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Abstract

Most datacenter network (DCN) designs focus on maximizing bisection bandwidth rather
than minimizing server-to-server latency. They are, therefore, ill-suited for important
latency-sensitive applications, such as high performance computing, realtime analytic sys-
tems and high-frequency financial trading. Although there are a number of existing ap-
proaches to reduce network latency, they are only partially effective, workload dependent,
and often require network protocol changes.

In this thesis, we explore architectural approaches to building a low-latency DCN and
introduce Quartz, a new optical design element consisting of a full mesh of switches con-
nected by an optical ring. We can reduce the network latency of a hierarchical or random
network by replacing portions of it with a Quartz ring. Our analysis shows that, in a stan-
dard 3-tier DCN, replacing high port-count core switches with Quartz can significantly
reduce switching delays, and replacing groups of top-of-rack and aggregation switches with
Quartz can significantly reduce congestion-related delays from cross-traffic. We overcome
the complexity of wiring a complete mesh by using low-cost optical multiplexers that enable
us to efficiently implement a logical mesh as a physical ring. We evaluate our performance
using both simulations and a small working prototype. Our evaluation results confirm
our analysis, and demonstrate that it is possible to build low-latency DCNs using inex-
pensive commodity elements without significant concessions to cost, scalability, or wiring
complexity.
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Chapter 1

Introduction

Datacenter network (DCN) bandwidth has increased dramatically over the past decade. In
contrast, DCN latency has reduced at a much slower rate. For example, network latency has
only had a 30x reduction over last 30 years, while network bandwidth has improved by more
than 3, 000x over the same period [38]. The focus on increasing network bandwidth is driven
by the needs of distributed batch computation frameworks with any-to-any communication
patterns, such as MapReduce [19] and Hadoop [6].

Nevertheless, network latency has become a critical factor in determining the perfor-
mance of many datacenter-scale, distributed applications. In most distributed real-time or
parallel computation frameworks such as Storm [9] and MPI [23], network latency mani-
fests as a substantial component of coordination delay and is therefore on the critical path.
Furthermore, interactive real-time analytics on Big Data sources must respond quickly to
complex user queries. Even a small increase in latency can impact the user experience for
these services, which can result in a significant reduction in revenue [44].

Past work on low-latency DCNs has primarily focussed on reducing packet process-
ing delays in the OS network stack [32], network interface card (NIC) [33] and network
switches [3], and avoiding network congestion through bandwidth reservations [30] or
congestion-aware flow scheduling [15, 28, 43, 46, 49]. Combining these techniques can, in
theory, result in an order of magnitude reduction in end-to-end network latency. However,
there are a number of limitations with current techniques. For example, although state-of-
the-art low-latency cut-through switches are already available commercially from compa-
nies such as Arista and Mellanox [3], they are limited in scalability compared to standard
store-and-forward switches. Current cut-through switches are limited to 64 ports compared
to 1024 ports for store-and-forward switches. Therefore, large DCNs must choose to either
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deploy standard high latency and high port density switches in their core-switching tier or
introduce an additional switching tier, which not only increases the number of switching
hops, but also creates additional congestion points. Moreover, a multi-tier network archi-
tecture, even one using cut-through switches, is still highly suspectable to latency spikes
due to the congestion focal points at the aggregation and core switching tiers. Even small,
infrequent bursts of cross-traffic can lead to highly unpredictable network latencies. As a
result of these limitations, current latency-sensitive applications are forced to use high-cost
dedicated networks in order to consistently meet their latency requirements.

Similarly, congestion avoidance techniques are often only effective for specific work-
loads and deployment scenarios. For example, congestion signal-based techniques mainly
reduce the number of dropped packets [15, 49] and only minimally reduce end-to-end de-
lays. Network-wide flow scheduling [14] techniques are unable to handle a large volume of
short flows. Finally, resource reservation techniques [30] require appropriate knowledge of
flow size and timing, which in practice can lead to significant resource underutilization.

1.1 Quartz

In this thesis, we explore an architectural approach to reduce network latency that is
complementary to previous efforts. Our key insight is that switching latency is minimized
by interconnecting top-of-rack (ToR) switches with a full mesh instead of a high-port
density core switch or an aggregation layer of switches. Unfortunately, a full mesh topology
has significant wiring complexity and does not scale well. We address the wiring complexity
problem by exploiting commodity photonics in the form of optical wavelength division
multiplexers (WDMs) to implement a complex O(n2) mesh as a simple O(n) optical ring.
This allows our solution, Quartz, to ride the cost reduction curve in WDM equipment,
which is driven by the large-scale roll out of fiber-to-the-home (see Figure 1.1 [17]).

The wiring complexity of a full mesh with n nodes is O(n2), since we need a pairwise
direct connection between any pair of ToR switches. However, a single optical cable using
WDM in Quartz can carry multiple wavelengths of light (‘colours’ or ‘channels’). By
‘splitting off’ the right colours from the Quartz ring at each ToR switch, we can set up
dedicated paths between any ToR switches, but with only two cables leaving each ToR
switch. Therefore, an O(n2) mesh is implemented by a simple O(n) optical ring in Quartz.

Compared to other topologies, Quartz has the lowest network diameter and, when
paired with Valiant Load Balancing (VLB), the highest path diversity. However, the
scalability of Quartz is limited by the size of the switches and the channel capacity of the
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Figure 1.1: Backbone Dense WDM per-bit, per-km cost improvements over time [17].

optical fiber. To deal with its limited scalability, we envision that Quartz can be used to
replace portions of traditional DCNs.

Traditional hierarchical networks, such as a 3-tier tree or fat-tree [13], are scalable
and easy to deploy. However, each switching tier introduces two extra switching hops
and additional congestion points. Consequently, we first explore replacing the ToR and
aggregation tiers with a single Quartz tier to significantly reduce the impact of cross-traffic.
We also explore replacing the core-tier switches with a Quartz ring. In a standard tree
network structure, the core tier must utilize high-port density store-and-forward switches
due to the limited port count of cut-through switches. By replacing the core switches
with Quartz using cut-through switches, we can significantly reduce the core-tier switching
latency.

Random topology networks [39, 40] are a new design point in DCNs that provide low
network diameter and high path diversity. Nevertheless, their randomness increase wiring
complexity, which makes them difficult to deploy in a datacenter. To take advantage of
this new design point, we explore grouping nearby switches together into a Quartz ring,
and then connecting the Quartz rings together to form a random graph.

We evaluate Quartz through both simulations using a packet-level simulator and exper-
iments on a working prototype consisting of four switches and six WDM muxes/demuxes.
Results from both our simulation and prototype show that replacing portions of a DCN
with Quartz can significantly lower the DCN’s network latency. We also evaluate the cost
of Quartz and show that it is cost competitive with traditional networks in many deploy-
ment scenarios. Moreover, we expect the cost of our solution to reduce over time as WDM
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shipping volumes rise.

1.2 Contributions

We make the following contributions in this thesis:

• We present a novel design element called Quartz consisting of a WDM-based full
mesh to reduce communication latency in DCNs.

• We show how Quartz can be used in different topologies to reduce latency and con-
gestion.

• We validate Quartz by building a small working prototype.

