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A latin squaze C of orda n is said to be mur-complete, and is denoted by 

RGLS(n), if the ordered pairs (L*, Lsd+l) are $1 distinct for 1 < i 5 n and 

1 5 j n - 1. Ror-complete latin squares are &O called mmon squares , and 

are used in statistics in the design of squential srpesïments. In the Ianguage of 

statistics, an RCLS(n) is a bdanced repeated measurements (n, n, n) design . 

In 1949, Williams provided a simple construction for an RCLS(2m) for every 

m, but the situation fm odd orders has ptoven to be much more dScult. Ln the 

last 30 years or so, varions authors have given constructions of RCLS for certain 

odd orders, bat the state of knowledge has nevertheless remained somewhat sparse. 

In this thesis, hro new methods of construction for RCLS are given. The first, a 

product construction, yields infinitely many new orders for which RCLS are h o a n  

to h t .  The second construction, which is the highlight of this thesis, is a direct 

construction of an RCLS for any odd composite order other than 9. Since RCLS 

of order 9 and of even order have previously been constructed, this proves that 

RCLS of every composite order &. 

h addition, a new result is given on the related concept of quasi-compkte latin 

squares (QC LS). Specdically, it is shown that complete sets of mutudy orthogonal 

QCLSb)  ePst for every prime p. Such sets were previody hown to &t only 

for primes p 13. 
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Chapter 1 

Introduction 

1.1 RCLS - Applications and History 

A latin square L of order n is an n x n array of n symbols (nsnally the nnmbas 1 

to n or O to n - 1) mch that each symb01 occnrs exactly once in each row and in 

each column. .L is said to be row-complete (or is sometimes cded  a roman square), 

and is denoted by RCLS(n), if the ordered pairs (Lgj, are dl distinct for 

1 5 i 5 n and 1 5 j n - 1. In the language of statistics, an RCLS(n) is a 

bdanced npeated mecarrements (n, n, n) design (see e.g. [13]). In connection to 

graph theory, an RCLS(n) gives rise to a decomposition of the complete directed 

graph on n vertices into n edgedisjoint Hamiltonian paths [17]. 

Row-complete latin squares are used in statistics in the design of sequentid 

experiments (see [4, 191 or (7, Section 2.31). For example, suppose adjacent plots 

of land in a square array are to receive Merent treahents in an agricultural 

experiment to 

a latin squase 

determine the relative effectiveness of the treatments. The entries of 

may correspond to the treatments applied to the plots of land, but 



treatments applied to idjacent plots of land might hteract, and so the latin square 

should be row-complete in ordet to balance ont these interactions. 

Anotha example is in the field of psychology- Suppose n subjects are each 

tabiag part in a s a i e s  of n psychologieal tests. The performance of a subject on a 

given test might be iduenced by both the number of tests the subject has already 

taken (e-g. fatigue may set in) and the immediately preceding test. The first of 

these idluences can be mmpensateà fot by letting the z* mbject take the tests in 

the order given by the a* row of a latin square, and the second, by ensnring the 

latin square is row-complete. 

In 1949, Williams [19] provided a simple construction for an RCLS(2m) for 

every m, but the situation for odd ordenr has proven to be mach more difficult. An 

RCLS(1) d s  trivially, and it is known that thexe are no RCLS of orders 3,s or 

7. IR 1968, Mendelsohn [17] fotmd an RCLS(21), the hst non-trivial RCLS of odd 

order ever constnicted. Over the next 15 years, varions authors gave constructions 

for RCLS of orders 9, 15, 25, 27, 33, 39, 55 and 57 (see [2, 8, 13, 16, 181). 

It is known that an RCLS(n) exists wheneva t h a e  e à s t s  a sequenceable group 

of order n, that is, a group with identity e whose dements can be ordered as 

g1 = e, gz, ..., g,,, so that the partial products qlg, - - 9 3  are all distinct for 1 5 i 5 n 

(the ordering is then said to be a sequenchg of the group) [12). Sequencings for 

the tao non-abelian groups of order 27 are horn (see [l, 16]), and the non-abelian 

groups of  order pq, where p < q are odd primes with p 1 q - 1, were sequenced by 

Keedwell [15] in 1981 whenever p has 2 as a primitive root . This latter result gave 

the fist infinite class of odd order RCLS (e.g. take p = 3 and note that there are 

infinitely many primes congrnent to 1 (mod 3)). 

Two latin squares A and B of order n are orthogonal if the ordered pairs 
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(4, &) are ail distinct for 1 5 i, j n, and the latin squares Al, At, ..., At are 

d e d  mutudfy odiogond if eaeh pair of them is orthogonal. Heinrich [14] proved 

in 1979 that if there arist k mutually orthogonal RCLS(n) and if there exists an 

RCCS(k), then an RCLS(nk) aiso exists. In 1991, D&es and Keedweil [SI genmal- 

ized r e d t s  of Heinrich [14] to show that if th- d s  a non-abelian sequenceable 

group of mder n and p b the smaUest prime fBCtor of n, then there exist p - 1 
mutudy orthogonal RCLS(n). This result, dong with the r d t s  of Heinrich and 

Keedwd above, gave more orders for which RCLS can be consmided, the srnailest 

being 11 23 9 = 2277 (obtained by t a h g  p = 11, q = 23, n = pq and k = 9). 

