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Abstract 

Background/Objectives:  Individuals with a spinal cord injury (SCI) experience reductions in 

lower-extremity muscle mass and increased fatty-infiltration of skeletal muscle, predisposing 

them to an increased risk of specific secondary health conditions.  To date, few investigations 

have prospectively examined changes in muscle in the chronic stage of SCI, especially in 

women, the aged, and those with incomplete injuries.  Peripheral quantitative computed 

tomography (pQCT) is an imaging technique capable of measuring lower-extremity skeletal 

muscle cross-sectional area (CSA) and muscle density, the latter is a surrogate measure of 

muscle fatty infiltration.  The purpose of this project was to a) determine the magnitude of 

muscle CSA and muscle density reduction in a chronic-SCI population with diverse 

impairments; b) identify demographic and injury characteristics associated with muscle CSA and 

density status; and c) determine if muscle CSA and muscle density change over a two-year 

period following chronic-paralysis and if so, what factors are associated with the changes. 

Materials and Methods: Seventy individuals [50/20 m/f, mean (± SD) age 48.9 ± 11.5 years; 

duration of injury 15.5 ± 10.0 years] with chronic (>2 years post-injury) SCI (C1-T12, AIS A-D) 

were enrolled in a two-year cohort study.  Muscle CSA and muscle density values were 

calculated from pQCT scans of the 66%-site of the calf obtained at baseline and two follow-up 

visits separated by one year.  Possible correlates of muscle CSA and density selected a priori 

included: gender, age, height, weight, waist circumference, age at injury, level of injury, injury 

duration, leg spasm frequency and severity scale score (SFSS), ISNCSCI calf-muscle lower-

extremity motor score (cLEMS), wheelchair use, serum vitamin D level, and physical activity 

level.  Dependent t-tests were used to compare muscle CSA and muscle density values of 

participants with complete and incomplete-SCI to age, gender, and height matched able-bodied 
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controls.  Multiple linear regression models were used to determine correlates of muscle CSA 

and muscle density.  Repeated measures analysis of variance (rANOVA) were used to examine 

change in muscle CSA and density over the two-year study duration and multiple linear 

regression models were created to determine correlates of muscle CSA and density change from 

baseline.   

Results: Individuals with motor-complete SCI had a 45% reduction in muscle CSA and a 32% 

reduction in muscle density relative to controls.  Participants with motor-incomplete SCI had a 

17% reduction in muscle CSA and a 14% reduction in muscle density relative to controls.  A 

reduced height, waist circumference, cLEMS, and wheelchair use were associated with a smaller 

muscle CSA in the best-fitting regression model (R
2
 = 0.66; p<0.0001).  In the best-fitting 

regression model for muscle density, increased age, a lower cLEMS, reduced SFSS, fewer 

minutes of daily vigorous physical activity, and wheelchair use were associated with a lower 

muscle density (R
2
= 0.37; p<0.001).   A high degree of individual variability in muscle CSA 

change (mean ± SD: -1.9 ± 6.2cm
2
; range: -22.6 to 8.5 cm

2
) and muscle density change (mean ± 

SD: -1.2 ± 3.28mg/cc; range: -8.6 to 6.4 mg/cc) was observed in those with both complete and 

incomplete SCI over the two-year study duration.  rANOVA indicated a significant reduction in 

both muscle CSA  and density after controlling for individual variability.   A greater waist 

circumference at baseline was weakly associated with a reduction in muscle CSA (R
2
 = 0.14, 

p<0.05), and a lower weight and waist circumference at baseline were associated with a 

reduction in muscle density (R
2
 = 0.26, p < 0.001 and R

2 
= 0.20, p < 0.01, respectively).  

Conclusion:  Age, completeness of injury, spasticity, physical activity participation, and 

ambulation ability were identified as potential clinical predictors of muscle status in individuals 

with chronic-SCI.    Muscle CSA and density does not reach a “steady-state” after chronic-SCI.  
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Further investigation is needed to determine the mechanisms responsible muscle CSA and 

density change in order to prevent continued reductions after chronic-SCI. 
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CHAPTER 1: INTRODUCTION 

Individuals with a spinal cord injury (SCI) experience profound reductions in lower 

extremity muscle mass and muscle quality (1-7).   The average muscle cross-sectional area 

(CSA) of atrophied lower extremity muscle post-SCI has been observed to be approximately 45-

80% of able-bodied peers depending on the muscle examined and the degree of impairment or 

completeness of injury (4,8-10).  In addition to atrophy, there is an accumulation of fatty tissue 

within and between the muscle groups of the lower extremities to the order of three- and four- 

fold increases in those with incomplete and complete injuries respectively (4,9,11).  These 

deleterious changes in muscle are a contributing factor to mobility limitations (8) and secondary 

health conditions common after SCI, including cardiovascular disease and diabetes (4,9,12-14).   

The lifespan of individuals with SCI is approaching that of their able-bodied peers (15), 

and consequently, the incidence of secondary health conditions is increasing as the SCI-

population ages (16,17).  Skeletal muscle plays a vital role in maintaining systemic health, and 

muscle atrophy and weakness are implicated in the development of common co-morbidities such 

as osteoporosis, cardiovascular disease, and diabetes (6,14,18-20).  After SCI, there is a rapid 

decline in bone mineral density such that individuals with SCI can lose up to 70% and 52% of 

bone mineral content in the distal femur and proximal tibia, respectively (21-24).  Skeletal 

muscle is capable of exerting extremely high forces on bone that can be several times greater 

than body weight (25), thus, it has been suggested that reduced muscle forces on bone  after SCI 

may contribute to bone loss beyond that associated with reduced weight bearing alone (6,20).   

Some studies (26,27), but not all (28-31), have demonstrated that electrical stimulation of muscle 

may be effective in preventing osteoporosis or restoring lower-extremity bone mineral content in 
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individuals with  SCI.  As recent evidence has suggested a muscle-bone interaction, examination 

of muscle status may provide insight into bone loss and fracture risk post-SCI (32). 

Cardiovascular disease (CVD) is the number one cause of death after SCI and has a 

prevalence of 30 - 50%; which is high in contrast to age and gender matched able-bodied 

populations, where the prevalence of CVD is typically reported to be in the range of 5 - 10% 

(14).  Additionally, diabetes is three times more prevalent in the SCI population and develops at 

a younger age compared to the able-bodied population (13).  A positive energy balance, 

occurring when energy intake exceeds energy expenditure, increases the risk of obesity and 

related co-morbidities.  Therefore, maintaining a healthy energy balance after SCI is important 

for preventing metabolic syndrome, cardiovascular disease, and diabetes (33-35).   

After SCI, resting metabolic rate, which is a primary determinant of energy expenditure, 

is 14 - 27% lower compared to those without SCI (36).  Lean mass is the single most important 

predictor of resting metabolic rate in the able-bodied and SCI populations, accounting for 70% of 

the variation in resting metabolic rate  (37-41) due to the numerous high-energy processes which 

occur in organs and muscles, including ion pumps, synthesis and degradation of cell constituents, 

biochemical cycles, and leakage of protons across mitochondrial membranes (36).  In addition, 

skeletal muscle is responsible for up to 75% of insulin-stimulated clearance of blood glucose 

(42,43), and reduced muscle mass is related to impaired glucose metabolism and blood sugar 

regulation in the able-bodied (44) and SCI population (45-48).  Secondly, increased skeletal 

muscle lipid accumulation observed in parallel with muscle atrophy is related to impaired 

glucose tolerance, again in able-bodied individuals (49-53) and individuals with SCI (9).  As 

skeletal muscle is a major site of metabolic activity, examining muscle status post-SCI may 
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provide insight into metabolic disease detection, prevention, and treatment in the chronic-SCI 

population. 

According to the Rick Hansen Foundation, those with motor incomplete SCI make up 

approximately half of the SCI population (54).  People with incomplete SCI often have impaired 

ambulatory capacity characterized by reduced gait speed, step frequency, and stride length 

(55,56).  Given the array of preserved motor function in those with incomplete SCI, it is 

presumed that there will be variability in muscle status after incomplete SCI.  Additionally, 

muscle atrophy is associated with reduced muscle strength (57-61) and locomotor ability (62,63).  

In addition, and skeletal muscle atrophy after incomplete SCI is associated with decreased 

voluntary and electronically evoked force (8).  Therefore, an increased understanding of the 

correlates of muscle change may be beneficial in determining who experiences the most 

detrimental changes in muscle, to ultimately prevent or reverse reductions in strength, function, 

and mobility over time.   

Lastly, as Shields (6) highlights, it is becoming increasingly realistic that a cure for SCI 

will be available within the 21
st
 century.  An understanding of the changes in muscle post-SCI 

are imperative as considering individuals must have an intact musculoskeletal system that is not 

irrevocably impaired by chronic paralysis, in order to support weight bearing and ambulation 

after re-innervation.  There is little information outlining the degree of muscle atrophy in the 

chronic-SCI population.  Therefore an investigation characterizing muscle status based on 

demographic and injury-related characteristics is warranted to understand who may benefit the 

most from future cure-related therapies that promote restoration of neurological function.      

Quantitative computed tomography (QCT) is a non-invasive imaging technique capable 

of distinguishing tissue types in vivo based on their X-ray attenuation characteristics.  On this 
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basis, QCT can determine the area of muscle, bone, and subcutaneous fat from cross-sectional 

images.  In addition, QCT images of muscle can generate muscle density information that can 

serve as a surrogate measure for the amount of fatty infiltration into the muscle (64). A number 

of studies have used QCT to measure lower extremity muscle CSA and density in animals and 

humans, including those with SCI (65-70).  Peripheral quantitative computed tomography 

(pQCT), a modality using a smaller bore scanner capable of accommodating arms and legs, has 

been previously utilized to examine the relationships between muscle CSA, muscle density and 

disease risk (69,70).  Unpublished work by Wong et al. has demonstrated an acceptable 

reproducibility (< 5% precision error) of muscle density across a range of age cohorts, and those 

with SCI (71) (Appendix A). It is therefore hypothesized the pQCT technology will provide 

novel insight into the distal lower-extremity muscle status of those with chronic- SCI. 

The predominance of literature examining changes in muscle CSA and muscle density 

after SCI is focussed on the initial changes that occur in the acute and sub-acute stages of injury 

(2,4,7,8,11).  There is a consensus among investigators that a rapid decrease in muscle size and 

quality occurs immediately after injury, followed by a new steady state that develops within 1-2 

years post injury (10).   However, the notion of a “steady-state” after 1 - 2 years post-injury has 

been brought into question (72).  Surprisingly, there is a dearth of literature examining muscle 

characteristics in the chronic stage of SCI despite evidence that a change in muscle status may 

occur.  For example, in a case series, three individuals with SCI experienced reductions in thigh 

and lower limb muscle CSA, ranging from -2.3% to -16.8% in one year (73).  The potential for 

changes in muscle in the chronic stages of SCI warrants further investigation. 

Secondly, the majority of available literature examining muscle status after SCI has 

employed a homogeneous sample of men, and almost exclusively those with motor-complete 
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SCI (9,27,72,74-88).  This is perhaps in an effort to limit confounding factors, however as a 

result, changes that occur in females and those with incomplete injuries have not been adequately 

examined.  In fact, no investigation has examined muscle outcomes in individuals with chronic 

incomplete SCI despite their innate neuroplasticity and preservation of motor function which 

gives these individuals the potential to progress functionally to a greater extent than those with 

complete SCI (89).    

In summary, the purpose of this study is to determine the extent of muscle change in a 

chronic-SCI population with diverse impairment.  In doing so, potential correlates of muscle 

mass and muscle density will be identified to increase our understanding of muscle size and 

quality in individuals with chronic SCI.  Identifying those with the most adverse changes in 

muscle may potentially identify those at most risk for related secondary health complications.   
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CHAPTER 2: BACKGROUD 

2.1 Spinal Cord Injury  

 

As of 2012, approximately 85,500 people live with SCI in Canada (15).  SCI can occur: 

a) when a traumatic event, such as a motor vehicle accident, fall, or violent event causes an 

external physical impact and damages the spinal cord, or b) as a result of non-traumatic damage 

to the spinal cord as a result of a tumour, transverse myelitis, aneurysm repair, etc.  Of the total 

prevalence rate, an estimate 51% sustained their SCI as a result of traumatic, and 49% from non-

traumatic causes (15).  The national incidence rate for SCI is estimated to be 4,259 new cases per 

year.  Of this total, an estimated 42% are the result of traumatic SCI and 58% are from non-

traumatic SCI (15).  The average age at injury across the country is 37.6 years with the majority 

of injuries occurring between the ages of 16 and 30 (90).  Individuals with SCI have a life 

expectancy of 25 to 30 years beyond their injury with CVD and diabetes being the most common 

causes of death for those with chronic-SCI (91). 

Recent studies examining SCI incidence rates in Ontario have highlighted an increasing 

number of older adults sustaining a SCI resulting in a bi-modal age-of-onset distribution, with 

the incidence of SCI peaking among individuals who are in their third and sixth decade (92-94).  

This bi-modal age distribution is also reflected in the cause of injury and the level of injury.  

Younger adults are most often injured in motor vehicle collisions whereas older adults are most 

often injured by falls.  With regard to level of injury, younger adults more commonly sustain an 

injury at the thoracic or lumbar level, whereas older adults more commonly sustain injuries at the 

cervical level (94).   As the age and etiology distribution changes, it is hypothesized that the 
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effects of age-related health conditions will have a greater impact on the health, quality of life, 

and life expectancy of those with SCI. 

2.1.1 SCI and Aging 

The incidence rate of SCI for older adults is growing faster than any other age 

demographic (92-94).  A study examining 936 incident cases of traumatic SCI in Ontario 

between the years of 2003 and 2007 reported a marked increase in SCI incidence with age 

beginning between the ages of 40-49 years in men and 50-59 years in women.  Furthermore, the 

incidence rate for men aged 80+ was three times higher than the incidence for men 40–49 years 

of age.  For women, the incidence rate for the 80+ age group was more than four times higher 

than the incidence rate for the 50–59 age group.  Interestingly, falls surpassed motor vehicle 

collisions as the leading cause of SCI for men and women in Ontario (47.8% and 54.1%, 

respectively), with a drastic increase in the number of fall-induced injuries observed in the older 

age groups.  This shift in the age of SCI-onset and cause of SCI indicates a shift in the health 

considerations for those with SCI, as secondary age-related comorbidities may become more 

prevalent.   

Less healthy and functionally less capable older adults are now surviving to older ages 

because of more effective health care.  Consequently, individuals who sustain SCI at an older 

age may have pre-existing morbidities or impartments such as: osteoporosis, impaired muscle 

strength, compromised balance and reaction time, a less active lifestyle, poorer nutritional status, 

that may exasperate SCI-related impairments (95,96). Therefore, the detrimental effects of aging 

will have an increasing impact on the already expediated aging process observed in the SCI 

community.     
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 In comparison to peers of the same age, individuals with SCI have an increased 

prevalence of cardiovascular disease markers, endocrine disruption, compromised immune 

function, musculoskeletal degradation, and compromised respiratory function.  The evidence of 

increased age-related morbidity at SCI onset, SCI-induced premature aging (191) and age-related 

functional declines (195) supports the need for continued investigation of chronic disease risk-

factors specific to the SCI population.  As reductions in muscle quantity and quality are major 

risk-factors for chronic disease, investigation of muscle status in the chronic-SCI population may 

be beneficial for chronic disease prevention and treatment.   

2.1.2 Pathophysiology of Traumatic SCI  

A traumatic SCI is biphasic; consisting of an initial mechanical trauma (primary injury) 

which triggers a cascade of deleterious secondary effects (secondary injury) (97).  The initial 

injury most commonly occurs as a result of traction and/or compression forces from a traumatic 

event such as a car accident or fall.  The majority of injuries are the result of blunt trauma; 

however, penetrating trauma due to knife or gunshot wounds make up a significant percentage of 

cases.  SCI can involve shear, stretch, and more commonly contusive and compressive forces on 

the cord, and in a small number of cases the cord is completely severed.  Investigations using a 

rat model have shown that the degree of neurological impairment is correlated with the force of 

the trauma and duration of spinal cord compression (97). 

Immediately following injury, neurons and their axons become permeabilized leading to 

immediate cell disability and death (97).  Edema and hemorrhaging occurs in the grey matter and 

to a lesser extent in the white matter as a result of damaged vasculature.  In addition, animal 

studies have demonstrated that post-SCI, there is damage to the meningeal layers and spinal 

roots, and bleeding in the subdural and subarachnoid space (97).  The spinal cord swells to 
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occupy the entire diameter of the spinal canal at the injury level and secondary ischemia results 

when cord swelling exceeds venous blood pressure (98).  Autoregulation of blood flow ceases, 

and spinal neurogenic shock leads to systemic hypotension, thus compounding the ischemia (98).  

After the effects of the initial trauma, the individual succumbs to a group of complications 

known as secondary injury which can exasperate the degree of impairment.   

During secondary injury, systemic, molecular, and cellular cascades, triggered by the 

initial trauma expand the debilitating effects of the initial injury to adjacent white and grey 

matter (97).  The severity of the primary injury determines the characteristics of the secondary 

injury, which progresses in the hours and days after the initial trauma.  The hypoperfusion that 

develops in grey matter extends to the surrounding white matter, slowing or completely blocking 

the propagation of action potentials along axons.  This contributes to a condition known as spinal 

shock.  During spinal shock, damaged neurons and glia undergo necrosis.  Edema and 

hemorrhaging, the magnitude of which corresponds to the injury severity, creates ischemic zones 

at, and around the injury site and increases the amount of necrotic cell death (97).   In addition, 

damaged cells, axons, and blood vessels release toxic chemicals that attack intact neighbouring 

cells.  Glutamate, which is secreted in tiny amounts from the tips of many axons to stimulate cell 

impulses, floods out of damaged spinal neurons, axons, and astrocytes, thereby overexciting 

surrounding neurons.  The overexcited cells let in waves of calcium ions that trigger a series of 

destructive events, including production of free radicals, which can attack membranes and other 

cell components thereby destroying healthy neurons (98).  In addition, secondary injury kills 

oligodendrocytes, the nervous system’s myelin-producing cells, possibly resulting in unsevered 

axons becoming demyelinated and therefore unable to conduct impulses (97).  At six months 

after the initial trauma, axon degeneration continues and neuropathic pain may develop.  By one 
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to two years post-SCI, it is believed that the lesion has ceased to progress and motor and sensory 

impairment stabilizes.  At this point, an individual’s chronic-impairment profile can be classified 

(97). 

The injury progression of non-traumatic injuries is much less defined due the 

heterogeneity of causes.  However, clinical signs, symptoms, and general therapeutic principles 

apply equally to those with non-traumatic injury (98).  The most relevant difference between 

traumatic and non-traumatic etiologies is the rate at which impairments develop.  Whereas 

traumatic-SCI is the result of a sudden event, impairment as a result of a non-traumatic SCI is 

more gradual in onset.  This study will exclude individuals with non-traumatic SCI in order to 

limit the variability in the rate of impairment onset.  

 

2.1.3 Injury Classification  

The SCI population exhibits a diverse impairment profile dictated by the level of injury 

and the degree of preserved motor, sensory, and autonomic function.  To classify the level and 

completeness of SCI, the International Standards for Neurological and Functional Classification 

of Spinal Cord Injury published by the American Spinal Injury Association (ASIA), is 

commonly used.  The neurological level of lesion is the most caudal segment of the spinal cord 

with normal sensory and motor function on both sides of the body as assessed by dermatome and 

myotome sensitivity and impairment (99).  Some individuals may have a different sensory level 

and motor level on each side of the body in which case, left and right motor and sensory levels 

are reported.  More generally, injury level can be grouped into two categories: tetraplegia or 

paraplegia.  Tetraplegia refers to impairment or loss of motor and/or sensory function in the 

cervical segments of the spinal cord and results in impairment of function in the arms, trunk, legs 
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and pelvic organs, whereas paraplegia refers to impairment or loss of motor and/or sensory 

function below the cervical level (i.e. in the thoracic, lumbar or sacral segments) of the spinal 

cord.  With paraplegia, arm functioning is spared, but, depending on the level of injury, the 

trunk, legs and pelvic organs may be affected (99). 

Secondly, SCI is classified into complete and incomplete categories.  An individual with 

a complete SCI has an absence of sensory and motor function in the lowest sacral segment of the 

spinal column (89).  An individual with an incomplete injury will have partial preservation of 

sensory and/or motor function below the neurological level of injury including the lowest sacral 

segment.   Preserved sacral sensation includes sensation at the anal mucocutaneous junction as 

well as deep anal sensation. The test for preserved motor function at the lowest sacral segment is 

the presence of voluntary contraction of the external anal sphincter upon digital examination 

(99). As would be expected, those with complete injuries have greater muscle atrophy compared 

to those with incomplete injuries (7). 

 The majority of individuals with SCI have damage to both the upper and lower motor 

neurons (98) .  However, in some instances, only the upper or lower motor-neurons are affected.  

An upper motor neuron lesion is a lesion of the neural pathway above the anterior horn cell of 

the spinal cord, whereas a lower motor neuron lesion affects only nerve fibers traveling from the 

anterior horn of the spinal cord to the relevant muscle.  Upper motor neuron lesions result in 

spastic paralysis, whereas lower motor unit lesions result in flaccid paralysis (98).  Spasticity, 

characteristic of involuntary muscle tone, is prevalent in an estimated 40-70% of individuals with 

SCI (100).  Spasticity is related to both negative and positive health outcomes and function post-

SCI.   For example, negative symptoms include weakness, fatigability, and loss of co-ordination 

of the extremities (100).  However, positive symptoms of spasticity include preservation of 
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muscle mass and protection from metabolic disorders (101).  Because of the positive effect on 

muscle, spasticity may be an important determinant of muscle quality and quantity in those with 

chronic-SCI.   

 Understanding an individual’s impairment is important for assessing prognosis and 

rehabilitation goals.  In a research environment, reporting impairment profile is vital for 

maintaining the external validity of the study results.  One of the most widely used impairment 

classification tools is the ASIA impairment scale (AIS) which uses a single label (letters A-E) to 

summarize an individual’s motor and sensory impairment (Table 1) (99).  The AIS is a standard 

grading system with one level for complete (AIS A), and three for incomplete injuries (AIS B-

D).  The AIS is based on a systematic neurological examination of sensory and motor function.  

The sensory level is examined by testing dermatome sensitivity to pin prick and light touch.  

Each dermatome is scored as having either normal, impaired, or absent sensation.  Likewise, the 

motor impairment level is determined by a manual muscle exam to test the strength of ten key 

muscle groups on a six-point scale where zero represents no function, and five represents normal 

function.    
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Table 1 ASIA Impairment Scale (AIS) 

AIS Grade Completeness  Description 

A Complete No motor or sensory function is preserved in the sacral regions 

S4-S5 

B Incomplete Sensory but not motor function is preserved below the 

neurological level and includes the sacral segments S4-S5 

C Incomplete Motor function is preserved below the neurological level, and 

more than half of key muscles below the neurological level 

have a muscle grade less than 3. 

D Incomplete Motor function is preserved below the neurological level, and 

at least half of key muscles below the neurological level have a 

muscle grade of 3 or more. 

E Incomplete Motor and sensory function is normal. 
 

 

2.2  Skeletal Muscle 

2.2.1 Physiology 

There are three kinds of muscle tissue in the human body: skeletal muscle, cardiac 

muscle, and smooth muscle.  Skeletal muscle makes up 40% of total body weight in able-bodied 

individuals.  Skeletal muscle is made up of long muscle fibers surrounded by a connective 

sheath.  Groups of adjacent sheaths are bundled together and called fascicles.  Between each 

fascicle are collagen, elastic fibers, nerves, and blood vessels which are surrounded in a 

connective tissue which holds the muscle body to the bone (102). 

Skeletal muscle fibers are classified in two ways: contraction speed and resistance to 

fatigue after repeated stimulation.  Fiber groups include: slow-twitch (type I), fast-twitch 

oxidative-glycolytic (type IIa), and fast-twitch glycolytic fibers (type IIb).   Fast-twitch muscle 

fibers develop tension 2 - 3 times faster than slow-twitch muscle fibers.  The isoform of myosin 

ATPase, which is responsible for adenosine triphosphate (ATP) breakdown, dictates the rate of 

ATP degradation, and subsequently the speed at which the muscle fiber contracts.  Fast-twitch 

fibers have a fast isoform of ATPase, whereas slow-twitch muscle fibers have the slow isoform 
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of ATPase.  The duration of contraction also varies according to fibre type.  Fast and slow-twitch 

fibers also have a corresponding isoform of sarco/endoplasmic reticulum Ca
2
+-ATPase 

(SERCA) which dictates the speed at which calcium can be transferred out of the cytosol, and 

therefore the speed of contraction.  Fast-twitch fibers have a fast isoform of SERCA, and 

therefore can cycle calcium at a faster rate than slow-twitch fibers.   Secondly, muscle fibers can 

be grouped by their fatigue resistance.  Glycolytic fibers (fast-twitch type IIb) rely on anaerobic 

metabolism to produce ATP, and therefore are susceptible to acidosis which is implicated in the 

development of fatigue.  Oxidative fibers (slow-twitch and fast-twitch type IIa fibers) rely on 

oxidative phosphorylation to produce ATP, and have increased mitochondrial density and blood 

supply, and therefore are more fatigue-resistant.  Oxidative fibers are smaller in diameter 

compared to glycolytic fibers and have an increased capillary density.  Human skeletal muscle 

has a mix of fibre types depending on the muscle, genetic predisposition, and 

training/deconditioned status.  The postural muscles of the lower extremities are predominately 

comprised of type I muscle fibers due to their prolonged periods of contraction (102). 

The basic unit of contraction is referred to as a motor unit, which is composed of a group 

of muscle fibers and a corresponding somatic motor neuron that initiates their contraction.   

Skeletal muscle is unique in that it contracts in response to a signal from a somatic motor neuron.   

The number of muscle fibers activated by a motor neuron varies.  In muscles responsible for fine 

motor movements, a motor unit may contain only a few fibers, whereas motor units involved in 

gross movements contain hundreds to thousands of muscle fibers activated by a single neuron.  

All muscle fibers in a motor unit are the same type; consequently, there are fast and slow-twitch 

motor units.  The speed of a motor unit is determined by the neuron during embryonic 

development as a result of growth factors secreted by the neuron (102). After SCI, motor unit 
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and fiber-type disruption shifts towards a faster, predominantly type IIB phenotype which can 

impact function and the use and efficacy of rehabilitation interventions and individuals’ health 

status (103,104). 

2.2.2 Muscle Plasticity 

As with many systems in the human body, muscle has the remarkable ability to adapt to 

fluctuating stimuli including physical activity, injury, disuse, and illness.  The homeostasis of 

muscle tissue is controlled by a complex and interconnected network of endocrine and 

neurological signalling cascades that regulate the balance of anabolic and catabolic processes.  

As individuals mature from childhood to adulthood, myoblasts undergo proliferation and 

differentiation into myofibrils which increase in size and density in response to intrinsic muscle 

formation mechanisms associated with growth and maturation, and external incitements such as 

increased loading (105).   When exposed to increased nutritional, hormonal or mechanical 

stimuli, adult skeletal muscle tissue can respond by increasing the size of the muscle and the 

force produced during contraction (106).   Adaptation occurs mainly by an increase in the size  of 

individual muscle fibers (hypertrophy) (107,108) with a possible increase in fiber number 

(hypersplasia) (109,110) due to a net accumulation of both sarcoplasmic and myofibrillar 

proteins (111).  The most extensively documented pathway and primary regulator of protein 

synthesis involved in muscle hypertrophy is the PI3K/Akt/mTOR signaling cascade which 

enhances protein turnover and synthesis in favour of a net increase in the rate of protein synthesis 

over degradation (112,113).  This pathway is regulated by external influences such as 

mechanical strain, growth factors, nutrition, and energy balance to maintain optimal muscle 

status (114).   Conversely, muscle tissue also adapts to reduced nutrient availability and/or 

activity status by decreasing the size and number of muscle fibers.   



 

16 

 

Muscle atrophy is prevalent in a variety of conditions including cast immobilization 

(59,60), unilateral lower limb suspension (57,115), bed rest (116,117), space flight (118,119) and 

inactivity as a result of injury or disease (120,121), and is the result of a net protein balance in 

favour of degradation.  This negative balance is regulated by two major degradation pathways 

including the ubiquitin-proteasome system and the autophagy-lysosome pathway (122).   

