivors. The latency time for the occurrence of second cancers is around 10-

20 years. Therefore, it is very important to evaluate the risks associated with various

types of clinically relevant radiation treatment protocols, to minimize the second cancer

risks to critical structures without impairing treatment to the primary tumor volume. A

widely used biologically motivated model (known as the initiation-inactivation-proliferation

model) with heterogeneous dose volume distributions of Hodgkin’s lymphoma survivors is

used to evaluate the excess relative risks (ERR). There has been a paradigm shift in radia-

tion therapy from purely photon therapy to other particle therapies in cancer treatments.

The extension of the model to include the dependence of linear energy transfer (LET)

on the radio-biological parameters and mutation rate for charged particle therapy is dis-

cussed. Due to the increase in the use of combined modality regimens to treat several

cancers, it is extremely important to evaluate the second cancer risks associated with these

anti-cancer therapies. The extension of the model to include chemotherapy induced effects

is also discussed. There have been several clinical studies on early and late relapses of

cancerous tumors. A tumor control probability (TCP) model with recurrence dynamics in

conjunction with the second cancer model is developed in order to enable design of efficient

radiation regimens to increase the tumor control probability and relapse time, and at the

same time decrease secondary cancer risks.

Evolutionary dynamics has played an important role in modeling cancer progression

of primary cancers. Spatial models of evolutionary dynamics are considered to be more
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appropriate to understand cancer progression for obvious reasons. In this context, a spatial

evolutionary framework on lattices and unstructured meshes is developed to investigate the

effect of cellular motility on the fixation probability. In the later part of this work, this

model is extended to incorporate random fitness distributions into the lattices to explore

the dynamics of invasion probability in the presence and absence of migration.
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Chapter 1

Introduction

1.1 Cancer biology

Cancer may be viewed as a disease resulting in uncontrolled growth of cells within the

body. Some of the reasons include (but are not limited to) are due to genetic changes,

epi-genetic alterations, viruses, mutations and irregularities in metabolic functions. Cel-

lular functions become abnormal due to genetic alterations or mutations, resulting in an

uncontrolled growth of cells which manifests itself as a tumor over a period of time [1]-[3].

This abnormal behavior of cells can be due to several factors such as genetic, epi-genetic,

micro-environmental variations, or other carcinogenic agents (which will be discussed in

the next section). Carcinogenesis is generally viewed as an evolutionary process, because

the pre-neoplastic lesions have to undergo several mutations in order to become neoplastic

cells. In general, tumors can be distinguished as benign or malignant. A malignant tumor

can invade the proximal tissue and can cause metastasis (i.e. migration and colonization

of a different organ), and is considered to be fatal. A benign tumor is a non-malignant
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cancer which is considered to be non-life threatening. There are two types of genes respon-

sible for cancer initiation and progression, namely, oncogenes and tumor suppressor genes.

Oncogenes (for instance, RAS) are genes that are believed to be responsible for healthy

cells to become cancerous, which eventually leads to uncontrolled cell proliferation and

tumor growth. On the other hand, tumor suppressor genes (for instance, P53) are those

genes that inhibit abnormal cell proliferation, and protect the cell from the path leading

to cancer.

The complexity and heterogeneity of cancer progression can be explained through so-

matic evolution of cancer where the process of cancer initiation and progression can be

modeled through an evolutionary framework. The advent of pre-neoplastic cells in the sys-

tem is controlled to some extent by its micro-environment. In fact, the micro-environment

may or may not confer a fitness advantage to the pre-cancerous cell, eventually leading

(in the former case) to invasion of neighboring tissue. It is commonly believed that pre-

neoplastic or neoplastic cells gain a fitness advantage and take over a small neighborhood

of host cells through a selection process and initiate a clonal area before expanding to

neighboring tissue.

The most common treatment strategies in current clinical practice apart from surgery

are chemotherapy and radiotherapy. All of these anti-cancer therapies can locally control

the disease to a large extent, but at the same time can induce mutations in healthy tis-

sue. These pre-neoplastic (also called pre-malignant or pre-cancerous) cells accumulate a

number of genetic mutations, eventually leading to the development of a second cancerous

tumor in one of the nearby organs of the primary tumor.
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1.2 Second cancers

Advancement in radiation therapy techniques has improved the survival rate of cancer

patients over the past two decades. This has come at the cost of some long term effects

of the treatment. One significant concern for cancer survivors is the risk of developing a

second primary tumor at later stages in their life. Radiation therapy is believed to be one of

the major instigators of second primary tumors. Around 12% of patients who are diagnosed

with cancer are treated with radiation. These patients receive high doses of radiation in

the neighborhood of the tumor and low doses farther away from the tumor. The risk of

secondary cancers increases with higher doses (both chemotherapy and radiation), dose-

intensity and longer treatment times. The second cancer risk is much higher for organs

that are close to the tumor treatment volume [4]. Second primary tumors are very evident

among childhood cancer survivors [5]-[11]. The risk of second cancer is likely to be increased

when combined modality treatments are used. In most patients these new malignancies

occur in the same organ as the first primary tumor, or at a neighboring organ [7]-[13]. The

most common second cancer is leukemia which takes approximately 5 years to occur while

it takes solid cancers 10-15 years to develop [10].

When a target treatment volume is exposed to high doses of radiation (in particular

due to the inaccuracy of the radiotherapy techniques and in particular the increase in

beam-on time, i.e., the exposure time), the dosage is non-uniformly distributed over the

general treatment area. This results in the neighboring normal cells of the tumor being

irradiated. The normal cells which are located in the immediate vicinity of the tumor

receive higher dosage than those located far away from the tumor. Most of the cancerous

cells are eradicated but normal cells may undergo mutations, and become potential tumor

initiator cells. If these initiated cells lose the capacity to repair themselves, they proceed
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down a pathway that results in pre-malignant cells. These pre-malignant cells, over a period

of time can undergo further mutations and give rise to a second malignancy in the same

organ or other proximal organs. Thus, radiation decreases the number of cancerous cells

but, in the process, initiates nearby normal cells to develop into pre-malignant cells. The

further evolution of these pre-malignant cells gives rise to a second malignancy. Figure

1.1 shows a schematic representation of second cancer dynamics. The red colored cells

Figure 1.1: Schematic representation of second cancer kinetics.

represent the cancerous cells in the target volume, the green colored cells represent healthy

cells which are located in the vicinity of the target volume, and the lightning denotes

radiation that is used to inactivate tumor cells. Due to radiation some of the normal

and pre-malignant cells become inactivated. Additionally, as a result of radiation, some

normal cells are initiated to pre-malignant cells (which are represented in brown). After a

couple of years or decades after irradiation of the tissue, the initiated normal cells (due to

radiation) along with the leftover pre-malignant cells (if any) invade the neighboring tissue
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niches until the tissue architecture is restored to its original structure. One of these pre-

malignant clones undergoes additional mutations, invades the adjacent niches and forms

a malignant tumor several years after irradiation. Figure 1.2 demonstrates the dynamics

of second cancer evolution due to irradiation. As seen from Figure 1.2, the events that

Figure 1.2: Evolution of secondary malignancy.

lead to radio-biological damage occurs at the order of nano to pico seconds. Depending on

the type of DNA damage, the corresponding repair machinery kicks in to repair the cell,

for instance, non-homologous end joining (NHEJ) gets activated to repair a double strand

break. Mutation occurs if the cell is irreparable. This mutated cell proliferates, acquires

a higher number of mutations and transforms itself into a malignant phenotype leading

to a secondary malignancy. Second cancers are also known as radiation-induced primary

tumors or second malignancies. It should be noted that second cancers are different from

secondary tumors. From a clinical perspective, secondary tumors are metastatic cancers
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that originate from the primary tumor volume. The main distinction between a second

cancer and secondary tumor can be understood from the phenotype of a cancerous cell.

As discussed earlier, a second cancer occurs in a new organ which is irradiated during

radiotherapy, and secondary tumors arise as a result of cancerous cells that metastasize

from the primary tumor.

1.3 Clinical rationale of radiotherapy

The planning process involves prescribing, recording and reporting a treatment schedule.

Imaging techniques such as CT scan or MRI scans are employed to determine the exact

location of the tumor as well as critical organs at risk in the vicinity of the tumor. A sketch

of different volumes is shown in Figure 1.3 as defined by the International Commission for

Radiation Units (ICRU 50, 1993) [12]. The Gross Tumor Volume (GTV) which is the actual

location of the tumor is the most important volume required in the treatment planning.

In order for the therapy to be successful, the clinical target volume (CTV) has to be

effectively treated. During the treatment process, the geometry and position of the CTV

might change. To account for these geometric uncertainties ICRU 50 defines the Planning

Target Volume (PTV) as a volume obtained by considering all possible geometric variations

during the process. The Treated Volume (TV) is the volume defined by the oncologist that

encloses an isodose (absorbed dose is constant in a volume) surface. The Irradiated Volume

(IV) is the volume that is irradiated due to the dosage.

Specific goals must be set on the desired dose to be delivered to the CTV taking into

consideration the dose inhomogeneity, the minimum dose to be delivered to the organs that

are at risk, and constraints on the dose fractionation schemes. Depending on the therapy

used, a set of radiation beams are used to deliver the required dose. A critical part in the
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Figure 1.3: Organ delineation. Adapted from [12]

planning process is the calculation of dose distribution to the target volume. This is done

by dose calculation algorithms like Broad-beam, Pencil-beam, Kernel-based and Monte

Carlo which are software packages installed in the Treatment Planning Systems (TPS)

[16]-[19]. Since they are not the subject or focus of my research, no further details will

be given about these algorithms. The output of these algorithms is the dose distribution

within a particular volume of interest summarized by means of dose volume histograms

(DVHs) which are discussed in the next section.

1.3.1 Dose volume histograms

A DVH is a tool which displays a three-dimensional dose distribution in a two-dimensional

graph. The main purpose of a DVH is to compare various treatment plans obtained from

the TPS. Additionally, this is also used to validate the dose constraints on critical structures

located on the vicinity of the tumor volume. There are two types of DVHs: differential and

cumulative. The volume of interest is divided into smaller volume elements called voxels
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of equal size such that the dose does not vary much in each voxel. The differential DVH is

a histogram where each bin indicates the total volume of voxels receiving a specific range

of dose assigned to that bin. The cumulative DVH has the x-axis as dose and y-axis as

volume and each point on the graph describes the total volume that received greater than

or equal to the dosage indicated on the x-axis. However, if the volume of interest is a

moving organ, say a lung, then the concept of DVH can be redefined in terms of the dose

mass histogram (DMH) which is a plot of the number of cells or mass against dose. DMH

gives a better dose distribution than DVH if there is organ movement in the volume of

interest. It should be noted that DVHs do not provide spatial information of dose. Figures

1.4 and 1.5 displays a sample cumulative and differential DVH delivered to bilateral lung

tissue.

Figure 1.4: Cumulative dose volume histogram for bilateral lungs (Courtesy of Dr. D.C.

Hodgson, Princess Margaret Hospital, Toronto).

Heterogeneous dose distributions are delivered using various external beam radiother-
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Figure 1.5: Differential dose volume histogram for bilateral lungs (Courtesy of Dr. D.C.

Hodgson, Princess Margaret Hospital, Toronto).

apy techniques (EBRT). EBRT delivers dose from an external source through photons,

protons, or ions. High energy beams are generated from the linear accelerator and di-

rected towards the tumor volume, sparing the healthy tissue around the tumor. Some of

the EBRT currently used include intensity modulated radiotherapy (IMRT), 3D confor-

mal radiation therapy (3D CRT), Rotated Arc (RA) therapy, proton therapy and heavy

ion therapy. The radiation quality depends on various dosimetric principles, which are

discussed in the next section.
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1.4 Features of radiation

1.4.1 Dose

One of the most important quantities in radiotherapy is the amount of dose that is absorbed

by the biological medium. There are several terminologies used for specifying radiation

dose and its effects on biological tissue. The most frequently used concept is that of the

absorbed dose, which is defined as the amount of energy absorbed by the tissue, in unit of

radiation, Gray (Gy) which is equal to 1 joule/kg. Occasionally, Gray is rescaled by rad

where 1 Gy = 100 rad.

Another quantity that expresses radiation dose from various types of radiation is the

equivalent dose. Different types of radiation have varied effects on biological tissue, due to

which the absorbed dose is multiplied by a weighting factor (depending on the radiation

type). Equivalent dose is usually expressed in sieverts (Sv), which is equal to 1 joule/kg.

Generally, radiation has varied effects on an organ depending on its anatomical structure

and sensitivity. To account for these variations in tissue sensitivities, another quantity used

is effective dose, where the absorbed or equivalent dose is multiplied by a tissue weighting

factor. The unit of effective dose is also given in sieverts.

1.4.2 Linear energy transfer, relative biological effect and Bragg

peak

The physical quantity that defines the variations in ionizing radiation is the linear energy

transfer (LET). LET is defined as the amount of energy lost per unit path length as the

beam traverses through tissue. According to the standards set by ICRU, LET is defined
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as follows: LET of charged particles in a medium is the quotient dE/dl, where dE is the

average energy locally imparted to the medium by a charged particle of specified energy in

traversing a distance of dl.

It should be noted that LET is an average quantity whose units are keV/µm. There are

several types of LET used in the literature such as track averaged LET, energy averaged

LET and dose averaged LET (discussed in Chapter 4). The track average is estimated by

dividing the track into equal lengths and averaging the energy deposited in each length.

The energy average is calculated by dividing the track into equal energy intervals and

averaging the lengths of the track that contain this amount of energy.

Figure 1.6: a) Track average and b) Energy average.

The biological effect of any radiation is usually expressed in terms of relative biological

effectiveness (RBE). In general, equal doses of different types of radiation, say photons and

protons, do not produce equal biological effect. In order to obtain the biological effect, say

identical survival fraction of cells, RBE is defined as:

RBE =
Dphotons

Dtest radiation

(1.1)

where, Dphotons and Dtest radiation are the doses delivered by photons and test radiation

respectively. In general RBE depends on the the type of biological end point (such as cell

inactivation, initiation, etc), LET and tissue type.
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One of the important features of particles used in radiotherapy is the Bragg peak. This

is one of the fundamental reasons to exploit particle therapy in cancer treatments. Particle

therapy, say for example protons, delivered at high doses to the target volume in a precise

way, sparing the healthy tissue. Protons, being heavier particles, slow down faster than

photons. As the proton travels through the biological tissue, it slows down by interacting

with the medium and deposits more energy as it slows down. The absorbed dose increases

gradually with lower speed and greater depth (of the tumor). At the end of its range (i.e.

when the proton is ultimately stopped), the energy is suddenly deposited, rising to a peak.

This phenomenon is known as the Bragg peak. Therefore, proton therapy is used to deliver

radiation doses to those tumors (such as prostate cancer) that are located deep inside the

tissue, such that healthy tissue is spared. Figure 1.7 is a caricature that displays the Bragg

peak of a proton beam.

Figure 1.7: Schematic diagram of Bragg peak.
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1.5 Late toxicities due to radiotherapy (RT)

In the last few decades, radiotherapy has replaced surgery for long term control of many

types of cancers. Clinically, radiation therapy is considered to be one of the most effective

therapeutic interventions to treat cancer. Additionally, it has gained importance in pal-

liative treatments as well. Radiotherapy can be administered either externally (by using

an external source of radiation) or internally (by surgically implanting a radioactive seed

inside the tumor). In modern treatments, linear accelerators are capable of delivering the

required dose precisely to the tumor volume.

There are several early and late toxicities associated with radiotherapy. Early toxicities

are usually dictated by the anatomy of the critical structure that is irradiated. For example,

irradiating the gastrointestinal tract can cause mucositis and irradiation of lung tissue can

cause severe pneumonitis. Late effects arise due to radiation induced initiation, which

eventually manifests as a second tumor after several decades post irradiation. Therapeutic

effectiveness of a treatment paradigm is defined as maximizing the dose to the tumor volume

with minimal toxicity to the healthy tissue. The manifestation of second primary tumors

due to radiation primarily depends on normal tissue sensitivities (for instance breast tissue

has a different sensitivity compared to prostate tissue). Historic radiotherapy treatments

exposed larger volumes of healthy tissues, increasing the toxicity levels for induction of

second cancers. As an example, we discuss the shift in treatment paradigms involved in

treating Hodgkin’s lymphoma (HL) disease. HL is a cancer that arises in the lymphatic

system. Cancerous cells proliferate abnormally and may even spread to other organs.

Techniques used in treating HL disease include extended beam RT, mantle RT, involved

field radiotherapy (IFRT), and involved node radiotherapy (INRT). In the treatment of

HL disease, traditional RT fields encapsulate the whole neck, bilateral axillae, the entire
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length of the mediastinum, the spleen, and para-aortic nodes [13].The metamorphosis of

historic RT to contemporary RT is displayed in Figure 1.8. All of the RT fields in Figure

1.8 are three dimensional reconstructions based on computed tomography (CT) imaging

technique. The irradiated volume is represented by a light green color (and, the position

of the heart is also shown). Panel A in the figure is the Mantle upper abdomen RT field.

Figure 1.8: Evolution of RT fields from Mantle to Involved Node RT [13] (Courtesy of Dr.

D.C. Hodgson, Princess Margaret Hospital, Toronto).

It should be noted that larger volumes of breast tissue and heart are exposed to radiation,

and image in panel B represents mantle field. Mantle RT is usually associated with higher

doses to axillary, mediastinal, and neck regions. Clinically, it is observed that there is

a 2 to 20% increase in the relative risk (which is defined in chapter 4) of breast cancer

and also lung cancer, depending on the diagnosis age of the patient. Panels C and D

represent IFRT and INRT. Although it is very rare, in several cases, the spleen also gets
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irradiated, which is considered to be a source of irradiation to left breast, lung and heart

tissues. IFRT paradigm treats only those lymph node regions that are initially involved.

For most patients with mediastinal disease, this technique excludes the axillae region,

resulting in a reduction of dose to the breast and lung tissues. Simply speaking, IFRT is

used for delivering a radiation dose only to those regions effected by lymphoma at the time

of diagnosis. The change from traditional RT to IFRT has been shown to exclude most

of the unwanted region that were being treated by extended beam RT. The substantial

reduction of dose and volume to the normal tissue results in a decreased second cancer

risk. Therefore, the reduction in second cancer risk is supported by volume reduction

studies during treatment planning. INRT came into existence in order to reduce the field

sizes compared to IFRT, which might further reduce second cancer risks. INRT fields do

not comprise the entire nodal region, but all post chemotherapy volumes of the initially

involved nodes. Although this is a new treatment paradigm, it might take several years to

clinically evaluate the associated second cancer risks and the corresponding reduction of

irradiated volumes.

1.6 Clinical example of HL disease

A sample treatment plan is discussed below, which is provided by Dr. D.C. Hodgson,

Princess Margaret Hospital. Figure 1.9 shows a CT image of organ delineation. The nodal

region being treated for this patient is the axillary lymph nodes, the supraclavicular lymph

nodes, the hilar nodes and neck nodes. This plan is for the mantle treatment, delivering

radiation to the mantle. All the contours in the image represent different organs. Red

contour denotes shielding blocks to reduce radiation dose to the critical structures. Other

organs included in the shielding are lungs, humeral heads, and the larynx. In female
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Figure 1.9: Organ delineation for HL disease (Courtesy of Dr. D.C. Hodgson, Princess

Margaret Hospital, Toronto).

patients, partial shielding is carried out for the breast tissue too. Purple, blue, green,

yellow, orange contours denotes shielding to lungs, breasts, thyroid, spleen and heart tissues

respectively. Figure 1.10 displays a coronal slice, and the lines describe isodose curves. In

this plan in particular, 2048 cGy was prescribed to the mantle isocentre (green circle

with a cross) and then 2048 cGy to the yellow circle with a cross that is the abdomen

isocentre. Figure 1.11 displays several beams emerging out from the linear accelerator,

and different colors denote the field edges. The beams represent two different sites, mantle

and spleen, i.e. two beams comprised of mantle treatment and two beams comprised of

spleen treatment.
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Figure 1.10: Three dimensional coronal view (Courtesy of Dr. D.C. Hodgson, Princess

Margaret Hospital, Toronto).

Figure 1.11: Radiation beams from the linear accelerator (Courtesy of Dr. D.C. Hodgson,

Princess Margaret Hospital, Toronto).
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1.7 Chemotherapy induced cancer

Chemotherapy is the process of administering drugs to kill cancerous cells. There are

several negative implications of these cytotoxic drugs, and one of them is the killing or

mutation of normal cells over the course of the treatment. Many alkylating agents used in

primary cancer treatments are known to be potential carcinogens. Although these drugs

are effective in treating aggressive tumors, they pose a high risk of chemotherapy induced

second cancers. Recent clinical studies have identified a few types of cancers that are

linked to chemotherapy, which include but are not limited to leukemia, breast and lung

cancers in HL survivors [9]-[10]. Several case cohort and case control studies have reported

that some chemotherapy agents increase ([112]) and some decrease the second cancer risks

(for instance, procarbzine has tissue specific effects that leads to variations in the second

cancer risks [113]-[114]). In most patients, chemotherapy is administered as a sole therapy

or given in conjunction with radiotherapy. In these patients, however, there are several

ongoing debates on the effect of chemotherapy on radiation therapy induced second cancers.

For example, the data and analysis on the effect of chemotherapy on radiation-related risk

of breast cancer have been under debate due to inconsistencies [14]-[15].

Most often chemotherapy drugs are combined with radiotherapy in order to achieve

better disease control. A major leap towards an effective therapeutic benefit came from

a cocktail of therapies such as adjuvant, neo-adjuvant and concurrent therapies. The ad-

ministration of chemotherapy followed by radiotherapy is termed adjuvant therapy, while

neo-adjuvant therapy is the administration of radiotherapy followed by chemotherapy. Con-

current therapy is the simultaneous administration of both chemotherapy and radiotherapy.

In this regard, numerous case control and epidemiological investigations have been

carried out to investigate the effect of combined modality treatments on second cancer
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risks. Travis et al. in his work [10] reported that the use of alkylating agents alone has a

reduced breast cancer risk, and also observed a lower risk for a combined modality regimen

compared to radiation alone. Clinical evidence supports the fact that hormonal stimulation

is an important factor in cancer initiation and progression, particularly, in secondary breast

cancer during and after the treatment.

1.8 Objectives and outline of the thesis

Mathematical models are now ubiquitous in cancer biology and will hopefully lead to a

deeper understanding and resolution of some of the major questions facing cancer biolo-

gists and clinical oncologists. An important focus of current interest among clinical radi-

ation oncologists is concerned with the side effects of anti-cancer therapies, which include

chemotherapy and radiotherapy alone or as a combined regimen. It is of great importance

to know the risk for a patient to develop a second cancer which could have been caused by

the initial anti-cancer therapeutic modality. The central theme of this thesis is to estimate

the second cancer incidence risk through the development of novel mathematical models,

along with understanding the DNA damage induced by low energy protons. Survival prob-

ability of radiation induced pre-malignant cells is an important part of secondary tumor

initiation. The second part of the thesis models the evolution of cancer initiating cells

obtained from radiation, on spatial structures using an evolutionary dynamics framework.

Chapter 1 starts with an introduction to the biology of primary cancer and anti-cancer

therapy induced second cancer. We briefly discuss various biological aspects of initiation

and progression of second malignancies. Basic principles of dosimetry are defined and the

fundamental aspects of radiotherapy treatment planning are also presented. The shift in

the treatment paradigms from traditional to contemporary techniques are discussed along
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with a clinical example. The role of chemotherapeutic drugs on radiation therapy and the

effect of combined modality protocols on second cancers are discussed briefly.

In order to achieve therapeutic benefit from radiotherapy, one needs to investigate the

radio-biological effects of ionizing radiation. There are several inaccuracies and biological

uncertainties in the dosimetry in critical structures, so one has to resort to Monte Carlo

approaches to evaluate the various biological end points. Chapter 2 presents a brief review

of some fundamental concepts such as DNA, radiation induced radio-biological damage,

basic interacting mechanisms of ionizing radiation (which include electrons, photons, pro-

tons) with the biological medium. A Monte Carlo tool kit, Geant4, is used to understand

the probability of DNA damage irrespective of the location of the nucleus. As a particular

case, we have considered low energy protons. This chapter is adapted from our paper which

is currently under review [175].

Chapter 3 is devoted to mathematical modeling approaches found in the literature. We

discuss the phenomenological approach of the cell survival model, and the definitions of

relative and excess relative risks. The advantages and disadvantages of various models

associated with estimating radiation induced carcinogenic risk are presented. This chapter

gives the fundamental (biologically motivated) mathematical framework for second cancer

modeling, which forms the basis for the subsequent chapters.

Chapter 4 presents a modified model of the initiation-inactivation-proliferation (IIP)

formalism presented in the previous chapter. The IIP framework has been extended to

include a radiation quality feature, importantly, LET of protons, alpha particles and

heavy ions. Experimental data for cell inactivation and initiation was extracted for mono-

energetic beams, and compared protons and alpha particles, along with heavy ions. This

model demonstrates the importance of including LET in evaluating second cancer risks.

This chapter is adapted from our paper which is currently under review [174].
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Chapter 5 is concerned with the effect of combined modality treatments on second

cancer risks. The aforementioned IIP framework is extended to include the effects of

chemotherapy and radiotherapy. We compare various treatment strategies (that include

adjuvant, neo-adjuvant and concurrent therapies), which are being used as contemporary

treatment regimens. Various aspects of dose scheduling for chemotherapy and radiotherapy

alone are also discussed. Although our second cancer risk predictions are theoretical,

this study highlights and provides insight into designing an efficient combined modality

treatment protocol that can minimize late toxicity to healthy tissue without impairing

treatment to the primary tumor. An article discussing the mathematical framework and

various results of this chapter is under review for publication [176].

Chapter 6 introduces a model to investigate the efficacy of radiotherapy dose escalation

on second cancer risks for various fractionation protocols. We develop a mathematical

framework by incorporating relapse dynamics and second cancer risk model into a tumor

control probability model. We analyze the effect of dose escalation on various fractionated

regimens and investigate an efficient protocol to reduce the risk of a secondary malignancy

while maximizing local control of disease along with disease free survival. This chapter is

adapted from our paper which is currently under review [177].

