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Abstract 

The essential cell cycle kinase Dbf4/Cdc7 (DDK) triggers DNA replication through 

phosphorylation of the Mcm2-7 helicase at replication origins. Prior work has implicated 

various Mcm2-7 subunits as targets of DDK, however it is not well understood which 

specific subunits mediate the docking of the DDK complex. Through yeast two-hybrid and 

co-immunoprecipitation analyses, we found that Dbf4 and Cdc7 interact with distinct 

subunits of the Mcm2-7 helicase complex. Dbf4 showed the strongest interaction with Mcm2 

while Cdc7 associated with Mcm4 and Mcm5. Dissection of the N-terminal region of Mcm2 

revealed two regions that mediate the interaction with Dbf4, whereas in Mcm4, a region near 

the N-terminus has been previously identified by another group as the DDK docking domain. 

Mutant forms of Mcm2 (Mcm2ΔDDD) or Mcm4 (Mcm4ΔDDD) lacking the DDK docking 

domain were expressed in cells and resulted in modest growth and replication defects. 

Combining the two mutations resulted in synthetic lethality, suggesting a redundant 

mechanism of Mcm2 and Mcm4 in targeting the DDK complex to Mcm rings. Furthermore, 

growth inhibition could be induced in a Mcm4ΔDDD background by overexpressing Mcm2 

to titrate Dbf4 from Mcm rings. These growth defects were exacerbated in the presence of 

genotoxic agents such as hydroxyurea and methyl methanesulfonate, suggesting that DDK-

Mcm interactions may play a role in stabilizing replication forks under S-phase checkpoint 

conditions. Regions of Cdc7 were examined for their interaction with Mcm4 and Dbf4. 

Results have shown that the N-terminal amino acid region 55-124 and the C-terminal region 

453-507 of Cdc7 are likely target regions for Dbf4-binding. Several conserved residues were 

identified within the N-terminal 55-124 Cdc7 region that interface with conserved residues 
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within motif-C of Dbf4. Conserved residues were identified within the DDD domain of 

Mcm2 and mutating these residues resulted in a decreased interaction with Dbf4. Lastly, 

bioinformatics analysis has revealed potential conserved residues within the Mcm4DDD 

region, which may play a role in binding to Cdc7. This research is significant because these 

factors, which are conserved in all eukaryotes studied to date, should give further insight as 

to how DNA replication is triggered and how it is affected when cells are exposed to DNA 

damaging or replication compromising agents. This research also has implications in cancer 

genetics, as prior studies have shown elevated DDK and Mcm protein levels in tumour cell 

lines and melanomas, with Cdc7 showing great promise as a cancer therapeutic target. Such 

knowledge will further enhance our understanding of the DNA replication process and the 

roles of cell cycle proteins involved, under both normal and checkpoint conditions. 
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1.1 Background 

1.1.1 Features of Yeast 

Yeasts are unicellular eukaryotes that have historically been used as a key component 

in fermentation processes like brewing, bread making and wine making dating as far back as 

6000 B.C. Yeasts are members of the Fungi kingdom with more than 1500 yeast species 

identified to date. Yeasts are non-photosynthetic chemoorganotrophs meaning they require 

fixed, organic compounds as their source of energy. These can include sugars like glucose 

and fructose, alcohols, organic acids, fatty acids, and hydrocarbons (reviewed in Walker, 

1998). The ability to utilize a variety of carbon sources allows their adaptation to a diverse 

range of natural habitats like plant surfaces, ripened fruits, guts of animals and insects, soils, 

freshwater, seawater, and even some extreme habitats like low temperature and high salt 

environments (reviewed in Walker, 1998; Turk et al., 2010). Yeasts can also survive in 

aerobic or anaerobic environments. In the presence of oxygen, they utilize aerobic respiration 

to convert sugars to carbon dioxide and ATP, and in the absence of oxygen, energy is 

obtained from glycolysis and sugars are converted to ethanol (reviewed in Kruckeberg and 

Dickinson, 2004). In the 1930s, yeast was identified as a useful experimental organism and 

has since been used to study fundamental cellular processes, mechanisms and structures 

(reviewed in Feldmann, 2012).  

 

Saccharomyces cerevisiae, also known as budding yeast, is commonly used as a 

model organism for genetic analysis because of its short generation time, easy cultivation 

methods and simple DNA transformation system for the manipulation of genes. The term 

“budding” comes from its asexual division process, where a small bud grows off the mother 
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cell and eventually pinches off to form a daughter cell (reviewed in Herskowitz, 1988). Wild 

type yeast has a doubling time of 90-100 minutes when grown at 30°C. It can exist in either 

haploid or diploid states, undergoing the simple life cycle of mitosis and growth (reviewed in 

Herskowitz, 1988). Typically, haploid yeast cells have a spherical shape measuring 2-4 μm in 

diameter whereas the larger ellipsoid-shaped diploid cells measure 5-6 μm (reviewed in 

Walker, 1998; reviewed in Feldmann, 2012). Haploids exist as either mating type-a or type-α 

(reviewed in Herskowitz, 1988). These mating types are determined by the transcriptional 

repression or activation of the mating type (MAT) locus, which confers sexual differentiation 

into one of the two types (reviewed in Herskowitz, 1988). A haploid cell can trigger the 

mating response pathway in a cell with the opposite mating type. For instance, a MATα type 

cell secretes the α-factor pheromone, which binds to the receptors on a nearby MATa cell, 

thereby activating its mating response (reviewed in Kruckeberg and Dickinson, 2004). This 

response involves cell projections that change the cell’s morphology to form a pear-shape, a 

process known as “schmooing”, which enables it to extend, conjugate, and form diploids 

(reviewed in Herskowitz, 1988). Subsequently, diploids undergo meiosis and sporulation 

under starvation conditions to form four haploids enclosed in a sac (ascus) (reviewed in 

Kruckeberg and Dickinson, 2004). The α-factor pheromone arrests cells in late G1-phase by 

inactivating the G1 cyclin/Cdc28 kinase complex (involved in the transition from G1 to S 

phase). In the lab, α-factor can be used to arrest cells and study relative cell cycle progression 

(Herskowitz and Matthias, 1994).  
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1.1.2 Yeast Genetics 

A haploid S. cerevisiae cell contains 16 linear chromosomes ranging in size from 230 

kilobases (kb) to 1532 kb (Saccharomyces Genome Database, 2014; Engel et al., 2014). The 

budding yeast genome was the first eukaryotic organism to be fully sequenced in 1996 

(Gofeau et al., 1996). Currently 6607 open reading frames (ORFs) have been identified, of 

which 5094 ORFs (77.1%) have been confirmed as protein-encoding genes, 786 ORFs 

(11.9%) are “dubious” meaning they may not be true ORFs, and the remaining 727 ORFs 

(11%) have yet to be characterized (Saccharomyces Genome Database, 2014; Costanzo et 

al., 2010). Their highly compact genome consists of 12, 157 kb of DNA, with introns making 

up only 4% of the genome (Saccharomyces Genome Database, 2014; Lin et al., 2013). This 

relatively small genome size allows for easy manipulation, especially when creating mutants. 

Simple transformation methods can be used to introduce circular plasmids into yeast, which 

can then be maintained in the cell through selective measures. Lab strains commonly have 

deletions in metabolic genes involved in the production of essential organic compounds 

necessary for growth. For example, URA3 is a gene that encodes orotidine 5-phosphate 

decarboxylase, an enzyme that is involved in the biosynthesis of uracil. Strains with a 

mutation or deletion of this gene cannot synthesize uracil de novo, therefore, must be grown 

in media supplemented with uracil in order to survive (reviewed in Funk et al., 2002). 

Exogenous DNA containing the URA3 gene can be transformed into ura3- mutants and 

selected for growth on media with no uracil added. The URA3 gene can also be used in a 

negative selection technique when grown on 5-fluoroorotic acid (5’FOA) media. Strains 

possessing a functional URA3 gene, will convert 5’FOA compound to its toxic form 5-
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flurouracil, which causes cell death. This method can be used to select for the loss of a 

URA3-containing plasmid or select for ura3- mutants, which would be resistant.  

 

Homologous recombination is another method for introducing exogenous DNA via 

integration into the genome. DNA (linear or circular form) containing altered or disrupted 

alleles along with flanking homologous chromosomal segments, can be transformed into 

yeast cells and directed to specific locations in the genome for replacement (reviewed in 

Funk et al., 2002). Replacing or deleting normal wild-type genes can produce phenotypes 

that may shed light on gene and protein function. Another type of genetic manipulation is 

replacing native gene promoters with constitutive and regulatable promoters. A commonly 

used promoter is the GAL1 promoter, which is activated in the presence of galactose and 

repressed in its absence (Mumberg et al., 1994). This allows gene expression to be controlled 

and proteins to be expressed at 1,000-fold in the presence of galactose. Many commercially 

available yeast strains have other convenient modifications in the genome for research 

purposes such as epitope-tagged fusion proteins, temperature sensitive mutations, and single 

gene deletions. Examples of epitope tags used in this thesis work are Hemagglutinin (HA), 

LexA, and myelocytomatsis (Myc) tags. Antibodies such as anti-Myc , anti-LexA, and anti-

HA can be used to detect these fusion proteins on a Western blot, proving especially useful 

when proteins are present in low levels. The yeast strain background used in this thesis is 

S288c, derived from a progenitor strain EM93 (Mortimer and Johnston, 1986).   
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1.1.3 Yeast Life Cycle 

The mitotic cell cycle of budding yeast Saccharomyces cerevisiae consists of the 

stages: Gap 1 (G1), Synthesis (S), Gap 2 (G2), and Mitosis (M) as well as cytokinesis (Figure 

1.1) (reviewed in Herskowitz, 1988). In the G1 phase, cells grow and mainly carry out RNA 

synthesis and protein production. An important point in control of the cell cycle is the 

START checkpoint in late G1 phase, which confirms that the proper order of events have 

occurred before progressing into S phase (reviewed in Morgan, 2007). A number of factors 

can hinder a cell from progressing into S phase. Under nutrient starvation conditions, cells 

may enter a quiescent G0 phase where they can remain until nutrients become available 

again. Growth of the cell to a critical threshold size is important and depends on external 

factors like availability of nutrients, exogenous compounds and temperature (reviewed in 

Hartwell, 1974). DNA damage can also be a factor that triggers arrest and inhibits 

progression into S phase. Lastly, presence of mating pheromones can signal cells to undergo 

sexual reproduction with the opposite mating cell type instead of continuing on with the 

mitotic cycle. In budding yeast, Cdc28, a cyclin-dependent kinase (CDK), is considered the 

master regulator of cell cycle events like DNA replication, bud initiation, mitotic 

commitment, spindle assembly, and chromosome segregation (reviewed in Mendenhall and 

Hodge, 1998). Cdc28 binds to G1-phase cyclins like Cln1, Cln2, and Cln3 to form G1/S-

CDKs (reviewed in Mendenhall and Hodge, 1998). S-phase cyclins Clb5 and Clb6 bind to 

Cdc28 to form inactive S phase cyclin-CDKs (S-CDKs) inhibited by the Stoichiometric 

Inhibitor of CDK-Clb (Sic1) protein (Schwob and Nasmyth, 1993; Verma et al., 2001). As 

the cell approaches S-phase, G1/S-CDKs phosphorylate and target Sic1 for destruction, 
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thereby activating S-CDKs (reviewed in Morgan, 2007). The G1 phase is also when the pre-

Replicative Complex (pre-RC) forms at specific initiation sites in the genome known as 

origins of DNA replication (more details on pre-RC formation are discussed in the next 

section). CDK levels are low in G1 phase when pre-RC assembly occurs, but rise sharply in 

the late G1 phase in order to activate the pre-RC and initiate DNA replication. Subsequently, 

active CDK levels are maintained throughout S, G2 and M phases to prevent further pre-RC 

formation and re-replication (Chen et al., 2011; Nguyen et al., 2001). CDK-mediated 

phosphorylation of the pre-RC components ORC, Mcm proteins and Cdc6 is the minimal 

requirement to prevent re-replication in the G2 and M phase (Nguyen et al., 2001).   

 

DNA replication occurs in S phase and is highly regulated to ensure proper 

duplication of chromosomes. Replication proceeds in a semi-conservative fashion with both 

parental strands serving as a template for new DNA synthesis (reviewed in Morgan, 2007). 

The eukaryotic replicative helicase Mcm2-7 (Minichromosome maintenance) breaks the 

hydrogen bonds between bases to unwind the DNA double helix and allow replication forks 

to progress bi-directionally from the origins forming a replication bubble (reviewed in 

Sclafani and Holzen, 2007). Topoisomerase II nicks the DNA downstream of the replication 

fork to uncoil the tightly packed DNA and relieve the tension caused by DNA unwinding. 

Single-stranded binding proteins (called RPAs in yeast) bind to the unwound DNA to prevent 

the re-annealing of the strands. A number of DNA polymerases then come in to carry out the 

duplication of the DNA sequence. First DNA polymerase α-primase binds the exposed DNA 

and synthesizes a short complementary RNA primer to act as a starting point for elongation 
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(Reviewed in Garg and Burgers, 2005). DNA polymerase can only synthesize in the 5’ - 3’ 

direction, therefore the synthesis process of the leading and lagging strand is different. The 

leading strand, which opens in the 3’ - 5’ direction, is duplicated by DNA polymerase ε, 

which adds the dNTPs continually with the movement of the fork. The lagging strand 

requires the addition of multiple RNA primers in order for DNA polymerase to synthesize in 

the 5’ – 3’ direction (reviewed in Garg and Burgers, 2005). Once the fork has progressed far 

enough, DNA polymerase α-primase synthesizes a short RNA primer. The RNA primers 

provide 3’ hydroxyl groups at regular intervals along the lagging strand for DNA 

polymerase. Next, Proliferating Cell Nuclear Antigen (PCNA) clamps the DNA triggering 

the polymerase α-primase to dissociate and recruits polymerase δ to synthesize new DNA 

using the RNA primer. Since the lagging strand elongates in the opposite direction (towards 

the origin) of the replication fork movement, the addition of nucleotides is discontinuous and 

forms short 150 bp fragments called Okazaki fragments (reviewed in MacNeill, 2001). The 

RNA primers are then removed by endonuclease 1 (FEN1) and polymerase δ fills in the gaps 

with corresponding nucleotides. Finally, DNA ligase I joins the fragments by forming 

covalent phosphodiester bonds between the 3’ hydroxyl end of one nucleotide and the 5’ 

phosphate end of the adjacent nucleotide, resulting in the formation of one continuous DNA 

strand (reviewed in Morgan, 2007).  

 

Replicating eukaryotic linear DNA can pose a problem with respect to the ends of the 

chromosomes. When the RNA primer at the very end of the lagging strand is removed, a 

required 3’ hydroxyl group is no longer present for DNA polymerase to fill in the region 
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where the primer was located. Consequently, the remaining unreplicated sequence would be 

degraded and result in progressively shorter chromosomes with each cycle. The cell however 

has mechanisms in place to prevent this continual loss of genetic material. The ends of the 

chromosomes contain repeated nucleotide sequences called telomeres. Telomerase, a 

ribonucleoprotein reverse transcriptase, binds to the 3’ flanking end of the telomeres and 

adds bases using its own RNA molecule as a template. The fidelity of telomerase activity is 

thought to decrease over time and contribute to aging and cancer development. By the end of 

S phase, the duplicated DNA consists of a parental DNA strand and a newly synthesized 

strand (reviewed in Morgan, 2007).  

 

In the G2 phase, cells prepare for mitosis by synthesizing the necessary proteins and 

increasing in size. The chromosomes start to condense and proteins involved in mitotic 

spindle formation are synthesized. The G2/M checkpoint is an important DNA damage 

detection step to ensure that damaged DNA is not passed onto the daughter cells. The 

Cdc28/Clb2 protein complex facilitates the entry into mitosis (Surana et al., 1993). Mitosis is 

composed of five stages: prophase, prometaphase, metaphase, anaphase, and telophase 

(reviewed in Morgan, 2007). In prophase, chromosomes continue to condense while spindle 

pole bodies organize microtubules. The microtubules extend and attach to a region on the 

chromosomes called kinetochores to facilitate its movement. In metaphase, a spindle pole 

body positions at the bud neck and spindles align along the mother/bud axis (Yeh et al., 

2000). In yeast, chromosomes do not condense enough to show a distinct alignment at a 

conventional metaphase plate (Straight et al., 1997; reviewed in Winey and O’Toole, 2001). 
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The Anaphase Promoting Complex/Cyclosome (APC/C) facilitates the entry into anaphase 

and marks cell cycle proteins like cyclins for ubiquitin-mediated proteolysis (reviewed in 

Peters, 2002; Manchado et al., 2010). Sister chromatids are held together by the protein 

complex cohesin, which is cleaved by the separase enzyme. Separase activation occurs 

through APC/C-dependent ubiquitination and degradation of its inhibitory chaperone protein, 

securin (reviewed in Peters, 2002; reviewed in Nasmyth, 2005). Cleavage of cohesins 

enables the separation of sister chromatids to opposite ends of the cell in anaphase. Yeast 

differs from multicellular eukaryotes in that it undergoes a closed mitosis, whereby the 

disassembly and reassembly of the nuclear envelope does not occur (reviewed in Taddei et 

al., 2010). Bud enlargement continues until the telophase stage when the protein machinery 

is redirected to prepare for cytokinesis (reviewed in Bi and Park, 2012; reviewed in Morgan, 

2007). Cytokinesis is the process involving the separation of the mother and daughter cell. 

The physical division is accomplished through the formation of a contractile actomyosin ring 

and septum at the bud neck of the cell (reviewed in Wloka and Bi, 2012). Budding yeast 

undergoes asymmetric cell division with buds initially being smaller than the mother cell. 

After separation, a bud scar is left on the cell surface of the mother cell. Bud scars are an 

important determinant of cellular age (reviewed in Kruckeberg and Dickinson, 2004; 

reviewed in Walker, 1998; reviewed in Morgan, 2007).  
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Figure 1.1: Cell Cycle of Saccharomyces cerevisiae.  The life cycle encompasses the main 

stages of growth including G1, S, G2 and M phase followed by asymmetric cell division to 

form a mother and daughter cells. Entry into and exit from the G0 phase occurs before 

START (represented by the black circle in the G1 phase).  