During embryonic development, somatic motor neurons secrete growth factors that 

dictate the type of muscle fiber; subsequently, adult muscle has a relatively fixed distribution of 

fiber types (102).  However, it must be noted that the response to atrophic and hypertrophic 

stimuli varies depending on the muscle and muscle fiber type composition.   For example, with 

regards to nutrient deprivation, predominantly slow-twitch muscle fibers, such as the soleus, are 

less sensitive to starvation compared to fast muscles (123).  Secondly, the catabolic effects of 

aging affect type II muscle fibers to a greater extent than type I, whereas paralysis affects type I 

fibers to a greater extent than type II; a concept that will be elaborated further in section 2.2.4 of 

this report.    

 

2.2.3 Glucose Metabolism and Skeletal Muscle Insulin Resistance  

Skeletal muscle is a metabolically active tissue that accounts for approximately 85% of 

total insulin-stimulated glucose uptake (124-126).   Therefore, skeletal muscle is the predominant 

tissue responsible for whole body insulin-dependent glucose utilization, and reduced muscle 

quantity and quality is implicated in insulin resistance and related morbidities (49,127,128).  

Insulin is produced by beta-cells in the pancreas and circulates the body dissolved in blood 

plasma.  Insulin is released in response to a plasma glucose concentration above 100 mg/dl and 

initiates glucose uptake in the muscle with the effect of decreasing plasma glucose concentration.  
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At the cellular level, insulin-initiated signalling increases glycogen synthesis, aerobic 

metabolism of glucose, and protein and triglyceride synthesis (102).  In skeletal muscle, GLUT4 

is the primary transporter that mediates insulin-stimulated glucose uptake (129).  In the basal 

state, GLUT4 is located in intracellular membrane vesicles, and upon insulin stimulation, 

GLUT4 is translocated from the intracellular pools to the plasma membrane to facilitate glucose 

entry into the cell (130).  

Insulin resistance in skeletal muscle is exemplified by the decreased ability of insulin to 

cause translocation of the GLUT4 receptors to the muscle cell surface and subsequent impaired 

glucose uptake (131-133).   Several potential mechanisms are responsible for the development of 

insulin insensitivity.  Macrophage-derived proinflammatory cytokines such as tumor necrosis 

factor alpha (TNF-α), and interleukin -1b, -4, and -6, which reduce IRS-1(a tyrosine residue 

expressed on the skeletal muscle cell surface and believed to mediate GLUT insulin signaling) 

phosphorylation are likely involved in reduced GLUT4 activity.  Additionally, increased fatty 

acid uptake by muscle cells coupled with diminished mitochondrial lipid oxidation can lead to 

insulin resistance causing intramyocellular accumulation of lipids and fatty acyl metabolites 

(134).   These excess fatty acids are esterified and either stored or metabolized to various 

molecules that may interfere with normal cellular signaling, particularly insulin-mediated signal 

transduction; altering cellular and whole-body glucose metabolism (135). Recently, an 

association between impaired insulin action and intramuscular lipid accumulation has been 

observed.   

The mechanisms linking intramuscular lipid accumulation with glucose intolerance 

remains unclear; however, it has been suggested that intramuscular lipid stores may provide a 

source of fuel that competes with glucose as an oxidative substrate, which secondly contributes 
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to the synthesis of other lipid-derived entities that directly interfere with insulin signal 

transduction (136).  Secondly, decreased muscle glycogen synthesis due to insulin resistance 

increases carbohydrate flow to the liver and causes elevated lipogenesis (137) which supports the 

notion that insulin resistance in skeletal muscle has a major impact on whole-body insulin 

sensitivity (134).  Studies have found that fat infiltration in skeletal muscle correlates more 

closely with systemic insulin resistance than with other important factors such as body mass 

index (BMI), waist-to-hip ratio, and total adiposity in the able-bodied (138).    As those with SCI 

have an altered body composition that decreases the accuracy of traditional metabolic disease 

screening tools, it is proposed that the examination of muscle fatty infiltration may offer a novel 

screening method for glucose intolerance post-SCI.   

2.2.4 Age-Related Changes in Muscle  

 It is well established that there is an age-related reduction in muscle mass and quality as 

the result of neurological, hormonal, nutritional and physical inactivity related changes 

associated with the biological aging process (139-145).   Maximum muscle mass is reached by 

approximately 25 years of age (146) at which point there is a gradual decrease as individuals age.  

A reduction to the order of 25 - 40% in lower extremity muscle CSA in older men and women 

compared to young adults has been observed (140,147-149).  Longitudinally, in a cohort of 1678 

older adults between the ages of 70-79 years of age, it was observed that on average, older men 

lose approximately 1% of their thigh muscle CSA per year, and older women lose approximately 

0.65% of their thigh muscle CSA per year (150).    

 It is suggested that the age-related loss in muscle mass is a result of a reduction of type II 

muscle fiber size, and to a lesser extent, a decrease in muscle fiber number.  However, there is a 

high amount of variability perhaps due to the general heterogeneic composition of skeletal 
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muscle.  A preferential decrease in the number of type II fibers, beginning at approximately age 

25 has been observed, such that the total fiber number decreases by about 39% by age 80 (146).  

There is also an age-related decline in fiber size that is most prominent in type II fibers, whereas 

type I fibers are often less affected (144,151-155).   Aging is also associated with a loss of both 

fast and slow motor units with a preferential loss of fast motor units (156), and as a result, there 

is a net conversion of type II to type I fibers, as type II fibers are recruited into slow motor units 

(157).  Ultimately, the age-related decrease in type II fiber number and CSA, as well as a 

transition from type II to type I fibers due to motor unit switching results in a predominantly type 

I phenotype in aged muscle.   

 In accordance with the muscle size and phenotype changes associated with aging, there is 

a decrease in muscle strength, a slowing of contractile properties, and an increase in fatigue 

resistance.  Summarizing reviews by Vandervoot and Doherty (140,145) report the following 

three characteristics of age-related strength decline:  1) the average decrease in muscle strength 

measured in the seventh and eighth decade is 20 - 40% of younger populations with strength 

attenuation increasing upwards of 50% in the ninth decade;  2) declines in strength are similar in 

proximal and distal limb muscles; and 3) relative strength losses appear similar for men and 

women; however, because men typically start from higher baseline values, their absolute losses 

of strength are greater.  In addition, age-related decreases in muscle torque have been observed 

to be 2 - 5 times greater than the loss of muscle CSA, suggesting that other factors besides 

decreased muscle mass contribute to the loss of strength (150).  

Changes in contraction speed that occur with aging are consistent with the fiber type 

changes observed.  Aged muscle reaches tetanus at lower fusion frequencies, and shows a 

slowing of electrically evoked muscle contraction speeds (158-160).  In aged muscle, reduced 
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force output and contraction speed is coupled with an increase in fatigue resistance (161).  It has 

been suggested that increased fatigue resistance in older adults is the result of lower maximal 

motor unit discharge rates, slower contractile properties, and a relatively greater reliance on 

oxidative metabolism (162),  presumably as the result of increased expression of type I fibers 

(161). 

 An association between age and fatty infiltration of muscle has also been observed 

(150,163-165).   One study reported an age-related increase in fatty infiltration of mid-thigh 

skeletal muscle in aged (70 - 79 years) men (36-75%) and women (17-50%) over a five year 

period (150).  Interestingly, skeletal muscle fat content increased in those who lost weight, 

gained weight, and remained weight-stable.  Additionally, evidence suggests that skeletal muscle 

lipid content influences muscle strength and mobility function (63,165), as well as increases the 

risk of future mobility loss in older men and women (61).  Lastly, as alluded to previously, 

increases in fatty infiltration within the muscle are associated with impaired glucose metabolism 

and insulin resistance in the aged population (126,166-168).  Fatty infiltration has been proposed 

as a contributing factor to the functional declines and morbidities associated with aging; however 

the causal pathway is not fully understood.  It is hypothesized that as the SCI population ages, 

age-related changes in muscle will have a greater impact on health outcomes. 

2.3  Skeletal Muscle after SCI 

2.3.1 Overview 

After SCI there is a transition in skeletal muscle that is characterized by: a loss of muscle 

mass, a transition to an almost exclusively type II muscle phenotype, an increase in speed of 

contraction properties, and fatty infiltration of the muscle.  There is a reduction in muscle size in 

all muscles below the level of lesion, with greater atrophy observed after complete compared to 
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incomplete SCI (2,4,7,9,75,169).  There is also evidence that SCI induced atrophy is the result of 

a decrease in fiber size and a decrease in fiber number (3,5,81-83,85,170,171).   Secondly, there 

is a transition from a mixed muscle phenotype to an almost exclusive type II fiber type 

expression in all muscles below the level of injury beginning approximately six months post-SCI 

(3,79,85,172-174).  In addition, fast fiber isoforms of both SERCA and myosin heavy chain 

(MHC) isoforms are elevated disproportionately, resulting in fibers that are mismatched for 

SERCA and MHC isoforms and consequently are more susceptible to fatigue (175).   In 

accordance with the observed atrophy and fiber-type transition, paralyzed muscle demonstrates a 

decrease in force output following electrical stimulation, an increase in speed of contraction 

properties and decreased fatigue resistance.  Electrically evoked muscle torque and peak twitch 

forces produced by the quadriceps of individuals with SCI were 35% and 62%, respectively of 

the values of able-bodied controls (86,176), and maximal rate of force development was 

approximately 50% faster, and half-relaxation time about 20% quicker in paralyzed quadriceps 

muscle compared with normal control muscle (80).    

In general, there is a reduction in the number of motor units in both completely and 

partially paralyzed muscles of individuals with chronic-SCI.   However, as the size of the 

remaining motor units increases, and there is an inverse correlation between the number of 

surviving motor units and the average twitch force of single units (88,177,178).   All muscles 

below the level of injury become less fatigue resistant such that a reported force loss and slowing 

of relaxation speeds following repeated fatiguing contractions is greater than those observed in 

able-bodied controls (80,84,174,176,179,180).  Additionally, the degree of fatigue resistance 

after chronic-SCI is negatively correlated with the duration of injury (80,181).   Lastly, as 

discussed in more detail below, there is an increase in adipose tissue accumulation in the 
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paralyzed muscles of the lower extremities between three and four times that of able-bodied 

peers (4,9,11).  These detrimental changes in muscle have important implications with regards to 

mobility, independence, and risk for metabolic disease, and highlight the importance of 

rehabilitation modalities aimed at preserving muscle status such as electrical stimulation therapy.        

 

2.3.2 SCI and Muscle CSA 

Muscle after SCI is most prominently characterized by atrophy.    In comparison to other 

disuse models, which display a 15 - 32% decrease in muscle size; atrophy of paralyzed muscles 

following SCI is markedly greater.   Post-SCI, there is a reduction in muscle CSA observed as 

soon as six weeks post injury in all muscles below the level of injury, with greater atrophy 

observed after complete SCI compared to incomplete SCI.  Castro et al. (2) reported an overall 

46% decline in average CSA of the lower extremity muscles of individuals 24 weeks after 

complete-SCI, with decreases in the soleus (68%), gastrocnemius (54%), tibialis anterior (20%), 

quadriceps femoris (42%), and hamstring (44%) muscles reported relative to matched controls.  

Differential rates of atrophy of leg muscles during the first six months have been observed.  For 

example, the gastrocnemius average CSA decreased by 24% between six and 24 weeks post-

injury, while the soleus declined 12%, and the average CSA of the tibialis anterior did not 

change (2).  These results suggest that atrophy is not solely dependent on muscle fiber type 

composition as the soleus and tibialis anterior each have a high percentage of slow-twitch fibers.   

In chronic-SCI (> two years post injury), mid-thigh fat free soft tissue mass, assessed by dual X-

ray absorptiometry (DXA) was observed to be 39.7% lower (75), and muscle CSA assessed by 

magnetic resonance imaging (MRI) to be 38-44% lower (9,75) in those with complete SCI 

compared to age, height, and weight matched controls. 
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After six weeks of incomplete SCI, thigh muscle CSA assessed by MRI was reported to 

be 33% less than matched controls after accounting for intramuscular fat, and did not 

significantly change after an additional three months’ time (4).  Similar results were observed by 

Shaw et al. (7) who observed between a 24% and 31% decrease in CSA in incompletely 

paralyzed muscles of the lower extremity including soleus, medial gastrocnemius, lateral 

gastrocnemius, tibialis anterior, quadriceps femoris, and hamstrings approximately one year 

post-injury.   In addition, subjects who used a wheelchair had significantly smaller muscle CSA 

values for all of the antigravity muscles (i.e., soleus, medial gastrocnemius, lateral 

gastrocnemius, and quadriceps femoris) relative to those who were ambulatory (7).  Muscle mass 

is positively related to the degree of preserved motor function post-incomplete SCI however, the 

magnitude of this relationship has yet to be explored.  The decrease in lower-extremity muscle 

CSA has been examined in the acute and sub-acute stage of SCI, however little investigation has 

examined the magnitude of muscle loss in the chronic-SCI population.  Further investigation 

regarding the association between the degree of preserved motor function and muscle status is 

warranted.     

2.3.3 SCI and Intermuscular and Intramuscular Adipose Tissue  

 In addition to atrophy, there is increased infiltration of fat within skeletal muscle post-

SCI.   Intramuscular adipose tissue is commonly defined as the lipid deposits contained in the 

intra- and extra- myocellular compartments, whereas intermuscular adipose tissue is defined as 

the adipose tissue located beneath the fascia lata and between individual muscles (182).  Four 

studies have used magnetic resonance imaging (MRI) to quantify thigh intramuscular adipose 

tissue post-SCI.   The first study was completed by Elder et al. (9) and observed an almost 

fourfold increase in percentage intramuscular adipose tissue in individuals with chronic complete 
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SCI compared to matched controls.  In addition, fatty infiltration was a good predictor of plasma 

glucose metabolism in individuals with SCI, such that lipid content around skeletal muscle 

accounted for about 70% of the variance in plasma glucose 120 min after ingesting 75 grams of 

glucose.   Gorgey et al. (4) observed similar results after six weeks of incomplete SCI in that 

participants had a relative intramuscular adipose tissue content three times higher compared to 

able-bodied controls.  After an additional three months, the intramuscular adipose tissue content 

increased an additional 26%.   Shah et al. (11) obtained similar results reporting that 

intramuscular adipose tissue content of the soleus muscle was 3.2 times higher in individuals 

with acute incomplete SCI compared to able-bodied controls, and that the increase in lipid 

content was due to an increase in both intramyocellular lipid and extramyocellular lipid content.   

In addition, both ambulatory and non-ambulatory individuals with incomplete-SCI showed 

elevated intramuscular adipose tissue content compared to corresponding controls (11).  Lastly, 

Mojtahedi et al. (183) observed that athletes with SCI have greater absolute and relative thigh 

intermuscular adipose tissue accumulation relative to able-bodied controls.   Ultimately, 

regardless of injury completeness and physical activity level, there are profound increases in 

skeletal muscle lipid accumulation post-SCI, predisposing those with SCI to increased risk of 

metabolic disease.   

2.3.4 SCI and Glucose Homeostasis   

Thanks to advances in SCI rehabilitation, the leading cause of death after SCI has shifted 

from SCI-related complications to secondary conditions (e.g. cardiovascular disease [CVD] and 

diabetes).  CVD is currently the number one cause of death after SCI and is more prevalent, and 

presents earlier in life in those with SCI compared to the able-bodied population (14,184).  

Additionally, those with SCI have an increased susceptibility to virtually all CVD risk factors 
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including insulin resistance, dyslipidemia, overall obesity, diabetes, a sedentary lifestyle, and 

reduced physical activity (48,48,184,185).  Impaired glucose regulation is indicated by elevated 

blood glucose and insulin levels is one of the earliest warning signs preceding the development 

of diabetes mellitus (185).  Skeletal muscle is responsible for up to 75% of insulin-stimulated 

clearance of glucose from blood (42,43), and studies have confirmed a relationship between 

skeletal muscle fat infiltration and insulin resistance in healthy persons, as well as those with 

obesity and diabetes mellitus (128,138,186-190).  In the SCI population, intramuscular adipose 

tissue accumulation has been observed to account for 70% of the variance in plasma glucose 

tolerance (9) and, as skeletal muscle fat infiltration and muscle atrophy are coupled, it is 

suggested that both play a role in impaired glucose metabolism (4,9).  Accordingly, as traditional 

metabolic risk factors do not adequately identify those in the SCI population at risk for metabolic 

syndrome (191), quantification of muscle CSA and lipid content has the potential to enhance the 

identification of individuals at risk of insulin resistance and Type II diabetes. 

 

2.3.5 Summary Skeletal Muscle after SCI 

The changes in skeletal muscle post-SCI include reduced muscle mass, a transition 

towards a fast-twitch phenotype, increased speed of contraction, and increased fatty infiltration.   

In addition, adverse changes in muscle mass and lipid content have been observed to be 

associated with metabolic disease.  The body of literature examining changes in skeletal muscle 

post-SCI is focused on the initial changes that occur immediately following injury and has 

predominantly investigated a small and select sample of the SCI population.  Therefore, changes 

in muscle size and composition in the diverse chronic-SCI population are relatively unknown.  
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Further investigation as to the degree of muscle change post-SCI is warranted, especially in the 

chronic-SCI population who are most affected by metabolic dysregulation.   

2.4 A Model of Skeletal Muscle Change after SCI   

SCI results in a diverse spectrum of functional impairment and health conditions.   As 

skeletal muscle changes in adaptation to the loads and environment it is exposed to, it is 

proposed that patient demographics (e.g., age, gender, fitness, etc.) and the characteristics of an 

injury (completeness, level of lesion, etc.) will determine the extent of muscle loss and fatty-

infiltration post-SCI.     It is hypothesized that a combination of SCI-specific and traditional risk 

factors for muscle loss and fatty infiltration will determine an individual’s muscle status post-

SCI, and therefore it is proposed that patient characteristics may be used to form a predictive 

model of muscle status.  As muscle loss and fatty infiltration are associated with each other, it is 

hypothesized that they will have similar predictive variables.  A predictive model of muscle 

status comprised of SCI-related variables (e.g., duration of injury, level of injury, completeness 

of injury, spasticity, etc.) and traditional factors influencing muscle status (e.g., age and gender) 

would be beneficial to: a) describing who experiences the greatest reductions in muscle status, 

and consequently, who are at the most risk for metabolic disease; b) identifying modifiable risk 

factors to prevent or treat reductions in muscle mass and fatty-infiltration, and c) determining 

who may benefit most from muscle-specific rehabilitation modalities.    

A model for muscle status for those with chronic-SCI should include determinants of 

muscle status observed across able-bodied and clinical populations.   First, it is hypothesized that 

gender will be a determinant of muscle status in those with incomplete injures, as females have 

less muscle mass and more fatty infiltration prior to injury, and therefore females will have less 

muscle mass and greater fatty-infiltration post-injury.   However, complete paralysis will negate 
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any gender differences.  Secondly, it is hypothesized that older-adulthood is a risk-factor for 

reduced muscle status.  In the able-bodied population, muscle status is negatively correlated with 

age after peak muscle mass is reached, and the rate of reduction in muscle status increases as 

individuals reach older-adulthood.  Third, some evidence suggests that vitamin D deficiency is 

negatively associated with muscle status and function in older-adults (192). Therefore, it is 

hypothesized that vitamin D deficiency may be a determining factor of muscle status in those 

with chronic-SCI.  Fourth, blood sugar dysregulation and systemic inflammation are associated 

with impaired protein production and decreased muscle mass.  As systemic inflammation and 

blood sugar dysregulation have increased prevalence in the SCI population, it is hypothesized 

that these two factors will be important determinants of muscle status in those with chronic-SCI.   

Last, in those with motor-incomplete injuries who retain some degree of voluntary lower-

extremity muscle activation, it is hypothesized that 1) low levels of physical activity, 2) the 

regular use of a wheelchair for ambulation, and 3) periods of lower-limb immobilization or 

prolonged bed rest will be associated with reduced muscle status.  It is proposed that these 

traditional determinants of muscle status will interact with or compound the effects of paralysis 

on muscle for those with chronic-SCI. 

SCI-specific factors that may interact with traditional determinates of muscle status 

include completeness of injury, level of injury, duration of injury, age at injury, and the presence 

of spasticity.  Those with complete injures have greater adverse changes in muscle compared to 

those with incomplete injuries.  In addition, having an incomplete injury will introduce other 

potential determinants of muscle status related to immobilization, ambulation, and physical 

activity.  Secondly, level of injury is proposed as a determinant of muscle status.  Those with SCI 

experience autonomic interruption which can lead to impaired blood flow to lower extremity 
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muscle (185), atrophy of cardiac muscle, reduced exercise capacity, and exercise-induced 

decreases in blood pressure leading to critically low perfusion pressure in working muscle (193).  

It is hypothesized that the extent of autonomic disruption can be determined by the level of 

injury and consequently, level of injury may be a determining factor of status.  For example, 

muscle status may be reduced in those with autonomic disruption to the heart compared to those 

with intact cardiovascular innervation.  Thirdly, it is hypothesized that the duration of injury will 

be negatively correlated with muscle status, as extended disuse in combination with SCI-related 

catabolic morbidities will result in adverse muscle changes.  Fourth, it is hypothesized that age of 

injury will be correlated with muscle status because those injured later in life will have a reduced 

muscle status at the time of injury, and thus a reduced muscle status post-SCI.  Lastly, spasticity 

results in preserved muscle tone and has been observed to be positively associated with muscle 

status, therefore spasticity is proposed as a determinant of muscle preservation in those with 

chronic-SCI.   In combination with traditional risk factors, it is hypothesized that SCI-related 

characteristics will be determining factors with regards to muscle status.    

It is worth stressing that the above factors are meant to inform clinical decision making, 

and therefore include only observable or modifiable factors related to muscle status.  It is 

acknowledged that non-modifiable factors like genetics would have an impact on muscle status.   

Secondly, it is hypothesized the completeness of injury may modify the effect of factors related 

to lower-extremity muscle loading and disuse. The magnitude of association between the above 

factors and muscle status has yet to be determined; therefore, one of the goals of this study is to 

investigate factors associated with muscle status in the chronic-SCI population.  Associated 

factors could be used to form predictive models of muscle mass and fatty-infiltration following 

long-term paralysis .A predictive model of muscle status for those with chronic-SCI would be 



 

29 

 

beneficial to the implementation of rehabilitation interventions and clinical decision making with 

respect to the treatment and prevention of metabolic disease.   

2.5 Peripheral Quantitative Computed Tomography (pQCT) 

 

After SCI, there is increased adipose tissue accumulation around the muscles of the lower 

extremities concomitant with reduced muscle CSA.    Previously, the changes in adipose and 

lean tissue mass have been quantified independently (47,75,194), and only recently has magnetic 

resonance (MR) and computed tomography (CT) technology been used to characterize the 

composition of muscle itself (4,9,11).  Quantitative computed tomography (QCT) has the ability 

to differentiate tissue types on the basis of X-ray attenuation characteristics (195).   For example, 

QCT can differentiate fat from muscle because fat displays negative attenuation values, whereas 

muscle attenuation values are positive.  Attenuation characteristics can therefore provide 

information regarding adipose tissue interspersed within and around muscle (64).   In the last two 

decades, QCT has been used to observe increased fatty-infiltration of skeletal muscle and its 

relationship to metabolic disease and functional declines in populations such as young, obese and 

older adults, and those with Duchenne muscular dystrophy (61,63,63,70,165,196).  

Peripheral quantitative computed tomography (pQCT), a modality utilizing a smaller 

bore scanner capable of obtaining images of the lower extremities, is advantageous as it is less 

expensive as full-body CT and allows individuals to remain in their wheelchair.   A pQCT 

scanner consists of two components:  a source that emits an X-ray beam, and a detector a short 

distance away that measures the intensity of the radiation and X-ray attenuation.  During a pQCT 

scan, the X-ray beam passes perpendicular to the axis of the leg.  The angular distance of the 

twelve detectors relative to the X-ray source is one degree.  After each transverse scan, the 

gantry is rotated twelve degrees such that 15 rotations of the gantry yield the 180 projections 
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necessary to construct a cross-sectional slice (197).   The field scanned is divided into three-

dimensional cubic units known as voxels.  The number of voxels in each field is a characteristic 

specific to each scanner; therefor the size of the field of view can be changed, but not the number 

of voxels (198).  The smaller the field selected, the smaller the voxel dimensions and the greater 

the resolution of the image.   An integration algorithm calculates the attenuation co-efficient 

value of each voxel which corresponds to the type of absorbing matter (tissue).  Through a 

mathematical folding process known as filtered back projection, the raw data from the different 

angular positions is used to form a cross-sectional image of the limb.  By calibration with 

phantoms of a specified hydroxyl-apatite concentration the attenuation co-efficient values can be 

transformed to density values measured in mg/cm³ (197).  

The possibility of image artifacts must be considered when examining pQCT images. 

Beam hardening artifacts are caused by the polychromatic X-ray beam spectrum (ranging from 

20 to 120 keV), and the energy-dependent nature of X-ray attenuation values (195).  Most 

materials absorb low-energy X-ray photons better than they absorb high-energy X-ray photons.  

As a material’s attenuation co-efficient is dependent on the X-ray energy, not correcting for 

beam hardening can result in inconsistent results and image artifacts.   

Two types of artifacts can result from beam hardening: cupping artifacts and the 

appearance of dark bands or streaks between dense objects in an image (199).  Cupping artifacts 

occur when X-rays passing through the center of a cylindrical-shaped object are hardened more 

than those passing though the edges.  As the beam becomes harder, the rate at which it is 

attenuated decreases and therefore the beam is more intense when it reaches the detectors than it 

would if it had not been hardened (199).  Streaks or dark band can appear between two dense 

objects in an image.  This is because the portion of the beam that passes through one of the 
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objects at a certain tube position is less hardened than when it passes through both objects at 

another tube position.  This results in streaks or bands appearing when the image is 

reconstructed.   

Stratec provides no information describing how beam-hardening correction is performed.  

However, techniques have been outlined by other sources (195).  Filters on pQCT are available 

to compensate for some of the beam hardening effects by first attenuating the lower energy 

photons with a metal filament- a technique known was “pre-hardening” the beam.  pQCT 

systems are also pre-calibrated to cortical bone of the tibia to adjust for potential beam hardening 

artifacts within a physiological range of bone densities.  However, how correcting for the effects 

of beam hardening on bone affects the accuracy of muscle results is unknown.  According to the 

manufacture, the beam-hardening correction techniques used in the software are sufficient to 

attain accurate muscle results (197).  

Few studies have reported the direct relationship between muscle density of the lower leg 

and glucose tolerance.  The predominance of literature has examined the relationship between 

muscle density and glucose tolerance at the mid-thigh site using whole body QCT.   The 

relatively small muscle depot at the calf compared to the thigh may be a possible limitation to 

extrapolating the results of this study to the assessment of metabolic risk.  However, this 

limitation has been addressed in unpublished data comparing muscle CSA derived from pQCT 

scans to muscle CSA derived from clinically used spiral CT scans of 18 able-bodied adults (9 

men, 9 women), and reported that pQCT is as reliable as a clinical scanner when determining 

muscle CSA (Appendix A).  Secondly, a recent study has shown that QCT muscle density of the 

mid-thigh is significantly correlated with pQCT derived muscle density values of the calf (64).    

Calf-muscle density was reported to be lower in diabetics compared to non-diabetics after 
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adjusting for age, gender, and BMI or age, gender, and waist circumference (70).    Additionally, 

pQCT analysis of calf muscle density was positively related to physical activity and negatively 

associated with markers of fat distribution and risk for type 2 diabetes in a group of 82 

premenopausal women (69).  Given the good correlation between thigh- and calf-muscle CSA 

and density values, calf muscle density measured by pQCT is proposed as a valid assessment of 

muscle CSA and fatty-infiltration and related disease risk.  In addition, it is proposed that 

cautious interpretation of muscle outcomes with regards to metabolic disease may be possible 

across studies using peripheral and whole-body scanners to scan the upper and lower leg. 

