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Abstract

The organization of software systems into subsystems is usually based on the
constructs of packages or modules and has a major impact on the maintainability of
the software. However, during software evolution, the organization of the system is
subject to continual modi�cation, which can cause it to drift away from the original
design, often with the e�ect of reducing its quality.

A number of techniques for evaluating a system's maintainability and for con-
trolling the e�ort required to conduct maintenance activities involve software clus-
tering. Software clustering refers to the partitioning of software system components
into clusters in order to obtain both exterior and interior connectivity between these
components. It helps maintainers enhance the quality of software modularization
and improve its maintainability.

Research in this area has produced numerous algorithms with a variety of
methodologies and parameters. This thesis presents a novel ensemble approach
that synthesizes a new solution from the outcomes of multiple constituent cluster-
ing algorithms. The main principle behind this approach derived from machine
learning, as applied to document clustering, but it has been modi�ed, both concep-
tually and empirically, for use in software clustering. The conceptual modi�cations
include working with a variable number of clusters produced by the input algo-
rithms and employing graph structures rather than feature vectors. The empirical
modi�cations include experiments directed at the selection of the optimal cluster-
merging criteria. Case studies based on open source software systems show that
establishing cooperation between leading state-of-the-art algorithms produces bet-
ter clustering results compared with those achieved using only one of any of the
algorithms considered.
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Chapter 1

Introduction

Software supports many business, government, and social institutions. As the re-
quirements of these institutions change, so must the software that supports them;
however, changing software systems that govern complex actions is much more eas-
ily said than done. Creating an adequate model of the structure of a system and
keeping that model coherent with respect to modi�cations that occur as the system
evolves are among the many critical problems that software developers are facing.
Without an automated method of acquiring insight into the system design, a soft-
ware maintainer often modi�es the source code without a complete understanding
of its organization. For such systems, it is apparent that adopting an ad hoc ap-
proach to software maintenance will have a negative impact on the quality of the
structure of the system. In fact, the quality may diminish to the point where the
system organization is so disorganized that it must be modernized or abandoned.

Software clustering techniques have been applied as a method of solving crucial
software engineering problems in the context of re�exion analysis, software evo-
lution, and reverse engineering. The basic idea behind re�exion analysis is the
creation of a hypothesized static architecture from existing documentation or from
interviews with architects, followed by the mapping of the elements of the im-
plementation to the architecture [61]. For large software systems, such a manual
process usually entails substantial work [47]. Combining automatic software clus-
tering with prior knowledge about the system's architecture would have a signi�cant
impact on re�exion analysis. In practice, software clustering can identify concrete
entities for which an automatic mapping decision is relatively simple and can also
provide support for the user with respect to manual mapping through the detection
of hypothesized entities that are possible correct entities [56].

The evolution of software systems occurs through the addition of new function-
ality, the correction of existing faults, and improvements in [56]. Software clustering
tools attempt to improve the structure of the software through software restruc-
turing or reduce the complexity of large modules source code decoupling. Software
clustering is also useful for identifying duplicate code [68]. Decoupling source code
can help simplify complex modules or functions, where complexity of a module or
a function is determined based on software metrics. Xu et al. [68] have presented a
case study in which software clustering is applied for source code decoupling at the
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procedure level. With software clustering, related statements are grouped together
to produce a dependency ranking among the groups. The authors suggested that
a module or function be divided based on the results of the software clustering.

The fundamental goal of reverse engineering is to recover components or to ex-
tract system abstractions [15]. The literature includes a number of approaches and
techniques that are supported by software clustering and that can facilitate the
recovery of information from a software system [10, 12, 39, 56]. Two examples of
typical reverse engineering are module recovery [12, 18, 23, 29] and architecture
recovery [10, 39, 48, 58, 70]. Module recovery software clustering methods focus on
recovering modules based on an analysis of dependencies extracted from the soft-
ware system, such as function calls. A number of tools, such as Schwanke's Arch
tool [53], Bunch [37], and ACDC [61], have been used to help software engineers
understand a system through the decomposition of the system into subsystems. In
practice, architecture recovery methods focus on determining the system architec-
ture through the breaking down of abstractions distilled from the source code, such
as components (modules), subsystems, and design patterns.

Most software clustering algorithms have been implemented for speci�c soft-
ware systems, with substantial success. It is consequently crucial to examine new
approaches that will enable the development of a cooperative strategy for success-
fully combining current algorithms to create robust solutions applicable for di�erent
types of systems.

1.1 Motivation

In the last 20 years, software clustering has been the target of an enormous amount
of research [56]. The clustering techniques described in the literature use a number
of criteria for establishing the clusters. As mentioned, most of these algorithms
have been successfully applied in speci�c software systems. However, the question
of how a software engineer can identify the software clustering algorithm best suited
for a particular software system remains unanswered.

The importance of evaluating software clustering algorithms was �rst pointed
out by Lakhotia and Gravley [32]. Evaluation methods involve an appraisal of soft-
ware clustering approaches based on an assessment of the quality of an automatic
decomposition using an authoritative decomposition as a reference. The drawback
of these methods is the assumption that such a decomposition exists, given that
its construction for a mid-sized software system is quite challenging, even with the
help of an expert [55]. Numerous research studies have addressed the creation of
an authoritative decomposition [31, 43]. However, questions related to determining
the correct process for creating an authoritative decomposition and to why it is
useful to create such authoritative compositions remain unanswered.

From a practical perspective, the answers to these questions are important be-
cause they increase the con�dence of the software engineers who analyze systems.
From a theoretical point of view, these answers are signi�cant because they provide
an approximate method for comparing any solutions, even those produced by other
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algorithms that are based on the same clustering criterion.

1.2 Proposed Software Clustering Approach

Rather than relying on a single algorithm, researchers and practitioners in the
document-clustering �eld have devised a new ensemble approach that synthesizes
a solution from the results of an aggregation of constituent clustering algorithms.
This ensemble approach is known as cooperative clustering (CC) [28]. The goal of
using CC is to achieve a common bene�t (e.g., a global clustering solution) based
on agreement among peer techniques.

In this research, we propose a new clustering approach inspired by document-
based cooperative clustering We designate our approach CC/G because it is based
on graphs (i.e., software dependency graphs) rather than on numerical feature vec-
tors, as in the original CC. The CC/G algorithm includes the three steps of the
original CC: �rst, run each of the constituent clustering algorithms; second, from
the output of the clustering algorithms, �nd the common elements that they agree
on; third, merge these elements into existing (or new) clusters.

The particulars of how these steps are performed represent an additional dif-
ference between CC and CC/G. Conceptually, CC works with numerical feature
vectors and includes assumptions about the number of clusters produced at each
step. In contrast, CC/G works with graph structures, with a relaxing of the as-
sumptions about the number of clusters generated. Empirically, in any domain a
variety of merging criteria could be used, and the best criteria for each domain are
discovered through experimentation. Such experiments have been performed for
CC/G as applied to software clustering, with the conclusion that the best overall
results are obtained by merging clusters that have low cohesion.

Case studies using open source software systems have demonstrated that com-
bining state-of-the-art approaches based on cooperative methodology and merging
produces better results than any of the individual approaches considered. The case
studies were focused on a combination of the bottom-up clustering techniques em-
bodied in the Bunch [37] and Lattix [52] tools. MoJo [60] and Turbo Modularization
Quality (TurboMQ) [43] metrics were employed for the assessment of the quality
of the results, and the stability of the solutions was measured by monitoring the
changes between subsequent versions of the benchmark programs.

1.3 Thesis Statement

This dissertation will establish the following thesis statement:

Combining multiple state-of-the-art software clustering algorithms with
a cooperative strategy produces measurably better and more stable re-
sults than any of those algorithms does individually.

The state-of-the-art software clustering algorithms that we combine cooperatively
are Hill Climbing and Matrix Co-clustering in the Bunch framework, and the De-
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pendent Structure Matrix (DSM) partitioning strategy used by the Lattix tool. We
use Mitchell's TMQ metric to assess cluster quality and Tzerpos's MoJo metric to
assess stability. These are well accepted metrics in software clustering, as we discuss
in the related work (section 2.3).

1.4 Research Goals

This research investigates the tolerance of dependency-based structured software
systems, the aggregation of multiple clusterings with a variable number of clusters,
the discovery of common patterns in each clustering in the form of sub-clusters, and
the determination of the best merging criteria that will result in e�cient clusters.
The scope of this research is wide, with the primary focus on how to build a
software clustering algorithm based on the cooperative methodology inspired by the
traditional cooperative categorization for text documents described by Kashef [28].
The ultimate goals of any software clustering algorithm include the production of
high-quality partitions from raw software systems within an acceptable time frame,
and the maintenance of the stability of the partitioning for changing versions of
the software. The quality of the global clusters generated with the use of the
proposed approach is to be measured based on the merging strategy adopted and
the clustering algorithms invoked. Quality can achieved through the maintenance of
high internal cohesion in the clusters and low coupling between them. In the context
of cluster entities means that the produced partitions should be of real signi�cance
and represent the structures inherent in the software. Stability means that solutions
remain to be maintained when similar clustering decompositions are produced for
similar versions of a software system. The following are the characteristics of our
proposed clustering algorithm:

1. The algorithm does not sacri�ce the quality of the resulting clusters by cre-
ating the number of clusters desired. Instead, it produces as many clusters
as naturally exist in the data set.