 

1.2 Initiation of DNA Replication 

1.2.1 Formation of the pre-RC and Activation at Origins 

The initiation of DNA replication in budding yeast begins at specific origin sites in 

the genome called Autonomously Replicating Sequences (ARS). These origins were first 

identified using plasmid-based assays in which fragments of the yeast genome were 

incorporated into bacterial plasmids lacking a eukaryotic origin (Brewer and Fangman, 

1987). Any resulting plasmids that were able to replicate in yeast cells would have contained 

these origin sequences, and were subsequently identified as ARS origins (Brewer and 

Fangman, 1987). It is estimated that there are roughly 300 origins of replication found 

G1

S

G2

M

G0
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throughout the yeast genome and activated origins fire only once per cell cycle (Raghuraman 

et al., 2001; Nieduszynski et al., 2006). Yeast origins fire in a temporal fashion activating in 

early, middle or late in S phase (Barberis et al., 2010; Mantiero et al., 2011). Cells potentially 

employ this temporal firing mechanism to preserve a number of unfired origins in the event 

when replication forks stall due to the DNA damage checkpoint response (Duch et al., 2011). 

Preserving late origins also serves a role in restarting replication during checkpoint recovery 

(Santocanale and Diffley, 1998).  

 

   In the initiation of eukaryotic DNA replication, there are two main stages that ensure 

faithful replication of the genome. The first is the formation of the pre-RC, which is a 

preparatory process that involves the sequential binding of protein factors at replication 

origins (reviewed in Sclafani and Holzen, 2007) (Figure 1.2). The formation of the pre-RC 

occurs in the G1 phase and ‘licenses’ the origins to prepare them to fire. ORC (Origin 

Recognition Complex), composed of six subunits, Orc1-6, is the first protein complex to bind 

to the origin, acting as a scaffold for the binding of subsequent protein factors (reviewed in 

Labib, 2010). Next, Cdc6 (Cell Division Cycle 6) AAA+ ATPase protein binds to the ORC 

complex and acts as a clamp loader to enable the Mcm2-7 complex to bind via ATP 

hydrolysis (Randell et al., 2006) (Figure 1.2). Mcm2-7 is a heterohexameric helicase 

complex that unwinds the DNA during the replication process (reviewed in Li and Araki, 

2013). Cdt1 (Chromatin licensing and DNA replication factor-1) protein targets the inactive 

Mcm2-7 complex to origins, followed by ORC-dependent ATP hydrolysis and activation by 

Cdc6 (Figure 1.2) (reviewed in Takeda and Dutta, 2005; Tanaka and Diffley, 2002; reviewed 
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in Diffley, 2011). Orc6 specifically has been associated with Cdt1-binding and helicase 

recruitment, but not origin DNA association (Chen et al., 2007). This final stable loading of 

the Mcm complex forms a ‘licensed’ origin, which is subsequently activated by kinases like 

CDK and DDK.  

 

In the second stage of DNA replication initiation, Cyclin Dependent Kinase (CDK) 

and Dbf4 Dependent Kinase (DDK) complexes activate the licensed origins by 

phosphorylating the replication machinery components (reviewed in Diffley, 2011; reviewed 

in Li and Araki, 2013; see Figure 1.2). Many Sld (Synthetic lethal with Dpb11) proteins play 

important roles in replication initiation. DDK phosphorylates the Mcm2-7, allowing Sld3-

Sld7 complex and Cdc45 to associate with the pre-RC (Heller et al., 2011; see Figure 1.2). 

Sld7 association with Sld3 and Cdc45 ensures proper Sld3 functioning during initiation 

(Tanaka et al., 2011). Sld2 protein is phosphorylated by CDK allowing it to bind to the N-

terminus of the Dpb11 (DNA polymerase B 11) protein whereas CDK-dependent 

phosphorylation of Sld3 enables binding to the C-terminus of Dpb11 (Figure 1.2). This 

phosphorylation facilitates the recruitment of other replication proteins to form the pre-

Loading Complex (pre-LC) consisting of phosphorylated Sld2, Dpb11, Pol ε, and GINS (Go-

Ichi-Ni-San) (Muramatsu et al., 2010; reviewed in Li and Araki, 2013; see Figure 1.2). The 

recruitment of GINS to the origins facilitates the formation of the CMG (Cdc45-Mcm2-7-

GINS) complex, which activates the helicase (Yaabuchi et al., 2006; Zegerman and Diffley, 

2007; reviewed in Yekezare et al., 2013). Cdc45 plays an essential role in replication 

initiation and elongation, and functions in the recruitment of polymerase α and polymerase δ 
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to origins. More recently Cdc45 has been shown to bind directly to ssDNA, an interaction 

that is important in helicase stalling during replication stress (Bruck and Kaplan, 2013). 

Another study has shown that DDK promotes the association of Cdc45 and Sld3 before CDK 

recruits Sld2, Dpb11 and GINS suggesting that DDK acts sequentially before CDK in 

replication initiation (Heller et al., 2011). Mcm10 has been shown to be required for origin 

unwinding after the recruitment of the CMG components, possibly stimulating helicase 

activity and aiding in the Pol α and Pol δ association with replication forks (Kanke et al., 

2012; van Deursen et al., 2012). Sld2, Sld3 and Dpb11 are released to form the replisome, a 

complex that unwinds the DNA and carries out replication by opening the fork bi-

directionally (reviewed in Labib, 2010; see Figure 1.2). 
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Figure 1.2: Formation of the pre-Replicative Complex and pre-Loading Complex. The 

formation of the pre-RC occurs in G1 phase. DDK and CDK phosphorylate components of 

the pre-RC to enable the recruitment of other replication factors like the pre-LC to eventually 

form the replisome, which carries out local DNA unwinding and new DNA synthesis in S 

phase (adapted from Li and Araki, 2013 and Labib, 2010). 
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1.2.2 Mcm2-7 Helicase Complex 

 

The Mcm2-7 helicase is a heterohexameric AAA+ ATPase complex that utilizes ATP 

binding and hydrolysis to unwind double-stranded DNA (reviewed in Vijayraghavan and 

Schwacha, 2012).  The complex contains each Mcm subunit in a 1:1:1:1:1:1 stoichiometry 

with features similar to the homohexameric archael Mcm ring (reviewed in Bochman and 

Schwacha, 2009). The complex loads onto DNA as a double hexamer in a head-to-head 

conformation. Each subunit contains a similar P-loop structure consisting of ATP-binding 

motifs (Walker A and Walker B) and ATP-interface motifs (arginine finger and sensor 2) 

(reviewed in Bochman and Schwacha, 2009). The presence of these two ATPase active sites 

in each Mcm subunit enabled the isolation of stable dimers to determine the structural 

arrangement of Mcm2-7. The dimeric subunit pairs are as follows: Mcm5/3, Mcm3/7, 

Mcm7/4, Mcm4/6, Mcm6/2 and Mcm2/5. The pairings reveal the ring order to be Mcm2-6-4-

7-3-5. Biochemical studies have shown that Mcm2-7 lacked helicase activity in vitro, 

however a dimeric heterotrimer consisting of Mcm4-6-7 exhibited ATP-dependent helicase 

activity (Ma et al., 2010). Mcm4 and Mcm7 were shown to oligomerize into a hexamer 

without Mcm6, and introducing mutations in Mcm4, Mcm6 or Mcm7 resulted in decreased 

ATP hydrolysis (Ma et al., 2010). Each of the six Mcm genes has orthologs in all known 

eukaryotic genomes, signifying the importance of functionally distinct Mcm subunits. 

Biochemical analysis has revealed that the individual ATPase active sites are non-equivalent, 

playing specific roles in helicase activity or regulation. The Mcm7/4 active site was found to 

be essential for helicase activation while the addition of Mcm2 or Mcm5/3 dimer had an 

inhibitory effect on the Mcm4-6-7 helicase (reviewed in Vijayraghavan and Schwacha, 
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2012). Therefore, it was proposed that in S. cerevisiae, Mcm4, Mcm7 and possibly Mcm6 are 

required for helicase activation while Mcm2, Mcm3 and Mcm5 act as negative regulators 

(reviewed in Forsburg, 2004). The Mcm2/5 active site has been implicated in acting as a gate 

to open and close the Mcm2-7 ring, however that model has recently evolved to include the 

involvement Cdc45 and GINS in the gate-closing mechanism (Costa et al., 2011). The exact 

mechanism of DNA helix unwinding has yet to be fully characterized though many models 

have been proposed (reviewed in Takahashi et al., 2005; reviewed in Bochman and 

Schwacha, 2009). Pump models suggest that helicases rotate DNA. The rotary-pump model, 

for instance, proposes that multiple loaded helicases translocate along dsDNA, eventually 

anchoring and rotating in opposite directions to unwind the double helix by relieving 

torsional strain (reviewed in Takahashi et al., 2005). Steric models suggest that the helicase 

translocates along one DNA strand while displacing the other strand. A variant of this idea is 

the ‘ploughshare’ model whereby Mcm2-7 translocates along double-stranded DNA as a 

single hexamer pushing ssDNA through the central channel (reviewed in Takahashi et al., 

2005). Studies have shown that the Mcms have positively charged β-hairpin fingers that 

protrude into the central channel, two of which are found within the AAA+ domain and are 

likely involved in ATP hydrolysis to facilitate DNA unwinding (reviewed in Forsburg, 

2004). With respect to pre-RC formation, the C-terminal domains of Mcm2-7 mediate the 

interactions with ORC, Cdc6 and Cdt1 (reviewed in Vijayraghavan and Schwacha, 2012). 

The Mcm2 and Mcm3 subunits contain partial Nuclear Localization Signal (NLS) sequences 

whereas the Nuclear Export Signal (NES) is found only on Mcm3 (Young et al., 1997; Braun 

and Breeden, 2007). Therefore, Mcm2-7 enters the nucleus either as intact heterohexamers or 
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at least as subcomplexes containing Mcm2 and Mcm3. Regulation of the Mcm2-7 levels 

occurs through phosphorylation by CDK and is important to ensure that inappropriate DNA 

re-replication does not occur (Liku et al., 2005). In early G1 phase, a combination of low 

CDK activity and translation of new Mcm proteins drives the transport of Mcm2-7 into the 

nucleus, whereas export of Mcm proteins from the nucleus occurs in S phase when CDK 

activity is high (Nguyen et al., 2000; Nguyen et al., 2001). The regulation of Mcm proteins 

in the context of replication initiation is discussed in more detail in the next section. 

1.2.3 The DDK Complex and its regulation of Mcm2-7 

 

 The conserved protein kinase complex DDK triggers DNA replication by primarily 

phosphorylating subunits of the Mcm2-7 complex. DDK is composed of serine threonine 

kinase subunit, Cell division cycle 7 (Cdc7), and a regulatory subunit, Dumbbell forming unit 

4 (Dbf4). Cdc7 is a 58-kDa (kiloDalton) protein present at relatively constant levels 

throughout the cell cycle (reviewed in Bell and Dutta, 2002). Dbf4 is an 80-kDa protein that 

peaks from late G1-phase until late M-phase (reviewed in Bell and Dutta, 2002). The 

Anaphase Promoting Complex (APC/C) rapidly degrades Dbf4 at the start of anaphase in 

order to prevent further replication initiation (Cheng et al., 1999; reviewed in Matthews and 

Guarné, 2013). Since Dbf4 binds and activates the inactive Cdc7 kinase subunit, regulation 

of kinase activity occurs through cell cycle regulation of Dbf4 levels. Orthologs of Dbf4 have 

been identified in all eukaryotes examined to date and sequence comparisons have revealed 

three conserved regions, motifs N, M, and C, each mediating interactions with other 

replication factors (reviewed in Masai and Arai, 2000). Motif-N has been shown to mediate 
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interactions with Orc2 and the Rad53 checkpoint kinase (Matthews et al., 2012; Varrin et al., 

2005). Motifs-M and -C interact with Cdc7 and Mcm2, and deletion of either motif results in 

loss of cell viability (Sato et al., 2003; Yamashita et al., 2005; Jones et al., 2010; Harkins et 

al., 2009). Recent structural analysis revealed that the N-terminal region of Dbf4 contains an 

alpha helix projecting from a canonical BRCT domain that is necessary for mediating the 

interaction with Rad53 (Matthews et al., 2012).  

 

 The interaction between Cdc7 and other replication factors is another interesting 

avenue of investigation. Cdc7 contains 11 conserved kinase domains and 3 kinase-insert 

domains, which mediate protein-protein interactions (reviewed in Masai and Arai, 2002) 

(Figure 1.3). Previous findings in budding yeast have shown that the C-terminal region of 

Cdc7 mediates binding with Dbf4, and specific residues within the kinase domains are 

essential for kinase activation and function (Jackson et al, 1993; Ohtoshi et al., 1997). 

Similar findings in human cell lines have shown that the C-terminal region of Cdc7 mediates 

the interaction with Dbf4 motifs M and C (Kitamura et al., 2011). Substitution of the yeast 

C-terminal 55 amino acids in place of equivalent human residues supported growth in a 

cdc7Δ yeast strain but only when paired with yeast Dbf4, suggesting a species-specific 

interaction in this region (Davey et al., 2011). A recent study that has solved the crystal 

structure of human Dbf4-Cdc7 complex revealed that Dbf4 motif-C binds to the N-terminal 

lobe of Cdc7 and is sufficient for kinase activity, whereas Dbf4 motif-M binds to the C-

terminal lobe acting as a tethering domain (Hughes et al., 2012). Lack of Cdc7 function has 
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been linked to faster replication fork progression due to reduced origin firing and checkpoint 

signaling deficiency (Zhong et al., 2013).  

 

 

Figure 1.3: Schematic of the Cdc7 Structure. The above figure outlines the main domains 

and regions of Cdc7. The orange regions denote the 11 conserved, kinase domains (indicated 

by the roman numerals). The green regions denote the 3 Kinase Insert (KI) domains that 

mediate protein-protein interactions. The numbers above and below refer to approximate 

amino acid positions. The black bars outline regions that interact with Dbf4. The regions 

marked with an asterisk are based on human Dbf4-Cdc7 structural work, but the indicated 

amino acids are the equivalent S. cerevisiae regions (Hughes et al., 2012). The region not 

marked with an asterisk is based on S. cerevisiae work (Jackson et al., 1993; Ohtoshi et al., 

1997).  

 

 Under normal growth conditions, multiple subunits of the heterohexameric Mcm2-7 

helicase complex are phosphorylated by DDK (Cho et al., 2006). Mcm2, Mcm4 and Mcm6 

are the preferred substrates of DDK (Francis et al., 2009; Randell et al., 2010; Sheu and 

Stillman, 2006). Additionally a region known as the NSD (N-terminal Serine/Threonine rich 

domain) contains the phosphorylation target sites for DDK and other kinases like CDK and 

Mec1 (Sheu and Stillman, 2006). A region within the NSD (amino acids 74-174) contains 

sites that are phosphorylated by DDK to relieve an inhibitory effect. Removal of this N-

terminal region was shown to bypass the requirement for DDK activity, confirming that the 

phosphorylation of the Mcm4 NSD region is the essential DDK function (Sheu and Stillman, 

2010). In Mcm4, a region near the N-terminus has been shown to contain a DDK-docking 

domain (amino acids 175-333) (Sheu and Stillman, 2010). DDK has been shown to 
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phosphorylate the N-terminal tails of Mcm2 and Mcm6 (Randell et al., 2010). 

Phosphorylation of Mcm2 by DDK is not essential for viability but instead plays a role in 

suppressing sensitivity to DNA damaging agents (Stead et al., 2011). It has been proposed 

that Mec1 kinase phosphorylates Mcm4 and Mcm6 as a ‘priming’ mechanism for subsequent 

DDK phosphorylation (Randell et al., 2010). Mcm4 and Mcm6 are two phosphorylation and 

pre-RC-dependent targets of budding yeast DDK, but Mcm4 is the critical DDK target in 

vivo (Francis et al., 2009; Randell et al., 2010). In vitro analysis has revealed that DDK 

phosphorylates every Mcm subunit except for Mcm5. (Lei et al., 1997; Weinrich and 

Stillman, 1999). Interestingly the mcm5-bob1 allele, which contains a single amino acid 

change, P83L, in Mcm5, bypasses the requirement for DDK much like the Mcm4 NSD 

deletion (Hardy et al., 1997; Fletcher et al., 2003). The mutation is thought to cause a 

conformational change in the Mcm2-7 complex that mimics the effect of phosphorylation 

(Hardy et al., 1997; Fletcher et al., 2003). Recently, the telomeric chromatin component Rif1 

(Rap-1-interacting factor) has been shown to associate with Protein Phosphatase 1 (PP1) to 

facilitate Mcm4 dephosphorylation as a means of counteracting DDK phosphorylation and 

controlling premature Mcm4 phosphorylation in G1 phase (Hiraga et al., 2014). Rif1-PP1 

interaction is also regulated by DDK phosphorylation, making it an attractive new pathway to 

further study Mcm4 phosphorylation (Hiraga et al., 2014). Currently, the precise region of 

DDK that mediates the interaction with Mcm4 in budding yeast remains unknown. Deducing 

this region will improve our understanding of how DDK is targeted to the Mcm2-7 complex.  



