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Abstract

A family of parameterized Thue equations is defined as
Fus 3(X,Y)=m, meZ

where Fp o 3(X,Y) is a form in X and Y with degree greater than or equal to 3 and
integer coefficients that are parameterized by ¢, s,... € Z. A variety of these families have
been studied by different authors.

In this thesis, we study the following families of Thue inequalities

|sa® — tz®y — (t + 3s)ay® — sy’| < 2t + 3s,
szt — tady — 6s2?y? + toy® + sy?| < 6t + Ts,
|52 — 2ty — (5t + 158)2*y? — 20s2®y> + 5ta’y?
+(2t + 65)zy”® + sy°| < 120t + 323s,

where s and t are integers. The forms in question are “simple”, in the sense that the roots
of the underlying polynomials can be permuted transitively by automorphisms.

With this nice property and the hypergeometric functions, we construct sequences of
good approximations to the roots of the underlying polynomials. We can then prove that
under certain conditions on s and ¢ there are upper bounds for the number of integer
solutions to the above Thue inequalities.
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Chapter 1

Introduction

A Diophantine equation is a polynomial equation over rationals in two or more unknowns
such that only the integer solutions are searched or studied. It has been a subject of
investigation for over 1800 years.

The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Dio-
phantus of Alerxandria, who made a study of such equations and was one of the first math-
ematicians to introduce symbolism into algebra. The mathematical study of Diophantine
problems that Diophantus initiated is now called Diophantine analysis.

The reason people are interested in studying Diophantine equations includes the fol-

lowing;:

e Its a fun challenge.

e It gives justication for other studying subjects, e.g., algebraic number theory or
algebraic geometry.

e It leads to other interesting questions. For example Pell equations, 22 — dy? = 1, lead
to questions about continued fractions and fundamental units. Ljunggrens equation
A* —2B? = 8 is related to approximations of 7. Fermats Last Theorem 2" +y" = 2"
lead to questions about unique factorization domains, cyclotomic fields, elliptic curves
and modular forms.

We start with the simplest linear Diophantine equation in two variables

ax + by = c,



where a,b,c € Z. This equation has solutions if and only if ged(a, b)|c, in which case the
solution can be found by a reverse process of Euclidean algorithm.

With the next step up in complexity, let’s look at Pell’s equation
v —dy? =1,

where d is a positive square-free integer. The non-trivial solutions (other than (%1,0))
are related to the fundamental unit for the ring Z[v/d] and can be found by the rational
approximation to v/d. More precisely, the above Pell’s equation can be written as

2
1
Y Y

As 1/y* can be arbitrarily small with big enough y, a solution (z,y) gives a rational
approximation x/y to Vd. In fact, the solutions can be found by performing the continued
fraction expansion of v/d and testing each successive convergent until a solution to Pell’s
equation is found.

P. Fermat, J. Wallis, L. Euler, J.L. Lagrange, and C.F. Gauss in the early 19th century
mainly studied Diophantine equations of the form

azx® +bry +cy® +dr+ey+ f =0,

where a,b,c,d, e, and f are integers, i.e., general inhomogeneous equations of the second
degree with two unknowns. Lagrange used continued fractions in his study of general
inhomogeneous Diophantine equations of the second degree with two unknowns. Gauss
developed the general theory of quadratic forms, which is the basis of solving certain types
of Diophantine equations.

In studies on Diophantine equations of degrees higher than two significant success was
attained only in the 20th century. It was established by A. Thue. Let F' € Z[X,Y] be a
homogeneous polynomial of degree n > 3 which is irreducible over the rationals and m be
an integer. Then the diophantine equation

Fz,y) = m (1.1)
is called a Thue equation. In 1909, Thue proved his famous result about this equation:

Theorem (Thue). (1.1) has only finitely many solutions (z,y) € Z>.



Thue’s proof is based on his approximation theorem: Let a be an algebraic number
of degree n > 2 and € > 0. Then there exists a positive number ¢(«;, €), such that for all
p€ Z and g € N

'a p’ 5 e

5 — qn/2+1+e :

The constant ¢(«, €) is not effective in that given o and e the proof does not give a means
of calculating c(a,€). Since his approximation is not effective, Thue’s theorem is not
effective, meaning that it does not give an upper bound for the sizes of the solutions. It
does, however, lead to an upper bound for the number of solutions.

Since then, many authors studied the Thue equation in various forms and by different
methods. In this chapter, we will give a brief survey of these results.

1.1 Solution of Single Thue Equations
In 1968, after his great work on linear forms in logarithms of algebraic numbers, A. Baker
[7] could give an effective upper bound for the solutions of any given Thue equation (1.1):

Theorem (Baker). Let k > n+ 1 and (z,y) € Z* be a solution of (1.1). Then
max{|z[, |y|} < Ce ™™,

where C = C(n, k, F') is an effectively computable number.

These bounds have been improved since that time. For example, Bugeaud and Gyory
[10] proved the following:

Theorem (Bugeaud-Gyory). Let B > max{|m|,e}, a be a root of F(X,1), K := Q(«a),
R := Ry the requlator of K and r the unit rank of K. Let H > 3 be an upper bound for
the absolute values of the coefficients of F'.

Then all solutions (x,y) € Z* of (1.1) satisfy
max{|z|, |y|} <exp(c-R-max{logR,1} (R + log(HB)))

and
max{|z|, |y|} < exp (¢ - H**7*-log”" " H -log B),

where ¢ = 3T+27(7, + 1)7r+19n2n+6r+14 and ¢ = 33(n+9)p18(n+1)



The bounds for the solutions obtained by Baker’s method are rather large, thus the
solutions cannot be found practically by enumeration. For a similar problem Baker and
Davenport [6] proposed a method to reduce drastically the bound by using continued
fraction reduction. Pethé and Schulenberg [31] replaced the continued fraction reduction
by the LLL-algorithm and gave a general method to solve (1.1) for the totally real case
with m = 1 and arbitrary degree n. Tzanakis and de Weger [45] described the general
case. Finally, Bilu and Hanrot [8] were able to replace the LLL-algorithm by the much
faster continued fraction method and solve Thue equations up to degree 1000.

1.2 Number of Solutions

We define a solution (z,y) to the Thue equation F'(x,y) = m to be primitive, if z and y are
coprime integers. The problem of giving upper bounds (depending on m and the degree
n) for the number of primitive solutions goes back to Siegel. Such a bound has been given
by Evertse [15] in 1983:

Theorem (Evertse). Let F(x,y) be an irreducible binary form with rational integral coef-
ficients, of degree n > 3. Let m be a positive integer.

Then the number of primitive solutions to
F(z,y)=m

does not exceed ,
715((g)+1) 16 x 72(7;)(t+1)

where t is the number of prime factors of the constant term m.

The above theorem is actually a special case of Evertse’s work, in which he also treated

equations in number fields. In 1987, an improved version was given by Bombieri and
Schmidt [9]:

Theorem (Bombieri-Schmidt). Let m be a positive number and let F(x,y) be an irre-
ducible binary form of degree n > 3, with rational integral coefficients. Then the number
of primitive solutions of the equation

|F' (2, y)| = m

does not exceed



where ¢ is an absolute constant and t is the number of distinct prime factors of m. When
n is sufficiently large, the number of primitive solutions (with (x,y) and (—x,—y) regarded
as the same) does not exceed

215n' 1.

This result is best possible (up to the constant 215), at least for m = 1, since the
equation
X"+ (X -Y)2X -Y)...nX =-Y)| =1

has at least 2(n + 1) solutions: £{(1,1),...,(1,n),(0,1)}.
In 1991, my supervisor, Stewart [34] showed the following:

Theorem. Let F' be a binary form with integer coefficients of degree n > 3, content 1, and
nonzero discriminant D. Let m be a nonzero integer and let € be a positive real number.
Let g be any divisor of m with g > |m|>" <. If |m| > (ged(D, g?))Y/¢, then the number of
pairs of coprime integers (z,y) for which F(x,y) =m is at most

1
2800 (1 + 4—) nite@)

€r

where w(g) denotes the number of distinct prime factors of g.

Sharper bounds have been obtained for special classes of Thue equations. If only &
coefficients of F'(x,y) are nonzero, the number of solutions depends on k& and m only (and
not on n). In 1987, Mueller and Schmidt [28] proved the following:

Theorem (Mueller-Schmidt). Let F' be an irreducible binary form of degree n, with integral
coefficients. If F' has precisely 3 nonzero coefficients and n > 9, then the inequality

|F'(z,y)] <m

has at most O(m?™) solutions (z,y) € Z2.

Shortly after that, they extended their result to the general case [29]:

Theorem (Mueller-Schmidt). Let F' be an irreducible binary form of degree n > 3, with
integral coefficients. If F' has no more than k with k > 3 nonzero coefficients, then the
inequality

|F(z,y)| <m

has at most O(k*m?/™(1 4+ logm!/™)) solutions (x,vy) € Z>.
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In 2000, Thomas [38] gave absolute upper bounds for the number of solutions for m = 1
and k = 3:

Theorem (Thomas). Let F' be an irreducible binary form of degree n > 3, with integral
coefficients. Further suppose that F has precisely three nonzero coefficients. If n > 38,
then the equation

|F(2,y)| =1

has at most 20 solutions (x,y) € Z* with |zy| > 2 ((z,y) and (—x, —y) regarded as the
same).

If only 2 coefficients of F(x,y) are nonzero, the special case ax™ — by™ = 41 with
ab # 0,z > 0,y > 0 has been studied by many authors. In 2001, Bennett [7] proved there
is at most one solution to this equation.

1.3 Families of Thue Equations

A family of parameterized Thue equations is a Thue equation with coefficients which are
integer polynomials in one or more parameters. For example, a one-parameter family of
Thue equations is the following:

F(X,Y)=m, m € 7 (1.2)

where F; € Z[t][X,Y] is an irreducible binary form of degree of at least 3 with coefficients
that are integer polynomials in t.

In 1990, Thomas [35] investigated for the first time a parametrized family of cubic Thue
equations. Since then, different families of Thue equations have been studied. Thomas
proved

Theorem (Thomas). Let t € Z and t > 1.365 x 107. Then the equation
2 — (t — D2’y — (t+2)wy* — y* = £1 (1.3)
has only the trivial solutions: (z,y) € £{(0,1),(1,0),(1,—1)}.

Mignotte [23] filled the gap 4 < ¢ < 1.365 x 107 in 1993, proving that the only solution
to (1.3) for these values of ¢ are trivial ones (for t = 0, 1,2, 3, (1.3) had been solved earlier).

The same family has been studied by Mignotte, Pethé and Lemmermeyer [25]. In 1996,
they proved the following;:



Theorem (Mignotte-Pethé-Lemmermeyer). (1). Let n > 1650, k be positive integers. If
2% — (n — D2y — (n +2)zy* —y*| =k
for some x,y € Z, then

log |y| < ¢ log?(n + 2) 4 cylognlogk,

where )
1432.1\ 1902
cp = 700+ 476.4 (1 — ) (1.501 — —) < 1956.4,
n n
1432.1\ "' 1432
cr = 29.82 + <1 — ) < 30.71.
n nlogn

(2). Let n be a nonnegative integer. If (x,y) € Z* is a solution of
|2® — (n — D2’y — (n+2)xy? — v*| < 2n + 1, (1.4)

then either (x,y) = t(u,v) with an integer t of absolute value < ~/2n+1 and
+(u,v) € {(1,0),(0,1),(=1,1)}, or

:|:(:L‘, y) S {(_1’ 1)7 (_1’ 2)7 (_17n + 1)7 (_n7 _1)7 (n + 1: —n), (27 _1)}7
except when n = 2, in which case (1.4) has the extra solutions

:|:<:Ij‘, y) € {<_47 3)7 (87 3)? (17 _4>7 (37 1)7 (37 _1)}'

In 1991, Mignotte and Tzanakis [27] studied a family of cubic Thue equations that is
similar to Thomas’. They proved

Theorem (Mignotte-Tzanakis). Let n € Z and n > 3.67 x 10%2. Then the equation

23 —naPy — (n+ Day? —y* =1

has only the following solutions:
(Z‘, y) S {(17 0)7 (07 _1)7 (17 _1)7 <_n - 17 _1)7 (17 _n)}

Mignotte [24] could prove the same result for all n > 3 in 2000.

In 1991, Pethé [30] studied by using Thomas’ method the two classes of Thue equations
in the following theorem:



Theorem (Pethd). Let n € Z. Put
Fy(z,y) = o' — na’y — 2®y? + nay® +

and
Fy(z,y) = 2t — na’y — 32°y* + nay® +
If |n| > 9.9 x 10?7, then

(1) the only solutions to the equation
Fl(qja y) =1
are (z,y) € {(0,£1), (£1,0), (£1, £1), (F1, £1), (£n, £1), (£1, Fn)};

(2) the only solutions to the equation
’FQ(xa y)| =1
are (,y) € {(0,%1), (1,0), (1, +1), (+1, F1)}.

The first result in the above theorem was improved by Mignotte, Peth6 and Roth [26]
in 1996. They solved this equation completely.

Theorem (Mignotte-Pethé-Roth). Let n € Z. Then the only solutions to the equation

ot — nady — 2%y? + nay® + ¢yt = £1

are Z]Z{(O, ]-)7 (17 0)7 (17 1)7 (17 _1)7 (TL, ]-)7 (1’ —TL)} fOT |n’ g {27 4}
If |n| = 2, the family is reducible. If |n| =4, four more solutions exist, they are

[ (8,7),(7,=8) ifn—4
i“””‘{(&—nmz& ifn——4.

In 1993, Thomas [36] investigated the family of equation

P, (z,y) = z(z — a(n)y)(z — b(n)y) + uy’,

where n € Z,a(t),b(t) € Z[t] are monic polynomials of degree a and b respectively and
u € {£1}. Under a technical assumption on a(n) and b(n), he could prove that all solutions
(z,y) € Z? to the equation @, (z,y) = 1 are given by (1,0), (0, u), (a(n)u,u), (b(n)u,u), if
n is greater than an effectively computable constant N. In particular, if a(t),b(t) are
monomials, Thomas’ result gives:



Theorem (Thomas). Let a and b be integers such that 0 < a < b. Define a real number
N(a,b) by
N(a,b) = (2-10° - (a + 2)) "™/

If n > N(a,b), then the equation
z(r —ny)(z —nly) +uy® =1, u==+1

has only the four solutions (1,0), (0,u), (n%u, u), (n’u,u).

In the same year, Thomas also published a paper about a two-parameter family of cubic
Thue equations [37]. He proved

Theorem (Thomas). Let b, ¢ be nonzero integers such that A = 4c — b* > 0, the discrim-
inant of t3 — bt? + ct — 1 is negative, and ¢ > min{4.2 x 10* x [b|*3%,3.6 x 10*! x AL1582}
Then the equation
3 2 2 _ .3 _
x® —br*y+cxy —y’ =1

has only the trivial solutions, namely (x,y) = (1,0), (0, —1).

In 1995, the family of quartic Thue equation F,(z,y) = x*—ax3y—622y* +azy’+y* = ¢
with ¢ € {1, £4} was completely solved by Lettl and Peth6 [21]. They proved

Theorem (Lettl-Pethd). Let a € Z and ¢ € {£1,£4}. If a & {£1,£4}, the equation

vt — ax®y — 627y + axy® +yt = c

only has the trivial integral solutions in x,y, namely,

(z,y) € {(£1,0), (0, £1), (£1,1), (£1, —1).

Chen and Voutier [11] solved the equation 2* — az3y — 622y + axy® + y* = £1 inde-
pendently in 1995.

The family of quartics 2% — a?z%y* + y* was studied by Wakabayashi [46] in 1997. He
proved

Theorem (Wakabayashi). Let a be an integer. For a > 8, the only primitive solutions to
the Thue inequality
|x4 o a2x2y2 +y4‘ < CL2 —9

are (x,y) = (0,0),(£1,0),(0,£1), (£a, £1), (£1, £a), (£1, £1), with mized signs.
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Later in 2000, Wakabayashi [48] generalized this paper to the family of Thue inequalities

of the form |z* — a?z%y* — by?| < a® +b — 1. He found all solutions to this inequality when

a is sufficiently large relative to b.

Theorem (Wakabayashi). Let a,b € N. Then the only primitive solutions to the Thue
inequality
lz* — a*2x*y® — byt <a*+b—1

are (z,y) = (0,0), (£1,0),(0,£1), (xa, £1), (£1, £1) with mized signs, provided that
a > 5.3 x 101522,

or
be{1,2}, a>1.

In 1997, Heuberger, Peth6é and Tichy [19] completely solved the one-parameter family
of quartic Thue equations

Fo(z,y) = 2(z —y)(z — ay)(z = (a + y) —y* = £1,
where a is an integer. More precisely, they proved
Theorem (Heuberger-Peth6-Tichy). Let a be an integer. Put
Fuo(z,y) = 2(z —y)(z — ay)(z — (a + L)y) — y".
Then
|Fa(z,y)| =1
only has the trivial solutions

(£1,0), (0, £1), (£1, £1), (£a, £1), (£(a + 1), +1).

The more general form x(z — y)(x — ay)(z — by) — y* was studied by Pethd and Tichy
[32]. They proved

Theorem (Pethd-Tichy). Let a,b be integers. Assume that

1
102‘1028<a+1<b§a(1—|— 1 )
log™ a

10



Put
Fop(z,y) = z(z —y)(z — ay)(z — by) — y*.
Then

Fop(z,y) =+£1
has only the trivial solutions

(£1,0), (0, £1), (£1, £1), (£a, £1), (£b, +1).

In 1999, Lettl, Pethé and Voutier [22] published a paper about the simple families of
Thue inequalities. The particular forms under their consideration are distinguished by
being “simple” forms. They proved the following:

Theorem (Lettl-Peth6-Voutier). Let a be an integer. Put
F®(2,) = 2% — azy — (a + )y — 4
F(z,y) = 2" — az’y — 62°y" + axy® + y*
EO(z,9) = 2% — 202y — (5a + 15)z*y? — 2023y° + 5az’y* + (2a + 6)2y° + 1/
(1) For a > 89, the only primitive solutions (z,y) € Z* to the inequality
|9 (z,y)| < 120a + 323
with _% <z <y are <07 1)7 (17 1)7 (17 2)7 (_17 3);
(2) For a > 58, the only primitive solutions (z,y) € Z* to the inequality
F (2, y)] < 6a+7
with |z| <y are (0,1), (£1,1), (£1,2);
(3) For a > 30, let (z,y) € Z* be a primitive solution to
F® (@, )| < k(o)

with

8k(a)
ey <Y and —g <x<y. Then

2.14
~log(a + 1.5) — 3.44°

ly| < 0.4(120k(a))'*+<@, with €(a)

11



These forms have been studied by different authors. For example, |F(£4)(x, y)| = 1 has
been solved completely by Lettl and Pethé [21], and by Chen and Voutier [11] indepen-
dently.

This type of form is the focus of this thesis. Let F' be a binary form. Let

a b
A= ( . d) € GLy(Q)
and define the binary form F4 by
FA(x,y) = F(ax + by, cx + dy).

This defines an action of GL2(Q) on Q[z, y].

Definition Two forms F, G € Q[x, y] are called equivalent if there exists some A € GLy(Q)
and r € Q* such that rG = F4, where Q* = Q\{0}.

Definition Let F' € Q[z,y] be a form. We call A € GLy(Z) an automorphism of F if
FA=F.

Definition A form F € Q[x,y] is called simple if F' is irreducible over Q with degree
> 3 and there exists some non-trivial A € GLy(Q)/Q*I; such that ¢4 : z — Az := %0

cz+d
permutes the zeros of the underlying polynomial F'(x, 1) transitively; here I5 is the identity
matrix of order 2 and A = ( Z Z ) € GL2(Q).

