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Abstract  
 
Upper limb deficits post stroke affect up to 60% of stroke survivors. The assessment of motor 

deficits post stroke is important for identifying rehabilitation goals and assessing treatment 

efficacy.  Current clinical tools used to assess motor impairment utilize clinical observation to 

describe the performance of diagnostic motor tasks.  There are some concerns regarding the 

ability of these scales to fully describe the quality of performance, and detect small but important 

changes which reflect motor recovery.  Kinematic analysis has been increasingly suggested to 

augment clinical assessment; however, current kinematic tools are not well suited to the time 

and financial constraints of a clinical environment.  The objective of this thesis was to 

investigate the feasibility of utilizing low-cost, depth sensing technology (Kinect sensor) to 

augment the current upper limb stroke assessment.   Study one characterizes the accuracy of 

the Kinect sensor, and defines optimal markers and conditions for data collection.  Results 

revealed sufficient ability to quantify metrics for the hand, and the trunk.  Study two explored the 

feasibility of clinical use for the Kinect sensor, specifically its ability to distinguish kinematic 

performance between the affected and less-affected limbs within an individual, and differences 

in the affected limb between individuals. Results from study 2 indicated that the Kinect is able to 

identify interlimb differences and correlations with upper limb impairment scores for some 

kinematic metrics.  Findings from this thesis suggest a potential use for the Kinect in a clinical 

environment for the purposes of upper limb stroke assessment; however, there are many 

factors and limitations which need to be considered prior to its use. 
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1.0   Introduction 
 
Physical impairment of the upper limb is common following a stroke, affecting 30-60% of all 

stroke cases (Nakayama, Jorgensen, Raaschou, & Olsen, 1994; Wade, Langton-Hewer, Wood, 

Skilbeck, & Ismail, 1983).  These impairments often result in a decrease in functional use of the 

arm, independence (Likhi, Jidesh, Kanagaraj, & George, 2013), and quality of life for stroke 

survivors (Ones, Yilmaz, Cetinkaya, & Caglar, 2005).  The identification of upper limb 

impairments and deficits following a stroke is therefore important specifically for setting 

rehabilitation goals and informing the efficacy of rehabilitation interventions.  Current impairment 

assessment tools such as the Fugl Meyer, and Chedoke McMaster Stroke Assessment scales 

are valid and reliable measures commonly used for post-stroke assessment (Baker, Cano, & 

Playford, 2011; Gladstone, Danells, & Black, 2002). These impairment scales require individuals 

to perform a progression of motor tasks which enables the assessment of the challenges to the 

control of limb movement.  The scales however are administered and scored using clinical 

observation and may lack sufficient sensitivity to identify small but important changes in motor 

performance during complex multi-joint movements  

 

Kinematic analysis has provided insight into the motor control challenges of the upper limb 

following a stroke revealing, among other things, deficits in the transport speed and coordination 

of limbs when performing complex multi-joint movements. (Cirstea, Mitnitski, Feldman, & Levin, 

2003; Michaelsen, Luta, Roby-Brami, & Levin, 2001; Roby-Brami et al., 2003; Subramanian, 

Yamanaka, Chilingaryan, & Levin, 2010).  In addition, individuals post-stroke often utilize 

compensatory strategies such as shoulder elevation and/or increased trunk displacement to 

assist limb transport during reaching which can be detected using kinematic analysis (Levin, 

Kleim, & Wolf, 2009; Levin, Michaelsen, Cirstea, & Roby-Brami, 2002; Michaelsen et al., 2001).   
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The quantification of these deficits has been shown to be highly correlated with stroke severity 

and may be more sensitive than current clinical measures to changes which occur during the 

recovery process (Subramanian, Yamanaka, et al., 2010).  In spite of growing evidence and 

support for the potential use of kinematic analysis in clinical assessment there are very few tools 

which would likely be used clinically.   Laboratory grade kinematic analysis systems often 

require the use of external markers and the use of multiple cameras, requiring considerable 

setup time.  In addition, the cost associated with these systems is not financially feasible for 

clinical use.   

 

Advancement in computer vision and sensor technology is providing an affordable alternative 

for kinematic analysis.  One example of this technology is the Microsoft Kinect sensor; a low-

cost, infrared-based capture system capable of identifying and tracking 20 anatomical 

landmarks without the use of external markers.  While the technology has the potential to be 

clinically useful, there remain many fundamental questions regarding the accuracy and 

suitability of the Kinect device for the purposes of upper limb stroke assessment.  Studies have 

shown high correlation of Kinect marker displacement and gold standard kinematic systems 

(Clark et al., 2012; Galna et al., 2014),  demonstrating the validity of Kinect data during standing 

postural tasks.  Evidence also suggests that the Kinect can sufficiently capture and quantify 

some aspects of upper limb kinematics, such as work reach arc during a seated range-of-

motion  task (Kurillo et al., 2012).  In addition, preliminary evidence suggests that 

measurements from the Kinect can be used to identify differences in clinical populations (Galna 

et al., 2014; Lowes et al., 2013).  However, previous studies have not investigated the quality of 

kinematic data using tasks specifically for upper limb assessment , focusing more so on lower 

limb kinematics for the assessment of balance (Clark et al., 2012; Galna et al., 2014), nor have 

they considered clinically relevant factors such as the effect of task-related objects for upper 

limb assessment tasks. 
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Thus, there is still a need to investigate the kinematic metrics available from the Kinect and to 

investigate if clinically relevant movements can be sufficiently captured by the Kinect, and 

whether this performance is maintained with a clinical population.  The objectives of this thesis 

are twofold.  The first objective is to identify the displacement error of the Kinect as compared to 

a gold standard kinematics system and clinically relevant sources of errors during reaching 

movements in healthy adults.  The second objective is to evaluate the feasibility of using the 

Kinect in a clinical setting to assess upper limb kinematics of individuals with stroke.  There will 

be a specific focus of determining the ability of the Kinect sensor to differentiate performance 

between affected and non-affected limbs within an individual, and differences between 

individuals with varying degrees of post-stroke impairment. This information will help to 

determine the feasibility of using the Kinect in a clinical setting and can be used to guide best 

practices for potential clinical use.  
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2.0   Background 
 

2.1 Stroke epidemiology  

Stroke has a large impact on the lives of many Canadians. There are approximately 315,000 

Canadians are living with the effects of stroke (Public Health Association of Canada, 2011) with 

over 50,000 new cases of stroke reported each year (Hakim, Silver, & Hodgson, 1998). It is the 

third leading cause of death in Canada, attributed to over 14,000 deaths in 2012. The direct and 

indirect costs associated with treating stroke totals more than $3.6 billion annually ( Public 

Health Association of Canada, 2009).  In addition to financial costs, the effects of stroke have a 

direct cost of quality of life of survivors. Post-stroke impairments are variable depending on 

lesion location and severity, and can result in a multitude of motor impairments. Upper limb 

impairments occur in 30-60% of all stroke cases (Nakayama et al., 1994; Wade et al., 1983) and 

often affect the functional use of the upper limb (Ones et al., 2005), limiting the ability to perform 

activities of daily living and thus reducing one’s ability to live independently.  Upper limb 

recovery is a highly desired rehabilitation goal among individuals with stroke (Bohannon, 

Andrews, & Smith, 1988), therefore it is important to assess motor deficits post stroke to identify 

rehabilitation goals, evaluate treatment efficacy, and to monitor recovery over time. 

2.2 Upper Limb Assessment Following a Stroke 

Many clinical assessment tools are available and used to assess upper limb impairment and 

activity following a stroke. Of the available clinical tools, the following assessments are most 

often used within rehabilitation literature: 1) Fugl-Meyer Stroke Assessment, 2) Chedoke-

McMaster Stroke Assessment and 3) Wolf Motor Function test.  
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Fugl Meyer Assessment (FMA)  

The FMA is a 226- point multi-item scale developed for the evaluation of recovery following 

stroke.  The scale assesses the upper and lower limbs independently, and is divided into 5 main 

components consisting of motor function, sensory function, balance, joint range-of-motion, and 

joint pain.  Evaluation of motor performance is done using an ordinal 3 point scale (0-2).  Due to 

the availability of more specialized metrics, the predominant use of the FMA has resided in the 

motor function component (Gladstone et al., 2002), and thus, is regarded as an impairment 

scale.  With respect to the upper limb motor component, the selection of assessment tasks was 

based on the observations of stroke recovery by Twitchell (1951), who described a distinctive 

pattern of motor restoration after stroke.  Initially, there is restoration of reflexes, however they 

appear more hyperactive.  Subsequently, there is an increase in muscle tone with the potential 

for the development of spasticity.  Voluntary movement follows, but initially appears in two 

distinct stereotyped synergies; the flexor, and extensor synergy.  The flexor synergy is denoted 

by scapular retraction and elevation, shoulder abduction and external rotation, elbow flexion, 

forearm supination, wrist and finger flexion.  Conversely, the extensor synergy appears as 

shoulder adduction and internal rotation with extension of elbow, wrist, and finger flexion.  Motor 

recovery further progresses with volitional movement independent of the aforementioned 

synergies. Additional recovery continues with reduction of muscle weakness, and hyperreflexia 

(Twitchell, 1951). 

 

Chedoke McMaster Stroke Assessment (CMSA) -  

The CMSA is another popular clinical impairment measure used more commonly in Canada.  

The CMSA impairment inventory is a 42 point scale which evaluates 6 areas (shoulder pain, 

postural control, arm, hand, leg, foot) each area is evaluated with the 7 stage scale. The CMSA 

demonstrates high inter-rater reliability, and is highly correlated with other impairment scales 

such as the FMA (Gowland et al., 1993).  
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Similar to the FMA, the CMSA is also based on the recovery progression as described by 

Twitchell (1951).  However unlike the FMA, the CMSA retains and extends the motor staging 

system as described by Brunnstrom (1966).  This system describes six discrete stages of motor 

recovery and the features/signs associated with each stage.  This staging system is reported to 

be advantageous as it allows for the classification of individuals with stroke into subgroups with 

homogenous features, allowing for treatment decisions specific to each subgroup (Gowland et 

al., 1993; Gowland, 1990)   

 

Wolf Motor Function Test (WMFT) 

 In addition to impairment scales, many activity scales exist which evaluate the ability of the 

upper limb to perform functional tasks.  One popular clinical activity scale is the Wolf Motor 

Function Test.  The current version of the WFMT consists of 17 tasks arranged in increasing 

complexity, and proximal to distal control.  Examples of the tasks used for this evaluation 

include the ‘forearm to table’ task (proximal control), and the ‘flip a card’ task (distal control).  In 

addition to functional tasks, the WMFT also includes tasks which probe the strength of the upper 

limb.  Evaluation of   functional tasks for the WMFT includes completion time and an ‘ability’ 

score.  The ability score is a 6 point ordinal scale (0-5) which categorizes the performance 

quality of task performed.  Movement quality characteristics such as the alignment of the head 

and trunk during task performance, amount of trunk movement, or smoothness and coordination 

of the moving limb determine the ability score.  With regards to strength tasks, the amount of 

weight or force produced is recorded.  The WMFT is shown to be a valid, and reliable  clinical 

measure (Nijland et al., 2010; Wolf et al., 2001) 
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Limitations of Fugl-Meyer, CMSA and WMFT 
 
These measures are commonly used to provide a general index of impairment and dysfunction; 

however scoring of the assessment(s) is dependent on clinical observation. While there is 

sufficient sensitivity to detect presence of features such as dysmetria, tremor and significant 

restrictions in range of motion or slowing, there is a limit to the ability of current clinical scales to 

quantify the magnitude of the impairment or dysfunction.  In addition, some assessment scales 

may exhibit a ceiling effect due to a restricted scoring scale, and thus may be less responsive to 

those with milder impairments or for those whom have recovered to a high level of functioning 

(Gladstone et al., 2002).  Impairment and functional scale scores are also often composite in 

nature and often do not identify the specific deficiencies of motor performance.  