Chapter 7 presents a review of fundamentals in evolutionary dynamics from the per-

spective of cancer evolution. Evolutionary birth-death modeling on networks is discussed

and the fixation probability on various structures are also addressed. The fixation proba-

bility on a two dimensional lattice in the presence of cellular motility is discussed, which

forms a basis for the next two chapters.

In chapter 8, we extended the aforementioned evolutionary framework on lattices to

unstructured grids and random meshes. We have modeled spatial structures that have

random neighborhoods, in the presence and also in the absence of migration of cells. We
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also examined the effect of boundaries on the fixation probability. This chapter is mainly

adapted from our paper [170].

Chapter 9 deals with spatial evolutionary modeling with site dependent fitness of cells

on a lattice. Several challenging questions are addressed, such as understanding the inter-

play between different types of spatial random fitness distributions (in the presence and

absence of migration) on the fixation probability. This chapter is mainly adapted from our

paper [178] that is currently in review.

Finally, we conclude the thesis with a brief discussion on the ideas presented, and

address potential directions for the future work. In total, six papers (1-accepted and 5-

currently under review) based on the work carried out during my PhD research have been

submitted for publication.
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Chapter 2

DNA Damage and Radiation

Interactions

In this chapter, I will briefly discuss various phases of DNA damage through direct and

indirect action of ionizing radiation. The interactions of electrons, photons and protons

with a biological medium, and their basic mechanisms of energy deposition in the tissue,

along with their track structures, are discussed. Finally, the probability density plots of

DNA damage induced by a proton beam are presented.

2.1 Radio-biological damage

The most critical component of the mammalian cell is the nucleus. The fundamental

functional unit in the nucleus is deoxyribonucleic acid, commonly referred to as DNA,

which was discovered by Watson and Crick in 1953. The geometrical structure of DNA is

double helixl with two strands (also known as backbone of the DNA). The main components
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of each strand are sugar, which is a deoxyribose molecule, and a phosphate molecule which

are alternatively placed. Each strand is comprised of four different bases: adenine (A),

guanine (G), cytosine (C) and thymine (T), and the two strands are attached to each other

by hydrogen bonds. Figure 2.1 illustrates a sample DNA fragment (taken from Wikipedia).

Figure 2.1: DNA molecule (Taken from wikipedia).

As ionizing radiation traverses biological tissue, energy is deposited. Energy that is ab-

sorbed in the medium may eventually lead to several biological effects in terms of radiation

damage. Radiation injury can be in the form of targeted or non-targeted effects (related to

endogenous reactions with the DNA). These endogenous reactions can instigate genomic

instability, bystander effects, etc. There are several phases involved in the process of energy

absorption in a biological medium. These processes occur at various time scales, eventually

leading to either repair of the cell (if the cell is damaged), or to a mutated cell (if the cell

is incompletely repaired). Figure 2.2 displays a caricature of various physical-chemical-

biological mechanisms that occur as radiation traverses the tissue.
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Figure 2.2: The catastrophe that occurs when ionizing radiation traverses biological

medium.

When ionizing radiation passes through the medium, the initial events that occur is their

interaction with several molecules, that happen on a time scale of 10−16−1s. These events

consist of ionization, excitation, scattering, and production of other secondary particles

which eventually interact with the atoms of the target (mostly with water molecules) to

produce ionizations, i.e. reactive oxygen species (or, free radicals) in the system. Then

the chemical phase takes over, wherein, the reactive oxygen species that are produced at

10−12s migrate and interact with various other molecules in the target. Since the life of free

radicals is very short, they react instantaneously with the surrounding molecules, and these

chemical reactions last only for a few milli-seconds. After the physico-chemical stages, the

biological stage takes control, and triggers the repair machinery of the cell. Depending on

the intensity of radio-biological damage, the repair mechanism can take several seconds to

hours to repair it. If the DNA is incompletely repaired due to the complexity of the DNA

damage, the after effects of this incomplete repair can either occur immediately, or, can

manifest even after several years.
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Radiation damage to the target molecules (inside the cell) causes malfunctioning of

the cell. Radiation damage to the cell can be lethal, sub-lethal or potentially lethal.

Lethal damage is irreversible, irreparable and leads to cell death; sub-lethal damage can be

repaired within a period of time if there is no other sub-lethal damage that occurs within

that same time period; potentially lethal damage occurs when the target cell is irreversibly

modified by the post-irradiation environmental conditions. Cellular effects, particularly,

the DNA damage induced by ionizing radiation can occur through direct or indirect effects.

Direct effect is the direct action of ionizing radiation (i.e. ionizing some atoms) on the DNA

molecule, which can happen only when the incident beam (and/or their secondary tracks)

pass through the DNA molecule. This leads to several types of radio-biological damage

depending on the spatial distribution of energy sub-cellular scales, i.e. at the order of nano-

scale (which will be discussed later in this section). Therefore, it is clear that DNA damage

also depends on the type of particle and initial energy of the incident beam.

Due to the smaller nuclear volume within a cell, there is a very small probability that

ionizing radiation will directly hit the nuclear DNA. Therefore, most of the biological

effects caused by radiation occurs through indirect action. Indirect effect is the action of

ionizing radiation (i.e. ionizing some atoms) on the DNA molecule through free radicals

in the system. Since a mammalian cell is composed primarily of water molecules (around

80%), ionizing radiation produces free radicals when it interacts with water molecules.

These free radicals can be either atoms, molecules or ions which have an unpaired electron.

Although there are several reactive oxygen species that can be formed in the system, the

most effective and reactive one is OH−.

The following (symbolic) chemical reactions describe production of OH− ions. When

ionizing radiation interacts with water molecules, an ion is produced by removing an elec-
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tron from the water molecule:

H2O → H2O
+ + e−

This free electron in the above reaction interacts with another positively charged water

molecule to produce a negatively charged water molecule, i.e.

H2O + e− → H2O
−

These positively charged water molecules undergo reactions to yield H+ and OH− ions as

follows:

H2O
+ → H+ +OH

H2O
− → H +OH−

These ions might combine with other water molecules or free radicals in their vicinity.

However, due to their short life time (approximately 10−9s), they can migrate only a

few nano-meters. Since most of the cell is comprised of water molecules, radio-biological

damage to the DNA occurs mostly through indirect action, particularly in sparsely ionizing

radiation, i.e. x-rays. Also, two ions of OH− can combine to form hydrogen peroxide.

OH− +OH− → H2O2

The life span of hydrogen peroxide is approximately 10−5s [85], which also oxidizes several

molecules in the vicinity, and inhibits nutrition from its neighboring cells. Indirectly,

hydrogen peroxide restricts nutrients which leads to cell death. Additionally, the indirect

effect caused by ionizing radiation through free radicals can be increased in the presence of

oxygen concentration (or, other radio-sensitizers) in the system. This is because molecular

oxygen reacts with the free radicals making them more stable, and thus fixing the radio-

biological damage, which is termed as oxygen fixation hypothesis [85].
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Radio-biological damage can take one of several forms such as base damage (BD), single

strand break (SSB), double strand break (DSB) and a complex DSB. If the radio-biological

damage occurs at any of the bases A, G, C, or T, then it is termed as base damage. The

cell’s machinery has a higher probability to fix this particular damage. SSB are damages

that occur to either of the two backbones of the DNA molecule. Most of the SSBs occur

only to one of the strands, and the repair probability to fix this damage is also quite high.

Even though the number of SSBs are more in a DNA molecule, they are repaired quite

efficiently by the cell. Due to high repair probability for an SSB, these do not contribute

to any late biological effects. Double strand breaks are those damages that occur to both

the strands. There can be several types of DSB damage- from a complex to a non-complex

damage, and the probability to repair this type of damage is quite low. These mis-repaired

cells are referred to as mutated cells, and these eventually lead to several late effects.

Ionizing radiation induces cell death through the following mechanisms: radiation-

induced apoptosis, autophagy, senescence and mitotic catastrophe. Radiation initiates (or,

activates) some signalling pathways to induce apoptosis. Autophagy is a degrading process

of cellular elements, eventually leading to cellular death. Experiments have proved that

radiation induced senescence occurs both in normal and also in cancerous cells. Senescence

is a process of ageing that is introduced into the cell through shortening of the telomeres.

Mitotic catastrophe is a process in which cells divide before being eliminated from the

system.

2.2 Radiation interactions with matter

α-particles: An α-particle is composed of two protons and two neutrons with mass 6.6 ×
10−27kg. Due to the higher mass of the α-particle in comparison to the electron, deflection
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as a result of collisions with electrons is negligible and the α-particle travels almost in

a straight line in the tissue. When an α-particle traverses through matter it loses its

energy through ionization and exicitation. Ionization is a process of converting an atom

(or, molecule) into an ion by removing (or, adding) charged particles such as electrons.

The α-particle has a double positive charge (due to the presence of two protons), which

permits ionization by the formation of ion pairs. The traversing α-particle can either

directly collide with the atomic electron knocking it off the orbit or it can excite the atom

through coulombic interactions. The ion pairs thus formed consist of positively charged

atoms and negatively charged ejected electrons. These free electrons have sufficient kinetic

energy to cause further ionizations. Another mechanism through which energy loss occurs

is by electron excitation. This happens when the α-particle does not impart enough energy

to the atomic electron to knock it off its orbit, but simply shifts the electron to a higher

orbital (or higher energy state). The excited elctron falls back to the lower energy state

by emitting a photon. These effects lead to a change in the biological function of the cell,

eventually causing damage.

The energy loss of the α-particle per unit path length (expressed as MeV cm−1) is

termed the stopping power of the medium for the α-particle, and is a quantity of central

importance. Path length is defined to be the total distance travelled by the α-particle.

The α-particles lose energy as they traverse through matter until the energy becomes zero

and this distance is referred to as the range of the α-particle. Bethe [?] has derived the

following expression for the stopping power of an α-particle [179]

S(E) = −dE
dx

=
1

(4πε0)2
4πz2e4nZ

mv2

[
ln

(
2mc2β2

I(1− β2)

)
− β2

]
, (2.1)

where E is the energy and x is the path length, ε0 is the vaccum permitivity (a physical

constant that relates units of charge to mechanical quantities like force), z is the charge of

29



the α-particle, Z is the atomic number of the α-particle, e is the electron charge (which

is 1.6 × 10−19 coulombs), n is the electron density of the medium, m is the electronic

rest mass, β = v/c (speed of the particle relative to speed of light c), I (units eV) is the

weighted mean of the ionization and excitation process. The parameters that play a vital

role are charge and velocity of the α-particle and the electron density of the medium. As

the α-particle slows down in the tissue, more energy will be deposited at the end of the path

leading to a peak, and this point at which the peak occurs is known as the Bragg-Kleeman

curve.

Protons are positively charged particles with mass 1.6×10−27kg. Protons being heavier

in mass than electrons do not get deflected as easily after collision with electrons and hence

move in a straight line. A proton can interact with the nucleus either elastically (i.e. after

collision the proton gets deflected with some energy; the recoil nucleus gets scattered at

some angle and the kinetic energy is conserved) or inelastically (i.e. where the kinetic

energy is not conserved after the collision with the nucleus). Since protons have an electric

charge, they interact with the electric field of the nuclei and also with the atomic electrons.

Protons interacting with the nucleus experience elastic scattering while the interaction

with the electrons is inelastic scattering. When a proton collides with an electron, partial

energy is transferred to the electron which knocks it off its orbit leading to ionization. The

ejected electron causes ionization of other atoms until it loses its energy. Protons penetrate

further in the tissue than photons, for instance, x-rays, before the energy gets deposited

at a particular site. This is one of the main reasons for recent interest in using proton

therapy in the treatment of cancers. It is observed experimentally that the fluctuations in

energy deposition per unit path length are small, and hence the energy loss is considered

as an average quantity. The stopping power (or, the rate of energy loss) is then given by

the Equation 2.1
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Electrons are the most common light charged particles used in radiation therapy, for

example, to treat skin cancers. They deposit energy in the tissue through two mechanisms:

collisional losses and radiative losses. When electrons pass through matter, they lose energy

by colliding with atomic electrons (also termed ‘collisional losses’) in matter which leads

to ionization of the atom. Since particles participating in the collision are identical, large

scattering angles are possible, which leads to the track becoming tortuous. Radiative losses

occur because of the small mass of the electron. When the electron comes close to the

atomic nuclei, the electron undergoes a change in deceleration and emits electromagnetic

radiation referred to as Bremsstrahlung. The greater the change in the acceleration, the

more energy in the Bremsstrahlung. This photon, when absorbed by an atom, excites the

atomic electron to a higher energy state. If enough energy is imparted to the electron then

it may get displaced from the nucleus leading to photo-ionization. Once again, an electron

that falls to a lower energy state emits a photon of light.

Photons are quanta of electromagnetic radiation that have zero charge and zero rest

mass. Photons can penetrate further than charged particles of similar energy. Photons with

energy E < 1MeV are x-rays and with E ≥ 1MeV are γ-rays. When a photon interacts

with matter it can be absorbed or scattered by losing partial or total energy. Photons can

lose energy through any of the following mechanisms: the photo electric effect, Compton

scattering and pair production.

2.2.1 Track structure

The track structure of an electron, photon or a proton is determined by various physical

mechanisms that occur at sub-cellular scales as they traverse the tissue. These include

(but are not limited to) energy deposition in the biological medium, directions of various
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secondary particles and their energy deposition in the medium, spatial distribution of ion-

ization coordinates, etc. It is extremely complex to track individual tracks of particles

using an experimental set-up. Therefore, the only methodology to observe these funda-

mental mechanisms is through Monte-Carlo approaches (MC). This tool kit has the ability

to track the electrons in liquid water to the order of a few electron volts (eV). It has the

capability to track primary and secondary electrons at the nano meter scale to a minimum

threshold of 8.23 eV. The electrons are stopped below this energy, and they impart the

rest of the energy to the biological medium. We used Geant4.9.5 software to model the

track structure of various particles [20]-[22]. The tool kit encompasses all the Geant4 low

energy physics models, and the physics calculations are based on these processes. Figure

2.3 presents a sample plot of ionization density for a single proton particle with 100 keV

energy. A proton beam is shot from the center of a 10µm cubic water phantom, and the

red points in the graph denote the coordinates of ionization points.

2.3 DNA damage spectrum

As ionizing radiation traverses tissue, several chemical events occur that lead to radio bi-

ological damage. Lethal lesions to the DNA in the form of SSB, DSB and clustered DSB,

might occur through direct action of particles, or through indirect action. In the past,

radio-biological models and MC approaches have been developed to investigate the pos-

sible fundamental biological mechanisms of DNA damage. For the past several decades,

MC simulations have played an impressive role in track structure calculations for vari-

ous particles. Numerous MC approaches have been successfully employed to probe the

spatial effects of radio-biological damage at sub-cellular scales, by investigating the track

structures of the particles. Many authors have studied DNA damage through bio-physical
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Figure 2.3: Track Structure of a 100 keV proton beam

modeling [23]-[28]. Brenner and Ward [29] reported that ionizations within 2− 3 nm sites

correlate well with the experimental yield of double strand breaks. These works have been

further extended to investigate the DNA damage in the form of double strand breaks [30]-

[31]. When ionizing radiation interacts with biological tissue, several low energy secondary

particles are produced which create multiple ionizations. These play an important role

particularly in proton therapy in the plateau region of the Bragg peak. Since this plateau

region is mostly located in the critical structure, it is of great importance to understand

the spatial DNA damage caused by low energy protons. It is important to understand the

formation of ionization clusters caused by low energy protons and investigate the relative

biological effectiveness (i.e. DNA damage) of proton beams in the plateau region of the

Bragg peak.

Most of the MC models in the literature consider the action of ionizing radiation on a
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DNA molecule by overlapping a fixed geometry (either helical or cylindrical) in a specific

cellular volume (say, in liquid water, or, in water vapor). Recently Bryne et al. [32] inves-

tigated the effect of ionizing radiation in a cellular phantom, which is composed of several

chemical components of a cellular cytoplasm. Although it is very important to understand

the spatial effects of radiation on a single DNA strand, this might not give an accurate

description of DNA damage in a cell of different geometry. This is because, biologically,

cells can have varied geometries (for example, the geometry of a normal epithelial cell is

different from a mesenchymal cell, endothelial cell and a cancerous cell). Additionally the

location and the size of nuclear DNA might vary for every individual cell. Experimental

Figure 2.4: Various cellular geometries

observations have reported that some cells have smaller nuclei compared to others. Also,

several biological experiments support the fact that the nucleus of a mammalian cell can

take any shape, whose position is also not fixed within a cell. Figure 2.4 displays variations

in the nuclei position within a cell (of different geometries). Given these cellular variations

within a tissue, it is important to study the probability distribution of DNA damage within

a given cell for any given type of ionizing radiation, irrespective of the position of the nuclei.

The effects of various micro-environmental conditions are ignored in this investigation

on the spatial DNA damage. We present results related to the formation of radiation

induced nano-metric ionization clusters by low energy protons as well as the probability

density plot of DNA damage (double strand breaks) within a given system, using MC
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simulations. Low energy protons are considered in order to understand the effects resulting

from stray radiation (from the linear accelerator) and scattered radiation (from the primary

radiation field to the out-of-field region).

To model proton interactions with the biological tissue, we used the open source

MC simulation software Geant4.9.5 [20]-[22]. We implemented proton particles as mono-

energetic beams of zero width in a liquid water phantom. Experimentally it is suggested

that the dimension of a cell is approximately 10µm, so we chose the size of the water

phantom to be around 10µm, with its center at the origin. The incident particles are

shot from the center of the water phantom in the Z direction, i.e. along (0, 0, 1). This

simulation is carried out for several energies with a single proton particle: 100 keV and 1

MeV. Additionally, we have investigated the correlation between the number of incident

proton particles (with 10, 20, 30, and 40), and its effect on the distribution of nano-metric

ionization clusters, and the corresponding probability density within the water phantom.

Since the nuclear DNA can be located at any position within the phantom, we divided the

10µm box into several nano-voxels of dimension 2 × 2 × 2 nm. This is done in order to

understand ionization cluster distribution within a nano-metric volume. The probabilities

of DNA damage are then estimated for a given nano-metric cluster with n number of ion-

izations. Grosswendt et al. [37] suggested a functional form for calculating the probability

of double strand breaks (DSB). Recently, Garty et al. [38]-[39] in their work proposed a

conditional probability formula based on a combinatorial formulation. The authors pre-

dicted the distribution of the number of DNA strand breaks for a given distribution of

ionization clusters. Let pc be the probability that a single ionization results in a strand

break. Based on the assumptions that this probability is independent of the location of

the ionization in the phantom, Lazarakis et al. [40] estimated the conditional probability
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for a DSB given a cluster of ν ionizations to be:

P (DSB|ν) = 1 + (1− pc)ν − 2
(

1− pc
2

)ν
. (2.2)

In general, pc is an adjustable parameter which may depend on several biological conditions

in the given system. For simplicity, in all the calculations in this work we choose a constant

value of pc = 0.1.

As evident from the Figures 2.5–2.7, the probability of a double strand break is high

close to the beam path. It should also be noted that the probability of a DSB still exists,

although very small (and not zero), away from the beam path. The ionization distribution

for protons is mostly concentrated along the beam path without any scattering. The total

number of ionizations increases with beam energy and number of particles. As observed

from the probability density plots, the maximum probability of DNA damage is high close

to the beam path, indicating that most of the ionizations occur along, or in the vicinity

of the beam path. The ionization cluster distribution increases as the number of particles

in the proton beam increase. Also, the probability increases due to an increase in the

number of ionizations within a nano voxel. Particularly, for 1 MeV proton beams whose

range is on the order of the dimension of a cell (i.e. 10µm), the probability of DNA

damage depends on the location of the nuclei. If the nucleus is along the beam path,

then the DNA damage occurs through direct or indirect action. Even if the beam misses

the target by a few nanometres (less than 5 nm), the probability of DNA damage through

indirect action is still quite high. However, if the nucleus is located within a distance of

10 nm from the beam path, there is still a small probability of DNA damage. From our

preliminary investigations, we conjecture that the biological effectiveness also depends on

the geometry of the cell along with the position of the target within the cell. Our results

demonstrate the need for several experimental studies to understand radiation induced
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Figure 2.5: Ionization distribution frequency, radial distribution of ionizations and proba-

bility density plot induced by a single proton beam of energy 100 keV.

effects for several types of cells, including non targeted effects due to ionizing radiation.

These results also provide insight into the variations in relative biological effectiveness

of a beam which plays a crucial role in studies of radiation injury, and particularly, in
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Figure 2.6: Ionization distribution frequency, radial distribution of ionizations and proba-

bility density plot induced by a single proton beam of energy 1000 keV.

the estimation of secondary cancers risks. In order to understand radiation induced tissue

injury, numerous experimental studies are required using multiple beams with various fields

at sub-cellular scales.
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Figure 2.7: Comparison of frequency and radial distributions of ionizations along with the

probability density plots induced by 10, 20, 30, 40 particles of single proton beam of energy

100 keV.

2.4 Short summary

In the present chapter, we have discussed the interaction of ionizing radiation with bio-

logical media and various biological aspects of radiation-induced DNA damage. We have
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shown that the biological effectiveness (i.e. double strand break damage) also depends on

the geometry and the location of the nuclei within the DNA through probability density

plots. Incidentally, several potential applications are associated with this study in terms

of understanding both targeted and non-targeted effects of radiation during cancer treat-

ment in the form of stray radiation dose, medical imaging (e.g. mammography, computer

tomography (CT)) and radio-protection. Radiation induced endogenous reactions with

the DNA can instigate fibrosis, and cause genomic and chromosomal instability, as well as

by-stander effects, oxidative stress and inflammation [33]-[35]. Further, secondary tumors

have been reported by several authors [36]. Also, the spatial distribution of ionization

clusters, which results in the probability density of DNA damage within the system (a

cell), might also influence the value of the relative biological effectiveness (RBE) of a pro-

ton beam. RBE mainly depends on the linear energy transfer (LET) as well as on several

micro-environment factors such as oxygen concentration. Since, LET is defined as the

averaged energy deposition per unit distance travelled by the particle, the spatial distri-

bution of ionization clusters at the sub-cellular scale, along with the location of nuclear

DNA in a cell could play an important role in estimating the probability and/or the yield

of DNA damage. These results might play a key role in several experimental investigations

on radiation induced cellular effects along with non-targeted effects for various geometries

of cells.
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Chapter 3

Mathematical Modeling of Second

Cancer Risks

In this chapter, I will briefly discuss the cell survival model used in radiotherapy, along with

different types of risks associated with radiation-induced cancers. Mathematical models

related to radiation-induced second cancer risks are presented in detail.

3.1 Cell survival model

A relationship between the dose delivered and the cell kill is given by the cell survival

curve. The survival curve plots the dose delivered against the number of surviving cells.

The earliest model was the single hit target model, wherein, a single event causes cell

inactivation; this applies to biological targets such as bacteria and viruses [41]. It is

assumed that energy deposition (or energy hits) is governed by a Poisson distribution,

and during radiation there are a large number of hits on different cells. If S denotes the
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surviving fraction of cells and D the dosage then the probability of the next hit occurring

in a given cell is very small and given by S = exp (λ), where λ = −D/D0 represents the

dose that gives an average of one hit per target molecule within the cell. When λ = 1 i.e.,

when D = D0 then S = 0.37. An extended model known as the single hit multi-target

model, was proposed to obtain survival curves for mammalian cells. It is assumed that

there are a number of targets in a cell and one hit by radiation on each of those sensitive

targets in a cell is required for death of the cell. The probability of zero hits on a target

is P (0 hits) = exp (−D/D0), hence the probability that a target is hit is P (a target is

hit) = 1 − exp (−D/D0). Since the theory assumes that there are n targets in the cell,

hence P (all n targets are hit) = (1− exp (−D/D0))
n. Therefore, the survival probability,

i.e., all the targets will not be hit is given by P (cell survival) = 1− (1− exp (−D/D0))
n.

Later, Chadwick and Leenhouts [42] improved the existing models and proposed a

new model known as the Linear-Quadratic (LQ) model. The model has two components:

a linear and a quadratic component. For the linear term, DNA damage occurs when a

charged particle traverses through the cell, which is similar to that of the single hit model

and hence the surviving fraction is S = exp (−αD). For the quadratic term the DNA

damage is caused by more than one charged particle. The probability that one DNA break

occurs is proportional to the dose D and the probability that the second DNA break occurs

is an independent event which is also proportional to the dose D. Therefore, the probability

that both the events occur is βD2 and the surviving fraction is S = exp (−βD2). After

combining linear and quadratic terms we obtain the surviving function as:

S = exp (−αD − βD2). (3.1)

In Equation (3.1), α (Gy−1) denotes the direct action of cell killing (which is lethal) and

β (Gy−2) denotes two track action where damage from two different radiation tracks in-

teract to inactivate the cell. Both α and β are tissue dependent parameters. The ratio
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Figure 3.1: Survival fraction of cells due to an acute dose D. Parameters: α = 0.1(Gy−1),

β = 0.01(Gy−2)

α/β defines the type of tissue that is being considered. For tissues with early effects, the

value of α/β is high, the linear value is more important and hence there is less dependence

on fractionations. For tissues with late effects, the value of α/β is low, the quadratic

term becomes important and fractionation becomes relevant. Figure 3.1 displays a plot of

surviving fraction of cells against acute dose D. The linear component denotes that cell

killing is lethal and irreparable, and the surviving fraction is given by S = exp (−αD).

