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Abstract

The development of polymeric membranes for gas separations has provided an alternative to
traditional energy-intensive processes, especially for hydrocarbon separations. Material studies
of the membrane can provide insights to its formation and modification. Gas permeation be-
haviour through two types of polymeric membrane material is investigated herein. Though the
main objective of our investigation was to determine the hydrocarbon gas permeation properties
of poly(etherb-amide) PEBAX®2533 copolymer membranes over a range of operating temper-
atures and pressures, we first tested a poly(ethylene oxide) (PEO) membrane for permeability
of ethane and ethylene. The screening results from the tests of PEO membranes containing
silver salts, indicate that although PEO membranes may possess high olefin/paraffin selectiv-
ity through facilitated transport, difficult membrane preparation and unstable structure remain
major obstacles to their commercial use. However, the knowledge acquired on preparation tech-
nique and permeability testing from these trials was carried over to our study of PEB333
membranes. Permeability coefficients were determined at temperatures ranging fono 25
75°C, and pressures from 25 psig to 200 psig for ethane, ethylene, nitrogen, propane, propylene,
and carbon dioxide. The PEBAX2533 membranes showed high organic gas permeabilities.
Plasticization effects on the membrane were pronounced with propane and propylene at elevated
pressure (100 psig). Activation energies of permeatigf (E€re determined. Jof nitrogen is

nearly constant and is the highest among gases tested in the pressure astgayvsEa linear
decreasing trend as pressure increases for hydrocarbons. Relatively high selectivities (12 to
26) were observed for the polar and non-polar gas pai/RO As temperature increased, the
selectivity of CQ/N, decreased. This study provides the groundwork for the use of PEO and

PEBAX®2533 membranes for hydrocarbon separations.
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Chapter 1

Introduction

Gas separations have always been one of the key processes in the field of chemical engineering.
With industry’s demand on lowering operating costs and increasing separation efficiency, more
research is being conducted on process improvements. Gas separation is usually achieved by
physical or physicochemical phenomena. Over the past two decades, gas separation using poly-
meric membranes has drawn a great deal of interest from researchers due to many advantages
such as low energy costs and high selectivities. This is especially true for hydrocarbon separa-

tions performed by the petrochemical industry.

In particular, olefin/paraffin separations incur a heavy cost to petrochemical companies. With a
growing awareness of the importance of conserving natural resources, companies are enthusias-
tic about finding ways to reduce energy consumption and to recycle purge or waste streams. Tra-
ditionally, cryogenic distillation at elevated pressures in trayed fractionators is used to separate
olefins and paraffins. This distillation system is expensive to build and operate, and is currently
only economically attractive for streams containing high quality of olefins. Other available sep-
aration technologies include extractive distillation, physical or chemical adsorption, physical or

chemical absorption, and more recently, membrane separation. A more thorough description of
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different separation technologies can be found in the review written by Eldridge (1993).

1.1 Thesis Outline

The objective of this research is to develop an advanced membrane that exhibits high gas per-
meability and selectivity, particulary for olefins and paraffins. More specifically, it is to gain
knowledge on both the preparation and the gas permeation properties of the new poly{ether-

amide) copolymer membrane, PEB&R2533.

To provide a basic understanding of the membrane separation process, an introduction to the
transport mechanism through polymeric membranes used for gas separations is covered in
Chapter 2. Transport models and equations are described and factors affecting gas perme-
ation are discussed. Chapter 3 presents procedures for membrane preparation and permeability
testing along with a description of the testing apparatus. Chapter 4 describes a screening study
based on olefin/paraffin separation using poly(ethylene oxide) membranes containing silver ni-
trate. More background is given for this process that makes use of active facilitated transport
via silver nitrate. Experimental methods are detailed and results from the study are presented
and discussed. Our study of polyetteamide copolymer membrane, PEB&X2533 is cov-

ered in Chapter 5, and a brief review of recent investigations of PEBMA¥mbranes used for
separation. Flat film membranes were made from PEBAXsin and permeability tests were
conducted to evaluate its gas separating performance again§t@y, and several hydrocar-

bon gases. Interactions between gas and membrane material over a range of temperatures and
pressures were tested and discussed. Sample calculations from both PEO and PEBAX studies
are included in Appendix C. Finally, based on the results from the experimental investigation

of the two polymeric membranes, concluding remarks are presented in Chapter 6, along with

recommendations for further work.



Chapter 2

Background and Literature Review

Membrane separation technology is currently one of the most innovative and rapidly growing
fields across science and engineering. Many different separation processes are widely used in
industry in liquid-liquid and liquid-solid systems. Several books have been published to detail
the fundamental principles and applications of membrane technology (Bitter, 1991; Mulder,
1991; Noble and Stern, 1995), and some articles have provided overviews to membrane struc-

ture and formation (Kesting, 1985; Pinnau and Freeman, 2000).

The most attractive features of membrane separation systems are cost effectiveness, environ-
mental friendliness, versatility, and simplicity. Membrane processes are classified according to
the driving force by which they achieve separation. Table 2.1 lists commonly known means of
separation along with their primary driving force and type of mechanism. Types of membranes
used today include nonporous (dense) and porous polymers, ceramic and metal films with sym-
metric or asymmetric structures, liquid films with selective carrier components, and electrically
charged barriers (Strathmann, 2001). The performance of a membrane is determined by several
key properties: high selectivity and permeability; excellent chemical, thermal, and mechanical

stability under the process operating conditions; low maintenance; good space efficiency; and
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defect-free production.

Table 2.1: Various membrane separation processes and the corresponding driving forces

Process Driving Force | Transport Mode
microfiltration Ap convection
ultrafiltration Ap convection
reverse osmosis  AC(Apu;) diffusion
dialysis AC(Aa) diffusion

gas separation Ap(AT;) diffusion
pervaporation Ap; (Af)) diffusion
electrodialysis Ay migration
(p-hydrostatic pressurgs-chemical potential, C-contentration
a-activity, p-partial pressure, ffugacity,-electrical potential)

In the last two decades, the membrane industry has extended its interests to gas and vapor sep-
arations. Combined with advances in polymeric materials, membrane-based separations have
become an important chemical unit operation which successfully competes with other well-

established industrial gas separation processes such as cryogenic distillation, absorption, and

pressure swing adsorption (Spillman, 1989).

Commercially, the most widely practiced separations using membranes include the separation
of oxygen and nitrogen; the recovery of hydrogen from mixtures with larger components such
as nitrogen, methane and carbon dioxide; and the removal of carbon dioxide from natural gas
mixtures. For these separations, membranes with adequately high fluxes of the more permeable
components (oxygen, hydrogen, and carbon dioxide, respectively) and sufficient selectivity have
been developed. The membrane materials used in these separations are glassy polymers, which
derive high selectivity from their ability to separate gases based on differences in penetrant size

(Freeman and Pinnau, 1997).

Membranes can be categorized according to their geometry, bulk structure, production method,
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separation regime, and application (Pinnau and Freeman, 2000). The basic scheme for mem-
brane classification is shown in Figure 2.1. Hollow-fiber membranes are used commonly by
industries due to their high surface area and compactness. Flat-sheet membranes are easy to
produce and are used in laboratory experiments. In terms of structure, membranes can be sepa-
rated into two groups; asymmetric and symmetric. This simply refers to the types of pores that
can be found within the membrane. Symmetric membranes have pores which do not change
in diameter significantly through the sheet. On the other hand, asymmetric membranes contain
pores which increase in size from one side of the sheet to the other. The new membrane com-
posites are good example of asymmetric membranes. They are made with a thin polymer film
deposited onto a porous backing material. The separation is determined by the properties of the

thin film while the mass transport or rate is dependent upon the porosity of the backing.

Drialysis

Geomelry Bull: Production Method Separation Application
Structure Regime
Stretched Films Drialysis
Mucleation track Ultrafiltration
| Phase inversion Microfiltration
— Symmelbric
| Extrusion
Hollow-fiber — Solution casting 4| Mon-porous |—| Gas separation
Flat-sheet —
’—| Phasze inversion Ii Ultrafiltration

. Microfiltration
—  Asymmetric

Solution coating -
Reverse osmosis
Interfacial polymerization MNon-porous I—

Pervaporation

Plasma polymerization Gas separation

Figure 2.1: Classification scheme of synthetic membranes
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Different production methods can result in membranes with unique characteristics. Membranes
are the result of pressing a powder into a porous film and then sintering, stretching an extruded
polymer into a sheet, irradiating a thin film with nuclear particles and then etching in a bath
(nucleation track), dissolving a polymer in a solvent and spreading into a film followed by
precipitation (solution casting), contacting two monomers in two immiscible liquids (interfacial
polymerization), or condensing gaseous monomers on a substrate layer through a stimulated

plasma (plasma polymerization).

2.1 Types of Gas Separation Membranes and Applications

Most gas separation membranes are made of amorphous (noncrystalline) polymers which are
in either the glassy or the rubbery state. In the glassy state, polymers are rigid and often brittle.
There is low level of molecular movement and the rate of diffusion of large molecules is small.
In the rubbery state, polymers tend to be soft and more flexible. What separates the two states
is the glass transition temperaturg, ®f the polymer. Properties that change aroupdhtTlude

density, specific heat, dielectric coefficient, rates of gas/liquid diffusion through the polymer,

and conductivity or charge mobility.

