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Abstract

Optimal sensor placement is an important problem with many applications; placing
thermostats in rooms, installing pressure sensors in chemical columns or attaching
vibration detection devices to structures are just a few of the examples. Frequently
this placement problem is encountered while noise is present. The H2-optimal control
is a strategy designed for systems that have exogenous disturbing inputs. Therefore
one approach for the optimal sensor location problem is to combine it with the H2-
optimal control. In this work the H2-optimal control is explained and combined with
the sensor placement problem to create the H2-optimal sensor location problem.

The problem is examined for the one-dimensional beam equation and the two-
dimensional diffusion equation in an L-shaped region. The optimal sensor location is
calculated numerically for both models and multiple scenarios are considered where
the location of the disturbance and the actuator are varied. The effect of different
model parameters such as the weight of the state and the disturbance are investigated.

The results show that the optimal sensor location tends to be close to the distur-
bance location.
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Chapter 1

Introduction

Optimal sensor placement is an important problem encountered in many engineering
projects and in daily life. A simple example would be the problem of placing a
thermostat in a room. Suppose there is a window at one end and a heater at the
other end. The room loses heat through the window and the heater needs to heat
up the room. The thermostat is the temperature sensor. If the sensor is too close to
the window, the heater will have to keep working until the area next to the window
has reached the desired temperature. This can lead to the area closer to the heater
becoming too warm or to higher heating costs because the heater was on for a long
time. On the other hand if the sensor is too close to the heater, the heater would
stop as soon as the area surrounding it has reached the desired temperature while
the area closer to the window stays cold. A balance must be reached between the
sensor position, the position of the heater and the window.

A cost function describes the relative weight of the different factors involved in the
problem. The factors could include the cost of electricity, average room temperature
and how much it deviates from the preset target in the thermostat. The cost function
constitutes a sum of different factors, each with a weight. If comfort is the only
important factor, a weight of one is assigned to the difference between the room
temperature and the desired temperature while a weight of zero is assigned to all
other factors. If electricity is expensive but at the same time a decently warm room
is needed, both factors get a non-zero and comparable weight in the cost function.
As its name suggests, the goal is to minimize the cost function. Using a cost function
is a concrete way to compare different arrangements of the sensor, the heater and
the window. The arrangement that gives the lowest cost is the best one.

Another important factor is the control law. The control law establishes the re-
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lationship between the sensor measurement and the action of the heater. The law
describes the strategy that is used in the heater based on the thermostat measure-
ment. In this work the control law is the H2-optimal control. This control law is
designed to deal with situations where there is disturbance or noise. It is assumed
in H2-control that all the noise or disturbance signals are White Gaussian (WG). In
intuitive terms, a WG signal is unpredictable and as time goes on its past values are
not related to its future values. A famous example for WG is the white screen seen
on an analog TV when there is no signal. The TV makes a hissing sound and shows
a random mixture of white and gray pixels. The cost function in H2-optimal control
is based on the statistical properties of the WG signals.

The problem of finding the optimal sensor location is also encountered in Active
Vibration Control (AVC). In AVC, the goal is to reduce the vibration of a structure
as much as possible. The vibrations in flexible structures die down naturally due to
damping. However AVC can speed up this process. The location of the sensors and
the actuators influence the settling time of the vibration. In Chapter 5 of this thesis
the optimal sensor location for a simply supported beam is calculated.

This thesis is organized as follows. Chapter 2 consists of the background material
which includes the definitions and the basic concepts in linear control theory. Chapter
3 introduces the H2-optimal control and chapter 4 connects the H2-optimal control
with the optimal sensor location problem. A literature review is done which covers
the application of H2-optimal sensor placement to a variety of systems. In chapter
5 the optimal sensor location for the one-dimensional beam equation and the two-
dimensional diffusion equation is calculated.
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Chapter 2

Background

The introductory concepts related to theH2-optimal control are reviewed here. These
concepts can be found in numerous books such as [14], [23] and [31] and are included
for reference and completeness.

2.1 Linear Time Invariant Systems

A Linear Time Invariant (LTI) system is defined as

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t).
(2.1)

The variables x(t), u(t) and y(t) are called the state, control and output and have
sizes n × 1,m × 1, p × 1 respectively. Matrices A,B and C are constant and have
sizes n× n, n×m and p× n respectively. Matrix B represents the actuator and C
corresponds to the sensor.

Definition 2.1.1. For a square matrix A, define the matrix exponential

eA = I + A+
A2

2!
+
A3

3!
+ . . . (2.2)

=
∞∑

n=0

An

n!
. (2.3)
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Theorem 2.1.1. If x(t) satisfies equation (2.1) then,

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ. (2.4)

Proof. Using direct differentiation

ẋ(t) = AeAtx0 +

∫ t

0

AeA(t−τ)Bu(τ)dτ + eA(t−t)Bu(t)

= A

(
eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

)
+Bu(t)

= Ax(t) +Bu(t).

(2.5)

An alternative proof is to rewrite ẋ(t) = Ax(t) +Bu(t) as

e−Atẋ(t)− e−AtAx(t) = e−AtBu(t)

d

dt
(e−Atx(t)) = e−AtBu(t)

e−Atx(t) = x(0) +

∫ t

0

e−AτBu(τ)dτ

x(t) = eAtx0 + eAt
∫ t

0

e−AτBu(τ)dτ.

(2.6)

If t = 0,

x(0) = e0x0 + e0

∫ 0

0

e−AτBu(τ)dτ, (2.7)

x(0) = x0. (2.8)

Hence (2.4) satisfies the initial condition.

A special case of (2.4) is when B is a column vector and u(t) = δ(t). In this case,
(2.4) reduces to

x(t) = eAt(x0 +B). (2.9)

Another special case is x(0) = x0 + B and u(t) = 0. For this case (2.4) also reduces
to (2.9). Therefore (x(0) = x0, u(t) = δ(t)) and (x(0) = x0 + B, u(t) = 0) lead to
identical solutions.

A major topic in control theory is stability.
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Definition 2.1.2. A square matrix A is called Hurwitz if all of its eigenvalues have
negative real part.

Definition 2.1.3. The system (2.1) is internally stable if the matrix A is Hurwitz.

If u(t) = 0, (2.4) reduces to

x(t) = eAtx0. (2.10)

If A is Hurwitz then lim
t→∞
|x(t)| = 0 regardless of x0. This is one motivation for

Definition 2.1.3.

Two important concepts in control theory are stabilizability and detectability.

Definition 2.1.4. The pair (A,B) is called stabilizable if there exists a matrix K
such that

A+BK (2.11)

is Hurwitz.

If (A,B) is stabilizable, then it is possible to make (2.1) internally stable using
the control u(t). Choose the control u(t) = Kx(t). Then (2.1) changes as

ẋ = Ax+Bu (2.12)

= Ax+BKx (2.13)

= (A+BK)x. (2.14)

If A + BK is Hurwitz, the system is stable. This is the motivation for Definition
2.1.4. Since u depends on x, this choice of u is known as feedback control.

Definition 2.1.5. The pair (A,C) is called detectable if there exists a matrix L
such that

A+ LC (2.15)

is Hurwitz.

An interesting problem is encountered when C in (2.1) is not invertible. For a
system with a detectable pair (A,C) it is possible to reconstruct x(t) using y(t) and
an auxiliary system called the observer. This is one motivation for Definition 2.1.5.
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Theorem 2.1.2. (Luenberger Observer) Recall (2.1)

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t).

Assume (A,C) is detectable. Let L be a matrix such that A−LC is Hurwitz. Define
the observer system

˙̂x(t) = Ax̂(t) + L(y(t)− ŷ(t)) +Bu(t),

ŷ(t) = Cx̂(t).
(2.16)

Then regardless of the initial condition of the observer x̂(0)

lim
t→∞
|x(t)− x̂(t)| = 0. (2.17)

Proof. Define e(t) = x(t)− x̂(t). Then

ė(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +Bu(t)− (Ax̂(t) + L(y(t)− ŷ(t)) +Bu(t))

= (A− LC)(x(t)− x̂(t))

= (A− LC)e(t).

(2.18)

Since A− LC is Hurwitz, lim
t→∞
|e(t)| = 0.

Equation (2.1) can also be analyzed using the Laplace transform. Let x(s),u(s)
and y(s) be the Laplace transform of the variables x(t), u(t) and y(t) respectively.
Then (2.1) is rewritten

sx(s)− x(0) = Ax(s) +Bu(s), (2.19)

x(s) = (sI − A)−1Bu(s) + (sI − A)−1x(0), (2.20)

y(s) = Cx(s). (2.21)

If x(0) = 0,

y(s) = C(sI − A)−1Bu(s). (2.22)

Definition 2.1.6. The function G(s) = C(sI −A)−1B is called the transfer func-
tion between u(s) and y(s).
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2.2 Linear Quadratic Regulator (LQR)

Linear-Quadratic Regulator (LQR) is an optimal control problem where the dynam-
ical system is linear but the cost function is quadratic.

Lemma 2.2.1. [23, chapter 5, page 178] or [31, chapter 13, page 338]. Suppose
(A,B) and (A,C) are stabilizable and detectable respectively. Then the Riccati
equation

A∗X +XA−XBB∗X + C∗C = 0 (2.23)

has a unique symmetric positive semi-definite solution X. Furthermore, the matrix

A−BB∗X (2.24)

is Hurwitz.

Definition 2.2.1. Let X be the solution to (2.23) defined in Lemma 2.2.1. Then X
is called the stabilizing solution.

Lemma 2.2.2. [31, chapter 2, page 37] Let R be a real positive definite matrix.
Then
1. there exists a symmetric positive definite matrix R1/2 such that R = R1/2R1/2,
2. the inverse R−1 exists,
3. there exists a symmetric positive definite matrixR−1/2 such thatR−1 = R−1/2R−1/2,
and
4. R−1/2R1/2 = I.

Lemma 2.2.3. Let A and B be defined as in Lemma 2.2.1 and R and R−1/2 be
defined as in Lemma 2.2.2. Define Bnew = B(R−1/2). Then (A,Bnew) is stabilizable.

Proof. By Definition 2.1.4, there exists a matrix K such that A + BK is Hurwitz.
Define M = R1/2K. Then

A+BnewM = A+B(R−1/2)R1/2K (2.25)

= A+BK. (2.26)

Therefore A+BnewM is Hurwitz and (A,Bnew) is stabilizable.

Lemma 2.2.4. Let A,B,Bnew, C,R be defined as in Lemmas 2.2.1 and 2.2.3. Then
the Riccati equation

A∗X +XA−XBR−1B∗X + C∗C = 0 (2.27)

has a unique stabilizing solution.
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Proof. Using Bnew, equation (2.27) is rewritten,

0 = A∗X +XA−XBR−1B∗X + C∗C (2.28)

= A∗X +XA−XBR−1/2R−1/2∗B∗X + C∗C (2.29)

= A∗X +XA−XBnewB
∗
newX + C∗C. (2.30)

By Lemma 2.2.3, (A,Bnew) is stabilizable. By Lemma 2.2.1, equation (2.30) has a
unique stabilizing solution.

Theorem 2.2.5. (LQR) Let (A,B) and (A,C) be stabilizable and detectable re-
spectively. Let R be a positive definite matrix. Let X be the stabilizing solution of
(2.27). Consider the system

ẋ = Ax+Bu, x(0) = x0. (2.31)

Define the cost function

J =

∫ ∞

0

x∗C∗Cx+ u∗Ru dt. (2.32)

Then
1. the control uopt that minimizes (2.32) is uopt(t) = −R−1B∗Xx(t),
2. the control uopt stabilizes (2.31), and
3. the minimum value of (2.32) obtained using uopt(t) is Jopt = x∗0Xx0.

The proof of the theorem can be found in [23, chapter 5, page 175] or [31, chapter
14, page 378]. For a proof using dynamic programming see [5] and for a proof using
the Hamiltonian approach see [21, chapter 6, pages 181 and 189].

2.3 Generalized Plant

A generalized plant, as its name suggests, is a generalization of a plant. In a gen-
eralized plant, all the exogenous variables such as disturbance or noise are grouped
together into a vector signal w(t). All of the control inputs are grouped into a vector
denoted by u(t). Therefore the generalized plant has two vector inputs w and u.
Similarly it has two outputs z and y, where z is a cost function and y is a measure-
ment signal that provides information about the plant. A generalized plant in both
open and closed-loop configurations is shown in Figure 2.1.
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z

y

w

u









G11 G12

G21 G22









K

Figure 2.1: On the left there is a generalized plant in the open-loop configuration
and on the right the system is closed-loop. The variable w represents the exogenous
signals; u represents the control signals; z is the performance signal and it represents
the cost that needs to be minimized. Variable y is the measurement output and
provides information about the plant. In the closed-loop case the information in y
is used to construct the control signal u. In the open-loop case there is no feedback
and the control signal is created without y.

Mathematically, a generalized plant consists of four transfer functions, see Defi-
nition 2.1.6, from (w, u)→ (z, y) respectively.

[
z(s)
y(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
w(s)
u(s)

]
. (2.33)

If the system is closed-loop, the control signal is

u(s) = K(s)y(s). (2.34)

Let Twz be the closed-loop transfer function from w to z. From equations (2.33) and
(2.34), Twz can be calculated.

u = Ky

= K(G21w +G22u).
(2.35)

In order for the system to be well-posed (I−KG22) needs to be invertible. Equation
(2.35) is rewritten as

u = (I −KG22)−1KG21w. (2.36)

Using (2.33) and (2.36)

z = G11w +G12u

= (G11 +G12(I −KG22)−1KG21)w.
(2.37)
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Therefore
Twz = G11 +G12(I −KG22)−1KG21. (2.38)

A similar expression for Twz can be obtained using (2.33) and (2.34)

y = G21w +G22u (2.39)

= G21w +G22Ky. (2.40)

Rewrite as
y = (I −G22K)−1G21w. (2.41)

Using (2.41), (2.34) and (2.33)

z = G11w +G12u (2.42)

= G11w +G12Ky (2.43)

= G11w +G12K(I −G22K)−1G21w. (2.44)

Hence
Twz = G11 +G12K(I −G22K)−1G21. (2.45)

Equations (2.38) and (2.45) are similar but not identical.

Twz = G11 +G12(I −KG22)−1KG21

= G11 +G12K(I −G22K)−1G21.
(2.46)

Note that K appears in different places. This suggests the matrix identity

(I −KG22)−1K = K(I −G22K)−1. (2.47)

The next lemma establishes (2.47).

Lemma 2.3.1. Let (I −KG22) be invertible. Then
1. (I −G22K) is invertible, and
2. (I −KG22)−1K = K(I −G22K)−1.

Proof. 1. The contrapositive statement is: if (I − G22K) is not invertible then
(I −KG22) is not invertible. If (I −G22K) is not invertible then 1 is an eigenvalue
of G22K. Let x1 be the corresponding eigenvector. Then G22Kx1 = x1. Define
x2 = Kx1. Then

KG22x2 = KG22Kx1

= Kx1

= x2.

(2.48)
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Therefore x2 is an eigenvector of KG22 with eigenvalue 1. Hence (I −KG22) is not
invertible.

2.
K −KG22K = K −KG22K

K(I −G22K) = (I −KG22)K

(I −KG22)−1K(I −G22K) = K

(I −KG22)−1K = K(I −G22K)−1.

(2.49)

An example is shown for calculating the closed-loop transfer function.

Example 1. Suppose

[
G11 G12

G21 G22

]
=

[
1
s+1

1
s+2

1
s+3

1
s+4

]
, (2.50)

K =
1

s+ 5
· (2.51)

Then Twz is calculated according to equation (2.38).

Twz =
1

s+ 1
+

1

s+ 2

(
1− 1

s+ 5
· 1

s+ 4

)−1
1

s+ 5
· 1

s+ 3

=
1

s+ 1
+

(s+ 5)(s+ 4)

(s2 + 9s+ 19)
· 1

(s+ 5)(s+ 3)(s+ 2)

=
s4 + 14s3 + 71s2 + 154s+ 118

(s2 + 9s+ 19)(s+ 3)(s+ 2)(s+ 1)

=
s4 + 14s3 + 71s2 + 154s+ 118

s5 + 15s4 + 84s3 + 219s2 + 263s+ 114
·

(2.52)

It is a natural question to ask how to go from a usual block diagram to a gener-
alized plant. Consider the block diagram in Figure 2.2. Define

w =



r
d
n


 , z =

[
W1(r − y)
W2u

]
. (2.53)
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K P
u y

W2W1

r

-
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e

Figure 2.2: A block diagram with exogenous variables r, d, n and weights W1,W2.
The controller K controls the plant P .

The output variable z and the measurement variable y need to be written only in
terms of w and u. From the block diagram the following equations are obtained.

y = n+ P (d+ u)

=
[

0 P I
]


r
d
n


+ Pu

=
[

0 P I
]
w + Pu.

(2.54)

Using, (2.33) G21 =
[

0 P I
]

and G22 = P . Similarly

z =

[
W1(r − y)
W2u

]
=

[
W1r −W1n−W1Pd−W1Pu

W2u

]

=

[
W1 −W1P −W1

0 0 0

]

r
d
n


+

[
−W1P
W2

]
u

=

[
W1 −W1P −W1

0 0 0

]
w +

[
−W1P
W2

]
u.

(2.55)

Hence G11 =

[
W1 −W1P −W1

0 0 0

]
and G12 =

[
−W1P
W2

]
.

The generalized plant can also be described using state space equations. A gen-
eralized plant has a state vector x and a realization (A,B,C,D) such that

ẋ = Ax+B1w +B2u, x(0) = 0,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u.

(2.56)
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∫ C1B1 b

D1

A1

b
++ ∫ C2B2 b

D2

A2

b
++

bb

G K

Figure 2.3: Two interconnected systems G and K create a larger system. The closed-
loop connection of a plant and a controller is an example of such a connection.