One can see that if a form F' is simple, then it is close to having non-trivial automorphism.
The three forms in the previous theorem are all simple, since we have

F¥y, —x —y) = F¥(x,y),
FYx —y,x+y) = —4FY (2,y),
F9(x —y,x +2y) = —2TF9(x,y).

We'll consider the same forms but with two parameters.

In 1999, Wakabayashi [47] [49] proved

Theorem (Wakabayashi). Let a,b be integers.

12



(1) Suppose that a > 360b*. Then the only primitive solutions with y > 0 of the Thue
inequality
|2® 4+ azy® + by’ < a+|b] +1

are (0,0), (£1,0),(0,1),(£1,1),(=b/d,a/d), where d = ged(a,b).
(2) Suppose that |b| =1 or |b| = 2. Then for all a > 1 the only primitive solutions to
|2° + azy® + by’ < a+|b] + 1

are (0,0),(%1,0),(0,1),(£1,1),(=b/d,a/d), where d = ged(a,b), except the cases
bl =1,1<a<3and b =2,1 < a<T7. Further, all solutions in the exceptional
cases can be listed.

A family of quintic Thue equations had been investigated by Gaél and Lettl [16]. In
2000, they proved

Theorem (Ga#l-Lettl). Let t € Z. If |t| > 3.28 x 10, then the only integral solutions
(x,y) to the equation
Fi(x,y) = 2° + (t — Da'y — (2t + 4t + 4)2%y*+
(t* + % 4+ 262 + 4t — 3)ay® + (3 + 12 + 5t + )yt +¢° = +1

are (£1,0), (0, £1).

In 2000, Toghé [39] proved

Theorem (Togbé). Let n be an integer such that n, n+2 and n?+4 are square-free. Then
the equation
vt — P2y — (n® 4+ 2n% + 4n + 2)2%y? — Pyt oyt =1

has only the trivial solutions (£1,0), (0, £1) for n <5 x 10° or for n > 1.191 x 10%.

Tobgé [42] improved his result in 2006. He showed that

Theorem (Togbé). Let n be an integer such that n, n+2 and n®+4 are square-free. Then
the equation

ot —nPrdy — (n® 4+ 2n% +4n + 2)2%y? — Pyt oyt =1
has only the trivial solutions (£1,0),(0,£1) for n > 2. In the case of n = 1, there exists
an extra solution +(1,—1) besides +(0,1) and £(1,0).

13



In 2002, Dujella and Jadrijevié¢ [13] solved another family of quartic Thue equations.
Later in 2004 they extended the same family of quartic Thue equation to the inequality
case [14].

Theorem (Dujella-Jadrijevi¢). Let a be an integer.

(2002) If a > 3, then the equation
ot — dax’y + (6a + 2)x*y* + dazy® + vt =1
has only the trivial solutions (x,y) € {(£1,0), (0, £1)}.
(2004) If a > 4, then the inequality
|z* — dax’y + (6a + 2)2°y* + dazy® + y*| < 6a + 4
has only the following solutions (x,y) in integers:
(£1,0),(0,£1), (1, £1), (=1, £1), (£1,F2), (£2,£1).
In 2003, Wakabayashi proved
Theorem (Wakabayashi). Let a € Z. If a > 1.35 x 10', then the equation
2 — e+t =1
has only the trivial integral solutions:
(z,y) € {(0,1),(1,0), (1,a°), (a,1), (—a, 1)}
In 2004, Toghé [40] proved
Theorem (Toghé). Let n > 1 be an integer. The equation
23— (n® —2n% + 3n — 3)2%y — nxy? — P = 1
has only the trivial integral solutions:
+{(1,0), (0, 1)},
except for the case n = 2, when there are seven more pairs of solutions:

+{(9,-13),(5,—14), (4,1),(2,-3),(1,-1),(1,-3),(1,—-2),(0,1), (1,0)}.
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In 2005, Jadrijevié¢ [20] proved

Theorem (Jadrijevi¢). Let m,n € Z and m > 0,n > 0. Then there are no solutions to
the equation
zt — 2mnady + Q(m2 —n?+ 1)x2y2 + 2mnay® +yt =1

satisfying the additional conditions ged(zy, mn) =1 and zy # 0.
In 2006, Toghé proved in [41]

Theorem (Toghé). Let n be a nonnegative integer. Put

P, (z,y) = 2° + (n® + 2n° — 3n° + 3n" — 4n® + 50 — 3n + 3)2%y

o (n3 o 2)n2xy2 o y3

Then the solutions in integers x,y to the equation

b, (x,y) =+£1
o {£(1,0),£(0,1)}, ifn > 2,
an {£(1,0),£(0,1),£(1,-1)} if n =1,
{ {£(1,0),£(0, 1), £(1, —1), £(1,2), £(2, —3), £(3, — 1)} if n = 0
and in [43]

Theorem (Toghé). Let a € N. Put

(I)a(xv y) = xG - (Cl - 2)1'5?/ - (0,2 +a+ 6)$4y2
+ (a* — 2a® + 6a — 10)2%y® + (a* + 5a + 3)z%y*
+(a* —a+4)ay® —¢°

If a > 1.078 x 10'2, then the equation
O, (x,y) =+1

only has the integral solutions (x,y) = (0,%£1), (£1,0), (£1,1).

In the same year, Ziegler [53] investigated a family of quartic Thue equations with three
parameters. He showed
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Theorem (Ziegler). Let (x,y) be a solution to Thue equation

x* — 4sx®y — (2ab + 4s(a + b))z*y? — dabsxy® + a*b*yt = p
with s € Z,a,b € 37Z,]a| > |b] and 0 # ab € Z and suppose s > 7.23 x 1010|a|29+5/m. Then
necessarily p = 1. Furthermore, the only solutions are (x,y) = (£1,0), (0, £1) if ab = £1
or those listed as follows:

(a,b,z,y) €{(—17/4, —4, +4, +1), (17/4, 4, +4, F1)

5/2,—2,+2,+1), (5/2,2, +2, F1),

2,—1,+1,41), (2,1, %1, F1), (1.5)
4,—15/4, 44, +1), (4,15/4, +4, F1),

2,-3/2,+2,+1), (2,3/2, +£2, F1)}

{
(
(
(
(

In 2007, Wakabayashi [50] studied cubic Thue equations with nontrivial automorphisms.
He proved

Theorem (Wakabayashi). Let F' be an irreducible cubic form with integer coefficients.
Suppose that the discriminant of F is positive and F has non-trivial automorphism.

Let a,b € Z. Then the number of integer solutions to the Thue equation
F(z,y) = br® — az’y — (a + 3b)xy* — by® = 1
15 three or zero, except for the following case, where the number of solutions is Np,

F~a? 4+ 2%y —22y? —y?, Np =09,
F ~ 2% — 3xy? — 12, Np =6,
F ~ a3 —22%y — 5xy®> — 9%, Np =6.

For two forms F,G € Z|x,y], “F ~ G” means there exists a matriz
a b
A= ( . d) € GL(2,Z)
such that
FA(x,y) = F(ax + by, cx + dy) = G(x,y).

In [51], Wakabayashi extended Lettl, Pethé and Voutier’s work [22] to two-parameter
families of Thue inequalities. He obtained the following results:

16



Theorem (Wakabayashi). Let s,t € Z. Put
Fi(2,y) = sa® — tay — (t + 3s)xy® — s1/°,

Fi(x,y) = sa* — taPy — 652y + tay® + sy,
Fi(2,y) = sa® — 2ta®y — (5t + 15s)a*y? — 20s2°y® + 5tay* + (2t + 6s)ay’ + sy°.
(1) If s > 1 and t > 97.35*®/1% then the only primitive solutions (x,y) € Z* to the Thue

inequality .
|F (2, y)] < 120t + 323s

with y > 0 are

(£1,0),(0,1),(£1,1),(£2,1),(-3,1),(£1,2),(-3,2),(—1,3),(—2,3)

(2) If s > 1 and t > 70s®/° then the only primitive solutions (z,y) € Z* to the Thue
inequality
]Fs(ﬁ)(x, y)| < 6t+7s

with y > 0 are
(£1,0), (0, 1), (£1,1), (£2,1), (+1,2)

(3) Let s > 1 and t > 64s°2, then the only primitive solutions (x,y) € Z?* to the Thue
inequality
[P (z,y)] < 2t +3s

with —1/2 < xz/y <1 and y > 0 are

{ 0,1),(1,1),(=1,t+2) ifs=1,
(0,1),(1,1) if s > 2.

Further, the only primitive solutions (x,y) € Z* with y > 0 are

(1,0),(0,1),(£1,1),(—2,1),(—1,2),
(—1,t+2), (=t —2,t+1),(t+1,1) ifs=1,
(LO)? (07 1)7 (ila 1)7 <_27 1)’ (_1’2) ifS > 2.

In 2008, Toghé [44] completely solved another family of cubic Thue equations.
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Theorem (Toghé). Let n € Z be nonnegative. Then the integer solutions to the equation
® —n(n®+n+3)(n* +2)2%y — (n® +2n® + 3n + 3)zy? — y® = £1
are

{(j:LO)? (07 il)}7 an > (;
{ {£(=3,2), (=1,1), £(—1,3), (0, 1), £(1,0), £(2,1)}, ifn=0.

In 2009, He, Jadrijevi¢ and Toghé [17] proved

Theorem (He-Jadrijevié-Toghé). Let ¢ > 1 be an integer. Then for all ¢ > 1, the Thue
inequality

|zt — 423y — (2¢ — 2)2%y? + (4e + 4)ay® — (2¢ — 1)y*| < max {Z, 4}

has primitive solutions of the form (z,y) = (£1,0),£(1,1). These solutions are the only
primitive solutions if ¢ # 2n? —2,n € N,n > 1 and ¢ # 1,2. The additional primitive
solutions are given by:

(i) (z,y) = £(n+ 1,n),+(n — 1,n),+(2n + 1,1),£(2n — 1,—1) for c = 2n* —2,n €
N,n>1;

(i1) (x,y) = £(0,1),£(2,1) for c=2;
(111) (z,y) = (0,£1),£(2,1),£(3,1) for c = 1.

Also in 2009, Akhtari [1] studied general cubic forms with big discriminant. She proved:

Theorem (Akhtari). Let F' be a binary cubic form of degree with integer coefficients. If
its discriminant Dp > 1.4 x 10°7, then the equation

|F(z,y)| =1

has at most 7 integer solutions.

If F' s equivalent to a reduced form which is not monic and has discriminant D >
9 x 10°8, then the equation
F(r,y) =1

has at most 6 integer solutions.
Akhtari and Okazaki proved a similar result for quartic Thue equations in 2010.
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Theorem (Akhtari-Okazaki). Let ' be an irreducible quartic form with integer coefficients
and Dy be its discriminant. If Dp > 10°%°, then the equation

|F(z,y)| =1

has at most 61 integer solutions, counting (x,y) and (—x,—y) only once.

For a special quartic form with vanishing J-invariant, Akhtari [2] proved the following

Theorem (Akhtari). Let
F(z,y) = a0x4 + a1x3y + azl‘2y2 + agxy3 + a4y4

be an irreducible binary form with integer coefficients and positive discriminant that splits
in R. Let
IF = CL% — 3&1&3 + 12&0&4
and
Jr = 2(13 — 9ajasas + 27a%a4 — T2apaza4 + 27a0a§.

If J. =0, then the equation
|F(z,y)| =1

has at most 12 solutions in integers x and y (with (x,y) and (—x,—y) regarded as the
same); and the inequality
|F(z,y)l <h

has at most 12 primitive solutions (x,y), with |y| > %

In 2011, Dujella, Ibrahimpasi¢ and Jadrijevi¢ [12] solved the following family of quartic
Thue inequalities:

Theorem (Dujella-Ibrahimpasi¢-Jadrijevi¢). Let n > 3 be an integer. Then all the prim-
itive solutions to the inequality

2t +2(1 = n*)a®y® + ' < 2n+3

are (0,%£1), (£1,0), (£1,£/2(n? — 1)), (£1/2(n? — 1), £1), where the latter two solutions
are only valid if 2(n* — 1) is a perfect square.

In the same year, He, Kihel, and Togbé [18] proved
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Theorem (He-Kihel-Toghé). Let ¢ > 3 be an integer. Suppose n = ¢ +c¢—5 and 0 <
|| < c+2. Then the equation

ot — (n+ D2ty —na®y? +22y° +yt = p

has integer solutions (x,y) if and only if p = 1. In this case, all primitive solutions are
gZ"U@’IZ by (l‘, y) = (07 j:l)a (j:]-) 0)7 j:(]-v _1)
In 2012, Akhtari [3] improved the result of Okazaki and herself by showing:

Theorem (Akhtari). Let F' be an irreducible binary quartic form with integer coefficients.
If the discriminant of F' is greater than an explicitly computable constant Dy, then the
equation

|F(2,y)| =1

has at most Ur integer solutions, counting (x,y) and (—x,—y) only once, where Up = 6 if
F(z,1) =0 has no real root, Up = 14 if F(x,1) = 0 has two real and one pair of complex
conjugate roots and Up = 26 if F(x,1) = 0 has four real roots.

Wakabayashi extended his work on cubic Thue equation with automorphisms to the
quartic case in 2012. He proved [52]

Theorem (Wakabayashi). Let a,b € Z. Then the equation
|bz* — axy — 6bx*y* + axy® + byt =1

has 0 or 4 integer solutions, except for the cases b = 1,a = +1,4+4 when there are 8
solutions.

Again, Put
F&(2,y) = sa® — ta?y — (t + 3s)zy® — sy/°,
Fs(ff)(% y) = sz — ta’y — 652y + tay® + sy,
Fs(i)(il?, y) = sa® — 2ta’y — (5t + 155)x*y?
— 20s2%y® + 5tay* + (2t + 65)zy® + sy’

Consider the Thue inequalities:

FS (z,y)] < 2t +3s, (1.6)
1FE (z,y)] < 6t +7s, (1.7)
|F9 (2, y)| < 120t 4 323s. (1.8)
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Lettl, Peth6 and Voutier [22] had completely solved these inequalities for s = 1 and ¢
greater than a determined positive number. Wakabayashi [51] extended their work and
completely solved the inequalities with the following conditions:

s>1, t> 64572, for (1.6),
s> 1, t > 70s%/9, for (1.7), (1.9)
s>1,  t>97.3519 for (1.8).

In this thesis, we’ll prove the following:

Theorem 1.1. Let 7 be an integer with T > 5 and let s,t be positive integers such that the
form

F;i)(x, y) = sz® — ta’y — (t + 3s)ay® — sy°

is irreducible over Q. Suppose that s > 1 and t > 1.2 - 106s3t2Y/2" . Then other than the
trivial solutions

i{(0>1)’(17_1)7(_170)’(1a1)7(1>_2)7(_271)7
(—1,t+2),(—t—2,t+1),t+ 1,1} if s=1,
+{(0,1),(1,-1),(-1,0),(1,1),(1,-2),(=2,1)} if s > 2,

there are at most 67 primitive integer solutions to the Thue inequality
|F£)(x,y)| < 2t + 3s.

Theorem 1.2. Let 7 be an integer with 7 > 2 and let s,t be positive integers such that the
form

S

FO(2,y) = sX* — tXPY — 6sX2Y? + LXY? + sy

is irreducible over Q. Suppose that s > 1 and t > 120052437, Then other than the trivial
solutions

:i:{(l,()), (O? 1)? (17 1)7 (L _1)a
(1v 2)’ (27 _1>’ (27 1)7 (1v _2)}

there are at most 8T primitive integer solutions to the Thue inequality

|E (2,y)| < 7s + 6t.
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Theorem 1.3. Let 7 be an integer with 7 > 1 and let s,t be positive integers such that the
form

F& (2, y) = sa® — 2ta®y — (5t + 155)x'y?
— 2052y + 5ta*y* + (2t + 65)ay® + sy°

is irreducible over Q. Suppose that s > 1 and t > 200s'2/7t1/5"  Then other than the trivial
solutions

:i:{(()? 1)7 (17 0)7 (17 1)? (_1? 2)? (_17 1)7 (_27 1)7
(2’ 1)7 (_17 3)7 (_37 2)7 (1v 2)’ (_2’ 3)’ (_3’ 1)}

there are at most 127 integer solutions to the Thue inequality

|F (2, y)| < 120t 4 323s.

Compared with the results of Wakabayashi [51], we extend the range of the parameters
s and t, but with the cost of weakened results. More precisely, with the condition in (1.9),
Wakabayashi proved that the inequalities in Theorem 1.1, 1.2 and 1.3 have only trivial
solutions. We loosen the condition by considering a wider range of s and . In this case we
are not able to explicitly solve the inequalities but instead, we have to assume a possible
solution. Thus our results are ineffective. The following tables sketch the comparison:

Wakabayashi [51] This thesis

Cubic case t > 64s%° t>1.2-1005366
Quartic case t > 7083111 t > 1200540
Sextic case t > 97.35%5% t > 200s'92

Table 1.1: Comparison of the conditions, assume s > 1 in all cases
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Wakabayashi [51] This thesis

Cubic case 0 at most 30
Quartic case 0 at most 16
Sextic case 0 at most 12

Table 1.2: Comparison of the results: the number of solutions other than the trivial ones
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Chapter 2

Hypergeometric Method and Gap
Principle

In this chapter, we prepare some results that will be needed in the later chapters. Through-
out this chapter, 1 denotes either 3,4 or 6.

2.1 Contour integrals and the hypergeometric method

We're going to follow the arguments of Rickert [33] and Wakabayashi [49] to prove some
preliminary results that will be used to obtain the irrationality measures of certain algebraic
numbers. The idea here is by finding the Padé approximation of the function

V1+o

/1 —=x
one can construct a sequence of “good” approximations to some algebraic number related
to it and further deduce an irrationality measure of this number.

For integers n > 1,1 = 0,1 and j = 1, 2, define integrals

1 21+ xz)nJ“i

I, = — [ 2212 ° 2.1

" omi o (22— 1)l (2.1)
and .
1 A1+ 22)"

Lin=— [ 2220 g, 2.2

o omi /F (-1t (22
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where I' is a simple closed counter-clockwise curve enclosing both the point 1 and —1, and
I’y (I'y) is a simple closed counter clockwise curve enclosing 1 (—1) and not enclosing —1
(1). These integrals are well-defined for |z| < 1 if we take I" and I'; so that they do not
enclose —1/x.

Lemma 2.1. Forn>1,1=0,1

Inn(z) = pro(2) /1 + (2.3)

Tion () = (=) pp, (=) /1 — 2 (2.4)

Lin(@) = pra(2) Y1+ 2 = (=1)'pin(~2) V1 - =, (2.5)

where py,(x) are polynomials of degree at most n with rational coefficients given by
" - n+i\ /2n—h (14 x)h
Pon () :Z(_l) h( h M) (n—h)W (2.6)
h=0

and
" oo (n+t on —h 1
pin(z) =D (-1) ( h”) ((n—h Sontich
h=0
2n—h -1\ 1 e

Proof. Obviously,
Iln(f) = Illn(ZL') + IlQn(Jf)

for [ =0, 1.