The majority of industrial membrane processes for gas separations utilize glassy polymeric
membranes because of their high gas selectivity and good mechanical properties. Glassy poly-
mers like polyimides are used for GICH, separation; polysulfones are used indéparations,

and cellulose acetate membranes are used for the removal,cdif@{H S from natural gas. In

the area of rubbery polymers, polyurethanes possess high permeability and are being applied
in Oy/N, separation. Silicon polymers, particularly polydimethylsiloxanes (PDMS), are widely
studied due to their large free volume, high permeability, and low selectivity. Stern (1994) has

presented a thorough review on the structure/permeability/selectivity relationship on selected
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rubbery and glassy polymers.

In view of their physical properties, including sorption and gas transport, rubbery polymers
are considered equilibrium materials. Glassy polymers go through a physical aging process to
attempt to reach equilibrium in the course of time. Details of the sorption and diffusion be-
haviours in both rubbery and glassy polymers can be found in reviews by Ghosal and Freeman
(1993), and George and Thomas (2001). Through modifications, such as copolymerization and
sol-gel process, polymer properties can be adjusted and enhanced to achieve desirable separa-

tion performance and mechanical strength.

2.2 Fundamentals

Three general transport mechanisms are commonly used to describe gas separations using mem-
branes, as illustrated in Figure 2.2 (Koros and Fleming, 1993). They are Knudsen diffusion,
molecular sieving, and solution-diffusion. As the name implies, the first type of separation

is based on Knudsen diffusion and separation is achieved when the mean free paths of the
molecules are large relative to the membrane pore radius. The separation factor from Knudsen
diffusion is based on the inverse square root ratio of two molecular weights, assuming the gas
mixture consists of only the two types of molecules. The process is limited to systems with
large values for the molecular weight ratio, such as is foundsisdaration. Due to their low

selectivities, Knudsen diffusion membranes are not commercially attractive.

The molecular sieving mechanism describes the ideal condition for the separation of vapour
compounds of different molecular sizes through a porous membrane. Smaller molecules have
the highest diffusion rates. This process can happen only with sufficient driving force. In other

words, the upstream partial pressure of the "faster” gas should be higher than the downsteam
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Figure 2.2: General transport mechanisms for gas separations using membranes

partial pressure. The main limitation is that condensible gases cause fouling, and alter the struc-
ture of the membrane; therefore, it is only feasible commercially in robust systems, such as

those that use ultramicroporous carbon or hollow fibre glass membranes.

Solution-diffusion separation is based on both solubility and mobility factors. It is the most
commonly used model in describing gas transport in non-porous membranes and it is applied

in our studies. The details of this solution-diffusion model are given in the next section.

2.2.1 Solution-Diffusion Model and Permeability Equations

Gas permeation can be seen as a three-stage process in the solution-diffusion model:
1. adsorption and dissolution of gas at the polymer membrane interface.
2. diffusion of the gas in and through the bulk polymer.

3. desorption of gas into the external phase.
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Permeation is used to describe the overall mass transport process, and diffusion refers only to
the movement of gas molecules inside the polymer membrane. The model assumes that the
pressure within a membrane is uniform and the chemical potential gradient across the mem-
brane is expressed only as a concentration gradient. Koros et al. (1988) gave a thorough review
on polymeric membranes for solution-diffusion based permeation separations. The review cov-
ered membranes for not only gas separations, but also for pervaporation, reverse osmosis, and

liquid separation.

Koros and Fleming (1993) suggest that solution-diffusion is achieved via penetrant species un-
dergoing random jumps in the polymer matrix due to a concentration difference between mem-
brane upstream and downstream, resulting in a diffusion flux travelling downstream. Varying
the chemical nature of the polymer allows control of the relative extent of solution and diffusion

of different gases through the polymer matrix.

Figure 2.3 shows a schematic of gas transport across a membrane. The upstream gas, which
has a pressure @, comes in contact with the membrane interface. With a driving force (e.g.,
chemical potential, concentration gradient, etc.), the permeate gas forms a concentration profile
across the membrane with respect to membrane thickhe$ge normalized flux is gas flow

rate divided by the membrane surface area and it is denotegl.&eparation of the gas mixture

is achieved when one of the components interacts more strongly with the membrane material

or, in other words, diffuses faster through the membrane.

Among the three solution-diffusion stages, the diffusion step is the slowest; hence, it is the rate-
determining step in permeation. In general, the relationship between the lineal #ind,the

driving force is:
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Figure 2.3: Gas transport across a membrane

dX
A

—A— 2.1)

J =

whereA is some phenomenological coefficieit,s a potential, anc denotes the space co-
ordinate measured normal to the section. To describe gas diffusion in the membrane, Equation

2.1 can be written as:

DdC

-D— (2.2)

J:

whereD is the diffusion coefficient, anX in Equation 2.1 now defines concentration and is

denoted a€. Equation 2.2 is commonly known as Fick’s first law.

When the solubility of a penetrant gas in a polymer is sufficiently low, the concentration of
the penetrant is proportional to the vapor pressure of penetrant in polymer. This relationship

is expressed as Henry’s law, Equation 2Sis the solubility coefficient ang is the vapour
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pressure of the penetrant.

C=Sxp (2.3)

At steady state, the permeation of a pure gas A through a membrane of thitisxekaracter-
ized by a permeability coefficieft,. P, is generally defined as:
Ny Ny

b= oo~ el (4)

whereN, is the normalized fluxp, andp, are the upstream and downstream pressures, respec-

tively, and Ap is p;-p2. In a gas mixturep, andp, refer to the partial pressures of penetrant
A at the two sides of the membrane. The permeability coefficient of dense film materials is

commonly expressed in units of Barrer.

1 Barrer =110~ em(STP) em
cm? secemHg

(2.5)

If Henry’s law applies, thelsis constant at a given temperature and sb.i§ he permeability

coefficient,P, can also be defined as:

P=DxS (2.6)

The diffusion coefficientD, is a kinetic term governed by the amount of energy necessary for a
particular penetrant to execute a diffusive jump through the polymer and the intrinsic degree of
segmental packing in the matrix. The solubility coeffici&his a thermodynamic term that de-
pends on factors such as condensibility of the penetrant, interactions between the polymer and
penetrant, and the amount of penetrant-scale non-equilibrium excess volume in glassy poly-

mers.
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For a binary gas mixture permeating through a polymer membrane, the selectivity of a polymer
membrane towards two different penetrant gases, A and B, is commonly expressed in terms of
the ideal selectivity or ideal permselectivity, 5. When the downstream pressure is negligible

relative to the upstream pressusg,z can be written as the ratio of permeabilities:

OAB = /5~ (2-7)

Expanding the permeability into diffusivity and solubility terms, the ideal selectivity can be

expressed by Equation 2.8.

Dy, Sa

D—B) 5, (2.8)

aAB:(

Here,D 4/Dj is the ratio of the concentration-averaged diffusion coefficients of penetrants A
and B, and is referred to as the membrane’s "diffusivity selectivit$,/Sg is the ratio of
solubility coefficients of penetrants A and B, and is called the "solubility selectivity” (Ghosal
and Freeman, 1993). In typical gas separation applications, the downstream pressure is not
negligible; howevern ,p generally provides a convenient measure for assessing the relative
ability of various polymers to separate gas mixtures. High permeability and high selectivity are

the most important criteria in evaluating a membrane.

2.2.2 Facilitated Transport

The gas permeability of a membrane may be improved by facilitated transport. This is an ac-
tive transport of permeant molecules across a membrane achieved by utilizing a carrier species.
The carrier reacts with a permeant molecule to form a labile complex. Within the membrane,
the carrier shuttles the permeant across the membrane boundaries, and hence the permeant is

transported from the side with higher permeant concentration to the side with lower permeant
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concentration. When a feed mixture only contains one species that the carrier will react with,
only the transport of that species will be "facilitated” across the membrane. The process of
facilitated transport is illustrated in Figure 2.4. The driving force in facilitated transport is a

concentration gradient of permeant-carrier complexes across the membrane.

P‘f PZ
i - i
. @ *
O L ] L ] L ]
i . @ *
L ] O O ? -
@ L ]
Upstream _ © @ Downstream
.0 | @ @ :
[ o . ' .
" 2 e |
o | e @
- Nﬂ
— x

Figure 2.4: A schematic of facilitated transport mechanism across the membrane

It has been found that olefin transport can be facilitated by transition metals. Cuprous and silver
ions are the mostly widely used in this type of research. The metal ions foribcad com-

plexation with olefin molecules. More details will be given in Chapter 4.

Gas separation using facilitated transport is most commonly done with "immobilized liquid”

membranes, prepared by dissolving the carrier in an appropriate solvent and using this solution
to impregnate an electrically uncharged, rigid microporous matrix. Once formed, surface ten-
sion forces serve to hold the carrier molecules inside the membrane. Another technique is to

swell a gel membrane, such as porous cellulose.
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2.3 Factors Affecting Gas Permeation in Membranes

2.3.1 Temperature

As mentioned in Section 2.2.1, gas diffusion through polymers is related to an activation energy,
thus, the temperature dependenc®of5 andP can be described by the following Arrhenius

relationships:

D = Dye Pa/BT (2.9)
S = SyeAH:/RT (2.10)
P = Pye Bo/RT (2.11)

whereE, is the activation energy of diffusionH; is the heat of sorption; arig, is the activa-

tion energy of permeation, which is simply:

E, = E;+ AH, (2.12)

Values ofE,, E;, andAH, for many polymer and gas pairs can be found in the Polymer Hand-

book (Pauly et al., 1989).