• We evaluate Quartz’s performance using both our prototype and a discrete-event
simulator. We find that Quartz can reduce network latency by more than 50% in
many scenarios.

1.3 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 provides the background
and related work for this thesis. Chapter 3 describes the detailed architecture of Quartz
and explores using Quartz as a design element for DCNs. Chapter 4 shows our experimental
results comparing Quartz with other DCNs. Chapter 5 concludes this thesis.
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Chapter 2

Background and Related Work

In this chapter, we first discuss several types of applications that require low network
latency, then describe different sources of network latency and previous work that addresses
each source. Finally, we introduce the optical network devices that are used in Quartz and
outline related optical DCN proposals.

2.1 Latency-Sensitive Applications

In this section, we describe three common latency-sensitive application types.

High-performance computing applications typically require extremely low inter-
server communication delays. Most non-trivial high-performance computing applications
require significant coordination between different cluster nodes. Communication techniques
such as MPI [23] and Remote Direct Memory Access (RDMA) were developed specifically
to reduce communication latency for these applications. Communication delays reduce
speedup and therefore limit overall application performance.

Big-memory distributed data-storage systems [21,47] provide a platform for real-
time data analytics applications [9] that require extremely high transaction rates with
strict latency limits per transaction. Reducing network latency is especially critical in big-
memory data-storage systems that offer distributed transactions, because lower network
latency can lower the transaction abort rate by reducing the duration of each transaction.

Financial applications, such as those that perform high-frequency algorithmic trad-
ing, are a critical element in today’s global financial markets. These applications typically
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Component Standard State of Art

OS Network Stack 15µs [38] 1 - 4 µs [32]
NIC 2.5 - 32µs [38] 0.5µs [33]

Switch 6 µs [4] 0.5µs [3]
Congestion 50µs [32]

Table 2.1: Network latencies of different network components.

receive data directly from stock exchanges and use proprietary algorithms to perform trades
every few microseconds, with projections that nanosecond-scale trading will soon be pos-
sible [27,42]. Different trading strategies have varying latency requirements, ranging from
hundreds of milliseconds for low frequency alpha trading to several microseconds for latency
arbitrage.

Financial applications already use several techniques to reduce network latency between
the datacenter and the stock exchange, such as collocating trading servers within exchange
buildings and using direct line-of-sight fiber optic links from the exchange to the datacen-
ter. In order to fully capitalize on high speed trading, inter-server communication delays
within the same datacenter also need to be minimized. The need for low server-to-server
latency is driven by the increasing sophistication of the trading algorithms, which requires
computation to be distributed across multiple servers.

2.2 Sources of Latency

There are many sources of latency in DCNs (see Table 2.1 for a summary). In this section,
we briefly discuss several sources including the network stack, network interface cards,
switch latency, congestion and topologies. We also describe past work that addresses these
latency sources.

2.2.1 Network Stack

A packet received by a Network Interface Card (NIC) from the network is first processed
by the operating system kernel before being passed to user space. Therefore, packets often
need to wait for one or more context switches before they are received by a user-space
application. Techniques such as kernel bypass, and zero-copy processing can reduce this
latency. Kernel bypass allows user space applications to communicate directly with NICs,
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eliminating additional context switching. In zero-copy processing, data can be moved
from the read buffer to the send buffer without requiring additional processing or memory
transfers, which reduces processing latency. In recent work, the Chronos [32] system uses
these techniques to significantly reduce the operating system kernel latency for datacen-
ter applications. Another novel framework netmap [37] also enables fast packets I/O by
preallocating resources, sharing buffers and metadata between kernel and userspace.

2.2.2 Network Interface Cards

Commodity NICs can introduce tens of microseconds of latency from performing basic
buffering and packet processing. Recent work shows that by offloading packet processing
to an FPGA and optimizing the communication between the FPGA and the host processor,
NIC latency can be reduced to hundreds of nanoseconds [33]. Alternatively, Infiniband can
be used in place of Ethernet to achieve lower NIC latency. Infiniband supports Remote
Direct Memory Access (RDMA), which allows the NIC to bypass the operating system
kernel to directly access memory. Support for RDMA over Ethernet [29] has recently been
introduced by vendors such as Myricom, Solarflare, and Intel. With increasing demand
for low-latency NICs from latency-sensitive applications, commodity NICs with RDMA
support may be available in the near future.

2.2.3 Switch Latency

Switching delay is a significant source of network latency. For example, the Cisco Catalyst
4948 10 Gigabit Ethernet Switch, which is representative of current datacenter network
switches, has a switching latency of at least 6µs. In a typical three-tier network architecture,
switching delay can therefore be as high as 30µs. Switching delay can be reduced by having
fewer network tiers, and adopting low-latency cut-through switches. Unlike store-and-
forward switches, cut-through switches start to forward a frame before the whole frame
has been received. Low-latency switches, such as the Arista 7100 [3], have a switching
delay of approximately 500 ns. Cut-through switches command only a relatively small
price premium over the same port density store-and-forward switches [2,8]. Unfortunately,
they are limited in scale (currently support up to 64 ports) compared to standard store-
and-forward switches (currently support more than 1000 ports), and are therefore mainly
used as ToR or aggregation switches rather than core switches.
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2.2.4 Congestion

Although current datacenter networks support high bisection bandwidth, bursty traffic can
still increase queuing delay over short time scales adding tens of microseconds to end-to-end
latency. Recent work has identified several techniques for reducing network congestion.

Some of these techniques aim to reduce congestion by introducing some changes to TCP.
For example, DCTCP [15] utilizes Explicit Congestion Notifications (ECN) to ensure that
queues do not overflow. However, DCTCP is only partially effective at reducing congestion
delays over time scales shorter than a few round-trip-times.

Recent proposals such as D2TCP [43] and PDQ [28] use distributed congestion avoid-
ance algorithms to manage flows at end-hosts and switches respectively. DeTail [49] reduces
network latency by detecting congestion and selecting alternative uncongested paths to re-
duce queuing delay. Deadline Driven Delivery (D3) [46] is a deadline-driven protocol where
the sender requests the amount of bandwidth equal to the total amount of data divided by
the time to the deadline. D3 does not coexist with legacy TCP and requires that the user
application knows the size and deadline of each of its flows, which in practice can lead to
significant network underutilization.

These protocol-based techniques require significant changes to the application, are un-
able to scale to a large number of short flows, and their effectiveness is limited by the
amount of path diversity in the underlying network topology.

2.2.5 Topology

Network topology is a critical factor in determining a DCN’s equipment and deployment
cost, wiring complexity, scalability, and performance characteristics (bisection and end-to-
end latency). In this section, we outline the latency characteristics of different topologies
in turn.