The literature base examining lower-extremity muscle post-SCI has used magnetic 

resonance imaging (MRI) to examine tissue content from cross-sectional slices.  There are some 

disadvantaged of QCT in comparison to MRI that must be noted.   First, QCT technology lacks 

the resolution to distinguish sub-fascial from intermuscular fat, especially in individuals with 

extensive atrophy.  However, QCT derived muscle density has been shown to be valid in relation 

to skeletal muscle lipid content and glucose tolerance (64).  As both sub-facial and intermuscular 

fat are in close proximity to the muscle body, and increase after SCI, it is proposed that both are 

important for determining metabolic health.  pQCT is also unable to distinguish between 

extramyocellular lipids stored in adipocytes, and intramyocellular lipids stored in the myoplasm 

(IMCL and EMCL, respectively) (200,201).  The inability to distinguish fat deposition inside 

compared with outside the muscle fiber is a possible shortcoming, as recent studies using MRI 

have suggested that IMCL and EMCL may have independent influences on insulin resistance 

(186).    It is worth noting however, that in a sample of 51 healthy volunteers, QCT-derived 

muscle attenuation values of the soleus were moderately but significantly associated with IMCL 

and EMCL (r = −0.64 for IMCL and −0.37 for EMCL; p < 0.01) assessed by MRI.  A multiple 
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regression analysis showed that muscle attenuation values were mostly explained by IMCL (p < 

0.001) rather than EMCL (β =−0.010, p = 0.94) (202).  The significant association between QCT 

derived muscle density and MRI outcomes is an important consideration when comparing 

literature using the two modalities.  Lastly, QCT scanning requires participants to be exposed to 

ionizing radiation.  However, the exposure is minimal in comparison to other X-ray techniques 

and environmental exposures (197).  Limitations considered, pQCT is proposed as a robust 

method to assess distal lower-extremity muscle size and fatty infiltration, and related disease and 

disability risk, in the chronic-SCI population.   

2.5.1 Muscle CSA 

Quantifying muscle CSA in those with chronic-SCI may provide valuable information 

regarding health outcomes.  Muscle CSA can be measured using pQCT by identifying pixels 

corresponding to lean tissue from a cross-sectional image. The validity of pQCT-derived (Stratec 

XCT3000) quadriceps-muscle CSA has been reported previously in comparison to MRI imaging.   

Validity measures reported for two investigators comparing thigh-muscle CSA between MRI and 

pQCT from four women and six men were as follows: coefficients of determination = 0.979 and 

0.983, standard errors of estimate = 3.677 and 3.297 cm
2
, constant errors = 1.993 and 2.133cm

2
, 

total errors = 4.058 and 3.735 cm
2
, and the bias ±95% confidence intervals for limits of 

agreement = -1.405 ± 6.815 and -2.391 ± 5.895 cm
2
 (203).  Muscle CSA from pQCT has also 

been compared to muscle CSA measured by whole body spiral CT in 18 able-bodied adults (nine 

men, nine women), with the conclusion that pQCT is as reliable as a clinical CT scanner when 

determining muscle CSA (unpublished abstract (204), Appendix A).  These results suggest that 

pQCT is a valid measure of muscle CSA. 
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 The repeatability of pQCT derived muscle measures from healthy adults have been 

published, with precision errors ranging from <1% to 3% for lower-leg muscle CSA within the 

lower-leg (204-208).  Most recently, a study investigated pQCT repeatability values from a 

series of six scans of the 66% site of the calf from 30 healthy participants.  Scans were conducted 

on a Stratec XCT 2000 scanner on two separate days by two different testers and analyzed with 

Stratec software (209).  The influence of different testers, time between repeat scans, and subject 

anthropometric characteristics on repeatability was explored.  The absolute (RMS-SD) and 

relative (RMS-CV) root mean square (RMS) for muscle CSA from six repeated scans from 30 

individuals was 1.01 cm
2
 and 1.41%, respectively and the absolute and relative least significant 

change (LSC) at the 95% confidence for muscle CSA was 2.79cm
2
 and 3.92%, 

respectively(209).  Interestingly, the precision of muscle CSA was negatively correlated with 

pQCT derived lower extremity total tissue CSA, suggesting that an increase in subject size was 

associated with a less precise CSA measurement (209). This is important considering the marked 

decrease in tissue CSA post-SCI.   

The results of tester and timing on pQCT precision error from Swinford et al. are reported 

in Appendix A.  Two testers were equally precise at performing muscle CSA measurement.  

Precision error increased when scans were repeated one week apart as opposed to on the same 

day (209), however precision values were still within acceptable limits.     Unpublished data from 

our lab has shown acceptable muscle CSA test-retest reliability based on young and older adults 

and those with SCI.  The RMS-SD and RMS-CV for muscle CSA analyzed with two techniques: 

watershed- and threshold-based tissue segmentation, are presented in Appendix A.   Based on the 

outlined precision and repeatability values, pQCT is proposed as robust technique for the 

assessment of muscle CSA in able-bodied individuals and those with SCI. 
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2.5.1.1 Normative Values for Calf-Muscle CSA 

 

Normative calf-muscle CSA data has been previously reported.  Unpublished data by 

Gordon et al. reported the overall mean (SD) of muscle CSA among 18 healthy participants (9 

men, 9 women) to be 7156.8 (1112.5) mm
2
 measured at the 66%-site of the tibia using pQCT 

with a voxel size of 0.4mm (Appendix A) (204).  Unpublished data from our lab using pQCT to 

assess muscle CSA at the 66% site of the tibia from twelve able-bodied persons of Caucasian 

descent (three men, nine women) with an average age of 25.5 (2.54) years, reported an overall 

mean muscle CSA (SD) of 7019.6 (1331) mm
2
.  Female muscle CSA was 6918.4 (933.53) mm

2
, 

and male muscle CSA was 7323.0 (2464.46) mm
2
.  In another study using pQCT to measure 

calf-muscle CSA of the 50%-site of the tibia from a sample of 1703 males and 2243 females 

with an average age of 17.8 years, a muscle CSA (SD) of 5809.7 (954.8) mm
2
 and 4911.4 

(799.7) mm
2
 were reported for males and females, respectively (210).   

Using magnetic resonance imaging, Castro et al. examined muscle CSA values of two 

females and twelve males between 18 and 45 years of age 24 weeks post-complete SCI.  CSA 

values of the 890 (70) mm
2
, 125(10) mm

2
 and 580(5) mm

2
 were reported for the gastrocnemius, 

soleus and tibialis anterior, respectively.  To date, our team is the only group to report pQCT-

derived muscle CSA values for the SCI population (211).  Average total muscle CSA of 4586.08 

(1966.29) mm
2
 was observed for males and females with chronic-SCI.  There was also a 

difference in muscle CSA between observed between those with complete (3386.32 [1284.79] 

mm
2
) versus incomplete (5823.34 [1779.22] mm

2
) injuries.   The objective of this study is to 

investigate factors, in addition to completeness of injury that may influence muscle CSA.   
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2.5.2 Muscle Density 

Recent evidence has observed an increase in fatty infiltration of muscle in the acute stage 

of SCI, and a link between fatty infiltration and metabolic disease.  Therefore, the pQCT 

outcome of muscle density, which is a surrogate measure of fatty infiltration, may provide 

valuable information related to metabolic risk post-SCI.  Muscle density is derived using a 

scanner specific linear calibration equation that converts X-ray attenuation (1/cm) to density 

values (mg/cm
3
), such that a lower muscle attenuation value correlates to a decreased density 

value, is indicative of greater adipose tissue infiltration.  QCT derived muscle attenuation has 

been validated by Goodpaster et al., who observed a good correlation between attenuation value 

and lipid concentration (r
2
 = 0.995) from single-slice CT scans performed on phantoms of 

varying lipid concentrations.  Increasing the phantom’s lipid concentration by 1g/100 ml 

decreased its attenuation by approximately one Hounsfield Unit (a measure of X-ray attenuation) 

(64).   

The validity of X-ray attenuation as a surrogate for fatty infiltration was assessed in vivo 

at the mid-calf in 45 healthy and obese men and women, including 10 individuals with Type 2 

diabetes mellitus (64).   Reduced muscle attenuation was associated with increased muscle fiber 

lipid content determined by histological staining (P = -0.43, P <0.01).  In a subset of these 

volunteers (n = 19), triglyceride content in percutaneous biopsy specimens from the vastus 

lateralis was also associated with muscle attenuation (r = -0.58, P = 0.019).  Therefore, it is 

proposed that muscle density is a valid measure of fatty-infiltration. 

The repeatability of muscle density measurement has also been examined previously.  

The test-retest coefficient of variation for two QCT scans performed in six healthy volunteers 

was 0.85% for the mid-calf, indicating low methodological variability (64).  Another study using 
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the Stratec XCT 2000 pQCT scanner, with threshold-based Stratec software reported the 

absolute and relative RMS (i.e., RMS-SD and RMS-CV) for muscle density based on six scans 

from 30 individuals to be 0.41 mg/cm
3
 and 0.60%, respectively.  The absolute and relative LSC 

at the 95% confidence level for muscle density were 1.14mg/cm
3
 and 1.65%, respectively (209).  

There was no significant effects of tester and timing detected (Appendix A) (209).  In 

unpublished data from our lab, acceptable test-retest reliability data for muscle density values 

from young and older adults and those with SCI have been observed.  The RMS-SD and RMS-

CV observed for muscle density, as analyzed by watershed and threshold-based tissue 

segmentation are presented in Appendix A.  Therefore, based on previously published reliability 

and validity values, pQCT is proposed as a valid and reliable, non-invasive method of assessing 

fatty infiltration of muscle. 

Muscle density is an emerging topic of interest as recent evidence has observed an 

association between reduced muscle density, metabolic disease and functional declines. Studies 

have demonstrated that muscle density is associated with impaired blood sugar regulation, serum 

lipid and lipoprotein levels, and bone and muscle strength (62,63,190,212).  One study observed 

that elderly men and women with normal body weight may be at risk for metabolic 

abnormalities, including type 2 diabetes, if they possess a high amount of muscle fat (213), and 

muscle density has been observed to be negatively associated with markers of fat distribution and 

risk of type 2 diabetes (69).    Thigh muscle attenuation has been observed to be independently 

correlated with insulin-stimulated glucose disposal in a group of sedentary healthy men and 

women (r = 0.48, p<0.05) (49) and in a subsequent study, lean individuals had significantly 

higher (p < 0.01) muscle attenuation values (49.2 ± 2.8 HU) than did obese non-diabetic 

individuals  (39.3 ± 7.5 HU), and obese Type 2 diabetic individuals (33.9 ± 4.1 HU) (64).  
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Additionally, in a multi-regression model, fatty-infiltration of calf-muscle was observed to be 

negatively correlated with low-density lipoprotein cholesterol, and positively correlated high-

density lipoprotein cholesterol in men with African ancestry (212).  This relationship is 

independent of total and central adiposity skeletal muscle adiposity.  Therefore, muscle density is 

highlighted as a useful measure of metabolic health and disease risk. 

The relationship between muscle density and disease continues beyond metabolic 

disorders.  Correlations between skeletal muscle density and muscle and bone strength have been 

observed in young and older adults, and those with sub-acute and chronic lower limb 

hemiparesis (32,65-67,214,215).  In a group of older adults aged 70-79 years, mid-thigh muscle 

attenuation values were positively associated with muscle force production (165) and increased 

lower extremity performance (63).  In a study examining side-to-side differences in muscle and 

bone in those with hemiparesis as a result of stroke, muscle density, but not muscle mass, 

explained attributes of muscle and bone strength.  Based on evidence from other populations, 

muscle density assessed by pQCT is proposed as a valid measure of adverse health outcomes, 

and further work is warranted to observe if this relationship exists in those with chronic-SCI. 

2.5.2.1 Normative Values for Calf-Muscle Density  

 

Previous studies have reported pQCT derived muscle density values at the 66% site of the 

tibia by measuring muscle density as a surrogate.   Muscle  density assessed by pQCT at the mid-

calf have been reported from a sample of 1703 males and 2243 females aged approximately 18 

years of age.  Muscle densities (SD) of 83.4 (3.1) mg/cm
3
 and 82.8 (3.1) mg/cm

3
 were reported 

for males and females respectively (210).  A calf muscle density of 72.4 mg/cm
3
 for women and 

75.2 mg/cm
3
 for men was observed in a group of 471 individuals of African American ancestry 

aged 18–103 years (mean age 43 years).  An age-effect on muscle density was reported such that 
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a 10% and 12% difference in muscle density among men and women was found between the 

youngest group (18-29 years) and the oldest group (≥60 years), respectively (70).  In a sub-set of 

the same population  > 40 years of age,  muscle density was lower (p < 0.001) in those with 

diabetes (69.5 mg/cm3) than those without (74.3 mg/cm3) and the difference remained 

significant after adjusting for age, gender, and BMI (p = 0.005), and age, gender, and waist 

circumference (p = 0.01) (70).  In a group of 80 premenopausal women age (SD) 38.6 (4.7) 

years, it was observed that calf-muscle density was related to total body fat percentage (r
2
 = -

0.53, p<0.05), trunk fat percentage (r
2 

= -0.48, p<0.01), physical activity level (r
2
 = 0.29, p < 

0.01) and insulin resistance (r
2
 = -0.31, p < 0.05) (69).  Lastly, in 3,075 black and white men and 

women between 70–80 years of age, muscle density was significant in a model for predicting 

disability risk (65).  pQCT analysis of calf muscle density (reported as 77.8 [2.3] mg/cm
3
) was 

positively related to physical activity and negatively associated with markers of fat distribution 

and risk for type 2 diabetes in a group of 82 premenopausal women (69) and associated with 

diabetes, independent of overall and central obesity in families of African heritage (216).  Based 

on muscle density data from other populations, and evidence of fatty infiltration in acute SCI as 

assessed by MRI, it is proposed that pQCT will aid in the examination of fatty infiltration of 

skeletal muscle in those with chronic-SCI.  

2.6 Potential Correlates of Muscle CSA and Muscle Density 

 Muscle CSA and muscle density have been selected as outcome variables for this 

analysis because of their established change as a result of paralysis, and relationship to function 

and disease.  As highlighted previously, muscle CSA and muscle density can be accurately 

assessed non-invasively via pQCT.   Examining muscle CSA and density will aid in describing 

the muscle status of those living with chronic SCI.  Secondly, determining the correlates of 
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muscle CSA and density status will aid in the identification of those with SCI who experience 

the greatest reductions in muscle CSA and density and may therefore be at most risk for related 

co-morbidities.  Lastly, this investigation may identify modifiable risk factors for muscle loss 

and fatty-infiltration.  Variables possibly associated with muscle status that will be included in 

this analysis are discussed below.   

2.6.1 Injury Timeline 

The life expectancy of individuals with SCI is increasing, as is the number of older adults 

experiencing an injury (217-219).   Consequently, the effect of age on health outcomes and 

secondary conditions is increasingly relevant as individuals with SCI are susceptible to 

premature aging and age-related functional declines (16,17,220-226).   In addition, age at SCI-

onset may have important consequences with respect to morbidities concurrent to SCI.  There are 

a number of studies showing that persons who incur a SCI at later ages have more co-morbidities 

and poorer functional outcomes than those injured at younger ages (222,227,228)  A cross-

sectional approach may be limiting for advancing knowledge on the topic of aging with SCI, and 

additional longitudinal studies investigating the interrelation of changes inherent of aging and 

changes attributed to a SCI are needed (16,17).   

There are detrimental effects of aging on muscle observed in the able-bodied population 

including reduced muscle mass and muscle quality.  Therefore, it is proposed that older adults 

with SCI will have a reduced muscle status compared to younger adults with SCI.  Whether an 

age-related decline in muscle status continues in the chronic-SCI population is unknown.  

Secondly, it is hypothesized that age at injury may affect muscle as older adults may have a 

reduced muscle status prior to injury. For example, the muscle of an individual injured in their 

twenties may have a different trajectory compared to an individual injured in their fifties.  
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Surprisingly, muscle status years after SCI has not been adequately investigated either cross-

sectionally or longitudinally.   Therefore, this project will investigate if chronological age, time 

post injury, and age at injury are associated with muscle size and composition in those with 

chronic-SCI. 

2.6.2 Level of Injury 

A higher level of injury is associated with decreased mobility, independence, and 

autonomic function, which in turn is related to an altered body composition and metabolic profile 

(124,229,230).  Therefore, it is proposed that level of injury may be a determinant of muscle 

status.  Because of reduced activity levels, lean mass, and altered sympathetic activity, 

individuals with tetraplegia have fewer daily caloric requirements compared to persons with 

paraplegia (36,231).  This caloric imbalance predisposes those with tetraplegia to obesity and 

related metabolic complications (232,233).  Therefore, it is hypothesized that level of injury may 

be a determinant of body composition in persons with SCI.  Preliminary work by Gorgey and 

Gater (234) suggests that level of injury does not appear to influence the distribution of visceral 

and subcutaneous adipose tissue at the trunk.  However, it is proposed that the association 

between level of injury and lower-extremity muscle status warrants further investigation, and 

thus it is included in this project.  

Secondly, level of injury is a primary determinant of the degree of autonomic impairment 

following SCI.   Autonomic dysfunction is characterized by abnormal blood pressure, heart rate, 

temperature regulation, and ultimately exercise intolerance (100).  Depending on the level of 

SCI, parts of the sympathetic nervous system will be disconnected from supraspinal control, 

which results in altered sympathetic activity below the level of the injury.  No sympathetic 

autonomic tracts exit the spinal cord above T1, and therefore those with cervical injuries often 
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sustain decentralization of the sympathetic nervous system (235).    Sympathetic innervation to 

the heart is from T1 to T4, and therefore those with injures between T1-T4 may have partial 

innervation to the heart and those with innervation below T4 will have normal cardiac 

innervation (235).  Sympathetic outflow to the splenic organs originates from T5-T9, and those 

with injuries above T5 may have impaired ability to vasodilate splenic beds.  In addition, 

individuals with impaired innervation to the heart have reduced stroke volumes, reduced muscle 

mass in the left ventricle, reduced heart rates, and impaired vasodilatory responses to working 

muscle, and thus may be limited in the amount of exercise they can perform (185).  As muscle 

relies on adequate blood flow to function, it is hypothesized that impaired autonomic function 

may be a determinant of muscle status post-SCI.   

2.6.3 Spasticity 

Individuals with upper motor neuron lesions often present with altered sensori-motor 

control that results in intermittent or sustained involuntary activation of muscle (236).  Known as 

spasticity, this motor disorder is characterized by velocity-dependent increases in muscle tone 

with exaggerated tendon jerks (237).  Despite its negative effects, spasticity has been observed to 

maintain or improve skeletal muscle size, body composition, metabolic profile (101,238-242), 

ambulation, and peripheral circulation (243,244).  In a SCI rat model, spasticity has been 

observed to preserve the slow-twitch properties of paralyzed muscle and mitigate the slow to fast 

fiber transition (245); an observation that has yet to be investigated in humans.  However, it is 

suggested that spasticity contributes to the sparing of slow fibers in some individuals with SCI 

(103).    Six weeks post-incomplete SCI, thigh muscle spasticity accounted for 54% of the 

variability in muscle CSA (238).  There is no evident relationship between skeletal muscle fat 

deposition and spasticity; however, mechanisms have been proposed that indirectly link 
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spasticity to the prevention of intramuscular adipose tissue accumulation post injury (238).   In 

chronic complete SCI, knee extensor spasticity was negatively correlated to waist circumference, 

greater total percent fat free mass, lower percent fat mass, and lower fat mass to fat free mass 

ratio (239).  Most recently the protective effects of spasticity on muscle size have been attributed 

to circulating insulin growth factors (246).  

The Penn Spasm Frequency Scale (PSFS) is a self-report measure of the frequency and 

severity of muscle spasms that will be used in this investigation (247,248).  There are two parts 

to the scale: the first component is a five point scale assessing the frequency with which spasms 

occur ranging from zero = no spasms to four = spontaneous spasms occurring more than ten 

times per hour.  The second component is a three point scale assessing the severity of spasms 

ranging from one = mild to three = severe. The second component is not answered if the person 

indicates they have no spasms in part one.  The PSFS has been used to evaluate spasticity in the 

SCI population previously (249-251).  Reliability has not been established for the PSFS in SCI.  

Validity for the PSFS has been partially established through correlations with other clinical tools, 

such as the Ashworth Scale and the Spinal Cord Assessment Tool for Spasticity (SCATS) (195).  

The PSFS had a Spearman Rank-Order Correlation between 0.40 - 0.51 with the Ashworth 

Scale, and between 0.40 – 0.59 with SCATS (252).  The PSFS only correlated significantly with 

SCATS clonus scores suggesting that the PSFS may not adequately record flexor and extensor 

spasms, which may only be triggered during specific activities of daily living (252).  

Additionally, weak correlations were observed between PSFS and self-report scales of 

interference with function (0.407) and painful spasms (0.312), and no clinical examination score 

correlated with self-report scores greater than 0.4 (247).   However, for this investigation, 

spasticity will be treated as a dichotomous variable, and despite the limitations the PSFS is 
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suggested as a tool to adequately discern between those with, and those without spasms.  The 

dichotomous outcome of spasticity is proposed as a possible variable associated with the muscle 

status.   

2.6.4 Vitamin D 

There is evidence to suggest that vitamin D deficiency is highly prevalent in the SCI 

population.   Studies measuring serum 25-hydroxyvitamin D (25(OH)D) levels in individuals 

with SCI  report levels to be significantly lower than controls (253).  One study estimated one 

third of individuals with chronic-SCI have serum 25(OH)D levels less than the normal range 

suggested for the non-SCI population (254), and more recently, the prevalence of vitamin D 

deficiency in the SCI population has been estimated as high as 93% (255).  Bischoff-Ferrari 

(192) summarizes four lines of evidence supporting the role of vitamin D with regards to muscle 

health:  1) proximal muscle weakness is a prominent feature of vitamin D deficiency; 2) the 

vitamin D receptor  is expressed in human muscle tissue, and receptor activation may promote de 

novo protein synthesis in muscle; 3) several observational studies highlight an association 

between 25(OH)D and muscle strength and lower extremity function in older persons; and 4) 

there is evidence from several double-blind randomized-controlled trials that vitamin D 

supplementation increases muscle strength and balance, and reduces the risk of falling in 

community-dwelling individuals and institutionalized adults.  Additionally, it was observed that 

1,25(OH)2D level is associated with physical performance and thigh muscle CSA in a group of 

individuals with chronic kidney disease (256).  In another study, serum 25(OH)D insufficiency 

was associated with increased fat infiltration in the muscle of healthy young women (257).  

Lastly, in a sample of 686 community-dwelling older adults, 25(OH)D insufficiency was 

associated with lower percent lean mass, leg strength, leg muscle quality, and physical activity 
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level.  Based on the evidence from other populations, it is hypothesized that vitamin D may be 

associated with muscle quantity and quality post-SCI (258).   

It has been suggested previously that a 25(OH)D level of 60nmol/l is the threshold at 

which desirable benefits for muscle health plateau in older adults.  However, the validity of this 

threshold has not been established for the SCI population (259).  In fact, with regards to 

parathyroid hormone regulation, it has been suggested that the threshold for optimal vitamin D 

levels in the chronic-SCI population may be higher than in the non-SCI population (260).  

Therefore for this proposed study, vitamin D status will be treated as a continuous variable to 

gain an understanding of the correlation between vitamin D level and muscle status post-SCI.       

2.6.5 Lower Extremity Motor Score (LEMS) 

Those with incomplete SCI make up approximately half of the SCI population (54).  

Traditionally, studies investigating muscle outcomes have grouped participants dichotomously as 

either having a complete or incomplete injury.   This grouping is warranted as those with 

incomplete injuries may have different or additional factors contributing to muscle status 

compared to those with complete injuries.  Published data from our group has reported a 

significant difference in muscle CSA between those with complete (AIS AB) and incomplete 

AIS CD) injuries (211).  It is hypothesized that physical activity level and ambulation status may 

have a greater influence on the degree of muscle atrophy and fatty-infiltration in those with 

incomplete injuries compared to those with complete SCI.  This study will separate the SCI 

population into those with complete and incomplete injuries.  However, within the incomplete 

injury group there can be a wide range of muscle function not adequately examined with a 

dichotomous grouping.  Therefore, it is hypothesized that lower-extremity motor score (LEMS) 
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may provide additional precision to determine the effect of voluntary muscle function on muscle 

status.   

 LEMS is a component of the ASIA neurological exam completed by manual testing of 

key muscles on the right and left side of the body in 10 paired myotomes.  The strength of each 

contraction is graded on a six-point scale from zero to five, where zero is total paralysis and five 

is normal active movement and full range of motion against full resistance (99).  It is proposed 

that motor preservation, quantified by LEMS, may be an important correlate of muscle status 

after SCI.  One study has indicated that LEMS is correlated with gait speed, step length, and 

walking cadence in tetraplegic and paraplegic patients with SCI (261).   Additionally, Shah et al. 

(7,169) have observed that those with incomplete injuries have preserved muscle CSA and 

reduced fatty infiltration compared to those with complete injuries, and those who are 

ambulatory have a greater muscle CSA and less fatty infiltration compared to those who use a 

wheelchair.  However to date, no investigation has assessed muscle size and quality within the 

spectrum of preserved motor function in those with incomplete SCI.  For this investigation, only 

the LEMS of the ankle dorsiflexors, long toe extensors and plantar flexors will be used to isolate 

the effect of voluntary muscle contraction on calf-muscle status.   Incorporating LEMS will add 

increased precision to assess the association between the degree of motor function and muscle 

status in the incomplete SCI population.   

2.6.6 Physical Activity  

Physical activity is a potent factor in the maintenance of health of individuals living with 

SCI.   Regular physical activity through upper-body training is effective at improving fitness, 

psychological well-being, and carbohydrate and lipid metabolism disorders in adults with 

chronic-SCI (262-264).  In addition, regular physical activity improves circulation, and reduces 
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inflammatory cascades related to muscle atrophy, cardiovascular disease, and diabetes (263,265-

267).  It is likely that physical activity done by those with SCI will be performed with the upper-

body; therefore, it is hypothesized that physical activity will affect muscle status by introducing a 

systemic response characteristic of reduced inflammation and improved blood sugar and fatty-

acid metabolism.  Observations from able-bodied individuals have shown that physical activity is 

effective at improving whole-body glucose tolerance, and attenuating the effects of catabolic 

cytokines related to systemic low-level inflammation associated with muscle wasting and fatty-

infiltration of muscle (265,267).   Because of its systemic effect, it is possible that upper-body 

exercise could improve lower-extremity muscle status.    

2.6.7 Mobility  

 SCI results in a diverse array of mobility impairments.  The SCI population includes 

those who use power wheelchairs, manual wheelchairs, assistive gait aids and those with 

minimally impaired gait (100).  With regards to muscle status, differential atrophy rates are 

observed between those who are wheelchair dependant versus those who are not (7).  Differential 

rates of atrophy are suspected as a result of loading pattern differences associated with weight 

bearing and functional gait.  Therefore, it was hypothesized that those who are able to ambulate 

without the use of a wheelchair will have an increased muscle status compared to those with 

greater mobility impairments.   

2.6.8 Immobility 

Periods of immobilization are associated with muscle atrophy in other clinical 

populations (57,59,60,117).  Individuals with SCI can experience events, such as lower-

extremity fracture or prolonged illness that can limit the mobility of individuals for an extended 

period of time.  It is proposed that an immobilized lower-extremity or illness that confines an 
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individual to bed or results in an ambulatory individual using wheelchair may result in a reduced 

muscle status.  Therefore, it is hypothesized that a period of immobility will be negatively 

associated with muscle status. 

2.7  Summary of background  

After SCI, there is a rapid decrease in muscle CSA and increase in fatty infiltration of 

muscle, predisposing those with SCI to increased risk of secondary health conditions and 

mobility limitations.  To date, few investigations have prospectively examined the changes in 

muscle status in the chronic stage of SCI, especially in females, the aged, and those with 

incomplete injuries.  pQCT is a non-invasive method that has been employed previously to 

quantify muscle CSA and muscle density, which is a surrogate measure for fatty infiltration.  In 

other clinical populations, muscle CSA and density have been associated with obesity, impaired 

blood sugar regulation, serum lipid and lipoprotein levels, and bone and muscle strength.   

Examining the changes that occur to muscle in a diverse population with chronic-SCI may 

provide insight as to: 1) what happens to muscle status following the rapid initial changes that 

occur in the acute stage of SCI; and 2) what descriptors characterize those experiencing the most 

detrimental changes in muscle status, and consequently may be at the most risk for related 

morbidities such as CVD and diabetes.   

2.8 Clinical Relevancy   

 The muscle status of the chronic-SCI population has been inadequately examined.  There 

is little information to inform researchers and clinicians of the factors associated with muscle 

loss and fatty-infiltration, and related health risks.  The goal of this study, which is to establish 

detriments of muscle status and change in muscle status in the chronic-SCI population, will be 

beneficial to informing care and gauging rehabilitation intervention success.  Models of muscle 
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status and change in muscle status will be created to inform clinical interventions related to 

metabolic disease such as the initiation of muscle-preserving interventions (e.g., electrical 

stimulation), or treatment regimens for metabolic disorders (e.g., pharmacotherapy, exercise, 

etc.). 