Gas diffusion coefficients typically increase appreciably with increasing temperature when the

polymer does not undergo thermally induced morphological rearrangements such as crystalliza-
tion over the temperature range of interest (Ghosal and Freeman, 1993). Since both diffusivity
and solubility coefficients are temperature dependent, the selectivity described by Equation 2.8

is also sensitive to changes in temperature.

The increased segmental motion at higher temperatures undermines the ability of polymer to
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discriminate between penetrants of different physical dimensions, thereby resulting in a diffu-
sivity selectivity loss. The temperature changes also affect the solubility selectivity, which is
governed primarily by the chemical nature of the penetrant and polymer-penetrant interactions.
For most gases, as temperature increases, the solubilities increase. The solubility selectivity,
therefore, will vary depending on the extent of the temperature effect on each component in the

gas mixture (Costello and Koros, 1994).

2.3.2 Pressure

Change in the pressure of penetrant contacting with the polymer may cause large permeability
variations. Four typical patterns of response are observed in permeability versus pressure rela-

tionships (Koros and Chern, 1987), as seen in Figure 2.5.

(a) Linear, with slope close to 0. This represents the ideal case that satisfies the assumption
of diffusion and solution being independent of gas pressure (i.e., low sorbing penetrants,

such as He or Nin rubbery or glassy polymers).

(b) Nearly linear increase of permeability with increasing pressure. This often describes the

permeability of an organic vapor into a rubbery polymer.

(c) A decreasing trend of permeability with increasing pressure. This is typically observed

with highly soluble gases such as €@ glassy polymers.

(d) Concave upwards. This can be perceived as a combination of (b) and (c), and is typical

of a plasticizing penetrant such as organic vapor in a glassy polymer.
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Figure 2.5: Pressure dependency of various penetrant-polymer systems

2.3.3 Plasticization

The pressure at which an increase in permeance occurs (i.e. the minimum in the permeance

versus pressure plot, of a type (d) relationship mentioned in the previous section) is called the
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plasticization pressure. At such feed pressure, the gas concentration in the polymer material dis-
rupts the chain packing. The polymer matrix swells and the segmental mobility of the polymer
chain increases. This results in an increase in gas diffusivity and induces permeability increases
(Koros and Fleming, 1993). Therefore, when the polymer is highly plasticized by the penetrant,
the diffusion coefficient may become a function of time and of history. This non-ideal behaviour

is explained by free volume theory.

Free volume theory of diffusion suggests that molecules can only diffuse through free volume

in a molecule matrix. Cohen and Turnbull (1959) have theorized that diffusion in a rubbery
polymer is the result of redistribution of free volume within a matrix and migration of the
penetrant among these volumes. Petropoulos (1994) has summarized the permeability equations
derived based on the free volume approach to model the gas transport in plasticized polymer
matrices. Studies have been done to suppress the plasticization effect on gas permeability and
permselectivity by means of crosslinking, blending, or annealing of the polymer membranes

(Ismail and Lorna, 2002; Krol et al., 2001; Bos et al., 2001; Petropoulos, 1992).

2.3.4 Other Factors

Apart from the operating conditions (i.e., temperature and pressure), factors such as composi-
tion in the gas mixture, penetrant condensibility, polymer-penetrant interactions, and polymer
crystallinity may also affect the gas solubility. Furthermore, gas diffusivity is sensitive to prop-

erties such as penetrant size, polymer morphology, and polymer segmental dynamics.

In a binary or multi-component system, the casé’of > P;,, may be referred to as an ideal
mixed gas transport system. It comes from the assumption that each single component behaves

ideally, but the assumption will not hold when one of the permeants has a much higher perme-
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ation flux than the other permeants. The non-ideality of this type of multi-component system
must be accounted for to avoid invalid assumptions for permeability and permselectivity cal-
culations. Models and descriptions of multi-component systems can be found in Petropoulos

(1994), and Kamaruddin and Koros (1997).

In general, gas solubility in polymers increases with increasing gas condensibility. Conden-
sibility can be measured as the gas critical temperafuyeor the normal boiling poinfT,.
Diffusion coefficients of penetrants are found to decrease with increasing penetrant size. Diffu-
sion coefficients in polymers are also sensitive to penetrant shape. Linear or oblong penetrant
molecules like C@exhibit higher diffusivities than those of spherical molecular shape of equiv-
alent molecular volume such as CHspecific interactions between gas and polymer molecules
(i.e., polarity) also affect gas solubility. Gases such as,@ich has a quadrupole moment,

are generally more soluble in polar polymers.

Crystallinity in polymers tends to reduce both penetrant solubility and diffusivity, thereby re-
ducing permeability, which is generally undesirable. Polymer crosslinking reduces polymer
segmental mobility; therefore, diffusion coefficients of the penetrant gas typically decrease
with an increasing degree of crosslinking in the polymer. In lower molecular weight poly-
mers, chains are more mobile and penetrant diffusivity decreases with increasing molecular
weight. At higher molecular weights, when the concentration of chain ends is low, diffusivity

is relatively independent of molecular weight as is solubility (Ghosal and Freeman, 1993).



Chapter 3

Experimental Apparatus and Methods

3.1 Membrane Preparation

Membranes are produced in various configurations including flat sheets, hollow fibres, capil-
laries, or tubes. Flat sheets are the most convenient for laboratory permeation tests. Dense flat
sheet membranes are commonly made by melt extrusion or solution casting followed by solvent
evaporation. Overviews of types of membrane formation have been done by Koros and Fleming

(1993), and Pinnau and Freeman (2000).

In our studies, flat film membranes were prepared using the solution casting technique. The
term "casting” indicates a laying down process of a polymer solution (often on a support) during
preparation. A homogeneous polymer solution was first made by dissolving polymer powder
or pellets in an appropriate solvent with continuous mixing. After pouring the polymer solution
onto a thin glass plate, a casting knife was applied to obtain even thickness of the membrane.
The glass plate was then set in a fume hood to allow the membrane to dry. The weight of glass
plate was measured until it did not change over time, indicating that the solvent has evaporated

completely. Dried membranes with support material were cut into desired configurations and

19
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Figure 3.1: A schematic of gas permeation cell

placed in the membrane cell for permeation tests. Non-woven polyester fabric is used as our
support material to obtain higher mechanical strength to the membranes during permeability
tests. Gas permeation through the support fabric is neglected in our calculation since the gas

resistance in the fabric is too small comparing to that in the membranes.

3.2 Membrane Module

Permeability measurements can be made using a simple experimental set-up. Figure 3.1 shows
a schematic of a gas permeability testing apparatus (Mulder, 1991). It consists of an upstream
gas source, a membrane cell, and a downstream device that measures the properties of the per-
meant. There are many types of apparatus used by researchers to measure permeabilities, but
they are all based on two primary principles: constant pressure or constant volume. Constant
volume/variable pressure and vacuum time-lag techniques are based on a constant volume prin-

ciple whereas continuous flow techniques are based on a constant pressure principle.
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Figure 3.2: Gas permeation apparatus using constant volume/variable pressure method

The constant volume/variable pressure method has been described in detail by Pye et al. (1976).
This method involved observing the pressure increase in a constant volume in which gas trans-
port occurred, by employing a constant pressure difference between the two sides of a mem-
brane. A schematic of a gas separation apparatus is shown in Figure 3.2. The membrane cell
consists of two compartments separated by a membrane. A porous disk is placed in the bottom
compartment of the cell to provide mechanical strength to the membrane such that the mem-

brane can withstand the pressure difference employed during the experiments. The disk does
not provide any resistance to the gas flow. An o-ring is placed in between the two compartments

of the membrane cell to seal the cells.

Before experimentation takes place, the permeate side is kept under vacuum to remove residual
air in the testing unit. During testing, the upstream pressure is kept constant, while an increase
in downstream pressure of the permeate chamber is directly measured by the pressure trans-

ducer. Once steady state has been achieved, the pressure increase in the permeate chamber is
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linear with time and the gas permeability coefficient can be calculated from the slope of the

curve at steady state of pressure on the permeation side versus time.

In the continuous flow method, the permeant passes through the membrane under constant
pressure differential, and into a flowing stream of inert carrier gas in the pressure compartment
(Sridhar and Khan, 1999). Equipment setup from this method is very similar to that of the
constant volume/variable pressure method, except that at the downstream side of the membrane
cell, vacuum is replaced by a continuous gas carrier flow. By varying the carrier flow rate, the
permeant gas partial pressure at the bottom membrane surface can be controlled, which also
alters the driving force across the membrane. Helium or nitrogen are common carrier gases.
This technique is advantageous in that the permeation rates can be easily adjusted by varying
the carrier gas flow rate. This allows adjustment of the concentration of the permeant within the

detectable range of the analyzer.

The vacuum time-lag method is currently a popular means to assess the permeability and dif-
fusion coefficients of a gas through a polymer film for a given set of operating conditions
(temperature and pressure). In this method, the permeate gas is allowed to accumulate in a
pre-evacuated downstream volume. The mathematical analysis is based on the assumptions of
a constant diffusion coefficient and constant membrane thickness (i.e. negligible swelling by

permeant) throughout the entire permeation process.