Tree Networks: Tree topologies, such as the standard multi-root tree structure [1] and
Fat-Tree [13], organize the network into multiple switching tiers. Switches in each tier are
only connected to switches in adjacent tiers, with the lowest tier of ToR switches connected
to servers. This topology is scalable and, at least for the standard multi-root tree structure,
has relatively low wiring complexity. However, each tier increases the maximum hop-count
by two. The additional switching tiers also create focal points for congestion. Even for Fat-
Tree, where there is abundant path diversity, congestion due to cross-traffic from different
racks is still possible unless every flow is scheduled to use completely independent paths,
which is difficult for short flows [14].
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Server-Centric Networks: DCell [26], BCube [25] and CamCube [12] are networks that
use servers as switches to assist in packet forwarding. These are scalable networks with
high bisection bandwidth and path diversity. However, using servers to perform packet
forwarding can introduce substantial delays in the OS network stack. Furthermore, server-
centric networks can reduce the performance of computationally-intensive jobs, because
high-bandwidth packet forwarding requires a significant number of CPU cycles [12,39].

Randomized Networks: SWDC [39] and Jellyfish [40] propose to randomly connect
servers or switches in a datacenter network. Random topologies usually have high path
diversity and high bisection bandwidth. However, the worst case network diameter is
typically much larger than a similar size tree network, even if the average path length is
smaller. Randomized networks are also difficult to deploy and manage as they have very
high wiring complexity.

Mesh Networks: Mesh networks directly connect every node to every other node, where
a node can either be a server or a switch. A full mesh network provides the lowest possible
network diameter and eliminates congestion arising from cross-traffic from other nodes.
These properties make mesh networks an attractive option for low-latency DCNs. However,
mesh topologies are rarely used in DCNs because the O(n2) connections requirement greatly
limits scalability and increases wiring complexity.

2.3 Optical Network Technologies

A number of recent DCN proposals [18, 22, 45] include various optical network elements,
such as fiber-optical cables and optical switches, in their design. Optical fiber permits
transmission over longer distances, with higher speed and even lower energy consumption,
than electrical cables. For instance, current state-of-art optical fibers support transmis-
sion at up to 400Gb/s [24] over a single channel, and each optical fiber can carry many
independent channels. Quartz uses the following optical equipment:

1. Optical Transceiver: An optical transceiver is an active device that converts elec-
trical signals to/from optical signals.

2. Wavelength Division Multiplexer/Demultiplexer (WDM): A WDM consists
of a multiplexer and a demultiplexer. The multiplexer combines optical signals of dif-
ferent wavelengths into a single fiber for transmission. Conversely, the demultiplexer
splits a WDM signal into different single wavelength channels, with each channel on
a separate fiber cable.
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Our work takes advantage of optical multiplexers and demultiplexers (mux/demux) to
reduce the wiring complexity of mesh networks. An optical mux/demux uses Wavelength
Division Multiplexing (WDM) to carry multiple network connections using different wave-
lengths in a single optical cable. Through judicious selection of wavelengths, it is possible
to implement a full mesh network as a small set of optical rings that share a single physical
ring. Importantly, unlike packet switching approaches, optical multiplexing and demulti-
plexing does not introduce additional switching or queuing latency.

It is also important to distinguish between a WDM and an optical switch. A WDM
is a low-cost commodity photonic element that is deployed at mass-scale to build fiber-to-
the-home networks. Figure 1.1 (taken from [17]) shows that the cost of Dense WDMs have
fallen at an exponential rate since 1993. Assuming this trend continues to hold, Quartz will
only become more cost-competitive over time. In contrast, optical switches are complex,
low-volume, and expensive to build due to the use of custom ASICs.

2.4 Related Optical Proposals

Current optical proposals are trying to increase bandwidth between specific nodes to ad-
dress the needs of elephant flows. For example, C-through [45] and Helios [22] propose
to solve the bandwidth problem in over-subscribed datacenters by augmenting electrical
networks with optical connections. Optical links are added to each of the ToR switches and
these optical links are connected to a MEMS optical circuit switch (OCS). An OCS switch
can be reconfigured at real-time to build an optical circuit connection between two links.
OSA [18] proposes a pure optical datacenter architecture. Each ToR switch has several
optical links to the OCS switch. By reconfiguring the OCS switch, OSA can make online
network topology changes, allowing on-demand bandwidth changes between racks. Unfor-
tunately, all of these optical proposals require OCS switches, which increase latency and
limit scalability. Most OCS switches require tens of milliseconds to reconfigure an optical
circuit, although there has been recent work [36] that reduce this delay by 2− 3 orders of
magnitude. Nevertheless, even with this improvement, the optical switching latency is still
more than 10 µs, which is much larger than current cut-through switches. Furthermore,
the scalability of these optical proposals are limited by the port density of optical switches
(320 ports [45]).

In addition to latency and scalability, traffic demand estimation is required to config-
ure OCS. The most common solution is to predict the highly utilized links to determine
the configuration of the optical switches. However, traffic estimation is highly unreliable
because datacenter network traffic is typically bursty [16].
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Chapter 3

Architecture

In this chapter, we describe the architecture of Quartz and explore replacing different
portions of traditional DCNs with a Quartz ring.

3.1 Quartz

Quartz is a WDM-ring network that implements a full mesh as a single physical ring. Each
Quartz switch has, in addition to n standard ports, k optical transceivers1. Transceivers
can be tuned to specific wavelengths of light. Two transceivers connected by an optical
cable must be tuned to the same wavelength to communicate.

Each switch on a Quartz ring is also associated with a WDM. The multiplexer por-
tion combines optical signals of different wavelengths (also called ‘channels’) onto a single
multiplexed optical signal for transmission on a single optical cable. Conversely, the de-
multiplexer portion splits a multiplexed optical signal into its constituent channels, with
each channel placed on a separate optical cable.

Direct connection between switches s and t on the Quartz ring requires allocating them
a dedicated channel denoted λst. Moreover, one of the transceivers on each switch is tuned
to this channel. Switch s uses the demultiplexer to remove (‘drop’) all channels of the form
λ∗s from the ring and to add channels of the form λs∗ to the ring. Thus implementing a
full mesh requires only two physical cables to connect to each Quartz switch.

1Most 10GigE and all future 40/100GigE ToR switches already use optical transceivers due to their
lower power consumption and higher signal quality.
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Figure 3.1: Quartz switches with n = 8 and k = 6. Each switch is only physically connected
to two nearby switches by an optical cable. Switch 1 and switch 2 are connected using
channel λ12. Switch 1 and switch 3 are connected using wavelength channel λ13.

Figure 3.1 shows a small Quartz ring. In this example, switch 1 and switch 2 are directly
connected and they communicate using channel λ12. Switch 1 and switch 3 communicate
with each other using channel λ13. At switch 2, the λ13 channel in the multiplexed optical
signal essentially passes through to switch 3. Therefore, there is an optical connection
between switch 1 and switch 3, even through they are not physically connected.

3.1.1 Channel Assignment

Note that communication between switch s and switch t in Quartz requires them to have
exclusive ownership of channel λst. If an optical cable could support an infinite number
of channels, we could build an optical ring of arbitrarily large size that supports pairwise
communication between switches. However, current technology can only multiplex 160
channels in an optical fiber and commodity Wavelength Division Multiplexers can only
support 80 channels. Therefore, we need to determine the optimal way to assign channels
such that we can build a ring of size K using the minimum number of channels.