It is unknown if, and to what extent, individuals with SCI experience reduction in muscle 

status in the chronic stage of injury.  If reduction continues, there could be implications for the 

design of studies assessing the effect of muscle-preserving interventions.  Commonly, an 

improvement in muscle from baseline is deemed a success.  If the natural trajectory of muscle is 

towards a decrease in size and quality, then a therapy that demonstrates no change may be 

successful in that it prevents an unfavourable reduction.   Understanding the degree, and factors 

associated with muscle status variability in the chronic-SCI population, may help develop and 

assess the efficacy of therapies to improve, or slow reductions in muscle size and quality. 

Secondly, it has been demonstrated that muscle density is able to distinguish between 

those with and without diabetes.  For example, in the able-bodied population, Miljovic-Gacia et 

al. observed that those with diabetes have a calf-muscle density that is approximately 5 mg/cm
3
 

lower than those without diabetes (216); and Goodpaster et al. reported that lean subjects had 

muscle attenuation values ~10HU higher (49.2 ± 2.8 HU) than obese non-diabetics (39.3 ± 7.5 

HU), and ~ 16 HU higher that those who were obese and had type 2 diabetes (33.9 ± 4.1 HU) 

(64).  An improved understanding of muscle CSA and density reductions following SCI may 

improve detection of metabolic disease risk.  

To date, there is little evidence as to the degree of muscle change needed to be clinically 

significant with regards to metabolic disease after SCI.  However, studies examining the 

relationship between electrical stimulation training and metabolic activity have begun to address 
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this issue.  An improvement in both plasma glucose and insulin after ten weeks of electrical 

stimulation cycling in individuals with SCI was been observed in individuals with paraplegia and 

tetraplegia (45).  The improvements in glucose tolerance occurred along with an increase in 

whole-body lean muscle mass (~4%) and no significant change in adipose tissue.  These results 

suggest that a 4% difference in whole-body lean tissue mass is sufficient to alter metabolic 

health.  Mahoney et al., observed that a muscle CSA increase of 35-39% did not significantly 

influence blood glucose or insulin after training (46).  However, a trend for a reduction in plasma 

glucose level was observed (p = 0.074).   In preliminary case study involving a male with 

chronic complete-SCI, thigh-muscle hypertrophy ranging from 30% to 112% was detected in 

cross-sectional MRI images after a twelve week electrically-stimulated knee extensor resistance 

training protocol (268).  Additionally, intermuscular fat decreased by more than 50%.  In a 

subsequent study of nine individuals with motor-complete SCI by the same investigators, twelve 

weeks of progressive electrically-stimulated knee extensor resistance training, in combination 

with a healthy diet, increased the muscle CSA of the whole thigh (28%), knee extensor (35%), 

and flexor (16%) muscle groups, reduced visceral adipose tissue (30%), and improved fatty 

infiltration of skeletal muscle (3% reduction in exercise group vs. 3% increase in control group) 

(269).  The hypertrophy and reductions in ectopic adipose tissue distribution observed in this 

study were linked with improved indices of carbohydrate metabolism, insulin resistance, and 

lipid profiles in men with SCI.  Although variability is observed, the results of these studies 

suggest that a) it is possible to increase muscle size and quality after-SCI, and b) muscle size and 

quality are determinants of metabolic health.   

The results of this study will characterize the muscle status of a diverse sample of the SCI 

population, and provide baseline data to gauge intervention success and predict who may benefit 
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the most from rehabilitation therapy.  Secondly, the results of this study may highlight pQCT as 

a novel, accessible clinical tool to improve our understanding of metabolic disease risk to 

facilitate disease detection in those with chronic-SCI.  This information is an important step 

towards developing individualized, SCI-specific thresholds capable of informing clinical 

decision making.   
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CHAPTER 3:  RESEARCH QUESTIONS AND HYPOTHESES   

3.1  Research Questions  

3.1.1 Primary Research Questions 

What characteristics are associated with muscle CSA and muscle density for those with 

complete and incomplete SCI?  Possible variables include: gender, age, height, weight, waist 

circumference, injury duration, age at injury, level of injury, leg spasticity, vitamin D level, calf-

lower extremity motor-score (cLEMS),  wheelchair use, and daily minutes of mild, moderate, 

vigorous, and total physical activity. 

 

3.1.2 Secondary Research Questions  

1) a) What is the magnitude of change in muscle CSA and muscle density  over one- and 

two-year time periods for individuals with complete and incomplete injuries? 

b) What variables are associated with a change in muscle CSA and density over one- and 

two-year time periods for individuals with chronic complete and incomplete injuries?   

Possible variables included: gender, age, height, weight, waist circumference, injury 

duration , age at injury,  level of injury, leg spasticity score, vitamin D level, cLEMS, 

wheelchair use and mild, moderate, vigorous, and total physical activity levels.  

 

2) a) How does the muscle CSA and muscle density of individuals with chronic-SCI 

compare to gender, age, and height matched able-bodied controls? 
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b) What is the difference in muscle CSA and muscle density reduction between those 

with chronic complete and incomplete SCI? 

3.2  Research Hypotheses  

3.2.1 Primary Research Hypotheses  

1. It was hypothesized that in those with incomplete injuries, males would have a greater 

muscle CSA compared to females.  However, in those with complete injuries there would 

be no gender differences in muscle CSA.  Muscle CSA would be inversely related to age 

and duration of injury, and positively related to age at injury.  It is likely that age and 

time post-injury would co-vary.  It was hypothesized that those with an injury below C7 

would have a greater muscle CSA compared to those with SCI at or above C7.  Muscle 

CSA would be positively related to vitamin D level, spasticity, physical activity level, 

and mobility score.  It was hypothesized that muscle CSA would be positively related to 

cLEMS and negatively related to wheelchair use.   

 

2. It was hypothesized that in those with incomplete injuries, females would have a lower 

muscle density compared to males.  However, in those with complete injuries there 

would be no differences in muscle density at baseline.     Muscle density would be 

inversely related to age and duration of injury, and positively related to age at injury. It is 

likely that age and time post-injury would co-vary.   Muscle density would be positively 

related to vitamin D status, spasticity, physical activity level, and mobility status.   Lastly, 

it was hypothesized that muscle CSA would be positively related to cLEMS and 

negatively related to wheelchair use. 
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3.2.2 Secondary Research Hypothesis   

 

1. It was hypothesized that there would be no difference in muscle CSA and muscle 

density between baseline, year-1 and year-2 time points in those with complete and 

incomplete injuries.   

 

2. a) It was hypothesized that males and females with SCI would have decreased muscle 

CSA and muscle density compared to gender, age, and height matched able-bodied 

controls.   

 

b) It was hypothesized those with complete injuries would have greater reductions in 

muscle CSA and muscle density compared to those with incomplete injuries.   
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CHAPTER 4: METHODOLOGY 

4.1 Overview of Study 

This observational study was a sub-study of a larger 2-year prospective cohort study 

entitled Bone Quality in Individuals with Spinal Cord Injury, and incorporates able-bodied 

control data from the University of Saskatchewan.  The primary objective of the Bone Quality in 

Individuals with Spinal Cord Injury study is to evaluate bone loss in individuals with SCI.  This 

study involves collaborations between the University of Waterloo, McMaster University, 

University of Toronto, and the University Health Network - Toronto Rehabilitation Institute.  

Briefly, seventy individuals with SCI were recruited to participate.  Participant data was 

collected at yearly follow-up visits.  Data collected include: a) medical history, including 

etiology and impairment descriptors; b) areal bone mineral density and body composition 

assessed by DXA; c) volumetric bone mineral density, bone geometry, muscle CSA, muscle 

density, and trabecular bone structure assessed by pQCT; and d) blood work collected at baseline 

to measure vitamin D levels.   To date, all baseline and year-1 follow up visits have been 

completed by the cohort, and all but two individuals have completed their year-2 follow-up visit.  

It is expected that the remaining two participants will attend their year-2 follow appointment by 

June, 2014 (Recruitment flowchart – Appendix A).   

The primary aim of the proposed investigation was to examine muscle CSA and muscle 

density values from pQCT scans of the 66%-site of the calf at baseline, year-1, and year-2 time 

points.  Baseline scans were used as a cross-sectional sample of the SCI population to determine 

the correlates associated with muscle status.  For individuals who did not undergo a baseline 

pQCT scan, the scan from the next available time point was used if available.   Secondly, muscle 

status was compared longitudinally between baseline, year-1, and year-2 time points, and 
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correlates associated with a change in muscle CSA and muscle density were determined.  

Thirdly, muscle CSA and muscle density values from baseline were compared to age, gender, 

and height matched able-bodied controls to assess the change in muscle status as a result of 

paralysis.   

4.2 Recruitment and Screening 

 

Individuals with SCI were recruited in person from outpatient services in Toronto, 

Ontario and Hamilton, Ontario, and by mail out invitation.  Sources of recruitment included: 1) 

the Jousse long-term follow-up database; 2) outpatient services at the Lyndhurst Centre in 

Toronto, Ontario; 3) physiatry clinics in Hamilton, Ontario; and 4) the MacWheelers adaptive 

exercise program at McMaster University, Hamilton, Ontario. The Jousse long-term follow-up 

database contains the demographic, injury characteristics, health status, and contact information 

of individuals with SCI who have consented to be contacted regarding ongoing research projects 

at the Lyndhurst Centre.  Participants who were recruited through the Jousse long-term follow-up 

database or the Hamilton clinics were sent a letter of invitation to participate in this study. The 

letter informed them that a research coordinator would contact them by telephone to determine 

their eligibility and interest in participating in the study. For individuals who preferred not be 

contacted, a phone number was provided in the letter where they could leave a message to 

exclude themselves from the recruitment call. 

Potential participants making use of outpatient services at the Lyndhurst Centre were 

identified by their respective physicians or therapists.  Potential participants were informed of 

their possible eligibility for the study and were asked if they would be interested in being 

contacted by a member of the research staff to learn more about the study. The physicians and 

therapists were required to complete a referral form for eligible participants who expressed 
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interest in the study and forward it to the research coordinator who contacted the potential 

participant via telephone. Recruitment through the MacWheelers program was performed by 

providing brochures to eligible participants. Other recruitment strategies included advertisements 

on the Spinal Cord Injury Canada website and newsletter, and posters posted throughout the 

Lyndhurst Centre building. 

Potential participants interested in taking part in this research project were provided with 

a detailed description of the study over the telephone by the research coordinator at the 

Lyndhurst Center.  Individuals who gave verbal consent to participate in the study were assessed 

to ensure that they met all the inclusion criteria (Table 2).  A visit to the Lyndhurst Center was 

arranged for eligible participants, during which written informed consent was obtained.  

 

Table 2 Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

Able to understand instructions in English 

 

A spinal cord impairment (C2-T12 AIS A-D) 

of sudden onset (< 24hrs) associated with a 

stable upper motor neuron, neurologic deficit 

of trauma-like etiology having occurred at least 

24 months prior study inclusion  

 

Ability to give informed consent  

 

Age ≥ 18 years  

 

Current or prior known conditions other than 

paralysis that are known to influence bone 

metabolism including: oral glucocorticoid use 

for ≥ 3 months, malignancy, known liver or 

malabsorption condition  

 

Weight > 270lbs (limit for bone density 

machine)  

 

Contraindications to pQCT testing  

 

Women who are pregnant or planning to 

become pregnant  
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4.3 Assessment Overview  

Study visits were conducted at the Lyndhurst Center.  Each visit involved a series of 

questions pertaining to participants’ medical history and heath demographic information.  

Medical history was obtained by direct patient interview and validated by medical chart review.  

If the participant had not had an ASIA exam performed previously, an exam was conducted.  A 

second visit to the McMaster University Medical Centre was scheduled within three months for a 

pQCT scan. The study visit and pQCT scan were repeated twice at one-year time intervals.   

4.4 Able-bodied Controls  

Age, gender, and height matched able-bodied control scans of the 66% site of the tibia 

were attained from multiple studies previously conducted at the University of Saskatchewan.  

Individuals with SCI were matched to controls in a 1:1 ratio to examine the influence of SCI on 

calf-muscle size and quality across the duration of chronic-SCI.   A matching algorithm was 

designed to prioritized gender, followed by age, followed by height.   

4.5 Outcome Measures 

4.5.1 pQCT Imaging 

 

Muscle CSA (cm
2
) and muscle density (mg/cc) was calculated from pQCT scans at the 

66% site of the tibia as measured from the measuring from distal landmark.  The 66%-site of the 

tibia was calculated and marked as 1/3 of the distance measured from the palpated tibiale 

mediale (most superior point on the medial border of the head of the tibia) and the sphyrion 

tibiale (most distal palatable prominence of the medial malleolus).  The proximal one-third of 

tibia (66% of tibia length) was chosen because it is the region of the calf with the highest 

circumference and cross-sectional area (270,271).   A standard operating procedure (SOP) for 
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image acquisition and analysis is contained in Appendix A.  Images were acquired using a 

Stratec XCT 2000 scanner (Stratec Medizintechnik, Germany).   The right tibia was scanned 

except in cases of severe spasticity or other contraindications, such as the presence of metal or 

fracture in the right leg.    Images have a slice width of 2.2mm and voxel size of 0.5mm.  Able-

bodied scans from the University of Saskatchewan employed an identical protocol with the 

exception of a voxel size of 0.4mm was used.  All pQCT scans of individuals with SCI were 

acquired by the same X-ray technician at Hamilton Health Sciences using the same scanner.   All 

pQCT analysis (SCI and able-bodied) were performed by a single investigator (Cameron 

Moore).  Scans that had severe movement artifacts were excluded from the analysis based on the 

visual scale defined by Blew et al. (272).   Prior to analysis, pQCT scans were randomized and 

blinded.  
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Figure 1 pQCT positioning at the distal tibia 

 

For this analysis, tissue segmentation was performed by manual tracing aided by a 

Watershed algorithm.  Prior pQCT studies have used density-based threshold algorithms to 

distinguish muscle from fat, bone, and skin.  However, unpublished data from our lab reports 

that manual tissue segmentation has greater reproducibility and tighter re-testing limits 

(Appendix A).  Although manual tracing may be less efficient, its higher reliability makes it a 

more favourable technique. 

Tissue segmentation and the calculation of muscle CSA and muscle density were 

performed using sliceOmatic software version 4.3 for PC (SliceOMatic; Tomovision, Montreal, 

Canada).  Before image analysis, gamma correction was performed to compensate for variability 
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in grey-level values between computer screens.  After gamma correction, grey level images 

(GLI) of the pQCT scans were loaded into the software, and the contrast was adjusted to 

maximize the visibility of the border between the external facia and subcutaneous fat.  

SliceOmatic software has the ability to segment and “tag” tissue types within the image, and 

compute the surface area and density of the tagged pixels.  Included in the software package are 

a number of analysis modes to aid in the segmentation and identification of tissue types based on 

the properties of the GLI file.  “Morpho” mode was used to analyze the pQCT images.  Morpho 

mode uses mathematical morphology to segment the image by computing watershed gradients.  

Ideally, the borders created by the watershed segmentation correspond to borders between tissue 

types, and therefore identifying these regions is faster than editing the image one pixel at a time.  

In some cases, manual edits were needed to correct for watershed spillover.  Tissue types were 

identified in the following order:  muscle, subcutaneous fat, bone, and marrow space.  For this 

analysis, muscle tissue was defined as the tissue surrounded by the epimysium, which contains 

subfacial fat, intermuscular and intramuscular lipid deposits and connective and contractile 

tissue.  Figure 3 shows how bone, muscle and subcutaneous fat were identified via watershed 

segmentation. 

Muscle CSA was calculated by multiplying the number of pixels tagged as muscle by the 

surface area of one pixel, and the average density value of the pixels tagged muscle represent the 

muscle density.   Muscle density was calculated using a calibration equation that converts GLI 

units, in this case linear attenuation coefficients (1/cm), into density values (mg/cc).  This 

equation was derived by scanning ten compounds of known densities ranging from zero to 675 

mg/cc to attain a calibration curve.  The curve for the pQCT scanner at Hamilton Health 
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Sciences was a linear equation with an r
2
 value of 1, suggesting a direct relationship between X-

ray co-efficient and density values (Appendix A).   

 

Figure 2 Watershed Analysis of pQCT scans at the 66%-site  

A. Grey level image (GLI) B. Watershed segmentation C. Tissue identification 

 

4.5.1.1 Reliability Analysis of Tissue Segmentation  

 

A repeatability analysis for the watershed tissue segmentation technique was performed 

to determine test-retest reliability.  Fifteen pQCT scans were randomly selected and analyzed 

twice in random order by the same investigator conducting all pQCT image analysis for this 

study (Cameron Moore).  Intra-class correlation coefficients are reported and the root mean 

square (RMS) method was used to calculate the overall standard deviation (RMS-SD, units) and 

the coefficient of variation (RMS-CV, %) of the precision error of muscle CSA and density 

measurements.   

4.5.2 Spasticity 

      

Spasticity was assessed using the Penn Spasm Frequency Severity Scale (SFSS).  The 

SFSS is a self-report measure of the frequency and severity of muscle spasms (247,248).  There 

are two parts to the scale: the first component is a five point scale assessing the frequency with 

A B C 
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which spasms occur ranging from 0 = no spasms to 4 = spontaneous spasms occurring more than 

ten times per hour.  The second component is a three point scale assessing the severity of spasms 

ranging from 1 = mild to 3 = severe.  The second component is not answered if the person 

indicates they have no spasms in part 1.  The SFSS was administered by a research assistant at 

three points over the duration of the study: baseline, year-1 and year-2.  However, only the 

baseline scale was used for the cross-sectional and longitudinal analysis.  Reliability has not been 

established for SFSS. For this investigation, spasticity score for the leg scanned was treated as a 

continuous variable with a maximum score of seven.  

4.5.3 Serum vitamin D 

 

Blood collection was performed during the baseline visit by a trained phlebotomist.  

Participants were required to fast for at least twelve hours prior to blood collection.  For those 

participants unable to fast, a standard breakfast of toast and apple or orange juice was allowed, in 

which case blood was drawn four hours following food consumption.  Participants who were 

Vitamin D deficient were given a prescription for Vitamin D supplementation with the goal of 

raising Vitamin D levels to a sufficient level. Participants were then re-tested.  In these instances, 

the result of the first vitamin D test was used for the cross-sectional analysis and the result of the 

second test was used for the longitudinal analysis.     

Two 10mL Vacutainers® of blood were collected per participant.  Immediately following 

blood collection, the blood from one 10 mL Vacutainer® serum separator tube was left to clot 

for 10-30 minutes, and then was centrifuged at 2800 rpm for 15 minutes. The serum layer was 

carefully removed and distributed into 1.5mL microcentrifuge tubes and sent to the Research 

Laboratory at Mt. Sinai Hospital for same-day analysis. 
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Serum 25(OH)D was determined with a chemiluminescent immunoassay (CLIA) using 

the DiaSorin LIAISON instrument as the platform (DiaSorin, Stillwater, MN); which detects 

both 25(OH)D2 and 25(OH)D3 to estimate the total 25(OH)D circulating in the body. The 

DiaSorin LIAISON CLIA uses an antibody to isolate serum 25(OH)D from other materials and 

metabolites.  Reagents are added to the sample to initiate a flash chemiluminescent signal which 

can then be measured and related to the 25(OH)D concentration (273).   The DiaSorin 

LIAISON® CLIA has demonstrated acceptable assay precision (2.8 – 13%) and inter-assay 

precision (7.3 – 17.5%) when evaluated against a well-established radioimmunoassay technique 

(274,275).  Additionally, the LIAISON® CLIA exhibits 100% cross-reactivity for both 

25(OH)D2 and 25(OH)D3 (275).  These results suggest that the LIAISON 25(OH)D assay is an 

accurate and precise tool for the measurement of 25(OH)D. 

4.5.4 AIS and Lower-extremity Motor Score (LEMS) 

 

The AIS and LEMS was either obtained by chart abstraction or determined by a 

physiatrist at baseline.  This project examined the muscle status of the calf, and therefore to 

isolate the effect of voluntary muscle activation on muscle status, only the calf-LEMS (cLEMS) 

(ankle dorsiflexors, long toe extensors, and plantar flexors) of the leg scanned was used in this 

analysis.  It has been observed that light-touch, pin-prick, and motor scoring have high inter-rater 

repeatability.   The interclass correlation coefficients (ICC) for light-touch, pinprick, and total 

motor scores were 0.96, 0.88 and 0.97, respectively.  For LEMS specifically, an inter-rater 

reliability (ICC, 95% CI) of 0.98 (0.92 - 1.00) was observed (99).  Based on these scores, the 

AIS including LEMS, is considered a reliable measure. 
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4.5.The Physical Activity Recall Assessment for People with Spinal Cord Injury (PARA-

SCI) 

 

The PARA-SCI was designed to capture information on the type, frequency, duration and 

intensity of physical activity performed by those with SCI using a wheelchair as their primary 

mode of mobility (276).   The PARA-SCI uses an interview format to capture activities 

performed over the last three days which are divided into eight periods from morning routine to 

evening routine.  The two routine periods are subdivided to capture activity related to daily living 

(transfer, bowel and bladder management, dressing, etc.).  The number of minutes spent on each 

specific activity is recorded and the activity is coded into two categories: leisure-time physical 

activity or lifestyle activity.  Physical activity information is reported as an average number of 

minutes of activity per day (mild, moderate, heavy, total) for the two dimensions (leisure-time 

physical activity or lifestyle activity) and a cumulative index.  Over repeated administrations one 

week apart, the ICC for the PARA-SCI range from 0.45 to 0.91 for the PARA-SCI activity 

categories and intensities (276).  In a validity study, correlations between PARA-SCI scores and 

indirect calorimetry estimates of activity ranged from 0.27 to 0.88(277).  An important limitation 

to address is that the PARA-SCI is designed to record wheelchair based physical activity which 

is predominantly performed with the upper body.  Therefore, the PARA-SCI may not adequately 

capture the activity levels of those with incomplete injuries doing lower-extremity exercise.  

However, physical activity has a systemic response on the body and therefore, limitations 

considered; the PARA-SCI provides a tool to gauge if physical activity is a determinant of 

muscle status post-SCI.  Average minutes per day of mild, moderate, vigorous, and total physical 

activity were used in the cross-sectional and longitudinal analyses.  
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4.6 Statistical Analysis  

Descriptive statistics were used to describe participants’ muscle status and demographic, 

anthropometric, and impairment characteristics.  Categorical variables are presented as counts 

(n) and percentage (%), and continuous variables are presented as means ± standard deviations 

(SD).   All statistical analyses were performed on SAS 9.2 software (Cary, North Carolina).   

To determine the test retest reliability of the manual watershed-guided tissue 

segmentation technique, the scans of 15 individuals were blinded and analyzed twice in random 

order.  The intra-class correlation coefficients (ICCs) are reported for muscle CSA and density 

from a one-way random effects model.  In addition, the RMS method was used to calculate the 

overall standard deviation (RMS-SD, units) and the coefficient of variation (RMS-CV, %) of the 

precision error of muscle CSA and density.   

For the primary research question investigating the correlates of muscle status at baseline, 

two multiple linear regression analyses with the dependant variables of muscle CSA and muscle 

density were used to identify correlates of muscle CSA or density.  It was hypothesized that 

completeness of injury maybe an effect modifier, such that the magnitude of some correlates of 

muscle status may affect those with complete and incomplete injures differently.  Therefore, 

each analysis was conducted on the complete sample, and sub-samples separated by motor-

completeness of injury (i.e., AIS A and B versus C and D).   Potential correlates selected a priori 

for the primary analysis are listed in Table 3.  All independent variables were treated as 

continuous variables except for gender (m/f), diabetes status (Y/N), and level of injury (C1-T6, 

T7-S5).  Correlates found to be independently significant at alpha < 0.20 in the bi-variate 

regression analyses were entered into multi-variable regression models using manual model 

selection based of R
2
 and  C(p) statistics (278).  Multicolinearity between independent variables 
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was defined as a variance inflation factor greater than five (279).     Models have a maximum of 

ten observations for each independent variable to avoid over-fitting (280).  Outlying data points 

were investigated based on Cook’s Distance, which is a measure of the impact an observation on 

all regression coefficients.  A value greater than 4/n, where n is the number of observations in the 

model was used to define an outlier (281).  To assess model assumptions, the residual plots were 

examined. 

 

Table 3 Covariates used in the cross-sectional and longitudinal analyses 

Variable Unit 

Gender  

Age (years) 

Height  

Weight 

Waist Circumference 

Age at Injury  

Level of Injury  

Time Post Injury  

Single Leg Spasticity  

cLEMS  

Wheelchair  Use 

Baseline Vitamin D level  

Mild Physical Activity  

Moderate Physical Activity  

Vigorous Physical Activity  

Total Physical Activity  

 

Male / Female 

Years 

Centimetres (cm) 

Kilograms (kg) 

Centimetres (cm) 

Years 

C1-T6 / T7-S5 

Years 

No unit ( /7) 

No unit (/15) 

(Yes/No) 

Nmol/L 

Minutes per day 

Minutes per day 

Minutes per day 

Minutes per day 

 

 

 

A mixed-model repeated measures ANOVA (rANOVA) was used to assess whether there 

were differences in muscle CSA and density between the three study time points in the full 

sample as well as sub-samples of participants with complete and incomplete injuries.  Study time 

point (baseline, year-1, year-2) was treated as a fixed effect and participants were treated as 
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random effects in the model.  The mixed model approach allowed for missing muscle CSA and 

density values to be estimated based on a restricted maximum likelihood method which is 

favourable in the accommodation of data missing at random (282,282-284).  Only participants 

with scans from at least two time points were included in the model.  If a difference between 

baseline and year-1 or baseline and year-2 is detected at a significance level of p < 0.05 in the 

rANOVA analysis, regression models that include muscle CSA and muscle density change 

scores as the dependant variables were formed to examine variables related to change in muscle 

status.  For the regression analyses, correlates found to be independently significant at alpha = 

0.20 in bi-variate analyses were entered into multi-variable models based on R
2
 and C(p) 

statistics (278).  Potential variables and covariates that were included in each of the secondary 

analyses are the same as those used in the cross-sectional analysis (Table 3).    

For the final research question, independent t-tests were used to test for significant 

differences in age and height, and a chi-square test was used to compare gender frequency 

between SCI participants with SCI and able-bodied controls.  Paired t-tests were used to compare 

the muscle CSA and muscle density of individuals with complete and incomplete SCI to 

controls.  Independent t-tests were used to compare the mean changes in muscle CSA and 

density values between individuals with complete and incomplete SCI. 

4.7 Ethical Considerations 

4.7.1 Potential Risks to the Participants 

 

Participants were exposed to small amounts of radiation during the pQCT scans. The total 

level of radiation exposure associated with the scans is approximately 30µSv, which is less than 

the amount of radiation received during a whole body CT scan (30-60µSv) or annually from 

background radiation (2500µSv). 
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4.7.2 Anonymity 

 

Each participant was assigned a unique identification (ID) number that was used on all forms and 

in the electronic database.  The key file linking participant information to the ID is stored in a 

separate password protected database. All hardcopy data is stored at the Research Department at 

University health Network - Toronto Rehabilitation Institute, Lyndhurst Centre in locked and 

secured filing cabinets.  Additionally, all research data has been inputted and securely stored on 

an online electronic database, Empower, or on servers at the Lyndhurst Centre. 
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CHAPTER 5: RESULTS 

5.1 Participants  

5.1.1 Participant Recruitment 

Four hundred nine individuals with SCI were approached to participate in the two-year 

prospective cohort study.   Of the 409 individuals, 188 individuals were unreachable by phone, 

seven were deceased, and 79 declined to participate, resulting in 135 individuals being pre-

screened for eligibility. Twenty four individuals did not meet the inclusion criteria, and 41 

individuals declined further participation in the study.  In total, 70 individuals were enrolled in 

the study.  One participant died before the first follow-up visit, and two individuals died before 

the second.  Sixty four participants completed the study, and three participants are scheduled to 

complete their Year-2 follow-up visit by June 2014, and their data is not included here.  A 

recruitment flow diagram can be found in Appendix A. 

