
DistNeo4j: Scaling Graph Databases
through Dynamic Distributed Partitioning

by

Daniel Nicoara

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Daniel Nicoara 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Social networks are large graphs which require multiple servers to store and manage them.
Providing performant scalable systems that store these graphs through partitioning them into
subgraphs is an important issue. In such systems each partition is hosted by a server to satisfy
multiple objectives. These objectives include balancing server loads, reducing remote traversals
(number of edges cut), and adapting the partitioning to changes in the structure of the graph in
the face of changing workloads. To address these issues, a dynamic repartitioning algorithm is
required to modify an existing partitioning to maintain good quality partitions. Such a reparti-
tioner should not impose a significant overhead to the system. This thesis introduces a greedy
repartitioner, which dynamically modifies a partitioning using a small amount of resources. In
contrast to the existing repartitioning algorithms, the greedy repartitioner is performant (in terms
of time and memory), making it suitable for implementing and using it in a real system. The
greedy repartitioner is integrated into DistNeo4j, which is designed as an extension of the open
source Neo4j graph database system, to support workloads over partitioned graph data distributed
over multiple servers. Using real-world data sets, this thesis shows that DistNeo4j leverages the
greedy repartitioner to maintain high quality partitions and provides a 2 to 3 times performance
improvement over the de-facto hash-based partitioning.

iii

Acknowledgements

I would like to thank Shahin Kamali for the invaluable input on the theorems. I would also
like to thank Gobaan Raveendran and Nika Haghtalab for their support.

Additionally, special thank you to Professor Khuzaima Daudjee for in-depth feedback and
suggestions on the content of this document. Special thank you to my thesis readers, Professors
Tamer Özsu and Wojciech Golab, who took the time to read and provide comments to improve
the content.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Graph Repartitioning Problem . 3

1.2 Thesis Outline . 5

2 Related Work 8

2.1 Databases . 8

2.1.1 Graph Databases . 8

2.1.2 Related Systems . 10

2.1.3 Summary . 12

2.2 Graph Partitioning Survey . 15

2.2.1 Graph Partitioning . 15

2.2.2 Graph Repartitioning . 19

2.2.3 Summary . 20

3 Proposed Greedy Repartitioner 23

3.1 Algorithm Description . 23

3.2 Physical Data Migration . 29

v

3.3 Algorithm Analysis . 31

3.3.1 Memory and Time Analysis . 31

3.3.2 Parallelism . 32

3.3.3 Algorithm Convergence . 33

3.3.4 Alternate Optimizations . 36

4 Prototype Distributed Graph Database 37

4.1 Neo4j Description . 37

4.1.1 Storage . 37

4.1.2 Transactions . 38

4.2 From Neo4j to DistNeo4j . 39

4.2.1 Initial Partitioning . 39

4.2.2 Online Repartitioning . 41

4.2.3 Storage . 45

4.2.4 Inter-Partition Communication . 47

4.2.5 Deadlock Detection . 47

4.2.6 Transaction Manager . 48

4.2.7 Recovery . 48

5 Evaluation 50

5.1 Experimental Setup . 50

5.2 Datasets . 50

5.3 Experiment Description . 51

5.4 Repartitioner Experiments . 52

5.4.1 One-hop Performance . 53

5.4.2 2-hop Traversal Performance . 59

5.5 Variation of Repartitioner Parameters . 62

5.5.1 Varying Number of Migrated Vertices per Iteration 62

vi

5.5.2 Varying Number of Iterations . 65

5.5.3 Repartitioning from Scratch . 67

5.5.4 Summary . 69

5.6 DistNeo4j Experiments . 69

5.6.1 Scale Up . 69

5.6.2 Scale Out . 69

5.6.3 Read/Write Experiments . 71

6 Conclusion 74

References 75

vii

List of Tables

2.1 Comparison of different graph systems . 14

2.2 Summary comparison of partitioning algorithms. n represents the number of
vertices, e represents the number of edges, p represents the number of partitions
and i represents the number of iterations the algorithm is executed. 21

5.1 Summary description of datasets . 51

5.2 Query locality . 60

5.3 Comparison of average traversal size using 1-hop and 2-hop traversals 61

5.4 Number of iterations required to achieve a stable state where the edge-cut im-
provements are below 0.01% . 68

5.5 Edge cut for Metis partitioning and hash based random on Orkut. Percentage of
edges cut is shown in parenthesis . 70

5.6 Edge cut for Metis partitioning and hash based random on Twitter. Percentage
of edges cut is shown in parenthesis . 70

5.7 Edge cut for Metis partitioning and hash based random on DBLP. Percentage of
edges cut is shown in parenthesis . 71

viii

List of Figures

1.1 Example graph evolution and effects of repartitioning as response to imbalances . 7

3.1 An unsupervised repartitioning might result in oscillation. Consider the parti-
tioning depicted in (a). The repartitioner on partition 1 detects that migrating
d, e, f to partition 2 improves edge-cut; similarly, the repartitioner on partition 2
tends to migrate g, h, i to partition 1. When the vertices move accordingly, as de-
picted in (b), the edge-cut does not improve and the repartitioner needs to move
d, e, f and h, i again. To resolve this issue, in the first stage of rerpartioning of
(a), the vertices d, e, f are migrated from partition 1 (lower ID) to partition 2
[dark arrows]. After this, as depicted in (c), the only vertex which requires to
migrate in the second stage is vertex g which moves from partition 2 (higher ID)
to migration 1 (d). 26

3.2 Choosing the migration target partition . 27

3.3 Repartitioning algorithm . 28

3.4 Example of 2 iterations of repartitioning. 2 metrics are attached to every parti-
tion: w representing the weight of the partition and ec representing the edge-cut. . 30

3.5 The number of edge-cuts might increase in the first stage (in the worst case), but
it decreases after the second stage. In this example, the number of edge-cuts is
initially 18 (a); this increases to 21 after the first stage (b), and decreases to 15 at
the end of the second stage (c). 34

4.1 Neo4j system layers together with modified and new components designed make
it run in a distributed environment. 40

4.2 Overview of how DistNeo4j servers interact with clients 41

4.3 Example of rolling StatsWindow with changing query rates. 43

ix

4.4 Repartitioning Recommender . 43

4.5 Sharded graph - The dotted lines represent the ghost relationships while the con-
tinuous lines represent the actual relationships. 45

5.1 CCDF distribution of number of relationships over data sets 52

5.2 Compares the edge-cut resulting from repartitioning with running Metis. Results
are presented as a percentage of edges cut from the total number of edges in each
specific dataset. 54

5.3 Compares the number of vertices migrated when using the repartitioner versus
Metis. 55

5.4 Compares the number of relationships changed or migrated as a result of repar-
titioning versus running Metis. 55

5.5 Throughput performance over time for Orkut dataset 56

5.6 Aggregate throughput results for datasets. The first three, 5.6a, 5.6b and 5.6c,
show throughput aggregate over the entire experiment, while 5.6d and 5.6e show
the aggregate over the last hour of the experiment 57

5.7 Throughput performance over time for Twitter dataset 58

5.8 Throughput performance over time for DBLP dataset 59

5.9 Throughput performance over time for Orkut dataset using 2-hop traversals . . . 60

5.10 Throughput performance over time for Twitter dataset using 2-hop traversals . . . 60

5.11 Throughput performance over time for DBLP dataset using 2-hop traversals . . . 61

5.12 Performance comparison while varying the top-k parameter 63

5.13 Performance over time while varying the top-k parameter 64

5.14 Partition balance while varying the top-k parameter 65

5.15 Performance comparison while varying the iterations parameter 66

5.16 Performance over time while varying the iterations parameter 66

5.17 Partition balance while varying the iterations parameter 67

5.18 Ratio of edge-cut improvement when varying k 68

5.19 Performance of a 16 partition system while increasing # of clients 70

x

5.20 Shows the throughput rate while increasing the number of partitions for the Orkut
dataset . 71

5.21 Shows the throughput rate while increasing the number of partitions for the Twit-
ter dataset . 72

5.22 Shows the throughput rate while increasing the number of partitions for the
DBLP dataset . 72

5.23 Aggregate performance while varying the write rate 73

xi

Chapter 1

Introduction

Large scale, connected, graphs permeate our lives. Online social networks are used to connect
millions of people through many relationships. RDF triples in the context of the semantic web
form graphs that are used to represent many real-world applications. The scale of such large
graphs, often in millions of vertices or more, means that it is often infeasible to store, query
and manage them on a single server. Thus, there is a need to partition, or shard, such large
graphs across multiple servers, allowing the load and concurrent processing to be distributed over
multiple servers to provide good performance and to increase availability. The focus of this work
is on partitioning of the graphs associated with social networks. These networks exhibit a high
degree of correlation for accesses of certain groups of records, for example through frictionless
sharing [24]. In such cases users are free to access and repost the activities of all users they are
connected to without asking for permision. To achieve a good partitioning which improves the
overall performance, the following objectives should be met:

• The partitioning needs to be balanced. Each vertex of the graph has a weight which indi-
cates the popularity of the vertex (e.g., in terms of the frequency of queries to that vertex).
In the context of social networks, a small number of users (e.g., celebrities, politicians) are
extremely popular while a large number of users are relatively unpopular. This discrepancy
reveals the importance of achieving a balanced partitioning in which all partitions have al-
most equal aggregate weight. Here, aggregate weight of a partitioning is the total weight
of vertices in the partition and defines the load on the server which hosts the partition.

• The partitioning should minimize the number of edges cut. An edge-cut is defined by an
edge which connects vertices in two different partitions. Each edge-cut involves queries
that need to transition from a partition on one server to a partition on another server, shift-
ing from local traversal to remote traversal, thereby incurring significant network latency.

1

Particularly for social networks, it is critical to minimize edgecuts since most operations
are done on the user’s data and his neighbors. Since these 1-hop traversal operations are so
prevalent in these networks, minimizing the edge-cut is analogous to keeping communities
intact. This leads to highly local queries similar to those in SPAR [45] and minimizes the
network load, allowing for better scalability by reducing network IO [5].

• The partitioning should be incremental. Social networks are dynamic in the sense that
users and their relations are always changing, e.g., a new user might be added, two users
might get connected, or an ordinary user might become popular. A good partitioning
solution should dynamically adapt its partitioning to the changing state of the network.
Considering the size of the graph, it is infeasible to create a partitioning from scratch;
hence, a repartitioning solution (a repartitioner) is needed to improve upon an existing
partitioning. This usually involves migrating some vertices from one partition to another
(moving data from one server to another). Excessive migration incurs excess network
latency and decreases performance. Hence, it is desirable to migrate as few vertices as
possible.

• The repartitioning solution should perform well in terms of time and memory require-
ments. To achieve this, it is desirable to perform repartitioning locally by accessing a
small amount of information about the structure of the graph. From a practical point of
view, this requirement is critical and prevents us from using almost all existing approaches
for the repartitioning problem.

There are several partitioning algorithms which result in relatively balanced solutions with
small edge-cuts (e.g., [27, 48, 29, 26, 9]). Some of these algorithms also tend to minimize
vertex migration [48]. However, these algorithms require an almost complete or global view
of the graph in their repartitioning step which makes them infeasible for incremental, online
partitioning. Furthermore, these approaches perform a large number of look-ups on the structure
of the graph in the repartitioning phase. This significantly drops the performance of the system.
Because of these issues, these algorithms are not implemented on real data management systems.

From a data management perspective, the current storage model used in online social net-
works (OSNs) is based on traditional database management systems (DBMSs). While relational
databases can store this type of data, they are optimized to perform index based queries. Their
storage model is often very complex since it is made to handle very complex data structures and
queries. Hence the performance will generally suffer. Thus, the current trend is to migrate to
more simplistic models such as key-value stores. Key-value stores trade off the flexibility of the
relational model for the more simplistic API supporting only simple read and write operations.
Key-value stores also take advantage of simple locking models (such as optimistic locking) to

2

increase performance. However key-value stores assume no correlation between records, a prop-
erty at the core of OSN access patterns. In addition, both DBMSs and key-value stores can not
easily represent the traversal based operations used in OSNs.

In contrast, graph databases use a simplistic data representation model which is often very
similar to key-value stores, however graph databases also provide a complex querying model
based on traversals. These queries are processed fully on the server side before results are re-
turned to the user. Traversals are recursive joins, however due to the way data is represented in
graph databases, performing these queries is a highly optimized process.

The focus of this thesis is on the design and provision of a practical partitioned graph data
management system that can support remote traversals while providing an effective method to
dynamically repartition the graph using only local views. The dynamic distributed partitioning
aims to co-locate vertices of the graph so as to satisfy the above requirements. The contribu-
tions of this thesis are: (i) a dynamic partitioning algorithm, referred to as lightweight, greedy
repartitioner, that can identify which parts of graph data can benefit from co-location. The algo-
rithm is designed to improve performance by applying a fast repartitioning algorithm which uses
only a small amount of knowledge on the graph structure (ii) a system called DistNeo4j, which
extends the existing Neo4j 1 open source graph database system to provide the functionality to
move data on-the-fly to achieve data locality and reduce the cost of remote traversals for graph
data. Experimental evaluation on real-world data shows that our techniques are effective in pro-
ducing performance gains and work almost as well as the popular Metis partitioning algorithms
[27, 29, 9] that have the advantage of performing static partitioning offline and relies on having
a global view of the graph.

1.1 Graph Repartitioning Problem

Social graphs are evolving structures that change over time due to user interaction. The most
common changes are the addition of relationships between different users [12] and changes in
user popularity. These changes will create long lived skews on some partitions, which reduce the
performance of the system. [33] shows that traffic patterns are generally well defined. Popular
users generally have more relationships [33, 16]. Celebrities, companies or bloggers will gen-
erate and consume more information. As such users come online and form relationships their
popularity will generate different traffic patterns. However, the change in the social graph can
be much slower when compared to the read traffic [12]. This process leads to a slowly, but
constantly evolving graph structure.

1Neo4j is being used by a wide variety of customers, among them are Adobe and HP. A full list of customers
can be found at http://www.neotechnology.com/customers/.

3

A variety of partitioning methods can be used to create an initial, static, partitioning of the
graph resulting in highly localized read traffic patterns (i.e., a small number edge-cuts) and good
load balance. This should be followed by a repartitioning strategy to maintain good partitioning
which adapt to changes in the graph. One solution is to periodically run an algorithm on the
whole graph to get new partitions. However, running an algorithm to get new partitions from
scratch is costly in terms of time and space. Moreover, the newly created partitions might be far
different from previous partitions which results in high migration cost. Hence, an incremental
partitioning algorithm needs to adapt the existing partitions to changes in the graph structure.

It is desired to have a lightweight repartitioner which maintains only a small amount of meta-
data to perform repartitioning. Since such an algorithm refers to only metadata (which is signif-
icantly smaller than the actual data required for storing the graph), the repartitioning algorithm
is not a system performance bottleneck. The metadata maintained in each machine (partition)
consists of the list of accumulated weight of vertices in each partition, as well as the number of
neighbors of each hosted vertex in each partition. In particular, if a partition hosts n1 vertices, it
maintains α + n1α numbers (integers) as metadata which is easy to maintain and update. Note
that maintaining the number of neighbors is far cheaper that maintaining the list of neighbors in
other partitions. In what follows, the main ideas behind the greedy repartitioner is introduced
through an example.

Example: Consider the partitioning problem on the graph shown in Figure 1.1. Assume
there are α = 2 partitions in the system and the imbalance factor is γ = 1.1, i.e.,in a valid
solution, the aggregate weight of a partition is at most 1.1 times more than the average weight
of partitions. Assume the numbers on vertices denote their weight. During normal operation in
social networks, users will request different pieces of information.The most common operations
are 1-hop traversals (see what your friends are up to) or single get requests (check a popular user
such as a celebrity or news source). In this sense, the weight of a vertex is the number of read
requests to that vertex. Figure 1.1a shows a partitioning of the graph into two partitions, where
there is only one edge-cut and the partitions are well balanced, i.e., the weight of both partitions
is equal to the average weight, i.e., 11.

Assuming user b is a popular web blogger who posts a post, the request traffic for vertex
b will increase as its neighbors poll for updates, leading to an imbalance in load on the first
partition. Figure 1.1b shows the state of the graph after user b becomes popular and skews the
aggregate weight to 15 on partition 1. Such skews will degrade performance by increasing the
response time of queries and lowering query throughput on a skewed partition. Here, the ratio
between aggregate weight of partition 1 (i.e., 15) and the average weight of partitions (i.e., 13)
is more than γ. This means that the repartitioning needs to be triggered to rebalance the load
across partitions (while maintaining the number of edge-cuts as small as possible).

4

The metadata of the lightweight repartitioner available to each partition includes the weight
of each of the two partitions, as well as the number of neighbors of each vertex v hosted in the
partition, e.g., metadata available to partition 1 in Figure 1.1b implies that vertex e is connected to
one vertex in each partition. Provided with this metadata, a partition can determine whether load
imbalances exist and the extent of the imbalance in the system (to compare it with γ). If there is
a load imbalance, a repartitioner needs to indicate where to migrate data to restore load balance.
Migration is an iterative process which will identify vertices that when moved will balance loads
(aggregate weights) while keeping the number of edge-cuts as small as possible. In doing so, our
greedy repartitioner makes use of its metadata which includes the number of neighbors of each
vertex in each partition. For example, when the repartitioner starts from the state in Figure 1.1b,
on partition 1, vertices a through d are poor candidates for migration because their neighbors
are in the same partition. Vertex e, however, has a split access pattern between partitions 1 and
2. Since vertex e has the fewest neighbors in partition 1, it will be migrated to partition 2. On
partition 2, the same process is performed in parallel; however, vertex f will not be migrated
since partition 1 has a higher aggregate weight. Once vertex e is migrated, the load (aggregate
weights) becomes balanced, thus any remaining iterations will not result in any migrations . The
resulting graph is depicted in Figure 1.1c.