By residue theory, we have
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I()ln((l}) =

1 1 ty
_/ %dz
N

2mi Jp, (22 —1)ntt

L & <(z _pyen UET xZ)m)

n! z—1 dzn ( 2 _ 1)n+1

:—hm—<1—|—a:z w(z+1)" ("H))

n' z—1 dz"
dn—h

n, Hl ( ) 1+xz)"+i> o (D7)
>

Z) ( ) 2 (1 + z2)"

2n — h
n , ) (z + 1)—(2n+1—h)

n —

-(—1)"_h(n - h)!(

n I(n — B! 1 _
 lim (n> h!(n — h)! (1) (n + u) <2n h)
z—1 — h n! h n—~h

(1 + :z:z)”_hJ’ﬁ (z + 1)~ Cntl=h)

_ i(—l)"‘h n+ ﬁ on — B\ 2h(1 +2)" i
h n—nh 22n+1-h
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Similarly,

1 [ 2(1+z2)"
L (z) = Q_M/r Wd'z
_ L lim 4 (z(l + xz)’”i(z + 1)’("“))
n! z—1 dz"
1 "L /n\ d" L1odvh )
IR T el n b o 7(n+1)
~nl lgq — <h) zh(l +22) dzn=h (2(" = 1)) )

1 - n Tl—|—l 1
= — 1 ! m) gt nohty
.y ll_rg <h)h.< A ):1: (1+22)
h=0
n—h\ dv " (il n—h\ d""t —(n+1
(< 0 )Zdzn_h(zﬂ) <+>+( ) )W(Hl) ‘”)
1 " /n n+ 1 1 2n —h
— 1 ] P h n—h+- _1\2=h(y _ 1!
n!llg%hzo (h)h.( 5 )x (1+x2) (( )" " (n h)'(n—h)

on—h—1
2(z 4 1) CntL=h) (=il p) ( :_ 1 > (2 + 1)(2"h))

B n(—1)"—h n+ - 2n—h\ 1 [(an—h-1\ 1
_h: h n—h ) 2tl=h n—h-—1)2%nh

By a change of variables, 2’ = —z, we see that, for [ =0, 1,

Lign(z) = (=) L1y (—2)
= (—1)l+1pln(—x) /1 — x.

This completes the proof of the lemma.

Put .
1 z

Jh=— | ——d

" om ) (2 = )

and define the generating function



Lemma 2.2. J, =0 for 0 < h < 2n, and Jap+1 = 1. Further, for |z| <1,

x2n+1

J(x) = m

(2.8)

Proof. By the residue theory, it is well-known that the integrand is a rational function
P(z)/Q(z) with deg(Q) > 1 + deg(P) and the integral over any closed contour containing
all the zeros of @), is equal to zero (This can be shown by a combination of partial fraction
decomposition and residue calculation). Thus J, = 0 for 0 < h < 2n.

For h = 2n + 1, suppose that

n+1 n+1
Z2n+1 bj

(22— 1)+t ]2_; (2 —]1)3' - Jz_; (z+ 1)

Then we get
n+1 n+1
2n+1 Z + 1 n+1 Z CL] . n+1—] + (Z _ 1)n+1 ij(z + 1)n+1—]'
j=1

2n+1

Comparing the coefficients before z on both sides of the above equation, we get that

al—f-bl:l.

On the other hand, by the relation between residue and Laurent series expansion, we see
that Jo,41 = a;+b; = 1. One can also prove this by a change of variables z = 1/w together
with residue calculus.

For |z| < 1,carefully choose I so that |zz| < 1. Then ) ;~ , z"2" converges to (1—xz)!
on I'. Thus,




Let z = 1/w. Then we have

1 1
_ d
I (@) 271 /F (1 —x2)(z2 —1)nt! :
! 1 1Y,
Comio (o2 (& )\ w2

1 w2n+1
oy
270 J_p (w — ) (1 — w?)rtl

where —I" is a counterclock-wise curve containing x but not 1 or —1. Thus,

' w2n+1 $2n+1
J($) = ilirglv (1 _ w2)n+1 = (1 _ x2)n+1 :

]

Lemma 2.3. The function ly,(x) has a zero of order 2n + 1 at x = 0, and the function
I, (z) has a zero of order 2n at x = 0.

Proof. By Taylor expansion,

Then for [ = 0,1,

= (n+1 - n+ 1+
=S (1= £ (1
h=0 -

by Lemma 2.2. This proves the lemma.

Lemma 2.4. ( ) ( )
L Pon T —Pon{—2 o 2n
A= ‘ Pinla)  pra(~1) “ ot (29)

n 1
22+l \ 2n
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Proof. By Lemma 2.1, the degree of A(x) is at most 2n. Also, by the definitions from
Lemma 2.1, we see that

_ = pon(ﬂf) _pOn(_-T) /1 —=x
Ax) Y1 —x = P R
_ pOn(z) Pon(l’) @ 14+x— pon(—ﬂﬁ) 1—=x
P1n(2) pra(@) 1+ + pro(—2)Y/1 —
_ | pon(z) Lon(x) ‘
pin(®) Tin(x) |

Then by Lemma 2.3, A(z){/1 — & = pon(x) 1, () — p1n(2)Ion(z) has a Taylor expansion

1
n —_
+3

Pon(0) < on

>J2n+1x2n+... .

Notice that the constant term in the Taylor expansion of {/1 — x is 1 and pg, (0) = % (2"),
Jont1 = 1. Therefore, we have

Alz) = (Q;Qf (2:> (”;nﬁ)x?".

]

Lemma 2.5. Let £ be a non-zero real number. Suppose that there are positive numbers
p, Pl L,d, A with L/A > 1, and for each integer n > 1, two linear forms

Din + qin§ = ljn Jj=0,1

in & with rational coefficients p;, and q;, satisfying the following conditions:

#0

. Pon  qon
1
( ) ’ Pin Qin

(ii) |yl < oP"
fiii) |ljn] < 1L

() pjn and gjn, 7 = 0,1 have a common denominator A, < dA".
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Then for any integers p and q with ¢ > 0, we have

1

p
PR — > _’
‘g q’ Cq*

where
B log(AP)
~ log(L/A)

log(AP)
C = 2pdAP (max{2dl, 1})TesE/a) .
Proof. Let p,q be integers with ¢ > 0. Put
5= ‘g _ E‘ ‘
q
For any n > 1, j = 0,1, let 0, = ¢jnp + qpjn. Note that

p
qun — Njn = Q<an£ + pjn) - (anp + qun) = {44jn (é_ - a) .

It follows that, for j = 0,1,

P
1Njn| < ‘qun (é - 5) + gl

< qoP"d +qlL™".

By condition (7), for any n, we can fix a j so that |7;,| # 0. This is a rational number with
denominator A,,. Thus, by condition (iv), we have
1 1

> —— > .
ninl 2 X~ 2 GAn

By assumption, L/A > 1. Put

=1 (o)

where C' = max{2dl,1}. This implies that

1L < .
== 50An
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Therefore, we have
qoP"6 >

1
2dA"
It follows that
1 1 1

log(PA) log(PA) *

5> Z og(Cq = g
2doq(PA)" ngq(PA)H% 2dQPAClog((L/A)q1+log(L/A)

2.2 Gap principle
Lemma 2.6. Let B, p and & be real numbers with B and p positive. Suppose that (x1, ;)
and (z2,y2) are two pairs of integers with x1/yy # x2/ye satisfying

Further suppose that yo > y; > 0. Then
y2 > By ™. (2.11)
Proof. By assumption, we have
x x
y_i ?A y_jv Yo Z U1 > Oa

that is,
T1Y2 — Toy1 7 0.
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Then

This gives

1< ‘flyz - 55291’

= |T1Y2 — Y1y2€ + Y1Y2€ — Ty |

Y1Y2 (ﬂ - f) + Y1Y2 (5 - ﬁ)‘
Y1 Y2

T2
£— =
Y2

< Y1Y2

X
= —f’ + 11Y2
Y1

1 1
< _
= e (2By’f " 23@/’5)
1
< 1y - W :
1
W

- Byt

y2 > Byt (2.12)
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Chapter 3

Cubic Simple Form

In this chapter, we’ll study the following inequality
|sa® — tz®y — (t + 3s)ay® — sy’| < k, (3.1)
where s,t are integers and k = k(t, s) is linear in ¢ and s. Let
F(z,y) = sx® — ta®y — (t + 3s)zy* — sy°.

Suppose that s and t are positive integers such that F' is irreducible over Q. We have that
F'is a simple form since

and the map
1

z+1
permutes the roots of F(z,1) transitively. As discussed in the first chapter, Wakabayashi
[51] completely solved (3.1) for s > 1, > 645”2 and k = 2t + 3s. For the same k, we'll
prove the following result:

z— —

(3.3)

Theorem 3.1. Let s,t be positive integers such that
s’ —tay — (t + 3s)xy® — sy’

15 irreducible over Q and let 7 be an integer with T > 5. Suppose that s > 1 and t >
1.2-109s3+21/2" " Then other than the trivial solutions

i{(071)7(17_1)7<_170)’(1’1)7(17_2)7(_271)7
(=1,t4+2), (=t —2,t+1),(t+1,1)} if s =1,
+{(0,1),(1,-1),(-1,0),(1,1),(1,-2),(=2,1)} if s > 2,
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there are at most 6T integer solutions to the Thue inequality

|s2® — ta®y — (t + 3s)ay® — sy’| < 2t + 3s. (3.4)

Since the case when s = 1 had been explicitly solved by Lettl, Peth$ and Voutier [22],
in the following proof we always assume s > 2.

The main proof is based on the observation that the root of the underlying polynomial
F(z,1) can be expressed in terms of cubic roots of algebraic numbers, due to the special
shape of the simple form F. With hypergeometric functions, rational approximations to
the (quotient of) cubic roots of algebraic numbers can be constructed, which, in turn, will
give us a good rational approximation to the root of the underlying polynomial. This leads
to an irrationality measure for the root. Then we use a routine argument to derive the
upper bound for the size of the solutions from this measure. Together with a gap principle,
we prove the bound for the number of solutions.

3.1 Elementary properties

From the relation (3.2), it is easy to see that if (z,y) is a solution to inequality (3.1), then

(Y, =z —y), (—r —y,2), (=2, ~y), (~y,z + y), (v + y, —x)

are also solutions to (3.1). Notice that the map (3.3) permutes the intervals

(_%, 1} | (_2, —ﬂ (=00, 2] U (1, +00).

If there exists an integer solution (z,y) to (3.1), we can always choose it from the above
set of solutions to satisfy the following condition:

<—-<1, ged(z,y) =1, y > 0. (3.5)

N | —
<R

In the following proof, we’ll always assume (x,y) satisfies (3.5) if it is a solution to (3.1).
Let
f(x)=s"1F(z,1) = 2° —wa® — (w+3)x — 1, (3.6)

where w = t/s. Then we have
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Lemma 3.2. For w > 4, f has three real roots 0_1,0y and 0,, that satisfy the following:

1 1 2
—l-—t+ <l i<-1-—+4—,
w w
<Oy < A
w+2 0T w+2 (w+2u?’

2 3 2
wt+l+——— <O, <w+l+—.
woow w

Proof. For w > 4, direct computation gives

11 "4t 4 3w 1
f<—1——+—)=—w WA <,
w

1 2 w® + w* 4+ Tw? — 6w? — 12w + 8
fl-1-—+=) = > 0,
w o w? wb
1 2w+ 3
_ _ 0
f( w+2) (w+ 2)3 ’
1 4 2w* + 5w — 6w? 4+ 12w — 8
fl—- + = — <0,
w+2 (w4 2)w? wb
2 3 wd + 12w* + 10w + 9w? — 54w + 27
f w—|—1+———2 = — 6 <0,
w w
2 3w + 8w? + 12 8
f<w+1—|——)— W EIEWES
w w

Then the lemma follows.

]

Suppose (z,y) is an integer solution to (3.1) that satisfies (3.5). From Lemma 3.2, we
can see that £ is bounded away from 6_; and 6, and it is close to 6, for w > 4. We then
denote 6, by 9 in the rest of this chapter. We now define the interval

(o Lo
O\ wH2 w+2 (w+2uw?)

We divide all integer solutions (z,y) with y > 2 of (3.1) that satisfy (3.5) into two groups.

36



Definition We call (z,y) an integer solution to (3.1) of type I if ged(x,y) =1,y > 2 and

(x

LN S U P R SR B
y 27 w2 w+2 (w4 2w? |’
ged(z,y) =1,y > 2 and

€l= ! SR
O\ w+2 w2 (w+2uw?)’

Lemma 3.3. Let (x,y) be an integer solution to (3.1) of type II. For w > 1000, we have

(x,y) is of type II if

< |8

T 1

h—=— < — 3.7

-2l < o 37)
where 0.990¢
B=—"".

k

Proof. From Lemma 3.2, we have for w > 4
6,1<—1, 6w>w—|—1

Since (x,y) is of type II,

T
—0.001 < — <0.
Yy
We have
T T
— —0_1| > 0.999, — — 0] > w, (3.8)
Yy Yy

for w > 1000. On the other hand, (x,y) satisfies
|F(z,y)] < k.

i) G- )

Combining (3.8) and (3.9), we obtain

This is equivalent to

<k, (3.9)

k 1
< =

xXr
o— = .
= 0.999swy®  (0.999¢/k)y?

Y
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3.2 Irrationality of the root of f

Suppose that (xg,yo) is an integer solution to (3.1) that satisfies (3.5). In this section,

we’ll calculate a measure of irrationality of # in terms of this solution. The idea is that one
YT
V1=
of F. Then we can apply the hypergeometric method discussed in the previous chapter to
construct a sequence of “good” approximations to ¢, from which the irrationality measure

can be deduced.

can rewrite 6 in terms of for some algebraic number v, thanks to the special form

For any complex number A, let X denote the complex conjugate of .

Lemma 3.4. The form F can be rewritten as

F(z,y) = sx® — ta®y — (t + 3s)zy® — sy°

1 _ _

= 5 (n(@ = py)” +7(x = py)*) .
where

(2t + 35)V/3i —1+/3i

N=5— 0t p=——
9 2
and 1 = +/—1.
Proof. By direct calculation, we have
3
5 ~1+3i
(@—py) =|o-—F—y
3 3 3V3 33
= (x3 + 5:52?; — §a:y2 — y3) — (T\/_ny + T\/_xy2> 7.

We need only to verify that the real part of n(z — py)?® is equal to F(x,y). That is,

1

5 (@ = py)’ + 7z = py)°)

:8( 3 5 3 3)_(2t+33>¢§ (wﬁ . 33 2)

Ty g Y 9 7 Yt

=sx® — ta’y — (t + 3s)zy* — sy°
=F(z,y).
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Recall from last section that 6 is a root of f(x) = F(x,1)/s. Then by Lemma 3.4, we

have
(0 = p)* +7(0 —p)* = 0.
This gives
n_ (0-p)
no (0—p*

On the other hand, since (xq, o) is a solution to (3.1), we can then put

F(QJanO) =m,

for some integer m with |m| < k. Again by Lemma 3.4, we have
1 3., = — 3
3 (77(350 — pYo)” + (0 — PYo) ) =m.
Then we can write
n(xo = pyo)” = m + Ai

with

where

H = (2t + 3s)xp + (3t + 18s)xdyo — (3t — 9s)woys — (2t + 3s)ys € Z.

Since A € R, we have
n(zo — pyo)®  m A+ Ai
n(zo — pyo)®  m — Ai’
Combining (3.11) and (3.17), we have

(0 —5)*(x0 — pyo)® _ m + Ai
(0 = p)*(wo — Pyo)®  m — Ai’

Simplify this equation and write

m 3\/§mi

Ai H

It follows that —\3 3
(0 —P)*(x0 — pyo)® _ 147
(0 = p)3(xo —pyo)® 1—1v
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Taking cubic root on both sides, we obtain

2

(0 —p)(xo—pyo) _ Y1+ 7 (3.21)

(0 —p)(xo—pyo) VI—7n

where we choose the cubic roots so that their arguments lie in the interval (—m/6,7/6)
since from the last section (/1o is close to € and so the left side is close to 1.

Now we can apply Lemma 2.1 from Chapter 2 with ¢ = 3 and x = 7. It follows that
for any integer n > 1, we have relations

Lon(7) = Pon(NV1+7 = Pou(=7)V/1 =7 (3.22)
and
Lin(7) = pin(VV 1+ 4+ pa(=7) /1 =, (3.23)
where 1 . .
. on (M I\ (20— B\ A1+ )
) =S () () e (3.24)
h=0
= won M+t 2n —h 1
) =S (") (302 g
h=0
on—h—1\ 1 .
_<n_h_ 1)22n—h) ryh(l—i_’)/) h7 (325)
and z )
1 21+ yz)"ts
(V) = 5= | 7o 2

for j = 0,1. Dividing both sides of (3.22) and (3.23) by /1 — v and then substituting
(3.21) and multiplying both sides by (6 — p)(zo — pyo), we obtain

Gond + Pon = Lo, (3.27)
with
96n = pOn(V)(l'o - /)yo) - pOn(—V)(Io - ﬁyo),

Pon = —PPon (V) (0 — pyo) + ppon(—7)(xo — PYo),

ro_ Ton(7)(0 — p) (20 — Pyo)
Oon — 3T — ~
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and

@10 + 11, =1y, (3.28)
with
qin = pm(v)(xo - Pyo) + p1n(—7)(1’0 - ﬁy0)7
p/m = _ﬁpln(’Y)(iUo - Pyo) - Ppln(—’Y)(fBO - ﬁyo),
1) = p)(w0 — pyo)
In — 3 1 — 7 :
Put , Y
_J2H"/V3i it j =0,
M; = { 22n fyn if j =1. (3.29)

Then we have the following:

Lemma 3.5. With the above notation, forn >1, 7 =0,1, we have
M;q;, € Z,  Mjp;, € Z.

Proof. First we have, for all integers n, h with n > 1, h <n,

3l%] . (”;: %> €z, (3.30)

where [%] denotes the greatest integer that is less than or equal to % To show this, note
that

o[>

3[3’2’1].(”2%) _ gl (nF3) (n—1+%)ﬁl..((n—h+1)—|—%)

_3[%].(3n+1)(3(n—1)+1)...(3(n—h+1)+1)
- h

The number of 3-factors in k! is at most
h h = h h
— — o< — = —.
HE LR

Now we consider the other prime factors of h! that are not 3. Suppose p is a prime such
that p|h! with p # 3 and a is a positive integer such that p®|h! but p®** t hl. First notice
that p < h. Then consider the natural integer sequence modulo p:

1,2,3,...,p—1,0,1,2,... (3.31)
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The exponent of p-factor in h!l, a, depends on the number of times 0 appears in the first h
elements in the above sequence:

(1,2,...,h) mod p. (3.32)

In other words, a depends on how many complete residual sets (1,2,...,p — 1,0) (3.32)
contains mod p. Notice that (n —h+ 1,n —h +2,...,n) is a sequence of h consecutive
integers. We have that modulo p, it contains the same number of complete residual sets
as (3.32). Since ged(3,p) = 1, it follows that

Bn—h+1)+1,3(n—h+2)+1,....,3n+h) modp (3.33)
contains the same number of complete residual sets (1,2,...,p—1,0) as well. This implies
that

h—1
p" I TIBm =5 +1)
j=0

Therefore, (3.30) holds. It follows that

(3v3)" - (” Z é) € 73], (3.34)

since if h is even, then (3v/3)" = 3B"2 and thus

(3v3)" . (n ;: %> €7

and if h is odd, then (3v/3)" = 3B"2/3 and thus

(3v3)" - (” Z %) € ZIV3).

Recall that
3\/§mz’
H Y
which is a purely imaginary number. By the definition of ¢j,,, p{,,, we have

Qon = 2iS(pon (7) (@0 — pYo)),
Pon = —2iS(pon () (z0 — pY0)P),
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where

n

i) =30 (") () P

h=0
and
-1 +/3Bi
=—F
It follows that
MOQén = MO . 2'&% (m(pon(’)/)) + Z%(pon('}/))) . <l‘0 + % _ 2y0Z

= i(220 + Y0) S (Pon (7)) Mo — iv/3yoR(pon (7)) Mo

and

Moply, = —Mp - 2 <<éﬁ<p0n<v>> +iS(pon(7))) - ( LYo Vi )

(1-9)

2
= (0 + 240)(Pon (7)) Mo + iV 320R (pon (7)) Mo-
Thus to show Myqy,, € Z, Mypj,, € Z, it suffices to show that

S(poa(7)) - (iMo) € Z, V3R(pou(7)) - (iMo) € Z.