2. Each cluster consists of layers formed gradually through iterations.

3. An appropriate choice of merging criteria results in high-quality clustering
solutions with stable compositions.

These goals could be further expanded to include the following features:

1. Management of dynamic information through the association of weights with
�le dependencies and the incorporation of these weights into the clustering
process through special similarity metrics.

2. Selection of the best combination of heterogeneous clustering algorithms that
have di�erent characteristics and con�gurations.

3. Facilitation of the hybrid aggregation of both feature-based and dependency-
based structured software.
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4. Ability to choose a variety of objective functions for the generation of the
sub-clusters.

5. Addition of quantitative measures of quality based not only on internal in-
formation (i.e., dependencies) but also on external information (e.g., class
labels).

1.5 Organization of The Thesis

Chapter 2 reviews the software clustering literature, focusing mainly on represen-
tation extraction methods, software clustering algorithms, clustering evaluation
approaches and related work. Chapter 3 presents the proposed software clustering
approach in detail. Preliminary experimental results are discussed in chapter 4.
Finally, a summary of the work, and a discussion of the research plan are given in
chapter 5.
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Chapter 2

Background and Related Work

In this chapter, we consider a number of broad areas related to our research, includ-
ing software clustering analysis, data representation, and techniques for assessing
the quality of a software clustering. In the following sections, we will present the
state-of-art in software clustering analysis, describe the evaluation criteria used in
this study, and review existing work related to combing multiple partitioning.

2.1 Software Clustering Analysis

Referring to the process of analyzing the relationships between software entities in
such a way that the system organization can be reconstructed in a certain level of
modularity. In general, this process is undertaken either for the purpose of gaining
insight into the identity of the system components (modules), or for the purpose
of obtaining a compressed representation of the system organization. This process
can be feasible only when the system structure has a certain level of modularity.

In the context of software clustering, Shten [55] suggests that software clus-
ter analysis can be done in the following stages: (1) fact extraction, (2) �ltering,
(3) similarity computation, (4) cluster creation, (5) results visualization, and (6)
user feedback collection. The process typically repeats until satisfactory results
obtained. Each stage discussed in detail in the following sub-sections.

2.1.1 Fact Extraction

Fact extraction is the term used to describe the program analysis to be used as
input to the cluster algorithm. [56]. It starts with recognizing the set of entities
to cluster. After entities have been identi�ed, the next phase is attribute selection.
Selecting an appropriate set of attributes for a given clustering task is critical for its
success. There are di�erent sources that software artifacts could be extracted from
such as source code, binary modules and software documentation. Then, extracted
artifacts are stored in a language-independent model, often called factbase [49].
The models can then be studied and manipulated to analyze the architecture of the
software being built.
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2.1.2 Filtering

Filtering is performed after fact extraction. Its aims are to remove unnecessary
information from the factbases, to calculate facts that are a composition of existing
facts, and apply a weighting scheme to the attributes. Lung et. [33] showed that
using a di�erent methodology for the building of the �nal factbase may directly
a�ect the results. Ideally, the factbase should be small and have enough information
to make the obtained clusters meaningful. Several tools have been developed for
fact manipulation, such as Gork [25] and Crocopat [11]. Some algorithms expect
that the factbase includes only relations between modules [54]; other algorithms do
not make any assumptions about the facts [7].

2.1.3 Similarity Computation

Similarity measures between entities are the core component of any clustering al-
gorithm [27]. The measures re�ect the degree to which the elements of entities
belong together. Thus, similarity measures re�ect how strongly-related each part
of functionality of a software module is.

Schwanke [53] introduced the concept of using design principles, such as low
coupling and high cohesion. Schwanke's concept has been extended by Koschke [31]
to metric-based hierarchical clustering techniques. The Koschke similarity functions
consider global declarations, function calls and name similarities between identi�ers
and �le names. Choi and Scacchi [16] also describe a similarity function based on
maximizing the cohesiveness of clusters.

2.1.4 Clustering Algorithms

Software clustering, by de�nition, is an exploratory and descriptive software anal-
ysis technique, which has gained a lot of attention in software maintenance. The
organization of a software system has a major impact on its maintainability. To im-
prove maintainability, software systems are usually organized into subsystems using
the constructs of packages or modules using clustering algorithms. Clustering algo-
rithms can be categorized based on their cluster model. According to Wiggerts [65],
software clustering algorithms can be categorized into graph-theoretical algorithms,
optimization algorithms, hierarchical agorithms, and meta heuristic algorithms.

2.1.4.1 Graph-theoretical Algorithms

This set of algorithms is based on graph properties where nodes represent entities
and edges represent relations. Aggregation algorithms and minimal spanning tree
algorithms are the most common types of graph-theoretical clustering algorithms.
Aggregation algorithms decrease the number of nodes in a graph by merging them
into aggregate nodes. The aggregates can be used as clusters or can be the input
for a new iteration resulting in higher-level aggregates. The minimal spanning tree
(MST) algorithms start by discovering a MST of the given graph. Due to the
nature of software, the classic MST algorithm is not suitable for software clustering
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because it tends to create a few large clusters where contain many entities while
several other entities isolated [58]. Bauer and Trifu [10] modi�ed the classic MST
algorithm for using in software clustering. This extended MST algorithm uses two
passes. The �rst pass, which follows the classic MST concept, iteratively joins
the two closest nodes into a cluster, while the second pass assigns the remaining
un-clustered entities to the cluster they are the closest to.

2.1.4.2 Optimization Algorithms

A typical optimization algorithm starts with an initial solution and tries to enhance
it by iterative adaptations, according to some �tness function [56]. Its e�ective-
ness reliy on the successful preliminary choice of values for seven parameters that
control factors, including the number of expected clusters, the minimum number of
objects in the cluster, and the maximum number of iterations. These algorithms
produce both hierarchical [35] and non-hierarchical [18] clustering. A classic non-
hierarchical clustering optimization method starts with an initial partition derived
based on some heuristic. Then, entities are replaced with other clusters to improve
the partition according to some criteria. Hill-climbing is a search and optimiza-
tion technique which has been successfully employed in various software clustering
algorithms [18]. Mitchell [43] shows promising results in terms of the quality and
performance of hill-climbing search methods. His approach has been implemented
as part of the Bunch software clustering tool [44], [36]. Bunch is a clustering tool
which supports software developers and maintainers in understanding, verifying
and maintaining a source code base [37], [36], [23], [61]. Bunch interprets the clus-
tering problem as an optimization problem, and tries to �nd a partition maximize
an objective function where approximating the goodness of a partition. A good
partition gathers highly interdependent modules in the same cluster (representing
subsystems) and assigns independent modules to distinct clusters. Finding a good
graph partition involves systematically navigating through a very large search space
of all conceivable partitions using techniques such as hill-climbing [36] and genetic
algorithms [57].

2.1.4.3 Hierarchical Algorithms

Hierarchical algorithms [38] employ a similarity measure to calculate pair-wise re-
semblances for all entities to be clustered. The most similar entities are gathered
together iteratively until some heuristic rule decides that a satisfactory set of clus-
ters has been reached. Hierarchical algorithms can be categorized into agglomera-
tive (bottom-up) and divisive (top-down) [26]. Divisive algorithms begin with one
cluster that holds all entities and splits the cluster into a number of disjoint clus-
ters at each successive step. Agglomerative algorithms start at the bottom of the
hierarchy by iteratively grouping like entities into clusters. Each step combining,
the two clusters that are most like to each other, reducing the number of clusters
by one. Divisive algorithms propose an advantage over agglomerative algorithms
because most users are concerned about the main structure of the data which con-
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sists of some large clusters found in the �rst steps of divisive algorithms [26]. But,
agglomerative algorithms have been extensively used in software clustering. For ex-
ample, Lung et al. [33] have shown applications of the UPGMA (Unweighted Pair
Group Method with Arithmetic mean) method in the software clustering context.
Andritsos and Tzerpos [7] presented the Scalable Information Bottleneck (LIMBO)
algorithm, an agglomerative hierarchical algorithm that employs the Agglomerative
Information Bottleneck algorithm (AIB) for clustering.

On the other hand, ACDC [61] is a hierarchical clustering algorithm that does
not follow the classical schema of hierarchical algorithms. It cannot be assigned
to the agglomerative or divisive category because the algorithm does not have an
explicit iterative split or merge stage. ACDC uses patterns that have been shown
to have good program comprehension properties to determine the system decom-
position. This results in most modules being placed into hierarchical categories
(subsystems).Then, ACDC uses an orphan adoption algorithm [59] to assign the
remaining modules to the appropriate subsystem. ACDC [61] completes the task
of clustering in two stages. In the �rst stage, it generates a skeleton of the �nal
decomposition by �nding subsystems that look like established subsystem patterns.
Depending on the pattern used the subsystems are given appropriate names. In the
second stage, ACDC �nalizes the decomposition by using an extended version of
the Orphan Adoption Algorithm. It tries to place each unclustered software entity
in the subsystem that depends most on it.