 

 22 

1.3 The Checkpoint Response and Relevance in Cancer 

1.3.1 Role of DDK and Mcm2-7 in the Checkpoint Response 

 When DNA is compromised due to genotoxic agents that damage DNA or reduce 

nucleotide pools, checkpoint mechanisms are activated to correct the damage and allow for 

the cell cycle to progress. Hydroxyurea (HU) is a ribonucleotide reductase inhibitor that 

prevents the formation of dNTPs, thereby limiting their pools at the replication forks and 

inhibiting further replication (Stead et al., 2012). Methyl methanesulfonate (MMS) is a DNA 

alkylating agent that induces DNA lesions, causing single-stranded and double-stranded 

breaks in the genome (Stead et al., 2011). Other genotoxic agents include caffeine, which 

inhibits checkpoint proteins leading to accumulation of damaged DNA, and phleomycin, a 

radiomimetic drug that causes double stranded DNA breaks (Moore, 1989; Karunda et al., 

2006). DNA damage activates the checkpoint response, which subsequently leads to the 

replication fork stalling and the inhibition of replication initiation by blocking further origin 

firing. In the presence of DNA damage, the replicative helicase can become uncoupled from 

the DNA polymerases, resulting in exposed ssDNA. Single stranded DNA-binding 

Replication Protein A (RPA) proteins bind to the ssDNA and recruits Mec1 kinase to the 

stalled forks via Ddc2 protein (Enomoto et al., 2002; Paciotti et al., 2001) and activates the 

Rad53 checkpoint kinase (Zegerman and Diffley, 2010; Alcasabas et al., 2001). When 

activated, Rad53 phosphorylates Dbf4 causing its dissociation from Cdc7, thereby reducing 

active DDK concentrations (reviewed in Duncker & Brown, 2003). Cells potentially employ 

this mechanism to prevent further replication initiation and preserve the number of unfired 

origins until the damage has been repaired. Exposure to hydroxyurea creates severe fork 
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impediments leading to attenuated DDK activity and subsequent delay in origin activation 

and S phase progression (Alvino et al., 2007). A study found that a Dbf4 mutant containing 

altered Rad53 phosphorylation sites exhibited greater initiation of late origin firing and faster 

replication in the presence of genotoxic agents (Duch et al., 2011). Non-phosphorylatable 

mutations in Sld3 and Dbf4 exhibited increased late origin firing in the presence of 

hydroxyurea (Zegerman and Diffley, 2010). Following checkpoint activation, further DDK 

phosphorylation of Mcm2-7 is thought to contribute to maintaining fork integrity so that 

DNA replication can resume efficiently once the DNA damage has been repaired (Jones et 

al., 2010; Stead et al., 2012). DDK phosphorylation of two Mcm2 N-terminal residues Ser-

164 and Ser-170 was shown to be important for suppressing sensitivity to certain genotoxic 

agents (Stead et al., 2012). Mutating these residues to non-phosphorylatable forms resulted in 

a greater number of RPA foci (representing the generation of single stranded DNA). This 

suggests that phosphorylation of Mcm2 by DDK normally slows down the helicase reducing 

the rate at which it separates from the replisome (Stead et al., 2012) (Figure 4). In fission 

yeast, the DDK homolog Hsk1 has been shown to phosphorylate Rad9, a 9-1-1 checkpoint 

clamp protein that is recruited to aberrant DNA structures, and failure to phosphorylate it 

results in abnormal DNA repair (Furuya et al., 2010). More recently, Cdc7 has been linked to 

a pro-survival signaling pathway through its interaction with and stabilization of Tob, a 

protein involved in inhibiting the pro-apoptotic signaling pathway in response to mild DNA 

damage (Suzuki et al., 2012). Therefore, investigating the interactions between DDK and 

essential cell cycle proteins is important in understanding how those associations may 

regulate the rate of replication and maintain of fork stability under checkpoint conditions.  
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Figure 1.4: Checkpoint response involving Rad53, DDK and Mcms. When checkpoint 

mechanisms are activated, Rad53 phosphorylates Dbf4 causing its dissociation from Cdc7. 

This leads to a reduction in active DDK concentrations, thereby preserving late origins from 

firing. The helicase can uncouple from the replisome during checkpoint conditions therefore 

DDK phosphorylation of Mcm2 is thought to contribute to slowing down the helicase and 

stalling the forks as a result.   

1.3.2 Relevance in Cancer Studies 

 Prior studies have shown elevated Dbf4 and Cdc7 levels in tumour cell lines and 

melanomas (Nambiar et al., 2007; Bonte et al., 2008). Given that DDK plays a vital role in 

the replication initiation process, it seems logical to investigate one of its subunits as a 

potential target for cancer therapeutics. Studies have shown Cdc7 to be a promising target 

using selective inhibitors. Typical chemotherapeutics inhibit DNA replication and activate 

the checkpoint response as a result (reviewed in Montagnoli et al., 2010). Depletion of Cdc7 

using siRNAs in tumour cells demonstrated a defective S phase and eventually cell death, 

without significant activation of the DNA checkpoint response (Montagnoli et al., 2004). A 
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Cdc7 inhibitor, PHA-767491, has been shown to have an additive effect on tumour cell death 

when combined with currently used cancer therapeutics (Natoni et al., 2013). Uncovering 

small molecule inhibitors of Cdc7 is a promising area of research in developing novel cancer 

therapeutics. Overall, acquiring such knowledge on the interactions between cell cycle 

proteins will enhance our understanding of the roles they play in the DNA replication process 

in normal and abnormal cells. 

1.4 Research Objectives  

The main objective of this thesis is to further characterize the interaction between the 

DDK and Mcm2-7 complexes in the budding yeast Saccharomyces cerevisiae. Prior work 

from the Duncker Lab has shown that Dbf4 exhibits a strong interaction with Mcm2, whereas 

Cdc7 interacts with Mcm4 and Mcm5. A region of Mcm4 near the N-terminus has been 

shown to contain a DDK-docking domain (amino acids 175-333) (Sheu and Stillman, 2006; 

Sheu and Stillman, 2010). The Duncker lab has found that in the Mcm2 subunit, two N-

terminal regions (amino acids 2-4 and 10- 63) mediate the interaction with Dbf4 and deletion 

of these amino acids results in growth defects. Mutant Mcm2 and Mcm4 with deleted DDK-

docking domains will hereafter be referred to as Mcm2∆DDD and Mcm4∆DDD. I 

hypothesized that Dbf4-Mcm2 and Cdc7-Mcm4 interactions represent redundant 

mechanisms for targeting of DDK to the Mcm2-7 complex. To investigate this, the 

simultaneous disruption of Dbf4-Mcm2 and Cdc7-Mcm4 interactions was compared to single 

disruptions. The growth effects were also examined in the presence of genotoxic agents such 

as hydroxyurea (HU) and methyl methanesulfonate (MMS). Investigating the interactions 

between DDK and the MCM complex is important in understanding the role that these 
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proteins play in regulating the rate of replication and maintaining fork stability under 

checkpoint conditions.  

DDK Docking Domains have been identified within the Mcm2 and Mcm4 proteins, 

and precise regions within Dbf4 have been characterized for its interaction with Mcm2 and 

Cdc7. Previous findings in budding yeast have shown that the C-terminal region of Cdc7 

mediates binding with Dbf4 (Jackson et al., 1993). Currently the precise region that mediates 

the interaction with Mcm4 in budding yeast remains unknown. Therefore, my second 

objective aimed to further understand the interaction between DDK and the Mcm proteins by 

determining the minimal region(s) of Cdc7 responsible for its separate interactions with Dbf4 

and Mcm4. Bioinformatics analysis was also conducted to determine conserved interface 

residues within Cdc7 and Dbf4. Determining the minimal region of Cdc7 that interacts with 

Dbf4 lays the groundwork for possible structural studies in the future. The third objective of 

this thesis was to identify conserved residues within the DDK Docking Domain of Mcm2 and 

Mcm4 that are essential for maintaining interactions with Dbf4 and Cdc7, respectively. 

Residues were mutated to determine their importance in mediating protein-protein 

interactions. These assays will allow for future experiments where mutant strains of the same 

kind can be created and examined for growth. It can also have implications in cancer 

therapeutic research whereby potential small molecule inhibitors can be designed to target 

specific residues within a protein. Therefore, knowing the important residues that mediate 

these essential interactions will be useful for designing therapeutic targets that could inhibit 

essential protein function and subsequent cell growth.  
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Portions of this chapter appear in the following journal article and are reproduced with 
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Cdc7 Proteins Promote DNA Replication through Interactions with Distinct Mcm2-7 Protein 

Subunits. J. Biol. Chem. 2013; 288(21): 14926-35. © American Society for Biochemistry and 

Molecular Biology.  
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2.1 Yeast Strains 

     DY-1 (MATa, ade2-1, can1-100, trp1-1, his3-11,-15, ura3-1, leu2-3,-112, pep4:LEU2) 

was used for the two-hybrid assays. DY-273 (MATα, leu2Δ0, met15Δ, ura3Δ0, lys2Δ0, 

mcm2::his3) and DY-274 (MATα, his3Δ1, leu2Δ0, met15Δ, ura3Δ0, mcm4::KanMX) 

supported for growth with wild-type MCM2 or MCM4 on a URA3, CEN/ARS vectors were 

used for the plasmid shuffle experiments (Stead et al., 2009). Mcm2 and Mcm4 plasmid 

shuffle strains were transformed with YCplac111-Mcm2WT (wild-type), -Mcm2Δ2-4, 10-63, 

-Mcm4WT, or -Mcm4Δ175-333 and grown on Synthetic Complete (SC) media lacking uracil 

and leucine (SC-Ura-Leu). These were the ‘shuffle in’ strains. Colonies from these 

transformation plates were streaked out on SC-Leu +5’FOA (1mg/mL) plates to select for 

cells that had lost the URA3, CEN/ARS support plasmid. This results in the only copy of 

MCM2 or MCM4 being on the YCplac111 LEU2, CEN/ARS plasmid (See Table 2.1; DY-

263, DY-264, DY-265, DY-266). These shuffle strains were then mated to DY-196 (MATa 

his3Δ1, leu2Δ0, ura3Δ0) and the resulting diploids were sporulated and dissected to generate 

the haploid MATa shuffle strains. DY-228 (MATa, his3Δ200, met15Δ0, trp1Δ63, ura3Δ0) 

was used as the parental strain to generate GAL1-MCM2 (DY-215), GAL1-MCM3 (DY-216), 

GAL1- MCM4 (DY-230), GAL1-MCM5 (DY-221), GAL1-MCM6 (DY- 217), and GAL1-

MCM7 (DY-218) strains, using TRP1 as a selectable marker. The DY-272 strain in which the 

genomic copy of CDC7 was replaced with a GAL1-CDC7-HA allele induces Cdc7 expression 

in the presence of galactose and shuts off expression in the presence of glucose. This strain 

was used in the complementation assay in Chapter 4. 
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Table 2.1: Yeast Strains used in this study 

Strain Genotype 

DY-1 MATa, ade2-1, can1-100, trp1-1, his3-11,-15, ura3-1, leu2-3,-112, 

pep4:LEU2 

DY-26 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0 

DY-215 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm2::PGal1-3HA-

TRP1-MCM2 

DY-216 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm3::PGal1-3HA-

TRP1-MCM3 

DY-217 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm6::PGal1-3HA-

TRP-MCM6 

DY-218 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm7::PGal1-3HA-

TRP1-MCM7 

DY-221 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm5::PGal1-3HA-

TRP1-MCM5 

DY-228 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0 

DY-230 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, mcm4::PGal1-3HA-

TRP1-MCM4 

DY-263 MATa, leu2Δ0, met15Δ0, ura3Δ0, mcm2::his3 - supported for growth with 

YCplac111-Mcm2 WT 

DY-264 MATa, leu2Δ0, met15Δ0, ura3Δ0, mcm2::his3 - supported for growth with 

YCplac111-Mcm2Δ2-4, 10-63 

DY-265 MATa, leu2Δ0, met15Δ0, ura3Δ0, his3Δ0, mcm4::KanMX - supported for 

growth with YCplac111-Mcm4 WT 

DY-266 MATa, leu2Δ0, met15Δ0, ura3Δ0, his3Δ0, mcm4::KanMX - supported for 

growth with YCplac111-Mcm4 Δ175-333 

DY-272 MATa  ura3::URA3[GPD-TK(7x)] ade2-1 trp1-1 can1-100 leu2-3,112 his3-

11,15 GAL psi+ cdc7::GAL-HA-CDC7-TRP1 

 

2.2 Plasmid Construction 

            pEG-Dbf4-FL and pJG4-6-Mcm2 FL have been previously described (Varrin et al., 

2005). pJG4-6-Mcm3, pJG4-6-Mcm5, and pJG4-6-Mcm6 were generated by PCR 

amplification of genomic MCM3, MCM5, and MCM6, respectively, from DY-26 with the 

forward and reverse primers containing ApaI and XhoI restriction sites, respectively. pJG4-6-

Mcm4 was generated by PCR amplification of genomic MCM4 from DY-26 with the 
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forward and reverse primers containing NcoI and XhoI restriction sites, respectively. pJG4-6-

Mcm7 was generated by PCR amplification of genomic MCM7 from DY-26 with the 

forward and reverse primers containing Nco1 and EcoR1 sites, respectively. pJG4-6-

MCM2Δ63 was generated by PCR amplification of genomic MCM2 from DY-26 using 

forward and reverse primers corresponding to sequence encoding amino acids 64-868, 

containing NcoI and XhoI sites respectively. pJG4-6-Mcm2 1-63 was generated by PCR 

amplification of genomic MCM2 from DY-26 with the forward and reverse primers 

corresponding to DNA sequence encoding amino acids 1-63, containing BglII and EcoRI 

sites, respectively. Both pJG4-6-Mcm2 505-868 and pJG4-6-Mcm2 1-504 were generated by 

PCR amplification of genomic MCM2 from DY-1 with the forward and reverse primers 

corresponding to DNA encoding either amino acids 1-504 or 505-868, containing NcoI and 

XhoI, respectively. In all cases, the PCR products were kit-purified (GE Healthcare or 

Geneaid) and then ligated into the appropriately digested vector, followed by transformation 

of the entire ligation mix into DH5α competent bacterial cells. pEG-Cdc7-WT was generated 

by PCR amplification of the entire CDC7 coding sequence from DY-26 genomic DNA with 

the forward and reverse primers containing EcoRI and BglII, respectively. pEG-202 was then 

cut with EcoRI and BamHI with the fragment and vector then ligated thus generating an in-

frame fusion with the LexA coding sequence. pJG4-6-Mcm2Δ2-4,10-63 was generated by 

PCR amplification of genomic MCM2 from DY-26 with a forward primer containing both 

NcoI and NdeI sites followed by the sequence encoding amino acids five through nine and 

64-75. The reverse primer corresponded to the C-terminal coding sequence of MCM2 

containing BamHI and XhoI. pJG4-6-Mcm4Δ175-333 was generated by PCR amplification 
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of two fragments of MCM4 from DY-26 genomic DNA (encoding amino acids 1-174 and 

334-878) which were joined by an NcoI site that was engineered into the reverse primer of 

the first fragment and the forward primer of the second fragment. The two cut and purified 

fragments were cloned together into the pJG4-6 vector using the ApaI and XhoI sites in the 

multiple cloning site.  

 

            Specific residues within the MCM2 gene were mutated using the QuikChange II XL 

Site-Directed Mutagenesis Kit (Agilent Technologies). Sequence encoding Proline 22, 

proline 25, proline 39 and proline 43 were all mutated to sequence encoding alanines using 

mutagenic primers, which contained the desired mutation. QC1 denotes the mutation of 

proline 22 and 25 to alanines, QC2 denotes the mutation of proline 39 and 43, and QC3 

denotes mutations to all four prolines to alanines. pJG-4-6-Mcm2 WT was used as the DNA 

template in the reaction. The resulting PCR product was mixed with Dpn I enzyme to digest 

the parental methylated and hemi-methylated DNA. After digestion, the resulting plasmids 

were transformed into XL-10-Gold Ultracompetent cells. A complete protocol can be found 

in the online QuikChange II XL Site-Directed Mutagenesis instruction manual: 

http://stanxterm.aecom.yu.edu/wiki/data/Product_manuals_attach/quikchange2xl.pdf.   

 

            The pCM190-Mcm2WT plasmid was generated by PCR amplification of MCM2 

from pJG4-6-Mcm2WT with forward and reverse primers corresponding to the gene coding 

sequence, containing NotI and BamHI, respectively. pCM190-Mcm4WT was generated by 

PCR amplification of MCM4 from pJG4-6-Mcm4WT with forward and reverse primers 

corresponding to the gene coding sequence, containing NotI and BglII sites, respectively. 



 

 32 

pCM190-Mcm2Δ2-4, 10-63 was generated by PCR amplification of the gene coding 

sequence from pJG-4-6-Mcm2Δ2-4, 10-63 with forward and reverse primers containing NheI 

and BamHI sites, respectively. pCM190-Mcm4Δ175-333 was generated by PCR 

amplification of the gene encoding sequence from pJG4-6-Mcm4Δ175-333 with forward and 

reverse primers containing NheI and BglII sites, respectively. All the PCR products were cut 

with the respective enzymes and ligated into cut pCM190 at the equivalent sites. To add a 

Nuclear Localization Signal (NLS) sequence to the Mcm4 proteins, a pCM190-NLS 

construct was first made. The SV-40 (Simian Vacuolating Virus 40 Tag) NLS sequence was 

acquired from the pJG-4-6 vector. Synthetic oligonucleotides containing the NLS sequence 

were designed to anneal together and form sticky-end overhangs. The 5’ and 3’ overhangs 

were ligated into the pCM190 BamHI and NotI sites, respectively. pCM190-Mcm4-NLS and 

pCM190-McmΔ175-333-NLS were generated by PCR amplification of gene encoding region 

from pJG4-6-Mcm4 WT and pJG-4-6-Mcm4Δ175-333 with forward and reverse primers 

containing NotI and BglII sites, respectively. The PCR products were ligated to cut pCM190-

NLS at the equivalent sites.  