A concise notation for the above equations is


A B1 B2

C1 D11 D12

C2 D21 D22


 . (2.57)

Given the state space equations, one can calculate the transfer functionsGij, i, j =
1, 2 according to the formula Gij = Ci(sI − A)−1Bj +Dij.

G11 = C1(sI − A)−1B1 +D11,

G12 = C1(sI − A)−1B2 +D12,

G21 = C2(sI − A)−1B1 +D21,

G22 = C2(sI − A)−1B2 +D22.

(2.58)

Similarly given the transfer functions Gij, i, j = 1, 2, a realization such as (2.57) can
be found for the generalized plant. The procedure can be found in [31, chapter 3,
page 69].

It is a common requirement for the controller to stabilize the plant. Two inter-
connected systems are part of a combined system that is larger than both of them
(Figure 2.3).

Definition 2.3.1. A controller stabilizes a plant if the matrix A in the closed-loop
system is Hurwitz.

Assume A1, B1, C1, D1, x1, y1, u1 belong to G and A2, B2, C2, D2, x2, y2, u2 belong
to K. Then

ẋ1 = A1x1 +B1u1, y1 = C1x1 +D1u1,

ẋ2 = A2x2 +B2u2, y2 = C2x2 +D2u2,

u1 = y2, u2 = y1.

(2.59)
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Equations u1 = y2 and u2 = y1 connect the systems. The combined system has
its own internal dynamics. Using (2.59)

u1 = (I −D2D1)−1(D2C1x1 + C2x2), (2.60)

u2 = (I −D1D2)−1(C1x1 +D1C2x2). (2.61)

Existence of (I − D2D1)−1 is required for well-posedness. Using (2.59), (2.60)
and (2.61), Ã is found such that

[
ẋ1

ẋ2

]
= Ã

[
x1

x2

]
, (2.62)

[
ẋ1

ẋ2

]
=

[
A1 +B1(I −D2D1)−1D2C1 B1(I −D2D1)−1C2

B2(I −D1D2)−1C1 A2 +B2(I −D1D2)−1D1C2

] [
x1

x2

]
.

(2.63)
Alternatively,

Ã =

[
A1 0
0 A2

]
+

[
B1 0
0 B2

] [
I −D2

−D1 I

]−1 [
0 C2

C1 0

]
. (2.64)

If Ã is Hurwitz then controller K internally stabilizes G.

The next theorem discusses the state space equations for one stabilizing controller.

Theorem 2.3.2. [23, chapter 7, page 253], [31, chapter 5, page 121] Let

G =



A B1 B2

C1 0 D12

C2 D21 0




be a generalized plant. Assume (A,B2) and (A,C2) are stabilizable and detectable.
Let F and L be matrices such that A+B2F,A+ LC2 are Hurwitz. Then

K =

[
A+B2F + LC2 −L

F 0

]
(2.65)

internally stabilizes G.

Proof. Using equation (2.64), Ã of the combined system is.

Ã =

[
A 0
0 A+B2F + LC2

]
+

[
B2 0
0 −L

] [
I 0
0 I

]−1 [
0 F
C2 0

]
(2.66)

=

[
A B2F
−LC2 A+B2F + LC2

]
. (2.67)
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Using a change of basis transformation Ã is changed as

[
I −I
0 I

]
Ã

[
I −I
0 I

]−1

=

[
I −I
0 I

] [
A B2F
−LC2 A+B2F + LC2

] [
I I
0 I

]

(2.68)

=

[
A+ LC2 0
−LC2 A+B2F

]
. (2.69)

Since (2.69) is lower triangular, the eigenvalues of (2.69) are the union of the
eigenvalues of A + LC2 and A + B2F . Because both A + LC2 and A + B2F are
Hurwitz, (2.69) is Hurwitz. Since a change of basis transformation does not change
the eigenvalues, Ã has the same eigenvalues as (2.69). Therefore, Ã is Hurwitz.
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2.4 Space RH2

Let s be a complex variable and p(s) and q(s) be polynomials with real coefficients.
Let deg(p) denote the degree of p. Define

S =

{
p(s)

q(s)

∣∣∣ all roots of q in the open left half plane, deg(p) + 1 ≤ deg(q)

}
,

(2.70)

S̃ =

{
p(s)

q(s)

∣∣∣ all roots of q in the open right half plane, deg(p) + 1 ≤ deg(q)

}
.

(2.71)

Definition 2.4.1. Define RH2 and RH∼2 as the set of all matrices with elements in
S and S̃ respectively.

Definition 2.4.2. A function f(s) is real-rational if it can be written as f(s) =
p(s)

q(s)
, where p(s) and q(s) are polynomials with real coefficients.

Definition 2.4.3. Let f(s) =
p(s)

q(s)
be a rational function. Then f(s) is proper if

deg(p) ≤ deg(q).

Definition 2.4.4. Let f(s) =
p(s)

q(s)
be a rational function. Then f(s) is strictly

proper if deg(p) < deg(q).

Definition 2.4.5. Let f(s) =
p(s)

q(s)
be a proper rational function such that the

greatest common divisor of p(s) and q(s) is 1. Then f(s) is called stable if all the
roots of q(s) have negative real part.

If matrix A in Definition 2.1.6 is Hurwitz, the transfer function G(s) = C(sI−A)−1B
is stable as in Definition 2.4.5 ([23, chapter 3, page 71]). This is the motivation for
Definition 2.4.5.

The following result is well-known. For completeness, the proof is provided.

Lemma 2.4.1. Let p1(s) and p2(s) be polynomials such that deg(p1) + 2 ≤ deg(p2).

Define f(s) =
p1(s)

p2(s)
. Then there exists a constant k such that

|f(s)| ≤ k

|s2| as |s| → ∞. (2.72)
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Proof. Let n = deg(p1), m = deg(p2), p1(s) =
n∑

i=0

ais
i and p2(s) =

m∑

j=0

bjs
j. It is

given that n+ 2 ≤ m. Since bm is the leading coefficient in p2(s), bm 6= 0. Choose

k =
2

|bm|
(
n∑

i=0

|ai|). (2.73)

Using the following inequalities and (2.73), (2.72) is established. Using the Triangle
inequality, for 1 ≤ |s|,

|p1(s)||s2| ≤
(

n∑

i=0

|ai|
)

(|sn|) (|s2|) (2.74)

≤ k
|bm|

2
(|sm|) (2.75)

= k

(
|bmsm| − |

bm
2
sm|
)
. (2.76)

Let |s| be large enough such that
(
m−1∑

j=0

|bj|
)(

2

|bm|

)
≤ |s| (2.77)

(
m−1∑

j=0

|bj|
)
≤
( |bm|

2

)
|s|. (2.78)

Using (2.78), (2.76) is continued as

k

(
|bmsm| − |

bm
2
sm|
)
≤ k

(
|bmsm| −

(
m−1∑

j=0

|bj|
)
|sm−1|

)
. (2.79)

Using 1 ≤ |s| and the Triangle inequality

≤ k

(
|bmsm| −

m−1∑

j=0

|bjsj|
)

(2.80)

≤ k

(∣∣∣∣∣
m∑

j=0

bjs
j

∣∣∣∣∣

)
(2.81)

= k|p2(s)|. (2.82)

Therefore

|p1(s)||s2| ≤ k|p2(s)| (2.83)∣∣∣∣
p1(s)

p2(s)

∣∣∣∣ ≤
k

|s2| .
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γ2γ1

1

Figure 2.4: The contour used in Theorem (2.4.2).

Theorem 2.4.2. Let f(s) ∈ S and g(s) ∈ S̃. Then

∫ ∞

−∞
f(iy)g∗(iy)dy = 0. (2.84)

Proof. This result is stated without proof in [13, chapter 2, page 13] and [31, chapter
4, page 98]. Below, a proof using the Residue Theorem is provided.

Let R be the radius of the half circle and γ1 be part of the contour that is on the
imaginary axis in Figure 2.4. Then

∫ ∞

−∞
f(iy)g∗(iy)dy = lim

R→∞

∫ R

−R
f(iy)g∗(iy)dy, (2.85)

∫ R

−R
f(iy)g∗(iy)dy =

1

i

∫

γ1

f(s)g∗(s)ds. (2.86)

On γ1, s∗ = −s, g∗(s) = g(−s) and

−i
∫

γ1

f(s)g∗(s)ds = −i
∫

γ1

f(s)g(−s)ds. (2.87)

Define h(s) = f(s)g(−s). Since g(s) is in S̃, g(−s) and h(s) are in S. The
function h(s) has no poles on the imaginary axis and is meromorphic. Therefore
the Residue Theorem can be applied to (2.87). For the definition of a meromorphic
function and the Residue Theorem see [15]. Since h(s) ∈ S, it has no residues in the
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right half plane. Using the contour in Figure 2.4 and the Residue theorem

∫

γ1

h(s)ds+

∫

γ2

h(s)ds = 0. (2.88)

Let h(s) =
a(s)

b(s)
where a(s) and b(s) are polynomials. Since f(s), g(−s) ∈ S, 2+

deg(a) ≤ deg(b). Let k be the constant from Lemma 2.4.1. As R→∞
∣∣∣∣
∫

γ2

h(s)ds

∣∣∣∣ ≤ length(γ2) · sup
γ2

|h(s)| (2.89)

≤ 1

2
2πR

k

R2
(2.90)

=
πk

R
. (2.91)

Using (2.88) and (2.91),

lim
R→∞

∣∣∣∣
∫

γ1

h(s)ds

∣∣∣∣ = lim
R→∞

∣∣∣∣
∫

γ2

h(s)ds

∣∣∣∣ (2.92)

≤ lim
R→∞

πk

R
(2.93)

= 0. (2.94)

Using (2.85) and (2.92),

∣∣∣∣
∫ ∞

−∞
f(iy)g∗(iy)dy

∣∣∣∣ = lim
R→∞

|
∫

γ1

h(s)ds| (2.95)

= 0.

19



2.5 H2-norm of a system

The H2-norm of a transfer function is defined in this section. Consider the state
space equations

ẋ(t) = A1x(t) +B1w(t) +B2u(t), x(0) = 0, (2.96)

z(t) = Cx(t). (2.97)

Assume the control u(t) is in the feedback form u(t) = Kx. The gain K is determined
based on the control objective; however in this section the focus is not on K and it
is assumed that K has been determined. Equation (2.96) changes to

ẋ(t) = (A1 +B2K)x(t) +B1w(t), x(0) = 0, (2.98)

z(t) = Cx(t). (2.99)

Define A = A1 and B = B1. Then (2.98) and (2.99) are rewritten as

ẋ(t) = Ax(t) +Bw(t), x(0) = 0, (2.100)

z(t) = Cx(t). (2.101)

Definition 2.5.1. The transfer function from w to z in the system (2.100)-(2.101)
is

Twz(s) = C(sI − A)−1B. (2.102)

The H2-norm of Twz is defined as

||Twz||H2 =

√
1

2π

∫ ∞

−∞
tr (T ∗wz(iy)Twz(iy)) dy. (2.103)

Two time-domain quantities that are equivalent to the H2-norm (2.103) are men-
tioned below.

Definition 2.5.2. Let the size of w(t) be m× 1. Let ej, 1 ≤ j ≤ m be the standard
basis for Rm. Define zj(t) as

ẋ(t) = Ax(t) +Bejδ(t), x(0) = 0, (2.104)

zj(t) = Cx(t). (2.105)
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Lemma 2.5.1. Let A be a square matrix of size n× n. Let e1, ..., en be the vectors
in the standard basis where ei has a one in the ith position and zero everywhere else.
Then

tr(A) =
n∑

i=1

e∗iAei. (2.106)

Proof. By definition

tr(A) =
n∑

i=1

Aii (2.107)

=
n∑

i=1

e∗iAei.

Theorem 2.5.2. [7, chapter 2, page 49] Let zj(t) and the H2-norm of Twz be defined
as in Definition 2.5.2 and equation (2.103). Then

||Twz||2H2
=

m∑

j=1

∫ ∞

0

z∗j (t)zj(t)dt. (2.108)

Proof. Using equations (2.103), (2.102) and Lemma 2.5.1

||Twz||2H2
=

1

2π

∫ ∞

−∞
tr(T ∗wz(jy)Twz(jy)) dy (2.109)

=
m∑

i=1

1

2π

∫ ∞

−∞
e∗jB

∗(iyI − A∗)−1C∗C(iyI − A)−1Bej dy. (2.110)

Let zj(s) be the Laplace transform of zj as defined in Definition 2.5.2. Using Defini-
tion 2.1.6

zj(s) = C(sI − A)−1Bej. (2.111)

Using (2.111), (2.110) is rewritten as

||Twz||2H2
=

m∑

i=1

1

2π

∫ ∞

−∞
zj(iy)∗zj(iy) dy. (2.112)

Using Parseval’s Theorem

||Twz||2H2
=

m∑

i=1

∫ ∞

0

zj(t)
∗zj(t) dt.
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Definition 2.5.3. Define diag(a) as a diagonal matrix with a on all the diagonal
elements.

Theorem 2.5.3. [7, chapter 2, page 50] Consider the system (2.100)-(2.101) with
x(0) = 0. Let w(t) be a m × 1 column vector of white Gaussian noise signals such
that

E[w(τ1)w(τ2)∗] = diag(δ(τ1 − τ2)) (2.113)

where E is the expectation operator. Then

||Twz||2H2
= lim

t→∞
E[z∗(t)z(t)]. (2.114)

Proof. Using (2.4),

z(t) =

∫ t

0

CeA(t−τ)Bw(τ)dτ. (2.115)

Using (2.113) and (2.115)

E[z∗(t)z(t)] = E[tr(z(t)z∗(t)] (2.116)

= E

[
tr

((∫ t

0

CeA(t−τ1)Bw(τ1)dτ1

)(∫ t

0

CeA(t−τ2)Bw(τ2)dτ2

)∗)]

(2.117)

= E

[
tr

(∫ t

0

∫ t

0

CeA(t−τ1)Bw(τ1)w(τ2)∗B∗eA
∗(t−τ2)C∗dτ1dτ2

)]
(2.118)

= tr

(∫ t

0

∫ t

0

CeA(t−τ1)BE[w(τ1)w(τ2)∗]B∗eA
∗(t−τ2)C∗dτ1dτ2

)
(2.119)

= tr

(∫ t

0

∫ t

0

CeA(t−τ1)B diag(δ(τ1 − τ2))B∗eA
∗(t−τ2)C∗dτ1dτ2

)
.

(2.120)

The diag(δ(τ1 − τ2)) term reduces the double integral to a single integral. The
integration variables τ1, τ2 are replaced by one integration variable τ . Using Lemma
2.5.1

= tr

(∫ t

0

CeA(t−τ)BB∗eA
∗(t−τ)C∗dτ

)
(2.121)

= tr

(∫ t

0

(CeA(t−τ)B)(CeA(t−τ)B)∗dτ

)
. (2.122)
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For two matrices like X and Y , tr(XY ) = tr(Y X). Therefore

= tr

(∫ t

0

(CeA(t−τ)B)∗(CeA(t−τ)B)dτ

)
(2.123)

=
m∑

j=1

∫ t

0

e∗jB
∗eA

∗(t−τ)C∗CeA(t−τ)Bejdτ. (2.124)

Using zj as defined in Definition 2.5.2

=
m∑

j=1

∫ t

0

zj(τ)∗zj(τ)dτ. (2.125)

Using (2.108) and (2.125)

lim
t→∞

E[z∗(t)z(t)] =
m∑

j=1

∫ ∞

0

zj(τ)∗zj(τ)dτ (2.126)

= ||Twz||2H2
.
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Chapter 3

H2-Optimal Control

The H2-optimal control problem is about finding a stabilizing controller for a gen-
eralized plant that minimizes the H2-norm of the closed-loop transfer function. The
most general form of a generalized plant that is considered in this thesis has the
following structure and is called the output feedback problem,

G =



A B1 B2

C1 0 D12

C2 D21 0


 . (3.1)

For the state space equations of (3.1) see (2.56).

Definition 3.0.4. Let G be a generalized plant as in equation (3.1). Let K be any
controller that stabilizes G, is real-rational, stable and proper as in Definitions 2.4.2,
2.4.5 and 2.4.3. The controller works in a feedback loop as in Figure 2.1. Let γ(G,K)
be the H2-norm, as defined in (2.103), of the closed-loop system, as defined in (2.38).
The optimal H2-cost, γ?, is

γ? = inf
K
γ(G,K). (3.2)

The H2-optimal controller, K?, achieves the H2-optimal cost, or in other words,
K? satisfies

γ? = γ(G,K?). (3.3)

The solution of the output feedback problem is found by decomposing and re-
ducing it into a sequence of more specialized and simpler problems. Specifically, four
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special problems are considered which are respectively state feedback, full informa-
tion, full control and output estimation. Figure 3.1 shows the relationship between
the different problems. In this chapter, each one of the special problems is solved
independently, and the output feedback problem is solved by combining a full infor-
mation and an output estimation problem. This approach is based on [31, chapters
12, 14]. A similar approach can be found in [11].

LQR

(no disturbance)

State Feedback

(with disturbance)

Full Information

dual

Full Control
equivalent

Output Estimation

coupled Output Feedback

1

Figure 3.1: Output feedback problem is the most general problem. It can be decom-
posed into two simpler problems called full information and output estimation. The
output estimation problem is equivalent to the full control problem which itself is
dual to the full information problem. The sequence of simplifications from the gen-
eral output feedback problem to the simpler full control and full information cases
is the key step in solving the H2-optimal control problem.

3.1 Assumptions

The following assumptions are imposed on the generalized plant.

• (A1) (A,B2) is stabilizable.

• (A2) D∗12D12 = I.

• (A3) C∗1D12 = 0.

• (A4)

[
A− iωI
C1

]
has full column rank for all ω.

• (B1) (A,C2) is detectable.

• (B2) D21D
∗
21 = I.
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• (B3) B1D
∗
21 = 0.