Quartz attempts to assign Λ available channels to each pair of switches in a ring of size
M using two principles: (1) For any two switches s, t in the ring, there exists an optical
path between them using wavelength λst. (2) For all optical links on the path between s
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Rack 1 Rack 2 

Rack 3 

Rack 4 Rack 5 

Figure 3.2: Quartz ring of size 6. The logical topology is equivalent to a mesh structure
where any two switches are directly connected. By using WDM, only adjacent switches
are connected with a optical fiber.

and t, there is no other channel using the same wavelength λst. For example, in Figure 3.2
if switch 1 and switch 3 are using wavelength λ13, then using λ13 between rack 2 and rack
4 should be avoided, because λ13 would be used twice on the link between switch 2 and
switch 3.

Given these constraints, the wavelength assignment problem can be formulated as an
Integer Linear Program (ILP) similar to [48]. The ILP problem is known to be NP-
Complete. However, for a small ring, we can still find the optimal solution by ILP. We also
introduce a greedy packing algorithm to calculate the minimum number of wavelengths
needed for building such a ring for larger ring sizes.

ILP Formulation

Let Cs,t,i denote the clockwise path from s to t using channel i ∈ {1, ...,Λ} and let Ct,s,i

denote the anti-clockwise path. Variable Cs,t,i is set to 1 if channel i is used for communica-
tion between s and t. Each s, t switch pair should use one channel for their communication
on either clockwise or counter-clockwise direction (Eq. 3.2).
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Variable Ls,t,i,m is the indicator variable of whether link m, the link between switch m
and (m + 1) mod M , is using channel i for the path between switch s and t. We define
static value Ps,t,m = 1 if the clockwise path between s and t passes through link m. If
link m is on the path between switch s and switch t, and wavelength i is used for their
communication, Ls,t,i,m = 1. This is guaranteed by Eq. 3.3.

On each link m, a single channel i should be only used at most once. We ensure this
set of constraints by Eq. 3.4. To count the total number of channels used, variable λi is
created to show whether channel i is used in the ring. Eq. 3.5 makes sure that λi equals
1 if channel i is used in the ring.

minimize:
∑
i

λi (3.1)

subject to:

∀s < t,
∑
i

Cs,t,i +
∑
i

Ct,s,i = 1 (3.2)

∀s, t, i,m, Ls,t,i,m = Ps,t,mCs,t,i (3.3)

∀m, i,
∑
s,t

Ls,t,i,m ≤ 1 (3.4)

∀i,
∑

Ls,t,i,m ≤Mλi (3.5)

∀ variable ∈ {0, 1} (3.6)

The goal is to minimize the total number of used channels. If the ILP is solvable, it means
all switch pairs can communicate with each other. The optimization result is the minimum
number of channels required for the given ring size.

Greedy Channel Assignment

We outline a simple, greedy algorithm to solve the channel assignment problem for larger
rings. For all the paths between switch pairs (s, t), they are first sorted by their length.
For a ring with M nodes, the maximum path length between two switches is bM/2c, so
there are bM/2c sets of path lengths. Consider an algorithm with bM/2c iterations, where
paths in each set is assigned in one iteration. Our heuristic is to give priority to long paths
to avoid fragmenting the available channels on the ring. Shorter paths are assigned later
because short path are less constrained on channels that are available on consecutive links.
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Figure 3.3: Optimal wavelength assignment

In each iteration, starting from a random location, the channels are greedily assigned to
the paths until all paths are assigned or the channels are used up.

To evaluate the greedy algorithm, we compare the results with the ILP solution. Fig-
ure 3.3 illustrates the results of this evaluation, and shows that our greedy heuristic per-
forms nearly as well as the optimal solution. Furthermore, it shows that the maximum
ring size is 35 since current fiber cables can only support 160 channels at 10 Gbps.

3.1.2 Scalability

Because of its full mesh structure, the maximum size of a Quartz network is, in part,
limited by the port count of the switches. Using low-latency 64-port switches, where each
switch connects each one of 32 of its ports to a different switch, this configuration mimics
a 1056 (32 × 33) port switch. This relatively small maximum network size suggests that
Quartz should be used as a component in new DCN designs, rather than as a replacement
for existing DCNs. We explore using Quartz as a network design element in Section 3.2.

For deployment scenarios where a larger Quartz network is necessary, one can increase
the size of the network by connecting each server to more than one ToR switch. For
example, for a configuration where (1) each server has two NICs, (2) there are two top-of-
rack switches in each rack, (3) each server is connected to both switches in its rack, and (4)
each rack has a direct connection to every other rack, the longest path between any two
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Figure 3.4: A flat mesh network where ToR switches are directly connected. (a) direct
routing (b) two-hop routing.

servers is still two switches. However, this configuration can support up to 2080 (32× 65)
ports at the cost of an additional switch per rack.

3.1.3 Routing in Quartz

We now discuss the integration of Quartz into link layer addressing and routing. A näıve
approach to routing in Quartz would be to treat all servers as being in the same L2
Ethernet network. However, because Ethernet creates a single spanning tree to determine
the forwarding path of packets, it can only utilize a small fraction of the links in the
network. To utilize all direct paths between switches, we advocate using ECMP routing in
the Quartz’s mesh. Since there is a single shortest path between any pair of switches in a
full mesh, ECMP always selects the direct one-hop path, which minimizes hop count and
interference from cross-traffic.

A possible problem with only using the direct paths in Quartz is the amount of band-
width oversubscription between each pair of switches. In a Quartz configuration using
64-port switches where 32 ports from each switch are connected to servers, there is a 32:1
oversubscription between racks, which can be a problem for certain workloads. However,
workloads that spread traffic across different racks, such as standard scatter/gather work-
loads in large-scale computational platforms such as MPI [23] and MapReduce [19], are
unaffected by this kind of independent, rack-to-rack bandwidth overscription.
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For workloads that concentrate traffic between two racks, one can significantly reduce
rack-to-rack oversubscription by using Valiant Load Balancing (VLB) [20,34] to make use
of two-hop routes. We configure each switch to send k fraction of the traffic through the
n − 2 two-hop paths and the remaining fraction through the direct path. For instance, if
there is a large amount of traffic from rack 6 to rack 3 in Figure 3.4(b), VLB will send k
fraction of this traffic through Rack 1, 2, 4, and 5 over two-hop paths. The parameter k
can be adaptive depending on the traffic characteristics. We provide a detailed bandwidth
analysis of Quartz and different tree topologies in Section 4.2.

3.1.4 Fault Tolerance

Rings are well known to be less fault tolerant than a multi-rooted tree: two link failures
in a ring partition the network. However, by using multiple physical optical fibers to
interconnect switches and multi-hop paths, we can significantly reduce the likelihood of
partitioning the network. For example, if a Quartz network with 33 switches requires 137
channels, we can use two 80-channel WDM mux/demuxes instead of a single mux/demux
at each switch. In this configuration, there will be two optical links between any two nearby
racks, forming two optical rings, and link failures are less likely to partition the network.
Of course, this resilience comes at an additional cost.

Since combinatorial analysis of multi-hop path reachability is complex, we use simula-
tions to evaluate the performance of Quartz with one to four physical rings under random
link failures. Figure 3.5 shows the average bandwidth loss and probability of the network
partitioning in a 33-switch Quartz network. The top figure shows the percentage of aggre-
gate bandwidth loss. With only one ring, a physical optical link failure results in a 20%
reduction of the network bandwidth. Using 4 rings, the average bandwidth reduction is
only 6%. The network partition probability for two or more link failures in a single-link
network is more than 90%. Surprisingly, by adding a single additional physical ring, the
probability of the network partitioning is less than 0.24% even when four physical links
fail at the same time.