AU of the orders of known RCLS paor to this thesis have corne from the above- 

mentioned results. 

1.2 New Results in This Thesis 

In Chapter 2 it is proved that if an RCLS(rn) and a sequencing of a group of order 

n both e s t ,  then so does an RCLS(mn). This product c o ~ c t i o n  provides 

inhitely many new orders for which RCLS can be constructed, the smdest of 

which is 9 21 = 189 (obtained by taking m = 9 and n = 21 = 3 7). 

The main r d t  of this thesis, a disect construction for an RCLS of any odd 

composite order other than 9, is presented in Chapter 3. Since RCLS of order 

9 and of even order have previous1y been constrncted, this proves that RCLS of 

every composite order ex&. 

The related concept of qu&cumplete latin squates (QCLS) b âiscussed in 

Chapter 4, where it is shown that complete sets of mntu$ly orthogonal QCLS@) 

exist for every prime p. Such sets were prevhsly known ody for primes p < 13. 



Chapter 2 

A Product Construction 

In this chapta, a constraction of an RCLS(mn) is given asing an RCLS(m) and a 

sequencing of a grmp of order n, where m and n are assamed to be odd (since, as 

noted in Section 1.1, even order RCLS have akeady been constrncted). This yields 

iafinitely many new ordas for which row-compIete latin squares can be constracted. 

2.1 Sequenceable Groups and Property P 

Two latin squares A and B of the same orda and defined on the same set of symbols 

wi l l  be said to have propedy P if whenever 4 = Be then AS. = B,. 

The results of Beinrïch in [14] provide the foUowing theorem. 

Theonm 2.1 ([a, Theorem 1.41) Let a l ,  oz, ..., 4, be a sequencvig of a group G 

of order n, und let b~ = al,b = aius, ..., b,, = ala~*--a,, t z  the corresponding 

partial produ&. If hl, ht , . . ., h, and kl , kt, -. . , k,, are orderings of the elemenb of G 

such that hlk;', h&', ..., Lkz1 is olso an orderàng of the elements of G, then the 

arruys H and K defined by 8, = kbj and KG = 4bi are orthogonai RCLS(n). 
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Li padidar, if n is odd, then the following holds. 

Theorem 2.2 If there czuts a scqumceabIe group of odd order n, then there rzist 

two od iogond  RCLS(n) liauing property P. 

Proof Setting ki = hrL for 1 i 2 n satisties the conditions of Theorem 2.1. 

This is because the mapping g » g' is a permutation of G whenever r is relatively 

prime to 8, since if g; = 6, then gi = gi8 = (&)' = (9;). = g? = gz, where rs r 

1 (mod n). F'tuthermore, H and K then have property P, since if 8, = KS., then 

kaj = hilbj, hence hi = hi1 and so hk = hr', giving &j = hkbj = hhLbj = Kij. 

I 

This theorem wi l l  be used in the next section, where the main "mesh" constrac- 

tion is presented. 

2.2 The Mesh Construction 

If A and B are rn by rn arrays (not necessarily defined on the same set of symbols), 

d e h e  A mesh B, written A O B, to be the m by m array d&ed by 

Ai i fj isodd 
(A0 B), = 

Bij if j is even, 

for 1 5 i, j < m. Note that in general, A o B # B O A. 

Abo, if C is an m by m array of symbols, define the reverse of C, written cR, 
to be the m by m array formed by reversing the columns of C, that is, 
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for l < i , j S m .  

Theorem 2.2 aül be used to prove the following main theorem. 

Theorem 2.3 I f  an RC LS(m) and a sequencetzble p u p  of order n both d, then 

an RCLS(mn) &O czists. 

Proof As mentioned above, rn and n can be assamed to be odd. So by Theorem 

2.2, thexe exist tao orthogonal RC LS(n) E and K defined on the symbob 1,2, .. ., n 

having property P. Let A be an RCLS(m) defiaed, Say, on the symbols l ,2 ,  ..., m, 

and let A('), A('), ... , A(") be n isomorphic copies of A on disjoint sets of symbols, 

namely 

4;) = (Aj, k), 

for l < i , j s m a n d 1 5 k < n .  

Let L be the mn by mn array, defined on the set S = {(x, Y) : 1 5 z 5 rn, 1 5 

y 5 n)  of mn symbols, whose (i, j)" "block" is 

To see this, k s t  it is necessary to show that L is a latin square. To prove t h ,  

it suSces to show that the array B, where 
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for 1 5 i ,  j < n, 1 5 u,v 5 m, is a latin square, since B is obtained fiom L by 

permuting its colnmns. 

Let (2, y) be any symbol in S, and consida any row t = (i - l)m + u of B, 
where 1 5 i 5 n and 1 5 u 5 m. Since A is a latin squaxe? there exists jl with 

1 5 j1 5 m, wch that LiL = 2, and so = @,y)- Since H and K are latin 

squares, there exist j2 and ja with 1 5 j2, j~ < n, such that Hih = Ki, = y. 