 

            Bait plasmids expressing truncated forms of Cdc7 were all made using the same 

cloning strategy. The plasmids used in this study include: pEG-Cdc7 amino acids 453-507, 

pEG-Cdc7 1-452, pEG-Cdc7 276-507, pEG-Cdc7 1-275, pEG-Cdc7 125-507, pEG-Cdc7 1-

124, pEG-Cdc7 55-507, pEG-Cdc7 1-54. These plasmids were generated by PCR 

amplification of sequence encoding the corresponding amino acid regions from pEG-Cdc7 

WT using forward and reverse primers containing EcoRI and BglII sites, respectively. The 
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PCR products were ligated into cut pEG202 vector at the equivalent sites. pJG-4-6-Cdc7 1-

452, pJG-4-6-Cdc7 55-507, pJG-4-6-Cdc7 276-507 and pJG-4-6-Cdc7 453-507 were all 

generated by PCR amplification of sequence encoding the corresponding amino acid regions 

from pEG-Cdc7 WT using forward and reverse primers containing EcoRI and BglII sites, 

respectively. The PCR products were ligated into cut pJG-4-6 vectors at the equivalent sites.  

 

            The plasmid shuffle vector (YCplac111) is a CEN/ARS vector with a LEU2 

selectable marker. The YCplac111-Mcm2WT and YCplac111-Mcm4WT plasmid shuffle 

vectors were obtained from Megan Davey (Stead et al., 2009; unpublished). The YCplac111-

Mcm2WT vector along with pJG4-6-Mcm2Δ2-4, 10-63 were cut with NdeI and BamHI and 

the resulting Mcm2Δ2-4, 10-63 fragment was cloned into YCplac111 vector at equivalent 

sites. YCplac111-Mcm2QC3 was generated by PCR amplification of the gene-encoding 

region from pJG4-6-Mcm2QC3 using forward and reverse primers containing NdeI and 

BamHI sites, respectively. Mcm4Δ175-333 was PCR amplified using pJG-4-6-Mcm4Δ175-

333 as template using a forward primer corresponding to the MCM4 N-terminal coding 

sequence and containing NdeI and a reverse primer corresponding to the C-terminal region of 

MCM4. This PCR product was then cut with NdeI and MluI (an internal site in Mcm4) and 

then cloned into the Mcm4FL plasmid shuffle vector, which was also cut with NdeI and MluI 

to generate the mutant plasmid shuffle vector. All plasmid constructs were sequenced in 

order to confirm that no additional mutations had been generated. 
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2.3 Yeast Transformation 

            Yeast cultures were first grown to an initial concentration of 1 x 10
7
 cells/mL in 50 

mL of the appropriate medium. Cultures were counted using a hemocytometer or by 

measuring the OD600 using a spectrophotometer. Cells were centrifuged for 5 minutes at 

4,000 rpm, washed in sterile 1X TE (Tris-EDTA), spun down again, and resuspended in 2 

mL of 100 mM lithium acetate (LiAc)/0.5X TE. The resuspended cultures were incubated for 

10 minutes at room temperature. Plasmid DNA was added to sterile 1.5 mL tubes along with 

100 μg of salmon sperm DNA and 100 μL of yeast suspension mix. Following this, 300 μL 

of 100 mM LiAc/40% PEG4000 (polyethylene glycol 4000)/1XTE solution was added to 

each of the tubes.  The tubes were then incubated at 30°C for 30 minutes. After incubation, 

40 μL of DMSO (dimethylsulfoxide) was added to each tube, followed by heat shock at 42°C 

for 7 minutes and cooling on ice immediately after for 2 minutes. The resulting transformants 

were plated on selective media and grown at 30°C for 2-3 days.  

2.4 Yeast Two-hybrid Assay 

The DY-1 strain was transformed with the LacZ reporter plasmid pSH18-34, pEG-

202-derived bait, and pJG4-6-derived prey plasmids. Cultures were grown to an initial 

concentration of 1 x 10
7
 cells/mL in 10 mL of SC medium (Amberg et al., 2005) lacking 

uracil, histidine, and tryptophan. Cells were then washed in sterile water and induced for 6 

hours in 20 mL of 2% galactose-1% raffinose medium lacking uracil, histidine, and 

tryptophan. Cells were counted and ~5x10
6
 cells were harvested and tested for the 

interactions between the fusion proteins and detected by the quantitative β-galactosidase (β-

gal) assay. The cells were spun down and resuspended in 0.5mL of Z buffer (0.06 M 
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Na2HPO4, 0.04 M NaH2PO4, 0.01 M KCl, 0.001 M MgSO4, 0.05 M β-mercaptoethanol). 

Two drops of chloroform and one drop of 0.1% SDS were added to each tube and mixed by 

vortexing at the maximum speed for 10 seconds. Tubes were incubated at 28°C for 5 mins 

followed by simultaneous addition of 100 μL of ONPG (2-Nitophenyl-B-D-

galatopyranoside) to each of the tubes. Adding 1 M Na2CO3 stops the reaction and the time 

elapsed between the addition of ONPG and addition of sodium carbonate was noted. The 

reporter plasmid pSH18-34 contains a LacZ gene, which encodes the β-galactosidase 

enzyme. β-galactosidase converts the added substrate ONPG to 2-Nitrophenol and galactose, 

resulting in a yellow colour change measurable via spectrophotometry at 420 nm. The β-gal 

activity was determined by the following formula: β-gal activity = 1,000 x A420 / (t x V x 

A600), where t = time of the reaction (in minutes), and V = volume of culture used in the assay 

(in millitres). The strength of the protein-protein interaction is proportional to the amount of 

β-galactosidase enzyme produced. Therefore, a stronger yellow colour and increased 

absorbance represents stronger protein-protein interaction. Whole cell extracts (WCEs) were 

made from the remaining samples as described in the next section. Protein concentrations 

were determined by Bradford assays and protein expression was examined by western blot. 

The LexA-tagged bait proteins were detected using a rabbit polyclonal anti-LexA antibody 

(ABR or Cedarlane), while the HA-tagged prey proteins were detected using a mouse 

monoclonal anti-HA antibody (Sigma). Alexa Fluor 647 goat anti-rabbit and Alexa Fluor 488 

goat anti-mouse polyclonal secondary antibodies (Invitrogen) were used.  
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2.5 Whole Cell Extract Preparations And Western Blotting 

Cultures were centrifuged at 4,000 rpm for 5 minutes and the pellets were 

resuspended in 400 μL of lysis buffer (10 mM Tris-HCl, pH 8; 140 mM NaCl; 1% Triton X-

100; 1 mM EDTA; PMSF and 1X protease inhibitor cocktail from Fisher). The yeast 

suspension was transferred to 2 mL screw cap tubes containing 0.3 g of 0.5 mm glass beads. 

A bead beater (Biospec) was used to lyse samples for 8 cycles of alternating 30 seconds of 

beating and 30 seconds on ice. The tubes were centrifuged at 13,2000 rpm for 30 seconds and 

the supernatant was transferred to a new 1.5 mL tube. The protein concentration was 

determined in a Bradford Assay using BioRad reagent. Sample loading dye (60% 4X buffer 

[15% SDS; 40% glycerol, 166 mM tris-base]; 0.26 M DTT; 7% bromophenol blue) was then 

added to each of the samples at half the volume and boiled for 10 minutes. Samples were run 

on a 7.5% SDS polyacrylamide gel to separate the proteins based on size and then transferred 

to a nitrocellulose membrane by a wet transfer technique. A wet transfer involves 

sandwiching the gel and the membrane in between two pieces of Whatman paper and 

sponges in a cassette while submerged in transfer buffer (200 mM glycine; 25 mM tris-base; 

20% methanol; 0.05% SDS). The cassette is placed in an OWL transfer apparatus, filled with 

transfer buffer and set at 50 volts to transfer for 2-12 hours at 4°C.  

 

Following the transfer, the membranes were stained with 0.1% Ponceau S stain to 

check for proper transfer and even loading of proteins. The membranes were destained with 

1XTEN+T (20 mM Tris-HCl; 1mM EDTA; 0.14 M NaCl; 0.05% Tween 20). The membrane 

was first incubated in a blocking agent (1XTEN + 5% skim milk powder) for 1 hour at room 
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temperature or overnight at 4°C. Following this, primary antibody (diluted in either 1XTEN 

with 5% skim milk solution or 3% bovine serum albumin solution) was added and incubated 

at room temperature for 1 hour. The membrane was then washed 3 times with 1X TEN+T for 

10 minutes each. Following this, secondary antibody (diluted in 1XTEN with 5% skim milk 

solution) was added for incubation at room temperature for 1 hour in the dark (AlexaFlour 

secondary antibodies are light sensitive). Following a final 3 washes in 1X TEN+T at 10 

minutes each, the membranes were imaged using a Pharos FX Plus (BioRad) and its 

corresponding software. 

Table 2.2:Antibodies used in this study 

Antibody  Source Dilution 

Anti-HA (mouse monoclonal) Sigma 1:5000 

Anti-LexA (rabbit polyclonal) ABR/Cedarlane 1:5000 

Anti-Myc (mouse monoclonal) Sigma 1:5000 

AlexaFlour 488 goat anti-mouse Invitrogen 1:3000 

AlexaFlour 647 goat anti-rabbit Invitrogen 1:3000 

 

2.6 Plasmid Shuffle Growth Assay 

Spot plate growth assays were performed by growing cells to a concentration of 

1x10
7
 cells/mL in the appropriate selective SC medium. Cultures were then serial diluted and 

5 μL aliquots were spotted onto respective SC or Gal/Raff (2% galactose, 1% raffinose) 

selective media plates, which were then incubated at 30°C for 2-4 days. Spotting assays for 

genotoxic sensitivity were performed in the same manner, except that for the Mcm subunit 

over-expression assay the aliquots were plated on YPG/R (1% yeast extract, 2% peptone, 2% 

galactose and 1% raffinose) plates supplemented with 20-100 mM HU (Sigma) or 0.01%-

0.02% MMS (Sigma), and for the plasmid shuffle genotoxic assay the aliquots were plated 
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on SC-Leu-Ura with or without doxycycline (DOX; 20 μg/mL) supplemented with 20-100 

mM HU (Sigma), or 0.01%-0.02% MMS (Sigma). For the overexpression of Cdc7 truncated 

regions in a wild-type background, cultures were spotted on Gal/Raff-Trp plates. Growth 

curves were generated by growing cultures to a concentration of 5x10
6 

cells/mL in SC-Leu 

medium and then diluting the culture to a final starting concentration of 1.67x10
6
 cells/ml in 

SC-Leu medium. OD600 readings were taken at the indicated timepoints and converted to a 

cell concentration using the conversion factor of 0.36/1x10
7
 cells/ml. The final growth curve 

is an average of three independent experiments. 

2.7 Mating Yeast Strains, Sporulation and Tetrad Dissection 

Fresh cultures of cells of opposite mating types were grown to ~5x10
6
 cells/ml. 5 μL 

of each culture was dropped adjacent to one another on a YPD plate and the drops were then 

mixed well using a sterile toothpick making a circle about 5 mm in diameter. Once the spot 

was dry, the plate was incubated at 30°C for 3 h. Following the incubation, a toothpick was 

used to streak a sample of the mating mixture across the edge of a fresh plate of selective 

medium (i.e. SC-Leu) such that it was visible for use in a tetrad- dissecting microscope. 

Zygotes were identified and plated in the matrix of the plate. Following zygote picking, the 

plate was incubated at 30°C until colonies formed from the original zygote. These were then 

transferred to sporulation media in order to begin the sporulation process. 

 

Colonies were picked from the zygote plates and used to inoculate sporulation media 

(1% potassium acetate, amino acids at 25% normal concentration) and incubated at 23°C for 

2-3 days until asci were observed. 1 ml of the culture was centrifuged (13,000 rpm, 1 min), 
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washed in dH2O and resuspended in 50 μL zymolyase solution (0.5 mg/ml in 1 M sorbitol) 

and incubated for 8-10 min at 30°C. Following incubation, 800 μL of sterile dH2O was 

slowly added and the mixture allowed to rest on ice for 5 min. The supernatant was then 

slowly removed until the original volume was reached (~50-100 μL). The tip of a p1000 

pipet tip was cut off creating a larger bore tip (thus reducing the stress on the fragile spores), 

which was used to pipet the culture into a drop on a selective medium plate. The plate was 

then tilted allowing the drop to run down the plate forming a streak suitable for tetrad 

dissection. Tetrads were then dissected as per the Singer MSM ascus dissection protocol 

(Singer Instruments, Sussex, England). 

2.8 Synchronizing Yeast Cultures 

The synthetic α-factor is a S. cerevisiae mating pheromone (New England Peptide), 

used to synchronize cultures in late G1-phase. The cells were grown to an initial 

concentration of ~5x10
6
 cells/mL after which the α-factor was added and cultures were 

incubated for 1.5-3 hours at 30°C. The actual amount of α-factor used in each experiment 

was determined empirically by testing each strain, although typically 30 μg/ml was used for 

most strains. Following incubation, the cells were viewed under the microscope to look for 

the distinct G1-phase arrest morphology (i.e. few buds and the presence of shmoos) to ensure 

that an effective arrest has occurred. Cells were then washed with sterile dH2O to remove the 

α-factor and released into either fresh medium lacking α-factor or the overnight growth 

medium (as it has a high concentration of Bar protein produced normally by growing cells 

which would help degrade the α-factor) containing 50 μg/mL Pronase E (Sigma), which also 
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helps to degrade any remaining α-factor. Aliquots of culture were taken at specific time 

points and prepared for FACS analysis.  

2.9 Fluorescent Activated Cell Sorting (FACS) Analysis 

Aliquots of 1 mL of culture were centrifuged (13,000 rpm, 30 sec) and resuspended in 

1 mL of 70% ethanol and stored at 4°C until further processing. The fixed cells were treated 

with 500 uL RNase A (200 μg/mL in 50 mM Tris-HCl, pH 8) for 2-4 hours at 37°C. 

Following this, 500 μL Proteinase K (2 mg/ml in 50 mM Tris-HCl, pH7.5) was added and the 

tubes were incubated for 30-60 min at 50°C. Finally, the cells were centrifuged (13,000 rpm, 

4 min) and resuspended in 50 μL FACS buffer (200 mM Tris-HCl, pH 7.5; 200 mM NaCl; 

78 mM MgCl2) before being transferred to 500 μL Sytox solution (50 mM Tris-HCl, pH 7.5, 

1:5000 dilution Sytox [Molecular Probes; 5mM Sytox in DMSO]) to stain the DNA. Cells 

were stored at 4°C in the dark and sonicated for 30 seconds just before analysis. The analysis 

was performed with a BD FACSVantage SE cell sorting system in the Molecular Core 

Facility in the Department of Biology at the University of Waterloo. 

2.10 Bioinformatics Analysis 

 The protein sequences of the S.cerevisiae Mcm2 and Mcm4 DDK Docking domain 

regions were obtained in the FASTA format from NCBI. For Mcm2, the sequences were PSI-

BLASTed (Position-Specific Iterated BLAST) against RefSeq (Reference Protein Sequences 

from the database) and run through three iterations/rounds of alignment. The resulting hits 

were aligned and transferred to the Seaview program. The Seaview-aligned sequences were 

transferred into weblogo (http://weblogo.berkeley.edu/logo.cgi) to generate a conservation 

logo for the residues. For the Mcm4 docking region, the sequences were BLASTed (protein-
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protein BLAST) against RefSeq using the Standard Protein BLAST program on the NCBI 

website. The first 100 hits were selected and the sequences were transferred to the Seaview 

program and aligned with the built-in CLUSTALO algorithm. These alignments were 

transferred to weblogo to generate the conservation profile. The PyMol program was used to 

visualize the 3-D structure and identify the exposed residues.  

  

 For the Cdc7-Dbf4 regions, a python script was used to calculate the interface 

residues between Cdc7 and Dbf4 in PyMol. For the alignment, sequences from a number of 

organisms like chicken, fish, frog, yeast, and plant were chosen. Human Cdc7 protein 

sequence was BLASTed to find homologs in each of these species. A multiple sequence 

alignment (MSA) was generated in SeaView using the built-in MUSCLE algorithm with 

default parameters. The Jalview program was used to look at the MSA, reduce redundancy in 

sequences (if necessary) and check for conservation. The interface residues, which were 

previously identified using the python script, were checked for conservation among the 

species in the MSA. These Cdc7 residues were manually checked in a PyMol 3-D structure 

to see if they interact with some other residue in Dbf4. The resulting interface region was 

highlighted in the final PyMol structure.  
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Chapter 3: Dbf4 and Cdc7 Proteins Promote DNA Replication through 

Interactions with Distinct Mcm2-7 Protein Subunits 

 

 

 

 

 

Portions of this chapter appear in the following journal article and are reproduced with 

permission. 

 

This research was originally published in The Journal of Biological Chemistry. Ramer, M.D., 

Suman, E.S., Richter, H., Stanger, K., Spranger, M., Bieberstein, N., Duncker, B.P. Dbf4 and 

Cdc7 Proteins Promote DNA Replication through Interactions with Distinct Mcm2-7 Protein 

Subunits. J. Biol. Chem. 2013; 288(21): 14926-35. © American Society for Biochemistry and 

Molecular Biology.  

 

 

 

 

 

 

 

Figure 3.2A and 3.2B contributed by Dr. Matthew Ramer  
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3.1 Introduction 

 The Mcm2-7 helicase complex is composed of six distinct subunits that function 

together to facilitate DNA unwinding during replication in S phase of the cell cycle. The 

subunits are assembled into a heterohexamer in the cytoplasm and then co-imported into the 

nucleus with Cdt1 (Tanaka and Diffley, 2002). Cdt1 targets the Mcm2-7 helicase to the 

origin-bound ORC6 subunit, which is part of the heterhexameric ORC (Origin Recognition 

Complex) (Semple et al., 2006; Chen et al., 2007). Sequential ATP hydrolysis by Cdc6 and 

ORC enables the stable loading of two Mcm2-7 heterohexamers at individual origins 

(Randell et al., 2006, Evrin et al., 2009, Remus et al., 2009). In late G1-phase, levels of Dbf4 

rise, activating the Dbf4-dependent kinase Cdc7 (DDK), which then phosphorylates MCM 

subunits, thereby stimulating DNA replication. DDK has been previously shown to 

phosphorylate Mcm2, Mcm4 and Mcm6. The Mcm4 and Mcm6 subunits initially undergo 

priming phosphorylation by kinases, like Mec1, before being phosphorylated by DDK and 

stimulating DNA replication (Randell et al., 2010).  