We have
22nn - n+ 3\ (2n — R\ (1 4 y)" "
iMopon(Y) = (—1)""‘( 3) ( )W
V3 prt h n—nh 22n+
1 < on (3 (2n—h\ (HY)"(H + Hy)" "
~ 3 Z( 1) h( h 3) ) ol—h
h=0

i) (242

- (H + 3v3mi)" ",
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Notice that for h=0,1...,n

2n—h\ 1
(n—h)Zlh €z

and by (3.34)

(”Z %> (3v/3mi)" € Z[V3].

It follows that
i\/gMOPOn(V) € Z[\/g]

Since

n (_1)n—h n+ 1 2n—h L n—h—l -\ h+1
21711 . 3 o Z H (3v/3mi)"*
=0

h=0

we see that each term in the real part of iv/3Mypo, () is in Z and each term in the imaginary
part of iv/3Mypon () is of the form of an integer multiplied by /3. Therefore iMopon(Y)
can be written as

a

V3

+ bi,
where a,b € Z. 1t follows that

S(pon(7)) - (iMo) € Z,  V3R(pou(7)) - (iMy) € Z.

since 1My € R. This proves Myq),, € Z, Mopj,, € Z.

Similarly, we have

q/m = 2%(p1n(’y) (330 - PZ/o));
Pin = —2R(p1n(7) (20 — pY0)P),
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where

Since

and

n

pu) = S0 () () ) e

h=0

Im—h—1\ 1 .

Mg, = My - 2R ((%(pm(v)) +iS(p1n(7))) - (xo + % - \/zyoi»

= (220 + yo)R(p1n (7)) M1 + \/gyo%(pm(’y))]%

= (o + 240)R(p1n (7)) M1 — V320S (p1a (7)) M1,

it suffices to show that

We have

R(pin(V)Mi €Z,  V33(pin(7)) M, € Z.

n

nrrn n— n+l 2n —h 1 _
i =) (20

h=0

2n—h—1 1 .

_<n—h—1)22”h)7h(1+7) '

- + 1 2n—h\ 1
— _1n7h n 3

S () ()

o (20 ) o) e+ e

n—h—1)2"
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Using the same argument as for j = 0, we see that M;p,(y) can be written as
a+ bv/3i,

for some integers a,b. It then follows that

R(pin(7)) M € Z, V33 (p1n (7)) My € Z.

which implies that Myq},, € Z, Mip1, € Z.

Put
qjn = jQ;n7 Pjn = jp;’n7 ljn = Mjlﬁ“
for 7 = 0,1 and n > 1. Summarizing the discussion in this section, we obtain
Lemma 3.6. Forn > 1, put
Gon = (Pon (V) (o — pYo) — Pon(—7) (w0 — P?Jo))QQan/\/_Z
Pon = (=1pon(7) (20 = pyo) + ppon(—7) (0 — By0)) 27" H" /V/3i,
Gin = (P1n(7) (0 — py0) + Prn(—)(x0 — Pyo)) 2" H",
Pin = (=PP1n (V) (T0 — pyo) — ppP1n(—7)(T0 — ﬁyo))22”H”-

Then qon, Pon, G1n and p1, are rational integers satisfying the following relations:

qon? + Pon =lon,
qlne + Pin :l1n>

where

Lon(7)(0 = p) (w0 — pyo)2°" H"
- L ()0 = p)(wo — pyo)2°" H"
" JT—~ '

lOn -

To apply Lemma 2.5, we need the following condition and estimates.
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Lemma 3.7. Let pjy, qjn defined as in Lemma 3.6 for j = 0,1, we have

Pon  Yon
0,
‘ Pin qin 7£
for any n > 1.
Proof. By Lemma 2.4 and v # 0, we have
A =| B S e 0 (3.36)

pin(7)  Pin(—7)
Put A; = p;n(v)(xo — pyo) and B; = pjn(—7)(zo — pyo) for j = 0,1. Then

don = (AO - BO)M07 Pon = (_ﬁAO + pBO)MO
= (A1 + B)My  pin = —(pAy + pBi) M.

It follows that

Porn Gon
Pin Gin

_ (—=pAo + pBo) My (Ao — Bo) M
—(pAy + pB1)M; (A + By)M;

—pAy + pBy) (Ao — Bo)
= MoM;
0 ' (AL + pB1) (A1 + By)
(p—p)Aos (Ao — By)
= MM -
" (p—p)Ar (A + By)

| A —-B
= MOMl(p — p) ‘ A? BlO

Pon (V) (0 — pyo)  —Pon(—=7)(z0 — PY0)
‘%M@pwmum—m>mwmm—m>‘
pOn(’V) —pOn(—W)

= MoMy(p —p)|xg — 2
0 1(/) ,0)|o /)y0’ Pln('Y) pm(—’y)

£0.

Lemma 3.8. Suppose that |y| < 1/v/2. Forn>1,j=0,1,
|gjn| < 0P,
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where
1.67|z0 — pyol /1 + V2[5

Q_
V1=l

and

P = 4H|(1 + V).

Proof. From the proof of Lemma 3.5, we see that

@jn| < 2[pjn (V) (@0 — pyo) M;| = 2[pjn (V)] - 20 — pyol - |M;],

for j =0,1,n > 1. By the definition of M;, we have

|M;| < 2°"|H|".
By Lemma 2.1, we have, for j = 0,1,
Ljin ()
in\L) = )
p.] ( ) 31-'-.%'

where

1 J(1 n+i
/ Z(1+2z) 0y
'y

Liin(z) = i (22 — 1)+

(3.37)

(3.38)

(3.39)

Consider the curve T': {z € C: |22 — 1| = 1}. Tt consists of two closed curves. Let T'; be
the one enclosing the point 1. Notice that |z|> = |2?| < |22 — 1|+ 1 = 2 and V2 € T;.

Hence max.cr, |z| = v/2. Then for || < 1/4/2, we have

L. n — | —
‘ 7l ('CE)| 27_‘,7/ (22 _ 1)n+1

1 J 1 n+i
/ Z(1+xz) 4
Iy

< I
< — -max
2T zel

(14 zz)"ts
(22 _ 1)7L+1

_IDVEQ+ V)

27
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for j = 0,1, where |I';| denotes the length of T';.
Write z = a + bi. By the definition of I', we can obtain the equation of I'y on ab-plane:

(a® 4+ b%)* — 2(a® — b*) = 0, 0<a<vV2

We can find the length of I'; by an integral along the above curve. Numerical integration
by Maple gives

Ty | = 3.70814935 ... < 3.709. (3.41)
Notice that
W1+l =/1+a]>1— |z, (3.42)

for |z| < 1/+/2. Then combining (3.37), (3.38), (3.39), (3.40), (3.41), and (3.42), we obtain

|gjn| = 2|zo — pyol - [M;] - [pjn (V)]
3.709 - v2(1 + V2|3
21/1 — |y
1.67|xo — pyol /1 + V2|7
V31—l

< 2|5170 - Py0|22n|H‘n

(4811 +v2h)"

Lemma 3.9. Suppose that w > 4 and |y| < 1/+/2. Forn >1,j=0,1,

|| < IL7T,
where B
_ 4‘»’170 - Pyo|
91— [y[(1—[v]?)
and
_1-]P
| H||v[?
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Proof. By the definition of /;, from Lemma 3.6, we have

2| HJ"10 = pllzo — pwoll ()
VT |

for j = 0,1 and n > 1. By Lemma 3.2, we have

[Ljnl < (3.43)

1 1
——— << - <0,
wt2 w2 (wt2)u?

for w > 4. Thus

60— p| < (—% - 0) + (?) =1. (3.44)

By Lemma 2.3 and the definition of [}, we have

CEED M (T

where

1 2P
J=— | ——dz.
"7 omi Jp (22 = 1)t :

As a consequence of Lemma 2.2, J, > 0, since

2n+1

Z Jz" = x?)n-&-l

and the Taylor expansion at 0 of the right hand side of the above equation obviously has
non-negative coefficients. Notice that for h > 2n, we have

(")

(it

h+1
= il > 1.

1
h n 3

= o=

20



Thus |("%)

decreases as h increases. It follows that

n+ i -
@l = |("5 )| X el
2n+1—j
n+ % L e
=|(" )|t 2 ke
h=2n+1

- ( on ) T ey

for |z| < 1 by Lemma 2.2. By induction, we can have the following estimate:
1 n
ntg < (1 7
2n —9\4
n —i—% 2 41 !
2n )| 9 9\4) "’

("55)
1l
(3inssl)

since for n =1,

and for n > 2,

(2n+1)(2n +2)
(n+1+3)(-n+1)

2 3, 4,1
nmrents

n?+n—j

> 4.

Therefore, we obtain

[Ljn()] <

O >

1 n ) ‘x’2n+1

- . 3.45
(3) 1 249
Notice that for |y| < 1/v/2,

/1=y =1 == Y1 ]l (3.46)
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Then we combine (3.43), (3.44), (3.45) and (3.46). It follows that
o < 2100 Bl 4 (1), I
MET A 9\ e
_ 4lzo — pyol ‘ (‘HH’YP)H
91—l =) \1=DhP

_ 4|zo — pyol . (1— |’Y’2)_n
9Y/1—T[(1 = |42 \H|lv?
]

Lemma 3.10. Suppose that |H| > 54/m|?, |y| < 1/v/2 and w > 4. With the notations as
above, we have, for any integers p and q with ¢ > 0,

P 1
-S> —
‘ q‘>C’q)"
where
log (4| H|(1 2
Ny s |(1+2f|7|))
—Y
log (\HW)
and

~ 13.36]z0 — pyol {/1 + V21 [IH (1 + V2]])

- JIh

A—1
 nax 8|z — Py 1
91— 7|1 = [y

Proof. Recall that
3v/3mi

/7 = H °

Then by the assumption that |H| > 54|m|?, we have that

54|m|?
= <
|H|

(H+ 1) [y <2lH] - |y

o2



It follows that

1— |y 1—(|H|+1)y?
_ |7|2 -1 |+2)|7| >0.
[ H || | H ||
Then we can apply Lemma 2.5, together with Lemmas 3.5, 3.7, 3.8 and 3.9. We have that
for any integers p and ¢ with ¢ > 0,

D 1
0—=| > —,
‘ CJ‘ Cq*

where

log P
A=1
+10gL

, 1og (41711(1-+ v2n))
1 1—|y|?
08 \ THIH 2

C' = 20P max(21, 1)ls P/ 1s L

1.67|x0 — pyol v/ 1+ \/5‘7‘
=2 AH|(1+ V2]4))

_ A—1
2‘4‘$0—P3/0|
X ; 5 , 1
9v1 =1 =[]

13.36]0 — pyol /1 + V2l [ HI(1 + v2]1)

- VT

B A1
8|-T0—P?Jo’
X ; 5 , 1 .
91— [y[(1 = [v[*)

and

3.3 Upper bounds for the solutions
Lemma 3.11. Let e € (0,1) and let X be defined as in the last section. Suppose that w > 4

and
’H’ > 21+4/E32+2/6k2+2/6.
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Then we have

A< 2+e.

Proof. By the assumption on H and the definition of ~, it is easy to see that

_ 3V3m| _ 3v3k 1

vl = < <—=.
|H| [H] V2

Thus the conditions in Lemma 3.10 are satisfied. Then we have P, L, A defined as in Lemma
3.8, 3.9 and 3.10. With 0 < || < 1/v/2, we have

P =4]H|(1+ V2]4|) < 8|H], (3.47)
and
1— |y . |H] H]| |
- =(=hP) > > (3.48)
| H||v[? (HIA)? ~ 18Jm|> ~ 18k?
since v = _3\/gmi and |m| < k. From the assumption on H, it follows that
|\
18k2 B |H|E - 26+4 . 32€+2 . k25+2 _
8[H| 8- 18t .22 = g.1gefl. 22

Then combining (4.32) and (4.33), we have

H e+1
L > (ﬁ) > 8|H| > P.

Taking logarithms, we obtain
(e+1)log L > log P.

Therefore,

log P

A=1
+logL

<l+(e+1)=2+ce
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Lemma 3.12. With the same notation as before, suppose that (xg,yo), (z,y) are solutions
to (3.1) of type 1I. Let H be defined as in (3.16). Assume that as in Lemma 3.11 |H| is
sufficiently large so that A < 3. Then we have for w > 1000

(&)
Y=\B

where

and

oo 13.36]a0 — pyo| /1 + V2]V |[H|(1 + V2]1])

il IR

_ A—1
8|I0 - P@/0| 1
X 3 2 y .
91— [y|(1 = [v*)

Proof. Notice that if w > 4 and |H| is large enough as in Lemma 3.11, the assumptions
in Lemmas 3.3 and 3.10 can be easily satisfied. It then follows directly from these two
lemmas that if (z,y) is a solution to (3.1) then

1
<

T
=
— By?

7|
)

Cy? =

N
< ()

with B, C' defined as in the statement of the lemma.

which gives
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3.4 Proof of Theorem 3.1

Let k = 2t + 3s. It is obvious that

[F(0,1)] =s <k,
|F(1,1)] = 2t + 35 < k.

Then (0,1),(1,1) are the only solutions (x,y) to inequality (3.1) with y = 1 that satisfy
(3.5). We now suppose y > 2 in the rest of this chapter.

Lemma 3.13. If (z,y) is an integer solution to inequality (3.1) with k = 2t + 3s of type
I, then

y<w+2.

Proof. Recall that
f(z) =2* —wz? — (w+3)z — 1.
Then we have
f'(z) = 32% — 2wz — (w + 3).

Since

F(1) = —3w < 0,

we see that f'(x) < 0 on interval (—1/2,1] and hence f(z) decreases on (—1/2,1]. On the

other hand, we have
1 2w+ 3
— = >0
/ ( w + 2) (w+ 2)3 ’

1 4 2w* + 5w? — 6w? + 12w — 8
w+2 (w4 2)w?

0

wb
and

2w+ 3 < 2w* + bw? — 6w? + 12w — 8
(w+2)3 wS

)
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for w > 1. It follows that if (x,y) is of type I, then
f x > 2w+ 3 .
Y (w+ 2)3

; <§)‘ L @243y

Y (w+2)3

Then we have

k=2t+3s> |F(x,y)| = sy®

This gives
y <w+ 2.
Notice that ged(s,t) =1 and y € N. Thus y # w + 2. Then we obtain

y<w-+ 2.

]

Lemma 3.14. There is no integer solution (x,y) to (3.1) of type I, where in (3.1) k =
2t + 3s.

Proof. Suppose that (z,y) is a solution to (3.1) of type 1. By assumption, x/y # 0 since
y > 2 and ged(x,y) = 1. We then have

since otherwise

which is a contradiction. Put
h(y) = (—y* + (w+3)y” —wy — 1) — (2w + 3).

Since
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we have that h(y) > 0 on interval [2,w + 2). By Lemma 3.13, we have
y<w+ 2.
Thus, we see that if (x,y) is of type I, then
—* + (w+3)y* —wy — 1> 2w+ 3. (3.49)

Notice that (3.49) takes the equality sign only when y = 2. If y = 2, then by condition
(3.5), the only choice for x is 1. However, (1,2) is not a solution since |F(1,2)| = 6t + 19s.
Thus we can remove the equality sign in (3.49) and get

—3 + (w+ 3)y* —wy — 1> 2w + 3. (3.50)

From the proof of Lemma 3.13, we know that function f(x) is decreasing on interval
(—1/2,1]. By (3.50), we have

f(_l) _ — 3+ (w+3)y* —wy — 1 - 2w+ 3

Y y3 Y3
f(l) P Hyut+ @ +3y2 1) _2w+3
Y y3 y3

Therefore

if (z,y) is of type L. It follows that

k=2t+3s>|F(z,y) = sy’

f<£)‘ > 2t + 3s,
Y

which is a contradiction.

Lemma 3.15. If (x,y) is an integer solution to (3.1) of type II, then
t2

> —.

Y7 43
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Proof. By the definition of type II, if (x,y) is of this type, then

1 1 4

w+2+(w+2)w2'

w + 2

x
Y
Multiply the above inequality by (w + 2)sy. We have

4
—sy <z(w+2)s=z(t+2s) < —sy+ i;y
w

Since both —sy and z(t + 2s) are integers, it follows that

4sy
wr b
That is
w? 12
> — =
y 4s  4s3

[]

Lemma 3.16. With the assumption in Theorem 3.1, there are at most T integer solutions
to (3.1) of type I1.

Proof. Suppose that (z,y) is a non-trivial integer solution to (3.1) of type II. Then

%0 ¢ L L 4 (3.51)
Yo w42 w+2 (w+2uw?) '

Recall the definition of H:

H = (2t + 3s)xp + (3t + 18s)xyo — (3t — 9s)woys — (2t + 35)y;.
Put
g(x) = (2w + 3)z* + (3w + 18)z” — (3w — 9z — (2w + 3).
Then

g (z) = (6w + 9)z”° + (6w + 36)x — 3w + 9.
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Since

J(—1) = —3w— 18 < 0,
g'(0) = =3w+9 <0,

for w > 3, we have that g(z) is decreasing on the interval (—1,0). Then if = is in the
interval given by (3.51), then

(e ) <o <o ()

We have
1 2w* + 12w3 + 36w? + 54w + 27
g(———=) =- <0,
w+ 2 (w+2)3
1 4 2w’ + 12w® — 22w* + 51w? — 66w? 4+ 20w — 24
w+2 (w4 2)w? wS

It follows that

2wt + 12w + 36w? + 54w + 27

3 <g(z)|

(w+2)
_ 2w’ + 12w° — 22w* 4+ 51w? — 66w? + 20w — 24

wb

For w > 1000, we have

2wt + 12w3 + 36w? + 54w + 27 -

(w2 s

2w’ + 12w° — 22w* 4 51w? — 66w? + 20w — 24
wh

2w,

< 2.000012w.

Thus
2w < |g(z)] < 2.000012w.
By the definition of g(z) and H, together with (3.51), we obtain

2tys < |H| < 2.000012ty;. (3.52)
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By Lemma 3.15, we have that if (z,y) is a solution to (3.1) of type II then

t2
> —. 3.93

By the assumption of the theorem, we have that

t>1.2-100% (3.54)
where
21
X =50 for 7 > 5. (3.55)
Then we have
0<y< 2 (3.56)
X< o5 :
(3.54) implies that
s> (1.2 100) 5%t 5, (3.57)
From (3.53) and (3.57), we have
t? 1 1 \3
y> T ((1.2 : 10%@{@) > 24321 5x . (3.58)

The last inequality holds since the coefficient takes minimal value when y takes maximal
value 21/32. (3.58) is equivalent to

t < 24321 Facyiac < 5230 LyFrex, (3.59)

since

34x

9243213%2x > 24321% > 5230.

In particular, since (zg,yo) is a solution of type II, we have

3+x

t < 5230 1yt (3.60)
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From (3.52), together with (3.58), we have
[H] > 2ty

342\ 3
>0t <24321t e )
—92.943213 . R

247x

> 2810850

(3.61)
Put

2(3+ x)
= - 3.62
‘ 6 4+ 5x ( )

It is easy to see that e € (0,1). For w > 500,
k =2t 4+ 3s < 2.006t.
Then we have

21+4/632+2/Ek2+2/€ < 2—3 (4 .3. 2.006)2+2/6 t2+2/e

1247x  1247x

= 273.24.072734x ¢ 3+x

1247x
X

< 2.33-10°t 3+

(3.63)

The last inequality holds since % takes maximal value when y takes its maximal value
21/32. By (3.61) and (3.63), we see that the condition in Lemma 3.11 is satisfied and thus

|H| > 21+4/632+2/E]€2+2/€. (364)

Hence we can apply Lemma 3.11, which gives A < 2 4+ ¢ < 3. By Lemma 3.12, we have
that if (x,y) is a solution to (3.1) of type II then

o 7
el 3.65
v<(5) (3.65)
where
0.999¢
B —
k
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and
~ 13.36]z0 — pyol/1 + V2V H|(1+ v2[A])

- Y1- Nl

B A1
8|330—/)y0|
X - 5 , 1 .
9v1—[v[(1—[v}?)

