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Abstract

A family of parameterized Thue equations is defined as

F{t,s,...}(X, Y ) = m, m ∈ Z

where F{t,s,...}(X, Y ) is a form in X and Y with degree greater than or equal to 3 and
integer coefficients that are parameterized by t, s, . . . ∈ Z. A variety of these families have
been studied by different authors.

In this thesis, we study the following families of Thue inequalities

|sx3 − tx2y − (t+ 3s)xy2 − sy3| ≤ 2t+ 3s,

|sx4 − tx3y − 6sx2y2 + txy3 + sy4| ≤ 6t+ 7s,

|sx6 − 2tx5y − (5t+ 15s)x4y2 − 20sx3y3 + 5tx2y4

+(2t+ 6s)xy5 + sy6| ≤ 120t+ 323s,

where s and t are integers. The forms in question are “simple”, in the sense that the roots
of the underlying polynomials can be permuted transitively by automorphisms.

With this nice property and the hypergeometric functions, we construct sequences of
good approximations to the roots of the underlying polynomials. We can then prove that
under certain conditions on s and t there are upper bounds for the number of integer
solutions to the above Thue inequalities.
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Chapter 1

Introduction

A Diophantine equation is a polynomial equation over rationals in two or more unknowns
such that only the integer solutions are searched or studied. It has been a subject of
investigation for over 1800 years.

The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Dio-
phantus of Alexandria, who made a study of such equations and was one of the first math-
ematicians to introduce symbolism into algebra. The mathematical study of Diophantine
problems that Diophantus initiated is now called Diophantine analysis.

The reason people are interested in studying Diophantine equations includes the fol-
lowing:

• Its a fun challenge.

• It gives justication for other studying subjects, e.g., algebraic number theory or
algebraic geometry.

• It leads to other interesting questions. For example Pell equations, x2−dy2 = 1, lead
to questions about continued fractions and fundamental units. Ljunggrens equation
A4− 2B2 = 8 is related to approximations of π. Fermats Last Theorem xn + yn = zn

lead to questions about unique factorization domains, cyclotomic fields, elliptic curves
and modular forms.

We start with the simplest linear Diophantine equation in two variables

ax+ by = c,

1



where a, b, c ∈ Z. This equation has solutions if and only if gcd(a, b)|c, in which case the
solution can be found by a reverse process of Euclidean algorithm.

With the next step up in complexity, let’s look at Pell’s equation

x2 − dy2 = 1,

where d is a positive square-free integer. The non-trivial solutions (other than (±1, 0))
are related to the fundamental unit for the ring Z[

√
d] and can be found by the rational

approximation to
√
d. More precisely, the above Pell’s equation can be written as(

x

y

)2

= d+
1

y2
.

As 1/y2 can be arbitrarily small with big enough y, a solution (x, y) gives a rational
approximation x/y to

√
d. In fact, the solutions can be found by performing the continued

fraction expansion of
√
d and testing each successive convergent until a solution to Pell’s

equation is found.

P. Fermat, J. Wallis, L. Euler, J.L. Lagrange, and C.F. Gauss in the early 19th century
mainly studied Diophantine equations of the form

ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, and f are integers, i.e., general inhomogeneous equations of the second
degree with two unknowns. Lagrange used continued fractions in his study of general
inhomogeneous Diophantine equations of the second degree with two unknowns. Gauss
developed the general theory of quadratic forms, which is the basis of solving certain types
of Diophantine equations.

In studies on Diophantine equations of degrees higher than two significant success was
attained only in the 20th century. It was established by A. Thue. Let F ∈ Z[X, Y ] be a
homogeneous polynomial of degree n ≥ 3 which is irreducible over the rationals and m be
an integer. Then the diophantine equation

F (x, y) = m (1.1)

is called a Thue equation. In 1909, Thue proved his famous result about this equation:

Theorem (Thue). (1.1) has only finitely many solutions (x, y) ∈ Z2.
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Thue’s proof is based on his approximation theorem: Let α be an algebraic number
of degree n ≥ 2 and ε > 0. Then there exists a positive number c(α, ε), such that for all
p ∈ Z and q ∈ N ∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α, ε)

qn/2+1+ε
.

The constant c(α, ε) is not effective in that given α and ε the proof does not give a means
of calculating c(α, ε). Since his approximation is not effective, Thue’s theorem is not
effective, meaning that it does not give an upper bound for the sizes of the solutions. It
does, however, lead to an upper bound for the number of solutions.

Since then, many authors studied the Thue equation in various forms and by different
methods. In this chapter, we will give a brief survey of these results.

1.1 Solution of Single Thue Equations

In 1968, after his great work on linear forms in logarithms of algebraic numbers, A. Baker
[7] could give an effective upper bound for the solutions of any given Thue equation (1.1):

Theorem (Baker). Let κ > n+ 1 and (x, y) ∈ Z2 be a solution of (1.1). Then

max{|x|, |y|} < Celogκm,

where C = C(n, κ, F ) is an effectively computable number.

These bounds have been improved since that time. For example, Bugeaud and Győry
[10] proved the following:

Theorem (Bugeaud-Győry). Let B ≥ max{|m|, e}, α be a root of F (X, 1), K := Q(α),
R := RK the regulator of K and r the unit rank of K. Let H ≥ 3 be an upper bound for
the absolute values of the coefficients of F .

Then all solutions (x, y) ∈ Z2 of (1.1) satisfy

max{|x|, |y|} < exp (c ·R ·max{logR, 1} · (R + log(HB)))

and
max{|x|, |y|} < exp

(
c′ ·H2n−2 · log2n−1H · logB

)
,

where c = 3r+27(r + 1)7r+19n2n+6r+14 and c′ = 33(n+9)n18(n+1).
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The bounds for the solutions obtained by Baker’s method are rather large, thus the
solutions cannot be found practically by enumeration. For a similar problem Baker and
Davenport [6] proposed a method to reduce drastically the bound by using continued
fraction reduction. Pethő and Schulenberg [31] replaced the continued fraction reduction
by the LLL-algorithm and gave a general method to solve (1.1) for the totally real case
with m = 1 and arbitrary degree n. Tzanakis and de Weger [45] described the general
case. Finally, Bilu and Hanrot [8] were able to replace the LLL-algorithm by the much
faster continued fraction method and solve Thue equations up to degree 1000.

1.2 Number of Solutions

We define a solution (x, y) to the Thue equation F (x, y) = m to be primitive, if x and y are
coprime integers. The problem of giving upper bounds (depending on m and the degree
n) for the number of primitive solutions goes back to Siegel. Such a bound has been given
by Evertse [15] in 1983:

Theorem (Evertse). Let F (x, y) be an irreducible binary form with rational integral coef-
ficients, of degree n ≥ 3. Let m be a positive integer.

Then the number of primitive solutions to

F (x, y) = m

does not exceed

715((n3)+1)
2

+ 6× 72(n3)(t+1)

where t is the number of prime factors of the constant term m.

The above theorem is actually a special case of Evertse’s work, in which he also treated
equations in number fields. In 1987, an improved version was given by Bombieri and
Schmidt [9]:

Theorem (Bombieri-Schmidt). Let m be a positive number and let F (x, y) be an irre-
ducible binary form of degree n ≥ 3, with rational integral coefficients. Then the number
of primitive solutions of the equation

|F (x, y)| = m

does not exceed
cn1+t
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where c is an absolute constant and t is the number of distinct prime factors of m. When
n is sufficiently large, the number of primitive solutions (with (x, y) and (−x,−y) regarded
as the same) does not exceed

215n1+t.

This result is best possible (up to the constant 215), at least for m = 1, since the
equation

|Xn + (X − Y )(2X − Y ) . . . (nX − Y )| = 1

has at least 2(n+ 1) solutions: ±{(1, 1), . . . , (1, n), (0, 1)}.
In 1991, my supervisor, Stewart [34] showed the following:

Theorem. Let F be a binary form with integer coefficients of degree n ≥ 3, content 1, and
nonzero discriminant D. Let m be a nonzero integer and let ε be a positive real number.
Let g be any divisor of m with g ≥ |m|2/n+ε. If |m| ≥ (gcd(D, g2))1/ε, then the number of
pairs of coprime integers (x, y) for which F (x, y) = m is at most

2800

(
1 +

1

4εr

)
n1+ω(g),

where ω(g) denotes the number of distinct prime factors of g.

Sharper bounds have been obtained for special classes of Thue equations. If only k
coefficients of F (x, y) are nonzero, the number of solutions depends on k and m only (and
not on n). In 1987, Mueller and Schmidt [28] proved the following:

Theorem (Mueller-Schmidt). Let F be an irreducible binary form of degree n, with integral
coefficients. If F has precisely 3 nonzero coefficients and n ≥ 9, then the inequality

|F (x, y)| ≤ m

has at most O(m2/n) solutions (x, y) ∈ Z2.

Shortly after that, they extended their result to the general case [29]:

Theorem (Mueller-Schmidt). Let F be an irreducible binary form of degree n ≥ 3, with
integral coefficients. If F has no more than k with k ≥ 3 nonzero coefficients, then the
inequality

|F (x, y)| ≤ m

has at most O(k2m2/n(1 + logm1/n)) solutions (x, y) ∈ Z2.
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In 2000, Thomas [38] gave absolute upper bounds for the number of solutions for m = 1
and k = 3:

Theorem (Thomas). Let F be an irreducible binary form of degree n ≥ 3, with integral
coefficients. Further suppose that F has precisely three nonzero coefficients. If n ≥ 38,
then the equation

|F (x, y)| = 1

has at most 20 solutions (x, y) ∈ Z2 with |xy| ≥ 2 ((x, y) and (−x,−y) regarded as the
same).

If only 2 coefficients of F (x, y) are nonzero, the special case axn − byn = ±1 with
ab 6= 0, x > 0, y > 0 has been studied by many authors. In 2001, Bennett [7] proved there
is at most one solution to this equation.

1.3 Families of Thue Equations

A family of parameterized Thue equations is a Thue equation with coefficients which are
integer polynomials in one or more parameters. For example, a one-parameter family of
Thue equations is the following:

Ft(X, Y ) = m, m ∈ Z (1.2)

where Ft ∈ Z[t][X, Y ] is an irreducible binary form of degree of at least 3 with coefficients
that are integer polynomials in t.

In 1990, Thomas [35] investigated for the first time a parametrized family of cubic Thue
equations. Since then, different families of Thue equations have been studied. Thomas
proved

Theorem (Thomas). Let t ∈ Z and t ≥ 1.365× 107. Then the equation

x3 − (t− 1)x2y − (t+ 2)xy2 − y3 = ±1 (1.3)

has only the trivial solutions: (x, y) ∈ ±{(0, 1), (1, 0), (1,−1)}.

Mignotte [23] filled the gap 4 ≤ t ≤ 1.365× 107 in 1993, proving that the only solution
to (1.3) for these values of t are trivial ones (for t = 0, 1, 2, 3, (1.3) had been solved earlier).

The same family has been studied by Mignotte, Pethő and Lemmermeyer [25]. In 1996,
they proved the following:
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Theorem (Mignotte-Pethő-Lemmermeyer). (1). Let n ≥ 1650, k be positive integers. If

|x3 − (n− 1)x2y − (n+ 2)xy2 − y3| = k

for some x, y ∈ Z, then

log |y| < c1 log2(n+ 2) + c2 log n log k,

where

c1 = 700 + 476.4

(
1− 1432.1

n

)−1(
1.501− 1902

n

)
< 1956.4,

c2 = 29.82 +

(
1− 1432.1

n

)−1
1432

n log n
< 30.71.

(2). Let n be a nonnegative integer. If (x, y) ∈ Z2 is a solution of

|x3 − (n− 1)x2y − (n+ 2)xy2 − y3| ≤ 2n+ 1, (1.4)

then either (x, y) = t(u, v) with an integer t of absolute value ≤ 3
√

2n+ 1 and
±(u, v) ∈ {(1, 0), (0, 1), (−1, 1)}, or

±(x, y) ∈ {(−1, 1), (−1, 2), (−1, n+ 1), (−n,−1), (n+ 1,−n), (2,−1)},

except when n = 2, in which case (1.4) has the extra solutions

±(x, y) ∈ {(−4, 3), (8, 3), (1,−4), (3, 1), (3,−1)}.

In 1991, Mignotte and Tzanakis [27] studied a family of cubic Thue equations that is
similar to Thomas’. They proved

Theorem (Mignotte-Tzanakis). Let n ∈ Z and n ≥ 3.67× 1032. Then the equation

x3 − nx2y − (n+ 1)xy2 − y3 = 1

has only the following solutions:

(x, y) ∈ {(1, 0), (0,−1), (1,−1), (−n− 1,−1), (1,−n)}.

Mignotte [24] could prove the same result for all n ≥ 3 in 2000.

In 1991, Pethő [30] studied by using Thomas’ method the two classes of Thue equations
in the following theorem:
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Theorem (Pethő). Let n ∈ Z. Put

F1(x, y) = x4 − nx3y − x2y2 + nxy3 + y4

and
F2(x, y) = x4 − nx3y − 3x2y2 + nxy3 + y4

If |n| ≥ 9.9× 1027, then

(1) the only solutions to the equation

F1(x, y) = 1

are (x, y) ∈ {(0,±1), (±1, 0), (±1,±1), (∓1,±1), (±n,±1), (±1,∓n)};

(2) the only solutions to the equation

|F2(x, y)| = 1

are (x, y) ∈ {(0,±1), (±1, 0), (±1,±1), (±1,∓1)}.

The first result in the above theorem was improved by Mignotte, Pethő and Roth [26]
in 1996. They solved this equation completely.

Theorem (Mignotte-Pethő-Roth). Let n ∈ Z. Then the only solutions to the equation

x4 − nx3y − x2y2 + nxy3 + y4 = ±1

are ±{(0, 1), (1, 0), (1, 1), (1,−1), (n, 1), (1,−n)} for |n| 6∈ {2, 4}.
If |n| = 2, the family is reducible. If |n| = 4, four more solutions exist, they are

±(x, y) =

{
(8, 7), (7,−8) if n = 4
(8,−7), (7, 8) if n = −4.

In 1993, Thomas [36] investigated the family of equation

Φn(x, y) = x(x− a(n)y)(x− b(n)y) + uy3,

where n ∈ Z, a(t), b(t) ∈ Z[t] are monic polynomials of degree a and b respectively and
u ∈ {±1}. Under a technical assumption on a(n) and b(n), he could prove that all solutions
(x, y) ∈ Z2 to the equation Φn(x, y) = 1 are given by (1, 0), (0, u), (a(n)u, u), (b(n)u, u), if
n is greater than an effectively computable constant N . In particular, if a(t), b(t) are
monomials, Thomas’ result gives:
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Theorem (Thomas). Let a and b be integers such that 0 < a < b. Define a real number
N(a, b) by

N(a, b) =
(
2 · 106 · (a+ 2b)

)4.86/(b−a)
.

If n ≥ N(a, b), then the equation

x(x− nay)(x− nby) + uy3 = 1, u = ±1

has only the four solutions (1, 0), (0, u), (nau, u), (nbu, u).

In the same year, Thomas also published a paper about a two-parameter family of cubic
Thue equations [37]. He proved

Theorem (Thomas). Let b, c be nonzero integers such that ∆ = 4c− b2 > 0, the discrim-
inant of t3− bt2 + ct− 1 is negative, and c ≥ min{4.2× 1041× |b|2.32, 3.6× 1041×∆1.1582}.
Then the equation

x3 − bx2y + cxy2 − y3 = 1

has only the trivial solutions, namely (x, y) = (1, 0), (0,−1).

In 1995, the family of quartic Thue equation Fn(x, y) = x4−ax3y−6x2y2+axy3+y4 = c
with c ∈ {±1,±4} was completely solved by Lettl and Pethő [21]. They proved

Theorem (Lettl-Pethő). Let a ∈ Z and c ∈ {±1,±4}. If a 6∈ {±1,±4}, the equation

x4 − ax3y − 6x2y2 + axy3 + y4 = c

only has the trivial integral solutions in x, y, namely,

(x, y) ∈ {(±1, 0), (0,±1), (±1, 1), (±1,−1).

Chen and Voutier [11] solved the equation x4 − ax3y − 6x2y2 + axy3 + y4 = ±1 inde-
pendently in 1995.

The family of quartics x4 − a2x2y2 + y4 was studied by Wakabayashi [46] in 1997. He
proved

Theorem (Wakabayashi). Let a be an integer. For a ≥ 8, the only primitive solutions to
the Thue inequality

|x4 − a2x2y2 + y4| ≤ a2 − 2

are (x, y) = (0, 0), (±1, 0), (0,±1), (±a,±1), (±1,±a), (±1,±1), with mixed signs.

9



Later in 2000, Wakabayashi [48] generalized this paper to the family of Thue inequalities
of the form |x4− a2x2y2− by4| ≤ a2 + b− 1. He found all solutions to this inequality when
a is sufficiently large relative to b.

Theorem (Wakabayashi). Let a, b ∈ N. Then the only primitive solutions to the Thue
inequality

|x4 − a2x2y2 − by4| ≤ a2 + b− 1

are (x, y) = (0, 0), (±1, 0), (0,±1), (±a,±1), (±1,±1) with mixed signs, provided that

a ≥ 5.3× 1010b6.22,

or
b ∈ {1, 2}, a ≥ 1.

In 1997, Heuberger, Pethő and Tichy [19] completely solved the one-parameter family
of quartic Thue equations

Fa(x, y) = x(x− y)(x− ay)(x− (a+ 1)y)− y4 = ±1,

where a is an integer. More precisely, they proved

Theorem (Heuberger-Pethő-Tichy). Let a be an integer. Put

Fa(x, y) = x(x− y)(x− ay)(x− (a+ 1)y)− y4.

Then

|Fa(x, y)| = 1

only has the trivial solutions

(±1, 0), (0,±1), (±1,±1), (±a,±1), (±(a+ 1),±1).

The more general form x(x− y)(x− ay)(x− by)− y4 was studied by Pethő and Tichy
[32]. They proved

Theorem (Pethő-Tichy). Let a, b be integers. Assume that

102·1028

< a+ 1 < b ≤ a

(
1 +

1

log4 a

)
.
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Put
Fa,b(x, y) = x(x− y)(x− ay)(x− by)− y4.

Then

Fa,b(x, y) = ±1

has only the trivial solutions

(±1, 0), (0,±1), (±1,±1), (±a,±1), (±b,±1).

In 1999, Lettl, Pethő and Voutier [22] published a paper about the simple families of
Thue inequalities. The particular forms under their consideration are distinguished by
being “simple” forms. They proved the following:

Theorem (Lettl-Pethő-Voutier). Let a be an integer. Put

F (3)
a (x, y) = x3 − ax2y − (a+ 3)xy2 − y3

F (4)
a (x, y) = x4 − ax3y − 6x2y2 + axy3 + y4

F (6)
a (x, y) = x6 − 2ax5y − (5a+ 15)x4y2 − 20x3y3 + 5ax2y4 + (2a+ 6)xy5 + y6

(1) For a ≥ 89, the only primitive solutions (x, y) ∈ Z2 to the inequality

|F (6)
a (x, y)| ≤ 120a+ 323

with −y
2
< x ≤ y are (0, 1), (1, 1), (1, 2), (−1, 3);

(2) For a ≥ 58, the only primitive solutions (x, y) ∈ Z2 to the inequality

|F (4)
a (x, y)| ≤ 6a+ 7

with |x| ≤ y are (0, 1), (±1, 1), (±1, 2);

(3) For a ≥ 30, let (x, y) ∈ Z2 be a primitive solution to

|F (3)
a (x, y)| ≤ k(a)

with 8k(a)
2a+3

≤ y and −y
2
< x ≤ y. Then

|y| < 0.4(120k(a))1+ε(a), with ε(a) =
2.14

log(a+ 1.5)− 3.44
.
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These forms have been studied by different authors. For example, |F (4)
a (x, y)| = 1 has

been solved completely by Lettl and Pethő [21], and by Chen and Voutier [11] indepen-
dently.

This type of form is the focus of this thesis. Let F be a binary form. Let

A =

(
a b
c d

)
∈ GL2(Q)

and define the binary form FA by

FA(x, y) = F (ax+ by, cx+ dy).

This defines an action of GL2(Q) on Q[x, y].

Definition Two forms F,G ∈ Q[x, y] are called equivalent if there exists some A ∈ GL2(Q)
and r ∈ Q∗ such that rG = FA, where Q∗ = Q\{0}.

Definition Let F ∈ Q[x, y] be a form. We call A ∈ GL2(Z) an automorphism of F if
FA = F .

Definition A form F ∈ Q[x, y] is called simple if F is irreducible over Q with degree
≥ 3 and there exists some non-trivial A ∈ GL2(Q)/Q∗I2 such that φA : z → Az := az+b

cz+d

permutes the zeros of the underlying polynomial F (x, 1) transitively; here I2 is the identity

matrix of order 2 and A =

(
a b
c d

)
∈ GL2(Q).

One can see that if a form F is simple, then it is close to having non-trivial automorphism.
The three forms in the previous theorem are all simple, since we have

F (3)
a (y,−x− y) = F (3)

a (x, y),

F (4)
a (x− y, x+ y) = −4F (4)

a (x, y),

F (6)
a (x− y, x+ 2y) = −27F (6)

a (x, y).

We’ll consider the same forms but with two parameters.

In 1999, Wakabayashi [47] [49] proved

Theorem (Wakabayashi). Let a, b be integers.
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(1) Suppose that a ≥ 360b4. Then the only primitive solutions with y ≥ 0 of the Thue
inequality

|x3 + axy2 + by3| ≤ a+ |b|+ 1

are (0, 0), (±1, 0), (0, 1), (±1, 1), (−b/d, a/d), where d = gcd(a, b).

(2) Suppose that |b| = 1 or |b| = 2. Then for all a ≥ 1 the only primitive solutions to

|x3 + axy2 + by3| ≤ a+ |b|+ 1

are (0, 0), (±1, 0), (0, 1), (±1, 1), (−b/d, a/d), where d = gcd(a, b), except the cases
|b| = 1, 1 ≤ a ≤ 3 and |b| = 2, 1 ≤ a ≤ 7. Further, all solutions in the exceptional
cases can be listed.

A family of quintic Thue equations had been investigated by Gaa̋l and Lettl [16]. In
2000, they proved

Theorem (Gaa̋l-Lettl). Let t ∈ Z. If |t| ≥ 3.28 × 1015, then the only integral solutions
(x, y) to the equation

Ft(x, y) = x5 + (t− 1)x4y − (2t3 + 4t+ 4)x3y2+

(t4 + t3 + 2t2 + 4t− 3)x2y2 + (t3 + t2 + 5t+ 3)xy4 + y5 = ±1

are (±1, 0), (0,±1).

In 2000, Togbé [39] proved

Theorem (Togbé). Let n be an integer such that n, n+2 and n2 +4 are square-free. Then
the equation

x4 − n2x3y − (n3 + 2n2 + 4n+ 2)x2y2 − n2xy3 + y4 = 1

has only the trivial solutions (±1, 0), (0,±1) for n ≤ 5× 106 or for n ≥ 1.191× 1019.

Tobge̋ [42] improved his result in 2006. He showed that

Theorem (Togbé). Let n be an integer such that n, n+2 and n2 +4 are square-free. Then
the equation

x4 − n2x3y − (n3 + 2n2 + 4n+ 2)x2y2 − n2xy3 + y4 = 1

has only the trivial solutions (±1, 0), (0,±1) for n ≥ 2. In the case of n = 1, there exists
an extra solution ±(1,−1) besides ±(0, 1) and ±(1, 0).
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In 2002, Dujella and Jadrijevic̋ [13] solved another family of quartic Thue equations.
Later in 2004 they extended the same family of quartic Thue equation to the inequality
case [14].