The above example is a simple case to illustrate how the greedy repartitioner works. Note
that the only information maintained by the algorithm for each partition is the cumulative weight
of all partitions as well as the number of neighbors of each hosted vertex in the other partition.
Several issues are left out of the example, e.g., two highly connected clusters of vertices might
repeatedly exchange their clusters to decrease edge-cut. This results in an oscillation which is
considered in detail in Section 3.1.

It should be mentioned that replicating graph data to deal with changes in the workload like
that illustrated in the above example is also possible. However, replication in this context is
complementary to partitioning and the system could be augmented for replication. Replication
introduces a different set of problems that include consistent maintenance of replicas and con-
trolling replication in the face of storage space constraints (to mention a few) and this is not the
focus of this paper.

1.2 Thesis Outline

Chapter 2 will survey the existing databases that have been used with similar workloads as graph
databases. The chapter will then survey existing partitioning and repartitioning algorithms, de-
scribing how they work. Chapter 3 presents the proposed lightweight greedy repartitioner. Chap-
ter 4 details the changes made to Neo4j in order to allow distributed querying. Chapter 5 presents

5

the experimental evaluation of DistNeo4j and the greedy repartitioning algorithm. Finally, Chap-
ter 6 concludes the thesis.

6

2

2

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

11

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

ω=15

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

ω=13

ω=13

(a) Balanced partitioned graph

2

2

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

11

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

ω=15

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

ω=13

ω=13

(b) Skewed graph

2

2

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

11

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

11

ω=15

2

6

3

2

2

2

3

2

2

2

a

b
c

d

e

f

g

h
i

j

1Partition

2Partition

ω=13

ω=13

(c) Repartitioned graph

Figure 1.1: Example graph evolution and effects of repartitioning as response to imbalances

7

Chapter 2

Related Work

2.1 Databases

2.1.1 Graph Databases

Previous work on graph databases focused on a centralized approach [25, 39, 2]. Some of the
most popular graph databases[19] are Dex[39], Neo4j[2] and HyperGraphDB[25]. All of these
systems support a similar traversal based querying model, however they focus on optimizing
different parts of the system.

Dex is presented as a layered implementation where query processing is broken down in
multiple stages. The initial querying stage scans the stores and filters results to form collections
of sub-graphs. The next stage is a preparation and mining stage where the sub-graphs are further
modified due to creation, removal operations or further filtering. The key insight is that graph
manipulations are highly parallelizable since they generally require only local information to sub-
graphs. The optimizations involved reducing the memory footprint, allowing queries to filter or
identify valid records by using optimized data structures such as bitmaps. Their experimental
evaluation focused on relatively large queries such as minimum collaboration distance between
two individuals or between one individual and everyone else. Other queries looked at finding
the context of keywords. Their experiments show good scalability and high optimization of the
data-layout such that query performance is roughly the same in memory constrained system to
the ones where data fully fits in memory.

Neo4j is designed around a network model where data is stored as nodes and different records
are linked through relationships. The storage layer resembles key-value stores where nodes, re-
lationships and properties are stored separately in their own store. This allows the system to

8

perform quick traversals as record sizes are kept small and reads do not need to process unneces-
sary information. Neo4j is build to support transactions with ACID consistency properties. For
increased performance the Neo4j high availability mode is currently recommended to scale read
traffic[3]. [56] compares Neo4j and MySQL using different types of queries. They show that on
structural queries (such as joins) and text searches Neo4j clearly performs better than MySQL.

HyperGraphDB is a graph database system built to represent hypergraph problems. The
reasoning is that some problems, such as multi-input/output problems are easier to represent in
hypergraph format allowing much simpler operations[25]. In addition, HyperGraphDB’s format
is highly desirable in learning algorithms or natural language processing. HyperGraphDB can
also be considered an object store as every record is considered an atom and the user is able
to perform complex type based queries on top of it. HyperGraphDB has been extended to pro-
vide a simple peer-to-peer distribution model in which different instances of HyperGrapbDB can
communicate. However data management and distributed query processing is left to the user,
meaning that the user needs to know which peer holds data to be able to perform any query. Un-
fortunately [25] focuses more on the flexibility of the system leaving out performance evaluation.

[35] presents Concerto, a distributed, in-memory graph database built on-top of Sinfonia (a
distributed shared memory system). The focus of their work is on interactive event processing
triggered by updates to the system. Concerto extends the concept of a view from DBMSs to
graph databases. The use of views is relevant to systems such as highway monitoring where
sensor events are processed on a regular basis. Given specific definitions of views the system is
able to monitor and respond to changes in the graphs based on events. Another use is in load
balancing as views can be used to monitor for system usage. Changes in the workload triggers
a process responsible for migrating hotspots. They compare their system to MySQL, Neo4j and
GemFire (an in-memory distributed store). Their results show significant performance gains
during k-hop traversals and full graph queries (k-core).

In [19] a performance-centric evaluation of some graph databases is performed. They use
different query types (insertions, single record queries and variations of traversals, such as find-
ing neighbours to complex queries such as multi-hop queries or computing the betweenness
centrality of the graph). The results show DEX is the fastest system overall showing the best
scalability. Neo4j is second being faster than DEX only on a few query types, though it shows
worse scalability than DEX. Finally, HyperGraphDB is placed last, showing good performance
on the smallest dataset. Due to its poor scalability it is omitted from further experiments.

9

2.1.2 Related Systems

This section will present other systems that work in a similar way, or are meant to process similar
queries but they cannot be classified as a graph database.

SPAR[45] is a middleware that runs on top of key-value stores or relational databases to pro-
vide on-the-fly partitioning and replication of data. SPAR’s use case is 1-hop traversals where
users want or need access to their direct neighbours for querying purposes. Thus SPAR’s parti-
tioning algorithm guarantees data locality through replication. SPAR’s partitioning and replica-
tion algorithm is presented as an optimization problem where the goal is to minimize the number
of replicas while keeping all 1-hop traversals local. Their experimental evaluation shows that
SPAR can triple the request rate over Cassandra with random, hash based partitioning. SPAR
also reduces the network traffic overhead by a factor of 8. In comparison to random and Metis
partitioning, their results show a lower number of required replicas to preserve 1-hop local se-
mantics. Unfortunately OSNs exhibit traffic patterns that require multi-hop traversals as well.
In addition, even for 1-hop traversals, the replication overhead they present in the paper may
be unacceptable, especially since the replication overhead increases as the number of servers
increases.

Titan[7] is another middleware which builds on top of key-value stores to provide a graph
querying interface but uses only static hash-based, random partitioning scheme supported by the
underlying key-value store. Titan also provides ACID and eventual consistency. [8, 1] show
performance numbers while running with typical OSN queries, unfortunately there are no com-
parisons with different systems. [1] uses a domain based partitioner which allows communities
to be co-located. However it is not always possible to know communities ahead of time and
social graphs tend to be more flexible and change more often than the educational dataset used
by Titan.

Pregel[38] is a distributed graph processing framework built around the graph structure. The
computational model relies on the bulk synchronous parallel (BSP) [55] processing model to
process information. Pregel algorithms implement a vertex interface where each vertex processes
some piece of information and transmits intermediate results to its neighbours. The algorithm
in executed in successive steps until all vertices finish processing. Pregel is ideal for large scale
graph computations such as PageRank where performance of batch processing is important.

SEDGE[60] is a system built on top of Pregel which focuses on partition replication such that
workloads can be diverted to one of the replicas that exhibits the best query locality. SEDGE uses
multiple partitioning techniques to achieve the best diversity of partitionings such that multiple
query types can be handled at the same time. The first type of partitioning is named complemen-
tary partitioning which focuses on finding multiple partition sets such that each set’s partition

10

boundries differ from other sets. Intuitively this allows queries that may land on the border of one
set to be fully local to a partition in another set. The second type is partition replication which is
used to handle highly localized queries to certain partitions by replicating them to idle machines.
In order to handle cross-partition hotspots they employ a third type of partitioning algorithm,
referred to as dynamic partitioning which relies on a coarsening stage to discover node clus-
ters with high communication patterns. Their experiments compare simple partition replication
with complementary partitioning and with complementary partitioning and dynamic partitioning
combined. The results show 2 to 3 times improvement in processing time of queries. The results
show that long lived queries benefit much more from these partitioning and replication schemas.

Surfer[15] is built on top of Pregel. Surfer’s contribution relates optimizing initial data place-
ment in a cloud based environment. Their motivation relates to the uneveness of the network
topology in cloud systems. Due to the hierarchical model of cloud environments, servers located
within the same rack will have much better network bandwidth than servers located in different
racks, which in turn will have better bandwidth to those located in different parts of the data-
center or even different datacenters. Surfer proposes using a topology aware graph partitioner
in combination with ParMetis to partition the graph efficiently. Since cloud operators do not
release topology information to users, their algorithm first tries to map the network’s topology
with small data transfers, allowing them to create a weighted graph of the server network. Given
a network graph and a data graph, the next step is to partition the data graph such that it respects
the constraints in the network graph. As an optimization, they perform this operation as recur-
sive bissection on the graphs, allowing them to fully parallelize each inner recursive step. The
key insight is that in the initial partitioning levels, the quality of the partitioning is much higher
than in the next recursive levels. In hierarchical datacenter networks, the top level links represent
the most oversubscribed links. Thus, but optimizing the initial bissections, they optimize the
traffic on the most constrained network links. Their evaluation shows a significant performance
increase from using ParMetis without any topology information.

Mizan[32] is another system built on Pregel. Mizan’s scope is to migrate data during execu-
tion to minimize load skew. Their motivation is that no single partitioning algorithm can reduce
run time consistently over all types of datasets while running different types of algorithms. Mizan
monitors the system for three key metrics: 1) outgoing messages, 2) incoming messages and 3)
response time. Each metric represents a system constraint: network cost, disk paging and load.
Based on these metrics, their migration planner will find the strongest cause of workload imbal-
ance from these three and migrate vertices to reduce imbalance. Their experiments show that
on variable workloads (hotspots tend to vary in the system throughout the run), Mizan is able to
improve the run time up to two orders of magnitude. Though, in less variable algorithms, such
as PageRank, where the base algorithm dominates the run time, the slight imbalances resulting
from the partitioning algorithms mean Mizan has little room to improve run times.

11

GraphChi[34] is a centralized system used for bulk graph processing tasks such as PageRank.
Their work focuses on optimizing the updating process such that disk I/O overhead is minimized.
They take advantage of the compressed sparse row (CSR) and compressed sparse column (CSC)
storage format for graphs such that disk accesses are sequential. In addition, their work proposes
a parallel sliding windows (PSW) model in order to reduce the number of non-sequential disk
writes. In this model, they load a shard (sub-graph) in memory, execute the update algorithm on
the shard and perform all updates in memory. After processing the shard, it is written back to
disk in a sequential manner. Their evaluation shows that the system’s performance is comparable
(per-server basis) with other existing distributed systems.

[41] is a middleware implemented on top of CouchDB key-value store that performs dy-
namic replication, similar to SPAR. While they have similar goals, this system does not try to
keep data fully local to 1-hop traversals. Instead they only replicate frequently accessed records.
In addition, they also use two different types of updates. For frequently updated records a push
based update system is used where the master is responsible for updating all replicas. For in-
frequently updated records a pull based system is used where the replica queries the master for
updates. They go further and analyze the access patterns over periods of time which allows them
to switch between the two update modes based on time of day. Combined with a lazy replication
model, this allows the system to keep replicas only for frequently accessed records.

Horton[47] is a query execution engine built for distributed in-memory graphs. Horton pro-
vides a graph processing interface to abstract distributed graph queries. The graph engine han-
dles the intricacies of sending the query to the appropriate server and returning the results to the
user. Unlike systems such as MapReduce[18] and Pregel[38] which optimize for large, batch
processes, Horton focuses on ad-hoc, small queries and tries to optimize query latencies.

2.1.3 Summary

Current graph database systems focus on a cetralized approach and optimize for this case. Hy-
perGrahpDB is the only one providing an interface for distributed data storage and querying,
however it leaves data placement to the user. In addition due to its low performance compared to
the other graph databases it is a poor candidate. SPAR focuses on 1-hop traversals only keeping
data local for these queries by using replication. Titan uses key-value stores as backend, but uses
the partitioning algorithms supplied by the underlying store. Pregel, Sedge, Surfer and Mizan are
used for bulk processing, so they are not suitable for short-lived ad-hoc traversals. The CouchDB
middleware is similar to SPAR, but relaxes the fully local constraint. By providing replicas only
for the frequently accessed records it reduces the number of replicas needed. Horton is an in-
memory store and focuses on the system and querying details leaving partitioning for future

12

work.

DistNeo4j extends Neo4j to allow dynamic, distributed management of graph data in two
ways. First it allows automatic data sharding across multiple servers and abstracts communi-
cation within the system such that queries spanning multiple servers are executed on multiple
servers transparently to the user. Second, DisNeo4j dynamically partitions data such that data
locality is maintained.

Table 2.1 summarizes the key features of each system presented in this chapter, allowing easy
comparison between the system and with the proposed DistNeo4j system.

13

Pr
oc

es
si

ng
M

od
el

Pe
rs

is
te

nc
e

Tr
an

sa
ct

io
na

l
M

od
el

D
is

tr
ib

ut
ed

Pa
rt

iti
on

in
g

D
ex

ad
-h

oc
tr

av
er

sa
ls

di
sk

-b
as

ed
-

no
-

N
eo

4j
ad

-h
oc

tr
av

er
sa

ls
di

sk
-b

as
ed

A
C

ID
no

-
H

yp
er

G
ra

ph
D

B
ad

-h
oc

tr
av

er
sa

ls
di

sk
-b

as
ed

A
C

ID
ye

s
(l

im
ite

d)
no

ne
C

on
ce

rt
o

ad
-h

oc
tr

av
er

sa
ls

in
-m

em
or

y
A

C
ID

ye
s

ra
nd

om
,

ha
sh

-
ba

se
d

SP
A

R
1-

ho
p

ad
-h

oc
tr

av
er

sa
ls

di
sk

-b
as

ed
(d

ep
en

ds
on

ba
ck

en
d)

at
om

ic
ge

t/s
et

ye
s

re
pl

ic
at

io
n

ba
se

d
gu

ar
an

te
ei

ng
1-

ho
p

lo
ca

lit
y

Ti
ta

n
ad

-h
oc

tr
av

er
sa

ls
di

sk
-b

as
ed

(d
ep

en
ds

on
ba

ck
en

d)
A

C
ID

or
at

om
ic

ge
t/s

et
ye

s
ra

nd
om

,
ha

sh
-

ba
se

d
Pr

eg
el

bu
lk

sy
nc

hr
on

ou
s

pr
oc

es
si

ng
di

sk
-b

as
ed

-
ye

s
ra

nd
om

,
ha

sh
-

ba
se

d
Se

dg
e

bu
lk

sy
nc

hr
on

ou
s

pr
oc

es
si

ng
di

sk
-b

as
ed

-
ye

s
re

pl
ic

at
io

n
ba

se
d

co
m

bi
ne

d
w

ith
gr

ee
dy

he
ur

is
tic

s
Su

rf
er

bu
lk

sy
nc

hr
on

ou
s

pr
oc

es
si

ng
di

sk
-b

as
ed

-
ye

s
ne

tw
or

k
to

po
lo

gy
ba

se
d

M
iz

an
bu

lk
sy

nc
hr

on
ou

s
pr

oc
es

si
ng

di
sk

-b
as

ed
-

ye
s

gr
ee

dy
pa

rt
iti

on
-

in
g

C
ou

ch
D

B
M

id
-

dl
ew

ar
e

ad
-h

oc
tr

av
er

sa
ls

di
sk

-b
as

ed
at

om
ic

ge
t/s

et
ye

s
re

pl
ic

at
io

n
ba

se
d

G
ra

ph
C

hi
bu

lk
as

yn
-

ch
ro

no
us

di
sk

-b
as

ed
at

om
ic

ge
t/s

et
no

-

H
or

to
n

ad
-h

oc
tr

av
er

sa
ls

in
-m

em
or

y
at

om
ic

ge
t/s

et
ye

s
ra

nd
om

,
ha

sh
-

ba
se

d
D

is
tN

eo
4j

ad
-h

oc
tr

av
er

sa
ls

di
sk

-b
as

ed
A

C
ID

ye
s

gr
ee

dy
pa

rt
iti

on
-

in
g

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

di
ff

er
en

tg
ra

ph
sy

st
em

s

14

2.2 Graph Partitioning Survey

2.2.1 Graph Partitioning

In the classical (α, γ)-graph partitioning problem, the goal is to partition a given graph into α
vertex-disjoint subgraphs. The weight of a partition is the total weight of vertices in that partition.
In a valid solution, the weight of each partition is at most a factor γ ≥ 1 away from the average
weight of partitions. More precisely, for a partition P of a graph G, we have:

ω(P) ≤ γ ×
∑

v∈V (G)

ω(v)/p

Here, ω(P) and ω(v) denote the weight of a partition P and vertex v, respectively. Parameter
p denotes the number of partitions and parameter γ is called the imbalance load factor and
defines how imbalanced the partitions are allowed to be. Practically, γ is in range [1, 2]. Here,
γ = 1 implies that partitions are required to be completely balanced (all have the same aggregate
weights), while γ = 2 allows the weight of one partition to be up to twice the average weight
of all partitions. (Unbounded values for γ relate the problem to the min-cut problem which is
not the focus of this thesis.) The goal of the minimization problem is to achieve a valid solution
in which the number of edges between components (the number of edges cut, or edge-cut) is
minimized. Thus, in this context, an optimal solution has the least number of edges cut and the
weights are evenly distributed across all partitions (is a valid solution). Note, there may be other
solutions with a lower number of edges cut but with skewed weight distribution.