• (B4)
[
A− iωI B1

]
has full row rank for all ω.

3.2 Special Problems

3.2.1 State Feedback

The state feedback generalized plant has the following structure.

G =



A B1 B2

C1 0 D12

I 0 0


 . (3.4)

The state feedback problem is similar to the LQR problem because in both of
them the state variable is available for feedback, see [23, chapter 5, page 173]. How-
ever there are two main differences. First, in LQR the optimal cost depends on the
initial condition while in the state feedback problem considered here the initial con-
dition is set to zero. Second, in LQR there is no disturbance term while here there
is a disturbance term B1w(t) which affects the dynamics. Before the solution to the
state feedback problem can be presented few algebraic lemmas are needed.

Lemma 3.2.1. [23, chapter 5, page 178] or [31, chapter 13, page 338]. Suppose
(A,B) and (A,C) are stabilizable and detectable respectively. Then the Riccati
equation

A∗X +XA−XBB∗X + C∗C = 0 (3.5)

has a unique symmetric positive semi-definite solution X. Furthermore the matrix

A−BB∗X (3.6)

is Hurwitz. The solution X with this property is called stabilizing.

Lemma 3.2.2. [31, chapter 13, theorem 13.7] If assumptions A1 and A4 from section
3.1 hold, the Riccati equation given below has a unique stabilizing and symmetric
positive semi-definite solution.

A∗X +XA−XB2B
∗
2X + C∗1C1 = 0. (3.7)
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Lemma 3.2.3. Let X be the unique stabilizing solution of the Riccati equation (3.7)
and define AF and CF as

AF = A−B2B
∗
2X, (3.8)

CF = C1 −D12B
∗
2X. (3.9)

Then the following hold

1.
C∗FD12 = −XB2, (3.10)

2.
A∗FX +XAF + C∗FCF = 0. (3.11)

Proof. 1. Since X is symmetric X = X∗. Using (3.9)

C∗FD12 = (C1 −D12B
∗
2X)∗D12 (3.12)

= (C∗1 −X∗B2D
∗
12)D12 (3.13)

= C∗1D12 −XB2D
∗
12D12 (3.14)

= −XB2. (3.15)

Assumptions A2 and A3 are needed for (3.14) and (3.15).

2. Again since X is symmetric X = X∗. Based on (3.7), the following equations
hold.

0 = A∗X +XA−XB2B
∗
2X + C∗1C1 (3.16)

= (A∗ −X∗B2B
∗
2)X +X(A−B2B

∗
2X) +XB2B

∗
2X + C∗1C1 (3.17)

= A∗FX +XAF + C∗1C1 +XB2D
∗
12D12B

∗
2X

− C∗1D12B
∗
2X −X∗B2D

∗
12C1 (3.18)

= A∗FX +XAF + (C1 −D12B
∗
2X)∗(C1 −D12B

∗
2X) (3.19)

= A∗FX +XAF + C∗FCF . (3.20)

Assumptions A2 and A3 are needed for (3.18).

Definition 3.2.1. Define the following compact notation:

[
A B
C D

]
= C(sI − A)−1B +D. (3.21)
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Lemma 3.2.4. (Series Connection) Let G1 =

[
A1 B1

C1 D1

]
and G2 =

[
A2 B2

C2 D2

]
be

connected in series. Then

G1G2 =



A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2


 . (3.22)

Proof. Using definition 3.2.1,

G1G2 = (C1(sI − A1)−1B1 +D1)(C2(sI − A2)−1B2 +D2) (3.23)

= C1(sI − A1)−1B1C2(sI − A2)−1B2 + C1(sI − A1)−1B1D2 (3.24)

+D1C2(sI − A2)−1B2 +D1D2 (3.25)

=
[
C1 D1C2

] [ (sI − A1)−1 (sI − A1)−1B1C2(sI − A2)−1

0 (sI − A2)−1

] [
B1D2

B2

]
+D1D2

(3.26)

=
[
C1 D1C2

] [ (sI − A1) −B1C2

0 (sI − A2)

]−1 [
B1D2

B2

]

+D1D2 (3.27)

=
[
C1 D1C2

]
(sI −

[
A1 B1C2

0 A2

]
)−1

[
B1D2

B2

]
+D1D2 (3.28)

=



A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2


 . (3.29)

To go from (3.26) to (3.27), use direct multiplication as
[

(sI − A1) −B1C2

0 (sI − A2)

] [
(sI − A1)−1 (sI − A1)−1B1C2(sI − A2)−1

0 (sI − A2)−1

]
(3.30)

=

[
(sI − A1)(sI − A1)−1 B1C2(sI − A2)−1 −B1C2(sI − A2)−1

0 (sI − A2)(sI − A2)−1

]
(3.31)

=

[
I 0
0 I

]
.

Definition 3.2.2. Let U be a matrix valued function of s. Define

U∼(s) = UT (−s). (3.32)

Note that U is transposed, not conjugate transposed.
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Lemma 3.2.5. Let AF and CF be defined as (3.8), (3.9) and let U and Gc(s) be
defined as

U(s) =

[
AF B2

CF D12

]
, Gc(s) =

[
AF I
CF 0

]
. (3.33)

Then

1.
U∼U = I, (3.34)

2.
U∼Gc ∈ RH∼2 . (3.35)

Proof. 1. Using equation (3.32)

U∼(s) = (CF (−sI − AF )−1B2 +D12)T (3.36)

= BT
2 (sI − (−AF )T )−1(−CF )T +DT

12 (3.37)

=

[
−ATF −CT

F

B2 DT
12

]
. (3.38)

It is best to either use transposition with symbol T or conjugate transposition with
∗. In most of this thesis ∗ is used, however definition (3.32) and equations (3.36),
(3.37) and (3.38) specifically need transposition.

To calculate U∼U , two systems with appropriate transfer functions are connected
in series as shown in Figure 3.2. The result can be derived either using transfer func-
tions or state space equations. The transfer function solution follows from Lemma
3.2.4 by direction multiplication. For more insight, the state space solution is also
presented.

Let x and p be the state variables and z, y the output variables of U and U∼

respectively. The output of U is the input of U∼.The state space equations of the
two systems with output of U equal to the input of U∼ are

ẋ = AFx+B2u,

z = CFx+D12u.

ṗ = −A∗Fp− C∗F z,
y = B∗2p+D∗12z. (3.39)

Substitute z into (3.39) to arrive at:

ṗ = −A∗Fp− C∗FCFx− C∗FD12u, y = B∗2p+D∗12CFx+D∗12D12u. (3.40)
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B∗
2 -C∗

F

∫
-A∗

F

D∗
12

I CF

∫
AF

D12

U∼Gc
u

u

y

y

B∗
2 -C∗

F

∫
-A∗

F

D∗
12

B2 CF

∫
AF

D12

U∼U
u

u

y

y

1

Figure 3.2: On top, there are two systems connected in series with transfer functions
U and U∼. Similarly, in the bottom there are two systems in series with transfer
functions Gc and U∼. Each system has a state space representation and the transfer
function of the combined system can be found using the transfer functions or the
state space equations.
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Assumption A2 simplifies the last term on the right hand side to u. The state

space equations for a system with joint state variable

[
p
x

]
are

[
ṗ
ẋ

]
=

[
−A∗F −C∗FCF

0 AF

] [
p
x

]
+

[
−C∗FD12

B2

]
u, (3.41)

y =
[
B∗2 D∗12CF

] [ p
x

]
+ u. (3.42)

Therefore

U∼U =



−A∗F −C∗FCF −C∗FD12

0 AF B2

B∗2 D∗12CF I


 . (3.43)

Apply the state transformation H =

[
I X
0 I

]
. Under the transformation H,

the state space system

ẋ = Ax+Bu (3.44)

y = Cx+Du (3.45)

transforms to

ẋnew = H−1AHxnew +H−1Bu (3.46)

y = CHxnew +Du (3.47)

where xnew = H−1x.

Note that H−1 =

[
I −X
0 I

]
. Using (3.10) and (3.11), components of U∼U in

(3.43) are changed as follows.

[
I −X
0 I

] [
−A∗F −C∗FCF

0 AF

] [
I X
0 I

]
=

[
I −X
0 I

] [
−A∗F −A∗FX − C∗FCF

0 AF

]

(3.48)

=

[
−A∗F −A∗FX −XAF − C∗FCF

0 AF

]

(3.49)

=

[
−A∗F 0

0 AF

]
, (3.50)
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[
I −X
0 I

] [
−C∗FD12

B2

]
=

[
−C∗FD12 −XB2

B2

]
(3.51)

=

[
0
B2

]
, (3.52)

[
B∗2 D∗12CF

] [ I X
0 I

]
=
[
B∗2 B∗2X +D∗12CF

]
(3.53)

=
[
B∗2 0

]
. (3.54)

Using (3.50), (3.52) and (3.54), Equation (3.43) is rewritten as

U∼U =



−A∗F 0 0

0 AF B2

B∗2 0 I


 (3.55)

=
[
B∗2 0

]
(sI −

[
−A∗F 0

0 AF

]
)−1

[
0
B2

]
+ I (3.56)

=
[
B∗2 0

] [ (sI + A∗F )−1 0
0 (sI − AF )−1

] [
0
B2

]
+ I (3.57)

=
[
B∗2 0

] [ 0
(sI − AF )−1B2

]
+ I (3.58)

= I. (3.59)

2. Figure 3.2 shows two systems with transfer functions U∼ and Gc. Again, let x and
p be the state variables and z, y be the output variables of Gc and U∼ respectively.

ẋ = AFx+ u

z = CFx,

ṗ = −A∗Fp− C∗F z
= −A∗Fp− C∗FCFx,

y = B∗2p+D∗12z

= B∗2p+D∗12CFx.

The joint state

[
p
x

]
satisfies the equations:

[
ṗ
ẋ

]
=

[
−A∗F −C∗FCF

0 AF

] [
p
x

]
+

[
0
I

]
u, (3.60)

y =
[
B∗2 D∗12CF

] [ p
x

]
. (3.61)
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Therefore U∼Gc can be represented as:

U∼Gc =



−A∗F −C∗FCF 0

0 AF I
B∗2 D∗12CF 0


 . (3.62)

Using (3.47), the components of U∼Gc become

U∼Gc =



−A∗F 0 −X

0 AF I
B∗2 0 0


 (3.63)

=
[
B∗2 0

]
(sI −

[
−A∗F 0

0 AF

]
)−1

[
−X
I

]
(3.64)

=
[
B∗2 0

] [ (sI + A∗F )−1 0
0 (sI − AF )−1

] [
−X
I

]
(3.65)

=
[
B∗2 0

] [ (sI + A∗F )−1(−X) 0
0 (sI − AF )−1

]
(3.66)

= B∗2(sI − (−AF )∗)−1(−X) (3.67)

=

[
−A∗F −X
B∗2 0

]
. (3.68)

Because X is a stabilizing solution for (3.7), AF is Hurwitz. Therefore −A∗F has no
poles in the left half plane. By Definition 2.4.1, U∼Gc ∈ RH∼2 .

Lemma 3.2.6. Let B1, X,Gc(s) be defined by (3.4), (3.7) and (3.33) respectively.
Then

||Gc(s)B1||2H2
= tr(B∗1XB1). (3.69)

Proof. Let the size of B1 be n × m and let e1, ..., em be the standard basis of Rm.
Consider the system below for 1 ≤ j ≤ m,

ẋ(t) = AFx+B1eju(t), x(0) = 0, (3.70)

zj(t) = CFx(t). (3.71)

The transfer function is

[
AF B1ej
CF 0

]
, which is equal to GcB1ej because of (3.33).

Choose u(t) = δ(t) and note that in the frequency domain u(s) = 1. Based on
Theorem 2.1.1
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zj(t) = CF e
AF tB1ej (3.72)

and in the frequency domain
z j(s) = GcB1ej. (3.73)

Based on the definition of the H2-norm, Lemma 2.5.1 and Parseval’s Theorem,

||GcB1||2H2
=

1

2π

∫ ∞

−∞
tr(B∗1G

∗
c(iω)Gc(iω)B1)dω (3.74)

=
1

2π

∫ ∞

−∞

m∑

j=1

e∗jB
∗
1G
∗
c(iω)Gc(iω)B1ejdω (3.75)

=
1

2π

∫ ∞

−∞

m∑

j=1

z∗j (iω)zj(iω)dω (3.76)

=

∫ ∞

0

m∑

j=1

zj(t)
∗zj(t)dt (3.77)

=

∫ ∞

0

m∑

j=1

e∗iB
∗
1e
A∗
F tC∗FCF e

AFB1eidt (3.78)

=
m∑

j=1

e∗iB
∗
1

∫ ∞

0

(eA
∗
F tC∗FCF e

AF dt)B1ei. (3.79)

The integral term in Equation (3.79) is the solution to the equation (3.11) and is
equal to X, see for example [31, chapter 3, page 71]. Using Lemma 2.5.1

||GcB1||2H2
= tr(B∗1XB1).

Lemma 3.2.7. Let G be defined by (3.4) and let K(s) be a proper controller in the
feedback configuration as in Definition 2.4.3 and (2.34). Then the transfer function
from the disturbance w to the state x is

Twx = (sI − A−B2K(s))−1B1. (3.80)

Proof. Using (3.4) and (2.34)

x(s) = (sI − A)−1B1w(s) + (sI − A)−1B2u(s), (3.81)

u(s) = K(s)y(s). (3.82)
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In the state feedback problem y(s) = x(s). Using (3.81) and (3.82)

x(s) = (sI − A)−1B1w(s) + (sI − A)−1B2K(s)x(s),(
I − (sI − A)−1B2K(s)

)
x(s) = (sI − A)−1B1w(s).

In order for the system to be well-posed (I − (sI −A)−1B2K(s)) must be invertible.
Since K(s) is proper, see Definition 2.4.3, (I − (sI − A)−1B2K(s)) is invertible for
large enough s. Hence

x(s) = (I − (sI − A)−1B2K(s))−1(sI − A)−1B1w(s) (3.83)

= ((sI − A)−1(sI − A)− (sI − A)−1B2K(s))−1(sI − A)−1B1w(s) (3.84)

= ((sI − A)−1(sI − A−B2K(s)))−1(sI − A)−1B1w(s) (3.85)

= (sI − A−B2K(s))−1(sI − A)(sI − A)−1B1w(s) (3.86)

= (sI − A−B2K(s))−1B1w(s). (3.87)

Therefore Twx = (sI − A−B2K(s))−1B1.

Lemma 3.2.8. Let G,K, u and X be defined as in equations (3.4), (2.34) and
(3.2.1) respectively. Suppose K is proper and stable, as in Definitions 2.4.3 and
2.4.5. Assume K stabilizes G. Define v(s) = u(s) + B∗2Xx(s). Let Twv be the
transfer function from w to v. Then Twv is stable and strictly proper (see Definition
2.4.4).

Proof. Using Lemma 3.2.7 and (2.34)

v(s) = K(s)x(s) +B∗2Xx(s) (3.88)

v(s) = (K(s) +B∗2X)Twxw(s) (3.89)

v(s) = (K(s) +B∗2X)(sI − A−B2K(s))−1B1w(s). (3.90)

Therefore Twv = (K(s) +B∗2X)(sI −A−B2K(s))−1B1. By Lemma 3.2.7, (sI −A−
B2K(s))−1B1 is Twx. Because K(s) stabilizes G, (sI − A − B2K(s))−1B1 is stable,
as in Definition 2.4.5. Because K(s) and (sI − A − B2K(s))−1B1 are stable, Twv is
stable.

To show that Twv is strictly proper, as in Definition 2.4.4, it is required to establish
that

lim
|s|→∞

(K(s) +B∗2X)(sI − A−B2K(s))−1 = 0. (3.91)
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Since K(s) is proper, there exists a constant matrix D such that lim
|s|→∞

K(s) = D.

For large enough |s|, (sI−A−B2K(s)) is invertible. For invertible matrices, matrix
inversion is continuous. Therefore

lim
|s|→∞

(K(s) +B∗2X) (sI − A−B2K(s))−1 (3.92)

=

(
lim
|s|→∞

K(s) +B∗2X

)(
lim
|s|→∞

1

s

)(
I − lim

|s|→∞

A+B2K(s)

s

)−1

(3.93)

= (D +B∗2X)

(
lim
|s|→∞

1

s

)
I (3.94)

= 0.

The following theorem gives the optimal controller and the optimal cost for the
state feedback problem.

Theorem 3.2.9. (State Feedback Problem) Let the generalized plant G have the
structure (3.4) and let X,AF , CF , U, U

∼ and Gc be defined by Equations (3.7), (3.8),
(3.9), (3.32) and (3.33). Then
1. the H2-optimal controller as defined in (3.3) is the constant gain K = −B∗2X,
2. the H2-optimal cost as defined in (3.2) is

√
tr(B∗1XB1).

Proof. Let u(t) be the output of any stabilizing controller. Define v(t) = u(t) +
(B∗2Xx(t)). Then the state space equations can be written as

ẋ = Ax+B1w +B2(v −B∗2Xx)

= (A−B2B
∗
2X)x+B1w +B2v

= AFx+B1w +B2v.

z = C1x+D12(v −B∗2Xx)

= (C1 −D12B
∗
2X)x+D12v

= CFx+D12v.