2.3 Kinematic Analysis of the Upper Limb 

Reaching movements are required for most human-object interactions, and thus, reaching 

movements have been often studied.  Kinematic studies have revealed common spatial and 

temporal properties of upper limb reaching movements in healthy adults.  Reach-to-touch 

movements are linear about the hand, despite angular movement at the elbow and shoulder 

being composed of complex joint angle combinations  (Morasso, 1981).  The relation of 

shoulder and elbow angles demonstrates a high level of coordination between these joints 

during a reach.  Temporal analysis demonstrates the simultaneous nature of upper limb joint 

motion (Morasso, 1981).  This is also evidenced by linear relationships when comparing 

shoulder and elbow angle-angle plots  (Lacquaniti & Soechting, 1982; Levin, 1996).  Reaching 

movements also show a distinct characteristic temporal-velocity profile; a stereotypical single-

peak endpoint velocity profile is exhibited during a reach-to-touch task (Morasso, 1981).  

Involvement of the trunk to assist in reaching is also well defined in a healthy population and 

does not occur with targets placed within distances of 80% arm length (Mark et al., 1997). 
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2.4 Reaching in stroke 

In individuals with stroke, stereotyped single-peak wrist velocity profile deviates depending on 

stroke severity (Kamper, McKenna-Cole, Kahn, & Reinkensmeyer, 2002).  Analysis of end-point  

velocity displays an increase in the number of velocity peaks, representing increased 

segmentation and decreased smoothness in the reaching movement  (Cirstea & Levin, 2000; 

Kamper et al., 2002).  Individuals with milder impairments display a more stereotypical single-

peak pattern of end-point velocity (Cirstea & Levin, 2000; Kamper et al., 2002). Joints of the 

upper limb no longer display a synchronized and coordinated motion, but rather exhibit a 

segmented, independent pattern of activation, as evidenced by joint angle-angle plots (Cirstea & 

Levin, 2000). Stroke patients also typically display decreased joint range of motion  (Levin et al., 

2002; Roby-Brami, Fuchs, Mokhtari, & Bussel, 1997) and speed of movement (Cirstea & Levin, 

2000; Cirstea et al., 2003; Roby-Brami et al., 1997), as a result, individuals with motor 

impairments often utilize a number of compensatory strategies to assist in achieving an 

intended goal. With respect to reaching, compensatory behavior often appears as the increased 

use of trunk flexion to assist in limb transport.  In comparison to healthy individuals, the reach-

distance threshold at which the trunk is involved during reaching is lower (Cirstea & Levin, 2000; 

Mark et al., 1997).   The magnitude of compensatory behaviours such as trunk displacement is 

highly correlated with impairment scales (Subramanian, Yamanaka, et al., 2010).  Kinematic 

analysis of tasks such as reaching can identify the presence of such compensatory behaviours, 

and thus provides insight into whether changes in performance are due to compensatory 

behaviours or recovery of motor patterns. This is important as the prolonged use of upper limb 

compensatory behaviours, in some cases can impede the recovery of joint and may lead to 

further complications such as  contractures, and atrophy of surrounding musculature  (Levin et 

al., 2009).  
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As a result it is important to not only capture whether an individual is able to perform a task,   

but also how an individual performs a task (e.g. with, or  without compensatory behaviours).  

Such information can be used to disentangle motor recovery from compensation and thus better 

inform rehabilitation progress and potentially provide insight into the specific control problems 

that may be limiting function.  Kinematic analysis may be a useful tool to quantify movement 

quality as well as compensations and thus provide a sensitive metric which can be used to 

augment clinical assessments. 

 

Limitations of Kinematic measurement 

Although metrics such as movement speed, and smoothness of the upper limb during functional 

tasks has been suggested as a more sensitive metric of movement deficits, kinematic analysis 

cannot identify the source of these deficits (e.g. whether decreased limb velocity is a result of 

spasticity or a deficit of strength).  In addition, current kinematic measures and subsequent 

data-analysis techniques are not yet standardized, and can vary in complexity.  There also 

remains insufficient information of the key kinematic metrics that might guide clinical decision 

making.  These factors, in combination with costs of analysis systems and setup time, contribute 

to the obstacles faced with implementing kinematics as part of standard clinical assessment. 
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2.5 Overview of Kinematic Capture Systems 

There are different research tools available to quantify 3D kinematics.  The main classes of 

techniques include: 1) optoelectric, 2) magnetic, and 3) inertial.  The gold standard is generally 

regarded to be optoelectric systems, which measure the spatial characteristics of objects from 

images from different types of imaging sensors.  There are two main categories of optoelectric 

systems based on marker properties; active and passive marker systems.  Both operate on the 

principle of photogrammetry; in which the internal, (e.g. focal length, lens distortion coefficients) 

and external (i.e. Spatial location) parameters of a set of cameras, and the pixels for each set of 

images which correspond to a common scene target allows for the calculation of 3D coordinates 

(Greaves, 1995).  One of the challenges of optical tracking systems is solving the 

correspondence problem, which refers to the task of finding a set of pixels from two or images 

which correspond to the same physical location in a given scene (Faugeras, 1993).  The 

correspondence problem is attenuated by the use of external markers in current optoelectric 

kinematic systems.    

 

Passive Marker Systems  

Passive marker systems such as Vicon ™ (UK), Motion Analysis ™ are multi-camera systems 

equipped with an illuminating source of infrared light.  The projected infrared light is used in 

conjunction with retro reflective markers, which when illuminated, appears with uniform color 

and intensity.  This property eases image feature extraction (i.e. pixel intensity, and colour) and 

assists in finding correspondences for given a scene target between multiple image sensors 

(Pedotti & Ferrigno, 1995).  The advantage of passive marker systems is the wireless nature of 

the markers, allowing for more freedom of movement for human subjects. 
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 Active Marker Systems Active marker systems such the Optotrak (NDI, Waterloo) system utilize 

infrared-emitting diodes, which are captured by their respective imaging sensor.  The collection 

environment is such that the infrared-emitting diode is an exclusive source of infrared light, and 

thus correspondences for the marker between infrared sensors is obtainable, allowing for the 

calculation of 3D coordinates.  

 

Though these systems are used extensively in human motion research, the associated costs of 

these systems and the required setup time prohibit their use in clinical settings.   Furthermore, 

due to the fact that the spatial relationship between multiple image sensors needs to be known, 

once the system is calibrated, it is difficult to relocate the system, making these systems 

relatively difficult to move about in clinical space.  Due to these factors, there has been interest 

in utilizing markerless kinematic systems for the purposes of human motion tracking.  The task 

of markerless human pose tracking has been greatly advanced by the developments in depth 

cameras.  

2.6 New technology for Kinematic analysis 

Advances in depth camera technology have led to developments of low-cost sensor systems 

which are capable of kinematic data acquisition.  One such system is the Kinect sensor, which 

is an active-light depth camera unit which comes equipped with an infrared projector, infrared 

sensor, and RGB sensor.  The Kinect is unique in that it is the first consumer grade depth 

camera bundled with a robust human pose recognition algorithm.  This pose-recognition 

algorithm is capable of estimating 20 anatomical landmarks. This algorithm relies on data from a 

single depth map image calculated form the Kinect sensor.  This image is refined to the 

foreground image, by performing a background subtraction.  The remaining image is the depth- 

silhouette of an individual. 
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 The foreground pixels are then assessed using a trained, randomized, forest tree approach 

which labels each pixel with an anatomical landmark.  After the anatomical labeling of the depth 

image, a 20-point general model of the human skeleton is fitted to the labeled depth image.  The 

model provides some constraints and limitations on the coordinates of the limbs. The resulting 

coordinates obtained from the pose estimation algorithm are the optimized coordinates between 

the 20 point skeletal model and the labeled depth-silhouette (Shotton et al., 2013)  

 

There is considerable interest in using technologies such as the Kinect in a clinical setting as 

the markerless nature of these systems greatly decreases the needed setup time and is 

therefore easier for application in a clinical setting.  In addition, due the small size of the device, 

the system can be fitted into a clinical setting where space is often limited.  However, there are 

several factors which prevent immediate application of this device into a clinical setting, 

including accuracy of the device, and sensitivity of the device to detect changes in a clinical 

population. 

 

 Obdrzalek et al. (2013) evaluated the accuracy of the Kinect’s pose-estimation algorithm 

compared to ground-truth /gold standard skeletal model generating system (PhaseSpace, USA), 

which utilizes anatomical landmarks (located by external markers) to generate the model.   

Participants performed a series of whole-body movement tasks and the coordinates of 

corresponding markers in each system were compared.  Results indicated that across all Kinect 

markers, there was an average absolute positional error of 10cm when performing whole body 

movements.  Relative kinematic measures such as marker displacement for the trunk and lower 

limb have been investigated initially for the purposes of assessing standing balance, and results 

show high correlation in comparison to an optical motion analysis system (Clark et al. 2012).   
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There have been no studies that have specifically explored the capacity of the Kinect to reveal 

kinematic details of upper limb reaching movements that could be used to assess recovery after 

stroke.  In addition, previous studies focused on whole body activity and lower limbs, and were 

not challenged by the potential interference associated with objects as would be required for 

assessing some functional upper limb movements (e.g. reach to point, reach to grasp).  

2.7 Rationale and Hypotheses: 

Despite growing evidence for kinematic analysis as a more sensitive metric of recovery, there 

are very few tools available to clinicians which can be implemented in a clinical setting.  

Consumer-grade depth cameras such as the Kinect sensor provide an affordable, alternative 

means of kinematic data acquisition which may better meet the needs of a clinical setting.  

Many studies have evaluated the accuracy of Kinect measures for standing balance (Clark et al. 

2012) and gross whole body movement (Obdrzalek et al. 2013), but no studies to date have 

evaluated the relative kinematic measures from the Kinect for task conditions specifically 

relevant for upper limb stroke assessment.  Furthermore, the aforementioned studies utilized 

healthy controls as subjects, and there are no publications to date which speak to the kinematic 

performance of the Kinect sensor and the pose-estimation algorithm in clinical populations with 

upper limb impairments. 

 

The overall goal of this thesis was to evaluate the accuracy of the Kinect for tasks relevant to 

upper limb stroke assessment and to determine the feasibility of implementing the Kinect into a 

clinical setting. This thesis is focused around two specific studies.  Study 1 characterizes the 

measurement properties of the Kinect system in healthy adults for specific upper limb 

tasks/movements. Study 2 will explore the feasibility of utilizing the Kinect sensor as part of an 

upper limb assessment for individuals with stroke.  
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Specific Objectives: 

Study 1: This study focused specifically on characterizing Kinect displacement error for upper 

limb stroke assessment and identifying factors contributing to kinematic error. Specifically there 

were three objectives for study one: 1) evaluating the effect of sensor view angle on 

displacement error, 2) determining the effect of external objects on the accuracy of upper limb 

markers, and 3) characterizing upper limb marker error and identifying optimal markers for 

upper limb assessment.  It was hypothesized that by altering the view angle of the Kinect such 

that the side profile of the reaching arm was visible to the Kinect would reduce displacement 

error.  In addition we hypothesized that interacting with hand objects such as grasping and lifting 

external objects would interfere with Kinect tracking and result in increased displacement errors 

for the upper limb. 

 

Study 2: The focus of this study was on the feasibility of implementing the Kinect into a clinical 

setting.  Specifically, this study examined the ability of the Kinect to distinguish performance 

differences between the affected and less-affected limbs within an individual, and affected limbs 

between individuals with stroke.  Two upper limb motor tasks were used to evaluate kinematic 

performance: a reach-to-touch task and circle-drawing task performed in the transverse plane.  

It was hypothesized that the Kinect will be able to sufficiently distinguish differences in 

performance between the affected and less affected limb within an individual, and this will be 

denoted by an increased hand displacement, peak velocity, and decreased trunk compensation 

when these tasks are performed by the less affected limb. 
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Results from this thesis provide evidence for the potential suitability of using consumer-grade 

technologies such as the Kinect sensor to augment current clinical stroke assessment protocols.  