 

5.1.2 Participant Characteristics  

The sample population included 20 females and 50 males with a mean (± SD) duration of 

injury of 15.5 ±10.0 years, and an age of 33.7±14.7 years (Table 4).  Forty five individuals had 

motor-complete injures and 25 individuals had motor-incomplete injuries.  Fourteen of the 25 

individuals used a wheelchair for ambulation.  Thirty six individuals had tetraplegia and 34 

individuals had paraplegia.  Individuals with motor-complete injuries were younger, injured at an 

earlier age, and were injured for a longer period of time (p < 0.001).   There was no difference in 

the average daily mild, moderate, vigorous, and total minutes of physical activities between those 

with motor-complete (AIS A and B) and incomplete injuries (AIS C and D).   
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Table 4 Participant Characteristics 

All 

participants 

Participants with 

motor-complete 

Injuries 

Participants with 

motor-incomplete 

Injuries p-value 

# Participants 70 45 (64.2%) 25 (35.7%) 

Sex, n (%) 0.9371 

 Female 20 (28.6%) 13 (28.9%) 7 (28.0%) 

 Male 50 (71.4%) 32 (71%) 18 (72%) 

Age (years) 48.8 ± 11.5 45.5 ± 9.8 54.9  ± 12.0 * <0.001* 

Duration of Injury (years) 15.5 ± 10.0 17.8 ± 10.0 11.4  ± 8.8 * <0.05* 

Age at Injury (years) 33.7 ± 14.7 28.9  ± 12.4 42.4  ± 14.9 * <0.01* 

Level of Injury, n (%) 0.5684 

 Tetraplegic 36 (51.4) 22 (48.9%) 14 (56%) 

 Paraplegic 34 (48.6) 23 (51.1%) 11 (44.0%) 

Height (cm) 174.5 ±10.3 173.7  ± 10.5 176.0 ± 9.8 0.4 

Weight (kg) 80.1 ± 18.5 78.6  ± 19.2 82.9  ± 14.6 0.37 

Waist Circumference (cm) † 97.4 ± 14.8 96.6  ± 15.0 98.9  ± 14.6 0.55 

25(OH)Vitamin D (nmol/L) 87.8 ± 35.0 89.2  ± 32.9 85.6  ± 38.9 0.69 

AIS, n (%) 

 A 42 (60.0%) 42 (93.3%) - 

 B 3   (4.2%) 3 (6.7%) - 

 C 10 (14.2%) - 10 (40.0%) 

 D 15 (21.4%) - 15 (60.0% 

LEMS  11.0 ± 15.8 - 29.1  ± 12.5 

Physical Activity (min/day)ǂ     

 Mild  121 ± 133 130 ± 150 105 ± 100 0.44 

 Moderate 86 ± 114 81 ± 135 94 ± 71 0.66 

 Vigorous 25 ± 35 26 ± 36 24 ± 35 0.81 

 Total 232 ± 210 237 ± 245 223 ± 139 0.78 

† Indicates n = 68 due to missing data 

ǂ Indicates n = 61 due to missing data 

*Significant difference between motor-complete and incomplete groups  (Student’s t-test p-value 

reported for continuous variables, Chi square p-values reported for categorical variables) 
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5.1.3 Sample Size for pQCT Assessment 

The scans of 55, 52, and 46 participants were analyzed at baseline, year-1, and year-2, 

respectively (Table 5).  At baseline, one individual declined to be scanned, one individuals was 

unable to be contacted to schedule their pQCT appointment in Hamilton following their medical 

assessment in Toronto, three individuals could not fit their calf into the pQCT scanner, seven 

scans had movement artifacts, two individuals were unable to be scanned because of health 

complications, and one individual died after enrollment but before a baseline pQCT scan could 

be performed.  At year-one, two individuals declined to be scanned, five individuals were unable 

to be contacted to schedule their second pQCT scan, four individuals could not fit their calf into 

the pQCT scanner, three scans had movement artifacts, three individuals were unable to be 

scanned because of health complications.  At year-two, two individuals declined to be scanned, 

eleven individuals were unable to be contacted or missed their pQCT appointment, three 

individuals could not fit their calf into the pQCT scanner, two scans had movement artifacts, one 

individual was unable to be scanned because of health complications, and two additional 

individuals died.  Two individuals are scheduled to complete their year-2 scans in May 2014 and 

June 2014, respectively, and their year-two data was not included in this report.  
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Table 5 Summary of pQCT sample size across study visits 

  Scanned 

Unable to  

Contact 

Declined 

Scan 

Unable 

to Fit 

Movement 

Artifact 

Health 

Complications  Deceased Pending 

Baseline 55 1 1 3 7 2 1 0 

Year 1 52 5 2 4 3 3 1 0 

Year 2 46 11 2 3 2 1 3 2 

TOTAL 153 18 5 10 12 6 5 2 

 

 

 

Table 6 Case-control matching summary 

Full-sample Complete-SCI Incomplete-SCI 

SCI 

Participants 

Able-bodied 

Controls 

SCI 

Participants 

Able-bodied 

Controls 

SCI 

Participants 

Able-bodied 

Controls 

N 65 65 42 42 23 23 

Gender (m/f) (45/20) (45/20) (15/27) (15/27) (18/5) (18/5) 

Age (years) 49.0 ± 11.9 47.4 ± 13.8 50.1 ± 12.0 47.8 ± 14.3 46.9 ± 11.6 46.5 ± 13.1 

Height (cm) 174.3 ± 10.3 173.8 ± 8.5 173.7 ± 11.5 173.3 ± 9.2 175.5 ± 8.0 174.8 ± 7.0 
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5.2 Precision of Muscle CSA and Density Measurement 

  Repeated calculations of muscle CSA and muscle density using the watershed tissue 

segmentation technique were highly correlated and had a small precision error.  For muscle CSA, 

an ICC of 0.999 (p < 0.0001), a RMS-SD of 0.61 cm
2
, and a RMS-CV 1.01% were observed.  

For muscle density, an ICC of 0.997 (p < 0.0001), a RMS-SD of 0.57 mg/cc, and RMS-CV 

0.95% were observed.  

5.3 Able-bodied Controls  

Able-bodied controls had muscle CSA and density values of 78.0 ±12.1 cm
2
 and 71.0 ± 

2.3 mg/cc, respectively (Table7).  The proportion of males versus females, age, or height were 

not significantly different between SCI participants and able-bodied controls (p > 0.05) (Table 

6).  Matching was conducted on a 1:1 ratio.  Matching for age was prioritized over height, under 

the assumption that an age difference is likely more relevant to calf-muscle status than a 

difference in height.  Sixty percent of controls had an absolute difference in age of one year or 

less, 71% of controls had an absolute difference in age of five years or less, and 97% of controls 

had an absolute difference in age of ten years or less.  With regards to height, 46% of controls 

had an absolute difference of one centimetre or less, 79% of controls had an absolute difference 

of five centimetres or less and 96% had an absolute difference of ten centimetres or less.   
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5.4 Muscle CSA and Density after SCI 

Muscle CSA and muscle density values were obtained from 65 individuals who had at 

least one pQCT scan of sufficient quality for analysis (Table 7).   Muscle CSA values ranged 

from 11.2 cm
2 

to 97.7 cm
2
.  A mean muscle CSA of 51.8 ± 20.8 cm

2
 was observed.  Muscle 

density values ranged from 17.2 mg/cc
 
to 72.0 mg/cc for the 65 participants with SCI.  A mean 

muscle density of 53.2 ±13.2 mg/cc was observed for all participants.   

Compared to able-bodied controls, individuals with complete and incomplete SCI had 

significantly reduced calf-muscle CSA and density values (Table 7).  Participants with motor-

complete SCI had a mean reduction of -34.7±20.2 cm
2
 (45%) in muscle CSA and a mean 

reduction of -22.7±13.6 mg/cc (32%) in muscle density relative to controls.  Participants with 

motor-incomplete SCI had a mean reduction of -13.0±22.3 cm
2
 (17%) in muscle CSA and a 

mean reduction of -10.0±9.4 mg/cc (14%) in muscle density relative to controls.  The mean 

reduction in muscle CSA and muscle density was greater for participants with complete SCI 

compared to those with incomplete-SCI (p < 0.001).    

 

 

Table 7 Muscle CSA and density values for participants with complete and incomplete SCI and 

their matched able-bodied controls  

 

  Complete SCI Incomplete SCI Able-bodied 

controls 

N 39 25 64 

Muscle CSA (cm
2
) 43.1 ± 16.7* 65.5 ± 19.3* 78.0 ±12.1 

Muscle Density (mg/cc) 48.8 ± 14.1* 60.2 ± 9.2
†
 71.0 ± 2.3 

* Indicates significant difference between SCI and controls (p < 0.0001) 
†
 Indicates significant difference between SCI and controls (p < 0.01) 
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5.5 Determinants of Muscle Status  

5.5.1 Determinants of Muscle CSA 

The scans from 65 individuals were included in the cross-sectional analysis of muscle 

CSA.  Gender, age, height, weight, waist circumference, level of injury, duration of injury, age at 

injury, wheelchair use and cLEMS were associated with muscle CSA in bi-variate analyses 

(Table 8, p<0.2) and were included as possible independent variables in a multivariable model of 

muscle CSA.  Due to multicollinearity, waist circumference was included in favour of 

bodyweight, and injury duration was included in favour of age at injury.  Based on R
2
 and 

Mallow’s C(p) statistic, the best fitting model for muscle CSA indicated that a reduced height, 

waist circumference, cLEMS and wheelchair use were associated with a reduced muscle CSA 

(Table 10a; R
2
 = 0.66, p < 0.0001).  Height exhibited a trend towards statistical significance 

(p=0.073), whereas all other variables were significant in the model (p<0.05)    

In a subsample of individuals with complete SCI, gender, height, weight, waist 

circumference, age at injury, SFSS, vitamin D, and daily minutes of vigorous physical activity 

were associated with muscle CSA (Table 8, all p<0.2).  The best-fitting regression model 

identified by R
2
 and Mallow’s C(p) statistic indicated that decreased waist circumference, age at 

injury, and SFSS were associated with a decreased muscle CSA (Table 10b; R
2
 = 0.55, p < 

0.0001). 

In a subsample of those with incomplete SCI, gender, height, weight, waist 

circumference, level of injury, age at injury, and cLEMS, were associated with muscle CSA 

(Table 8, all p < 0.2).  Waist circumference was included in favour of body weight as 

multicollineairy was observed.  The best-fitting regression model for individuals with incomplete 
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injuries included the variables of waist circumference and level of injury (Table 10c; R
2
 = 0.63, 

p<0.0001).  The model showed that a smaller waist circumference and paraplegia were 

associated with a decreased muscle CSA.  In a post hoc analysis, independent t-tests and chi-

square tests were performed to determine if there were differences between those with 

incomplete tetraplegia and paraplegia that may confound the significance of the association 

between level of injury and muscle CSA.  Those with tetraplegia tended to have a higher 

cLEMS, but the relationship was not statistically significant (p = 0.07). 
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Table 8 Bi-variate analyses for muscle CSA 

 

Table 9 Bi-variate analyses for muscle density 

Gender 

(years) 

Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

WC 

(cm) 

LOI 
(para/ 

tetra) 

Inj.Dur 

(years) 

Inj.Age 

(years) 

cLEMS 

(/15) 

Wheel-
chair use 

(y/n) 

VitD 

(nmol/l) 

SFSS 

(/7) 

Mild 

(min) 

Mod 

(min) 

Vig 

(min) 

Total 

(min) 

N 65 65 65 64 62 65 65 65 65 65 52 64 57 57 57 57 

R2 0.1057 0.1162 0.0921 0.436 0.3669 0.0851 0.0375 0.217 0.3639 0.3079 0.0072 0.0064 0.0234 0.0095 0.0040 0.0023 

p-value 0.0088 0.0059 0.0148  <.0001 <.0001 0.0849 0.1251 0.0001 <.0001 <.0001 0.5499 0.5336 0.2472 0.4697 0.6393 0.7209 

Complete SCI  

N 40 40 40 39 37 40 40 40 - - 29 39 34 34 34 34 

R2 0.1308 0.012 0.0635 0.4741 0.4019 0.0126 0.0151 0.1145 - - 0.1326 0.0439 0.0019 0.0006 0.0769 0.0006 

p-value 0.0237 0.5073 0.0827  <.0001 <.0001 0.4958 0.4566 0.0271 - - 0.0521 0.1833 0.8090 0.8901 0.1124 0.8892 

Incomplete SCI 

N 25 25 25 25 25 25 25 25 25 25 23 25 23 23 23 23 

R2 0.1381 0.0634 0.1302 0.511 0.4336 0.2733 0.0034 0.0744 0.3005 0.2865 0.0097 0.004 0.0123 0.0127 0.0613 0.0077 

p-value 0.0674 0.2217 0.0764 <.0001 0.0003 0.0073 0.7811 0.1871 0.0046 0.0058 0.6555 0.7743 0.6142 0.6093 0.2548 0.6901 

WC: waist circumference; LOI: level of injury; Inj.Dur: Injury Duration; Inj.Age: Age at Injury; VitD: Vitamin D level; SFSS: Spasm Frequency and Severity Score; Mild: Mild Physical Activity; 

Mod: Moderate Physical Activity; Vig: Vigorous Physical Activity; Total; Total Physical Activity 

Gender 

(years) 

Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

WC 

(cm) 

LOI 
(para/ 

tetra) 

Inj.Dur 

(years) 

Inj.Age 

(years) 

cLEMS 

(/15) 

Wheel-
chair use 

(y/n) 

VitD 

(nmol/l) 

SFSS 

(/7) 

Mild 

(min) 

Mod 

(min) 

Vig 

(min) 

Total 

(min) 

N 65 65 65 64 62 65 65 65 65 65 52 64 57 57 57 57 

R2 
0.0040 0.0295 0.0025 0.0101 0.0071 0.0284 0.0387 0.0085 0.1215 0.1556 0.0015 0.0854 0.0379 0.0135 0.0538 0.0002 

p-value 
0.6178 0.1751 0.6945 0.4334 0.5161 0.2232 0.0856 0.4692 0.0057 0.0012 0.7691 0.0177 0.1039 0.3899 0.0826 0.736 

Complete SCI  

N 40 40 40 40 37 40 40 40 - - 29 39 34 34 34 34 

R2 0.0006 0.1759 0.0111 0.0502 0.0407 0.0052 0.0246 0.1087 - - 0.0178 0.1540 0.0123 0.0083 0.0932 0 

p-value 0.8815 0.0079 0.523 0.2051 0.0960 0.6614 0.3403 0.0404 - - 0.4181 0.0148 0.5203 0.5976 0.0792 0.9768 

Incomplete SCI 

N 25 25 25 25 25 25 25 25 25 25 23 25 23 23 23 23 

R2 0.0291 0.1139 0.0913 0.0015 0.0009 0.1887 0.0068 0.1104 0.0214 0.222 0.0341 0.0393 0.1574 0.0106 0.0175 0.04 

p-value 0.415 0.0990 0.1421 0.8527 0.8861 0.030 0.6954 0.1047 0.4853 0.1885 0.3876 0.3422 0.0645 0.6397 0.5473 0.3605 

WC: waist circumference; LOI: level of injury; Inj.Dur: Injury Duration; Inj.Age: Age at Injury; VitD: Vitamin D level; SFSS: Spasm Frequency and Severity Score; Mild: Mild Physical Activity; 

mod: Moderate Physical Activity; Vig: Vigorous Physical Activity; Total; Total Physical Activity 
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Table 10 Multivariate regression models for muscle CSA 

a. Model 1: Full Cohort,  n = 62 

Variable  Parameter Estimate   Standard Error p 

 Height  0.31 0.167 0.073 

Waist Circumference (cm) 0.65 0.118 <0.0001 

cLEMS 1.13 0.373 <0.0001 

Upright Ambulation 15.8 6.05 0.011 

R-Square for model = 0.66,  p< 0.0001 

b. Model 2: Motor-Complete SCI,  n = 36 

Variable  Parameter Estimate Standard Error p 

Waist Circumference (cm) 0.71 0.14 <0.0001 

 Age at Injury (years)  0.38 0.16 0.025 

 SFSS 3.96 1.40 0.008 

R-Square for model = 0.55,  p< 0.0001 

c. Model 3: Motor-Incomplete SCI,  n = 25 

Variable  Parameter Estimate   Standard Error P 

Waist Circumference (cm) 0.80 0.17 <0.0001 

LOI (Tetra/Para) -17.34 4.9 0.0020 

R-Square for model = 0.63  p< 0.0001 

 

5.5.2 Determinants Muscle Density 

The scans of 65 participants were included in the cross-sectional analysis of muscle 

density.  Age, injury duration, cLEMS, wheelchair use, SFSS and daily minutes of mild and 

vigorous physical activity were significantly associated with muscle density in the bi-variate 

analyses (Table 9, p<0.2).  Based on R
2
 and Mallow’s C(p) statistics, the best fitting model for 

muscle density indicated that increased age, decreased cLEMS, reduced SFSS, a lower amount 

of daily vigorous physical activity, and wheelchair use were associated with a lower muscle 

density (Table 11a, R
2
 = 0.37, p = 0.0002).  In this model, only SFSS reached statistical 

significance of p<0.05.  It is likely that cLEMS and wheelchair use are related.  When 

wheelchair use was removed from the model, the R
2
 valued decreased (R

2
 = 0.33, p = 0.0003); 
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however, cLEMS reached statistical significance and minutes of vigorous physical activity 

trended towards statistical significance (p=0.052).  

  In those with complete SCI, age, age at injury, waist circumference, and SFSS were 

associated of muscle density in the bi-variate analyses (Table 9, p < 0.2).  Multicollinearity was 

observed between waist circumference and weight, and weight was excluded.  The best-fitting 

multivariate mode included age and SFSS (Table 11b; R
2 

= 0.25, p< 0.01).  Increased age and 

decreased SFSS were associated with reduced muscle density; however, SFSS did not reach 

statistical significance (p = 0.106).   

In those with incomplete SCI, age, height, level of injury, age at injury, wheelchair use, 

and daily minutes of mild physical activity were associated with muscle density (Table 9, all p < 

0.2).  Increased age and wheelchair use were associated with decreased muscle density in the 

best-fitting model (Table 11c, R
2 

= 0.34, p < 0.01).   Wheelchair use reached statistical 

significance in the model (p=0.011), and age exhibited a trend towards statistical significance 

(p=0.053). 
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Table 11 Multivariate regression models of muscle density 

a. Model 1: Full sample,  n = 57 

Variable  Parameter Estimate   Standard Error p 

Age (years) -0.23 0.14 0.100 

cLEMS (/15) 0.76 0.45 0.102 

SFSS (/7) 1.94 0.90 0.035 

 Vigorous Physical Activity (min/day)  0.08 0.05 0.095 

 Upright Ambulation 10.28 5.62 0.073 

R-Square for model = 0.37,  p = 0.0003 

b. Model 2: Motor-Complete SCI,  n = 39 

Variable  Parameter Estimate   Standard Error p 

Age (years) -0.45 0.20 0.036 

SFSS 2.27 1.37 0.106 

R-Square for model = 0.25,  p = 0.005 

c. Model 3: Motor-Incomplete SCI,  n = 25 

Variable  Parameter Estimate   Standard Error p 

Age (years) -0.27 0.13 0.053 

Wheelchair use 8.84 3.16 0.011 

R-Square for model = 0.34  p = 0.0090 

 

5.6 Longitudinal Change in Muscle CSA and Muscle Density 

The change in muscle CSA and muscle density was calculated for one- and two-year time 

periods for the entire cohort, and for subsamples of those with complete and incomplete SCI.  

Only individuals with at least two scans were included in the analysis.  Forty nine individuals 

had pQCT scans at a one-year time interval, and thirty nine individuals had scans at a two-year 

time interval.  Thirty four individuals had scans at all three time points.   

5.6.1 Muscle CSA Change 

Muscle CSA change over a one-year period ranged from a loss of 18.1 cm
2
 to a gain of 

7.3 cm
2
.  A mean one-year reduction in muscle CSA of 1.24 ± 4.9 cm

2
 was observed for the 

entire cohort.  Over a two-year period, muscle CSA change ranged from a reduction of 22.6cm
2 
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to a gain of 11.2 cm
2
, with an overall mean reduction of 1.62 ± 6.5 cm

2
 observed (Table 12a).  

Of the 39 participants that had two-year muscle CSA change scores, 23 experienced a reduction 

in muscle CSA (mean reduction: 5.1± 5.9cm
2
), 13 experienced an increase in muscle CSA (mean 

increase: 3.6 ± 2.1cm
2
) and three participants experienced a change within the repeatability error 

of 0.61cm
2
 observed in the precision analysis (Figure 3a).  In the subsample of participants with 

complete injuries, twelve participants experienced a reduction in muscle CSA (mean reduction: 

4.8 ± 5.1cm
2
) and eight experienced an increase in muscle CSA (mean increase: 2.9 ± 2.5cm

2
).  

One participant experienced a change within the repeatability error of 0.61cm
2
 (Figure 3b).  In 

the subsample of participants with incomplete injuries, eleven participants experienced a 

reduction in muscle CSA (mean reduction: 5.5 ± 6.9 cm
2
) and five experienced an increase in 

muscle CSA (mean increase: 4.1 ± 1.1cm
2
).  Two participants experienced a change within the 

repeatability error of 0.61cm
2
 (Figure 3c). 
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Figure 3 Two-year muscle CSA change score for a) the full-sample b) participants with 

complete SCI c) participants with incomplete SCI 

  

 

  

a) 

b) 

c) 
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  The results of the rANOVA showed a trend towards a difference in muscle CSA 

between the three time points (p = 0.053), and a significant reduction between baseline and year-

2 (Figure 4, Table 13a , p < 0.05).  The change in muscle CSA from baseline to year-2 was 

entered as the dependant variable in bi-variate regression models with the independent variables 

listed in Table 3.  Weight (R
2
 = 0.05, p < 0.16) and waist circumference (R

2
 = 0.14, p < 0.05) 

were associated with the two-year change in muscle CSA, such that a lower weight and waist 

circumference were associated with an increase in muscle CSA.  Only waist circumference 

reached statistical significance at a  p<0.05 (Figure 5).  Two participant with a large waist 

circumference were considered outliers based on a Cook’s Distance value >4/n.  When these 

participants were omitted, the association between waist circumference and two-year muscle 

CSA change did to reach statistical significance.   

 

Figure 4 Distribution of Muscle CSA 
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In a subsample of individuals with complete SCI, one-year muscle CSA change ranged 

from a reduction of 10.1 cm
2
 to a gain of 7.34 cm

2
.  The mean one-year change was a reduction 

of 1.3 ± 3.4 cm
2
.   Over a two year period, muscle CSA change ranged from a reduction of 19.5 

cm
2
 to a gain of 8.52 cm

2
 with a mean reduction of 1.5 ± 5.7 cm

2
 (Table 12b).  The results of the 

rANOVA showed no significant change between the three study visits for those with complete 

injuries (p = 0.114).    

In a subsample of individuals with incomplete SCI, muscle CSA change ranged from a 

reduction of 18.1 cm
2 

to a gain of 4.5cm
2
, with a mean one-year reduction of 1.1 ± 6.5 cm

2
.   

Over two years, individuals with incomplete SCI had a muscle CSA change ranging from a 

reduction of 22.6 cm
2 

to a gain of 5.4cm
2
, with a mean two-year reduction of 2.3 ± 6.9 cm

2
 

(Table 12c).  The results of the rANOVA showed no significant change in muscle CSA between 

the three visits for those with incomplete SCI (p = 0.33).
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Figure 5 Relationship between Two-year Change in Muscle CSA and Baseline Waist 

Circumference 
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a. Full Cohort   

One-year 

∆ (cm) 

Two-year ∆ 

(cm) 

N   49 39 

Mean  -1.24 -1.85 

SD 4.89 6.21 

 Maximum  Reduction -18.06 -22.64 

Maximum Increase 7.34 8.52 

  

b. Complete SCI 

  

One-year 

∆ (cm) 

Two-year ∆ 

(cm) 

N   26 21 

Mean  -1.32 -1.50 

SD 3.39 5.67 

Maximum  Reduction -10.05 -19.45 

Maximum Increase 7.34 8.52 

  

c. Incomplete SCI 

  

One-year 

∆ (cm) 

Two-year ∆ 

(cm) 

N   23 18 

Mean  -1.15 -2.25 

SD 6.26 6.94 

Maximum  Reduction -18.06 -22.64 

Maximum Increase 4.47 5.39 

Table 12 One- and Two-year Muscle CSA 

Change Scores 

Table 13 rANOVA Results for Between-Visit Change in 

Muscle CSA 

a. Full Cohort, n=65 

Time period  

Adjusted mean 

difference (cm
2
) 

Standard 

Error (cm
2
) Df p 

Baseline - Year-1 -1.26 0.71 86 0.081 

Baseline - Year-2 -1.8 0.78 86 0.024 

Overall Effect of Visit  (2, 86) 0.053 

b. Complete SCI, n = 31 

Time period  

Adjusted mean 

difference (cm
2
) 

Standard 

Error (cm
2
) Df p 

Baseline - Year-1 1.42 0.82 45 0.089 

Baseline - Year-2 1.59 0.89 45 0.078 

Overall Effect of Visit  (2, 45) 0.114 

c. Incomplete SCI, n= 23 

Time period  

Adjusted mean 

difference (cm
2
) 

Standard 

Error (cm
2
) Df p 

Baseline - Year-1 -1.15 1.25 39 0.362 

Baseline - Year-2 -2.01 1.37 39 0.142 

Overall Effect of Visit  (2, 39) 0.337 
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5.6.2 Muscle Density Change 

Muscle density change over one-year ranged from a loss of 11.3 mg/cc to a gain of  4.3 

mg/cc, with a mean one-year reduction in muscle density of 1.09 ± 4.3 mg/cc observed for the 

entire cohort.  Over a two-year period, muscle density change ranged from a reduction of 8.6 

mg/cc
 
to a gain of 6.4 mg/cc, with a mean reduction of 1.2 ± 3.3 mg/cc (Table 14a).     Of the 39 

participants that had two-year muscle density change scores, 21 experienced a reduction in 

muscle density (mean reduction: 3.5 ± 1.9 mg/cc) and nine experienced an increase in muscle 

density (mean increase: 3.2 ± 1.9 mg/cc).  Nine participants experienced a change within the 

repeatability error of 0.85mg/cc reported by Wong et al. (71) (Figure 6a).  In the subsample of 

participant with complete injuries, twelve participants experienced a reduction in muscle density 

(mean reduction: 3.4 ± 1.9 mg/cc) and six experienced an increase in muscle density (mean 

increase: 3.1±1.8 mg/cc).  Three participants experienced a change within the repeatability error 

of 0.85mg/cc (Figure 6b).  In the subsample of participant with incomplete injuries, 18 

participants experienced a reduction in muscle density (mean reduction: 3.7 ± 2.1mg/cc) and 

three experienced an increase in muscle density (mean increase: 3.6 ± 2.4 mg/cc).  Two 

participants experienced a change within the repeatability error of 0.85mg/cc (Figure 6c).  
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Figure 6 Two-year muscle density change scores for a) full-sample b) participants with complete 

SCI c) participants with incomplete SCI 

 

 

  

a) 

b) 

c) 
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A significant difference was detected between baseline, year-1, and year-2 muscle 

density values (Figure 7, Table 15a, p < 0.05).  In bi-variate regression models, injury duration 

was positively associated with a change in muscle density between baseline and year-1 (R
2
 = 

0.050, p = 0.12); however, it was not significant at a p < 0.05.  No other variables were 

associated with one-year change scores.    The variables of weight (R
2
 = 0.26, p < 0.001), waist 

circumference (R
2
 = 0.20, p < 0.01), and wheelchair use (R

2
 = 0.063, p < 0.2) were associated 

with two-year muscle density change scores, such that decreased weight and waist 

circumference, and wheelchair use were associated with a reduction in muscle density.  Because 

weight and waist circumference are likely related, their relationship with muscle density was 

looked at separately (Figure 8).  Adding wheelchair use to each model did not significantly 

improve the fit of the regression line.  One participant with a large weight and waist 

circumference was considered an outlier based on a Cook’s Distance value >4/n.  When this 

participant was omitted, the association between weight and two-year muscle density change 

remained statistically significant (p<0.05) and the association between waist circumference and 

two-year muscle density change trended towards statistical significance (p=0.058).   
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Figure 7 Distribution of Muscle Density 

 

 

 

In a subsample of those with complete SCI, muscle density change ranged from a 

reduction of 11.3 mg/cc to a gain of 4.3 mg/cc.  A mean reduction of 0.9 ± 3.2 cm
2
 over one year 

was observed.  Over a two-year period, a muscle density change ranging from a reduction of 6.3 

mg/cc to a gain of 6.2 mg/cc, with a mean reduction of 1.0 ± 3.3 mg/cc observed (Table 14b).  
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Figure 8 Relationship between Two-year change in Muscle Density and A) Weight and B) 

Waist Circumference 
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The results of the rANOVA showed no significant change in muscle density between the three 

study visits for those with complete SCI (Table 15b, p = 0.186). 