Using (3.33), z is written in terms of w and v in the frequency domain.

z = CF (sI − AF )−1B1w + (CF (sI − AF )−1B2 +D12)v, (3.95)

= GcB1w + Uv. (3.96)

Let Tvw be the transfer function from w to v. By Lemma, 3.2.8 Tvw is strictly
proper and stable. Therefore it is in RH2 (Definition 2.4.1). Based on (3.96), z can
be written as

z = (GcB1 + UTvw)w. (3.97)

36



Therefore the closed-loop transfer function is Tzw = GcB1 + UTvw. Using Definition
2.5.1, the H2-norm of Tzw is calculated as an integral over the imaginary axis using
Definition (2.103).

||Tzw||2H2
=

1

2π
tr

(∫ ∞

−∞
(GcB1 + UTvw)∗(GcB1 + UTvw)dω

)
(3.98)

=
1

2π
tr

(∫ ∞

−∞
(B∗1G

∗
c + T ∗vwU

∗)(GcB1 + UTvw)dω

)

=
1

2π
tr(

∫ ∞

−∞
B∗1G

∗
cGcB1 +B∗1G

∗
cUTvw + T ∗vwU

∗GcB1

+ T ∗vwU
∗UTvwdω). (3.99)

On the imaginary axis, U∗ = U∼ because s∗ = −s. Therefore U∗Gc = U∼Gc on
the imaginary axis. In (3.35) it was shown that U∼Gc ∈ RH∼2 . Since Tvw ∈ RH2,
Theorem 2.4.2 implies the integral of the terms B∗1G

∗
cUTvw + T ∗vwU

∗GcB1 is zero.
Furthermore equation (3.34) implies T ∗vwU

∗UTvw = T ∗vwTvw. The integral of the term
B∗1G

∗
cGcB1 is equal to ||GcB1||2H2

. Therefore

||Tzw||2H2
= ||GcB1||2H2

+ ||Tvw||2H2
. (3.100)

The minimum of ||Tzw||2H2
is attained when Tvw = 0 and v = 0. If v = 0, then

u = −B∗2Xx. Therefore the optimal cost is ||GcB1||H2 and the optimal controller is
K = −B∗2X. In Lemma 3.2.6, it was shown that ||GcB1||2H2

is equal to tr(B∗1XB1),
therefore

||GcB1||H2 =
√

tr(B∗1XB1). (3.101)

Note that the square of the H2-optimal cost, tr(B∗1XB1), is similar to the optimal
LQR cost x∗0Xx0, see [23, chapter 5, page 173]. The role of matrix B1 is similar to
x0. In the generalized plant B1 is related to the disturbance and in the LQR x0 is the
initial condition. The initial condition is always a column vector because it has the
same size as the state variable. However the number of columns in B1 corresponds
to the number of the disturbances.
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3.2.2 Full Information

The full information plant has the structure

GFI =




A B1 B2

C1 0 D12[
I
0

] [
0
I

] [
0
0

]


 . (3.102)

The measured output y is

y =

[
I
0

]
x+

[
0
I

]
w (3.103)

=

[
x
w

]
. (3.104)

Note that both the state variable and the disturbance are available. This is the
reason this problem is called full information.

Theorem 3.2.10. For the full information problem
1. the H2-optimal controller is the constant gain K =

[
−B∗2X 0

]
.

2. the H2-optimal cost is
√

tr(B∗1XB1).

Proof. Similar to Theorem 3.2.9 define v = u− (−B∗2Xx). By (3.97), the measured
output z can be written as

z = (GcB1 + UTvw)w.

By (3.100), the H2-cost satisfies

||Tzw||2H2
= ||GcB1||2H2

+ ||Tvw||2H2
. (3.105)

Since the state variable x is available to the controller by (3.104), the controller
output, u, can be set to −B∗2Xx and v = 0. Therefore Tvw = 0 minimizes (3.105)
the H2-optimal cost is ||GcB1||2H2

. By Lemma (3.2.6) the optimal cost is equal to√
tr(B∗1XB1). This proof is similar to the state feedback case because in both

problems the state variable is available to the controller. However K =
[
−B∗2X 0

]

has an additional zero compared to the state feedback optimal controller because K
needs to be compatible with the dimension of y as required in the equation u =
Ky.
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3.2.3 Full Control

The full control generalized plant has the following structure

GFC =



A B1

[
I 0

]

C1 0
[

0 I
]

C2 D21 0


 . (3.106)

This structure is called full control because the control variable u can be separated

into two parts

[
u1

u2

]
such that u1 only affects the dynamics and u2 only affects the

cost.

ẋ = Ax+B1w +
[
I 0

] [ u1

u2

]

= Ax+B1w + u1,

z = C1x+
[

0 I
] [ u1

u2

]

= C1x+ u2.

It is possible to solve the full control problem using the full information result.
Define

GFC∗ =




A∗ C∗1 C∗2
B∗1 0 D∗21[
I
0

] [
0
I

]
0


 . (3.107)

Lemma 3.2.11. Let GFC =

[
G11 G12

G21 G22

]
as defined in equation (2.58). Then

GFC∗ =

[
G∗11 G∗21

G∗12 G∗22

]
. (3.108)

Proof. Using equations (2.58), (3.106) and (3.107)

G∗11FC
= (C1(sI − A)−1B1 +D11)∗ (3.109)

= B∗1(sI − A∗)−1C∗1 +D∗11 (3.110)

= G11FC∗ . (3.111)

The proof for G12, G21, G22 is identical.

Theorem 3.2.12. (Duality) Let G =

[
G11 G12

G21 G22

]
, K be a generalized plant and a

controller. Let T1, T2 be the closed-loop transfer functions of G coupled with K and

G∗ =

[
G∗11 G∗21

G∗12 G∗22

]
coupled with K∗ respectively. Then T ∗1 = T2.
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Proof. Using Equation (2.38), T1 = G11 +G12(I −KG22)−1KG21.

T ∗1 = (G11 +G12(I −KG22)−1KG21)∗ (3.112)

= G∗11 +G∗21K
∗(I −KG22)−1∗G∗12 (3.113)

= G∗11 +G∗21K
∗(I −G∗22K

∗)−1G∗12 (3.114)

= G∗11 +G∗21IK
∗(I −G∗22K

∗)−1G∗12 (3.115)

= G∗11 +G∗21(I −K∗G∗22)−1(I −K∗G∗22)K∗(I −G∗22K
∗)−1G∗12 (3.116)

= G∗11 +G∗21(I −K∗G∗22)−1(K∗ −K∗G∗22K
∗)(I −G∗22K

∗)−1G∗12 (3.117)

= G∗11 +G∗21(I −K∗G∗22)−1K∗(I −G∗22K
∗)(I −G∗22K

∗)−1G∗12 (3.118)

= G∗11 +G∗21(I −K∗G∗22)−1K∗G∗12 (3.119)

= T2.

The next theorem gives the optimal controller and the optimal cost for the full
control problem.

Theorem 3.2.13. (Full Control Problem) Let GFC be defined as in (3.106). Let
Y be the unique stabilizing solution to the Riccati equation (see Lemma 3.2.2 and
assumptions B1 and B4 in section 3.1).

AY + Y A∗ − Y C∗2C2Y +B1B
∗
1 = 0. (3.120)

Then

1. the H2-optimal controller is K =

[
−Y C∗2

0

]
.

2. the H2-optimal cost is
√

tr(C1Y C∗1).

Proof. Theorem 3.2.12 implies that the optimal controller for GFC is the transpose of
the optimal controller for GFC∗ as defined in (3.107). Since GFC∗ is a full information
plant, the optimal cost is

√
tr(C1Y C∗1). The optimal controller is

KFC∗ =
[
−(C∗2)∗Y 0

]
. (3.121)

where Y is defined in (3.120). Note that equation (3.7) changes to (3.120) under
the substitutions A → A∗, B2 → C∗2 , C1 → B∗1 . The optimal controller for the full
control problem is

KFC = K∗FC∗ (3.122)

=

[
−Y ∗C∗2

0

]
, (3.123)

=

[
−Y C∗2

0

]
. (3.124)
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The symmetry of Y is used in the last equation, see Lemma 3.2.1.

3.2.4 Output Estimation

The generalized plant in the output estimation problem has the structure

GOE =



A B1 B2

C1 0 I
C2 D21 0


 . (3.125)

It is possible to reduce the output estimation problem to the full control problem by
coupling its plant with an auxiliary system. An additional assumption that A−B2C1

is Hurwitz is needed. See Figure 3.3.

P

GOE

= GFC

w z

yu

wp zp

ypup

w z

up yp

1

Figure 3.3: On the left hand side there is an Output Estimation (OE) generalized
plant that is coupled to an auxiliary plant P. The combined system is equivalent to
a Full Control (FC) plant.

By (3.125), the outputs of GOE are

z = C1x+ u, (3.126)

y = C2x+D21w. (3.127)

To reduce the cost, u must be an estimate of −C1x. Therefore this problem is called
output estimation.
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System P has the following structure. Note that P is stable if A − B2C1 is
Hurwitz.

P =



A−B2C1 0

[
I −B2

]

C1 0
[

0 I
]

C2 I
[

0 0
]


 . (3.128)

Theorem 3.2.14. Let GFC and GOE be defined as (3.106) and (3.125), then, the
following relationships hold.

1. The plant GFC can be transformed into GOE.

2. GOE coupled with P according to Figure 3.3 equals GFC .

Proof. 1. The state space equations for GFC and GOE are

GOE =





ẋ = Ax+B1w +B2u,
z = C1x+ u,
y = C2x+D21w.

GFC =





ẋ = Ax+B1w +
[
I 0

] [ u1

u2

]
,

z = C1x+
[

0 I
] [ u1

u2

]
,

y = C2x+D21w.

By coupling the input to the GFC with a the constant matrix

[
B2

I

]
, the input

becomes [
B2

I

]
u =

[
B2u
u

]
. (3.129)

Let [
u1

u2

]
=

[
B2u
u

]
. (3.130)

Then the equations for GFC become

ẋ = Ax+B1w +
[
I 0

] [ u1

u2

]

ẋ = Ax+B1w +
[
I 0

] [ B2u
u

]

ẋ = Ax+B1w +B2u,

z = C1x+
[

0 I
] [ u1

u2

]

z = C1x+
[

0 I
] [ B2u

u

]

z = C1x+ u,

which are the equations for GOE.
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2. Let x and p be the state variables of the systems GOE and P respectively. Let

the input to P be up =

[
up1
up2

]
. Using (3.125) and (3.128), the state space equations

for both systems are

GOE =





ẋ = Ax+B1w +B2u
z = C1x+ u
y = C2x+D21w,

(3.131)

P =





ṗ = (A−B2C1)p+
[
I −B2

] [ up1
up2

]

zp = C1p+
[

0 I
] [ up1

up2

]

yp = C2p+ wp.

(3.132)

The two systems are connected as in Figure 3.3 using

u = zp, wp = y. (3.133)

Substitute equation (3.133) into (3.131), (3.132) and simplify to arrive at

ẋ = Ax+B1w +B2C1p+B2up2,

z = C1(x+ p) + up2,

yp = C2p+ C2x+D21w.

For a system G̃ with the joint state variable

[
x
p

]
, inputs w, up and outputs z

and yp the state space equations are

[
ẋ
ṗ

]
=

[
A B2C1

0 A−B2C1

] [
x
p

]
+

[
B1

0

]
w +

[
0 B2

I −B2

] [
up1
up2

]
(3.134)

z =
[
C1 C1

] [ x
p

]
+
[

0 I
] [ up1

up2

]
(3.135)

yp =
[
C2 C2

] [ x
p

]
+D21w. (3.136)
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Defining H =

[
I −I
0 I

]
, apply the state transformation H−1 =

[
I I
0 I

]
and

note H−1

[
x
p

]
=

[
x+ p
p

]
. Using (3.47), equation (3.134), (3.135) and (3.136) are

transformed as
[
ẋ+ ṗ
ṗ

]
= H−1

[
A B2C1

0 A−B2C1

]
H

[
x+ p
p

]

+H−1

[
B1

0

]
w +H−1

[
0 B2

I −B2

] [
up1
up2

]
, (3.137)

=

[
A 0
0 A−B2C1

] [
x+ p
p

]
+

[
B1

0

]
w +

[
I 0
I −B2

] [
up1
up2

]
.

(3.138)

z =
[
C1 C1

]
H−1

[
x+ p
p

]
+
[

0 I
] [ up1

up2

]
, (3.139)

=
[
C1 0

] [ x+ p
p

]
+
[

0 I
] [ up1

up2

]
. (3.140)

yp =
[
C2 C2

]
H−1

[
x+ p
p

]
+D21w, (3.141)

=
[
C2 0

] [ x+ p
p

]
+D21w. (3.142)

Therefore

G̃ =




[
A 0
0 A−B2C1

] [
B1

0

] [
I 0
I −B2

]

[
C1 0

]
0

[
0 I

]
[
C2 0

]
D21 0


 . (3.143)

Since the second components of the observation matrices,
[
C1 0
C2 0

]
, (3.144)

are zero, only x+ p , not p, affects the output. Therefore, G̃ can be written as GFC ,
(3.106),

G̃ =



A B1

[
I 0

]

C1 0
[

0 I
]

C2 D21 0


 . (3.145)
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The transfer functions corresponding to (3.143) and (3.145), calculated according to
Definition 3.2.1, are equal. This is why (3.143) can be written as (3.145).

The next theorem establishes the optimal controller and the optimal cost for the
output feedback problem.

Theorem 3.2.15. Let G be a generalized plant with the output estimation structure
(3.125). Let Y be the stabilizing solution to (3.120). Then

1. the optimal controller is K(s) =

[
A−B2C1 − Y C∗2C2 −Y C∗2

C1 0

]
,

2. the optimal cost is
√

tr(C1Y C∗1).

Proof. 1. Based on part 2 of Theorem 3.2.14, GOE coupled with the plant P is
equivalent to GFC , see Figure 3.3. Denote the optimal controller for GFC as KFC .
Coupling KFC with GFC is equivalent to coupling KFC with P and then with GOE,
see Figure 3.4. Therefore the optimal controller for GOE, denoted by KOE, is KFC

coupled with P .

P

GOE

=

w z

yu

wp zp

ypup
KOE

GOE

w z

yu

KFC

1

Figure 3.4: The optimal output estimation controller KOE is the optimal full control
controller coupled with the system P .
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Using (3.124) and (3.128), the state space equations for P are

ṗ = (A−B2C1)p+
[
I −B2

]
up,

zp = C1p+
[

0 I
]
up,

yp = C2p+ wp, (3.146)

(3.147)

and

KFC =

[
−Y C∗2

0

]
. (3.148)

From Figure 3.4,

up = KFC yp, (3.149)

=

[
−Y C∗2

0

]
(C2p+ wp), (3.150)

=

[
−Y C∗2C2p− Y C∗2wp

0

]
. (3.151)

Substitute (3.151) into (3.146) and note that wp = y and u = zp,

ṗ = (A−B2C1)p+
[
I −B2

] [ −Y C∗2C2p− Y C∗2y
0

]
(3.152)

= (A−B2C1)p− Y C∗2C2p− Y C∗2y (3.153)

= (A−B2C1 − Y C∗2C2)p− Y C∗2y. (3.154)

Also
u = zp (3.155)

= C1p+
[

0 I
]
up (3.156)

= C1p+
[

0 I
] [ −Y C∗2C2p− Y C∗2wp

0

]
(3.157)

= C1p. (3.158)

Therefore, using (3.154) and (3.158), KOE with the input y, output u and state
p is

KOE(s) =

[
A−B2C1 − Y C∗2C2 −Y C∗2

C1 0

]
. (3.159)

Since coupling of KOE, GOE is equivalent to coupling of KFC , GFC the the optimal
cost for the output estimation problem is the same as that for the full control problem.
Using part 2 of Theorem 3.2.13, the optimal cost is

√
tr(C1Y C∗1).
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3.2.5 Output Feedback

The output feedback problem is the most general case.

GOF =



A B1 B2

C1 0 D12

C2 D21 0


 . (3.160)

The following theorem gives the optimal controller and the optimal cost for the
output feedback problem. For the ease of reference and convenience the Riccati
equations (3.120) and (3.120) are repeated here.

Theorem 3.2.16. Let the generalized plant G have the structure (3.160). Let X
and Y , respectively, be the stabilizing solutions of the following Riccati equations.

A∗X +XA−XB2B
∗
2X + C∗1C1 = 0,

AY + Y A∗ − Y C∗2C2Y +B1B
∗
1 = 0.

Then

1. the optimal controller is K =

[
A−B2B

∗
2X − Y C∗2C2 Y C∗2
−B∗2X 0

]
,

2. the optimal cost is
√

tr(B∗1XB1) + tr(B∗2XYXB2).

Proof. Similar to the argument in Theorem 3.2.9, define v = u+(B∗2X)x and rewrite
the state space equations of GOF in terms of v.

ẋ = Ax+B1w +B2(v −B∗2Xx),

= (A−B2B
∗
2X)x+B1w +B2v,

= AFx+B1w +B2v.

z = C1x+D12(v −B∗2Xx),

= (C1 −D12B
∗
2X)x+D12v,

= CFx+D12v.
Using equation (3.33), z is written in the frequency domain as

z = CF (sI − AF )−1B1w + (CF (sI − AF )−1B2 +D12)v, (3.161)

= GcB1w + Uv, (3.162)

where Gc and U are defined in (3.33). Using (3.100) and (3.101),

||Tzw||2H2
= ||GcB1||2H2

+ ||Tvw||2H2
, (3.163)

= tr(B∗1XB1) + ||Tvw||2H2
. (3.164)
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Because of (3.164) minimizing ||Tzw||2H2
is equivalent to minimizing ||Tvw||2H2

.
In the state feedback problem it was possible to put Tvw = 0 because choosing
u = −B∗2Xx results in v = 0. However in the output feedback problem this is not
possible because the state variable is not available for feedback. Minimizing ||Tvw||2H2

is an output estimation problem because a plant can be created with v as the output.
Consider the equations

ẋ = Ax+B1w +B2u,

v = B∗2Xx+ u,

y = C2x+D21w, (3.165)

(3.166)

and define

Gv =




A B1 B2

B∗2X 0 I
C2 D21 0


 (3.167)

which has the output estimation structure, see (3.125). The output estimation prob-
lem requires the stability of A − B2(B∗2X). This is guaranteed by Lemma 3.2.1.
Based on Theorem 3.2.15, the optimal cost for Gv is

||Tvw||2H2
= tr(B∗2XYX

∗B2). (3.168)

Returning to equation (3.164) and using (3.168)

||Tzw||2H2
= ||GcB1||2H2

+ ||Tvw||2H2
(3.169)

= tr(B∗1XB1) + tr(B∗2XYX
∗B2). (3.170)

Since X = X∗ by Lemma 3.2.1, the X∗ in (3.170) can be replaced by X. The
square root of (3.170) is the optimal output feedback cost.