Theorem (Dujella-Jadrijevic̋). Let a be an integer.

(2002) If a ≥ 3, then the equation

x4 − 4ax3y + (6a+ 2)x2y2 + 4axy3 + y4 = 1

has only the trivial solutions (x, y) ∈ {(±1, 0), (0,±1)}.

(2004) If a ≥ 4, then the inequality

|x4 − 4ax3y + (6a+ 2)x2y2 + 4axy3 + y4| ≤ 6a+ 4

has only the following solutions (x, y) in integers:

(±1, 0), (0,±1), (1,±1), (−1,±1), (±1,∓2), (±2,±1).

In 2003, Wakabayashi proved

Theorem (Wakabayashi). Let a ∈ Z. If a ≥ 1.35× 1014, then the equation

x3 − a2xy2 + y3 = 1

has only the trivial integral solutions:

(x, y) ∈ {(0, 1), (1, 0), (1, a2), (a, 1), (−a, 1)}.

In 2004, Togbé [40] proved

Theorem (Togbé). Let n ≥ 1 be an integer. The equation

x3 − (n3 − 2n2 + 3n− 3)x2y − n2xy2 − y3 = ±1

has only the trivial integral solutions:

±{(1, 0), (0, 1)},

except for the case n = 2, when there are seven more pairs of solutions:

±{(9,−13), (5,−14), (4, 1), (2,−3), (1,−1), (1,−3), (1,−2), (0, 1), (1, 0)}.
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In 2005, Jadrijevic̋ [20] proved

Theorem (Jadrijevic̋). Let m,n ∈ Z and m > 0, n > 0. Then there are no solutions to
the equation

x4 − 2mnx3y + 2(m2 − n2 + 1)x2y2 + 2mnxy3 + y4 = 1

satisfying the additional conditions gcd(xy,mn) = 1 and xy 6= 0.

In 2006, Togbé proved in [41]

Theorem (Togbé). Let n be a nonnegative integer. Put

Φn(x, y) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n+ 3)x2y

− (n3 − 2)n2xy2 − y3

Then the solutions in integers x, y to the equation

Φn(x, y) = ±1

are
{±(1, 0),±(0, 1)}, if n ≥ 2,

and {
{±(1, 0),±(0, 1),±(1,−1)} if n = 1,
{±(1, 0),±(0, 1),±(1,−1),±(1, 2),±(2,−3),±(3,−1)} if n = 0.

and in [43]

Theorem (Togbé). Let a ∈ N. Put

Φa(x, y) = x6 − (a− 2)x5y − (a2 + a+ 6)x4y2

+ (a3 − 2a2 + 6a− 10)x3y3 + (a3 + 5a+ 3)x2y4

+ (a2 − a+ 4)xy5 − y6

If a > 1.078× 1012, then the equation

Φa(x, y) = ±1

only has the integral solutions (x, y) = (0,±1), (±1, 0), (±1, 1).

In the same year, Ziegler [53] investigated a family of quartic Thue equations with three
parameters. He showed
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Theorem (Ziegler). Let (x, y) be a solution to Thue equation

x4 − 4sx3y − (2ab+ 4s(a+ b))x2y2 − 4absxy3 + a2b2y4 = µ

with s ∈ Z, a, b ∈ 1
4
Z, |a| ≥ |b| and 0 6= ab ∈ Z and suppose s > 7.23× 1010|a| 29+

√
241

2 . Then
necessarily µ = 1. Furthermore, the only solutions are (x, y) = (±1, 0), (0,±1) if ab = ±1
or those listed as follows:

(a, b, x, y) ∈{(−17/4,−4,±4,±1), (17/4, 4,±4,∓1)

(−5/2,−2,±2,±1), (5/2, 2,±2,∓1),

(−2,−1,±1,±1), (2, 1,±1,∓1),

(−4,−15/4,±4,±1), (4, 15/4,±4,∓1),

(−2,−3/2,±2,±1), (2, 3/2,±2,∓1)}

(1.5)

In 2007, Wakabayashi [50] studied cubic Thue equations with nontrivial automorphisms.
He proved

Theorem (Wakabayashi). Let F be an irreducible cubic form with integer coefficients.
Suppose that the discriminant of F is positive and F has non-trivial automorphism.

Let a, b ∈ Z. Then the number of integer solutions to the Thue equation

F (x, y) = bx3 − ax2y − (a+ 3b)xy2 − by3 = 1

is three or zero, except for the following case, where the number of solutions is NF ,

F ∼ x3 + x2y − 2xy2 − y3, NF = 9,
F ∼ x3 − 3xy2 − y3, NF = 6,
F ∼ x3 − 2x2y − 5xy2 − y3, NF = 6.

For two forms F,G ∈ Z[x, y], “F ∼ G” means there exists a matrix

A =

(
a b
c d

)
∈ GL(2,Z)

such that

FA(x, y) = F (ax+ by, cx+ dy) = G(x, y).

In [51], Wakabayashi extended Lettl, Pethő and Voutier’s work [22] to two-parameter
families of Thue inequalities. He obtained the following results:
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Theorem (Wakabayashi). Let s, t ∈ Z. Put

F
(3)
s,t (x, y) = sx3 − tx2y − (t+ 3s)xy2 − sy3,

F
(4)
s,t (x, y) = sx4 − tx3y − 6sx2y2 + txy3 + sy4,

F
(6)
s,t (x, y) = sx6 − 2tx5y − (5t+ 15s)x4y2 − 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6.

(1) If s ≥ 1 and t ≥ 97.3s48/19, then the only primitive solutions (x, y) ∈ Z2 to the Thue
inequality

|F (6)
s,t (x, y)| ≤ 120t+ 323s

with y ≥ 0 are

(±1, 0), (0, 1), (±1, 1), (±2, 1), (−3, 1), (±1, 2), (−3, 2), (−1, 3), (−2, 3)

(2) If s ≥ 1 and t ≥ 70s28/9, then the only primitive solutions (x, y) ∈ Z2 to the Thue
inequality

|F (4)
s,t (x, y)| ≤ 6t+ 7s

with y ≥ 0 are
(±1, 0), (0, 1), (±1, 1), (±2, 1), (±1, 2)

(3) Let s ≥ 1 and t ≥ 64s9/2, then the only primitive solutions (x, y) ∈ Z2 to the Thue
inequality

|F (3)
s,t (x, y)| ≤ 2t+ 3s

with −1/2 < x/y ≤ 1 and y > 0 are{
(0, 1), (1, 1), (−1, t+ 2) if s = 1,
(0, 1), (1, 1) if s ≥ 2.

Further, the only primitive solutions (x, y) ∈ Z2 with y ≥ 0 are
(1, 0), (0, 1), (±1, 1), (−2, 1), (−1, 2),
(−1, t+ 2), (−t− 2, t+ 1), (t+ 1, 1) if s = 1,
(1, 0), (0, 1), (±1, 1), (−2, 1), (−1, 2) if s ≥ 2.

In 2008, Togbé [44] completely solved another family of cubic Thue equations.
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Theorem (Togbé). Let n ∈ Z be nonnegative. Then the integer solutions to the equation

x3 − n(n2 + n+ 3)(n2 + 2)x2y − (n3 + 2n2 + 3n+ 3)xy2 − y3 = ±1

are {
{(±1, 0), (0,±1)}, if n > 0;
{±(−3, 2),±(−1, 1),±(−1, 3),±(0, 1),±(1, 0),±(2, 1)}, if n = 0.

In 2009, He, Jadrijevic̋ and Togbé [17] proved

Theorem (He-Jadrijevic̋-Togbé). Let c ≥ 1 be an integer. Then for all c ≥ 1, the Thue
inequality

|x4 − 4x3y − (2c− 2)x2y2 + (4c+ 4)xy3 − (2c− 1)y4| ≤ max
{ c

4
, 4
}

has primitive solutions of the form (x, y) = (±1, 0),±(1, 1). These solutions are the only
primitive solutions if c 6= 2n2 − 2, n ∈ N, n > 1 and c 6= 1, 2. The additional primitive
solutions are given by:

(i) (x, y) = ±(n + 1, n),±(n − 1, n),±(2n + 1, 1),±(2n − 1,−1) for c = 2n2 − 2, n ∈
N, n > 1;

(ii) (x, y) = ±(0, 1),±(2, 1) for c = 2;

(iii) (x, y) = (0,±1),±(2, 1),±(3, 1) for c = 1.

Also in 2009, Akhtari [1] studied general cubic forms with big discriminant. She proved:

Theorem (Akhtari). Let F be a binary cubic form of degree with integer coefficients. If
its discriminant DF > 1.4× 1057, then the equation

|F (x, y)| = 1

has at most 7 integer solutions.

If F is equivalent to a reduced form which is not monic and has discriminant D >
9× 1058, then the equation

F (x, y) = 1

has at most 6 integer solutions.

Akhtari and Okazaki proved a similar result for quartic Thue equations in 2010.
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Theorem (Akhtari-Okazaki). Let F be an irreducible quartic form with integer coefficients
and DF be its discriminant. If DF > 10500, then the equation

|F (x, y)| = 1

has at most 61 integer solutions, counting (x, y) and (−x,−y) only once.

For a special quartic form with vanishing J-invariant, Akhtari [2] proved the following

Theorem (Akhtari). Let

F (x, y) = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4

be an irreducible binary form with integer coefficients and positive discriminant that splits
in R. Let

IF = a2
2 − 3a1a3 + 12a0a4

and
JF = 2a3

2 − 9a1a2a3 + 27a2
1a4 − 72a0a2a4 + 27a0a

2
3.

If JF = 0, then the equation
|F (x, y)| = 1

has at most 12 solutions in integers x and y (with (x, y) and (−x,−y) regarded as the
same); and the inequality

|F (x, y)| ≤ h

has at most 12 primitive solutions (x, y), with |y| ≥ h3/4

(3IF )1/8 .

In 2011, Dujella, Ibrahimpašic̋ and Jadrijevic̋ [12] solved the following family of quartic
Thue inequalities:

Theorem (Dujella-Ibrahimpašic̋-Jadrijevic̋). Let n ≥ 3 be an integer. Then all the prim-
itive solutions to the inequality

|x4 + 2(1− n2)x2y2 + y4| ≤ 2n+ 3

are (0,±1), (±1, 0), (±1,±
√

2(n2 − 1)), (±
√

2(n2 − 1),±1), where the latter two solutions
are only valid if 2(n2 − 1) is a perfect square.

In the same year, He, Kihel, and Togbé [18] proved
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Theorem (He-Kihel-Togbé). Let c ≥ 3 be an integer. Suppose n = c2 + c − 5 and 0 <
|µ| ≤ c+ 2. Then the equation

x4 − (n+ 1)x3y − nx2y2 + 2xy3 + y4 = µ

has integer solutions (x, y) if and only if µ = 1. In this case, all primitive solutions are
given by (x, y) = (0,±1), (±1, 0),±(1,−1).

In 2012, Akhtari [3] improved the result of Okazaki and herself by showing:

Theorem (Akhtari). Let F be an irreducible binary quartic form with integer coefficients.
If the discriminant of F is greater than an explicitly computable constant D0, then the
equation

|F (x, y)| = 1

has at most UF integer solutions, counting (x, y) and (−x,−y) only once, where UF = 6 if
F (x, 1) = 0 has no real root, UF = 14 if F (x, 1) = 0 has two real and one pair of complex
conjugate roots and UF = 26 if F (x, 1) = 0 has four real roots.

Wakabayashi extended his work on cubic Thue equation with automorphisms to the
quartic case in 2012. He proved [52]

Theorem (Wakabayashi). Let a, b ∈ Z. Then the equation

|bx4 − ax3y − 6bx2y2 + axy3 + by4| = 1

has 0 or 4 integer solutions, except for the cases b = 1, a = ±1,±4 when there are 8
solutions.

Again, Put

F
(3)
s,t (x, y) = sx3 − tx2y − (t+ 3s)xy2 − sy3,

F
(4)
s,t (x, y) = sx4 − tx3y − 6sx2y2 + txy3 + sy4,

F
(6)
s,t (x, y) = sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6.

Consider the Thue inequalities:

|F (3)
s,t (x, y)| ≤ 2t+ 3s, (1.6)

|F (4)
s,t (x, y)| ≤ 6t+ 7s, (1.7)

|F (6)
s,t (x, y)| ≤ 120t+ 323s. (1.8)
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Lettl, Pethő and Voutier [22] had completely solved these inequalities for s = 1 and t
greater than a determined positive number. Wakabayashi [51] extended their work and
completely solved the inequalities with the following conditions:

s ≥ 1, t ≥ 64s9/2, for (1.6),

s ≥ 1, t ≥ 70s28/9, for (1.7), (1.9)

s ≥ 1, t ≥ 97.3s48/19, for (1.8).

In this thesis, we’ll prove the following:

Theorem 1.1. Let τ be an integer with τ ≥ 5 and let s, t be positive integers such that the
form

F
(3)
s,t (x, y) = sx3 − tx2y − (t+ 3s)xy2 − sy3

is irreducible over Q. Suppose that s ≥ 1 and t ≥ 1.2 · 106s3+21/2τ . Then other than the
trivial solutions

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1),

(−1, t+ 2), (−t− 2, t+ 1), (t+ 1, 1)} if s = 1,

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1)} if s ≥ 2,

there are at most 6τ primitive integer solutions to the Thue inequality

|F (3)
s,t (x, y)| ≤ 2t+ 3s.

Theorem 1.2. Let τ be an integer with τ ≥ 2 and let s, t be positive integers such that the
form

F
(4)
s,t (x, y) = sX4 − tX3Y − 6sX2Y 2 + tXY 3 + sY 4

is irreducible over Q. Suppose that s ≥ 1 and t ≥ 1200s2+4/3τ . Then other than the trivial
solutions

±{(1, 0), (0, 1), (1, 1), (1,−1),

(1, 2), (2,−1), (2, 1), (1,−2)}

there are at most 8τ primitive integer solutions to the Thue inequality

|F (4)
s,t (x, y)| ≤ 7s+ 6t.
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Theorem 1.3. Let τ be an integer with τ ≥ 1 and let s, t be positive integers such that the
form

F
(6)
s,t (x, y) = sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6

is irreducible over Q. Suppose that s ≥ 1 and t ≥ 200s12/7+1/5τ . Then other than the trivial
solutions

±{(0, 1), (1, 0), (1, 1), (−1, 2), (−1, 1), (−2, 1),

(2, 1), (−1, 3), (−3, 2), (1, 2), (−2, 3), (−3, 1)}

there are at most 12τ integer solutions to the Thue inequality

|F (6)
s,t (x, y)| ≤ 120t+ 323s.

Compared with the results of Wakabayashi [51], we extend the range of the parameters
s and t, but with the cost of weakened results. More precisely, with the condition in (1.9),
Wakabayashi proved that the inequalities in Theorem 1.1, 1.2 and 1.3 have only trivial
solutions. We loosen the condition by considering a wider range of s and t. In this case we
are not able to explicitly solve the inequalities but instead, we have to assume a possible
solution. Thus our results are ineffective. The following tables sketch the comparison:

Wakabayashi [51] This thesis

Cubic case t ≥ 64s4.5 t ≥ 1.2 · 106s3.66

Quartic case t ≥ 70s3.111 t ≥ 1200s2.45

Sextic case t ≥ 97.3s2.526 t ≥ 200s1.92

Table 1.1: Comparison of the conditions, assume s ≥ 1 in all cases
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Wakabayashi [51] This thesis

Cubic case 0 at most 30
Quartic case 0 at most 16

Sextic case 0 at most 12

Table 1.2: Comparison of the results: the number of solutions other than the trivial ones

23



Chapter 2

Hypergeometric Method and Gap
Principle

In this chapter, we prepare some results that will be needed in the later chapters. Through-
out this chapter, µ denotes either 3, 4 or 6.

2.1 Contour integrals and the hypergeometric method

We’re going to follow the arguments of Rickert [33] and Wakabayashi [49] to prove some
preliminary results that will be used to obtain the irrationality measures of certain algebraic
numbers. The idea here is by finding the Padé approximation of the function

µ
√

1 + x
µ
√

1− x

one can construct a sequence of “good” approximations to some algebraic number related
to it and further deduce an irrationality measure of this number.

For integers n ≥ 1, l = 0, 1 and j = 1, 2, define integrals

Iln =
1

2πi

∫
Γ

zl(1 + xz)n+ 1
µ

(z2 − 1)n+1
dz (2.1)

and

Iljn =
1

2πi

∫
Γj

zl(1 + xz)n+ 1
µ

(z2 − 1)n+1
dz, (2.2)
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where Γ is a simple closed counter-clockwise curve enclosing both the point 1 and −1, and
Γ1 (Γ2) is a simple closed counter clockwise curve enclosing 1 (−1) and not enclosing −1
(1). These integrals are well-defined for |x| < 1 if we take Γ and Γj so that they do not
enclose −1/x.

Lemma 2.1. For n ≥ 1, l = 0, 1

Il1n(x) = pln(x) µ
√

1 + x (2.3)

Il2n(x) = (−1)l+1pln(−x) µ
√

1− x (2.4)

Iln(x) = pln(x) µ
√

1 + x− (−1)lpln(−x) µ
√

1− x, (2.5)

where pln(x) are polynomials of degree at most n with rational coefficients given by

p0n(x) =
n∑
h=0

(−1)n−h
(
n+ 1

µ

h

)(
2n− h
n− h

)
xh(1 + x)n−h

22n+1−h (2.6)

and

p1n(x) =
n∑
h=0

(−1)n−h
(
n+ 1

µ

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
xh(1 + x)n−h. (2.7)

Proof. Obviously,
Iln(x) = Il1n(x) + Il2n(x)

for l = 0, 1.

By residue theory, we have
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I01n(x) =
1

2πi

∫
Γ1

(1 + xz)n+ 1
µ

(z2 − 1)n+1
dz

=
1

n!
lim
z→1

dn

dzn

(
(z − 1)n+1 · (1 + xz)n+ 1

µ

(z2 − 1)n+1

)
=

1

n!
lim
z→1

dn

dzn

(
(1 + xz)n+ 1

µ (z + 1)−(n+1)
)

=
1

n!
lim
z→1

n∑
h=0

(
n

h

)
dh

dzh

(
(1 + xz)n+ 1

µ

)
· d

n−h

dzn−h
(
(z + 1)−(n+1)

)
=

1

n!
lim
z→1

n∑
h=0

(
n

h

)
k!

(
n+ 1

µ

h

)
xh(1 + xz)n−h+ 1

µ

· (−1)n−h(n− h)!

(
2n− h
n− h

)
(z + 1)−(2n+1−h)

= lim
z→1

n∑
h=0

(
n

h

)
h!(n− h)!

n!
(−1)n−h

(
n+ 1

µ

h

)(
2n− h
n− h

)
· xh(1 + xz)n−h+ 1

µ (z + 1)−(2n+1−h)

=
n∑
h=0

(−1)n−h
(
n+ 1

µ

h

)(
2n− h
n− h

)
xh(1 + x)n−h+ 1

µ

22n+1−h

= p0n(x) µ
√

1 + x.
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Similarly,

I11n(x) =
1

2πi

∫
Γ1

z(1 + xz)n+ 1
µ

(z2 − 1)n+1
dz

=
1

n!
lim
z→1

dn

dzn

(
z(1 + xz)n+ 1

µ (z + 1)−(n+1)
)

=
1

n!
lim
z→1

n∑
h=0

(
n

h

)
dh

dzh
(1 + xz)n+ 1

µ · d
n−h

dzn−h
(
z(z2 − 1))−(n+1)

)
=

1

n!
lim
z→1

n∑
h=0

(
n

h

)
h!

(
n+ 1

µ

h

)
xh(1 + xz)n−h+ 1

µ

·
((

n− h
0

)
z
dn−h

dzn−h
(z + 1)−(n+1) +

(
n− h

1

)
dn−h−1

dzn−h−1
(z + 1)−(n+1)

)
=

1

n!
lim
z→1

n∑
h=0

(
n

h

)
h!

(
n+ 1

µ

h

)
xh(1 + xz)n−h+ 1

µ

(
(−1)n−h(n− h)!

(
2n− h
n− h

)
z(z + 1)−(2n+1−h) + (−1)n−h−1(n− h)!

(
2n− h− 1

n− h− 1

)
(z + 1)−(2n−h)

)
=

n∑
h=0

(−1)n−h
(
n+ 1

µ

h

)((
2n− h
n− h

)
1

22n+1−h −
(

2n− h− 1

n− h− 1

)
1

22n−h

)
· xh(1 + x)n−h+ 1

µ

= p1n(x) µ
√

1 + x.

By a change of variables, z′ = −z, we see that, for l = 0, 1,

Il2n(x) = (−1)l+1Il1n(−x)

= (−1)l+1pln(−x) µ
√

1− x.

This completes the proof of the lemma.

Put

Jh =
1

2πi

∫
Γ

zh

(z2 − 1)n+1
dz,

and define the generating function

J(x) =
∞∑
h=0

Jhx
h.

27



Lemma 2.2. Jh = 0 for 0 ≤ h ≤ 2n, and J2n+1 = 1. Further, for |x| < 1,

J(x) =
x2n+1

(1− x2)n+1
. (2.8)

Proof. By the residue theory, it is well-known that the integrand is a rational function
P (z)/Q(z) with deg(Q) > 1 + deg(P ) and the integral over any closed contour containing
all the zeros of Q, is equal to zero (This can be shown by a combination of partial fraction
decomposition and residue calculation). Thus Jh = 0 for 0 ≤ h ≤ 2n.

For h = 2n+ 1, suppose that

z2n+1

(z2 − 1)n+1
=

n+1∑
j=1

aj
(z − 1)j

+
n+1∑
j=1

bj
(z + 1)j

.

Then we get

z2n+1 = (z + 1)n+1

n+1∑
j=1

aj(z − 1)n+1−j + (z − 1)n+1

n+1∑
j=1

bj(z + 1)n+1−j.

Comparing the coefficients before z2n+1 on both sides of the above equation, we get that

a1 + b1 = 1.

On the other hand, by the relation between residue and Laurent series expansion, we see
that J2n+1 = a1 +b1 = 1. One can also prove this by a change of variables z = 1/w together
with residue calculus.

For |x| < 1,carefully choose Γ so that |xz| < 1. Then
∑∞

h=0 x
hzh converges to (1−xz)−1

on Γ. Thus,

J(x) =
∞∑
h=0

Jhx
h

=
∞∑
h=0

1

2πi

∫
Γ

(xz)h

(z2 − 1)n+1
dz

=
1

2πi

∫
Γ

∑∞
h=0(xz)h

(z2 − 1)n+1
dz

=
1

2πi

∫
Γ

1

(1− xz)(z2 − 1)n+1
dz.
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Let z = 1/w. Then we have

J(x) =
1

2πi

∫
Γ

1

(1− xz)(z2 − 1)n+1
dz

=
1

2πi

∫
Γ′

1(
1− x

w

) (
1
w2 − 1

)n+1

(
− 1

w2

)
dw

=
1

2πi

∫
−Γ′

w2n+1

(w − x)(1− w2)n+1
dw,

where −Γ′ is a counterclock-wise curve containing x but not 1 or −1. Thus,

J(x) = lim
w→x

w2n+1

(1− w2)n+1
=

x2n+1

(1− x2)n+1
.

Lemma 2.3. The function I0n(x) has a zero of order 2n + 1 at x = 0, and the function
I1n(x) has a zero of order 2n at x = 0.

Proof. By Taylor expansion,

(1 + xz)n+ 1
µ =

∞∑
h=0

(
n+ 1

µ

h

)
xhzh

Then for l = 0, 1,

Iln(x) =
∞∑
h=0

(
n+ 1

µ

h

)
Jh+lx

h =
∞∑

h=2n+1−l

(
n+ 1

µ

h

)
Jh+lx

h

by Lemma 2.2. This proves the lemma.