The partitioning problem is NP-hard even for the simple case of (2,1)-partitioning problem
which is also referred to as the bisection problem [23]. Moreover, there is no approximation
algorithm with a constant approximation ratio unless P=NP [11]. This reveals the very hard
nature of the problem. To facilitate the analysis for γ > 1, the performance of the algorithm is
compared to an optimal solution in which partitions have equal size (i.e., the optimal algorithm is
more restricted). However, even in this relaxed setting, the best existing approximation algorithm
achieves a ratio of O(log2 n) in general [11] and O(log n) when n ≥ 2 [21]. Interestingly, the
problem remains NP-hard (and even Approximate-hard) for simple graph families like trees and
grids [20]. To conclude, from a theoretical point of view, it is not possible to introduce algorithms
which provide worst-case guarantees on the quality of solutions, and it makes more sense to study
the typical behavior of algorithms. Consequently, the problem is mostly approached through
heuristics which are aimed to improve the average-case performance.

To choose an adequate partitioning scheme, a survey of existing partitioning schemes is per-
formed. Each algorithm is evaluated based on the following categories: partitioning quality,

15

memory usage, network communication and degree of scalability. The evaluated algorithms can
be divided in six classes: greedy, spectral, geometric, stochastic, multilevel and streaming.

Most partitioning algorithms measure partitioning quality by minimizing the number of
edges crossing partition boundries (edge-cuts). As a secondary goal, some algorithms try to
keep the aggregate partition weights similar. In general, vertices are assigned some weight based
on the problem domain. The aggregate partition weight is the sum of vertex weights in the par-
tition. Some algorithms will also allow optimizations of edge-weights or even minimizing the
number of vertices migrated.

Greedy Algorithms

The two major algorithms in this category are Kernighan-Lin (KL)[31] and Fiduccia-Mattheyses
(FM)[22].

KL is an iterative algorithm whose goal is to move sets of vertices between two partitions
such that it maximizes the decrease in the number of edges cut. The algorithm finishes when no
swaps can be performed that improve the edge-cut. In order to measure the decrease in edge-cut
they define a gain function for each vertex as g = E− I where E is the cost of edges connecting
it to vertices from a different partition and I is the cost of edges connecting it to vertices from
the same partition. In each iteration, the algorithm will try to find pairs of vertices such that
swapping them maximizes ga + gb − 2ca,b, where ca,b is the cost of the edges between vertex a
and b. Note that in the simplest case where each edge has unit weight, then the cost is the sum
of the number of edges.

Unfortunately, due to the greedy nature, it is possible to have sub-optimal matchings leading
to a sub-optimal solution. Due to ca,b KL requires frequent communication between partitions in
order to find the best pairs.

FM is inspired by KL and improves partitioning by iteratively selecting a vertex from the
largest partition and moving it, rather than moving groups. One key factor is that by moving one
vertex at a time the algorithm is guaranteed to select a vertex with the most impact on edge-cut.

From a storage perspective, the data required for intermediate state is O(n*p) where n is
the number of vertices and p is the number of partitions. All the intermediate results can be
incrementally updated as vertices and edges are added or removed. However, the serial nature of
these algorithms makes them difficult to scale in terms of time complexity.

16

Spectral Algorithms

The major algorithm in this category is Spectral Clustering[37]. Spectral Clustering uses the sim-
ilarity matrix of a dataset to cluster similar elements. In graph partitioning the similarity matrix
is represented by the adjacency matrix, thus, similar vertices are part of the same communities
and will cluster as they form a dense relationship graph. Given the similarity matrix S where
Sij represents the similarity between vertices i and j, and matrix D, a diagonal matrix where
Dii =

∑
j Sij , the eigenvectors for the k larges eigenvalues of the matrix P = D−1S [51] can be

used to partition the graph in k partitions using clustering algorithms such as k-means clustering.
An alternative method to computing the eigenvectors is to compute them from the Laplacian
matrix Lrw = I −D−1/2SD−1/2[52].

Spectral algorithms have high quality, however they do not scale beyond local parallelism
due to the high data sharing requirements.

Power Iteration Clustering[36] is an alternative to spectral clustering that approximates the
largest eigenvector using power iteration. Their results show linear scalability with graph sizes.
The network communication is dependent on the cross-partition vertices. Since social networks
have good clustering coefficients (the degree to which vertices cluster together), the expected
communication overhead is low. However the quality of the resulting partitions are influenced
by the initial vector chosen in power iteration. Their solution is to run PIC multiple times with
random initial values, however this would negate the performance benefits of PIC.

Geometric Algorithms

Algorithms such as Recursive Coordinate Bisection (RCB)[43] take advantage of the coordinates
of vertices to perform bisections. Such algorithms look at the coordinate distance between ver-
tices and bisects the graph such that the distance within partitions is minimized. While geometric
algorithms perform orders of magnitude faster[43] than other methods, the resulting partitions
are often imbalanced. In addition, since the algorithm does not look at the edge-cut it often leads
to partitions with a high edge cut.

Stochastic Algorithms

One representative algorithm is Simulated Annealing(SA)[43] which is an iterative method that
searches the solution space. In the context of SA, a solution is one possible partitioning and a
neighbouring solution is a partitioning with exactly the same grouping with the exception of one
vertex which has been migrated to a different partition. In each iteration, the algorithm visits

17

a neighbouring solution and selects it if the solution improves quality or randomly, by a user
defined probability. This allows SA to move towards more optimal solutions, however it does
allow some degree of flexibility such that it can leave locally optimum solutions. SA doesnt
perform as well as other methods on sparse graphs[43] and its computation model is inherently
sequential.

Multilevel Algorithms

Multilevel algorithms are based on a three stage process[49]. In the first stage the graph is
repeatedly coarsened into smaller graphs. In the second stage the smallest graph is partitioned
using a traditional partitioning method such as KL or FM. Finally, in the last stage the partitions
are projected back to the initial graph.

In the coarsening phase vertices are matched and form a smaller graph. In the process of
coarsening vertices, edges may be collapsed as well since they refer the same source and desti-
nation vertices. When edges are collapsed, the edge representing them will be assigned a weight
equal to the sum of the weights of the represented edges.

In the uncoarsening stage, algorithms generally employ some refinement algorithms such that
the edge-cut or the partitioning balance is improved.

The most representative algorithm in this category is Metis[29, 27]. In the coarsening phase
[29, 27] propose different heuristics for matching vertices. The most trivial heuristic is random
matching, where a vertex is randomly matched with a neighbour which has not been matched
yet. A more complex heuristic proposed is heavy edge matching (HEM). HEM tries to match
vertices that are connected by heavy weight edges. By matching vertices with heavy weights the
algorithm maximizes the decrease in edge-cut. In the uncoarsening stage they propose a variation
of the KL algorithm. Since the KL algorithm only assesses border vertices, they optimize the
algorithm by computing the vertex weights and gains for border vertices only and updating the
set of border vertices on demand as migrations happen.

[9] further improves the coarsening stage by allowing matching already matched vertices.
The optimization improves the convergence on power law graphs where the least popular users
tend to be left unpaired, resulting in larger number of iterations until they can be paired such that
the graph size is significantly reduced.

While the original algorithm was sequential, it has since been parallelized [30, 50] and results
show near linear scaling with the number of processors allocated.

More recently [57] proposes a multi-level label propagation (MLP) method to partitioning
graphs. Label propagation (LP) is a heuristic used to detect communities in social networks. In

18

LP each vertex is initialy assigned a label. In each iteration each vertex will take the most popular
label in its neighbourhood. The process terminates when labels no longer change. [57] adapts
LP in the multi-level partitioning algorithm. In each coarsening stage, vertices with the same
label are coarsened together. They evaluate their algorithm against Metis showing that MLP
can produce high quality partitionings with significantly less memory resources and significantly
lower run-time.

Streaming Algorithms

Streaming algorithms are greedy algorithms that partition data as it is read. Normally, these
algorithms will only know of data they already processed and often, they only buffer a limited
amount of it. The insight is that low cost partitioning may improve partition quality over random,
hash based without having a computational overhead (or at least a minimal one). Compared to
offline partitioners that require a global view of the data, streaming algorithms are one pass
algorithms which limited knowledge of the graph.

[53] proposes such an algorithm and assesses the quality of multiple heuristic functions. They
show that some heuristics can significantly improve quality over random partitioning. Their re-
sults also show that these heuristics are also consistent over multiple types of data sets. Compared
to Metis, their results show that data set types are important. In the best case scenario their algo-
rithm was within 10% of Metis. Unfortunately, on average, 25% of cross partition edges can still
be optimized.

Fennel [54] proposes an improved heuristic algorithm that improves data locality, but at the
cost of increased partition imbalance. Unlike the heuristics in [53], Fennel, does not guarantee
partition balance.

2.2.2 Graph Repartitioning

I further looked at repartitioning algorithms to analyze their performance and quality. Most of
the repartitioning algorithms are modifications of partitioning algorithms mentioned above. In
addition most (KL, FM, SA) suffer from the same scalability problems mentioned in the previous
section. Thus I will not mention them again.

Linear Programming Repartitioning

[44] presents a repartitioning algorithm based on linear programming. It tries to optimize the
edge-cut by ”smoothing” the partition borders by applying linear constraints on the edge cut,

19

partition sizes and vertices moved. They compared it with recursive spectral bisection (special
case of spectral clustering optimized using a multilevel approach) and found that a sequential im-
plementation is two orders of magnitude faster. In addition, by parallelizing their implementation
they gain up to 20 times the performance over the sequential.

One potential problem mentioned in the paper is the inability to solve the linear programming
problem due to constraint values which would require user intervention.

ParMetis

[49] presents a modification of the Metis algorithm. They take advantage of the relatively parti-
tioned state of the graph and completely parallelize the coarsening stage by collapsing only local
vertices. In the un-coarsening stage they apply a diffusion scheme in order to balance vertex dis-
tribution and decrease edge-cut. Their results show that the quality of the partitions are similar
to those generated by Metis while taking orders of magnitude less time.

Re-streaming Algorithms

[42] extends the work on streaming algorithms from [53, 54] to multi-iteration streaming. The
basic idea is that the same data sets will often be streamed periodically, thus, keeping track of
results from the previous streaming can improve quality. Their results show that this process can
significantly improve quality after a few iterations. The partition quality was similar to Metis’
quality while requiring less memory.

Unfortunately, their focus is on data sets that need to be fully loaded. A problem with this
assumption is the amount of vertices that will have a new partition at the end of an iteration can
be high. Additionally they need to process the full graph to be able to repartition it.

2.2.3 Summary

20

Pa
rt

iti
on

Q
ua

lit
y

M
em

or
y

U
sa

ge
C

om
m

un
ic

at
io

n
M

ig
ra

tio
ns

Sc
al

ab
ili

ty
K

er
ni

gh
an

-L
in

m
ed

iu
m

-h
ig

h
O

(n
*p

)
hi

gh
lo

w
lo

w
Fi

du
cc

ia
-

M
at

he
ys

es
hi

gh
O

(n
*p

)
lo

w
lo

w
lo

w

Sp
ec

tr
al

C
lu

s-
te

ri
ng

hi
gh

O
(n

+e
)

lo
w

lo
w

lo
w

Po
w

er
It

er
at

io
n

C
lu

st
er

in
g

hi
gh

-u
ns

ta
bl

e
O

(n
+e

)
lo

w
lo

w
hi

gh

R
ec

ur
si

ve
C

oo
r-

di
na

te
B

is
ec

tio
n

lo
w

O
(n

+e
)

lo
w

lo
w

hi
gh

Si
m

ul
at

ed
A

n-
ne

al
in

g
hi

gh
O

(n
*p

)
lo

w
lo

w
lo

w

M
et

is
hi

gh
O

(i
*(

n+
e)

)
lo

w
hi

gh
hi

gh
M

L
P

hi
gh

O
(i

*(
n+

e)
)

lo
w

hi
gh

hi
gh

St
re

am
in

g
m

ed
iu

m
lo

w
(d

ep
en

ds
on

se
tti

ng
s)

lo
w

hi
gh

hi
gh

R
e-

st
re

am
in

g
hi

gh
O

(n
)

lo
w

hi
gh

hi
gh

Ta
bl

e
2.

2:
Su

m
m

ar
y

co
m

pa
ri

so
n

of
pa

rt
iti

on
in

g
al

go
ri

th
m

s.
n

re
pr

es
en

ts
th

e
nu

m
be

r
of

ve
rt

ic
es

,e
re

pr
es

en
ts

th
e

nu
m

be
r

of
ed

ge
s,

p
re

pr
es

en
ts

th
e

nu
m

be
r

of
pa

rt
iti

on
s

an
d

ir
ep

re
se

nt
s

th
e

nu
m

be
r

of
ite

ra
tio

ns
th

e
al

go
ri

th
m

is
ex

ec
ut

ed
.

21

A summary of the partitioning comparison can be viewed in Table 2.2. Greedy algorithms do
not scale well and they require large numbers of iterations to converge. Spectral and stochastic
algorithms can not scale well. Geometric algorithms require additional information what is not
available. Multi-level algorithms have good quality and scale well, however memory require-
ments are high. Streaming algorithms are one shot algorithms and have average gains. Linear
programming repartitioners have good quality and performance, though they can get stuck or are
unable to solve the problem. Re-streaming algorithms improve the quality of streaming algo-
rithms, though they require full graph processing to finish any additional iterations and do not
guarantee minimization of data migration.

Overall the algorithms that performed best in each analyzed category were PIC and Metis. To
my knowledge there is no published work that compares these two methods. I initially planned
on using both methods and analyze the performance differences. However my initial tests on
PIC showed that the partition quality can be severely impacted by the initial start parameters. I
found that running PIC multiple times as suggested in [36] to be unacceptable as it decreases
performance of the algorithm. Metis also suffers from decreased performance as graph sizes
increase. In addition, due to the high memory overhead of the coarsening stage, using Metis or
its variants is unfeasible.

Repartitioning algorithms show better run-time performance as they assume relatively well
partitioned graphs. This key insight allows them to optimize several expensive operations or even
discard them. Unfortunately, Linear Programming Repartitioning has limited experiments on
very small and very sparse graphs. It is also possible that the linear optimization problem cannot
be solved without loosening some constraints[44]. ParMetis improves run-time performance
over Metis, however it still suffers from large memory constraints making it unfeasible.

22

Chapter 3

Proposed Greedy Repartitioner

The previous chapter presented the most significant partitioning and repartitioning algorithms in
the literature. The survey shows that these algorithms are generally used to solve generic graph
partitioning problems with little to no prior knowledge of graph structure or partitioning quality.
In addition to the goals present in the partitioners, the surveyed repartitioning algorithms add
additional assumptions, such as the number of changes to the graph partitioning is minimized.
Using this assumption allows them to optimize certain stages of existing partitioning algorithms
to decrease the time required to completion. Unfortunately, by re-using parts of partitioning
algorithms, repartitioners require large amounts of in-memory state, making them unfeasible to
execute in parallel in a database system.

This chapter presents a greedy, iterative algorithm used to repartition a graph. The key con-
straint imposed on the graph is: the graph should be well partitioned, such that when running
the repartitioner, the graph would have only changed by small amounts. With respect to the
algorithm, the constraints include: small memory footprint, small network overhead, and high
parallelization in order to allow the algorithm to scale.

3.1 Algorithm Description

When new nodes join the network or the traffic patterns (weights) of nodes change, it is required
to update the partitioning by migrating vertices between partitions. This helps to reduce the
number of remote traversals. The greedy repartitioner uses an iterative process to rebalance
vertex weights while decreasing edge-cut. To increase performance, instead of looking at the
graph structure, the algorithm makes use of aggregate vertex weight information as its metadata.

23

Assuming there are α partitions, for each vertex v, the metadata includes α integers indicating
the number of neighbors of v in each of the α partitions. This metadata is insignificant compared
to the physical data associated with the vertex which include adjacency list and other information
referred to as properties of the vertex (e.g., pictures posted by a user in a social network). The
repartitioning metadata is collected and updated based on execution of user requests e.g., when
a new edge is added, the metadata of the partitioning(s) including the endpoints of the edge get
updated (two integers are incremented). Hence, the cost involved in maintenance of metadata is
proportional to the rate of changes in the graph. As mentioned earlier, social networks change
quite slowly (when compared to the read traffic); hence, the maintenance of metadata is not a
bottleneck of the system. Each partition collects and stores aggregate vertex information relevant
to only the local vertices. Moreover, the metadata includes the total weight of all partitions, i.e.,
in doing repartitioning, each server knows the total weight of all other partitions.