The H2-optimal controller for GOF must satisfy equation (3.168) otherwise it can
not achieve the minimum cost in equation (3.170). This controller is the optimal
controller for Gv (Theorem 3.2.15) with the substitution C1 → B∗2X,

K(s) =

[
A−B2B

∗
2X − Y C∗2C2 Y C∗2
−B∗2X 0

]
. (3.171)
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The optimal controller K(s) in equation 3.171 has a special structure. Let x̂ be
the state variable of K, then the state space equations for K can be written as

˙̂x = (A−B2B
∗
2X − Y C∗2C2)x̂+ Y C∗2y, (3.172)

= Ax̂+B2u+ Y C∗2(y − C2x̂), (3.173)

u = −B∗2Xx̂. (3.174)

Equation (3.173) is an observer, see Theorem 2.1.2, and x̂ is an estimate of the
state x. The output of the controller, u, is the optimal feedback gain from Theorem
3.2.9 multiplied by the state estimate, x̂. The state estimation and the construction
of u are done separately from each other. This property is called separation. A
controller with the separation property, first optimally estimates the state and then
applies optimal state feedback.
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Chapter 4

H2-Optimal Sensor Location

In this chapter the optimal sensor location problem is defined formally. Using the
H2-cost function discussed in the previous chapter, different sensor locations can be
compared to each other where the position corresponding to the lowest cost is the
optimal. A sensor is confined to a region Ω of dimension less than or equal to three.
If there are m sensors then the space of possibilities is Ωm. If Ω is neither closed nor
bounded, then the optimal location may not necessarily be in Ω. Therefore, in order
to guarantee the existence of an optimal location, Ω needs to be closed and bounded.
From a practical point of view, the boundedness of Ω is guaranteed, but there can be
cases where Ω is open. For example, consider a sensor that can be placed anywhere
on a beam except at the very end due to safety reasons. However the length of the
beam minus an epsilon can be considered as Ω.

4.1 Problem Statement

Problem. Let r ∈ Ωm ⊂ R3m where Ω is a compact set. Let

C2(r) : Ω→ Rm×n (4.1)

be a continuous function and

G(s, r) =




A B1 B2

C1 0 D12

C2(r) D21 0


 (4.2)
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be a generalized plant that satisfies the assumptions in section 3.1. Let X, Y (r) be
the stabilizing, positive semi-definite solutions to the Riccati equations

A∗X +XA−XB2B
∗
2X + C∗1C1 = 0, (4.3)

AY + Y A∗ − Y C∗2(r)C2(r)Y +B1B
∗
1 = 0. (4.4)

Define the functions J1, J2 : Ω → R+ as the square of the full control and output
feedback costs respectively (Theorems 3.2.13 and 3.2.16):

J1(r) = tr (C1Y (r)C∗1) , (4.5)

J2(r) = tr (B∗1XB1) + tr (B∗2XY (r)XB2) . (4.6)

Define

r∗1 = arg inf
r∈Ωm

J1(r), (4.7)

r∗2 = arg inf
r∈Ωm

J2(r). (4.8)

The problem is to find r∗1 and r∗2.

There could be multiple locations that correspond to the infimum; each is a valid
solution. Continuity of J1 and J2 and compactness of Ω guarantee the existence of
r∗1 and r∗2. If the focus is only on state estimation, J1 should be utilized as J1 only
considers the sensor (the actuator or X are not involved). If the overall performance
of the actuator and the state estimation requires consideration, then J2 should be
used. The first term in J2, tr(BT

1 XB1), does not depend on r and can be removed.
The second term in J2 includes X, Y and B2. Since B2 and X depend on the actuator,
the location of the actuator affects the optimal sensor location.

4.2 Literature Review

In this section a number of papers that have investigated the optimal sensor loca-
tion are reviewed. Some papers describing the optimal actuator location have also
been included because the two problems have many similarities and often involve
similar techniques. The discussion is separated into three cases. The first subsection
considers the closed-loop H2-cost function where the H2-optimal control is fixed as
the control strategy and the optimal sensor location is found afterwards. In the
second subsection, the open-loop H2-costs are discussed which do not consider any
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particular control strategy and focus on the natural dynamics. Finally, the third
subsection investigates non-H2 methods such as the Linear- Quadratic (LQ) cost
and costs based on the observability Gramian.

In a broader context, one must consider the final goal for optimizing the sensor
location. According to Kubrusly [20] the optimal sensor or actuator location litera-
ture for systems governed by partial differential equations (PDEs) can be categorized
into three major groups. The first group is system identification where sensors aid in
identifying uncertain or unknown parameters in different models. The second group
is state estimation where in the presence of noise and disturbance, an optimally
placed sensor reduces the estimation error to the optimal value. Lastly, the third
group is the closed-loop cost function where a control law such as LQR, H2 or H∞ is
used. The control law has an associated cost function which reflects the performance
of the controlled system with sensors and actuators optimized with respect to this
cost.

4.2.1 Closed-Loop H2-cost

In many practical problems the governing equations are PDEs where the independent
variables are continuous in both time and space. Such systems will inherently have an
infinite-dimensional state variable. Typically, the space variable is discretized so that
problem is reduced to a finite dimension. If more accuracy is needed, the dimension
of the approximation is increased. However, without convergence results from the se-
quence of the approximated problems can change drastically when higher dimensions
are considered [24, Example 3.2, Figure 8]. Uniform exponential stabilizability and
uniform exponential detectability of the sequence of matrices (An, Bn, Cn) for the
finite-dimensional system of size n as n→∞ are required conditions for convergence
of the results of the approximated problems.

In [22], the H2-optimal theory is discussed for infinite-dimensional systems. Ad-
ditional development can be found in [24]. The results are analogous to the finite-
dimensional case with additional regularity conditions on the operators in the H2-
cost. The discussion focuses on the properties of the the semigroup generated by
the operator A, whether or not operators B1 and C1 are compact, convergence of
finite-dimensional approximations to the infinite-dimensional Riccati operator, con-
vergence of the optimal locations, convergence of the optimal costs and continuity
of the norm of the Riccati operator with respect to the location of the actuator. In
the results section, two systems are considered: the one-dimensional damped beam
and two-dimensional diffusion. The beam is cantilevered; such a beam has one fixed
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end and one free end. Two possibilities are considered for the state cost; either all
states are weighted equally or only the deflection of the beam at the free end is con-
sidered. Regarding the disturbance, six different shapes of spatial distribution are
investigated.

Results illustrate that the optimal actuator location often matches the maximum
value of the disturbance shape, but not always. The worst case disturbance is also
considered and the optimal actuator location is optimized over all possible spatial
distributions of the disturbance. The eigenfunction of the Riccati operator with
the largest value is considered to be the worst spatial distribution. For the two-
dimensional diffusion, the effect of a variable diffusivity function is investigated.
Two types of state weights are considered. The first weight is the identity for all
states. The second weight averages over all of the states. The results suggest that
the optimal actuator location is in the disturbance region if the disturbance is in a
low diffusivity region. A similar discussion is present in [25] for the LQR problem
and is discussed in section 4.2.3.

In [6], an application of H2-optimal actuator and sensor location in fluid mechan-
ics is considered. The governing equation is the linearized Ginzburg-Landau equation
that describes velocity perturbations in a flow with the domain as the real line ex-
tended to infinity at both ends. Stochastic flow disturbances are also introduced in
the spatial domain and in the measurement of the sensor.

The Ginzburg-Landau (GL) equation involves a complex variable q where the
real part of q describes the velocity perturbation amplitudes:

∂q

∂t
+ ν

∂q

∂x
= µ(x)q + γ

∂2q

∂x2
− a|q|2q, (4.9)

with the boundary conditions q = 0 at both ends of the line and the flow from left
to right. The non-linear term is linearized around the equilibrium q = 0 which leads
to |q|2q ≈ 0. The resulting equation can be rewritten as

q̇ = Lq, (4.10)

L = −ν ∂
∂x

+ µ(x) + γ
∂2

∂x2
. (4.11)

With a parabolic form assumed for µ(x) the eigenfunctions of the operator L are

φn(x) = e
1
2

( νx
γ
−χ2x2)Hn(χx). (4.12)

where Hn is the nth Hermite polynomial and χ is a scaling factor which depends on

the model parameters. The domain is discretized usingN = 100, q =
[
q1 · · · qN

]T
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grid points which are the roots of HN(χx)(spanning [-56.06, 56.06]). A discrete spec-

tral form is found for
∂

∂x
,
∂2

∂x2
and L. Equations (4.10) is rewritten as

q̇ = Aq. (4.13)

where A is the linearized discrete GL operator.

In order to create a generalized plant actuators, sensors, disturbance, noise and
cost weights are required. Each sensor or actuator has a Gaussian shape with variance
σ = 0.4. Let B2, C2 be column vectors that represent a Gaussian function centered at
xa and xc respectively. Let d and n be column vectors of independent white Gaussian
noise processes. Let β = 7 be a parameter that relates the relative weight of q in
the cost function compared to the control variable u. The value of β is a design
voice. A generalized plant is created using the following definitions. Define M as
a diagonal matrix corresponding to numerical integration using the trapezoid rule.
Additionally, let M have the square root M1/2 with the square roots of the elements
of M on the diagonal.

B1 =
[
I 0

]
, C1 =

[
βM1/2

0

]
, D12 =

[
0
I

]
, D21 =

[
0 2× 10−4I

]
,

(4.14)

z =

[
βM1/2q

u

]
, w =

[
d
n

]
, (4.15)



q̇
z
y


 =



A B1 B2

C1 0 D12

C2 D21 0





q
w
u


 . (4.16)

The right element of D21 is set to 2 × 10−4 to account for the minimal sensor
noise. The control u is given by the H2-optimal controller, see Theorem 3.2.16. The
cost is the H2-norm of the closed-loop system as a function of the actuator and the
sensor location and is denoted by Γ(xa, xs).

A gradient based approach is used to find the minimum of Γ. Algebraic equations
necessary for any local minimum and an expression for the derivative of Γ with respect
to xa and xs are derived. Using the conjugate gradient method, the values of (xa, xs)
are iteratively updated until a local minimum is reached. This process is repeated
with different initial conditions until results become consistent such that the final
result can be accepted as the global minimum. However differentiability of Γ is not
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established. Furthermore, if the optimal location is on the boundary of the feasible
region, the derivative of Γ is not necessarily zero, but this issue is also not pursued.

A pattern is observed where in the optimal configuration, for an equal number of
actuators and sensors, each actuator is paired with a sensor such that the sensor is
placed just downstream of the actuator.
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Fig. 1. Mini-Mast facility with actuator and sensor locations.

The inputs to the structure were the three control actuators
and the three disturbance actuators. The output measurements
were the six displacement measurements, three each at bays
18 and 10, and the four accelerometers at bay 18. Small
deviations were noted between the 28 mode simulation model
and physical system. These were attributed to a higher level
of damping present in the actual structure compared with the
model, because of neglected friction effects.
A reduced order model of the Mini-Mast structure is for-

mulated for control design based on the first five modes of
the structure below 45 rad/s. The first five modes, shown
in Table I, are to be actively controlled [14], [15], [17],
[18]. The remaining 23 modes, between 92.5 rad/s and 460.8
rad/s, are accounted for in the control design as unmodeled
dynamics. Transfer function magnitude plots of the five- and

28-mode models from the torque wheel actuators and exciters
to the bay 18 accelerometers displacement sensors and bay
10 displacement sensors are shown in Figs. 3–5. Note that
little error is observed in the natural frequencies of first five
modes (which are to be controlled), but of course there is a
significant error at high frequency. Hence for practical designs
the robustness issue will be very important. This facility
provides a fairly realistic complicated problem to test out
control ideas in a practical setting.

III. FEEDBACK SENSOR SELECTION
The objective of active control on the NASA Langley Mini-

Mast Facility was to attenuate structural vibration at bays
10 and 18 due to external disturbances entering through the
exciters at bay 9. Three TWA’s were located on the tip of
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Figure 4.1: Mini-Mast
truss from [2].

Another example that uses the closed-loop H2-cost is
[10] however, this work utilizes a combination of the H∞
and H2 methods. The problem involves an undamped
beam with n degrees of freedom and simply supported
boundary conditions with two pairs of actuators and sen-
sors. In comparison to [6], the sensors and actuators are
collocated which means they have to be at the same loca-
tion. An H∞ controller is constructed that guarantees an
H∞ performance bound. The H2-norm of the closed-loop
system is then optimized with respect to the collocated
actuator-sensor pairs. Similar to [6], algebraic equations
are derived for the gradient of the H2-norm, but no guar-
antees with respect to differentiability are offered. Unlike
[6], a quasi-Newton method is used to iterate toward the
optimal location. Since convergence can occur at local
minima, the algorithm is repeated from different initial
conditions until satisfactory results are obtained, however there is no discussion re-
garding what is considered satisfactory. A reasonable stopping condition is the con-
sistency of results for a wide range of initial conditions. After the optimal locations
are found, a performance comparison is done. The impulse responses of the uncon-
trolled beam, the controlled beam with sub-optimally placed and optimally placed
actuator-sensor pairs are compared. The optimal placement performs more efficiently
in terms of maximum deflection, settling time and other damping properties.

The final paper in the discussion of closed-loop H2-cost is [2]. The paper discusses
a twenty meter long truss structure cantilevered at its base, the NASA Langley Mini-
Mast, see Figure 4.1. The structure was designed to represent future deployable
space trusses. The truss has eighteen levels, also known as bays. There are total
of sixty sensors on the structure but only a subset of ten are considered. There
are four accelerometers and three displacement sensors at bay eighteen and three
displacement sensors at bay ten. There are three shakers at bay nine that introduce
vibrations. Additionally, there are three torque wheel actuators at the top, in bay
eighteen. A finite element model of the truss is created with twenty eight modes,
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three control inputs, three disturbance inputs and ten outputs. A reduced-order
model is also created with five modes.

Three performance objectives are considered: vibration reduction at bay ten, at
bay eighteen, or at both bays. Five different combinations of sensors are compared
with each other. The five groups are respectively, only accelerometers at bay eigh-
teen, only displacement sensors at bay eighteen, both accelerometers and sensors
at bay eighteen, displacement sensors at bay eighteen and ten and finally, all ten
sensors. The results illustrate that accelerometers nearly provide full information
performance. The displacement sensors at both bay ten and eighteen provide good
performance however, placing displacement sensors at bay ten performs poorly in
comparison to the other combinations. If the displacement sensors are collocated
with the location where the performance is measured, then there is no major differ-
ence between accelerometers and displacement sensors. In the non-collocated case
accelerometers outperform the displacement sensors. The results for the five mode
model are similar to the model with the full order.

4.2.2 Open-Loop H2-cost

In comparison to the closed-loop H2-cost, there are alternative open-loop methods
which do not consider a specific control strategy and only utilize the open-loop
transfer functions.

In [1] the modal-H2 approach is used for optimal sensor and actuator placement
for the control of vibrations in a square carbon plate. The name modal comes from
eigenfunction decomposition of the system, where each eigenfunction is also called a
mode. Starting with the standard equation

ẋ = Ax+ w1 +Bu,

y = Cx+ w2,
(4.17)

the authors exclude w1 and w2 in their analysis as w1 and w2 are exogenous and
are generally not known ahead of time. Additionally, there is no discussion about
the special case where w1 and w2 are white Gaussian. Let the size of x be n and
let m < n represent the first m modes that are of interest. A reduced model is
considered where matrices Ami, Bmi, Cmi are the reduced form for the ith coordinate
given the first m modal coordinates. Assume that there are s different candidate
positions for the sensor. Let C(i,S) = [Ci1, Ci2, ..., Cis] be the matrix describing the
sensor when placed at each respective position. For each sensor position k, a modal
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H2-norm is defined as

||Gik||2 =
||Bmi||2||Cmik||2

2
√
ζiωi

, (4.18)

where ζi is the damping ratio and ωi is the natural frequency. Damping ratio and
natural frequency are two fundamental properties of the second order systems. The
interpretation of Gik is the input-output norm of a controllable structure with one
sensor at the kth place. To normalize the above norm, the sensor index is normalized
as

δ2,ik =
||Gik||22

max
k
||Gik||22

,

i = 1, ...,m, k = 1, ..., s.

(4.19)

The index for the kth sensor is given by the weighted linear combination:

δ(k) =
m∑

i=1

wiδ2,ik, (4.20)

where wi are weights associated with different modes. The weights can be used to
emphasize selected modes. For example, assigning one to the weight of the first five
modes and zero for the other modes means that only the first five are considered. To
reduce the the effect on a particular mode a weight of minus one can be assigned.

For the carbon plate model, there are five sensors which measure acceleration
and five actuators which are piezoelectric patches. A genetic algorithm is used to
guide the search. The genetic algorithm can stop at a local minimum. Furthermore
the local minimum that is found depends on the initial condition of the algorithm.
Therefore, the algorithm is reset multiple times until consistent results are obtained.
The authors do not elaborate on how many resets were required and no conditions
are mentioned under which the algorithm is guaranteed to produce consistent results,
however, once consistent results are obtained they are assumed to be optimal. Two
scenarios are considered. In scenario one, the goal is to control the first five modes
therefore, only those five are assigned a positive weight and all others get a weight of
zero. In the second scenario, the goal is to not only control the first five modes but
also not to disturb the next five. The first five are assigned positive weights, where as
the following five are assigned negative weights. For each scenario, the optimal sensor
and actuator locations are found and validated utilizing different control strategies
such as IMSC (Independent Modal Space Control). This approach is considered
open-loop because the optimal locations are found before a control strategy is chosen.
The authors note that IMSC usually has issues with higher uncontrolled modes, but
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it shows improvement when the actuators and sensors are placed according to the
results in the second scenario.