If ji is odd, then 

while if ji is even, then 

Thas each symbol in S occurs in each row of B. 

Nor consider any colnmn c = (3 - 1)m + v of B, whae 1 5 j 5 n and 

1 5 v 5 m. Since A is a latin square, there exists il with 1 5 il n, such that 

Ai,, = 2, and so 4: = (2, y). Since H and K are latin squares, there exist i2 and 

iJ with 1 < i2, is 5 n, saeh that Hia = KG = y. 

I f v  is odd, then 

while if v is even, then 
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Thns each symbol in S also occurs in each colnmn of B, and so B is a iatin square, 

hence so is L- 

It remains to show that L is row-complete. To this ad, let ((2, y), (2, w ) )  be 

any ordered pair of symbob of S, whee 1 5 z, z rn and 1 5 y, w < n. There are 

two cases. 

Case 1: Suppose z # z. 

there exïst a and t with 1 5 s, t < n, such that (H', Kd) = (y, w) ,  and so since H 

and K have property P, these exists r with 1 5 r n, sach that (Elvt, K,) = (w , y). 

H t is odd and A is odd, then 

and 

If t is odd and jl is even, then 

and 
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If t is even and A is odd, then 

Case 2: Suppose z = z. 

Since H is row-complete, there exkt i, j with 1 5 i 5 n and 1 j n - 1, 
such th& (Hij,&j+l) = (y,w). Since A is a latin square, there exist ui and ul 

"th 1 < ul, ua 5 rn, sach that LI, = &l = 2, so that A;:!,, = 4; = (z, y) 

and 47k = e= (z, w )  = (r, tu). 

If j is odd, then 



and 

So L is row-complete, hence L is an RCLS(mn), proving Theorem 2.3. 1 

Note that in the above proof, the fact that K is row-complete is never used. K 

maely needs to be a latin square whieh is orthogonal to the RCLS(n) H such that 

H and K have property P. 

The following are some u s e h l  corollaries of Theorem 2.3. 

Coroilary 2.4 If the= h t s  an RCLS(m) and if there d sequenceable groups 

of each of the orders nl, nl, ..., nk (when nl, nl, ..., are not necessady distinct), 

then t h e n  e&ts an RCLS(mnln2 - nr). 

Proof Apply Theotem 2.3 repeatedly. I 

CoroUary 2.5 If rn is of the f o m  m = T 27°(mql)t1 (hq# - (Pkqc)tkl & e n  

r E {1,9,15,25,33),  pi < qi a n  odd primes such that pi 1 qi - 1 and pi has 2 cr9 a 
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primitive mot (1 5 i 5 k), and k, s, t l ,  t2, ..., té am non-negative integezs, &n an 

RCLS(m) ezists. 

Proof As mentioned in Section 1.1, groups of d e r  27 and piqc (where pi and qi 

satisfy the stated conditions) have been sequenced, and RCLS of orders 1, 9, 15, 

25 and 33 have been found. Applying Corollary 2.4 then gives the redt .  I 

It is interesthg to note that setting k = O and r = 1 or 9 in Corollaty 2.5, 

and letting s range over ail the non-negative integers, gives an RCLS(3j) for each 

non-negative integer j P O or 2 (mod 3). RCLS of these orders were not previously 

known to eJcist for j > 3. 

Corollary 2.5 gives infinitely many new orders for which RCLS can be con- 

stmcted. Table 2.1 lists these new ordas (indîcated by an asterisk *) as well as the 

previously known odd orders, under 3000. 



CKAPTER 2. A PRODUCT CONSTRUCTION 

Table 2.1 

Odd Orders of RCLS Known Prior to This Thesis 

Plus New Ordas Obtained via the Mesh Construction (np to 3000) 

(* inàicates new orders via the mesh constraction) 



Chapter 3 

A Composite Order Direct 

Construction 

3.1 Introduction 

The highlight of this thesis is presented in this chapter, narnely, a construction 

of a row-complete latin square of orda n, where n is any odd composite number 

0th- than 9. Since row-complete Iatin squares of order 9 and of even order have 

previous1y been conshcted, this proves that row-complete latin squares of every 

composite order &t. 

The construction is presented in Sections 3.2 tkough 3.5. An example of the 

construction when the order is 35 (the smaûest odd composite order for which an 

RCLS was not previody hown to exbt)  is given in Section 3.6. 



CEiAPTER 3. A COMPOSITE ORDER DIRECT COIVSTRUCZTON 

3.2 Generating Arrays 

Throughout this chapter, let q = pO be a powa of an odd prime p with q # 3 ( p  

can eqnal3, bat then a 2 2), and let m be an odd numba rith m 2 3. Also, 

denote by F, the finite field of order q and by &, the set of integers modulo m. 