3.2 Quartz as a Design Element

A Quartz mesh has low latency, high path diversity with VLB, and the same wiring com-
plexity as ring networks. Yet its scalability is limited by the size of low-latency cut-through
switches. A Quartz network built using 64-port switches and a single switch per rack pro-
vides 1056 server ports, which, as a DCN, is only sufficient for small datacenters.
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Figure 3.5: The top graph shows the percentage of bandwidth loss from broken fibre links
with different ring sizes. The bottom figure shows the probability of network partitioning.
With two rings, four link failures can partition the network at a very low probability of
0.0024.

Larger datacenters can instead use Quartz as a design element to, for instance, replace
portions of their DCNs in order to reduce switching or congestion delays for traffic between
servers in nearby racks. In the following sections, we explore using Quartz in the edge as
a replacement for both the ToR and aggregation tiers in a 3-tier tree network, in the core
tier as a replacement for large, high-latency core switches, and in randomized networks to
reduce switching and congestion delays for traffic with strong locality.
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3.2.1 Quartz in the Edge

Current DCNs typically employ either 2 or 3-tier tree topology [13]. Figure 4.9 illustrates
a 3-tier tree network in which each ToR switch in the edge tier is connected to one or
more switches in the aggregation tier, each of which is in turn connected to the switches
in the core tier. Although a 3-tier tree network is highly scalable and easy to deploy, it
has significant switching and queuing delays due to its high hop count and the congestion
points in its top two tiers. Furthermore, because of the low path diversity in tree topologies,
applications running in a 3-tier tree network cannot avoid congestion points even when they
are generating traffic with strong locality (i.e., between nearby racks).

We can significantly reduce the latency of a 3-tier tree network by replacing a portion
of the edge and aggregation tiers with a Quartz tier, as illustrated in Figure 4.12. This
configuration reduces the maximum hop count from five to three and the number of con-
gestion points by effectively eliminating a tier from the network. Moreover, unlike in a
2-tier tree network, localized traffic that span multiple racks can be grouped into a single
Quartz ring and can therefore avoid the large switching delay of the core switch. The
full connectivity of the Quartz network also provides more freedom for application specific
locality optimizations, which is important given that most datacenter traffic patterns show
strong locality [31].

3.2.2 Quartz in the Core

Large DCNs that connect hundreds of thousands of servers require core switches with port
count in excess of a thousand ports because of the need to interconnect several hundred
aggregation switches. These switches are based on slower but more scalable store-and-
forward designs, and have switching latencies that are an order of magnitude more than
low-latency cut-through switches. Furthermore, they are generally very expensive, with a
significant portion of the cost being the large chassis that connects the switch line cards [5].
Therefore, although these switches provide modular scalability, the large upfront cost of
the chassis means that incorrect growth prediction is very costly.

To avoid the high latency and poor price scalability of current core switches, we explore
a configuration that replaces core switches with Quartz, as illustrated in Figure 4.11. A
Quartz network using low-latency switches has significantly lower switching delays than
core switches. It also does not require an expensive upfront investment; switches and
WDMs can be added as needed. A potential problem with replacing core switches with
Quartz is that, unlike core switches, Quartz does not offer full bisection bandwidth. We
evaluate the impact of this limitation using a pathological traffic pattern in Section 4.5.
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3.2.3 Quartz in Random Topology Networks

Random topology networks, such as Jellyfish [40] and SWDC [39], offer an exciting new de-
sign point in DCNs. However, without any network structure, it is difficult for applications
running in random topology networks to take advantage of traffic locality. Furthermore,
much like mesh networks, random topology networks have high wiring complexity, which
limits their scale.

To address these issues, we propose an alternative design to Jellyfish that, instead of
creating a random graph of switches, creates a random graph of Quartz networks. This
configuration enables applications to take advantage of traffic locality in the same way as
we discussed in Section 3.2.1. Furthermore, by grouping nearby switches together into a
Quartz network before connecting the Quartz networks together into a random graph, this
configuration reduces the number of random connections and therefore greatly simplifies
the DCN’s wiring complexity.

3.2.4 Configurator

Datacenter providers must balance the gain from reducing end-to-end latency with the
cost of using low-latency hardware. Unfortunately, as we have discussed earlier, latency
arises from numerous factors, including datacenter size, network topology, traffic load, and
switch type. Therefore, it is possible to only give approximate guidelines regarding the
gain from introducing low-latency components into a DCN.

We make a ‘best-effort’ attempt to quantify the cost-benefit tradeoff of using Quartz in
Table 3.1, which summarizes the cost of using Quartz in various network configurations.
We consider different datacenter sizes, ranging from 500 servers to 100,000 servers. We
take into account (at a very high level) the network utilization of a datacenter; we consider
when the network’s utilization is ‘high,’ which corresponds to a mean link utilization of
70%, and ‘low,’ which corresponds to a mean link utilization of 50%. We also investigate
various network topologies including a two-tier tree, three-tier tree, a single Quartz ring,
and the use of Quartz in the edge or core layer (or both). We present the approximate
packet latency reduction from using Quartz based on our simulation results in Section 4.4
and the cost per server for these various network configurations.

We first analyse the use of Quartz for small datacenters, which have approximately 500
servers. We observe that the use of Quartz increases the cost per server by 5% compared
to a two-tier tree structure. However, we can achieve a latency reduction of at least 33%

20



Datacenter Size Utilization Sample Topologies LRQ Cost/Server

Small (500 Servers)

Low
Two-tier tree

33%
$589

Single Quartz ring $616

High
Two-tier tree

50%
$589

Single Quartz ring $616

Medium (10K Servers)

Low
Three-tier tree

20%
$530

Quartz in edge $628

High
Three-tier tree

40%
$530

Quartz in edge $628

Large (100K Servers)

Low
Three-tier tree

70%
$525

Quartz in core $525

High
Three-tier tree

74%
$525

Quartz in edge and core $601

Table 3.1: Approximate cost and latency comparison. Costs include all the hardware
expenses except servers. Note: LRQ represents Latency Reduction with Quartz.

in an environment with low network utilization and more than 50% with high network
utilization.

In the case for medium-sized datacenters, which consists of 10,000 servers, we find that
the use of Quartz increases the cost of the datacenter by 18% and reduces the datacenter’s
latency by 20% with low traffic, and more than 40% with high traffic. The cost of using
Quartz is higher in a medium-sized datacenter than a small-sized datacenter because of the
larger size of the Quartz ring needed to serve more servers; thus, more optical hardware is
required.

Finally, we consider a large datacenter that contains 100,000 servers. We find that using
Quartz at the core layer does not increase cost per server since the three-tier tree requires
a high port density switch. As high port density switches are also expensive, their cost
is similar to the optical hardware that is found in a Quartz ring. By replacing high port
density switches with Quartz rings, we see a 70% improvement in latency with low traffic.
We also consider the use of Quartz at the both edge and core layer in an environment with
high network utilization. We see that the cost increases by 13% and latency is reduced by
more than 74%.