Lemma 2.4.

∆ :=

∣∣∣∣ p0n(x) −p0n(−x)
p1n(x) p1n(−x)

∣∣∣∣ = c2nx
2n (2.9)

with

c2n =
(−1)n

22n+1

(
2n

n

)(
n+ 1

µ

2n

)
.
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Proof. By Lemma 2.1, the degree of ∆(x) is at most 2n. Also, by the definitions from
Lemma 2.1, we see that

∆(x) µ
√

1− x =

∣∣∣∣ p0n(x) −p0n(−x) µ
√

1− x
p1n(x) p1n(−x) µ

√
1− x

∣∣∣∣
=

∣∣∣∣ p0n(x) p0n(x) µ
√

1 + x− p0n(−x) µ
√

1− x
p1n(x) p1n(x) µ

√
1 + x+ p1n(−x) µ

√
1− x

∣∣∣∣
=

∣∣∣∣ p0n(x) I0n(x)
p1n(x) I1n(x)

∣∣∣∣ .
Then by Lemma 2.3, ∆(x) µ

√
1− x = p0n(x)I1n(x)− p1n(x)I0n(x) has a Taylor expansion

p0n(0)

(
n+ 1

µ

2n

)
J2n+1x

2n + · · · .

Notice that the constant term in the Taylor expansion of µ
√

1− x is 1 and p0n(0) = (−1)n

22n+1

(
2n
n

)
,

J2n+1 = 1. Therefore, we have

∆(x) =
(−1)n

22n+1

(
2n

n

)(
n+ 1

µ

2n

)
x2n.

Lemma 2.5. Let ξ be a non-zero real number. Suppose that there are positive numbers
ρ, P, l, L, d,∆ with L/∆ > 1, and for each integer n ≥ 1, two linear forms

pjn + qjnξ = ljn j = 0, 1

in ξ with rational coefficients pjn and qjn satisfying the following conditions:

(i)

∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ 6= 0

(ii) |qjn| ≤ %P n

(iii) |ljn| ≤ lL−n

(iv) pjn and qjn, j = 0, 1 have a common denominator ∆n ≤ d∆n.
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Then for any integers p and q with q > 0, we have∣∣∣∣ξ − p

q

∣∣∣∣ > 1

Cqλ
,

where

λ = 1 +
log(∆P )

log(L/∆)
,

C = 2%d∆P (max{2dl, 1})
log(∆P )
log(L/∆) .

Proof. Let p, q be integers with q > 0. Put

δ =

∣∣∣∣ξ − p

q

∣∣∣∣ .
For any n ≥ 1, j = 0, 1, let ηjn = qjnp+ qpjn. Note that

qljn − ηjn = q(qjnξ + pjn)− (qjnp+ qpjn) = qqjn

(
ξ − p

q

)
.

It follows that, for j = 0, 1,

|ηjn| ≤
∣∣∣∣qqjn(ξ − p

q

)∣∣∣∣+ |qljn|

≤ q%P nδ + qlL−n.

By condition (i), for any n, we can fix a j so that |ηjn| 6= 0. This is a rational number with
denominator ∆n. Thus, by condition (iv), we have

|ηjn| ≥
1

∆n

≥ 1

d∆n
.

By assumption, L/∆ > 1. Put

n = 1 +

[
log(Cq)

log(L/∆)

]
,

where C = max{2dl, 1}. This implies that

qlL−n ≤ 1

2d∆n
.
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Therefore, we have

q%P nδ >
1

2d∆n
.

It follows that

δ >
1

2d%q(P∆)n
≥ 1

2d%q(P∆)1+
log(Cq)

log(L/∆)

=
1

2d%P∆C
log(P∆)
log(L/∆) q1+

log(P∆)
log(L/∆)

.

2.2 Gap principle

Lemma 2.6. Let B, µ and ξ be real numbers with B and µ positive. Suppose that (x1, y1)
and (x2, y2) are two pairs of integers with x1/y1 6= x2/y2 satisfying∣∣∣∣ξ − xi

yi

∣∣∣∣ ≤ 1

2Byµi
, i = 1, 2. (2.10)

Further suppose that y2 ≥ y1 > 0. Then

y2 ≥ Byµ−1
1 . (2.11)

Proof. By assumption, we have

x1

y1

6= x2

y2

, y2 ≥ y1 > 0,

that is,
x1y2 − x2y1 6= 0.
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Then

1 ≤ |x1y2 − x2y1|
= |x1y2 − y1y2ξ + y1y2ξ − x2y1|

=

∣∣∣∣y1y2

(
x1

y1

− ξ
)

+ y1y2

(
ξ − x2

y2

)∣∣∣∣
≤ y1y2

∣∣∣∣x1

y1

− ξ
∣∣∣∣+ y1y2

∣∣∣∣ξ − x2

y2

∣∣∣∣
≤ y1y2

(
1

2Byµ1
+

1

2Byµ2

)
≤ y1y2 ·

1

2Byµ1
· 2

=
y2

Byµ−1
1

.

This gives
y2 ≥ Byµ−1

1 . (2.12)
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Chapter 3

Cubic Simple Form

In this chapter, we’ll study the following inequality

|sx3 − tx2y − (t+ 3s)xy2 − sy3| ≤ k, (3.1)

where s, t are integers and k = k(t, s) is linear in t and s. Let

F (x, y) = sx3 − tx2y − (t+ 3s)xy2 − sy3.

Suppose that s and t are positive integers such that F is irreducible over Q. We have that
F is a simple form since

F (y,−x− y) = F (x, y) (3.2)

and the map

z → − 1

z + 1
(3.3)

permutes the roots of F (x, 1) transitively. As discussed in the first chapter, Wakabayashi
[51] completely solved (3.1) for s ≥ 1, t ≥ 64s9/2 and k = 2t + 3s. For the same k, we’ll
prove the following result:

Theorem 3.1. Let s, t be positive integers such that

sx3 − tx2y − (t+ 3s)xy2 − sy3

is irreducible over Q and let τ be an integer with τ ≥ 5. Suppose that s ≥ 1 and t ≥
1.2 · 106s3+21/2τ . Then other than the trivial solutions

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1),

(−1, t+ 2), (−t− 2, t+ 1), (t+ 1, 1)} if s = 1,

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1)} if s ≥ 2,
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there are at most 6τ integer solutions to the Thue inequality

|sx3 − tx2y − (t+ 3s)xy2 − sy3| ≤ 2t+ 3s. (3.4)

Since the case when s = 1 had been explicitly solved by Lettl, Pethő and Voutier [22],
in the following proof we always assume s ≥ 2.

The main proof is based on the observation that the root of the underlying polynomial
F (x, 1) can be expressed in terms of cubic roots of algebraic numbers, due to the special
shape of the simple form F . With hypergeometric functions, rational approximations to
the (quotient of) cubic roots of algebraic numbers can be constructed, which, in turn, will
give us a good rational approximation to the root of the underlying polynomial. This leads
to an irrationality measure for the root. Then we use a routine argument to derive the
upper bound for the size of the solutions from this measure. Together with a gap principle,
we prove the bound for the number of solutions.

3.1 Elementary properties

From the relation (3.2), it is easy to see that if (x, y) is a solution to inequality (3.1), then

(y,−x− y), (−x− y, x), (−x,−y), (−y, x+ y), (x+ y,−x)

are also solutions to (3.1). Notice that the map (3.3) permutes the intervals(
−1

2
, 1

]
,

(
−2,−1

2

]
, (−∞,−2] ∪ (1,+∞).

If there exists an integer solution (x, y) to (3.1), we can always choose it from the above
set of solutions to satisfy the following condition:

− 1

2
<
x

y
≤ 1, gcd(x, y) = 1, y ≥ 0. (3.5)

In the following proof, we’ll always assume (x, y) satisfies (3.5) if it is a solution to (3.1).
Let

f(x) = s−1F (x, 1) = x3 − wx2 − (w + 3)x− 1, (3.6)

where w = t/s. Then we have
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Lemma 3.2. For w ≥ 4, f has three real roots θ−1, θ0 and θw that satisfy the following:

−1− 1

w
+

1

w2
< θ−1 < −1− 1

w
+

2

w2
,

− 1

w + 2
< θ0 < −

1

w + 2
+

4

(w + 2)w2
,

w + 1 +
2

w
− 3

w2
< θw < w + 1 +

2

w
.

Proof. For w ≥ 4, direct computation gives

f

(
−1− 1

w
+

1

w2

)
= −w

4 − 4w3 + 3w − 1

w6
< 0,

f

(
−1− 1

w
+

2

w2

)
=
w5 + w4 + 7w3 − 6w2 − 12w + 8

w6
> 0,

f

(
− 1

w + 2

)
=

2w + 3

(w + 2)3
> 0,

f

(
− 1

w + 2
+

4

(w + 2)w2

)
= −2w4 + 5w3 − 6w2 + 12w − 8

w6
< 0,

f

(
w + 1 +

2

w
− 3

w2

)
= −w

5 + 12w4 + 10w3 + 9w2 − 54w + 27

w6
< 0,

f

(
w + 1 +

2

w

)
=

3w3 + 8w2 + 12w + 8

w3
> 0.

Then the lemma follows.

Suppose (x, y) is an integer solution to (3.1) that satisfies (3.5). From Lemma 3.2, we
can see that x

y
is bounded away from θ−1 and θw, and it is close to θ0 for w ≥ 4. We then

denote θ0 by θ in the rest of this chapter. We now define the interval

I =

(
− 1

w + 2
,− 1

w + 2
+

4

(w + 2)w2

)
.

We divide all integer solutions (x, y) with y ≥ 2 of (3.1) that satisfy (3.5) into two groups.

36



Definition We call (x, y) an integer solution to (3.1) of type I if gcd(x, y) = 1, y ≥ 2 and

x

y
∈
(
−1

2
,− 1

w + 2

]
∪
[
− 1

w + 2
+

4

(w + 2)w2
, 1

]
;

(x, y) is of type II if gcd(x, y) = 1, y ≥ 2 and

x

y
∈ I =

(
− 1

w + 2
,− 1

w + 2
+

4

(w + 2)w2

)
.

Lemma 3.3. Let (x, y) be an integer solution to (3.1) of type II. For w ≥ 1000, we have∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By3
, (3.7)

where

B =
0.999t

k
.

Proof. From Lemma 3.2, we have for w ≥ 4

θ−1 < −1, θw > w + 1.

Since (x, y) is of type II,

−0.001 <
x

y
≤ 0.

We have ∣∣∣∣xy − θ−1

∣∣∣∣ > 0.999,

∣∣∣∣xy − θw
∣∣∣∣ > w, (3.8)

for w ≥ 1000. On the other hand, (x, y) satisfies

|F (x, y)| ≤ k.

This is equivalent to ∣∣∣∣sy3

(
x

y
− θ−1

)(
x

y
− θ
)(

x

y
− θw

)∣∣∣∣ ≤ k, (3.9)

Combining (3.8) and (3.9), we obtain∣∣∣∣θ − x

y

∣∣∣∣ ≤ k

0.999swy3
=

1

(0.999t/k)y3
.
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3.2 Irrationality of the root of f

Suppose that (x0, y0) is an integer solution to (3.1) that satisfies (3.5). In this section,
we’ll calculate a measure of irrationality of θ in terms of this solution. The idea is that one

can rewrite θ in terms of
3√1+γ
3√1−γ for some algebraic number γ, thanks to the special form

of F . Then we can apply the hypergeometric method discussed in the previous chapter to
construct a sequence of “good” approximations to θ, from which the irrationality measure
can be deduced.

For any complex number λ, let λ denote the complex conjugate of λ.

Lemma 3.4. The form F can be rewritten as

F (x, y) = sx3 − tx2y − (t+ 3s)xy2 − sy3

=
1

2

(
η(x− ρy)3 + η(x− ρy)3

)
,

where

η = s− (2t+ 3s)
√

3i

9
, ρ =

−1 +
√

3i

2
,

and i =
√
−1.

Proof. By direct calculation, we have

(x− ρy)3 =

(
x− −1 +

√
3i

2
y

)3

=

(
x3 +

3

2
x2y − 3

2
xy2 − y3

)
−

(
3
√

3

2
x2y +

3
√

3

2
xy2

)
i.

We need only to verify that the real part of η(x− ρy)3 is equal to F (x, y). That is,

1

2

(
η(x− ρy)3 + η(x− ρy)3

)
=s

(
x3 +

3

2
x2y − 3

2
xy2 − y3

)
− (2t+ 3s)

√
3

9

(
3
√

3

2
x2y +

3
√

3

2
xy2

)
=sx3 − tx2y − (t+ 3s)xy2 − sy3

=F (x, y).
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Recall from last section that θ is a root of f(x) = F (x, 1)/s. Then by Lemma 3.4, we
have

η(θ − ρ)3 + η(θ − ρ)3 = 0. (3.10)

This gives
η

η
= −(θ − ρ)3

(θ − ρ)3
. (3.11)

On the other hand, since (x0, y0) is a solution to (3.1), we can then put

F (x0, y0) = m, (3.12)

for some integer m with |m| ≤ k. Again by Lemma 3.4, we have

1

2

(
η(x0 − ρy0)3 + η(x0 − ρy0)3

)
= m. (3.13)

Then we can write
η(x0 − ρy0)3 = m+ Ai (3.14)

with

A = −
√

3

9
H, (3.15)

where

H = (2t+ 3s)x3
0 + (3t+ 18s)x2

0y0 − (3t− 9s)x0y
2
0 − (2t+ 3s)y3

0 ∈ Z. (3.16)

Since A ∈ R, we have
η(x0 − ρy0)3

η(x0 − ρy0)3
=
m+ Ai

m− Ai
. (3.17)

Combining (3.11) and (3.17), we have

− (θ − ρ)3(x0 − ρy0)3

(θ − ρ)3(x0 − ρy0)3
=
m+ Ai

m− Ai
. (3.18)

Simplify this equation and write

γ =
m

Ai
=

3
√

3mi

H
. (3.19)

It follows that
(θ − ρ)3(x0 − ρy0)3

(θ − ρ)3(x0 − ρy0)3
=

1 + γ

1− γ
. (3.20)
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Taking cubic root on both sides, we obtain

(θ − ρ)(x0 − ρy0)

(θ − ρ)(x0 − ρy0)
=

3
√

1 + γ
3
√

1− γ
, (3.21)

where we choose the cubic roots so that their arguments lie in the interval (−π/6, π/6)
since from the last section x0/y0 is close to θ and so the left side is close to 1.

Now we can apply Lemma 2.1 from Chapter 2 with µ = 3 and x = γ. It follows that
for any integer n ≥ 1, we have relations

I0n(γ) = p0n(γ) 3
√

1 + γ − p0n(−γ) 3
√

1− γ (3.22)

and
I1n(γ) = p1n(γ) 3

√
1 + γ + p1n(−γ) 3

√
1− γ, (3.23)

where

p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h , (3.24)

p1n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h, (3.25)

and

Iln(γ) =
1

2πi

∫
Γ

zl(1 + γz)n+ 1
3

(z2 − 1)n+1
dz, (3.26)

for j = 0, 1. Dividing both sides of (3.22) and (3.23) by 3
√

1− γ and then substituting
(3.21) and multiplying both sides by (θ − ρ)(x0 − ρy0), we obtain

q′0nθ + p′0n = l′0n (3.27)

with

q′0n = p0n(γ)(x0 − ρy0)− p0n(−γ)(x0 − ρy0),

p′0n = −ρp0n(γ)(x0 − ρy0) + ρp0n(−γ)(x0 − ρy0),

l′0n =
I0n(γ)(θ − ρ)(x0 − ρy0)

3
√

1− γ
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and
q′1nθ + p′1n = l′1n (3.28)

with

q′1n = p1n(γ)(x0 − ρy0) + p1n(−γ)(x0 − ρy0),

p′1n = −ρp1n(γ)(x0 − ρy0)− ρp1n(−γ)(x0 − ρy0),

l′1n =
I1n(γ)(θ − ρ)(x0 − ρy0)

3
√

1− γ
.

Put

Mj =

{
22nHn/

√
3i if j = 0,

22nHn if j = 1.
(3.29)

Then we have the following:

Lemma 3.5. With the above notation, for n ≥ 1, j = 0, 1, we have

Mjq
′
jn ∈ Z, Mjp

′
jn ∈ Z.

Proof. First we have, for all integers n, h with n ≥ 1, h ≤ n,

3[ 3h
2 ] ·

(
n+ 1

3

h

)
∈ Z, (3.30)

where
[

3h
2

]
denotes the greatest integer that is less than or equal to 3h

2
. To show this, note

that

3[ 3h
2 ] ·

(
n+ 1

3

h

)
= 3[h2 ]+h ·

(
n+ 1

3

) (
n− 1 + 1

3

)
. . .
(
(n− h+ 1) + 1

3

)
h!

= 3[h2 ] · (3n+ 1)(3(n− 1) + 1) . . . (3(n− h+ 1) + 1)

h!
.

The number of 3-factors in h! is at most[
h

3

]
+

[
h

32

]
+ . . . ≤

∞∑
j=1

h

3j
=
h

2
.

Now we consider the other prime factors of h! that are not 3. Suppose p is a prime such
that p|h! with p 6= 3 and a is a positive integer such that pa|h! but pa+1 - h!. First notice
that p ≤ h. Then consider the natural integer sequence modulo p:

1, 2, 3, . . . , p− 1, 0, 1, 2, . . . (3.31)
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The exponent of p-factor in h!, a, depends on the number of times 0 appears in the first h
elements in the above sequence:

(1, 2, . . . , h) mod p. (3.32)

In other words, a depends on how many complete residual sets (1, 2, . . . , p − 1, 0) (3.32)
contains mod p. Notice that (n − h + 1, n − h + 2, . . . , n) is a sequence of h consecutive
integers. We have that modulo p, it contains the same number of complete residual sets
as (3.32). Since gcd(3, p) = 1, it follows that

(3(n− h+ 1) + 1, 3(n− h+ 2) + 1, . . . , 3n+ h) mod p (3.33)

contains the same number of complete residual sets (1, 2, . . . , p−1, 0) as well. This implies
that

pa |
h−1∏
j=0

(3(n− j) + 1).

Therefore, (3.30) holds. It follows that

(3
√

3)h ·
(
n+ 1

3

h

)
∈ Z[
√

3], (3.34)

since if h is even, then (3
√

3)h = 3[3h/2] and thus

(3
√

3)h ·
(
n+ 1

3

h

)
∈ Z;

and if h is odd, then (3
√

3)h = 3[3h/2]
√

3 and thus

(3
√

3)h ·
(
n+ 1

3

h

)
∈ Z[
√

3].

Recall that

γ =
3
√

3mi

H
,

which is a purely imaginary number. By the definition of q′0n, p
′
0n, we have

q′0n = 2i=(p0n(γ)(x0 − ρy0)),

p′0n = −2i=(p0n(γ)(x0 − ρy0)ρ),
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where

p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h ,

and

ρ =
−1 +

√
3i

2
.

It follows that

M0q
′
0n = M0 · 2i=

(
(<(p0n(γ)) + i=(p0n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

))
= i(2x0 + y0)=(p0n(γ))M0 − i

√
3y0<(p0n(γ))M0

and

M0p
′
0n = −M0 · 2i=

(
(<(p0n(γ)) + i=(p0n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

)

·

(
−1

2
−
√

3

2
i

))
= i(x0 + 2y0)=(p0n(γ))M0 + i

√
3x0<(p0n(γ))M0.

Thus to show M0q
′
0n ∈ Z,M0p

′
0n ∈ Z, it suffices to show that

=(p0n(γ)) · (iM0) ∈ Z,
√

3<(p0n(γ)) · (iM0) ∈ Z.

We have

iM0p0n(γ) =
22nHn

√
3

n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h

=
1√
3

n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
(Hγ)h(H +Hγ)n−h

21−h

=
1√
3

n∑
h=0

(−1)n−h
((

n+ 1
3

h

)
(3
√

3mi)h
)((

2n− h
n− h

)
1

21−h

)
· (H + 3

√
3mi)n−h.
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Notice that for h = 0, 1 . . . , n (
2n− h
n− h

)
1

21−h ∈ Z

and by (3.34) (
n+ 1

3

h

)
(3
√

3mi)h ∈ Z[
√

3].

It follows that

i
√

3M0p0n(γ) ∈ Z[
√

3].

Since

i
√

3M0p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
(Hγ)h(H +Hγ)n−h

21−h

=
n∑
h=0

(−1)n−h

21−h

(
n+ 1

3

h

)(
2n− h
n− h

) n−h∑
l=0

Hn−h−l(3
√

3mi)h+l

we see that each term in the real part of i
√

3M0p0n(γ) is in Z and each term in the imaginary
part of i

√
3M0p0n(γ) is of the form of an integer multiplied by

√
3. Therefore iM0p0n(γ)

can be written as

a√
3

+ bi,

where a, b ∈ Z. It follows that

=(p0n(γ)) · (iM0) ∈ Z,
√

3<(p0n(γ)) · (iM0) ∈ Z.

since iM0 ∈ R. This proves M0q
′
0n ∈ Z,M0p

′
0n ∈ Z.

Similarly, we have

q′1n = 2<(p1n(γ)(x0 − ρy0)),

p′1n = −2<(p1n(γ)(x0 − ρy0)ρ),
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where

p1n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h.

Since

M1q
′
1n = M1 · 2<

(
(<(p1n(γ)) + i=(p1n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

))
= (2x0 + y0)<(p1n(γ))M1 +

√
3y0=(p1n(γ))M1

and

M1p
′
1n = −M1 · 2<

(
(<(p1n(γ)) + i=(p1n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

)

·

(
−1

2
−
√

3

2
i

))
= (x0 + 2y0)<(p1n(γ))M1 −

√
3x0=(p1n(γ))M1,

it suffices to show that

<(p1n(γ))M1 ∈ Z,
√

3=(p1n(γ))M1 ∈ Z.

We have

M1p1n(γ) = 22nHn

n∑
h=0

(−1)n−h
(
n+ 1

3

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h

=
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)((
2n− h
n− h

)
1

21−h

−
(

2n− h− 1

n− h− 1

)
1

2−h

)
(Hγ)h(H +Hγ)n−h.
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Using the same argument as for j = 0, we see that M1p1n(γ) can be written as

a+ b
√

3i,

for some integers a, b. It then follows that

<(p1n(γ))M1 ∈ Z,
√

3=(p1n(γ))M1 ∈ Z.

which implies that M1q
′
1n ∈ Z,M1p1n ∈ Z.

Put
qjn = Mjq

′
jn, pjn = Mjp

′
jn, ljn = Mjljn, (3.35)

for j = 0, 1 and n ≥ 1. Summarizing the discussion in this section, we obtain

Lemma 3.6. For n ≥ 1, put

q0n = (p0n(γ)(x0 − ρy0)− p0n(−γ)(x0 − ρy0))22nHn/
√

3i,

p0n = (−ρp0n(γ)(x0 − ρy0) + ρp0n(−γ)(x0 − ρy0))22nHn/
√

3i,

q1n = (p1n(γ)(x0 − ρy0) + p1n(−γ)(x0 − ρy0))22nHn,

p1n = (−ρp1n(γ)(x0 − ρy0)− ρp1n(−γ)(x0 − ρy0))22nHn.

Then q0n, p0n, q1n and p1n are rational integers satisfying the following relations:

q0nθ + p0n =l0n,

q1nθ + p1n =l1n,

where

l0n =
I0n(γ)(θ − ρ)(x0 − ρy0)22nHn

3
√

1− γ
√

3i
,

l1n =
I1n(γ)(θ − ρ)(x0 − ρy0)22nHn

3
√

1− γ
.