Individuals with incomplete injuries had a muscle density change ranging from a 

reduction of 5.2 mg/cc
 
to a gain of 3.5 mg/cc over one year.  A mean one-year reduction of 1.3 ± 

2.2 mg/cc observed.  Over two years, muscle density ranged from a reduction of 8.6 mg/cc
 
to a 

gain of 6.4 mg/cc, with a mean reduction of 1.3 ± 3.3 mg/cc observed (Table 14c).  The 

difference between the three visits did not reach significance (p = 0.051); however, a significant 

change was detected between baseline and year-1 (Table 15c, p < 0.05).   

Weight (R
2
 = 0.127, p < 0.10), waist circumference (R

2
 = 0.243, p < 0.05), cLEMS (R

2
 = 

0.094, p < 0.2), moderate intensity physical activity (R
2
 = 0.095, p = 0.20), total physical activity 

level (R
2
 = 0.113, p < 0.20) were associated with a one-year change in muscle density in the 

subsample of participants with incomplete SCI.  Weight and total minutes of daily physical 

activity were excluded as possible covariates in the multivariate model due to their association 

with waist circumference and daily minutes of moderate physical activity, respectively.  After 

examining all possible variable combinations, only waist circumference was included in the best-

fitting model for one-year change in muscle density for individuals with incomplete injuries (R
2
 

= 0.243, p < 0.05), such that a decreased waist circumference was associated with a reduction in 

muscle density (Figure  9).   When one outlying data point representing a participant with a large 

waist circumference was removed from the model, the association between waist circumference 

and muscle density change did not reach statistical significance (p=0.167).   
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Figure 9 Relationship between one-year change in muscle density and waist circumference 

for participants with incomplete SCI 
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Table 14 One- and two-year muscle density change scores 

  

a. Full Cohort 

  

One-year ∆ 

(mg/cc) 

Two-year 

∆ (mg/cc) 

N   49 39 

Mean  -1.09 -1.16 

SD 2.75 3.28 

 Maximum  Reduction -11.29 -8.57 

Maximum Increase 4.26 6.39 

  

b. Complete SCI 

  

One-year ∆ 

(mg/cc) 

Two-year ∆ 

(mg/cc) 

N   26 21 

Mean  -0.90 -1.08 

SD 3.16 3.34 

Maximum  Reduction -11.29 -6.3 

Maximum Increase 4.26 6.17 

  

c. Incomplete SCI 

  

One-year 

∆ (mg/cc) 

Two-year 

∆ (mg/cc) 

N   23 18 

Mean  -1.31 -1.26 

SD 2.24 3.30 

Maximum  Reduction -5.18 -8.57 

Maximum Increase 3.49 6.39 

 

 

Table 15 rANOVA results for between-visit change in muscle 

density 

a.  

Full Cohort SCI, 

n=65 

Time period  

Adjusted mean 

difference (mg/cc) 

Standard 

Error (mg/cc) Df p 

Baseline - Year-1 -0.97 0.42 86 0.023 

Baseline - Year-2 -1.22 0.45 86 0.009 

Overall Effect of Visit  (2, 86) 0.015 

b.  Motor-complete SCI, n = 31 

Time period  

Adjusted mean 

difference 

(mg/cc) 

Standard 

Error (mg/cc) Df p 

Baseline - Year-1 -0.68 0.62 45 0.077 

Baseline - Year-2 -1.21 0.67 45 0.275 

Overall Effect of Visit  (2, 45) 0.186 

c.  Motor-SCI, n= 23 

Time period  

Adjusted mean 

difference 

(mg/cc) 

Standard 

Error (mg/cc) Df p 

Baseline - Year-1 -1.31 0.57 39 0.028 

Baseline - Year-2 -1.27 0.63 39 0.050 

Overall Effect of Visit  (2, 39) 0.051 
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CHAPATER 6: DISCUSSION 

6.1 Summary 

 This is the first study to prospectively measure lower-extremity muscle CSA and muscle 

density in a diverse cohort of men and women with chronic complete and incomplete SCI.   

Previous studies characterising lower-extremity muscle have focused on the acute and sub-acute 

stage of injury, whereas we explored muscle status years, if not decades, post-SCI.  Individuals 

with complete-SCI had reductions in muscle CSA and muscle density values of 44.5% and 

31.7% relative to their able-bodied peers, and individuals with incomplete-SCI had reductions in 

muscle CSA and muscle density values of 16.3% and 14.3% of their able-bodied peers, 

respectively.  Furthermore, a decreased height, waist circumference, lower-extremity motor score 

and wheelchair use were  associated with a decreased muscle CSA.  Additionally, in those with 

complete SCI, a younger age at injury and decreased spasm frequency and severity were 

associated with decreased muscle CSA.  In individuals with incomplete SCI, paraplegia was 

associated with a decreased muscle CSA.  An older age, a decreased lower-extremity motor 

score, reduced spasm frequency and severity, less minutes of daily vigorous physical activity, 

and wheelchair use were associated with decreased muscle density.  Longitudinally, we observed 

that individuals with complete and incomplete injures experienced a reduction in muscle CSA 

and muscle density over a two-year period.  A greater waist circumference at baseline was 

associated with a reduction in muscle CSA, and lower weight and waist circumference at 

baseline were associated with a reduction in muscle density over two years.  
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6.2 Magnitude of Muscle CSA and Density Reduction after Chronic-SCI 

6.2.1 Muscle CSA 

 Consistent with published literature (2,4,7)  individuals with SCI had greater reductions 

in muscle CSA compared to age, gender, and height matched able-bodied controls and 

individuals with complete SCI had greater reductions in muscle CSA compared to those with 

incomplete SCI.   Individuals with complete SCI experienced 45% reductions in muscle CSA 

compared to able-bodied controls.  This reduction is comparable to reductions reported in 

previous studies examining lower-extremity MRI scans taken in the acute stage of complete-SCI, 

where decreases in gastrocnemius and soleus muscle CSAs were 54% and 68% relative to able-

bodied controls (2).   A 16% reduction in muscle CSA was observed in those with incomplete 

SCI.  These reductions are less than that previously reported from in MRI scans of the partially 

paralyzed lower-extremity muscles of individuals with acute incomplete-SCI; which ranged from 

76% and 67% of controls (4,11).  It is possible that the increased muscle CSA values we 

observed are due to functional improvements or locomotor recovery in the chronic-stage of 

injury; however, it is more likely that the differences in CSA are due to the variation of preserved 

motor function in the incomplete-SCI population, or due to methodological differences between 

the two technologies (pQCT vs. MRI).  Whereas MRI can examine individual muscles and 

segment muscle from inter- and intramuscular fat, pQCT examines the total CSA of all muscle 

groups and adipose tissue combined, and therefore it is possible that pQCT may overestimate 

muscle CSA values compared to MRI.   

 In summary, our results stress the prevalence of muscle atrophy in the chronic-SCI 

population.   Muscle atrophy after SCI is closely associated with a decreased metabolic rate and 

increased adipose tissue storage if energy intake is not adjusted in accordance with energy 
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expenditure (37,41).  Secondly, muscle atrophy results in reduced capacity for glucose uptake 

contributing to the development of type-II diabetes and other manifestations of metabolic disease 

(124,125).  Evidence suggests that evoking skeletal muscle hypertrophy through therapy 

modalities like electrical stimulation may improve metabolic profile and reduce the risk of 

developing glucose intolerance, insulin resistance and dyslipidemia following chronic-SCI 

(46,269).  Continued research investigating the effects of therapy modalities intended to preserve 

or improve muscle quantity, and their impact on an individual’s metabolic profile is warranted.  

 

6.2.2 Muscle Density 

 Reductions in muscle density of 32% and 14% were observed for those with complete 

and incomplete injuries, respectively.  Although no other study has reported calf-muscle density 

values post-SCI, our results are consistent with an increased inter- and intramuscular fat content 

observed in MRI images of the thigh muscles following acute and chronic-SCI.  After complete-

SCI, Elder et al. (9) observed a fourfold increase in percentage intramuscular adipose tissue 

compared to matched controls.  After incomplete-SCI Gorgey et al. (4) and Shah et al. (11) 

observed similar a threefold increase in relative intramuscular adipose tissue content.   The 

observed increase in muscle density in those with incomplete-SCI compared to complete-SCI is 

likely due to the preservation of voluntary muscle contraction; however, regardless of injury 

completeness, individuals with SCI had muscle density values significantly less than their able-

bodied peers.   

A growing body of evidence indicates that elevated fatty-infiltration is associated with 

diminished insulin sensitivity in skeletal muscle (49,64,167,285).  Lipid accumulation is the 

result of enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid 
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oxidation (134).  The excess fatty acids are stored or metabolized to various molecules that may 

interfere with normal insulin-mediated signal transduction; impairing cellular and whole-body 

glucose metabolism (135).  An association between increased fat content in skeletal muscle and 

impaired glucose tolerance has been observed in the acute and chronic-SCI populations (4,9,11); 

however, given the different modalities (pQCT vs. MRI), and muscles examined (calf vs. thigh) 

it is difficult to directly compare muscle density with previous investigations of fatty-infiltration 

post-SCI.   Calf-muscle density however, has been reported for able-bodied individuals with and 

without diabetes.  Miljkovic-Gacic et al. reported that individuals with diabetes had a mean 

muscle density of 69.5±6.5 mg/cc, which was significantly lower than those without diabetes 

(74.3 ± 4.3 mg/cc) (70).  The mean muscle density values we observed for individuals with 

complete (48.8±14.1 mg/cc) and incomplete (60.2 ± 9.2 mg/cc) SCI were lower than the density 

values reported for able-bodied individuals with diabetes.   Therefore, increased fatty infiltration 

as demonstrated by decreased muscle density may be related to the increased prevalence of 

diabetes and dyslipidemia in the SCI community.      

 

6.3 Determinants of Muscle CSA and Density  

6.3.1 Determinants of Muscle CSA 

 This is the first investigation to examine the characteristics associated with calf-muscle 

CSA in a diverse sample of individuals with chronic-SCI.  We observed that a decreased height, 

waist circumference, reduced cLEMS, and wheelchair use were associated with decreased 

muscle CSA for the entire cohort.  In a sub-sample of participants with complete injuries, a 

decreased waist circumference, age at injury, and SFSS were associated with a decreased muscle 

CSA, and in a sub-sample of participants with incomplete injuries, paraplegia was associated 



 

98 

 

with a decreased muscle CSA.  These characteristics were able to explain between 55% and 66% 

of CSA variation in our sample.   

These results provide novel insight into who experiences the greatest muscle loss in the 

chronic phase of injury after varying degrees of paralysis.  In the able-bodied population, 

characteristics such as age, gender, and physical activity are important determinants of muscle 

mass (286-288); however, the loss of muscle following SCI is distinct from muscle atrophy 

observed in the aged population (140,289), or in other disuse conditions (59,60,115,117,119) 

with respect to the rate of onset and severity of decline.  Therefore, our examination of the 

demographic characteristics associated with muscle mass after SCI may aid in understanding 

who loses the most muscle, and who may be at greatest risk for the associated metabolic 

consequences.   

 Decreased height and waist circumference are associated with reduced muscle CSA.    It 

is likely that this relationship is based on anthropometrics; in that smaller individuals have less 

muscle mass and a decreased waist circumference and height.  Previously, it has been observed 

that obese individuals have a greater lower-extremity muscle CSA (290).  Our results indicate 

that a positive relationship between body size and muscle mass remains despite chronic 

paralysis.   

pQCT-derived muscle CSA was defined as the total CSA within the epimysium. 

Therefore increased inter- and intramuscular lipid deposits, often enlarged in those with 

increased central adiposity, may result in an overestimation of muscle CSA values; underwriting 

the relationship between waist circumference and muscle CSA.  Studies using MRI technology 

have demonstrated that not accounting for enlarged inter- and intramuscular adipose stores may 

inflate thigh-muscle CSA values by 6% (4).  As pQCT does not have the resolution to separate 
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lean tissue from adipose tissue, it is recommended that future studies use MRI technology to 

confirm the relationship between waist circumference and calf-muscle CSA.   

For all SCI cases cLEMS was a determinant of muscle CSA.   An association between 

the degree of voluntary muscle contraction and muscle mass was expected given the principles of 

muscle plasticity.  It is possible that the significant association was driven by the difference in 

muscle CSA between those with complete and incomplete injuries (i.e., cLEMS 0 vs. >0) as 

cLEMS and muscle CSA were not associated in the sub-sample of those with incomplete SCI.  

The lack of statistical significance in the incomplete sub-sample suggests that variation in motor-

score has a minimal effect on muscle CSA.   It is possible that even though individuals with 

incomplete injures have different amounts of voluntary function, they may experience similar 

loading profiles and consequently display minimal variation in muscle mass.  Also, the sample of 

participants with incomplete SCI was 25 participants, and therefore may not have been of 

sufficient size to detect an association between cLEMS and muscle CSA.  Future investigations 

examining a larger sample of individuals with incomplete injuries may add insight into the effect 

of motor-score variation on muscle CSA in those with incomplete injuries.    

Wheelchair use was significantly associated with reduced muscle CSA.  This association 

was expected as wheelchair use removes the loading associated with weight bearing and upright 

gait (291).  Notably, the association between wheelchair use and muscle CSA remained 

significant after controlling for cLEMS; suggesting that loading patterns associated with upright 

ambulation promote increased muscle mass regardless of the degree of preserved voluntary 

muscle activation.  Previously, Shah et al. observed reductions in muscle CSA values in both 

wheelchair dependant (range, 21%–39%) and ambulatory (range, 24%–38%) individuals relative 

to matched able-bodied controls approximately one-year after incomplete-SCI (7).  However, 
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wheelchair users exhibited significantly greater plantarflexor muscle atrophy compared with the 

dorsiflexors, and a greater degree of atrophy in the medial gastrocnemius muscle compared to 

non-wheelchair users (7).   By examining muscle CSA of a diverse group of individuals with 

chronic-SCI, we were able to expand on the relationship between wheelchair use and lower-

extremity muscle mass by controlling for a variety of factors related to muscle status.    Our 

results indicate a negative association between wheelchair use and lower-extremity muscle mass.  

This association stresses the importance of pursuing the restoration of upright posture after 

incomplete-SCI. 

SFSS was significantly associated with muscle CSA in those with complete injuries.   

This finding concurs with our hypothesis that spasticity may maintain or improve skeletal muscle 

size, body composition, and metabolic profile (101,238-242).  One study reported that six weeks 

post-incomplete SCI, thigh-muscle spasticity accounted for 54% of the variability in muscle 

CSA (238).  In another study, spasticity was found to be related to pQCT-derived muscle mass in 

the thigh but not calf of 54 individuals motor-complete SCI five to 50 years post-injury; with 

Spearman correlation coefficients between spasticity and muscle CSA of 0.3 (p=0.03) for the 

thigh and 0.22 (p=0.08) for the calf (292).  Our study differs from previous work in that we used 

self-reported spasm frequency and severity and not a clinical assessment, such as the Modified 

Ashworth Scale.  Other have reported that SSFS is only moderately correlated with routine 

clinical examination, however, it adds the patient’s perspective, and provides standardization of 

spasticity over time (195). This data indicates that lower-extremity spasticity has a positive effect 

on calf-muscle CSA in chronic stage of SCI.  Future research should investigate the association 

between of spasticity score and metabolic health in the chronic-SCI population. 
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We observed that a younger age at injury was associated with a reduced muscle CSA in a 

sub-set of individuals with complete-SCI.  This association was contrary to our hypothesis as we 

expected those injured at an older age to have a decreased muscle CSA as a result of age related 

functional declines prior to injury.  The average age at injury for our cohort was 30 years, which 

likely explains why this was not the case.  It is plausible that those injured at a younger age may 

not have reached their peak muscle mass, and therefore had a lower muscle CSA preceding 

injury.  It was surprising that age at injury, and not age, or injury duration was associated with 

muscle CSA.    In a post hoc analysis, we observed that age at injury was negatively correlated 

with injury duration (r = -0.33, p<0.05), and therefore the association between a younger age at 

injury and decreased muscle CSA may be partially due to those injured at younger age being 

injured for longer.  Our results indicate that age at injury, and possibly duration of injury, may be 

better than age at explaining a reduction in muscle CSA.    

We observed that paraplegia was associated with a decreased muscle CSA in participants 

with incomplete-SCI.   This was contrary to our hypothesis in that we expected higher level 

injuries to be related to impaired mobility, body composition, and autonomic function 

(124,229,230) ; resulting in individuals with tetraplegia having decreased muscle mass.  One 

possible explanation for the contradictory findings is that individuals with tetraplegia may have 

had larger inter- and intramuscular fat deposits within the epimysium which caused an 

overestimation of muscle CSA.  However waist circumference, which is a measure of central 

adiposity, was controlled for in the model.   A post hoc analysis revealed that in the sub-sample 

of persons with incomplete SCI, tetraplegia trended towards having a higher cLEMS compared 

to participants with paraplegia.  Motor-score differences could account for the association 

between level of injury and muscle CSA in the incomplete sub-sample; and explain why the 
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association between level of injury and muscle CSA did not reach statistical significance after 

controlling for cLEMS in the model for the entire cohort.    Further investigation is needed to 

confirm the relationship between paraplegia and reduced muscle CSA.  

Contrary to our hypothesis, muscle CSA was not associated with serum vitamin D level 

or physical activity level.  It is possible that vitamin D level may moderate muscle CSA at 

concentrations lower than those observed in our cohort. .  A 25(OH)D concentration of 60 nmol/l 

has been proposed as a minimum threshold for improved muscle health, such that impaired 

muscle function is observed in persons with a concentrations below 60 nmol/l as opposed to 

above 60 nmol/l (192).  Our cohort had a mean 25(OH)D concentration of 86.49 ± 35.83 nmol/l, 

with only nine participant having a concentration below 60nmol/l.  Therefore, it is possible that 

our sample was not able to demonstrate the effect of vitamin D insufficiency.   In addition, it is 

possible that vitamin D may moderate muscle health through mechanisms not reflected in muscle 

CSA.  Secondly, it was hypothesized that physical activity level would relate to muscle CSA by 

increasing lower-extremity muscle loading in those with incomplete injuries, and by eliciting a 

systemic response to improve glucose tolerance and low-level inflammation.  It is possible that 

we did not observe an association between muscle CSA and physical activity in this study 

because the predominance of physical activity was performed with the upper body.  Our results 

indicate that upper-body exercise is insufficient to induce an effect on lower-extremity muscle 

mass.      

It was proposed that a combination of SCI-specific and traditional risk factors would 

determine an individual’s muscle status post-SCI.  The results of our study show that in those 

with chronic-SCI, 66% of the variation in calf-muscle CSA was explained by height, waist 

circumference, cLEMS, and wheelchair use.  In those with complete-SCI, waist circumference 
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and age at injury, and spasm frequency and severity explained 55% of the variability in muscle 

CSA.  In those with incomplete-SCI, waist circumference and level of injury explained 63% of 

the variation in muscle CSA.    Our results have provided novel information as to who in the 

chronic-SCI population may experience the greatest degree of muscle atrophy and consequently 

may be at most risk for metabolic disease.  Future work should focus on addressing the 

remaining unexplained variance in muscle CSA to possibly identify modifiable risk factors and 

therapy modalities to prevent or treat reductions in muscle mass. 

 

6.3.2 Determinants of Muscle Density 

Decreased muscle density is associated with impaired glucose tolerance due to increased 

fatty-infiltration of skeletal muscle (64).  Therefore, understanding the factors associated with a 

reduced muscle density may identify those at most risk for diabetes and other forms of metabolic 

disease.  Our results demonstrated that increased age, reduced cLEMS, reduced spasm frequency 

and severity, less minutes of daily vigorous physical activity and wheelchair use were associated 

with decreased muscle density in those with chronic-SCI.  The models for the entire sample, and 

sub-samples of participants with complete and incomplete SCI explained 25-37% of the variation 

in muscle density, suggesting that other factors besides the variables we identified a priori may 

be involved in determining muscle density.  However, incorporating the factors identified in this 

study into screening procedures may increase the sensitivity of metabolic disease prevention and 

detection practices in those with chronic-SCI.   

Reduced muscle density is prevalent in the aged able-bodied population, and is associated 

with onset of metabolic morbidities (190,293) and functional declines (294); therefore, it is not 

surprising that age is a determinant of muscle density following SCI.  However, the SCI-cohort 
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was much younger than the age typically associated with reduced muscle density in the able-

bodied population.  This agrees with evidence of premature aging observed previously in the SCI 

population (220,222); and suggests that metabolic disease screening and prevention should occur 

at an earlier age in those with SCI.   

Calf-muscle lower-extremity motor score and wheelchair use trended towards a positive 

association with muscle density in the best-fitting model.  These two variables are likely related, 

and when wheelchair use was removed from the model, cLEMS attained statistical significance.  

However, removing wheelchair use from the model decreased the R
2
-value by 4%; suggesting 

that wheelchair use has an effect on muscle density independent of motor-score.    We observed 

that cLEMS was positively associated with muscle density in the entire sample, and participants 

with complete SCI had reduced muscle density values compared to participants with incomplete 

SCI.  The association between motor-score and muscle density is congruent with previous 

studies showing a greater amount of intramuscular fat in the thigh muscles of those with 

complete injuries compared to those with incomplete injuries (4,9,11).     

Wheelchair use, and not cLEMS, was included in the best-fitting model of muscle density 

in the sub-sample of participants with incomplete injuries.  It is possible that the variability in 

muscle activity associated with the array of motor-scores observed in the incomplete-SCI 

population may be insufficient to evoke muscle density variability, or are undermined by the 

effect of loading pattern differences associated with upright versus wheelchair ambulation.  

Those who use a wheelchair for ambulation may be less active, have decreased daily caloric 

demands, and experience decreased loading of the lower-extremity muscles; and consequently, 

these individuals may be predisposed to metabolic dysregulation (185,235).   Based on the 

muscle density values we observed, individuals with complete and incomplete injuries are at risk 
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for metabolic morbidities, and the degree of susceptibility is likely greater in those with complete 

SCI and in those who use a wheelchair for ambulation. 

   SFSS was positively associated with muscle density in the entire sample, and the 

association trended towards significance in the sub-sample of participants with complete injuries.  

This agrees with our hypothesis, and with previous literature showing that spasticity maintains or 

improves body composition and metabolic profile (100, 234-238).  The association between 

spasticity and muscle density in those with chronic-SCI is a novel finding, as studies in the acute 

population did not observe a relationship between intramuscular fat and spasticity scores as 

assessed by the Modified Ashworth scale (238).   However, mechanisms have been previously 

proposed that indirectly link spasticity to the prevention of intramuscular adipose tissue 

accumulation post-SCI (238).  For example, there is evidence that spasticity contributes to the 

predominance of slow fibers in individuals with SCI.  Slow fibers have a greater mitochondrial 

density compared to fast fibers, and consequently may facilitate increased oxidation of 

intramuscular fat (103,245).  Spasticity was not related to muscle density in the sub-sample of 

participants with incomplete injuries; indicating the effects of spasticity on muscle density may 

have been eliminated by the presence of voluntary motor function.  Given the association 

between spasticity and muscle quality, it is possible that spasticity may influence or mitigate 

metabolic health, especially in those with complete-SCI.   

The regression model for muscle density indicated that increased daily minutes of 

vigorous physical activity trended towards an association with an increased muscle density.  

There is wide-spread evidence that physical activity can improve metabolic health 

(185,262,263).   However, our results are novel in that upper-body physical activity was 

associated with decreased lipid storage in lower-body skeletal muscle.   It is possible that the 
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systemic effect of vigorous exercise is due to increased skeletal muscle insulin sensitivity and the 

attenuation of inflammatory responses that are implicated in the increased storage of lipids in 

skeletal muscle (135,137,266).  For example, a previous study has shown that arm cranking 

exercise improves low-grade systemic inflammation by decreasing plasma levels of 

inflammatory cytokines in adults with chronic-SCI (295).  Our results suggest that the benefits of 

regular physical activity at a vigorous intensity extend to the reduction of fatty infiltration of 

lower-extremity skeletal muscle.  To expand on our findings, it is recommended that the 

relationship between muscle density, metabolic health, and physical activity be explored with 

randomized, controlled exercise intervention studies. 

Contrary to our hypothesis, gender, vitamin D level, waist circumference, and level of 

injury were not significantly associated with muscle density in the best-fitting models.  It has 

been observed that females have a lower calf-muscle density compared to males in the able-

population (70); however, our results indicate that gender differences are eliminated by complete 

and incomplete paralysis.   Secondly, it was surprising that waist circumference, which has been 

proposed a measure of central adiposity and metabolic health in the SCI population (296-298), 

was not included in the best-fitting model for muscle density.   Our results indicate that waist 

circumference may not be sensitive enough to detect fatty-infiltration of skeletal muscle in 

individuals with SCI, and therefore continued efforts to verify the validity of waist circumference 

as a measure of metabolic health in the SCI-population may be needed. Thirdly, one study 

previously observed a possible link between serum 25(OH)D insufficiency and increased fat 

infiltration of thigh-muscle (257); however, our results do not support a relationship between 

vitamin D and muscle density after chronic-SCI.  Lastly, higher level injuries are characteristic 

of autonomic dysfunction, increased adipose tissue mass, and reduced activity levels which 
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predispose individuals with tetraplegia to poor metabolic health (232,233,299).  It is possible that 

those with upper and lower level injuries experience similar reductions in muscle quality, or that 

the differences in metabolic health associated with level of injury are accounted for by other 

variables such as mobility and activity level.           

It was hypothesized that a combination of SCI-specific and traditional risk factors would 

determine an individual’s muscle status post-SCI.  The results of our study show that in those 

with chronic-SCI, 37% of the variation in calf-muscle density was explained by age, motor 

score, spasm frequency and severity, vigorous physical activity level, and wheelchair use.  In 

those with complete SCI, age and spasm frequency and severity explained 25% of the variability 

in muscle density.  In those with incomplete SCI, age and wheelchair use explained 34% of the 

variation in muscle density.    Our results provide novel information indicating who in the 

chronic-SCI population may experience the greatest degree of fat infiltration of lower-extremity 

skeletal muscle and consequently, who may be at most risk for metabolic disease.  Future work 

should focus on addressing the remaining unexplained variance in muscle density to possibly 

identify modifiable risk-factors and therapy modalities to prevent or treat reductions in muscle 

quality. 

6.4 Determinants of Muscle CSA and Density Change 

6.4.1 Muscle CSA Change 

 The variability in individuals’ one- and two-year muscle CSA change indicated that 

lower-extremity muscle mass can fluctuate after chronic-SCI.  Precision analyses revealed a least 

significant change of 0.61cm
2
 for the watershed image analysis technique used in this study.  

Based on this precision error, 23 participants exhibited a reduction and 13 participants exhibited 

an increase in muscle CSA.  Notably, the frequency and magnitude of change for those who 
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experienced a reduction in muscle CSA was greater than for those who experienced an increase.  

The rANOVA indicated a significant reduction in muscle CSA over a two-year period in the 

cohort of individuals with complete and incomplete SCI.  While the mean two-year reduction in 

muscle CSA was relatively small (<2 cm
2
), continued reductions of this magnitude extrapolated 

over a lifespan could have a major impact on metabolic function.  The overall reduction and 

degree of individual variability in muscle CSA change was contrary to our hypothesis that 

proposed there would be no change in muscle CSA over a two-year period in those with chronic-

SCI.   

The majority of previous studies have examined muscle mass change with small sample 

sizes and relatively soon after SCI.  While the general consensus in the literature is that a new 

steady-state of muscle atrophy is reached after an initial rapid loss of muscle mass in the acute 

stage of injury (10), a small number of studies have indicated the possibility of continued muscle 

mass reduction in those with chronic-SCI.  One study observed that three individuals with SCI 

experienced reductions in thigh and lower-limb muscle CSA, ranging from -2.3% to -16.8% in 

one year (73).   In another study, a control group of three men with chronic complete injuries 

experienced a 10% reduction in gracilis CSA after a twelve-week period; however, no change 

was observed in total thigh-muscle CSA (268).  The evidence suggesting reductions in muscle 

mass following chronic-SCI is largely anecdotal as observations are from randomized controlled 

trials or case-series designs with small sample sizes underpowered to detect significant changes 

in muscle mass.  This study was the first to prospectively measure lower-extremity muscle status 

in a diverse group of males and females years, if not decades, after SCI.  These results are novel 

in that we not only report a statistically significant decrease in mean muscle CSA over two-years, 
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but that we observed some individuals with chronic-SCI experience muscle mass gains and 

reductions.  