Figure 3.3 illustrates a common plot obtained from time-lag method. The value of timé}lag (

is determined from the x-intercept of the steady state tangent firan be used to directly
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Figure 3.3: Determination of time-lag from a steady state permeation
calculate the permeate diffusion coefficient using the following expression:

LQ

Y=%D

(3.1)

The variablel represents membrane thickness, &8nis the diffusion coefficient. The frame-
work and limitations of this technique, as well as some innovative attempts to apply to organic

vapor, can be found in the recent studies of Yeom et al. (1999) and Favre et al. (2002).

In a recent review, Baker (2002) pointed out that data from the literature should be treated care-
fully. Some of the reported selectivities were based on the ratios from pure gas permeabilities,
while others used a hard vacuum or sweep gas on the permeate side of the membrane. Both
procedures yield high selectivities, but in an industrial plant, the feed gas will be at 100 to 150
psig and at a temperature sufficient to maintain the gas in the vapor phase. Furthermore, the
permeate gas will be at a pressure of 10-20 psig. Under these operating conditions, plasticiza-

tion and loss of selectivity occur with even the most rigid polymer membranes; therefore, under
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industrial operating conditions, selectivities would usually be quite low.

Since the objective of this study could be achieved by collecting permeability data, a simple
apparatus similar to that in Figure 3.1 was all that was required. A soap film bubble flow meter
was connected at the downstream side of the membrane cell, and the permeate flow rate was
determined using the bubble flow meter. Six readings were taken for each experiment to control

for variability and ensure the flow had reached a steady state.

3.3 Permeation Tests

The experiments were performed at normal ambient lab temperature. Feed gas pressure came
directly from a gas cylinder fitted with a pressure regulator and a test gauge. The downstream

pressure was atmospheric, nominally assumed for all calculations to be 1 atm.

Stability of the membranes was determined by repeating tests over 24 hours, 72 hours, and a
one week duration. These stability tests were preformed at two or three times the normal testing
pressure. This is referred to as "conditioning” of the membrane, and helps to increase gas flux
once the membrane is stabilized. This stabilization is achieved when the interaction between

the feed gas and the polymer chains reaches equilibrium.



Chapter 4

Poly(ethylene oxide) Membranes

Containing AgNO;

4.1 Introduction

Olefin and paraffin gas mixtures are often found in petrochemical process streams. Some
are a by-product of Liquified Petroleum Gas production in crude oil refining. Olefins are a

valuable feedstock for the production of commercial products such as polymers (polyesters,
polyethylene, polypropylene, etc.), synthetic fluids, surfactants, additives, and specialty chemi-

cals. Paraffins can be dehydrogenated to produce olefins of greater economic value.

Currently, the separation of ethylene and propylene from a light gas mixture is achieved by
cryogenic distillation typical of the fractionation sequence used to recover olefins from ethy-
lene reactor effluent streams and catalytic cracking reactors. The process is operated at a high
pressure with a large number of trays and a high reflux ratio due to the close boiling points of

the primary components. These systems are expensive to build and operate and are currently
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only economically attractive for streams containing high quality olefins. Membrane technology

may therefore be a very attractive alternative.

The objective of this section is to describe the development of an advanced membrane that ex-
hibits high olefin permeability and olefin/paraffin selectivity. A further goal is to gain more

knowledge regarding preparation and properties of poly(ethylene oxide) membranes contain-
ing a silver salt. The knowledge can then be further applied to advance the understanding of

PEBAX® solid membranes (Chapter 5).

The basic transport mechanism of solution-diffusion has been illustrated in Chapter 2. Past
studies of olefin/paraffin separation using facilitated transport membranes are reviewed in this
chapter. An experimental design was used, and three main factors were considered. These
factors are the weight-average molecular weight of PEO, the chemical form of silver salt, and

the silver concentration in PEO.

4.2 Facilitated Transport

As described in Chapter 2, facilitated transport can dramatically improve membrane selectivity
and permeability. In olefin/paraffin systems, it has been found that olefin transport can be facil-
itated by transition metal - most commonly cuprous and silver ions. Metal ions farincad
complexation with olefin molecules, which is described by the Dewar-Chatt model (see Figure
4.1 - Safarik and Eldridge 1998). The shaded areas in this diagram represent electron donor
and acceptor interactions. Both the metal and alkene act as electron donors and acceptors in the
complexation interaction. A sigma bond is formed between the overlap of the vacant outermost

s atomic orbital of the metal and the full molecular orbital of the olefin. A& component is

formed by back-donation of electrons from the full outer d orbitals of the metal to the vacant
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Figure 4.1: Dewar-Chatt model afbond complexation
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The complexation reaction is fast enough to achieve high concentrations that drive the olefin
fluxes. The reverse reaction should also be sufficiently fast to assure recovery of permeate

molecules.

This separation process is based on the fact that complex-forming reactions enhance the perme-
ation rate of olefin molecules. Paraffin molecules permeate through the membrane according to
Fick’s law of diffusion and at a lower rate than olefins, resulting in olefin/paraffin separations

(Noble et al., 1989).

4.2.1 Background and Relevant Literature

Three configurations have been used to prepare membranes containing silver ions: supported

liquid membranes, ion-exchange membranes, and salt/polymer membranes.

Gas separation using facilitated transport is most commonly carried out using "immobilized
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liquid” membranes, prepared by dissolving the gas-carrier species in an appropriate solvent
and using this solution to impregnate an electrically uncharged, rigid microporous matrix. The
carrier species is then retained in the matrix by surface tension forces. Facilitated transport
of gases via liquid membranes was first discussed in a review by Schultz et al. (1974). More
work was done by Hughes et al. (1986) on silver-impregnated cellulose acetate membranes for
both flat film and hollow fiber configurations. Teramoto et al. (1986; 1989) performed work on
support and "flowing” membranes for ethane and ethylene separation. Several limitations of

this membrane type were pointed out by those investigations:

* The tendency to degrade because the solution absorbed into the pores of the support

membrane evaporates in the feed and sweep gas phase.

*

The inability to tolerate poisons to Ag such as acetylenes,Hr H,S.

*

A decline of performance due to water and/orAlpss.

* Minimum pressure differential across the fiber wall is necessary to maintain optimum

performance and maximize permeator lifetime.

*

The difficulty of making the membrane both thin and stable.

LeBlanc et al. (1980) introduced the ion-exchange type carrier membranes for olefin gas sep-
arations. With these membranes, silver ions are retained in the membrane by electrostatic in-
teractions with the ion-exchange sites. They used a cation-exchange membrane of sulfonated
polyphenylene oxide and obtained Agpns by soaking it in agueous AgNO This type of

membrane has a better ability to retain the carrier gas under operating conditions and there is
no problem with solvent condensing on the high pressure side of the membrane to wash out
the carrier. Hydrated Nafion cation exchange membranes containihgohg and Nd ions

for c-2-butene/t-2-butene separation were studied by Funke et al. (1993). Ho and Dalrymple
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(1994) reported separations using poly(vinyl alcohol)-containing silver nitrate membranes in
the thin film composite structure. The silver salt is trapped in the crosslinked poly(vinyl alco-
hol) matrix, yet ions are mobile in the hydrated polymer. Yamaguchi et al. (1996) compared
an ion-exchange membrane (silver form Nafion) with a silver salt/polymer blend membrane

(AgBF,/Nafion blend) on 1,3-butadiene/1-butene and 1,5-hexadiene/1-hexene systems.

Recent studies done by Yang and Hsiue (1998) reported gas transport properties of swollen
complex membranes of linear low density polyethylene (LLDPE), silicone rubber (SR), and
poly(1-trimethylsilyl-1-propyne) (PTMSP). The swollen complex membranes were constructed
by dense matrix membranes, graft copolymers, metal ions, and the swelling agent. Low volatil-
ity glycerol impregnated in the membrane matrix served as the swelling agent of the film and

as an activator of the Agcomplex.

The disadvantages of the above membranes include the need for addition of water, solvent, or
swelling agent to the polymer matrix, and the need for some membranes to be operated with
water-vapor-saturated feed and permeate streams. Downstream processing is still required to
remove the extra component from the olefin-rich-permeate stream. Pinnau et al. (1997) was
the first group to propose the use of solid polymeric membrane for olefin/paraffin separation.
They report high pure-gas ethylene/ethane and propylene/propane selectivities usingmgBF
poly(ethylene oxide) or propylene oxide/allylglycidylether copolyer (PO-AGE) with a microp-
orous poly(ether imide) membrane as the support material. With an increase in Agigling,
ethylene/ethane selectivity increases dramatically (from 160 to 2400 as AgBiEentration
increases from 50% to 80%). A similar increase is found for propylene/propane separation.
The selectivities are significantly lower with mixed-gas permeation tests (2400 from pure-gas

permeation vs. 120 from mixed-gas). The long term stability tests of this composite mem-
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brane show a decrease in selectivity after 20 days. Pinnau and his group (Sunderrajan et al.,
2001) recently compared four different silver salts (AgBAgNO;, AgCRSO;, AgCRCO,)

in poly(ethylene oxide) (PEO) and found AgBt® be the most soluble salt in PEO. Also, PEO
membranes containing AgBshowed an high ethylene/ehane selectivity of 240 (Pinnau and
Toy, 2001). Other solid polymer materials such as poly(2,6-dimethyl-1,4-phenylene-oxide),
poly(2-ethyl-2-oxazoline) (POZ), cellulose acetate, and poly(diremide) copolymer have

also been studied for olefin/paraffin separation using silver salts as olefin facilitated transport

carriers (Bai et al., 2000; Hong et al., 2001; Ryu et al., 2001; Morisato et al., 2001).