Results would also set out possible guidelines and identify viable tasks suitable for the device 

for an upper limb assessment.  Further, this work could directly contribute the guidance and 

development of assessment and rehabilitative computer programs which utilize the Kinect 

sensor. 
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3.0  Study 1: Evaluation of the Kinect for Measurement of Upper Limb 
Movement 

 

3.1 Introduction 
 
There are over 50,000 new cases of stroke in Canada each year (PHAC, 2009).  The upper limb 

(UL) is often affected after stroke, affecting approximately 30-60% of the stroke population 

(Nakayama et al., 1994; Wade et al., 1983).  Those suffering from upper limb disability 

experience a multitude of motor control impairments ranging from spasticity, hemiparesis 

(O’Dwyer, Ada, & Neilson, 1996) and abnormal muscle activation patterns (Dewald, Pope, 

Given, Buchanan, & Rymer, 1995).  These impairments can influence functional use of the arm 

as measured by activity inventories such as the Functional Independence Measure 

(Heinemann, Linacre, Wright, Hamilton, & Granger, 1993).   In turn altered arm function can 

influence participation, quality of life and result in decreased independence in stroke survivors 

(Laurent et al., 2011; Ones et al., 2005) 

 

The assessment of motor control impairments following a stroke is important for creating 

targeted rehabilitation programs and monitoring recovery progression.  Current clinical 

assessment tools for the upper limb consist of impairment inventories (e.g. Chedoke McMaster 

Stroke Assessment (CMSA) (Gowland et al., 1993), Fugl Meyer (Gladstone et al., 2002) or 

functional ability inventories (e.g. Wolf Motor Function test (Wolf et al., 2001), Functional 

Independence measure (Ottenbacher, Hsu, Granger, & Fiedler, 1996).  These inventories 

require patients to perform a progression of motor tasks; categorizing patients into different 

levels of impairment. Assessment of each task considers the quality of the movement and 

includes kinematic characteristics such as speed, coordination of limbs, or the use of 

compensatory strategies.  
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These assessments are often performed by clinical observation and may lack sensitivity to 

capture small but important changes in quality of movement.  Kinematic analysis of upper limb 

movements such as reaching is a more revealing method of assessing post-stroke impairment 

and recovery.  Following a stroke, patients often show slower hand transport times, (Cirstea & 

Levin, 2000; Cirstea et al., 2003; Roby-Brami et al., 1997) and increased segmentation in hand 

velocity profiles; indicating poor control and coordination in the arm musculature (Cirstea & 

Levin, 2000; Cirstea et al., 2003; Levin et al., 2002). Patients also show a decrease in elbow 

extension during reaching  (Levin et al., 2002; Roby-Brami et al., 1997), as well as increased 

use of compensatory trunk strategies (Cirstea & Levin, 2000; Roby-Brami et al., 2003). Upper 

limb kinematic measures are also shown to be correlated with clinical impairment scales 

(Subramanian, Yamanaka, et al., 2010).  In spite of the potential benefits of kinematic analysis 

there has been little incorporation of such measurements into clinical assessment.  This is likely 

due to financial and time barriers, as current motion capture systems are expensive, and require 

considerable setup time.   

 

Novel technology such as the Microsoft Kinect (Redman, WA, USA) may present a potential 

solution to these problems.  The Kinect sensor is an affordable device capable of markerless 

human-pose measurement.  The device utilizes an infrared projector sensor to create depth 

maps of a scene.  A human pose recognition algorithm analyzes the depth map, identifies a 

human silhouette, and subsequently performs a foreground isolation.  Each pixel is then further 

analyzed by a trained decision forest which categorizes each pixel as an anatomical landmark, 

yielding a labeled silhouette.  A 20 point skeletal model is then fitted to the labeled silhouette 

and an optimization of the labeled silhouette and skeletal model is then performed to yield the 

final coordinates of each landmark (Shotton et al., 2013; Taylor, Shotton, Sharp, & Fitzgibbon, 

2012). 
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The Kinect is a small and lightweight sensor, and could provide clinicians an affordable and 

mobile system capable of kinematic data acquisition in clinical or community settings.  The 

suitability of this technology for clinical use remains unknown.  There remain two important 

steps: 1) identifying the validity of kinematic measures and the factors which affect its accuracy 

and 2) determining the suitability of the Kinect to measure movement after stroke.  There have 

been some initial studies looking at the accuracy of the Kinect sensor. For example, previous 

work involving the Kinect has explored the measurement error of the depth camera with respect 

to static objects (Dutta, 2012), position accuracy of Kinect-joint locations during various full-body 

movements (Obdrzáleket al., 2012) and joint displacement errors during standing balance(Clark 

et al., 2012).  Dutta (2012) recorded the coordinates of a simple static rectangular object using a 

Kinect and gold standard motion capture system (Vicon, Oxford, UK).  Root mean square error 

values were computed and results indicated a small error between the two systems depending 

on object depth from the Kinect and proximity to the Kinect’s field of view boundaries. Locations 

further away from the sensor and near the capture boundaries increased the error of the Kinect 

system.   Kinect coordinates were obtained directly from depth images and were not processed 

with the pose-estimation algorithm, thus these results cannot be directly translated to the 

tracking ability of the Kinect.  Obdrzalek et al. (2012) explored the positional accuracy of the 

estimated Kinect virtual-markers compared to another marker based kinematic capture system 

(PhaseSpace, CA, USA).  The comparison system utilized active infrared markers positioned on 

anatomical landmarks, which were used to estimate a 3D skeletal model of the participant.  The 

marker position of the control skeletal model was assumed to be accurate and compared to the 

position of Kinect virtual-markers. Results indicated an inter-joint difference in accuracy with a 

high positional error average of 10cm across all virtual-markers.  Finally, Clark et al. (2012) 

investigated the use of the Kinect more specifically for assessing postural control. Forward and 

lateral reaching with the upper limb was also explored, but an incomplete upper limb data set 

was reported.  Results indicated a high intra-class correlation to a Vicon motion system. 
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In spite of the potential usefulness of this new technology the utility of the Kinect measures for 

assessing upper limb movement remains unknown. Initial validation studies noted above have 

revealed some limitations in positional accuracy but have not fully explored the accuracy of 

relative motion metrics such as displacement.  Furthermore, unexplored factors such as the 

grasp configuration of the hand, body orientation relative to the sensor and even the presence 

of task related objects may affect kinematic accuracy and are important to consider for the 

purposes of clinical assessment.   

 

The focus of this study is to identify the accuracy of the Kinect for describing upper limb 

movement and relevant factors which may affect its accuracy. There are three main objectives 

for this study. (1) Characterize the accuracy, and identify optimal Kinect markers for motion 

tracking for clinically relevant upper limb tasks. (2) Determine the influence of human-object 

manipulations during a reaching task on kinematic accuracy. (3) Determine the influence of 

body orientation relative to the Kinect sensor on kinematic accuracy.   

 

Accuracy will be determined by comparing kinematic measures between the Kinect and a gold 

standard kinematic system.  Results from this work, specifically the displacement error and the 

influence of matters such as external objects and spatial relationships between individuals and 

Kinect sensor, will be used to optimize clinical application in future studies.  
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3.2 Methods 
 

3.2.1 Participants 
 
Seven healthy young adults were recruited for this study. Participants were informed of 

experimental procedures, and provided written consent in accordance with the study protocol 

approved by the ethics committee of the University of Waterloo.  Participants had no prior upper 

limb impairments that would interfere with the physical demands of the experiment. 

3.2.2 Task conditions 
 
A full listing of task conditions can be found in Table 1. To characterize accuracy and identify 

optimal Kinect markers, we selected range-of-motion (ROM) tasks for the shoulder (flexion, 

extension, transverse adduction) and elbow (flexion, extension) joints.  Reaching tasks were 

also evaluated, for which participants performed a reach-to-touch to targets located at 75%, and 

120% arm length (shoulder-plane, mid-torso height).  The latter distance elicits trunk motion 

during the reach to grasp motion and was used to identify optimal proxy measures for trunk 

movement.  To evaluate the effect of human-object manipulations, reaching targets were 

modified to include a small and large object.  A third condition requiring individuals to grasp the 

large object was also used.  The large object was a cylinder with the dimensions: height 15.7 

cm, diameter: 8.9 cm.  The effect of body position with respect to the Kinect sensor was 

evaluated by using three body positions for a reaching task: frontal, proximal and distal. In the 

frontal position, the subject was facing the sensor such that the subject’s frontal plane was 

parallel to the medial-lateral plane of the Kinect sensor. The proximal condition consisted of a 

45 degree rotational shift in seating position such that the reaching arm was closer to the 

sensor.  The reverse was done for the distal condition.  
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Participants were seated on a backless-wooden chair (width: 53 cm, depth: 51 cm, height: 43 

cm).  Starting positions were standardized for each task condition:  wrist was in neutral position 

(0° flexion, 0° ulnar deviation) and the hand held in a closed fist.  

Researchers verbally cued the participants to begin each trial. Participants were instructed to 

perform each task at a comfortable self-selected pace.  For the reaching trials, participants were 

instructed to accurately reach towards the presented target. Participants returned to their 

starting position following each trial.    A closed fist was kept during all task conditions except in 

the reach-to-grasp condition, which required the participant to open their hand and grasp an 

object.  Prior to each task condition, participants performed a synchronization movement 

consisting of rapid elbow flexion and extension cycles performed in the sagittal plane.  This 

event was then used to temporally align the data streams between the Kinect and Polhemus 

systems (Section 3.2.5).   

3.2.3 Data Collection Setup 
 

Kinematic data was simultaneously acquired with a Polhemus Liberty HST-2400 tracking 

system (Colchester VT, USA) and a Microsoft Kinect sensor (Redmond WA, USA).   Polhemus 

data was collected with a sampling frequency of 120 Hz.  Kinect data was collected on an Intel 

I5-670 3.4GHz machine with 4 GB RAM running Windows 7 using custom C# software written 

with the Microsoft Kinect SDK (v1.5).  The sampling rate of the Kinect was a variable 30Hz.   

 

The Polhemus reference cube was positioned posterior and contralateral to the dominant limb.  

Polhemus markers were attached to C7, styloid, lateral epicondyle, and acromion of the 

dominant limb.  The Kinect sensor was placed 2m from the base of the chair, at a height of  

0.85 m measured from the floor to lens of the sensor.  
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3.2.4 Alignment of Kinect and Polhemus systems: 
 
Spatial alignment of the two systems was achieved by recording the 3D coordinates of the 

corners for a rectangular calibration object.  Coordinates were recorded in Polhemus space 

using a digital stylus.  In Kinect space, depth images were taken of the calibration object and 

coordinates were manually extracted using custom software.  Colour representation of the depth 

image was programmatically modified to assist the digitization process; pixels with a depth 

between of 0.8 to 1.5 m were coloured white, pixels outside of this range were coloured black.  

This created a high-contrast scene in which the calibration object was isolated in white pixels 

(Figure 3.1). 

The calibration object was positioned at different depths and heights relative to the sensor and 

was rotated to multiple orientations. A list of points was created containing the Kinect and 

corresponding Polhemus points. A homogenous transformation matrix was created between the 

Kinect and Polhemus coordinate system via single value decomposition and least squares 

estimation using a custom MATLAB program.  Upon establishing the transformation matrix, the 

Kinect dataset was transformed into Polhemus coordinate space. 

3.2.5 Signal Processing and Feature extraction: 
 
Due to the non-uniform sampling rate of the Kinect sensor, data was interpolated and 

resampled to 20 Hz. Polhemus data was also down sampled to 20 Hz prior to analysis.  

Polhemus and Kinect data were low-pass filtered at 5 Hz using a second order Butterworth filter.  

Temporal synchronization was obtained by aligning the data sets of both systems to the 

synchronization event. Individual trials were isolated from the continuous data set by using the 

initial and peak wrist position from the Polhemus system as event-markers.  Kinect virtual-

markers were compared to the corresponding control markers located at standard anatomical 

locations.   
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Due to virtual-markers outnumbering control markers, Kinect virtual-markers were compared to 

the closest available control marker. Table 2 highlights the specific pairings between from Kinect 

virtual markers and their corresponding control markers. 