We now estimate B and C' in the current case. Since by assumption, we have

w=t/s>12-10*™>12.10°.2% = 4.8 - 10°.

Thus

g 0999t _ 0999t _ 0.999
ko 2t+3s  2+3/w

Notice that (z,yo) is of type II. Then

> 0.499499. (3.66)

T c 1 1 . 4 c 1 0
Yo w+2 w+2  (w+2)w? 4.8-106" )"

2
T 1\? \/5
20 — pyol = o | — — p| < (—) +{-——=| =1,
Yo \ 2 2

2
_ T _ 1\? \/3
|20 — Pyl = w0 | — — B| < (—) +{5 ] =1
Yo \ 2 2

From condition (3.64) and k = 2t + 3s = s(2w + 3) > 2(2- 4.8 - 10° 4 3) > 107, it follows
) = 20m
|H|
- 3v/3k
]
3v/3k

< 91+4/€32+2/e.2+2/€

< —3\/5
25.3%4.(107)3

<3-107%,

We have
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Therefore,

13.36|a0 — pyol {/ 1+ V21| H|(1 + V2]7])

e

_ A—1
8|l’o—pyo‘
X ; 5 , 1
9y 1= 7|1 = 1[v[*)

1336y0\/1+\/_ 3-10-24|H|(1+v2-3-10724)

v1—3-10-2
< 8y0 ))\1
- max , 1
991 —3-10-24(1 — (3-10-24)2)

< 13.361 - 0.8889* 1| H |y,
< 10.5572|H |3,

since yo > 2 and A < 3. Thus (3.65) implies
y < (2114 H|yd) ™ . (3.67)
Recall the right hand side of (3.52),
|H| < 2.000012ty3.
Together with (3.60) and (3.62), we obtain
y < (21.14|H|y3)3%*
(21.14 - 2. 000012ty0y0)

42.2803 ;;X o) T
5230 o Yo

126+174x+59x2

B (3.68)

<

< (0.0080842) "5

The last inequality holds because 3£ is increasing in A € (0,3) and A < 2+¢ < 3. Assume

that there are 7 + 1 solutions (x¢, o), (1,v1), ..., (z+,y-) to (3.1) with condition (3.5).
Further assume that



Then by Lemmas 2.6 and 3.3, we have by induction

Y, > @) e 2
=(2) ((5) )

> ..

271
>(3)
=9 Yo -

Together with the above estimation for B, we get
Yy, > 0.2497495% "1y (3.69)

By Lemma 3.14, we know that (z,,y,) has to be type II as well. Then (3.68) applies to
y,. Together with (3.69) we have

2
65y 126:H174x459x

0.2497495% ~1y3" < (0.0080842) wx gy, TR

Notice that y = 21/27. Then 27 = 21/x. It follows that

2
n_y, 2 6ioy 126+174x+59x%

0.2497495% ~y,* < (0.0080842) 5x gy, CTROx

That is,
9] _ 126+17d4x459x? 645
Y 3(3+2x) < 0.2497495—21+X . (00080842)T (370)
Put
126 + 174 2
b—21— 6+ 174x + 59x .
3(3+2x)
Then
4= ~ 59x* +48x — 63

3(3+2x)

65



Since 5922 + 48z — 63 = 0 has two roots at —1.5173... and 0.7037.. ., we have ¢ > 0 for

x € (0,%] from (3.56). Therefore, (3.70) gives

1
Yo < <0.2497495—21+X : (0.0080842)“35*) ’

1 645
= exp (5 . (10g(0.2497495)(—21 + x) + log(0.0080842) 2 X))

—ex 3(3+2x)(19.5 — 9.4x)
Pl 63— 48y — 592

< exp(28.32)
<2-10%. (3.71)

The second last inequality holds since 3(3;3222&%55&2‘24"

On the other hand, from (3.53) and (3.54), we have
t2

> RS
Yo e

4
_ (12-10°)%6%2
= 4
_ (12-10°)%2°
= 4
—2.88-10".

) takes its maximal value at y = 21/32.

This is a contradiction to (3.71). Thus it follows that there are at most 7 solutions to (3.1)
of type II.

]

Combining Lemmas 3.14 and 3.16, we have that there are at most 7 integer solutions
(x,y) to (3.1) that satisfies (3.5) and y > 2. Then by (3.2), we conclude that for s > 2,t >
3-109s3+21/2" with 7 > 5, other than the trivial solutions

:l:{(()?l)?(17_1)7<_170)a(171>7(17_2>7(_271)7
(—1,t+2),(—t—2,t+1), (t+ 1, 1)} if s = 1,
+{(0,1),(1,-1),(-1,0),(1,1),(1,-2),(=2,1)} if s > 2,

there are at most 67 integer solutions to the Thue inequality

|s2® — ta®y — (t + 3s)ay® — sy®| < 2t + 3s.
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Chapter 4

Quartic Simple Form

Let 5,1 € N and
F(X,Y)= sxt — tady — 6sxy? + tay® + sy4

be an irreducible quartic form. F' is a simple form by the definition in Chapter 1 since
direct calculation implies

Flz —y,z+y) = —4F(z,y) (4.1)
and accordingly the map
z—1
D2 4.2
vism i (1.2

permutes the roots of F'(z, 1) transitively. In this chapter, we mainly focus on the inequal-
ity:

|F(X,Y)| = |sa* — ta*y — 6s2°y* + tay® + sy?| <k, (4.3)

where £ is a linear form in s and ¢. As discussed in Chapter 1, Wakabayashi [51] completely
solved (4.3) for s > 1,t > 70s?/? and k = 7s + 6t. We shall prove the following result:

Theorem 4.1. Let 7 be an integer with T > 2 and let s,t be positive integers such that
szt — tady — 652’y + tay® + syt (4.4)
is irreducible over Q. Suppose that s > 1 and t > 1200s>t*/3". Then other than the trivial
solutions
+{(1,0),(0,1), (1,1), (1, =1),
(1,2),(2,-1),(2,1), (1, =2)}
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there are at most 8T primitive integer solutions to the Thue inequality

|sxt — taty — 6s2%y? + tay® + sy| < Ts + 6t (4.5)

Since the case when s = 1 had been explicitly solved by Lettl, Peth$ and Voutier [22],
in the following proof we always assume s > 2. The proof is similar to the cubic case.

4.1 Elementary properties

In this section, we shall study some elementary properties of the underlying polynomial
F(z,y) = sz* — ta’y — 6s2?y* + tay® + sy
From (4.1), we can see that if (z,y) is a solution to (4.3), then any element in

+{(z,y),(x —y, v +y),(y,—2), (x +y,—v +y)} (4.6)

is a solution to the following inequality
|F(z,y)| < 4k. (4.7)
Notice that the map (4.2) permutes the intervals
[1/2,3),[—1/3,1/2),[—2,—1/3), (=00, —2) U [3, +00).

If there exists an integer solution (x,y) to (4.3), we can always choose one from the set of
solutions (4.6) to the inequality (4.7) that satisfies the following condition

< - <3, ged(z,y) =1, y > 0. (4.8)

DO | —
<8

Let
flz) = éF(:c,l) =t - <£) z? — 6% + (f) x+ 1.

S S

Put w =t/s. We have
f(z) = 2* —wa® — 62° + wx + 1. (4.9)
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Lemma 4.2. f(xz) = 0 has four real roots. Denote these zeros by 0_1,6y,01,05. Further,
if w > 3000, then the following holds:

2 2
-1 - <l <-1——
w — w
1

—— <Oy < ———
0 w41
2 11

l—-—<b<1—- +
w+1 w1 (w+1)(w?+w+5)

5
w< by < w4+ —
w

Proof. Since w =t/s > 0, we have
f(=3)f(=1)=—-112 - 9%6w < 0

f(=1)f(0)=—-4<0
f0)f(1) = =4 <0
f(1) = -4 & f(400) = +00
It follows that f has four real roots.

Further, if w > 3000, then we have 1 —5w? < 0 and w3 — 2w? — 8w —4 = w((w —1)? —
9) — 4 > 0. We have the following:

f(—l— 2 ):4(5w2—1)>0’f<_1_2):_4(w3—2w2—8w—4)<0
w

w—1 (w—1)4 w
1 Sw? — 1 1 w? —2w? — 8w —4
L) = 0, fl-———) = 0
f( w) w < ’f( w—l—l) (w+1)4 -
2 A(5w? — 1)
1- - 0
f( w+1) (w+ 1) -

(1 2 11
w+1 (w4 1)(w?+w+5)
1
= — 20" + 8w” + 144w® + 529w" + 2022w°
(o il F w5y (20 8w+ 1w 4 52007 4 20220
+5538w” 4 11021w* + 18736w* + 22176w” 4 14034w + 3479)

<0
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flw) =1—5w?* <0, f<w+g>

Then the second assertion follows.

21w* 4+ 225w? + 625
— 1 >

0

w

]

Suppose that (z,y) is an integer solution to (4.7) that satisfies (4.8). From the above
lemma, we see that x/y is bounded away from all roots of f except 6; for w large enough.
In the rest of the proof in chapter, let # = #;. We thus define the following interval that

contains this root:
2 2 11
I=(1- 1= 4.10
( w+1 w+1+(w+1)(w2+w+5)> (4.10)

and further we have the following defintion:

Definition For w > 4, we call (z,y) an integer solution to (4.7) of type I if (x,y) satisfies
(4.7) with ged(z,y) = 1,y > 4 and

e [0, 2 02, 11 5.

y 127 w+1 w+1l (w+1)(w+w+5) ")’
(x,y) an integer solution to (4.7) of type Il if (z,y) satisfies (4.7) with ged(z,y) =1,y > 4
and

Ter
y

Lemma 4.3. Suppose that (x,y) is a primitive solution to (4.7) of type II and w > 3000.
Then we have

gt 1
y| — By
where
~0.499¢
-
Proof. Put
o = |0 — =,
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for « = —1,0,1,2. By the definition of type II solutions and Lemma 4.2, we have, for
w > 3000,

T 2 2 11
—€e(1- 1— C (0.999,1
Y ( w+1’ w+1+(w+1)(w2+w+5)) ( D
and then
0_1 >1.999, 9y >0.999, 6y >w —1.
Since
o =) G4) G- G
Yy Yy Y Yy
and
\F(a:,y)] < 4k,
we have
) 2| _ 1Py
) sy*0_10002
4k
<
8y45_1(50(52
- 4k
sy41.999 - 0.999(w — 1)
- k
0.499ty*
B 1
(0.4}?915) g
for w > 2000.

4.2 Irrationality of the root of f

Suppose that (zo,y0) is an integer solution to (4.7) that satisfies (4.8). We'll derive an
irrationality measure for 6 in term of (z¢,yo). Let A denote the complex conjugate for any
complex number A.
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Lemma 4.4. The form F can be written as

F(x,y) = sz* — ta’y — 6s2y* + tay® + sy*
1

=5 (n(z — py)* + 7z — py)*)
where y
n=s-— Zi’ p=1

and 1 =+—1.

Proof. We only need to verify that F is equal to the real part of n(z — py)*. Direct
calculation gives

(x — iy)4 = (x4 — 6:1323/2 + y4) — (4x3y — 4xy3)i.

Then the real part of n(z — py)?* is

t
R(n(z = p)') = (@’ = 627y +¢") — 1 (42°y — day’)
= sxt — ta*y — 6s2%y® + tay® + syt

= F(x,y).
0

Recall from last section that 6 is a root of f(z) = F(x,1)/s. Then by Lemma 4.4, we
have

n(0 —i)* +m(0 +4)* = 0.
This gives

(O +9)!
- —G= (4.11)

33

On the other hand, since (zg, yo) is a solution to (4.7), we can put

F($ano) =m,
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for some fixed integer m with |m| < 4k. Then by Lemma 4.4 again,

1 , B 4
5 ((z0 = iyo)* +7(x0 + io)*) = m.

Thus, we can put
n(xo — iyo)* = m + Ai,

where

A= —(t/4)xé — 4sx8yg + (3t/2)x§y§ + 4sx0y3’ — (t/4)y§.

Hence . )
n(zo — iyo)? _ m+ Ai

ﬁ(Io + iy0)4 n m — Ai’
Together with (4.11), it follows that

=i (motiv)d Ai—m 1-7

where v = m/Ai. Take a 4th root on both sides of the above equation. We have

0+@"m0—2’y0 Vit
—i xo+iyy VI—7

(4.12)

(4.13)

(4.14)

where we choose the quartic roots so that their arguments lie in the interval (—7/6,7/6)

since from last section xo/yp is close to 6 and so the left side is close to 1.

Let I;,(z), pjn(z), 5 = 0,1, be defined as in Lemma 2.1. Then by applying Lemma 2.1

with p =4 and x =, for any n > 1, 7 = 0, 1, we have

Lin(Y) = pin(V) V147 = (=1 pjn(=7)v/1 =7,

i =S (L (R

po) =30 (T (3 e

h=0
2n—h-—1 1 .
_<n—h—1)22”h> P
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and . 1
1 2 (1 +yz)"ta
. SR O S A 4.1
I]n(f}/) /1" ( 1)n+1 dZ, ( 8)

271 22 —

for j = 0,1. Dividing both sides of (4.15) by /1 — v, we have

I]n(’y) =p; (’7) \/4]-+/7

Substituting (4.14), we get

— (=1 pjn(—).

Lin(v) (0 + i) (zo — iyo) . (—
V=7 =P iy i)~ YR

It follows that

(6 — i>(€01+_iy70)ljn(7) =0 (pjn(7)(x0 — iyo) — (—1)7pjn(—7) (0 + i%0))

+ (Pjn(7) (@0 — 10)7 + (1) pjn (=) (20 + iyo)i) -

Put, for n > 1,
Pon = —(Pon (V) (0 — i0) + Pon(—7) (To + iYo))
= i(pon(7) (%0 — 1Y0) — Pon(—7) (0 + iy0)) (4.19)
o, = i(0 — i) (zo + iyo)lon(V)
: =
and

Pin = i1(P1n(7) (w0 — iY0) — P1n(—7) (0 + i%0))

i = P1n(1) (@0 = i) + pin(=7)(z0 + i) (120
) R IG)

Then we have, forn > 1,5 =0,1,
0jn + Pjn = Lin. (4.21)

Since v is a purely imaginary number, it is easy to see from the definition of p;, and g;,
that

Djn, Gin € Q, for j=0,1,n > 1.
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Lemma 4.5. With p;,, ¢;, defined in (4.19) and (4.20) for j = 0,1, we have

Pin(7)  Pia(—7)

Pon  qon
0,
‘ Pin Qin ?é
for anyn > 1.
Proof. By Lemma 2.4, we have
a) =| 1m0} ) | (122)

Put A; = pjn(7)(z0 — iyo), B; = pjn(—7)(xo + tyo) for j = 0,1. Then by (4.19) and
(4.20), we have
Pon = — (Ao + Bo), pin = (A1 — B1),

gon = (Ao — Bo), qin = (A1 + By).
It follows that

Pon  qon
Pin Gin

—(Ag+ By) i(Ag — Bo) ‘
l(Al — Bl) (Al + Bl)
—2A0 Z(AO — Bo)

|

—9 _A(] —iBO
- ZAl Bl
- _9 AO _BO
- Al Bl

_ _2’ Pon(7) (w0 = i0)  —Pon(—7)(0 + iyo) '

Pin(7)(To — i)  Pin(—7) (0 + iY0)
= 9z pOn() _pOn( 7)
=290 | 0 )
—_2(5’:0"‘90) (7)

#0
by (4.22).
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Lemma 4.6. Suppose that |y| < 1/v/2. Forn>1, j =0,1,

|qjn| < pP",
where )
5 (1+v2h] )"
p=167\/a2+12 | ————
O 11—
and
P=1+V2].

Proof. By the definition of g;,, we have

|gjn| < 2|pjn(7)(x0 — iyo)] (4.23)
By Lemma 2.1,
pin(x) = %, (4.24)
where

1 i(1 nty
Lun() /F HAtaz)i
1

T omi o (22— 1)

To estimate I;1,,(z), let’s consider curve I': {z € C: |22 — 1| = 1}. It consists of two closed
curves. Let T'; be the one enclosing the point 1. Notice that |z]* < |22 — 1| +1 = 2 and
V2 € T'y. Hence max.er, |2| = v/2. Then for || < 1/4/2, we have

[ Ljin ()| =

1 / 2 (14 z2)"ta
— ————dxz
2wt Jp, (22— 1)nt!

1

< —| - max
2w zelr

(1 + zz)"ta
(22— 1)t

D2 (1 + V2|

2

(4.25)

where |I';| denotes the length of T';.
Write z = a + bi. By the definition of I', we can obtain the equation of I'; on ab-plane:

(a® +b*)? —2(a® — b*) = 0, 0<a<vV2
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We can find the length of I'y by an integral along the above curve. Numerical integration
gives the estimate

Ty | = 3.70814935 . .. < 3.709. (4.26)

Also, |[v/1 —z| = /]1 — x| > /1 — |z]. Together with (4.23), (4.24), (4.25), we get
(@] < 2J0 — igo[pjn ()]
2V + @DV (1L + V2t
B 21/1 — |y
_LerATRY VI
T n

(1+v2))".

Lemma 4.7. Suppose that |y| < 1/v/2. Forn>1, j =0,1,
|| < LL7T,

where

0.625V0% + 1\/23 + 3

[ —
YI=hla=hP)

4(1 — |2
;oA |27|)‘
bl

and

Proof. By the definition of [;,, we have that

16 — il|xo + iyol[ Ljn(7)]

L] =
ol Vi

(4.27)

By Lemma 2.2 and Lemma 2.3, we have

where



As a consequence of Lemma 2.2, J, > 0. Notice that for h > 2n,

increases. It follows that

n+ 1 =
@l < |("5F)] X helel

h=2n+1—j
n‘i_%) i e h
= 2|7 >l
( 2n h=2n+1

B n_*_% |x|—j ’x‘2n+1
o m (1 — |z|2)n+t
by Lemma 2.2. Moreover, one can show by induction that
1 n
nt g < 5 (1 )
2n —8\4
Therefore, together with (4.27), we get

8Tl \4) (

4(1 — |y[?

V1= =)

1 — |,Y|2)n+1
- 0.625v/02 + 14/22 + 2 ( |v)? "
J— ) .

(

n—&—i
h

)

decreases as h

Lemma 4.8. Let A, be the common denominator of pjn, q;n for n > 1. Then

A, < dA",
where d = 0.25, A = 128|A|.

Proof. From the definition of pj,, ¢;, and the fact xo,yo € Z, we see that A,, divides the
common denominator of the coefficients of p;,(y). Notice that the number of 2-factors in

h! is at most h — 1. Hence we have

4h2h—1(n+i) :4h2h—1<n+1/4)(n_1+1/4)"'(n_h+1+1/4)

h h!

_ 2h—1

n+1)(A(n—1)+ 1) (A —h+1)+1)

h!
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Suppose p is a prime such that p|h! with p # 2 and a is a positive integer such that p®|h!
but p®* 1 hl. First notice that p < h. Then consider the natural integer sequence modulo

p:
1,2,3,....,p—1,0,1,2, ... (4.28)

The exponent of p-factor in h!, a, depends on the number of times 0 appears in the first h
elements in the above sequence:

(1,2,...,h) mod p. (4.29)

In other words, a depends on how many complete residual sets (1,2,...,p — 1,0) (4.29)
contains mod p. Notice that (n —h+ 1,n—h+1,...,n) is a sequence of h consecutive
integers. We have that modulo p, it contains the same number of complete residual sets
as (4.29). Since ged(2,p) = 1, it follows that

An—h+1)+1,4n—h+2)+1,....,4n+1) modp (4.30)
contains the same number of complete residual sets (1,2,...,p—1,0) as well. This implies
that

h—1
p" | [[¢Am—5) +1).
§=0

Hence we have

ghoh=1 (n Z i) c7Z.