To apply Lemma 2.5, we need the following condition and estimates.
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Lemma 3.7. Let pjn, qjn defined as in Lemma 3.6 for j = 0, 1, we have∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ 6= 0,

for any n ≥ 1.

Proof. By Lemma 2.4 and γ 6= 0, we have

∆(γ) =

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣ = c2nγ
2n 6= 0. (3.36)

Put Aj = pjn(γ)(x0 − ρy0) and Bj = pjn(−γ)(x0 − ρy0) for j = 0, 1. Then

q0n = (A0 −B0)M0, p0n = (−ρA0 + ρB0)M0

q1n = (A1 +B1)M1 p1n = −(ρA1 + ρB1)M1.

It follows that∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ =

∣∣∣∣ (−ρA0 + ρB0)M0 (A0 −B0)M0

−(ρA1 + ρB1)M1 (A1 +B1)M1

∣∣∣∣
= M0M1

∣∣∣∣ (−ρA0 + ρB0) (A0 −B0)
−(ρA1 + ρB1) (A1 +B1)

∣∣∣∣
= M0M1

∣∣∣∣ (ρ− ρ)A0 (A0 −B0)
(ρ− ρ)A1 (A1 +B1)

∣∣∣∣
= M0M1(ρ− ρ)

∣∣∣∣ A0 −B0

A1 B1

∣∣∣∣
= M0M1(ρ− ρ)

∣∣∣∣ p0n(γ)(x0 − ρy0) −p0n(−γ)(x0 − ρy0)
p0n(γ)(x0 − ρy0) p0n(−γ)(x0 − ρy0)

∣∣∣∣
= M0M1(ρ− ρ)|x0 − ρy0|2

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣
6= 0.

Lemma 3.8. Suppose that |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|qjn| < %P n,

47



where

% =
1.67|x0 − ρy0| 3

√
1 +
√

2|γ|
3
√

1− |γ|
and

P = 4|H|(1 +
√

2|γ|).

Proof. From the proof of Lemma 3.5, we see that

|qjn| ≤ 2|pjn(γ)(x0 − ρy0)Mj| = 2|pjn(γ)| · |x0 − ρy0| · |Mj|, (3.37)

for j = 0, 1, n ≥ 1. By the definition of Mj, we have

|Mj| ≤ 22n|H|n. (3.38)

By Lemma 2.1, we have, for j = 0, 1,

pjn(x) =
Ij1n(x)
3
√

1 + x
, (3.39)

where

Ij1n(x) =
1

2πi

∫
Γ1

zj(1 + xz)n+ 1
3

(z2 − 1)n+1
dz.

Consider the curve Γ : {z ∈ C : |z2 − 1| = 1}. It consists of two closed curves. Let Γ1 be
the one enclosing the point 1. Notice that |z|2 = |z2| ≤ |z2 − 1| + 1 = 2 and

√
2 ∈ Γ1.

Hence maxz∈Γ1 |z| =
√

2. Then for |x| < 1/
√

2, we have

|Ij1n(x)| =

∣∣∣∣∣ 1

2πi

∫
Γ1

zj(1 + xz)n+ 1
3

(z2 − 1)n+1
dz

∣∣∣∣∣
≤ |Γ1|

2π
·max
z∈Γ1

∣∣∣∣∣zj(1 + xz)n+ 1
3

(z2 − 1)n+1

∣∣∣∣∣
=
|Γ1|
√

2(1 +
√

2|x|)n+ 1
3

2π
, (3.40)
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for j = 0, 1, where |Γ1| denotes the length of Γ1.

Write z = a+ bi. By the definition of Γ, we can obtain the equation of Γ1 on ab-plane:

(a2 + b2)2 − 2(a2 − b2) = 0, 0 ≤ a ≤
√

2.

We can find the length of Γ1 by an integral along the above curve. Numerical integration
by Maple gives

|Γ1| = 3.70814935 . . . < 3.709. (3.41)

Notice that

| 3
√

1 + x| = 3
√
|1 + x| ≥ 3

√
1− |x|, (3.42)

for |x| < 1/
√

2. Then combining (3.37), (3.38), (3.39), (3.40), (3.41), and (3.42), we obtain

|qjn| = 2|x0 − ρy0| · |Mj| · |pjn(γ)|

≤ 2|x0 − ρy0|22n|H|n3.709 ·
√

2(1 +
√

2|γ|)n+ 1
3

2π 3
√

1− |γ|

<
1.67|x0 − ρy0| 3

√
1 +
√

2|γ|
3
√

1− |γ|

(
4|H|(1 +

√
2|γ|)

)n
.

Lemma 3.9. Suppose that w ≥ 4 and |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|ljn| ≤ lL−n,

where

l =
4|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)

and

L =
1− |γ|2

|H||γ|2
.
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Proof. By the definition of ljn from Lemma 3.6, we have

|ljn| ≤
22n|H|n|θ − ρ||x0 − ρy0||Ijn(γ)|

| 3
√

1− γ|
, (3.43)

for j = 0, 1 and n ≥ 1. By Lemma 3.2, we have

− 1

w + 2
< θ < − 1

w + 2
+

4

(w + 2)w2
< 0,

for w ≥ 4. Thus

|θ − ρ| <

√√√√(−1

2
− 0

)2

+

(√
3

2

)2

= 1. (3.44)

By Lemma 2.3 and the definition of Ijn, we have

Ijn(x) =
∞∑

h=2n+1−j

(
n+ 1

3

h

)
Jh+jx

h,

where

Jh =
1

2πi

∫
Γ

zh

(z2 − 1)n+1
dz.

As a consequence of Lemma 2.2, Jh ≥ 0, since

∞∑
h=0

Jhx
h =

x2n+1

(1− x2)n+1

and the Taylor expansion at 0 of the right hand side of the above equation obviously has
non-negative coefficients. Notice that for h ≥ 2n, we have∣∣∣(n+ 1

3
h

)∣∣∣∣∣∣(n+ 1
3

h+1

)∣∣∣ =

∣∣∣∣ h+ 1

n− h− 1
3

∣∣∣∣ =
h+ 1

h− n− 1
3

> 1.
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Thus
∣∣∣(n+ 1

3
h

)∣∣∣ decreases as h increases. It follows that

|Ijn(x)| ≤
∣∣∣∣(n+ 1

3

2n

)∣∣∣∣ ∞∑
2n+1−j

|Jh+j||x|h

=

∣∣∣∣(n+ 1
3

2n

)∣∣∣∣ |x|−j ∞∑
h=2n+1

Jh|x|h

=

∣∣∣∣(n+ 1
3

2n

)∣∣∣∣ |x|−j |x|2n+1

(1− |x|2)n+1
,

for |x| < 1 by Lemma 2.2. By induction, we can have the following estimate:∣∣∣∣(n+ 1
3

2n

)∣∣∣∣ ≤ 4

9

(
1

4

)n
,

since for n = 1, ∣∣∣∣(n+ 1
3

2n

)∣∣∣∣ =
2

9
=

4

9

(
1

4

)1

,

and for n ≥ 2, ∣∣∣(n+ 1
3

2n

)∣∣∣∣∣∣(n+1+ 1
3

2(n+1)

)∣∣∣ =

∣∣∣∣∣ (2n+ 1)(2n+ 2)(
n+ 1 + 1

3

) (
−n+ 1

3

)∣∣∣∣∣
= 4 ·

n2 + 3
2
n+ 1

2

n2 + n− 4
9

> 4.

Therefore, we obtain

|Ijn(x)| ≤ 4

9

(
1

4

)n
|x|−j |x|2n+1

(1− |x|2)n+1
. (3.45)

Notice that for |γ| < 1/
√

2,

| 3
√

1− γ| = 3
√
|1− γ| ≥ 3

√
1− |γ|. (3.46)
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Then we combine (3.43), (3.44), (3.45) and (3.46). It follows that

|ljn| ≤
22n|H|n|x0 − ρy0|

3
√

1− |γ|
· 4

9

(
1

4

)n
|γ|−j |γ|2n+1

(1− |γ|2)n+1

=
4|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
·
(
|H||γ|2

1− |γ|2

)n
=

4|x0 − ρy0|
9 3
√

1− |γ|(1− |γ|2)
·
(

1− |γ|2

|H||γ|2

)−n
.

Lemma 3.10. Suppose that |H| ≥ 54|m|2, |γ| < 1/
√

2 and w ≥ 4. With the notations as
above, we have, for any integers p and q with q > 0,∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,

where

λ = 1 +
log
(
4|H|(1 +

√
2|γ|)

)
log
(

1−|γ|2
|H||γ|2

)
and

C =
13.36|x0 − ρy0| 3

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
3
√

1− |γ|

·max

(
8|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

Proof. Recall that

γ =
3
√

3mi

H
.

Then by the assumption that |H| ≥ 54|m|2, we have that

(|H|+ 1) · |γ|2 < 2|H| · |γ|2 =
54|m|2

|H|
≤ 1.
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It follows that

L =
1− |γ|2

|H||γ|2
− 1 =

1− (|H|+ 1)|γ|2

|H||γ|2
≥ 0.

Then we can apply Lemma 2.5, together with Lemmas 3.5, 3.7, 3.8 and 3.9. We have that
for any integers p and q with q > 0, ∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,

where

λ = 1 +
logP

logL

= 1 +
log
(
4|H|(1 +

√
2|γ|)

)
log
(

1−|γ|2
|H||γ|2

)
and

C = 2%P max(2l, 1)logP/ logL

= 2 ·
1.67|x0 − ρy0| 3

√
1 +
√

2|γ|
3
√

1− |γ|
· 4|H|(1 +

√
2|γ|)

·max

(
2 · 4|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

=
13.36|x0 − ρy0| 3

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
3
√

1− |γ|

·max

(
8|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

3.3 Upper bounds for the solutions

Lemma 3.11. Let ε ∈ (0, 1) and let λ be defined as in the last section. Suppose that w ≥ 4
and

|H| ≥ 21+4/ε32+2/εk2+2/ε.
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Then we have

λ < 2 + ε.

Proof. By the assumption on H and the definition of γ, it is easy to see that

|γ| = 3
√

3|m|
|H|

≤ 3
√

3k

|H|
<

1√
2
.

Thus the conditions in Lemma 3.10 are satisfied. Then we have P,L, λ defined as in Lemma
3.8, 3.9 and 3.10. With 0 < |γ| < 1/

√
2, we have

P = 4|H|(1 +
√

2|γ|) < 8|H|, (3.47)

and

L =
1− |γ|2

|H||γ|2
= (1− |γ|2)

|H|
(|H||γ|)2

>
|H|

18|m|2
≥ |H|

18k2
, (3.48)

since γ = 3
√

3mi
H

and |m| ≤ k. From the assumption on H, it follows that(
|H|

18k2

)ε+1

8|H|
=

|H|ε

8 · 18ε+1 · k2ε+2
≥ 2ε+4 · 32ε+2 · k2ε+2

8 · 18ε+1 · k2ε+2
= 1.

Then combining (4.32) and (4.33), we have

Lε+1 >

(
|H|
18k2

)ε+1

≥ 8|H| > P.

Taking logarithms, we obtain

(ε+ 1) logL > logP.

Therefore,

λ = 1 +
logP

logL
< 1 + (ε+ 1) = 2 + ε.
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Lemma 3.12. With the same notation as before, suppose that (x0, y0), (x, y) are solutions
to (3.1) of type II. Let H be defined as in (3.16). Assume that as in Lemma 3.11 |H| is
sufficiently large so that λ < 3. Then we have for w ≥ 1000

y <

(
C

B

) 1
3−λ

where

B =
0.999t

k

and

C =
13.36|x0 − ρy0| 3

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
3
√

1− |γ|

·max

(
8|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

Proof. Notice that if w ≥ 4 and |H| is large enough as in Lemma 3.11, the assumptions
in Lemmas 3.3 and 3.10 can be easily satisfied. It then follows directly from these two
lemmas that if (x, y) is a solution to (3.1) then

1

Cyλ
<

∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By3

which gives

y <

(
C

B

) 1
3−λ

with B,C defined as in the statement of the lemma.
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3.4 Proof of Theorem 3.1

Let k = 2t+ 3s. It is obvious that

|F (0, 1)| = s ≤ k,

|F (1, 1)| = 2t+ 3s ≤ k.

Then (0, 1), (1, 1) are the only solutions (x, y) to inequality (3.1) with y = 1 that satisfy
(3.5). We now suppose y ≥ 2 in the rest of this chapter.

Lemma 3.13. If (x, y) is an integer solution to inequality (3.1) with k = 2t + 3s of type
I, then

y < w + 2.

Proof. Recall that

f(x) = x3 − wx2 − (w + 3)x− 1.

Then we have

f ′(x) = 3x2 − 2wx− (w + 3).

Since

f ′
(
−1

2

)
= −9

4
< 0,

f ′(1) = −3w < 0,

we see that f ′(x) < 0 on interval (−1/2, 1] and hence f(x) decreases on (−1/2, 1]. On the
other hand, we have

f

(
− 1

w + 2

)
=

2w + 3

(w + 2)3
> 0,

f

(
− 1

w + 2
+

4

(w + 2)w2

)
= −2w4 + 5w3 − 6w2 + 12w − 8

w6
< 0

and

2w + 3

(w + 2)3
<

2w4 + 5w3 − 6w2 + 12w − 8

w6
,
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for w ≥ 1. It follows that if (x, y) is of type I, then∣∣∣∣f (xy
)∣∣∣∣ ≥ 2w + 3

(w + 2)3
.

Then we have

k = 2t+ 3s ≥ |F (x, y)| = sy3

∣∣∣∣f (xy
)∣∣∣∣ ≥ (2t+ 3s)y3

(w + 2)3
.

This gives

y ≤ w + 2.

Notice that gcd(s, t) = 1 and y ∈ N. Thus y 6= w + 2. Then we obtain

y < w + 2.

Lemma 3.14. There is no integer solution (x, y) to (3.1) of type I, where in (3.1) k =
2t+ 3s.

Proof. Suppose that (x, y) is a solution to (3.1) of type I. By assumption, x/y 6= 0 since
y ≥ 2 and gcd(x, y) = 1. We then have

x

y
6∈
(
−1

y
,

1

y

)
,

since otherwise

1

y
>

∣∣∣∣xy − 0

∣∣∣∣ =
|x|
y
≥ 1

y
,

which is a contradiction. Put

h(y) = (−y3 + (w + 3)y2 − wy − 1)− (2w + 3).

Since

h(1) = −2− 2w ≤ 0, h(2) = h(w + 2) = 0,
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we have that h(y) ≥ 0 on interval [2, w + 2). By Lemma 3.13, we have

y < w + 2.

Thus, we see that if (x, y) is of type I, then

−y3 + (w + 3)y2 − wy − 1 ≥ 2w + 3. (3.49)

Notice that (3.49) takes the equality sign only when y = 2. If y = 2, then by condition
(3.5), the only choice for x is 1. However, (1, 2) is not a solution since |F (1, 2)| = 6t+ 19s.
Thus we can remove the equality sign in (3.49) and get

−y3 + (w + 3)y2 − wy − 1 > 2w + 3. (3.50)

From the proof of Lemma 3.13, we know that function f(x) is decreasing on interval
(−1/2, 1]. By (3.50), we have

f

(
−1

y

)
=
−y3 + (w + 3)y2 − wy − 1

y3
>

2w + 3

y3

f

(
1

y

)
= −(y2 + y)w + (y3 + 3y2 − 1)

y3
< −2w + 3

y3

Therefore ∣∣∣∣f (xy
)∣∣∣∣ > 2w + 3

y3
,

if (x, y) is of type I. It follows that

k = 2t+ 3s ≥ |F (x, y)| = sy3

∣∣∣∣f (xy
)∣∣∣∣ > 2t+ 3s,

which is a contradiction.

Lemma 3.15. If (x, y) is an integer solution to (3.1) of type II, then

y >
t2

4s3
.
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Proof. By the definition of type II, if (x, y) is of this type, then

− 1

w + 2
<
x

y
< − 1

w + 2
+

4

(w + 2)w2
.

Multiply the above inequality by (w + 2)sy. We have

−sy < x(w + 2)s = x(t+ 2s) < −sy +
4sy

w2
.

Since both −sy and x(t+ 2s) are integers, it follows that

4sy

w2
> 1.

That is

y >
w2

4s
=

t2

4s3
.

Lemma 3.16. With the assumption in Theorem 3.1, there are at most τ integer solutions
to (3.1) of type II.

Proof. Suppose that (x0, y0) is a non-trivial integer solution to (3.1) of type II. Then

x0

y0

∈
(
− 1

w + 2
,− 1

w + 2
+

4

(w + 2)w2

)
. (3.51)

Recall the definition of H:

H = (2t+ 3s)x3
0 + (3t+ 18s)x2

0y0 − (3t− 9s)x0y
2
0 − (2t+ 3s)y3

0.

Put

g(x) = (2w + 3)x3 + (3w + 18)x2 − (3w − 9)x− (2w + 3).

Then

g′(x) = (6w + 9)x2 + (6w + 36)x− 3w + 9.
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Since

g′(−1) = −3w − 18 < 0,

g′(0) = −3w + 9 < 0,

for w > 3, we have that g(x) is decreasing on the interval (−1, 0). Then if x is in the
interval given by (3.51), then

g

(
− 1

w + 2
+

4

(w + 2)w2

)
< g(x) < g

(
− 1

w + 2

)
.

We have

g

(
− 1

w + 2

)
= −2w4 + 12w3 + 36w2 + 54w + 27

(w + 2)3
< 0,

g

(
− 1

w + 2
+

4

(w + 2)w2

)
= −2w7 + 12w5 − 22w4 + 51w3 − 66w2 + 20w − 24

w6
< 0.

It follows that

2w4 + 12w3 + 36w2 + 54w + 27

(w + 2)3
< |g(x)|

<
2w7 + 12w5 − 22w4 + 51w3 − 66w2 + 20w − 24

w6
.

For w ≥ 1000, we have

2w4 + 12w3 + 36w2 + 54w + 27

(w + 2)3
≥ 2w,

2w7 + 12w5 − 22w4 + 51w3 − 66w2 + 20w − 24

w6
≤ 2.000012w.

Thus

2w < |g(x)| < 2.000012w.

By the definition of g(x) and H, together with (3.51), we obtain

2ty3
0 < |H| < 2.000012ty3

0. (3.52)
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By Lemma 3.15, we have that if (x, y) is a solution to (3.1) of type II then

y >
t2

4s3
. (3.53)

By the assumption of the theorem, we have that

t ≥ 1.2 · 106s3+χ, (3.54)

where

χ =
21

2τ
, for τ ≥ 5. (3.55)

Then we have

0 < χ ≤ 21

32
. (3.56)

(3.54) implies that

s−1 ≥ (1.2 · 106)
1

3+χ t−
1

3+χ . (3.57)

From (3.53) and (3.57), we have

y >
t2

4
·
(

(1.2 · 106)
1

3+χ t−
1

3+χ

)3

≥ 24321t
3+2χ
3+χ . (3.58)

The last inequality holds since the coefficient takes minimal value when χ takes maximal
value 21/32. (3.58) is equivalent to

t < 24321−
3+χ
3+2χy

3+χ
3+2χ < 5230−1y

3+χ
3+2χ , (3.59)

since

24321
3+χ
3+2χ ≥ 24321

39
46 > 5230.

In particular, since (x0, y0) is a solution of type II, we have

t < 5230−1y
3+χ
3+2χ

0 (3.60)
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From (3.52), together with (3.58), we have

|H| > 2ty3
0

> 2t ·
(

24321t
3+2χ
3+χ

)3

= 2 · 243213 · t1+3· 3+2χ
3+χ

> 2.8 · 1013t
12+7χ
3+χ . (3.61)

Put

ε =
2(3 + χ)

6 + 5χ
. (3.62)

It is easy to see that ε ∈ (0, 1). For w ≥ 500,

k = 2t+ 3s ≤ 2.006t.

Then we have

21+4/ε32+2/εk2+2/ε ≤ 2−3 (4 · 3 · 2.006)2+2/ε t2+2/ε

= 2−3 · 24.072
12+7χ
3+χ t

12+7χ
3+χ

< 2.33 · 105t
12+7χ
3+χ . (3.63)

The last inequality holds since 12+7χ
3+χ

takes maximal value when χ takes its maximal value

21/32. By (3.61) and (3.63), we see that the condition in Lemma 3.11 is satisfied and thus

|H| ≥ 21+4/ε32+2/εk2+2/ε. (3.64)

Hence we can apply Lemma 3.11, which gives λ < 2 + ε < 3. By Lemma 3.12, we have
that if (x, y) is a solution to (3.1) of type II then

y <

(
C

B

) 1
3−λ

, (3.65)

where

B =
0.999t

k
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and

C =
13.36|x0 − ρy0| 3

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
3
√

1− |γ|

·max

(
8|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

We now estimate B and C in the current case. Since by assumption, we have

w = t/s ≥ 1.2 · 106s2+χ ≥ 1.2 · 106 · 22 = 4.8 · 106.

Thus

B =
0.999t

k
=

0.999t

2t+ 3s
=

0.999

2 + 3/w
> 0.499499. (3.66)

Notice that (x0, y0) is of type II. Then

x0

y0

∈
(
− 1

w + 2
,− 1

w + 2
+

4

(w + 2)w2

)
⊂
(
− 1

4.8 · 106
, 0

)
.

We have

|x0 − ρy0| = y0

∣∣∣∣x0

y0

− ρ
∣∣∣∣ <

√√√√(1

2

)2

+

(
−
√

3

2

)2

= 1,

|x0 − ρy0| = y0

∣∣∣∣x0

y0

− ρ
∣∣∣∣ <

√√√√(1

2

)2

+

(√
3

2

)2

= 1.

From condition (3.64) and k = 2t+ 3s = s(2w + 3) ≥ 2(2 · 4.8 · 106 + 3) > 107, it follows

|γ| = 3
√

3|m|
|H|

≤ 3
√

3k

|H|

≤ 3
√

3k

21+4/ε32+2/εk2+2/ε

<
3
√

3

25 · 34 · (107)3

< 3 · 10−24.
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Therefore,

C =
13.36|x0 − ρy0| 3

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
3
√

1− |γ|

·max

(
8|x0 − ρy0|

9 3
√

1− |γ|(1− |γ|2)
, 1

)λ−1

<
13.36y0

3
√

1 +
√

2 · 3 · 10−24|H|(1 +
√

2 · 3 · 10−24)
3
√

1− 3 · 10−24

·max

(
8y0

9 3
√

1− 3 · 10−24(1− (3 · 10−24)2)
, 1

)λ−1

< 13.361 · 0.8889λ−1|H|yλ0
< 10.5572|H|yλ0 ,

since y0 ≥ 2 and λ < 3. Thus (3.65) implies

y <
(
21.14|H|yλ0

) 1
3−λ . (3.67)

Recall the right hand side of (3.52),

|H| < 2.000012ty3
0.

Together with (3.60) and (3.62), we obtain

y <
(
21.14|H|yλ0

) 1
3−λ

<
(
21.14 · 2.000012ty3

0y
λ
0

) 1
3−λ

<

(
42.2803

5230
· y

3+χ
3+2χ

0 y3+λ
0

) 1
3−λ

< (0.0080842)
6+5χ

3χ y
126+174χ+59χ2

3(3+2χ)χ

0 . (3.68)

The last inequality holds because 3+λ
3−λ is increasing in λ ∈ (0, 3) and λ < 2+ ε < 3. Assume

that there are τ + 1 solutions (x0, y0), (x1, y1), . . . , (xτ , yτ ) to (3.1) with condition (3.5).
Further assume that

y0 ≤ y1 ≤ . . . ≤ yτ .
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Then by Lemmas 2.6 and 3.3, we have by induction

yτ ≥
(
B

2

)
y2
τ−1

≥
(
B

2

)((
B

2

)
y2
τ−2

)2

≥ . . .