The factors associated with muscle CSA change remain unclear.  A greater waist 

circumference at baseline explained a small proportion of muscle CSA variation in the regression 

model; however, the association was not statistically significance after outlying data points from 

two individuals with large waist circumferences were removed.   There is evidence that obesity 

has a detrimental effect on skeletal muscle such that elevated toxic lipid metabolites, increased 

proinflammatory cytokines, and insulin and leptin resistance may contribute to decreased muscle 

regeneration and maintenance capacity (267).   Therefore, it is possible that excessive lipid 

accumulation in those who are overweight or obese may result in lower-extremity muscle loss.  

The mechanisms responsible for decreased muscle regeneration in obesity remain largely 

unknown, and therefore continued research is need to investigate this association, and underlying 

physiological pathways.   

It must be noted that pQCT-derived muscle CSA values reflect the total soft-tissue area 

within the epimysium, and therefore it is possible that the decrease in muscle CSA we observed 

actually indicates a decrease in the size of inter- and intramuscular adipose tissue deposits.  This 

hypothesis is supported in the observed concurrent improvement in muscle density over the two-

year study duration, and by the relationship between a greater baseline waist circumference and 

improved muscle density.  It is possible that individuals who are overweight or obese may have 

the greatest potential to experience improved fatty-acid oxidation in skeletal muscle, and 

consequently decreased fatty-infiltration (300).  MRI technology, which is capable of 

segmenting lean from adipose tissue, could be used in future studies to confirm the relationship 

between a large waist circumference and a reduction in calf-muscle CSA.       
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The overall two-year reduction in muscle CSA indicates that individuals may experience 

continued muscle atrophy through the chronic stage of SCI.   Declines in muscle mass are are a 

component of natural ageing (140,301).  It is possible that muscle atrophy after SCI is 

compounded by age-related reductions.  In the older able-bodied population, men lose 

approximately 1% of their thigh muscle CSA per year, and women lose approximately 0.65% of 

their thigh muscle CSA per year (150).  Age-related reductions in muscle mass may have an 

increasing impact as individuals live longer with SCI.   

Muscle-targeting therapy interventions have shown the capability to increase lower-

extremity muscle size following chronic-SCI.   For example, ten weeks of electrically stimulated 

cycling resulted in a 4% increase in lean mass assessed by DXA in persons with complete and 

incomplete chronic-SCI (45).  Six months of electrically stimulated bodyweight-supported 

treadmill walking improved quadriceps CSA by 15% in participants with complete tetraplegia, 

whereas manually facilitated bodyweight-supported treadmill walking showed no change (302).  

After incomplete SCI, bodyweight-supported treadmill walking without electrical stimulation has 

been observed to improve muscle CSA in observational case series (73,303) and in a randomized 

controlled trial, four months of electrically stimulated bodyweight-supported treadmill walking 

better preserved muscle CSA compared to traditional resistance and aerobic training exercise 

(118,304).       

While electrically stimulated cycling and treadmill training have shown to elicit 

improvements in muscle CSA, the greatest hypertrophy has been observed after resistance 

training regimes (268,305,306).    Twelve weeks of progressive electrically-stimulated knee 

extensor resistance training, in combination with a healthy diet, increased the muscle CSA of the 

whole thigh (28%), knee extensor (35%), and flexor (16%) muscle groups (305).  Muscle 
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hypertrophy was associated with improved regional body composition, indices of carbohydrate 

metabolism, insulin resistance, and lipid profiles (269).  Although evidence suggests that 

resistance training may be the best method to improve lower-extremity muscle size, small 

homogeneous samples denote that further research is necessary to confirm the external validity 

and determine the most effective therapy regimes following chronic SCI.        

Precision analyses of pQCT-derived muscle CSA values from the watershed analysis 

technique  indicated a least significant change of 0.61 mg/cc or 1.01%, which is similar to the 

reproducibility values reported Wong et al. (RMS-SD: 0.52cm
2
, RMS-CV 1.4%).  Therefore, 

changes greater than approximately 1.5% should be considered real change.    However, real 

change does not necessarily indicate a clinically significant change.  Further research 

incorporating physiologic and metabolic outcomes (e.g., muscle strength, glucose tolerance, lipid 

profile, etc.) are needed to determine the threshold for a clinically significant change in pQCT 

derived calf-muscle CSA that could be used to evaluate the success of therapy interventions.  

Additionally, the overall reduction and individual variability in muscle CSA highlights the need 

to re-consider the existence of a homeostatic “steady-state” after chronic-SCI.  Our results stress 

that researchers must account for fluctuations in muscle mass when evaluating therapy efficacy; 

as it is possible that an intervention successful at preventing muscle loss may be disregarded, or 

that an intervention may be incorrectly deemed successful when in fact muscle gains were 

attributable to other physiological factors.   

Continued research is needed to identify inherent and modifiable factors associated with 

muscle CSA losses and gains in the chronic-SCI population.  Controlling for factors related to 

fluctuations in muscle mass may aid in our understanding of metabolic disease risk and improve 

the assessment of muscle-preserving therapy interventions.   In this investigation, we only 
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examined the association between baseline characteristics and muscle CSA change.  

Investigating factors that co-vary with muscle CSA should be the topic of future research.  

Identifying stimuli or characteristics that co-vary with muscle gains and reductions may improve 

our understanding of the mechanisms responsible for the variability in muscle CSA change we 

observed. 

6.4.2 Muscle Density Change 

The range of one- and two-year muscle density change scores indicated that the degree of 

fat infiltration of lower-extremity muscle can fluctuate after chronic-SCI.  Twenty one 

participants exhibited reductions, and nine participants experienced gains in muscle density 

greater than test-retest precision error.  In addition, the rANOVA indicated a statistically 

significant reduction in muscle density over a one- and two- year period for the entire cohort, and 

a trend towards a statistically significant reduction over a one- and two-year period for the 

subsample of participants with incomplete injuries.  While mean two-year reductions in muscle 

density were relatively small (<2 mg/cc), continued reductions of this magnitude extrapolated 

over a lifespan could have a major impact on metabolic health.  Understanding the factors related 

to a change in muscle quality may help explain, and possibly reduce, the increased prevalence of 

metabolic disease in the chronic-SCI community.   

Participants with complete and incomplete-SCI who experienced the largest reductions in 

muscle density were between two and four years post- injury.  This indicates that the rapid 

increase in fatty-infiltration previously documented (4,9,11) continues beyond the acute and sub-

acute stage, and into the early stage of chronic injury.  However, we also observed that muscle 

density decreased up to 15% in participants greater than ten years post-SCI.  These reductions 
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indicate that the degree of fatty-infiltration of skeletal muscle is not solely dependent on the 

duration of paralysis. 

Many studies have proposed that fatty infiltration of muscle is an unavoidable 

consequence of normal aging (150,163,307,308).  In a group of 1600 older adults between the 

ages of 70 and 79, a decrease in thigh muscle density was observe over a five-year period after 

accounting for race, weight changes, health status, and activity levels (309).  In another study, 

Goodpaster et al. observed an 18% gain in thigh-muscle intramuscular adipose tissue over a one 

year period in a group of men and women between 70 and 89 years of age (310).   After SCI, it is 

possible that fatty-infiltration of muscle does not follow a linear trajectory.  For example, there 

may be an initial increase immediately after injury, followed by a gradual age-related increase 

that possibly accelerates as individuals reach older adulthood.  The effect of aging on muscle 

quality warrants further investigation, especially as individuals are living longer with SCI.    

 We observed that a greater bodyweight and waist circumference at baseline were 

associated with an increase in muscle density over two years.  Increased weight and waist 

circumference may be representative of increased central adipose tissue storage.  Overweight 

individuals may have the greatest capacity to improve fatty-acid oxidation in skeletal muscle, 

and consequently decrease fatty-infiltration (300).  It is possible that “weight-loss” efforts to 

reduce adipose tissue storage may have resulted in improved metabolic health and consequently 

increased muscle density.  It must be noted that weight and waist circumference were only able 

to explain 20-25% of the variation in muscle density change, and that the statistical significance 

of the association between waist circumference and muscle density was lost when outliers were 

removed.  Continued investigation is needed to understand the association between regional 

body composition and muscle quality.   
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Precision analyses of pQCT-derived muscle density values from the watershed analysis 

technique indicated a least significant change of 0.57 mg/cc or 0.95%, which is similar to the 

reproducibility values reported Wong et al. (RMS-SD: 0.85mg/cc, RMS-CV:1.4%) .  Therefore, 

changes greater than approximately 1.5% should be considered real.  However, real change does 

not necessarily indicate a clinically significant change.  Future studies incorporating metabolic 

outcomes (e.g., glucose tolerance, lipid profile, etc.) are needed to determine the threshold for a 

clinically significant change in pQCT derived calf-muscle density that could be used to evaluate 

the success of therapy interventions.  

Numerous studies have observed that physical activity is capable of reducing or 

preventing age or obesity-related increases in fat infiltration of skeletal muscle (310-313).  After 

SCI, electrical stimulation therapy has demonstrated the greatest potential to improve muscle 

quality(268,306,314).   Gorgey et al.,  observed that electrical stimulation of the quadriceps 

muscles twice a week for twelve weeks combined with calorie restriction significantly decreased 

the amount of intramuscular fat in nine individuals with chronic complete-SCI,  (269).  The 

decrease in fat infiltration was relatively small (approximately 3%); however, the calorie-

restricted control group experienced a 3% increase during this same period of time.  Small 

homogeneous samples are a limitation to the studies investigating electrical stimulation therapy, 

however the results support previous speculation that increased muscle contraction improves the 

ability to use inter- and intramuscular fat as fuel, thus decreasing fat deposits within the 

muscle(315).  The best electrical or functional electrical stimulation protocol (e.g., resisitance 

training, cycling, walking, etc.) to maximize fatty-acid oxidation is not known and should be the 

topic of further investigation. 
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 Our results suggest that a steady-state of inter- and intramuscular fat infiltration cannot 

be assumed following chronic-SCI.  Therefore, considering inherent change in fat infiltration is 

imperative when muscle quality is used to evaluate the effect of exercise and lifestyle therapies.  

This is exemplified in the above study by Gorgey et al. (269), in that a 3% reduction in 

intramuscular fat was observed in the intervention group compared to a 3% increase in 

intramuscular fat in the control group.  If the natural trajectory of muscle is towards increased 

fatty infiltration, then a therapy that demonstrates no change in fatty-infiltration may be 

successful in that it prevents a detrimental reduction from occurring.   

In summary, high individual variation in the degree of muscle density change was 

observed in persons with both complete and incomplete paralyses.  As muscle status is related to 

metabolic health, clinicians should recognize that metabolic disease risk may fluctuate over the 

duration of SCI.  We were only able to explain a small proportion of the variability in muscle 

density change, and therefore continued investigation is needed to better understand the factors 

associated with fluctuations in muscle quality. 

6.5 Limitations 

 This study provides important information to improve our understanding of muscle 

atrophy and fatty-infiltration of individuals with chronic-SCI; however, there are limitations to 

this investigation that must be addressed.  First, there is the possibility that pQCT-derived muscle 

CSA values may be overestimated.  Muscle CSA was defined as the soft-tissue area contained 

within the epimysium, and therefore includes the CSA of adipose and other non-contractile 

tissue.  Studies using MRI technology have demonstrated that not accounting for inter- and 

intramuscular adipose stores may inflate thigh-muscle CSA values by up to 6% (4).   Insufficient 

resolution to separate muscle from adipose tissue is a limitation of pQCT technology.  We opted 
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to use a manual watershed-guided analysis technique in favour of an automated threshold-based 

technique in this study as we have observed that an automated method is unable to properly 

identify muscle in individuals with a high degree of fatty-infiltration.  In addition, we observed 

that manual watershed-guided segmentation of muscle showed greater reproducibility and tighter 

retesting limits (71).  Given the relatively small proportion of adipose tissue compared to lean 

tissue, watershed-guided segmentation of muscle is considered a valid method to measure 

muscle atrophy in the SCI population.   

  Individuals with SCI often experience lower-leg edema and venous pooling (98).   It is 

unclear what effect this fluid shift has on pQCT-derived muscle CSA and density values.  An 

increased fluid content in the lower-leg could overestimate muscle CSA and density.  The 

literature base examining the effect of fluid pooling on muscle is limited.  One study observed 

that the daily variation in CT derived lower-leg muscle volume was no different in one 

individual with lower-leg edema compared to those without edema (316).   In another study, 

MRI derived muscle CSA increased 6.9 ± 2.6% after lower-body negative pressure (317); 

however, how lower-body negative pressure compares to SCI-related pathology is unknown.   

Until studies specifically isolate the effect of lower-leg fluid accumulation on pQCT outcomes, 

an effect cannot be ruled out.    

 The amount of missing data is a possible limitation of this study.  Twenty-one percent, 

26%, and 34% of participants had missing pQCT data at baseline, year-1 and year-2 time points, 

respectively.  When possible, efforts were made to limit the effect of missing data.  For example, 

scans and demographic data from year-1 or year-2 were used if baseline data was not available 

for the cross-sectional analysis. With this method, the scans of 65 participants (92%) were 

included in the cross-sectional analysis; however, some participants had missing independent 



 

117 

 

variables and therefore were excluded for the analysis.   It is possible that missing data may have 

influenced the significance of independent variables in the regression models.  Best-fitting 

models were selected based R
2
 and C(p) statistics with a sample-size equal to that of the 

independent variable with the least number of observations, and thus the data from all 65 

individuals could not be used to select the best-fitting model.   The reduced sample-size may 

have resulted in reduced power to detect a significant association between muscle status and 

related variables. 

 Variation in motor function characteristic of individuals with incomplete-SCI may 

interact with determinants of muscle status.  It is possible that the sample of 25 individuals with 

incomplete-SCI was not large enough to detect significant associations between possible 

determinants of muscle status or changes in muscle status.  For example, to avoid over-fitting 

regression models, we were limited to including only two independent variables in the multi-

variable regression models.  It is recommended future studies continue to explore muscle status 

in those with incomplete injuries by investigating larger samples of this population.    

Periods of disuse and immobilization are associated with muscle atrophy.  Individuals 

with SCI can experience events, such as lower-extremity fracture or extended illness that can 

limit their mobility for extended periods of time.  For example, an immobilized lower-extremity 

or illness that confines a previously ambulatory individual to bed or wheelchair may be 

associated with reduced muscle status.  In this investigation, we did not account for periods of 

extended immobility that may be related to the muscle status reductions we observed.    

 There is evidence that chronic inflammation is associated with decreased muscle quantity 

and quality (265-267,318).  In the aged able-bodied population, chronic low-grade inflammation 

can affect muscle by: increasing the degree of oxidative stress, influencing muscle protein 
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balance, impeding muscle regeneration and repair, and triggering muscle cell apoptosis (318).   

Chronic inflammation is prevalent in the SCI population and characterized by increased serum 

concentrations of C-reactive protein, interleukin-6, and endothelin-1 (319,320).  Muscle tissue is 

responsive to these catabolic cytokines that are unregulated during periods of inflammation, and 

therefore individuals who experience frequent or chronic periods of inflammation may 

experience detrimental changes in muscle.  It is recommended that future cross-sectional and 

prospective studies include markers of inflammation to assess the association between chronic-

inflammation, muscle status, and metabolic disease.  

  Nutrition is a key component of muscle size and quality.  Although we accounted for 

serum vitamin D level, we did not account for the effect of other dietary factors on muscle status 

post-SCI.   Inadequate protein intake for example, can be a determinant of muscle mass in other 

populations (321,322); however, the effect of protein intake on muscle after chronic-SCI is 

unknown.  Secondly, inter- and intramuscular fat deposits can expand during periods of elevated 

lipid availability, and therefore high fat diets and diets that have excessive calories may 

contribute to increased fatty-infiltration of muscle (318,323,324).  Therefore, future studies 

should examine the relationship between nutrient intake and muscle status. 

 We did not include a measure of glucose tolerance or dyslipidemia in this study.  

Uncontrolled blood sugar is associated with a greater age-related acceleration of muscle loss 

(325,326).  In one study investigating thigh-muscle CSA of older adults, muscle CSA declined 

two-times faster in older women with diabetes than their non-diabetic counterparts (327).  Given 

the high prevalence of diabetes in the SCI-population, glucose tolerance may be an important 

correlate of muscle mass, or change in muscle mass in those with SCI.   



 

119 

 

The greatest diagnostic yield from muscle density measurement may be in highlighting 

risk-factors related to dyslipidemia, glucose intolerance, and diabetes.  Therefore, the most 

clinically relevant limitation on this study was that we were unable to report the direct 

association between muscle density and glucose tolerance or dyslipidemia after chronic-SCI.  

Although previous observational studies have examined the relationship between fatty-

infiltration, pQCT-derived muscle density, and metabolic disease in other populations 

(70,212,216), the direct relationship between muscle density and glucose tolerance has not been 

reported in the SCI-community.   It is possible that factors intrinsic to SCI (e.g., decreased lower-

extremity muscle mass) may affect the relationship between muscle density, fatty-infiltration, 

and glucose tolerance derived from the able-bodied population.  Therefore, studies are needed to 

confirm the validity of the relationship between muscle density and glucose tolerance post-SCI.    

6.6 Conclusion 

 In summary, we found that individuals with motor-complete SCI had a 45% reduction in 

muscle CSA and a 32% reduction in muscle density relative to their able-bodied peers.  

Participants with motor-incomplete SCI had a 17% reduction in muscle CSA and a 14% 

reduction in muscle density relative to controls.   With a set of 16 pre-selected variables, we were 

able to account for 55-66% of muscle CSA variation and 25-33% of muscle density variation in a 

diverse sample of individuals with chronic-SCI.  A reduced height, waist circumference, calf-

muscle lower-extremity motor score, wheelchair use, a younger age at injury, reduced spasm 

frequency and severity, and paraplegia were associated with a decreased muscle CSA.   An older 

age, a decreased motor-score, reduced spasm frequency and severity, more minutes of daily 

vigorous physical activity, and wheelchair use were associated with a decreased muscle density.   
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Incorporating factors related to muscle status into metabolic disease risk assessment may 

increase the ability to identify those most at risk for metabolic disease.   

Over a two-year period, we observed that individuals with chronic incomplete-SCI may 

experience continued reductions in muscle CSA and muscle density.  Furthermore, we observed 

a high degree of individual variation in muscle CSA and density change in those with both 

complete and incomplete injuries.  A greater waist circumference at baseline was associated with 

a reduction in muscle CSA, and a lower weight and waist circumference at baseline were 

associated with a reduction in muscle density over two years.  The change in muscle status we 

observed suggests the need to re-define the definition of chronic-SCI when “chronic” implies the 

existence of a homeostatic “steady-state”.  It can no longer be assumed that muscle does not 

change in the absence of intervention, and as muscle status is related to metabolic health, 

clinicians should recognize that metabolic disease risk may fluctuate over the duration of SCI.  

We were only able to explain a small proportion of the variability in muscle change, and 

therefore continued investigation to determine the mechanisms responsible for increases and 

decreases in muscle status is warranted. 
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Threshold-Based Segmentation Methods 
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Quantitative Computed Tomography in Adults 
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4. Bone Quality in Individuals with Chronic Spinal Cord Injury Participant Recruitment Flow 

Diagram 

5. Standard Operating Procedure (SOP):  pQCT image acquisition and analysis of 66%-site of the 
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Reliability of pQCT-derived Muscle Area and Density Measures on Water-Shed versus Threshold-Based 

Segmentation Methods  

 

Andy Kin On Wong, Aakash Bhargava, Kayla Hummel, Sami Shaker, Karen A. Beattie, 

Christopher L. Gordon, Cathy Craven, Jonathan D. Adachi, & Lora Giangregorio 

 
1
 McMaster University, Hamilton, ON Canada L8N 1Y2 

2
 Waterloo University, Waterloo, ON Canada N1H 8K4 

3
 University of Toronto, Toronto, ON Canada M4G 3V9  

 

Objectives: To compare reliability of calf muscle measures obtained using peripheral 

quantitative computed tomography (pQCT) and analyzed with threshold-based versus watershed 

algorithms across a cohort with varying muscle area 

 

Methods: Young adults (<30 years old), older adults (>60 years old) and individuals with spinal 

cord injury (SCI) were scanned twice on pQCT at the same visit with repositioning between 

acquisitions. A 2.3±0.5 mm thick slice was obtained from the 66% calf at 500 µm resolution. 

Images were randomized and blinded to the reader. Threshold-based and manual watershed 

segmentation of muscle from bone (threshold: 280, contour 1, peel 2) and subcutaneous fat 

(threshold: 40, contour 3, peel 1) was performed using Stratec V6.0 (Orthometrix) and 

sliceOmatic V4.3 (Tomovision), respectively. Tissue boundary identification was guided by the 

watershed tool and manually traced by a single reader. Muscle volumetric density (vMD) and 

cross-sectional area (MCSA) were computed in each analysis. Root mean square coefficients of 

variation (RMSCV) and standard deviations (RMSSD), and Bland-Altman limits of agreement 

(LOA) were determined for vMD and MCSA for both methods. A general linear model 

determined difference in vMD and MCSA between segmentation methods adjusting for 

participant subgroup.  

 

Results: Most RMSCV and RMSSD values for threshold segmentation were larger than manual 

watershed segmentation (Table I) The LOA for vMD obtained using the watershed algorithm 

were -3.68 to 3.09 (N=85); versus on threshold-based segmentation, -4.75 to 4.75 (N=81). The 

LOA for MCSA was -132.80 to 137.50 (N=93) and -353.19 to 369.28 (N=81) for watershed 

versus threshold segmentation, respectively. Manual segmentation (70.2±9.2 mg/cc) provided 

larger (p<0.001) densities compared to threshold segmentation (67.4±10.3 mg/cc). 

 

Conclusion: Watershed-guided segmentation of muscle from pQCT images showed greater 

reproducibility and tighter retesting limits. Although manual tracing may be less efficient, its 

higher reliability is favourable to longitudinal studies demanding greater analytical sensitivity. 

 

Word count (298) + Figure (50) = 98.7% limit (350 words) 
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Table I. Comparing reliability of pQCT muscle measures obtained by water-shed 
versus threshold-based segmentation separated by participant subgroups. 
Young adult (age: 25.6±3.3,BMI:23.9±4.8), older adult (age:74.0±9.2, BMI:25.7±4.0), 
SCI (age:44.1±9.4,BMI:23.9±3.3). vMD = muscle volumetric density, MCSA = 
muscle cross-sectional area.  
 

Reliability Data RMSSD (units) RMSCV (% error) 

Variable & Method Young Older SCI Young Older SCI 

Water-Shed vMD (mg/cc) 0.89 1.43 0.85 1.18 2.01 1.42 

Threshold-Based vMD (mg/cc) 1.73 1.22 2.43 2.36 1.77 4.06 

Water-Shed MCSA (mm2) 34.96 53.97 52.34 0.49 0.93 1.38 

Threshold-Based MCSA (mm2) 154.35 105.37 142.10 2.57 1.77 2.94 
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Accuracy and Precision Error of Muscle Cross-sectional Area Measured Using Peripheral Quantitative Computed Tomography in Adults 

 

C. L. Gordon
1,2

, C. E. Webber 
1
, L. F. Beaumont. 

1
Department of Radiology, McMaster University, Hamilton, ON, Canada, 

2
 Stratec- A Division of Orthometrix Inc., White Plains, NY. 

 

(See PDF for high resolution image) 
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Influence of tester and timing on pQCT precision error (adapted from Swinford et al., 2010) 

 

 

Data indicate individual absolute precision error measurements (±SD) 

  Within-Day Between-day Two-way ANOVA results* 

  

Within-

tester 

Between-

tester Within-tester Between-tester Tester Timing Interaction 

Absolute muscle CSA 

(cm
2
) 0.53±0.43† 0.42±0.31‡# 0.87±0.57‡ 1.21±0.82†# –a –a <0.05 

Relative muscle CSA (%) 0.22±0.14 0.25±0.18 0.39±0.28 0.51±0.45 NS <0.001 NS 

Muscle Density (mg/cm
3
) 0.31±0.35 0.23±0.15 0.40±0.38 0.33±0.28 NS NS NS 

* - tester (within- vs. between-tester), timing (within- vs. between-day) 

a - Tester and timing main effects were ignored in the presence of a significant tester х timing interaction   

Symbols (†, ‡, #) indicate p<0.001 between groups with corresponding symbols, as determined by post-hoc pairwise unpaired t-

tests 
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Bone Quality in Individuals with Chronic Spinal Cord Injury Participant Recruitment Flow Diagram 

(April 16, 2014) 

 

  

Unreachable (n=188) 

Deceased (n=7) 

Declined participation (n=79) 

Approached: 

Jousse (n=169) 

Clinic (n=139) 

Hamilton (n=41) 

Waterloo (n=33) 

Advertisements (n=18) 

TOTAL n=409 

Pre-Screened 

(n=135) 

Excluded: 

Not meeting inclusion criteria (n= 24) 

Declined further participation (n=41) 

Eligible  

(n=70) 

Included  

(n=70) 

Deceased (n=3) 

Lost to Follow-Up (n=1) 

TOTAL N= 70  

 

Active in Phase I n=2 

 

PHASE I 

Completed 

(n=64) 
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Standard Operating Procedure (SOP):  pQCT image acquisition and analysis of 66%-site of the tibia 

Scan Acquisition: 

Participant set-up 

1. Greet participant and escort to pQCT scanner room 

2. Remove shoe and roll up pant leg of leg to be scanned 

3. Measure tibia length  

• Palpate and measure the distance between the tibiale mediale and sphyrion tibiale  

• Place a mark along the tibia that is 2/3 the distance measured distal to proximal 

4. Remove wheelchair foot-plates to allow the participant to wheel as close as possible to the 

scanner 

5. If possible, have participant slide there bum forward in their wheelchair 

6. Position the participant’s leg into the gantry and rest foot on the foot-plate.  Provide extra padding 

for the foot and knee as needed 

7. Tighten clamp around the knee to hold leg stationary 

 

Scanner set-up and scan acquisition 

 

1. Select the appropriate mask for the 66%-site measurement 

Settings: 

Voxel size: 0.5mm 

Slice thickness: 2.2mm 

Scan speed: 20 mm/second 

2. Manually move scanner to the 66% site 

3. Initiate scan 

4. Check scan quality and repeat if needed 

 

Post-scan 

 

1. Remove participant’s leg from gantry  

2. Re-assemble wheelchair 

3. Assist with putting on shoes and adjusting clothing items  

 

Image analysis: 

 

1. Open SliceOmatic software 

2. Load scanner specific calibration file 

3. Open pQCT image 

4. Preform Gamma correction 

5. Select “morpho” mode 

6. Select “watershed” analysis 

Settings: 

a. Merge level: 1  

b. Line Thickness: Off 

c. Hue Slider: Yellow 

d. Param values: default 

7. Tag muscle  

8. Enter “edit” mode and manually correct for watershed spillover 

9. Tag subcutaneous fat  
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10. Enter “edit” mode and manually correct for watershed spillover 

11. Tag bone 

12. Enter “edit” mode and manually correct for watershed spillover 

13. Export CSA data to Excel  

14. Export density data to Excel 
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pQCT calibration curve for Statec XCT 2000 at Hamilton Health Sciences, Hamilton, ON 

 

 

 

Linear 
Attenuation 
coefficient 

(1/cm) 

Density 
(mg/cm

3
) 

0.187 0 

0.23 75 

0.274 150 

0.317 225 

0.361 300 

0.405 375 

0.448 450 

0.492 525 

0.535 600 

0.579 675 
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Appendix B 

1. Letter of Invitation 

2. Physician Referral Form 

3. Telephone Screening Form 

4. Information and Consent 

5. Past Medical History 

6. Concurrent Medications 

7. Health Demographics 

8. Current Health Status 

9. Spasm Frequency and Severity Scale 

10. Physical Activity Recall Assessment for People with Spinal Cord Injury 

11. pQCT 
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       Bone quality in individuals with chronic spinal cord injury 
 Lyndhurst Centre 520 Sutherland Drive Toronto, Ontario M4G3V9 

 

 
 
 

 
 
<Date> 
 
 
 
<Address> 
 
 
 
RE: Research Study 
 
 
 
Dear  <Name>: 
 
 
You are being asked to take part in a research study called “Bone quality in 

individuals with chronic SCI”. Myself and other researchers at McMaster University, the 
University of Waterloo, University of Toronto and the Toronto Rehabilitation Institute are 
conducting the study.  The Canadian Institutes of Health Research are funding this study 
(www.cihr-irsc.gc.ca). The purpose of the study is to examine the bone health of men and 
women with chronic spinal cord injury.  