4.3 Experimental

Poly(ethylene oxide) (PEO) is a highly hydrophillic polymer. Three types of PEO with molec-
ular weights of 1 million, 4 million, and 7 million g/mol, were purchased from Sigma-Aldrich

Canada. The physical properties of PEO are summarized in Appendix A in Table A.1.

The structure of the PEO repeating unit is:

(_CHQCHQO_)n

Flat films were prepared by the solution casting method as described in Chapter 3, and water
was used as the solvent. Since high molecular weight PEO was used in the experiments, high
solution viscosity could have resulted in uneven dispersion. To counteract this, the polymer
solution was made with less than 2 % PEO solid by weight. For the samples with a molecular
weight of 1 million and 4 million, 2% of polymer solution was prepared and for 7 million, the
polymer solution only contained 1.5% PEO by weight. The polymer solutions were prepared at
room temperature with vigorous stirring. After complete dissolution of the PEO in water, silver
salt was added to the solution. In the mean time, the flask and rubber stopper was covered with

foil to avoid light contact with the solution. The casting solution was then poured onto a glass
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plate and left to air-dry for 3 days until the membrane was free of water.

AgNO; was selected as our source of silver salt in this study. Sunderrajan et al. (2001) sug-
gested that silver salt ions can be solubilized by the polymer due to interaction of salt cations
with electrons on a heteroatom in the polymer backbone such as the ether oxygens in PEO. The
weight percentages of silver nitrate chosen are 50, 65, and 80, corresponding to 4:1, 2:1, and

1:1 molar ratios of oxygen atoms to silver atoms, respectively.

Due to difficulties in controlling the exact thickness of the membrane upon preparation, the
thickness of the PEO membrane could not be pre-determined exactly. It was only possible to
target a range of thickness. To control for this, thickness was measured after the membrane had

been prepared.

4.4 Results and Discussion

Pure gas permeation tests were conducted using ethane and ethylene at room temperature, with
a feed pressure of 100 psig. The thickness of the PEO membrane ranged from 7@vo A0

full 23 factorial design with 3 centre point replications was set up for the experimental runs (see
Appendix B Table B.1). Membrane thicknesses were represented as T1 (thickness 1) and T2

(thickness 2).

It was observed during the testing that membrane preparation was sensitive to light exposure.
After adding silver salt to the polymer solution, the color of the solution gradually turned brown

in color, indicating silver oxidation. The dried PEO membranes containing Agbh&ame

black and brittle after one day. Additionally, even when first formed/by this time, areas of

uneven thickness could be seen on the surface of the membrane, which suggested membrane
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defects. This was later confirmed by permeability tests.

Table 4.1 presents the result summary from the ethane and ethylene permeability tests.
denotes pure gas selectivity of ethylene over ethane. Sample calculations on flux, permeability,
and selectivity are included in Appendix C and raw data are in Appendix E. In some experimen-
tal runs, high selectivities of ethylene/ethane were observed; however, others showed almost no
preferable selectivity over ethylene. Poor data reproducibility, even with the same membrane

receipt, is apparent from the preliminary permeability results.

Table 4.1: Results from preliminary permeability tests of PEO membranes containing;AgNO

no. | mol. wt. | Ag wt.% | permeability (Barrer) | selectivity
ethane ethylene QAR
1 1M 80 1562.48| 1175.11 0.75
21027.01] 13602.94 0.65
93.87| 16272.78| 173.35
2 1M 80 218784.28 184773.58 0.84
164448.08 135412.52 0.82
3 aM 50 6945.50| 65748.45 9.47
4 4M 50 209.07| 6181.41] 29.57
3.64| 6490.30| 1782.39
109.24 30.60 0.28
5 4M 50 553.06 327.83 0.59
6 ™ 50 61.98 47.24 0.76
19325.04) 19706.40 1.02
58.00 56.66 0.98
1202.34| 2152.18 0.56
129.81 87.18 0.67

Pure PEO membranes were made during the course of experiments. Pinnau et al. (1997) re-
ported in their study of PEO membranes containing AgBfat pure PEO exhibits low ethy-
lene/ethane selectivity of 1.2. However, our experiments were unable to obtain such a result

from pure PEO membranes. All the pure PEO membranes, regardless of molecular weight,
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showed extremely high gas flux, suggesting membrane defects. It is suspected that since PEO
is a highly hydrophilic polymer, the relative humidity in the room may have affected the mem-
brane structure during casting. This was verified by similar work which was later conducted by
another member in the research group. A vacuum was installed to de-gas the dissolved air in
the polymer solution, and the membranes were prepared in this vacuum rather than air-dried in
a fume hood. The vacuum-dried PEO membranes were transparent, which stands in contrast to
the translucent membrane the air-dried method produced. It is therefore likely that the mem-
brane instability demonstrated in our trials was at least partly due to water and air trapped inside

the polymer chain, which caused defects in the polymer structure.

Assuming that those of our membranes which did yield high ethylene/ethane selectivities were
the ones that suffered the least from these defects, it is encouraging to note the relatively high
selectivity that the PEO with AgNOmembrane showed. However, due to the fact that they ap-
pear to suffer structure damage from humidity and oxidation of silver salts, one must consider
seriously the feasibility of employing this material in further testing. Since the preliminary re-
sults showed problems with membrane stability and inconsistent permeation data, the proposed
experimental design was not carried out to completion. The experience and knowledge acquired
from this investigation provided good groundwork in understanding membrane preparation and
testing techniques, which we applied to the investigation of gas properties of PEB333

membranes (Chapter 5).



Chapter 5

Poly(etherb-amide) Copolymer

Membranes

5.1 Introduction

The history of polyether block amide (PEBA) resin can be dated to 1972 research initiatives
by Atochem in which the goal was a "soft” nylon material. The actual polyether block amide

polymer was commercialized in 1981 (Dennis and O’Brien, 2000).

Polyether block amide (PEBA) resin is best known under the trademark PBBAXd is a
thermoplastic elastomer combining linear chains of rigid polyamide segments interspaced with
flexible polyether segments. It is produced by polycondensation of a dicarboxylic polyamide

and a polyether diol in the presence of heat, vacuum, and a catalyst (Cen et al., 2002).

The structure of the PEBAX repeating unit is:

HO [-C-PA-C-O-PE-} H

34
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where PA is an aliphatic polyamide "hard segment” (i.e., Nylon-6 [PA6], or Nylon-12 [PA12]),
and PE is an amorphous polyether "soft segment”. The soft segment is either poly(ethylene
oxide), or poly(tetramethylene oxide). This crystalline/amorphous structure creates a blend of
properties of thermoplastics and rubbers. In application to permeation, the hard amide block
provides the mechanical strength, whereas gas transport occurs primarily in the soft ether seg-

ments (Bondar et al., 2000).

Currently, the main commercial applications range from sporting goods (shoe soles), industrial
equipment (conveyor belts), as well as functional films (breathable clothing, drying films) and

various other materials.

5.2 Relevant Literature

Only in recent years have membranes based on PEBpXymer been investigated in separa-

tion processes. In the pulp and paper industry, recovery of methanol from water wet air streams
is crucial to control hazardous air pollutant emissions. Rezac et al. (1997) evaluated the sorption
and diffusion characteristics of water and methanol in a series of PEEB&opolymers. Their
results indicated that PEBAX materials can be used to selectively separate methanol from air,
but not methanol from water. The PEB&Xseries in their study consist of Nylon-12 and poly-
tetramethylene oxide of varying ratios. Among the four grades of PEBA2633, 3533, 5533,

and 6333), the 2533 grade was the most promising due to high permeation rates.

Djebbar et al. (1998) studied the pervaporation of three aqueous ethyl ester solutions with
PEBAX® membranes of different polyamide composition ranging from 25 to 80 weight per-

cent. PEBAX® was chosen as the material of interest due to its hydrophobicity and high se-
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lectivity of aromatic organic compounds from water. The separation is considered to be an
alternative for the extraction of volatile organic compounds (VOCs) from aqueous media. It
was shown in this study that the use of PEBRXnembranes of high polyether content is
most advantageous for VOCs extraction, as long as the polymer swelling from the penetrant
is not excessive. PEBAX grade 3533 was investigated for the pervaporation separation of

isopropanol-water and ethyl butyrate-water mixtures (Sampranpiboon et al., 2000).

Bondar et al. (2000) found that in applications such as the removal gff@@ mixtures of
hydrogen in syngas, PEBA was found to have high selectivity on polar or quadrupolar/nonpolar
systems (e.g. C{H, or CO,/N;). Bondar’'s group evaluated membranes made from four
grades of PEBAX, which range from 80 to 53 weight percent of polyether (PE) in the block
copolymer. The PEBAR grades are 2533, 4011, 1074, 4033 in desending PE weight percent.
Their sorption and permeation results suggest strong interaction between the polar,gaglCO
the PE blocks in the copolymer. They found that PE composition andg@@neability were
directly correlated. Kim et al. (2001) reported the particular selectivity of G@@r N, is 61

and that of S@Q over N, is 500 . Strong affinity of polar species to the PE block is attributed to

the high permeability and permselectivity of polarizable gases through PEBZYolymer.