≥
(
B

2

)2τ−1

y2τ

0 .

Together with the above estimation for B, we get

yτ > 0.24974952τ−1y2τ

0 . (3.69)

By Lemma 3.14, we know that (xτ , yτ ) has to be type II as well. Then (3.68) applies to
yτ . Together with (3.69) we have

0.24974952τ−1y2τ

0 < (0.0080842)
6+5χ

3χ y
126+174χ+59χ2

3(3+2χ)χ

0 .

Notice that χ = 21/2τ . Then 2τ = 21/χ. It follows that

0.2497495
21
χ
−1y

21
χ

0 < (0.0080842)
6+5χ

3χ y
126+174χ+59χ2

3(3+2χ)χ

0 .

That is,

y
21− 126+174χ+59χ2

3(3+2χ)

0 < 0.2497495−21+χ · (0.0080842)
6+5χ

3 . (3.70)

Put

φ = 21− 126 + 174χ+ 59χ2

3(3 + 2χ)
.

Then

φ = −59χ2 + 48χ− 63

3(3 + 2χ)
.
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Since 59x2 + 48x− 63 = 0 has two roots at −1.5173 . . . and 0.7037 . . ., we have φ > 0 for
χ ∈

(
0, 21

32

]
from (3.56). Therefore, (3.70) gives

y0 <
(

0.2497495−21+χ · (0.0080842)
6+5χ

3

) 1
φ

= exp

(
1

φ
·
(

log(0.2497495)(−21 + χ) + log(0.0080842)
6 + 5χ

3

))
< exp

(
3(3 + 2χ)(19.5− 9.4χ)

63− 48χ− 59χ2

)
< exp(28.32)

< 2 · 1012. (3.71)

The second last inequality holds since 3(3+2χ)(19.5−9.4χ)
63−48χ−59χ2 takes its maximal value at χ = 21/32.

On the other hand, from (3.53) and (3.54), we have

y0 >
t2

4s3

≥ (1.2 · 106)2s3+2χ

4

≥ (1.2 · 106)223

4
= 2.88 · 1012.

This is a contradiction to (3.71). Thus it follows that there are at most τ solutions to (3.1)
of type II.

Combining Lemmas 3.14 and 3.16, we have that there are at most τ integer solutions
(x, y) to (3.1) that satisfies (3.5) and y ≥ 2. Then by (3.2), we conclude that for s ≥ 2, t ≥
3 · 105s3+21/2τ with τ ≥ 5, other than the trivial solutions

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1),

(−1, t+ 2), (−t− 2, t+ 1), (t+ 1, 1)} if s = 1,

±{(0, 1), (1,−1), (−1, 0), (1, 1), (1,−2), (−2, 1)} if s ≥ 2,

there are at most 6τ integer solutions to the Thue inequality

|sx3 − tx2y − (t+ 3s)xy2 − sy3| ≤ 2t+ 3s.
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Chapter 4

Quartic Simple Form

Let s, t ∈ N and
F (X, Y ) = sx4 − tx3y − 6sx2y2 + txy3 + sy4

be an irreducible quartic form. F is a simple form by the definition in Chapter 1 since
direct calculation implies

F (x− y, x+ y) = −4F (x, y) (4.1)

and accordingly the map

ψ : z 7→ z − 1

z + 1
(4.2)

permutes the roots of F (x, 1) transitively. In this chapter, we mainly focus on the inequal-
ity:

|F (X, Y )| = |sx4 − tx3y − 6sx2y2 + txy3 + sy4| ≤ k, (4.3)

where k is a linear form in s and t. As discussed in Chapter 1, Wakabayashi [51] completely
solved (4.3) for s ≥ 1, t ≥ 70s28/9 and k = 7s+ 6t. We shall prove the following result:

Theorem 4.1. Let τ be an integer with τ ≥ 2 and let s, t be positive integers such that

sx4 − tx3y − 6sx2y2 + txy3 + sy4 (4.4)

is irreducible over Q. Suppose that s ≥ 1 and t ≥ 1200s2+4/3τ . Then other than the trivial
solutions

±{(1, 0), (0, 1), (1, 1), (1,−1),

(1, 2), (2,−1), (2, 1), (1,−2)}
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there are at most 8τ primitive integer solutions to the Thue inequality

|sx4 − tx3y − 6sx2y2 + txy3 + sy4| ≤ 7s+ 6t. (4.5)

Since the case when s = 1 had been explicitly solved by Lettl, Pethő and Voutier [22],
in the following proof we always assume s ≥ 2. The proof is similar to the cubic case.

4.1 Elementary properties

In this section, we shall study some elementary properties of the underlying polynomial

F (x, y) = sx4 − tx3y − 6sx2y2 + txy3 + sy4.

From (4.1), we can see that if (x, y) is a solution to (4.3), then any element in

±{(x, y), (x− y, x+ y), (y,−x), (x+ y,−x+ y)} (4.6)

is a solution to the following inequality

|F (x, y)| ≤ 4k. (4.7)

Notice that the map (4.2) permutes the intervals

[1/2, 3), [−1/3, 1/2), [−2,−1/3), (−∞,−2) ∪ [3,+∞).

If there exists an integer solution (x, y) to (4.3), we can always choose one from the set of
solutions (4.6) to the inequality (4.7) that satisfies the following condition

1

2
≤ x

y
< 3, gcd(x, y) = 1, y ≥ 0. (4.8)

Let

f(x) =
1

s
F (x, 1) = x4 −

(
t

s

)
x3 − 6x2 +

(
t

s

)
x+ 1.

Put w = t/s. We have
f(x) = x4 − wx3 − 6x2 + wx+ 1. (4.9)

68



Lemma 4.2. f(x) = 0 has four real roots. Denote these zeros by θ−1, θ0, θ1, θ2. Further,
if w ≥ 3000, then the following holds:

−1− 2

w − 1
< θ−1 < −1− 2

w

− 1

w
< θ0 < −

1

w + 1

1− 2

w + 1
< θ1 < 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

w < θ2 < w +
5

w

Proof. Since w = t/s > 0, we have

f(−3)f(−1) = −112− 96w < 0

f(−1)f(0) = −4 < 0

f(0)f(1) = −4 < 0

f(1) = −4 & f(+∞) = +∞
It follows that f has four real roots.

Further, if w ≥ 3000, then we have 1− 5w2 < 0 and w3− 2w2− 8w− 4 = w((w− 1)2−
9)− 4 > 0. We have the following:

f

(
−1− 2

w − 1

)
=

4(5w2 − 1)

(w − 1)4
> 0, f

(
−1− 2

w

)
= −4(w3 − 2w2 − 8w − 4)

w4
< 0

f

(
− 1

w

)
= −5w2 − 1

w4
< 0, f

(
− 1

w + 1

)
=
w3 − 2w2 − 8w − 4

(w + 1)4
> 0

f

(
1− 2

w + 1

)
=

4(5w2 − 1)

(w + 1)4
> 0

f

(
1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
= − 1

(w + 1)4(w2 + w + 5)4

(
2w10 + 8w9 + 144w8 + 529w7 + 2022w6

+5538w5 + 11021w4 + 18736w3 + 22176w2 + 14034w + 3479
)

< 0
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f(w) = 1− 5w2 < 0, f

(
w +

5

w

)
=

21w4 + 225w2 + 625

w4
> 0

Then the second assertion follows.

Suppose that (x, y) is an integer solution to (4.7) that satisfies (4.8). From the above
lemma, we see that x/y is bounded away from all roots of f except θ1 for w large enough.
In the rest of the proof in chapter, let θ = θ1. We thus define the following interval that
contains this root:

I =

(
1− 2

w + 1
, 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
(4.10)

and further we have the following defintion:

Definition For w ≥ 4, we call (x, y) an integer solution to (4.7) of type I if (x, y) satisfies
(4.7) with gcd(x, y) = 1, y ≥ 4 and

x

y
∈
[

1

2
, 1− 2

w + 1

]
∪
[
1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)
, 3

)
;

(x, y) an integer solution to (4.7) of type II if (x, y) satisfies (4.7) with gcd(x, y) = 1, y ≥ 4
and

x

y
∈ I.

Lemma 4.3. Suppose that (x, y) is a primitive solution to (4.7) of type II and w ≥ 3000.
Then we have ∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By4
,

where

B =
0.499t

k
.

Proof. Put

δi =

∣∣∣∣θi − x

y

∣∣∣∣ ,
70



for i = −1, 0, 1, 2. By the definition of type II solutions and Lemma 4.2, we have, for
w ≥ 3000,

x

y
∈
(

1− 2

w + 1
, 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
⊂ (0.999, 1)

and then
δ−1 > 1.999, δ0 > 0.999, δ2 > w − 1.

Since

F (x, y) = sy4

(
x

y
− θ−1

)(
x

y
− θ0

)(
x

y
− θ
)(

x

y
− θ2

)
and

|F (x, y)| ≤ 4k,

we have ∣∣∣∣θ − x

y

∣∣∣∣ =
|F (x, y)|
sy4δ−1δ0δ2

≤ 4k

sy4δ−1δ0δ2

<
4k

sy41.999 · 0.999(w − 1)

<
k

0.499ty4

=
1(

0.499t
k

)
y4
,

for w ≥ 2000.

4.2 Irrationality of the root of f

Suppose that (x0, y0) is an integer solution to (4.7) that satisfies (4.8). We’ll derive an
irrationality measure for θ in term of (x0, y0). Let λ denote the complex conjugate for any
complex number λ.

71



Lemma 4.4. The form F can be written as

F (x, y) = sx4 − tx3y − 6sx2y2 + txy3 + sy4

=
1

2

(
η(x− ρy)4 + η(x− ρy)4

)
where

η = s− t

4
i, ρ = i

and i =
√
−1.

Proof. We only need to verify that F is equal to the real part of η(x − ρy)4. Direct
calculation gives

(x− iy)4 = (x4 − 6x2y2 + y4)− (4x3y − 4xy3)i.

Then the real part of η(x− ρy)4 is

<(η(x− ρ)4) = s(x4 − 6x2y2 + y4)− t

4
(4x3y − 4xy3)

= sx4 − tx3y − 6sx2y2 + txy3 + sy4

= F (x, y).

Recall from last section that θ is a root of f(x) = F (x, 1)/s. Then by Lemma 4.4, we
have

η(θ − i)4 + η(θ + i)4 = 0.

This gives

η

η
= −(θ + i)4

(θ − i)4
. (4.11)

On the other hand, since (x0, y0) is a solution to (4.7), we can put

F (x0, y0) = m,
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for some fixed integer m with |m| ≤ 4k. Then by Lemma 4.4 again,

1

2
(η(x0 − iy0)4 + η(x0 + iy0)4) = m.

Thus, we can put

η(x0 − iy0)4 = m+ Ai, (4.12)

where
A = −(t/4)x4

0 − 4sx3
0y0 + (3t/2)x2

0y
2
0 + 4sx0y

3
0 − (t/4)y4

0. (4.13)

Hence
η(x0 − iy0)4

η(x0 + iy0)4
=
m+ Ai

m− Ai
.

Together with (4.11), it follows that

(θ + i)4

(θ − i)4
· (x0 − iy0)4

(x0 + iy0)4
=
Ai+m

Ai−m
=

1 + γ

1− γ
,

where γ = m/Ai. Take a 4th root on both sides of the above equation. We have

θ + i

θ − i
· x0 − iy0

x0 + iy0

=
4
√

1 + γ
4
√

1− γ
, (4.14)

where we choose the quartic roots so that their arguments lie in the interval (−π/6, π/6)
since from last section x0/y0 is close to θ and so the left side is close to 1.

Let Ijn(x), pjn(x), j = 0, 1, be defined as in Lemma 2.1. Then by applying Lemma 2.1
with µ = 4 and x = γ, for any n ≥ 1, j = 0, 1, we have

Ijn(γ) = pjn(γ) 4
√

1 + γ − (−1)jpjn(−γ) 4
√

1− γ, (4.15)

where

p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

4

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h (4.16)

p1n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

4

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h, (4.17)

73



and

Ijn(γ) =
1

2πi

∫
Γ

zj(1 + γz)n+ 1
4

(z2 − 1)n+1
dz, (4.18)

for j = 0, 1. Dividing both sides of (4.15) by 4
√

1− γ, we have

Ijn(γ)
4
√

1− γ
= pjn(γ)

4
√

1 + γ
4
√

1− γ
− (−1)jpjn(−γ).

Substituting (4.14), we get

Ijn(γ)
4
√

1− γ
= pjn(γ)

(θ + i)(x0 − iy0)

(θ − i)(x0 + iy0)
− (−1)jpjn(−γ).

It follows that

(θ − i)(x0 + iy0)Ijn(γ)
4
√

1− γ
= θ

(
pjn(γ)(x0 − iy0)− (−1)jpjn(−γ)(x0 + iy0)

)
+
(
pjn(γ)(x0 − iy0)i+ (−1)jpjn(−γ)(x0 + iy0)i

)
.

Put, for n ≥ 1,

p0n = −(p0n(γ)(x0 − iy0) + p0n(−γ)(x0 + iy0))

q0n = i(p0n(γ)(x0 − iy0)− p0n(−γ)(x0 + iy0)) (4.19)

l0n =
i(θ − i)(x0 + iy0)I0n(γ)

4
√

1− γ

and

p1n = i(p1n(γ)(x0 − iy0)− p1n(−γ)(x0 + iy0))

q1n = p1n(γ)(x0 − iy0) + p1n(−γ)(x0 + iy0) (4.20)

l1n =
(θ − i)(x0 + iy0)I1n(γ)

4
√

1− γ
.

Then we have, for n ≥ 1, j = 0, 1,

θqjn + pjn = ljn. (4.21)

Since γ is a purely imaginary number, it is easy to see from the definition of pjn and qjn
that

pjn, qjn ∈ Q, for j = 0, 1, n ≥ 1.
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Lemma 4.5. With pjn, qjn defined in (4.19) and (4.20) for j = 0, 1, we have∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ 6= 0,

for any n ≥ 1.

Proof. By Lemma 2.4, we have

∆(γ) =

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣ = c2nγ
2n 6= 0. (4.22)

Put Aj = pjn(γ)(x0 − iy0), Bj = pjn(−γ)(x0 + iy0) for j = 0, 1. Then by (4.19) and
(4.20), we have

p0n = −(A0 +B0), p1n = i(A1 −B1),

q0n = i(A0 −B0), q1n = (A1 +B1).

It follows that ∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ =

∣∣∣∣ −(A0 +B0) i(A0 −B0)
i(A1 −B1) (A1 +B1)

∣∣∣∣
=

∣∣∣∣ −2A0 i(A0 −B0)
2iA1 (A1 +B1)

∣∣∣∣
= 2

∣∣∣∣ −A0 −iB0

iA1 B1

∣∣∣∣
= −2

∣∣∣∣ A0 −B0

A1 B1

∣∣∣∣
= −2

∣∣∣∣ p0n(γ)(x0 − iy0) −p0n(−γ)(x0 + iy0)
p1n(γ)(x0 − iy0) p1n(−γ)(x0 + iy0)

∣∣∣∣
= −2(x2

0 + y2
0)

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣
= −2(x2

0 + y2
0)∆(γ)

6= 0

by (4.22).
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Lemma 4.6. Suppose that |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|qjn| < ρP n,

where

ρ = 1.67
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

and
P = 1 +

√
2|γ|.

Proof. By the definition of qjn, we have

|qjn| ≤ 2|pjn(γ)(x0 − iy0)| (4.23)

By Lemma 2.1,

pjn(x) =
Ij1n(x)
4
√

1 + x
, (4.24)

where

Ij1n(x) =
1

2πi

∫
Γ1

zj(1 + xz)n+ 1
4

(z2 − 1)n+1
dz.

To estimate Ij1n(x), let’s consider curve Γ : {z ∈ C : |z2−1| = 1}. It consists of two closed
curves. Let Γ1 be the one enclosing the point 1. Notice that |z|2 ≤ |z2 − 1| + 1 = 2 and√

2 ∈ Γ1. Hence maxz∈Γ1 |z| =
√

2. Then for |x| < 1/
√

2, we have

|Ij1n(x)| =

∣∣∣∣∣ 1

2πi

∫
Γ1

zj(1 + xz)n+ 1
4

(z2 − 1)n+1
dz

∣∣∣∣∣
≤ |Γ1|

2π
·max
z∈Γ1

∣∣∣∣∣zj(1 + xz)n+ 1
4

(z2 − 1)n+1

∣∣∣∣∣
=
|Γ1|
√

2
j
(1 +

√
2|x|)n+ 1

4

2π
, (4.25)

where |Γ1| denotes the length of Γ1.

Write z = a+ bi. By the definition of Γ, we can obtain the equation of Γ1 on ab-plane:

(a2 + b2)2 − 2(a2 − b2) = 0, 0 ≤ a ≤
√

2.
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We can find the length of Γ1 by an integral along the above curve. Numerical integration
gives the estimate

|Γ1| = 3.70814935 . . . < 3.709. (4.26)

Also, | 4
√

1− x| = 4
√
|1− x| ≥ 4

√
1− |x|. Together with (4.23), (4.24), (4.25), we get

|qjn| ≤ 2|x0 − iy0||pjn(γ)|

≤ 2
√
x2

0 + y2
0|Γ1|
√

2
j
(1 +

√
2|γ|)n+ 1

4

2π 4
√

1− |γ|

≤
1.67

√
x2

0 + y2
0

4

√
1 +
√

2|γ|
4
√

1− |γ|
· (1 +

√
2|γ|)n.

Lemma 4.7. Suppose that |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|ljn| ≤ lL−n,

where

l =
0.625

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)

and

L =
4(1− |γ|2)

|γ|2
.

Proof. By the definition of ljn, we have that

|ljn| =
|θ − i||x0 + iy0||Ijn(γ)|

| 4
√

1− γ|
. (4.27)

By Lemma 2.2 and Lemma 2.3, we have

Ijn(x) =
∞∑

h=2n+1−j

(
n+ 1

4

h

)
Jh+jx

h,

where

Jh =
1

2πi

∫
Γ

zh

(z2 − 1)n+1
dz.
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As a consequence of Lemma 2.2, Jh ≥ 0. Notice that for h ≥ 2n,
∣∣∣(n+ 1

4
h

)∣∣∣ decreases as h

increases. It follows that

|Ijn(x)| ≤
∣∣∣∣(n+ 1

4

2n

)∣∣∣∣ ∞∑
h=2n+1−j

|Jh+j||x|h

=

∣∣∣∣(n+ 1
4

2n

)∣∣∣∣ |x|−j ∞∑
h=2n+1

Jh|x|h

=

∣∣∣∣(n+ 1
4

2n

)∣∣∣∣ |x|−j |x|2n+1

(1− |x|2)n+1

by Lemma 2.2. Moreover, one can show by induction that∣∣∣∣(n+ 1
4

2n

)∣∣∣∣ ≤ 5

8

(
1

4

)n
.

Therefore, together with (4.27), we get

|ljn| ≤
5|θ − i||x0 + iy0|

8| 4
√

1− γ|

(
1

4

)n |γ|2n

(1− |γ|2)n+1

≤ 0.625
√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)

(
|γ|2

4(1− |γ|2)

)n
.

Lemma 4.8. Let ∆n be the common denominator of pjn, qjn for n ≥ 1. Then

∆n ≤ d∆n,

where d = 0.25, ∆ = 128|A|.

Proof. From the definition of pjn, qjn and the fact x0, y0 ∈ Z, we see that ∆n divides the
common denominator of the coefficients of pjn(γ). Notice that the number of 2-factors in
h! is at most h− 1. Hence we have

4h2h−1

(
n+ 1

4

h

)
= 4h2h−1 (n+ 1/4)(n− 1 + 1/4) · · · (n− h+ 1 + 1/4)

h!

= 2h−1 (4n+ 1)(4(n− 1) + 1) · · · (4(n− h+ 1) + 1)

h!
.
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Suppose p is a prime such that p|h! with p 6= 2 and a is a positive integer such that pa|h!
but pa+1 - h!. First notice that p ≤ h. Then consider the natural integer sequence modulo
p:

1, 2, 3, . . . , p− 1, 0, 1, 2, . . . (4.28)

The exponent of p-factor in h!, a, depends on the number of times 0 appears in the first h
elements in the above sequence:

(1, 2, . . . , h) mod p. (4.29)

In other words, a depends on how many complete residual sets (1, 2, . . . , p − 1, 0) (4.29)
contains mod p. Notice that (n − h + 1, n − h + 1, . . . , n) is a sequence of h consecutive
integers. We have that modulo p, it contains the same number of complete residual sets
as (4.29). Since gcd(2, p) = 1, it follows that

(4(n− h+ 1) + 1, 4(n− h+ 2) + 1, . . . , 4n+ 1) mod p (4.30)

contains the same number of complete residual sets (1, 2, . . . , p−1, 0) as well. This implies
that

pa |
h−1∏
j=0

(4(n− j) + 1).

Hence we have

4h2h−1

(
n+ 1

4

h

)
∈ Z.

Also notice that for n ≥ 1,
(

2n
n

)
has at least one 2-factor and

4A = 4

(
− t

4
x4

0 − 4sx3
0y0 +

3t

2
x2

0y
2
0 + 4sx0y

3
0 −

t

4
y4

0

)
∈ Z.

Then by the definition of pjn(γ) in (4.16) and (4.17), we have

22n2n−14n(4A)npjn(γ) ∈ Z[i].

Therefore, by the definition of pjn, qjn, we have

2−122n2n−14n(4A)npjn ∈ Z, 2−122n2n−14n(4A)nqjn ∈ Z.

It follows that
∆n ≤ 0.25(128|A|)n.
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Lemma 4.9. Suppose that |A| ≥ 32m2 + |m|. With the notation as above, we have, for
any integers p and q with q > 0, ∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,

where

λ = 1 +
log(128|A|(1 +

√
2|γ|))

log
(

1−|γ|2
32|A||γ|2

)
and

C = 106.88
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

|A|(1 +
√

2|γ|)

·

(
max

{
0.3125

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

.

Proof. By assumption |A| ≥ 32m2 + |m|. Then we have

L

∆
=

4(1− |γ|2)

128|A||γ|2
=

1 + |m|/|A|
32

(
|A|
m2
− 1

|m|

)
> 1.

Apply Lemma 2.5 on (4.21), with the conditions shown by Lemmas 4.5, 4.6, 4.7, 4.8. It
follows that ∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,

for any p, q ∈ Z, q > 0, where

λ = 1 +
log(∆P )

log(L/∆)

= 1 +
log(128|A|(1 +

√
2|γ|))

log
(

1−|γ|2
32|A||γ|2

)
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and

C = 2ρd∆P (max{2dl, 1})λ−1

= 2 · 1.67
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

· 0.25 · 128|A|(1 +
√

2|γ|)

·

(
max

{
2 · 0.25 · 0.625

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

= 106.88
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

|A|(1 +
√

2|γ|)

·

(
max

{
0.3125

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

.

4.3 Upper bounds for the solutions

Lemma 4.10. Let ε ∈ (0, 2). If

|A| ≥ 128.11/ε · 512.11+1/εk2+2/ε, (4.31)

then λ < 2 + ε.