3.2.6 Dependent Measures 
 
Displacement was calculated for each marker location for both systems from the initial and final 

marker positions for each movement trial.  Elbow angle was determined by the vectors formed 

by the elbow-hand and elbow-shoulder markers.  Angular displacement of the elbow was 

calculated as the difference in elbow angle at two instances during the movement trial. Three 

intervals of the movement trial were observed for angular displacement: start- end, start-middle, 

and middle-end (Figure 3.2).  

 

Displacement error was calculated as the displacement difference between the Kinect and 

Polhemus systems.  Similarly angular displacement error was the difference in angular 

displacement reported by the Kinect and Polhemus systems.  Temporal resolution was 

investigated by measuring the peak to peak time intervals of the calibration movement 

performed by participants prior to each task.  This time interval was measured for each system 

and the temporal error, taken as the peak-peak difference between systems, was subsequently 

analyzed.  

3.2.7 Statistical Analyses 
 
In order to compare the effect of body orientation and effect of object interaction on 

displacement error, two separate two-way ANOVAS (factors: joint, task) were used.  For angular 

displacement error, two separate two-way ANOVAS (factors: task, interval) were used to assess 

the effect of 1) body orientation and 2) object interaction.  Post-hoc tests were used to 

determine differences in the presence of significant main effects.  Statistical significance was 

determined with a significance level of p ≤ 0.05. 
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3.3 Results 
 
 
Characterization   
 
Displacement error for ROM task conditions is summarized in Table 3.3.  Under optimal task 

conditions, displacement error for the Kinect hand marker was 1.0 ± 4.0 cm across participants. 

Variability of displacement error between participants was high, however, within participant 

variability, as determined by the average standard deviation for participants across trials, was 

lower.  Displacement errors of Kinect markers were significantly greater than 0 for all task 

conditions (p <0.05).  Displacement error was variable across upper limb Kinect markers, and 

was particularly high for the Kinect wrist, with errors up to 15.0 cm.  This performance difference 

between Kinect hand and wrist markers can also be seen in trajectory profiles; the hand marker 

produces a smooth trajectory profile which is consistent with the control ulnar-styloid marker 

(Figure 3.3b), while the wrist marker produces a trajectory which is inconsistent and variable 

(Figure 3.3c).  Trunk motion was evaluated using the Kinect sternum and head marker.  The 

Kinect head marker had a lower displacement error relative to the sternum marker, however the 

within subject variability of the sternum marker was lower than that of the Kinect head (Table 

3.3). 

 
Influence of External Reaching Object  
 
Marker Displacement Error 

The details of the effect of external reaching object on marker displacement error are 

summarized in Figure 3.6.  Two-way ANOVA revealed a main effect for joint (F (5, 30) = 28.70, p 

<.001) and, task (F (2, 7) = 5.78, p=0.0330) as well as a significant interaction between joint and 

task (F (10,35) = 5.96, p<.0001).  Specifically there was an increase in displacement error for the 

Kinect hand in the Touch-large condition relative to the Touch-small condition.  

Error further increased in the Grasp-large condition, however only the Grasp-large condition 

was significantly different from Touch-small (t (11) = 4.79 p<0.01).   
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There was also an increase in displacement error for the Kinect wrist in the Touch-large and 

Grasp-Large conditions, but this change was not statistically significant. 

 

Elbow Angular Displacement Error:  

Figure 3.7 details the effect of external objects on elbow angular displacement error.  There was 

no significant main effect for task (F (2, 7) =0.32, p =0.73), or interval (F (2, 12) = 1.55, p = 0.2527). 

In addition there was no significant interaction effect between task and interval (F (4, 14) = 0.85, p 

= 0.51).  

 

Influence of Body Orientation Relative to Kinect Sensor 
 
 
Marker Displacement Error 

 Figure 3.4 highlights the effect of body orientation on marker displacement error.  Two-way 

ANOVA (body-orientation, joint) revealed a significant main effect for joint  

(F (5, 30) = 43.81, p<0.0001) and a significant interaction effect between virtual-marker and body 

orientation (F (10, 45) = 2.71 p=0.0108) for marker displacement difference.   No main effect of 

body orientation (F (2, 9) = 1.67, p =0.2421) was found.  Wrist and shoulder virtual-marker error 

significantly decreased in the proximal body orientation when compared to the frontal orientation 

(Wrist: t (9) = -2.28, p = 0.0485; shoulder: (t (9) = 2.63, p= 0.0272).  In the proximal camera 

location there was a decrease in the standard deviation across individuals in the hand marker 

when compared to the frontal camera position; however displacement errors in the two 

conditions were not statistically different.  
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Elbow Angular Displacement Error 

A summary of the results is displayed in Figure 3.5.  There was no significant main effect for 

task condition (F (2, 9) = 2.61, p=0.12) or trial interval  

(F (2, 12) = 1.48, p = 0.26).  In addition, no significant interaction effect was found (p=0.14).  

Despite lack of statistical significance there was a subjective increase in elbow angular 

displacement error in the touch-large condition when compared to the touch-no object condition. 

 

Temporal Resolution:  

Figure 3.8 details the temporal error between the Kinect and the gold standard system.  Peak to 

peak time interval differences between the Kinect and control system indicate good temporal 

resolution for the Kinect sensor.  Mean temporal error was reported to be 1.0 ± 1.8ms across 

individuals.  This value was not significantly different from 0 (p = 1.862).   
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3.4 Discussion 
 
The purpose of this study was to determine optimal Kinect markers for tracking and identify 

factors which may affect the kinematic performance of the Kinect system.  

 

Kinect Marker Performance 

Displacement error is variable depending on the Kinect marker; errors can be less than 2cm for 

some markers such as the Kinect hand, but can exceed 10cm for others such as the wrist, and 

elbow.  Large errors in Kinect markers such as the elbow and shoulder, limit the ability to 

calculate joint angles, which were shown to be large.  Variability of displacement errors was also 

large across individuals; this result may be attributed to inconsistencies in the pose-recognition 

algorithm to accurately track anatomical locations of individuals.  Previous work has identified 

variation in the estimated locations of Kinect markers, with positional differences of up to 10cm 

(Obdrzálek et al., 2012).  Such differences in marker position may contribute to the large 

variability seen the displacement errors across individuals of this study.      

 

Effect of External Objects 

The presence of task-related objects greatly increased the displacement error for the Kinect 

hand, and wrist.  Hand displacement errors increased when participants interacted with the 

large reach object.   This error is most likely due to the system’s inability to differentiate between 

the individual’s hand, and object.  It is possible that the depth-image pixels belonging to the 

object are incorrectly labeled as belonging to the hand,  resulting  in a miscalculation of the 3D 

location of virtual-markers, as proposals are based on the local mode of the labeled depth pixels 

(Shotton et al., 2013).  In addition to object interactions, movements such as opening and 

closing the hand can affect depth representation of the hand and thus affect the reported 

position of the virtual hand and wrist markers.  This was qualitatively observed as the wrist and 

hand virtual-markers moved when participants opened and closed their hands.   
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Although the intricacies of the pose-estimation algorithm of the Kinect have not been fully 

revealed, literature suggests a hybrid discriminative and generative approach for pose-

estimation (Taylor et al., 2012).  This suggests that some Kinect-marker positions are 

estimations based on the skeletal model (generative), while others markers may be more data 

driven in their tracking (discriminative).  Due to the single view depth images afforded by the 

Kinect, some virtual markers may be more occluded than others during certain movements, and 

are more likely to be estimated.  Thus, joint estimations for Kinect markers such as the wrist, 

elbow, and shoulder may be more generative in nature, which would explain their larger 

displacement errors, and variable trajectory profiles.  Variability in markers such as the Kinect-

elbow would directly affect calculations of elbow angle, which would explain the large error and 

variability seen in elbow angle metrics.   

 

Potential Clinical Utility 

This study has identified the Kinect hand and sternum markers as good indices of upper limb 

endpoint and trunk kinematics respectively.  The Kinect hand has the lowest displacement error 

when it is not interacting with external objects, and when its hand configuration is kept 

consistent.  With regards to trunk tracking, although the Kinect head marker had a lower 

displacement error, the sternum marker was a more consistent marker, as evidenced by lower 

within-subject variability.  In addition, the head marker would be susceptible further increases in 

variability due to additional head movement.  It remains to be seen if these Kinect markers can 

produce a clinically useful metric, however the clinical research of Cirstea and colleagues 

certainly suggests a potential.  Cirstea et al. (2003) characterized the kinematic reaching 

properties of stroke patients and have identified differences between healthy, mild, and severe 

subgroups based on the Fugl Meyer impairment inventory   Differences in trunk displacement 

between subgroups were reported to be 4 cm and 10 cm respectively.   
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With regards to the amount of elbow extension, differences of 16 degrees and 14 degrees were 

reported between subgroups respectively.  There is a potential clinical use for the Kinect 

considering the displacement error of the Kinect virtual markers is within the threshold of these 

clinical differences. However due to errors of angular displacement exceeding the limits of 

clinical thresholds, the Kinect may not be a sufficient tool to measure differences in elbow ROM.  

 

Usage Considerations 

Findings from the current study have important implications if the Kinect is to be used in clinical 

settings.  Collection areas should be uncluttered, minimizing objects around the participant.  If 

the participant is seated during a collection, then chairs/seats should be without armrests and/or 

overly large backrests.  Movements should be simple and designed to minimize self-occlusion, 

and maintain the same hand configuration throughout the movement.  If reaching targets are to 

be used, then the target should be small and mounted or suspended in a manner to minimize 

occlusion of other limbs. Positioning of therapists is another point of consideration, for seated 

upper limb motions, therapists can be positioned out of the Kinect scene while an individual is 

performing a task.  However task conditions which require the presence of a therapist to prevent 

falls may result in tracking issues if the position of the therapist occludes the tracked individual.   

In addition, choice of clothing may affect the kinematic data produced by the Kinect.  To our 

knowledge, there is no literature describing the effect of clothing on kinematic data quality, and 

studies using the Kinect have only performed collections with minimal or form-fitting clothing 

(Clark et al., 2012; Obdrzálek et al., 2012).   One can only assume based on the observed 

effects of foreign objects in this study, that overly large and ill-fitting clothing could potentially 

increase tracking error. 
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Though we did not test the lower limb, it is plausible that such estimations occur for the lower 

limb as well.  A potential improvement to this system would be to provide the system with 

anthropometric measures of limb segments; this would allow more accurate modeling of Kinect 

markers which are prone to occlusion. 

3.5 Conclusion 
 

Measurements from the Kinect may augment current clinical assessments for the upper limb by 

providing information regarding trunk and endpoint motion.  The kinematic accuracy of the 

Kinect is joint dependent and can be affected by the presence of foreign objects.  Thus, clinical 

applications should be designed with these limitations in mind.  It should be noted that this 

technology is still evolving and future iterations of the sensor and tracking algorithms may 

greatly improve the kinematic performance.   
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3.6 Tables and Figures 
 
Table 3.1. Description of the range-of-motion (ROM) and reaching tasks performed.  15 trials were 
performed for each task.  Reaching tasks were performed in the sagittal plane unless noted otherwise. 
Proximal and distal reaching arm position required the participants to rotate their torso in seat 45 degrees 
to left/right to facilitate reaching arm position.    
 

Category Tasks (n=14) Starting position Object # 
Trials 

Shoulder 
ROM 

Forward Flexion Shoulder: 0° 
extension, 0° 
abduction.  
 

N/A 15  

Backward Extension 

Shoulder Elevation 

Transverse flexion Shoulder: 0° flexion, 
90° abduction.  
 

Elbow 
ROM 

Frontal plane: 
flexion/extension of 
elbow 

Shoulder: 0° 
extension, 0° 
abduction.  Elbow full 
extension. 

 

N/A 15  

Sagittal plane: 
flexion/extension of 
elbow 

Shoulder: 0° 
extension, 90° 
abduction.  Elbow full 
extension. 

Reach-to-
touch 

To target at 75% and 
120% arm length 

Shoulder: 0° 
extension, 0° 
abduction.  Elbow 90° 
flexion. 
 