 

 Phosphorylation of the Mcm2-7 by DDK brings about a conformational change that 

activates the helicase complex. Mcm5 appears to be the only subunit that is not 

phosphorylated by DDK. The mcm5-bob1 allele, which contains a single point mutation in 

Mcm5, bypasses the essential function of DDK (Weinreich and Stillman, 1999; Randell et 

al., 2010). Structural analysis suggests that this Mcm5 mutant may impart a conformational 

change to the MCM ring rendering it competent for DNA replication (Hardy et al., 1997; 

Hoang et al., 2007). Regions of the Mcm4 subunit have been dissected to reveal an N-



 

 44 

terminal serine/threonine-rich domain (NSD) that is phosphorylated by DDK, and 

phosphomimetic mutations or removal of this domain can rescue cells lacking DDK activity 

(Sheu and Stillman, 2010). Therefore, this NSD region is suggested to play an inhibitory role 

that is relieved by processive phosphorylation by DDK (Sheu and Stillman, 2010). Although 

DDK-dependant conformational change in Mcm2-7 does not promote double hexamer 

separation, evidence suggests that it may stimulate association with two other firing factors 

required for recruiting DNA polymerases to origins, namely Sld3 and Cdc45 (Sheu and 

Stillman, 2006; Heller et al., 2011; On et al., 2014). 

 

 Given the essential role of Mcm2-7 helicase in replication, it makes sense that the 

deregulation of Mcm2-7 function has been linked to genomic instability and mammalian 

cancer phenotypes. Altered levels of MCM subunits have been associated with numerous 

human cancer types (reviewed in Alison et al., 2002; Gonzalez et al., 2005), and mice that 

are hypomorphic for MCM activity have demonstrated chromosomal abnormalities and a 

dramatic increase in cancer susceptibility (Shima et al., 2006; Chuang et al., 2010). DDK 

phosphorylation of the Mcm2 subunit is not required for normal growth but plays a role in 

the DNA damage response (Stead et al., 2011). Mutation of two DDK target sites (Ser164 

and Ser170) on Mcm2 to non-phosphorylatable alanines increased cell sensitivity to DNA 

damaging agents hydroxyurea (HU), methyl methanesulfonate (MMS), 5-fluorouracil (5-FU) 

and caffeine (Stead et al., 2011; Stead et al., 2012). This suggests a potential checkpoint role 

for DDK phosphorylation of Mcm2 via stabilization of replication forks.  
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 Previous studies have identified precise amino acid residues within Mcm proteins that 

are phosphorylated by DDK (Bruck and Kaplan, 2009; Randell et al., 2010; Stead et al., 

2011), however the targeting of the DDK to Mcm2-7 is poorly understood. It has been shown 

previously that two conserved regions of Dbf4 mediate interactions with the MCM complex 

(motifs-C and -M; Varrin et al., 2005; Jones et al., 2010). Mutation of these Dbf4 domains 

compromises cell growth, DNA replication, and MCM phosphorylation (Varrin et al., 2005; 

Francis et al., 2009; Harkins et al., 2009; Jones et al., 2010). A region on Mcm2 (amino acids 

204-278) has been shown to bind to DDK in vitro (Bruck and Kaplan, 2009). Additionally, a 

region on Mcm4 (amino acids 175-333) has been identified as the docking domain of DDK 

and mutation of this region reduces levels of phosphorylated Mcm4 (Sheu and Stillman, 

2006). Though these regions are known, determining which specific subunit interactions 

target the DDK complex to the Mcm2-7 ring still remained to be elucidated.  

 

 Prior work from the Duncker Lab had investigated the association of DDK with the 

Mcm2-7 helicase complex, by evaluating Dbf4 and Cdc7 separately for its interaction with 

each of the Mcm subunits. Using the yeast two-hybrid assay, Dbf4 exhibited a strong 

interaction with the Mcm2 subunit and a weaker, but reproducible, interaction with Mcm6 

(Appendix A Figure 1A). Complementary co-immunoprecipitation (Co-IP) analysis was also 

conducted with Myc-tagged Dbf4 and HA-tagged Mcms (Appendix A Figure 1B). Similar to 

the yeast two-hybrid results, the Mcm2 and Mcm6 subunits were pulled down with Dbf4, 

while the extent of the Dbf4-Mcm6 seemed comparable to the Dbf4-Mcm2 interaction. 
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When combining both two-hybrid and Co-IP results, Cdc7 showed equal interactions with 

both Mcm4 and Mcm5 (Appendix A Figure 1C and 1D).  

 

 The robust association of Mcm2 and Dbf4 prompted further investigation into this 

interaction. A series of Mcm2 truncations were constructed to test for the interaction with 

Dbf4 in a two-hybrid assay (Appendix A Figure 2A). Either removal of the N-terminal end 

(1-504) or the C-terminal end (505-868) showed reduced interactions with Dbf4 (Appendix 

A Figure 2B). The removal of the N-terminal end however showed a greater reduction in 

interaction, suggesting that it may contain a region important for interacting with Dbf4.  

Further dissection of the N-terminal end revealed that removal of the first 63 amino acids 

abrogated the interaction with Dbf4 (Appendix A Figure 2C and 2D). As previously 

mentioned, Mcm2 contains the partial nuclear localization signal (NLS) sequence 

specifically at the N-terminal amino acids residues 5-9 (Liku et al., 2005). The NLS was 

restored to examine the effect of native Mcm2 NLS on Dbf4-Mcm2 interactions. The 

resulting construct, Mcm2Δ2-4, 10-63, showed diminished interactions with Dbf4 (Appendix 

A Figure 2E and 2F). The Mcm2Δ2-4, 10-63 protein also did not significantly change the 

interaction with Mcm6 (Mcm2’s neighbour in the Mcm ring complex) (data not shown).  

 

 These findings are congruent with the Stillman lab’s identification of a region of 

Mcm4 DDK docking domain (amino acids 175-333), which mediates association with DDK 

(Sheu and Stillman, 2006). Taken together, the relative importance of the Dbf4-Mcm2 and 

Cdc7-Mcm4 interactions for cell proliferation and DNA replication was explored, using the 
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Mcm2Δ2-4, 10-63 and Mcm4Δ175-333 mutants. Hereafter, the Mcm4Δ175-333 and 

Mcm2Δ2-4, 10-63 will be referred to as Mcm4ΔDDD and Mcm2ΔDDD, respectively. 

Plasmid shuffle strains were constructed by deleting the genomic copy of either MCM2 or 

MCM4, and supporting for growth with a CEN (1-2 copies per cell) vector expressing either 

wild type or mutant Mcm2 or Mcm4. When mcm2ΔDDD and mcm4ΔDDD were used to 

support growth in mcm2 and mcm4 deletion strains, respectively, modest growth impairment 

was observed relative to wild-type controls (Appendix A Figure 3A). Subsequently, DNA 

replication was assessed in these same strains. Log phase cultures were arrested in late G1 

phase using the mating pheromone α-factor, followed by removal of the α-factor to allow for 

a synchronous release into the cell cycle (Appendix A Figure 3B). Both the Mcm2ΔDDD and 

Mcm4ΔDDD strains showed slight but reproducible defects in S-phase progression 

compared to their wild-type counterparts (compare FACS profiles at 35 min in Appendix A 

Figure 3B). Therefore disruption of either the Dbf4-Mcm2 or Cdc7-Mcm4 interaction had 

only minor consequences for DNA replication and cell cycle progression. This suggested that 

only one of these interactions is sufficient to target the DDK complex to Mcm2-7 and allow 

it to phosphorylate the critical MCM residues required to trigger DNA replication. To 

investigate whether the Dbf4-Mcm2 and Cdc7-Mcm4 interactions represented redundant 

targeting mechanisms, the Mcm2ΔDDD and Mcm4ΔDDD strains were crossed, sporulation 

was induced in the diploids, and the resultant tetrads were dissected. Of 55 spores analyzed, 

none were mcm2Δ, mcm4Δ supported by episomal Mcm2ΔDDD and Mcm4ΔDDD. 

Conversely, in a control cross of the Mcm2 and Mcm4 wild-type plasmid shuffle strains, 10 

of 36 spores analyzed were mcm2Δ, mcm4Δ supported by episomal Mcm2WT and 
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Mcm4WT. These results suggested that the combination of Mcm2ΔDDD and Mcm4ΔDDD 

was synthetic lethal, consistent with a model whereby disruption of the redundant Mcm2-

Dbf4 and Mcm4-Cdc7 interactions simultaneously, prevents targeting of the DDK complex 

to Mcm2-7. 

 

 Prior work has shown that mutations in Dbf4 motif C are compromised for their 

interaction with Mcm2 leading to hypersensitivity under replication stress conditions (Jones 

et al., 2010). Similarly, DDK has been shown to phosphorylate Mcm2 to stabilize replication 

forks in the presence of genotoxic agents. The notion that the role of Dbf4/Cdc7 in stabilizing 

and/or restarting replication forks under checkpoint conditions may occur through association 

with Mcm2-7 was investigated by constitutively overexpressing MCM subunits that impact 

Dbf4/Cdc7 targeting. Yeast strains were generated in which the genomic promoters 

controlling expression of individual MCM genes were replaced with a strong GAL1 promoter 

(Appendix A Figure 4). This resulted in the ability to overexpress each of the MCM subunits 

individually. When these strains were exposed to the DNA alkylating agent methyl 

methanesulfonate (MMS) or the ribonucleotide reductase inhibitor hydroxyurea (HU), both 

of which impede replication fork progression, those overexpressing Mcm2 and Mcm4 were 

highly sensitive, whereas those overexpressing other subunits were not (Appendix A Figure 

4). Production of excess Mcm2 and Mcm4 can compete with the Mcm2-7 ring for interaction 

with Dbf4 and Cdc7, respectively. Under checkpoint conditions, this can lead to weaker 

associations between Dbf4/Cdc7 and the MCM helicase, thereby leading to more severe 

growth defects (Appendix A Figure 4).  
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 This chapter provides further evidence to support the model that Dbf4 and Cdc7 

interact with distinct subunits of Mcm2-7 helicase. It also aims to show that deletion of the 

DDK-interacting region on Mcm2 or Mcm4 compromises DNA replication, and that 

simultaneous impairment of both the Dbf4- and Cdc7-MCM interactions results in lethality. 

Overexpression of Mcm2 in a strain background compromised for the Cdc7-Mcm4 

interaction results in a severe growth defects. Growth was also examined on genotoxic agents 

to evaluate the role of DDK association with Mcm2-7 under checkpoint conditions.  

  



 

 50 

3.2 Results 

3.2.1 Simultaneous disruption of Dbf4-Mcm2 and Cdc7-Mcm4 leads to growth defects  

 The Duncker lab had previously found that combining both 

Mcm2ΔDDD/Mcm4ΔDDD mutations results in synthetic lethality. Therefore, since there 

were no cells to work with due to his combined mutation, an induced disruption approach 

was used. This experimental strategy involves disrupting the Mcm2-Dbf4 interaction by 

displacing it via Mcm2 overexpression in a cell background where Mcm4-Cdc7 association 

is already compromised. Plasmid shuffle strains were first created by deleting the genomic 

copy of either MCM2 or MCM4, and supporting for growth with a CEN (1-2 copies per cell) 

vector expressing either wild type or mutant Mcm2 or Mcm4 (Figure 3.1). The Mcm4ΔDDD 

and Mcm4WT background strains were then transformed with a doxycycline repressible 

vector expressing Mcm2, Mcm2ΔDDD, or an empty vector control (Figure 3.1). Similarly, 

Mcm2ΔDDD and Mcm2WT background strains were transformed with a doxycycline 

repressible vector expressing Mcm4, Mcm4ΔDDD, or an empty vector control (Figure 3.1). 

The Mcm2ΔDDD and Mcm4ΔDDD overexpression was used as additional controls to 

determine if the titration effect was due to the presence of the docking domains. Spot plate 

assays were conducted to assess the overall rate of growth in the presence and absence of 

doxycycline. In the presence of doxycycline, all transformants demonstrated comparable 

growth (Figure 3.2A). In the absence of doxycycline, the overexpression of Mcm2 in a 

Mcm4WT background resulted in mild growth defects, consistent the notion that surplus 

Mcm2 is able to partially titrate the DDK complex from the Mcm2-7 ring, through its 

interaction with Dbf4 (Figure 3.2A). Overexpression of Mcm2 in a Mcm4ΔDDD showed a 
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striking growth defect that was much more severe, lending support to a model whereby 

simultaneous disruption of the Dbf4-Mcm2 and Cdc7-Mcm4 interactions compromises the 

ability of the DDK complex to associate with Mcm2-7 (Figure 3.2A and 3.2B).  

 

 The overexpression of Mcm4 in a Mcm2∆DDD background resulted in modest 

growth defects that varied from trial to trial (Figure 3.2A and 3.2C). This could be due to less 

effective sequestration of Cdc7 by free Mcm4 compared to the origin bound Mcm4. Another 

reason could be that unlike Mcm2 and Mcm3, Mcm4 does not contain a Nuclear Localization 

Signal (NLS) sequence, causing less efficient targeting of Mcm4 to the nucleus. This would 

reduce the titration effect of Mcm4 compared to Mcm2 overexpression. To test whether this 

was the case, an NLS sequence was cloned into the respective Dox-repressible vectors 

containing Mcm4, Mcm4∆DDD and empty vector (Figure 3.3). The addition of the NLS 

showed negligible growth defects, suggesting that the titration effect of Mcm4 may not be 

strong enough to compromise DDK association with Mcm2-7 (Figure 3.3). The 

overexpression of Mcm2∆DDD in a Mcm4∆DDD background and vice versa resulted in 

very minor growth defects, most likely due to incorporation of the mutant Mcms into the 

Mcm2-7 rings (Figure 3.2C).  
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Figure 3.1: Construction of plasmid shuffle strains. Mcm2 is used as an example in this 

diagram, but the same strategy was applied to Mcm4 plasmid shuffle strains as well. Cells 

with the deleted genomic copy of MCM2 were supported for growth with a CEN (single copy 

per cell) vector containing a wild-type MCM2 gene and URA3 selectable marker. A LEU2, 

CEN construct containing the mutant copy of the Mcm2 was then transformed into the strain. 

The resulting colonies from the transformation plates were streaked out on 5’FOA (5-

flouroorotic acid) plates to select for cells that had lost the initial URA3 support plasmid. 

Strains possessing a functional URA3 gene, which encodes orotine-5-monophosphate 

decarboxylase (involved in the synthesis of uracil), will convert 5’FOA to its toxic form 5-

flurouracil, thereby causing cell death. The only copy of the gene that should have remained 

in the cell was the mutant Mcm2 form on the LEU2, CEN plasmid. Other constructs like 

Mcm4 on a URA3, Dox-repressible vector were then transformed into those strains for 

overexpression/titration effects.  
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Figure 3.2: Mcm4ΔDDD cells are sensitive to Mcm2 overexpression. Mcm4WT, 

Mcm4ΔDDD, Mcm2WT, and Mcm2ΔDDD plasmid-supported strains were transformed 

with either empty pCM190, pCM190-Mcm2WT, or pCM190-Mcm4WT for which 

expression is under the control of a doxycycline (DOX)-repressible promoter. (A) 10-fold 

serial dilutions of each transformant were spotted on selective media with or without Dox at 

a starting concentration of 1x10
7
 cells/ml and grown for 2 days. (B) The same Mcm4WT and 

Mcm4ΔDDD transformants were grown in selective medium without Dox and the cell 

concentration determined at the indicated time points. The average of three replicates is 

shown + S.D. (error bars). (C) Serial dilutions were carried as in A, with the addition of 

strains transformed with pCM190-Mcm2ΔDDD or pCM190-Mcm4ΔDDD, as indicated. 
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Figure 3.3: Overexpression of Mcm4-NLS shows negligible growth defects in 

Mcm2ΔDDD cells. Mcm2WT and Mcm2ΔDDD plasmid-supported strains transformed with 

pCM190-Mcm4WT-NLS, pCM190-Mcm4ΔDDD-NLS, or empty pCM190-NLS were tested 

for possible growth defects. Each of the pCM190 constructs contained a SV40 NLS added to 

the N-terminal end of the gene.10-fold serial dilutions of each transformed strain were plated 

on selective media with or without added Dox, at a starting concentration of 1x10
7
 cells/ml, 

and grown for 2 days at 30°C.  
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3.2.2 Exposure to genotoxic agents causes exacerbation of growth defects  

Growth on genotoxic agents like hydroxyurea and methyl methanesulfonate resulted 

in exacerbation of growth inhibition in the Mcm4∆DDD cells overexpressing Mcm2 (Figure 

3.4). This is consistent with the previous results whereby growth defects were seen due to 

excess Mcm2 binding Dbf4 and titrating away the DDK complex from the Mcm2-7 ring. It 

was observed that Mcm4ΔDDD cells overexpressing Mcm2 were more sensitive than those 

overexpressing Mcm2 with wild-type Mcm4 present (Figure 3.4). The Mcm4 overexpression 

in the Mcm2∆DDD showed slight growth inhibition in the presence of genotoxic agents 

(Figure 3.5; see the highest dilution). Ineffective sequestering of Cdc7 by Mcm4 could be a 

reason for the slight growth defect. The lack of an NLS sequence on Mcm4 could also be 

preventing the localization of overexpressed Mcm4 into the nucleus. Since genotoxic agents 

cause replication fork stalling, increased growth defects suggest that DDK-Mcm interactions 

may play a role in stabilizing replication forks under checkpoint conditions. Therefore, the 

ability to respond to replication stress seems to correlate with the degree of impairment in the 

association between Dbf4/Cdc7 and the Mcm2-7 complex. 
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Figure 3.4: Exposure to genotoxic agents exacerbates growth defects in Mcm4ΔDDD 

cells overexpressing Mcm2. Mcm4WT and Mcm4ΔDDD plasmid-supported strains 

transformed with pCM190-Mcm2WT, pCM190-Mcm2ΔDDD, or empty pCM190 were 

tested for sensitivity to genotoxic agents. 10-fold serial dilutions of each transformed strain 

were plated on selective media containing the indicated concentrations of HU or MMS, with 

or without added Dox, at a starting concentration of 1x10
7
 cells/ml grown at 30°C for 3 days. 
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Figure 3.5: Exposure to genotoxic agents shows no significant exacerbation in growth 

defects in Mcm2ΔDDD cells overexpressing Mcm4. Mcm2WT and Mcm2ΔDDD plasmid-

supported strains transformed with pCM190-Mcm4WT, pCM190-Mcm4ΔDDD, or empty 

pCM190 were tested for sensitivity to genotoxic agents. 10-fold serial dilutions of each 

transformed strain were plated on selective media containing the indicated concentrations of 

HU or MMS, with or without added Dox, at a starting concentration of 1x10
7
 cells/ml, and 

grown for 3 days at 30°C.  
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3.3 Discussion 

The DDK complex triggers replication by phosphorylating subunits of the Mcm2-7 

helicase complex at licensed origins. This phosphorylation leads to the recruitment of other 

replication protein factors to form the replisome that carries out local DNA unwinding. It is 

well known that the critical phosphorylation targets of DDK are Mcm2-7, however little is 

known about the way in which this essential replicative kinase is targeted to the MCM 

complex.  