The next method uses the so-called “spatial H2-norm”. In [9] this method is
used to find the optimal actuator location for a diffusion problem in one dimension
with Neumann boundary conditions. For infinite-dimensional systems that have
continuous state variables, the transfer function from the input to the state variable is
a function of both s and another variable that parametrizes the state, ζ. Let Ω be the
domain for ζ. Let ζa be the actuator location, φi and λi be the system’s eigenfunctions
and eigenvalues respectively. Using eigenfunction expansion, a transfer function is
defined as

G(s, ζ, ζa) =
∞∑

i=1

B(ζa)φ(ζ)

s− λi
. (4.21)

Let fi(ζa) be the H2-norm of
B(ζa)φi(ζ)

s− λi
. Then two types of controllability indexes

are defined. The ith modal controllability is

Mi(ζa) =
fi(ζa)

max
ζa∈Ω

fi(ζa)
(4.22)

and the controllability index for the first N modes is defined as

SN(ζa) =

√∑N
i=1 f

2
i (ζa)

maxζa∈Ω

√∑N
i=1 f

2
i (ζa)

· (4.23)

The controllability index for the modes N to M is denoted by SMN . The authors pose
the optimal actuator problem via maximizing the controllability index SN while
maintaining some design constrains on the individual modes and the controllability
index of modes N to M . In other words

max
ζs∈Ω

SN(ζs),

subject to Mi(ζs) ≥ βi, SNM(ζs) ≤ γ,
(4.24)

where βi and γ are chosen by the designer based on performance requirements. Ac-
cording to the numerical results, the optimal actuator location based on this approach
tends to be close to the edge of the domain. As more modes are included, the optimal
location moves closer towards the boundary.
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4.2.3 Non-H2 Cost

The Linear-Quadratic (LQ) cost function is another method for defining the optimal
actuator and sensor location. In [8], [19] and [25] the LQ-cost has been used.

In [25], the theory for the existence of the optimal actuator location and the
convergence of optimal location of the finite-dimensional approximations to the op-
timal location of the infinite-dimensional system are developed. The LQ-optimal
cost depends on the initial condition and there are two approaches to deal with this
dependence. One approach is to adopt the worst initial condition which is the one
that corresponds the maximum cost. In this approach the norm of the Riccati oper-
ator becomes the optimal cost. The second approach is to consider a random initial
condition. If the variance of the distribution for the initial condition is unity, then
the trace of the Riccati operator (its nuclear norm) is the optimal cost. Conditions
are derived that guarantee the optimal cost as a continuous function of the actuator
location. Since the space of feasible actuator locations is compact, continuity of the
cost function guarantees the existence of a minimum.

Four numerical examples are included to demonstrate the different aspects of
the theory. Three of the examples discuss a viscously damped beam with Euler-
Bernouli beam equation and simply supported boundary conditions. The fourth
example represents a diffusion equation with Neumann boundary conditions. The
beam equation is

wtt + cdwt + wxxxx = bru(t), t ≥ 0, 0 < x < 1, (4.25)

with z =

[
w
wt

]
. The equation is put into the state space form using the eigenfunc-

tions of the operator
∂4

∂x4
with the simply supported boundary conditions. Different

orders of approximation are considered and, for each one, a greater number of modes
are included and the optimal actuator location is calculated. In the first example the

state weight in the LQ-cost is chosen to be

[
I 0
0 I

]
. Although this choice leads to

strong convergence of finite-dimensional Riccati operators to the infinite-dimensional
Riccati operator, the optimal locations do not converge. This example shows that
strong convergence is not enough and uniform convergence is required. In the second

example the state weight is set to C =

[
I 0
0 0

]
. This choice only weighs the w and

not wt. The C operator is compact and the optimal actuator locations converge.
The third example considers the deflection only at a single point. The C operator
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picks the value of w at the point 0.5 or in other words Cz = w(0.5). The C operator
is again compact and the optimal actuator locations converge.

The diffusion equation is also approximated by a sequence of approximations
with increasing number of modes. In this example the C operator is chosen to be√

1000I and both the optimal cost and the corresponding optimal location converge
as predicted by the theory.

In [8] the focus is on an algorithm for finding the optimal actuator location. In
many situations the matrices that are involved in the calculations have large dimen-
sions. For instance, in finite element approaches, the size of the state variable is the
same as the number of mesh points. As more refined meshes are considered the size
of the system grows. Additionally, as the number of actuators or sensors increase,
the number of variables also increases. Therefore, an optimization scheme is needed
to guide the search. In this paper, the problem is posed as one of convex optimiza-
tion with a new formulation considering a discrete set of possible positions for the
actuators. Suppose there are n positions and m actuators that need to be placed.
Then there is a one-to-one mapping between the positions of the actuators and a
binary string of length n with m ones and n−m zeros where each one corresponds
to a position that is filled with an actuator. The optimization algorithm works on
the space of such binary strings and is illustrated using finite element models for
a pinned beam and a plate. The performance of the new method is compared to
a genetic algorithm. The results illustrate that for ten actuators on the beam and
ten actuators on the plate the convex algorithm was faster and more accurate. The
results are also experimentally verified using a cantilevered beam where two actua-
tors are placed in the optimal positions and also in other configurations. The results
show than the optimal positions are the most effective in suppressing vibrations.

Another method is based on the observability Gramian which is discussed in [16]
and [4]. Let r correspond to the sensor location. The observability Gramian W (r)
is a matrix-valued function of r. In order to define a cost function, a single-valued
function is needed. There are multiple ways to achieve this. Let λi be the eigenvalues
of W (r) and let λs, λl the smallest and the largest eigenvalues respectively. Different
cost functions based on the Gramian are given below. The optimal location is r∗.
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r∗ = arg max
r∈Ω

λl(r), (4.26)

r∗ = arg max
r∈Ω

det (W (r)) =
n∏

1

λi, (4.27)

r∗ = arg max
r∈Ω

tr (W (r)) =
n∑

1

λi, (4.28)

r∗ = arg max
r∈Ω

(
n∑

1

λi

)(
n∏

1

λi

) 1
n

, (4.29)

r∗ = arg max
r∈Ω

λs(r). (4.30)

The smallest eigenvalue of the Gramian W can approach zero as higher number of
modes are included for some systems such as the the damped beam. Figure 4.2 shows
the log of the smallest eigenvalue vs. the number of modes for a damped beam. The
model parameters are from [29] and the details of the model are explained in chapter
five of the thesis. Because the infinite-dimensional system is not exactly observable,
the smallest eigenvalue of the finite-dimensional approximation approaches zero as
the approximation order increases.
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Figure 4.2: The figure shows the log of the minimum eigenvalue of the observability
Gramian vs. the number of modes of a damped beam. The infinite-dimensional
system is not observable therefore the minimum eigenvalue of the finite-dimensional
approximations approach zero as more modes are considered.
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The last method is from [26]. The strategy for placing the sensors is based on
correlations between the outputs of sensors at different positions and performing mul-
tivariate regression analysis. The authors claim that this method does not require
any explicit knowledge of the plant, however, it is assumed that chemical processes
are governed by a specific PDE with a few free parameters that depend on the par-
ticular reaction and the reactor. The method is applied to two numerical models.
Both of the models involve chemical reactions in tubular reactors. In the first model
there are twelve possible positions for temperature sensors along the reactor. The
goal is to use the temperature measurements to estimate the concentrations of dif-
ferent compounds. Utilizing regression analysis, two of the locations are selected as
optimal. In contrast, the second model has nine sensor positions available with a
goal to estimate the molar flow rate of different substances at the reactor outlet.
It was discussed that two of the sensors are sufficient for optimal estimation. This
approach for selecting sensor locations is not similar to the H2 methods.
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Chapter 5

Calculation of the Optimal Sensor
Location

5.1 Simply Supported Beam

The Euler-Bernoulli (EB) beam equation describes the bending of a beam under the
assumption that the cross-sections of the beam are rigid. For the derivation and a
discussion of the assumptions in the EB equation see [3, chapter 5]. The left hand side
of (5.1) is the EB equation and the right hand side contains additional disturbance
and control terms. Equation (5.2) describes a single sensor measurement.

EI
∂4w(x, t)

∂x4
+ Cd

∂5w(x, t)

∂x4∂t
+ Cv

∂w(x, t)

∂t
+ µ

∂2w(x, t)

∂t2

= b1(x)d(t) + b2(x)u(t), 0 < x < L, 0 ≤ t, (5.1)

y(t) =

∫ L

0

c(x)w(x, t). (5.2)
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Figure 5.1: Functions S, D and A correspond to the sensor, the disturbance and the
actuator and functions c(x), b1(x) and b2(x) respectively. The sensor is moved along
the beam in order to find the optimal sensor location.
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The parameters E, I, Cd, Cv, µ and L are the elastic modulus, moment of inertia
of a cross-section, Kelvin-Voigt damping, viscous damping, mass density and the
length of the beam. The parameter values are EI = 4.91 × 10−1 Kg m3/s2, Cd =
6.49×10−5Kg m3/s, Cv = 1.3×10−3 Kg/ms, µ = 9.3 Kg/m, L = 5m. The values are
based on the experiments in [29] except the length L which is changed from L = 0.45
to L = 5 because the controlled performance in longer beams is more sensitive to
sensor location.

The boundary conditions for a simply supported beam are

w(0, t) = 0, w(L, t) = 0,

EI
∂2w

∂x2
(0, t) + Cd

∂3w

∂x2∂t
(0, t) = 0,

EI
∂2w

∂x2
(L, t) + Cd

∂3w

∂x2∂t
(L, t) = 0.

(5.3)

See [30, section 7.4 ] for a derivation of the boundary conditions. In the absence of
damping, these boundary conditions reduce to

w(0, t) = 0, w(L, t) = 0,

∂2w

∂x2
(0, t) = 0,

∂2w

∂x2
(L, t) = 0.

(5.4)

Functions b1(x), b2(x) and c(x) are defined as (see Figure 5.1)

b1(x, xd) = 10e−(x−xd)2/σ2

(5.5)

b2(x, xa) =





0 |x− xa| > da,
1

2da
|x− xa| ≤ da,

c(x, xs) =





0 |x− xs| > ds
1

2ds
|x− xs| ≤ ds.

(5.6)

Parameters xd, xa and xs are the centers of the disturbance, the actuator and the
sensor. They vary in the simulations. Parameters da and ds correspond to half of
the width of the sensor and the actuator while σ is the variance of the disturbance.
Function b1 has a factor of 10 so it has a comparable height with c and b2. All of
these values are modeling choices.

For each sensor location a generalized plant is created and the corresponding
H2-costs are calculated as defined in equations (4.5) and (4.6).

G(xs) =




A B1 B2

C1 0 D12

C2(xs) D21 0


 . (5.7)
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The process for creating each of the matrices in (5.7) is explained. Matrix A is found
first.

To put the system in the standard state space form, a state variable is needed.

Define z(t) =

[
w(x, t)
∂
∂t
w(x, t)

]
as the state variable. A state space needs to be defined

(see [24, Example 2.4]). Let H2(0, L) be the Sobolev space defined as

H2(0, L) =

{
f(x)|

∫ L

0

f 2 + (f ′)2 dx <∞
}
, (5.8)

and Hs(0, L) = {f(x) ∈ H2(0, L)|f(0) = f(L) = 0}. Define the state space

Z =

[
Hs(0, L)
L2(0, L)

]
, z(t) ∈ Z. (5.9)

Rewrite the PDE (5.1) as

ż(t) = Az(t) +B1d(t) +B2u(t), (5.10)

ż(t) =
∂

∂t

[
w(x, t)
∂w(x,t)
∂t

]
= A

[
w(x, t)
∂w(x,t)
∂t

]
+

[
0

1
µ
b1(x)

]
w(t) +

[
0

1
µ
b2(x)

]
u(t) (5.11)

where the operator A is

A =

[
0 I

−EI
µ

∂4

∂x4
−Cd

µ
∂4

∂x4
− Cv

µ
I

]
. (5.12)

The domain of the operator A is

D(A) ={[ φ(x)
ψ(x)

]
|ψ ∈ Hs(0, L), (5.13)

− EI

µ

∂4φ

∂x4
− Cd

µ

∂4ψ

∂x4
− Cv

µ
ψ ∈ L2(0, L), (5.14)

φ(x) = 0, x = 0, L (5.15)

EI
∂2φ

∂x2
(x) + Cd

∂2ψ

∂x2
(x) = 0, x = 0, L } . (5.16)

The solution of (5.1) is expanded in terms of the eigenfunctions of the undamped
system because working with these eigenfunctions is easier than working with the
eigenfunctions of the damped system. These correspond to the eigenfunctions of the
matrix A in (5.12) with parameters Cd = Cv = 0. The following lemmas discuss the

eigenfunctions of the operators −EI
µ

∂4

∂x4
and the undamped operator A.
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Lemma 5.1.1. The eigenfunctions φn and the eigenvalues λn of the operator
∂4

∂x4

in the interval [0, L] with the boundary conditions φ(x) =
∂2φ

∂x2
(x) = 0 at x = 0, L

are

λn =
(nπ
L

)4

, φn(x) = sin
(nπx
L

)
. (5.17)

Proof. By definition

∂4φ

∂x4
= λφ, (5.18)

φ(x) =
∂2φ

∂x2
(x) = 0, x = 0, L. (5.19)

Let w be a solution of w4 = λ. Then −w, iw,−iw are also solutions. Therefore

φ(x) = c1e
wx + c2e

−wx + c3e
iwx + c4e

−iwx. (5.20)

Using the four boundary conditions

c1 + c2 + c3 + c4 = 0, (5.21)

c1e
wL + c2e

−wL + c3e
iwL + c4e

−iwL = 0, (5.22)

c1 + c2 − c3 − c4 = 0, (5.23)

c1e
wL + c2e

−wL − c3e
iwL − c4e

−iwL = 0. (5.24)

In matrix notation



1 1 1 1
ewL e−wL eiwL e−iwL

1 1 −1 −1
ewL e−wL −eiwL −e−iwL







c1

c2

c3

c4


 =




0
0
0
0


 . (5.25)

To get a non-zero solution the kernel of the first matrix on the left hand side must
contain a nonzero element. Since adding or subtracting rows from each other does
not change the kernel

ker(




1 1 1 1
ewL e−wL eiwL e−iwL

1 1 −1 −1
ewL e−wL −eiwL −e−iwL


) = ker(




0 0 1 1
0 0 eiwL e−iwL

1 1 0 0
ewL e−wL 0 0


). (5.26)
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In order for two of the rows to be dependent, w must be either
nπ

L
or

inπ

L
. In either

case

λ = w4 (5.27)

=
(nπ
L

)4

. (5.28)

If w =
nπ

L
then there are three independent rows in (5.26), the kernel has dimension

one and 


c1

c2

c3

c4


 =




0
0
c3

−c3


 (5.29)

satisfies (5.25). Equations (5.29) and (5.20) imply

φ(x) = ceiwx − ce−iwx (5.30)

= c(cos(wx) + i sin(wx)− (cos(−wx)− i sin(−wx))) (5.31)

= 2ci sin(wx), (5.32)

= 2ci sin(
nπx

L
). (5.33)

The factor 2ci can be dropped because a scaled eigenfunction is also an eigenfunction.

A similar argument applies to the case w =
inπ

L
.

Lemma 5.1.2. The eigenfunctions and the eigenvalues of the operator −EI
µ

∂4

∂x4

with the same boundary conditions as in Lemma 5.1.1 are

λn = −EI
µ

(nπ
L

)4

, φn(x) = sin
(nπx
L

)
. (5.34)

Proof. This follows immediately from Lemma 5.1.1 and (5.18).

Lemma 5.1.3. The Eigenfunctions and eigenvalues of

A =

[
0 I

−EI
µ

∂4

∂x4
0

]
(5.35)

are

λ = ±i
√
EI

µ

(nπ
L

)2

,

[
φ(x)
ψ(x)

]
=

[
sin(nπx

L
)

λ sin
(
nπx
L

)
]
. (5.36)
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Proof. By definition

λ

[
φ(x)
ψ(x)

]
= A

[
φ(x)
ψ(x)

]
(5.37)

=

[
ψ(x)

−EI
µ
∂4φ(x)
∂x4

]
, (5.38)

φ(x) =
∂2φ

∂x2
(x) = 0, x = 0, L. (5.39)

Therefore

ψ(x) = λφ(x), (5.40)

−EI
µ

∂4φ(x)

∂x4
= λ2φ. (5.41)

By Lemma, 5.1.2 λ2 = −EI
µ

(nπ
L

)4

. Therefore,

λ = ±i
√
EI

µ

(nπ
L

)2

. (5.42)

Using Lemma 5.1.2 and (5.40)
[
φ(x)
ψ(x)

]
=

[
sin(nπx

L
)

λ sin(nπx
L

)

]
.

The deflection w(x, t) is written as a sum of the normalized eigenfunctions.
Rewrite

w(x, t) =
∞∑

n=1

an(t)

√
2

L
sin
(nπx
L

)
. (5.43)

The state variable z(t) is created using the coefficients an and their time derivatives
ȧn. For the first n coefficients of w(t)

z(t) =




a1(t)
a2(t)

...
an(t)
ȧ1(t)
ȧ2(t)

...
ȧn(t)




. (5.44)
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Using (5.12), (5.43) and (5.44) the state matrix A of the size 2n× 2n is

A =




0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 1

−π4EI
µL4 0 · · · 0 −π4Cd

µL4 − Cv
µ

0 · · · 0

0 −24π4EI
µL4 · · · 0 0 −24π4Cd

µL4 − Cv
µ
· · · 0

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · −N4π4EI
µL4 0 0 · · · −N4π4Cd

µL4 − Cv
µ




·

(5.45)

Matrices B1, B2 are described next. In (5.5), b1(x) is defined as a Gaussian
function. Matrix B1 is a 2N × 2 column vector where in the first column, the first
half of the elements are zero because of (5.11) and the second half are the Fourier
sine coefficients of b1(x).

b1(x) =
∞∑

n=1

b1n

√
2

L
sin
(nπ
L
x
)
, (5.46)

where

b1n =

∫ L

0

b1(x)

√
2

L
sin
(nπ
L
x
)
dx. (5.47)

The second column of B1 is all zeros.