Also notice that for n > 1, (2:) has at least one 2-factor and

¢ 3t ¢
4A =4 (—ng — dswoyo + S oy + sToy — Zyé) €L

Then by the definition of p;,(v) in (4.16) and (4.17), we have
221214 (4 A)"pjn () € Z]i).
Therefore, by the definition of pj,, ¢;», we have
27122214 (4 A) p;, € Z, 27122214 (4A) g, € Z.

It follows that
A, < 0.25(128|Al)".
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Lemma 4.9. Suppose that |A| > 32m? + |m|. With the notation as above, we have, for
any integers p and q with ¢ > 0,

D 1
0—=| >—
‘ q‘ Cqt’
where
A=y los(128[A](1 + v2]1))
— —
log (32@4‘“‘&\2)
and

1+v2]]
C'=106.88y/22 + 2 [ ———1 ) |A|(1 +V2]y
\/ @8 o<1_M | Al( )
A—1
2 2 2
.(max{o.?)i%\/e +1\/x0+y0’1}> |
V1= =)

Proof. By assumption |A| > 32m? + |m|. Then we have

R C R R

A 128[A[p]E T 32 m?  |m]

Apply Lemma 2.5 on (4.21), with the conditions shown by Lemmas 4.5, 4.6, 4.7, 4.8. It
follows that

P 1
0——|>—
‘ q‘ Cq’
for any p,q € Z, q > 0, where
log(AP)
A=14—"—=
" log(L/A)

| log(128]4](1 + V21)

-1
e
log (32\Aﬂv\2>
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and

C = 2pdAP (max{2dl,1})*"

1
1+v2]y] )"
=2-1.67\/22 + 42 <ﬂ> -0.25 - 128| A|(1 + V2|y|)

1— 1|9
A—1
2.0.25-0.625V0% + 1+/22 + 12
.(max{ " \/ + \éx0+y0,1}>
V1= =7

1+v2 )"
— 106.88 /22 + 12 (1+——\f|7||7|> |A|(1+V2|y|)

A—1
3125602 + 1 2 2
- | max 034 Vot \/Io—i_yO,l .
V1= =)

0O
4.3 Upper bounds for the solutions
Lemma 4.10. Let € € (0,2). If
|A| > 128.1Y/¢ . 512,11/ ep2H2/e. (4.31)

then A < 2 + €.

Proof. By the assumption on A, we have

|A] > 128Y¢. 5128V 22/ 5 95(4k)% > 32m? + |m)

then the condition in Lemma 4.9 is satisfied. By the definition of =,

g = 2
Al
Ak
S _
Al
5 Ak
S 19811/ 5121111 /ej2i2e
1
< 128172 . 51292
=217
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Then we have P, L, A, X defined as in the previous lemmas. It follows that

AP = 128|A|(1 + V2|y]) < 128.1|4], (4.32)
and
L _1-]f
A 32/Aly
A4
= (1= raene
32(]Allv1)?
Al
1
Al
> (1 — |~|? ’—
= (1= P33 652
A
4.
= 5121k (433)

since v = & and |m| < 4k. From the assumption on A, it follows that
1A e+1
(512.1k2) _ |Al¢ - 128.1 - 512.1¢FLf2er2

= =1
128.1| A 128.1 - 512.1¢+1 - k242 = 128.1 - 512.1¢F1 . f2e+2

Then combining (4.32) and (4.33), we have

L e+1 A e+1
(5)" > ()7 s s - ar

Taking logarithms, we obtain

(e+1)log(L/A) > log(AP).
Therefore,

log(AP)

A= (/A

<l+(e+1)=2+ce
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Lemma 4.11. With the same notation as before, suppose that (xg,yo), (z,y) are solutions
to (4.7) of type II. Let A be defined as in (4.13). Assume that as in Lemma 4.10 |A| is
sufficiently large so that A < 4. Then we have for w > 2000,

(&)
yB )

where

and

1+ V2l
C'=106.88y/22 + 2 [ ——1 | |A|1++V2
A—1
312502 + 14/22 + 12
(o {pmorenER 1)
V1= (1 =)

Proof. Notice that if w > 4 and |A| is large enough as in Lemma 4.10, the assumptions in
Lemmas 4.3 and 4.9 can be easily satisfied. It then follows directly from these two lemmas
that if (x,y) is a solution to (4.7) then

which gives

o\ 7
v ()

with B, C' defined as in the statement of the lemma.
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4.4 Proof of Theorem 4.1

Let k =6t + 7s. For 1 <y < 3, the following pairs satisfy assumption (4.8):
(1,1),(2,1),(1,2),(3,2),(5,2),(2,3), (4, 3),(5,3),(7,3), (8, 3).
Substituting these integer pairs to (4.7), we see that only
(1,1),(2,1),(1,2)

are integer solutions to (4.7) with condition (4.8). Then by (4.1) we can get all the other
trivial solutions to (4.3) as stated in the theorem. In the following proof, we assume that
y >4
Lemma 4.12. Let (z,y) € Z* be a solution to (4.3) of type I. Then
v
Y 97
for w > 400.
Proof. Consider
1
f(x ):—F(:v 1) = 2* —wa® — 62 + wa + 1.

For w > 3000, from the shape of f(z), we see that if (z,y) is of type I, then

‘f(g)'zmm{’f(l w+1> ‘f< w2+1+(w+1>($21+w+5))'}'

Similar to that in the proof of Lemma 4.2,

f<1_i):4(5w2—1)>g

w+1 (w+ 1) w?

and

f(l_ 2 N 11 )
w+1  (w+1)(w?+w+5)

1 10 9 8 7 6
= T (e oyt 2w+ 8w L’ 4 520w’ + 2022w

+5538w” 4 11021w* + 18736w* + 22176w” + 14034w + 3479)
1

< -
'LU2
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Therefore, if (z,y) is of type I, then

1
(5) >

4(7s +6t) > [F(x,y)| = sy’ ‘f (g)

Then

Thus

1\
yt < 46w + T)w? < (5) w?,
for w > 400. That is,

<w
Y 9

Lemma 4.13. Let (z,y) € Z* be a solution to (4.3) of type II. Then

t2
> —F.
Y7 118
Proof. 1f (x,y) is of type II, then
2 x 2 11
-t Tl +
w+1 gy w+1

(w—+1)(w? +w+5)
Multiplying (4.34) by s(w + 1)y, we obtain

11ys
y(t+s) —2ys < z(t+s) <y(t+s)—2ys+ Y

Since both x(t + s) and y(t + s) — 2ys are integers, we have

11ys
— 7 >
w?+w+5
Thus
>w2—|—w—|—5 w?
Y 11s 1ls 1153
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Then the proof of Theorem 4.1 will be completed by the following two claims:

Claim I. There is no primitive solution (x,y) to (4.3) of type I with y > 4.

Proof. Suppose that (z,y) is a primitive solution to (4.3) of type I with y > 4. We then
divide the interval of interest [1/2,3) into two intervals

1/2,3) = [1/2,3/5] U (3/5,3).

For z/y € [1/2,3/5], from the shape of f(x) and Lemma 4.2, we have
=Gz dr ()1 ()
1 3 7 1
f(§> =5 167 1"

E
5) 125 625 4
for w > 8. Thus, for x/y € [1/2,3/5], we have

()

Then we treat the case when x/y € (3/5,3). Since ged(z,y) = 1 and y > 4, we have
x # y. Therefore,

Since

and

(4.35)

since otherwise,

a contradiction. We have

1 2y° + 3y° Ayt + 8y —dy—1 2
f<1+—):_<y+3y+y)W_y+8y y—1_ 2w _,

yt yt y
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for y > 4; and

s (1 B l) (2 =3+ y)w+ (4t + 8y — 4y + 1)
Yy y '
Put
h(y) = (2y° — 3y° + y)w + (—4y* +8y® — 4y + 1) — 25w.
Then

hy) = —4y* + (2w + 8)y® — 3wy® + (=4 + w)y + 1 — 25w.

The discriminant of A is
—269996w° + 4800w® — 6719808w™ + 256153600w® — 38396928w? + 1228800w + 16384,

which is negative, for w > 10. This means that A has 2 real roots and a pair of complex
conjugate roots. Since we have

h2)=-7-19w<0,  h(3)=—119+5w >0,

for w > 20 and

w 1 1
h(—):— 3_9 —w?+1 ,
5 4w 7w+2w+ >0

1. 1
h<%+1>:—1w3+§w2—23w+1<0,

for w > 10. Then, for w big enough, h has a real root between 2 and 3, another real root
between w/2 and w/2 4 1. From the shape of h, we conclude that if y € (3,w/2), then

h(y) > 0,
that is
(2y° — 3y + y)w + (—4y* +8y* — 4y + 1) — 25w > 0.

It follows that under this condition

1Y _ (2" =3y Ayt 8yt —dy+1) 2
f(l__>:(y B tyw+ (CAy' 48y —dy D) 2w

Yy y y

Notice that f(x) is a decreasing function over the interval (3/5, 3), since

f'(x) <0,  forallz € (3/5,3).

87



By Lemma 4.12, if (z,y) is of type I, then
y<w/2,
for w > 400. So if (x,y) is of type I and z/y € (3/5,3), then
1 25
G- () =) (420
Yy Yy Yy Yy
if x/y € (3/5,1 —1/y] and
1 25
G T R R
Yy Yy Yy Yy
if x/y € [1 +1/y,3). Combining (4.35), (4.36) and (4.37), we obtain
T 25w
10l
Y Y

if (x,y) is a primitive solution to (4.3) with y > 4. It follows that, for w > 30,
25
f <_) \ S L
Y )

which is a contradiction. This completes the proof of the claim.

25t > 4(6t + 7s) > |F(z,y)| = sy’

Claim II. There are at most 7 primitive solutions to (4.7) of type IL.

Proof. Recall that we've assumed that (xg,yo) is a non-trivial solution to (4.7) satisfying
condition (4.8). From Claim I, we know that (z, o) is a solution of type II and thus

To 2 2 N 11
Yo w4+l w+l (w+1)(w>+w+5))

By the assumption of the theorem, we have

w = — > 12005 > 1200 - 2 = 2400. (4.38)

» | =+
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We've also defined

t 3t t
A = — g — dsuiyo + Sa3ys + dstoys — 5.
Put 0
g(x):—%x‘l—élx + 5T —1—413—%

We have the following;:

1 1 7 3
g(0) = ——w <0, 9(5)—6—4w+2>0

3 119 15
g(—) —w—— >0, g(3) = —=Tw—-96 <0

, 1\ 11
g(—1)=—-2w—-8<0, 93 :§w—l—1

g'(g)zgw—23>0, gd2)=—-2w—-44<0

for w > 30. Then on the interval (1/2,3/2), the function g(x) is increasing as = increases
and g(z) > 0 for all z € (1/2,3/2). Obviously, for w > 2000,

7 P P 11 13
11— ,1— + Cc|=,=
yo w+ 1 w+1 (w4 1)(w?+w+5) 272

Thus we obtain

sYa 1—L <s = |A| < sypg (1 — 2 - 1
Yod w+1 b9 7% Y09 wH+1 (w+D(w?+w+5))"

(4.39)
Since
4 2
g (1 5 i 1) _— J(rl;iwl)4 15 cw > 0.998w (4.40)
and
2 11
I (1_ wrl (w+1)(w2+w+5))
4w+ 1)4(1; tw+5)t (40" + 16w™ + 144w’ 1 + 504w" 0 + 2000w
+ 5712w® + 13968w” + 30056w° + 49632w° + 68692w* + 71888w?
+37320w* — 617w — 5280)
=W (4.41)
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for w > 2000. Combining (4.39), (4.40) and (4.41), we get
0.998tys < |A| < ty;. (4.42)

By Lemma 4.13, if (z,y) is a solution of type II, then

t2
> . 4.43
V> (4.43)
Since
t > 1200s21X, (4.44)
where y = 4/3™ with 7 > 2, we have
f o\ T
+x
> — .
o= (1200)
Combining with (4.43), we obtain
t2 £\ TR 12007 R (445
R = St > 2+x | .
Y~ 11 \1200 11 )
The last inequality holds since by the definition of x, we have
4
0<x<- (4.46)

9

and % takes it minimal value when x takes its maximal value. Note that (4.45) is

equivalent to
24x

Yy T+2x 1 2x
t < (—) < 34851yt 447
3T y (4.47)

The last inequality holds since
2+x
5461+2x > 3485,

for 0 < x < 4/9. In particular, since (g, yo) is a solution of type II, we have

24x

t < 3485 1y X, (4.48)
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Then from the left side of (4.42), we have
|A| > 0.998ty,

142y \ 4
> 0.998¢ (546t217>

— 0.998 - 5464 Tox

64+9x

> 8.8 10" z5x (4.49)
Pt 442
e= X (4.50)
24Ty

Obviously, € € (0,2). Then we have for w > 2000,
12811/ . 512,11+ Vep22/e — 198 1Y€ . 512.11FV/<((6t + 75))?+%/¢
< 128.1Y¢. 512.11F1/< . 6.00352+%/ 42 +2/¢

6+9x 64+9x

2+7x 64+9x
= 128.1%2x - 512.1%+2x¢ - 6.0035 2+x ¢ 2+x

6+9x

< 128.1% -512.125 - 6.003511 ¢ Z+x
< 851100 7rx

Combining the above inequality with (4.49), we have
|A| > 128.1Y/¢ . 512,11 22/,

Then by Lemma 4.10, we get A < 2+ € < 4. By Lemma 4.11, we have an upper bound for
y if (z,y) is a solution to (4.7) of type II:

o
el 4.51
y < (B) , (4.51)
where
~0.499¢
-k
and

1+v2y\*
C = 10688, /22 + 2 (%ﬁ‘r‘) A(L+ VE))

A—1
2 2 2
_ (max{o.?ﬁ%\/@ +1\/mo+y0’1}> |
V1= =)
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We now estimate C' and B under the assumption of the theorem. By (4.38), we have

O 499t 0.499¢ 0.499
k 6t+7s 64 7/w

> 0.08312. (4.52)

Since (xg,yo) is a type 11 solution,

0,2% € I (0.999,1).

Yo
Then we have
V2 +1 <2,
\/370+yo_yo\/ +1<\/_y,
| =

]A| = 128, 11/2 512 13/2);3
4

< =4-107,
= 128.11/2 . 512.13/2(2(6 - 2400 + 7))2

It follows that
1+v20y\*
C' = 106.884/ 22 + 12 (1_—\@'7’) |A|(1+ V2]))

A—1
312502 + 1y/22 + 2
N s 0345\/ + \/x0+y0’1
V1I=P[T=[P)

1
1 2.4-1071\"
<106.88\/§y0< V2 ) |A|(1+v2-4-1071)

1—4-10-1

. 0.3125v/2v/ 2y, 1 o
VNV 11081 (4. 10-14)2)

< 151.2y0| A| - (0.6251y5)
< 151.2- 0.6251| Ay
< 94.52| Al
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Together with (4.52), (4.42), (4.48), (4.50) and (4.51), we have

< (S)” )
(o)

0.08312
< (11372t )=

- (11372 o +4+/\) =
< 0.

A

3485
20492x+95x2

3264 12>< Yo 12x(1+2x) )

(4.53)

Assume that there are 7 + 1 solutions (zo,%0), (1,%1),-- -, (z+,y;) to (4.7) of type IL

Further assume that
Yo <y <...<y,

Then by Lemmas 4.3 and 2.6, together with (4.52), we have

yr > 0.04156y° , > ... > 0.041561+3+~--+3Hy37 = 0.04156 "5 42" (4.54)

Combining (4.53), (4.54) and noting 3™ = 2, we get

204+92x 4952

0.04156%90% < 0.3264 1o y012x(17+2x)

Simplify this inequality and we can get

4 204+92x+95x 2

Y, 0 < 0.04156~ 7 - 0.3264 7%,

Put
20 4+ 92y +95x* 284 4x — 95x°

O AT T oy T 120+ 2y

Since 28 + 4z — 9522 = 0 has two roots at —0.52225 ... and 0.56435. . .,

93
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we have that, for



x € (0,4/9), ¢ > 0. Thus (4.55) implies

1
Yo < <0.04156*4’T" ~o.3264”i¥2) ¢

— exp @ ((—4_7)‘) log(0.04156) + (7X1; 2) log(0.3264)>)

oy (41 = 26901 +20)
X
P 28 + 4y — 952

< exp(10.7)
< 4.5-10% (4.56)

On the other hand, from (4.44) and (4.43), we have

2 12002(s2X)2 12002 - 2
> >

W EZ a2 2610 (4.57)

This contradicts (4.56). It then follows that there are at most 7 solutions to (4.7) of type
II.

]
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Chapter 5

Sextic Simple Form

In this chapter, we’ll study the following inequality

|s2® — 2ta®y — (5t 4 155)zy?
— 2052”4 5tay* + (2t + 65)zy’ + sy°| < k

where s, t are integers and k = k(t, s) is linear in ¢ and s. Let

F(x,y) = sa® — 2ta’y — (5t + 15s)a’y?

— 20s2%y® 4 Sty + (2t + 65)ay® + s°.

We have that F'is a simple form since F is irreducible over QQ and
Fz —y,x+2y) = —27F(z,y)
and the map

z—1
z4+2

(5.2)

(5.3)

permutes the roots of F(z,1) transitively. As discussed in the first chapter, Wakabayashi
[51] completely solved (5.1) for s > 1,¢ > 97.35%/19 and k = 120t + 323s. For the same F,

we’ll prove the following result:

Theorem 5.1. Let s,t be positive integers such that

sx® — 2ta’y — (5t + 15s)x'y”
— 20s2%? + 5tay* + (2t + 65)zy” + s1°
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is irreducible over Q. Suppose that s > 1 and t > 200s'2/7t1/5" with v > 1. Then other
than the trivial solutions

£{(0,1),(1,0), (1,1),(=1,2),(=1,1), (=2,1),
(2,1),(=1,3),(=3,2),(1,2),(=2,3), (=3, 1)}
there are at most 127 integer solutions to the Thue inequality
|s2® — 2ta®y — (5t + 15s)'y?
— 20s2®y® + Staty* + (2t + 65)xy° + sy°| < 120t + 323s. (5.4)

Since the case when s = 1 has been explicitly solved by Lettl, Pethé and Voutier, in
the following proof we always assume s > 2.

5.1 Elementary properties

From the relation (5.2), it is easy to see that if (x,y) is a solution to (5.1), then any element
in

H(@,y),(z -y, 2+ 2y), (—y, 2 +y),
(—2—2y,22+y), (—x —y,2), (22 -y, —y)} (5.5)
is a solution to the following inequality:
|F(z,y)| < 27k, (5.6)
since
F(z —y,z+2y) = =2TF(z,y),
F(—y,x+y) = F(z,y),
F(—x —2y,2x+y) = —27F(x,y),
(=2 —y,2) = F(z,y),
F(—2z —y,x —y) = —27F(x,y).

!