Although PEBAX® copolymer has an excellent gas selectivity for organic gas separation in per-
vaporation and in polarizable/non polar gas mixture, there are almost no results regarding the
permeation of hydrocarbons through PEBRXnembranes until a recent article by Morisato

et al. (2001). This group utilized membranes based on PEB2533 doped with AgBFto

separate ethylene and ethane. The group reported the value of mixed-gas ethylene/ethane se-
lectivity to be less than 2 as the AgBEoncentration increased from 0 to 70%. The selectivity

increased to 26 when the salt concentration was raised from 70 to 90%.
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The objective of our study is to investigate the gas permeation process through a dry PEBAX
membrane from the view point of organic gas separation. Permeation experiments were con-
ducted using pure gas feed. The effects of membrane preparation conditions and operating
conditions on the separation performance of the PEBAXembrane will be reported and com-

pared with literature data.

5.3 Experimental

The hydrophobic PEBAR (grade 2533) copolymer was supplied by ATOFINA Chemical,
Inc. (Philadelphia, PA.). Physical property data for PEBR2633 are summarized in Table

A.2 of Appendix A. PEBAX®2533 flat film was prepared by the solution casting method as
previously mentioned in Section 3.1. Among choices of solvents, Kim et al. (2001) compared
various solvents for the preparation of the PEBRAXolymer solution, and reported a 3:1 by
weight mixture of 1-propanol and 1-butanol at80gave best solubility to the copolymer. In

this study, only 2533 grade of PEBAXis used. It was found that either pure 1-propanol or
1-butanol can completely dissolve the polymer &t®hile vigorously stirring over a 48-hour
span. Therefore, 1-propanol, Certified ACS grade, was chosen to make a 3 weight percent
PEBAX®2533 solution. The polymer solution was then poured into a Petri dish and dried at
room temperature for 48 hours under the fume hood such that solvent can be completely re-

moved.

Permeability tests of a single pure gas permeation through the membrane cells were performed
in this study. The set-up of the permeation cell is shown in Figure 3.1. The permeation proper-
ties from six gases were studied. The six gases are nitrogen, carbon dioxide, ethane, ethylene,

propane, and propylene. Gases were purchased from Praxair Inc., with at least 99% purity. The
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studied pressures range from 25 psig to 200 psig and the temperatures of interest range from
25°C to 78C. The permeation cell is placed in a 6-litre VWR circulation bath (Model 1167)
with built-in temperature controller. Inside the bath, water was circulated to maintain constant

temperature surrounding the permeation cell.

5.4 Results and Discussion

5.4.1 Effect of Permeation Time on Flux and Selectivity
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Figure 5.1: Time Dependency of permeability for PEBRX533(short term), P=75 psig.

The results of Figure 5.1 are from a series of short permeability tests, each lasting about one

hour. A sample calculation is given in Appendix C, Section C.2 and raw data given in Ap-
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pendix E. Each of the five gases (ethane, ethylene, propane, propylene, and nitrogen) was
passed though a PEBAX membrane of 2@, with an upstream pressure of 75 psig. The
results showed that C3 hydrocarbons (propane and propylene) have at least 7 times higher per-
meability than the C2 hydrocarbons (ethane and ethylene). Nitrogen was found to have the
lowest permeability value of 10 Barrers after the first hour. These measurements reflect a fast
check on the penetrant interaction with the membrane. It can be seen that the permeabilities of
all five gases show a decreasing trend. This is an indication that interaction may occur between

penetrant gas and the membrane material.

Permeability measurements were also taken for a much longer period of time to evaluate the
time effect using another piece of 20h PEBAX membrane, as seen in Figure 5.2. Relative to
other gases, permeabilities of propane and propylene took a longer time to stabilize. The results
provide estimates for the conditioning period. It will take at least 24 hours of operation for

ethane, ethylene or nitrogen and 72 hours for propane and propylene to give consistent results.

The extent of polymer-penetrant interaction can be seen in Figure 5.3. The values of the expo-
nent in the power law model indicate that nitrogen has little interaction with PEBAX copoly-
mer, whereas both ethylene and propylene have much stronger interaction with PEBAX. Sim-
ilar trends are observed with ethane and propane permeation and the results are included in

Appendix D, Figures D.1 and D.2.
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5.4.2 Effect of Pressure on Permeability and Selectivity

The permeabilities of PEBAR2533 film were determined as a function of the feed pressure.
The measurements were carried out #f28&nd pressures up to 100 psig. After the membrane
had been conditioned with testing gas for three days under high pressure (200 psig) and room

temperature, permeation measurements were taken while varying the feed pressure.

The permeabilities of ethane and ethylene have an almost linear relationship to feed pressures,
as shown in Figure 5.4. This confirms the linear and positive response induced by an organic
gas that permeates across a rubbery membrane (see Figure 2.5 (c), Section 2.3.2). Figure 5.5
presents the results from the propane and propylene permeability tests. The curved nature of the
responses from propane and propylene indicates that plasticization was present in our testing
pressure range. The plasticization pressure is defined by the lowest value on a permeability
versus pressure curve, as shown in Figure 2.5 (d) (see Sections 2.3.2 and 2.3.3). The plasti-
cization pressure for propane and propylene is estimated to be around 20 psig. Responses from
ethane, propane and nitrogen were plotted together in Figure 5.6. The permeability of nitrogen

is independent of gas pressure under the experimental conditions, representing an ideal case.
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At higher pressure, the permeabilities of propane and propylene strongly affect the selectivities
for gas pairs involving propane and propylene. Table 5.1 presents the calculated selectivities of
different gas pairs in relationship with pressure changes. Increasing trends in selectivity with
pressure can be observed for the pairs of propylene/ethylene, propane/ethane, propane/nitrogen,
and propylene/nitrogen. For the ethane/nitrogen and ethylene/nitrogen pairs, there was a slight
decrease in selecitivites when pressure was increased. This may be explained from Equation
2.8. Although gas diffusivity selectivitylY) increases as pressure (the driving force) increases,

the solubility selectivity § of the gas into polymer decreases, causing a counter effect and
thus reducing overall permselectivity. Selectivities remain constant for the ethane/ethylene and

propane/propylene pairs, since pressure has similar effects on both components in the pairs.

Table 5.1: Pressure effect on selectivities of different gas pairs

pressure (psig) selectivity
C3H8/C3H6 CgHg/CQHG C2H6/C2H4 C3H6/C2H4
25 2.19 2.62 1.30 4.44
50 2.03 3.21 0.96 6.78
75 2.05 4.42 1.11 8.16
100 1.91 6.91 1.03 12.83
pressure (psig) selectivity
C3 Hg/N, C3Hg/N, Cy Hg/N, Cy HyIN,
25 20.89 45.85 7.96 10.32
50 19.40 39.46 6.05 5.82
75 24.74 50.78 5.59 6.22
100 36.31 69.45 5.25 5.41

5.4.3 "Memory” of PEBAX ®2533

To determine whether PEBAX has "memory” of prior permeations, after a set of pressure tests
were run under various temperatures, another set of pressure tests were preform€d o225
propane gas, the second set of tests showed lower permeability than the first time, as seen in

Figure 5.7. This indicates that with temperature and pressure changes, the PEBAX structures
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are altered. Similar results were observed with ethane, as seen in Figure 5.8.
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Figure 5.7: Permeability as a function of feed pressure. Propane through PEBBX3
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5.4.4 Effect of Temperature

As discussed previously in Chapter 2, permeation is an activated process and the permeability
coefficient can be approximated by an Arrehnius expression, as shown in Equation C.11. Figure
5.9 shows the temperature dependency of propane permeation. On a log-log graph, the relation-
ship between permeability and inverse temperature is linear. Linear regression was applied to
the permeability data and pre-exponential values and the activation energy of permeation were
determined and are summarized in Table 5.2. Sample calculations on pre-exponential factor
and activation energy values for permeation can be found in Appendix C. It can be seen clearly
from Table 5.2 that as pressure increases, the activation energy of propane permeation decreases.

Similar trends were observed for propylene, as seen in Figure 5.10.

Nitrogen shows a distinctly different trend from propane and propylene. Figure 5.11 shows that
all regression lines are similar in slope and position. Comparing with results from the propane
tests (same as in Table 5.2), nitrogen has both a higher pre-exponential value and activation
energy (see Table 5.3). Ethane and ethylene exhibit similar behavior to nitrogen, but there is a
slight decrease in activation energy as pressure increases (see Figure 5.12). This indicates that
the permeability of nitrogen in PEBAX is not affected by the temperature changes and that C3

hydrocarbons are more affected by temperature than C2 hydrocarbons are.