If you agree to take part in the study, you will be asked to have your bone density 
measured once a year for 2 years.  You will also be asked to report your past and current 
medical history and medications, followed by a brief examination of your sensation and 
muscle activity. You will participate in two types of bone density scans in the study; one at 
Lyndhurst and one at McMaster University. Transportation to McMaster University will be 
provided.  The overall time commitment for the study is 10-15 hours over the 2 year period.  
This includes three visits to Lyndhurst (2-3 hours each) as well as three visits to McMaster 
(30 minutes each) and five telephone follow-up calls (30 minutes each).  All participants will 
receive a $40 honorarium at the 0 (start), 1 year and 2 year time points. 

At some point in the next two weeks you will receive a telephone call from a research 
assistant. The assistant will ask you if you are interested in participating in this study. If you 
are not interested, you can tell the assistant at this time. If you would prefer not to have the 
assistant call you at all, please call (416) 597-3422, extension 6301. Leave a message with 
our research coordinator, Lindsie Robertson, saying that you would prefer not to be 
contacted.   Alternatively, you can also e-mail robertson.lindsie@torontorehab.on.ca.  

It is important for us to know if people who participate in the study are very different 
from people who choose not to participate. If you choose not to participate, the research 
assistant will ask you if you mind answering a few brief questions, such as your age or 

Primary Investigators: 
Dr. Lora Giangregorio 
Dr. Catharine B. Craven 
 
Co-investigators: 
Dr. A. Papaioannou 
Dr. M. Popovic 
Dr. L. Thabane 
Dr. N. McCartney 
Dr. J.D. Adachi 
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whether you have ever broken a bone before. Your name will not be stored with this 
information. You can choose not to answer these questions if you wish. 

If you decide to participate in the study, all information you provide will be 
confidential. Your name will not appear on any forms. You can stop participating at any time 
without having to give a reason.  A decision not to volunteer or to withdraw from the study 
after you have enrolled will not have any impact on the care you receive at Lyndhurst. If you 
have any questions about the study you can contact Lindsie Robertson at the number listed 
above or Dr. Cathy Craven at (416) 597-3422 extension 6122.  

Your contribution to this research will help us better understand who is at risk for 
bone loss and broken bones. We eventually want to understand better ways to diagnose and 
prevent broken bones among people with spinal cord injury. Thank you for your 
consideration. 

 

Sincerely, 

 

 

 
insert physician name here 

 
This study has been reviewed and received ethics clearance through the Office of Research 
Ethics at the University of Waterloo, the Research Ethics Board at the Toronto Rehabilitation 
Institute and the Research Ethics Board of Hamilton Health Sciences/McMaster University 
Faculty of Health Sciences.. If you have any questions regarding your rights as a research 
participant, you may contact: Dr. Gaetan Tardif, Research Ethics Board at (416) 597-3422 x 
3730 or Dr. Susan Sykes University of Waterloo Research Ethics Board at 519-888-4567, x 
36005, ssykes@uwaterloo.ca or Office of the Chair of Hamilton Health Sciences/Faculty of 
Health Sciences Research Ethics Board at (905) 521- 2100 x42013. 
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Insert patient label here 

 
 
 

RESEARCH:  Bone Quality in Individuals with Chronic Spinal Cord 
Injury 
 
Background: A cohort of 80 adult men and women, with traumatic SCI, two years 
post-injury, will be established. Data collected will include: medical history; bone 
density (BMD) and body composition; tibia volumetric BMD, bone geometry, muscle 
area and trabecular structure; and x-ray reports to verify fractures (if any). Data will 
be collected at 6 month intervals over a 24 month period.  This research will form the 
basis for studies of bone quality and fractures in the SCI population. 
 
 
 
 

Patient has verbally consented to the above personal health 
information being forwarded to a research team member and being 

approached with more information about the study 

 YES 

 NO 
 

If no, is patient agreeable to completing a refusal questionnaire by 
phone? 

 YES 
 NO 

 
Please forward to Lindsie Blencowe (x6301, room 206-D)  

 
 

Thanks!   

 
 
 
 

     ______________________________________________ 
Date                               Signature of Physician 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 

Gender:  M   F    

 
If potential participant is eligible for the study, arrange for a visit to Lyndhurst to 
complete information and consent form and first testing visit (if consent is provided). 

 

Inclusion Criteria Yes No Comments 

1. Participant is ≥18 years of age     

2.  
Participant is able to understand instructions in 
English. 

   

3. 

“What is the level of your spinal cord injury?” 

Potential participant has a level of injury at or 
between C2 and T12 

  

Insert Level of Injury 

 

 

4. 

“What was the cause of your spinal cord 
injury?” 

Potential participant has a neurological 
impairment secondary to a spinal cord injury of 
sudden onset (<24 hours onset).  

  

Insert Cause of Injury 
 
 
 

5.   

“When did you have your spinal cord injury?” 

Potential participant’s spinal cord injury 
occurred at least 24 months prior to screening. 

  
Date of Injury:  

/ /  
 Y  Y  Y  Y   M  M D  D 

6.   

“Do you know if you have or have had any 
conditions that might affect your bones, such 
as cancer or liver disease?” Potential 
participant has no secondary causes of 
osteoporosis. 

   

7.
0 

“Are you willing to attend three visits to 
Lyndhurst and three visits to McMaster 
University over the course of two years?” 

Potential participant is willing to attend 3 visits 
to Lyndhurst & McMaster. 

   

Telephone Screening Form 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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       Bone quality in individuals with chronic spinal cord injury 
 Lyndhurst Centre 520 Sutherland Drive Toronto, Ontario M4G3V9 

 

 
 
 

 

Participant Information Sheet and Consent Form 
 

 
 

Title of Study: Bone Quality in Individuals with Chronic Spinal Cord Injury 
Primary Investigators:  Dr. Lora Giangregorio and Dr. Catharine B. Craven 

Co-investigators: Dr. Papaioannou, Dr. Popovic, Dr. Thabane, Dr. McCartney, 
and Dr. Adachi 
Student Investigators: Kayla Hummel, Deena Lala, and Julia Totosy de 
Zepetnek, Dept. of Kinesiology, University of Waterloo 
Sponsor: Canadian Institutes of Health Research, Ontario Neurotrauma 
Foundation, and SCI Solutions Network 

 

 
You are being invited to participate in a research study. To decide whether or 
not you want to be a part of this research study, you should understand what is 
involved and the potential risks and benefits. This form gives detailed 
information about the research study, which will be discussed with you. Once 
you understand the study, you will be asked to sign the form at the end of this 
information letter if you wish to participate. If you are not able to sign the form 
but are able to provide verbal consent, it will be documented by the person 
obtaining consent. Please take your time to make your decision. Feel free to 
discuss it with your friends and family, or your family physician. 
 
WHY IS THIS RESEARCH BEING DONE? 
 
Individuals with spinal cord injury (SCI) often experience bone loss. Bone loss 
can cause a person to be more likely to break a bone in the future. We are 
conducting this study to examine in more detail the bone loss that occurs after 
SCI.  
 

Primary Investigators: 
Dr. Lora Giangregorio 
Dr. Catharine B. Craven 
 
Co-investigators: 
Dr. A. Papaioannou 
Dr. M. Popovic 
Dr. L. Thabane 
Dr. N. McCartney 
Dr. J.D. Adachi 



119 
 

WHAT WILL I BE ASKED TO DO IF I DECIDE TO TAKE PART IN THE 
STUDY? 
 
This study will require 10-15 hours of your time over a 2 year period.  
This study is being conducted at multiple sites. You may participate at 
Lyndhurst Hosptial (Toronto) OR Chedoke Hospital (Hamilton) – whichever is 
most convenient for you. 
 
If you decide to participate in the study, we will ask you to do the following 
things: 
Visit to Lyndhurst or Chedoke 

¨ Complete a medical history that asks questions about your injury 
characteristics as well as your past and current medical health, medications 
and lifestyle. You may be asked to have an ASIA exam, which tests your 
sense of touch and your sense of movement, if we do not have record of an 
exam for you. This will take approximately 45 minutes. 

¨ On your first visit to Lyndhurst, you will be asked to provide a blood sample. 
Fasting conditions will be required.  Participants will be asked to fast for at 
least 12 hours.  For those participants unable to fast, a breakfast of toast and 
apple juice or orange juice will be allowed and blood will be drawn 4 hours 
after.  The blood sample will be used to measure protein markers of bone 
metabolism, vitamin D, parathyroid hormone (PTH), and ionized calcium 
levels in your blood. The blood sample will be draw by a trained 
phlebotomist.  We will take about two tablespoons of blood by inserting a 
needle in a vein in your arm.  

¨ Participate in 1 set of 6 bone density scans. Bone density scans are x-rays 
that measure how much bone mineral you have in certain bones. Individuals 
with low amounts of bone mineral may be at increased risk of fracture. The 
scans will be taken of your hips, above and below your knee, your spine and 
your whole body. During the scans you will be transferred to a scanning 
table. If you are not able to transfer yourself, we will use a special lift device. 
You will not feel anything when the scanner is on. The scanning will take 
approximately 60 minutes. 

¨ Complete some questionnaires by phone three days after your visit.  The 
questionnaires will gather information regarding your activity and diet.  This 
telephone call will last approximately 30 minutes. 
 
Visit to McMaster  

¨ Participate in a second visit at McMaster University Medical Centre for a 
second type of bone density scan.  The scanner is called a peripheral 
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quantitative computed tomography scanner and also uses x-rays to measure 
bone density.  During this visit, you will be asked to participate in 1 set of 3 
scans that measure the shape and structure of your bones. A researcher will 
take 3 scans, one at your ankle, the second at mid-calf and the third at the 
widest cross-section of your calf. During the scans the limb being measured 
will be placed in a positioning device.  Please refer to the pictures we have 
provided. We will conduct the scans while you are seated in a chair or 
wheelchair. You will not feel anything when the scanner is on. This visit will 
take 45 minutes.  

 
Yearly Follow-up for 2 years 

¨ You will be asked to return annually for the next two years to repeat the 
medical history, bone density scans, and scans at McMaster. You will be 
called at 6 and 18 months during the two year study to monitor any changes 
in your health, medication and record if you have had any fractures.  You 
will also be asked to report any broken bones to the study coordinator over 
the two-year period when they occur.   These phone calls will take 
approximately 30 minutes or less. 

 
If you have severe spasticity: During the scans at McMaster, it may be difficult 
for the technologist to position you if you have lower body muscle spasms. Only 

if you have severe lower body muscle spasms, you will be asked to take a 
small dose of Lorazepam (otherwise known as Ativan, dose is 0.5-1.0 mg below 
the tongue) to prevent spasms while the scan is taking place. If you do not have 

severe spasticity, you will not need to take Lorazepam. Lorazepam is a short 
acting muscle relaxant that reduces muscle spasms.  Many people with SCI have 
taken Lorazepam early after their injury to help with sleeping while in hospital. 
Adverse reactions to Lorazepam, when they occur, are usually observed at the 
beginning of the dose and generally decrease in severity or disappear after 2-3 
hours.  If you become very drowsy with Lorazepam, you may not remember 
having the pQCT scan. If needed, the Lorazepam will be prescribed for you by 
Dr. Craven on the day of your scan. These precautions are taken mainly to 
reduce the chance of injury in the event that a spasm occurs when your leg is 
placed in the scanning device. You do not have to agree to take Lorazepam if 

you do not wish to do so. However, we may decide not to try to scan you if the 
spasticity limits our ability to position you safely. If you have metal implants in 
both lower legs, have broken your shinbones in the past, or have severe leg 
spasms and are allergic to Lorazepam, you will not be able to participate in the 
study. Also, women who may be pregnant or who plan on becoming pregnant 
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cannot participate.  If you are a woman, a urine pregnancy test may be 
performed to ensure that it is safe for you to participate. 
 
WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 
 
The risks to participants are small. Bone Density scans involve exposure to 
small amounts of radiation. The level of exposure associated with the scans 

proposed in this study is ~30 mSv, which is less than doses received during a 

computed tomography (CT) scan of the chest (30-60mSv) or annually from 

background radiation (2500 mSv). The radiation dose is roughly equal to the 
dose of radiation received over 3 days by every Canadian from natural sources 
of radiation in the environment.  Repeated exposure to radiation has a 
cumulative risk over time but the radiation risk from participating in this study 
considered minimal.  
 
If you are asked to take Lorazepam to reduce your leg spasms during scans in 
Hamilton, there is a risk of side effects.  Amongst a study of 3500 people, the 
most common side effects were sedation (15.9%), dizziness (6.9%), weakness 
(4.2%) and unsteadiness walking (3.4%). Less frequent side effects include 
disorientation, depression, nausea, change in appetite, headache and agitation.  
Most side effects, if they occur, occur with the first dose of the drug.  
Lorazepam will only be given to you if necessary.  If you need Lorazepam, it 
will provided to you at no cost.  After taking Lorazepam, the study staff will 
monitor you for an hour or so, to make sure you have not had any side effects.  
A physician will be available for supervision. You should not drive or perform 
other tasks that require alertness immediately after taking Lorazepam. Also, you 
cannot take Lorazepam if you are currently taking the fungal medications 
ketoconazole (Nizoral or Xolegel) or itraconazole (Sporanox).   
 
Women who may be pregnant or who plan on becoming pregnant cannot 
participate in the study as there are risks to exposing a fetus or unborn baby to 
ionizing radiation. 
 
Fasting blood draws can also have side effects and discomforts.  Fasting may 
cause hunger, headache, dizziness and/or weakness.  As a result of the blood 
draw, there is a possibility that you may experience pain, bruising, bleeding or 
infection at the site of the needle puncture. Blood draws may also temporarily 
cause headache, nausea and lightheadedness. 
 
HOW MANY PEOPLE WILL BE IN THIS STUDY? 
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80 individuals with SCI will be recruited to participate.  
 
WHAT ARE THE POSSIBLE BENEFITS OF THE STUDY FOR ME 
AND/OR SOCIETY? 
 
We cannot promise any personal benefits to you from your participation in the 
study. If you are interested in learning what your bone density is, we can send 
your bone density scan results to your physician. The study will help us 
understand bone loss in individuals with SCI, and determine risk factors related 
to bone loss in SCI. 
 
CONFIDENTIALITY AND SECURITY OF DATA 
 
Your data will not be shared with anyone except with your consent or as 
required by law. All personal information will be removed from the data and 
will be replaced with a number. A list linking the number with your name will 
be kept in a secure place, separate from your file. The data will be securely 
stored in a locked office. For the purposes of ensuring the proper monitoring of 
the research study, it is possible that a member of the Office of Research Ethics 
at the University of Waterloo, Hamilton Health Sciences Research Ethics Board 
or Toronto Rehab Research Ethics Board may consult your research data and 
medical records. However, no records that identify you by name or initials will 
be allowed to leave the hospital. By signing this consent form, you authorize 
such access. If the results of the study are published, your name will not be used 
and no information that discloses your identity will be released or published 
without your specific consent to the disclosure. However, it is important to note 
that a copy of your signed consent form and the data that follows may be 
included in your health record.  The data will be retained indefinitely. 
 
CAN PARTICIPATION IN THE STUDY END EARLY? 
 
If you volunteer to be in this study, you may withdraw at any time and this will 
in no way affect the quality of care you receive at this institution. You have the 
option of removing your data from the study. You may also refuse to answer any 
questions you don’t want to answer and still remain in the study. The 

investigator may withdraw you from this research if circumstances arise which 
make it unsafe for you to continue participating and it is in your best interest to 
withdraw.  You will also be informed in a timely manner of any new 
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information that arises during the course of the study that may influence your 
decision to participate.  
 
WILL I BE PAID TO PARTICIPATE IN THIS STUDY? 
 
You will receive a $40 honorarium to participate in the study. We will provide 
transportation for the study visits and you are welcome to have someone 
accompany you on the trip. For those wishing to use their own transportation for 
travel, we will reimburse the costs of parking and mileage ($0.50 per kilometer) 
associated with participating in the study. 
 
WILL THERE BE ANY COSTS? 
 
Your participation in this research project will not involve any additional costs 
to you or your health care insurer. 
 
WHAT HAPPENS IF I HAVE A RESEARCH-RELATED INJURY? 
 
If you are injured as a direct result of taking part in this study, all necessary 
medical treatment will be made available to you at no cost. Financial 
compensation for such things as lost wages, disability or discomfort due to this 
type of injury is not routinely available. However, if you sign this consent form 
it does not mean that you waive any legal rights you may have under the law, 
nor does it mean that you are releasing the investigator(s), institution(s) and/or 
sponsor(s) from their legal and professional responsibilities. 
 
IF I HAVE ANY QUESTIONS OR PROBLEMS, WHOM CAN I CALL? 
 
If you have any questions about the research now or later, if you wish to 
withdraw from the study at any time or if you think you have a research-related 
injury, please contact the research coordinator for the study, Lindsie Robertson 
at (416) 597-3422 x6301, pager (416) 644-6936 or one of the study investigators 
below: 
Dr. Craven (416)597-3422 x6122  
Dr. Lora Giangregorio (519) 888-4567 x36357 
Kayla Hummel via e-mail, khummel@uwaterloo.ca  
 
This study has been reviewed and received ethics clearance through the Office 
of Research Ethics (ORE) at the University of Waterloo, the Research Ethics 
Board at the Toronto Rehabilitation Institute and the Research Ethics Board of 
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Hamilton Health Sciences/McMaster University Faculty of Health Sciences.  If 
you have any questions regarding your rights as a research participant, you may 
contact any/all of the offices listed below: 
 
Office of Research Ethics (ORE) at the University of Waterloo (519) 888-4567 
x6005  
 
Dr. Gaetan Tardif - Chair, Toronto Rehab Research Ethics Board (416) 597-
3422 x 3730 
 
Office of the Chair of Hamilton Health Sciences/Faculty of Health Sciences 
Research Ethics Board (905) 521- 2100 x42013 
IF I DO NOT WANT TO TAKE PART IN THE STUDY 
 
It is important for you to know that you can choose not to participate in the 
study. Your doctor can do tests to look at your bone density even if you do not 
participate in this study.  Choosing not to participate will in no way affect the 
regular therapy or health care that you receive.  
 
If do not want to participate, it is important for us to know if there are significant 
differences between people who choose to participate in our study and people 
who don’t. We ask if you would mind answering 7 brief questions that will be 
used to determine if the group of people who did not participate are different 
than those who did. You can also choose not to answer these questions, it is 
entirely your decision.  If you do not want the be in the study but might want to 
answer the questions, we will review them with you and let you decide. Neither 
your name or any identifying information will be used with this information. 
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CONSENT STATEMENT 

SIGNATURE OF PARTICICIPANT/LEGALLY-AUTHORIZED 
REPRESENTATIVE 

 
I have read the preceding information thoroughly. I have had the opportunity to 
ask questions, and all of my questions have been answered to my satisfaction. I 
agree to participate in this study. I understand that I will receive a signed copy of 
this form.  
 

______________________________________ 
Name of Participant  
 
______________________________________  ______________ 
Signature of Participant      Date 
 
If verbal consent is obtained in lieu of a signature, the person obtaining consent 
will initial here: ______________________ 
 
 

Consent form administered and explained in person by: 

 

I confirm that I have explained the nature and purpose of the study to the 
participant name above.  I have answered all questions.  I believe the participant 
has the legal capacity to give informed consent to participate in this research 
study. 
 
______________________________________ 
Name and title 
 
______________________________________  ______________ 
Signature        Date 
 
SIGNATURE OF PRINCIPAL INVESTIGATOR: 
 
I have delegated the informed consent discussion to      
 
 
______________________________________  _______________ 
Signature of Principal Investigator    Date  
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Access to Medical Charts 
 

 
Title of Study: Bone Quality in Individuals with Chronic Spinal Cord Injury 
Primary Investigators:  Dr. Lora Giangregorio and Dr. Catharine B. Craven 

Co-investigators: Dr. Papaioannou, Dr. Popovic, Dr. Thabane, Dr. McCartney 
and Dr. Adachi 
Student Investigators: Kayla Hummel, Deena Lala, and Julia Totosy de 
Zepetnek, Dept. of Kinesiology, University of Waterloo 
Sponsor: Canadian Institutes of Health Research, Ontario Neurotrauma 
Foundation, and SCI Solutions Network 
 

We would like to access your medical chart to verify your medical history. We 
would like to confirm your ASIA classification to see if it has changed, check 
your surgical and medical history and see any bone density scans you have had. 
By signing below, you are giving your consent to allow the coordinator of the 
study and lead investigators to look at your chart. You have the right to choose 
not to have anyone look at your chart if that is your wish.  The information 
collected from your chart will be used for research purposes only. 
 
Consent to give access to chart at Toronto Rehab: 
 
 
________________________    ______________________    ____________ 
Name     Signature    Date 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 
 
 

     Gender:               Male               
Female 

Date of Birth: / /  
                                      Y       Y      Y      Y       M      M        D       
D 

Date of injury/onset:  
 

           / /  
                 Y       Y       Y      Y       M      M        D       D  

Time Post Injury:   years 

 Level of Injury  (e.g. T12, C06):   

          N/A 

Cause of injury : 
___________________________ 

ASIA Impairment (A-D):  

 
 
 
 
 

ASIA Total Motor Score:  
 
ASIA LEMS:  
 

ASIA Sensory Score:  

 
 
  

Past Medical History 

Visit 01 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 
 
  

Past Medical History 

Visit 01 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 
 

Past Medical History 

Visit 01 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 

HEIGHT:  .  cm          
 

 Not Available 

WEIGHT:  .  kg         
 

 Not Available 

WAIST CIRCUMFERENCE:  .  cm         Not Available                                          
(taken at lowest rib) 

 
FEMALES ONLY: 
 
ARE YOU PRE-MENOPAUSAL, PERI-MENOPAUSAL OR POST-MENOPAUSAL? 
If they are unsure, skip to next question.  
£ PRE £ PERI  £ POST 
 
If they are pre- or peri-menopausal, or unsure ask: HOW LONG AGO WAS YOUR LAST 
PERIOD?  (do not count periods that occurred while taking hormones) 
 
£ LESS THAN ONE YEAR £ 1-3 YRS  
£ 3-10 YRS £ MORE THAN 10 YEARS 
 
If they are post-menopausal, ask: WAS YOUR LAST PERIOD GREATER THAN 10 
YEARS AGO? 
£ NO £ YES 
 
If NO, ask: WAS YOUR LAST PERIOD LESS THAN 5 YEARS AGO? 
£ NO £ YES 
 
HAVE YOU EVER HAD A HYSTERECTOMY OR HAD BOTH YOUR OVARIES 
REMOVED OR RADIATED?   
£ NO £ YES: SPECIFY PROCEDURE, AND AGE WHEN PERFORMED  
 
___________________________________________ 
 

Health Demographics 

Visit 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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Assessors Initials:  
 

Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 
 
DO YOU CURRENTLY SMOKE?   YES     NO #/DAY      
 
HAVE YOU EVER BEEN A SMOKER?   YES   NO   
      
IF YES TO ABOVE, PLEASE WRITE DOWN WHEN THEY STARTED AND STOPPED SMOKING (YEAR). 
ALSO PLEASE INDICATE HOW MANY CIGARETTES PER DAY, ON AVERAGE. IF AMOUNT SMOKED 
VARIED OVER TIME, PLEASE DESCRIBE. 
 
START   STOP   #/DAY  
            Y Y  Y Y              Y  Y  Y  Y   
 

 
DO YOU CURRENTLY DRINK ALCOHOL?   YES  NO   #/DAY   n/a 
BEER (bottles per week)  
WINE (glasses per week)  
LIQUOR (oz. per week)  
 
DO YOU HAVE A HISTORY OF ALCOHOL CONSUMPTION? 

 YES  NO   #YEARS    n/a 
BEER (bottles per week)  
WINE (glasses per week)  
LIQUOR (oz. per week)  
 
CAGE 
 
HAVE YOU EVER FELT YOU SHOULD CUT DOWN ON YOUR DRINKING? 
   YES  NO 
HAVE PEOPLE ANNOYED YOU BY CRITICISING YOUR DRINKING? 
   YES  NO 
HAVE YOUR EVERY FELT BAD OR GUILTY ABOUT YOUR DRINKING? 
   YES  NO 
HAVE YOUR EVER HAD A DRINK FIRST THING IN THE MORNING TO STEADY YOUR NERVES 
OR GET RID OF A HANGOVER (EYE-OPENER)? 
  YES  NO 

Health Demographics 

Visit 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 
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Assessors Initials:  

 
Bone Quality in Individuals with Chronic Spinal Cord Injury 
 

 
 
 
COMPLICATIONS 
 
PLEASE INQUIRE IF THE PARTICIPANT HAS EXPERIENCED ANY OF THESE COMPLICATIONS IN THE 
PAST 3 MONTHS (CHECK ALL THAT APPLY): 

 AUTONOMIC DYSREFLXIA  BLADDER INFECTION  
 PAIN  DEEP VEIN THROMBOSIS  
 PRESSURE SORE  CONSTIPATION 
 SPASTICITY  HETEROTOPIC OSSIFICATION 
 HEMORRHOIDS  BLADDER/KIDNEY STONES  
 INGROWN TOE NAIL   DRUG ADDICTION  
 GI BLEED   NEUROLOGIC DETERIORATION  
 LOW BLOOD PRESSURE   GYNECOLOGICAL PROBLEMS 
 SURGERY  
 OTHER (SPECIFY)_______________ 

 
DETAILS: 
___________________________________________________________________________ 
 
___________________________________________________________________________ 
 
___________________________________________________________________________ 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Health Demographics 

Visit 

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 



Assessors Initials: 

Bone Quality in Individuals with Chronic Spinal Cord Injury 

Spasm Frequency & Severity Scale

Visit

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 

SPASM FREQUENCY 

0 = No Spasm 

1 = Spasm induced only by stimulation 

2 = Infrequent spontaneous spasms occurring less than once per hour 

3 = Spontaneous spasms occurring more than once per hour 

4 = Spontaneous spasms occurring more than ten times per hour 

Right Left

0 1 2 3 4 Arm 0 1 2 3 4

0 1 2 3 4 Leg 0 1 2 3 4

0 1 2 3 4 Trunk 0 1 2 3 4

SPASM SEVERITY 

1= Weak 

2 = Moderate 

3 = Strong 

Right Left

1 2 3 Arm 1 2 3

1 2 3 Leg 1 2 3

1 2 3 Trunk 1 2 3

If severe and frequent lower extremity spasticity, complete  
following page prior to administration of Ativan and pQCT scan 

Page 1 of 1
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Assessors Initials: 

Bone Quality in Individuals with Chronic Spinal Cord Injury 

pQCT

Visit

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 

pQCT Participant #: Side:   Right      Left 

Leg Length: mm Voxel Size: Name of ROI:   

Comments:          

           

4% CT ID: CONTMODE: PEELMODE: 

Threshold 1 : Threshold 2 : Threshold 3 :

Total

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

Trabecular

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

Cortical Thickness:

.  mm 

Mean Hole Size: 

.  mm 

Max. Hole Size:  

.  mm 

Connectivity Index: # Nodes: 

Scans completed by (initials)
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Assessors Initials: 

Bone Quality in Individuals with Chronic Spinal Cord Injury 

pQCT

Visit

Y Y Y Y M M D D 

/ / Date of Assessment 

Participant ID 

38% CT ID: CONTMODE: PEELMODE: 

Threshold 1 : Threshold 2 : Threshold 3 :

Total

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

Cortical &
Sub-cortical

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

 Cortical Thickness: .  mm Polar x-sectional MOI: .  mm4

Connectivity Index: # Nodes: 

66% CT ID: CONTMODE: PEELMODE: 

Threshold 1 : Threshold 2 : Threshold 3 :

Total

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

Cortical &
Sub-cortical

BMC / 1mm slice: 

.  mg/mm

BMD:

.  mg/cm3

Area:

.  mm2

 Cortical Thickness: .  mm Polar x-sectional MOI: .  mm4

Connectivity Index: # Nodes: 

Scans completed by (initials)
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