Notice that the map (5.3) permutes the intervals

- (53] (53] (3]



If there exists an integer solution (z,y) to (5.1), we can always choose it from the above
set of solutions (5.5) of the inequality (5.6) to satisfy the following condition:

< — <4, ged(z,y) = 1, y > 0. (5.7)

N —
< |8

In the following proof, we’ll consider integer solutions (z,y) to (5.6) that satisfy (5.7). Let

f@) =s"F(z,1)
= 2% — 2wa® — (5w + 15)x* — 202° + Swr? + (2w + 6)x + 1,
where w = t/s. Then we have

Lemma 5.2. For w > 6, f has siz real roots 0_s,0_1,0_y/9,00,01,02, that satisfy the
following:

3 9 3 4
) B LY ) S i
2w+8w2 2 2w+3w2’
1 3 1 11
- — <
5w | 502 ! 2w T 16w
1 3 L, .1 3 9
2 8w  2w? VT T2 8w ! 16w?’
1 7 (P S
w ' 8w? w3 0 2 Sw?’
0 <0, <1 0 + 1
Aw+9 dw+9 " (4w + 9)w?’
5 10 5 35
2 — 4+ — <l < 2 -+ —.
w5+ o < w S+ o

Proof. For w > 6, direct computations give

3.9 27
f <—2 abws 8w2) = Seiiiat (425984w' + 3072000

— 2064384w® — 1050624w” + 3013632w°
+ 357696w° — 1866240w* + 431568w?
+314928w? — 157464w + 19683) > 0,
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(o
e

2w

(1t

3

1

2w

4

ﬁ) T 16656w!'?
+ 72900w” + 11524032w® 4+ 1921752w"
—21034161w® + 1866672w® + 14713920w*
— 5412864w® — 2617344w? 4 1769472w

—262144) < 0,

(174960w'" — 1259712w"

3 1 11 10
ﬁ) = ~ 1000000012 (0000w + 750000w

— 5012500w° — 2162500w® + 8287500w”
—1950625w® — 2155500w° + 2254500w*
— 1248480w?> — 19440w? + 233280w

—46656) < 0,
L 1 2097152w't — 5242880w™
67 ) = Ter7raieu0n ¢ v v

+ 96665600w” + 26279936w® — 182484992w"
+ 52977664w° + 48792832w° — 55601920w*
+ 37438368w® — 1405536w? — 7730448w
+1771561) > 0,

1
* 2w2) 26214412

* 16w?

(18432w'" + 20736w"°

— 656640w° + 544608w® — 98168w”
— 345351w® + 558648w”® — 241680w*
+ 41216w® + 9984w? — 18432w +4096) > 0,

9

27
) = oot (16384w'’ + 1720320w°

— 1529856w® + 331776w” + 931392w°
— 1850688w° + 874800w* — 163296w?
—26244w” + 78732w — 19683) < 0,
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i

1 7 1

1
= — ) = (29491200 — 131 o
f( + ) STl (204912w 314816w

w3
+ 5390336w* — 10680320w" + 17890304
— 24673472w' + 24963968w'® — 19690128w°
+ 10144400w® + 405928w™ — 8986449w°
+ 11809616w® — 9833408w? + 6952960w*
—3796992w” + 1376256w — 262144) < 0,

17 1 10 o
f (—% + @> = SeoriinEE (2293760 + 1576960w
— 3096576w® + 6092800w” — 5766144w°

+ 3579072w® — 1348480w?* — 707952w?
+576240w* — 403368w + 117649) > 0,

6 27
f ( o 9) (4w 1 9]0 (8960w* + 53760w

+118944w* + 114912w + 40851) > 0,

6 14
dwto (4w—|—9)w2> T (dw+9)5w?
+ 7916832w* 4 24919776w"® + 47487663w"?
+ 81370548w™ + 131743472w'° + 153994260w°
+ 152929980w® + 163322880w” 4 110802720w°
+ 53590320w® + 45791872w* — 3226944w*

—9680832 x w* — 7529536) < 0,

(16128w'® 4 1064448w"°

2 3w/ 46656wS
— 20080224w® — 123070752w” — 360032661 w°
— 696642120w° — 951030000w* — 937440000w>
— 645600000w? — 288000000w
—64000000) < 0,

5 10 1
f <2w +-+ —) = ——— (1555200w"’ + 1866240w’
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5 35
2 T
/ < wrgT 8w) 2621 1t |
+ 1628110848w™ + 4447576064w" + 8882657280w”
+ 13194720000w* + 14652960000w> + 11764900000w>

+6302625000w + 1838265625) > 0.

550502400 + 395902976w®

Then the lemma follows.

[]

Suppose (z,y) is an integer solution to (5.6) that satisfies (5.7). From Lemma 5.2, we
can see that § is bounded away from all roots of f except 6;, for w > 6. In the following
proof, we let # = 6. Since this root is our focus, we define the interval

6 6 14
I=(1- 11— . 2.8
( qw+9’ 4w+9+(4w+9)w2) (5:8)

and further we have the following defintion:

Definition We call (z,y) an integer solution to (5.6) of type I if ged(x,y) =1,y > 4 and
z el
Yy

(z,y) is of type I if ged(z,y) = 1,y > 4 and

R (A R Y PO R S
Y 2’ 4w +9 dw+9 (4w +99w?’
Lemma 5.3. Let (z,y) be an integer solution to (5.6) of type 1. For w > 300, we have

=

< — (5.9)

where
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Proof. From Lemma 5.2, we have for w > 6

1
0_o < =2, 01 < —1, 9—1/2 < _57
)
(90<0, 92w>2w—|—§
For w > 300,
x 6 6 14
—el=(1- 1— C (0.995,1).
y - ( dw+ 9 4w—|—9+(4w+9)w2) ( )

We then have

‘f —0_, > 1.495,
y

> 2.995, ‘f —0_,
y

> 1.995, ‘f — 015
y

z—eg > 2w,

> 0.995, ‘f —0,,
y

and hence

> 17.77Tw.

;o)

On the other hand, (z,y) satisfies
|F(z,y)| < 27k

This is equivalent to

< 27k, (5.10)

(o)

27k 1

< .
= 17.77swyS  (0.65t/k)y3

It then follows that
T

Y
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5.2 Irrationality of the root of f

Suppose that (zo,yo) is an integer solution to (5.6) that satisfies (5.7). Similar to the
previous two chapters, we’ll obtain an irrationality measure of 6 in terms of (xg, o).

Lemma 5.4. The form F can be rewritten as
F(x,y) = sa® — 2ta’y — (5t + 15s)zy?
— 2052y + 5ta’y* + (2t + 65)xy° + sy°

1
=3 (n(z — py)°® + 7z — py)°)
where
(2t + 35)/3i —1+/3i
=s———", p=—
9 2
and 1 =+/—1.

Proof. By direct calculation, we have

. 13\
(x—py)® = (x—Ty>

15 15
= (a;6 + 3%y — ?x4y2 — 202%y® — ?w2y4 + 3wy® + yG)

3vV3
\/Q_xy (23:4 + 523y — bay® — 2y4) 1.

We need only to verify that the real part of n(z — py)°® is equal to F(x,y). That is,

1 _ _
5 (= py)° + 7z = y)°)
15 15
=5 (xﬁ + 32%y — 3x4y2 — 2023 — Ex2y4 + 3xy® + yG)
2t +3s)v3 [ 3v3
( +95)\/_ ( \/2_az'y (20% + 5ay — Bay? — 2y4)>

=s2% — 2ta®y — (5t + 158)z*y* — 20523y + Sty
+ (2t + 65)zy° + sy°
=F(z,y).
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Recall from last section that 6 is a root of f(x) = F(x,1)/s. Then by Lemma 5.4, we

have
(0 —p)° +7(0 —p)° = 0.
This gives
n_ (0-p"°
no (B-p°

On the other hand, since (xq,yo) is a solution to (5.6), we can then put
F(.ﬁKo, yO) =m,

for some integer m with |m| < 27k. Again by Lemma 5.4, we have

1

2 (n(zo — pyo)® + (w0 — By0)°) = m.

Then we can write
n(zo — pyo)® = m + Ai

with

where

H = (2t + 3s)zf + (6t + 365)xdyo + (455 — 15t)xqyg — (60s + 40t)xdys
— (90s + 15t)x2y; + (6t — 185)zoys + (2t + 35)ys € Z.
Since A € R, we have
(o = pyo)® _ m+ Ai
n(xo —pyo)®  m— Ai’
Combining (5.12) and (5.18), we have

(0 —5)°(x0 — pyo)® _ m + Ai
(0 = p)S(zo — pyo)®  m— Ai’

Simplify this equation and write

_m_3\/§mi
TT AT T H

It follows that —\6 6
(0 —P)"(x0o — pyo)® _ 147
(0 —p)%(xo — Pyo)® 1 —1v
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Taking sixth roots on both sides, we obtain

(6 —P)(xo — pyo) _ V1+ " (5.22)

(0 = p)(xo—Pyo)  VI—7

where we choose the 6th roots so that their arguments lie in the interval (—7/6,7/6) since
from last section xq/yo is close to 6 and so the left side is close to 1.

Now we can apply Lemma 2.1 from Chapter 2 with g = 6 and x = ~. It follows that,
for any integer n > 1, we have relations

Ion(7) = pon (V) V1 + 7 — pon(=7) v/ 1 — 7 (5.23)
and
Lin(7) = pa(MV1+ 7+ pa(=71) V1 -7, (5.24)
where 1 ) .
. nenfm+ 3\ [(2n —h\ Y (1+~y)""
pou(7) =D (1) h( h 6) (n 4 ) (Q%T)h (5.25)
h=0
and
u o (n+ L on —h 1
i -5 1) (21
h=0
2n—h—1 1 B
_(n—h—1>w>7h(l+7)nh (5.26)
and A 1
1 2 (14 yz)"s
50) = g [ S (5.27)

for 7 = 0,1. Dividing both sides of (5.23) and (5.24) by 1 —~ and then substituting
(5.22) and multiplying both sides by (6 — p)(zo — pyo), we obtain
Gonf + Pon = lon (5.28)
with
Gon = Pon(7) (X0 — pY0) — Pon(—7) (0 — DY),

Pon = —PPon (V) (0 — pyo) + ppon(—7)(xo — PYo),

ro_ Ton(7)(0 — p) (20 — Pyo)
Oon — 6T — ~
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and

@10 + 11, =1y, (5.29)
with
41 = P1a(Y) (@0 — pYo) + P1a(—7)(To — PYo),
Pin = =012 (V) (@0 — pYo) — pP1n(—7) (0 — PYo),
i — D)0 = p) (o — Pyo)
i VI—7 '
Put , \/_
2 /30 if §j =0,
Mf:{2%H/ if j=1. (5.30)

Then we have the following:

Lemma 5.5. With the above notation, forn >1, 7 =0,1, we have

M;q;, € Z,  M;p), € Z.

Proof. First we have, for all integers n,h with n >1,1 < h <n,

1
o (nZ 6) €L (5.31)
where [%] denotes the greatest integer that is less than or equal to % To show this, note
that
2h—1 _ o[2] e A (5] . ah (n+3) .. (n=h+1)+1)
h i
:2my3@.®n+wuiﬂn—h+n+1x

The number of 2-factors in h! is at most
h h = h
|:§:| + [?} +...<Z§:h.
The number of 3-factors in h! is at most

h h “ h h
[§]+|:§:|+<;3—J—§
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Suppose p is a prime such that p|h! with p # 2,3 and «a is a positive integer such that p®|h!
but p®* 1 hl. First notice that p < h. Then consider the natural integer sequence modulo

p:
1,2,3,...,p—1,0,1,2,... (5.32)

The exponent a of p-factor in A! depends on the number of times 0 appears in the first h
elements in the above sequence:

(1,2,...,h) mod p. (5.33)

In other words, a depends on how many complete residual sets (1,2,...,p — 1,0) (5.33)
contains mod p. Notice that (n —h+ 1,n—h+1,...,n) is a sequence of h consecutive
integers. We have that modulo p, it contain the same number of complete residual sets as
(5.33). Since ged(6,p) = 1, it follows that

6(n—h+1)+1,6(n—h+2)+1,...,6n+1) modp (5.34)
contains the same number of complete residual sets (1,2,...,p—1,0) as well. This implies
that

h—1
p* [ []6(n—j)+1)
§=0

Therefore, (5.31) holds. This implies that

ont(h=1) . (3,/3) . ("Z%) e Z[V3, (5.35)

since if h is even, then (3v/3)" = 3P"2 and thus

o) L (3V/3)" (”Z%> € Z;

and if h is odd, then (3v/3)" = 3B"/2/3 and thus
on+(h=1) (3\/_) < N ) c Z[\/g]
Recall that

3v/3mi
H )

’y:
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which is a purely imaginary number. By the definition of ¢p,,, pj,,, we have

Qon = 213(pon () (@0 — p0)),
Pon = —2i3(Pon (1) (Zo — pYo)P),

where
Ny qyeen (nE) (20— A
pon(7) = ) _(-1) < h3)(n_h B
h=0
and
—1+V3i
P=—"

It follows that

Moy, = Mo - 21 | (R(pon (7)) +iS(pon(7))) - <xo + 8 V3o Z))

= i(220 + Y0) S (pon (7)) Mo — iV3yoR (pon (7)) My

and

Mopg, = —M - 2i3 <(%(p0n(7>> + i3 (pon(7))) - <SC0 + &

= i + 20)S(Pon (7)) Mo + iV320R (pon (7)) Mo.
Thus to show Myqy,, € Z, Mypj,, € Z, it suffices to show that
S(pon(7)) - (iMo) € Z,  V3R(pon (7)) - (iMo) € Z.
We have

h J\n—h) 2mti-h

g & () (n + %) <2n - h) Y14yt
0

n

- g(-U”hTﬂhl) (n ;: %> (2:__:) (HY)"(H + Hy)"™"
g (i) (220
(f (H + 3v/3mi)"".

107



By (5.35)
(n—}ll- g) L on+(h=1) | (3\/§mi)h € Z[\/§]

It follows that

iV3Mopon(7) € Z[V3].

Since

n

VB (2) = Y- (-1t ("

n—h
X Z anhfl (3\/§mi)h+l,

=0

we see that each term in the real part of i\/gMngH(’y) is in Z and each term in the imaginary
part of iv/3Mgpo,(7y) is of the form of an integer multiplied by /3. Therefore, i Mopon ()
can be written as

a

V3

+ bi,
where a,b € Z. It follows that
S(pon(7) - (iMo) €Z,  V3R(pon(7)) - (iMo) € Z,

since M, € R. This proves Myqy,, € Z, Mopy,, € Z.

Similarly, we have

G = 2R(p1n(7) (20 — PY0)),
Pin = —2R(p1n(7) (20 — pY0)P),

po) =30 (") (37 e

h=0
2n—h-—1 1 e
_<n—h—1)22”h>7h(1 T
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Since

MM@ZAL-%?Q%@MWD+¢ﬁmAwD-<m+99—vam0)

= (220 + Y0)R(P1a (7)) M1 + V3yoS(p1a (7)) M1

and

1 V3
T
= (0 + 20)R(p1a (7)) M1 — V320S (1 (7)) M1,

it suffices to show that

‘SR(pln(Fy))Ml € Za ﬁg(pln(V))Ml S Z.
We have

I - won M+ % 2n —h 1
- (1) (20

h=0
2n—h-—-1 1 e
_<n—h—1)22”h>7h<1+7) h
- +1 2n — h
_ _q)n—h nT3g ont(h—1)
e () (G)
2n —h —1 _
< +1 2n—h
— —1)y»"h. 2n+(h71) nTg
hO( ) (h n—h
2n —h —1 _
(70T sy

Using the same argument as for j = 0, we see that M;p;,(7y) can be written as

a+ bV/3i,
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for some integer a,b. It then follows that

R(pin(v)) M € Z, V3S(pin(7)) M, € Z,

which implies that Myq}, € Z, Mypy, € Z.

Put
qjin = jq]n7 Pjn = jp;'n7 ljn = Mjljn7 (536)

for 7 = 0,1 and n > 1. Summarizing the discussion in this section, we obtain:

Lemma 5.6. Forn > 1, put

Gon = (Pon(7)(Zo — pYo) — Pon(—7) (0 — /)yo))zann/\/_l

Pon = (=PPon(7) (@0 — pyo) + pPon(—7) (w0 — Pyo))2°"H" /V/3i,
G1n = (P1n(7) (@0 — pYo) + P1n(—7)(z0 — Pyo))2*" H™,

Pin = (PP (V) (20 = pyo) — pP1n(—7) (0 — Py0))2°" H™.

Then qon, Pon, Q1n and pr, are rational integers satisfying the following relations:

qon? + Porn =lon,
qlne + Pin :l1n>

where

o, = Lon(7)(0 — p) (0 — Pyo)2°"H"

&1 — ’y\/gi ’

= Lm0 = p) (o — Pyo)2™"H"
6/1 _ ,-y

To apply Lemma 2.5, we need the following condition and estimates.

Lemma 5.7. Let pj,, qjn be defined as in Lemma 5.6 for j = 0,1. We have

’ Pon  qon 7& 0

Pin in

for anyn > 1.
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Proof. By Lemma 2.4 and v # 0, we have

a0 =| ) i) | = w20 3

Put A; = p;n(v)(o — pyo) and B;j = pjn(—7)(xo — pyo) for j = 0,1. Then
qon = (Ao — Bo)My, pon = (—pAo + pBo) My
= (A1 + B1)My  pi, = —(pA1 + pB1) M.
It follows that

—(pA1 + pB1)M; (A1 + By)M;
(=pAo + pBo) (Ao — By)
—(pAL+ pB1) (AL + By)
(p—p)Ao (Ao — Bo)
(P - ﬁ)Al (Al + Bl)

.| Ay —B
= MoM(p —p) ’ A(l] BIO

Pon(7) (o — pyo)  —Pon(—7) (w0 — PYo)
= MoMi(p = 7) ’ pon (V) (o — pyo)  Pon(—7)(T0 — PYo) ‘
pOn(fV) _pOn(_fY)
pln(’y) pln(_’Y)

Pon  qon
Pin 4in

_ ‘ (=pAo + pBo) My (Ao — Bo) Mo

= MyM,

= MoM,

= MoMi(p — p)|zo — pyo*

£0.

Lemma 5.8. Suppose that |y| < 1/v/2. Forn>1,j=0,1,

|@jn| < oP",
where
1.67|z0 — pyoly/1+ V2/7]
0= )
V1=
and

P = 8|H|(1+V2[5]).
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Proof. From the proof of Lemma 5.5, we see that

@jn| < 2[pjn (V) (w0 — pyo) M;| = 2[pjn (V)] - 20 — pyol - |M;], (5.38)

for j =0,1,n > 1. By the definition of M;, we have

|M;| < 2% HI|". (5.39)
By Lemma 2.1, we have, for j = 0,1,
Ljin(7)
A7’l x - ] 540
pinle) = (540)

where

1 2 (1 + z2)"ts
Ljn(x) = o /F 1 Wdz

Consider the curve I': {z € C: |22 — 1| = 1}. It consists of two closed curves. Let 'y be

the one enclosing the point 1. Notice that |z|> = [2?] < [¢2 = 1|+ 1 = 2 and V2 € T,.
Hence max.cr, |2| = v/2. Then, for |z| < 1/v/2, we have

[ Ljin ()] =

1 / 2(1 +xz)”+%d
— —_— Z
2wt Jp, (22— 1)nt!

Ty

< —| - max
2T zely

2 (1 + z2)"ts
(22 _ 1)n+1

DV 4 V2]

2

(5.41)

for 7 = 0,1, where |I';| denotes the length of I';.
Write z = a + bi. By the definition of I', we can obtain the equation of I'; on ab-plane:

(a® +b*)? — 2(a® — b*) = 0, 0<a<vV2

We can find the length of I'; by an integral along the above curve. Numerical integration
gives

;| = 3.70814935 . .. < 3.709. (5.42)
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Notice that

Vit =1 +a] > V1|, (5.43)
for |z| < 1/4/2. Then combining (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43), we obtain

|@jn| = 2|20 — pyol - [ Mj| - |pjn(7)]
3.709 - V2(1 + V2| |) e

< 2[zg — pyol2°"[H|"

2my/1 =l
1.67|20 — pyolv/1 + V2|7 n
6 (815101 + V2]
1=y
]
Lemma 5.9. Suppose that w > 4 and |y| < 1/+/2. Forn >1,j=0,1,
\in| <IL7T,
where B
_ 4|z — pyo|
IV =PIl =1v?)
and
_1-]P
[H||y[?
Proof. By the definition of [}, from Lemma 5.6, we have
250 |0 — — Yol Lin
] < [ H["|0 = pllzo — Pyol|Ljn(7)] (5.44)

VT |

for j =0,1 and n > 1. By Lemma 5.2, we have

<f<1-— 6 + 2
4w +9 dw+9 (4w + 9)w?