The repartitioning process has two phases. The first phase is an iterative process; in each
iteration, each server runs the repartitioner algorithm using the metadata to indicates some ver-
tices in its partition that should be migrated to other partitions. Before the next iteration, these
vertices are logically moved to their target partitions. Logical movement of a vertex means that
only the metadata associated with them is sent to the other partition. This process continues up
to a point (iteration) in which no further vertices are indicated for migration. At this point the
second phase is performed in which the physical data is moved based on the result of first phase.
The algorithm is split into two phases because border vertices are likely to change partitions
more than once (this will be described later) and metadata records are lightweight compared to
the physical data records, allowing the algorithm to finish faster. In what follows, we describe
how vertices are selected for migration in an iteration of the repartitioner. Note that this process
continues up until a point where no further vertex is selected for migration. Consider a partition
Ps (source partition) is running the repartitioner algorithm. Let v be a vertex in partition Ps. The
gain of moving v from Ps to another partition Pt (target partition) is defined as the difference
between the number neighbors of v in Pt and Ps, respectively, i.e., gain(v) = dv(t) − dv(s)
(where dv(k) denotes the number of neighbours of v in partition k). Intuitively, the gain repre-
sents the decrease of the number of edge-cuts when migrating v from Ps to Pt (assuming that no
other vertex migrates). Note that the gain can be negative, meaning that it is better, in terms of
edge-cuts, to keep v in Ps rather than moving it to Pt. In each iteration and on each partition,
the repartitioner selects some vertices as the candidates for migrating. Basically, the algorithm
selects vertices which result in the maximum gain when moving from the partition. However, to
avoid oscillation and ensure a valid packing in term of load balance, the algorithm has some rules
in migrating vertices. First, it defines two stages in each iteration. In the first stage, the migration
of vertices is only allowed from partitions with lower ID to higher ID, while the second stage
allows the migration only in the opposite direction, i.e., from partitions with higher ID to those

24

with lower ID. Here, partition ID defines a fixed ordering of partitions (and can be replaced by
any other fixed ordering). Migrating vertices in one-direction manner in two stages prevent the
algorithm from oscillation. Oscillation happens when two group of vertices, shared in two dif-
ferent partitions, share a large number of edges (see Figure 3.1). If the algorithm allows two-way
migration of vertices, the vertices in each group migrate to the partition of the other group, while
the edge-cut does not improve (Figure 3.1b). In a one-way migration, however, the vertices in
one group remain in their partitions while the other group joins them in that partition (Figure
3.1d).

In addition to preventing oscillation, the repartitioner algorithm should prevent load imbal-
ance. A vertex v on a partition Ps is a candidate for migration to partition Pt if the following
conditions hold:

• Ps and Pt fulfill the above one-way migration rule.

• Moving v from Ps to Pt does not cause Pt to be overloaded nor Ps to be underloaded.
Recall that the imbalance ratio of a partition is the ratio between the weight of the partition
(the total weight of vertices it is hosting) and the average weight of all the partitions. A
partition is overloaded if its imbalance load is more than γ and underloaded if its weight
is less than 2 − γ times the average partition weight. Here, γ is the maximum allowed
imbalance factor (1 < γ < 2); the default value of γ in the system is set to be 1.1, i.e., a
partition’s load is required to be in range (0.9, 1.1) of the average partition weight. This is
so that imbalances do not get too high before repartitioning triggers.

• Either Ps is overloaded or there is a positive gain in moving v from Pt to Ps. When a par-
tition is overloaded, vertices are tagged as candidates for migrating to any other partitions
as long as they do not cause an overload of the target partitions. When the partition is not
overloaded, it is good to move only vertices which have positive weight, i.e., improve the
edge-cut.

When a vertex v is a candidate for migration to more than one partitions, the partition with
maximum gain is selected as the target partition of the vertex. This is illustrated in Algorithm 3.2.
Note that detecting whether a vertex v is a candidate for migration and selecting its target partition
is performed using only the repartitioning metadata. Precisely, for detecting underloaded and
overloaded partitions (respectively Lines 2, 5 and 11) the algorithm uses the weight of the vertex
and all partitions; these are included in the metadata. Similarly, for calculating the gain of moving
v from partition Ps to partition Pt (Line 8), it uses the number of neighbors of v in any of the
partitions, which is also included in the metadata.

25

Recall that the repartitioning algorithm runs on each partition separately. Here, we describe

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

(a) Initial graph, before the first iteration.

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

(b) The resulted graph if vertices migrate at the
same stage.

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

(c) The resulted graph after the first stage.

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

d

g
f

h

e
i

1Partition

2Partition

c

a

b

d

g

f

h

e
i

1Partition

2Partition

c

a

b

(d) The final graph after the second stage.

Figure 3.1: An unsupervised repartitioning might result in oscillation. Consider the partition-
ing depicted in (a). The repartitioner on partition 1 detects that migrating d, e, f to partition 2
improves edge-cut; similarly, the repartitioner on partition 2 tends to migrate g, h, i to partition
1. When the vertices move accordingly, as depicted in (b), the edge-cut does not improve and
the repartitioner needs to move d, e, f and h, i again. To resolve this issue, in the first stage of
rerpartioning of (a), the vertices d, e, f are migrated from partition 1 (lower ID) to partition 2
[dark arrows]. After this, as depicted in (c), the only vertex which requires to migrate in the
second stage is vertex g which moves from partition 2 (higher ID) to migration 1 (d).

26

1: procedure GET TARGET PART(vertex v currently hosted in partition Ps)
2: if imbalance factor(Ps − {v}) < 2− γ then
3: return (null, 0)
4: end if
5: target = null; maxGain = 0;
6: if imbalance factor(Ps) > γ then
7: maxGain = −∞
8: end if
9: for partition Pt ∈ partitionSet do

10: gain← dv(t)− dv(s)
11: if imbalance factor(Pt ∪ {v}) < γ and gain > maxGain then
12: target← Pt; maxGain = gain
13: end if
14: end for
15: return (target,maxGain)
16: end procedure

Figure 3.2: Choosing the migration target partition

how the algorithm works in each iteration. For each partition Ps, after selecting the candidate
vertices for migration and their target partitions, the algorithm selects k candidate vertices which
have the highest gains among all vertices and proceeds by (logically) migrating these top-k ver-
tices to their target partitions. Here, migrating a vertex means sending (and updating) the meta-
data associated with the vertex to its target destination [and updating the metadata associated
with partition weights accordingly]. The algorithm restricts the number of migrated vertices
in each iteration (to k) to avoid imbalanced partitionings. Note that, when selecting the target
partition for a migrating vertex, the algorithm does not know the target partition of other vertices;
hence, there is a chance that a large number of vertices migrate to the same partition to improve
edge-cut. Selecting only k vertices enables the algorithm to control the cumulative weight of
partitions by restricting the number of migrating vertices. Later, we discuss how the value of k is
selected. In general, taking k as a small, fixed fraction of n (size of the graph) gives satisfactory
results.

Algorithm 3.3 shows the details of one iteration of the repartitioner algorithm performed on a
partition Ps. The algorithm detects the candidate vertices (Lines 4-8), selects the top-k candidates
(Line 9), and moves them to their respective target partitions. Note that the migration in Line
11 is a logical migration only, in the sense that only the metadata associated with vertices is
migrated. After each phase of each iteration, the metadata associated with each migrated vertex

27

1: procedure REPARTITIONING ITERATION(partition Ps, k)
2: for stage ∈ {1, 2} do
3: candidates← {}
4: for Vertex v ∈ VertexSet(Ps) do
5: GET TARGET PART(v) . setting target(v) and gain(v)
6: if target(v) 6= null and [(stage = 1 and target(v).ID > Ps.ID) or (stage = 2

and target(v).ID < Ps.ID)] then
7: candidates.add (v)
8: end if
9: end for

10: top-k← k candidates with maximum gains
11: for Vertex v ∈ top-k do
12: MIGRATE(v, PS, target(v))
13: end for
14: Ps.update metadata
15: end for
16: end procedure

Figure 3.3: Repartitioning algorithm

v should be updated. This is because the neighbors of v might also be migrated; this implies
that the degree of v in each partition, i.e., metadata associated with v, is changed. The algorithm
continues moving vertices until an iteration in which there is no candidate vertex for migration,
i.e., further movement of vertices does not improve edge-cut.

The following example illustrates how the greedy repartitioner works.
Example: We show two iterations of the repartitioning algorithm on the graph of Figure 3.4 in
which there are α = 3 partitions and the average weight of partitions is 10/3. Assume the value
of γ is 1.3. Hence, the aggregate weight of a partition needs to be in range [2.3, 4.3]; otherwise
the partitioning is overloaded or underloaded. Figure 3.4a shows the initial state of the graph.
The partitions are sub-optimal as 6 of the 11 edges shown are edge-cuts. Consider the first stage
of the first iteration of the greedy repartitioner. Since the first stage restricts vertex migrations
from lower ID partitions to higher ID only, vertices a and e are the migration candidates since
they are the only ones that can improve edge-cut. Note that if the algorithm was performed in
one stage, vertices h and d would be migrated to partition 1 causing the swap behavior previously
discussed. At the end of the first stage of the first iteration, the state of the graph is as presented
in Figure 3.4b. In the second stage, the algorithm migrates only vertex g. While vertex c could
be migrated to improve edge-cut, the migration direction does not allow this (Figure 3.4c). In

28

addition, such migration would cause partition 1 to be underloaded (its load will be 2 which
is less than 2.3). In the second iteration, vertex c is migrated to partition 2. The result of the
first stage of iteration 2 is presented in Figure 3.4d. At this point, the graph reaches an optimal
grouping, thus the second stage of the second iteration will not perform any migrations. In fact
any further iteration would not migrate anything since the graph has an optimal partitioning.

3.2 Physical Data Migration

Physical data migration is the final step of the repartitioner. Vertices and relationships that were
marked for migration by the repartitioner will be moved to the target partitions using a two step
process: (1) Copy marked vertices and relationships (copy step) (2) Remove marked vertices and
relationships from the host partitions (remove step).

This two stage process can be compared to streaming. In the first stage, a list of all vertices
selected for migration to a partition are received by the partition, which will request these vertices
and add them to its own local database. Essentially, at the end of the first stage, all moved vertices
will be replicated. Because of the insertion-only operations in this stage, the complexity of the
operations is lower as all operations in this stage can be performed locally in each partition,
meaning less network contention and locks held for shorter periods.

Between the two stages there is a synchronization process between all partitions. This pro-
cess takes place to make sure that partitions have completed the copy process before starting to
remove marked vertices from their original partitions. This is required since partitions may re-
quest removal of data that is still used by other partitions in the copy stage. The synchronization
itself is not expensive, though partitions may need to wait until a straggler finishes copying.

The remove stage takes advantage of replication to decrease the number of operations and
their impact on the system. First, all marked vertices will enter an unavailable state. When a
vertex enters this state, all queries referencing the vertex will be executed as if the vertex is not
part of the local vertex set. This allows performing the transactional operations much faster as
locks on unavailable vertices cannot be acquired by any standard queries. In addition, since this
operation is performed in a batch like process, it is easy to detect operations that can be collapsed
together. One example is if two related vertices are moving from the local partition. In this case
the relationship between the two can simply be deleted rather than first changing it to a reflect
the migration of one end, then deleting it.

29

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1Partition
5,4 ec

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

ij

2Partition

4,3 ec

3Partition
3,3 ec

1Partition
4,3 ec

2Partition
3,3 ec

3Partition
3,4 ec

1Partition

2Partition

2Partition

1Partition

3Partition3Partition

3,4 ec

3,3 ec

2,3 ec 2,3 ec

2,3 ec

2,4 ec

(a) Initial graph, before first iteration

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1Partition
5,4 ec

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

ij

2Partition

4,3 ec

3Partition
3,3 ec

1Partition
4,3 ec

2Partition
3,3 ec

3Partition
3,4 ec

1Partition

2Partition

2Partition

1Partition

3Partition3Partition

3,4 ec

3,3 ec

2,3 ec 2,3 ec

2,3 ec

2,4 ec

(b) After first stage of first iteration

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1Partition
5,4 ec

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

ij

2Partition

4,3 ec

3Partition
3,3 ec

1Partition
4,3 ec

2Partition
3,3 ec

3Partition
3,4 ec

1Partition

2Partition

2Partition

1Partition

3Partition3Partition

3,4 ec

3,3 ec

2,3 ec 2,3 ec

2,3 ec

2,4 ec

(c) After second stage of first iteration

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1Partition
5,4 ec

1

1

1

1

1

1

1

1

1 1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

i
j

1

1

1

1

1

1

1

1

1
1

a

b

c

d

e

f

g

h

ij

2Partition

4,3 ec

3Partition
3,3 ec

1Partition
4,3 ec

2Partition
3,3 ec

3Partition
3,4 ec

1Partition

2Partition

2Partition

1Partition

3Partition3Partition

3,4 ec

3,3 ec

2,3 ec 2,3 ec

2,3 ec

2,4 ec

(d) After first stage, second iteration

Figure 3.4: Example of 2 iterations of repartitioning. 2 metrics are attached to every partition: w
representing the weight of the partition and ec representing the edge-cut.

30

3.3 Algorithm Analysis

3.3.1 Memory and Time Analysis

Recall that the main advantage of the greedy repartitioner over multilevel algorithms is that it
makes use of only repartitioning metadata to perform repartitioning. Metadata has a small size
compared to the size of the graph. This is formalized in what follows.

Theorem 1. The amortized size of metadata (number of integers) stored on each partition to
perform repartitioning is n + α on average. Here, n denotes the number of vertices in the input
graph and α is the number of partitions.

Proof. Assume there are α partitions. The metadata for a vertex v includes the number of neigh-
bors of v in each of these partitions. In total, there will be α integers for each vertex. The
amortized number of vertices in each partition is n/α; hence, the amortized size of metadata
associated with vertices in each partition is n. Beside the number of neighbors in each partition
for each vertex, the metadata includes aggregated weight of all partitions. The aggregate weight
of each partition can be stored in a constant number of integers, equal to the number of partitions,
α.

As mentioned in Chapter 2, multi-level algorithms do repartitioning by looking at adjacency
lists of vertices, which might be a large fraction of number of edges. In contrast, an implication
of the above theorem is that the size of metadata used by greedy repartitioner is roughly equal
to the number of vertices. In social networks, the number of edges is significantly more than
the number of vertices, e.g., the average friend count in Facebook is around 130 [13] which
implies that the number of edges is roughly 65 times the number of vertices. Hence, the memory
requirement of greedy repartitioner is far less than that of multilevel algorithms and can be easily
maintained in memory without any impact on performance of the system. This is experimentally
verified in Section 5.4.

Theorem 2. Each iteration of the repartitioning algorithm takesO(αns) time to complete. Here,
α denotes the number of partitions and ns is the number of vertices in the partition which runs
the repartitioning algorithm.

Proof. Let Ps denote the partition on which the repartitioning algorithm runs. Assume there
are α partitions in the system. In each iteration, detecting whether a vertex v is a candidate
for migration can be done in Θ(α) time. Namely, for each target partition Pt, the algorithm
determines, in constant time, whether moving v causes an overload in Pt and if not, what is the

31

gain in moving v from Ps to Pt; this is done by comparing the number of neighbors of v in both
partitions. Comparing partition IDs if Ps and Pt also takes constant time. In total, the candidate
vertices can be selected in time O(αns). Selecting the top-k candidates also takes O(αns) time,
thus the running time of each run of the algorithm is O(αns).

In practice, the number of partitions is constant when compared to the number of nodes in
the graph (α is a constant). Hence, the above theorem implies that each iteration of the algorithm
runs in linear time. Moreover, the algorithm converges to a stable partitioning after a small
number of iterations relative to the number of nodes (e.g., in our experiments, it converges after
around 10 iterations, while there are millions of vertices in the graph data sets). To conclude, the
time complexity of greedy repartitioner is linear to the number of hosted vertices; this makes the
algorithm much faster than its multilevel counterparts.

3.3.2 Parallelism

The greedy repartitioner is designed for scalability and with little overhead to the database en-
gine. The simplicity of the algorithm supports parallelization of operations and maximizes scal-
ability. Each iteration of the algorithm (see Algorithm 3.3, lines 3-10) is executed in parallel on
each server. Ater finding all the candidate vertices, the metadata information is moved between
partitions (logical migration). In this stage, the repartitioner reads each vertex in the neighbor
list to update the metadata (Line 10 of Algorithm 3.3). This process is more expensive as it
interacts with the database engine to read the neighborhood list of hosted vertices. To improve
the performance of the repartitioner, this stage has been further parallelized on each server (by
sharding the set and using multiple threads to fetch the data), allowing the algorithm to finish
much faster as timing results showed that this part of the algorithm is the second most expensive
step (after physical data migration in the second phase). As such, when configuring the reparti-
tioner, it is important to know the maximum throughput a partition can support and choose this
parallelization such that it does not have a major performance impact on current user queries.

In the second phase of the repartitioning algorithm, physical data migration is performed.
This is the most expensive stage because it will require writing the migrated records and deleting
them from their old partition. As mentioned in Section 3.2, this stage has been decomposed into
two sub-stages for simplicity and performance. Because information is only copied in the first
sub-stage, it allows for maximum parallelization with little need to synchronize between servers.
In fact, the servers do not need to know of each other’s existence and rely on the database’s
local locking to make sure only one can modify a record. (For clarification, the only issue
would be when two servers move vertices that share a relationship and both would try to add the
relationship record on the target partition. In this case one server can simply skip the operation

32

since it will be done by the other server.) The second sub-stage is even simpler and easier to
parallelize since it only removes information.

3.3.3 Algorithm Convergence

When the greedy repartitioner triggers, the algorithm starts by migrating vertices from over-
loaded partitions. Note that no vertex is a candidate for migration to an overloaded partition.
Hence, after a bounded number of iterations, the partitioning becomes valid in terms of load
balance. When there is no overloaded partition, the algorithm moves a vertex only if there is a
positive gain in moving it from the source to the target partition. This is the main idea behind the
proof for the convergence of the algorithm.

Theorem 3. After a bounded number of iterations, the greedy repartitioner algorithm converges
to a stable partitioning in which further migration of vertices (as done by the algorithm) does
not result in better partitionings.