The effect of the quadratic term on the surviving fraction comes from the repair mech-

anisms. This quadratic component resembles the ability of a cell to self-repair, and is

considered to be less lethal. Later, the LQ model has been extended to include the effects

of cell cycle, redistribution, re-oxygenation, cellular proliferation, etc during fractionated

radiotherapy[180].
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3.2 Cancer risk

There are two important types of risks used in the literature, namely absolute risk and

relative risk to quantify cancer risks. Absolute risk is defined as the probability that an

individual is diagnosed with cancer during a specific time period in a given cohort. On the

other hand, relative risks (RR) are used to describe the relationship between the risks in

different groups. In other words, it gives the strength of relationship between cancer and a

particular risk factor (such as ionizing radiation). It is defined as the ratio of probabilities

of an exposed group to an unexposed group. If two groups have risks, say, R1 and R2 then

RR = R1/R2. In many scenarios, it is useful to describe the risk R1 = R2 +E where E is

the excess risk. Then

RR = 1 +
E

R2

,

where the term E/R2 is known as the excess relative risk. If RR = 1, then exposed and

unexposed groups have equal chance of getting a disease; RR > 1 then exposed group is

more likely to get the disease; RR < 1 then exposed group is less likely to get the disease

than the unexposed group. ERR gives the percent increase above the normal incidence

rate of a disease. For dose-response analysis ERR is measured to estimate the risk. It

should be noted that these risks change over time due to various factors such as changes

in food habits, environmental, biological, etc. However, the work presented in this thesis

does not take into account the exposure or attained age of the patient.

The organ specific second cancer incidence due to ionizing radiation is proportional to the

yield of pre-malignant cells at the end of the treatment. Therefore, the functional form

used to obtain the excessive relative risk (ERR) estimate is given as the product of the

yield of pre-malignant cells at the end of the treatment and a proportionality factor as

ERR = F (D)G(a, e, g) = M ×B (3.2)
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where F (D) gives the number of radiation induced initiated pre-malignant cells. The

second term G(a, e, g) is a constant that depends on age at exposure a, time since exposure

e and gender g. This is standard practice in the modeling of cancer risks as a result of

ionizing radiation. It is evident from Equation (3.2) that the yield of pre-malignant cells

given by F (D) = M is dependent only on the radiation protocol and independent of patient

age. The factor G(a, e, g) = B is independent of radiation dose, but dependent on time.

Since the incidence of second cancers is a multi step carcinogenic process post irradiation,

the term B accounts for all these slower biological processes.

3.3 Mathematical models

Several models (using epidemiological, radio-biological and mathematical frameworks) have

been identified in the literature for estimation of second cancer risks following radiation

[44]-[63]. These have been extended by considering the influence of fractionation, dose dis-

tribution in the target volume, cell repopulation and inducible repair, etc [64]-[66]. How-

ever, we mainly focus on the radio-biological (also known as the initiation-inactivation)

formalism, and mathematical (or, initiation-inactivation-proliferation (IIP)) model to es-

timate radiation-induced second cancer risks. Additionally, the uncertainties involved in

modeling second cancer risks using radio-biological models will be discussed in detail. Fi-

nally, I will discuss the corrections made to the radio-biological model of Sachs et al. [53]

and the resulting predictions which are compatible with the available clinical data. There

are two classes of IIP models that are used to understand radiation induced carcinogenesis-

short term and long term formalisms. Short term formalisms provide a detailed initial dose

response relationship during the time of radiation treatment. Long term models formulate

and track carcinogenesis. Throughout this thesis, we consider only the deterministic (short
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term) formalism that occurs during radiotherapy.

Also, a single estimate of second cancer risk would underestimate or overestimate for

any given cohort. Hence, the motivation to analyze individual estimates of second cancer

risk for each patient is important, which can provide risk estimates for more contemporary

radiation protocols. The importance of including the heterogeneous dose volume distribu-

tion (through the dose volume histograms) into second cancer models will be discussed.

3.3.1 Linear model

The simplest model used to evaluate radiation-induced cancer risks is through the linear

model used in [67]. The ERR for a critical structure is given by:

ERR = ERRD × D̄, (3.3)

where ERRD is the ERR per dose obtained from the epidemiological data, and D̄ is the

mean dose received by the healthy organ. This model turned out to be highly inconsistent

with the epidemiological data. The risk estimation using the linear model holds true at

low doses (< 3 Gy), but breaks down at intermediate and high doses. From Figure 3.2, it

is clear that the linear model holds in the low dose region.

3.3.2 Initiation-Inactivation model

The initiation-inactivation model is also known as the non-linear model [60]-[61]. To inves-

tigate radiation-induced cancers, we have to consider the probability of radiation induced

mutations and the survival probability of irradiated cells. United Nations Scientific Com-

mittee on the Effects of Atomic Radiation (UNSCEAR) [43] has proposed an expression
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Figure 3.2: ERR vs. dose (data points extracted from epidemiological data [59]

relying on the LQ model. Based on the LQ model, the probability that a cell survives a

dose D is given by Equation (3.2).

Therefore the probability that a cell escapes radiation, i.e. escapes radiation-induced

mutation is S1 = exp (−γD − δD2). Hence, the probability that a cell is mutated due to

radiation is S2 = 1− exp (−γD − δD2). For low frequency effects (mutations arising from

an initial population is low) this is approximated as S3 = (γD+ δD2). Therefore, the total

effect of radiation known as the excess relative risk (ERR) is equal to the product of the

two probabilities S and S3 given as

ERR = (γD + δD2) exp (−αD − βD2),

where γ and δ are the coefficients of the linear and quadratic terms for radiation induced

initiation, α and β are the coefficients of the linear and quadratic terms for radiation

induced inactivation. The exponential term corresponds to the cell survival and the term
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(γD+δD2) gives a small probability that a normal cell becomes mutated and thus becomes

pre-malignant. The factor exp (−αD − βD2) is the standard linear quadratic estimate of

cell survival which is the probability that a cell is not inactivated by the dose (i.e. is still

capable of generating its lineage). In the case of a fractionated regimen, the excess relative

risk (ERR) becomes:

ERR =

(
γD +

δD2

K

)
exp

(
−αD − βD2

K

)
,

where K is the number of fractions.

Figure 3.3 displays a plot of dose against ERR. It is clearly evident that at higher doses,

the predicted ERR becomes small (and zero at very high doses) which is not observed

clinically, showing a clear discrepancy with the available second cancer data.

This model is validated using the atomic bomb cancer incidence data and also with

recent second cancer data. It has been found that there is lot of inconsistency at higher

doses, for example, breast cancer and lung cancer risks do not decrease with increasing dose

(from 3− 40Gy). Fractionation effects are included by multiplying the quadratic term by

1/K. As seen in Figure 3.3 there is a decrease in risk at high doses which contradicts with

the recent second cancer data. This is due to the fact that the formalism takes into account

the balance between inactivation and initiation effects. Inference from this contradiction is

that proliferation of normal tissue is assumed to occur for acute (at the end of radiation)

and protracted exposures (in between the fractions and after the last dose). Hence, one has

to incorporate cellular repopulation effects along with initiation and inactivation factors.

Several authors [60]-[61], [67] have extended this model to include heterogeneous dose

distribution to estimate the excess relative risk. This is carried out by acquiring the

differential DVH from the treatment planning system, to obtain individual risk estimates.

If (di, vi) represent dose and volume received by the ith voxel (1 ≤ i ≤ N), then ERR is
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Figure 3.3: ERR-Breast tissue vs. dose using Inactivation-Initiation model (data points

extracted from [15]). Parameters: α = 0.15(Gy−1), β = 0.02(Gy−2), γ = 0.98(Gy−1),

δ = 0.70(Gy−2).

then given by:

Effect(di) =

(
γdi +

δd2i
K

)
exp

(
−αdi −

βd2i
K

)
,

Then the total effect for all the voxels is given by:

Total Effect =

∑
i v(i)Effect(di)∑

i vi
,

and the ERR is then

ERR = Total Effect×B (3.4)

where B is the proportionality factor that depends on attained age, exposure age, gender

and other demographic variables.
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3.3.3 Initiation-Inactivation-Proliferation model

As discussed in the previous section, one of the major disadvantages of the initiation-

inactivation formalism is the observed decrease in ERR at intermediate and high doses.

The inconsistencies with the available clinical data are due to the fact that the formalism

does not take into account the proliferation effects of radiation-induced mutated cells.

Several authors have tried to incorporate the repopulation effects to estimate radiation-

induced second cancer risks [53], [62]-[63] during the fractionated treatment. These biolog-

ically motivated mathematical models incorporate detailed mechanisms, namely, cellular

inactivation, initiation and proliferation. Authors in [62]-[63] developed a mathemati-

cal model based on two-point mutational process, i.e. normal cells get initiated to pre-

malignant cells due to radiation which then transform to a malignant cell. Additionally,

they assumed that radiation inactivates both normal and pre-malignant cell, which is com-

pensated by cellular proliferation. They also incorporated tissue effects by assuming no

proliferation under complete impairment, and repopulation resumes in unimpaired tissue.

They showed that at higher doses (> 10 Gy), the predicted cancer incidence was consistent

with the available clinical data. Lindsay and Weldon demonstrated the importance of the

proliferation component in addition to initiation and inactivation components.

Another mathematical framework that refined the above suggested model was carried

out by Sachs and Brenner [53]. This model was developed to include various fractionated

protocols used in current clinical practice. One of the main advantages of this framework

is that it has a smaller number of fitting parameters. This framework was validated with

the epidemiological data on secondary breast and lung cancers post Hodgkin’s Lymphoma

disease.

The IIP model described in [53] attempts to track the number of radiation induced
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pre-malignant stem cells at the end of the treatment. It tries to capture three distinct

biological components: inactivation (cell killing due to ionizing radiation), initiation (ra-

diation induced normal cell mutation), and proliferation (repopulation of cells during and

after treatment). The organ specific second cancer excess relative risk (ERR) due to

ionizing radiation is assumed to follow Equation (3.2).

Suppose n(t) and m(t) denote the number of normal and pre-malignant stem cells at

time t. Following are the assumptions in their model:

• Radiation induced pre-malignant cells are defined as those cells that have the poten-

tial to transform into malignant cells,

• Radiation increases the number of normal stem cells that become pre-malignant (PM)

cells,

• Repopulation of critical structures stem cells (both normal and radiation induced

pre-malignant) begins when treatment starts and continues between fractions in the

treatment regimen and also at the end of treatment.

• Homeostasis regulation of tissue is considered (and this is a valid assumption because

the critical structure is healthy tissue) until the pre-malignant cells reach a steady

state number N after the treatment,

• Long time scale post irradiation is not considered, and dose response curve is assumed

to not have any effect on the longer time scale after irradiation,

• The proportionality factor in Equation (3.2) depends on demographic factors, gender,

age, etc of the patient.

Figure 3.4 displays a caricature of the IIP framework. Let the number of fractionations
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Figure 3.4: Caricature of IIP formalism: radiation induced cell inactivation, initiation and

proliferation of both normal and pre-malignant cells.

be K and the mean dose per fraction be d for the whole organ, so that the total dose is

given by D = Kd. T denotes the time between any two fractions, which is assumed to be

constant.

We let n−, m− and n+, m+ denote the number of normal and pre-malignant cells

just before a dose fraction and immediately after the dose fraction respectively. Suppose

k = 1, 2, . . . , K, then the surviving fraction of cells (S) due to dose d is given by (ignoring

the quadratic term),

S = exp(−αd) (3.5)

where α(Gy−1) is the cellular radio-sensitivity parameter. The fraction of normal stem

52



cells that are not initiated as pre-malignant cells in a given fraction is given by

P = exp(−γd) ≈ 1− γd (3.6)

where γ(Gy−1) is the mutation induction parameter. The number of normal and pre-

malignant cells that survive the kth dose fraction are,

n+(k) = SPn−(k),

m+(k) = S
[
m−(k) + (1− P )n−(k)

]
(3.7)

The first term in the above equation can be interpreted as the surviving fraction of initi-

ated cells from the previous dose fraction. And, the second factor represents the number

of normal cells that are initiated from the previous dose fraction. Therefore, the num-

ber of pre-malignant cells immediately after the kth dose fraction is the sum of the two

terms. Clearly, the above equation depends on the number of pre-malignant cells just

before administration of the kth dose fraction. Due to homeostatic regulation of tissue,

we assume that the repopulation mechanism of normal and pre-malignant cells during and

after radiation follows a logistic growth model, where λ and rλ are the repopulation rates of

normal cells and pre-malignant cells, respectively. The repopulation of normal cells follows

a logistic growth equation given by

dn

dt
= λn

(
1− n

N

)
, λ > 0 (3.8)

where, N is the steady state number in the critical structure and λ is the rate at which the

normal cells repopulate. This can be interpreted as the increase in the number of normal

cells due to homeostasis regulation of tissue. The factor λ
(

1− n

N

)
can be understood as

the per cell growth rate of normal cells.

The repopulation mechanism of pre-malignant cells also follows the same logistic growth

pattern as that of the normal stem cell compartment, except that the per cell growth rate
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term differs by a constant factor r,

dm

dt
= rλm

(
1− n

N

)
, r > 0 (3.9)

where, rλ is the repopulation rate of pre-malignant cells. The solutions of Equations (3.8)-

(3.9) can be used to model the repopulation mechanism between any two fractions and

after the last dose fraction. Therefore, the repopulation mechanism for surviving normal

cells is given by

n−(k + 1) =
N[

1− exp−λT
(

1− N

n+(k)

)] (3.10)

and, the growth kinetics of pre-malignant cells is given by

m−(k + 1) = m+(k)

[
n−(k + 1)

n+(k)

]r
(3.11)

The number of pre-malignant cells after the last dose and until the normal cells have

reached their steady state number N is given by

M = m+(K)

(
N

n+(K)

)r
. (3.12)

Solving the above set of discrete equations with initial conditions n−(1) = N andm−(1) = 0

numerically, we obtain the yield of pre-malignant cells at the end of the treatment, and

until the repopulation of normal cells reaches its steady state. Figure 3.5 displays a plot

of the yield of pre-malignant cells against time (days).

A total dose of 40 Gy is administered to the healthy tissue during radiotherapy treat-

ment. Each fraction in this fractionated regimen produces several radiation-induced PM

cells in the system. These cells proliferate in between fractions increasing their number

in the tissue. Intuitively, there is a competition occurring between two biological mecha-

nisms: proliferation of PM cells and cell killing of both normal and PM cells. Although
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Figure 3.5: Number of pre-malignant cells vs. time. Parameters: α = 0.18(Gy−1), γ =

10−6(Gy−1), λ = 0.4 (1/day), r = 0.96, D = 40 Gy, K = 20. (reproduced from [53])

radiation induces cell kill in both normal and PM cells, thereby decreasing the number

of normal cells that are at risk becoming PM. However, the increase in the yield of PM

cells is compensated for through the repopulation mechanism during and at the end of the

treatment. The IIP model developed by Sachs et al. [53] is validated on epidemiological

data of secondary breast cancer risks, which is displayed in 3.6.

The model fit was carried out using the relative proliferation potential of PM cells r to

be equal to 0.76 [53]). Solid line in the plot denotes theoretical risk prediction by the IIP

formalism. Data points are taken from the clinical studies of secondary breast cancers in

HL cancer survivors. The model is very sensitive to relative proliferative potential of PM

cells, and when r = 1 the corresponding risk grows linearly. When r > 1, the model over

estimates the cancer incidence even at intermediate doses. The model fits well with the

current clinical data under the assumption that the growth advantage is conferred on the
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Figure 3.6: ERR breast tissue vs. Dose (error bards denote the confidence intervals).

Parameters: α = 0.18(Gy−1), γ = 10−6(Gy−1), λ = 0.4 (1/day), r = 0.76, K = 20,

B = 1.2. (reproduced from [53])

radiation initiated PM cells during the recovery period post irradiation. It should also be

noted that radiation initiated PM cells have a growth disadvantage during the treatment

(which is one of the differences with the classical clonal expansion models).

A single estimate for a specific cohort can either over estimate or under estimate the

risks due to anatomical differences in patients. This motivated Hodgson et al. [68] to study

risk estimates for individual patients, which can provide better insights into risks induced

by current protocols. If V is the total irradiated volume and (di, vi) are points from the

differential DVH, then the ERR using the IIP formalism is given by:

ERR =
1

V

∑
i

ERR(di)vi,

This extended model of incorporating differential DVH into the IIP framework has been
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validated for Mantle radiation therapy.

3.4 Short summary

In this chapter, we presented various mathematical formalisms used to estimate radiation-

induced secondary cancer risks. The disadvantages of initiation-inactivation formalism is

pointed out and the improvements to this model by Sachs et al. [53] is also discussed.

The importance of heterogeneous DVH is discussed for individualized estimates in a given

cohort. This chapter forms the fundamental basis for various extensions and modifications

in the subsequent chapters of this thesis.
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Chapter 4

Radiation Quality and Second

Cancer Risks

In chapters 4-6 we discuss several extensions to the IIP formalism. There have been

several scientific advancements in radiotherapy techniques (including photon, proton and

ion therapies), thus it is very important to investigate the effects of various particles on

secondary cancer risks. In the first section, we present the effect of radiation quality

on second cancer risks. In the second section, we discuss the effect of combination of

treatments and discuss the importance of treatment sequencing in the context of secondary

cancers. Finally, we investigate an efficient treatment regimen that can maximize tumor

control, increase disease free survival and at the same time reduce second cancer risks. It

should be noted that all of these extensions are of paramount importance from the point

of view of clinical investigations and practice.
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4.1 Introduction

In the last few decades, external beam radiation therapy has become one of the primary

therapeutic interventions in many cancer treatments, resulting in an overall increase in the

survival rate of cancer patients. One of the primary reasons is due to better dose conformity

and delivery to the target volumes. As discussed in previous chapters, radiation therapy

acts as a double-edged sword leading to drastic side-effects, one of them being secondary

malignant neoplasms in cancer survivors. Several investigations by epidemiologists have

indicated that the mortality rate of Hodgkin’s Lymphoma (HL) survivors is high post

irradiation [69]. Abundant evidence from cohort and case control studies have also implied

that there is an increased risk of second malignancies with young HL survivors [69]-[76].

Recently, several clinical studies have characterized the risk of various subtypes of second

malignancies, indicating that there is a high incidence rate of breast cancer among young

HL survivors [77]-[78]. The latency is typically between 10 to 20 years from the time of

primary treatment. Hence, a challenge in radiation treatment planning is to prescribe an

efficient treatment regimen to minimize the dose distribution to normal tissue, without

hindering the treatment to the tumor volume.

There are several forms of radiotherapy treatment in current clinical practice. The

most common form uses high energy photon beams, these include 3D conformal radiother-

apy (3DCRT) and intensity modulated radiotherapy (IMRT). Other forms of treatment

include proton therapy (PT) and heavy ion therapy (HIT). Although PT is being used to

treat several tumors (such as prostate cancer), it is still in the experimental stages (and the

same holds true for HIT also). There are several forms in which a healthy tissue can receive

unwanted doses. During the process of tumor volume and critical structures delineation,

organs of interest are found to be partially within the radiation field (located in the plateau
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region of the Bragg peak and correspond to the high dose region) or adjacent region (which

corresponds to the intermediate dose region). Healthy tissues that are proximal to the pri-

mary target volume receive doses anywhere between 0.1−50 Gy. Another source arises from

the linear accelerator, in the form of scattered and the leakage radiation, that contributes

to low level doses (< 0.1 Gy) [79]-[80]. Conventional treatment techniques that use photons

deposit energy as they traverse tissue, leading to radio-biological damage of healthy tissue.

Several experimental studies have been carried out to quantify the secondary particle ex-

posures resulting from the production of protons, neutrons and alpha particles which also

contribute to the overall risks of secondary cancers [79]-[83]. However, in the current work,

we neglect the contributions of risks from photo-nuclear reactions within the patient body,

along with the contribution from the neutron dose that is generated from the head of the

linear accelerator.

On the other hand, protons or heavy ions have different dosimetric features compared

to photons. These particles are usually accelerated to specific energies depending on the

tumor depth. Heavily charged particles enter the body with low dose (causing no significant

damage), but deposit the bulk of their energy as the particle slows down at the end of its

path. This phenomenon can be clearly understood in terms of the Bragg peak [79], [84], [85]

as discussed in Chapter 2. One of the major advantages of PT and HIT over photons is their

physical characteristics. Maximum energy deposition occurs precisely at the tumor volume

and the dose is delivered with much greater precision, resulting in a higher tumor control

probability. Thus, the total energy deposited in the patient associated with photon therapy

is often larger when compared to proton or heavy ion therapy [79], [84], [85]. Therefore, PT

and HIT deliver a lower integral dose to the healthy tissue compared to photons, leading

to minimal side effects and lower induction of second cancer risks [79]-[80]. Several studies

report that neutron production (due to nuclear reactions) also contributes significantly to
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the overall secondary cancer risks [86]-[91]. There are ways to shield neutron radiation from

the linear accelerator, the production of neutrons within the patient cannot be avoided.

Neutron production also depends on the type of biological material in the beam path as

well as the beam design, leading to large variations in neutron doses [80]. However, to

simplify our mathematical framework, we ignore the risk contributions associated with

neutrons (both from the linear accelerator and within the patient). In this work, we use a

biologically motivated mathematical model (the IIP formalism), described in the previous

chapter.

There has been a great deal of modeling and experimental studies that have investigated

the dependence of particle type on the radio-sensitivity parameters. These investigations

have highlighted that particle type has a predominant effect on the radio-biological pa-

rameters as well as on the mutation induction frequency of normal cells to pre-malignant

state. In particular, these studies have outlined the effect of mono-energetic protons, alpha

particles and heavy ions (for example, carbon and neon), radiation-induced cellular effects

[93]-[103]. These effects include (but are not limited to) cellular inactivation and initiation

parameters. Since second cancer risks are a function of cellular inactivation and mutation

induction, it is therefore important to study the effect of various radiation quality features

such as linear energy transfer (LET) of a charged particle or an ion.

Numerous experimental and clinical studies have suggested that LET has a predominant

impact on the cellular radio-sensitivity [93]-[103]. In the current work, we consider dose

averaged LET, which is defined as,

〈LET 〉 =

∑
i LETiDi∑

iDi

(4.1)

In the above equation i refers to dosimetric particle tracks and Di denotes the cor-

responding dose. Radiation induced biological damage (both inactivation and initiation)

61



highly depends on the microscopic track structure. In the present work, we use clinically

relevant LET values in our modeling efforts. Clinical proton beam energies can lie anywhere

between 70−250 MeV [93]-[94]. For the maximum therapeutic proton energy of 250 MeV,

the corresponding value of LET is 0.39 (keV/µm); and LET increases to 83 (keV/µm) for

0.08 MeV. In addition, authors in [93]-[94] have shown that the maximum value of the dose

averaged LET is around 30 (keV/µm). Variations in clinically relevant dose averaged LET

for heavy ions are still unclear, thus we consider a range of LET values for this scenario.

Another radio-biological parameter required to model radiation induced second cancer

risks is the mutation induction rate. Several systematic experimental investigations have

characterized the mutation induction frequency for several LET values and for various

doses [95]-[97]. These studies have indicated that mutation frequency is dependent on

fractionation. Hence, it is important to include the effects of mutation rate on dose per

fraction, and this may have an impact on the overall radiation induced cancer risk.

All proximal organs located in the vicinity of the primary radiation field are referred to

as the in-field volume, which receive doses from 0.1−50 Gy. The out-of-field volume is the

region that receives very low doses (less than 0.1 Gy) due to leakage or scattered radiation.

The main objective of this study is to model the risks of second malignancies by including

the dependence of radio-biological parameters and mutation rates on LET for protons and

heavy ions, for organs located in the in-field region. We also compare photon therapy

against PT for various dose regimes. In order to carry out a fair comparison between

protons and photons, photon dose is converted to Cobalt Gray Equivalent (CGE) using

proton RBE = 1.1 [79]-[80]. The proximal organs around the target volume are located

in the plateau region of the Bragg peak, with an LET of 4-10 (keV/µm). We evaluate

the second cancer risks in the plateau region of the Bragg peak for high and intermediate

dose regions outside the primary treatment volume. It is known that a proton beam with
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energy 1.2 MeV, and an alpha particle with energy 30.5 MeV have the same LET value of

23 (keV/µm). Goodhead et al. [102] and Belli et al. [103], used specific beam energies 1.44

and 1.23 MeV for protons, and 35.7, 30.5 MeV for alpha particles in order to obtain the

same LET. Belli et al. [103] obtained similar LET of 20.3 (keV/µm) and 23 (keV/µm) for

protons and alpha particles. Finally, we try to compare the second cancer risks induced by

protons and alpha particles of different energies, given that they both have the same LET

as reported by Goodhead et al. [102] and Belli et al. [103].

We model radiation induced second cancer risks for the critical structure, i.e. breast

tissue in Hodgkins Lymphoma survivors. In general, the dose and volume distribution in

the critical structure will differ depending on the treatment approach (either using photons

or particles). Although it is not the case clinically, to simplify the mathematical framework

we assume that the organ of interest receives a uniform dose distribution irrespective

of the treatment approach. Also, our model (as mentioned earlier) does not take into

account the risk induced by stray radiation (either from the linear accelerator, or, from

neutrons) outside the radiation field, and also the dose delivered by the plateau (of the

Bragg peak) within the radiation field. Our mathematical framework models the risks

within the irradiated volume that received high to intermediate doses only.

4.2 Mathematical framework

4.2.1 Dependence of radio-biological parameters on LET

We extend the IIP formalism to incorporate the dependency of LET on the radio-biological

parameters. In particular, the cellular inactivation parameter α is described by two models

in the literature. The non-linear model was suggested by Chen and Ahmad [100], where
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the α dependency of proton LET using V79 cells (in vitro) was fit using least squares

method, which is given by:

αP = α0 +
1− exp(−θ1 (LET)2)

θ2 (LET)
(4.2)

where α0 = 0.1 (1/Gy), θ1 = 0.0013 (keV/µm)−2 and θ2 = 0.045 Gy(keV/µm)−1 [100].