Define a generuting a m y  (see [2]) to be a q x mg array A defined on the symbol 

set F, x &, mch that, Wrjting Aii = (z,, y,) fm 1 5 i q and 1 j 5 mg, the 
following conditions hold: 

((21) each symbol appears once in each row of A; 

Suppose A is a q x mq generating array (with 4 = (z,, y,)). Ddhe L to be 

the mq x mq array on symbol set FQ x t, with 

for 1 < i 5 q, 1 5 j 5 mg and O 5 k 5 m - 1 (and of course computations involving 

the first and second coordinates are carried out in FQ and z,,, respectively). As in 

[2], the foUowing holds. 

Theorem 3.1 The a m y  L defined ebove Y an RC LS(mq) . 



Proof Suppose = Then t* = z~ and y, + L = y, + k, so 

that & = &. By condition (Gl) , ji = j2. So no spmbol occurs more than once 

in any row of t. 

Suppose LhQ+g ,j = &bq+ia ,je Then zil j = zi2 j and Yi, j + ka = -f k- Since 

- = z+ j7  it ~OUOWS fkom condition (62) that il = il. But then y<, j = y, j, r and so 

kl = k2. So no symbol occnrs more than once in any column of L. 

Therefore L is a latin square. 

To show that L is row-complete, suppose 

Therefore L is row-complete, and s; L is an RCLS(mq). I 

So to construct an RCLS(mq), it suffices to construck a q x mq generating array 

A (rith Ai = (z~, yi j ) ) ,  which is what d ~ O W  be discnssed. 



3.3 Choosing The yG9s - R-Sequenceability 

In Sections 3.3 and 3.4, assume m = 4+ + 1, where T 2 1. The case m = 4+ + 3 

(with r 2 O) is similar, and is dealt with in Section 3.5. 

Set y to be constant dong columns of A, that is, set 

for 1 5 i < q and 1 3 5 mg, where the sequence s is to be detamiaed. 

Writing 

di = sj+i sj 

for 1 5 j < mq - 1, condition ((33) then states that for each fixed z E k, the 

ordered pairs (z,, z+,j+>) for whicb di = z must all be different. Since there are at 

most tf snch ordered pairs, and since i is &ee to range from 1 to q, at most q of the 

di's can take on a ftxed value Z. hrthermore, if z = O, then Yi, j+l= sj+i = s j = y,, 

hence by condition (GI), z<,j+l # z ~ ,  and so by a similar argument as above, at 

most q - 1 of the diYs can tde  on the value O. A simple counting argument then 

shows that these upper boonds must be met, that is, exacfly q - 1 of the di's must 

equal0, and for fixed z # O, exactly q of the diYs mast equal a. 

So to summarize, the folloning are necwsary conditions which the above se- 

qaence s mut satisfy if A is to be a genaating array: 
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An additive groap of orda m is cded R-setpenceable if there is an ordering 

gl = 0,g2, ...,g, of its elements so that the partial sams gi + gz + . . . + gi are all 

distinct for 1 5 i 5 rn - 1 (exactly one element does not occur among these partial 

sums). The ordering is then said to be an R-sequmcing of the gronp. 

The concept of R-sequenceability wil l  be used to constrnct a sequence s satis- 

fj&g conditions (SI), (S2) and (S3). 

The following is the sequence of partial sums of the R-sequencing of 2, (where 

m = 4 t +  1) givenin (81: 074r,l,4r - 1 ,..., s-2,3r+2,r  - l ,3r+l7+,3+ -1,t + 
1,3r - 2, ..-, 2r - 2,2r + 1,2r - 1,2r, O. By the definition of R-sequenceability, all of 

the nnmbers in the above sequence, except for the last, are distinct. Fiirthermore, 

each nonzero element of & occnts once as a difference of consecutive terms in the 

sequeme (and O occurs zero times as a dinaence). Deleting the last 'term O then 

gives a sequence z of length m - 1, alI of whose ter= are distinct, and snch that 

each nonzero element of ï,,, occtus once as a diffixence of qc l icd ly  consecutive 

terms. ln fact, the same properties WU hold for any sequence which is obtained 

fÎom r by cyelicdy shifting z and then adding a constant dement of î,,, to eadi 

term of the resulting sequence. 

In parti&, these properties hold for the following sequence ur obtaùied by 

adding t + 1 to each term of z and then cydicdy shating the redting seqnence 

2r places forward: 2r + 1,4r, 2r + 2,4+ - 1, ..., 3r - 1,3r + 2,3r, 3r + 1, r + 1, T, + + 
2 7  -1 ,..*, 2r-l12,2r,1* 

Define the teverse of the sequence w ,  written rev w ,  to be the seqaence obtained 

by reversing the order of the elements of w,  and choose s to be the sequence which 

begins with q - 1 O's, followed by q - 1 sequences w, followed by one sequence rev tu, 

and then ends with a single O. 
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Theorem 3.2 The sequence a, chosm os above, satisfies conditions (SI), (S2) and 

(S3.I 

Proof Condition (SI) cieady holds since, as mentioned above, each nonzero el- 

ement of appears exactly once (and O dqes not appear at d) in w ,  and hence 

&O in rat W .  Also by the discussion above, the diffèremes sj+l- aj a p p k g  in s 

are: q - 2 O's, followed by a single 2r + 1, followed by q - 1 of d nonzero element 

of & acept q - 2 of (2r  + 1) - 1 = 2r, followed by a sinde 0, followed by one of 

each nonzero element of & except 1 - (2r + 1) = 2 r  + 1, f o b e d  hally by a single 