  

Previous findings from the Duncker lab have shown that Dbf4 and Cdc7 each 

contribute to the interaction with individual subunits of Mcm2-7. In the case of Dbf4, the 

results suggest that it interacts strongly with Mcm2, and exhibits a weaker association with 

Mcm6, a subunit that lies adjacent to Mcm2 in the MCM ring (Davey et al., 2003). These 

observations are consistent with previous work indicating that Dbf4, but not Cdc7, binds 

tightly to Mcm2 (Bruck and Kaplan, 2009). Combined two-hybrid and co-IP data indicate 

that Cdc7 interacts equally with Mcm4 and Mcm5, and displays no association with Mcm2 

and Mcm6. Two-hybrid analysis of various Mcm2 domains reveal that residues in both the 

N- and C-terminal halves of the protein participate in the Dbf4 interaction, though the N-

terminus appears to make the larger contribution. Removal of the N-terminal 63 amino acids 

of Mcm2 abrogated the interaction with Dbf4, suggesting that this region contains an 

essential uncharacterized functional domain. Restoration of the NLS in this N-terminal 

region showed the same diminished interaction with Dbf4. Another study has previously 

reported that Dbf4 binds to a second region on Mcm2 spanning amino acids 204-278, 

although the effect of removing this region was not evaluated (Bruck and Kaplan, 2009). The 
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overall results suggest that there are two possible mechanisms for targeting the DDK 

complex to the Mcm2-7 ring. In the first case, both Dbf4-Mcm2 and Cdc7-Mcm4 

interactions are required for DDK targeting, ensuring that free Dbf4 or Cdc7 does not 

interfere with the association of the complex. A second possibility is that the separate 

interactions represent redundant mechanisms for targeting the DDK complex. This would 

ensure that the DDK-MCM complex forms more efficiently with minimal effects of 

mutations that may hinder individual subunit interactions. The results of this study support 

the second model of DDK targeting, where the interactions appear to the redundant. Using 

the identified N-terminal DDK docking domain of Mcm2 (amino acids 2-4, 10- 63) and the 

previously identified DDK docking domain of Mcm4 (amino acids 175-333; Sheu and 

Stillman, 2006) in an inducible fashion provided more evidence as to the targeting 

mechanism. The consequences of disrupting both Dbf4-Mcm2 and Cdc7-Mcm4 interactions 

displayed greater growth inhibition when compared to single disruptions (Figure 3.6). This 

was demonstrated through the overexpression of Mcm2 to titrate Dbf4 in a cell background 

where Cdc7-Mcm4 interaction was already hindered. Although Mcm4 overexpression did 

not exhibit the same severe growth defect in the Mcm2ΔDDD background, this could be due 

to ineffective sequestering of the Cdc7. Dbf4 exhibited a very robust interaction with Mcm2, 

but Cdc7 showed relatively similar strength in binding to Mcm4 and Mcm5. This could mean 

that Mcm4 alone is not sufficient to properly titrate Cdc7, even with the addition of an NLS. 

In this regard, examining the effect of the Mcm5-Cdc7 interaction might be worth exploring 

in future studies. However, since combining the Mcm2ΔDDD and Mcm4ΔDDD mutations 

results in synthetic lethality, the effect of Cdc7-Mcm5 and the weaker Dbf4-Mcm6 
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interactions is most likely not sufficient to target the DDK complex to Mcm2-7. The model 

in Figure 3.6 outlines the interactions between DDK and the Mcm2-7 complex.  

 

 

Figure 3.6: Model for DDK interaction with Mcm2-7 helicase complex.  (A) Interaction 

between Dbf4-Mcm2 and Cdc7-Mcm4 targets the DDK complex to the Mcm2-7 ring to carry 

out phosphorylation of Mcm4, leading to normal DNA replication. (B) and (C) The 

disruption of one of these interactions will result in only slightly impaired replication. This is 

because the remaining interaction (either Dbf4-Mcm2 or Cdc7-Mcm4) is sufficient for DDK 

association with Mcm2-7. (D) Disruption of both interactions results in synthetic lethality 

due to abrogation of DDK association with Mcm2-7.  
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The simultaneous disruption of Dbf4-Mcm2 and Cdc7-Mcm4 interactions 

demonstrated exacerbated growth defects in the presence of genotoxic agents. This result 

complements findings in other studies where mutants of Dbf4 motif C (which interacts with 

Mcm2) displayed sensitivity to genotoxic agents (Jones et al., 2010). Mutations of DDK 

phosphorylation sites on Mcm2 (Ser164 and Ser170) to non-phosphorylatable forms caused 

greater sensitivity to genotoxic agents (Stead et al., 2011). These findings indicate that the 

targeting of DDK to the Mcm2-7 ring might be important under replication stress conditions. 

A possible reason for this targeting could be that DDK phosphorylation of one or more MCM 

subunits may help to stabilize and/or restart stalled or blocked replication forks. Recent 

evidence has shown an accumulation of Replication Protein A foci (representing generation 

of single stranded DNA) in Mcm2 mutants that have non-phosphorylatable DDK target sites, 

suggesting that the DDK acts to slow down the helicase in the presence of genotoxic agents 

(Stead et al., 2012). Another likely scenario is that interaction with the MCM ring serves to 

direct DDK to other targets at or near the forks. Candidates include Cdc45 and the polα-

primase complex, both of which are DDK substrates (Weinreich and Stillman, 1999; 

Nougarede et al., 2000; reviewed in Duncker and Brown, 2003), as well as histone H3, since 

its phosphorylation by DDK has been shown to play a role in maintaining genomic integrity 

(Baker et al., 2010). Aside from replication defects, agents that cause DNA damage can also 

induce apoptotic-like cell death in yeasts by activating caspase-like molecules (reviewed in 

Burhans et al., 2003).   

 



 

 62 

Interestingly, a number of the phenomena described here for budding yeast are 

similar to findings in more complex eukaryotes. For example, roles for both Mcm2-7 and 

Dbf4/Cdc7 during replication stress have been identified in Xenopus (Woodward et al., 2006; 

Tsuji et al., 2008). Several cancer and tumour derived cell lines have altered abundance of 

both MCM and DDK subunits (Bonte et al., 2008; Lau et al., 2010; reviewed in Mishra and 

Verma, 2010). Understanding the degree of conservation of Dbf4-Mcm2 and Cdc7-Mcm4 

interactions in metazoan organisms and its influence on genome integrity maintenance would 

be an interesting avenue of exploration in further studies. 
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Chapter 4: Distinct Regions or Residues within Cdc7, Mcm2 and Mcm4 

Potentially Facilitate DDK Association with Mcm2-7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4A and 4.6B contributed by Dr. Andrew Doxey  



 

 64 

4.1 Introduction 

The essential cell cycle kinase, DDK (Dbf4 dependent kinase), triggers the cell’s 

transition from G1 to S phase. DDK is composed of the kinase subunit Cdc7 (cell division 

cycle 7) and its regulatory subunit Dbf4 (dumbbell forming unit 4). The key phosphorylation 

targets of DDK are multiple subunits of the heterohexameric Mcm2-7 helicase complex. As a 

result, phosphorylated Mcm2-7 unwinds the DNA double helix exposing single stranded 

DNA as a template for DNA polymerase. Mcm2-7 phosphorylation by Cdc7 facilitates the 

association of Cdc45 and Sld3, which subsequently recruit other replication factors to origins 

(Heller et al., 2011). The Mcm2, Mcm4 and Mcm6 subunits have so far been implicated as 

direct targets of DDK (Sheu & Stillman, 2010; Randell et al., 2010; Cho et al., 2006). The 

previous chapter has shown that the Dbf4-Mcm2 and Cdc7-Mcm4 interactions represent 

redundant mechanisms in targeting DDK to the Mcm2-7 complex. Precise domains or 

regions that mediate these interactions have been characterized in Dbf4, Mcm2, and Mcm4, 

but not in Cdc7. The specific residues within the DDK docking domain of Mcm2 and Mcm4 

that interact with Dbf4 and Cdc7, respectively, are also currently not known. Investigating 

these interactions will further enhance our understanding of the proposed targeting 

mechanism.  

 

Cdc7 is an essential serine threonine kinase that is highly conserved among 

eukaryotes. The levels of Cdc7 remain constant throughout the cell cycle, and regulation of 

the kinase activity occurs through cell cycle regulation of its regulatory subunit, Dbf4. Dbf4 

levels are high from G1 phase to late M phase when it is targeted by the APC/C (Anaphase 

Promoting Complex/Cyclosome) for degradation (Cheng et al., 1999). Temperature sensitive 
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cdc7 mutants exhibit cell cycle arrest at G1 phase (Bousset and Diffley, 1998). The mcm5-

bob1 allele, which contains a single point mutation P83L in the Mcm5 subunit, bypasses the 

requirement for DDK most likely due to a conformational change conferred by the mutation 

(Hardy et al., 1997; Hoang et al., 2007).  Several phosphorylation sites have been identified 

in the N-terminal regions of Mcm2, Mcm4 and Mcm6. Evidence has shown that kinases like 

Mec1 prime Mcm4 and Mcm6 to stimulate subsequent DDK phosphorylation (Randell et al., 

2010). Prior phosphorylation is also required for DDK to associate with Mcm2-7 in a Dbf4-

dependent manner (Francis et al., 2009). The N-terminal serine/threonine rich domain (NSD) 

of Mcm4 is processively phosphorylated by DDK to relieve an inhibitory effect and allow 

replication to proceed (Sheu and Stillman, 2010). Given the vital role of Cdc7, targeting it for 

inhibition has shown promise as a potential cancer therapeutic in many studies (Bonte et al., 

2008; reviewed in Montagnoli et al., 2010; Natoni et al., 2013). Therefore, understanding 

how Cdc7 interacts with Dbf4 and Mcm4 will further shed light on how DDK is targeted to 

the Mcm2-7 complex for replication initiation.   

 

The DDK Docking Domains have been characterized in both Mcm4 (amino acids 

175-333; Sheu and Stillman, 2006) and Mcm2 (amino acids 2-4, 10-63; see Chapter 2). 

Domains within Dbf4 have also been characterized. Dbf4 contains three conserved regions, 

identified as motifs-N, -M and -C (reviewed in Masai and Arai, 2000), each mediating 

interactions with replication factors. Motif-N has been shown to interact with Orc2 and the 

Rad53 checkpoint kinase, while motifs-M and -C exhibit some redundancy in interacting 

with Mcm2 and Cdc7 (Matthews et al., 2012; Varrin et al., 2005; Jones et al., 2010; Harkins 
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et al., 2009). The Cdc7 structure, on the other hand, is composed of 11 conserved kinase 

domains and 3 Kinase-Insert domains, which mediate protein-protein interactions (reviewed 

in Masai and Arai, 2002; Masai et al., 1995). Previous work in budding yeast has found that 

the C-terminal region of Cdc7 binds with Dbf4, and specific residues within the kinase 

domains are essential for kinase activation and function (Jackson et al., 1993; Ohtoshi et al., 

1997). Consistently, findings in human cell lines have shown that the C-terminal region of 

Cdc7 mediates the interaction with Dbf4 motifs-M and -C (Kitamura et al., 2011). The 

recently solved crystal structure of human Dbf4-Cdc7 complex revealed that Dbf4 motif-C 

binds to the N-terminal lobe of Cdc7 and is sufficient for kinase activity, whereas Dbf4 motif 

M binds to the C-terminal lobe acting as a tethering domain (Hughes et al., 2012). These 

studies provide a good framework for deducing interacting regions in the equivalent budding 

yeast proteins. 

4.2 Results 

4.2.1 Regions of Cdc7 Show Overlap or Differences in Binding to Mcm4 and Dbf4  

In order to determine which region of Cdc7 mediates the interaction with Mcm4, 

yeast two-hybrid assays were conducted. Several LexA-tagged Cdc7 truncations were cloned 

into bait vectors and tested for interaction with HA-tagged full-length Mcm4 expressed by 

prey vectors (Figure 4.1; see schematic of Cdc7 truncations). The Cdc7 regions were also 

examined for interaction with Dbf4 to determine whether certain regions exhibit overlap in 

interactions with both proteins. The two-hybrid results revealed that regions near the C-

terminal end (Cdc7 amino acids 453-507) and N-terminal end (Cdc7 1-54) of Cdc7 show 

weak, but reproducible interactions with Mcm4 (Figure 4.1). Though these interactions are 
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weak, they appear to be important as removal of these regions resulted in abrogated 

interactions with Mcm4. The Cdc7 C-terminal end (Cdc7 453-507) showed a similar weak 

association with Dbf4 as well. Removal of the first 54 amino acids of Cdc7 maintained the 

binding to Dbf4 similar to the wild-type levels (Figure 4.1; see Cdc7 55-507 construct). This 

region seems to be sufficient for the interaction with Dbf4, but showed no interaction with 

Mcm4. In the previous chapter, it was proposed that Dbf4-Mcm2 and Cdc7-Mcm4 

interactions represent redundant mechanisms for targeting DDK to the Mcm2-7 helicase. If 

the Cdc7-Mcm4 interaction was disrupted but the Dbf4-Mcm2 interaction was maintained, 

one would expect that Cdc7 55-507 would complement a cdc7 mutant, assuming the kinase 

activity is still intact. To determine if Cdc7 55-507 could still promote DNA replication, the 

construct was tested for its ability to complement the lack of wild-type Cdc7 in a cell (Figure 

4.2A). To achieve this, a strain in which the genomic copy of CDC7 was replaced with a 

GAL1-CDC7-HA allele was used so that Cdc7 expression could be induced in the presence of 

galactose and shut off in the presence of glucose (Figure 4.2A). This strain was transformed 

with the two-hybrid bait vector containing Cdc7 55-507 and then grown on glucose and 

galactose media. The Cdc7 55-507 region did not complement growth when wild-type Cdc7 

expression was turned off in the presence of galactose (Figure 4.2A). Though this region 

exhibited a disrupted interaction with Mcm4, DDK should still be targeted to the Mcm2-7 

complex since the Dbf4-Mcm2 interaction is still maintained. This means that although the 

removal of the first 54 amino acids maintains binding to Dbf4, it may have affected other 

aspects like protein kinase activation or function.  
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Bioinformatics analysis was used to analyze the Dbf4-Cdc7 interaction and locate 

conserved interface residues. Appendix B Figure 1A shows a PyMol generated structure of 

human Dbf4-Cdc7 interacting regions where yellow/red represents Cdc7 amino acids 89-148 

and blue/green represents Dbf4 amino acids 288-336. This region of Dbf4 encompasses 

conserved motif-C, which aligns with the S.cerevisiae Dbf4 motif-C region (amino acids 

656-697) (Appendix B Figure 1B; see Dbf4 alignment; Hughes et al., 2012; Harkins et al., 

2009). Motif-C has been previously shown to interact with Cdc7, however a precise Dbf4-

binding domain has not yet been identified in S.cerevisiae Cdc7 (Kitamura et al., 2011; Sato 

et al., 2003; reviewed in Masai and Arai, 2000). Alignments of human and yeast Cdc7 

sequences revealed 4-5 key Cdc7 residues that are both conserved and interact with residues 

in Dbf4 (see Section 2.10 for details on identification of residues). In Appendix B Figure 1B, 

Cdc7 residues highlighted in red indicate conserved residues that may interact with Dbf4. 

Similarly, in the Dbf4 alignment, residues highlighted in red may interact with Cdc7. 

Residues highlighted in colours other than red in Cdc7 are ones that show clear contact with 

residues of the same colour in the Dbf4 sequence (Appendix B Figure 1B; see both 

alignments). For example, the highlighted blue residue in Cdc7 shows a clear contact with 

the blue residue highlighted in Dbf4. The identified conserved interface residues within Cdc7 

are Threonine 81 (number constitutes amino acid position), Serine 82, Proline 84, Arginine 

111, and Aspartic Acid 114. Within Dbf4, the conserved interface residues are Glutamic acid 

630, Histidine 648, Phenylalanine 658, and Aspartic Acid 672. The region of human Cdc7 

that interacts with Dbf4 corresponds to amino acid region 75-113 in S.cerevisiae. This seems 

consistent with the two-hybrid data in Figure 4.1, as the removal of the first 124 amino acids 
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of Cdc7 abrogated the interaction with Dbf4, but the Cdc7 55-507 region maintained a robust 

association. Therefore, amino acid region 55-124 appears to be a key Dbf4 interacting motif 

in Cdc7.  

 

To further test the binding between the Cdc7 truncations and Mcm4, several Cdc7 

regions were overexpressed in a wild-type background and spotting assays were conducted. 