Figure 4.1 displays the dependence of αP on proton LET. It should be noted that as

LET increases, αP increases, reaching a maximum value at an LET ∼ 30.5 (keV/µm),

and decreases for high values of LET. We are interested in relevant values of LET (below

30 keV/µm) in a clinical setting. Hence, we assume a linear dependence for αP as follows:

αP = αP1 + αP2 (LET) (4.3)

where αP1 = α0 = 0.1 (1/Gy) and αP2 = θ1/θ2 ∼ 0.02 Gy(keV/µm)−1 [93]-[94].

Figure 4.1: Linear and non-linear dependence of αP on LET.
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In a similar way for heavy ions, we assume that αi is a linear function of LET [98],

(and neglecting the decrease in α for high values of LET:

αi = αi1 + αi2 LET (4.4)

where αi1 = 0.03044 (1/Gy) and αi2 = 0.01091 (Gy keV/µm)−1 are for Carbon ion and

αi1 = 0.00327 (1/Gy) and αi2 = 0.007395 Gy(keV/µm)−1 for Neon ion, obtained from

linear fits. Figure 4.2 displays the dependence of αi on the Carbon and Neon LET, where

the experimental data is taken from [101]. Finally, for photons, we assume that α = 0.18

(1/Gy), independent on LET value [53].

Figure 4.2: Linear dependence of αi on LET.
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4.2.2 Dependence of mutation rate on LET

Many experimental studies have pointed to the importance of understanding the effects of

radiation quality on several biological factors. These works have demonstrated that the

microscopic track structure properties might have subtle effects on the biological properties

of a cell. One of the most important biological factors is the radiation induced mutation

frequency, which plays a predominant role in carcinogenesis and, particularly, in the initia-

tion of radiation-induced secondary malignancies post irradiation. Using the conventional

definition, mutation frequency is defined to be the fraction of mutated cells within a given

cell culture. The mutation rate is defined as the rate at which mutations occur in a given

time period. Since, the relationship between mutation frequency and mutation rate is

highly complex and non-trivial, we make the simplifying and plausible assumption that

the mutation frequency is proportional to the mutation rate. This assumption is based

on the experimental evidence of HPRT (hypoxanthine-guanine phosphoribosyltransferase)

locus induction. Experimentalists have investigated the effects of mono-energetic proton

beams on Chinese hamster V79 cells, and reported the results for the mutation frequency.

We extracted the experimental data related to HPRT locus mutation induction due to pro-

tons, as well as for ions (both for Carbon and Neon), and performed a linear fit for various

LET values. Figure 4.3 shows the mutation frequency induced by protons for various LET

values (7, 11, 20, 30.5 keV/µm) and different doses. We consider slope of these linear fits to

be a function of LET. The mutation induction parameter is then given by γ = γ0(LET),

where γ0 is a proportionality constant with units ((Gy keV/µm)−1). Figure 4.4 displays

the mutation frequency induced by Carbon and Neon ions of approximately the same LET,

i.e. 68 keV/µm for Carbon ion and 63 keV/µm for Neon ion.
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Figure 4.3: HPRT mutation induction due to mono-energetic proton beams. Points denote

the experimental data [97] and black line resembles a linear fit for the (mutation frequency

(MF) ×10−5).

4.3 Results

We consider the critical structure to be the breast tissue since secondary breast cancer

is one the leading causes of death in Lymphoma survivors. We apply the extended IIP

formalism presented in the previous section, and estimate the ERR for proton and heavy

ions using the appropriate LET values in the clinically relevant dose regions.

4.3.1 Comparing Photons and Protons

Firstly, we present results comparing protons and photons. Several authors have reported

variations in mutation induction frequency with respect to dose for X-rays. The exper-
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Figure 4.4: HPRT mutation induction due to mono-energetic ions. Points denote the

experimental data [99] and black line resembles a linear fit for the (mutation frequency

(MF) ×10−5).

imental data can be fitted using a linear function, with the proportionality constant set

to 0.1. Since the clinical LET value for protons in the plateau region of the Bragg peak

is around 4-10 (keV/µ m), we chose the proton LET of 4 (keV/µm) and compared the

secondary cancer risks against photons. In the case of protons, the cell killing parameter

equivalent to that of the cell killing parameter for photons, was obtained for a proton with

LET value 4 (keV/µm) and the proportionality constant for the mutation rate is chosen

to be 0.185. The ERR values were calculated for photons and protons for various dose

regimes. These results are presented in Figure 4.5. The red curve in the figure is the ERR

for a proton LET of 4 (keV/µm) and the blue curve denotes the ERR due to photons. In

order to have a fair comparison, we converted the photon dose to cobalt gray equivalent
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(CGE) by multiplying with the RBE of protons (taken to be 1.1). The plot clearly in-

dicates that the ERR for protons is lower than that of photons, which is also something

observed clinically. More experimental investigations are necessary in order to understand

the influence of LET on α for various treatment field options with various energies in the

low dose region for clinically relevant values of LET in the plateau region.

Figure 4.5: Comparison between protons and photons. Parameters: λ = 0.4(1/day),r =

0.76, γproton = γ0 = 0.189× 0.1307µm(keVGy)−1 × LET× 10−5. For photons γphoton = γ0

is assumed to be proportional to dose. In this plot, we chose LET= 4 keV/µm so that cell

inactivation parameter is the same for both protons and photons, N = 106, B = 1.2.
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4.3.2 ERR vs. Proton LET and ERR vs. Proton Dose

The results on the dependence of proton LET on ERR are now discussed. Figure 4.6 is a

plot of the ERR over a clinical range of LET values for various doses. The nonlinearity is

seen for low LET protons and for all dose regimes. There are several critical points at which

the curves intersect, indicating that the ERR values are equal at those critical points. It

is quite interesting to note that cellular initiation and proliferation mechanisms (of pre-

malignant cells) dominate at different critical points resulting in identical ERR values.

The ERR is small and almost linear for low LET and low doses (which is also observed

epidemiologically), compared to low LET and high doses. However, the risk increases as

LET increases and decreases for high LET values, which is 10 (KeV/µm).

Figure 4.6: ERR vs. Proton LET. Parameters: λ = 0.4(1/day),r = 0.76, αP is linear

model, γproton = γ0 = 0.189× 0.1307µm(keVGy)−1 × LET× 10−5, N = 106, B = 1.2.

Figure 4.7 is a plot of the ERR for a range of LET values in the plateau region of the

70



Bragg peak for various doses with conventional fractionated therapy (2 Gy/fraction). The

cell killing parameter is estimated using the linear model. The non-linearity is seen in the

high dose region from 30 Gy. The ERR is small for low LET and low doses, compared

to that for low LET and high doses. In the low and intermediate dose region, mutation

induction is dominated by the cell killing mechanism, due to which we observe higher risk

for high LET compared to low LET values. In the high dose region, for high LET, the cell

killing mechanism dominates over the mutation induction, as a result the risk decreases

and tends to zero. However in the low LET region, mutation induction over takes the cell

killing at high doses leading to high risks. We notice that the ERR approaches zero for all

values of LET after a threshold dose, indicating a reduction in cancer risk which is due to

cell over kill.

Figure 4.7: ERR vs. Proton LET. Parameters: λ = 0.4(1/day),r = 0.76, αP is linear

model, γproton = γ0 = 0.189× 0.1307µm(keVGy)−1 × LET× 10−5, N = 106, B = 1.2.
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4.3.3 Protons vs. Alpha particles

There have been several (in-vitro) experimental investigations carried out comparing pro-

tons and alpha particles of similar LET. Although a physical comparison between protons

and alpha particles is well established in the physics literature, the comparisons of various

biological end points of these two particles at the same LET value have not been addressed.

Although this is considered to be an artefact, and not observed clinically, we still wish to

model this biological phenomenon due to an increase in alpha particle therapy to treat

micro metastases. Pioneering work in this domain was carried out by Belli et al. [104]

and Folkard et al. [105], and they reported that low energy protons have higher biological

effectiveness compared to alpha particles of a similar LET value. From a physical point of

view, it is clear macroscopically that for the same value of LET, the number of ionizations

and the energy deposition per unit path length is the same. However, it has been shown

that the cellular inactivation and initiation rates for the two charged particles differ using

mono-energetic beams on V79 cell lines [102]-[103]. The authors showed that protons have

a higher biological effectiveness compared to alpha particles, due to their dense concentra-

tion of ionization clusters in the LET range of 20-25 (keV/µ m). The cell killing parameters

for protons and alpha particles with 20.3 (keV/µm) are reported to be 0.42 (1/Gy) and

0.25 (1/Gy) respectively; and for an LET of 23 (keV//mu m) , cell kill parameter values

are given by 0.30 (1/Gy) and 0.21 (1/Gy), respectively [102]. The mutation induction

frequencies for both protons and alpha particles are quite different, which is presented in

Figure 4.8.

We clearly observe that protons are more effective at inducing mutations compared to

alpha particles with the same energy. We have used the extended IIP model to estimate

the second cancer risks caused by protons and alpha particles at the same LET, and the
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Figure 4.8: HPRT mutation induction due to mono-energetic proton beams. Points denote

the experimental data [39] and black line resembles a linear fit for the (mutation frequency

(MF) ×10−5).

results are presented in Figure 4.9. We notice that protons have an associated higher risk

compared to alpha particles in the lower dose region. As discussed in [102]-[103], protons

have higher biological effectiveness compared to alpha particles as a result of which we

observe that protons have a higher mutation induction frequency than alpha particles in

the low dose region. Mutations dominate the cell kill mechanism in the lower dose region,

resulting in higher risks. As we move into the high dose region, we observe a lower risk

for protons due to a higher cell kill rate compared to alpha particles (i.e., cell inactivation

dominates mutation induction in the higher dose region). In addition, it is interesting to

note that the risk is almost equal at 22 Gy and 35 Gy at LET of 20.3 (keV/µm) and 23

(keV/µm) respectively.
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Figure 4.9: ERR vs. Dose. Parameters: λ = 0.4(1/day),r = 0.76, αP20.3 = 0.42(1/Gy),

αP23 = 0.30(1/Gy), αA20.3 = 0.25(1/Gy), αA23 = 0.21(1/Gy), N = 106, B = 1.2, γ0 is

taken from Figure 4.8.

4.3.4 Heavy Ion ERR vs. Dose

This section presents results for ERR for heavy ions in various dose regimes. Figure 4.10

is a plot of ERR against dose for a fixed LET for Carbon and Neon ions. Although the

LET’s are close enough for both ions, we observe different behaviors. In the lower dose

region, the cancer risk due to Carbon ions is higher compared to Neon ions. A possible

reason might be due to the fact that there is a higher mutation induction rate by Carbon

ions compared to Neon ions. In the high dose region and at high LETs, heavy ions have a

highly dense ionization track structure. This is because mutation induction is dominated

by cellular inactivation, which in turn can result in decreased ERR values. It is interesting
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to note that the cancer risk for the two ions is equal at approximately 18 (Gy).

Figure 4.10: Heavy Ion ERR vs. Dose. Parameters: λ = 0.4(1/day),r = 0.76, αi is

linear model, γC = γ0 = 0.01 × 15.6704µm(keVGy)−1 × LET × 10−5, γNe = γ0 = 0.01 ×
4.2796µm(keVGy)−1 × LET× 10−5, N = 106, B = 1.2.

4.4 Short Summary

The present work is an effort to investigate the ERR associated with various radiation

therapies PT and HIT (particularly, Carbon and Neon ions). We have extended the existing

IIP model to include the effects of LET on the radio-biological parameter α and also on

the mutation frequency γ. Non-linear behavior was observed for low LET protons in all

dose regions. Another interesting observation is that the ERR is small and almost linear
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for low LET and low doses, compared to low LET and high doses. Protons and alpha

particles of varying energies that have the same value of LET are compared for various

dose regions. We notice that, in the lower dose region, proton therapy has higher associated

risks compared with alpha particles. However, in the high dose region, we observe smaller

risks for protons compared to alpha particles. Additionally, we also estimated the ERR’s

for Carbon and Neon ions. Since heavy ions have a highly dense ionization track structure

at high LET’s, we notice that radiation induced mutation is dominated by the cell kill

mechanism, resulting in a decreased cancer risk. Overall, this study demonstrates the

importance of including LET dependence in the estimation of second cancer risk.

Although, our theoretical risk predictions are noticeably high, the biological end points

should be tested experimentally for multiple and mixed treatment fields. Our findings

demonstrate the need to include radiation quality features into radiotherapy treatment

planning as one of the optimization parameters to model second cancer risks.
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Chapter 5

Effect of Treatment Strategies on

Second Cancer Risks

5.1 Introduction

Clinically, the combination of various treatment strategies might result in a greater tumor

control, however, there are several long term complications associated with these treatment

strategies. One of the major challenges in clinical oncology is to prescribe an efficient

treatment regimen that can maximize tumor control and minimize second cancer risks.

As discussed in the previous chapter, radiotherapy (RT) is one of the leading causes of

secondary malignancies in most cancer survivors.

Several clinical studies have shown that chemotherapy may also act as a potential car-

cinogen. Chemotherapeutic agents which are used to kill tumor cells also interact with

the systemic healthy tissue of the target volume (along with other organs of the body),

leading to potential radio-biological damage. Clinical studies suggests that chemotherapy
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is one of the leading causes of secondary leukemia within 5 years following primary treat-

ment. The combination of chemotherapy and radiotherapy is considered to be the primary

therapeutic interventions in current clinical practice (which includes pediatric oncology

also). Numerous case control and cohort studies have suggested that various combinations

of chemotherapy and radiation therapy (CRT) might reduce, or, increase the risks of sec-

ondary malignancies. CRT therapeutic strategy can be of several types, namely, adjuvant

therapy (chemotherapy administered after radiation), neo-adjuvant therapy (radiation ad-

ministered after chemotherapy) or concurrent therapy (chemotherapy and radiation given

simultaneously). For a given CRT modality, it has been observed that there is a possible

increased risk associated with a few drugs, for example doxorubicin, and other alkylating

agents such as procarbazine. It should also be noted that these risks may be tissue specific.

For example, alkylating agents appear to increase the risk of a subsequent gastrointestinal

cancer, but decrease the risk of breast cancer by affecting endogenous estrogen production

[106]-[107].

Looking at the number of cancer patients receiving CRT modality, it is therefore im-

portant to understand the potential complications associated with CRT treatment. At

the same time, it is necessary to consider the potential effects of sequencing a treatment

strategy in order to maximize tumor control with minimal damage to the healthy tissue.

Several mathematical models have been discussed in the previous chapters to estimate

radiation-induced second cancer risks at clinically relevant doses. Similarly, numerous

mathematical approaches have been proposed in the literature to address the cell kill ef-

fects of chemotherapy drugs [108]-[109]. However, these models have not been applied to

evaluate the potential risk of secondary malignancies. In this present work, we intend to

extend the IIP formalism described in chapter 4. Our main goal is to develop a generalized

mathematical model that incorporates CRT treatment modality, and to address key ques-
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tions related to sequencing of treatments that can potentially minimize second cancer risks.

It should be noted that, our model ignores the pharmacodynamics feature of chemother-

apeutic agents, and their interaction with ionizing radiation. More importantly, we do

not consider the potential physiological effect of these treatments on organs outside the

irradiated volume that might have downstream effects on second cancer risk (for example,

ovarian function). We discuss the effect of dosage and scheduling of chemotherapy (single)

and as a combined modality (with RT) on second cancer risks. In addition, we also discuss

an efficient sequence that may potentially reduce CRT induced secondary cancer risks.

5.2 Mathematical Formalism

We rewrite the discrete model of IIP formalism in terms of it’s continuous version. Let n(t)

and m(t) represent the number of normal and pre-malignant stem cells at time t. Although

this framework can be extended to include stem cell hierarchy in normal tissue, but in order

to reduce the number of parameters, we simplified the model to a single phenotype. Then,

the continuous model that tracks the evolution of normal and pre-malignant cells is given

by the following coupled equations:

dn

dt
= λn

(
1− n

N

)
− αRd

K∑
i=1

fτ (t− iT )n− γRd
K∑
i=1

fτ (t− iT )n

dm

dt
= rλn

(
1− n

N

)
− αRd

K∑
i=1

fτ (t− iT )m+ γRd
K∑
i=1

fτ (t− iT )n (5.1)

where the first term on the right hand side denotes the proliferation mechanism; the second

term denotes cellular inactivation due to dose rate and the third term denotes radiation

induced cell initiation due to the dose rate. Here, fτ (t) is a step function that represents the

fractionated dose d administered in K fractions. It should be noted that, all three terms
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are active during the irradiation time, and only the first term is active during between

fractions, and after the last dose till the normal cell reaches steady state.

We apply a similar continuous version to understand the effect of chemotherapy on the

risks of secondary malignancies. The effect of the chemotherapy dosage is done by replacing

d
∑K

i=1 fτ (t− iT )n (that denotes a unit step function of fractionated radiotherapy regimen)

with DC

∑KC

i=1H(t− ti) exp(−αdt) where KC denotes the number of chemotherapy cycles

and H(t− ti) is the Heaviside function. Table 5.1 consists of all the parameters and their

interpretation.

Parameters Interpretation

KR = 20 Number of fractions

KC Number of chemotherapy cycles

DC Total chemotherapy dosage

λ(1/day) Proliferation rate of normal cells

rλ(1/day) Proliferation rate of PM cells

γR(1/Gy) Radiation-induced mutation

γC(1/Dose) Chemotherapy-induced mutation

αR(1/Gy) Radiation-induced cell kill

αC(1/Dose)= 1 Chemotherapy-induced cell kill

αd(1/day) Decay rate

Table 5.1: Summary of parameters and interpretations
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5.3 Results

In the current study, we consider the critical structure to be one of organs which are

proximal to the tumor volume. As before, we assume that second cancer risk ERR is

proportional to the number of pre-malignant cells.

Before we proceed with results, we would like to establish the equivalence of the discrete

and continuous versions that model radiation-induced cancer risk. Figure 5.1 displays a

plot for a fixed radiation dose of 40 Gy given in 20 fractions.

Figure 5.1: Equivalence of discrete and continuous models. Parameters: D = 40 Gy,

KR = 20, λ = 0.4(per day), r = 0.96, γR = 10−6(per Gy), τ = 30 minutes.

We assume that the irradiation time is approximately 30 minutes per fraction. The

number of pre-malignant cells obtained from discrete and continuous models is approx-
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imately 33.001 and 32.96 respectively, resulting in almost identical risk values. For the

rest of the work, we apply the IIP continuous formalism to estimate second cancer risks

induced by chemotherapy and also for the combination of various treatment strategies.

5.3.1 Effect of Chemotherapy only

In this section, we present results related to the effect of chemotherapy (alone) on the

number of pre-malignant cells. For the purpose of fair comparison, we normalize all the

curves (with respect to the dosage). And, DC has the unit of drug concentration, and

γCDC is dimensionless in this work.

The effect of the strength of cell kill due to chemotherapy alone is presented in Figure

5.2. We chose various levels of cell kill and normalized the dose with a proportionality

Figure 5.2: Effect of chemotherapy (only) cell killing on PM cells. Parameters: λ = 0.4,

r = 0.76, D = 40 Gy, KC = 3, αC = 1, γC = 10−6, Length of each cycle = 21 days.
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factor. Three chemotherapy cycles with 21 days per cycle are administered to the patient.

It is quite interesting to see that, as we increase the cell kill term the number of pre-

malignant cells increases. One of the main reasons for this scenario is because of the

decrease in the number of normal cells in the system, which take time to repopulate

back to their steady state number. As normal cells take time reach their steady state,

the initiated pre-malignant cells proliferate during the same time period, and increase in

number. The variations in cell kill rates are tissue-specific, denoted by αC . For example,

clinical investigations have shown that breast tissue cell kill rate is less than that for bone

marrow. From our analysis, smaller cell kill rates result in lower second cancer risks when

compared to higher cell kill rates. Smaller values of αd can be interpreted as chemotherapy

drugs having small cell kill rates, whereas larger values correspond to high cell kill rates.

Therefore, chemotherapy induced second cancer risks strongly depend on particular tissues

under consideration.

The effect of the number of chemotherapy cycles on pre-malignant cells is shown in

Figure 5.3. For this purpose, we fix the strength of the cell kill and the length of each

cycle to be 21 days. Intuitively, we expect an increase in the number of pre-malignant

cells as the number of chemotherapy cycles is increased (Figure 5.3). It is interesting to

note that there is a jump in the number of pre-malignant cells from the 3rd to 4th cycle,

and this stays almost constant for the rest of the cycles. The number of pre-malignant

cells against the length of chemotherapy cycle is displayed in Figure 5.4. It is clearly seen

that as we increase the cycle length, the number of pre-malignant cells increases leading

to an increase in the second cancer risks, which is expected intuitively. Hence, as the

length of the chemotherapy cycles increase, the proliferation mechanism of the resultant

increase in mutated cells leads to an increase in the corresponding second cancer risks.

From our analysis (see Figures 5.3 and 5.4), we suggest that an optimal strategy would be
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Figure 5.3: Effect of chemotherapy (only) cycle number. Parameters: λ = 0.4, r = 0.76,

D = 40 Gy, γC = 10−6, αC = 1, Length of each cycle = 21 days.

Figure 5.4: Effect of chemotherapy (only) cycle length. Parameters: λ = 0.4(per day),

r = 0.76, D = 40 Gy, KC = 3, αC = 1, γC = 10−6.
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to administer a chemotherapy regimen with minimum number of cycles along with shorter

chemotherapy cycle length. This result is consistent with the clinical observation that the

chemotherapy agent etoposide increases the risk of chemotherapy-induced leukemia when

given over a longer time frame [110]-[111].

Clinical investigations have supported the fact that several chemotherapeutic agents can

potentially increase or decrease second cancer risks. For example, a chemotherapy agent

doxorubicin is known to increases the risk of secondary leukemia [112], and an alkylating

agent procarbazine is known to have tissue-specific effects, which also increases stomach

cancer risk. There have been several experimental studies on tissue specific mutation

rates on human cell lines [113]-[114]. One of the important findings from [114] is that the

number of mutations in self renewing tissues positively correlates with the diagnosis age of

the patient. Therefore, the mutation rate depends on the particular tissue which correlates

with the patient age. We now explore the effect of chemotherapy-induced mutation rates

on second cancer risks. As the mutation rate increases, the number of pre-malignant cells

increase, leading to an increase in second cancer risks, which is displayed in 5.5. Therefore,

our model shows that chemotherapy induced second cancer risks are tissue-specific, due to

the variations in the mutation rates.

5.3.2 Combination of treatments

There are several combined modality treatments that are used in current clinical practice,

namely, adjuvant therapy (chemotherapy followed by radiation), neo-adjuvant therapy (ra-

diation followed by chemotherapy) and concurrent therapy (chemotherapy and radiation

administered simultaneously). Figures 5.6 and 5.7 present plots of a comparison of ad-

juvant and neo-adjuvant therapies for two scenarios: γR < γC and γR > γC respectively.
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Figure 5.5: Effect of chemotherapy induced mutation rate on PM cells. Parameters: λ =

0.4, r = 0.76, D = 40 Gy, KC = 3, Length of each cycle= 21, days, αC = 1, DC = 20.

When γR < γC (see Figure 5.6), the number of pre-malignant cells at the end of

adjuvant treatment is smaller in number compared to those after neo-adjuvant therapy.

For the neo-adjuvant therapy case, although the number of pre-malignant cells induced by

radiation therapy is small in number, they increase in number during the administration of

chemotherapy due to a higher mutation induction rate. Since the chemotherapy induced

mutation rate is high compared to the radiation induced mutation rate, our results suggest

that radiation therapy should be followed by chemotherapy, in order to reduce the risks of

second cancer. In a similar manner, when γR > γC , the number of pre-malignant cells at

the end of neo-adjuvant treatment is smaller in number compared to those after adjuvant

therapy. This suggests that chemotherapy should be followed by radiation therapy, in
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Figure 5.6: Adjuvant vs. Neo-adjuant therapies. Parameters: λ = 0.4(per day), r = 0.76,

KC = 3, Length of each cycle= 21 days, DC = 20, γC = 10−6, DR = 40 Gy, γR = 10−7 (per

Gy), KR = 20.

order to reduce second cancer risks. Our analysis clearly indicates that, administration of

adjuvant or neo-adjuvant therapy should be administered depending on the corresponding

mutation induction rates in the context of secondary malignancies.

In the case of concurrent therapy, we assume that three cycles of chemotherapy (with

21 days per cycle) are administered along with radiation therapy in any one of those cycles

with equal mutation rates for both chemotherapy and radiotherapy. Figure 5.8 presents a

plot of concurrent therapy, where radiation is administered in various cycles. We obtain

almost the same number of pre-malignant cells, resulting in almost identical risks. This

suggests that the cycle in which radiation is administered in the concurrent therapy regimen
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Figure 5.7: Adjuvant vs. Neo-adjuant therapies. Parameters: λ = 0.4(per day), r = 0.76,

KC = 3, Length of each cycle= 21 days, αC = 1, DC = 20, γC = 10−7, DR = 40 Gy,

γR = 10−6 (per Gy), KR = 20.

does not have a major impact on the risk when the mutation rates are equal. Figure 5.9

presents a plot for γC < γR scenario. We intuitively expect that, radiation given in the

first cycle of chemotherapy has smaller associated risks compared to radiation administered

either in second or third cycles. Radiation-induced mutation rates are in general larger

compared to chemotherapy-induced mutation rate, this implies that if radiation is given

in the first cycle the number of initiated cells turn out to be small, resulting in lower risks.

However, in the case of HL patients, a clinical observation is that chemotherapy shrinks

the tumor size so that the irradiated volume becomes smaller (see Figure 5.9). It should

be noted that, if radiation is administered in the last chemotherapy cycle, the number of

pre-malignant cells increase due to the combination of chemotherapy and radiation-induced
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Figure 5.8: Concurrent therapy. Parameters: λ = 0.4(per day), r = 0.76, KC = 3,

αC = 0.25, Length of each cycle= 21 days, αC = 1, DC = 20, γC = 10−6, DR = 40 Gy,

γR = 10−6 (per Gy), KR = 20.

mutation rates. Figure 5.10 presents a plot when γR < γC , we observe that when radiation

is given either in first or second cycle, this results in an increased risk of second cancer

compared to the case when radiation is administered in the last cycle of chemotherapy.