2.1.4.4 Meta-Heuristic Algorithms

Many meta-heuristic methods have been successfully applied to software module
clustering. Most proposed approaches generate clusters by analyzing only the struc-
tural dependencies between software entities [36],[39], [46],[8], [7]. The �eld was es-
tablished by Mancorridis et. al. [36]. They implement an automatic clustering tool
called Bunch [37]. This tool used a search-based clustering algorithms such as hill
climbing for automating software module clustering. Several other meta-heuristic
search technologies have been applied, including simulated annealing and genetic
algorithms [22], [34], [44]. However, experiments show that hill climbing dominents
other techniques in both result quality and execution time. To prepare software en-
gineering problems as clustering problems, the representation and �tness function
need to be de�ned [18], [22].

2.1.5 Results Visualization

Software Visualization (SV) denotes the use of visual representations to enhance
the understanding and comprehension of the di�erent aspects of a software system.
Caserta et al. [14] classify architecture related approaches which involves visualizing
relationships between software entities. Visualizing relationships in the software is
a harder task because software entities can have a much larger number of relations
of many kinds, such as inheritance, method calls, etc.

Graphs as vertices and edges (node-link) have all the characteristics needed
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to represent relationships between software components [24]. However, visualizing
large software systems using graphs can be very confusing, with plenty of edge
congestion, overlapping, and occlusions, its context making it almost impossible to
investigate an individual node or edge.

Dependency Structure Matrix (DSM) has been proposed in the literature as an
alternative to the node-link representation graphs [52]. DSM is a square matrix
with identical row and column labels. Matrix entries are the number of relations
between a row element and a column element is shown in the matrix.

2.1.6 User Feedback Collection

Some software clustering algorithms accept (or require) user input, whereas others
run totally automatically [55]. Algorithm which accept user input are called semi-
automatic clustering algorithms. A software engineer may explore di�erent aspects
of a software system by validating clustering results and providing feedback to the
semi-automatic clustering algorithm.

Semi-automatic algorithms aims to enable a collaboration between clustering
algorithms and the user with the goal of constructing quality results. Koschke
[31] proposed a semi-automatic clustering framework based on modi�ed versions of
the fully automatic techniques he investigated. Christl et al. [17] present a semi-
automatic algorithm that maps the hypothesized high-level entities to source code
entities.

Unfortunately, it is usually di�cult to select between automatically/semi-automatically
clustering algorithms due to the size and the lack of formatting of the extracted in-
formation. Therefore, being able to combine both approaches will help the software
engineer to explore di�erent aspects of the software system.

2.2 Software Clustering Validation

There are three types of validation studies in data clustering [26]. An external
evaluation of validity matches up the recovered decomposition to a reference de-
composition (often produced by an expert). An internal evaluation of validity tries
to determine if the decomposition is intrinsically appropriate for the data by mea-
suring the quality of a clustering based on the type of criterion being considered.
A relative test compares two decompositions and measures their relative values.

Software clustering, Turbo Modularization Quality (TurboMQ) [43] and MoJo
[60] are the measures that have been used in the literature to apply for software
clustering evaluation. TurboMQ used to analyze the quality of partition (internal
evaluation). MoJo calculate the minimum number of move or join operations one
needs to perform in order to transform one clustering to another or vice versa.
MoJo used for relative evaluation, by compare between two clusterings of the same
software system. Also, MoJo could be used for external evolution, when asked to
measure the distance between the clustering of a system and its reference decom-
position. The following subsections discuss the three types in more detail.
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2.2.1 Quality of Partitioning

Based on the assumption that well-designed software systems are organized into
cohesive partitions (clusters) that are loosely inter-connected, two modularization
criteria have been proposed in the literature to evaluate the quality of partitioning:
Basic Modularization Quality (MQ) and Turbo Modularization Quality (MQ) [43].

The Basic MQ was the �rst modularization quality measure, introduced by
Mancoridis et. al, [37]. It measures the connections between constitutes of two
distinct clusters (coupling) and the connections between the constituents of the
same cluster (cohesion) independently. MQ is designed to reward the creation of
highly cohesive clusters while penalizing excessive inter-cluster coupling. However,
Mitchell noted two signi�cant drawbacks in basic [43]. First, the performance of
this measurement restrict usage to small systems (i.e., fewer than 75 modules). The
second problem with the Basic MQ measurement is that its design cannot support
weighted graphs.

TurboMQ [42] was designed to overcome the two limitations of Basic MQ. Tur-
boMQ supports weighted graphs, and has much lower computational complexity
than Basic MQ. Turbo MQ has been used to evaluate many of the clustering tech-
niques published in the literature including [9], [35] and [46].

To calculate TurboMQ, we need to compute two quantities: intra-connectivity
µi,j and inter-connectivity εi,j. µi is the sum of all relationships that exist between
classes in cluster i. A higher intra-connectivity suggests high cohesion. εi,j, is
de�ned as the sum of all relationships that exist between classes in two distinct
clusters i and j. Using these two quantities, a cluster factor CFi is calculated for
each cluster i and then TurboMQ of the system is given by the sum of CF for all
clusters. The cluster factor is calculated as:

CFi =


0 µi= 0;

µi

µi+
1
2

k∑
i=1j 6=i

(εij+εji)

otherwise. (2.2.1)

The objective function approximates the cohesion and coupling of each cluster
with respect to other clusters using CF de�nition.

TurboMQ is given by:

TurboMQ =
k∑
i=1

CFi (2.2.2)

TurboMQ measures the quality of CC/G generated clusters. It therefore allows
us to compare the generated clusters from di�erent algorithms using consistent
criteria.
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2.2.2 Distance Between Decompositions

The MoJo distance [60] measures the distance between a decomposition created by a
clustering algorithm and an authoritative decomposition as the minimum number
of operations one has to perform to transform a software decomposition to the
authoritative one. In practice, it computes the number of move and join operations
that needed to be performed in order to change one software decomposition to
another. Intuitively, the smaller the distance of a decomposition to the authoritative
one, the more e�ective the algorithm that produced it.

2.2.3 Stability

Stability re�ects how sensitive is a clustering approach to perturbations of the input
data. Stability in software clustering means that similar clustering decompositions
should be produced for similar versions of a software system [55]. Thus, under
conditions of small and incremental change between consecutive versions, an al-
gorithm should be stable. To calculate the relative stability of two constituent
clustering algorithms, Wu et al. [67] suggest constructing sequences of MoJo [60]
values calculated based on comparing two consecutive members of the sequence of
decompositions obtained from a software system. This measure allows one to say
that one algorithm is more stable than another with regard to a software system.
Tzerpos and Holt [62] de�ne a stability measure based on the ratio of the number
of �good� decompositions to the total number of decompositions produced by a
clustering algorithm. A decomposition obtained from a slightly modi�ed software
system is de�ned as �good� if and only if the MoJo distance between the decompo-
sition and the decomposition obtained from the original software system is at most
1% of the total number of entities.

2.3 Related Work

Kebir et al. [30] compare and combine two algorithms for software component
identi�cation from object-oriented source code. They started by de�ning a mapping
model between objects and components and a measurement model for evaluating
semantic correctness of a software component. Then, they continue combining a
hierarchical and a genetic clustering algorithms in a collaborative manner. They
choose a population that contains a local minimal solution obtained by hierarchical
clustering to initial the genetic clustering algorithm.

Patel et al. [48] proposed a two-phase clustering approach that combines both
dynamic (trace based) and static dependency analysis. They begin by building the
core skeleton decomposition of the system, using software features as a clustering
criterion. Then, they analyzed their static dependencies with the formed clusters.
Zhang et al. [70] proposed a new hybrid clustering algorithm and partition clus-
tering for recovering high-level software architecture from Weighted Directed Class
Graph (WDCG). based on hierarchical clustering and partition clustering for soft-
ware architecture recovery. In particular, they started by using hierarchical cluster-
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ing to �nd out the kernels of clusters, and then they partition other vertices into the
kernels. Daun et al. [21] proposed a consensus-based requirements clustering algo-
rithm in which a prede�ned number of candidate clusterings (in their experiment
25) and then integrates them into a �nal clustering using voting scheme. Saeed et
al.[51] developed a new linkage algorithm, thr Combined Algorithm (CA). The CA
algorithm works by computing a new feature vector for each formed cluster. This
new feature vector is built by taking the binary OR of the feature vectors of the
entities that are clustered. When two entities are merged together, the combined
cluster includes the types, globals and routines of its constituent entities. Hence,
the new feature vector correctly re�ects the merge.