O - (27 + 1)  = 2r .  Rom this it is dear that conditions (S2) and (S3) hold. I 

3.4 Choosing the x$s - Component Squares 

Let o be a primitive element of F, (i.e. a generator of the dtiplicative groap of 

nonzero elements of F,), and write F, = {fi, f2, ..., f,}. To define the zij's, latin 

squares of side q on symbol set F, wdl  be used. These latin squares wil i  henceforth 

be called component squares . For O 5 k 5 m - 1, define the 6" component square 

cck) by 

for 1 i, j q, where uk, bk and c i  are constants in F, to be detamined later, a d  

Since ak and bi are nonzao, and since u is a primitive dement, c ( ~ )  is a latin 

square. 

Fa 1 j 5 mq, suppose symbol s j  occats for the t? t h e  at position j of the 

sequace 8 (i-e= tj = I{f : 85, = S j ,  1 5 j' 5 j)l). SO specifidy, t iis the seQuence 
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which begins with 1,2, ..., q - 1, followed by m - 1 lys, m - 1 2's ,..., m - 1 q's, and 

which ends with a single q. 

Set the p column of z's in A to be the tp colamn of the sr component sqaare, 

th& is, 

( a i )  - (4 Fnrthermose, A satisfies condition (62) , since if j = zia j , then Ci, ,tj - Ci, 
and so since the C(~ ) 'S  ai, latin squares, il = i l .  

The rest of this section deals wïth hding values of the ak's, bk's and ck's for 

which A satisfies condition (63)  (and hence is a generating array). 

Condition (G3) reqnires that, for each h e d  d E Z,,,, dl of the ordered pairs 

where 1 i 5 q , 1 5  j 5 mq and -aj = d, be distinct. 

There are seven cases. 

Case 1: d = 0. 

The relevant ordered paire are (c,), c$+~) and (cEL1, CG)) for 1 5 i 5 q and 

l < u < q - 2 ,  thatis (asing@-'=1), 
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and 

(or fi + h + cz , al fi + CI)- 

Since % fi + boa. + Q and alfi + bl + cl both range over all of the elements of F, 

as i ranges fiom 1 to q and v ka fixeci, these are precisely the ordered pairs 

( ~ , U + O g f l " ( @ - l ) )  . 

and 

(u, u - hl, 
where u E F, and 1 5 u 5 q - 2. Non for fixed u, the values u + bocv(o - 1)  are all 

distinct as v varies fiom 1 to q - 2, (since # O and since cr is a primitive element 

of F,). The ordered pair (u, u + k(u - 1)) is missing, and so b(c - 1) shonld be 

set to -h. Thus the only additional condition arising nom this case is 

The next four cases are similar to each other. 

Case 2: d =  2h- 1 for 1s h sr. 
(3r-h+1), c$:+~)) (c, The relevant ordered pairs are (C, p-h+l), cW) for 

l < i < q a n d l < v < q - 1 , t h a t i s  

and 
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and 

that is 

and 

that is 

it is evident by an andysis similas to that in Case 1 that all  the ordered pairs in 

this case d then be distinct. 

(4-h+2) The relevant ordered pairs here are (Ch Y i~ ) and (cF-~+", cg)) for 

By an analogous argument to that given in Case 2, setting 

and 
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forces all of the ordered pairs in this case to be distinct. 

Case 4: d = 2r - 2h + 2 for 2 5 h t.  

By an andogous argument to that given in Case 2, setting 

and 

forces all of the ordered pairs in this case to be distinct. 

Case 5: d = 4r - 2h + 2 for 1 5 h 5 r. 

B y  an analogous a,rgnment to that given in Case 2, setting 

and 
Qsr-h+l 

Cr-h+l O c3r-h+l = b + h  - c&+h) (1 5 h 5 r) ,  
Q*+h 

forces all of the ordered pairs in this case to be distinct. 

The last two cases are somewhat different. 
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Case 6: d = P. 

and 

elements of F, as i ranges fkom 1 to q and v is fixed, these are precisely the ordered 

pairs 

and 

. 

that is, 
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and 

it follows by an sndysis similar to that in Case 1 that an the ordaed pairs in this 

case w i .  then be distinct. 

Case 7: d = 2r + 1. 

Since fi + + 9 and am+l fi + b+l~u + c*+l both range over all of the elements 

of F, as i ranges fÎom I to q and v is k e d ,  these are precisely the ordered pairs 

and 

that is 
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and 

it f o h s  by an analysis Wmikr to that in Case 1 that dl the ordered pairs in this 

case will then be distinct. 

This completes the seven cases. 

So whenever the ar9s, bk9s and ct9a satisfy conditions (3 -1) t h g h  (3.21) above 

(some of which are a c t d l y  redundant, e.g. (3.9) follows nom (3.1) and (3.6)), 

then condition (63)  is satisfied and A is a q x mq generating array (and so an 

RCLS(mq) eirists by Theorem 3.1). 