Proof. To prove the convergence, we show that the algorithm constantly decreases the number
of edge-cuts. For each vertex v, let dex(v) denote the number of external neighbors of v, i.e,
number of neighbors of v in partitions other than that of v. With this definition, the number of

edge-cuts in a partition is χ/2 where χ =
n∑

v=1

dex(v). Recall that the algorithm works in stages so

that if in a stage migration of vertices is allowed from one partition to another, in the subsequent
stage the migration is allowed in the opposite direction. We show that the value of χ decreases in
every two subsequent stages; more precisely, we show that when a vertex v migrates in a stage t,
the value of dex(v) either decreases at the end of the stage t or at the end of the subsequent stage
t+1 (compared to when v does not migrate). Let dtp(v) denote the number of neighbors of vertex
v in partition p before stage t. Assume that vertex v is migrated from partition i to partition j
at stage t (see Figure 3.5). This implies that the number of neighbors of v in partition j is more
than partition i. Hence, when v moves to partition j, the value of dex(v) is expected to decrease.
However, in a worst-case scenario, some neighbors of v in partition j also move to other partitions
in the same sub-stage (Figure 3.5b). Let x(v) denote the number of neighbors of v in target
partition j which migrate at stage t; hence, at the end of the stage, the value of dex(v) decreases
by at least dtj(v)− x(v) units. Moreover, dex(v) is increased by at most dti(v); this is because the
previous internal neighbors (those which remain at partition i) will be external after the migration
of v. If dtj(v) − x(v) > dti(v), the value of dex(v) is decreased at the end of the stage and we
are done. Otherwise, we say a bad migration occurred. In these cases, assuming k (the number
of migrated vertices in an iteration - top-k) is sufficiently large, in the subsequent stage t + 1, v

33

a

a' a''

b

b' b''

c

c' c''

d

d' d''

e

e' e''

f

f' f''

g

g' g''

h

h' h''

i

i' i''

(i=1) (j=2)

a
a'

a''

bb'

b''

cc'

c''

dd'

d''

e

e'

e''

f

f'

f''

g

g'
g''

h

h'

h''

i

i'
i''

In the first substage, {a,b,c} move to partition 2, while {d,e,f} move to

partition 3. This increases the total edge-cut from 18 to 21. So, the

algorithm worsens the partitioning after the first substage. In the second

substage, {d,e,f} return to partition2. This kind of behaviour makes

proving things very hard. In particular, we cannot even prove that edge-

cuts improves

a

a'

a''

b

b'

b''

c

c'

c''

d

d'

d''

e

e'

e''

ff'

f''

g

g'
g''

h

h'

h''

i

i'
i''

1Partition

2Partition1Partition

1Partition 2Partition 3Partition

3Partition

3Partition2Partition

(a) Original graph

a

a' a''

b

b' b''

c

c' c''

d

d' d''

e

e' e''

f

f' f''

g

g' g''

h

h' h''

i

i' i''

(i=1) (j=2)

a
a'

a''

bb'

b''

cc'

c''

dd'

d''

e

e'

e''

f

f'

f''

g

g'
g''

h

h'

h''

i

i'
i''

In the first substage, {a,b,c} move to partition 2, while {d,e,f} move to

partition 3. This increases the total edge-cut from 18 to 21. So, the

algorithm worsens the partitioning after the first substage. In the second

substage, {d,e,f} return to partition2. This kind of behaviour makes

proving things very hard. In particular, we cannot even prove that edge-

cuts improves

a

a'

a''

b

b'

b''

c

c'

c''

d

d'

d''

e

e'

e''

ff'

f''

g

g'
g''

h

h'

h''

i

i'
i''

1Partition

2Partition1Partition

1Partition 2Partition 3Partition

3Partition

3Partition2Partition

(b) After the first stage

a

a' a''

b

b' b''

c

c' c''

d

d' d''

e

e' e''

f

f' f''

g

g' g''

h

h' h''

i

i' i''

(i=1) (j=2)

a
a'

a''

bb'

b''

cc'

c''

dd'

d''

e

e'

e''

f

f'

f''

g

g'
g''

h

h'

h''

i

i'
i''

In the first substage, {a,b,c} move to partition 2, while {d,e,f} move to

partition 3. This increases the total edge-cut from 18 to 21. So, the

algorithm worsens the partitioning after the first substage. In the second

substage, {d,e,f} return to partition2. This kind of behaviour makes

proving things very hard. In particular, we cannot even prove that edge-

cuts improves

a

a'

a''

b

b'

b''

c

c'

c''

d

d'

d''

e

e'

e''

ff'

f''

g

g'
g''

h

h'

h''

i

i'
i''

1Partition

2Partition1Partition

1Partition 2Partition 3Partition

3Partition

3Partition2Partition

(c) After the second stage

Figure 3.5: The number of edge-cuts might increase in the first stage (in the worst case), but it
decreases after the second stage. In this example, the number of edge-cuts is initially 18 (a); this
increases to 21 after the first stage (b), and decreases to 15 at the end of the second stage (c).

34

migrates back to partition i since there is a positive gain in such a migration (Figure 3.5c), and this
results in a decrease of dt+2

i (v) and an increase of at most dtj(v)− x(v) in dex(v). Consequently,
the net increase in dex after two stages is (dti(v)− (dtj(v)− x(v))) + (dtj(v)− x(v)− dt+2

i (v)) =

dti(v)− dt+2
i (v). Note that if v does not move at all, dex increases dti(v)− dt+2

i (v) units after two
stages. Hence, in the worst case, the net decrease in dex(v) is at least 0 for all migrated vertices
(compared to when they do not move). Indeed, we show that there are vertices for which the
decrease in dex is strictly more than 0 in each two stages. Assuming there are α partitions, these
are the vertices which migrate to partition α [in stages where vertices move from lower ID to
higher ID partitions] or partition 1 [in stages where vertices move from higher ID to lower ID
partitions]. In these cases, no vertex can move from the target partition to another partition; so
the actual decrease in dex(v) is the same as the calculated gain when moving the vertex and is
more than 0. To summarize, for all vertices, the value of dex(v) does not increase after every two
stages, and for some vertices, it decreases. For smaller values of k, after a bad migration, vertex
v might not return from partition j to its initial partitioning i in the subsequent stage (since there
might be more gain in moving other vertices); however, since there is a positive gain in moving
v back to partition i, in subsequent stages, the algorithm moves v from partition j to another
partition (i or another partition which results in more gain). The only exception is when many
neighbors of v move to partition j so that there is no positive gain in moving v. In both cases,
the value of dex(v) decreases with the same argument as above. To conclude, as the algorithm
runs, the accumulated values of dex(v) (i.e., χ) and consequently the number of edge-cuts will
be constantly decreasing.

The graph structure in social networks does not evolve quickly and its evolution is towards
community formation. Hence, as the experiments confirm, after a small number of iterations,
the greedy repartitioner converges to a stable partitioning(where no further migration is done by
the algorithm). The speed of convergence depends on the value of k (the number of migrated
vertices from a partition in each iteration). Larger values of k result in faster improvement on
the number of edge-cuts and subsequently achieving partitioning with almost optimal number of
edge-cuts. However, as mentioned earlier, large values of k can degrade the balance factor of
partitioning.To converge quickly, an algorithm should select the value of k so that the edge-cuts
improve quickly while the load balance does not suffer. Finding the right value of k requires
considering a few parameters which include the number of partitions, the structure of the graph
(e.g., the average size of the clusters formed by vertices), and the nature of changing workload
(whether the changes are mostly on the weight or the degree of vertices). In practice, it was
observed that a sub-optimal value of k does not degrade convergence rate by more than a few
iterations; consequently the algorithm does not require fine tuning for finding the best value of
k. In the experiments, k is set as a small fraction of the number of vertices (typically k is slightly
smaller than the imbalance permitted on a partition).

35

3.3.4 Alternate Optimizations

The repartitioner only keeps track of vertex weights, rather than also having edge weights, due to
the nature of the graph operations and due to memory constraints. Given that all operations are
in the form of graph traversals, the weight of an edge is the sum of the weights of each ending
vertex. Thus edge weights do not need to be stored as they relate to the vertices they connect.
In adition, by modifying the algorithm to look at edge weights while choosing the migration
candidates would increase the execution time by two orders of magnitude due to the high number
of relationships. In addition it adds an inter-partition communication cost, proportional to the
number of relationships, during the candidate selection phase.

36

Chapter 4

Prototype Distributed Graph Database

4.1 Neo4j Description

Neo4j is a centralized graph database system which provides a disk-based, fully transactional
persistence engine. The main querying interface to Neo4j is traversal based. Traversals use the
graph structure and relationships between records to answer user queries. In terms of transac-
tions, Neo4j is ACID compliant.

4.1.1 Storage

Physical Representation

Internally, Neo4j stores information in three main stores: node store, relationship store and prop-
erty store. Neo4j splits data into multiple stores for performance and simplicity. By splitting data
into three stores, it allows Neo4j to keep only basic information on nodes and relationships in
the first two stores. Further, this allows Neo4j to have fixed size node and relationship records.
Neo4j combines this feature with a monotonically increasing ID generator such that a) record
offsets are computed in O(1) time using their ID and b) contiguous ID allocation allows records
to be as tightly packed as possible. The property store allows for dynamic length records. To
store the offsets Neo4j uses a two layer architecture where a fixed size record store is used to
store the offsets and a dynamic size record store to hold the properties.

The main advantage of the storage layout is in resource allocation. Typically, the number
of relationships is orders of magnitude higher than the number of nodes. Similarly, the number

37

of properties is orders of magnitude higher than the number of relationships. By separating the
stores based on their type, Neo4j can better cache critical data and improve query times. To better
understand how the storage layout improves performance, we look at a typical use pattern. The
typical pattern involves basic traversals over the node and relationship stores. Users access the
property store infrequently and, normally, only after they finish a traversal, which restricts their
query space.

Taking into acount the patterns, the normal memory allocation tends to focus primarily on
node and relationship store caching.

Logical Representation

In order to improve system performance, Neo4j relies on two caching strategies: 1) memory-
mapped record cache and 2) object cache. In Neo4j each store type has its own cache in order to
fine tune performance of each store independently.

The memory-mapped record cache is an in-memory record cache that keeps track of records
in their raw format (physical representation). This is a coarse grained cache which keeps track
of blocks of records. This means that when Neo4j needs to read from disk, it will read a block
of records even if only one record is required from the block. This is done to improve disk
performance. Since disk hard drives read records in block sizes, reading multiple records at the
same time is equivalent to reading one record. Since Neo4j may need to read multiple records
from the same block, this improves performance.

The second cache level is an object cache. Once Neo4j parses a raw record into an object,
the object record is stored in this cache.

Neo4j record objects store only basic information about the record. For example, for a node
record, the object would store its ID, the ID of the first relationship and the ID of the first property.
When a traversal asks for the node’s relationships, it receives an iterator. The iterator will then
use the relationship ID to query for a relationship record. Relationship records are part of a
doubly linked-list such that the iterator can query for the next relationship using the current
relationship and the node ID. Conversions from IDs to objects is done lazily within the objects
or within iterators such that any user query or traversal interacts with record objects.

4.1.2 Transactions

While Neo4j is ACID compliant, these properties are infrequently used. By default, all read
operations use short lived locks (releasing the lock right after it finishes reading), while queries

38

are generally not associated with a transaction. Due to highly intensive read workloads [33, 12],
running queries without a transaction overhead allows the system to scale better with occasional
stale query results.

Transactions are enforced when writes happen. Writes need to happen under a transaction
since they often modify multiple records. However, based on traffic analysis in [33, 12], most
write traffic is update based or addition of new relationships. These types of updates modify
only 2-3 records in the worst case scenario, meaning that the transactions used in general are
light weight.

4.2 From Neo4j to DistNeo4j

To enable distribution, changes to several components of Neo4j were required as well as addition
of new functionality. The modifications and extensions were done such that Neo4j features are
preserved. Figure 4.1 shows the components of Neo4j with the components that were modified
to enable distribution in light gray shading while the components in dark gray shading are newly
added. Each of these components will be described next. In addition to understanding Neo4j,
we would like to mention that extending it to support distribution as we do in this paper needs
to overcome several design and development challenges, which are described in the sections that
follow.

In DistNeo4j servers are connected in a peer-to-peer fashion similar to that presented in
Figure 4.2. A client can connect to any one server and perform a query. Generally user queries
are in the form of a traversal. To send a query the client would first request the starting point
of the query (the vertex), then send the traversal query to the server hosting the initial vertex.
While any server can handle any query in the system, if a server does not have the starting vertex
for a query, the query is forwarded to the server containing the vertex, such that data locality is
maximized. On the server side, the traversal query will be processed by traversing the vertex’s
relationships. If the information is not local to the server, remote traversals are executed using
the links between servers. At the end of the traversal, the results will be returned to the user.

4.2.1 Initial Partitioning

To increase query locality and decrease query response times, the initial data placement pro-
cess (i.e., which parts of the data graph are placed on which server) needs to be optimized. In
distributed graph databases there are two key metrics that need to be optimized to increase per-
formance: (i) minimize load distribution imbalance, and (ii) minimize graph edge-cut (edges

39

Figure 4.1: Neo4j system layers together with modified and new components designed make it
run in a distributed environment.

crossing partitions). The first metric tries to avoid having a small number of servers become hot
spots. The second goal tries to reduce the chance of a query having to access remote objects,
thereby increasing query (data) locality.

It is important to understand why minimizing graph edge-cut is critical. In social networks
most operations are done on the user’s data and his neighbours. Since this 1-hop traversal op-
eration is so prevalent in social networks (graph networks), minimizing the edge-cut is similar
to keeping communities intact. This leads to highly local queries similar to those obtained in
SPAR[45] and minimizes the network load, allowing for better horizontal scalability by reducing
network IO in cases such as [5].

Existing graph partitioning tools such as Metis [29] minimize edge-cut. In addition, most
of them can also optimize for secondary goals such as (workload) weight balance (or partition
balance). I use Metis to obtain the initial data partitioning, which is a static, offline, process that is
orthogonal to the dynamic, on-the-fly, partitioning that DistNeo4j performs. For the initial vertex
weights, a simple representative traffic trace is synthetically generated and used to initialize them

40

jDistNeo4

traversals
emoteR

1Server

3Server 4Server

2Server

Clients ancesInst
jNeo4

Queries

esultsR

Figure 4.2: Overview of how DistNeo4j servers interact with clients

(see Chapter 5 for a detailed workload and experimental setup). The trace consists of 1-hop or
2-hop traversals where the starting vertex for each traversal is randomly selected from the set of
all vertices. This type of trace gives a uniform trace over the graph as each vertex has an equal
chance of being selected.

4.2.2 Online Repartitioning

The initial partitioning helps only as long as new data is not inserted or the traffic patterns remain
the same. When these change in the workload, the set of frequently requested data also changes.
This could lead to more remote traversals when these data are located across partition bound-
aries. Thus, migrating such data so that it is co-located on the same partition would reduce the
number of remote traversals, significantly reducing traversal cost. Two modules were created for
migrating data: a recommender module and a repartitioner.

Recommender

The repartitioning recommender is a monitoring process that is part of each DistNeo4j instance.
Small skews in access patterns happen often which could lead to small imbalances. However
these imbalances often have no overall impact on performance or the performance impact is
short lived. As such, migrating data does not need to happen unless the system undergoes a

41

permanent shift in workload. Algorithm 4.4 tries to asses the system state to determine if the
repartitioner needs to start due to system changes. StatsWindow is a statistics tracking and aggre-
gation process. StatsWindow collects performance counters as DistNeo4j answers queries and
aggregates them in time-based rolling windows. A rolling window type of aggregation allows
the system to keep both fine grained statistics of system performance and long term trends.

It is important to note that social networks are highly connected graphs. In fact, networks
such as Twitter and Orkut have very small diameters. As such, even 1-hop traversals can touch
a high fraction of vertices. Minimizing the edge-cut helps keep traversals highly local, however
not every possible vertex is optimized in terms of locality. Vertices in sub-optimal locations
will cause large remote traversals skewing the statistics in the short term. A rolling window-
based statistics aggregation system is ideal for identifying and correctly handling these types of
occurrences. Generally, a large aggregate window may see no change in average latencies or
throughput. However, even if changes are observed, the fine grained windows can be used to
identify spikes in the system and account for them in the decision-making process.

Algorithm 4.4 is used at the end of each statistics window to determine whether repartitioning
is required. In lines 2-4 the algorithm will check if the amount of new records added to the
system are within a lower limit. Since new vertex additions are performed at random, due to lack
of connectivity information, the graph engine needs to defer this process to a later time when
more information is known.

The second condition checked in lines 5-7 relate to the previously discussed locality test. If
the overall query rate is stable but the remote query rate is increasing then it may be necessary to
repartition. However, the query rate can be described as increasing only if a certain percentage
of windows are observed at the increased rate. For example, if the system keeps 5 statistics
windows and requires at least 3 to be at an increased query rate, then when the new window rolls
over and it detects an increase, it will classify the query rate as stable. Figure 4.3a shows an
aggregate StatsWindow that contains 4 windows with stable query rates and the last window with
increased rate. The classification is stable such that short lived fluctuations in the system do not
trigger a repartitioning. However if the next 2 windows roll and both show an increase (note, the
last 3 windows could have similar rates, but they considerably differ from the first 2), then the
query rate is reported as increasing. This change is exemplified in Figure 4.3b showing increased
stable rates in the last three windows.

The last condition checked, shown in lines 8-10, monitors latencies and query rates. This
condition checks that increases in workload on the partition do not affect query latencies nega-
tively. If both are increasing, then it is possible that the partition is overloaded. However, if only
the query rate is increasing, then it may be that the load on the partition is low, so there is no
reason to repartition. If only the latency is increasing, then it is most likely related to an increase

42

(a) Last window shows increased query rate.

(b) Last 3 windows show increased query rate.

Figure 4.3: Example of rolling StatsWindow with changing query rates.

1: procedure NEEDS REPART(StatsWindow w)
2: if w.vtxWrites() > vtx lim ∧ w.relWrites() > rel lim then
3: return True
4: end if
5: if w.queryRate() is stable ∧ w.remoteQueryRate() is increasing then
6: return True
7: end if
8: if w.queryLatency() is increasing ∧ w.queryRate() is increasing then
9: return True

10: end if
11: return False
12: end procedure

Figure 4.4: Repartitioning Recommender

in remote queries, which should be caught by the previous condition once it becomes critical.