This is because, all the pre-malignant cells induced by chemotherapy get killed during the

radiation (given in the third cycle), resulting in a reduction of second cancer risks.

We also compared adjuvant, neo-adjuvant and the concurrent therapies assuming equal

mutation rates for both chemotherapy and radiation therapy. Results are displayed in

Figure 5.11. We observe that neo-adjuvant therapy has lower associated risks compared to

adjuvant and concurrent therapies (if radiation is given either in second or third cycles).
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Figure 5.9: Concurrent therapy. Parameters: λ = 0.4(per day), r = 0.76, KC = 3, Length

of each cycle= 21 days, αC = 1, αd = 0.25, DC = 20, γC = 10−7, DR = 40 Gy, γR =

10−6 (per Gy), KR = 20.

Figure 5.10: Concurrent therapy. Parameters: λ = 0.4(per day), r = 0.76, KC = 3,

Length of each cycle= 21 days, αC = 1, αd = 0.25, DC = 20, γC = 10−5, DR = 40 Gy,

γR = 10−6 (per Gy), KR = 20.
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And, the risks associated with neo-adjuvant and concurrent (if radiation is given in the

first cycle) therapies are almost the same.

Figure 5.11: Comparison of Adjuvant, Neo-adjuvant and Concurrent therapies. Param-

eters: λ = 0.4(per day), r = 0.76, KC = 3, Length of each cycle= 21 days, αC = 1,

αd = 0.25, DC = 20 (DC has the unit of drug concentration, and γCDC is dimensionless),

γC = 10−6, DR = 40 Gy, γR = 10−6 (per Gy), KR = 20.

5.4 Short summary

Several clinical and epidemiological studies have shown that chemotherapy and ionizing

radiation are potential carcinogens for secondary malignancies. In this study, we have

developed a generalized mathematical model that incorporates the effects of chemotherapy
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and radiation therapy on second cancer risks. Our preliminary study demonstrates the

importance of estimating second cancer induced risks for various treatment strategies,

which can also be used as a tool in designing efficient sequencing of therapies that can

minimize second cancer risks without hindering treatment to the gross tumor volume.

Additionally, these theoretical predictions can also be used to understand the effect of dose

timing on second cancer risks. More importantly, this study suggests that second cancer

risks cannot be generalized for any organ of interest (or, critical structure), and are highly

tissue dependent. This model can be further extended to include the pharmacodynamics

of chemotherapeutic drugs and their interaction with ionizing radiation. This framework

can be used to provide insight into the design of efficient therapy sequencing that can lower

second cancer risks without impairing treatment to the primary tumor.
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Chapter 6

Effect of Dose Escalation on Second

Cancer Risks

6.1 Introduction

Clinically, it is observed most of the patients undergo radiation therapy as a primary or

combined modality (namely, adjuvant, neo-adjuvant or concurrent) treatment. In all of the

current radiotherapy paradigms, treatment volumes are often irradiated with a heteroge-

neous dose distribution (which is observed in a DVH). The probability that all clonogenic

tumor cells are removed from the system immediately post-treatment is known as the tu-

mor control probability (TCP) [115]. The therapeutic index of any treatment protocol

and the efficacy of any regimen can be deduced (to some extent) from the TCP values.

Although a heterogeneous dose (and volume) distribution for any treatment regimen to

the tumor volume might locally control the disease to a larger extent, there are several

shortcomings associated with all these protocols. As discussed in previous chapters, ion-
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izing radiation acts as a double edged sword, and there are several side effects associated

with radiotherapy.

These side effects can be classified based on the time scale of manifestation, i.e. side

effects that appear on a shorter time scale include local irritation of skin, mucosa, or

irradiation of tissues within adjacent structures. The late toxicities of radiation appear as

a secondary malignancy which has (already) been discussed in previous chapters. It should

be noted that several clinical studies have reported tumor recurrence or relapse within a

span of 5 years, and late toxicities in the form of secondary malignancies within 5-20 years

post-irradiation. These clinical investigations have been carried out on several types of

tumors across a variety of treatment regimens. All these studies have indicated that tumor

relapse along with radiation-induced secondary cancers are two of the leading causes of

death in childhood cancer survivors.

Several pre-treatment variables such as age at diagnosis, gender, type and stage of tumor

may impact tumor relapse. Also, relapse probability and time may vary depending on the

treatment protocol, i.e. administration of chemotherapy alone, or radiotherapy alone, or a

combined regimen (both chemotherapy and radiotherapy simultaneously). For simplicity,

we consider the effect of only radiotherapy on TCP along with analysis of time to relapse.

Due to recent advancements in functional imaging techniques, the biological variations in

the tissue can be obtained and used to design an efficient heterogeneous dose description,

in the form of dose painting. Escalating the dose to the tumor volume can be for several

reasons, such as to increase tumor control probability, decrease the aggressiveness of a

tumor, decrease proliferation and eliminate radio-resistant cells in the hypoxic region. This

dose prescription might have an impact on the relapse time (either very long in the ideal

case, or an increase in the recurrence time) depending on the radiation regimen. Moreover,

introducing dose escalation will affect the risks of secondary malignancies to the critical
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structures (if the same dose is received by the healthy tissue), however, the degree to which

it increases these risks remains to be determined.

Additionally, several clinical and epidemiological investigations have shown that pa-

tients may face short-term relapse (within 5 years of treatment), or long-term relapse (5-10

years) post irradiation [116]. Although there is a probability of late relapse in some pa-

tients (which occurs in 5-10 years) and/or a second malignancy within 5-20 years post

irradiation, clinicians have yet to determine which of these predominates, in practice. For

example, a tumor relapse can occur 20 years later following initial treatment in HL pa-

tients, as reported in [116]. At the same time, it is well known that the manifestation of

secondary solid tumors also occurs within 10-20 years post irradiation for HL survivors.

Therefore, it is of significant importance to explore possible fractionation protocols that

can maximize local control of the disease, increase disease free survival (i.e. increase in

relapse/recurrence time) and reduce second cancer risks. It is therefore critical to minimize

radiation dosage and schedule radiation doses such that there is minimal impairment to the

primary treatment volume, a probable increase in the relapse time (or, with a long relapse

time ideally), but also with the goal in mind of reducing the risk of a second cancer.

The main objective of this work is to develop a generalized mathematical formalism

that can incorporate recurrence dynamics into a TCP model in conjunction with a second

cancer model. This is carried out to understand the effects of dose escalation on recurrence

and second cancer risks. Our simplified model also proposes an efficient radiation regimen

that may provide insights to be confirmed by future clinical investigations.
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6.2 Mathematical framework

The survival fraction of cells after radiation therapy is given by equation Equation (3.1).

Tumor control probability (TCP) is a clinical measure used to estimate the probability to

eliminate clonogenic tumor cells, and also used to compare various fractionation protocols

that are used in current clinical practice. Assuming a Poisson formalism, the tumor control

probability is given by:

TCP = exp(−N0S). (6.1)

where N0 is the total number of clonogens in the system and S is the survival function of

cells after a given acute dosage D.

Clinically, it is not always possible to eradicate all the tumor cells from the system.

Biologically, there is always a small number of residual cancerous cells that are not elimi-

nated (either they survive the effects of irradiation, or escape the irradiation itself). These

remaining tumor cells clonally expand post-irradiation, to cause a relapse or recurrence of

the primary tumor after a period of time. The recurrence dynamics of a tumor is developed

by assuming logistic growth, with the same exponential growth parameter as in the pre-

treatment phase, such that the number of cells in the system reaches a critical threshold.

Let nr be the number of residual cancerous cells at the end of the treatment. Then the

relapse dynamics is given by:

dnr
dt

= λnr

(
1− nr

N

)
. (6.2)

The initial condition for the relapse dynamics framework is determined by the output

from the TCP model. We then determine the time that elapses post-treatment to recur-

rence. We incorporate the TCP model with relapse dynamics of the tumor, and estimate

the corresponding second cancer risks for various fractionation protocols. Clinically, it is
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important to eliminate the cancerous cells completely (or reduce them to a possible mini-

mum), such that recurrence is either zero, or the time for relapse is increased. Practically,

this can be done by increasing the dose to the tumor volume such that the value of the

TCP is near 1 with a possible increase in the recurrence time. It should be noted that

at the same time, concomitant second cancer risks to the critical structures are increased

(assuming the same dose is received as the tumor volume) due to the escalation of dose

to the tumor. Thus radiation in this case is considered to have both positive and negative

effects on the patient, i.e. increasing local control of disease and an increase in the survival

time (assuming some cancer cells still remain in the system post treatment) but at the cost

of an increase in the second cancer risks.

6.3 Results

It should be noted that in the results presented, the radio-sensitivity parameter β was

determined to be very small, and was neglected in all computations (both for TCP and

second cancer risks). Table 6.1 summarizes the protocols used in our work, and hyper

fractionation is defined as 2 fractions administered on the same day, with a time interval

of 6 hours between inter-fractions

We first present our investigations on TCP, recurrence and second cancer risks individ-

ually. This is done in order to explore an efficient best protocol that can increase TCP and

recurrence time. We also evaluate radiation-induced second cancer risks for each of these

fractionation schemes used for the TCP and recurrence models. This is carried out in order

to determine the risks associated with each of these individual protocols. As previously

discussed dose escalation can improve local control of disease, increase disease free survival

(or, ideally result in a recurrence time longer than the remaining lifetime of the individ-
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Protocol Fractionation Scheme

Conventional 30 fractions with 2 Gy per fraction

Hypo-fraction 20 fractions with 3 Gy per fraction

Hyper-fraction1 20 fractions with 2 Gy per fraction (d = 2
3
d+ 1

3
d)

Hyper-fraction2 20 fractions with 2 Gy per fraction (d = 1
3
d+ 2

3
d)

Table 6.1: Summary of fractionation schemes

ual) and an increase in secondary malignancy risks. Dose escalation is carried out for a

fixed number of fractions, or when there is an increase in the total number of fractions.

In the later part, we present our results related to dose escalation which maximizes the

TCP and increases recurrence time, as well as the relative change in second cancer risks.

This analysis is carried out to identify various radiation regimens that can (potentially) be

administered in order to minimize the occurrence of secondary malignancies.

Table 6.2 summarizes parameters that are used in our mathematical model. All radia-

tion therapies are given 5 days per week (i.e. accounting for the weekend breaks).

6.3.1 TCP, relapse and second cancer risk calculation

The computation for the TCP was based on the mathematical model describing the dy-

namics of cellular proliferation within the tumor. The average number of cells in the tumor

volume at any given time is modeled deterministically, and because the true number of cells

is a stochastic quantity distributed around this mean, we may approximate the probability

of tumor control as the Poisson probability that there are zero clonogens remaining in the
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Parameters Interpretation Values

N0 Initial number of cells 106

trad (minutes) Irradiation time 15

α (per Gy) LQ model parameter 0.3

tdouble (days) Doubling time of cancer cells 80

λ (per day) Proliferation rate of normal cells 0.4

rλ (per day) Proliferation rate of PM cells 0.75

γ (per Gy) Radiation-induced mutation 10−6

Table 6.2: Summary of model parameters, interpretations and values [53], [181]

system, with a given average number of cells, given by Equation 6.1, which is the Poisson

probability that, given there are N(t) cells on average, at time t, the tumor volume has

zero cancerous cells remaining in the system.

Relapse of a primary tumor is defined to have occurred after a critical number of cells,

106, has been reached. We then determine the time point at which the tumor population

level reaches a threshold of 99% of 106 (as it only approaches the limit of logistic growth, i.e.

reaching 106 asymptotically). We then regard this as the time post-treatment to recurrence.

Figure 6.1 displays TCP and recurrence curves for various fractionation protocols used in

current clinical practice for a fixed dosage of radiation.

From Figure 6.1, we observe that the TCP curves perform best for conventional and

hypo-fractionation protocols, which are followed by the hyper-fractionation1 regimen, and

the hyper-fractionation2 protocol which performed poorly. This poor effect is a clear indica-

tor in the relapse curves presented in the same plot. The differences in TCP are reflected in

the recurrence curves, which show that starting from different initial values for the residual
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Figure 6.1: TCP vs. dose and Relapse vs. dose for various fractionation protocols (It

should be noted that blue and green curves are overlapping).

tumor cells post irradiation leads to different times to reach a logistic growth threshold

of nearly 106 cells, indicating a relapse. From this plot, it is clear that time for relapse

is longer for a fractionation regimen whose TCP value ends closer to 1, simply because

there is a higher probability that there are few cancerous cells remaining within the tumor

volume at the end of the treatment.

We now consider the effect of fractionation on second cancer risks. For this, we assume

the critical structure to be one of the healthy organs irradiated in the neighborhood of the

tumor volume. As discussed in previous chapters, we assume that ERR is proportional to

the number of radiation induced pre-malignant cells remaining at the end of the treatment.

Figure 6.2 displays a plot comaparing various fractionation regimens, between dose and

the corresponding number of pre-malignant cells. It should be noted that the numbers of
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pre-malignant cells are calculated under the assumption that the healthy tissue receives

100% of the dose received by the tumor.

Figure 6.2: Effect of various fractionation protocols on the yield of pre-malignant cells.

From our calculations, we deduce that hypo-fractionation is a more theoretically ef-

ficient protocol in the reduction of second cancer risks, which is consistent with clinical

results [117] (in the treatment of sarcoma and carcinoma). Intuitively, due to the high

dose per fraction, from a biological point of view the cell kill mechanism dominates the

proliferation term, leading to a reduction in the risks of second cancer compared to the

other regimens. For large doses, the cell kill mechanism dominates mutation induction,

which causes a decline in the second cancer risks. Therefore, from the perspective of re-

duction in second cancer risks, we observe that hypo-fractionation is a theoretically more

efficient regimen when compared to the other schemes, (notably even conventional radio-

therapy). Although there are several ongoing discussions on the effect of fractionation on
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second cancer risks, these theoretical risk predictions cannot be generalized for every criti-

cal structure, or tissue type. Recent clinical studies have reported that hypo-fractionation

appears to be a better option to treat carcinoma of the prostate [118] and breast cancer in

elderly patients [119]. More recently, Schneider [117] found that hypo-fractionated therapy

reduces second cancer risks for carcinomas and sarcomas. Tumor control probability, re-

lapse time and the corresponding number of PM cells (which is proportional to the second

cancer risks, ERR) associated with a specific protocol (for a fixed total dose of 60 Gy) are

presented in Table 6.3.

Protocol TCP Recurrence (days) Number of PM cells

Conventional 98.21 2841.7 15.9

Hypo-fraction 98.41 2878.6 12.2

Hyper-fraction1 88.38 2633.7 13.1

Hyper-fraction2 19.87 2322.7 13.2

Table 6.3: Summary of TCP, recurrence and second cancer risks for a fixed total dose of

60 Gy.

From Table 6.3, we observe that the TCP and relapse time are almost the same for

conventional and hypo-fractionated regimens, but second cancer risks induced by hypo-

fractionation regimen are reduced by 22% in comparison to the conventional protocol. Our

analysis indicates that hypo-fractionation appears to be a stronger regimen in terms of

improvement in local disease control, increase in disease free survival time and a reduction

in second cancer risks compared to the conventional regimen.
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6.3.2 Efficacy of dose escalation

One of the main reasons for dose escalation is to eliminate all cancerous cells from the

system, i.e. to increase primary tumor control and decrease the relapse rate (i.e., ideally,

having a zero recurrence time, or increasing the relapse time to more than life time of the

patient). Clinically, escalating the dose to the target volume can be carried out in several

ways, either by increasing dose per fraction or increasing the overall treatment time. This

process will have an impact on the TCP values, which in turn changes the average number

of residual cancerous cells that remain post irradiation. The effect of these changes on

the remaining number of tumor cells then changes the relapse time for the cancer, and

a sensitivity of the recurrence time can be calculated for a given increase in radiation

dose. Therefore, dose escalation will have a predominant effect not only on local control

of disease but also on the relapse time, which is displayed in Figure 6.3 for a conventional

regimen. The effect of dose escalation (by 2 Gy per fraction, i.e. by increasing the overall

treatment window by 4-5 days) on the relapse dynamics are illustrated in Figure 6.3 for a

conventional protocol.

Tables 6.4-6.7 present an analysis on the effect of dose escalation for various treatment

regimens used in current clinical practice, with respect to TCP, recurrence time and second

cancer risks.

It is interesting to study the changes in TCP, recurrence time and second cancer risk

behavior for various dose escalation protocols. Dose is escalated from 60 Gy to 72 Gy

according to the definitions of the corresponding fractionation regimens. For a conventional

protocol when the dose is escalated by 12 Gy (i.e. from 60 Gy to 72 Gy), TCP increased

by only 1%, relapse time increased by 365 days, and second cancer risks are reduced by

6%. However, in the case of the hypo-fractionated regimen, we notice that when the dose
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Figure 6.3: Effect of dose escalation on recurrence time for conventional regimen.

Dose (Gy) TCP Recurrence (days) Number of PM cells

60 98.21 2841.7 15.9

62 99.00 2930.5 15.7

64 99.45 2977.0 15.5

66 99.69 3069.5 15.3

68 99.83 3107.7 15.1

70 99.91 3206.8 14.9

Table 6.4: Effect of dose escalation using conventional regimen.

is escalated by a similar amount (i.e. by 12 Gy), we observe that relapse time increased

by 380 days and there is a corresponding reduction in second cancer risk of 20.8%. The

effect of dose escalation on (both the) hyper-fractionation schemes is much less effective
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Dose (Gy) TCP Recurrence (days) Number of PM cells

60 98.41 2878.6 12.2

63 99.34 2958.8 11.6

66 99.73 3053.1 11.0

69 99.89 3171.7 10.3

72 99.96 3258.9 9.7

Table 6.5: Effect of dose escalation using hypo-fractionation regimen.

Dose (Gy) TCP Recurrence (days) Number of PM cells

60 88.38 2633.7 13.1

63 94.50 2697.2 12.6

66 97.48 2825.4 12.0

69 98.86 2900.1 11.3

72 99.48 2995.8 10.7

Table 6.6: Effect of dose escalation using hyper-fractionation1 regimen.

when compared to other protocols. This is because the increase in recurrence times is

observed to be greater for conventional and hypo-fractionated protocols, but is reduced in

hyper-fractionated protocols. Additionally, second cancer risks do not show a significant

reduction with hyper-fractionated schemes. Our analysis therefore suggests that the hypo-

fractionation scheme is an efficient regimen during dose escalation and has a very significant

effect on recurrence time and also on second cancer risks. Therefore, increasing the overall

treatment time (by dose escalation) may theoretically increase the survival time of patients

by approximately one year (or more) and may also concomitantly reduce second cancer
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Dose (Gy) TCP Recurrence (days) Number of PM cells

60 19.87 2332.7 13.2

63 43.08 2420.7 12.7

66 64.97 2499.3 12.1

69 80.19 2567.7 11.5

72 89.31 2619.2 10.8

Table 6.7: Effect of dose escalation using hyper-fractionation2 regimen.

risks. This analysis therefore may provide a theoretical justification for further clinical trials

comparing efficacy of dose escalation and second cancer toxicities between conventional and

hypo-fractionated radiotherapy protocols.

6.4 Short summary

In this chapter, we discussed short term and long term effects associated with radiation

therapy. Short term toxicities include relapse of the primary tumor, and long term com-

plications occur as a result of secondary malignancies in one of the neighboring organs of

the target volume. We investigated the effect of various protocols on TCP, relapse time

and the corresponding second cancer risks. We observed that TCP and relapse time are

identical for both conventional and hypo-fractionated regimens. But, the second cancer

risks induced by hypo-fractionation were reduced by 22% compared to the conventional

protocol.

Additionally, we also explored the effect of dose escalation on TCP, recurrence time

and second cancer risks by lengthening the overall treatment window. These changes have
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affected the recurrence time by 300-400 days, approximately, which can represent a sig-

nificant treatment gain from a clinical perspective. Also, the hypo-fractionated regimen

appears to be sensitive to dose escalation and the corresponding impact on tumor recur-

rence time, and reduction in second cancer risk. The reduction in second cancer risk is

approximately 20% when the dose is increased from 60 Gy to 72 Gy in a hypo-fractionated

protocol.

From our analysis, we conclude that the radio-biological benefit from hypo-fractionation

is higher compared to other regimens from the point of view of TCP, relapse time and sec-

ond cancer risks. Therefore, hypo-fractionation may be a more efficient regimen in the

context of TCP, recurrence time and second cancer risks. Overall, this study demon-

strates the importance of including a second cancer risk model in conjunction with TCP

and relapse dynamics framework to design an efficient regimen. This theoretical analysis

might provide a basis for future clinical trials testing hypo-fractionation and conventional

protocols on TCP, relapse and second cancer risks.
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Chapter 7

Evolutionary Dynamics of Cancer

7.1 Introduction

Radiation induced second cancers are thought to arise as a result of multiple mutations

of healthy cells post irradiation of the primary tumor. As discussed in the literature on

primary cancer age incidence modeling [120]-[121], the manifestation of a second cancer

may occur as a result of a two-hit process. Anti-cancer therapies such as radiation (or

even, chemotherapy), introduce a first hit to some of the normal cells in the vicinity of the

tumor volume. This introduces a sub-population of radiation induced cells in the system

[53], the so called pre-malignant cells. The detailed biological mechanisms such as initiation

and progression of pre-malignant cells resulting from radiation exposure are still not well

understood. It has also been suggested that radiation therapy can introduce chromosomal

and genomic instabilities, and thus makes the second hit mutations more effective and

unpredictable in nature [122].

On the other hand, the carcinogenesis and evolutionary dynamics of two-stage mod-
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els of cancer progression have been discussed extensively in the literature. These works

quantify the (fixation) dynamics of how an advantageous mutant (for example, a radiation

induced mutated cell) can outgrow a background population of normal cells and upon a

second (malignant) mutation can result in a malignant niche and eventually lead to a full

blown malignancy. Additionally, these formalisms have also been successfully applied to

describe chromosomal instability [154]-[155]. It has also been proposed that second cancers

may arise due to the creation of residual pre-malignant cells which can proliferate during

treatment and eventually grow post irradiation [53]. It is very important (and also clini-

cally relevant) to model the changes of radiation induced risk over time. However, in this

work, we estimate the life time risk of secondary cancers due to various treatments and the

survival probability of radiation-induced pre-malignant cells to take over a small niche.

Many biological problems can be described by deterministic equations, but this ap-

proach fails to capture some important aspects like randomness in micro-environment,

invasion probability, fixation time, etc. Hence, we require a stochastic formulation to ana-

lyze the dynamics. The dynamics of cells is often described by a stochastic process such as

a simple birth-death process. One approach that has been widely used in different applica-

tions, including progression of primary cancer [123], dynamics of metastasis [124], dynamics

of tumor suppressor gene inactivation [125] and in other areas such as language evolution

[126] is the Moran process. Before describing the mathematical framework, we will discuss

the basic principles of the Moran process that govern the dynamics like selection, mutation

and genetic random drift. Selection occurs when different types of individuals compete

with each other for resources. When the duplication of DNA or RNA (ribonucleic acid)

goes away, it might lead to mutations. The frequency of alleles with the same fitness may

change at random through time in a process known as genetic drift.

In order to describe the selection dynamics in models with stochasticity, birth-death
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models such as the Moran process has been proposed in the literature [123]. The Moran

process is in a sense, the simplest birth-death or one-step process with constant total

population, in which at each time step one cell reproduces and another cell dies so that the

total number of cells is constant [127]. Consider a constant population of N cells (under

homeostatic control in the tissue), consisting of two types of reproducing cells A and B.

For birth, one of the N cells is chosen at random proportional to fitness. This gives rise

to its lineage subject to possible mutation. For death, one of the N cells is chosen at

random. The total population size, N , is strictly constant at time t. Time is measured in

units of cell divisions. Fitness of a cell represents the reproductive rate. It is assume that

cell division follows an exponential distribution with average 1/r. A fitness rate r = 1 is

assigned for type A cells and type B cells have a fitness rate equal to r. At time t = 0, all

N cells are of type A. After some time, a single mutant cell of type B will be generated.

This cell will lead to a lineage of type B cells that will either become extinct or proceed

to fixation (i.e. until the system consists of type B cells only). The probability that a

single type B cell takes over the whole system is termed the fixation probability. Figure

7.1 illustrates the Moran process in a space free system. Suppose type A has a fitness rate

rA = 1 and type B has fitness rate rB = r. If the fitness rate r>1, then selection is in favor

of B; if r<1, then selection is in favor of A; and if r=1, selection is neutral. Suppose all the

individuals in the population are identical. The probability that a type A cell reproduces

an A is 1− u; a type A cell mutates to B with probability u (per cell per generation); and

type B cells always reproduce B cells again. If i is the number of B cells denoted by nB

and (N − i) is the number of A cells denoted by nA. The probability that a new cell of

type A is reproduced is given by

pA+ =
rAnA

rAnA + rBnB
(1− u) =

N − i
N − i+ ri

(1− u).
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Figure 7.1: Moran process in a finite population.

The probability that a new cell of type A dies out is given by

pA− =
nA
N

=
N − i
N

.

The probability that a new cell of type B is reproduced is given by

pB+ =
rAnA

rAnA + rBnB
u+

rBnB
rAnA + rBnB

=
N − i

N − i+ ri
u+

ri

N − i+ ri
.

The probability that a new cell of type B dies out is given by

pB− =
nB
N

=
i

N
.

The Moran process is then defined on the state space i = 0, ..., N . The transition matrix
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of moving from state nB = i to nB = j is given by

Tij =



(N − i)u+ ri

N − i+ ri

N − i
N

, j = i+ 1

(N − i)(1− u)

N − i+ ri

i

N
, j = i− 1

1− Ti,i+1 − Ti,i−1, j = i

0, otherwise

When mutations are rare i.e. u → 0 (mutations are rare in the time scale of selection,

i.e. the average time it takes to take over the whole system), then the transition matrix is

given by

Tij =



ri

N − i+ ri

N − i
N

, j = i+ 1

N − i
N − i+ ri

i

N
, j = i− 1

1− Ti,i+1 − Ti,i−1, j = i

0, otherwise

Suppose ρi denotes the fixation probability, i.e. the probability that i number of type

B cells will take over the whole system. Then the fixation probabilities for the absorbing

states is given by ρ0 = 0 and ρN = 1. We now derive the fixation probability for all the

transient states.