<1,
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for w > 6. Thus

where

1 2"
A R — P
" om Jo (2 — 1)

As a consequence of Lemma 2.2, .J, > 0, since

2n+1

%) - "
Z S’ = (1 — 22+
h=0

(5.45)

and the Taylor expansion at 0 of the right hand side of the above equation obviously has

non-negative coefficients. Notice that for h > 2n, we have

(n—i—%)
h h+1 h+1
— = 1 :h—n+l>1'
(h+ij) 6 6
Thus (”J}:%) decreases as h increases. It follows that

n+ % =
@)l = |("5n )| 2 el
2n+1—j
n+ 1 P
=\ et 3 e
h=2n+1

B n_’_% » |I|2n+1
- ( on ) = T
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for |x| < 1 by Lemma 2.2. By induction, we can have the following estimate:
n + % < (1 n)
2n — 18 \4
1 1
ntE) (1L
2n )| 72 18 \4) '

(")
n 1
(e})

since for n =1,

and for n > 2,

(2n+1)(2n + 2)
(n+1+3%)(-n+g)

2 3, 1
_ 4 M rents
- 2 _ 7
n<+n 36

> 4.

Therefore, we obtain

7 1 n » ‘x|2n+1
L.(2) < — (= i 5.46
) < 55 (3) el (5.46)

Notice that for |y| < 1/v/2,
[V1=7l=V -9z V1-hl (5.47)
Then we combine (5.44), (5.45), (5.46) and (5.47). It follows that

2" H[Mxo —pyol T (1\" 5 I

Lin| < - e
| J | /T — |9 18 1 — |y[2)nt1

|2n+1

4
7|20 — Pyol . (2\H\|7|2>”
18Y/T—hl(1—?) \1=hP

_ 7|zo — Pyol . (1—”Y|2>_n
18Y/1 = y[(1 = |42 \2[H[[7[?
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Lemma 5.10. Suppose that |H| > 81|m|?, |y| < 1/v/2 and w > 4. With the notations as
above, we have, for any integers p and q with ¢ > 0,

1
-t an
where
o los (BIH](1+v2]))
log <%)
and

26.72]z0 — pyol /1 + V2V |[H| (1 + V2]y])

- T

_ A—1
7‘950 - pyo‘
X - 5 , 1 .
18/ 1 — [y|(1 —[v[?)

Proof. Recall that

_3\/§mi
TTTH

Then by the assumption that |[H| > 81|m|?, we have that

81|m|?
@l + 1) b <3l = S <1
It follows that
1—|v? 1— (2|H| + 1)|y|?
LohP_1-@ES DR
2] 2/

Then we can apply Lemma 2.5, together with Lemmas 5.5, 5.7, 5.8 and 5.9. We have that,
for any integers p and ¢ with ¢ > 0,



where

log P

log L

, log (B1H](L+ V)

1|52
log (2|H\7w2>

A=1+

and
C' = 20P max(2l, 1)l /1os L

1.67|z0 — pyoly/ 1 + V2]

=2 - -8|H|(1 +V2|])
1—|v|

A—1
A 2 T|zo — pyol 1
18¢/1 — |y[(1 = |v]?)
B 26.72|z0 — pyoly/1 + V2Y|[H|(1+ v2]y))

- V1=l

A—1
max Tlxo — pyol 1
Iv1 =1 =y

5.3 Upper bounds for the solutions

Lemma 5.11. Let e € (0,4) and let A be defined as in the last section. Suppose that w > 4
and

|H| > 36- 576 (27k)>+2/<,

Then we have

A< 2+e.
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Proof. By the assumption on H and the definition of ~, it is easy to see that
3v3m| _ 3vV3(27k) 1
|H| | H| V2

Thus the conditions in Lemma 5.10 are satisfied. Then we have P, L, \ defined as in
Lemmas 5.8, 5.9 and 5.10. With 0 < |y| < 1/v/2, we have

P =S8|H|(1+V2]y|) < 16|H], (5.48)
and
1— |y H H H
=~ O P e > w049
since y = @ and |m| < 27k. From the assumption on H, it follows that
)\
(36k2> _ |H | o 36°-576- (27k)2e+2 .
16|H| 16 - 36¢+! - (27k)2+2 = 576 - 36¢ - (27k)?<+2
Then combining (5.48) and (5.49), we have
e+1
Lt > (%) > 16|H| > P.
Taking logarithms, we obtain
(e+1)log L > log P.
Therefore,
A:1+112%<1+(e+1):2+e.
O

Lemma 5.12. With the same notations as before, suppose that (xg,yo), (x,y) are solutions
to (5.6) of type 1. Let H be defined as in (5.17). Assume that as in Lemma 5.11 |H| is
sufficiently large so that A < 6. Then we have for w > 300,

(9
Y=\B
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where

and

26.72|z0 — pyol v/ 1+ V2[Y||H|(1 + v2]7])

- ]

B A1
7|$0—Pyo|
X - 5 , 1 .
91— [y[(1=[v?)

Proof. Notice that if w > 4 and |H]| is large enough as in Lemma 5.11, the assumptions
in Lemmas 5.3 and 5.10 can be easily satisfied. It then follows directly from these two
lemmas that if (x,y) is a solution to (5.1) then

! <
Cy?

1
< —

x
o_ =
Byb

Y

N
< (5)

with B, C defined as in the statement of the lemma.

which gives

5.4 Proof of Theorem 5.1

Let k =120t + 323s. Then

27k = 3240t 4 8721s.
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It is obvious that

|F(1,1)] = 27s < k,

|F(2,1)] = 120t + 3235 < k,
|F(3,1)] = 840t + 1007s < 27k,
|F(4,1)] = 3240t + 999s < 27k,
|F(3,2)| = 1680t + 7811s < 27k,
|F(2,3)| = 1680t — 2771s < 27k.

We can verify that (1,1),(2,1), (3,1), (4,1), (3,2) and (2, 3) are the only solutions (x,y) to
(5.6) with y < 3 that satisfy (5.7). Now we only need to focus on the solutions with y > 4.
Recall that we have divided integer solutions to (5.6) with condition (5.7) and y > 4 into
two types. Then we have the following:

Lemma 5.13. If (x,y) is an integer solution to (5.6) with k = 120t + 323 of type II, then

<2w
Y 3

for w > 300.
Proof. Recall that

f(z) = 2% = 2wa® — (5w + 15)2* — 202° 4 Swa® + (2w + 6)z + 1.
Then we have

f'(z) = 62° — 10wz* — (20w + 60)z* — 602* + 10wx + (2w + 6).

Since f’(z) has three negative roots and one positive root in

1 6
~1- .
(2’ 4w+9] (5.50)

and the other positive root greater than w, we see that f(x) increases and then decreases
in interval (5.50) and it decreases in

1 0 + 14 4
4w +9 (4w +99w?’ |’
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On the other hand, we have
f 1 15w . 37
2 8 64’
6 27
1 8960w* + 53760w?
/ ( ) (4w + 9)6 ( W v

4w +9
+118944w” + 114912w + 40851)
57

R
w2

f (1 B 1 ) S S (16128w'°
dw+9 (4w + 9)w? (4w + 9)6w!2
+ 1064448w' + 7916832w'* 4 24919776w"3
+ 47487663w" + 81370548w'" + 131743472w™
+ 153994260w° 4 152929980w® 4 163322880w"
+ 110802720w® + 53590320w® + 45791872w*
—3226944w® — 9680832w” — 7529536
_ 3.93275'
w

for w > 500. It follows that if (x,y) is of type II, then

’f ({)' > 3.93275‘
Y w

27k = 27(120w + 323)s > |F(z,y)| = sy°

Then we have

x 3.937551°
1(5)[= 2

w

For w > 300, we have
120w + 323 < 121.077w
Then

< 27 - 121.077w?
3.9375

It follows that

y < 3.1w'? < 2%”,
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for w > 300.
O

Lemma 5.14. Suppose w > 300. Then there is no integer solution (x,y) to (5.6) of type
II, where in (5.6) k = 120t + 323s.

Proof. Suppose that (z,y) is a solution to (5.6) of type II. By assumption, x/y # 1 since
y > 4 and ged(x,y) = 1. We then have

since otherwise

which is a contradiction. Put

h(y) = —27y5 + (18w + 108)y” — (45w + 135)y*
+ (40w + 60)y* — 15wy* + (2w — 6)y + 1 — 27 - 121w.

/ / 1 / 1
R'(0) >0, h (5) <0, h <2> >0,
2 2w
/ - /1 !/
h<3><0, h'(1) > 0, h<—3><0,

for w > 300, we see the distribution of the roots of A'(y). Furthermore,

Since

h(3) = —2771 — 1587w < 0, h(4) = 5973w — 30743 > 0,
2w 400 , 100 4 4

16
hi=—|==—-w - — — w4+ —w? — 3271 1>0
<3> 3w 27w+9w+3w w +

we have that h(y) > 0 on interval [4,2w/3). By Lemma 5.13, we have that if (x,y) is of
type II, then

4 <y< —.
Sy 3
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Thus by the definition of h,

Then we have

and

From the shape of f, we have that if (x,y) is a solution to (5.6) of type II, then

It follows that

— 275 + (18w + 108)y® — (45w + 135)y*

+ (40w + 60)y* — 15wy* + (2w — 6)y + 1 > 27 - 121w.

1 1
¥ <1 _ _) = — (—279° + (18w + 108)y° — (45w + 135)y*
Y

y
+(40w + 60)y® — 15wy* + (2w — 6)y + 1)
27 - 121w

y6

Y

1 1
f (1 4 _) = —— ((18y° + 15y* + 45" + 2y + 40y°)w
Y y

—1 — 6y + 108y + 135y" + 27y° + 60y°)
27 - 121w
s

x 27 - 121w
)] >
Yy Y

27k = 27(120t + 323s) > |F(z,y)| = sy°

19

This is a contradiction when w > 300.

Lemma 5.15. If (z,y) is an integer solution to (5.6) of type I, then

t2

> —.
Y~ 14s3

123

> 27 -121¢.

(5.51)



Proof. By the definition of solutions of type I, if (z,y) is of this type, then

T 6 . 14
Y dw+9 (4w + w?’

<

1
4w+ 9

Multiply the above inequality by (4w + 9)sy. We have

14sy
w?

(4w + 9)sy — 6sy < x(dw + 9)s = x(4t + 9s) < (4w + 9)sy — 6sy +

Since both (4w + 9)sy — 6sy and z(4t + 9s) are integers, it follows that
14sy

2 > 1.
That is
w? 2
> — = .
y 14s 1483

]

Lemma 5.16. With the assumption in Theorem 5.1, there are at most T integer solutions
to (5.1) of type I

Proof. Recall that we've assumed that (x¢,yo) is a non-trivial integer solution to (5.6)
satisfying condition (5.7). From Lemma 5.14, we know that (zo,yo) has to be a solution of
type I and thus

T 6 6 14
Toep=(1- - . 5.52
Yo ( 4w +9 4w—|—9+ (4w—|—9)w2) (552)

Recall the definition of H from (5.17):

H = (2t + 35)x5 + (6t + 365)x5y0 + (455 — 15t)zhy2 — (605 + 40t)xdyp
— (90s + 15t)xdy; + (6t — 185)zoy + (2t + 38)ys.

Put
g(z) = (2w + 3)2® + (6w + 36)2° — (15w — 45)a*
— (40w + 60)2* — (15w + 90)2* + (6w — 18)x + 2w + 3.
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Since for w > 300 ¢'(x) has three negative roots and one positive root less than 0.5 and
the other positive root greater than 2, we have that g(x) is decreasing on the interval I.
Then

1 0 + M <glx)<gll 6
— X — .
I\ o+ 9 wrow?) ST TSI T iy

We have
6 27
1— =—— " (8192w" + 86016w*°

g( 4w+9) (4w+9)6( W bW
+ 419328w° + 1209600w™* + 2147040w?
+2258928w? + 1267434w + 285687)
< —b3w,

6 14 1
1— = (221184w" + 2322432'®
I ( 4w +9 - (4w + 9)w2> (4w + 9)5w12 ( e v

+ 11321856w!'” + 34981632w' + 78291360w®
+ 143727696w™ + 242392878w' + 342697149w'?
+ 345677220w + 2984098321 + 227159100w°
— 76919220w® — 297339840w” — 291906720w"
— 492685200w” — 381009888w* — 164574144w>
—203297472w? — 15059072w — 22588608)
> —bdw,
for w > 300. It follows that
53w < |g(x)| < bdw.

By the definition of g(z) and H, together with (5.52), we obtain

53tyS < |H| < 54tyd. (5.53)
By Lemma 5.15, we have
t2
: .54
y > e (5.54)

By the assumption of the theorem, we have

t > 200s2/7HX (5.55)
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where

X = for 7 > 1. (5.56)
This implies that
t
w = - > 2005”7 > 200 - 2°7 > 300. (5.57)
s
and
1
0<x<:. (5.58)
Then
571> 2007 TR, (5.59)
From (5.54) and (5.59), we have
2 7 7 3 3+14x
y> 1 (20012+7xt +) > 28817 (5.60)

The last inequality holds since
in (5.58). This is equivalent to

B ” takes it minimal value when y takes its maximal value

1247x 12

t < 288 FrinyIrTR < 2.1 1070y, (5.61)

In particular, since (xg, yo) is a solution of type I, we have

12+7x

t<2.1-10 5 . (5.62)
From (5.53), together with (5.60), we have
|H| > 53tyd
3414y \ 6
> 53t - (288t712+7x>

3+14x

— 53 - 28800 Ty
> 3.10'¢ 2o (5.63)
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Put

2012+ 7x)

. 5.64
6+ T7x ( )

It is easy to see that € € (0,4). For w > 300,
k =120t 4 323s < 121.077¢.

Then we have
36 - 5T6M/<(27k)*+2/ < 36 - 5T6310 - (27 - 121.077¢) T27x

30491x 30+91x

— 36 - 57634114 - 3269.079 127 £ 1377

30+91x

< 2.6 - 10" 727x (5.65)

By (5.63) and (5.65), the condition in Lemma 5.11 is satisfied and thus
|H| > 36 - 5761/<(27k)*T2/<, (5.66)

Hence we can apply Lemma 5.11, which gives A < 2 4+ ¢ < 6. By Lemma 5.12, we have
that if (x,y) is a solution to (5.1) then

1
A
el 5.67
y < ( B) , (5.67)
where
0.65¢
B=—
k
and

~26.72|z0 — pyol /1 + V21 [IH|(1 + V2])

B Y1T—

B A1
7‘5’30—Pyo|
X - 5 , 1 .
91— [y[(1—[v?)

We now estimate B and C' in the current case. By (5.57), we have

_0.65t  0.65¢
k120t + 323s

B > 0.005368. (5.68)
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Notice that (zo,yo) is of type I. Then

Zo 401
Delc(—,1).
Yo (403 )

We have

Yo 2 2

2
T 1\2 \/§

|20 — Byl = o |— — B < (1+—> +{ 5| =V3u.
Yo \ 2 2

From condition (5.66) and k = 120t + 323s = s(120w + 323) > 2(120 - 300 + 323) = 72646,
it follows that

2
T 1\2 \/§
20 — pyol = 3o |— — p <\(1+—> +<——) = /3y,

| = 3Y3m
T T
_ 3V/3(27k)
— |H]
3v/3(27k)
= 36 - 5T6Y/€(27k)2+2/
< 3\/5
36 - 576Y/4 - (27 - 72646)3/2
<2-107M.
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Therefore

26.72|z0 — pyoly/1 + V2| [|H|(1 + v2]y])

JTHI

B A1
7|-T0 —P?Jo|
X .1
91— [y[(1—[v[?)

2672\/_y0\/1—|—\/_ 2101 H|(1+v2-2-1071)
V1I—-2-10-1

A—1
7\/_y0
max ’1
91 —2-10-11(1 — (2-10-11)2)
< 46.2804 - 1.34716 1 H |y
< 205.35|H|yp,

since A < 6. Thus (5.67) implies
y < (38255|Hy) ™ . (5.69)
Recall the right hand side of (5.53),
|H| < b4tys.

Together with (5.62) and (5.64), we obtain

~~

38255]H]y0) =
1
38255 - HatySyy )

~

1

1247y [y
< (3825554211076 .y ngr/\)

2
67Ty 28813864x+0359x

34) 290X gy, 294(3+14x)x ‘ (57())

=~

<(

The last inequality holds because 6+i is increasing in A € (0,6) and A < 24¢ < 6. Assume
that there are 7+ 1 solutions (zo, o), (z1,%1), - - -, (Z7,Y7) to (5.6) of type I. Further assume

that

Yo<wy1 <...<y,
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Then by Lemmas 2.6 and 5.3, we have by induction

Y, > @) Yoy 5
=(3) ((5) )

> ..

571

B\ * .
> P Yo -

Together with the above estimation for B, we get

5T

yr > 0.002684° 7 43 (5.71)

By Lemma 5.14, we know that (z.,y,) has to be type I as well. Then (5.70) applies to y,.
Together with (5.71) we have

2
Gr7Ty 28813864x40359x

0.002684574_1:%5)7 < (4.34) 295y, 204(3+14x)x

Notice that y = 1/57. Then 57 = 1/x. It follows that

2
288+3864x+9359y

6477 _ A - A
1/x X

0.002684 2 yl/X < (4.34) B9y, 2HEFII

That is,
1 28843864x+9350x 1—x 6+77x
Yo 294(3+14x) < 0.0027435" 71 . (4.34) 204, (5.72)
Put
b—1- 288 + 3864y + 9359y?

N 294(3 + 14y)
Then

b= _9359X2 — 252y — 594

204(3 + 14y)
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Since 9359x2 — 252y — 594 = 0 has two roots at —0.23882... and 0.2657 ..., we have ¢ > 0
for x € (0, 1] from (5.58). Therefore, (5.72) gives

6477x

1
yo < (0.002684 5 - (4.34) 5 )

— exp @ (log(0.002684) <—1TTX> + log(4.34) (6 42-9747x>>)

oy (294034 140)(1.52 — L0%5Y)
X
P 504 1 252y — 93592

< exp(8.2154)
< 3608. (5.73)

The second last inequality holds since

294(3 + 14%)(1.52 — 1.095x)
594 + 252y — 93592

takes its maximal value when y takes its maximal value in (5.58). On the other hand, from
(5.54) and (5.55), we have

t?
>
RV
200283/7+2X
- 14
200223/
>
- 14
> 3845.

This contradicts (5.73). It then follows that there are at most 7 solutions to (5.1) of type
L

]

Combining Lemmas 5.14 and 5.16, we have that there are at most 7 integer solutions
(xz,y) to (5.1) that satisfy (5.7) and y > 4. Then by the (5.2), we conclude that for
s> 2.t > 200s'2/71/57 with 7 > 1, other than the trivial solutions

:t{((), 1)? (17 0)7 (17 1)7 (_17 2)? (_1? 1)7 (_27 1)7
(27 1)7 (_17 3)7 (_37 2)> (17 2)’ (_2’ 3)a (_3a 1>}
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there are at most 127 integer solutions to the Thue inequality

|s2® — 2tady — (5t + 155)x'y?
—20sz”y® + 5ta*yt + (2t + 68)xy® + sy®| < 120t + 323s.
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