Repartitioner

The greedy repartitioner previously described is used to re-balance the graph. In order to keep
the repartitioner’s impact to a minimum, a separate metadata store is used to keep track of vertex
information used by the repartitioner. The metadata keeps track of the following pieces of in-
formation: vertex weight (representing the number of accesses to performed on the vertex) and
the number of relationships each vertex has in each partition. This information is collected and
updated in real-time based on user information. When the repartitioner is active, it will use the

43

metadata to decide which vertices to migrate, thus decreasing the performance impact it has on
the system.

Further, to increase the performance, the repartitioner is executed in a two stage process: (1)
the repartitioner is run on the metadata and (2) the actual data is moved based on the first stage
results. Instead of a single stage, the algorithm is split in two stages, because border vertices
are likely to change partitions often within the first stage and metadata records are lightweight
compared to the actual data records.

Dynamic Data Migration

Data migration is the final step of the repartitioner. Vertices and relationships that were marked
for migration by the repartitioner will be moved to the new partitions using a two step process:
1) Copy marked vertices and relationships 2) Remove marked vertices and relationships from the
old partitions.

The alternative migration process considered was to copy and remove each vertex and its
associated relationships one at a time. However experimental results showed that this migration
process is more expensive in terms of the throughput performance of the system, takes longer to
finish and involves more complex operations to keep the graph consistent. Because each oper-
ation would require leaving the graph consistent, it also meant that parallelization of operations
can be complex if related vertices moved in parallel.

In contrast, the two stage process can be compared to streaming. In the first stage, each
partition receives a list of all the vertices migrated to it. It can then request these vertices and
add them to its own local database. Essentially, at the end of the first step, all moved vertices
will be replicated. Because of the insertion-only operations in this step, the complexity of the
operations is lower as all operations in this step can be performed fully locally to each partition,
meaning less network contention and locks held for shorter periods. Note however that each
vertex addition is executed within a transaction, thus leaving the graph structure consistent.

Between the two steps there is a synchronization process between all partitions. This process
takes place to make sure that partitions have completed the copy process before starting to re-
move marked vertices from their original partitions. This is required since partitions may request
removal of data that is still used by other partitions in the copy step.

The remove step takes advantage of the replicated status to decrease the number of operations
and their impact on the system. First, all marked vertices will enter an unavailable state. This
allows performing the transactional operations much faster as locks will not be held. In addition,
since this operation is performed in a batch like process, it is easy to detect operations that can

44

be collapsed together. One example is if two related vertices are moving from the local partition.
In this case the relationship between the two can simply be deleted rather than first changing it
to a ghost relationship (described in the next section) and then deleting it.

4.2.3 Storage

Data Representation

To shard data across multiple instances of Neo4j, changes were needed to allow local nodes
and relationships to connect with remote ones. Neo4j uses a doubly-linked list record model
when keeping track of relationships. As such a node in the graph needs to know only the first
relationship in the list since the rest can be retrieved by following the links from the first. Due to
tight coupling between relationship records, referencing a remote node means that each partition
would need to hold a copy of the relationship. Since replicating and maintaining all information
related to a relationship would incur significant overhead, the relationship in one partition has a
ghost flag attached to it to connect it with its remote counterpart. Relationships tagged by the
ghost flag do not hold any information related to the properties of the relationship but is simply
there to keep the graph structure valid. One advantage of this is complete locality in finding the
adjacency list of a graph node. This operation is also important since traversal operations build on
top of adjacency list. Figure 4.5 shows how relationships crossing the partition boundary appear
in both partitions, however only one partition holds the actual relationship; the other holds the
ghost relationship.

Figure 4.5: Sharded graph - The dotted lines represent the ghost relationships while the continu-
ous lines represent the actual relationships.

The storage layer returns raw node, relationship or property records requested by the Node-
Manager on behalf of the user (query) back to the NodeManager. The NodeManager, han-

45

dles all primitive graph operation requests (getNode(nodeId), getRelationship(relId), getProp-
erty(propId)) and takes care of data caching and locking. Neo4j uses Proxy wrappers over all
(Node and Relationship) primitives. To support remote primitive query operations, the Node-
Manager was extended to query remote servers if records are not found locally. To provide
transparency to algorithms running above the storage layer, the Proxy wrappers were also ex-
tended to wrap remote objects. These wrappers simply forward requests to the remote partition
using an inter-partition communication module presented in a later section. Thus, any high level
algorithm does not need to be modified as operations are performed on only Proxy objects.

B+Tree Indexed Store

The Neo4j storage model revolves on a fixed size record model. Each record is assigned a unique
identifier (ID) which will then be used to link different records in a graph structure. Neo4j uses
a sequential ID generator, this model allows for simple indexing scheme based on ID offsets.
Thus reading or writing a record is done by seeking at an offset ID * record size in the store file.
This indexing model is ideal in a centralized system as any lookup requires only constant time
operations and has no storage overhead.

In a distributed system, ID generation can no longer be sequential within each partition as
they are used to uniquely identify a record in the distributed system. Thus a different storage
model is necessary. The chosen solution was to use a B+Tree index as it provides good perfor-
mance, is scalable, fits Neo4j’s fixed size record model and B+Trees have been well studies in
previous work, and the default choice for most database systems.

Alternative designs have been assessed, however each has its own limitations. The following
list briefly describes the designs considered:

1. Range based generator. Each server would have some ID range allocated to itself. This
ID range could be fixed size or servers could periodically synchronize and allocate ID
ranges. The initial problem is each partition would have large chunks of records unal-
located since they belong to a different partition, leading to large storage files. Worse, as
data migrates, allocated records will be sparse throughout the storage which will ultimately
impact caching and disk seek performance.

2. Local offset embedded in global ID. In general this system involves only one ID gener-
ator. Generally some high bits of the ID will represent the partition ID while the lower
bits will represent the local ID. This method is ideal in static graph databases. However
data migration will require changing the id. Since the record may be referenced by all
the partitions, then this method would involve a global synchronization step to update all

46

references. Worse, active queries need to be updated as they potentially cached outdated
information.

3. Global ID generator with decoupled indexed store. IDs are global entities with no
relationship to the local offset. This means keeping a separate index to map record IDs to
record offsets. This solution involves more lookups to read a record, however, in practice
there is only a constant number of extra lookups. This solution improves the storage of
data as all records will be highly clustered at the cost of extra lookups and higher latencies.

The last design is the chosen solution and was implemented as mentioned above.

4.2.4 Inter-Partition Communication

Communication between partitions is done in a peer-to-peer fashion. When a DistNeo4j server
(peer) starts up, it initializes a local discovery service that listens for other servers (peers). When
a server is found it creates a connection to that server. This connection is then used to transfer
messages. Messages between servers is sent in a command/response design pattern. To minimize
changes to Neo4j, some of the basic classes (such as Node and Relationship) used in queries have
been extended to support remote queries. Each operation they perform translates to a command
sent to a remote server. The remote server handles the request and, optionally, sends back the
requested data, if any. This reduces the amount of changes to the underlying systems, which in
turn makes remote queries transparent to the querying system.

4.2.5 Deadlock Detection

Since requests can span multiple servers, distributed deadlock detection is required to break such
multi-server deadlocks. To detect deadlocks, Neo4j performs loop detection on the resource
graph before attempting to acquire a resource. If a loop is detected the acquisition fails and the
current transaction fails. This approach is well suited for centralized systems but the amount of
state, cooperation and synchronization between different servers would be very high, making it
impractical to implement graph-based deadlock detection in a distributed system.

For deadlocks that span multiple servers in DistNeo4j, we use a simple timeout-based detec-
tion scheme [14]. There are several advantages to using timeout-based deadlock detection over
other, more complex methods. First, it is decentralized and requires no synchronization between
different servers, making it highly scalable. The memory and computational overhead is minimal
since it requires keeping track of timeouts only for locks. The timeout-based deadlock detection

47

scheme is triggered only when a deadlock is detected whereas graph-based systems proactively
check for deadlocks. The proportion of writes in typical graph workloads is low, making it highly
unlikely for deadlocks to occur.

4.2.6 Transaction Manager

In a distributed system, transactions can span multiple servers, thus the system needed to be
modified to support distributed transactions. To provide the same ACID properties as Neo4j, the
two-phase commit (2PC) [14] protocol is used. For simplicity and load balance, the coordinator
is the server starting the transaction.

Generally, 2PC is very expensive and only used when consistency is required. Thus, it is
important to assess the impact of 2PC on DistNeo4j. As previously mentioned in Section 4.1.2,
transactions are infrequent in Neo4j and used only when writes happen. As such, 2PC will impact
only writes (small subset of queries). Further, because writes are very local in nature, the effect
of 2PC would have little impact on performance. It is also important to mention that 2PC would
be used only for a subset of write transactions. Since 2PC is used to synchronize transactions
over multiple servers, only writes that require access to multiple partitions would be affected.
The only write operation that requires such changes is the relationship addition operation where
the two nodes it connects are on different partitions. Thus, it is expected that the effects of 2PC
will have minimal impact on read traffic and only affect a subset of writes. Since one of the
main goals of the partitioner is to minimize the number of links between partitions, the number
of transactions requiring 2PC will decrease even further.

In DistNeo4j, distributed transactions are implemented on top of local transactions. Any
transaction that needs to be executed on multiple partitions are tracked by a special transaction
manager. The initial partition where the transaction starts is considered the master for the trans-
action. Its transaction ID and partition ID are associated with the remote request. The remote
partition creates a local transaction ID and associates the pair {master transaction ID, partition
ID} with the local transaction. All inter-partition communication that happens in the transaction
will contain the above mentioned pair which is used to identify the transaction globally. Locally,
the distributed transaction manager will convert between global ID and local ID. The local ID
is used to take advantage of the existing infrastructure. When a distributed transaction commits,
the 2PC algorithm is executed and data is committed.

48

4.2.7 Recovery

Neo4j uses a logical log for recovery purposes. Write operations are initially written to a log file,
then committed. If the system crashes, Neo4j can simply replay the log to fix any inconsistencies.

Similar to Neo4j, DistNeo4j uses a the logical log to recover from crashes. DistNeo4j ex-
tends logging in order to ensure distributed transactions are recovered correctly. Since DistNeo4j
builds distributed transactions on top of local transactions, the only changes required to the log
is keeping track of which transactions are distributed. To achieve this goal, the global transaction
ID previously mentioned is written to the log. Upon recovery, if the transaction is distributed,
recovery is handled by the distributed transaction manager which assumes abort as the default
behavior. I use abort as the default behavior since it simplifies recovery. In this case any peer can
be brought back to a consistent state without having to communicate with any peer.

49

Chapter 5

Evaluation

5.1 Experimental Setup

All experiments were executed on a cluster with 16 servers. Each server has the following hard-
ware configuration: 2 AMD Opteron 252, 8 GB RAM and 160GB SATA HDD. The servers are
connected using 1Gb ethernet. In each experiment one DistNeo4j instance runs on its own server.

5.2 Datasets

The Orkut social graph [40, 6] is a collection of users and relationships between them. It con-
tains over three million users and 223.5 million relationships. This dataset has symmetric links,
meaning that connected users know each other and information flows both ways on the links.

DBLP collaboration network [59, 6] is a co-authorship network for research publications.
It contains 300 thousand authors and 1 million edges. This dataset is also fully symmetric.
One interesting aspect of the DBLP dataset is despite the low relationship count, its clustering
coefficient is relatively high. In fact, as seen in Table 5.1, the clustering coefficient is much
higher than Orkut or Twitter, strongly signifying the presence of highly clustered communities.

Twitter social network [61] is a social graph of twitter users. The graph contains 11.3 million
users and 85 million directed relationships. In contrast with the previous 2 datasets, only 22% of
relationships in Twitter are symmetric.

Table 5.1 shows a detailed description of some structural statistics for the three datasets. It
is notable that both social networks (Twitter and Orkut) share remarkably similar parameters.

50

One of the most interesting metrics is the average path length, which in both datasets is very
low (4). The small path length signifies high connectivity between users in the datasets. DBLP
does differ in path length, but the large difference is attributed to the strong community. The
last metric shown in Table 5.1 is the power law coefficient. All three datasets show power-law
distributions similar to those expected in scale-free networks and is very similar to values found
in other social networks [46, 58]. However, as mentioned in [40, 33], social network graphs tend
to deviate from the power law distribution when looking at the most popular users. One reason
that is cited is the inherent limits in the systems which initially had upper limits on the number
of relationships a user can have.

In Figure 5.1 the CCDF of the relationship distribution of the datasets is present. All datasets
exhibit a similar power law distribution. Most users have a relatively low number of relationships
and only a small fraction are very popular. For example, the Orkut dataset shows that only 50%
of the users have more than 50 friendships, while only 20% have more than 100. Similar results
can be seen in Twitter, though users tend to follow slightly more users. DBLP is the only dataset
where the CCDF abruptly falls. In DBLP a majority of the users have worked with only a few
other authors. In fact 50% of authors have only collaborated with 3 or less other authors and 80%
with 8 or less authors.

Twitter Graph Orkut Graph DBLP
of nodes 11.3 million 3 million 317 thousand
of edges 85.3 million 223.5 million 1 million
of symmetric links 22.1% 100% 100%
Average path length 4.12 4.25 9.2
Clustering coefficient - 0.167 0.6324
Power law coefficient 2.276 1.18 3.64

Table 5.1: Summary description of datasets

5.3 Experiment Description

The experimental evaluation is based on previous work in the graph database field[17] and based
on real-world workloads [33, 12, 45, 41] used to describe social network queries. Social networks
queries focus mostly on looking up friends’ profiles and updates or recommendations (friend or
ads recommendations)[12, 33]. These query times map onto 1-hop and 2-hop traversals, thus the
focus of the experimental evaluation will be on performance of these query types.

51

0
0.2
0.4
0.6
0.8

1

1 10 100 1000

CCDF

Number of Relationships

(a) CCDF in Orkut

0
0.2
0.4
0.6
0.8

1

1 10 100 1000
Number of Relationships

(b) CCDF in Twitter

0
0.2
0.4
0.6
0.8

1

1 10 100 1000
Number of Relationships

(c) CCDF in DBLP

Figure 5.1: CCDF distribution of number of relationships over data sets

In addition, [17] proposes three benchmark experiments for graph databases: 1) data loading
(or pure write experiments), 2) 2-hop traversals and 3) 3-hop traversals. Out of these three
experiments (1) does not make sense from a system’s perspective since data loading is often
done offline and is generally performed without running the actual database engine. It is normally
performed by an optimized version without transactions or locks. This is true for DistNeo4j as
well since I employ a specialized loader. Instead of a pure write workload, the experimental
evaluation will employ a mixed read/write workload where the percentage of writes is varied to
test the overhead of write queries on the system. (3) is not performed since, as shown in 5.1,
the graph diameter is just over 4 hops. This would mean that most 3-hop traversals would read
the full graph or a high percentage of the vertices in the graph. Since the scope of the system
is optimizing small, localized queries, this experiment is not suitable for showing improvements
in query throughput and latency since the same amount of network traffic would be required in
querying all vertices on all partitions.

Further, the experimental evaluation also looks at scale-up and scale-out results in order to
confirm that DistNeo4j can handle increasingly more concurrent client queries and increasing
number of servers.

5.4 Repartitioner Experiments

For performance comparison and improvements, the repartitioner is compared with two different
partitioning algorithms. For an upper bound the offline Metis[29] partitioner is used. Metis is
a popular partitioner that generates high quality partitions. It is also flexible enough to allow
custom weights to be specified and used as secondary goals. Note that ParMetis, can be used,

52

however the memory requirements would not be better than Metis’. For the same reason ParMetis
can not be used to replace the repartitioner.

I also compare against random hash-based partitioning, which is a de-facto standard in many
data stores due to its decentralized nature and good load balance properties.

It is important to understand why Metis cannot be used as a repartitioner. First, Metis is an of-
fline static partitioning algorithm meaning either allocating additional resources to partition and
re-load the graph every time the partitioner is executed, or taking the system offline to perform
data loading on the production servers. If the server would be taken offline, it would take 2 hours
to load the Orkut or Twitter graphs. This period of time is unacceptable for production systems.
Alternatively, if DistNeo4j is augmented to take as input Metis-partitioned graphs, there would
be 2 performance issues: 1) the number of vertices and edges migrated would be much higher
and 2) the resource overhead for running Metis would be much higher than that for running the
repartitioner. The first issue will be presented in the next section in detail, while the second is-
sue arises from the information Metis and the repartitioner store. Metis’ memory requirements
scale with the number of relationships and coarsening stages while the repartitioner scales with
the number of vertices and partitions. Since the number of relationships dominates by orders of
magnitude, Metis will require a lot more resources. As an example, Metis requires around 23GB
of memory to partition the Orkut dataset, while the repartitioner only requires 2GB.

5.4.1 One-hop Performance

The following experiments start with a partitioning based on 1-hop traversals, with a randomly
selected starting vertex. At the start of the experiments the workload shifts such that the repar-
titioner is triggered, showing the performance impact of the repartitioner and the improvements.
This shift in workload is caused by a skewed traffic trace where 10% of users on one partition
are randomly selected as starting points for traversals twice as many times as before, creating a
hot-spot on a partition. This workload skew is used for the full duration of the experiments that
follow.

The 10% skew is chosen such that the skew impact on throughput is noticeable. In addition,
the skew was not chosen higher since it would be unrealistic as the repartitioner would have
triggered earlier and the skew would have never gotten to that level.

As mentioned before, minimizing the edge-cut is a good metric when analyzing query locality
and the potential impact of locality on performance. Figure 5.2 presents the relative edge-cut
based on the execution of the repartitioner and Metis on the skewed data. While some differences
are noticeable in all datasets, it is important to note that the difference in edge-cut is less than 3%

53

in all datasets, showing that the quality of the repartitioned data is close to the quality resulting
from a leading partitioner.