To summarize, we realize that it is impossible to give exact cost-benefit tradeoffs due to
the numerous sources of network latency. We demonstrate however that (a) Quartz can be
used as a design element in many different standard DCNs (b) the additional (one-time)
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cost due to introducing Quartz is fairly small and (c) in all cases, using Quartz significantly
reduces end-to-end latency.
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Chapter 4

Evaluation

We have previously described the architecture of Quartz and its use as a design element
in large DCNs. In this chapter, we analyse Quartz’s path diversity and bisection band-
width to determine the theoretical performance benefit of using a full mesh network as a
design element. We also evaluate Quartz’s performance using both simulations and a small
working prototype.

4.1 Wiring Complexity and Path Diversity

We analyze the properties of five representative network topologies (2-tier tree, Fat-Tree [13],
BCube [25], Jellyfish [40] and mesh) and determine their suitability as a low-latency net-
work design element. In this analysis, we configure each topology to mimic a single switch
with approximately 1000 ports. We define wiring complexity as the number of cross-rack
links. We compute the path diversity of each topology using the metric defined in [41]:

Definition (Path Diversity) Given a node pair (source s, destination d), the path
diversity PD between them is the number of disjoint paths for a packet to transit between
s and d.

For example, even though there exits 3 different paths between node pair (s, d), the
path diversity is only 2 due to a shared link for two of these paths in Figure 4.1. Note that
Jellyfish’s path diversity depends on both the chosen routing algorithm (k-shortest-path
or ECMP) and the number of switch-to-switch links. Table 4.1 shows a summary of the
key properties of these topologies.
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s d 

Figure 4.1: Sample graph for path diversity.

Out of the five network topologies, the 2-tier tree structure requires the fewest switches
to provide 1k usable ports and therefore has the lowest relative equipment cost. It is
also the simplest structure to wire; each ToR switch only has a small constant number
of connections to each of the second tier switches. However, as established by previous
work [13], providing high bisection bandwidth in a tree network requires high port count
second tier switches that are both expensive and, more importantly, have high latency. This
problem, combined with its low path diversity, which can result in significant congestive
delays, make 2-tier tree networks a poor choice for a low-latency design element.

By increasing path diversity, Fat-Tree, BCube, and Jellyfish have lower congestive de-
lays and offer significantly more bisection bandwidth than 2-tier tree networks without re-
quiring high port count switches. Fat-tree is the most expensive of the three structures, but
provides full bisection bandwidth without requiring server-side packet switching. BCube’s
use of server-side packet switching results in the highest latency of the five topologies. All
three systems have relatively high wiring complexity.

Finally, a mesh network offers the lowest hop count and latency when using direct
routing, and relatively high bisection bandwidth and the highest path diversity when using
indirect routing with VLB. It also has the highest wiring complexity, but by implementing
it using a WDM ring, the wiring complexity can be simplified to be as low as a 2-tier tree
network.

4.2 Bisection Bandwidth

Given the use of two-hop paths in Quartz using VLB, it is difficult to analytically estimate
its bisection bandwidth. Instead, we use simulations to compare the aggregate throughput
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Switching Latency NoS Wiring Complexity PD

2-Tier Tree 1.5µs (3 Switch Hops) 17 16 1

Fat-Tree 1.5µs (3 Switch Hops) 48 1024 32

BCube 16µs (2 Switch Hops & 1 Server Hop) 32 960 2

Jellyfish 1.5µs (3 Switch Hops) 24 240 ≤32

Mesh 1.0µs (2 Switch Hops) 33
528

32 (with VLB)
32 (with WDMs)

Table 4.1: Summary of different network structures with 1k servers. Note: NoS represents
the Number of 64-port Switches and PD stands for Path Diversity.

of a Quartz network normalized to that of an ideal (full bisection bandwidth) network
for typical DCN workloads. We also compare Quartz’s throughput with reduced capacity
networks with 1/2 and 1/4 bisection bandwidth. We use the following common datacenter
communication patterns in our comparison1:

1. Random Permutation Traffic. Each server sends traffic to one randomly selected
server, while at the same time, it receives traffic from a different randomly selected
server.

2. Incast Traffic. Each server receives traffic from 10 servers at random locations of
the network, which simulates the shuffle stage in a MapReduce workload.

3. Rack Level Shuffle Traffic. Servers in a rack send traffic to servers in several
different racks. This represents traffic when the administrator is trying to balance
the load between racks through VM migration. This load pattern is common in
elastic datacenters, where servers are turned off at off peak hours.

Figure 4.2 shows the normalized throughput for three traffic patterns. The normalized
throughput equals to 1 if every server can send traffic at its full rate. For random permuta-
tion traffic and incast traffic, Quartz throughput is about 90% of a full bisection bandwidth
network. For rack level shuffle traffic, the normalized throughput is about 0.75. We con-
clude that Quartz’s bisection bandwidth is less than full bisection bandwidth but greater
than 1/2 bisection bandwidth. Overall, Quartz provides significantly higher throughput
than the other oversubscribed network topologies for all three traffic patterns.

1Note that all the traffic goes to different racks, that is the worst case comparison.
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Figure 4.2: Normalized throughput for three different traffic patterns

4.3 Prototype

In this section, we validate the Quartz design by building a small prototype, and determine
the relative performance difference between Quartz and a 2-tier tree in a simple cross-traffic
experiment. Our prototype consists of 4 commodity switches and 8 servers, as illustrated
in Figure 4.4. Three of the switches are Nortel 5510-48T, and the fourth is a Cisco Catalyst
4948. All four are 1 Gbps managed switches with 48 ports.

Figure 4.3(a) shows the logical connectivity between the switches. By using WDM
muxes/de muxes, we can simplify the network cabling to Figure 4.3(b), where there are
only optical links between nearby switches in a ring. The network has 8 servers in total
and 4 links between any bisection of the network, which means it can provide full bisection
bandwidth. Our prototype has 12 CWDM SFP transceivers which support 1.25Gbps bidi-
rectional communications. Among the transceivers, 8 of them use the 1470nm wavelength
band, 2 of them use the 1490nm band, and the remaining 2 use the 1510nm band. We also
use 4-channel CWDM muxes/demuxes in our prototype to multiplex different channels
into one optical fibre cable.

Each server is equipped with a 1 Gbps Intel Pro/1000 GT Desktop Adapter and is
running Ubuntu 11.10 without any low-latency OS or network stack changes. In order to
isolate the impact of the network architecture on latency, we present relative rather than
absolute performance results while maintaining the same software and hardware configu-
rations throughout our experiments.
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(a) Logical connectivity 
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(b) Actual connectivity 
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Figure 4.3: Topology of our testbed.

To precisely control the traffic paths in our experiments, we use the technique intro-
duced in SPAIN [35] to expose alternative network paths to the application. We create 4
virtual interfaces on each server, where each virtual interface sends traffic using a specific
VLAN and the spanning trees for the VLANs are rooted at different switches. Therefore,
an application can select a direct two-hop path or a specific indirect three-hop path by
sending data on the corresponding virtual interface.