2.4 Summary

The intention was to highlight these issues related and important to this research.
Next chapter presents the deployment of the proposed approach in software engi-
neering.
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Chapter 3

Cooperative-Based Software

Clustering

The idea of cooperative clustering [28] is to synthesize a clustering from the outputs
of an ensemble of constituent clustering algorithms. It searches for a clustering
that is better than those produced by the constituent input algorithms, using their
outputs as starting point. In the worst case cooperative clustering reverts to simply
selecting the best of the constituent outputs.

The original cooperative clustering approach for text documents [28] has three
steps. First, it runs each of the constituent clustering algorithms. Second, it
�nds the points of agreement between these constituent clusterings in form of
sub-clusters. Finally, a coherent merging of sub-clusters performed to reveal the
expected number of clusters.

There are four aspects of cooperative clustering that should be modi�ed to �t
the paradigm of software systems rather than documents data sets. First, heteroge-
neous software clustering approaches will produce di�erent number of clusters; the
assumption in the document domain was that each constituent clustering technique
would produce the same number of clusters. Second, the merging operation should
handle a graph structure of the software rather than a numerical feature vector;
source �les should not clustered based only on lines of code but, rather, by the way
in which they interact with each other. Third, the criteria used to decide what to
merge should be tailored for software systems. We empirically explored a number
of alternative criteria, as discussed in the experiments section. Finally, the original
cooperative clustering had an assumption that the number of output clusters was
known a prior, which is usually not the case in software systems. We have modi�ed
the cooperative clustering to address all of these points, and we named our modi�ed
version CC/G to indicate that it is based on graphs rather than numerical feature
vectors. The four steps of CC/G are illustrated by the �owchart in Figure 3.1 and
described in Figure 3.1.

These four steps are the three steps of the original CC plus an extra step at the
beginning to extract the graph structure from the software.
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Algorithm 3.1 Pseudo-code for clustering program dependency struc-

tures using cooperative strategy

Input: The Dependency Structure Matrix, and a set of C clustering algorithms,
i = 1, 2, .., C
Output: The desired clusters k
For all k

1. Generate the DSM Matrix among n software entities

2. Apply each of the input clustering algorithms on DSM to generate ki clusters,
i = 1, 2, .., C.

3. Repeatedly merge sub-clusters until k clusters are reached using the merging
factor (mf).

4. Evaluate the quality of the k clusters using modularity quality measure.

End

3.1 Software Dependencies

Software dependencies has a great impact on software understandability, reusability,
maintainability, and testability [20]. Dependencies are relations in which a change
to item A can a�ect item B even though there is no direct dependency between A
and B. This could happen, for example, when both A and B access data provided
by item C. The likelihood of a change a�ecting other modules increases with the
number of dependencies a module has.

A variety of dependency types have been presented and analyzed in previous
research [66]. Dependencies can be classi�ed by their abstraction level, by their
static or dynamic nature, or by their impact weight. Two properties of dependencies
can be identi�ed: dependency extraction time and dependency signi�cance Both
apply to implementation level dependencies. Dependencies can be simple direct
dependencies with one dependent and one dependee, or transitive dependencies
that create a dependency path between multiple items, or cyclic dependencies,
in which the dependency path starts and ends with the same item. There are
various ways to model and examine the dependencies in software systems, ranging
from informal box-and-arrow diagrams, UML diagram, and Dependency Structure
Matrix (DSM). DSM has a clear bene�t when dealing with large architectures.
More about DSM is comping in the next section.

3.2 Dependency Structure Extraction

As a �rst step in our CC/G algorithm, we extract the static dependencies between
the input software artifacts (Java byte-code programs in our case) and construct a
compact representation of these dependencies using a Dependency Structure Matrix
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(DSM) [52]. The DSM approach uses a matrix of rows and columns to show how
each software entity depends on others within a project. Di�erent tools are used
to construct DSMs but only Lattix[52] suite is used in extracting and partitioning
software architectures.

(a) Simple DSM with 4 elements and
5 dependency marks.

(b) Partitioned DSM

Figure 3.2: Dependency Structure Matrix

Figure 3.2a provides an example of the general formulation of the DSM of four
software elements. In the DSM, each row and column represent a �le in the target
system. Each cell DSM (i, j) represents a static dependency (such as a reference
to a variable or a data type, a call to a function) from one �le to another. A cell
DSM(i, j) with value 1 means there is a dependency between element i and element
j otherwise DSM(i, j) = 0. L in �gure 3.2b represents cluster label. In this �gure,
the DSM elements grouped into three clusters.

3.3 Dependency Structure Partitioning

In this step, we employ a number of clustering algorithms. Each algorithm i gener-
ates a set of ki clusters. We use Dependency Structure Matrix (DSM) component
partitioning by Lattix[52] and Hill climbing partitioning algorithms with di�erent
settings based on their availability and their discussion in the literature.

The DSM partitioning algorithm tries to re-arrange rows of the DSM matrix to
have clusters of elements near the diagonal. Several algorithms and heuristics have
been o�ered to aid in determining appropriate objective functions and optimization
[52]. Genetic algorithms, distance (from the diagonal) penalty computed for each
interaction and other algorithms have been used to cluster DSMs [13].

DSM partitioning is a `matrix reordering' which discovers a permutation of
matrix rows and columns such that the resulting matrix is as `compact' as possible.
The ordering of row and columns in the matrix is important because it dictates
what the DSM will look like and how it should be interpreted. Figure 3.2b shows
an example of DSM partitioning.

In Hill Climbing, a graph known as Module Dependency Graph (MDG) is used
instead of the DSM. The MDG represents all of the software entities (classes) in the
system as nodes, and all of the dependencies between nodes as edges. The edges in
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the MDG may be weighted to emphasize the relative strength of the dependency
among nodes. Candidate clusters are determined by moving nodes between the
clusters, or in some cases creating new clusters, to maximize an objective function
which is de�ned by Mitchell [45] as Turbo Modularization Quality (TurboMQ).
This function has the property of rewarding cohesive clusters, while penalizing
extreme coupling between clusters.

Every software system is clustered using the preceding algorithms, which gen-
erate a �at decomposition of the benchmark systems. Every individual solution
of the software partitioning problem is represented by a vector of integers L. This
vector is generated by assigning a cluster number to each entity. For example, in
Figure 3.2b, elements are considered to be grouped in 3 clusters.

Each tool has its own objective function, but all based on the software engi-
neering concepts of coupling and cohesion. Generally, cohesion refers to the degree
to which the elements of a module belong together [69]. Methods of measuring co-
hesion vary from qualitative measures to quantitative measures based on the scope
of source code being analyzed. In this study, we use quantitative cohesion to clas-
sify the source code. We measure how tightly classes in the same component are
connected. Cohesion metrics usually cooperate with coupling metrics to measure
quality of software clusters [19]. Subsystems with high cohesion are considered
preferable because high cohesion is associated with several desirable features of
software including robustness, reliability, reusability, and understandability. Cou-
pling is the measure to which each subsystem relies on other subsystems. It is be-
lieved that subsystems exhibiting high cohesion and low coupling form well designed
systems[19]. Hence, the resulting decompositions should have more intra-cluster re-
lationships (i.e. dependencies in clusters) and fewer of inter-cluster relationships
(i.e. dependencies between clusters).

3.4 Cooperative-Based Dependency Structure Par-

titioning

This step is the core of the proposed approach. It takes the DSM and a set of
partitioning algorithms outcomes as inputs and generate the new clusters of the
CC/G. The approach uses two main phases: sub-cluster generation and merging.
First phase employs an agreement strategy between the multiple clustering algo-
rithms to �nd the set of intersections between the di�erent clusterings. Extracted
sub-clusters are then represented by a vector of agreement memberships. In the
merging phase, sub-clusters are merged based on cohesiveness and coupling between
elements. The merging process converges when the desired number of clusters is
obtained.

3.4.1 Agreement Phase

An agreement strategy is employed to discover common patterns between di�erent
clusterings and to produce a set of agreement sub-clusters. In the original version
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of the cooperative approach, the authors assume that each clustering techniques
produces the same number of clusters (i.e. ki is equal) [28]. They generate a number
of sub-clusters as kCi , where ki is the number of clusters generated by a partitioning
algorithm i, and C is the number of partitioning techniques. However, due to
the nature of the software clustering domain, software systems may have di�erent
authoritative decompositions [55]. So, we generalized sub-cluster generation by
allowing unequal number of clusters and generate sub-clusters based on kmax ,
where kmax = max(ki), i = 1, 2, .., C.

To �nd associations between the corresponding sets of sub-clusters, a mem-
bership vector ComemV ector of size n, where n is number of software entities,
generated based on calculating a sub-cluster membership value assigned to each
software entity (in our case a Java class). This clusterings-mapping recognizes the
set of disjoint sub-clusters generated by the intersection of the c partitioning tech-
niques. The new cooperative sub-cluster membership for a given software entity x
is de�ned as:

mem(x) = mem(x)P1
+ ...+mem(x)P(C)

∗ kC−1
max i = 1, ..., C (3.4.1)

Where mem(x)Pi is a cluster label for each software entity assigned by a par-
titioning algorithm Pi, The membership function satis�es the following condition:
for any two Java classes x and y, if mem(x) = mem(y), then x and y belong to the
same cluster (or sub-cluster). Consequently, ComemVector is de�ned as:

ComemV ector(i) = mem(xi), i = 1, ..., n (3.4.2)

Using kmax for generating the sub-clusters memberships causes an enormous
growth in the number of generated sub-clusters especially for large values of kmax.
Furthermore, the cooperative membership vector most probably has sparse entries.
Therefore, only non-zero values of ComemVector are only passed into the next phase
of CC/G. Future directions include the investigation of �nding better membership
function for variable number of clusters.