Small  15 

To target located in 
contralateral space 

Large 

Reaching arm position 
to sensor: 
proximal/distal 

Reach-to-
grasp 

To object at 75% arm 
length  

Large 15 

 
Table 3.2. Kinect markers and corresponding control marker used for kinematic analysis. 
 

Kinect Marker Polhemus Marker 

Hand Wrist 

Wrist Wrist 

Elbow Elbow 

Shoulder Shoulder 

Sternum C7 

Head C7 
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Table 3.3. Comparison of displacement measures (Mean ± standard deviation) for ROM tasks 
between Kinect and Polhemus systems. Virtual marker indicates the anatomical landmark provided by 
the Kinect system. All values are averaged across individuals (n=7). 
 

 Task Location 
Kinect 
Displacement(cm) 

Polhemus 
∆Displacement 
(cm) 

Within-
subject 
Variability

4 

(cm) 
Displacement(cm) 

Shld 
Extension

1
 

        
 

  Hand 86.94±6.18 87.21±8.85 -2.56±0.77 0.91±0.16 

  Wrist 76.80±7.20 87.21±8.85 -10.76±3.13 1.76±0.42 

  Elbow 42.41±4.31 47.21±4.84 -4.80±1.44 1.5±1 

Shld 
Flexion

1
 

        
 

  Hand 69.46±10.35 64.42±10.03 4.12±1.90 2.45±2.18 

  Wrist 61.41±9.20 64.42±10.03 -2.81±1.39 2.16±0.97 

  Elbow 33.33±5.93 37.06±5.33 -3.72±1.71 1.55±0.92 

Shld 
Flexion

3
 

        
 

  Hand 94.60±1.95 96.45±1.87 -1.08±4.05 1.19±0.49 

  Wrist 85.96±4.82 96.45±1.87 -14.76±2.91 1.62±0.37 

  Elbow 46.04±3.76 52.73±5.41 -6.69±4.50 1.43±0.48 

Elbow 
Flexion

1
 

        
 

  Hand 55.79±5.17 53.73±6.15 2.01±2.25 0.94±0.22 

  Wrist 44.46±3.73 53.73±6.15 -9.27±3.58 1.33±0.68 

  Elbow 7.91±2.64 6.35±3.22 1.57±1.23 1.12±0.47 

Elbow 
Flexion

2
 

        
 

  Hand 46.39±5.54 50.06±6.26 -3.67±2.27 1.71±0.33 

  Wrist 34.63±4.71 50.06±6.26 -15.29±2.79 1.75±0.5 

  Elbow 3.37±2.13 3.50±1.56 -0.13±1.17 0.79±0.29 

Touch. 
Far

1
 

        
 

  Head 29.74±4.88 28.35±4.40 1.39±1.36 1.13±0.76 

  Sternum 25.17±4.58 28.35±4.40 -3.17±0.59 0.39±0.09 

  Shoulder 27.40±3.03 31.27±2.83 -3.87±0.86 0.58±0.21 

S. Shrug
1
          

  Shoulder 3.66±1.01 8.42±2.07 -4.76±1.15 0.44±0.16 

 
1. Sagittal plane.   2.  Frontal plane.

   
3. Transverse plane. 4. Within-subject variability shown as 

(AVGSTDEV (for all individuals, across all trials) ± STDEV) 
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Figure 3.1. Kinect depth image of calibration scene.  3D-coordinates of the corners of the rectangular 
object (circled) were manually using the Microsoft Kinect SDK and used to transform Kinect coordinate 
system into the control coordinate system. 

 
 
 

 

Figure 3.2. Representative trial from one subject during elbow flexion in the frontal plane.  
Depicted above is the vertical position of the Kinect virtual hand marker and the time intervals used for 
analysis.  Start, middle and end of this trial are located at 100ms, 450ms and 800ms respectively. 
   

Start--End 

Middle-End 

Start-Middle 
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A. 

 
B. 

 
C. 

 
 
Figure 3.3. Representative data comparing the transverse plane trajectories during the 
transeverse shoulder flexion task for a single participant.  Each trace represents a single trial.  Panel 
A: Trajectory of control system ulnar-styloid marker.  Panel B: Trajectory of Kinect hand virtual marker.  
Panel C: Trajectory of Kinect wrist virtual marker. 
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Figure 3.4 Interaction effect of camera location for marker displacement error.  Plotted are the mean 
values and standard deviation bars of the displacement differences between the Kinect and gold standard 
system.  Each virtual marker is the anatomical landmark as given by the Kinect system.  Inset schematic 
depicts the body orientation assumed by participants for each task condition.  Kinect sensor was oriented 
to project squarely onto the participant in the frontal condition.   * denotes significance (p <0.05). 
  

 
 
Figure 3.5. Interaction effect of camera location for elbow angular displacement error. Plotted are 
the mean values and standard deviation bars of the difference in elbow angular displacement between 
the Kinect and gold standard system.  The following denotes time intervals during the trial; SE: start-to-
end, ME: Middle-to-end SM: start-to-middle. 
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Figure 3.6. Object interaction for marker displacement error.  Plotted are the mean values and 
standard deviation bars of the displacement difference between the Kinect and gold standard systems.  
Task conditions consist of reach-to-touch a small object (T-Small), reach-to-touch a large object (T-
Large), and reach-to-grasp a large object (Grasp-large).  All reaches were performed in the sagittal plane.  
Each anatomical landmark is the virtual marker as given by the Kinect. * denotes significance (p <0.05). 
 
 

 
 
Figure 3.7. Object interaction for ∆ elbow angle displacement.  Plotted are the mean values and 
standard deviation bars of the elbow angular displacement difference between the Kinect and gold 
standard systems.  Task conditions consist of reach-to-touch a small object (T-Small), reach-to-touch a 
large object (T-Large), and reach-to-grasp a large object (Grasp-large).  The following denotes time 
intervals during the trial; SE: start-to-end, ME: Middle-to-end SM: start-to-middle. 

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

T-Small T-Large Grasp-Large

D
is

p
la

ce
m

e
n

t 
Er

ro
r 

(c
m

) 

hand

wrist

elbow

-1

1

3

5

7

9

11

13

15

17

T-Small T-Large Grasp-Large

 E
lb

o
w

 A
n

gu
la

r 
D

is
p

la
ce

m
e

n
t 

Er
ro

r(
°)

 

SE

ME

SM

* 



37 
 

 
Figure 3.8. Temporal resolution of Kinect compared to the gold standard system. Event shown is 
the calibration movement consisting of rapid elbow flexion and extension cycles performed prior to each 
task. The two lines dipcted above are the vertical positions of the Kinect hand virtual marker (blue) and 
the gold standard ulnar styloid marker (black). 
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4.0 Study 2: Determining the Feasibility for the Clinical Use of the 
Kinect System for Upper Limb Stroke Assessment 

 

4.1 Introduction 

The assessment of upper limb impairment and disability post stroke is important in identifying 

rehabilitation goals and efficacy of rehabilitation programs.  Current clinical assessment tools for 

the upper limb consist of impairment inventories (e.g. Chedoke McMaster Stroke Assessment  

(Gowland et al., 1993), Fugl Meyer (Gladstone et al., 2002)), or functional ability inventories 

(e.g. Wolf Motor Function test (Wolf et al., 2001), Functional Independence Measure 

(Ottenbacher et al., 1996)).  These assessments require individuals to perform a series of 

complex multi-joint movements which evaluate the level of impairment or function of a given 

limb. Spatial characteristics such as speed, coordination of limbs, and magnitude of 

compensatory strategies are often evaluated.  Evaluation of task performance is typically 

performed by clinical observation, which may not be sufficient to detect and quantify small 

changes in motor performance.    

 

Kinematic analysis of fundamental upper limb movements such as reaching  may be a more 

sensitive method to evaluate motor deficits (Subramanian, Yamanaka, et al., 2010).  Kinematic 

studies of upper limb reaching in stroke survivors have revealed altered motor performance.  

Hand transport times are often lower (Cirstea & Levin, 2000; Cirstea et al., 2003; Roby-Brami et 

al., 1997), and velocity profiles show increased segmentation when compared to healthy 

controls, indicating deficient control of the upper limb (Cirstea & Levin, 2000; Cirstea et al., 

2003; Levin et al., 2002; Roby-Brami et al., 1997).  Individuals recovering from stroke also show 

decreased elbow extension (Levin et al., 2002; Roby-Brami et al., 1997), and increased use of 

compensatory mechanisms such as  increased trunk movement during reaching (Cirstea & 

Levin, 2000; Cirstea et al., 2003; Levin et al., 2002; Roby-Brami et al., 1997).  
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 Kinematic analysis can provide detailed information regarding the coordination of limbs and the 

use of compensatory strategies, affording insight into motor control.  Such measures have been 

shown to be correlated with clinical impairment scales (Cirstea & Levin, 2000; Subramanian, 

Yamanaka, et al., 2010) and may be used to augment clinical assessment.  Despite growing 

support of the benefits of kinematic analysis, there is little implementation within current clinical 

practice.  Conventional kinematic analysis systems remain a non-feasible option for clinical sites 

as they are cost prohibitive and require extensive setup time.   

 

Advancements in technology have led to the development of low-cost portable sensors which 

may be able to provide an affordable and feasible means of kinematic capture.  The Microsoft 

Kinect sensor (Redmond, WA, USA) is a small lightweight device which is capable of tracking 

20 anatomic landmarks without the use of external markers commonly used in conventional 

kinematic systems. The Kinect sensor utilizes infrared light to calculate a three-dimensional 

depth map of the scene in front of the sensor. A pose-estimation algorithm identifies the 

presence of a human silhouette within the depth map, and performs a foreground-isolation.  

Each depth pixel from the silhouette is then further classified as a body segment.  This 

classification allows for the fitting  of a skeletal model composed of 20 virtual-markers, from 

which kinematic information can be obtained (Shotton et al., 2013; Taylor et al., 2012).   

Studies evaluating the accuracy of the locations of the Kinect virtual markers in comparison to 

other motion capture systems reveal a position error of 10 cm across all Kinect virtual markers 

(Obdrzálek et al., 2012).  However the ability of the Kinect to detect changes in motion is 

promising for some markers; displacement error was reported to be less than 2 cm for the 

Kinect hand and Kinect sternum marker when compared to a research grade kinematics system 

(Tran and McIlroy 2013).  
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Given the magnitude of the measurement error associated with the Kinect system, there 

remains some concern regarding the ability of the Kinect to sufficiently identify kinematic 

differences in a clinical population.  Cirstea et al. (2003) compared kinematic differences in 

compensatory trunk displacement between healthy, mild, and severe stroke populations. 

Reported differences in trunk displacement between healthy/mild and mild/severe were 4 cm 

and 10 cm respectively. Considering the displacement error of the Kinect system is less than 4 

cm, there is potential for using the Kinect sensor to assess differences in the upper limbs of 

stroke survivors.  Other studies have shown the potential use of the Kinect with clinical 

populations, including Lowes and colleagues who investigated the clinical use of the Kinect with 

individuals with muscular dystrophinopathy (Lowes et al., 2013).  Participants performed 

reaching tasks on a tabletop.  Results indicated an ability to differentiate patients based on 

functional reach volume and reach velocity, highlighting the potential of the Kinect for clinical 

use.  However, this study utilized an alternative algorithm to identify and track colored objects 

placed on the hand.  This approach removes the restriction of placing the sensor such that it 

views the participant in the frontal plane, allowing the sensor to be positioned at better viewing 

positions to better observe the movement.  However, using this approach requires the 

development of a tracking algorithm which will accurately and robustly track the external 

markers.  In addition, this approach requires the use external markers, adding time to the setup 

of the system, and limits kinematic information to the number of available markers.   
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Overall, there is recognition of the potential importance of kinematics captured in clinical 

settings though there remains a knowledge gap regarding the feasibility of using the Kinect 

sensor and its markless tracking algorithms for measuring upper limb control after stroke.  This 

study investigated the feasibility of using the Kinect sensor and the pose-estimation algorithms 

to differentiate motor performance between the affected and less-affected limbs in stroke 

survivors.  In addition, the study also set out to determine if the Kinect could differentiate 

performance of affected limbs in stroke survivors with varying degrees of impairment. 