ρi = T−
i ρi−1 + (1− T−

i − T+
i )ρi + T+

i ρi+1

which can be rewritten as:

T+
i (ρi+1 − ρi)− T−

i (ρi − ρi−1) = 0
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Let θi =
T−
i

T+
i

, and let αi+1 = ρi+1−ρi, αi = ρi−ρi−1. Using recurrence relations between the

fixation probabilities, and by assuming αi+1 = θiαi, we obtain a set of recurrence equations

as follows:

α1 = ρ1 − ρ0 = ρ1

α2 = ρ2 − ρ1 = θ1ρ1
...

αN = ρN − ρN−1 = ρ1Π
N−1
i=1 θi

Clearly,
∑N

k=1 αk = 1. But,
∑N

k=1 αk =
∑N

k=1 ρ1Π
k−1
j=1θi (from the above set of equations).

Therefore, the fixation probability of a system comprised of N − 1 type A cells and one

type B cell is given by:

ρ1 =
1

1 +
∑N−1

i=1 Πk
j=1θj

. (7.1)

7.2 Spatial modeling

7.2.1 Background

Spatial effects on finite populations can be divided into two categories. One type of spatial

effect arises from the structure of the network or the graph, which has a predominant

influence on the fixation probability. The second type of spatial effect arises from a random

fitness distribution of mutants on a given network structure or a graph. There are numerous

real world populations associated with finite populations on complex spatial structures and

random distributions of mutants, such as in biological and ecological networks, information

theory, etc. Taking these into consideration, and from a Moran process perspective, the
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species might have a higher chance to interact with those located in its neighborhood

rather than with those located far away. Hence, spatial effects on evolutionary dynamics

are considered by assuming that the species are distributed randomly over a spatial domain

interacting with their nearest neighbors. The generalization of the space-free Moran model

to a graph is not unique. There are several types of updating rules on spatial networks,

which can be considered an extension of the space free Moran model. Some of the most

common updating strategies on spatial structures are for an invasion process (IP), i.e a

birth-death process, and voters model (VM), i.e. death-birth process [142]. In an IP

framework, we assume a birth-death model where an individual is first chosen (based on

its fitness) for reproduction. Then, an offspring is replaced proportional to the weight of

the link connecting to its neighbors. The updating rules get reversed in a VM formalism.

In a VM model, one chooses a random individual to die, which is then replaced by one of its

neighbors based on their fitness and the weight of the links connecting them. Depending

on the nature of the graph, both these updating strategies yield different values of the

fixation probability.

7.2.2 Fixation probability on graphs

We present a brief review of the literature incorporating spatial effects (related to the

network or structure of a graph) in evolutionary processes. This might give us some

insight on the dependence of cancer evolution on spatial structure as well as on the evolving

spatial patterns. The introduction of space into an evolutionary model has been generally

formulated using a grid-based approach such as a cellular-automata model on a lattice or

as an unstructured mesh, or as a network representing the connections between locations

or individuals. These networks can vary from a simple graph to a very complex structure.
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For the past three decades, there have been several attempts made to understand the

process of fixation in spatially homogeneous systems. It was found that many spatially

structured models such as lattice models have little or no effect on the selection process

[148]–[150]. More recently, Lieberman et al. [151] generalized this to arbitrary graphs

and found the exact symmetry conditions under which the fixation probability for an

advantaged mutant, evolving on a graph, is the same as that for a mixed population

model. Houchmandzadeh et al [152] demonstrated that fixation probability of a beneficial

mutation in a geographically structured population is almost the same (or, slightly smaller)

compared to the unstructured population for a Voter framework.

A graph is a collection of nodes which are connected by edges (which can be either uni-

directional or bidirectional). Recently, the evolution of populations whose spatial structure

is given by a graph has been considered in [138], Here it is shown that certain types of

structures amplify the fixation probability of a mutant that is introduced into the sys-

tem. The individuals occupy the vertices of a graph, and the edges denote interactions

between species. In each time step, an individual cell is selected with a probability pro-

portional to its fitness; the weights of the outgoing edges determine the probabilities that

the corresponding neighbor will be replaced by the offspring. The process is described by

a stochastic matrix W , where wij denotes the probability that a lineage from individual

i will replace individual j. In a more general setting, at each time step, an edge ij is

selected with a probability proportional to its weight and the fitness of the individual at

its tail. The Moran process is the special case of a complete graph (a graph in which every

pair of nodes is connected with unique edges) with identical weights. Interestingly, on a

complete graph (i.e. where every node is connected to everyone else and the offspring of

each species can replace any other species with equal probability, the fixation probability

under an invasion process updating strategy is equivalent to that of the Moran process
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fixation probability ([123]):

ρMoran = ρIP =
1− 1

r

1− 1

rN

. (7.2)

Consider a homogeneous population of size N . At each time step an individual is chosen

for reproduction with a probability proportional to its fitness. The offspring replaces a

randomly chosen individual. In this Moran process, the population size remains constant.

Suppose all the resident individuals are identical and one new mutant is introduced. The

new mutant has relative fitness r, as compared to the residents, whose fitness is 1. The

fixation probability of the new mutant is given by Equation (7.2). The population structure

is introduced in the following manner. Individuals are labeled i = 1, 2, ...N . The probability

that individual i places its lineage into position j is given by wij. Thus the individuals can

be thought of as occupying the vertices’s of a graph. The matrix W = wij determines the

structure of the graph. If wij = 0 and wji = 0 then the vertices i and j are not connected.

In each iteration, an individual i is chosen for reproduction with a probability proportional

to its fitness. The resulting lineage will occupy vertex j with probability wij. Here, W is

a stochastic matrix, which means that all its rows sum to one. The fixation probability

of a randomly placed mutant is then calculated. If W is symmetric, wij = wji, then the

fixation probability is always ρ1. The individuals that are arranged on a spatial lattice can

be triangular, square, hexagonal, the value of ρ remains unchanged and it is equal to ρ1.

Leiberman et al. [151] proved that some graphs (such as stars, super stars) have different

fixation probabilities.

We have discussed the subgroup of graphs that have the same fixation probability as the

conventional space-free Moran model, which are known as isothermal graphs. Generally,

isothermal graphs include all regular graphs (constant number of neighbors at each vertex)

and more generally symmetric (undirected) graphs. Typically random number of neighbors
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or boundaries (where the number of neighbors inevitably change) can make good examples

for non-isothermal graphs. Although, the IP model is equivalent to the Moran fixation

probability, but in strict sense, a general voter model does not follow isothermal theorem.

This scenario is discussed in the next section for a one dimensional case.

7.2.3 Fixation probability on 1D

The first spatial (1-D) generalization of the Moran process was described in [139], where

both one-hit and two-hit mutant fixation processes are considered. A death-birth updating

strategy is implemented to calculate the fixation probability. A 1-D spatial generalization

of a constant population Moran process has been studied by [139], on the role of spatial

dynamics in carcinogenesis. The structure is designed in the following manner: cells are

aligned along a regular grid at locations 1, 2, ..., N assuming the total number of cells does

not change. Cells are randomly chosen for death. Each cell death is followed by a cell

division of one of its two neighboring cells, which places its daughter cell at the empty slot.

Cell death occurs randomly and division rate is proportional to the relative fitness of the

cells.

Let us assume two types of species A and B coexist with corresponding populations

nA = N − i and nB = i, which add up to a constant population N . Suppose the fitness of

type B individuals is r and fitness of type A species is assumed to be unity. Then, at each

time step (taken to be ∼ 1
N

), one individual is chosen to die (the death rate of both species

is assumed to be the same). Another individual is chosen to reproduce proportional to its
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fitness. Then the transition probabilities are given by:

pi,i−1 = λi =
ri(N − i)

(N + ri− i)N

pi,i+1 = µi =
m(N − i)

(N + ri− i)N
Suppose ρi denotes the fixation probability, i.e. the probability that i number of type

B cells will take over the whole system. We can write down the recurrence equations as

follows:

πi = λiπi+1 + µiπi−1 + (1− λi − µi)πi
π1 = λ1πi + (1− λi − µi)π1
πN = 1

where λ and µ are birth and death rates. The solutions of the above equation are the same

as the conventional Moran model with the exception that the ratio of birth and death rates

is not always equal to the fitness rate, i.e.

λ1
µ1

6= 1

r
. (7.3)

Let us denote the ratio
λ1
µ1

= γ0, then the solution for the fixation probability is given by:

π1 =
1

1 +
∑N−1

j=1 ΠN−2
k=1

µk
λk
γ0

=
1

1 +

(
1− (1

r
)N−1

1− 1
r

)
γ0

(7.4)

It should be noted that if γ0 =
1

r
, we recover the fixation probability of the Moran process.

For a complete graph,

γ0 =
λ1
µ1

=
1/N
r(N−1)

N(r+N−1)

=
1

r
+

1

N − 1
(7.5)
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The value of γ0 is slightly different from 1/r. In general, we expect it to be proportional

to the number of neighbors in the graph, thus one expects the most dominant effect to

belong to the circle (or, 1D graphs). For a circle, the extinction probability is still the

same (= 1/N), but the birth rate is given by:

γ0 =
λ1
µ1

=
1/N
2r

N(r+1)

=
r + 1

2r
(7.6)

Using the above proliferation and extinction rates, the fixation probability will now be

reduced to a compact form (obtained in) [141], which is consistent with the result of

Komarova [139]:

πi =
2rN−1(1− r)

1 + r + rN−1 − 3rN
(7.7)

One of the important observations from the above equation is that solutions for the fix-

ation probability on isothermal graphs (such as a circle) are not identical to the fixation

probability of a space-free model or for a complete graph. This is mainly due to the fact

that the ratio of extinction probability and birth rate of a single individual B left in the

system is different from the reciprocal of its fitness.

7.2.4 Effect of cellular motility on fixation probability on 2D

In this section, we introduce migration also known as cellular motility into the system.

Cellular motility is a very important phenomenon that is observed in many biological sys-

tems. In particular, several experimental studies have suggested that in the later stages of

carcinogenesis, cells undergo a transition and become more motile (termed as the Epithelial-

Mesynchemal transition (EMT)), and this new phenotype with higher migration potential

escapes from the system and colonizes a different organ. Thus, a pertinent question is

to understand the interplay of migration potential and proliferation of mutants on various
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structures and their impact on the fixation probability. It should be noted that the fixation

probability is also referred to as the invasion probability throughout this chapter.

The derivation in the previous section (for the one dimensional case) does not apply to

the corresponding two-dimensional scenario; however we can make an approximation on

the case of 2D of regular graphs. Additionally, the presence of boundaries (i.e. reflective

boundary conditions) along with randomness of the structure are very difficult to model

analytically. To include the possible migrative potential of the two phenotypes, a second

generalization of this model is introduced in [159], where a population of N cells consisting

of cells of types A and B, is placed on a regular lattice (such that all grid points are filled

with either of the phenotypes). Suppose rA and rB are the proliferative rates and mA and

mB the migrative rates (cellular motility) of type A and B cells, respectively. Applying

the space free Moran process formulation, at each time step a cell is chosen randomly

to die. Then one of the following four events might occur: A divides, A migrates, B

divides, B migrates. If a reproduction event of either A or B occurs, then the update is

complete and the process is repeated again. Suppose that a migration event of either A or

B occurs, then the empty spot is occupied by a migratory cell, leaving an another empty

spot behind. Again, a new elementary event is considered till the empty spot is filled (i.e.,

until the occurrence of a birth event). The lattice is always filled up at the end of each

update following the Moran process assumption that the whole population is constant at

every iteration.

The model chooses the nearest neighbors around the empty spot taken to be a von-

Neumann neighborhood (i.e. a cell surrounded by four neighbors). Suppose nA and nB

are the numbers of type A and B cells around the empty spot respectively, then the
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probabilities of each elementary event are given by:

PA div =
nArA

∆
,

PB div =
nBrB

∆
,

PA mig =
nAmA

∆
,

PB mig =
nBmB

∆
, (7.8)

where ∆ = nA(rA + mA) + nB(rB + mB). Introducing dimensionless variables, the above

equations can be rewritten as:

PA div =
nA

∆̂
,

PB div =
λnB

∆̂
,

PA mig =
nAkA

∆̂
,

PB mig =
λnBkB

∆̂
, (7.9)

where λ = rB/rA, ∆̂ = (1 + kA) + nBλ(1 + kB) with kX = mX/rX (for X = A,B). For

the spatial model outlined above, the simulations in [159] were performed on a square grid

with periodic boundary conditions.

It was shown that migration is a key regulator of the fixation probability. Fixation

probability is reported to be smaller on a lattice (for advantageous mutants) with zero

migration (for both host and mutants) compared to a space-free system. As migration

increases, the fixation probability is shown to increase and stays almost constant for higher

migration rates. One of the reasons for the saturation can possibly be that migration

has less impact compared to proliferative mechanism. Even in the presence of host cell
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migration, the fixation probability increases and stays constant. An increased migration

potential of mutants increases their ability to invade the system. But for smaller migration

potentials, mutants tend to concentrate in a small island, resulting in an expansion only

at the boundary of that region. In the case of larger migrative potentials, mutants move

around in the space reaching everywhere in the system. In the 2D case it was shown that

cellular motility has a direct positive impact on the ability of a single mutant to invade a

the whole system.

7.3 Summary

In this chapter, we discussed a mixed population (space free) Moran process framework

and presented the background for spatial systems in evolutionary dynamics. Although

there are several types of updating rules on networks and graphs, we adopt the death-birth

process or the VM strategy for the rest of our work. Generally, spatially heterogeneous

systems have two distinct components, one component defines the spatial structure of the

network (only), and the second component encapsulates the randomness of resources and

fitnesses of host and mutants within the system (for a fixed network). In the next two

chapters, we investigate the effect of unstructured and random meshes on the invasion

(or, fixation) probability in the presence and absence of migration. Additionally, we also

explore the site dependent random fitness of mutants and host cells on a lattice (in the

presence and absence of migration) and its effect on the invasion probability.
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Chapter 8

Spatial Structure Impact on Invasion

Probability

8.1 Introduction

The following chapter has been taken from our published paper. 1 Carcinogenesis can be

viewed as an evolutionary process, where a collection of pre-neoplastic cells acquire genetic

and epigenetic changes over a period of time [153]. During the process of carcinogenic

evolution, it is commonly believed that mutant cells gain a fitness advantage and take over

a small neighborhood of host cells through a selection process and initiate a clonal area,

leading to invasion into the neighborhood tissue. The fitness rates of pre-neoplastic cells are

affected by a mutation-selection mechanism and various micro-environmental factors. This

1Manem VSK, Kohandel M, Komarova NL, Sivaloganathan S, Spatial invasion dynamics on random

and unstructured meshes: Implications for heterogeneous tumor populations, J Theor Biol 349 (2014)

66-73.
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results in a high level of heterogeneity at the cellular level in a tumor. Both tumor initiation

and progression stages have been proposed to follow an evolutionary stochastic model and

different authors have observed the effect of a fitness advantaged mutant introduced into

the system and the probability that this takes over a finite compartment of the cellular

tissue. In recent years (see [154]–[160]), these models have been successfully applied to both

one-hit and two-hit mutation-selection processes. During the final stages of malignancy, the

mutant phenotype gains a relative advantage through cellular motility. The evolutionary

theory of these complex phenomena has not yet been addressed in the literature.

The spatial dynamics of cancer invasion has been studied by several authors using

several approaches which include cellular automata, partial differential equation models,

and hybrid models (combining discrete and continuous) including multi-scale modeling

techniques [162]—[165]. Although, it is possible to encapsulate progressively more complex

cellular mechanisms and biological phenomena into these models, we however adopt a

simpler approach. In an attempt to understand and analyze the dynamics of invasion, we

focus on only two cellular forces, namely, proliferative and migrative potentials which may

well dictate the inherited genetic behavior of mutants. Our approach builds on spatial

evolutionary modeling of cancer discussed in the previous chapter.

The main objective of this study is to develop a better quantitative analysis of the

invasion probability, by avoiding the rigid framework imposed by a regular grid (i.e. lat-

tice). Although a tissue is considered to be a three-dimensional mesh, but from the point

of view of computational efficiency we assume a two-dimensional grid. We introduce a

stochastic death-birth model for the spatial evolutionary system (described in the previous

chapter). In order to circumvent the rigidity of a regular grid, we use two different meth-

ods. In the first construction, we start with a regular square lattice in which neighbors are

modified (i.e. added, or removed) in a random way. The background square lattice can
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be either a Moore neighborhood type (i.e., a grid point surrounded with 8 neighbors), or,

von-Neumann neighborhood (i.e. a grid point surrounded with 4 neighbors. The important

feature of this construction of the connectivity graph is the notion that we construct the

number of neighbors for each of the nodes on the lattice (where each node is occupied

by either a normal or a mutant cell). The connectivity of the graph is a mixture of both

directed and undirected links, i.e., some nodes and their neighbors are bi-directional and

some are uni-directional.

Generally speaking, any regular grid assumes that the number of neighbors around each

cell is homogeneous at every location in space. This is not a realistic assumption for model-

ing biological tissue architectures. Therefore, we approximate a real tissue architecture by

an unstructured mesh (closer to a real tissue in terms of the number of neighbors around

a point), where the number of neighbors around each nodal position is a random variable.

This suggests our second construction, where we consider an unstructured mesh which

is defined as a random neighborhood graph with longer ranges of connectivities versus

the previous case. The important feature that distinguishes is compared to the previous

construction however, is the fact that the unstructured mesh does behave symmetrically

between the two type of species in terms of the connectivity graph and the number of

neighbors. The contrasting feature in the unstructured mesh construction is that every

node and its corresponding neighbors are bi-directional compared to the previous scenario

(which are either uni-directional or bi-directional).

Here, we are mainly concerned with the question of fixation (or, invasion) probability in

the presence of a migration potential (or, cellular motility) for either only the mutant cell or

for both the normal and mutant cells. We address the effects of a random environment (in

the context of heterogeneous structure) and migration potential on the fixation probability.

The effect of boundaries on the value of the fixation probability is briefly discussed at the
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end.

8.2 Random neighborhoods on a lattice

It is clearly evident that the set of equations (7.9) are dependent on the number of neigh-

boring cells of type A and B, which is fixed in the approach described in [159]. We now

generalize the model to include random sets of neighbors at each nodal position. This leads

to changes in nA and nB for each node, that in turn might affect the cellular dynamics

of the whole system. We explore the possible consequences of this change in two different

numerical experiments. The algorithm outlined in the previous chapter is applied for all

the computations in this work by running 5 sets of simulations of 10, 000 iterations each,

and each iteration is performed until, for a fixed neighborhood, the system reaches one of

the absorbing states (either zero, or all mutants) and we estimate the invasion probability.

The uncertainty is obtained using the definition of standard deviation and plotted along

with the mean.

As discussed earlier, the isothermal theorem for graphs [151] states that, if each node

of a graph has the same number of neighboring nodes, i.e. a symmetric bidirectional

graph, then the invasion probability is equivalent to that of the fixation probability of

the traditional Moran process in the absence of migration. This clearly suggests that the

invasion probability obtained from symmetric graphs provides no further insight into the

complex features of the tissue architecture. As a result of this, we examine the variation in

the invasion probability for two different experiments by introducing randomness so that

it specifically introduces asymmetry into the lattice.
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8.2.1 Static random neighborhoods

In the first scenario, we investigate the invasion dynamics resulting from a random num-

ber of neighbors chosen from a fixed distribution at each node on a regular lattice. This

simulation is carried out by fixing the mean number of neighbors and varying the width

of the distribution. The neighborhood size for each grid point is assumed to be a random,

integer-valued variable distributed uniformly over a given interval. We varied this distri-

bution from a delta-function to a relatively wide spread distribution. This experiment is

carried out to investigate the correlation between the invasion probability and the distri-

bution width. We considered a regular, square lattice comprised of 21 × 21 = 441 cells

with reflecting boundary conditions. Random numbers of neighbors are generated from a

uniform distribution, in such a way that the average number of neighbors is always 4, but

the corresponding width varies.

The algorithm used for the experiments can be summarized as follows. The following

construction is implemented in such a way that the delta distribution follows a background

mesh, i.e., a lattice with four neighbors. For each nodal point on the grid, we generate a

random set of neighbors from a given distribution, say D = [2, 6]. The number of neighbors

for each node will then be 2, 3, . . . , or, 6. Distances are then computed from every node to

all other nodes on the lattice. The nearest set of neighbors for a particular node is then

considered depending on the nodes that are located closest to the parent node. If two

or more nodes are located at the same distance from the given node, then we randomly

pick a node. In this way, the construction introduces a mixture of both directed and

undirected links between a node and its neighbors (i.e. some nodes and their neighbors

may be symmetric (bi-directional), while others will be asymmetric (uni-directional)). The

set of neighbors generated for each node on the lattice is fixed throughout the experiment.
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For a distribution with zero width (on a lattice), the fixation probability of the mutant

highly depends on its proliferative and migrative potentials. Simulations were carried

out by applying the algorithm outlined in the previous chapter with reflecting boundary

conditions for advantaged mutants. We obtain a similar figure with approximate values of

invasion probability captured in Figure 1 in the paper [159]. Additionally, if the number

of neighbors is uniformly increased or decreased, i.e., each node still consists of the same

number of neighbors, we can intuitively assume that this may not change the invasion

probability.

We now introduce a variation on the number of neighbors at each nodal position on

the grid, which can be attributed to the asymmetry of the lattice. At the start of each

simulation one type B cell is introduced at a randomly chosen position in the lattice, where

the remaining cells populating the lattice are type A cells. Simulations are run, and each

iteration is performed until, for a fixed neighborhood, the system reaches an absorbing

state, and we estimate the fixation probability.

In the first scenario, simulations were carried out for advantaged mutants (λ = 1.5)

assuming zero migration for both types of cells. The effect of the width of the distribution

on the invasion probability is captured in Figure 8.1 for a migration free system. It is

clearly evident that the invasion probability decreases with the width of the distribution.

Secondly, the simulations were run only for advantaged mutants (for instance, λ = 1.5)

assuming the migration of A cells is zero, i.e. kA = 0. This experiment is done in order to

understand the impact of migration on the invasion probability. The effect of the width

of the distribution on the invasion probability is plotted in Figure 8.2, where zero width

corresponds to the results reported in [159]. From the figure, we clearly observe that the

invasion probability is negatively correlated with the width of the distribution, i.e., as we

increase the width of the distribution the invasion probability decreases. In the presence
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Figure 8.1: Invasion probability of mutants as a function of varying distribution width

with static random neighborhood in a migration free system. Parameters: lattice size

= 21× 21,λ = 1.5, 1.3, kA = kB = 0.

of migration which is captured in Figure 8.2, we do not observe a significant change in

the invasion probability for the distribution [3, 5] compared with a migration free system.

However, for distributions [2, 6] and [1, 7], migration suppresses the invasion probability,

due to the chaotic architecture. The invasion probability drops to the order of 10−3 when

neighbors are selected from the distribution [1, 7].

The invasion probability decreases with increasing distribution width. One of the main

reasons for this decline in the fixation probability is that the randomness of the architecture

pushes the generated random mesh far away from the isothermal graph (whose invasion

probability is equivalent to that of the Moran process fixation probability). This has been

earlier studied on scale free networks [166]. For a high variance of the distribution of
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neighbors, we can possibly have several clusters of cells which are very poorly connected

to each other (due to the unidirectional construction of the random mesh). These poorly

connected clusters increase as the variance increases, leading to mutant extinction implying

a smaller invasion probability.

8.2.2 Dynamic random neighborhoods

The second numerical experiment is similar to the one described above, except that we

generate a new random set of neighbors at every iteration. This experiment is carried out

to examine the effect of the change in tissue geometry after every iteration. Simulations

were run, and each iteration is performed until, for a fixed initial neighborhood, the system

reaches one of the absorbing states and we estimate the invasion probability. The effect

of the width of the distribution on the invasion probability is similar to the plot presented

in Figure 8.1 for a migration free system. Intuitively, averaging over a dynamic random

neighborhood gives a static random neighborhood. In order to understand the effect of

migration of B cells on the invasion probability, we assumed the migration potential of

type A cells to be equal to zero, i.e. kA = 0. The simulations were run only for advantaged

mutants (λ = 1.5) and for kB = 5.0. The invasion probability is then computed for varying

distribution widths, which is presented in Figure 8.2.

To summarize the above two experiments, the first simulation is carried out on a static

neighborhood, i.e., the number of neighbors are static throughout the whole set of itera-

tions, which can be thought of as a fixed set of neighborhood clusters over time for every

node. In the second experiment (dynamic neighborhood) the number of neighbors changes

for every iteration, i.e., this can be understood as the change in the neighborhood size

over time. Although the neighborhood change over time might not look realistic in nature,
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Figure 8.2: Invasion probability of mutants as a function of varying distribution width

with static and dynamic random neighborhood. Parameters: lattice size = 21 × 21,λ =

1.5, kA = 0; kB = 5.

however, this might be interesting to understand at the behavior of the system numerically.

In order to analyze the effect of varying distribution width of neighbors on the invasion

probability, we consider the following fair comparison, the case of zero migrative potentials

of both phenotypes, i.e., when kA = kB = 0. For a space free Moran process, the fixation

probability is given by 0.3333 for an advantageous mutant with λ = 1.5. In the case of

the lattice model with a fixed grid, corresponding to the zero-width distribution, [4, 4],

the invasion probability of an advantageous mutant with λ = 1.5 is given by 0.2969. This

conveys that spatial structures have an effect on the fixation probability, which is consis-

tent with other works in the literature. However, when we use a random neighborhood

model and increase the distribution width to that of [2, 6], the fixation probability drops
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to 0.2267. This clearly indicates that for a migration free system, the increase in the width

of the distribution inhibits the proliferative mechanism, thereby decreasing the invasion

probability. Another interesting observation from Figure 8.2 is that, for the distribution

[1, 7] the invasion probability is of the same order as the invasion probability of a neutral

mutant (whose fixation probability is given by ρneutral = 1/N = 0.0022). This suggests

that an increase in the distribution width can eliminate the advantage given by a 50%

increase in the proliferative potential. By increasing the width of the distribution, the

invasion probability decreases rapidly and approaches the invasion probability of mutants

with neutral drift.