3.4.2 Merging Phase

The intuition behind this phase is attained the clustering solution through merging
of generated sub-clusters. The most suitable sub-clusters for merging are those
that obtain maximum intra-connectivity among their own cluster elements and
minimum inter-connectivity with respect to other clusters.

Equation 3.4.3 is used to merge sub-clusters. This novel equation measures the
bene�t of merging two sub-clusters based on the value of the merging factor (mf).
The merging factor can be calculated as follows:
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mf =
µi + µj + εij

NiNj(NiNj − 1)
(3.4.3)

Where µi and µj are the intra-connection between elements of sub-clusters i and
j, respectively. µi is the sum of all relationships that exist between classes in sub-
cluster i. A higher value of intra-connectivity is suggestive to high cohesion. εi,jis
de�ned as the sum of all relationships that exist between classes in two distinct sub-
clusters i and j. εi,j has values between 0 and 1. The 0 value mean, no subsystem
level relations between subsystem i and subsystem j exist and value 1 means all
modules in subsystem i are related to all modules in subsystem j and vice-verse. A
low value for inter-connectivity means low coupling. Ni and Nj are the number of
entities in each sub-cluster i, j respectively. The proposed merging factor is used
as measure of the cohesiveness of merging two clusters. Thus, the two sub-clusters
that have maximum mf are merged into a new cluster. Then the sub-clusters list is
updated based on the new added cluster. This step is repeated until no additional
merging is needed when reaching the desired number of clusters.

3.5 CC/G Complexity

Assume we are using c clustering algorithms in our cooperative approach, and the
DSM is already extracted. Thus the computational time of these algorithms will
be bounded by the algorithm of highest complexity.

The computational overhead of the cooperative aggregation and merging can be
divided in two parts, 1) Sub-clusters generations complexity, and 2) Sub-clusters
merging complexity. In order to generate the common sub-clusters, a linear mem-
bership assignment is needed which is O(n), where n is the number of classes in
the software system.

Merging of sub-clusters in an iterative scenario takes O(n2
sb), where nsb is the

number of sub-clusters, nsb is greater than or equal to k. The complexity and extra
computation cost of this merging process should be weighed against the choice of
the merging function at each iteration. For example for CC/G-min, choosing the
least coherent sub-cluster takes O(1) and then �nd the pair sub-cluster for merging
may take O(nsb) in its worst case scenario. Updating the cohesion and coupling
after each merging step takes O(n).

If fully agreement is obtained such that nsb = k, then the CC/G takes a linear
time complexity, where k2<�<�<�<n. However, for a complete disagreement, nsb = n,
thus CC/G takes in its worst case scenario O(n2).

3.6 Limitations of CC/G

We don't expect that any real large software system is composed of clusterings
that are identical or totally dissimilar with di�erent algorithms. A challenge is to
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determine in what situations a cooperative clustering is appropriate. Intuitively,
there are three scenarios for agreements between software engineering clusterings:
full, non and partially agreements. For full-agreement ensemble scenario, the coop-
erative clustering algorithm will add no additional information, and the clustering
solution will be identical to any of its constituents. For non-agreement ensem-
ble scenario, each sub-cluster becomes a singleton element by itself and the total
complexity will be O(n2). In general, the cooperative clustering could improve
upon its constituent inputs if there exist a partially agreement between them. This
can be done by employing a proper merging scheme that may yield improvements
in clusterings. How much agreement should exist to provide e�ective cooperative
clustering is an open research question?

3.7 Clustering Evaluation

Evaluation is an essential part of the proposed algorithm. Thi s step decides �how
good the clustering solution is�. We compare the clustering solutions obtained by
the input constituents to those generated by CC/G. The comparison is based on
three evaluation measures: TurboMQ, MoJo Distance, and Stability. Each of these
measures were previously described in detail in Chapter 2.

Turbo Modularity Quality (TurboMQ) is used by [45] as a partitioning quality
function and it is used in this research as an evaluation measure as it has been
applied successfully on hill-climbing algorithms to measure the quality of generated
partitions as discussed in [37].

In our work, we also use another measure, MoJo distance to measure the sim-
ilarity of the CC/G results compared to that of the various software clustering
algorithms. Moreover, it help us to determine if the generated CC/G clusters are
biased to the clusterings generated by the input constituents or to the original par-
titioning of the benchmark . The CC/G clusterings should not be biased to the
original partitioning nor to the clusterings enrolled to generate the CC/G parti-
tions. In case CC/G generates clusters that are biased to the original partitioning,
this means CC/G failed to provide a di�erent solution to the original system par-
titioning (which may not be the desired decision in some scenarios). In this case,
CC/G succeeded only in distinguish between the clustering algorithms engaged to
generate CC/G clusters.

The Stability [62] is also used in our evaluation step to measure the percent
change between decompositions of successive versions of an evolving software sys-
tem. Under conditions of small changes between consecutive versions, an algorithm
should produce similar clustering.

3.8 Summary

In this chapter, a new cooperative software clustering algorithm, CC/G presented
and discussed. The proposed algorithm contains four main steps, starting by ex-
tracting the dependency structure, applying individual partitioning of the DSM,
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employing the cooperative partitioning; merging of the common sub-clusters, and
�nally evaluating the �nal clustering solutions. Experimental analysis and results
over a number of software systems are illustrated and discussed in the following
chapter, showing the e�ectiveness of the CC/G algorithm compared to the leading
algorithms in software clustering.

22



Chapter 4

Experimental Work

This chapter presents the results from a number of experiments showing the e�ec-
tivness of the proposed cooperative methodology and approach compared to the
individual clustering techniques in terms of clustering quality and stability. Follow-
ing Mitchell [45] and Tzerpos [59, 61], we consider the following types of dependen-
cies in our experiments: function calls, variable reference or directory structure of
source code �les.

4.1 Experimental Procedure

In this section , we outline the necessary steps and procedure of preparing, parti-
tioning and evaluating the benchmark software programs as follows:

1. Obtain the Benchmark Programs in a JAR �le format by downloading them
from [64] .

2. Load system JAR �le into Lattix [52].

3. Extract the dependencies, export its structure into Excel [41] or �at �le and
store the �le as original system partitioning.

4. Apply Lattix partitioning algorithm on extracted dependencies, then store
the generated partitioning as a Lattix system decomposition format.

5. Begin labeling the original and Lattix partitioning (manually) in the stored
�les.

6. Convert both original and Lattix system partitioning into the proper format
(modular dependency graph 'MDG') for the Bunch tool [37].

7. Run the Bunch tool [37] against the extracted data by applying hill climbing
algorithms to system dependencies. The �les produced can be easily imported
into MoJo tool.

8. Import the generated hill climbing system partitionings into Matlab [40].
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9. Use the clusterings of original, Lattix and hill climbing algorithms to perform
cooperative clustering by �rst �nding agreement between constituent inputs
then merge the sub-clusters back into the required number of cluster.

10. Use the normal MoJo metrics version 1.2 [60] to �nd the similarity between
the constituent inputs and the produced cooperative clusterings.

11. Use the modularization quality [37]to measure the quality of the generated
clusters for every solution.

Gathering the benchmark programs, the use of the constituents inputs , choosing
an e�cient merging criteria, and evaluating the quality of the generated clusterings
are discussed and analyzed in the following sub-sections.

4.2 Benchmark Programs

In this section, we analyze six open source Java projects selected from a list of the
Helix benchmark programs. The Helix benchmark suite is a compilation of release
histories of a number of non-trivial Java Open Source Software projects. This suite
is discussed in Vasa's PhD thesis [63].

The �rst and second sets of software systems used in our experiments are pro-
duced in a variety of sizes, functionalities, and development philosophies, as listed
in Tables 4.1 and 4.2, respectively. In particular, the �rst and second columns in
Tables 4.1 and 4.2 show the name of the system and its version. The third, fourth,
and �fth columns indicate the number of classes, interfaces, and methods in each
program graph, respectively. Program size listed in the last column. It should
be noted that Table II provides information about a later version of each software
system listed in Table I.