4.3.1 Impact of Cross-Traffic

We evaluate the performance of Quartz and a 2-tier tree topology using a cross-traffic
workload. In order to ensure a fair comparison, we use the prototype described in Sec-
tion 4.3 for evaluating Quartz, and rewired the switches from the Quartz prototype into a
2-tier tree (1 aggregation and 3 ToR switchs) to perform our 2-tier tree experiments. Each
ToR switch is connected to two servers and we use six total servers in our experiments.

Our cross-traffic workload consists of a “Hello World” RPC written in Apache Thrift [10]
between two servers (Rsrc and Rdst) connected to different ToR switches (S2 and S3), which
represents a latency sensitive flow, and additional bursty traffic generated using Nuttcp [11]
from three servers connected to S1 and S2 to a server connected to S3. Figure 4.5 illustrates
the topologies and the different flows. Note that we only use direct paths and we do not
use the servers connected to S4 in this experiment. To minimize OS scheduling related
uncertainties, each server is only involved with one flow. The RPC application executes
10, 000 RPC calls one at a time for each experiment, and the bursty cross-traffic consist of
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Figure 4.4: Quartz with 4 switches, connected by WDMs

20 packet bursts that are separated by idle intervals, the duration of which is selected to
meet a target bandwidth. The bursty traffic from the three servers are not synchronized.
We perform 100 runs of each experiment and show the 95% confidence interval as error
bars.

Figure 4.6 shows that, as we increase the cross-traffic from 0 to 200 Mbps (0 to 20% of
the link bandwidth), the RPC latency rapidly increases for the tree topology due to con-
gestion. At 200 Mbps, the RPC latency for the tree topology increases by more than 70%
compared to its latency without cross-traffic. In contrast, the RPC latency is unaffected
by cross-traffic with Quartz. These results corroborate with our analysis in Section 4.1,
and demonstrate the impact of the network topology on reducing network congestion from
cross-traffic.

4.4 Simulation Study

In order to evaluate the performance of Quartz and other topologies at scale, we imple-
mented our own packet-level discrete event network simulator that we tailored to our spe-
cific requirements. With the simulator, we can determine the latency performance of any
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Figure 4.5: Traffic flows of cross-traffic experiment

network topology and any network devices. In this section, we first present our simulator
verification process. We then discuss the configuration details of our experiments. Finally,
we present our experimental results that compare Quartz with other network topologies.

4.4.1 Verification Process

Our simulator focuses on modelling switching latency, propagation delay and queueing
latency. Since the switching latency and propagation delay are independent of the system
load, which can be validated using simple test cases, we focus on verifying our simulator’s
queueing latency.

Our simulator models switches that have an output-queued switching architecture.
Therefore, each of our switches has a switching-processor that makes the forwarding deci-
sions, and an output buffering queue for each port as shown in the Figure 4.7. We have
performed extensive validation of our simulator to ensure that it produces queueing laten-
cies that match queueing theory [7]. Our validation test uses an M/M/1 queueing model
which requires: (1) the packets arrive at rate λ according to a Poisson process; (2) ser-
vice time for each packet has an exponential distribution with parameter µ; (3) buffer size
is unbounded and is served in FIFO order. With this model, the average response time
(waiting and service time) t in the buffer should be:

t =
1

µ− λ
.
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Switch Latency Port Count
Cisco Nexus 7000 (CCS) 6 us 768 10Gbps or

192 40Gbps
Arista 7150S-64 (ULL) 380 ns 64 10Gbps or

16 40Gbps

Table 4.2: Specifications of switches used in our simulations.

Our validation process involves generating a large number of packets with exponentially
distributed sizes, and sending them into the network according to a Poisson process. We
vary the packet size and arrival rate to verify that the response time matches queueing
theory. Figure 4.8 demonstrates two sample verification results with different packet sizes.
As expected, the cumulative average delay of packets quickly converges to the M/M/1
expected result.

4.4.2 Configuration Details

We make the simplifying assumptions that servers send packets according to a Poisson
process and packet sizes are exponentially distributed with a mean of 400 bytes. We model
two state-of-the-art switches in our simulator:

• Cisco Nexus 7000 core switch (CCS)

• Arista 7150 ultra low latency switch (ULL)

The specifications of these switches are summarized in Table 4.2. In our simulated ar-
chitectures, we use ULL exclusively in fat-tree and Quartz, while we use ULL for both ToR
switches and aggregation switches, and CCS as core switches for the other architectures.
Each simulated Quartz ring consists of four switches; the size of the ring does not affect
performance and only affects the size of the DCN. We implement the following network
architectures in our simulator 2 :

1. Three-tier Tree (Figure 4.9): A basic three-tier tree structure with each ToR
switch connected to two aggregation switches over 40Gbps links, and each aggregation
switch connected to two core switches over 40Gbps links.

2 Jellyfish employs k-shortest-path, while the others adopt Equal-Cost Multi-Path (ECMP) as routing
algorithm.
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Core
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Figure 4.9: Multi-root 3-tier tree.

2. Three-tier Fat-tree (Figure 4.10): The network is divided into 4 pods, where
four switches are connected over 10Gbps links for each pod, and each aggregation
switch connects to two ULL switches over 40Gbps links.

3. Quartz in Core (Figure 4.11): Each core switch is replaced with a Quartz ring.
The aggregation switches connect to the Quartz ring over 40 Gbps links.

4. Quartz in Edge (Figure 4.12): The ToR and aggregation switches are replaced
with Quartz rings. Servers connect to the Quartz rings using 10 Gbps links, and the
Quartz rings connect to the core switches using 40 Gbps links.

5. Quartz in Edge and Core (Figure 4.13): Both core and edge layers are replaced
with Quartz rings.

6. Jellyfish: A random topology consisting of 16 ULL, with each switch dedicating
four 10 Gbps links to connect to other switches.

7. Quartz in Jellyfish: A random topology consisting of four Quartz rings, with each
Quartz ring dedicating a total of four 10 Gbps links to connect to switches in the
other rings.

4.4.3 Results

We evaluate the performance of the different topologies using three common traffic pat-
terns:
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• Scatter: One host is the sender and the others are receivers. The sender concurrently
sends a flow of packets in Poisson process to the receivers.

• Gather: One host is the receiver and the others are senders. The senders concur-
rently send a flow of packets in Poisson process to the receivers.

• Scatter/Gather: One host sends packets to all the other hosts, then all the receivers
send back reply packets to the sender.

These traffic patterns are representative of latency sensitive traffic found in social net-
works and web search [15], and are also common in high-performance computing applica-
tions, with MPI [23] providing both scatter and gather functions as part of its API. With
these workloads, we are primarily interested in determining the impact of cross-traffic on
latency, where cross-traffic is generated by running multiple instances of these traffic pat-
terns at the same time. Note that we do not show Quartz using ECMP and VLB separately.
This is because there is negligible performance difference between the two protocols when
using these traffic patterns.