From the biological perspective, the alterations in the neighborhood for each node

can be attributed to tissue type (for instance morphological changes in a breast tissue is

high compared to other tissues), tension, stress, and several other micro-environmental

factors (such as hypoxic or acidic conditions) that fluctuate both spatially and also tem-

porally. These results strongly suggest that the geometry of the neighborhood (either

static/dynamic) plays an important role in the invasion probability under constrained

boundaries, both in the absence and also in the presence of migration.

8.2.3 Unstructured mesh

We now examine the invasion dynamics of pre-cancerous cells on an unstructured mesh

(where an unstructured mesh is a two-dimensional mesh with variable number of neighbors

at each grid point). The construction of an unstructured (or, a Voronoi) mesh is completely

different from the construction of the static and random neighborhood lattices in the previ-

ous section. An unstructured mesh is constructed using QHull in Matlab software. Recall

that in the static (and also in the random neighborhood experiments), the connectivities
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between a node and its neighbors are either unidirectional or bi-directional. In the case

of unstructured meshes the links between a node and its neighbors are bidirectional. It is

well known that on an unstructured grid, the number of neighbors at each location can

vary greatly. The effect of the migration potential on the invasion probability is analyzed

and compared with the corresponding results on a regular grid for two different scenarios.

In the first scenario, we assume that the migration potential of mutants is kB > 0 and the

migration ability of A cells is chosen to be kA = 0. In the second scenario we consider

migration potentials of both types of cells to be kA, kB > 0.

Randomly, one mutant cell is introduced into the mesh whilst the rest of the cells

populating the mesh are type A cells. Our system is now composed of N − 1 type A or

host cells and a single mutant cell. The algorithm outlined in the previous chapter is applied

with reflecting boundary conditions, again until one of the cell types becomes extinct, i.e.

the system reaches one of the absorbing states. For all three cases of mutants, we observed

that the invasion probability is much smaller when compared to the corresponding results

on a lattice. The simulations were run for advantaged mutants (λ = 1.5), neutral mutants

(λ = 1.0) and disadvantaged mutants (λ = 0.9). And, the effect of the migration potential

on the invasion probability is plotted for each value of kB. Simulations are run, and each

iteration is performed until, for a fixed initial neighborhood, the system reaches fixation

and we estimate the invasion probability. Figure 8.3 is a plot of the invasion probability

against the migration potential of type B cells assuming zero migration potential for type

A cells, kA = 0.

To understand the behavior of the variations in λ, we then changed the values of λ for

several migration potentials kB, and plotted these against the average invasion probability.

A contour plot is presented in Figure 8.4, clearly indicating that the proliferative potential

plays an important role along with the migration potential. Another interesting and salient
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Figure 8.3: Invasion probability of various mutants as a function of migration potential

of type B mutant on an Unstructured mesh. Parameters: lattice size = 21 × 21,λ =

1.5, 1.0, 0.9, kA = 0.

feature is that, for a fixed migration potential and varying proliferative potential, the

invasion probability increases and stays almost constant.

We now assume non-zero migrative potential for type A cells. Figure 8.5 displays the

invasion probability against the migration potential of type B cells assuming that the

migration potential of type A cells is non zero, kA > 0. As before, the simulations were run

for advantaged mutants (λ = 1.5), neutral mutants (λ = 1.0) and disadvantaged mutants

(λ = 0.9). Additionally, a significant change was not observed in the invasion probabilities

of mutants with either zero, or lower migrative potential of type A cells (results not shown

here). This indicates that lower migration potentials of type A cells does not have a

predominant impact on the fixation probability.
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Figure 8.4: Contour plot of average invasion probability of various mutants against migra-

tion potential of type B mutant and proliferative potentials λ on an unstructured mesh.

Parameters: lattice size = 21× 21, kA = 0.

From Figures 8.3 and 8.5, we observe that in the absence of migration, i.e. when

kA = 0 and kB = 0, the invasion probability is 0.2969, which is close to the fixation

probability of the classical Moran process 0.3333. The small change can be attributed to

either computational errors or to the geometry of the mesh. Also, the nodes located at the

boundary may play an important role because of lesser number of neighbors (which can be

interpreted as connectivities) associated with these. Another interesting observation is with

respect to the neutral mutants. In Figures 8.3 and 8.5, for the scenario λ = 1.0, i.e., when

rA = rB and for kA = kB, the invasion probability is almost equivalent to (i.e., the value

is of the same order as) the fixation probability for a system (in the absence of boundary

effects) with neutral drift which is ρneutral drift = 1/N = 0.0022. From Figure 8.5, the
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Figure 8.5: Invasion probability of various mutants as a function of migration potential

of type B mutant on an unstructured mesh. Parameters: lattice size = 21 × 21,λ =

1.5, 1.0, 0.9, kA = 1.0. Notice that invasion probability is very small when kB ≤ kA, and it

is also vanishingly small in the case of disadvantaged mutant λ = 0.9.

change in the invasion probability is clearly observed around the point kA = kB = 1.0, for

a neutral mutant (i.e., λ = 1.0). Clearly, we observe the two regimes for a neutral mutant,

i.e kB < 1.0 and kB > 1.0 . For kB < 1.0, the invasion probability is very small and close

to zero, while we observe a non-zero invasion probability in the regime kB > 1.0. Thus, the

change in the invasion probability around neutral mutant is very much apparent from the

figures. The aforementioned changes in the fixation probability can be associated to the

asymmetric nature of migration rates between type A and B cells. This suggests strongly

that migration affects the system unless there is a higher rate of migration advantage to

the mutant cell as compared to the host cell. The invasion probability is vanishingly small
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for disadvantaged mutants in the presence of migration of type A cells, which is captured

in Figure 8.5.

In order to compare the results with a 21× 21 lattice that has 441 nodes, we designed

an unstructured mesh consisting of 441 elements. In order to make a fair comparison with

a lattice, we estimated the average number of neighbors for an unstructured mesh that

has 441 elements. A set of sample realizations for an unstructured mesh was taken to

obtain the average number of neighbors for a node, which was approximately 6. We took

this number 6 as the nearest number of neighboring locations for each nodal point on a

lattice on which a cell can give birth or migrate. The geometry of the neighborhood of a

node on the lattice is the von-Neumann neighborhood along with 2 diagonal nodes. Figure

8.6 displays a comparison of the invasion probabilities on an unstructured mesh and on a

lattice with parameters λ = 1.5 and kA = 0. Although the difference between the invasion

probabilities of lattice and mesh are not significantly different, however, this plot indicates

that the lattice results overestimate the invasion probability. It is clearly evident that

the difference in fixation probability grows with the migration parameter kB. It should

be noted that for a high fitness advantaged mutant (λ = 1.5 ), the cluster expansion of

mutants is increased, resulting in a non-significant or minimal effect of migration potential

on the invasion probability, i.e., the migration mechanism is dominated by the proliferation

mechanism. Therefore, we observe that the migration potential of mutants has a very

minimal effect on the invasion probability for high fitness advantages. Figure 8.7 displays

the evolution and invasion of one type B cell to an absorbing state, i.e. containing all type

B cells on an unstructured mesh. A blue color (dark in black and white) indicates normal

or type A cells and a red color (light in black and white) denotes pre-cancerous or mutant

cells (i.e. type B cells).
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Figure 8.6: Comparison of Invasion probabilities: Unstructured mesh vs. Lattice. The

average number of neighbors for the lattice are chosen to be approximately 6, i.e., the von-

Neumann neighborhood along with diagonal nodes. Parameters: lattice size = 21×21,λ =

1.5, kA = 0.

8.2.4 Lattice boundary effects on invasion

We now explore the boundary effects on the invasion probability. This experiment is

carried out by first constructing a 21×21 regular square grid. Instead of randomly placing

a pre-cancerous cell on the grid, we fix its position on the boundary. Our system is now

filled with 440 type A or host cells placed at every location and one type B cell placed

on the boundary. The algorithm outlined in previous chapter is applied using reflecting

boundary conditions, and each iteration is performed until, for a fixed initial neighborhood,

the system reaches fixation and we estimate the invasion probability.

The variation in the invasion probability as a function of the initial location of type B
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Figure 8.7: Spatial evolution of mutants on an unstructured mesh.

cell, in particular, at the boundary is investigated. A lattice of 21×21 cells was constructed

in such a way that the position of the type B cell was fixed at (i, i) = (1, 1), while the rest
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of the lattice was filled with type A cells. We then changed the initial position of the B

cells along the diagonal, i.e. (i, i) = (2, 2), . . . , (11, 11), . . . , (21, 21). A sample scenario in

which migration of A cell is zero, i.e. kA = 0, and λ = 1.5 is chosen for this experiment. We

observe that the invasion probability is much smaller when compared to that at the center

of the lattice. It should be noted that there is a sharp increase in the invasion probability

when the initial position of the B cells is changed from (1, 1) to (2, 2), which remains almost

constant as the initial position is moved to the center of the system (11, 11). Additionally,

it follows an identical pattern as observed in the previous case till it reaches (21, 21).

Figure 8.8 displays the boundary effect for advantaged mutants and for various values of

initial position of mutants in the system. Other scenarios with neutral and disadvantaged

mutants, kA > 0, were also investigated and similar behavior was observed for the invasion

probability. This clearly suggests that boundary effects have a predominant influence on

the invasion probability. This is in agreement with the earlier 1D results reported in [?].

8.3 Short summary

One of the less understood and the most intriguing phenomena is the invasion mechanism

of pre-neoplastic lesions, that invade to its proximal tissue or to distant organs (termed

as metastasis). The biological mechanisms that govern invasion probability of a mutant

phenotype are still unclear due to the variations in tissue properties that effect the cells.

Also, several important factors are over shadowed by other forces in the system, due to

which some of the questions are still unanswered. In order to understand the invasive

potential of mutants better, we consider only two genetic factors that predominantly effect

the invasiveness of a cell which are proliferation and migration.

We have presented a computational approach to investigate an important but poorly
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Figure 8.8: Boundary effect on a Lattice: Invasion probability against the position of B

mutant. Parameters: lattice size = 21× 21,λ = 1.5, kA = 0.

understood phenomenon, phenotypic heterogeneity, which appears to be highly prevalent

during various stages of tumor growth. The existence and adaptability of pre-cancerous

cells with different fitness rates in human tissues is still far from an established fact. Thus,

we formulated a simplified scenario and investigated mutant dynamics with only two phe-

notypes in our system under a confined tissue geometry. We have attempted to understand

the effect of tissue geometry on the invasion probability by generating a random set of neigh-

bors for each node on a regular grid. Also, we have focused on the use of unstructured

meshes that we believe captures features of real tumors that structured meshes fail to do,

and have analyzed the resulting invasion dynamics of mutants. Our model is a generalized

version of existing models and better captures the results on invasion dynamics.

We obtain some insight into the effects of the randomness of neighborhood sizes on

the invasion probability in a migration free system. As noted previously, the invasion
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probability is negatively correlated with the width of the distribution of neighborhood size.

An increase in the distribution width of the neighborhood size can completely eliminate the

advantage given by an increased proliferative potential of mutants, making them behave as

if they were neutral mutants. These results provide further justification for us to conjecture

that tissue geometry plays an important role in the invasion dynamics of pre-cancerous cells

within a confined region.

The resulting graphs from this experiment confirm that the invasion probability is much

smaller on unstructured meshes compared to a regular grid. Interestingly, for the scenarios

in which kA = 0 and kA = 1.0, and for a given λ = 1.5, we observe minimal effect on the

invasion probability. This indicates that smaller migration potentials of the host cells has

a smaller effect on the invasion probability. For a neutral mutant, we notice a significant

change in the invasion probability for the scenarios kA = 0 and kA = 1.0. However, when

the ratio of the proliferative potentials is altered for various migration potentials, there is

a huge effect on the invasion probability.

One of the results worth highlighting is the effect of the boundary on lattices. This

is done by fixing the position of a B cell in the system at (i, i) = (1, 1) and varying its

position along the diagonal. This resulted in the invasion probability being smaller when

compared to the invasion probability of a B cell placed at the center of the system. As

the position of the B cell is moved inwards from the boundary, the invasion probability

increases.

We anticipate that our results can be used to better understand some fundamental

mechanisms in carcinogenesis. This includes the effect of the tumor micro-environment,

which can affect the reproductive and migrative potentials of cancer (and pre-cancerous)

cells. Our model can be extended to include the randomness of fitness and migration

potentials, as a result of heterogeneous tumor micro-environment and for distinct cell
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phenotypes (which is addressed in the next chapter). Additionally, several biological studies

support the fact that the epithelial-mesenchymal transition (EMT) is a critical stage in

metastasis, when cells acquire migrative potential [1]. Our computational methodology

may be applied to address questions related to this biological phenomena. For instance,

we have shown that the invasion probability depends on the width of the distribution of

neighbors. This computational study can be validated experimentally by inducing cells

to undergo EMT, and measuring the invasion probability for various tissue architectures

(i.e. using different cell lines). In addition, we have observed that increasing migration

potential (for example, due to EMT) has a significant effect if proliferative potential is

around the neutral drift. This prediction can be tested by again inducing the cells to

undergo EMT in different micro-environmental conditions (for example, under normal and

hypoxic or acidic conditions). Finally, our results confirm that distortion of the tissue

architecture and control of migration potential of pre-cancerous cells can reduce tumor

progression to some degree (which can be applied in the study of anti-cancer therapies

induced secondary malignancies). The invasion of pre-cancerous cells may be controlled

by a therapeutic intervention that can control the geometry of the tissue architectures.

For instance, several experimental studies have suggested that morphological changes in

the breast tissue promotes (breast) cancer to some extent. This change in tissue can

be controlled by an agent that can inhibit the metabolic pathways that change tissue

architecture.
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Chapter 9

Effect of Site Dependent Fitness on

Invasion Probability

9.1 Introduction

The effect of spatial structure and heterogeneity is known to be of significant importance

in evolutionary models, including evolutionary biological models and social networks (see

[167]-[168]) and references therein). The structure of the network might have subtle effects

on the dynamical properties and salient features of the model. One of the most impor-

tant results obtained from these models is the fixation (also called invasion) probability.

Invasion probability is defined as the probability that a species (for example, a mutant)

can take over the whole population in the system. Depending on the structure of the

graph, the invasion probability can either be suppressed or enhanced and amplified. The

question of how the structure of the network affects fixation has been the subject of much

research. Maruyama showed that, on regular graphs the fixation probability is the same
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as on unstructured model [148]-[149]. Lieberman et al. [151] generalized this observation

to a more general set of graphs known as isothermal graphs. Many authors discussed het-

erogeneity of the spatial structure and its impact on the fixation probability (see Manem

et al [170], Sood et al [168], Houchmandzadeh et al [152]). Sood et al. [168] showed that

upon introduction of randomness in a scale-free random graph the fixation probability is

significantly suppressed. Other papers have suggested particular configurations in fact en-

hance the fixation probability [151]. Recent work by Thalhausser et al.[159] and Manem et

al. [170] on structured and unstructured meshes and random graphs showed that spatial

structure influences the fixation probability to a greater extent for mutants with migration

potential. Although a great deal of research has been devoted to heterogeneity of networks,

less effort has been devoted to a study of heterogeneity due to spatial fitness distribution

and environmental stress and its effect on the invasion probability. Spatial variation of

fitness, however, is a critical parameter in modeling biological and social systems as the

fitness of species strongly depends on the micro-environmental parameters which cannot

be ignored. For example in models of bacterial growth, fitness can be a function of spatial

distribution of nutrients, in social networks it can represent the geographical biases (see

[171] for models of election). In the evolutionary dynamics of cancer, tumor progression is

known to be strongly affected by the tumor micro-environment. In this paper, we focus our

attention on modeling the tumor micro-environment during cancer progression although

we shall point out other practical applications in other contexts, as well.

In cancer a single mutated cell proliferates and evolves into a neoplasm which progresses

and develops into a tumor. New mutant cell types appear as a result of intrinsic genetic

instabilities and environmental pressure from tumor the micro-environment that stimulate

epigenetic changes and are believed to play a major role in cancer progression into metasta-

sis [1]. Genetic changes (mutations) that occur spontaneously during DNA replication and
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result in a change in the genetic code. Epigenetic changes are those changes that can be

attributed to the variations in the functionality of its genome. Micro-environmental factors

that contribute to these changes can be lack of resources, as well as the micro-environment

such as it’s acidity, hypoxic state and vascular heterogeneity. The micro-environment can

act as a refugee for some species (i.e. permit co-existence of various species), or can fa-

cilitate fixation of a single species. The evolutionary dynamics of such a population in a

highly diverse environment is very complex, and does not follow traditional explanations

using equilibrium or quasi-equilibrium approaches. The changes in the environment reflect

the diversification of the morphology. Depending on the variations in the spatial hetero-

geneity, there might be several scenarios that can be exhibited by the system, namely, zero

absorbing state, or fixation by the dominant species, or co-existence.

Phenotypic heterogeneity is a key regulator in cancer and is highly prevalent during car-

cinogenesis, too. Several systematic investigations have suggested that the morphological

diversity within a tumor can be due to metabolic functions, availability of nutrients (such as

oxygen, etc) or, micro-environmental stresses. A highly heterogeneous micro-environment

leads to a population comprised of diverse pre-cancerous phenotypes. The fitness of various

cancerous phenotypes is dictated by genetic, epigenetic factors and in particular, the host

environment. Various selection forces confer a selective fitness advantage to a particular

mutant phenotype compared to other sub populations in the tissue. These selection forces

change spatially and also temporally during the evolution of tumors. There are several

modifications that might occur in various therapeutic interventions, (namely, chemother-

apy agents and nano-drug delivery). Due to non-homogeneous distribution of drug delivery,

cells spontaneously may adapt to the drug and become therapy resistant. This also dic-

tates the existence of diverse species and the variations in the division rates. Although

migration potential is important, all of the above situations can arise in a migration free
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system too.

In cancer biology, migration is considered to play a vital role in the invasion of neigh-

boring tissue as well as in metastasis. Although cellular motility and cell migration are not

(quite) identical terminologies, in this work we assume both are equivalent. Also, numerous

experimental investigations have suggested that in the final stages of carcinogenesis, cells

undergo a transition to become more motile (the so called the Epithelial-Mesynchemal

transition (EMT) [1]), and this new phenotype with higher migration potential escapes

from the system and colonizes a different organ. Thus, a relevant and interesting challenge

is to understand the interplay of migration potential and heterogeneous (fitness) distri-

bution of mutants. However, as far as the authors are aware this problem has not been

addressed in any evolutionary graph theoretical model of evolution to date. This scenario

is also addressed in the later part of this work. We show that the interplay of spatially

distributed fitness and the capability of individual migration leads to non-trivial results

for the invasion probability.

In this section, we address several challenging questions related to the interplay between

different types of spatial random fitness distributions such as uniform, triangular, bi-modal

(in the presence and absence of migration) on the fixation probability. It should be noted

that we have explored the invasion dynamics only for spatially heterogeneous systems which

are independent of time.

Many authors have studied the spatial dynamics of cancer invasion using cellular au-

tomata models [162]—[165], and have incorporated progressively more complex cellular

mechanisms. In these types of models, it is very likely that the effects of some forces on

the underlying invasion dynamics are obscured by other dominant forces. In an attempt to

understand and analyze the underlying dynamics, we consider only two forces that influ-

ence the inherited genetic behavior of a pre-cancerous cell. This is an extension of the work
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of Komarova et al. [159], which focused on the invasion dynamics of pre-cancerous cells on

a structured lattice in the framework of Moran processes. This work was later extended by

Manem et al. [170] who investigated the effect of migration (on random and unstructured

meshes) on the invasion probability, which had not been investigated in previous modeling

efforts to understand cancer progression on more realistic tissue architectures. The authors

also investigated the fixation probability as a function of the width of the distribution used

to construct the random graph and observed that the fixation probability decreases as the

width of randomness increases. The problem of fixation in random spatial structures has

been discussed in detail in the literature, nut most of the existing models, rely on a weak

selection limit of a voter model (see [168] for example).

Authors in [159] found that the fixation probability of the motile phenotype is enhanced,

and is critically important near the neutral limit. The work reported in [170] confirmed

the above findings on random structures and analyzed how the randomness of the graph,

and the migration potential of mutants compete with each other. Our model shows a

lot of resemblance to the phenotype switching model, in which replicative and migrative

phenotypes stochastically switch between each other [172].

9.2 Results

9.2.1 Effect of randomness (with zero migration)

In this section, we investigate the effect of randomness of mutants (instead of random

spatial architectures) in a system, i.e. when one or both of the two phenotypes has random

fitnesses from a given distribution, which is considered to be more realistic scenario. As

discussed in the previous section, our focus is on the spatial fitness distribution. The effect

148



of temporal random fitness has been discussed previously in the literature on population

genetics (see [173]).

Our model in this section, however, assumes that the variation in the fitness rates is

due to a quenched randomness spread over the spatial structure, which does not have any

dynamics. This can represent cases where environmental effects such as the distribution of

nutrients (or, any other agent for instance resistance to chemotherapeutic drug) can affect

the local fitness of an individual phenotype. For example, in the absence of some hormones

(growth factors) which are distributed spatially, cells might enter quiescent states thus

indicating a lower fitness. In the case of cancer cells it is believed that spatially distributed

oxygen and acidity might affect the aggressiveness of cancer cell phenotypes. In models of

bacterial growth, this can be due to the lack of nutrients in local habitats.

We investigate the effect of random proliferation of A and B cells, separately, on the

invasion probability for zero migrative potentials (for both types of cells). We explore

various types of random fitness distributions. Figure 9.1 displays different types of fitness

distributions chosen for the numerical experiments: uniform, triangular (D = [0.9, 1.25],

D = [0.75, 1.1]) and bi-modal. The critical question in this experiment is to analyze if the

selection dynamics depends on the shape of the fitness distribution (i.e. uniform, triangular

and bi-modal). We use the algorithm outlined in the previous section and run 5 sets of

simulations of 10000 iteration each. Each iteration is performed until the system reaches

one of its absorbing states (either all B’s or zero B’s).

9.2.2 Random fitness of mutants

In this section we investigate the effect of variance of the fitness of the mutant cells (B cells)

on the invasion probability. This is carried out by assuming a fixed fitness for type A cells,
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Figure 9.1: Different forms of random fitness distributions: a) Uniform b) triangular c)

bi-modal.

which does not depend on the environment (lattice sites). Also, we take the type A cells

fitness as the reference fitness (by assuming it to be equal to 1). As indicated in Fig.9.1 (a)

fitness of B cells in this case, follows a uniform distribution where 〈rB〉−∆ < rB < 〈rB〉+∆.

For this, we construct a regular grid consisting of 21 x 21 = 441 elements with reflecting

boundary conditions, and fix the fitness rate of A cells, i.e. rA = 1.0. We then randomly

generate fitness rates for B cells at each nodal point on the lattice such that the average

value is rB = 1.5 for advantageous mutants and rB = 1.0 for neutral mutants, and fix this

fitness matrix for all the iterations. We fill the lattice with type A cells at each nodal point

on the grid, and randomly place a mutant in the system (by deleting an A cell). So, the

system is now comprised of N−1 type A cells and 1 type B cell. The algorithm outlined in

the previous section is applied with reflecting boundary conditions until the system reaches

one of its absorbing states. Figure 9.2 shows the effect of varying the distribution width of

rB on the invasion probability for advantageous mutants.
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Figure 9.2: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: Lattice size=21 x 21; rA = 1.0, 〈rB〉 = 1.5, mA = mB = 0

From Figure 9.2, we observe that the invasion probability negatively correlates with the

width of the distribution, i.e., as the width of the fitness distribution of type B cells, ∼ ∆,

increases, the invasion probability decreases for advantageous mutants. In Figure 9.2, we

do not observe a huge impact on the invasion probability till the value of ∆ is 0.4-0.5.

Once the ∆ value increases across the threshold of 0.4-0.5, i.e. relatively small width, we

notice a decline in the invasion probability. At the lower end of the uniform distribution,

i.e. 〈rB〉−∆ reaches rA(= 1) one can see that the fixation probability begins to decrease at

a much more significant pace. This indicates that as the number of sites where B cells are

disadvantaged is introduced in the system, the fixation probability decreases accordingly.

(Notice that the drop has almost a linear form but this may well be an artifact of the finite

size of the system used in the simulation.)
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For a high variance of distribution width, we can intuitively imagine the existence of

various types of B cells (with different fitness rates) which are competing against each

other, and also against type A cells in the system. Due to the intense competition between

various type B cells, and also against type A cells, it becomes hard for mutants to survive,

resulting in a sharp decline in the invasion probability for higher variance of rB. There

have been several experiments on random migration from the context of metastasis [182],

however these results can act as a pathway for further biological investigations into the

effect of random fitness of mutants on the invasion probability.

The system with zero fitness width can be understood as a well oxygenated and well

suited environment for proliferation of mutants at each point in the tissue. The increase

in the variance of the distribution can be interpreted as the system having harsh micro-

environmental conditions (for instance scarcity of resources, spatial and temporal changes

in nutrients). Due to varying fitness rates at each point, several mutants (with different

fitness rates) arise in the system and compete against each other, and also with the host

cells, to take over the whole tissue. Increasing the variance implies increasing the number

of different mutant phenotypes in the system competing against each other to take over

the whole tissue, and thus results in a decline in the invasion probability.

Figure 9.3 displays a plot of varying distribution width of rB on the invasion probability

for neutral mutants.