Proof. By the assumption on A, we have

|A| > 1281/ε · 5121+1/εk2+2/ε > 26(4k)2 > 32m2 + |m|
then the condition in Lemma 4.9 is satisfied. By the definition of γ,

|γ| = |m|
|A|

≤ 4k

|A|

≤ 4k

128.11/ε · 512.11+1/εk2+2/ε

<
4

1281/2 · 5123/2

= 2−17.
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Then we have P,L,∆, λ defined as in the previous lemmas. It follows that

∆P = 128|A|(1 +
√

2|γ|) < 128.1|A|, (4.32)

and

L

∆
=

1− |γ|2

32|A||γ|2

= (1− |γ|2)
|A|

32(|A||γ|)2

= (1− |γ|2)
|A|

32|m|2

≥ (1− |γ|2)
|A|

32 · 16k2

≥ |A|
512.1k2

, (4.33)

since γ = m
Ai

and |m| ≤ 4k. From the assumption on A, it follows that(
|A|

512.1k2

)ε+1

128.1|A|
=

|A|ε

128.1 · 512.1ε+1 · k2ε+2
≥ 128.1 · 512.1ε+1k2ε+2

128.1 · 512.1ε+1 · k2ε+2
= 1.

Then combining (4.32) and (4.33), we have(
L

∆

)ε+1

>

(
|A|

512.1k2

)ε+1

≥ 128.1|A| > ∆P.

Taking logarithms, we obtain

(ε+ 1) log(L/∆) > log(∆P ).

Therefore,

λ = 1 +
log(∆P )

log(L/∆)
< 1 + (ε+ 1) = 2 + ε.
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Lemma 4.11. With the same notation as before, suppose that (x0, y0), (x, y) are solutions
to (4.7) of type II. Let A be defined as in (4.13). Assume that as in Lemma 4.10 |A| is
sufficiently large so that λ < 4. Then we have for w ≥ 2000,

y <

(
C

B

) 1
4−λ

,

where

B =
0.499t

k

and

C = 106.88
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

|A|(1 +
√

2|γ|)

·

(
max

{
0.3125

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

.

Proof. Notice that if w ≥ 4 and |A| is large enough as in Lemma 4.10, the assumptions in
Lemmas 4.3 and 4.9 can be easily satisfied. It then follows directly from these two lemmas
that if (x, y) is a solution to (4.7) then

1

Cyλ
<

∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By4
,

which gives

y <

(
C

B

) 1
4−λ

with B,C defined as in the statement of the lemma.
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4.4 Proof of Theorem 4.1

Let k = 6t+ 7s. For 1 ≤ y ≤ 3, the following pairs satisfy assumption (4.8):

(1, 1), (2, 1), (1, 2), (3, 2), (5, 2), (2, 3), (4, 3), (5, 3), (7, 3), (8, 3).

Substituting these integer pairs to (4.7), we see that only

(1, 1), (2, 1), (1, 2)

are integer solutions to (4.7) with condition (4.8). Then by (4.1) we can get all the other
trivial solutions to (4.3) as stated in the theorem. In the following proof, we assume that
y ≥ 4.

Lemma 4.12. Let (x, y) ∈ Z2 be a solution to (4.3) of type I. Then

y <
w

2
,

for w ≥ 400.

Proof. Consider

f(x) =
1

s
F (x, 1) = x4 − wx3 − 6x2 + wx+ 1.

For w ≥ 3000, from the shape of f(x), we see that if (x, y) is of type I, then∣∣∣∣f (xy
)∣∣∣∣ ≥ min

{∣∣∣∣f (1− 2

w + 1

)∣∣∣∣ , ∣∣∣∣f (1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)∣∣∣∣} .
Similar to that in the proof of Lemma 4.2,

f

(
1− 2

w + 1

)
=

4(5w2 − 1)

(w + 1)4
>

19

w2

and

f

(
1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
= − 1

(w + 1)4(w2 + w + 5)4

(
2w10 + 8w9 + 144w8 + 529w7 + 2022w6

+5538w5 + 11021w4 + 18736w3 + 22176w2 + 14034w + 3479
)

< − 1

w2
.
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Therefore, if (x, y) is of type I, then ∣∣∣∣f (xy
)∣∣∣∣ > 1

w2
.

Then

4(7s+ 6t) ≥ |F (x, y)| = sy4

∣∣∣∣f (xy
)∣∣∣∣ > sy4

w2
.

Thus

y4 < 4(6w + 7)w2 <

(
1

2

)4

w4,

for w ≥ 400. That is,

y <
w

2
.

Lemma 4.13. Let (x, y) ∈ Z2 be a solution to (4.3) of type II. Then

y >
t2

11s3
.

Proof. If (x, y) is of type II, then

1− 2

w + 1
<
x

y
< 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)
. (4.34)

Multiplying (4.34) by s(w + 1)y, we obtain

y(t+ s)− 2ys < x(t+ s) < y(t+ s)− 2ys+
11ys

w2 + w + 5

Since both x(t+ s) and y(t+ s)− 2ys are integers, we have

11ys

w2 + w + 5
> 1.

Thus

y >
w2 + w + 5

11s
>

w2

11s
=

t2

11s3
.
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Then the proof of Theorem 4.1 will be completed by the following two claims:

Claim I. There is no primitive solution (x, y) to (4.3) of type I with y ≥ 4.

Proof. Suppose that (x, y) is a primitive solution to (4.3) of type I with y ≥ 4. We then
divide the interval of interest [1/2, 3) into two intervals

[1/2, 3) = [1/2, 3/5] ∪ (3/5, 3).

For x/y ∈ [1/2, 3/5], from the shape of f(x) and Lemma 4.2, we have∣∣∣∣f (xy
)∣∣∣∣ = f

(
x

y

)
≥ min

{
f

(
1

2

)
, f

(
3

5

)}
.

Since

f

(
1

2

)
=

3

8
w − 7

16
>

1

4
w

and

f

(
3

5

)
=

48

125
w − 644

625
>

1

4
w,

for w ≥ 8. Thus, for x/y ∈ [1/2, 3/5], we have∣∣∣∣f (xy
)∣∣∣∣ > 1

4
w =

y4

4

w

y4
≥ 43 w

y4
>

25w

y4
. (4.35)

Then we treat the case when x/y ∈ (3/5, 3). Since gcd(x, y) = 1 and y ≥ 4, we have
x 6= y. Therefore,

x

y
6∈
(

1− 1

y
, 1 +

1

y

)
since otherwise,

1

y
>

∣∣∣∣xy − 1

∣∣∣∣ =
|x− y|
y

≥ 1

y
,

a contradiction. We have

f

(
1 +

1

y

)
= −(2y3 + 3y2 + y)w

y4
− 4y4 + 8y3 − 4y − 1

y4
< −25w

y4
< 0,
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for y ≥ 4; and

f

(
1− 1

y

)
=

(2y3 − 3y2 + y)w + (−4y4 + 8y3 − 4y + 1)

y4
.

Put
h(y) = (2y3 − 3y2 + y)w + (−4y4 + 8y3 − 4y + 1)− 25w.

Then
h(y) = −4y4 + (2w + 8)y3 − 3wy2 + (−4 + w)y + 1− 25w.

The discriminant of h is

−269996w6 + 4800w5 − 6719808w4 + 256153600w3 − 38396928w2 + 1228800w + 16384,

which is negative, for w ≥ 10. This means that h has 2 real roots and a pair of complex
conjugate roots. Since we have

h(2) = −7− 19w < 0, h(3) = −119 + 5w > 0,

for w ≥ 20 and

h
(w

2

)
=

1

4
w3 − 27w +

1

2
w2 + 1 > 0,

h
(w

2
+ 1
)

= −1

4
w3 +

1

2
w2 − 23w + 1 < 0,

for w ≥ 10. Then, for w big enough, h has a real root between 2 and 3, another real root
between w/2 and w/2 + 1. From the shape of h, we conclude that if y ∈ (3, w/2), then

h(y) > 0,

that is
(2y3 − 3y2 + y)w + (−4y4 + 8y3 − 4y + 1)− 25w > 0.

It follows that under this condition

f

(
1− 1

y

)
=

(2y3 − 3y2 + y)w + (−4y4 + 8y3 − 4y + 1)

y4
>

25w

y4
> 0.

Notice that f(x) is a decreasing function over the interval (3/5, 3), since

f ′(x) < 0, for all x ∈ (3/5, 3).
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By Lemma 4.12, if (x, y) is of type I, then

y < w/2,

for w ≥ 400. So if (x, y) is of type I and x/y ∈ (3/5, 3), then∣∣∣∣f (xy
)∣∣∣∣ = f

(
x

y

)
≥ f

(
1− 1

y

)
>

25w

y4
(4.36)

if x/y ∈ (3/5, 1− 1/y] and∣∣∣∣f (xy
)∣∣∣∣ = −f

(
x

y

)
≥ −f

(
1 +

1

y

)
>

25w

y4
(4.37)

if x/y ∈ [1 + 1/y, 3). Combining (4.35), (4.36) and (4.37), we obtain∣∣∣∣f (xy
)∣∣∣∣ > 25w

y4

if (x, y) is a primitive solution to (4.3) with y ≥ 4. It follows that, for w ≥ 30,

25t > 4(6t+ 7s) ≥ |F (x, y)| = sy4

∣∣∣∣f (xy
)∣∣∣∣ > sy4 25w

y4
= 25t,

which is a contradiction. This completes the proof of the claim.

Claim II. There are at most τ primitive solutions to (4.7) of type II.

Proof. Recall that we’ve assumed that (x0, y0) is a non-trivial solution to (4.7) satisfying
condition (4.8). From Claim I, we know that (x0, y0) is a solution of type II and thus

x0

y0

∈
(

1− 2

w + 1
, 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
.

By the assumption of the theorem, we have

w =
t

s
≥ 1200s1+χ ≥ 1200 · 2 = 2400. (4.38)
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We’ve also defined

A = − t
4
x4

0 − 4sx3
0y0 +

3t

2
x2

0y
2
0 + 4sx0y

3
0 −

t

4
y4

0.

Put

g(x) = −w
4
x4 − 4x3 +

3w

2
x2 + 4x− w

4
.

We have the following:

g(0) = −1

4
w < 0, g

(
1

2

)
=

7

64
w +

3

2
> 0

g

(
3

2

)
=

119

64
w − 15

2
> 0, g(3) = −7w − 96 < 0

g′(−1) = −2w − 8 < 0, g′
(

1

2

)
=

11

8
w + 1

g′
(

3

2

)
=

9

8
w − 23 > 0, g′(2) = −2w − 44 < 0

for w ≥ 30. Then on the interval (1/2, 3/2), the function g(x) is increasing as x increases
and g(x) > 0 for all x ∈ (1/2, 3/2). Obviously, for w ≥ 2000,

x0

y0

∈
(

1− 2

w + 1
, 1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
⊂
(

1

2
,
3

2

)
Thus we obtain

sy4
0g

(
1− 2

w + 1

)
< sy4

0g

(
x0

y0

)
= |A| < sy4

0g

(
1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
.

(4.39)
Since

g

(
1− 2

w + 1

)
=
w4 + 10w2 − 15

(w + 1)4
· w > 0.998w (4.40)

and

g

(
1− 2

w + 1
+

11

(w + 1)(w2 + w + 5)

)
=

1

4(w + 1)4(w2 + w + 5)4
·
(
4w13 + 16w12 + 144w11 + 504w10 + 2000w9

+ 5712w8 + 13968w7 + 30056w6 + 49632w5 + 68692w4 + 71888w3

+37320w2 − 617w − 5280
)

< w, (4.41)
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for w ≥ 2000. Combining (4.39), (4.40) and (4.41), we get

0.998ty4
0 < |A| < ty4

0. (4.42)

By Lemma 4.13, if (x, y) is a solution of type II, then

y >
t2

11s3
. (4.43)

Since
t ≥ 1200s2+χ, (4.44)

where χ = 4/3τ with τ ≥ 2, we have

s−1 ≥
(

t

1200

)− 1
2+χ

.

Combining with (4.43), we obtain

y >
t2

11

(
t

1200

)− 3
2+χ

=
1200

3
2+χ

11
· t

1+2χ
2+χ > 546t

1+2χ
2+χ . (4.45)

The last inequality holds since by the definition of χ, we have

0 < χ ≤ 4

9
(4.46)

and 3
2+χ

takes it minimal value when χ takes its maximal value. Note that (4.45) is
equivalent to

t <
( y

546

) 2+χ
1+2χ

< 3485−1y
2+χ
1+2χ . (4.47)

The last inequality holds since

546
2+χ
1+2χ > 3485,

for 0 < χ < 4/9. In particular, since (x0, y0) is a solution of type II, we have

t < 3485−1y
2+χ
1+2χ

0 . (4.48)
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Then from the left side of (4.42), we have

|A| > 0.998ty4
0

> 0.998t
(

546t
1+2χ
2+χ

)4

= 0.998 · 5464t
6+9χ
2+χ

> 8.8 · 1010t
6+9χ
2+χ . (4.49)

Put

ε =
4 + 2χ

2 + 7χ
. (4.50)

Obviously, ε ∈ (0, 2). Then we have for w ≥ 2000,

128.11/ε · 512.11+1/εk2+2/ε = 128.11/ε · 512.11+1/ε((6t+ 7s))2+2/ε

≤ 128.11/ε · 512.11+1/ε · 6.00352+2/εt2+2/ε

= 128.1
2+7χ
4+2χ · 512.1

6+9χ
4+2χ · 6.0035

6+9χ
2+χ t

6+9χ
2+χ

≤ 128.1
23
22 · 512.1

45
22 · 6.0035

45
11 t

6+9χ
2+χ

< 8.51 · 1010t
6+9χ
2+χ .

Combining the above inequality with (4.49), we have

|A| ≥ 128.11/ε · 512.11+1/εk2+2/ε.

Then by Lemma 4.10, we get λ < 2 + ε < 4. By Lemma 4.11, we have an upper bound for
y if (x, y) is a solution to (4.7) of type II:

y <

(
C

B

) 1
4−λ

, (4.51)

where

B =
0.499t

k

and

C = 106.88
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

|A|(1 +
√

2|γ|)

·

(
max

{
0.3125

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

.
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We now estimate C and B under the assumption of the theorem. By (4.38), we have

B =
0.499t

k
=

0.499t

6t+ 7s
=

0.499

6 + 7/w
> 0.08312. (4.52)

Since (x0, y0) is a type II solution,

θ,
x0

y0

∈ I ⊂ (0.999, 1).

Then we have

√
θ2 + 1 <

√
2,√

x2
0 + y2

0 = y0

√(
x0

y0

)2

+ 1 <
√

2y,

|γ| = |m|
|A|
≤ 4k

128.11/2 · 512.13/2k3

≤ 4

128.11/2 · 512.13/2(2(6 · 2400 + 7))2
= 4 · 10−14.

It follows that

C = 106.88
√
x2

0 + y2
0

(
1 +
√

2|γ|
1− |γ|

) 1
4

|A|(1 +
√

2|γ|)

·

(
max

{
0.3125

√
θ2 + 1

√
x2

0 + y2
0

4
√

1− |γ|(1− |γ|2)
, 1

})λ−1

< 106.88
√

2y0

(
1 +
√

2 · 4 · 10−14

1− 4 · 10−14

) 1
4

|A|(1 +
√

2 · 4 · 10−14)

·

(
max

{
0.3125

√
2
√

2y0

4
√

1− 4 · 10−14(1− (4 · 10−14)2)
, 1

})λ−1

< 151.2y0|A| · (0.6251y0)λ−1

< 151.2 · 0.6251|A|yλ0
< 94.52|A|yλ0 .
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Together with (4.52), (4.42), (4.48), (4.50) and (4.51), we have

y <

(
C

B

) 1
4−λ

<

(
94.52|A|yλ0

0.08312

) 1
4−λ

< (1137.2ty4+λ
0 )

1
4−λ

<

(
1137.2

3485
y

2+χ
1+2χ

+4+λ

0

) 1
4−λ

< 0.3264
2+7χ
12χ y

20+92χ+95χ2

12χ(1+2χ)

0 . (4.53)

Assume that there are τ + 1 solutions (x0, y0), (x1, y1), . . . , (xτ , yτ ) to (4.7) of type II.
Further assume that

y0 ≤ y1 ≤ . . . ≤ yτ .

Then by Lemmas 4.3 and 2.6, together with (4.52), we have

yτ ≥ 0.04156y3
τ−1 ≥ . . . ≥ 0.041561+3+...+3τ−1

y3τ

0 = 0.04156
3τ−1

2 y3τ

0 . (4.54)

Combining (4.53), (4.54) and noting 3τ = 4
χ
, we get

0.04156
4−χ
2χ y

4
χ

0 < 0.3264
7χ+2
12χ · y

20+92χ+95χ2

12χ(1+2χ)

0 .

Simplify this inequality and we can get

y
4− 20+92χ+95χ2

12(1+2χ)

0 < 0.04156−
4−χ

2 · 0.3264
7χ+2

12 . (4.55)

Put

φ = 4− 20 + 92χ+ 95χ2

12(1 + 2χ)
=

28 + 4χ− 95χ2

12(1 + 2χ)
.

Since 28 + 4x− 95x2 = 0 has two roots at −0.52225 . . . and 0.56435 . . ., we have that, for
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χ ∈ (0, 4/9), φ > 0. Thus (4.55) implies

y0 <
(

0.04156−
4−χ

2 · 0.3264
7χ+2

12

) 1
φ

= exp

(
1

φ

((
−4− χ

2

)
log(0.04156) +

(
7χ+ 2

12

)
log(0.3264)

))
< exp

(
(74.1− 26.9χ)(1 + 2χ)

28 + 4χ− 95χ2

)
< exp(10.7)

< 4.5 · 104. (4.56)

On the other hand, from (4.44) and (4.43), we have

y0 >
t2

11s3
≥ 12002(s2+χ)2

11s3
≥ 12002 · 2

11
> 2.6 · 105. (4.57)

This contradicts (4.56). It then follows that there are at most τ solutions to (4.7) of type
II.
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Chapter 5

Sextic Simple Form

In this chapter, we’ll study the following inequality

|sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6| ≤ k (5.1)

where s, t are integers and k = k(t, s) is linear in t and s. Let

F (x, y) = sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6.

We have that F is a simple form since F is irreducible over Q and

F (x− y, x+ 2y) = −27F (x, y) (5.2)

and the map

z → −z − 1

z + 2
(5.3)

permutes the roots of F (x, 1) transitively. As discussed in the first chapter, Wakabayashi
[51] completely solved (5.1) for s ≥ 1, t ≥ 97.3s48/19 and k = 120t+ 323s. For the same k,
we’ll prove the following result:

Theorem 5.1. Let s, t be positive integers such that

sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6
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is irreducible over Q. Suppose that s ≥ 1 and t ≥ 200s12/7+1/5τ with τ ≥ 1. Then other
than the trivial solutions

±{(0, 1), (1, 0), (1, 1), (−1, 2), (−1, 1), (−2, 1),

(2, 1), (−1, 3), (−3, 2), (1, 2), (−2, 3), (−3, 1)}

there are at most 12τ integer solutions to the Thue inequality

|sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6| ≤ 120t+ 323s. (5.4)

Since the case when s = 1 has been explicitly solved by Lettl, Pethő and Voutier, in
the following proof we always assume s ≥ 2.

5.1 Elementary properties

From the relation (5.2), it is easy to see that if (x, y) is a solution to (5.1), then any element
in

±{(x, y),(x− y, x+ 2y), (−y, x+ y),

(−x− 2y, 2x+ y), (−x− y, x), (−2x− y, x− y)} (5.5)

is a solution to the following inequality:

|F (x, y)| ≤ 27k, (5.6)

since

F (x− y, x+ 2y) = −27F (x, y),

F (−y, x+ y) = F (x, y),

F (−x− 2y, 2x+ y) = −27F (x, y),

F (−x− y, x) = F (x, y),

F (−2x− y, x− y) = −27F (x, y).

Notice that the map (5.3) permutes the intervals(
1

2
, 4

]
,

(
−1

5
,
1

2

]
,

(
−2

3
,−1

5

]
,

(
−5

4
,−2

3

]
(
−3,−5

4

]
, (−∞,−3) ∪ (4,∞).
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If there exists an integer solution (x, y) to (5.1), we can always choose it from the above
set of solutions (5.5) of the inequality (5.6) to satisfy the following condition:

1

2
<
x

y
≤ 4, gcd(x, y) = 1, y ≥ 0. (5.7)

In the following proof, we’ll consider integer solutions (x, y) to (5.6) that satisfy (5.7). Let

f(x) = s−1F (x, 1)

= x6 − 2wx5 − (5w + 15)x4 − 20x3 + 5wx2 + (2w + 6)x+ 1,

where w = t/s. Then we have

Lemma 5.2. For w ≥ 6, f has six real roots θ−2, θ−1, θ−1/2, θ0, θ1, θ2w that satisfy the
following:

−2− 3

2w
+

9

8w2
<θ−2 < −2− 3

2w
+

4

3w2
,

−1− 1

2w
+

3

5w2
<θ−1 < −1− 1

2w
+

11

16w2
,

−1

2
− 3

8w
+

1

2w2
<θ−1/2 < −

1

2
− 3

8w
+

9

16w2
,

− 1

2w
+

7

8w2
− 1

w3
<θ0 < −

1

2w
+

7

8w2
,

1− 6

4w + 9
<θ1 < 1− 6

4w + 9
+

14

(4w + 9)w2
,

2w +
5

2
+

10

3w
<θ2w < 2w +

5

2
+

35

8w
.

Proof. For w ≥ 6, direct computations give

f

(
−2− 3

2w
+

9

8w2

)
=

27

262144w12

(
425984w10 + 307200w9

− 2064384w8 − 1050624w7 + 3013632w6

+ 357696w5 − 1866240w4 + 431568w3

+314928w2 − 157464w + 19683
)
> 0,
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f

(
−2− 3

2w
+

4

3w2

)
= − 1

46656w12

(
174960w11 − 1259712w10

+ 72900w9 + 11524032w8 + 1921752w7

− 21034161w6 + 1866672w5 + 14713920w4

− 5412864w3 − 2617344w2 + 1769472w

−262144) < 0,

f

(
−1− 1

2w
+

3

5w2

)
= − 1

1000000w12

(
50000w11 + 750000w10

− 5012500w9 − 2162500w8 + 8287500w7

− 1950625w6 − 2155500w5 + 2254500w4

− 1248480w3 − 19440w2 + 233280w

−46656) < 0,

f

(
−1− 1

2w
+

11

16w2

)
=

1

16777216w12

(
2097152w11 − 5242880w10

+ 96665600w9 + 26279936w8 − 182484992w7

+ 52977664w6 + 48792832w5 − 55601920w4

+ 37438368w3 − 1405536w2 − 7730448w

+1771561) > 0,

f

(
−1

2
− 3

8w
+

1

2w2

)
=

1

262144w12

(
18432w11 + 20736w10

− 656640w9 + 544608w8 − 98168w7

− 345351w6 + 558648w5 − 241680w4

+ 41216w3 + 9984w2 − 18432w +4096) > 0,

f

(
−1

2
− 3

8w
+

9

16w2

)
= − 27

16777216w12

(
16384w10 + 1720320w9

− 1529856w8 + 331776w7 + 931392w6

− 1850688w5 + 874800w4 − 163296w3

−26244w2 + 78732w − 19683
)
< 0,
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f

(
− 1

2w
+

7

8w2
− 1

w3

)
= − 1

262144w18

(
294912w16 − 1314816w15

+ 5390336w14 − 10680320w13 + 17890304w12

− 24673472w11 + 24963968w10 − 19690128w9

+ 10144400w8 + 405928w7 − 8986449w6

+ 11809616w5 − 9833408w4 + 6952960w3

−3796992w2 + 1376256w − 262144
)
< 0,

f

(
− 1

2w
+

7

8w2

)
=

1

262144w12

(
229376w10 + 1576960w9

− 3096576w8 + 6092800w7 − 5766144w6

+ 3579072w5 − 1348480w4 − 707952w3

+576240w2 − 403368w + 117649
)
> 0,

f

(
1− 6

w + 9

)
=

27

(4w + 9)6

(
8960w4 + 53760w3

+118944w2 + 114912w + 40851
)
> 0,

f

(
1− 6

4w + 9
+

14

(4w + 9)w2

)
= − 1

(4w + 9)6w12

(
16128w16 + 1064448w15

+ 7916832w14 + 24919776w13 + 47487663w12

+ 81370548w11 + 131743472w10 + 153994260w9

+ 152929980w8 + 163322880w7 + 110802720w6

+ 53590320w5 + 45791872w4 − 3226944w3

−9680832 ∗ w2 − 7529536
)
< 0,

f

(
2w +

5

2
+

10

3w

)
= − 1

46656w6

(
1555200w10 + 1866240w9

− 20080224w8 − 123070752w7 − 360032661w6

− 696642120w5 − 951030000w4 − 937440000w3

− 645600000w2 − 288000000w

−64000000) < 0,
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f

(
2w +

5

2
+

35

8w

)
=

1

262144w6

(
55050240w9 + 395902976w8

+ 1628110848w7 + 4447576064w6 + 8882657280w5

+ 13194720000w4 + 14652960000w3 + 11764900000w2

+6302625000w + 1838265625) > 0.