Overexpression of the C-terminal constructs (Cdc7 453-507 and Cdc7 276-507) resulted in 

minor growth inhibition (Figure 4.2B). The truncated proteins can weakly bind to either Dbf4 

or Mcm4 (Figure 4.1), possibly sequestering them from normal replication functions. Since 

Cdc7 55-507 seems to be sufficient for interaction with Dbf4, overexpression of this region 

caused more significant growth defects, most likely due to sequestering of Dbf4 (Figure 

4.2B). The Cdc7 1-452 region was overexpressed to see if a construct that showed no binding 

to Dbf4 or Mcm4 would show no growth defects due to the inability to sequester both 

proteins. Interestingly, overexpression of Cdc7 1-452 caused significant growth defects, 

despite showing no interaction with Dbf4 or Mcm4 in the two-hybrid data. One possibility 

could be that it titrates Mcm5 or Mcm7, which have also been shown to interact with Cdc7 

(see Chapter 3). Two-hybrid analysis, however, revealed that Cdc7 1-452 does not interact 

with either Mcm5 or Mcm7 (Figure 4.3). Therefore, this Cdc7 truncation may be 

sequestering another as yet unidentified replication factor, thereby inhibiting subsequent 

DNA replication.  
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Figure 4.1: Distinct regions of Cdc7 exhibit binding to Mcm4 and Dbf4. Two-hybrid assays were carried out using HA-tagged prey plasmids 

pJG-Mcm4 or pJG-Dbf4. Several truncated forms of Cdc7 were cloned into LexA-tagged bait vectors. These include pEG-Cdc7 Full Length, pEG-

Cdc7 453-507 (number denotes amino acids), pEG-Cdc7 1-452, pEG-Cdc7 276-507, pEG-Cdc7 1-275, pEG-Cdc7 125-507, pEG-Cdc7 1-124, pEG-

Cdc7 55-507, pEG-Cdc7 1-54 and pEG-202 (empty). An average of three replicates is shown + S.D. (error bars). To confirm that all baits and preys 

were properly expressed, aliquots of culture were removed prior to the measurement of β-galactosidase activity, and whole-cell extracts were 

prepared and subjected to immunoblot analysis. Bait proteins were detected with rabbit polyclonal anti-LexA antibody and prey proteins were 

detected with mouse monoclonal anti-HA antibody. Ponceau S staining of the membrane was carried out to check for equal loading of samples. The 

schematics outline the regions of Cdc7 that have been removed (indicated by the dotted lines) and the regions that have been retained (grey boxes). 

KI-1, KI-2, and KI-3 denote Kinase Insert-1, Kinase Insert-2, and Kinase Insert-3 domains, respectively.
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Figure 4.2: Overexpression of certain Cdc7 truncations results in growth defects. (A) 

The pEG-Cdc7 Full Length (FL), pEG-Cdc7 55-507, and pEG-202 (empty) vectors were 

transformed into a GAL1-CDC7-HA strain and streaked out onto glucose media without 

tryptophan and histidine (SC-TH) and galactose media without tryptophan and histidine 

(G/R-TH). Plates were grown for 2 days at 30°C. (B) Several Cdc7 constructs were cloned 

into prey pJG-4-6 vectors and transformed into the DY-1 wild type yeast strain. The 

constructs are pJG-Cdc7 Full Length (FL), pJG-4-6 (empty), pJG-Cdc7 1-452 (number 

denotes amino acids), pJG-Cdc7 55-507, pJG-Cdc7 276-507, and pJG-Cdc7 453-507. 10-fold 

serial dilutions of each construct were plated on glucose media with no tryptophan added 

(SC-Trp) or galactose media with no tryptophan (Gal/Raff-Trp) with a starting concentration 

of 1 x 10
7
 cells/mL. Plates were grown for 2 days at 30°C.  
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Figure 4.3: The Cdc7 1-452 construct exhibits no interaction with the Mcm5 or Mcm7 

subunits. Two-hybrid assays were carried out using HA-tagged prey plasmids (A) pJG-

Mcm5 or (B) pJG-Mcm7. The bait vectors expressed LexA-tagged Cdc7 constructs. These 

include pEG-Cdc7 Full Length, pEG-Cdc7 1-452 and pEG-202 (empty). An average of three 

replicates is shown + S.D. (error bars). Immunoblot analysis to verify bait and prey 

expression was carried out as described in the legend for Figure 4.1. 
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4.2.2 Specific Residues within the Mcm2 N-terminal Region Mediate Binding to Dbf4 

In the previous chapter, the DDK docking domain of Mcm2 was shown to be amino 

acids 2-4, 10-63. The next step involved identifying precise residues within this docking 

domain that may play a role in interacting with Dbf4. First, bioinformatics analysis was 

conducted to identify potential residues based on their conservation (Figure 4.4A). The first 

63 amino acids were PSI-BLASTED (Position-Specific Iterative Basic Local Alignment 

Search Tool) against NCBI Reference Sequences (RefSeq) and run through three 

iterations/rounds. In the first iteration, a normal BLASTp run was conducted and generated a 

multiple alignment from which a Position Specific Scoring Matrix (PSSM) was constructed. 

The PSSM gives a position-specific score for each position in the alignment, with more 

conserved positions receiving high scores and less conserved positions receiving low scores. 

This profile was then used in a second BLAST search or iteration to detect sequences that 

match the initial conservation pattern. After the third iteration, a final conservation logo was 

generated and revealed two potential protein interaction motifs (Figure 4.4A). These are P-x-

x-P and P-x-x-x-P, where P stands for proline and the x constitutes any other amino acid 

(reviewed in Kay et al., 2000; Figure 4.4A). More specifically, the residues are Proline 22, 

Proline 25, Proline 39 and Proline 43. The proline residues were mutated to alanines using 

the QuikChange Site-Directed Mutagenesis kit (see Materials and Methods Section 2.2). 

Three different forms of the Mcm2 gene were constructed: one expressing protein with the 

first two prolines mutated (QC1), one expressing protein with the last two prolines mutated 

(QC2), and one expressing protein with all four prolines mutated (QC3). The resulting Mcm2 

proteins were tested for interaction with Dbf4 (Figure 4.4B). Two-hybrid analysis showed 

that mutations to all four prolines results in a greater than 50% decrease in the interaction 
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with Dbf4, suggesting that both of these protein interaction motifs play a role in mediating 

binding to Dbf4 (Figure 4.4B).  

 

To test the importance of the four prolines in mediating the interaction with Dbf4, an 

induced disruption approach (similar to the one used in Chapter 3). In this approach, Mcm4 

would be overexpressed to bind and titrate Cdc7 in a background where Dbf4-Mcm2 

interaction was already hindered. The experiment would be similar to the spot plate assay in 

Chapter 3 (Figure 3.6), except Mcm2QC3 would be used to disrupt the interaction with Dbf4 

instead of Mcm2ΔDDD. The mcm2QC3 mutant was cloned into a URA3, CEN (centromeric) 

vector and used to support the growth of a Δmcm2 strain. This strain was then transformed 

with a pCM190 doxycycline repressible expression vector containing Mcm4-NLS (Mcm4 

with nuclear localization signal sequence), Mcm4ΔDDD-NLS, or an empty vector control 

(Figure 4.5). In the presence of doxycycline, all three transformants demonstrated 

comparable growth (Figure 4.5; see +DOX panels). In the absence of doxycycline, the 

overexpression of Mcm4-NLS in the Mcm2QC3 background demonstrated modest growth 

defects compared to NLS overexpression alone (Figure 4.5; see highest dilution). Despite the 

addition of an NLS to Mcm4, the titration of Cdc7 by Mcm4 may not be strong enough to 

compromise DDK association with Mcm2-7. Interestingly, Mcm4ΔDDD-NLS 

overexpression in the Mcm2QC3 background also resulted in slight growth defects most 

likely due to the simultaneous incorporation of Mcm2QC3 and mutant Mcm4ΔDDD into the 

Mcm2-7 ring. 
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Figure 4.4: Mutating conserved prolines in Mcm2 N-terminal protein interaction motifs 

reduces the interaction with Dbf4. (A) Bioinformatics analysis was conducted on the 

Mcm2 DDK docking domain (amino acids 1-63). The region was PSI-BLASTED against 

reference sequences (RefSeq) and run through three rounds of alignments/iterations. A final 

conservation logo was generated and identified two conserved regions: PPSSPQ (region 1) 

and SSPxGxP (region 2). These resemble protein interaction motifs P-x-x-P and P-x-x-x-P. 

These prolines were then mutated to alanines using the QuikChange Mutagenesis kit. Mcm2 

QC1 denotes mutations to the first two prolines to alanines in region 1, Mcm2 QC2 denotes 

mutations to the second two prolines in region 2, and Mcm2 QC3 denotes mutations to all 

four prolines. These HA-tagged wild type and mutant Mcm2 proteins were expressed off 

pJG-4-6 prey plasmids. The bait plasmids expressed LexA-tagged full-length Dbf4. An 

average of three replicates is shown + S.D. (error bars). Immunoblot analysis to verify bait 

and prey expression was carried out as described in the legend for Figure 4.1. 
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Figure 4.5: Overexpression of Mcm4-NLS shows modest growth defects in Mcm2 QC3 

cells. Mcm2 WT and Mcm2QC3 plasmid-supported strains were transformed with pCM190-

Mcm4WT-NLS, pCM190-Mcm4ΔDDD, or empty pCM190-NLS. The resulting 

transformants were test for possible growth defects. Each of the pCM190 constructs had a 

SV40 NLS added to the N-terminal end of the gene. 10-fold serial dilutions of each 

transformed strain were plated on selective media with or without added Dox (doxycycline), 

at a starting concentration of 1x10
7
 cells/mL, and grown for 2 days at 30°C. 
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4.2.3 Bioinformatics Analysis of the Mcm4 DDK Docking Domain reveal possible key 

interacting residues 

 

The evolutionary conservation on the protein surface of the Mcm4 DDK docking 

region (amino acids 175-333) was mapped, similar to the analysis conducted for the Mcm2 

docking region (Figure 4.6A). The results reveal a number of residues that appear to be 

conserved. When analyzed in 3D space, certain residues seem to cluster closely together and 

are also exposed along the same plane (Figure 4.6B; highlighted yellow residues). These 

include Tryptophan 181, Glutamine 266, Glutamic acid 267, Proline 319, Isoleucine 322, and 

Aspartic acid 323. These residues may represent possible interaction sites within the docking 

region of Mcm4 and serve as good candidate residues to mutate for protein interaction 

analysis. Mutating these residues could potentially reveal their importance in mediating the 

binding to Cdc7. Attempts at two-hybrid analysis with Mcm4 point mutants were 

unsuccessful as the background signals with full length Mcm4 prey and an empty bait vector 

were too high to draw any conclusions. Co-immunoprecipitation assays or GST pull-down 

assays may serve as an alternative approach to evaluate protein-protein interactions.  
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Figure 4.6: Bioinformatics reveals potential key interacting residues in Mcm4 (A) The 

Mcm4 DDK docking region (amino acids 175-333) was BLASTed against RefSeq and 

aligned using CUSTALO algorithm as implemented in the SeaView program. The alignment 

was transferred to weblogo to reveal conserved residues. (B) Structural visualization of the 

Mcm4 DDK docking region (amino acids 175-333) was generated using the PyMol program. 

The highlighted yellow residues are highly conserved residues that cluster closely together in 

3D space. The residues are: Tryptophan 181 (W181; number denotes amino acid position), 

Glutamine 266 (Q266), Glutamic acid 267 (E267), Proline 319 (P319), Isoleucine 322 (I322), 

and Aspartic acid 323 (I322). These residues could represent possible interaction sites. 

B 

A 



 

 79 

4.3 Discussion 

4.3.1 Cdc7 and its interaction with Dbf4 and Mcm4 proteins 

The Cdc7 kinase subunit of DDK (Dbf4-dependent kinase) shares significant 

similarity in its catalytic domains between yeasts and higher eukaryotes (reviewed in Masai 

and Arai, 2002). The recently solved crystal structure of human Dbf4-Cdc7 has revealed that 

Cdc7 has a characteristic bi-lobal structure (Hughes et al., 2012). The active site is located in 

a cleft between the N- and C-terminal lobes, similar to other protein kinases (Hughes et al., 

2012; reviewed in Matthews and Guarné, 2013). In the human structure, the N- and C-lobes 

of Cdc7 interface with Dbf4 motif-N and motif-C, respectively (Hughes et al., 2012). These 

results seem consistent with the yeast two-hybrid data, which show that the N- and C-

terminal ends of Cdc7 interact with Dbf4. The C-terminal Cdc7 453-507 region showed 

weak, but reproducible interactions with Dbf4. This is also consistent with previous S. 

cerevisiae work, which showed that the C-terminal 55 amino acid residues interacts with 

Dbf4 and confers species-specific formation of functional DDK (Jackson et al., 1993; Davey 

et al., 2011). The Cdc7 55-507 construct exhibited a robust interaction with Dbf4, whereas 

the Cdc7 125-507 showed no interaction. The region spanning amino acids 55-124 in 

combination with the C-terminal residues 453-507 seem to be the key regions that bind to 

Dbf4. In human Cdc7, the first 36 residues were found to be exposed and subsequently 

subject to proteolysis during structural analysis (Hughes et al., 2012). A truncated version of 

human Cdc7 with a deletion of this N-terminal region as well as large portions of Kinase 

Inserts 2 and 3 successfully crystallized with Dbf4 motifs-M and -C (Hughes et al., 2012). 

Since the removal of the first 54 amino acids of yeast Cdc7 did not disrupt the interaction 

with Dbf4, this suggests that this region is also exposed like the N-terminal region in the 
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human Cdc7 structure. This information is useful for narrowing down regions that strongly 

bind to Dbf4 for crystallization studies in the future. The kinase insert domains do not seem 

to play a major role in mediating interactions on their own, but specific deletion mutants may 

need to be tested to confirm this. Overall, the amino acids 453-507 and 55-124 in S. 

cerevisiae Cdc7 seem to be the likely target regions for Dbf4 binding.  

 

The N- and C-terminal regions of Cdc7 showed very weak, but reproducible 

interactions with Mcm4. The overlap in the binding of the Cdc7 C-terminal construct (amino 

acids 453-507) with Dbf4 and Mcm4 could explain the weak interaction, as the C-terminal 

end seems to be interacting with multiple targets. The first 54 amino acids of Cdc7 show 

weak binding with Mcm4 but not with Dbf4. This region could also potentially bind to other 

Mcm proteins like Mcm5 and Mcm7. Though binding to multiple targets seems like an 

interesting possibility, this would be difficult to determine without analyzing the enzyme in 

its active state. A serine/threonine kinase active site is controlled by the orientation of a 

region called the activation segment, found within the cleft of the N- and C-lobes (Nolen et 

al., 2004; reviewed in Matthews and Guarné, 2013). This region facilitates the change from 

the inactive kinase to an active, stable form. Since Cdc7 undergoes this conformational 

change, most likely due to the binding with Dbf4, it would be difficult to conclude if the 

Cdc7 regions analyzed in the two-hybrid analysis represents the actual Cdc7 and Mcm4 

interaction. The extreme N- and C-terminal ends seem to be required for binding to Mcm4 

but this would be better analyzed through interactions with an active Cdc7-Dbf4 complex.  
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Previous work has shown that overexpression of kinase-negative Cdc7 mutants can 

dominantly inhibit the function of wild-type Cdc7 (Ohtoshi et al., 1997). Interestingly, 

overexpressing wild-type Cdc7 caused severe growth inhibition (Figure 4.2B). This differs 

from previous findings, which have shown that a combination of Dbf4 and Cdc7 

overexpression causes growth inhibition but individual subunit overexpression does not 

(Nougarede et al., 2000; Devault et al., 2008). One explanation could be that the HA fusion 

tag may be interfering with normal DDK function, thus preventing growth. Overexpression 

of the C-terminal constructs (Cdc7 453-507 and Cdc7 276-507) showed mild growth 

inhibition, while the overexpression of Cdc7 55-507 showed more severe growth inhibition. 

The Cdc7 truncations most likely form inactive kinase complexes with Dbf4 or sequester 

Mcm4 and Dbf4. One particularly interesting result is that the Cdc7 1-452 region, did not 

interact with either Mcm4 or Dbf4 in the two-hybrid data, yet showed severe growth 

inhibition. Two-hybrid analysis with Mcm5 and Mcm7 revealed no interaction with this 

construct, suggesting that it may be interacting with yet another protein factor essential for 

replication or has a general toxicity effect. The enhanced binding seen with the Cdc7 55-507 

and Dbf4 did not retain DDK function, as it failed to complement the lack of wild-type Cdc7. 

The removal of the first 54 amino acids could have disrupted the essential kinase function of 

Cdc7, thereby resulting in a failure to initiate DNA replication.  

4.3.2 Potential targeting residues within Mcm2, Mcm4, and Cdc7 

The bioinformatics analysis of the Mcm2 DDK Docking domain revealed two regions 

with potential protein interaction motifs: P-x-x-P and P-x-x-x-P. These motifs are known to 

participate in binding to SH3 (Src-homology 3) domain-containing motifs (Chandra et al., 
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2004; Cesarini et al., 2002; Tong et al., 2002). SH3 domains are commonly found in 

eukaryotic cytoskeletal and signal transduction proteins (reviewed in Kay et al., 2000). It 

could be that Dbf4 contains an SH3-like fold that recognizes these motifs. The mutation of 

all four proline residues to alanines reduced the interaction by more than 50%, suggesting 

they are important for Dbf4 binding. To apply this finding to the Dbf4-Mcm2 and Cdc7-

Mcm4 targeting model proposed earlier, an induced disruption approach was used (similar to 

Figure 3.6). Mcm4-NLS was overexpressed to titrate Cdc7 in a mcm2QC3 mutant where the 

Dbf4-Mcm2 interaction is decreased. Mcm4-NLS overexpression in a Mcm2QC3 

background resulted in slight growth defects. The Mcm4 alone may not be sufficient to 

properly titrate Cdc7, even with the addition of an NLS. Overexpressing the Mcm5 subunit in 

combination with Mcm4 overexpression could have a better titration effect, since both 

subunits have shown relatively equal strength in binding to Cdc7 (see Chapter 3).  