 

There are two hypotheses for this study.  1) It was hypothesized that the Kinect would be able to 

identify performance differences between the affected and less affected limb within an 

individual.  Performance differences will be similar to those reported in the literature, and thus 

affected limb movements will be marked by increased trunk displacement, and lower hand 

velocity.  2) In addition, it was hypothesized that the magnitude of hand velocity will decrease, 

and compensatory trunk displacement will increase as post stroke limb impairment increases as 

determined across individuals. 
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4.2 Methods 

4.2.1 Participants 

A summary of participant characteristics can be found in Table 4.1.  Twelve participants (age: 

63.5±11.3, M: 6, F: 5) were recruited from at the Sunnybrook Health Sciences Centre (Toronto, 

ON) and Grand River Hospital (Freeport Site, Kitchener, ON).  Inclusion criteria for participation 

was the presence of unilateral upper limb impairment assessed using the arm component of the 

Chedoke McMaster Stroke Assessment (CMSA) scale.  Participants required a minimum CMSA 

arm score of 3 and the ability to move both upper extremities with no pain.  This threshold of 

impairment was selected as individuals with lower CMSA scores do not possess the capacity to 

volitionally move against gravity, and would not be able to perform the experimental tasks.  

4.2.2 Experimental setup 

Individuals were seated on an armless chair located 2 m from the Kinect sensor.  The Kinect 

sensor was mounted on a tripod at a height of 0.85 m from the ground.  Prior to collection the 

Kinect sensor’s pitch orientation was programmatically set to 0 degrees using the internal 

actuators.  Roll orientation was leveled using leveling instrumentation equipped on the tripod.   

 

Reaching targets used in the experiment were suspended from an extended arm mounted on a 

tripod (Figure 4.1). The reaching target was attached to fine gauge wire and was suspended 

centrally at mid-torso height in front of the patient.  Target distance was located at 80% of the 

arm length of the patient.  In the situation where the participant did not move the affected limb to 

this distance, the maximal voluntary excursion of the affected limb without threatening balance 

was used.   Suspension of the reaching target minimizes the tracking interference between the 

Kinect sensor and objects in the Kinect scene (Baak, Müller, Bharaj, Seidel, & Theobalt, 2013; 

Obdrzálek et al., 2012).   
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4.2.3 Task Conditions 

A standard starting position was assumed prior to each trial. This position consisted of the 

shoulder positioned in 0° flexion and 0° adduction, and the elbow in 90°flexion.  Forearm 

rotation was kept in neutral position, as was the wrist (0° flexion, 0° ulnar deviation). The hand 

was held in a closed fist during all task conditions (Figure 4.2), this was done to keep the hand 

position consistent, and reduce hand tracking errors.   

 

Participants were asked to perform two upper limb tasks: (1) a reach-to-touch and (2) an arm 

circle-drawing task.  The reaching task had two variations.  (1a) Reach for a centrally located 

target at a self-selected speed.  The target was located at a distance 80% arm length, mid-torso 

height, and in front of the sternum.   (1b) After removing the original target, reach to the original 

target location as fast as possible. The circle drawing task required participants to draw  large 

circles in the transverse plane.  This task had two variations.  (2a) Draw a circle in the clockwise 

direction.  (2b) Draw a circle in the counterclockwise direction.  For each task, five trials were 

attempted, some participants performed fewer trials due to fatigue.  During both reaching tasks 

participants were not given instruction regarding the use of compensatory behaviours.     
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4.2.4 Data Collection  
 
Kinematic data was acquired with a Microsoft Kinect sensor (Redmond WA, USA).  Kinect data 

was collected on an Intel I5-2430 2.4 GHz laptop with 4 GB RAM running Windows 7.  A custom 

C# program utilizing the Microsoft Kinect SDK (v1.5) was used for data acquisition.  The 

sampling frequency of the Kinect was a non-uniform 30 Hz. 

4.2.5 Data Processing 

Due to the non-uniform sampling rate of the Kinect sensor, acquired data was spline 

interpolated to a 20 Hz sampling rate.  The kinematic data stream for each virtual marker was 

then  low-pass filtered at 5 Hz using a second-order Butterworth filter. 

4.2.6 Feature Extraction 

A LabVIEW program was used to identify and segment individual trials from the continuous data 

set.  Both tasks utilized the virtual-hand marker to identify the start and end of each trial.  

Analysis of the reaching task identified the initial position, and the maximum anterior excursion 

of the virtual-hand marker as the start and end of each trial respectively.  Individual trials of the 

circle drawing task were identified by graphing the AP and ML coordinates of the virtual-hand 

marker.  Each consecutive frame of data was incrementally plotted, and visual inspection of the 

movement trace determined the initiation and completion of a circle-drawing repetition. 

4.2.7 Dependent Measures 

Displacement, travel distance, peak velocity and mean velocity of the hand and sternum were 

calculated for each trial for all tasks.  For the circle drawing task, maximum AP and ML range 

was additionally calculated for both the hand and sternum markers.   
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4.2.8 Statistical Analysis   

All statistical evaluation was performed with SAS software 9.3 (Cary, NC, USA).   A two-factor 

analysis of variance (LIMB: affected/less-affected, TARGET: target/speeded reaching) was 

used to analyze kinematic metrics for the reaching task.  A two-factor analysis of variance 

(LIMB: affected/less-affected, DIRECTION: internal/external rotation) was also used to analyze 

the circle drawing task.   Spearman’s ranked correlations were performed to compare kinematic 

metrics of the affected limb and participant limb impairment scores (CMSA arm score).  

Statistical significance was determined with a significance level of p ≤ 0.05. 

4.3 Results  

 
Differences between affected and less-affected limbs  
 
Reaching  
 
Table 4.2 details the reaching metrics of each participant.  Two-way ANOVA revealed a 

statistically significant main effect of LIMB for sternum mean velocity (F (1, 9) =5.72, p =0.04) and 

sternum peak velocity (F (1, 9) =16.68, p=0.002).  Both sternum velocities increased with affected 

limb use.  Additionally, a significant interaction effect of LIMB*TARGET was found for sternum 

distance (F (1, 9) =8.08, p= 0.019), and sternum displacement (F (1, 9) =6.37, p= 0.033).  Both 

sternum metrics increased with affected limb use, however during TARGET condition, use of 

the affected limb showed the most sternum motion.  

 

With regards to hand movement quality metrics, significant main effects of LIMB (F (1, 9) =6.22, 

p= 0.034) and TARGET (F (1, 9) =29.42, p< 0.001) were found for mean hand velocity. Mean 

hand velocity increased with less-affected limb use and during the NO-TARGET condition.  

Additionally, a significant interaction effect was identified for peak hand velocity 

 (F (1, 9) =5.33, p= 0.046).  Post-hoc testing of peak hand velocity revealed a significant 

difference between affected and less-affected limb in the NO-TARGET condition only.  
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Circle Drawing  

Two-way ANOVA revealed a significant main of effect of LIMB for mean hand velocity (F (1, 10) = 

7.09, p = 0.0238).  The less-affected limb displayed higher mean velocities than the affected 

limb.   Additional metrics were unable to show group significance.  Analysis of each participant 

revealed a significant main effect of LIMB for AP and ML hand displacement for many 

participants (6/11, and 7/11 respectively).  The trend in these participants suggests that AP and 

ML ranges decreased when using the affected limb.  Additionally, a main effect of LIMB was 

revealed for mean sternum velocity and sternum AP range for three participants. In these cases, 

sternum AP range increased with affected limb use. Significant differences of sternum metrics 

were isolated to more impaired persons. 

 

Relationship between clinical limb impairment and kinematic measures  

Reaching 

Significant correlations between affected limb kinematic metrics and impairment scores were 

revealed only in the NO TARGET condition.  A statistically significant, positive correlation was 

identified for peak hand velocity (r= 0.83, p=0.003, n=10), and mean hand velocity (r = 0.8, 

p=0.005, n=10) (Figure 4.4B).  With regards to sternum metrics, a significant, negative 

correlation was found for sternum distance (r= -0.75, p = 0.01, n=10), and sternum 

displacement (r= -0.72, p = 0.02, n=10) (Figure 4.3B). 

 

Circle Drawing 

Statistically significant correlations were revealed between CMSA arm score and many 

kinematic metrics.  Correlations were consistent in both the internal and external rotation 

conditions.  With respect to hand metrics, significant positive correlations were found for AP 

hand range (r = 0.85, p<0.001, n=11), ML hand range (r =0.82, p=0.002, n=11), and mean hand 

velocity (r = 0.81, p= 0.002) (Figure 4.5B, 4.6B).   
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For sternum metrics, a significant negative correlation was found for peak sternum velocity  

(r =0.62, p=0.04, n=11) and mean sternum velocity (r =0.65, p=0.03, n=11) (Figure 4.7).  

4.4  Discussion 
 
 
The purpose of this study was to investigate the clinical feasibility of using the Kinect sensor and 

its markerless tracking algorithm to detect kinematic differences in stroke survivors.   

Results support the hypotheses regarding the Kinect’s ability to identify differences between the 

affected and less affected limb, as well as the ability to identify correlations between kinematic 

metrics and levels of limb impairment.  However, not all metrics were able to identify differences 

between affected and less-affected limbs. 

 

Affected vs. Less-affected Limb 

For the reaching task, inter-limb differences were observed both for sternum and hand metrics 

across the group. Results were in agreement with findings in reaching literature, which report 

increased sternum excursion and slower hand kinematics with affected limb use (Cirstea & 

Levin, 2000; Finley, Combs, Carnahan, Peacock, & Buskirk, 2012; Subramanian, Yamanaka, et 

al., 2010).  The circle-drawing task was less effective in identifying interlimb differences across 

the group; however, individual analysis did reveal significant interlimb differences for AP and ML 

hand range in some individuals. Non-significant group findings may be attributed to the 

variability seen between subjects in AP and ML hand range.  Additionally, some of the more 

impaired participants produced similar magnitudes of hand movement for both the affected and 

less affected limb in the reaching task.  It is possible that some individuals were matching the 

magnitude of movement between limbs, despite task instructions explicitly asking to create a 

circle of maximum size.   
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Sternum metrics in the circle drawing task were hypothesized to behave similarly to sternum 

metrics during reaching; displaying an interlimb difference for sternum AP and/or ML movement, 

and decreased sternum movement with less impaired individuals.  However, results were 

inconsistent across the group, as more impaired and less impaired individuals both displayed 

large sternum movement during the task, suggesting that the use of trunk motion may not be a 

consistent compensatory strategy with circle drawing. 

 

Correlation with CMSA score  

Kinematic metrics and participant CMSA scores showed strong correlations in both the reaching 

and circle-drawing tasks.  Reaching metrics were only statistically significant for the NO 

TARGET variation of the reach task.  During this task, participants exhibited decreased sternum 

movement, increased hand velocities, while exhibiting no statistically significant change in hand 

displacement relative to the TARGET condition.  When taken together, these findings suggest 

that the effect of placing emphasis on the speed of movement may increase reaching 

performance.   This finding is consistent with the findings of Massie and Malcolm who 

demonstrated similar results when stroke survivors were asked to perform a reaching task with 

their affected limb at a self-selected speed, and as quickly as possible  (Massie & Malcolm, 

2012).  The significant correlations may have been related to the task demands associated with 

the speeded condition, resulting in participants selecting a motor strategy which was more 

revealing of upper limb ability.  The utilization of trunk musculature to assist in limb transport is 

often reported with stroke survivors during volitional reaching (Cirstea & Levin, 2000); however 

the recruitment of the trunk may not be the most optimal strategy for a speeded reach.  Thus a 

more optimal strategy may have consisted of recruiting musculature capable of faster hand 

transport; utilizing more shoulder flexion and/or elbow extension torque, and would therefore be 

more revealing of upper limb function.   
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4.5 Conclusion 
 
 
Overall, the results of this study suggest a potential for using the Kinect as a clinical assessment 

tool for the upper limb after stroke.  Kinematic differences were found at the group level 

between affected and less affected limbs.  Additionally, strong correlations were found between 

affected limb kinematic metrics and CMSA arm scores.  However, the kinematic variables which 

identified differences may be dependent on the task, and its specific instructions.  One of the 

challenges going forward with the clinical implementation of the Kinect device will be 

establishing a protocol of assessment tasks and task instructions which are suitable for the 

device and which will best elicit a sensitive metric.   
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4.6 Tables and Figures 
 
 
 
Table 4.1.  Demographic data and clinical information of participants. 