Then the lemma follows.

Suppose (x, y) is an integer solution to (5.6) that satisfies (5.7). From Lemma 5.2, we
can see that x

y
is bounded away from all roots of f except θ1, for w ≥ 6. In the following

proof, we let θ = θ1. Since this root is our focus, we define the interval

I =

(
1− 6

4w + 9
, 1− 6

4w + 9
+

14

(4w + 9)w2

)
. (5.8)

and further we have the following defintion:

Definition We call (x, y) an integer solution to (5.6) of type I if gcd(x, y) = 1, y ≥ 4 and

x

y
∈ I;

(x, y) is of type II if gcd(x, y) = 1, y ≥ 4 and

x

y
∈
(

1

2
, 1− 6

4w + 9

]
∪
[
1− 6

4w + 9
+

14

(4w + 9)w2
, 4

]
.

Lemma 5.3. Let (x, y) be an integer solution to (5.6) of type I. For w ≥ 300, we have∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By6
, (5.9)

where

B =
0.65t

k
.
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Proof. From Lemma 5.2, we have for w ≥ 6

θ−2 < −2, θ−1 < −1, θ−1/2 < −
1

2
,

θ0 < 0, θ2w > 2w +
5

2
.

For w ≥ 300,

x

y
∈ I =

(
1− 6

4w + 9
, 1− 6

4w + 9
+

14

(4w + 9)w2

)
⊂ (0.995, 1).

We then have ∣∣∣∣xy − θ−2

∣∣∣∣ > 2.995,

∣∣∣∣xy − θ−1

∣∣∣∣ > 1.995,

∣∣∣∣xy − θ−1/2

∣∣∣∣ > 1.495,∣∣∣∣xy − θ0

∣∣∣∣ > 0.995,

∣∣∣∣xy − θ2w

∣∣∣∣ > 2w,

and hence ∣∣∣∣∣∏
j 6=1

(
x

y
− θj

)∣∣∣∣∣ > 17.77w.

On the other hand, (x, y) satisfies

|F (x, y)| ≤ 27k.

This is equivalent to ∣∣∣∣∣sy6
∏
j

(
x

y
− θj

)∣∣∣∣∣ ≤ 27k. (5.10)

It then follows that ∣∣∣∣θ − x

y

∣∣∣∣ ≤ 27k

17.77swy6
=

1

(0.65t/k)y3
.
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5.2 Irrationality of the root of f

Suppose that (x0, y0) is an integer solution to (5.6) that satisfies (5.7). Similar to the
previous two chapters, we’ll obtain an irrationality measure of θ in terms of (x0, y0).

Lemma 5.4. The form F can be rewritten as

F (x, y) = sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6

=
1

2

(
η(x− ρy)6 + η(x− ρy)6

)
where

η = s− (2t+ 3s)
√

3i

9
, ρ =

−1 +
√

3i

2
.

and i =
√
−1.

Proof. By direct calculation, we have

(x− ρy)6 =

(
x− −1 +

√
3i

2
y

)6

=

(
x6 + 3x5y − 15

2
x4y2 − 20x3y3 − 15

2
x2y4 + 3xy5 + y6

)
− 3
√

3xy

2

(
2x4 + 5x3y − 5xy3 − 2y4

)
i.

We need only to verify that the real part of η(x− ρy)6 is equal to F (x, y). That is,

1

2

(
η(x− ρy)6 + η(x− ρy)6

)
=s

(
x6 + 3x5y − 15

2
x4y2 − 20x3y3 − 15

2
x2y4 + 3xy5 + y6

)
− (2t+ 3s)

√
3

9

(
3
√

3xy

2

(
2x4 + 5x3y − 5xy3 − 2y4

))
=sx6 − 2tx5y − (5t+ 15s)x4y2 − 20sx3y3 + 5tx2y4

+ (2t+ 6s)xy5 + sy6

=F (x, y).
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Recall from last section that θ is a root of f(x) = F (x, 1)/s. Then by Lemma 5.4, we
have

η(θ − ρ)6 + η(θ − ρ)6 = 0. (5.11)

This gives
η

η
= −(θ − ρ)6

(θ − ρ)6
. (5.12)

On the other hand, since (x0, y0) is a solution to (5.6), we can then put

F (x0, y0) = m, (5.13)

for some integer m with |m| ≤ 27k. Again by Lemma 5.4, we have

1

2

(
η(x0 − ρy0)6 + η(x0 − ρy0)6

)
= m. (5.14)

Then we can write
η(x0 − ρy0)6 = m+ Ai (5.15)

with

A = −
√

3

9
H, (5.16)

where

H = (2t+ 3s)x6
0 + (6t+ 36s)x5

0y0 + (45s− 15t)x4
0y

2
0 − (60s+ 40t)x3

0y
3
0

− (90s+ 15t)x2
0y

4
0 + (6t− 18s)x0y

5
0 + (2t+ 3s)y6

0 ∈ Z. (5.17)

Since A ∈ R, we have
η(x0 − ρy0)6

η(x0 − ρy0)6
=
m+ Ai

m− Ai
. (5.18)

Combining (5.12) and (5.18), we have

− (θ − ρ)6(x0 − ρy0)6

(θ − ρ)6(x0 − ρy0)6
=
m+ Ai

m− Ai
. (5.19)

Simplify this equation and write

γ =
m

Ai
=

3
√

3mi

H
. (5.20)

It follows that
(θ − ρ)6(x0 − ρy0)6

(θ − ρ)6(x0 − ρy0)6
=

1 + γ

1− γ
. (5.21)
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Taking sixth roots on both sides, we obtain

(θ − ρ)(x0 − ρy0)

(θ − ρ)(x0 − ρy0)
=

6
√

1 + γ
6
√

1− γ
, (5.22)

where we choose the 6th roots so that their arguments lie in the interval (−π/6, π/6) since
from last section x0/y0 is close to θ and so the left side is close to 1.

Now we can apply Lemma 2.1 from Chapter 2 with µ = 6 and x = γ. It follows that,
for any integer n ≥ 1, we have relations

I0n(γ) = p0n(γ) 6
√

1 + γ − p0n(−γ) 6
√

1− γ (5.23)

and
I1n(γ) = p1n(γ) 6

√
1 + γ + p1n(−γ) 6

√
1− γ, (5.24)

where

p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

6

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h (5.25)

and

p1n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

6

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h (5.26)

and

Ijn(γ) =
1

2πi

∫
Γ

zj(1 + γz)n+ 1
6

(z2 − 1)n+1
dz, (5.27)

for j = 0, 1. Dividing both sides of (5.23) and (5.24) by 6
√

1− γ and then substituting
(5.22) and multiplying both sides by (θ − ρ)(x0 − ρy0), we obtain

q′0nθ + p′0n = l′0n (5.28)

with

q′0n = p0n(γ)(x0 − ρy0)− p0n(−γ)(x0 − ρy0),

p′0n = −ρp0n(γ)(x0 − ρy0) + ρp0n(−γ)(x0 − ρy0),

l′0n =
I0n(γ)(θ − ρ)(x0 − ρy0)

6
√

1− γ
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and
q′1nθ + p′1n = l′1n (5.29)

with

q′1n = p1n(γ)(x0 − ρy0) + p1n(−γ)(x0 − ρy0),

p′1n = −ρp1n(γ)(x0 − ρy0)− ρp1n(−γ)(x0 − ρy0),

l′1n =
I1n(γ)(θ − ρ)(x0 − ρy0)

6
√

1− γ
.

Put

Mj =

{
23nHn/

√
3i if j = 0,

23nHn if j = 1.
(5.30)

Then we have the following:

Lemma 5.5. With the above notation, for n ≥ 1, j = 0, 1, we have

Mjq
′
jn ∈ Z, Mjp

′
jn ∈ Z.

Proof. First we have, for all integers n, h with n ≥ 1, 1 ≤ h ≤ n,

22h−1 · 3[ 3h
2 ] ·

(
n+ 1

6

h

)
∈ Z, (5.31)

where
[

3h
2

]
denotes the greatest integer that is less than or equal to 3h

2
. To show this, note

that

22h−1 · 3[ 3h
2 ] ·

(
n+ 1

6

h

)
= 2h−1 · 3[h2 ] · 6h ·

(
n+ 1

6

)
. . .
(
(n− h+ 1) + 1

6

)
h!

= 2h−1 · 3[h2 ] · (6n+ 1) . . . (6(n− h+ 1) + 1)

h!
.

The number of 2-factors in h! is at most[
h

2

]
+

[
h

22

]
+ . . . <

∞∑
j=1

h

2j
= h.

The number of 3-factors in h! is at most[
h

3

]
+

[
h

32

]
+ . . . <

∞∑
j=1

h

3j
=
h

2
.
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Suppose p is a prime such that p|h! with p 6= 2, 3 and a is a positive integer such that pa|h!
but pa+1 - h!. First notice that p ≤ h. Then consider the natural integer sequence modulo
p:

1, 2, 3, . . . , p− 1, 0, 1, 2, . . . (5.32)

The exponent a of p-factor in h! depends on the number of times 0 appears in the first h
elements in the above sequence:

(1, 2, . . . , h) mod p. (5.33)

In other words, a depends on how many complete residual sets (1, 2, . . . , p − 1, 0) (5.33)
contains mod p. Notice that (n − h + 1, n − h + 1, . . . , n) is a sequence of h consecutive
integers. We have that modulo p, it contain the same number of complete residual sets as
(5.33). Since gcd(6, p) = 1, it follows that

(6(n− h+ 1) + 1, 6(n− h+ 2) + 1, . . . , 6n+ 1) mod p (5.34)

contains the same number of complete residual sets (1, 2, . . . , p−1, 0) as well. This implies
that

pa |
h−1∏
j=0

(6(n− j) + 1).

Therefore, (5.31) holds. This implies that

2n+(h−1) · (3
√

3)h ·
(
n+ 1

6

h

)
∈ Z[
√

3], (5.35)

since if h is even, then (3
√

3)h = 3[3h/2] and thus

2n+(h−1) · (3
√

3)h ·
(
n+ 1

6

h

)
∈ Z;

and if h is odd, then (3
√

3)h = 3[3h/2]
√

3 and thus

2n+(h−1) · (3
√

3)h ·
(
n+ 1

6

h

)
∈ Z[
√

3].

Recall that

γ =
3
√

3mi

H
,
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which is a purely imaginary number. By the definition of q′0n, p
′
0n, we have

q′0n = 2i=(p0n(γ)(x0 − ρy0)),

p′0n = −2i=(p0n(γ)(x0 − ρy0)ρ),

where

p0n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

3

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h ,

and

ρ =
−1 +

√
3i

2
.

It follows that

M0q
′
0n = M0 · 2i=

(
(<(p0n(γ)) + i=(p0n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

))
= i(2x0 + y0)=(p0n(γ))M0 − i

√
3y0<(p0n(γ))M0

and

M0p
′
0n = −M0 · 2i=

(
(<(p0n(γ)) + i=(p0n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

)

·

(
−1

2
−
√

3

2
i

))
= i(x0 + 2y0)=(p0n(γ))M0 + i

√
3x0<(p0n(γ))M0.

Thus to show M0q
′
0n ∈ Z,M0p

′
0n ∈ Z, it suffices to show that

=(p0n(γ)) · (iM0) ∈ Z,
√

3<(p0n(γ)) · (iM0) ∈ Z.

We have

iM0p0n(γ) =
23nHn

√
3

n∑
h=0

(−1)n−h
(
n+ 1

6

h

)(
2n− h
n− h

)
γh(1 + γ)n−h

22n+1−h

=
1√
3

n∑
h=0

(−1)n−h2n+(h−1)

(
n+ 1

6

h

)(
2n− h
n− h

)
(Hγ)h(H +Hγ)n−h

=
1√
3

n∑
h=0

(−1)n−h
((

n+ 1
6

h

)
2n+(h−1)(3

√
3mi)h

)(
2n− h
n− h

)
· (H + 3

√
3mi)n−h.
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By (5.35) (
n+ 1

6

h

)
· 2n+(h−1) · (3

√
3mi)h ∈ Z[

√
3].

It follows that

i
√

3M0p0n(γ) ∈ Z[
√

3].

Since

i
√

3M0p0n(γ) =
n∑
h=0

(−1)n−h2n+(h−1)

(
n+ 1

6

h

)(
2n− h
n− h

)
(Hγ)h(H +Hγ)n−h

=
n∑
h=0

(−1)n−h2n+(h−1)

(
n+ 1

6

h

)(
2n− h
n− h

)

·
n−h∑
l=0

Hn−h−l(3
√

3mi)h+l,

we see that each term in the real part of i
√

3M0p0n(γ) is in Z and each term in the imaginary
part of i

√
3M0p0n(γ) is of the form of an integer multiplied by

√
3. Therefore, iM0p0n(γ)

can be written as
a√
3

+ bi,

where a, b ∈ Z. It follows that

=(p0n(γ)) · (iM0) ∈ Z,
√

3<(p0n(γ)) · (iM0) ∈ Z,

since iM0 ∈ R. This proves M0q
′
0n ∈ Z,M0p

′
0n ∈ Z.

Similarly, we have

q′1n = 2<(p1n(γ)(x0 − ρy0)),

p′1n = −2<(p1n(γ)(x0 − ρy0)ρ),

where

p1n(γ) =
n∑
h=0

(−1)n−h
(
n+ 1

6

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h.
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Since

M1q
′
1n = M1 · 2<

(
(<(p1n(γ)) + i=(p1n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

))
= (2x0 + y0)<(p1n(γ))M1 +

√
3y0=(p1n(γ))M1

and

M1p
′
1n = −M1 · 2<

(
(<(p1n(γ)) + i=(p1n(γ))) ·

(
x0 +

y0

2
−
√

3y0

2
i

)

·

(
−1

2
−
√

3

2
i

))
= (x0 + 2y0)<(p1n(γ))M1 −

√
3x0=(p1n(γ))M1,

it suffices to show that

<(p1n(γ))M1 ∈ Z,
√

3=(p1n(γ))M1 ∈ Z.

We have

M1p1n(γ) = 23nHn

n∑
h=0

(−1)n−h
(
n+ 1

6

h

)((
2n− h
n− h

)
1

22n+1−h

−
(

2n− h− 1

n− h− 1

)
1

22n−h

)
γh(1 + γ)n−h

=
n∑
h=0

(−1)n−h
(
n+ 1

6

h

)((
2n− h
n− h

)
2n+(h−1)

−
(

2n− h− 1

n− h− 1

)
2n+h

)
(Hγ)h(H +Hγ)n−h

=
n∑
h=0

(−1)n−h · 2n+(h−1)

(
n+ 1

6

h

)((
2n− h
n− h

)
−2

(
2n− h− 1

n− h− 1

))
(Hγ)h(H +Hγ)n−h.

Using the same argument as for j = 0, we see that M1p1n(γ) can be written as

a+ b
√

3i,
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for some integer a, b. It then follows that

<(p1n(γ))M1 ∈ Z,
√

3=(p1n(γ))M1 ∈ Z,

which implies that M1q
′
1n ∈ Z,M1p1n ∈ Z.

Put
qjn = Mjq

′
jn, pjn = Mjp

′
jn, ljn = Mjljn, (5.36)

for j = 0, 1 and n ≥ 1. Summarizing the discussion in this section, we obtain:

Lemma 5.6. For n ≥ 1, put

q0n = (p0n(γ)(x0 − ρy0)− p0n(−γ)(x0 − ρy0))23nHn/
√

3i,

p0n = (−ρp0n(γ)(x0 − ρy0) + ρp0n(−γ)(x0 − ρy0))23nHn/
√

3i,

q1n = (p1n(γ)(x0 − ρy0) + p1n(−γ)(x0 − ρy0))23nHn,

p1n = (−ρp1n(γ)(x0 − ρy0)− ρp1n(−γ)(x0 − ρy0))23nHn.

Then q0n, p0n, q1n and p1n are rational integers satisfying the following relations:

q0nθ + p0n =l0n,

q1nθ + p1n =l1n,

where

l0n =
I0n(γ)(θ − ρ)(x0 − ρy0)23nHn

6
√

1− γ
√

3i
,

l1n =
I1n(γ)(θ − ρ)(x0 − ρy0)23nHn

6
√

1− γ
.

To apply Lemma 2.5, we need the following condition and estimates.

Lemma 5.7. Let pjn, qjn be defined as in Lemma 5.6 for j = 0, 1. We have∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ 6= 0

for any n ≥ 1.
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Proof. By Lemma 2.4 and γ 6= 0, we have

∆(γ) =

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣ = c2nγ
2n 6= 0. (5.37)

Put Aj = pjn(γ)(x0 − ρy0) and Bj = pjn(−γ)(x0 − ρy0) for j = 0, 1. Then

q0n = (A0 −B0)M0, p0n = (−ρA0 + ρB0)M0

q1n = (A1 +B1)M1 p1n = −(ρA1 + ρB1)M1.

It follows that∣∣∣∣ p0n q0n

p1n q1n

∣∣∣∣ =

∣∣∣∣ (−ρA0 + ρB0)M0 (A0 −B0)M0

−(ρA1 + ρB1)M1 (A1 +B1)M1

∣∣∣∣
= M0M1

∣∣∣∣ (−ρA0 + ρB0) (A0 −B0)
−(ρA1 + ρB1) (A1 +B1)

∣∣∣∣
= M0M1

∣∣∣∣ (ρ− ρ)A0 (A0 −B0)
(ρ− ρ)A1 (A1 +B1)

∣∣∣∣
= M0M1(ρ− ρ)

∣∣∣∣ A0 −B0

A1 B1

∣∣∣∣
= M0M1(ρ− ρ)

∣∣∣∣ p0n(γ)(x0 − ρy0) −p0n(−γ)(x0 − ρy0)
p0n(γ)(x0 − ρy0) p0n(−γ)(x0 − ρy0)

∣∣∣∣
= M0M1(ρ− ρ)|x0 − ρy0|2

∣∣∣∣ p0n(γ) −p0n(−γ)
p1n(γ) p1n(−γ)

∣∣∣∣
6= 0.

Lemma 5.8. Suppose that |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|qjn| < %P n,

where

% =
1.67|x0 − ρy0| 6

√
1 +
√

2|γ|
6
√

1− |γ|
,

and

P = 8|H|(1 +
√

2|γ|).
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Proof. From the proof of Lemma 5.5, we see that

|qjn| ≤ 2|pjn(γ)(x0 − ρy0)Mj| = 2|pjn(γ)| · |x0 − ρy0| · |Mj|, (5.38)

for j = 0, 1, n ≥ 1. By the definition of Mj, we have

|Mj| ≤ 23n|H|n. (5.39)

By Lemma 2.1, we have, for j = 0, 1,

pjn(x) =
Ij1n(x)
6
√

1 + x
, (5.40)

where

Ij1n(x) =
1

2πi

∫
Γ1

zj(1 + xz)n+ 1
6

(z2 − 1)n+1
dz.

Consider the curve Γ : {z ∈ C : |z2 − 1| = 1}. It consists of two closed curves. Let Γ1 be
the one enclosing the point 1. Notice that |z|2 = |z2| ≤ |z2 − 1| + 1 = 2 and

√
2 ∈ Γ1.

Hence maxz∈Γ1 |z| =
√

2. Then, for |x| < 1/
√

2, we have

|Ij1n(x)| =

∣∣∣∣∣ 1

2πi

∫
Γ1

zj(1 + xz)n+ 1
6

(z2 − 1)n+1
dz

∣∣∣∣∣
≤ |Γ1|

2π
·max
z∈Γ1

∣∣∣∣∣zj(1 + xz)n+ 1
6

(z2 − 1)n+1

∣∣∣∣∣
=
|Γ1|
√

2(1 +
√

2|x|)n+ 1
6

2π
, (5.41)

for j = 0, 1, where |Γ1| denotes the length of Γ1.

Write z = a+ bi. By the definition of Γ, we can obtain the equation of Γ1 on ab-plane:

(a2 + b2)2 − 2(a2 − b2) = 0, 0 ≤ a ≤
√

2.

We can find the length of Γ1 by an integral along the above curve. Numerical integration
gives

|Γ1| = 3.70814935 . . . < 3.709. (5.42)
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Notice that

| 6
√

1 + x| = 6
√
|1 + x| ≥ 6

√
1− |x|, (5.43)

for |x| < 1/
√

2. Then combining (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43), we obtain

|qjn| = 2|x0 − ρy0| · |Mj| · |pjn(γ)|

≤ 2|x0 − ρy0|23n|H|n3.709 ·
√

2(1 +
√

2|γ|)n+ 1
6

2π 6
√

1− |γ|

<
1.67|x0 − ρy0| 6

√
1 +
√

2|γ|
6
√

1− |γ|

(
8|H|(1 +

√
2|γ|)

)n
.

Lemma 5.9. Suppose that w ≥ 4 and |γ| < 1/
√

2. For n ≥ 1, j = 0, 1,

|ljn| ≤ lL−n,

where

l =
4|x0 − ρy0|

9 6
√

1− |γ|(1− |γ|2)

and

L =
1− |γ|2

|H||γ|2
.

Proof. By the definition of ljn from Lemma 5.6, we have

|ljn| ≤
23n|H|n|θ − ρ||x0 − ρy0||Ijn(γ)|

| 6
√

1− γ|
, (5.44)

for j = 0, 1 and n ≥ 1. By Lemma 5.2, we have

1− 6

4w + 9
< θ < 1− 6

4w + 9
+

25

(4w + 9)w2
< 1,
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for w ≥ 6. Thus

|θ − ρ| <

√√√√(−1

2
− 1

)2

+

(√
3

2

)2

=
√

3. (5.45)

By Lemma 2.3 and the definition of Ijn, we have

Ijn(x) =
∞∑

h=2n+1−j

(
n+ 1

6

h

)
Jh+jx

h,

where

Jh =
1

2πi

∫
Γ

zh

(z2 − 1)n+1
dz.

As a consequence of Lemma 2.2, Jh ≥ 0, since

∞∑
h=0

Jhx
h =

x2n+1

(1− x2)n+1

and the Taylor expansion at 0 of the right hand side of the above equation obviously has
non-negative coefficients. Notice that for h ≥ 2n, we have∣∣∣(n+ 1

6
h

)∣∣∣∣∣∣(n+ 1
6

h+1

)∣∣∣ =

∣∣∣∣ h+ 1

n− h− 1
6

∣∣∣∣ =
h+ 1

h− n+ 1
6

> 1.