Plots of temperature dependency of ethane, and ethylene permeability are included in Appendix
D, Figures D.3 and D.4. Table D.1 compares calculated values of pre-exponential factors and

activation energy for ethane and ethylene.
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Table 5.2: Calculated values of pre-exponential factors and activation energy for propane and
propylene permeation

pressure (psig) propane propylene
Py (Barrer) | E, (KJ/mol.K) | P, (Barrer) | E, (KJ/mol.K)
25 10281.23 7.99 52950.46 11.39
50 4413.56 5.22 18960.75 8.08
75 1259.78 1.47 847.47 -0.66
100 187.63 -4.07 90.51 -7.09




CHAPTER 5. POLY(ETHER-B-AMIDE) COPOLYMER MEMBRANES 52

100
80 1
80
70
B0 -
”@“ a0
©
s 40
=
= 30
oy
ai]
£
a7
o <0 ® 25 psi
o A0 psi
¥ 75 psi
- 100 psi
—— Regression
10 . . . T |
28 29 3.0 31 3.2 3.3 3.4

1000/T (K™

Figure 5.11: Temperature dependency of nitrogen permeability in PEEB2533

Table 5.3: Calculated values of pre-exponential factors and activation energy for propane and
nitrogen permeation

pressure (psig) propane nitrogen
Py (Barrer) | E, (KJ/mol.K) | P, (Barrer) | E, (KJ/mol.K)
25 10281.23 7.99 161337.91 23.40
50 4413.56 5.22 211336.77 24.26
75 1259.78 1.47 96566.12 22.26
100 187.63 -4.07 185817.33 24.16
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5.45 Polarvs. Non-Polar Gases

In permeation studies done by Kim et al. (2001), Kim and Lee (2001), and Bondar et al. (2000),
PEBAX® membranes have shown high selectivities for separations fNGO Kim et al.

(2001) reported that as temperature increases, the selectivity gNg@ecreases. To confirm

the above findings, COand N, permeability tests were conducted at temperatures ranging
from 25°C to 78 C at pressures of 25 and 50 psig. Selectivities of Bl were plotted against
inverse temperature (1000/T), shown as Figure 5.13. Figure 5.14 is taken from Kim and Lee
(2001), who used PEBAR 1657 at a pressure of 3 atm. Although a different grade of PEBAX

was used in our experiments, a similar trend is observed for the temperature dependency of
CO,/N, separation using this type of copolymer. Our study verified that selectivity of polar
and non-polar gas pairs using PEBRXnembranes is high and it has an inverse temperature

dependency.
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Chapter 6

Concluding Remarks and

Recommendations

6.1 Concluding Remarks

The gas permeation properties on two types of polymeric membranes for hydrocarbon gas sep-
arations have been investigated. One is poly(ethylene oxide) containing AghtCthe other

is poly(etherb-amide) PEBAX®2533 block copolymer.

The permeability results from PEO membranes containing AgiN€e compared with results

from PEO membranes containing AgBffom Pinnau et al. (1997). However, since the pre-
pared PEO containing AgNOnembranes gave inconclusive permeability results for ethane and
ethylene separations under operating conditions of 100 psig and room temperature, only pure
PEO gas properties were discussed. The inconclusive results likely stem from membrane in-

stability and defects due to flaws with the method of preparation and the oxidation of silver salts.
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The second polymer material, PEB®2533 membranes showed high hydrocarbon perme-
ation. The permeability of PEBAR2533 film was determined as a function of feed pressures
and operating temperatures. Permeation properties obtained from propane and propylene in-
dicate plasticization effects on the PEB&2533 polymer matrix. Nitrogen showed no inter-
action with the membrane material, which is considered ideal. Premeabilities of propane and
propylene are strongly affected by both temperature and pressure. This is consistent with ob-
servations in the literature. As pressure increases, the permeability of propane and propylene
increases. Their temperature dependency of permeation can be approximated by Arrehnius
expressions and it is found that the activation energy of permeation decreases as pressure in-
creases. Due to the polar nature of this membrane material, it has been investigated for separat-
ing polar and non-polar gas pairs. g0, separation is temperature sensitive with PEBAX and

higher selectivity is achieved at lower temperature.

6.2 Recommendations

Based on this work, some recommendations that may provide further insight into gas separation

membranes are listed below.

First of all, systematic methods to investigate reasons for membrane defects should be pursued
with PEO membranes containing silver salts. Different silver salts may be used for this investi-
gation to validate literature data. In the literature, it has been noted that there is a lack of detailed
preparation method. Since membrane preparation can greatly affect membrane properties, it is

important to eliminate the possibility of causing defects due to improper membrane preparation.

Secondly, mixed gas permeability tests may be conducted using PEBB33 membranes.
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As mentioned in the background section, gas selectivities calculated from pure gas permeabil-
ity can only give partial insight into the separation system. In order to account for effects of

multicomponent cases, it is not sufficient to use pure gas permeation data only.

Thirdly, from collected permeation data on PEBAX membranes, optimal operating conditions

can be determined for each gas pair to achieve highest permeability and selectivity.

Finally, silver-doped PEBAX may be prepared and tested, so the results can be compared against

reported literature data by Morisato et al. (2001).
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Appendix A

Physical Properties of Polymers

All data are from manufacturer’'s information unless otherwise noteg. Glass transition

temperature; JJ,: melting point.

A.1 Poly(ethylene oxide)

Table A.1: Selected Properties of Poly(ethylene oxide)

density 1.111 g/cm
T 60-63°C
flash point 270°C
percent volatile 0.15%
T, -60°C
Inhibitor 200 - 500 ppm BHT|
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A.2 PEBAX®2533

Results from characterization study done by Bondar et al. (2000) are based on elemental anal-
ysis, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction spectroscopy

(WAXD). PE: Poly(tetramethylene oxide); PA: Polyamide 12 (Nylon-12).

Table A.2: Selected Properties of PEBRZ533

density 1.01 g/cm
melting point (ASTM D3418) 147.78°C
hardness (D2240) 25 Shore D
ultimate tensile strength (D638) 4950 psi
ultimate enlongation (D638) 640 %
weight percent PE 80
T, -77°C
T,.(PE) 9°C
T,.(PA) 126°C
crystallinity in PA block 14 % by weight




Appendix B

Preliminary Design Data

Table B.1: Factorial design on PEO permeability tests

Coded Valueg Operating Conditions
Trial | A| C| D | PEO Mwt| Ag (wt.%) | Thickness
1 1|1 1| 7.00E+06 80 T1
2 1/ 1| -1| 7.00E+06 80 T2
3 1(-1 1| 7.00E+06 50 T1
4 1/-1| -1| 7.00E+06 50 T2
5 111 1| 1.00E+06 80 T1
6 -1 1| -1| 1.00E+06 80 T2
7 -11-1 1| 1.00E+06 50 T1
8 -1/-1| -1| 1.00E+06 50 T2
centerl] 0| O 1| 4.00E+06 65 T1
center2] 0| O 1| 4.00E+06 65 T1
center3] 0| O 1| 4.00E+06 65 T1
center4/ 0| 0| -1| 4.00E+06 65 T2
center5/ 0| 0| -1| 4.00E+06 65 T2
center6| O| O| -1| 4.00E+06 65 T2
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Appendix C

Sample Calculations

C.1 PEO Tests

Results in Table 4.1 were obtained from the calculations detailed below.

In experiment no. 1, PEO molecular weight of 1 million g/mol containing 80% silver, a flat film
membrane with an average of gén in thickness was prepared. The diameter of the membrane
cross section was 3.5 cm. When pure ethane gas was fed at 100 psig, the measured downstream
flow of 1 mL takes an average of 9.49 seconds. Assuming temperature@BP8 pressure of

1 atm, the flow rate can be corrected to standard temperature and pressure (STP):

PV = nRT (C.1)
Vi T P
= iyl C.2
T (©2)
P1 = P2 = latm (Cg)
. \%
flowrate (V) = — (C4)
time
. T )
Vsrp = T273K * Voosre (C-5)
206 K
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Ethane flux is, therefore,
FlUX = vSTP

membrane area

1mL | 273.15K 1cm

9.49 sec| 296.15 K| 1/4*7*(3.5)> cn? | 1 mL

0.0101 cm (STP) / cnt sec

According to Equation 2.4, the ethane permeability can be calculated,

ONa Na
b= ool Bl (C.6)

Pethane = 0.0101cm | 80um | lcm | 14.696 psi| 10 mmHg

cm? sec | 100 psi| 10* um | 760 mmHg| 1 cmHg

1.562*10°7 cm?® cm / cn? sec cmHg

Since 1 Barrer = 1*10'° cm?® (STP) cm / cd sec cmHg,
P.ihane = 1562 Barrer

Similarly, ethylene permeability can be calculated as 1175 Batrgp denotes the pure gas
selectivity of ethylene over ethane and can be calculated as the ratio of ethylene permeability to

ethane permeability.

Pethylene
a = _=yene C.7
AP Pethcme ( )
1175 Barrer

1562 Barrer
= 0.75
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C.2 PEBAXTests

Permeabilities were calculated in the same manner as in the previous section. For clarity, an-
other example from PEBAR 2533 tests is taken to show the detailed calculation. The raw data

for this section can be found in Appendix E.

Referring to Figure 5.1, the permeability for PEBRZ533 at 30 minutes, using propane gas:

membrane thickness = 20n
pressure = 75 psig
membrane diameter = 3.5cm
temperature = 2%
pressure = 1atm

The measured downstream propane flow of 1 mL takes an average of 18.88 seconds. The

propane flux at standard temperature and pressure (STP) is:

Flux = VSTP

membrane area

1mL |273.15K 1cnm?