 

The analysis of the DDK docking region (amino acids 175-333) of Mcm4 revealed a 

number of conserved residues that are exposed and clustered together. These residues vary in 

their chemical properties (hydrophobicity, chemical polarity, charge). Therefore, analyzing 

combinations of point mutants may be useful in understanding the precise roles of these 

residues in interacting with Cdc7. The conserved interface residues of Cdc7 are found in the 

region next to the Kinase-Insert 1 domain, but before Kinase-Insert 2. This region could be 

part of the potential yeast Cdc7 N-lobe that may interact with Dbf4 motif-C, similar to what 

was seen in the human DDK structure (Hughes et al., 2012; reviewed in Matthews and 

Guarné, 2013). Mutating these residues would reveal their potential importance in binding to 
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Dbf4 and further narrow down essential Dbf4-Cdc7 interface regions for future structural 

studies.  
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Chapter 5: Discussion, Main Conclusions and Future Directions  
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5.1 Interactions between DDK and the MCM complex 

The initiation of DNA replication involves a series of coordinated and regulated steps 

to ensure faithful replication of the genome once per cell cycle. Dbf4-Dependent Kinase 

(DDK) complex triggers replication initiation in late G1 phase by phosphorylating 

components of the Mcm2-7 helicase complex. The end goal of this phosphorylation is to 

recruit other replication factors and form an active replicative helicase to carry out local 

DNA unwinding for new DNA synthesis. The main physiological targets of DDK are Mcm2, 

Mcm4 and Mcm6. Many studies have investigated the DDK phosphorylation target sites on 

the Mcm subunits and its consequences on replication under normal and checkpoint 

conditions (Sheu and Stillman, 2010; Randell et al., 2010; Stead et al., 2011). Though much 

is known about DDK function, understanding how DDK is targeted to the MCM complex 

was unknown and was the focus of this thesis. Investigation of interactions between 

individual subunits of the MCM complex with DDK subunits revealed that Dbf4 and Cdc7 

interact with mutually exclusive subunits of Mcm2-7 helicase. Dbf4 exhibited a strong 

interaction with Mcm2 and a weaker interaction with Mcm6, whereas Cdc7 interacted with 

Mcm4 and Mcm5 with relatively equal strength. Further dissection of Mcm2 revealed a DDK 

docking region within the N-terminal amino acids 2-4 and 10-63. Removal of the Mcm2 

DDK docking region in combination with a previously identified Mcm4 DDK Docking 

domain (amino acids 175-333; Sheu and Stillman, 2006) resulted in synthetic lethality. These 

results show that disrupting Dbf4-Mcm2 and Cdc7-Mcm4 interactions simultaneously is 

sufficient to impair DDK targeting to the Mcm2-7 complex. This result was further supported 

by an induced disruption approach, where Mcm2 overexpression caused growth defects due 

to its titration of Dbf4 in a background where Cdc7-Mcm4 interactions were already 
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compromised. Though the overexpression of Mcm4 in a disrupted Dbf4-Mcm2 background 

did not achieve the same result, this may have been due to the ineffective sequestering of 

Cdc7 by Mcm4. The lack of a Nuclear Localization Signal (NLS) sequence on Mcm4 could 

have also been a reason for the lack of a titration effect, however the addition of an NLS to 

the constructs did not produce appreciably different results.   

 

The lack of growth defects in the Mcm4 overexpression experiments could be due to 

a number of reasons. Despite the addition of NLS-encoding sequence to the Mcm4 

constructs, we cannot be sure that the NLS-tagged proteins efficiently localized to the 

nucleus. The addition of green fluorescent protein (GFP) tags and detection via fluorescence 

microscopy could help further confirm the localization. Nuclear fractionation assays could 

also be used to look at the levels of NLS-tagged Mcm4 proteins in this organelle. Addition of 

two tandem copies of SV40 NLS sequence to Mcm4 could help to constitutively localize 

Mcm4 into the nucleus (Nguyen et al., 2000). Given that Cdc7 interacts with both Mcm4 and 

Mcm5, it makes sense that overexpressing just the Mcm4 subunit may not effectively titrate 

Cdc7 in the induced disruption approach. Possibly overexpressing both Mcm4 and Mcm5 

would improve the sequestering of Cdc7. Simultaneous disruption of Dbf4-Mcm2 and Cdc7-

Mcm5 could also be sufficient to impair DDK targeting to the Mcm2-7 complex. 

Additionally, recent work in the Duncker Lab has shown that the Mcm2 region 1-278, which 

combines the N-terminal docking region identified in this study and a previously identified 

Mcm2-binding region (Bruck and Kaplan, 2009), is sufficient for the interaction with Dbf4 

(Beaudoin and Duncker, unpublished). This region could be overexpressed in a wild-type 
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background to see if it would cause growth defects due to the titration of Dbf4. These 

possibilities will need to be further investigated with experiments. 

5.2 Cdc7 and its interaction with Mcm4 and Dbf4 

The 11 conserved kinase domains of budding yeast Cdc7 share significant similarity 

to the kinase domains of higher eukaryotes (reviewed in Masai and Arai, 2002). The kinase-

insert domains (involved in protein-protein interactions) however show great variability 

(reviewed in Masai and Arai, 2002). The recently solved crystal structure of human DDK 

complex has identified specific domains and residues that participate in the Dbf4-Cdc7 

interface regions (Hughes et al., 2012). Currently, precise domains or regions of budding 

yeast Cdc7 that interact with Dbf4 or Mcm4 are unknown. In this study, several truncated 

forms of Cdc7 were evaluated for their interaction with Dbf4 and Mcm4. The C-terminal end 

of Cdc7 (amino acids 453-507) showed overlap in mediating weak binding to both Dbf4 and 

Mcm4. These interactions were further confirmed when overexpression of this region in a 

wild-type background caused growth defects, most like due to Mcm4 or Dbf4 sequestering or 

formation of inactive kinase complexes with Dbf4. The first 54 amino acids of Cdc7 

exhibited weak binding to Mcm4, whereas when the region was removed the binding with 

Dbf4 was maintained. Taken together, Cdc7 N-terminal amino acids 55-124 and C-terminal 

amino acids 453-507 seem to be the likely target regions of Dbf4 binding. Bioinformatics 

analysis and alignments have also revealed conserved residues that interface with Dbf4 found 

within the 55-124 amino acid region of Cdc7. The first 54 amino acids of Cdc7 may be 

exposed when binding to Dbf4, much like the extreme N-terminal region of human Cdc7 

when bound to Dbf4 in the crystal structure (Hughes et al., 2012). Overexpression of Cdc7 
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55-507 showed severe growth defects most likely due to sequestering of Dbf4, but was 

unable to complement lack of Cdc7, possibly due to disruption of the kinase function. 

 

The lack of Cdc7 complementation by the Cdc7 55-507 construct could be explored 

using in vitro kinase assays to detect for Mcm4 phosphorylation. Purified Mcm4 protein 

would be incubated with [γ-
32

P]ATP and extracts containing Cdc7 55-507 and wild-type 

Dbf4. The incorporation of radiolabelled phosphate from the ATP into Mcm4 can be detected 

via separation of proteins on a SDS gel and exposure to X-ray film. If Mcm4 were 

phosphorylated, it would confirm that the kinase activity is retained in the shortened Cdc7 

region. Another possibility is that the removal of the Cdc7 N-terminal region could be 

affecting the kinase activation instead of the kinase function (catalysis). The Cdc7 region 

involved in activating the kinase to its functional form may be different from the region that 

mediates the phosphotransfer for its substrate. Differentiating between these two functions 

may be difficult as some mutations/deletions may affect both aspects. In vitro kinase assays 

have shown that active Dbf4-Cdc7 complexes demonstrate a gel mobility shift due to 

autophosphorylation compared to catalytically inactive DDK kinases (Weinreich and 

Stillman, 1999). This approach could be applied to the Cdc7 55-507-Dbf4 complex. 

Determining a minimal region of Cdc7 that is still able to retain DDK function could help us 

to better analyze its interaction with Mcm subunits. In this approach, the complex is in its 

active form and would more closely represent the native interaction with Mcm4. Future 

studies could also look at mutating the conserved Dbf4-interface residues within Cdc7 like 

Threonine 81, Serine 82, Proline 84, Arginine 111, and Aspartic Acid 114 to verify their 

significance in mediating interactions with Dbf4. Dbf4 motif-C region in the alignment 
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encompasses a CCHH-type zinc finger which was previously examined by the Duncker Lab 

(Jones et al., 2010). Mutations to the zinc finger residues in this region did not decrease the 

interaction with Cdc7 (Jones et al., 2010). Other potential residues that could be mutated 

include Glutamic acid 630, Histidine 648, Phenylalanine 658, and Aspartic Acid 672. These 

mutations can be combined previously characterized C-motif mutations and tested for the 

interaction with Cdc7.  

5.3 Evaluating Specific Residues within Mcm2 and Mcm4 

Bioinformatics analysis has revealed conserved residues within the DDK docking 

domains of Mcm2 and Mcm4. Within Mcm2, two protein interaction domains P-x-x-P and P-

x-x-x-P were identified, and mutation of all four conserved prolines in these motifs resulted 

in a more than 50% reduction in interaction with Dbf4. These protein interaction motifs are 

typically recognized by SH3 motifs found mostly in cytoskeletal and cell signaling molecules 

(Chandra et al., 2004). The SH3 domain consists of 5 or 6 β-sheets, which fold to form a 

characteristic β-barrel structure (Wang et al., 2007). The human Dbf4-Cdc7 structural work 

has shown 5 β-sheets within motif-M and -C to be involved in the interaction with Cdc7 

(Hughes et al., 2012). Yeast Dbf4 motif-M and -C could also contain β-sheets that resemble 

an SH3-like fold that interacts with Mcm2, but this would need to be confirmed with 

structural analysis. Mutations of more conserved residues within DDK docking region of 

Mcm2 could further decrease the interaction with Dbf4. Other conserved candidate residues 

include the Serine 23, Serine 24 or Glutamine 26 located next to the first two prolines. 

Additionally, Serine 38 and Glutamine 41 located near the second two prolines could also 

serve as good candidates. Conserved residues could be identified within the extended Mcm2 
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1-278 region and mutated to check for potential roles in facilitating binding to Dbf4. 

Bioinformatics analysis of the Mcm4 DDK docking domain (amino acids 175-333) revealed 

several conserved residues that are exposed and cluster together in 3D space. Though 

analysis of mutations in these residues using two-hybrid assays was unsuccessful, other 

protein-interaction methods can be used. Co-immunoprecipitation or GST pull-down assays 

could be used as alternative methods to examine protein-protein interactions.  

5.4 Relevance to Cancer 

Given that DDK and Mcm proteins play an essential role in DNA replication process, 

it would be reasonable to think that deregulation of these factors may lead to cancer 

phenotypes. Several studies have shown elevated levels of Cdc7 and Dbf4 in tumour cell 

lines and cancer tissues (Bonte et al., 2008; Kulkarni et al., 2009; Choschzick et al., 2010; 

Cheng et al., 2013). The critical role of Cdc7 in origin firing makes it an important target for 

novel cancer therapeutic studies (reviewed in Montagnoli et al., 2010). For instance, PHA-

767491 is a potent Cdc7 inhibitor that causes apoptotic cell death in multiple cancer cell 

types (Montagnoli et al., 2008). Additionally, it has been shown to have an additive effect on 

myeloma cell death when combined with current chemotherapy drugs (Natoni et al., 2013). 

An interesting avenue of research would be to investigate if truncated versions of proteins 

like Cdc7, Dbf4, Mcm2, or Mcm4 could be more selective inhibitors and serve as potential 

alternatives to chemical compounds. Though the presented data does not focus on cancer, it 

provides a greater insight into essential protein factors that govern replication initiation and 

also establishes the groundwork for possible structural studies in the future. 
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Appendix A Figure 1: Dbf4 and Cdc7 interact with mutually exclusive subunits of Mcm2–7. A 

and C, two-hybrid assays were carried out using either bait construct pEG-Dbf4 (A) or pEG-Cdc7 

(C), whereas pJG-Mcm2, -Mcm3, -Mcm4, -Mcm5, -Mcm6, and -Mcm7 were used as prey constructs, 

along with pJG4–6 as an empty vector control. Culture aliquots were removed just prior to the 

measurement of β-galactosidase activity, and whole cell extracts were prepared and subjected to 

immunoblot analysis to confirm bait and prey expression. The average of three replicates is shown + 

S.D. (error bars). Bait proteins were detected with anti-LexA antibodies, and prey proteins were 

detected with anti-HA antibodies. Ponceau S staining of the membrane was carried out to determine 

relative sample loading. (B) and (D), immunoprecipitation (IP) of Myc-tagged Dbf4 (B) or Cdc7 (D) 

was carried out in strains overexpressing HA-tagged Mcm2, Mcm3, Mcm4, Mcm5, Mcm6, or Mcm7. 

Shown are immunoblots of IP and supernatant (S) fractions detected with anti-HA or anti-Myc 

antibodies. 20 μg of input and one-fourth of the final bead suspension were loaded for the Dbf4 IP 

immunoblot, whereas 50 μg of input and one-fourth of the final bead suspension were loaded for the 

Cdc7 IP immunoblot. Ponceau S staining of the membrane was carried out to determine relative 

sample loading. 
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Appendix A Figure 2: An N-terminal Mcm2 region mediates interaction with Dbf4. (A) 

Mcm2WT and mutant cassettes used in this study. The location of the conserved MCM box, 

including Walker A, Walker B, and arginine finger motifs, is indicated. (B), (C), and (E), 

two-hybrid assays carried out using bait construct pEG-Dbf4. pJG-Mcm2 (WT), -Mcm2(1–

504), -Mcm2(505–868), -Mcm2Δ63, and -Mcm2Δ2–4,10–63 were used as prey. The average 

of three replicates is shown + S.D. (error bars). Immunoblot analyses to verify bait and prey 

expression were carried out as described for Fig. 3.1 (D) and (F), immunoprecipitation (IP) 

of Myc-tagged Dbf4. Shown are immunoblots of IP and supernatant (S) fractions detected 

with monoclonal anti-HA (Mcm2 detection) and anti-Myc antibodies (Dbf4 detection). 20 μg 

of input and one-fourth of the final bead suspension were loaded. 
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Appendix A Figure 3: Mcm2ΔDDD and Mcm4ΔDDD mutants have modest growth 

defects. CEN/ARS plasmid constructs YCplac111-Mcm2WT and -Mcm2ΔDDD were used 

to support growth in mcm2::HIS3 background, whereas YCplac111-Mcm4WT and -

Mcm4ΔDDD were used to support growth in a mcm4::KanMX background. (A) Cultures 

were grown in selective media and cell concentrations determined at the indicated time 

points. The average of three replicates is shown + S.D. (error bars). The asterisk indicates a 

significant difference between Mcm4ΔDDD and Mcm4WT at the 8 h time point (paired 

Student’s t test, p < 0.05). (B) Asynchronous (Async) cultures were arrested in α-factor (30 

μg/ml) for 2.5 h followed by release into pheromone-free medium containing 50 μg/ml 

Pronase E (Sigma) with samples taken for FACS analysis. Areas representing S and G2/M 

phase cells for the released cells were determined using the WinMDI program and then 

converted to percentages of total cells in each sample as indicated. 
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Appendix A Figure 4: Constitutive overexpression of Mcm2 or Mcm4 imparts 

sensitivity to genotoxic agents. Yeast strains were generated in which the endogenous 

promoter for genes encoding each of the Mcm2–7 subunits was individually replaced with 

the GAL1 promoter. 10-fold serial dilutions of each GAL1-MCM overexpression strain were 

plated on YPG/R (2% galactose, 1% raffinose) containing the indicated concentrations of HU 

or MMS, at a starting concentration of 1x10
7
 cells/ml, and grown for 4 days at 30°C.  
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Cdc7:       
                     

H.sapiens      89  LKHLIPTSHPIRIAAELQCLTVAGGQDNVMGVKYCFRKNDHVVIAMPYLEHESFLDILNS  148 

            LK  + TS P RI  EL  L +  G   V     + R  D V+  +PY  HE F       
S.cerevisiae   75  LKKIYVTSSPQRIYNELNLLYIMTGSSRVAPLCDAKRVRDQVIAVLPYYPHEEFRTFYRD  134 

 

Dbf4:  
 

H.sapiens    288  KEKKKKGYCECCLQKYEDLETHLLSEQHLSFAENDLNFEAIDSLIENLRF  336 

                 +  K  GYCE C  KYE LE H++SE+H +FA+++  ++ +D ++  L F 

S.cerevisiae   621  ETVKNSGYCENCRVKYESLEQHIVSEKHLSFAENDLNFEAIDSLIENLRF  680 

 

Appendix B Figure 1: Bioinformatics analysis of Cdc7-Dbf4 Interface Residues. The 

Cdc7-Dbf4 interface residues were determined using a python script. (A) A human Cdc7-

Dbf4 interface structure was generated using PyMol. Yellow/red represents Cdc7 amino acid 

region 89-148 and blue/green represents Dbf4 amino acids 288-336. Cdc7 sequences from 

human, chicken, fish, frog, yeast, and plant were chosen. The human Cdc7 and Dbf4 protein 

sequence was BLASTed to find homologs in each of these species. A multiple sequence 

alignment of Cdc7 and Dbf4 sequences was generated using MUSCLE (default parameters) 

as implemented in SeaView. Jalview was used to look at the MSA, reduce redundancy (if 

necessary) and check for conservation. The interface residues of Cdc7 and Dbf4, initially 

identified using the python script were checked for conservation among the species in the 

MSA. The Cdc7 residues were manually checked in the PyMol generated 3-D structure to 

see if they interact with residues of Dbf4, and vice versa. (B) Alignments of yeast and human 

Cdc7 and Dbf4 sequences revealed conserved interface residues (highlighted in red in both 

alignments). Residues of Cdc7 highlighted in a colour other than red are ones that show clear 

contacts with the same colour residue in the Dbf4 sequence (i.e. highlighted blue residue in 

Cdc7 shows contact with blue residue in Dbf4).  
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