B1 = α




0 0
0 0
...

...
0 0
b11 0
b12 0
...

...
b1n 0




. (5.48)
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The number of columns in B1 correspond to the number of disturbances. There are
two disturbances; one of them only affects the state and the other only affects the
sensor. The effect of the disturbance on the sensor is described by D21 which is
defined as

D21 =
[

0 I
]
. (5.49)

The structure for D21 and B1 ensures that D21D
∗
21 = I and B1D

∗
21 = 0 which

are taken as assumptions in section 3.1. These assumptions simply the algebraic
derivations in the H2-optimal theory. In the simulations B1 is scaled by a scaling
factor α for investigating the effect of the disturbance strength. The scaling factor
varies between 1 and 103. For each result, the scaling factor is mentioned on the
graph.

The matrix B2 corresponds to the function b2(x) as defined in (5.6) and describes
the actuator. It is a 2N × 1 column vector where the first half of its elements are
zero because of (5.11) and the second half are the Fourier sine coefficients of b2(x)
calculated according to

b2(x) =
∞∑

n=1

b2n

√
2

L
sin
(nπ
L
x
)

(5.50)

where

b2n =

∫ L

0

b2(x)

√
2

L
sin
(nπ
L
x
)
dx

=

√
2L

2danπ

[
cos
(nπ
L

(xa − da)
)
− cos

(nπ
L

(xa + da)
)]
.

(5.51)

The matrix B2 is

B2 =




0
0
...
0
b21

b22
...
b2n




. (5.52)
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Matrices C1, D12 are defined as

C1 =

[
In×n 0n×n
01×n 01×n

]

n+1×2n

, D12 =




0
0
...
0
1



. (5.53)

The above structure guarantees C∗1D12 = 0 and D∗12D12 = I so that the assump-
tions A2 and A3 in section 3.1 are satisfied. These are simplifying assumptions in
the H2-optimal theory. The identity matrix in C1 means all the coefficients in (5.43)
are weighted equally. The zeros in the top right corner of C1 mean that the second
half of (5.44) is not included in the cost. These are the time derivative of the Fourier
sine coefficients and correspond to the velocity of the beam. The matrix C1 is scaled
by different constants such as 100, 101, 102 and 103 in the simulations to investigate
the influence of the state weight. For each result, the corresponding scaling fac-
tor is mentioned on the same graph. Scaling C1 does not change the orthogonality
condition with D12.

The matrix C2 corresponds to the function c(x) as defined in (5.6). The sensor
measures the average of w(x, t) in [xs − ds, xs + ds]. Similar to b1(x) and b2(x), the
Fourier sine coefficients of c(x), Equation (5.6), are found as

c(x) =
∞∑

n=1

c2n

√
2

L
sin
(nπ
L
x
)
, (5.54)

where

c2n =

∫ L

0

c(x)

√
2

L
sin(

nπ

L
x)dx

=

√
2L

2dsnπ

[
cos(

nπ

L
(xs − ds))− cos(

nπ

L
(xs + ds))

]
.

(5.55)

Using (5.55),
C2 =

[
c21, c22, . . . , c2n, 0, 0, . . . , 0

]
. (5.56)

Since there is only one sensor, C2 has one row and because the sensor only
measures w and not ẇ the second half of C2 is made of zeros. These zeros correspond
to the time derivatives of the Fourier coefficients in (5.44).
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In (5.52), (5.48), (5.45) and (5.44), only the first n coefficients of w(x, t) are in-
cluded. In [22], it is shown that for a damped beam the optimal actuator locations
and the corresponding costs, calculated based on the nth system (An, B1n, B2n, C1n),
converge as n increases. Compactness of the operators B1, B2, C2 and C1 is relevant
for the convergence of results. The first three operators are compact because either
their input or output is finite-dimensional. Operator C1, as defined in (5.53), is a
compact operator between the spaces Hs(0, L) and L2(0, L). Convergence of the op-
timal sensor locations and the corresponding costs follows analogously to the results
about actuators in [22].

The convergence is also shown numerically. Figures 5.2 and 5.3 show the effect
of increasing n. The first figure shows the exact and approximate shapes of the
disturbance and the actuator. The second figure shows that as n grows from 1 to 10
the graphs of the full control cost as defined in (4.5) converge. Parameters da and ds
are set to 0.05. This choice makes the sensor and the actuator localized. The variance
of the disturbance, σ, is set to 0.25. This choice corresponds to a disturbance that
has a wider width that the actuator.

In this section, the PDE is approximated using the Fourier sine series. If the
PDE is approximated using a different approach, such as the local basis in the finite
element method, one does not necessarily get the same system. As the approximation
order increases, both methods converge to the original system, however, for low
order approximations the costs will be different. On the other hand, if there exists a
similarity transformation between two different systems, they both correspond to the
same cost. In other words, costs J1 and J2 as defined in (4.5) and (4.6) are invariant
under a similarity transformation.
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Figure 5.2: Exact shape of an interval characteristic function which is used as the
actuator and sensor and a Gaussian function that represents the disturbance are
shown in the left graph. In the right graph the approximations with 30 Fourier
coefficients are shown. The approximations are used in the model.
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N ||fN − fN−1||L2
5 1722
6 393
7 16.84
8 0
9 0.43
10 0.23
11 0.032
12 0
13 0.0027
14 0.0014

Table 5.1: (c)

Figure 5.3: Figure(a) shows the full control cost for different number of modes. Variable
N represents the number of modes and it ranges from 1 to 10. For N = 6 to 10 the
graphs overlap. Figure(b) shows the shape of the disturbance. Matrix B1 as defined
in (5.48) is scaled by 3 × 102. This scaling moves the global minimum in Figure(a)
towards the center of the Gaussian in Figure(b). Table(c) shows the L2-norm of the
difference between consecutive graphs in Figure(a). Function fn represents the corre-
sponding graph in Figure(a). Since the numbers in Table(c) are approaching zero, the
corresponding functions fn are converging.
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The next series of figures describe the effect of changing different model parameters.
In all the figures, the red cross is the optimal sensor location. Figure 5.4 shows a
Gaussian disturbance on the left side of the beam, and the full control cost as a function
of the sensor position. The energy of the disturbance, the norm of the first column of
matrix B1, is increased respectively by 100, 101, 102 and 3 × 102. The series of plots
show that as the scaling factor increases the optimal sensor location moves towards the
center of the disturbance.

Figure 5.5 reaffirms the previous discussion by showing the disturbance in three
different locations, while the scaling factor for B1 is kept at 300. The three graphs
show the full control cost vs. the sensor position on the beam, and they indicate, for
different centers of disturbance, the optimal sensor location is close to the center of the
disturbance.

Figure 5.6 shows the output feedback cost for three different combinations of the
disturbance and actuator positions. As the actuator is moved to the right, the shape of
the graph does not change significantly, however scaling B2 does change the shape. In
Figures 5.7 and 5.8, the affect of scaling B2 is shown. In Figure 5.7, B2 is scaled by 103

and, as the actuator moves, the optimal sensor location moves in the same direction.
In Figure 5.8, B2 is scaled by 100, 101, 102 and 103. As the scaling factor increases, a
location between the disturbance and the actuator corresponds to a cost that is close
to the optimal cost.

The effect of the state weight, C1, on the output feedback cost is shown in Figure
5.9. The disturbance and the actuator are fixed while, C1 is scaled by 100, 101, 102

and 103. The different scaling factors change the shape of the graph, but, they do not
change the optimal sensor location significantly.

Finally, Figure 5.10 shows the effect of scaling B1 in the output feedback cost.
Matrices C1 and B2 are fixed while B1 is scaled by 100, 101, 102, 3× 102 and 103.

The results can be summarized as follows. Scaling matrices B1 and C1, with factors
larger than one, moves the optimal sensor location towards the center of the disturbance
for both full control and output feedback costs. Scaling B2 creates another location,
between the disturbance and the actuator, that has a cost close to the optimal value.
In the full control case, if B1 is scaled by a factor less than or equal to one, the optimal
sensor location moves closer to the middle of the beam. The scaling factors for B1, B2

and C1 change the matrices that are part of the Riccati equations in (4.5) and (4.6),
and therefore, affect the optimal sensor location. In the absence of any scaling, the
optimal location for the full control cost is off-centered towards the disturbance, and
in the output feedback cost, it is at the center of the beam. The results illustrate that
the optimal sensor location tends to be close to the disturbance. This is in agreement
with the results in [10], where the placement optimization is done for two sensors, and
the optimal location for one of the sensors is found to be at the disturbance location.
Similarly, the analogous results for the optimal actuator location from [22] show that
the optimal location is close to the disturbance.
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Figure 5.4: Figure(a) shows the disturbance. The next five graphs show the H2-
full control cost vs sensor location with different scaling factors for the disturbance.
The disturbance is represented by the first column of matrix B1 in the state space
equation, (5.48). As the scaling factor changes from 1 to 300, the optimal sensor
location approaches the disturbance center. The red cross is the optimal sensor
location.
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Figure 5.5: Figures(a,c,e) show the disturbance shape while Figures(b, d, f) show the
full control cost. The length of the beam is divided into 100 points and for a sensor
placed at each position the H2 full control cost is calculated. In all of the simulations,
B1 as defined in (5.48) is scaled by 3× 102. This scaling moves the global minimum
of the figures on the right towards the centers of the Gaussian functions on the left.
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Figure 5.6: Figures(a,c,e) show the shape of the disturbance B1 and the actuator B2.
The corresponding figures on the right show the output feedback cost. In the output
feedback cost the disturbance and the actuator are involved. Matrix B1 is scaled by
300 in all the three simulations. As the actuator moves to the right, the optimal
sensor location does not change significantly. Matrix B2 has a smaller influence
compared to B1. The red cross shows the optimal sensor location.
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Figure 5.7: Figures(a,c,e) show the shapes of the disturbance B1 and the actuator
B2. The corresponding figures on the right show the output feedback cost. Matrices
B1 and B2 are scaled by 3 × 102 and 103 in the three simulations. As the actuator
moves to the right, the optimal sensor location moves to right as well. In contrast to
Figure 5.6, the actuator location affects the optimal sensor location. The red cross
shows the optimal sensor location.
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Figure 5.8: Figure(a) shows the disturbance B1 and the actuator B2. The output
feedback cost is calculated for four different scaling factors for B2. The scaling factors
are 100, 101, 102 and 103 and are indicated in the appropriate figures. The matrix
B1 is scaled by 300. The red cross is the optimal sensor location. Although scaling
B2 changes the shape of the graph for Figures(b,c,d) it does not significantly change
the optimal sensor location. In Figure(e) the sensor location just to the right of the
middle of the beam has a cost that is close to the optimal cost.
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Figure 5.9: Figure(a) shows the shape of the disturbance B1 and the actuator B2.
The other four figures show the output feedback cost for different scalings of C1.
The red cross shows the optimal sensor location. Increasing the scale factor for C1

changes the graph of the H2 output feedback cost but does not change the optimal
sensor location significantly. Matrix B1 is scaled by by 300.
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Figure 5.10: Figure(a) shows the disturbance B1 and actuator B2. The other four
figures show the output feedback cost for different scalings of B1. Matrices C1 and
B2 are not scaled. As the scaling factor increases the optimal sensor location moves
toward center of the disturbance. Figure(c) is symmetric with respect to the middle
of the beam, therefore there are two optimal sensor locations.
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5.2 Diffusion in Two Dimensions

The first equation in (5.57) is the two-dimensional diffusion equation with additional
disturbance and control terms. The second equation describes the sensor measure-
ment and the third equation is the boundary condition. The domain is the L-shaped
region shown in Figure 5.11 and is represented by Ω. The parameter σ describes the
diffusivity.

∂T (x, y, t)

∂t
= σ

(
∂2T (x, y, t)

∂x2
+
∂2T (x, y, t)

∂y2

)
+ b1(x, y)w(t) + b2(x, y)u(t), (5.57)

y(t) =

∫

Ω

c(x, y)T (x, y, t)dxdy, (5.58)

T (x, y, t) = 0 (x, y) ∈ ∂Ω. (5.59)
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Figure 5.11: The domain is an L-shaped region. There are three regions inside the
domain. The black region, labeled S, represents the sensor. The blue region, labeled
D, represents the disturbance. The red region, labeled A, represents the actuator.

The disturbance, actuator and sensor functions are

b1(x, y) =





0 (x, y) 6∈ D
1

area(D)
(x, y) ∈ D , b2(x, y) =





0 (x, y) 6∈ A
1

area(A)
(x, y) ∈ A , (5.60)

c(x, y) =





0 (x, y) 6∈ S
1

area(S)
(x, y) ∈ S . (5.61)
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The state space is defined to be L2(Ω). The state operator is A = σ∇2. Let
H2(Ω) be a Sobolev space defined as

H2(Ω) =

{∫

Ω

f 2 + |∇f |2 dΩ <∞
}
. (5.62)

The domain of the operator is defined as

D(A) = {f(x, y)|f(x, y) ∈ H2(Ω), f(x, y) = 0 when (x, y) ∈ ∂Ω} . (5.63)

In order to find the optimal sensor location, the sensor is moved on a grid, see
Figure 5.12, and for each point on the grid the H2-optimal costs as defined in (4.5)
and (4.6) are calculated.
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Figure 5.12: The cost function is calculated for each position of the sensor.

The PDE and the boundary conditions are projected onto a finite-dimensional
state space using the Finite Element Method (FEM). For an introduction to FEM
see [12], [17] or [27].

A mesh is required for FEM. The MATLAB commands in Appendix A code (1)
create the L-shaped region and the mesh, see Figure 5.13.
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Figure 5.13: MATLAB commands decsg and initmesh create the L-shaped domain
and a mesh respectively.

The superposition of the three regions S, D and A in Figure 5.11 and the mesh
in Figure 5.13 results in partial overlap between the mesh triangles and the regions,
see Figure 5.14. The partial overlap is an issue because in the generalized plant the
sensor needs to be represented as a matrix and each vertex in the mesh corresponds
to one of the elements of the state vector. For a triangle that partially overlaps with
the sensor region, it is not clear if its vertices should be included in the sensor or not.
There are several ways to handle this problem. For the function c(x, y) and region
S, the usual way is to project the function into the finite element space

[C2]j =

∫

Ω

c(x, y)φj(x, y)dΩ. (5.64)

The mesh can be modified to reduce the partial overlap. Two approaches are dis-
cussed for modifying the mesh. The first way is to create the mesh in such a way
that each triangle is either completely inside or outside each region, as in Figure 5.15.
The MATLAB code in Appendix A code (2) creates a mesh such that the triangles
fit the regions perfectly. The second way is to refine the mesh locally inside each
region and only include the vertices that are inside the region, see Figure 5.16. The
MATLAB code in Appendix A code (3) shows how to refine the mesh around the
region S. The process for regions A and D is similar.
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Figure 5.14: The three regions from Figure 5.11 and the mesh from Figure 5.13 are
shown. Some of the mesh triangles partially overlap with the regions.
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Figure 5.15: The triangles are either completely inside each region or outside. The
MATLAB command initmesh considers the boundary of the regions when creating
the mesh. Compared to Figure 5.14, there are additional small triangles around each
region.
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Figure 5.16: The mesh is locally refined inside each region.

As the sensor moves as shown in Figure 5.12, the mesh changes. If the mesh is
organized according to the method in Figure 5.15 the entire mesh changes as the
sensor moves. If the mesh is organized according to the method in Figure 5.16, the
unrefined mesh stays fixed and some local refinement is added. These methods are
computationally intensive for optimizing the sensor location because the mesh needs
to be regenerated for every location of the sensor.
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Figure 5.17: Figures a and b show the sensor at two different locations with meshes that are generated
according to the method in Figure 5.15. Note that the entire mesh is adjusted. Figures c and d show the
mesh refined locally at the sensor position as in Figure 5.16.
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Figure 5.18: This type of mesh is called a structured mesh. As the sensor moves
on the grid, the mesh does not change. However, the sensor must only move on the
grid.

To avoid the mesh from changing when the sensor moves, a structured mesh can
be used, see Figure 5.18. The advantage of this method is that the mesh is fixed.
However, one disadvantage is that the sensor must move on the grid. This limits
the step size for the sensor movement. Another disadvantage is that any refinement
must apply to the entire domain to preserve the structure. The third disadvantage is
that it is harder to cover the domains that are not shaped like a rectangle. In Figure
5.19 the results obtained by the structured mesh and the other two approaches are
compared. Graphical comparison of the results suggests that the structured mesh is
the best choice.

In order to obtain the space state form, equation (5.57) is multiplied by a smooth
test function V (x, y) that is zero on the boundary of the domain Ω and both sides
of the equation are integrated over Ω. Using the Green’s identity one of the spatial
derivatives of T is passed to V . This is the standard procedure in FEM.
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x

Ω

V Tt = σ
x

Ω

V (Txx + Tyy) +
x

Ω

V b1w(t) +
x

Ω

V b2u(t) (5.65)

x

Ω

V Tt = −σ
x

Ω

VxTx + VyTy +

∮

∂Ω

V (Tx, Ty) · n ds+
x

Ω

V b1w(t) +
x

Ω

V b2u(t). (5.66)

Because V is zero on the boundary the second term on the right hand side is zero. Let φi(x, y) be the functions
in the basis that is used to approximate the solution. They can be linear or higher order polynomials. Only
linear terms are considered here because they provide sufficient accuracy. Approximate T, V, b1 and b2 by a

linear combination of φi(x, y) as T (x, y, t) =
n∑

i=1

φipi(t), V (x, y) =
n∑

i=1

φivi, b1(x, y) =
n∑

i=1

φib1i and

b2(x, y) =
n∑

i=1

φib2i. Using matrix notation T, V, b1 and b2 are rewritten as

T =
n∑

i=1

φipi(t) =
[
φ1, φ2, . . . , φn−1, φn

]




p1

p2
...

pn−1

pn



, V =

n∑

i=1

φivi =
[
v1, v2, . . . , vn−1, vn

]




φ1

φ2
...