ID  Age Gender 
Affected 

Limb 
Lesion Area  

Bryden Score 
(Handedness) 

CMSA 
Arm-Score 

Last completed CMSA Arm-Stage 

1 72 F R R. Int. Capsule -10 3 (4): Elbow @ 90 sup./pron. 

2 63 M L R. Pons 10 3 (4): Resisted arm ext. rot. 

3 42 M R 
L. Globis 
Pallidus 

6 3 (4): Elbow@ 90 pron. /sup. 

4 63 F L R. Prefrontal 3 3 (4): Shld flex. to 90 

5 54 M L R. Hemisphere 10 3 (3): All 

                

6 85 M R L. Hemisphere 6 4 (5): Shld abd. to 90 with pron. 

 7 64 F R L. Parietal and 
Basal Ganglia 

-7 5 (6) : Figure-8  

                   

                    

8 65 F R 
Int. Capsule, 
Thalamus 

10 6 (7 ): Arm-scissor, resisted ext. rot. 

                    

9 64 M L R. Frontal lobe 10 6 (6): Figure-8, hand from knee-head x5 

10 63 M L R. Frontal lobe 10 6 
(6): Raise arm overhead with sup., 

       Hand from knee-to-head x5.  

11 64 F R L. Thalamus -1 7 (7): All 
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Table 4.2.  Kinematic metrics for each individual for the reaching task. 

 
  
 

Hand Disp (cm) Stern Disp. (cm) Hand Peak Vel. (cm/s) Hand Mean Vel. (cm/s) Stern Mean Vel. (cm/s)

ID Less Aff. Aff. Less Aff. Aff. Less Aff. Aff. Less Aff. Aff. Less Aff. Aff.

No Target 33.7±1.1 43.0±2.9 1.2±0.7 2.4±0.6 126.0±34.6 54.2±11.4 46.9±14.5 19.8±8.8 1.7±0.8 1.1±0.2

Target 37.2±2.1 42.7±2.8 2.7±0.4 5.0±0.6 96.2±11.4 61.2±23.4 35.2±4.7 17.4±12.0 4.0±1.4 4.0±1.6

No Target 38.4±5.0 31.2±5.4 1.3±1.1 2.2±1.6 167.5±25.4 71.7±11.9 89.8±22.5 32.2±3.8 3.6±1.2 2.5±1.2

Target 32.6±8.3 36.2±4.9 3.2±0.8 6.0±0.8 97.3±50.2 55.6±13.2 24.1±4.7 16.7±4.2 3.1±0.4 3.2±0.8

No Target 37.3±10.4 32.4±2.9 2.6±0.5 5.0±1.3 142.0±12.7 101.1±19.2 71.9±12.1 51.2±11.9 4.5±0.6 7.6±2.3

Target 27.0±2.1 42.2±5.2 0.6±0.4 15.5±2.6 103.2±21.5 103.8±21.8 48.1±6.3 43.4±5.1 1.0±0.6 13.3±1.8

No Target 39.0±10.6 44.6±5.7 2.1±1.6 2.5±0.7 171.1±43.2 127.9±26.7 84.7±14.2 56.1±6.3 4.0±2.8 4.3±1.3

Target 36.3±2.2 36.9±4.5 3.7±0.6 2.0±0.9 91.9±7.3 121.2±14.9 44.5±8.0 64.8±15.6 4.4±0.8 3.5±1.3

No Target 38.8±2.5 25.2±2.7 1.5±0.3 2.9±1.4 217.3±24.2 114.9±23.0 129.0±16.3 65.4±6.5 4.0±1.2 7.9±4.6

Target 46.5±3.2 25.6±4.0 0.6±0.3 4.8±1.7 168.6±45.0 73.5±11.1 98.4±10.8 37.9±5.4 1.2±0.6 5.9±1.4

No Target 41.6±4.1 38.2±3.0 1.4±0.4 1.5±0.3 215.7±43.9 182.4±33.2 113.0±20.2 108.2±18.3 3.9±1.6 5.6±2.0

Target 47.0±1.4 38.7±6.8 2.3±0.3 4.7±0.7 80.1±12.6 74.0±12.3 28.5±4.4 32.9±6.6 1.5±0.3 4.0±1.3

No Target 39.6±4.9 38.5±4.5 1.2±0.6 2.7±1.6 153.2±8.4 177.3±31.7 83.4±10.8 76.7±11.3 2.7±1.0 6.8±2.6

Target 39.8±1.7 44.2±4.2 1.4±0.4 6.4±0.8 79.4±7.4 66.5±23.3 39.3±3.1 33.1±5.0 2.0±0.2 4.6±0.4

No Target 36.4±3.1 33.7±6.4 2.0±1.2 0.8±0.8 183.5±15.0 178.8±8.6 93.7±21.8 89.8±7.8 4.9±3.2 1.9±1.2

Target 38.8±2.6 38.3±2.5 5.1±1.0 10.5±1.4 103.0±14.6 90.7±16.9 56.9±5.4 41.2±3.9 7.2±1.1 11.4±1.8

No Target 34.3±4.4 25.0±15.4 0.9±0.4 1.1±0.5 193.1±22.4 173.9±55.6 104.2±15.4 91.4±24.2 2.6±1.0 2.8±1.1

Target 33.1±1.7 39.5±2.9 1.3±0.3 2.2±0.7** 88.4±4.6 132.4±28.3 55.4±5.0** 69.2±12.6** 2.3±0.5 3.0±0.8

11 No Target 31.8±6.2 40.7±5.1 0.6±0.3 1.1±0.8 206.2±28.0 203.7±19.7 101.4±21.5 103.7±12.1 1.5±0.5 2.8±1.8

Target 42.4±2.3 46.0±6.0 1.0±0.5 4.8±1.0 107.8±8.9 104.9±6.4 57.8±10.0 44.3±5.1 1.4±0.9 5.8±1.2

Bolded values denote  a significant main effect between the affected and less affected limb.  P<0.005
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Table 4.3.  Kinematic metrics for each individual for the circle-drawing task. 

ID Less Aff. Aff. Less Aff. Aff. Less Aff. Aff. Less Aff. Aff. Less Aff. Aff. Less Aff. Aff.

Ext. Rot 30.6±6.6 26.1±1.8 47.2±5.8 34.3±2.8 0.6±0.2 0.7±0.2 0.5±0.3 0.6±0.3 55.1±4.3 22.9±4.5 0.8±0.2 0.5±0.1 

Int. Rot 36.6±4.6 22.8±2.0 48.1±5.3 30.5±4.0 1.6±0.8 0.8±0.3 1.1±0.7 1.2±0.7 58.4±7.4 20.5±1.7 1.7±0.7 0.7±0.3 

Ext. Rot 37.9±1.5 39.8±2.3 54.1±1.9 38.4±2.7 4.5±0.8 3.0±2.0 5.6±0.5 2.7±1.3 89.9±13.9 29.2±3.7 12.8±0.8 2.6±0.7

Int. Rot 38.3±6.6 32.7±3.7 51.0±6.9 35.7±1.4 6.4±1.4 4.8±2.1 6.4±1.5 4.3±2.5 80.7±4.9 33.6±5.4 13.0±2.6 3.0±1.0

Ext. Rot 47.9±4.1 33.6±4.5 52.0±2.0 49.6±5.3 3.8±1.3 6.1±1.6 3.4±1.2 5.6±1.8 131.8±7.0 79.8±4.5 10.6±4.0 12.1±3.1 

Int. Rot 50.0±11.1 33.5±4.7 55.8±10.8 45.1±5.7 3.2±2.0 11.0±4.2 3.6±1.7 10.3±4.1 122.1±6.0 77.3±7.1 9.5±3.5 19.5±6.3 

Ext. Rot 43.2±4.9 36.2±5.1 45.4±2.6 48.9±7.6 3.9±0.3 4.8±1.6 3.9±0.4 4.1±2.1 118.7±10.0 94.2±7.5 9.1±2.2 8.1±1.9

Int. Rot 40.1±4.3 41.1±2.9 49.4±4.3 47.8±3.5 2.3±1.4 4.8±1.5 2.2±0.9 2.9±0.5 105.2±7.1 93.7±6.4 4.4±1.6 9.9±3.1

Ext. Rot 49.0±6.9 13.0±1.3 50.1±3.4 16.5±1.2 2.4±0.4 2.0±0.4 2.3±0.4 1.5±0.5 123.3±11.4 32.3±3.9 4.2±1.1 3.2±0.6 

Int. Rot 41.3±3.6 13.0±2.7 44.2±2.8 12.8±2.0 3.2±1.7 2.6±0.6 2.0±1.0 2.2±0.2 100.1±7.5 27.6±7.0 5.9±1.9 3.5±1.1 

Ext. Rot 30.6±7.0 45.4±4.2 38.3±7.7 47.2±2.8 1.3±0.4 3.6±0.2 1.3±0.4 3.2±0.8 98.6±14.2 116.7±6.8 2.8±1.3 10.3±1.7

Int. Rot 42.7±7.3 37.1±8.9 39.9±5.7 44.2±3.6 3.4±0.5 2.5±0.5 2.9±0.3 2.2±0.3 116.1±18.4 97.9±11.4 9.0±2.2 6.5±0.8

Ext. Rot 65.7±9.1 58.7±8.3 69.0±2.6 66.5±5.2 10.9±2.1 14.0±1.2 7.4±2.2 12.0±2.1 102.2±4.9 91.8±11.4 13.2±1.9 17.3±1.6

Int. Rot 61.9±4.2 47.7±8.3 60.2±7.7 58.8±7.7 3.3±1.6 4.1±2.5 2.2±0.9 3.9±2.7 87.5±9.1 76.8±10.8 4.1±2.4 4.4±2.1

Ext. Rot 61.1±5.2 53.9±7.3 62.8±4.2 68.9±6.9 14.9±2.3 15.4±3.1 9.1±3.7 8.0±4.9 137.7±16.8 111.2±11.9 27.5±4.0 21.7±2.8

Int. Rot 70.8±2.6 47.1±9.1 76.5±6.5 53.9±4.2 19.9±1.8 23.8±2.3 10.0±3.4 9.7±6.5 142.7±6.3 85.5±5.3 27.6±3.0 35.0±3.4

Ext. Rot 52.3±4.4 46.9±6.9 60.2±3.9 51.3±4.6 3.7±1.0 3.3±2.4 2.5±1.2 2.8±2.6 112.1±3.5 133.8±15.7* 5.4±0.6 5.5±2.7

Int. Rot 52.7±1.0 44.3±5.2 62.6±1.4 51.5±3.7 6.1±0.8 4.4±1.5 4.6±1.6 3.6±1.2 120.8±12.8 123.4±9.7 11.0±3.5 7.4±2.4

Ext. Rot 50.8±4.5 61.4±4.1 64.9±3.6 81.5±4.7 6.8±1.5 6.4±1.3 5.6±0.5 5.5±1.1 108.5±7.3 129.2±8.9 12.0±2.3 13.7±4.3

Int. Rot 46.1±3.8 64.4±2.0 66.2±3.9 78.8±9.2 6.4±0.9 11.1±1.6 5.0±1.2 10.8±4.7 104.7±31.0 110.3±5.7 12.3±3.2 24.5±7.8

Ext. Rot 50.3±5.1 48.7±2.3 55.9±3.0 49.1±2.5 4.1±1.0 5.3±2.0 2.2±0.7 5.6±2.5 128.1±8.9 111.8±13.0 7.4±2.4 14.0±4.5 

Int. Rot 55.7±7.8 48.4±5.6 54.6±10.3 60.8±3.7 5.7±1.6 8.3±1.0 3.3±0.8 7.2±1.3 123.8±10.5 133.4±21.8 10.1±1.7 20.7±2.3 

Bolded values denotes a  significant main effect between the affected and less affected limb p<0.005
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Figure 4.1.  Experimental setup for study two.  The Kinect sensor is positioned to project on the 
participant frontally.  The tripod and boom setup is used to suspend an object via fine-gauge wire to 
ensure that there are no external objects occluding the participant from the Kinect sensor. 