0%

10%

20%

30%

40%

50%

60%

Orkut Twitter DBLP

Pe
rc

en
te

dg
e-

cu
t

Metis DistNeo4j

Figure 5.2: Compares the edge-cut resulting from repartitioning with running Metis. Results are
presented as a percentage of edges cut from the total number of edges in each specific dataset.

While the above results show that the quality of the resulting partitions are fairly high, the
repartitioner’s performance is also affected by the amount of information that it needs to migrate.
As such, the partitions resulting from running the repartitioner and Metis are compared with
the initial partitioning used. Figure 5.3 shows the number of vertices migrated due to the skew
based on the two partitioning algorithms. The results show that the proposed greedy repartitioner
requires the migration of significantly fewer vertices. For example, for the Orkut dataset, Metis
migrated 30% of the vertices to a different partition while the greedy repartitioner only migrated
5%. Thus the repartitioner did not have to migrate 25% of vertices.

Further analysis was done to see how many relationships would be affected by migration.
Figure 5.4 shows that the greedy repartitioner requires significantly less changes to relationships
compared to Metis. For example, for the Orkut dataset, Metis migrated 60% of relationships
while the repartitioner migrated only 7%. Thus, by using the repartitioner, 53% of relationships
did not have to be migrated.

Overall, both the number of vertices and relationships migrated is important as they directly
relate to the performance of the system. A lower number of migrated vertices and relationships
means fewer reads or writes to the database and smaller network footprint. These savings can be
translated to increased throughput for user queries.

Figure 5.5 presents the throughput over time of a 16 partition setup using the Orkut dataset.
In these experiments 32 client workers submit 1-hop traversal requests using the skewed traffic

54

0%
10%
20%
30%
40%
50%

Orkut Twitter DBLP

Pe
rc

en
tV

er
tic

es

Metis DistNeo4j

Figure 5.3: Compares the number of vertices migrated when using the repartitioner versus Metis.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Orkut Twitter DBLPPe
rc

en
tR

el
at

io
ns

hi
ps

Metis DistNeo4j

Figure 5.4: Compares the number of relationships changed or migrated as a result of repartition-
ing versus running Metis.

pattern previously mentioned. The first experiment, marked as Metis, shows the system’s perfor-
mance if Metis partitioned the data using the skewed trace. This experiment is considered ideal
from a performance perspective since Metis partitioning produces high quality partitions. The
second experiment, Repartitioner shows the performance overhead of the repartitioner and the
gains over time. This experiment starts with the an initial partitioning based on a trace with no
skew. The initial partitioning was done using Metis offline. The results shown in Figure 5.5 for
Repartitioner are running a skewed trace. The initial drop in performance observed is due to the
repartitioner triggering and computing a new optimal partitioning. Since this operation requires
access to the relations of a subset of vertices, it has a noticeable impact on performance. Once a
new partitioning is computed the performance of the system increases and comes close to Metis’s
performance. The final experiment is Random, which uses random hash-based partitioning, and
performs poorly compared to our repartitioning algorithm.

To better understand the performance implications of the skew and repartitioner in the above

55

0
2000
4000
6000
8000

10000
12000

1240 2480 3720 4960 6200 7440 8680 9920 11160 12400 13640T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.5: Throughput performance over time for Orkut dataset

experiments, Figure 5.6a presents the total throughput of each experiment. Results show that
by introducing the skew and triggering the repartitioner a 6% drop in throughput is observed
between Metis and Repartitioner. Further, comparing Metis and Repartitioner to Random, the
performance drop is much more significant, at 1.7 times lower than Metis and 1.64 times lower
than Repartitioner.

While the above aggregated results include the overhead of the repartitioner, Figure 5.6d
presents the aggregate throughput for the last hour of the experiments to show the throughput
gains after repartitioning finishes. These results show a 1% difference in performance compared
to Metis, showing that the repartitioner does a good job at redistributing load.

56

0
2e

+0
7

4e
+0

7
6e

+0
7

8e
+0

7
1e

+0
8

1.
2e

+0
8

1.
4e

+0
8

1.
6e

+0
8

1-
ho

p
2-

ho
p

Agg.Throughput(vertices)

(a
)O

rk
ut

0
2e

+0
7

4e
+0

7
6e

+0
7

8e
+0

7
1e

+0
8

1.
2e

+0
8

1-
ho

p
2-

ho
p

(b
)T

w
itt

er

0
1e

+0
7

2e
+0

7
3e

+0
7

4e
+0

7
5e

+0
7

6e
+0

7
7e

+0
7

8e
+0

7

1-
ho

p
2-

ho
p

(c
)D

B
L

P

0
5e

+0
6

1e
+0

7
1.

5e
+0

7
2e

+0
7

2.
5e

+0
7

3e
+0

7
3.

5e
+0

7
4e

+0
7

1-
ho

p
2-

ho
p

Agg.Throughput(vertices)

(d
)L

as
t1

ho
ur

O
rk

ut

0
5e

+0
6

1e
+0

7
1.

5e
+0

7
2e

+0
7

2.
5e

+0
7

3e
+0

7

1-
ho

p
2-

ho
p

M
et

is
D

is
tN

eo
4j

R
an

do
m

(e
)L

as
t1

ho
ur

Tw
itt

er

Fi
gu

re
5.

6:
A

gg
re

ga
te

th
ro

ug
hp

ut
re

su
lts

fo
rd

at
as

et
s.

T
he

fir
st

th
re

e,
5.

6a
,5

.6
b

an
d

5.
6c

,s
ho

w
th

ro
ug

hp
ut

ag
gr

e-
ga

te
ov

er
th

e
en

tir
e

ex
pe

ri
m

en
t,

w
hi

le
5.

6d
an

d
5.

6e
sh

ow
th

e
ag

gr
eg

at
e

ov
er

th
e

la
st

ho
ur

of
th

e
ex

pe
ri

m
en

t

57

3000
4000
5000
6000
7000
8000
9000

10000

700 1400 2100 2800 3500 4200 4900 5600 6300 7000T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.7: Throughput performance over time for Twitter dataset

Similar experiments were executed on the Twitter dataset. Figure 5.7 shows a similar drop
in performance as the repartitioner triggers and starts data migration. As the run progresses, the
migrated data starts improving the performance of the system. Figure 5.6b shows the aggregated
throughput while running with the Twitter dataset. The results show very similar performance
between the repartitioner and Metis. To better understand the performance gains from running the
repartitioner, Figure 5.6e shows the aggregated throughput over the last hour of the experiment,
showing a 8% improvement in performance. Lastly, DistNeo4j partitioning performs 1.5 times
better than the randomly partitioned run. Note, the reason the Orkut runs performed better than
the Twitter runs against random partitioning is due to the lower relative edge-cut in the Orkut
dataset (the edge cut in the Orkut dataset is around 30% while in Twitter is around 55%).

Finally, in the DBLP experiments, the relatively small changes required by the repartitioner
meant almost no performance degradation due to the repartitioner. Figure 5.8 shows that perfor-
mance of the repartitioner is very close to that of Metis. In fact, based on results from Figure
5.6c, the performance difference is minimal. Interestingly, the DBLP dataset is the only dataset
where performance differences are not noticeable. The similar performance is attributed to the
highly clustered and well partitioned dataset. Given an edge-cut of 15%, the high query local-
ity means that partition skews have little effect on performance as it does not shift workloads
towards partition borders.

58

6000
8000

10000
12000
14000
16000
18000
20000

360 720 1080 1440 1800 2160 2520 2880 3240 3600T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.8: Throughput performance over time for DBLP dataset

5.4.2 2-hop Traversal Performance

The previous section focused on performance of 1-hop traversals since 1-hop is the most popular
type of traversals in social networks. In order to fully test the performance and quality of the
repartitioner, this section will focus on 2-hop traversals.

Similar to the previous experiments, Figures 5.9, 5.10 and 5.11 show the throughput over
time of the skewed workload on the Orkut, Twitter and DBLP datasets. Similar to previous
experiments the repartitioner’s positive impact can be observed as data is migrated. Further, to
analyze the overall performance impact, Figures 5.6a, 5.6b and 5.6c show the aggregate number
of vertices traversed throughout the experiments, while Figures 5.6d and 5.6e show the aggregate
number of vertices traversed in the last 1 hour of the experiment. These results show a 2 times, 4
times and 3 times improvement over Random partitioning and comparable results to Metis.

One of the striking differences in the performance graphs presented in 1-hop and 2-hop traver-
sals is the decrease in performance and increase in variance in the 2-hop case. To analyze why
these differences occur, Table 5.2 presents the locality of queries when using Metis and Random
partitioning. These results show the large impact of partitioning and show that increasing the
number of hops has a significant negative impact on query locality.

Further, I looked at how the number of hops impacts the ratio between the number of unique
vertices queried by the database and the number of vertices queried. The results show that doing
2-hop traversals, about 55% of vertices are duplicates of already queried vertices. The high
percentage of duplicates is due to the highly clustered nature of the graphs. Because related
users share relationships with other users, 2-hop traversals will visit users multiple times. Since

59

0
500

1000
1500
2000
2500

1240 2480 3720 4960 6200 7440 8680 9920 11160 12400 13640T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.9: Throughput performance over time for Orkut dataset using 2-hop traversals

0
1000
2000
3000
4000
5000
6000
7000

700 1400 2100 2800 3500 4200 4900 5600 6300 7000T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.10: Throughput performance over time for Twitter dataset using 2-hop traversals

1-hop 2-hop
Metis 70% 28%
Random 7.5% 6%

Table 5.2: Query locality

60

1000
1500
2000
2500
3000
3500
4000
4500
5000

360 720 1080 1440 1800 2160 2520 2880 3240 3600T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Metis Re-partitioner Random

Figure 5.11: Throughput performance over time for DBLP dataset using 2-hop traversals

Orkut Twitter DBLP
1-hop 76.63 13.57 7.64
2-hop 15591.23 140558.58 88.2

Table 5.3: Comparison of average traversal size using 1-hop and 2-hop traversals

the graph database optimizes the query response and only sends unique copies of each record,
the clients show a decreased throughput. The decrease in query locality and increase in the
percentage of duplicate queried records strongly correlate with the performance drop observed
in the experiments.

Another reason for the spiking effect is caused by the server-side traversal processing model.
In this model, the traversal is processed on the server side and results are sent to the client only
when the full traversal completes execution. Thus varying traversal sizes will have an impact on
how fast traversal results are returned to the user. Since the graphs for throughput performance
over time are measured from a client side perspective, increases in traversal size will mean that
over short time spans, throughput will vary. Table 5.3 compares the average traversal sizes of
each dataset. Noticeably, the largest increases happen in the Orkut and Twitter datasets, with an
over 10000 times increase in the Twitter dataset. The large difference between the three datasets
is caused by the clustering characteristics of the datasets. While DBLP exhibits high clustering
(thus users tend to be connected within only one community), Orkut and Twitter have less well
defined communities, thus 2-hop traversals will have a higher probability of visiting multiple
communities.

61

5.5 Variation of Repartitioner Parameters

This section will present experiments which vary different configuration parameters for the repar-
titioner to show how performance of the repartitioner is affected and how overall system perfor-
mance is affected.

In Chapter 3, the greedy repartitioning algorithm used two key configuration parameters to
restrict the number of vertices migrated and to terminate the repartitioning algorithm. These two
parameters are: maximum number of vertices migrated in an iteration (the k in top-k) and the
number of iterations. The following experiments will vary these parameters to evaluate their
impact on system performance and partition quality.

The following experiments were executed using the same setup as the 1-hop experiments.
The experiments measured the throughput while repartitioning and the partition balance.

5.5.1 Varying Number of Migrated Vertices per Iteration

For this set of experiments the repartitioner configuration parameters were set to 10 iterations
and the top-k parameter was varied using the following values: 500, 1000 and 5000.

Figure 5.12 presents the above three experiments as Auto 1x, Auto 2x and Auto 10x. There
are two types of runs for each experiment. The run marked as During shows the throughput
rate while the repartitioner is active throughout the run. The run marked as After shows the
performance after the During experiment finished and the repartitioner is turned off. This run is
used to show the performance gain from repartitioning. In addition to these three experiments,
two other experiments were executed for a baseline comparison. Experiment No Repart shows
the performance of the system without any repartitioning. Metis shows the performance when
a good partitioning is obtained while partitioning offline after the 10% vertices are inserted. No
Repart is used for a lower bound comparison for repartitioning overhead, while Metis is used for
an upper bound comparison.

Figure 5.12 shows that during repartitioning the throughput overhead of the repartitioner,
compared to No Repart, is 6%, 4% and 3.7% respectively. After the repartitioner finishes, the
experiments show a 7%, 3% and 6.5% improvement over No Repart. Compared to Metis, Auto
1x matches Metis’ performance, while the other two experiments are at 4% and 0.5% difference
from Metis.

There is one interesting behavior in the above experiments which comes as counter-intuitive:
performance of the system suffers the least as the top-k parameter is increased. To better un-
derstand why this behavior happens, Figure 5.13 presents the throughput over time while the

62

0
2000
4000
6000
8000

10000
12000

No Repart Metis Auto 1x Auto 2x Auto 10xTr
av

er
sa

lr
at

e
(v

er
tic

es
/s

)
During After

Figure 5.12: Performance comparison while varying the top-k parameter

repartitioner is active. The larger spikes visible in Figure 5.13 are due to different repartitioning
runs being triggered. This is less obvious in Auto 1x as the initial repartitioning stage is relatively
short, so the performance impact of this stage could be similar to that of vertex migration. Auto
10x shows a clearer difference between the first stage of the repartitioner and the migration stage.
The large dip in performance is due to the repartitioner’s first stage. Since it requires graph in-
formation for the border vertices, it queries the graph introducing some overhead. Interestingly,
the migration stage does not show performance degradation. It shows performance gain rela-
tively early. This positive performance gain is attributed to how vertex migration is performed.
Vertices are migrated in order of locality. Vertices with poor locality are deemed more important
and migrated earlier. This leads to fast performance improvements, even though the migration
process has not completed.

Another interesting performance difference noticeable in Figure 5.12 is the very high, ag-
gregate performance gain for Auto 10x. This is caused by the fact that the one execution of the
repartitioner in this experiment is enough to optimize the partitioning. But one interesting dif-
ference is the much longer time required to finish repartitioning in Auto 10x. This is due to two
factors: migration of larger number of vertices leads to increasingly localized traffic between
a few partitions (in this experiment between 2 partitions) and the number of vertices migrated
in a run. The first factor is due to a more aggressive migration strategy which leads to faster
convergence combined with high data locality. The high data locality leads to vertices having
remote relationships in a few partitions. When partition imbalances happen, migration will natu-
rally happen only between these partitions. Combined with a more aggressive migration strategy,
these cliques are easier to discover and only migrate the needed vertices. With a less aggressive
strategy, the repartitioner may need to perform unneeded migrations to satisfy balancing con-
straints. In contrast, Auto 1x and Auto 2x show migrations between all partitions which increases

63

0
2000
4000
6000
8000

10000
12000

1240 2480 3720 4960 6200 7440 8680 9920 11160 12400 13640T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

Auto 1x Auto 2x Auto 10x

Figure 5.13: Performance over time while varying the top-k parameter

the parallelism of repartitioning operations, however it also leads to an increase in unneeded
migrations, which, in turn, increases the time to convergence.

Figure 5.14 shows the skew in load over the partitions. The load skew measures the difference
between the load on the most loaded partition with the average load on partitions (6.25% for 16
servers). The load is presented in percentage since the per partition load has been normalized to
the aggregate load of the system. The load in each partition is measured as the total number of
basic operations on the specific partition. The results in Figure 5.14 show an initial 8% skew in
load on the No Repart data on a partition. Running the repartitioner shows an improvement in
load balance of 3% for Auto 1x and 3.5% for Auto 2x, while Auto 10x shows a decrease in load
balance of 8% (thus the partition is experiencing 16% more load). The constant decrease in load
balance is due to the higher number of migrated vertices in each iteration. Increasing the top-k
parameter will generally lead to larger migrations and higher accepted skew levels, thus causing
larger skews.

In summary, when picking the k parameter one needs to take into consideration the accept-
able imbalance between partitions. At the same time, larger values tend to perform better since
they help the algorithm improve the edge-cut faster. In practice choosing k using the following
formula gives good results: k = N ∗imbalance factor∗λ/p (whereN is the number of vertices,
p is the number of partitions and λ is a scaling factor that is based on the graph properties, such
as power law coefficient and clustering coefficient). In general, λ should be higher if the graph is
highly clustered. This allows the algorithm to migrate clusters (communities) easier and faster.

64

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

No Repart Auto 1x Auto 2x Auto 10x

L
oa

d
sk

ew

Figure 5.14: Partition balance while varying the top-k parameter

5.5.2 Varying Number of Iterations

In these experiments the top-k parameter was set to 500 and the iterations were varied using the
following values: 10, 20 and 40.

Figure 5.15 presents the three experiments previously mentioned as 10 iter, 20 iter and 40
iter. In addition, the No Repart and Metis experiments were provided for comparison. The last
two experiments are the same experiments as presented in Subsection 5.5.1. The results in Figure
5.15 are interesting since they show about the same repartitioner impact on throughput perfor-
mance and similar gains in performance once the repartitioner finishes, with one exception as
10 iter shows better performance improvement. Compared to No Repart, there is a 6% decrease
in performance while repartitioning and a 3% decrease after the repartitioner finishes for 20 iter
and 40 iter, while 10 iter has a 7% increase in throughput post repartitioning.

Figure 5.16 presents the performance of the three experiments over time. Interestingly, the
repartitioning runs are much harder to visualize as the impact of the repartitioner is much smaller,
especially while increasing the number of iterations. Looking closer, the larger dips in perfor-
mance represent the start of each repartitioning run.