Pro of Condition (3.1) holds since a # 2, and condition (3.2) de- also holds. 

Both the left and right-hand sides of (3.3), (3.6), (3.9) and (3.12) eqaal 1, so these 

conditions hold. Both the lefk and tight-hand sides of (3.5), (3.8), (3.11), (3.14) 

and (3.18) equd O, so these conditions $so hold. (3.4) holds since the la-hand 

side is 5 (recall a # 2), which is unequal to the rïght-hand side d u e  of 1. (3.7) 

holds since the left-hand side is 9, whieh is unequal to the right-hand side value 

of 1. (3.10) holds since the left-hand side is -1, which is anequal to the right-hand 

side d u e  of 1. (3.13) holds since, for 1 < h 5 r - 1, the left-hand side value of 

-1 is tmequd to the right-hand side value of 1, and foc h = r, the leRhand side 

d u e  of o - 1 is unequa1 to the right-hand side valne of 1 (since a # 2). Condition 

(3.15) holds shce all three expressions equal -1. (3.16) holds since the left-hand 
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-a= 2 side is ( r d  O # 2), which is unequal to the zight-hand side value of -o. 

(3.17) holds since both the lefk and right-hand sides equal - f . (3.19) holds since 

both the Ieft and right-hand sides equd -1. (3.20) holds since the left-hand side is 

-2, which is unequa1 to the right-hand side d u e  of -1. Finally, condition (3.21) 

holds since both the lefi and right-band sides equal0. I 

Now it is wd-known that there are +(q - 1) primitive elements in F,. &O, 

q5(q - 1) 2 2 since q 2 5. So F, has a primitive element a # 2, complethg the proof 

of the folloning theorem. 

Theorem 3.4 T h m  cclsts an RCLS(mq) whenever m E 1 (mod 4), m 2 5, and 

q is an odd prime power, q # 3. 

Once again, the reader is referred to Section 3.6, in which the construction is 

illustrated with an example. 

3.5 The Case m = 4 r + 3  

In this section, the case rn = 4r  + 3, where T 2 O, is d d t  with. The analysis is 

similx to the m = 4r + 1 case, with ody minor modifications, and so the details 

will be kept to a minimum. Also, the same notation wiil be ased here. 

The foUowing is the sequence of partial sums of the R-sequencing of & (where 

rn = 4r +3) givenin [a]: O,4r +2,l,4+ +Il..., T-2 ,3 t+4 , r  - 1,3r+3,r,3r + 
l ,r  + 1,3r,r + 2,3r  - 1 ,...,Zr - 1,2r + 2,2r,2+ + 1,O. Deleting the kst term O 

gives the sequence z. Adding r + 1 to each tenu of z, taking the reverse of the 

resnlting seqaence (note that this was not necessaty in the m = 4 r  + 1 case), aad 

then cydicdy shiRing that sequence 2r + 1 places f m a r d  gives the sequence w, 
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whkhis: 2~+1~1,2~,2,---,~+3,~-1,++2,~,~+1,3r+2,3r+1,3r+3,3r,3~+ 

4, ..O, 4r, 2r + 3,4r + 1,2r + 2,4r + 2. Again s is the seqtrence which beglis nith 

q - 1 O's, f o h e d  by q - 1 sequences au, folowed by one sequence teu w,  and then 

ends with a single O. 

As in the rn = 4r + 1 case, set 

so that the C(% wïi l  be latin square8. 

There are once again seven cases to consider, depending on the valne of d = 

s j+i - s j. Just the relevant ordered pairs a d  the r d t i n g  conditions d be listed, 

as th& derivation is similar to the m = 4r + 1 case. 

Case 1: d = 0. 

(0) (0)  (4r+2) The relevant ordered pairs are (C, , C&+J and (Cg,q-l , ~i ' f ' ) )  for i < i 5 q 

and 1 v 5 q - 2, and the only condition arising from this case is 

Case 2: d = 2h - 1 for 1 5 h 5 r. 

(JI-h+2) C(3*+h+l) &+") and (c, The relevant ordered pairs here are (Ch ' 3  ) 
for 1 5 i < q and 1 < v 5 q - 1, and the conditions are 

and 
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Case 3: d = 2r + 2h + 1 for 1 .< Ir < r. 

(e-h+3) @++h+L) Pr-h+2), ci')) (c, The relevant ordered psirs here are (C,w * G  ) 

f o r l < i < q a n d l ~ u ~ q - 1 , a n d t h e c o n d i t i o ~ a r e  

and 

Case 4: d = 2r - 2h + 2 for 1 5 h < P. 
p + h + l )  , @-h+3) The ordered pairs under consideration in this case are (CSv Zmd 

fh )  ~ s ~ ~ - ~ + ~ ) )  for 1 5 i 5 q and 1 5 v q - 1, and the conditions are (Cs* 9 , 

and 

(3r+h+l), C!w*-h+2) The ordered pairs ander collgideration in this case are (Cn and 
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and 

Case 6: d = 2r + 2. 
2 (2++1) W+2)  (++1) The otdaed pairs under consideration are (Cie , C l  ) ( C  , C, ) 

a n d . ( ~ p ) ,  cg)) for 1 < i < q and 1 6 v 5 q - 2, and the conditions are 

and 

Case 7: d = 2r + 1. 

and 1 5 v < q - 1, and the conditions are 

and 

This completes the seven cases. 