Name Version Classes Interfaces Methods Size-In-Bytes

Acegi 0.5.0 106 29 94 283955
Cocoon 1.7 84 21 72 224593
JabRef 1.1 103 5 40 348449
Proguard 1.0 90 22 127 275918
Struts 0.5 102 4 3 287969
Xwork 1.0 74 26 45 252546

Table 4.1: Benchmark Programs ( First Set)

Our �rst step was acquiring all necessary data for the initial list of selected
projects, including executable versions (byte code) as well as copies of the version
archives. The software systems we used in our experiments came in a variety of sizes,
functionality and development philosophies. Those systems are listed as follows:
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Name Version Classes Interfaces Methods Size-In-Bytes

Acegi 0.5.1 113 30 103 299708
Cocoon 1.8 90 23 73 340237
JabRef 1.2 150 8 47 517042
Proguard 1.1 95 23 129 282309
Struts 1.0 183 2 20 587258
Xwork 1.1 105 31 61 407835

Table 4.2: Benchmark Programs ( Second Set)

1. Acegi Security Framework [1]: a highly popular enterprise security framework
for web applications. It provides many authentication and authorization fea-
tures.

2. Cocoon (Apache) [2]: it is a web application framework built around the
concepts of pipeline, separation of concerns and component-based web devel-
opment. The framework focuses on XML and XSLT publishing.

3. JabRef [3]: it is a reference management software that uses BibTEX as its
native format. JabRef provides an easy-to-use interface for editing BibTEX
�les, for importing data from online scienti�c databases, and for managing
and searching BibTEX �les.

4. Proguard [4]: it is free Java classes �le optimizer, obfuscator, and preveri�er.
It detects and removes unused classes, �elds, methods, and attributes, and it
optimizes byte code and removes unused instructions.

5. Struts (Apache) [5]: it is an open-source web application framework for devel-
oping Java EE web applications. It uses and extends the Java Servlet API to
encourage developers to adopt a model�view�controller (MVC) architecture.

6. Xwork [6]: it is a generic command pattern implementation with no depen-
dencies on web speci�c libraries.

In particular, the �rst and second columns in Table 4.1 show the name of the
experimented system and its version. The third, fourth, �fth and the sixth columns
show the numbers of classes, interfaces, methods and �elds in each program graph,
respectively. The programs sizes are shown in the last column. Table 4.2 presents
a later version from every software system in Table 4.1. Software systems in Table
4.2 are used in studying the stability of the CC/G algorithm.

4.3 Constituent Clustering Techniques

Lattix [52] and Bunch [37] software tools used in our experiments. Lattix is a suite
of software that is used to analyze software system architecture in detail, to edit the
structure to improve the design, and to specify rules to formalize and communicate
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the architecture to the entire organization. Lattix uses the Dependency Structure
Matrix (DSM) to show the structure among software entities. The DSM approach
uses a matrix of rows and columns to show how each software artifacts depend on
each other within a project.

Lattix has two interesting feature to us, the inclusion of the DSM extractor for
Java source code and the embedded algorithm for partitioning a software structure.
For dependency extraction, Lattix uses a standard notion of dependency, in which
a module A depends on a module B if there are explicit references in A to syntactic
elements of B. For DSM partitioning, Lattix uses Sangal approach [52], in which
rows are re-arranged to form a triangular structure. This structure helps architects
to determine whether or not speci�ed architectural styles, such as layers, are imple-
mented correctly. We used this partitioning algorithm on all the DSMs that were
produced by the Lattix. Figure 4.1a shows the original DSM for the Acegi software
system. Figure 4.1b shows the DSM after the partitioning algorithm applied.

Bunch is a suite of algorithms that attempt to �nd a decomposition that op-
timizes a quality measure based on high-cohesion and low-coupling. In particular,
Bunch uses randomization in its optimization approach to form clusters, there-
fore, it is unlikely repeated runs will produce the exact same decomposition of a
software system. Bunch has three algorithms for partitioning, the hill-climbing,
the genetic algorithms and the exhaustive algorithms, each with di�erent con�g-
urations. Bunch begins its partitioning process by creating a random partition of
the structure Module Dependency Graph (MDG). In our experiment, we used the
unweighted version of the MDG. Although, Bunch uses graph diagram for repre-
senting software structure which may be not e�cient for complex system but it has
several unique features that lend themselves well to our study. We used Bunch ver-
sion 3.3.6 and we established our experiments with two versions of a hill-climbing
algorithm, we will refer to as NAHC (Nearest Ascent Hill Climbing) and SAHC
(Steepest Ascend Hill Climbing) [37].

4.4 Choosing an E�cient Merging Criterion

Two di�erent merging criteria have been examined for selecting two sub-clusters i
and j to be merged. We will refer to the two merging criteria as CC/G-min and
CC/G-max. The �rst criterion CC/G-max is based on selecting the sub-cluster i
with the maximum cohesion (i.e. maximum μi), then we choose the sub-cluster
j such that the ratio mf ( de�ned in equation 3.4.3) is maximum for i, j =
{1, . . . , kcmax} , i 6= j. This selection procedure is repeated iteratively until the
desired number of compositions is obtained. However, this technique was not suc-
cessful for some of the benchmark systems. We assume that this criterion did not
perform as expected for all the systems as enriching a sub-cluster with maximum
dependencies between its objects with another sub-cluster with low cohesion may
deform the total number of dependencies in each of the two sub-clusters if they
become one cluster.
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(a) Original Partitioning (10 clusters) -
Acegi 0.5

(b) System Partitioning (5 clusters) - Acegi
0.5

Figure 4.1: DSM Partitioning Example

Another issue that a�ected the results is the existence of singleton sub-clusters
(i.e. sub-clusters with only one object) as they have high cohesion μi = 1, these set
of singleton sub-clusters bias the merging selection to combine the small sub-clusters
�rst.

We have overcome this drawback by �rst selecting the sub-cluster with minimum
cohesion ( i.e. lowest number of connection between its elements), this method of
selection for merging is called CC/G-min. The main reason for this selection is to
enhance the cohesion of this sub-cluster through merging, next we choose the second
sub-cluster also such that the ratio mf is maximum. This selection criterion allows
us to generate the �nal set of clusters with the highest cohesion and lowest coupling
among each other. This technique provides an enhanced solution to generating
optimal solution for all benchmark systems.

Figure 4.2 shows how these criteria perform for benchmark systems. The hor-
izontal axis represents the number of clusters for each benchmark system. The
vertical axis is for the TurboMQ values. Each curve represent the TurboMQ val-
ues of both examined merging criteria. The red curve correspond to the criterion
of selecting the sub-clusters of maximum cohesion, while the blue curve represent
the opposite criterion. It can be shown from �gure 4.2 that the CC/G-min and
CC/G-max have almost the same TurboMQ (TMQ for simplicity) value for Acegi
and Xwork systems, but it is clear that for the Proguard , the CC/G-min has higher
values of the TurboMQ than the CC/G-max for number of clusters = 3, 4, 5, .., 10.
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4.5 Clustering Evaluation

To evaluate the quality of the software partitioning algorithms, we adopted various
criteria including the quality of generated cluster, distance (or similarity) between
the decompositions, and stability of solutions. Three experiments are presented
in this section to cover each of those criteria. The target of the �rst experiment
is to compare the values of TurboMQ of the clusterings solutions generated by
the proposed cooperative approach and by the individual partitioning algorithms
for the same software system. Next experiment aims at measuring the similarity
between di�erent partitioning approaches using MoJo distance, �nally the stability
of the clustering solution obtained by the CC/G is presented and discussed in the
third experiment.

4.5.1 Modularization Quality

The values of the TurboMQ of di�erent decomposition of each test system for the
CC/G, Lattix, NAHC ,SAHC, and original system partitioning are listed in tables
4.3 to 4.8. The �original� in each of the following tables and �gures refers to the
package structure of the benchmark systems. We consider the package structure to
be �at partitioning.

This improvement in the quality of clusterings through CC/G is due to the
choosing of proper merging mechanism, namely CC/G-min. The CC/G-min gen-
erates optimum exterior and interior connectivity between cluster elements and
remove weak sub-clusters. In tables 4.3 to 4.8, the symbol �-� at a speci�c number
of clusters k means that the corresponding partitioning algorithms do not generate
k clusters.

Table 4.3: TurboMQ Values for Acegi 0.5.0

k=5 k=8 k=10
Original - - 6.259
Lattix 3.1616 - -
NAHC 3.8859 - -
SAHC - 6.2504 -
CC/G 4.4203 6.6756 8.5162

Table 4.9 and �gure 4.3 show the percentage of improvement in the TurboMQ
using the CC/G compared to the leading approaches for the benchmark systems.
The CC/G achieves an improvement in the TurboMQ of up to 53% compared to
that of the original decomposition for xWork 1.0 and up to 51% compared to the
Lattix for Proguard 1.0. In addition it obtains an enhancement in the TurboMQ
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Table 4.4: TurboMQ Values for Cocoon 1.7

k = 5 k = 7 k = 10 k = 12 k = 18 k = 22
Original - 5.497 - 9.401 - -
Lattix 3.357 - - - - -
NAHC - - - - 11.7726 -
SAHC - - 7.830 - - 14.471
CCG 3.839 5.839 8.687 10.013 16.013 19.760

Table 4.5: TurboMQ Values for Jabref 1.1

k = 6 k = 7 k = 15 k = 17
Original Partitioning 4.972 - - -

Lattix 3.139 - - -
NAHC 3.642 - 9.123 -
SAHC - 4.716 - 10.555
CCG 4.997 5.614 11.934 12.919

value by 16% compared to the NAHC algorithm for the Acegi 0.5. Furthermore,
CC/G reaches up to 59% compared to that of the SAHC decomposition for Struts0.5
and up to 38% compared to the Lattix for Jabref 1.1.