 
 
Figure 4.2. Sagittal view of a participant in the standard starting position.  Participants will be asked 
to start with their shoulder in zero degree flexion and abduction, and the elbow in 90 degree flexion.   The 
hand will be kept in a fist orientation at all times to minimize tracking errors from the Kinect. 
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A 

 
 
 
 
B 

 
Figure 4.3. Sternum displacement during reaching.  Panel A. Mean sternum displacement values for 
each participant during the TARGET reach condition, each error bar represents 1 standard deviation. 
Panel B.  Spearman’s ranked correlations between sternum displacement during the NO TARGET 

condition and patient CMSA arm score. 
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Figure 4.4.  Peak hand velocity during speeded reaching.  Panel A. Peak hand velocity values for 
both affected and less affected limbs across all participants.  Error bars represent 1 standard deviation.  
Patient cases are ordered as most to least impaired. Panel B. Spearman’s ranked correlation values 

between peak hand velocity and patient CMSA score.   
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Figure 4.5.  AP Hand excursion during internal rotation circle drawing.  Panel A. AP hand excursion 
across all participants, error bars represent 1 standard deviation.  Panel B. Spearman’s ranked 

correlation values are between affected limb AP hand excursion and patient CMSA score.   

0

10

20

30

40

50

60

70

80

1 (3) 2 (3) 3 (3) 4 (3) 5 (3) 6 (4) 7 (5) 8 (6) 9 (6) 10 (6) 11 (7)

A
n

te
ri

o
r-

P
o

st
e

ri
o

r 
H

an
d

 R
an

ge
 (

cm
) 

CMSA Arm score 

Affected Less Affected

0

10

20

30

40

50

60

70

2 3 4 5 6 7

A
n

te
ri

o
r-

P
o

st
e

ri
o

r 
H

an
d

 R
an

ge
 (

cm
) 

CMSA Arm score 

r = 0.85, p <0.001, n=11 



57 
 

 

 
 
 
 
 
A 

 
 
B 

 
Figure 4.6.  Mean Hand velocity during internal rotation circle drawing. Panel A. Mean hand velocity 
across all participants.  Error bars represent 1 standard deviation.  Panel B. Spearman’s ranked 

correlation values are between Mean hand velocity and patient CMSA score.   

 

0

20

40

60

80

100

120

140

160

180

1 (3) 2 (3) 3 (3) 4 (3) 5 (3) 6 (4) 7 (5) 8 (6) 9 (6) 10 (6) 11 (7)

M
e

an
 H

an
d

 V
e

lo
ci

ty
 (

cm
/s

) 

CMSA Arm score 

Affected Less Affected

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7

M
e

an
 H

an
d

 V
e

lo
ci

ty
  (

cm
/s

) 

CMSA Arm score 

r = 0.81, p=0.002, n=11 



58 
 

 
 

 

Figure 4.7.  Peak sternum velocity during internal rotation circle drawing.  Spearman’s ranked 

correlation values are between peak velocity and patient CMSA score.   
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5.0  General Discussion 
 
 
The purpose of this thesis was to investigate the potential of using new technology for the 

assessment of upper limb recovery after stroke. This project specifically focused on using the 

Microsoft Kinect sensor as a potential clinical tool. The work presented in this thesis shows 

support for the assessment of the upper limb in stroke survivors.  The advantage offered by this 

system is the unique ability for markerless kinematic data capture.  The markerless nature of the 

system allows for rapid data collection sessions, with no need for additional calibration steps.  

This is ideal in a clinical setting where time is a limited commodity.  There are however, 

limitations to this system that need to be considered prior to clinical implementation.  These 

limitations and are addressed below. 

 

Influence of Objects 

Many different task conditions may be of interest to researchers and clinicians, particularly those 

involving the manipulation of external objects, as they are often used in functional evaluations 

(i.e. Wolf motor function test).  Previous research has indicated that the presence of external 

objects and changes in hand configuration (i.e. opening and closing the hand) can negatively 

affect the accuracy of  the kinematic output (Tran and McIlroy 2014).  While the newest iteration 

of this technology (Kinect ONE) is equipped with a higher resolution sensor and has 

demonstrated the ability to detect changes in hand configuration, the accuracy of this detection 

has yet to be determined.  Furthermore, it is hypothesized that the problem of interfering effects 

of external objects on hand tracking performance has not been resolved.  In addition to direct 

manipulation of objects by participants, objects which remain in the foreground of the Kinect 

scene can cause miss-tracking and negatively affect data obtained from the Kinect.   

Researchers have reported cases of armrests and legs of chairs to cause miss-tracking for 

upper and lower limb markers in seated participants (Baak et al. 2012).   
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Therefore, for optimal data collection, it is recommended that the area in which Kinect data is 

being used is uncluttered. If using a chair, it recommended that the back rest and armrests 

should not be present 

 

Influence of Lighting 

Another point of consideration is sensor exposure to sunlight.  Because the Kinect system is an 

infrared based device, exposure to sunlight can over expose the infrared sensors, impairing the 

system’s ability to detect the projected infrared scatter pattern, and thus its ability to calculate 

depth.   It is recommended that the system be used in a uniformly lit room, away from direct 

exposure to sunlight. 

 

Day-to Day Testing Consistency  

In study 1 we saw variations in performance metrics between subjects, and attributed variations 

in performance to differences in body anthropometrics and the subsequent Kinect processing.  

There remain concerns that this variation may also exist within a person on separate collection 

dates.  Although the body anthropometrics of an individual would not change, many of the 

estimation processes associated with modelling which occurs with markerless tracking are 

unknown, and may be a source of variation on a day-to-day basis.   Another human factor which 

may affect kinematic performance is clothing.  Publications detailing the processes involved with 

the markerless acquisition of kinematic data suggest that clothing could potentially interfere with 

the reliability of measures.  Shotton et al. describes the performance of the markerless tracking 

algorithm as being accurate across a variety of individuals, wearing a variety of clothing 

(Shotton et al. 2012).  Accuracy in this context refers to the ability of the algorithm to correctly 

classify depth pixels as part of the appropriate body segment.  It does not refer to the precision 

of kinematic measurements obtained after processing the classified depth pixels.   
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Thus we must consider the potential effect of clothing:  the system will fit a skeletal model to a 

silhouette regardless of the type of clothing an individual is wearing.  However, clothing can/will 

alter a silhouette of and individual viewed from the Kinect and thus will affect the coordinates of 

the calculated joint centers.  Therefore, it is recommended that clothing is kept to a minimum, or 

is form fitting in order to keep the silhouette of an individual consistent with the individual. 

 

Signal Noise Considerations 

In using the Kinect system, there are instances when the kinematic data has a large amount of 

noise.   In study 1, this noise was seen particularly in the trajectory profiles of wrist, and elbow 

virtual markers.  Because the kinematic data from the Kinect is derived from singular depth 

images, it may be susceptible to error due to occlusion.  Taylor et al. 2012 described the 

Kinect’s pose-estimation algorithm as a hybrid generative and discriminative approach, allowing 

the system to calculate coordinates for occluded limb segments.  We hypothesized that when 

limbs were occluded and coordinates were obtained using primarily a generative approach that 

there was a considerable amount of noise.   As a result, our joint locations of interest were 

primarily of the hand and sternum, which were in full view of the sensor.  However, there were 

still instances during complex task conditions, (such as the arm-circle drawing task), when the 

movement of limb(s) occluded other markers (i.e. sternum marker), which produced noise in the 

signal of the occluded marker.  This particular effect may be difficult to completely avoid, and 

careful examination of the task for moments of occlusion may be beneficial. 
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Other Determinants of Variability Between, and Within Participants 

Variability of kinematic metrics was larger in the more impaired individuals of the stroke group.  

Additional factors which were not assessed in this thesis including state of arousal, fatigue, and 

motivation may have been variable across participants and may have influenced group 

variability.  These factors are important to consider as they pertain the reliability of testing 

metrics.   

 

With regards to within-subject variability, additional factors such as the magnitude of inherent 

noise associated with the Kinect system need to be investigated.  Though the presence of 

system noise was acknowledged, the magnitude of this noise is important to understand to 

further gauge the potential sensitivity of the Kinect system.  Another factor which may have 

contributed to within-participant variability may have been the presence of potential practice 

effects which may have occurred during the assessment.  Practice effects may be mitigated by 

allowing practice trials prior to assessment, followed by a resting period to mitigate fatigue. 

 

 

Potential Improvement: 

A potential technique for improving data collection with the Kinect is the use of multiple sensors.  

This technique would alleviate some of the issues of occlusion which is hypothesized to be a 

source of variability in the kinematic data.   One challenge to this technique is circumventing the 

interference effects which one sensor has on another.  The Kinect sensor utilizes a projected 

structured light array to calculate depth, and by introducing another sensor to a same scene we 

also introduce another projected light pattern.  The presence of two light patterns interferes with 

the system’s ability to calculate depth and therefore would create areas of missing depth values 

(Butler, Izadi, & Hilliges, 2012; Maimone & Fuchs, 2012) .   
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However, by introducing constant motion to one sensor (i.e. 15 Hz oscillation), a motion-blur can 

be induced onto the moving light pattern relative to the non-moving sensor (Butler et al., 2012; 

Maimone & Fuchs, 2012).  This limits the interfering effect and could be a potential solution for 

using multiple sensors simultaneously in a common scene.  The introduction of a constant 

oscillation would also require some additional post-processing steps to remove the motion 

signal in the data stream.  Additionally , if this were used as a potential solution, additional 

action would be required to train an appropriate decision process to analyze depth images from 

multiple sensors, as previous data used to train the current decision forest tree was done  using  

depth images from a single sensor (Shotton et al. 2012). 

 

Application and future directions 

The potential applications of this technology may also extend beyond assessments.  Previous 

gaming technologies (Nintendo Wii) have been used in stroke rehabilitation and have been 

shown to be effective (Saposnik et al., 2010).  Similarly, the Kinect may also be used to 

augment current rehabilitation and therapy.  The advantage of using a system such as the 

Kinect is that we are able to capture significantly more movement information, and are thus able 

to better monitor and provide feedback during rehabilitation or training sessions to the 

participant.  The use of feedback may augment the retraining of motor patterns and 

simultaneously quantify the quality and volume of training.  One specific example of this 

application would be the continuous monitoring of an individual’s trunk displacement during an 

upper limb training task; if trunk displacement exceeds a certain threshold, then we can then 

present to the individual a signal (auditory/visual feedback) indicating excessive trunk motion.  It 

has been shown that auditory feedback can be used to modify motor patterns (Oscari, Secoli, 

Avanzini, Rosati, & Reinkensmeyer, 2012) and may be more effective at retraining 

compensations than a physical restraint system (Subramanian, Massie, Malcolm, & Levin, 

2010).   
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One limitation of this type of feedback provision has been in the lack of feasible equipment 

necessary to facilitate the training; both in a clinical setting and especially in a home setting.  

Technologies like the Kinect provide the opportunity to overcome such barriers due to the small 

size and low cost of the device.   In addition to augmented therapy and rehabilitation, such 

technologies may also facilitate remote assessments and therapy; as data recorded can easily 

be transferred via remote communication. 
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6.0   Conclusion 
 
The Kinect is an affordable system which allows markerless kinematic data acquisition.  Results 

from this thesis suggest a potential for the use of the system to assess some aspects of upper 

limb kinematics.  Under ideal conditions the system was shown to measure kinematic 

measurements of the hand and trunk, and was able to successfully capture and identify 

kinematic differences in a clinical stroke population.  However, there are many factors that affect 

kinematic data quality as well as limitations to the system.  These factors and limitations need to 

be considered prior to clinical implementation.   
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