φn−1

φn



,

(5.67)

b1 =
n∑

i=1

φib1i =
[
φ1, φ2, . . . , φn−1, φn

]




b11

b12
...

b1(n−1)

b1n



, b2 =

n∑

i=1

φib2i =
[
φ1, φ2, . . . , φn−1, φn

]




b21

b22
...

b2(n−1)

b2n



.

(5.68)

Note that V has the transpose structure of the other three. Equation (5.66) is rewritten using the matrix
notation.
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x

Ω

[
v1, . . . , vn

]


φ1
...
φn



[
φ1, . . . , φn

]


ṗ1
...
ṗn


 =

−σ
x

Ω

[
v1, . . . , vn

]


φ1x

...
φnx



[
φ1x, . . . , φnx

]


p1
...
pn


− σ

x

Ω

[
v1, . . . , vn

]


φ1y
...
φny



[
φ1y, . . . , φny

]


p1
...
pn




+
x

Ω

[
v1, . . . , vn

]


φ1
...
φn



[
φ1, . . . , φn

]


b11
...
b1n


+

x

Ω

[
v1, . . . , vn

]


φ1
...
φn



[
φ1, . . . , φn

]


b21
...
b2n


 .

(5.69)

Since
[
v1, . . . , vn

]
is arbitrary, it is removed. Define the stiffness matrix K and the mass matrix M as

K = σ
x

Ω



φ1xφ1x + φ1yφ1y . . . φ1xφnx + φ1yφny

... . . .
...

φnxφ1x + φnyφ1y . . . φnxφnx + φnyφny


 , (5.70)

M =
x

Ω



φ1φ1 . . . φ1φn

... . . .
...

φnφ1 . . . φnφn


 . (5.71)

The mass matrix M is invertible. This is because each φi corresponds to a distinct row of M , and hence these
rows can not be linearly dependent. This is equivalent to arguing that the non-overlapping mesh structure
implies M is invertible. Equation (5.69) can be rewritten as

M



ṗ1
...
ṗn


 = −K



p1
...
pn


+M



b11
...
b1n


w(t) +M



b21
...
b2n


u(t), (5.72)



ṗ1
...
ṗn


 = −M−1K



p1
...
pn


+



b11
...
b1n


w(t) +



b21
...
b2n


u(t). (5.73)
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Equation (5.73) is in the state space form. By matching (5.73) to (2.1), the
following definitions are obtained.

A = −M−1K, state variable =



p1
...
pn


 , B1 =



b11 0
...

...
b1n 0


 , B2 =



b21
...
b2n


 .

(5.74)

The additional column of zeros in B1 correspond to a second disturbance that
does not affect the state. This disturbance only affects the sensor measurement. The
matrix D21 describes the effect of the disturbance on the sensor measurement. It
is defined as D21 =

[
0 1

]
. The structure for B1 and D21 satisfies B1D

∗
21 = 0

and D21D
∗
21 = I which are simplifying assumptions from section 3.1. These are

simplifying assumptions in H2-control theory. For each b1i, if the corresponding
mesh vertex is inside the disturbance region, b1i is one, otherwise it is zero. Similarly
for b2i if the corresponding mesh vertex is inside the actuator region, b2i is one,
otherwise it is zero. Then the first columns of B1 and B2 are normalized.

The MATLAB command “assema” was used to create the matrices M and K.
The process for calculating the integrals in equations (5.70) and (5.71) is called
assembling, hence the name “assema”. See MATLAB’s documentation for “assema”.

[K,M,~]= assema(p,t,σ ,1,0);

Recall that a generalized plant has the structure

G =



A B1 B2

C1 0 D12

C2 D21 0


 .

The matrices C1, C2 and D12 are

C1 =

[
In×n
01×n

]

n+1×n
, C2 =

[
c21 c22 . . . c2n

]
, D12 =




0
...
0
1



n+1×1

. (5.75)
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The above structure guarantees C∗1D12 = 0 and D∗12D12 = I which are simplifying
assumptions from section 3.1. Scaling C1 does not change these relationships. The
identity matrix in C1 means all the elements in the state variable are weighted equally.
Since there is only one sensor, C2 has one row. Each c2i in C2 corresponds to a mesh
vertex. If the vertex with index i is inside the sensor region, c2i is a constant otherwise
C2i is zero. The constant is set to a value so that C2 is normalized to one.

In order to calculate the H2-optimal costs (4.5) and (4.6), at least one Riccati
equations needs to be solved for each position of the sensor. Solving the Riccati
equations repetitively takes the majority of the calculation time. The MATLAB
command for continuous time Riccati equations, “care”, solves the equation using
Schur factorization of the Hamiltonian that is associated with the Riccati equation.

Figure 5.19 shows the the full control results for the three different types of mesh
discussed previously. By graphical comparison of the results, it seems the structured
mesh is the best choice. However if enough computational power is available, the
results should converge for all three different mesh types given a refined enough mesh
(see the comments on timing below). Additional artifacts can be introduced because
of the contouring algorithm. See the MATLAB documentation for “contourf”.

An important issue is the convergence of the results when the mesh is refined.
The results in [22] show that the optimal actuator costs and the optimal actuator
locations converge for a sequence of finite element approximations with increasingly
refined meshes. The convergence of optimal sensor costs and optimal sensor locations
follow from the duality between the actuators and sensors. Figure 5.20 shows the full
control costs on three structured meshes with resolutions, 0.2, 0.1, 0.05. As the mesh
is refined the computational cost for solving the Riccati equations increases. The time
for the simulations are roughly 10 seconds, 3 minutes and 10 hours respectively on
a Mac mini with a 2.5 GHz Intel Core i5 processor. As the mesh element is divided
by two in both x and y direction the number of mesh points is roughly multiplied by
four. The size of matrix A in the Riccati equation quadruples in each direction and
the number of Riccati equations that need to be solved increases by a factor of four.
Because the computational cost can become impractical, typically an optimization
procedure is used to guide the search. However since only one sensor is considered
here no optimization method is used.
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Figure 5.19: The full control results from the three different mesh types are shown. Figure b is based on the
mesh in Figure 5.15 where mesh points are placed exactly on the boundary of the regions S and D. Figure
c is based on the mesh from Figure 5.16 where there is a fixed mother mesh and the mesh is locally refined
in the regions. Figure d is based on a structured mesh. Graphically comparing the results, the structured
mesh seems to be the best choice. The resolution for the sensor movement in all three figures is 0.1 in both
directions. Matrix B1 is scaled by 10 and σ = 1.
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Figure 5.20: Figures a, c and e show three structured meshes with resolutions 0.2, 0.1 and 0.05. Figures b, d
and f show the corresponding results. The largest values are 6.5, 12 and 22 and the lowest are 3.5, 4.5 and
4.2 respectively. Matrix B1 is scaled by 10 and σ = 1.
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The mesh comparisons show that additional artifacts can appear in the results
if the mesh changes as the sensor moves. Using a structured mesh can solve this
problem at the expense of more computation. Refining a structured mesh a few
times can make the time for the computations impractical (on a desktop computer).

Based on comparing the results for the structured mesh on three different resolu-
tions, the contours of constant cost value for the cost function become more smooth
with mesh refinement.

The zero Dirichlet boundary conditions guarantee that the matrix A is Hurwitz
because the steady state solution is zero. If all the boundary conditions are changed
to Neumann with zero flux, then one of the eigenvalues of A will be zero because
the steady state solution changes to a constant that is not necessarily zero. The
stabilizability of (A,B2) needs to be verified as required by assumption A1 in section
3.1. However if at least one segment of the boundary has a constant negative flux
or a Robin boundary condition where the there is a negative flux that depends on
the state variable then the matrix A becomes Hurwitz again and assumption A1 in
section 3.1 is satisfied.

The effect of scaling B1, B2 and σ are shown in Figures 5.21, 5.22 and 5.23. The
effect of moving the actuator to a new location is shown in Figure 5.24. Scaling
B1 increases the difference between the cost at the optimal location and the cost in
the area surrounding the optimal location. Scaling B2 does not change the output
feedback cost significantly. Decreasing σ expands the blue region. The optimal sensor
location belongs to this region.

The discussion can be summarized as follows. The full control results in Figure
5.20 show that the optimal sensor location is at same place as the disturbance. This
is in agreement with the analogous results for the optimal actuator location from
[22] where it is found that the optimal actuator location is likely to be close to the
disturbance location. In the output feedback results, the optimal sensor location
is also at the disturbance location. Reducing the diffusivity parameter significantly
increases the blue region and the optimal sensor location belongs to this area. This
means for a smaller σ, the sensor can be placed further away from the disturbance
and still an output feedback cost close to the optimal cost can be obtained.

The L-shaped domain was chosen so that the domain is not complicated but also
not as simple as a rectangle. The size of the disturbance and the actuator regions
are modeling choices. The particular sizes chosen here are inspired by a window and
a heater that cover part of a wall in a room. As the mesh is refined further, the
computational costs grow. If there are multiple sensors on a high resolution mesh,
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the brute force method is computationally too intensive and an optimization method
is needed. However in this work only one sensor is considered.

One issue is inverting the mass matrix, M , in (5.73). As the mesh is refined and
M grows, matrix inversion becomes more time consuming. If the mesh is changed
for each sensor position, the inverse of M needs to be calculated repeatedly. Fur-
thermore, it is best to avoid matrix inversion in numerical methods because it is
an unstable operation, however, typically M is sparse and it is possible to reorder
the mesh vertices so that its nonzero elements are closer to the diagonal. In [28,
chapter 3, page 160] a few algorithms are discussed that ensure M is block diagonal.
Alternatively, it is possible to utilize Equation (5.72) directly which does not require
the inverse of M . The MATLAB routine “care”, for solving the algebraic Riccati
equations (4.3) and (4.4) with A defined as in (5.74), has an option for doing so
without explicitly inverting the mass matrix. Also , in [18], a technique for solving
the H∞ Riccati equations without inversion of the mass matrix is described.
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Figure 5.21: Figure(a) shows the disturbance B1. In Figures(b-c-d) the full control cost is shown as a function
of the sensor location. Matrix B1 is scaled by 100, 101 and 102 in the figures respectively. Diffusivity σ is 1
for all figures. Scaling B1 expands the blue area. This area corresponds to the lowest full control cost. The
optimal sensor location is inside the blue area.
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Figure 5.22: Figure(a) shows the actuator B2 and the disturbance B1. Figures(b-c-d) show the output
feedback cost as a function of the sensor position. Matrix B2 is scaled by 100, 101 and 102 in the figures
respectively. Matrix B1 is scaled by 10 and σ = 1 in all figures. The optimal sensor location is inside the blue
region. Increasing the scaling factor for B2 does not change the optimal sensor location significantly.
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Figure 5.23: Figure(a) shows the disturbance B1 and the actuator B2. Figures(b-c-d) show the output
feedback cost as a function of sensor location. In all figures B1 and B2 are scaled by 10. Parameter σ is
1, 0.1, 0.2 in Figures(b-c-d) respectively. Decreasing σ expands the blue region. The optimal sensor location
is inside the blue region.
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Figure 5.24: Figures(a-c-e) show the disturbance B1 and the actuator B2. Figures(b-d-f)
show the corresponding output feedback costs. Moving the actuator to a different position
does not change the costs significantly. The lowest cost in all graphs is in Figure(f) where
the actuator is the closest to the disturbance.
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Chapter 6

Conclusion and Future Work

In this work the H2-optimal control strategy and the H2-optimal sensor location
problem are explained. The H2-optimal control is designed for handling exogenous
disturbing inputs that are white Gaussian. There are two cost functions associated
with the H2-optimal sensor location problem. These are the full control and the
output feedback costs. In the full control cost only the performance of the sensor
is considered while in the output feedback cost the combined performance of the
sensor and the actuator is measured. The optimal sensor location is calculated for
two systems. The first system is the one-dimensional Euler-Bernoulli beam equation
with simply supported boundary conditions. Using the Fourier sine basis the state
space equations are created. Different scenarios are considered with the disturbance
and the actuator at various locations. The results show that the optimal sensor
location tends to be close to the disturbance location. The actuator location affects
the optimal sensor location in the direction of the actuator but not as strong as
the disturbance. The second system is the two-dimensional diffusion equation in
an L-shape region with zero Dirichlet boundary conditions. Using the finite element
method the state space equations are created. Three different approaches for creating
meshes are discussed and the structured mesh is chosen for the simulations. Because
the problem is in two dimensions, the computational costs are higher compared to the
beam system. The results show that the optimal sensor location is at the disturbance
location. In contrast to the beam system, the actuator location does not affect the
optimal sensor location significantly. The main computational difficulty is solving
the Riccati equations involved in the H2-costs repeatedly.

In this thesis the optimal location is found numerically, hence one possible exten-
sion is to find the optimal location using analytic techniques. Such a solution can
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potentially reduce the computational costs in a significant way. In this work only
one sensor is considered. The computational costs increase if there are more sensors.
The space of possible sensor positions grows exponentially with the number of sen-
sors. An interesting extension would be to investigate the optimization algorithms
for finding the optimal sensor location. One optimization algorithm for the optimal
LQR actuator location can be found in [8].

Another interesting future project is to verify the results obtained here experi-
mentally. Using a flexible beam or a system that obeys the diffusion equation one
can experimentally test the different sensor locations and compare the findings to the
ones predicted by theory. A signal generator would be needed to generate a white
Gaussian signal.

Another control strategy that is designed for exogenous signals is H∞. The
control strategy in H∞ is optimized to deal with the worst possible disturbance with
respect to the input-output L2-gain. The optimal sensor location problem can be
reformulated for H∞ and it would be interesting to compare the optimal location
results for H2 and H∞.

From an application point of view, an interesting extension would be a 3-D
convection-diffusion model with Robin boundary conditions. Such an equation can
model a heater in a room. The ideal model would be a convective cell where the
warm air circulates, however, such a model is nonlinear and would require nonlinear
control theory.
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Appendix - MATLAB Code

The MATLAB commands shown below create the L-shaped region and the mesh in
Figure 5.13.

% first six are x coordinates, the next six are y coordinates

roomCornerCoordinates = [0,0,1,1,2,2,0,1,1,2,2,0];

% 2 is for polygon, 6 sides

room = [2,6,roomCornerCoordinates]’;

objects = [room];

[geometry,~,~,~,~] = decsg(objects); % encodes the geometry

[p,e,t] = initmesh(geometry); % creates the mesh

pdemesh(p,e,t); % plot the mesh

axis square; % makes the units on the axes equal length
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The following MATLAB code creates a mesh such that the triangles fit the regions
perfectly as in Figure 5.15.

% all the x coordinates come first, then the y coordinates

roomCornersCoord = [0,0,1,1,2,2,0,1,1,2,2,0];

RegionSCornersCoord = [0.05,0.05,0.15,0.15,0.45,0.55,0.55,0.45];

RegionDCornersCoord = [1.1,1.1,1.2,1.2,1.05,1.95,1.95,1.05];

RegionACornersCoord = [1.05,1.05,1.95,1.95,0.1,0.2,0.2,0.1];

room = [2,6,roomCornersCoord]’;% 2 is for polygon, 6 sides

S = [3,4,RegionSCornersCoord]’;% 3 for rectangle, 4 sides

D = [3,4,RegionDCornersCoord]’;

A = [3,4,RegionACornersCoord]’;

% pad to enable concatenation, room is the longest

A = [A;zeros(length(room)-length(A),1)];

D = [D;zeros(length(room)-length(D),1)];

S = [S;zeros(length(room)-length(S),1)];

objects = [room,A,D,S];

geom = decsg(objects); % packing the geometric info

[p,e,t] = initmesh(geom);

pdemesh(p,e,t);

axis square;
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The following MATLAB code shows how to refine the mesh around the region S
as in Figure 5.16. The process for regions A and D is similar.

roomCornersCoord = [0,0,1,1,2,2,0,1,1,2,2,0];

room = [2,6,roomCornersCoord]’;

[geom,~,~,~,~] = decsg(room);

[p,e,t] = initmesh(geom);

triangles = FinaAllTrianglesThatNeedRefining(p,e,t);

[p,e,t]=refinemesh(geom,p,e,t,triangles,’regular’);

pdemesh(p,e,t);

--------------------------------------------

function triangles = FinaAllTrianglesThatNeedRefining(p,e,t)

%The syntax of polyxpoly needs the first number to repeated at the end again.

RegionS_XCornersCoord = [0.05,0.05,0.15,0.15,0.05];

RegionS_YCornersCoord = [0.45,0.55,0.55,0.45,0.45];

triangles = zeros(length(t),1);

counter = 1;

for i=1:length(t)

Triangle_XCoord(1,1:4) = [p(1,t(1,i)),p(1,t(2,i)),p(1,t(3,i)),p(1,t(1,i))];

Triangle_YCoord(1,1:4) = [p(2,t(1,i)),p(2,t(2,i)),p(2,t(3,i)),p(2,t(1,i))];

%find the intersection between the triangle and the region

IntersectWithS = polyxpoly(Triangle_XCoord,Triangle_YCoord,...

RegionS_XCornersCoord,RegionS_YCornersCoord);

if(~isempty(IntersectWithS))

triangles(counter) = i;

counter = counter + 1;

end

end

triangles(triangles==0) = []; % remove zeros;

end
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