Finally, we can also see that the CC/G outperforms the SAHC by an increase in
the TurboMQ of up to 42% for the Proguard 1.0. In summary, we can see that the
CC/G yields better results for all systems with an improvement of 27% on average
in the TurboMQ values for the used benchmarks systems .

4.5.2 Similarity Measures

Generally, a similarity measure gives us the idea of how good (e�ective) the resulting
decomposition is. This can be done by comparing the decomposition produced by
the clustering algorithm against the benchmark or expert decomposition. In this
thesis to achieve this goal, we use MoJo[60] distance metric for evaluation, which
is also commonly used by the work in [67] and[12]. The similarity between two
partitionings solution, Ci and CR is de�ned as follows:

mSim(Ci, CR) =

(
1− MoJo(Ci, CR)

n

)
× 100% (4.5.1)

Where CR is the assumed reference decomposition, Ci is the partitioning pro-
duced by the algorithm i and n is the number of software entities to be clustered.
Intuitively, the higher the mSim(Ci, CR), the closer clustering results to the refer-
ence decomposition. As, we have no authoritative decomposition (reference) to the
software systems that we cluster, we build the following results based on the as-
sumption that the original system partitioning is a reference decomposing. Hence,
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Table 4.6: TurboMQ Values for Proguard 1.0

k = 3 k = 4 k = 5 k = 9
Original - 2.1165 - -
Lattix 1.3049 - - -
NAHC - - - 5.4928
SAHC - - 2.3465 -
CCG 1.9734 2.6231 3.3215 6.3944

Table 4.7: TurboMQ Values for Struts 0.5

k = 4 k = 6 k = 8
Original 2.798 - -
Lattix 1.852 - -
NAHC - 2.776 -
SAHC - - 2.918
CCG 3.167 5.275 7.114

we examine how close the di�erent system decompositions to the original decompo-
sition. Our aim is to prove that the CC/G will not be biased to either the original
system decomposition nor to the other partitionings.

Tables 4.10 and 4.11 present the similarity (mSim) results for two consequence
versions of programs under study. The mSim values are percentage values. The
larger the value of mSim, the closer decomposition to its original. In table 4.10, we
have noticed that the CC/G partitioning is not close to the original partitioning as
compared to Lattix for Acegi 0.5, Proguard 1.0, and Xwork 1.0; nor far as compared
to NAHC and SAHC for Acegi 0.5 and Xwork 1.0.

For the Proguard 1.0 and Struts 0.5 systems in table 4.10, the mSim value of
CC/G is much closer to that of the SAHC. This indicates that the SAHC decom-
position of these two benchmarks datasets is the closest to the solution generated
by the CC/G from the family of solution provided. So, both decompositions are
accepted as a partitioning solution for both benchmark systems using the mSim
formulations.

In 4.11, CC/G is able to �nd better solution for Acegi 0.5.1, Cocoon 1.8, Jabref
1.2, Proguard 1.1, Xwork 1.1 compared to Lattix, NAHC, and SAHC. Furthermore,
Struts 1.0 system, the CC/G and SAHC generate the same partitioning as compared
to the orignal decomposition.

In conclusion, the CC/G produces unbiased results for four out of six benchmark
systems in table 4.10 and �ve out of six benchmark systems in table 4.11. These
unbiased results are augmented with the enhancement of quality as shown in section
4.5.2, showing the major advantages of using CC/G as a consensus cooperative
clustering approach. The results of these experiment indicate that the idea of
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Table 4.8: TurboMQ Values for xwork 1.0

k = 2 k = 5
Original - 2.6721
Lattix 1.0341 -
NAHC - 4.0507
SAHC - 3.789
CCG 1.5282 4.3114

Table 4.9: Improvement (%) in TurboMQ by CC/G

Acegi 0.5 Cocoon 1.7 Jabref 1.1 Proguard 1.0 Struts 0.50 Xwork 1.0
Original 36 6 0.5 24 12 53
Lattix 43 13 38 51 42 48
NAHC 16 27 25 11 47 1
SAHC 13 18 17 42 59 8

using common patterns as a basis for software clustering has a distinct advantage,
as it is clear that it can create decomposition that are not biased to the original
decomposition nor to the used ones.

4.5.3 Stability of Clustering Solutions

The stability of a clustering solution concerns the persistence of the partitioning
structure of two consecutive versions of an evolving software system [62], [50]. Pre-
vious studies by [62], [50] used Mojo to evaluate software clustering algorithms'
stability. These studies, as well as our research study, focus on stability in the
context of small incremental changes to the program. Therefore, stability is consid-
ered to be inversely proportional to the MoJo metric: a small MoJo value indicates
a stable clustering algorithm, whereas a large MoJo value designates an unstable
clustering algorithm.

Given a clustering algorithm i and a program x, if there is a minor change in
the program x and a correspondingly small change in the output of the clustering
algorithm i, then i is considered a stable clustering algorithm. In our preliminary
studies we have used a modi�ed version of the MoJo metric which focuses on the
common elements that exist in both versions of the program. We call our new metric
the �Stability Ratio (SR)�. We de�ne the SR based on the ratio of the number of
movements (split or join) between clusters to the total number of shared classes
occurred between successive versions of an evolving software system.

The goal of the following experiment is to show that the proposed CC/G ap-
proach has a signi�cant SR with respect to the variation in a program.

Table 4.12 shows the change that occurred between two consecutive versions
of benchmark programs in terms of added classes, removed classes, and change in
number of dependencies. Each benchmark program versions have di�erent changes
in various aspects (as listed in Table 4.12). Some software have a major modi�cation
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Table 4.10: Similarity values (%) obtained by the NAHC, SAHC, Lattix, and CC/G
with respect to the original partitioning (First set of software programs )

NAHC SAHC Lattix CC/G

Acegi 0.5 37.78 37.04 77.78 47.65
Cocoon 1.7 73.27 45.045 44.55 60.73
Jabref 1.1 62.26 41.035 34.435 57.31

Proguard 1.0 67.52 70.09 99.91 74.15
Struts 0.5 80.19 66.98 51.89 64.78
Xwork 1.0 39 35 97 65.5

Table 4.11: Similarity values (%) obtained by the NAHC, SAHC, Lattix, and CC/G
with respect to the original partitioning (Second set of software programs )

NAHC SAHC Lattix CC/G

Acegi 0.5.1 55.92 44.63 96.69 67.11
Cocoon 1.8 50.00 53.08 100 61.49
Jabref 1.2 55.92 44.63 96.69 67.11

Proguard 1.1 45.61 47.37 82.46 64.62
Struts 1.0 48.46 54.8 74.23 56.69
Xwork 1.1 64.38 62.75 82.46 75.88

in dependencies between its classes, and others have a signi�cant change in addition
or deletion of its classes.

Table 4.12: Changes in consecutive versions for each benchmark programs

Program Used Versions Added
Classes

Removed
Classes

Change in
dependen-

cies
acegi 0.5.0 0.5.1 9 1 30

proguard 1.7 1.8 1 4 19
xwork 1.1 1.2 3 1 35
Struts 1.0 1.1 50 16 230
Cocoon 0.5 1.0 20 12 6
Jabref 1.0 1.1 16 3 93

Figure 4.4 illustrates the similarity ratio of CC/G clusterings values among two
consecutive versions of benchmark programs. For any two consecutive versions
of the given benchmark programs (x-axis), the y-axis represents the number of
elements moved between programs clusters of CC/G over the total number of shared
elements in these clusters as measured by the SR.

From Figure 4.4, we can see small changes in the successive versions of versions
of Acegi, Proguard, and Xwork programs. CC/G obtains nearby values of the SR,
showing the stability of clustering solutions obtained by the cooperative approach.
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For the Jabref program, the CC/G SR is high because there is a signi�cant large
change among its two consecutive versions.

For the Struts program, the change in dependencies is slightly higher than the re-
maining benchmark programs, however the number of movements between its used
consecutive versions are close to the Acegi, Proguard, Xwork programs. Further-
more for the Cocoon program, the changes in number of classes and dependencies
are slightly low but the SR of the CC/G is is quite large compared that of other
benchmark prgrams. This discrepancy seems rather strange at �rst glance since the
changes in Struts and Cocoon do not re�ect correctly the system structure obtained
by the CC/G. We believe that this behavior is probably caused by the distribu-
tion of dependencies in those programs abstraction. However, a closer investigation
should be established to reveal this behavior under various testing of other stability
measures in addition to the stability ratio measure.
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Figure 4.4: Distance between two consequence version of benchmark programs

Future extension to the experimental work on stability testing can be established
by

1. Using more consecutive versions of the benchmark programs on a daily basis,
such that we can combine the clusterings of the CC/G on a former day to
decompositions of input constituent on a latter day, this incremental addition
of the CC/G decisions can be repeated for a prede�ned number of days, and
a the stability of the �nal CC/G clusterings is then tested;

2. Comparing the stability ratio obtained by the CC/G to that of individual
constituent for the same benchmarks programs.