18.88 se% 206.15 K | 1/4*7*(3.5)* cn | 1 mL

0.005 cm (STP) / cnt sec
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Propane permeability is:

0.005cnm | 20pum | 1cm | 14.696 psi| 10 mmHg

Ppropane

cn? sec | 100 psi| 10* um | 760 mmHg| 1 cmHg

2.619*10°8 cm?® cm / cn? sec cmHg

1 Barrer = 1*10°!° cm?® (STP) cm / cmi sec cmHg
Poropane = 261.9 Barrer

Permeability vs. Time, Figure 5.3

Relationship between permeabilities and the permeation time can be fitted to power law mod-
els. Using nitrogen permeability as an example, the coefficient and exponent of the model are

calculated as follows:

time | Ny permeability | Ln(time) | Ln(permeability)
(hour) (Barrer)

0.000 66.669 N/A 4.200
0.500 62.655 -0.693 4.138
1.750 60.943 0.560 4.110
3.333 60.304 1.204 4.099
5.750 59.663 1.749 4.089
14.750 58.630 2.691 4.071
26.083 56.112 3.261 4.027
37.417 56.661 3.622 4.037
49.750 56.711 3.907 4.038
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Permeability = a* Time® (C.8)
Ln(permeability) = bx Ln(time) + Ln(a) (C.9)

The slope and y-intercept of the regression line were estimated using least squares, and they are

-0.0238 and 4.125, respectively.

exponent = —0.0238
Coefficient — ey—intercept
= 61.85
Thus, for nitrogen,
Permeability = 61.85 % Time™ 9238 (C.10)

Temperature Dependency of Permeability

As mentioned in Chapter 2, Section 2.3.1, temperature dependence of permeability can be ex-

pressed by an Arrhenius relationship:

Py = Py e Eo/RT (C.11)

whereP, is the pre-exponential factor arit} is the activation energy of permeation. Conven-

tionally, 1000/T is used in calculations instead of 1/T to simplify the unit conversion.

—F 1
Ln(P) = Rp x Ln (;E)O + Ln(P) (C.12)
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Example: Propane at 25 psig

Results from linear regression:

Slope =-0.961
Intercept = 9.238

temperature T | 1000/T | permability P | Ln(P)
(°C) (K1) Barrer

25 3.35 405.33 6.0047
35 3.25 424.90 6.0518
45 3.14 540.40 6.2923
55 3.05 577.18 6.3581
65 2.96 596.60 6.3912
75 2.87 620.00 6.4297
Ep = —-0961%—-1xR

= 0.961%8.314 (KJ/mol K)

= 799 (KJ/mol K)
Py = 8

10281.23 (Barrer)
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Experimental Data for PEBAX ®2533
Permeabillity Study

D.1 Relationship between Permeability and Time
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Figure D.1: Ln(Permeability) versus Ln(Time) - Propane and Propylene
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FPermeability = 58 72% Timg 125
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Figure D.2: Ln(Permeability) versus Ln(Time) - Ethane and Ethylene
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D.2 Temperature Effects

a00

400 4

?E“ 300 A
i
m,
=
2200 -
&
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E ® 5 psi
o A0 psi
¥ /5ops
w7 100 ps=i
—— Regression
100
T T T T T
28 248 an a1 a2 a3 a4

1000/T (K™

Figure D.3: Temperature dependency of ethane permeability in PEB26G3

Table D.1: Calculated values of pre-exponential factors and activation energy for ethane and
ethylene permeation

pressure (psig) ethane ethylene
Py (Barrer) | E, (KJ/mol.K) | P, (Barrer) | E, (KJ/mol.K)
25 435592.16 21.56 296013.09 19.16
50 18650.06 18.33 144837.80 17.17
75 19253.87 16.78 152724.93 17.19
100 15862.38 15.88 128378.85 16.72
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Figure D.4: Temperature dependency of ethylene permeability in PEEB25G3



Appendix E

Raw data

E.1 PEO Tests

No. 1(This and subsequent numbers correspond to Table 4.1.)

Mol. Wt iM

Silver AgNO3

Ag % 80

Membrane Thickness 8.00E-03 cm

Test Date Oct. 22, 2001

Gas Ethane Ethylene Ethane Ethylene Ethane Ethylene
Pressure (psi) 100 100 100 100 100 100
Volume {ml) 1 1 25 25 10 25
Average Time (sec) 9.491 12.620 17.632 27.255 1579.794 22.783
Flow rate (ml/s) 0.097 0.073 1.308 0.846 0.006 1.012
Flux {(cm3/cm2.s) 1.010E-02 7.596E-03 1.359E-01 8.T93E-02 6.068E-04 1.052E-01
Permeability

{cmg.cma'c:mz_s.cm Hg) 1.562E-07 1.175E-07 2.103E-06 1.360E-06 9.38TE-09 1.62TE-06
Permeability (barrer) 1562.48 117511 21027.01 13602.94 93.87 1627278
Ethylene/Ethane o,y 0.752 0.647 173.350
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No. 2
Mol. Wt 1M
Silver AgNO3
Ag % 50
Membrane Thickness 8.00E-03 cm
Test Date Nov. 13, 2001
(Gas Ethane Ethylene
Pressure (psi) 50 50
Wolume (ml) 2] 9
Average Time (sec) 38.433 4.060
Flow rate (mlis) 0.216 2.045
Flux {(cm3/cm2.s) 2.245E-02  2.125E-M
Permeability
(em®.cm/cm®.s.cmHg) 6.945E-07  6.575E-06
Permeability (barrer) 6,945.5 65,748.4
Ethylene/Ethane o,y 9.466

No. 3
Mol. Wt 4M
Silver AgNO3
Ag % 80
Membrane Thickness 8.00E-03 cm
Test Date Nov. 5, 2001
(Gas Ethane Ethylene Ethane Ethylene
Pressure (psi) 30 28 24 23
Wolume (ml) 2] 9 1 1
Average Time (sec) 6.778 8.026 9.018 10.952
Flow rate (mlfs) 1.225 1.034 0.102 0.084
Flux (cm3/cm2.s) 1.273E-01  1.075E-01 1.063E-02 8.7H4E-03
Permeability
{crn3.c:ma'c:m2_s.cm Hg) 2188E-05 1.848E-05 1.644E-05 1.354E-05
Permeability (barrer) 218784.28 18477358 16444808 13541252
Ethylene/Ethane o 0.845 0.823
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No. 4
Mol. Wt ™
Silver AgNO3
Ag % 50
Membrane Thickness 8.00E-03 cm
Test Date Nov. 18, 2001
Gas Ethane Ethylene Ethane Ethylene Ethane Ethylene
Pressure (psi) 98.5 102 49 51.5 898.5 98.5
Wolume {mil) 1 1 9 9 1 1
Average Time (sec) 242908 307.760 14.095 13.151 146.012 149.468
Flow rate (ml/s) 0.004 0.003 0.589 0.631 0.008 0.006
Flux {cm3/cm2.s) 3.947E-04 3.115E-04 6.121E-02 6.561E-02 6.566E-04 6.414E-04
Permeability
{cmg.cm.n'c:m‘?_s.cm Hg) 6.198E-09 4.724E-09 1.933E-06 1.971E-06 5.800E-09 5.666E-09
Permeability (barrer) 61.98 47.24 19325.04 19706.40 58.00 56.66
Ethylene/Ethane o, 0.762 1.020 0.977
Gas Ethane Ethylene Ethane Ethylene
Pressure (psi) 85 100 100 a7
Wolume (ml) 1 1 1 1
Average Time (sec) 4.080 6.938 114.245 175.377
Flow rate (ml/s) 0.226 0.133 0.008 0.005
Flux {cm3/cm2.s) 2 350E-02 1.382E-02 8.391E-04 5.466E-04
Permeability
I[Crna.cma'cmz.s.cm Hg) 2.152E-07 1.202E-07 1.298E-08 8.718E-09
Permeability (barrer) 2152.18 1202.34 129.81 B7.18
Ethylene/Ethane oy 0.559 0.672
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No. 5
Mol. Wt 4M
Silver AgNO3
Ag % 50
Membrane Thickness 7.00E-03 cm
Test Date Nov. 21, 2001
Gas Ethane Ethylene Ethane Ethylene Ethane Ethylene
Pressure (psi) 101 101 151 101 150 145
Wolume (ml) 1 a9 1 9 1 1
Average Time (sec) 61.453 18.706  2359.980 17.816 79.188 292.480
Flow rate (ml/s) 0.015 0.444 0.000 0.466 0.012 0.003
Flux {(cm3/cm2.s) 1.560E-03 4.612E-02 4.062E-05 4.843E-02 1.211E-03 3.2TBE-04
Permeability
{cmg.cmicm‘?_s.cmHg} 2.091E-08 6.181E-07 3.641E-10 6.490E-07 1.092E-08 3.060E-09
Permeability (barrer) 208.07 6181.41 3.64 6490.30 109.24 30.60
Ethylene/Ethane oy 29.567 1782.392 0.280
No. 6
Mol. Wt 4M
Silver AgNO3
Ag % 50
Membrane Thickness 5.00E-03 cm
Test Date Nov. 14, 2001
Gas Ethane Ethylene
Pressure (psi) 54 126.5
Wolume {mil) 1 1
Average Time (sec) 31.035 22.350
Flow rate (mlis} 0.030 0.041
Flux {cm3/cm2.s) 3.089E-03 4.289E-03
Permeability
(cm”.cmlem®.s.cmHg) 5.531E-08 3.278E-08
Permeability (barrer) 553.06 327.83

Ethylene/Ethane oz 0.593
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E.2 PEBAX Tests
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APPENDIX E. RAW DATA
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