Figure 5.17 looks at the load balance over the partitions. Most notably increasing the number
of iterations does not influence load balance significantly. In fact, all experiments exhibit an
increase in load balance. 10 iter show the highest increase in balance, at 5%, while 20 iter shows
4.5% increase and 4.2% for 40 iter.

Interestingly, varying the number of iterations does not show the performance increase that
was shown in experiments varying top-k. Analyzing the migration patterns and the variation of

65

0
2000
4000
6000
8000

10000
12000

No Repart Metis 10 iter 20 iter 40 iterTr
av

er
sa

lr
at

e
(v

er
tic

es
/s

)

During After

Figure 5.15: Performance comparison while varying the iterations parameter

0
2000
4000
6000
8000

10000
12000

1240 2480 3720 4960 6200 7440 8680 9920 11160 12400 13640T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Time (s)

10 iter 20 iter 40 iter

Figure 5.16: Performance over time while varying the iterations parameter

66

0%

2%

4%

6%

8%

10%

No Repart 10 iter 20 iter 40 iter

L
oa

d
Sk

ew

Figure 5.17: Partition balance while varying the iterations parameter

edge-cut for this set of experiments show that edge-cut converges much slower, while the major-
ity of migrations will flow towards a lightly loaded partition, thus improving partition balance.

In summary, the number of iterations does not have an impact on system throughput since
the algorithm itself has very little start-up cost. Thus, it is better to choose a small value as this
allows the system to finish execution faster. While this means that the algorithm will be executed
more often, it also means that it can react to changes in traffic patterns faster.

5.5.3 Repartitioning from Scratch

In addition to varying the parameters while repartitioning online, I also ran experiments where
the repartitioning starts from a randomly partitioned dataset. These experiments validate that the
repartitioner can handle arbitrary initial partitionings. Table 5.4 shows the number of iterations
the repartitioner required to reach a stable state while varying k. Results show a gradual improve-
ment in number of iterations required to reach stable state. Aside from the convergence rate, I
have also measured the load skew. The skew at k=500 was at 5%, decaying to 16% for k=2000.
Values of k larger than 2000 were not considered as the imbalance rate would have been higher
than 10% and unacceptable in a distributed system.

Further in Figure 5.18 shows the relative improvement in edge-cut from the randomly parti-
tioned datasets. The results show similar partitioning quality regardless of the value of k.

67

Orkut Twitter DBLP
k = 500 2000 3000 500
k = 1000 1000 1700 200
k = 2000 700 900 150

Table 5.4: Number of iterations required to achieve a stable state where the edge-cut improve-
ments are below 0.01%

0%
10%
20%
30%
40%
50%
60%
70%

Orkut Twitter DBLP

Pe
rc

en
te

dg
e-

cu
t

k=500 k=1000 k=2000

Figure 5.18: Ratio of edge-cut improvement when varying k

68

5.5.4 Summary

By increasing the top-k parameter the repartitioner is allowed to migrate larger numbers of ver-
tices with poor locality while breaking load balance. Though, increasing top-k has a higher
performance overhead while the repartitioner executes its first stage, performance improvements
are much more obvious once vertex migration starts. In contrast, increasing the iterations has
lower performance impact on the repartitioner overhead. In fact, iterations is more focused on
long term partition load balance with incremental improvement in edge-cut gains.

Note, however, that it is important to understand that these two parameters are closely related
and varying one can have major impact on how fast the algorithm converges, while the other
focuses more on fine grained refinement. In fact, upon multiple rounds of repartitioning, as
the partition quality increases (edge-cut decreases), higher top-k values will have no effect, or
even negative effects as it decreases partition load balance. At the same time, higher iterations
count will have a higher impact when the partition quality is close to optimal as it forces the
repartitioner to focus more on load balance.

5.6 DistNeo4j Experiments

5.6.1 Scale Up

This section shows how well the system handles an increasing number of workers (or clients)
continuously sending requests. In this scenario eight servers are used. While the initial partition-
ing is not critical in this experiment, data has been statistically partitioned using Metis since it
provides a good partitioning that allows us to show system performance and scalability. Figure
5.19 shows the performance as the number of threads varies from 4 to 64. Results show almost
perfect scaling up to 16 workers. It further shows good scaling up to 32 workers, after which
performance starts degrading due to contention within the system.

5.6.2 Scale Out

This section aims at showing performance increases as the number of servers increase. The
following experiments varies the number of servers between 4 and 16 showing performance
improvements from increasing the number of servers. However, it is important to note that
the performance increase is not expected to be linear as increasing the number of servers will
also increase the number of edges cut, thus decreasing query locality. Tables 5.5, 5.6 and 5.7

69

0
2000
4000
6000
8000

10000
12000

4 8 16 32 64

T
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

Number of clients

Throughput

Figure 5.19: Performance of a 16 partition system while increasing # of clients

Metis Random
4 parts 19923340 (17%) 87887680 (75%)
8 parts 27003290 (23%) 102530431 (87%)
16 parts 35998540 (31%) 109861685 (93%)

Table 5.5: Edge cut for Metis partitioning and hash based random on Orkut. Percentage of edges
cut is shown in parenthesis

show the edge-cut for the datasets as the number of partitions is varied. It also compares the
Metis partitioning scheme with the Random one. The values show that the edge-cut in a well
partitioned dataset is much lower than randomly partitioning data. It is also important to notice
the slower rate at which the edge-cut increases while varying the number of partitions. This is
important since increasing the number of partitions will have a smaller effect on the edge-cut of
well partitioned data sets when compared to random partitioning.

Figures 5.20, 5.21 and 5.22 show how performance increases when adding new servers. The
rate is close to doubling at each step, showing that the system will scale with additional resources

Metis Random
4 parts 20272228 (32%) 47666812 (75%)
8 parts 27937607 (44%) 55293502 (87%)
16 parts 34692526 (55%) 59585939 (93%)

Table 5.6: Edge cut for Metis partitioning and hash based random on Twitter. Percentage of
edges cut is shown in parenthesis

70

Metis Random
4 parts 94222 (9%) 787599 (75%)
8 parts 124341 (11%) 918699 (87%)
16 parts 153930 (15%) 984157 (93%)

Table 5.7: Edge cut for Metis partitioning and hash based random on DBLP. Percentage of edges
cut is shown in parenthesis

0
2000
4000
6000
8000

10000
12000

DistNeo4j RandomT
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

4
8

16

Figure 5.20: Shows the throughput rate while increasing the number of partitions for the Orkut
dataset

when running the partitioned dataset. However, if the dataset is partitioned using random parti-
tioning there is almost no performance gain when increasing the number of partitions. This is due
to increasing network workload (due to edge-cut) counteracting the positive effects of additional
system resources.

5.6.3 Read/Write Experiments

These experiments focus on showing the performance overhead from running a mixed read and
write workload. These experiments focus on analyzing the overhead from writes.

Figure 5.23 shows four experiments where the percentage of write traffic is varied. Results
show a sub-linear linear decrease in read traffic throughput while the percentage of write traffic
is increased. The small performance impact of writes is attributed to how B+Trees store infor-
mation and the monotonically increasing ID generator. Since each new record will get the next,
highest, ID, it means that insertions in the B+Tree will always happen in the last page, in a se-
quential manner. This means that the B+Tree will perform sequential writes to disk and will only
require caching the last page to perform these insertions.

71

0

2000

4000

6000

8000

10000

DistNeo4j RandomT
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

4
8

16

Figure 5.21: Shows the throughput rate while increasing the number of partitions for the Twitter
dataset

0

5000

10000

15000

20000

DistNeo4j RandomT
hr

ou
gh

pu
t(

ve
rt

ic
es

/s
)

4
8

16

Figure 5.22: Shows the throughput rate while increasing the number of partitions for the DBLP
dataset

72

In addition, due to the highly local read traffic patterns it is likely that the writes do not impact
read traffic based on the transactional overhead of write traffic.

0
1000
2000
3000
4000
5000
6000
7000

0% writes 10% writes 20% writes 30% writes

T
hr

ou
gp

ut
(v

er
tic

es
/s

)

Figure 5.23: Aggregate performance while varying the write rate

73

Chapter 6

Conclusion

This thesis presents a lightweight, greedy repartitioning algorithm which is used to re-balance
data distribution in a distributed graph database. As graph databases are continuously evolving
systems, the initial data partitioning degrades over time. In order to counteract this process,
the repartitioning algorithm is used to improve the quality as the system is evolving. Since the
process of migrating data to improve locality has to be performed in parallel to user queries,
the repartitioning algorithm needs to use few resources (low memory and CPU overhead) and
keep the migrated vertices to a minimum (low network and disk overhead). Previous partition-
ing algorithms focused on the qualitative features of resulting partitioning (low edge-cut, high
partition balance), leading to high number of migrations and high memory requirements. Most
repartitioning algorithms are optimizations of existing partitioning algorithms, meaning that they
still have the same flaws in resource allocation. In contrast, the proposed lightweight, greedy al-
gorithm is designed with these constraints in mind. In addition, the greedy repartitioner takes
advantage of the high quality partitioning and focuses on smaller improvements based on recent
changes to the graph structure and to the query patterns. The constrained use case allows it to be
simple, yet produce high quality results.

In order to validate the greedy repartitioner, a distributed graph database, DistNeo4j, is de-
signed by augmenting the centralized Neo4j database. The greedy algorithm is implemented in
DistNeo4j and evaluated using different query patterns used in previous work and in real world
systems. The results show that the greedy repartitioner is able to maintain a high quality parti-
tioning even when skews are added to the system or as new users or relationships are formed. In
addition, the results show a much higher (2-3 times) throughput rate than the widely used hash
based partitioning scheme.

74

References

[1] Education the planet with pearson. http://thinkaurelius.com/2013/05/13/educating-the-
planet-with-pearson/.

[2] Neo4j. http://www.neo4j.org/.

[3] Neo4j - chapter 26. high availability. http://docs.neo4j.org/chunked/stable/ha.html.

[4] Parmetis. ”http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview”.

[5] ”scaling memcached at facebook”. ”https://www.facebook.com/note.php?note id=39391378919”.

[6] Stanford large network dataset collection. http://snap.stanford.edu/data.

[7] Titan. http://thinkaurelius.github.com/titan/.

[8] Titan: A highly scalable, distributed graph database, July 2012.

[9] Amine Abou-Rjeili and George Karypis. Multilevel algorithms for partitioning power-law
graphs. In Proceedings of the 20th International Conference on Parallel and Distributed
Processing, IPDPS’06, pages 124–124, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[10] Selim G. Akl. An optimal algorithm for parallel selection. Information Processing Letters,
19(1):47 – 50, 1984.

[11] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. Theory Comput. Syst.,
39(6):929–939, 2006.

[12] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan.
Linkbench: a database benchmark based on the facebook social graph. In SIGMOD Con-
ference, pages 1185–1196, 2013.

75

[13] Lars Backstrom. Anatomy of facebook. https://www.facebook.com/notes/facebook-data-
team/anatomy-of-facebook/10150388519243859.

[14] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kauf-
mann, 2nd edition, 2009.

[15] Rishan Chen, Mao Yang, Xuetian Weng, Byron Choi, Bingsheng He, and Xiaoming Li.
Improving large graph processing on partitioned graphs in the cloud. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC ’12, pages 3:1–3:13, New York, NY,
USA, 2012. ACM.

[16] Alex Cheng and Mark Evans. An in-depth look inside the twitter world.
http://www.sysomos.com/insidetwitter/.

[17] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking traversal operations over graph
databases. In Data Engineering Workshops (ICDEW), 2012 IEEE 28th International Con-
ference on, pages 186–189, April 2012.

[18] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1):107–113, January 2008.

[19] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-Villamor, N. Martı́nez-
Bazán, and J. L. Larriba-Pey. Survey of graph database performance on the hpc scalable
graph analysis benchmark. In Procs. WAIM, pages 37–48, 2010.

[20] Feldmann Andreas Emil. Fast balanced partitioning is hard even on grids and trees. In
Proc. MFCS, pages 372–382, 2012.

[21] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Fast approximate graph parti-
tioning algorithms. SIAM J. Comput., 28(6):2187–2214, 1999.

[22] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network parti-
tions. In Proceedings of the 19th Design Automation Conference, DAC ’82, pages 175–181,
Piscataway, NJ, USA, 1982. IEEE Press.

[23] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[24] J. Golbeck. Analyzing the Social Web. Morgan Kaufmann, 2013.

[25] Borislav Iordanov. Hypergraphdb: A generalized graph database. WAIM, pages 25–36,
2010.

76

[26] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. 1996.

[27] George Karypis and Vipin Kumar. Metis unstructured graph partitioning and sparse matrix
ordering system. 1995.

[28] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In Proc. 24th
Intern. Conf. Par. Proc., III, pages 113–122. CRC Press, 1995.

[29] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[30] George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. J. Parallel Distrib. Comput., 48(1):71–95, January 1998.

[31] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
Sys. Tech. J., 49(2):291–308, 1970.

[32] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos
Kalnis. Mizan: a system for dynamic load balancing in large-scale graph processing. In
Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13,
pages 169–182, New York, NY, USA, 2013. ACM.

[33] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media?
In Procs. WWW, pages 591–600, 2010.

[34] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computa-
tion on just a pc. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA, 2012. USENIX
Association.

[35] MichaelM. Lee, Indrajit Roy, Alvin AuYoung, Vanish Talwar, K.R. Jayaram, and Yuanyuan
Zhou. Views and transactional storage for large graphs. In David Eyers and Karsten
Schwan, editors, Middleware 2013, volume 8275 of Lecture Notes in Computer Science,
pages 287–306. Springer Berlin Heidelberg, 2013.

[36] Frank Lin and William W. Cohen. Power iteration clustering. Proceedings of the 27th
International Conference on Machine Learning, 2010.

[37] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
December 2007.

77

[38] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Proc. SIGMOD, pages 135–146, 2010.

[39] N. Martı́nez-Bazan, V. Muntés-Mulero, Sergio S. Gómez-Villamor, J. Nin, M. Sánchez-
Martı́nez, and J. Larriba-Pey. Dex: High-performance exploration on large graphs for
information retrieval. CIKM, pages 573–582, 2007.

[40] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement
and Analysis of Online Social Networks. In Proc. IMC, 2007.

[41] Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs efficiently. In Proc.
SIGMOD, pages 145–156, 2012.

[42] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versatile al-
gorithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’13, pages 1106–1114, New
York, NY, USA, 2013. ACM.

[43] Vol Nr and Per-Olof Fjällström. Algorithms for Graph Partitioning: A Survey, 1998.

[44] Chao-Wei Ou and Sanjay Ranka. Parallel incremental graph partitioning. IEEE Trans.
Parallel Distrib. Syst., 8(8):884–896, August 1997.

[45] Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang, Nikos Laoutaris, Par-
minder Chhabra, and Pablo Rodriguez. The little engine(s) that could: scaling online social
networks. SIGCOMM Comput. Commun. Rev., 40(4):375–386, August 2010.

[46] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and Ben Y. Zhao.
Measurement-calibrated graph models for social network experiments. In Proceedings of
the 19th international conference on World wide web, WWW ’10, pages 861–870. ACM,
2010.

[47] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online query execution engine for
large distributed graphs. In IEEE, pages 1289–1292, 2012.

[48] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning of
adaptive meshed. TR 97-013, U. Minnesota, Dept of Computer Science, 1997.

[49] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel diffusion algorithms
for repartitioning of adaptive meshes. Journal of Parallel and Distributed Computing 47,
1997.

78

[50] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel algorithms for multi-
constraint graph partitioning (distinguished paper). In Proceedings from the 6th Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par ’00, pages 296–310, London,
UK, UK, 2000. Springer-Verlag.

[51] Jianbo Shi. Learning segmentation by random walks. In In Advances in Neural Information
Processing, pages 470–477. MIT Press, 2000.

[52] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, August 2000.

[53] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’12, pages 1222–1230, New York, NY, USA, 2012.
ACM.

[54] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vo-
jnovic. Fennel: Streaming graph partitioning for massive scale graphs. 2012.

[55] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–
111, August 1990.

[56] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn
Wilkins. A comparison of a graph database and a relational database. Proceedings of the
48th Annual Southeast Regional Conference, 2010.

[57] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node
graph. In Proceedings of ICDE, 2014.

[58] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y. Zhao.
User interactions in social networks and their implications. In Proceedings of the 4th ACM
European conference on Computer systems, EuroSys ’09, pages 205–218. ACM, 2009.

[59] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. CoRR, abs/1205.6233, 2012.

[60] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition management for large
graphs. In Proc. SIGMOD, pages 517–528, 2012.

[61] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

79

	List of Tables
	List of Figures
	Introduction
	Graph Repartitioning Problem
	Thesis Outline

	Related Work
	Databases
	Graph Databases
	Related Systems
	Summary

	Graph Partitioning Survey
	Graph Partitioning
	Graph Repartitioning
	Summary

	Proposed Greedy Repartitioner
	Algorithm Description
	Physical Data Migration
	Algorithm Analysis
	Memory and Time Analysis
	Parallelism
	Algorithm Convergence
	Alternate Optimizations

	Prototype Distributed Graph Database
	Neo4j Description
	Storage
	Transactions

	From Neo4j to DistNeo4j
	Initial Partitioning
	Online Repartitioning
	Storage
	Inter-Partition Communication
	Deadlock Detection
	Transaction Manager
	Recovery

	Evaluation
	Experimental Setup
	Datasets
	Experiment Description
	Repartitioner Experiments
	One-hop Performance
	2-hop Traversal Performance

	Variation of Repartitioner Parameters
	Varying Number of Migrated Vertices per Iteration
	Varying Number of Iterations
	Repartitioning from Scratch
	Summary

	DistNeo4j Experiments
	Scale Up
	Scale Out
	Read/Write Experiments

	Conclusion
	References