Thus
∣∣∣(n+ 1

6
h

)∣∣∣ decreases as h increases. It follows that

|Ijn(x)| ≤
∣∣∣∣(n+ 1

6

2n

)∣∣∣∣ ∞∑
2n+1−j

|Jh+j||x|h

=

∣∣∣∣(n+ 1
6

2n

)∣∣∣∣ |x|−j ∞∑
h=2n+1

Jh|x|h

=

∣∣∣∣(n+ 1
6

2n

)∣∣∣∣ |x|−j |x|2n+1

(1− |x|2)n+1
,
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for |x| < 1 by Lemma 2.2. By induction, we can have the following estimate:∣∣∣∣(n+ 1
6

2n

)∣∣∣∣ ≤ 7

18

(
1

4

)n
,

since for n = 1, ∣∣∣∣(n+ 1
6

2n

)∣∣∣∣ =
7

72
=

7

18

(
1

4

)1

,

and for n ≥ 2, ∣∣∣(n+ 1
6

2n

)∣∣∣∣∣∣(n+1+ 1
6

2(n+1)

)∣∣∣ =

∣∣∣∣∣ (2n+ 1)(2n+ 2)(
n+ 1 + 1

6

) (
−n+ 1

6

)∣∣∣∣∣
= 4 ·

n2 + 3
2
n+ 1

2

n2 + n− 7
36

> 4.

Therefore, we obtain

|Ijn(x)| ≤ 7

18

(
1

4

)n
|x|−j |x|2n+1

(1− |x|2)n+1
. (5.46)

Notice that for |γ| < 1/
√

2,

| 6
√

1− γ| = 6
√
|1− γ| ≥ 6

√
1− |γ|. (5.47)

Then we combine (5.44), (5.45), (5.46) and (5.47). It follows that

|ljn| ≤
23n|H|n|x0 − ρy0|

6
√

1− |γ|
· 7

18

(
1

4

)n
|γ|−j |γ|2n+1

(1− |γ|2)n+1

=
7|x0 − ρy0|

18 6
√

1− |γ|(1− |γ|2)
·
(

2|H||γ|2

1− |γ|2

)n
=

7|x0 − ρy0|
18 6
√

1− |γ|(1− |γ|2)
·
(

1− |γ|2

2|H||γ|2

)−n
.
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Lemma 5.10. Suppose that |H| ≥ 81|m|2, |γ| < 1/
√

2 and w ≥ 4. With the notations as
above, we have, for any integers p and q with q > 0,∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,

where

λ = 1 +
log
(
8|H|(1 +

√
2|γ|)

)
log
(

1−|γ|2
2|H||γ|2

)
and

C =
26.72|x0 − ρy0| 6

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
6
√

1− |γ|

·max

(
7|x0 − ρy0|

18 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

Proof. Recall that

γ =
3
√

3mi

H
.

Then by the assumption that |H| ≥ 81|m|2, we have that

(2|H|+ 1) · |γ|2 < 3|H| · |γ|2 =
81|m|2

|H|
≤ 1.

It follows that

L =
1− |γ|2

2|H||γ|2
− 1 =

1− (2|H|+ 1)|γ|2

2|H||γ|2
≥ 0.

Then we can apply Lemma 2.5, together with Lemmas 5.5, 5.7, 5.8 and 5.9. We have that,
for any integers p and q with q > 0, ∣∣∣∣θ − p

q

∣∣∣∣ > 1

Cqλ
,
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where

λ = 1 +
logP

logL

= 1 +
log
(
8|H|(1 +

√
2|γ|)

)
log
(

1−|γ|2
2|H||γ|2

)
and

C = 2%P max(2l, 1)logP/ logL

= 2 ·
1.67|x0 − ρy0| 6

√
1 +
√

2|γ|
6
√

1− |γ|
· 8|H|(1 +

√
2|γ|)

·max

(
2 · 7|x0 − ρy0|

18 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

=
26.72|x0 − ρy0| 6

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
6
√

1− |γ|

·max

(
7|x0 − ρy0|

9 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

5.3 Upper bounds for the solutions

Lemma 5.11. Let ε ∈ (0, 4) and let λ be defined as in the last section. Suppose that w ≥ 4
and

|H| ≥ 36 · 5761/ε · (27k)2+2/ε.

Then we have

λ < 2 + ε.
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Proof. By the assumption on H and the definition of γ, it is easy to see that

|γ| = 3
√

3|m|
|H|

≤ 3
√

3(27k)

|H|
<

1√
2
.

Thus the conditions in Lemma 5.10 are satisfied. Then we have P,L, λ defined as in
Lemmas 5.8, 5.9 and 5.10. With 0 < |γ| < 1/

√
2, we have

P = 8|H|(1 +
√

2|γ|) < 16|H|, (5.48)

and

L =
1− |γ|2

2|H||γ|2
= (1− |γ|2)

|H|
2(|H||γ|)2

>
|H|

36|m|2
≥ |H|

36(27k)2
, (5.49)

since γ = 3
√

3mi
H

and |m| ≤ 27k. From the assumption on H, it follows that(
|H|

36k2

)ε+1

16|H|
=

|H|ε

16 · 36ε+1 · (27k)2ε+2
≥ 36ε · 576 · (27k)2ε+2

576 · 36ε · (27k)2ε+2
= 1.

Then combining (5.48) and (5.49), we have

Lε+1 >

(
|H|

36(27k)2

)ε+1

≥ 16|H| > P.

Taking logarithms, we obtain

(ε+ 1) logL > logP.

Therefore,

λ = 1 +
logP

logL
< 1 + (ε+ 1) = 2 + ε.

Lemma 5.12. With the same notations as before, suppose that (x0, y0), (x, y) are solutions
to (5.6) of type I. Let H be defined as in (5.17). Assume that as in Lemma 5.11 |H| is
sufficiently large so that λ < 6. Then we have for w ≥ 300,

y <

(
C

B

) 1
6−λ
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where

B =
0.65t

k

and

C =
26.72|x0 − ρy0| 6

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
6
√

1− |γ|

·max

(
7|x0 − ρy0|

9 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

Proof. Notice that if w ≥ 4 and |H| is large enough as in Lemma 5.11, the assumptions
in Lemmas 5.3 and 5.10 can be easily satisfied. It then follows directly from these two
lemmas that if (x, y) is a solution to (5.1) then

1

Cyλ
<

∣∣∣∣θ − x

y

∣∣∣∣ ≤ 1

By6

which gives

y <

(
C

B

) 1
6−λ

with B,C defined as in the statement of the lemma.

5.4 Proof of Theorem 5.1

Let k = 120t+ 323s. Then

27k = 3240t+ 8721s.
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It is obvious that

|F (1, 1)| = 27s ≤ k,

|F (2, 1)| = 120t+ 323s ≤ k,

|F (3, 1)| = 840t+ 1007s ≤ 27k,

|F (4, 1)| = 3240t+ 999s ≤ 27k,

|F (3, 2)| = 1680t+ 7811s ≤ 27k,

|F (2, 3)| = 1680t− 2771s ≤ 27k.

We can verify that (1, 1), (2, 1), (3, 1), (4, 1), (3, 2) and (2, 3) are the only solutions (x, y) to
(5.6) with y ≤ 3 that satisfy (5.7). Now we only need to focus on the solutions with y ≥ 4.
Recall that we have divided integer solutions to (5.6) with condition (5.7) and y ≥ 4 into
two types. Then we have the following:

Lemma 5.13. If (x, y) is an integer solution to (5.6) with k = 120t+ 323 of type II, then

y <
2w

3
,

for w ≥ 300.

Proof. Recall that

f(x) = x6 − 2wx5 − (5w + 15)x4 − 20x3 + 5wx2 + (2w + 6)x+ 1.

Then we have

f ′(x) = 6x5 − 10wx4 − (20w + 60)x3 − 60x2 + 10wx+ (2w + 6).

Since f ′(x) has three negative roots and one positive root in(
1

2
, 1− 6

4w + 9

]
(5.50)

and the other positive root greater than w, we see that f(x) increases and then decreases
in interval (5.50) and it decreases in[

1− 6

4w + 9
+

14

(4w + 9)w2
, 4

]
.
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On the other hand, we have

f

(
1

2

)
=

15w

8
+

37

64
,

f

(
1− 6

4w + 9

)
=

27

(4w + 9)6

(
8960w4 + 53760w3

+118944w2 + 114912w + 40851
)

>
57

w2
,

f

(
1− 6

4w + 9
+

14

(4w + 9)w2

)
= − 1

(4w + 9)6w12

(
16128w16

+ 1064448w15 + 7916832w14 + 24919776w13

+ 47487663w12 + 81370548w11 + 131743472w10

+ 153994260w9 + 152929980w8 + 163322880w7

+ 110802720w6 + 53590320w5 + 45791872w4

−3226944w3 − 9680832w2 − 7529536
)

< −3.9375

w2
.

for w ≥ 500. It follows that if (x, y) is of type II, then∣∣∣∣f (xy
)∣∣∣∣ ≥ 3.9375

w2
.

Then we have

27k = 27(120w + 323)s ≥ |F (x, y)| = sy6

∣∣∣∣f (xy
)∣∣∣∣ ≥ 3.9375sy6

w2
.

For w ≥ 300, we have

120w + 323 ≤ 121.077w

Then

y6 ≤ 27 · 121.077w3

3.9375
.

It follows that

y ≤ 3.1w1/2 <
2w

3
,
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for w ≥ 300.

Lemma 5.14. Suppose w ≥ 300. Then there is no integer solution (x, y) to (5.6) of type
II, where in (5.6) k = 120t+ 323s.

Proof. Suppose that (x, y) is a solution to (5.6) of type II. By assumption, x/y 6= 1 since
y ≥ 4 and gcd(x, y) = 1. We then have

x

y
6∈
(

1− 1

y
, 1 +

1

y

)
,

since otherwise

1

y
>

∣∣∣∣xy − 1

∣∣∣∣ =
|x− y|
y

≥ 1

y
,

which is a contradiction. Put

h(y) = −27y6 + (18w + 108)y5 − (45w + 135)y4

+ (40w + 60)y3 − 15wy2 + (2w − 6)y + 1− 27 · 121w.

Since

h′(0) > 0, h′
(

1

5

)
< 0, h′

(
1

2

)
> 0,

h′
(

2

3

)
< 0, h′(1) > 0, h′

(
2w

3

)
< 0,

for w ≥ 300, we see the distribution of the roots of h′(y). Furthermore,

h(3) = −2771− 1587w < 0, h(4) = 5973w − 30743 > 0,

h

(
2w

3

)
=

16

3
w5 − 400

27
w4 +

100

9
w3 +

4

3
w2 − 3271w + 1 > 0

we have that h(y) > 0 on interval [4, 2w/3). By Lemma 5.13, we have that if (x, y) is of
type II, then

4 ≤ y <
2w

3
.
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Thus by the definition of h,

− 27y6 + (18w + 108)y5 − (45w + 135)y4

+ (40w + 60)y3 − 15wy2 + (2w − 6)y + 1 > 27 · 121w. (5.51)

Then we have

f

(
1− 1

y

)
=

1

y6

(
−27y6 + (18w + 108)y5 − (45w + 135)y4

+(40w + 60)y3 − 15wy2 + (2w − 6)y + 1
)

>
27 · 121w

y6
,

and

f

(
1 +

1

y

)
= − 1

y6

(
(18y5 + 15y2 + 45y4 + 2y + 40y3)w

−1− 6y + 108y5 + 135y4 + 27y6 + 60y3
)

< −27 · 121w

y6
.

From the shape of f , we have that if (x, y) is a solution to (5.6) of type II, then∣∣∣∣f (xy
)∣∣∣∣ > 27 · 121w

y6
.

It follows that

27k = 27(120t+ 323s) ≥ |F (x, y)| = sy6

∣∣∣∣f (xy
)∣∣∣∣ > 27 · 121t.

This is a contradiction when w ≥ 300.

Lemma 5.15. If (x, y) is an integer solution to (5.6) of type I, then

y >
t2

14s3
.
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Proof. By the definition of solutions of type I, if (x, y) is of this type, then

1− 6

4w + 9
<
x

y
< 1− 6

4w + 9
+

14

(4w + 9)w2
.

Multiply the above inequality by (4w + 9)sy. We have

(4w + 9)sy − 6sy < x(4w + 9)s = x(4t+ 9s) < (4w + 9)sy − 6sy +
14sy

w2
.

Since both (4w + 9)sy − 6sy and x(4t+ 9s) are integers, it follows that

14sy

w2
> 1.

That is

y >
w2

14s
=

t2

14s3
.

Lemma 5.16. With the assumption in Theorem 5.1, there are at most τ integer solutions
to (5.1) of type I.

Proof. Recall that we’ve assumed that (x0, y0) is a non-trivial integer solution to (5.6)
satisfying condition (5.7). From Lemma 5.14, we know that (x0, y0) has to be a solution of
type I and thus

x0

y0

∈ I =

(
1− 6

4w + 9
, 1− 6

4w + 9
+

14

(4w + 9)w2

)
. (5.52)

Recall the definition of H from (5.17):

H = (2t+ 3s)x6
0 + (6t+ 36s)x5

0y0 + (45s− 15t)x4
0y

2
0 − (60s+ 40t)x3

0y
3
0

− (90s+ 15t)x2
0y

4
0 + (6t− 18s)x0y

5
0 + (2t+ 3s)y6

0.

Put

g(x) = (2w + 3)x6 + (6w + 36)x5 − (15w − 45)x4

− (40w + 60)x3 − (15w + 90)x2 + (6w − 18)x+ 2w + 3.
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Since for w ≥ 300 g′(x) has three negative roots and one positive root less than 0.5 and
the other positive root greater than 2, we have that g(x) is decreasing on the interval I.
Then

g

(
1− 6

4w + 9
+

14

(4w + 9)w2

)
< g(x) < g

(
1− 6

4w + 9

)
.

We have

g

(
1− 6

4w + 9

)
= − 27

(4w + 9)6

(
8192w7 + 86016w6

+ 419328w5 + 1209600w4 + 2147040w3

+2258928w2 + 1267434w + 285687
)

< −53w,

g

(
1− 6

4w + 9
+

14

(4w + 9)w2

)
= − 1

(4w + 9)6w12

(
221184w19 + 2322432w18

+ 11321856w17 + 34981632w16 + 78291360w15

+ 143727696w14 + 242392878w13 + 342697149w12

+ 345677220w11 + 298409832w10 + 227159100w9

− 76919220w8 − 297339840w7 − 291906720w6

− 492685200w5 − 381009888w4 − 164574144w3

−203297472w2 − 15059072w − 22588608
)

> −54w,

for w ≥ 300. It follows that

53w < |g(x)| < 54w.

By the definition of g(x) and H, together with (5.52), we obtain

53ty6
0 < |H| < 54ty6

0. (5.53)

By Lemma 5.15, we have

y >
t2

14s3
. (5.54)

By the assumption of the theorem, we have

t ≥ 200s12/7+χ, (5.55)
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where

χ =
1

5τ
, for τ ≥ 1. (5.56)

This implies that

w =
t

s
≥ 200s5/7 ≥ 200 · 25/7 > 300. (5.57)

and

0 < χ ≤ 1

5
. (5.58)

Then

s−1 ≥ 200
7

12+7χ t−
7

12+7χ . (5.59)

From (5.54) and (5.59), we have

y >
t2

14
·
(

200
7

12+7χ t−
7

12+7χ

)3

> 288t
3+14χ
12+7χ . (5.60)

The last inequality holds since 7
12+7χ

takes it minimal value when χ takes its maximal value

in (5.58). This is equivalent to

t < 288−
12+7χ
3+14χy

12+7χ
3+14χ < 2.1 · 10−6y

12+7χ
3+14χ . (5.61)

In particular, since (x0, y0) is a solution of type I, we have

t < 2.1 · 10−6y
12+7χ
3+14χ

0 . (5.62)

From (5.53), together with (5.60), we have

|H| > 53ty6
0

> 53t ·
(

288t
3+14χ
12+7χ

)6

= 53 · 2886t1+6· 3+14χ
12+7χ

> 3 · 1016t
30+91χ
12+7χ . (5.63)
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Put

ε =
2(12 + 7χ)

6 + 77χ
. (5.64)

It is easy to see that ε ∈ (0, 4). For w ≥ 300,

k = 120t+ 323s ≤ 121.077t.

Then we have

36 · 5761/ε(27k)2+2/ε ≤ 36 · 576
6+77χ
24+14χ · (27 · 121.077t)

30+91χ
12+7χ

= 36 · 576
6+77χ
24+14χ · 3269.079

30+91χ
12+7χ t

30+91χ
12+7χ

< 2.6 · 1016t
30+91χ
12+7χ . (5.65)

By (5.63) and (5.65), the condition in Lemma 5.11 is satisfied and thus

|H| ≥ 36 · 5761/ε(27k)2+2/ε. (5.66)

Hence we can apply Lemma 5.11, which gives λ < 2 + ε < 6. By Lemma 5.12, we have
that if (x, y) is a solution to (5.1) then

y <

(
C

B

) 1
6−λ

, (5.67)

where

B =
0.65t

k

and

C =
26.72|x0 − ρy0| 6

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
6
√

1− |γ|

·max

(
7|x0 − ρy0|

9 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

.

We now estimate B and C in the current case. By (5.57), we have

B =
0.65t

k
=

0.65t

120t+ 323s
> 0.005368. (5.68)
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Notice that (x0, y0) is of type I. Then

x0

y0

∈ I ⊂
(

401

403
, 1

)
.

We have

|x0 − ρy0| = y0

∣∣∣∣x0

y0

− ρ
∣∣∣∣ <

√√√√(1 +
1

2

)2

+

(
−
√

3

2

)2

=
√

3y0,

|x0 − ρy0| = y0

∣∣∣∣x0

y0

− ρ
∣∣∣∣ <

√√√√(1 +
1

2

)2

+

(√
3

2

)2

=
√

3y0.

From condition (5.66) and k = 120t+ 323s = s(120w+ 323) ≥ 2(120 · 300 + 323) = 72646,
it follows that

|γ| = 3
√

3|m|
|H|

≤ 3
√

3(27k)

|H|

≤ 3
√

3(27k)

36 · 5761/ε(27k)2+2/ε

<
3
√

3

36 · 5761/4 · (27 · 72646)3/2

< 2 · 10−11.
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Therefore

C =
26.72|x0 − ρy0| 6

√
1 +
√

2|γ||H|(1 +
√

2|γ|)
6
√

1− |γ|

·max

(
7|x0 − ρy0|

9 6
√

1− |γ|(1− |γ|2)
, 1

)λ−1

<
26.72

√
3y0

6
√

1 +
√

2 · 2 · 10−11|H|(1 +
√

2 · 2 · 10−11)
6
√

1− 2 · 10−11

·max

(
7
√

3y0

9 6
√

1− 2 · 10−11(1− (2 · 10−11)2)
, 1

)λ−1

< 46.2804 · 1.34716λ−1|H|yλ0
< 205.35|H|yλ0 ,

since λ < 6. Thus (5.67) implies

y <
(
38255|H|yλ0

) 1
6−λ . (5.69)

Recall the right hand side of (5.53),

|H| < 54ty6
0.

Together with (5.62) and (5.64), we obtain

y <
(
38255|H|yλ0

) 1
6−λ

<
(
38255 · 54ty6

0y
λ
0

) 1
6−λ

<

(
38255 · 54 · 2.1 · 10−6 · y

12+7χ
3+14χ

0 y6+λ
0

) 1
6−λ

< (4.34)
6+77χ
294χ y

288+3864χ+9359χ2

294(3+14χ)χ

0 . (5.70)

The last inequality holds because 6+λ
6−λ is increasing in λ ∈ (0, 6) and λ < 2+ ε < 6. Assume

that there are τ+1 solutions (x0, y0), (x1, y1), . . . , (xτ , yτ ) to (5.6) of type I. Further assume
that

y0 ≤ y1 ≤ . . . ≤ yτ .

129



Then by Lemmas 2.6 and 5.3, we have by induction

yτ ≥
(
B

2

)
y5
τ−1

≥
(
B

2

)((
B

2

)
y5
τ−2

)5

≥ . . .

≥
(
B

2

) 5τ−1
4

y5τ

0 .

Together with the above estimation for B, we get

yτ > 0.002684
5τ−1

4 y5τ

0 . (5.71)

By Lemma 5.14, we know that (xτ , yτ ) has to be type I as well. Then (5.70) applies to yτ .
Together with (5.71) we have

0.002684
5τ−1

4 y5τ

0 < (4.34)
6+77χ
294χ y

288+3864χ+9359χ2

294(3+14χ)χ

0 .

Notice that χ = 1/5τ . Then 5τ = 1/χ. It follows that

0.002684
1/χ−1

4 y
1/χ
0 < (4.34)

6+77χ
294χ y

288+3864χ+9359χ2

294(3+14χ)χ

0 .

That is,

y
1− 288+3864χ+9359χ2

294(3+14χ)

0 < 0.0027435−
1−χ

4 · (4.34)
6+77χ

294 . (5.72)

Put

φ = 1− 288 + 3864χ+ 9359χ2

294(3 + 14χ)
.

Then

φ = −9359χ2 − 252χ− 594

294(3 + 14χ)
.
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Since 9359χ2−252χ−594 = 0 has two roots at −0.23882 . . . and 0.2657 . . ., we have φ > 0
for χ ∈

(
0, 1

5

]
from (5.58). Therefore, (5.72) gives

y0 <
(

0.002684−
1−χ

4 · (4.34)
6+77χ

294

) 1
φ

= exp

(
1

φ

(
log(0.002684)

(
−1− χ

4

)
+ log(4.34)

(
6 + 77χ

294

)))
< exp

(
294(3 + 14χ)(1.52− 1.095χ)

594 + 252χ− 9359χ2

)
< exp(8.2154)

< 3698. (5.73)

The second last inequality holds since

294(3 + 14χ)(1.52− 1.095χ)

594 + 252χ− 9359χ2

takes its maximal value when χ takes its maximal value in (5.58). On the other hand, from
(5.54) and (5.55), we have

y0 >
t2

14s3

≥ 2002s3/7+2χ

14

≥ 200223/7

14
> 3845.

This contradicts (5.73). It then follows that there are at most τ solutions to (5.1) of type
I.

Combining Lemmas 5.14 and 5.16, we have that there are at most τ integer solutions
(x, y) to (5.1) that satisfy (5.7) and y ≥ 4. Then by the (5.2), we conclude that for
s ≥ 2, t ≥ 200s12/7+1/5τ with τ ≥ 1, other than the trivial solutions

±{(0, 1), (1, 0), (1, 1), (−1, 2), (−1, 1), (−2, 1),

(2, 1), (−1, 3), (−3, 2), (1, 2), (−2, 3), (−3, 1)}
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there are at most 12τ integer solutions to the Thue inequality

|sx6 − 2tx5y − (5t+ 15s)x4y2

− 20sx3y3 + 5tx2y4 + (2t+ 6s)xy5 + sy6| ≤ 120t+ 323s.
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[32] A. Pethő, R. F. Tichy, On two-parametric families of Diophantine problems, J. Sym-
bolic Comput. 26 (1998), 151-171.

[33] J. H. Rickert, Simultaneous rational approximations and related diophantine equations,
Math. Proc. Camb. Phil. Soc. 113 (1993) 461-472.

[34] C. L. Stewart, On the number of solutions of polynomial congruences and Thue equa-
tions, Journal of the American Math. Soc., 4 (1991), 793-835.

[35] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number
Theory 34 (1990), 235-250.

[36] E. Thomas, Solutions to certain families of Thue equations, J. Number Theory 43
(1993), no.3, 319-369.

[37] E. Thomas, Solutions to infinite families of complex cubic Thue equations, J. Reine
Angew. Math. 441 (1993), 17-32.

[38] E. Thomas, Counting solutions to trinomial Thue equations: A different approach,
Trans. Amer. Math. Soc. 352 (2000), 3595-3622.
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[41] A. Togbé, Complete solutions of a family of cubic Thue equations, J. The̋or. Nombres
Bordeaux 18 (2006), no. 1, 285-298.
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