4.6 Summary

In this chapter, various experiments have been conducted over a number of soft-
ware benchmarks data sets. Experimental results using di�erent validation mea-
sures yield that the proposed CC/G algorithm outperforms the individual software

33



clustering algorithms. The clustering solutions obtained by the CC/G have high
cohesion and low coupling measured by the TurboMQ quality measures showing
the e�ciency of the CC/G algorithm compared to the input constituents. Using
the MoJo distance measure, the CC/G clusterings are shown to be unbiased to
the original partitioning nor to the decompositions obtained by any of the input
algorithms. The experimental work also illustrates that the CC/G is a well de�ned
stable software clustering algorithm.
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Figure 4.2: Comparison between CC/G-min and CC/G-max for Acegi0.5, Proguard
1.0, Xwork1.0 system
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Chapter 5

Summary and Future Work

The size and complexity of modern software systems necessitate suitable abstrac-
tions of their structure in order to make them more understandable and thus easier
to maintain. Software clustering techniques are e�ective for creating such abstrac-
tions because they can generate architectural-level views of a system's structure
directly from its source code. Software clustering involves the partitioning of soft-
ware system components into clusters so that optimal exterior and interior con-
nectivity among system components is achieved. However, a major shortcoming
of the current practice is that existing techniques are often either reinvented or
require augmentation. The goal of this research is to advance the state of the art
in software clustering through the exploration of potential research solutions that
will overcome this drawback. This chapter provides a summary of the work that
has been achieved thus far, along with a description of the planned continuation of
the research.

5.1 Research Summary

The core of this research is the proposal of a new software clustering approach
(CC/G) that builds on the notion of cooperative clustering (CC), as demonstrated
for document clustering by Kashef and Kamel [28]. The CC approach combines
a variety of software clustering approaches in order to provide measurably better
clustering compared with that produced by any single individual approach. Coop-
erative clustering is divided into two phases: a sub-cluster generation phase and a
merging phase. In practice, the implementation of the concept of cooperative par-
titioning for systems software has required modi�cation. The original CC approach
[28] is based on the assumption that an identical number of clusters is produced
by each of the input algorithms. This assumption does not hold true for current
state-of-the-art approaches to software clustering, and it is also based on vectors of
quanti�able features. Software architectures, on the other hand, are constructed of
structures and dependencies, represented in graphs that describe the relationships
of the various entities in the software. The proposed method overcomes the dis-
advantage of the original CC approach by introducing a new membership function
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for generating sub-clusters as well as a new merging condition appropriate for the
software paradigm. The CC/G algorithm has been tested with a variety of merging
criteria, a process that has led to the conclusion that merging low-cohesion clus-
ters creates better clustering results, as assessed according to Michell's TurboMQ
[43]. Experiments using real benchmark programs have shown that the proposed
CC/G approach works e�ectively and e�ciently so that practitioners can use the
new approach for partitioning software and revealing the natural, inherited data
structure.

5.2 Current Research Achievements

The work that has already been completed represents �ve principal research con-
tributions:

• The introduction of a novel formulation of the software clustering problem
using a cooperative strategy derived from document clustering, an approach
that, to the best of my knowledge, has not previously been reported in the
software engineering literature.

• The ability to customize the software clustering platform by extending coop-
erative clustering to function with a variable number of clusters.

• The accommodation of software dependencies when intermediate clusters are
merged.

• The introduction of novel merging criteria based on cohesion and coupling.

• The use of a variety of quality and stability measures for evaluating the ef-
�cacy of the partitions obtained compared to state-of-art software clustering
algorithms, with results that demonstrate that cooperative clustering is more
e�cient and e�ective than dependency structure matrix (DSM) partitioning
or hill-climbing clustering algorithms.

5.3 Future Work: Enhancing Bug Classi�cation us-

ing CC/G

5.3.1 Introduction

Many software projects depend on bug reports through its maintenance activity [?].
In open source software projects, bug reports are regularly submitted by software
contributors and collected in a database by a bug tracking tool such as Bugzilla.
Storing bug reports in a repository allows contributors to report and potentially
help �xing bugs to improve software quality [?]. In Bugzilla, the number of defect
reports usually exceeds the available development resources and becomes a labo-
rious intensive task. For example, in 2005, one Mozilla's developer claimed that,
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�everyday, almost 300 bugs appear that need triaging. This is far too much for
only the Mozilla programmers to handle� [?]. That large number of defect reports
is usually due to the large number of contributors discovering the same defects in
the same time and, consequently, report them. Previous studies report that as
many as 36% of bug reports were duplicate reports [?]. Thus, it is a challenging
problem to examine all existing defect reports to detect duplication.

Bug classi�cation is one of the proposed techniques to detect duplicated defect
reports in [?], [?], and [?]. A classi�er is usually able to combine di�erent types
of defect report features to identify duplicates. This approach can serve as a �lter
between contributors and arriving defect reports. However, bug classi�cation typ-
ically constructed using a large number of defect reports stored in a bug tracking
system. This is also a challenging task due to the training complexity, high memory
requirements and slow convergence. Therefore before building a classi�er, a cluster
analysis on its training data is needed. This stage will �nd the optimal number
of clusters that are needed for training the classi�er. Also, a cluster analysis for
inputs can help on �nding groups of homogeneous bug reports features that may
deliver additional accuracy for classi�cation. Moreover, It will help in discovering
the bug reports features that may have a negative impact on the accuracy of the
models.

5.3.2 Clustering Defect Reports using CC/G

Bug reports contain free-form textual descriptions and titles, and most duplicate
bug reports share many of the same words. Bug reports titles and descriptions can
be used to de�ne a textual distance metrics. This metrics will be used to identify
the duplication between bug reports. A typical approach for building a textual
similarity metric is using the �bag of words� approach [?].

Each bug report is represented by a vector v of size n, with v[i] related to the
total number of times that word i occurs in that bug report textual information.
The precise value at position v[i] is found from a formula that can have the number
of times word i appears in that bug report, the number of times it appears in the
bug report corpus, the length of the bug report textual information, and the size
of the bug report corpus.

When we got the set of vectors representing all the bug reports corpus, we
can compute the similarity between them by using cosine similarity [28]. Cosine
similarity is a measure of similarity between two vectors of an inner product space
that measures the cosine of the angle between them. The closer two vectors are to
co-linear, the more the corresponds between two bug reports.

Finally, the generated textual similarity metric is used to induce a graph in
which the nodes are defect reports and edges link reports with similar text. Thus,
a clustering algorithm is applied to partition this graph to obtain a set of clustered
reports. The clustering algorithm will tease out the structure between defect reports
and will illustrate the duplication between them. Every cluster exposed is showing
the duplication of a bug report in the corpus. Furthermore, if the incoming bug
report was not included in any cluster. Intuitively, this report is a singleton. Thus,
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it is less likely to be a duplicate.
The main research question we investigate in this work is whether the CC/G,

can improve duplicate bug reports classi�cation results. Furthermore and accord-
ing to our knowledge, no work has been done for enhance duplicate bug reports
classi�cation using consensus cooperative partitionings approaches (CC/G).

5.3.3 Experimental Setup

The experiments for this work will be based on the bug reports from the Mozilla
project [?]. The reports will span from January 2009 to May 2012. The generated
data set will include reports from four programs of them: Firefox, Thunderbird,
Eclipse and NetBeans. For our study, we are going to retrieve a punch of the
full history of all bug reports via the Bugzilla API of the respective projects. In
particular, our analysis will focus on a subset of those bug reports that had a �nal
status indicating that they were resolved. We limit our analysis to these bug reports
because the bug handling community already completed the categorization process
and thus reached a decision on how they were processed. Those chunk of reports
will be used in training the classi�er after applying CC/G to �nd reports without
duplication.
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Data

Feature Vectors

Classification 

Algorithm

Class Labels

Predictive 

Model

New Bug 

Report

Expected 

Label

Feature Vector

Bug Reports

CC/G 

Clustering

(estimation)

Figure 5.1: Building a Bug Report Predication Model

Figure 5.1 shows the �ow diagram of the intended building system. This system
will be dividing into two main parts: training and testing. Training will include the
extraction of bug reports, extracting textural features from those reports, dividing
the data set into 25% reports for training and leave the remaining to the testing
part, applying CC/G, then building the classi�er. For testing, testing data set will
be provided into the classi�er to test its prediction and performance.
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5.3.4 Conclusion

We propose a software engineering experiment in which the CC/G is supposed to
enhance the automatic classi�cation of duplicate bug reports as they arrive to save
developer time. We empirically evaluated CC/G using the available data set of bug
reports from the Mozilla project. We believe that CC/G is able to enhance the
classi�cation of duplicate bug reports.
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