So whenever the u&i, bk 's and q ' s  sati* conditions (3.22) t h g h  (3.42) above 

(some of which are actually redoadant, ag. (3.30) foilows from (3.22) and (3.27)), 

then condition (G3) is satisfied and A is a q x mq generating array (and so an 

RC LS(mq) &sts by Theorem 3.1). 
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- Theorem 3.5 Suppose a # 2 and 3 0  # 2, and set a,, = ... - q = 1, = 

... = ab+1 = -1,0~+~ = 1,b = ... = & = = -.- = ba = -l,bp+l = 
1 1  5 - ;, br+2 = ..- = b + l  = 1, b3,+2 = ... = b h + l =  -1, bh+2 = 1 - U, = -= 2 and 

cl = ..- = *+2 = O. Then the ak 3, bk 5 und y ' s  satish conditions (3.29) t h f ~ ~ g h  

(3.49) 

Proof Condition (3.22) holds since a # 2, and condition (3.23) dearly also holds. 

Both the lefk and right-hand sides of (3.24) and (3.33) equal 1, 80 these conditions 

hold. Both the left and right-hand sides of (3.27) and (3.30) equal -1 when h = 1 

and 1 when 2 5 h r, so these conditions hold. Both the lefk and nght-hand sides 

of (3.26), (3.29), (3.32), (3.35) and (3.39) equal O, so these condîtions &O hold. 

(3.25) holds since the left-hand side is -1, which is unequal to the right-hand side 

d u e  of 1. (3.28) holds since, when h = 1, the lett-hand side valae of 5 ( r e d  

a # 2) is unequal to the rigbt-band side valne of -1 (since 3m # 2), and when 

2 5 h 5 r ,  the left-hand side value of -1 is unequal to the right-hand side value of 

1. (3.31) holds since, when h = 1, the left-band side d u e  of 1 - cr is unequa1 to 

the right-hand side value of -1 (since a # 2), and vhen 2 < h 5 r,  the lett-hsnd 

side value of -1 is uneqaal to the right-hand side d u e  of 1. (3.34) holds since 

the lefbhand side equals -1, which is unequal to the right-hand side value of 1. 

Condition (3.36) holds since d three expressions equd -1. (3.37) holds since the 
-a 2u 2 Mt-hand side eqaals (recall o # Z) ,  which is uneqtlal to the right-hand 

side vahe of -a. (3.38) holds since both the lefk and right-hand sides equd -5. 
(3.40) holds since both the left and xight-hand sides equal -1. (3.41) holds since 

the lefbhand side is 1, which is unequal to the right-band side d u e  of -1. Finally, 

condition (3.42) holds since both the left and right-hand sides eqaal O. I 

Observe that 3 and 5 are primitive elements of Fs and F~ respectively, wrrhich 



CELAPTER 3. A COMPOSlTE ORDER DIRECT CONSTRUCTION 31 

satisfy both of the conditions imposed on o ia Theorem 3.5. Also, &ce there are 

4((i - 1) primitive elements in F,, and since 4(q - 1) 2 3 when q 2 9, it follors that 

F, also has a primitive element a satisfying a # 2 and 3a # 2 when q 2 9 (note 

that at most one o E F, satisfies 3a = 2), comp1eting the proof of the fonowing 

theorem. 

Theorem 3.6 T h e n  urists an RCLS(mq) wheneuer rn r 3 (mod 4), m 2 3, and 

Q b an odd prime power, q # 3. 

Theorems 3.4 and 3.6, combined with the facts (mentioned in Section 1.1) that 

RCLS of order 9 and of every even order have been constructed, give the fouowing 

main theorem, the most important result in this thesis. 

Theorem 3.7 There d t s  an RCLS(n) whenever n is composite. 

Proof By the remarks above, it 8tlffices to consider the case when n is odd and 

not equd to 9. Clearly mch an n ha9 an odd prime power factor q with q # 3 and 

q < n. But then n = mq for some odd nnmba m 2 3. Lnvoking Theorems 3.4 and 

3.6 when rn 1 or 3 (moti 4), respectively, completes the proof. I 

The question as to whether there exist RCLS of odd prime order remains open. 

Currently, the only houm resdt relating to this question is that there do not &t 

RCLS of ordeis 3, 5 or 7. Also, as an aside, several authors have studied the 

question of whether or not a given row-complete latin square can be made to be 

cotumn-complete (Le. to have a row-complete transpose) by saitably remdering its 

rows. It tanu, ont that this is not always the case (see e.g. [2] or [6]). 
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3.6 An Example 

In this section, an RCLS(35) is constnxcted to illustrate the method deseribed 

above. Note that 35 is the smdest composite order R for wbich an RCLS(n) was 

previously not hown to exit&. 