Figure 4.14, 4.15 and 4.16 show the average latency of each scatter, gather, or scat-
ter/gather operation in which the senders and receivers are randomly distributed across
servers in the network. Both the scatter and the gather workloads show that the three-
tier tree introduces significant latency even with only a single task where there is minimal
congestion. Most of this latency is from the high-latency core switch. There is also an
approximately linear increase in latency with additional tasks for the three-tier tree. Per-
forming both scatter and gather exacerbates the problem with the three-tier tree exhibiting
both a higher linear increase in latency with additional tasks, and a substantial jump in
latency going from three to four tasks. This latency jump is due to link saturation from
an oversubscribed link.

Fat-tree has similar latency characteristics as Jellyfish, since it also uses low-latency
cut-through switches instead of high-latency core switches in the core layer. Furthermore,
since Fat-tree provides non-blocking throughput, it does not exhibit the latency jump from
adding the fourth task.

Using Quartz in the edge reduces the absolute latency compared to the three-tier tree
even with only one task. This is due to the additional paths between servers in the same
ring that avoid the core switch. More importantly, latency is mostly unaffected by adding
additional scatter or gather tasks, which can be attributed to the high path diversity of
the Quartz ring. Introducing additional scatter/gather tasks does increase the latency of
Quartz in the edge, although at a lower rate than the three-tier tree.
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As we had expected, the main performance benefit from using Quartz in the core is a
reduction in the absolute latency of the core tier. There is more than a three microsecond
reduction in latency by replacing the core switches in a three-tier tree with Quartz rings.

Using Quartz in both the edge and core reduces latency by nearly half compared to
the three-tier tree. The latency reduction comes from a combination of a reduction in
hop-count, and a significantly lower latency core tier.

Jellyfish and Quartz in Jellyfish perform almost identically for these traffic patterns.
Therefore, we omit the Quartz in Jellyfish line to improve the clarity of the graphs. These
random networks exhibit low latency due to their relatively low average path length and
high path diversity. They have a similar response to an increase in cross-traffic as Quartz
in the core, with a slightly lower absolute latency. However, these results are, in part,
due to the small simulated network size. For networks that are one or two orders of
magnitude larger, we would expect a small increase in path length that would increase
the absolute latency by a few microseconds. In contrast, the other network topologies can
support these larger network sizes without an increase to their path lengths. Furthermore,
Jellyfish’s random topology is especially well-suited for handling globally distributed traffic
patterns. Therefore, we next look at traffic patterns that exhibit strong locality.

Figure 4.17, 4.18 and 4.19 show the average latency of a local task, that is, a task
that only performs scatter, gather, or scatter/gather operations between servers in nearby
racks. There is only one local task per experiment; the remaining tasks have randomly
distributed senders and receivers and are used to generate cross-traffic. The three-tier tree
has significantly lower latency in this experiment because the local task traffic does not
have to traverse the core tier. However, it still exhibits a linear increase in latency with
additional tasks. Unlike the global traffic patterns experiment, Fat-tree does not benefit
from its cut-through core switches for localized traffic. Therefore, its latency is identical
to the multi-root tree until the links in the multi-root tree become saturated.

Jellyfish has the highest latency for these traffic patterns because it is unable to take
advantage of the traffic locality. Note that in our experiments, the local task performs
scatter, gather, and scatter/gather operations to fewer targets than the non-local tasks.
This accounts for the slight reduction in latency for Jellyfish’s local task compared to its
non-local tasks.

By using Quartz in the edge or as part of Jellyfish, there is a significant reduction in
latency for the local task. Traffic from the local task remains within the Quartz ring, and
because of Quartz’s high path diversity, these topologies are mostly unaffected by cross-
traffic. We only see an increase in latency when increasing the number of scatter/gather
tasks.
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Figure 4.14: Average latency for global scatter traffic. This graph is best viewed in colour.
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Figure 4.15: Average latency for global gather traffic. This graph is best viewed in colour.
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Figure 4.16: Average latency for global scatter/gather traffic. This graph is best viewed
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Note that Fat-tree is identical to multi-root tree in this figure.
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4.5 Pathological Traffic Pattern
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Figure 4.20: Pathological traffic pattern.
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Figure 4.21: Average latency comparison for pathological pattern.

Replacing a core switch with a Quartz ring significantly reduces latency and, for smaller
networks with plans for growth, avoids the upfront cost of purchasing a large, expensive,
and mostly empty core switch chassis. However, a Quartz ring does not provide full
bisection bandwidth, which can impact performance for certain workloads. In this section,
we compare the performance of a non-blocking core switch to that of using Quartz in

41



the core. We use a simple pathological traffic pattern that, when used on Quartz, sends
multiple flows of traffic from different ports on switch S1 to multiple receivers connected
to switch S2, which stresses switch-to-switch bandwidth. Our Quartz ring consists of four
40GbE switches logically connected as shown in Figure 4.20(a) and we use a standard
non-blocking core switch as shown in Figure 4.20(b) for comparison.

Figure 4.21 shows the packet latency of these flows as we increase the aggregate flow
bandwidth. As expected, the non-blocking core switch is unaffected by the competing flows,
but introduces a significant amount of switch latency because of its store-and-forward
design. Using Quartz in the core with ECMP routing, which only uses direct paths,
offers significantly lower latency than the core switch until it saturates the link bandwidth
between the source and destination switch. Beyond saturation, the packet latency of these
flows becomes unbounded. Using Quartz in the core with VLB routing, which uses both
direct and indirect paths, the latency is essentially equivalent to using ECMP routing for
the low traffic experiments. Even with 50 Gbps aggregate taffic, there is no noticeable
increase in packet latency when performing VLB routing.
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Chapter 5

Conclusion

The goal of this thesis is to reduce the latency for certain applications that require low
latency in DCNs. Past work to reduce network latency has a number of limitations, for
example, some of them rely on protocol changes [15, 49], or require network-wide flow
scheduling [14] or strict resource reservations [30]. Our focus is on using an architectural
approach to reducing latency that is complementary to previous efforts. The key insight
behind our design, Quartz, is that we can implement an O(n2) mesh as an O(n) physical
ring by using commodity WDMs. Furthermore, with the exponentially drop in the cost of
optical devices, Quartz will become more cost-effective with time.

The main limitation of a WDM-ring is its limited scalability. We overcome the scala-
bility limitation by using Quartz as a design element that can replace portions of current
DCNs. Quartz can be used to replace the edge and aggregate tier, or the core tier, or
both. It can be incrementally deployed as needed to cut latency in portions of DCNs, or
to allow incremental deployment of a core switch. Moreover, if port count of low-latency
cut-through switches increases, Quartz becomes more scalable.

Compared to existing topologies, Quartz has three advantages: (a) least possible hop
count, so minimal latency (b) elimination of queuing latency due to cross traffic and (c)
if necessary, the ability to use two-hop paths to achieve high bisection bandwidths, at the
expense of slightly higher latency. Quartz is completely legacy-compatible: its benefits can
be obtained without having to replace current DCNs.

In this thesis, we have evaluated these ideas extensively. Through the analysis of path
diversity and bisection bandwidth, we found that WDM mesh ring is the most suitable
design element for low latency DCNs compared to several representation topologies. Our
experimental results corroborate our analysis; the results show that Quartz can significantly
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reduce the latency of a DCN under several realistic workloads. In particular, we found that
using Quartz in both the core and edge can reduce latency by 50% in typical scenarios.
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