For a zero distribution width, we obtain a value of the invasion probability approx-

imately equal to the value of the space free fixation probability (ρ = 1/N = 0.0022).

Although the simulations were run for a large number of iterations, we do observe an in-

crease in the invasion probability for ∆ ∼ 0.1 and 0.2, which can be attributed to numerical

errors in the simulations. As the variance of the distribution increases, we notice a decrease

in the invasion probability which quickly approaches zero for a ∆ of 0.4-0.5. Biologically,
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Figure 9.3: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: lattice size=21 x 21; rA = 1.0, 〈rB〉 = 1.0, mA = mB = 0

if a tissue is comprised of various types of B phenotypes having an average value of 1.0,

then these phenotypes have to fight against each other along with the neutral host cells.

This competition to invade the whole tissue declines as the number of type different B

phenotypes in the system increases (with the increase in variance).

9.2.3 Random fitness of host cells and mutants

In this section, we investigate the effect of random fitness distributions for both types A

and B cells. We chose the fitness distribution width for type A cells to be D = [0.9, 1.1]

with average value to be rA = 1.0, and varied the distributions for type B cells. Figure 9.4

displays a plot of invasion probability against the variance of rB for advantageous mutants

whose average value is 1.5. We notice that as the variance of type B cells increases, the
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invasion probability decreases. Although, it is interesting to note that from Figures 9.2

and 9.4, for a ∆-value of 1.5, the value of ρ = 0.2087 and ρ = 0.2165 for non-random

and random fitness rates of type A cells, respectively. For a distribution width of 0.1

away from the average fitness value of A cells, we do not observe a huge change in the

invasion probability when compared to non-random fitness rate of A cells (see Figure 9.2).

Probably, the effect of random fitness rates of type A cells on the invasion probability

Figure 9.4: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: Lattice size=21 x 21; 〈rA〉 = 1.0, 〈rB〉 = 1.5, mA = mB = 0

might be clearly observed if the width is increased to a larger value. The randomness of

types A and B cells in the system can be taken to characterize normal and pre-cancerous

cells, whose fitness rates change at each point in the tissue. From our results, we observe

that a small change in the fitness rate distribution of host cells does not have much impact

on the invasion probability.
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Another interesting observation is that even though one intuitively expects that as the

distribution of A cells broadens towards a more advantageous states and as the distribution

of B cells broadens towards a less advantageous state, the point at which we observe a

change in regime (bending of invasion probability) should be when the two distributions

begin to overlap. As a matter of fact, this is not the case, and points to the fact that the

underlying mechanisms are more sophisticated and non-trivial.

Figure 9.5 displays a plot of the invasion probability against the variance of rB for

neutral mutants whose average value is 1.0. As in the previous cases, we observe a negative

Figure 9.5: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: Lattice size=21 x 21; 〈rA〉 = 1.0, 〈rB〉 = 1.0, mA = mB = 0

correlation of the distribution width of mutants with the invasion probability even in the

presence of random fitness of host cells. It is also interesting to compare Figures 9.3

and 9.5, for a ∆-value of 0.3. We notice that the presence of random fitness of host cells
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pushes the invasion probability (see Figure 9.5) to a smaller value compared to the absence

of randomness of host cells (see Figure 9.3). This can be attributed to the competition

between various types of host cells as well as with other mutants, resulting in a decline in

the invasion probability. This is again due to the fact that the fraction of disadvantaged

(i.e. rB < rA) type B cells increases in the system.

9.2.4 Special Case: neutral drift

In this section, we choose the fitness distribution width of neutral mutants to be a triangular

distribution, and investigate its effect on the invasion probability. The fitness of type A

cells is fixed to be rA = 1.0. The choice of a triangular distribution lets us fix the mean

value of both A and B cells to be the same (i.e. rA = rB = 1), while the median value of

B can be greater than unity. We tested two scenarios to investigate if a neutral mutant

can be pushed to an advantageous or a disadvantageous state for two sets of triangular

distributions. We choose the triangular distributions in such a way that the average value

of rB equals that of rA (although numerically it is close to but not exactly equal to 1.0).

The values of ρ for the two types of triangular distributions D1 and D2 are around

0 and 0.045767 respectively. This clearly indicates that a neutral mutant can be pushed

either to an advantageous mutant state (if D= [0.9, 1.25]), or, to a disadvantageous mutant

(if D= [0.75, 1.1]). The value of ρ in a space-free system is ρ = 1/N = 0.0022, and, on

a structured grid ρ ≈ 0.00224. However, if the system has fitness rates from a triangular

distribution D2, then the invasion probability is increased by almost 95%. At the same

time, if the fitness distribution is from D1, then the mutant loses its neutral drift and

becomes a disadvantaged mutant, leading to zero invasion probability. As can be seen the

effects are minor, but still observable in our simulations. These results can provide can
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pave a way to some biological studies on random resources and their effect on the invasion

dynamics.

Biologically, it is possible that fitness distributions may not always be uniformly dis-

tributed in the tissue. From our computational analysis, neutral mutants cannot be pushed

to become advantageous mutants for a uniform fitness distribution. However, if the distri-

bution is slightly changed to triangular, (i.e., the resources and nutrients vary according to

the triangular distribution), then a neutral mutant can turn into an advantageous mutant.

This is one of the plausible reasons why we might (or, might not) observe the invasion

mechanism under harsh micro-environmental conditions for neutral mutants.

9.2.5 Bi-modal distribution

In this section, we focus on the existence of only two types of mutant phenotypes in the

system along with host type cells, and their impact on the invasion probability (i.e. when

the fitness response of the system to the environmental factors is binary). For example,

cells can transition into a quiescent state in response to lack of nutrients, or due to a harsher

environment (hypoxia, acidity, drug concentration in the case of cancer) thus reducing cell

cycle times and fitness significantly. For this purpose, we choose the fitness distribution

of mutants from a bi-modal distribution D = {0.5, 1.5}, D = {0.8, 1.2} (with average 1.0),

and fix the fitness of host type cells to be equal to 1.0. We construct the fitness matrix

for mutants in such a way that the system is comprised of x per cent (0 ≤ x ≤ 1%)

mutants with advantageous fitness rate, r2, and the rest with disadvantageous fitness rate,

r1. Figure 9.6 displays the plot of invasion probability against the percentage of mutant

phenotypes with an advantageous fitness rate.

As seen from Figure 9.6, the invasion probability for the mutants is a function of the
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Figure 9.6: Invasion Probability against the Percentage of advantageous mutants. Param-

eters: Lattice size=21 x 21; rA = 1.0, mA = mB = 0

percentage of advantageous mutants (r2 = 1.5, or r2 = 1.2), and is zero until the bi-

modal distribution reaches a point where more than half of the points in the lattice confer

advantageous fitness. This can be understood by assuming a uniform and even distribution

of the two fitness values (say, rB = 0.5 and rB = 1.5) on a square lattice (i.e. checker-

board distribution). Now, every advantaged mutant is merely one lattice site away from

a fellow advantaged mutant, and upon one division event this gap is filled which gives

(almost) connected regions of advantage to the mutants. A much lower abundance of sites

with advantaged fitness values leads to separated islands inside which the average value

of fitness would confer a fitness advantage for the mutants there. However, due to the

distance between them, the chance to capture the whole system A system refers to a small

niche (with a finite and small number of cells) would be extremely small.

In other words, a successful invasion of the system is possible if all different islands with

advantaged fitness sites are tightly connected. Due to the construction of the death-birth
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model the regions with on-site advantaged fitness can be one cell away from each other and

still lead to a successful invasion. The fact that all the regions with advantageous fitness,

(i.e. r2 in Figure 9.1) should not be separated or found far from each other is illustrated in

Fig.9.7 a. The ideal checkerboard distribution where every other site has an advantageous

value of fitness for B cells is depicted in Fig.9.7 b.

sites with high-fitness for 
mutants cell

sites with low-fitness for 
mutants cell

a) b)

Figure 9.7: (a) Random distribution of two types of sites with high and low fitnesses for

mutant cells. (b) Evenly distributed high and low fitness sites with equal ratios (ideal

case). This is the onset of successful fixation.

In the case of a bi-modal distribution we can use a simple approximation especially

in the weak selection limit. When r1 and r2, in the bi-modal distribution, are positioned

at the same distance from 〈rB〉, then the average value of the fixation probability can be

replaced by the following Moran model formula:

ρbi−modal ∼ 1− 1

〈r〉 (∆r � 1)

∼ 1− 1

r2x+ r1(1− x)
, (9.1)
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where r1 and r2 are the values of fitness, and x is the fraction of r2 sites, i.e. disadvanta-

geous sites. Figure 9.8 displays the comparison of invasion probabilities between analytical

approximations and the simulated result. As can be seen for the case of r1 = 0.5, r2 = 1.5

where 〈rB〉 = 1.5 6= rA, the above simple approximation breaks down and the difference

in error increases. We have also simulated for the scenario: r1 = 0.2, r2 = 2.8 (not shown

here), and in this case we observed that the analytical approximation is no longer valid,

Figure 9.8: Comparison of invasion probabilities- Analytical and Simulated for various

distributions

and the error increases between simulated and analytical values. This clearly indicates

that as the width of the distribution increases, the average value 〈r〉 cannot be replaced

by r2x + r1(1 − x), and computational simulations are required to estimate the invasion

probability

During the early stages of carcinogenesis, host type cells can be interpreted as healthy

cells, and the two types of phenotypes (from the Bi-modal distribution) can be character-

160



ized as two types of pre-malignant cells in the system. The existence of these two types

of pre-malignant cells are based on several micro-environmental factors including acidity,

hypoxia, epi-genetic or genetic changes. These two types of cells are understood to have

two different fitness rates in the tissue. It is clearly evident from our analysis that the

invasion probability will always be zero until the system reaches a particular threshold of

advantageous mutants. Therefore, under harsh micro-environmental conditions, when the

system is comprised of mostly disadvantageous mutants, the invasion probability is always

zero. Hence, we conclude that there is a very minimal chance of mutants invading the

neighboring tissue under these conditions.

9.2.6 Effect of Randomness: With Migration

In this section, we investigate the effect of migrative potential of mutants on the inva-

sion probability for a random fitness distribution width of type B cells. This experiment is

carried out in order to try and ascertain if migration reduces or amplifies the invasion prob-

ability. The migrative potential of host cells is assumed to be mA = 0, while the migration

potential of mutants is chosen to be mB = 1.0 (low migrative potential) and mB = 5.0 (high

migration potential). Migration potential can be considered as 1/average migration time,

and units of migration can be defined as the number of steps a cell movies per unit time.

The algorithm outlined in Section 2 is carried out with reflecting boundary conditions, un-

til the system reaches one of its absorbing states. Figure 9.9 displays the plot between the

variance of distribution width of mutants against the fixation probability in the presence

of migration.

From our computational analysis, it is clear that the migration potential of mutants

amplifies the invasion probability. In Figure 9.2, we notice that in the absence of migra-
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Figure 9.9: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: Lattice size=21 x 21; rA = 1.0, 〈rB〉 = 1.5, mA = 0

tion, the invasion probability decreases as the variance increases, which is the opposite of

Figure 9.9, wherein the invasion probability increases in the presence of migration. Inva-

sion probability increases as the variance increases, but almost stays constant for larger

variances.

This corresponds to an interesting biological phenomena in real tumors. Many authors

have experimentally claimed that migration and proliferation are two sides of the same coin,

and they counteract one another in the system [183]. In some solid tumors such as in-situ

tumors, where the migration potential of cells is close to zero, the invasion probability

decreases under harsh micro-environmental conditions (see Figure 9.2). However, during

carcinogenesis, as mutants or pre-malignant cells acquire migrative potential, the invasion

probability is amplified even under severe micro-environmental conditions (see Figure 9.9).

A similar experiment is carried out for neutral mutants, by varying the distribution
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width of mutants in the presence of migration. Figure 9.10 displays a plot of invasion

probability against the variance of fitness distribution of type B cells. A similar behavior

is observed as in the previous plot. The invasion probability is amplified in the presence of

migration even for neutral mutants, and stays almost constant for an increasing distribution

width. This suggests that under harsh micro-environmental conditions wherein the supply

of oxygen and nutrients is limited, (i.e., all mutants in the system have fitness rates around

the neutral drift), migration plays an important role in the invasion of the adjacent tissue

or even in EMT phenomena (in which cells metastasize to distant sites).

Figure 9.10: Invasion probability of mutants as a function of varying distribution width of

fitness rB. Parameters: Lattice size=21 x 21; rA = 1.0, 〈rB〉 = 1.0, mA = 0, a) mB=1.0

and 5.0.
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9.3 Short summary

We have presented a computational framework to understand the effect of the tumor micro-

environment on the invasion probability of pre-malignant cells. A biological phenomenon

that is not well understood is phenotype heterogeneity during the process of carcinogenesis.

Several experimental studies have suggested that tumor growth dynamics is quite different

in a heterogeneous micro-environment compared to a homogeneous environment. In a

heterogeneous environment, the tumor growth (either in the early or later stages) is affected

by several factors such as nutrients, oxygen concentration, acidity, extra-cellular matrix

(ECM), etc. This clearly indicates the importance of studying the invasion dynamics,

(i.e. either invasion to neighboring tissue or metastasis), under harsh micro-environmental

conditions. We have considered cellular automata rules based on biological assumptions,

and not imposed them in order to obtain interesting salient features of the model. Thus,

we have developed a simplified model that has two types of phenotypes in the system,

namely host cells and mutants. The reproductive rates of both host cells and mutants

might differ due to several micro-environmental conditions. For example, the division rate

of a phenotype can be reduced due to the rigidity of the tissue, or due to lack of nutrients

at that position. Also, the division rates for both the host cells and mutants can be quite

different in real tumors. Our computational model encapsulates these into a spatially

distributed random fitness of mutants as well as the host cells in the presence and absence

of migration, to examine their impact on the invasion probability.

We have also investigated the effect of random fitness distribution widths of advan-

tageous and neutral mutants (in the absence of migration) on the invasion probability.

We observed that the invasion probability decreases as the variance of fitness distribution

increases. A fitness distribution with zero width (which can be characterized as a well oxy-

164



genated system) has a higher invasion probability (which can be understood intuitively)

compared to a non-oxygenated system. However, as the variance of the fitness distribution

increases, (i.e. under harsh micro-environmental conditions) the invasion probability de-

creases. This is justifiable due to the intense competition between various mutants (that

emerge due to changes in the environment), and also competition with the host cells to

invade the system.

We also focused on the impact of the invasion probability, due to a random fitness

distribution of both the host cells and also mutants, on a migration free system. As noted

in the previous scenario, the invasion probability negatively correlates with the fitness

distribution width of the mutants. It is also quite interesting to note that there is no

significant difference between the invasion probabilities in the presence and absence of

random fitness of host cells. This can be attributed to less randomness (with width one

away from the average value) of host cells in the system, which behave in a similar fashion

to a distribution of zero width.

Several biological experimentalists have suggested that the harsh micro-environmental

conditions can facilitate an increase or a decrease in the invasion mechanism of mutants.

This biological phenomenon is very crucial in the metastatic process. To understand this

mechanism, we tried to investigate the conditions (if they exist) that amplify and weaken

the invasion probability. For this purpose, instead of choosing the fitness matrix of mutants

from a uniform distribution, we preferred a triangular distribution with average as neutral

drift. It is quite interesting to note that for various distributions, the neutral mutant can

be amplified to an advantageous mutant or weakened to a disadvantageous mutant. This is

a significant change in the invasion probability of mutants which might/might not facilitate

invasion into the proximal tissue under various micro-environmental conditions.

Moreover during carcinogenesis, it is quite possible for the existence of only two mu-
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tant phenotypes with different fitness rates. We investigated this scenario by choosing a

bi-modal distribution D = {0.5, 1.5} to capture the invasion feature of mutants. It is in-

teresting to note that the invasion probability is zero until the system reaches a particular

number of advantageous mutants. The invasion probability is zero even when the system

is filled with 50% of advantageous mutants. This zero invasion can be attributed to the

competition between 50% of advantageous mutants and 50% of disadvantageous mutants,

as well as against the host cells in the system. This suggests that under moderate (non-

harsh) micro-environmental conditions, we observe the invasion probability to be zero until

the system is dominated by advantageous mutants.

Due to several environmental stresses, it is quite possible that cells acquire migration

potential, which is observed in metastasis. We investigated the effect of random fitness

distribution widths (of mutants) on the invasion probability in the presence of high mi-

gration potential of mutants. From our analysis, we observe that migration amplifies the

invasion probability as the variance increases for both advantageous and neutral mutants.

In a migration-free system, the invasion probability is suppressed as the cells do not move

in the system, due to which there is a higher chance of mutant extinction. However in the

presence of migration, the extinction probability of mutants is small due to cell movement

within the system. Hence, we observe an amplification of the invasion probability for both

advantageous and neutral mutants.

We anticipate that our results can be used to understand the effects of heterogeneous

tumor micro-environments on pre-neoplastic and neoplastic invasion of tissues. We empha-

size that our cellular automata rules are based on existing biological assumptions within

tumor micro-environments. We developed a computational framework to understand and

analyze the importance of random fitness distributions (due to harsh environmental con-

ditions) on the invasion mechanism of pre-malignant cells. Biologically, it is a known fact
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that several environmental stresses (such as rigidity of tissue architecture and growth fac-

tors) can lead to the Epithelial-Mesenchymal-Transition (EMT), which is an important

component of metastasis. From our analysis we have shown that under certain conditions,

a neutral mutant can turn into an advantageous mutant (in the absence of migration),

and that migration amplifies the invasion probability even in heterogeneous conditions.

Our results can pave a way for further biological studies, and also to gain further insights

into the effect of random fitnesses on the invasion probability. Although our computational

model reflects a realistic heterogeneous scenario within a tumor micro-environment, we can

always refine the model to make it work clinically (although this is very tough to achieve),

by incorporating the fitness of a cell at a point on the grid as a function of various nutrients

and oxygen supply that change temporally. Our model can be further extended to realistic

tissue architectures through the study of invasion probability on unstructured meshes.
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Chapter 10

Conclusions and future work

10.1 Contributions

In this thesis, we have contributed some novel approaches to clinical problems that lie

at the interface of radiation oncology, radiation physics and mathematical oncology. The

metamorphosis of extended field radiotherapy to involved node radiotherapy and various

scientific advancements in chemotherapeutic drugs have substantially improved the survival

rate of cancer patients. One important parameter that oncologists have to consider during

treatment planning is the quality of life of the patient post treatment. In this context,

various epidemiological, clinical and case control studies have reported that most cancer

survivors are faced with the prospect of a high risk of a secondary malignancy due to anti

cancer therapies.

Due to the growing body of evidence that ant-cancer therapies induced second malig-

nancies, it has become vital to evaluate the risks associated with these therapies. Also,

the shift in paradigm from photon therapy to particle therapies is currently under exten-
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sive clinical investigations to maximize the local control of disease while sparing healthy

tissue. Previous models in the literature have neglected the effects of radiation quality on

the radio-biological and mutation induction parameters (which are considered to be the

most significant) in evaluating second cancer risks. In this regard, we developed a gener-

alized mathematical framework that incorporates an important radiation quality feature,

the LET, and its dependence on the radio sensitivity parameters and mutation induction

frequency. Although we have developed this for mono-energetic beams, this formalism has

succeeded over other models by demonstrating the need and the importance of including

radiation quality in evaluating second cancer risks.

Most anti-cancer regimens include a cocktail of treatments, particularly, a combination

of chemotherapy and radiotherapy. It is of paramount importance to develop an efficient

dose scheduling that can maximize tumor control and minimize second cancer risks. In this

regard, we have developed a generalized mathematical model that incorporates chemother-

apy and radiotherapy induced effects on second cancer risks. This model demonstrated the

importance of evaluating the risks for combined modality protocols, which can also act as

a potential tool to design an efficient regimen.

Several clinical studies are being carried out investigating dose painting to maximize

the tumor control probability. Dose escalation is being carried out through chemotherapy

alone or radiotherapy alone or as a combined regimen. In most treatments all the cancerous

cells are not eliminated completely, and as a result there is a possibility of early or late stage

relapse. At the same time, increasing the relapse time might require an increase in the dose,

which may well result in elevated second cancer risks. We have developed a mathematical

framework that incorporates relapse dynamics and the tumor control probability, along

with a second cancer risks model and tested it using various fractionation schemes. Using

this model, we have attempted to suggest a shift from conventional to hypo-fractionated
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regimen, which may need further clinical investigations.

These comprehensive mathematical formalisms (extended IIP formalisms presented in

Chapter 4, 5, 6) can be supplemented with experimental validations using patient specific

data. This would greatly help radiation oncologists to gain access to individualized second

cancer risks estimates, and help in developing efficient treatment regimens that can spare

healthy tissue without impairing treatment to the primary tumor volume.

There has been considerable research effort focused on trying to understand the evo-

lution of cancer using the framework of evolutionary dynamics, (both spatial and non-

spatial). It is well known that some tumor initiator cells are produced during the course

of the treatment. Since there is a possibility that these pre-malignant cells can become

extinct, we have tried to investigate the probability of a pre-cancerous cell surviving and

taking over a small population within a distorted tissue. We also investigated the het-

erogeneity of a given system post irradiation in two different scenarios, one with random

architecture and the second with site dependent random fitness. It should be noted that

these investigations have been carried out in the presence and absence of cellular motility,

which up till now has not been addressed in the literature. We developed a computational

approach and explored the effects of randomness of grids and meshes on the invasion prob-

ability of pre-cancerous cells; and also examined the impact of site (on a lattice) dependent

random fitness of pre-malignant cells on the invasion probability. These results can pro-

vide an insight into the heterogeneity of various types of phenotypes during the tumor

progression (both in primary and second cancers).

170



10.2 Future directions

All of the above models provide some fundamental insight into the estimation of second

cancer risks induced by chemo-radio therapies. Some of most important insights are on

temporal sequencing of combination of treatment strategies and the dependence of tissue

specific second cancer risks. It might be more beneficial to refine the models presented in

this thesis to increase the predictive capability of second cancer risks. Some of the potential

refinements for these models are proposed below.

A major extension to the mathematical framework that incorporates radiation quality

features would be one that includes parameters for mixed radiation fields with different

energies. This would represent a major advance in theoretical predictions of second cancer

risks for particle therapies. Since the anatomical structure varies between patients, it

would be worthwhile developing the capability to include the dose volume histograms of

each patient in order to be able to estimate the corresponding second cancer risks for

individual patients. This would help radiation oncologists quantify the risks associated

with various particle therapies and also be in line with current push towards personalized

medicine in all branches of clinical medicine.

In Chapter 5, we presented a simple model that incorporates both chemotherapy and

radiotherapy, and there are numerous extensions to this framework. It might be worthwhile

to extend this to various fractionation regimens combined with chemotherapy in order to

understand the effects of fractionation on second cancer risks. One possible extension is to

include the interaction of ionizing radiation with chemotherapeutic agents (for instance,

some agents may act as radiation sensitizers) along with the incorporation of the pharma-

codynamics of chemotherapy drugs. This would enable us to get a better estimate of the

effects of combined modality protocols. Moreover, there have been studies that suggest
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showing that hormonal factors also play a significant role during treatment [15]. Another

extension that might aid in a better understanding of second cancer risks (due to combined

treatments) is to model hormonal factors like estrogen levels, etc during treatment.

It is a well known fact that hypoxic tumors are oxygen deprived and are often resistant

to therapies, thus boosting the dose to the tumor might increase tumor control to some ex-

tent. Another potential direction, in the context of evaluating efficient regimens (discussed

in Chapter 6), is to include the effects of oxygen tension on radio-biological parameters.

This will enable oncologists to take into consideration micro-environmental effects on the

radio-sensitivity parameters, and escalate the dose accordingly. It should be noted that

the design of these protocols should be carried out by including recurrence dynamics in

conjunction with second cancer risks models.

Biologically, it is known that a tissue consists of cells of different phenotypes such

as normal stem cells, progenitor cells, differentiated cells. The radio-sensitivities vary

depending on the particular phenotype. From the perspective of mathematical modeling,

it would be interesting to incorporate a stem cell heirarchy in a model with a view to

being able to evaluate different types of cytotoxic therapies administered individually (for

instance, radiation therapy and chemotherapy can have different sensitivities) and as a

combined modality treatment. Although the theoretical risk predictions might not change

drastically, it would nevertheless be interesting mathematically and computationally to

explore the fluctuations of various cells during the course of the treatment.

Evolutionary dynamics has played a major role in understanding the evolutionary mech-

anisms of cancer. In order to capture complex dynamics during carcinogenesis, we need

to resort to evolutionary techniques. One of the most important and obscure phenomena

is the role of cellular motility during carcinogenesis (and also in the case of in-situ breast

carcinomas). A possible extension to the current work is to study the effect of random
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migrative potentials on the fixation probability on spatial domains constrained by bound-

aries. Resistance of cells to treatments is also one of the more important clinical problems

of current interest. Some of the intriguing questions related to the evolution of radiotherapy

and chemotherapy resistance can be explored using the evolutionary dynamics framework.

Several authors have developed multi-scale modeling techniques to investigate cancer pro-

gression. Following these approaches, it would be interesting to incorporate the effects of

the micro-environment into the existing spatial framework. For instance, the proliferative

(and/or the migrative) potential of a cell can be a function of oxygen concentration, nu-

trients, etc on the lattice. Several biological studies have supported the role of phenotype

switching during cancer progression. From an evolutionary perspective, it would be inter-

esting to examine the impact of phenotype switching on the fixation probability using a

spatial evolutionary model. These results can shed some light on the EMT mechanism,

which is one of the key stages in the process of metastasis.

Mathematical modeling is one of several ways through which an in depth understanding

can be gained, by providing a robust in-silico framework in which to study anti-cancer

therapies and their associated cancer risks. Mathematical oncology is beginning to take

centre stage as one of the theoretical tools that can be used to tackle several clinical

problems related to radiation science. Mathematical oncology is an interdisciplinary field,

where the synergy of interaction between mathematics and oncology can provide a better

understanding of cancer progression and enable the design of effective treatments to combat

this.
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