Takem=5 and q = ?  (onecouldaiso takem = 7 and q =  5). Thenrn =&+1 
where T = 1, and so w is the sequence 3,4,2,1. Therefore, a is the sequence 

As in Theorem 3.3, set o = 3, a primitive element of F7 not equal to 2, and set 

a0 = a1 = a2 = l ,a3  = a4 = -l,& = l,bl 2 1 -a = -2,L = -1,g = ' - = 
2 u 

1 4 - 5  = - l ,b4 = - =4,% = -0 - 
2 - -3 - 4 = 2, and cl = c2 = ca = q = O. Write 

fi = i for 1 i 5 7. Then c@), C('), c('), C@) and c ( ~ )  (in that order) are the 
folloning component squares. 

Writing z + ?y + 1 for (z, y) E F7 x Zs, then A is the following 7 x 35 generating 
array. 

Finally, the RCLS(35) L is shown in Figare 3.1. 
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Figure 3.1 
An RCLS(35) 



Chapter 4 

Quasi- Complet e Lat in Squares 

In this chaptei, the related concept of quasi-complete Iatùt squares (QCLS) is 

intmduced, and a proof that complete sets of mutuelly orthogonal QCLS of order 

p exkt for every prime p. Snch sets were previow1y only known to exist for primes 

p 513 .  

4.1 Complete Sets of Mutually Orthogonal QCLS 

An n x n latin square L is quasi-row-complete if each unordered pair of symbols 

occurs exactly twice among the unordered pairs {CG, Lij+i), where 1 5 i 5 n, 

1 5 j n - 1. L is @-cofumn-complete if its transpose is quasi-row-complete, 

and L is qu<udcomplete if it is both quasi-TOW-complete and quasi-colirmn-complete. 

A quasi-complete latin sqttate of order n wil i  be denoted by QCLS(n). Findy, a 

complete set of mutually orthogonal latin squares of order n is a set of n - 1 such 

squares. (It is wd-known and easy to show that no more than n - I such squares 

can exist.) 
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Reeman [9,10] mggested that a QCLS(n) be used in the design of certain types 

of experiments for values of n for whieh no RCLS(n) is known to exist, and in [IO] 

he coostfucted a QCLS(n) for evay n. He then went on to prove that complete 

sets of mutudy orthogonal QCLS(5) and QCLS(7) exkt [Il]. 

Li [5], Campbell and Gella also proved the existence of a QCLS(n) for every n 

(but used the term bulanced latin square instead of QCLS), and they &O s h e d  

that complete sets of mutaally orthogonal QCLS(n) &O e s t  for n = 7, 11 and 

Now it nin be shown that complete sets of mntudy orthogonal QCLS(p) exist 

for every prime p. The proof is quite straightforward, and maLes use of terraces. 

A terrace (see [3]) of a groap G of ordex n is an ordering bl, b, . . . , bn of the 

elements of G, such that each z in G with z2 = e OCCUIS once among the elements 

b;'b, b;'L, . . - , &;:' bn, and for every other z in G, x and 2-l together occur a 

total of two times among these elements (so either z occurs twice and z-' does not 

oc-, or x-' occurs twice and z d o s  not occur, or both x and 2-' occur once). 

Clearly whenever ai, a*, ..., an is a terrace of G, so is col,  CU^, ..., ea, for any c 

in G. Also, if G is abelian, then whenever al, a2, ..., 4. is a terrace of G, so is 
-1 -2 a, , a, , ..., a;' (s e  e.g. [8, pg. 621). The following theorem wa9 proven by Bailey 

in 1984. 

Theorem 4.1 ([3, Theorem 1)) The n x n amay L toith CG = e b j  (1 5 i, j 5 n) 

is a QCLS(n) if and only if a;', a;', . . . , an1 and h, b, . . . , b,, a n  both terraces of 

Now O, n - 1,1, n - 2,2, n - 3, ... is easily seen to be a terrace of (G, +) (see e.g. 

[8, Theorem 2-31). This fact , dong with Theorem 4.1, wiJl be used in the proof of 

the folloaing theorem. 
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Theorem 4.2 There crrirts a cornpletc set of muttuùly orthogond QCLS(p) for 

every prime p. 

Proof Let ai, 41, ..., O, denote the terrace of mentioned above. Define the p - 1 
arrays A('), ~ ( ~ 1 ,  . . ., t*') of size p x p by 

for 1 5 i , i  5 p and 1 5 k 5 p - 1. Then &al, ka2, ..., ko, is a tarace of 4, and 

since Z, is abelian, -01, -02, ..., -o, is &O a tarace of 4. So by Theorem 4.1, L ( ~ )  

i saQCLS@)for lSk<p-1 .  

(hl (hl Suppose (C, , CG ) = (LE), LE)) for some kl # k2 wïth 1 i ,  j 5 p and 

1 5 kl, k2 < p  - 1. Then 

ai + q u i  = + k l ~ ,  

Subtracting these equations and re~anging  gives 

and so since kl # k2, aj = G, that is, j = a ,  and hence &O = u,,, that is, i = u. 

This shows that ~ ( h )  and ~ ( b )  are orthogonal for any kl # k2, thereby completing 

the proof of the theorem. 1 
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