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Abstract

Changeable Message Signs (CMS) are commonly utilized by transportation agencies to

inform motorists of traffic, roadway, and environmental conditions. They may be used

to provide information, such as delay and alternate route guidance, in the event of an

incident, construction or a roadway closure. The effectiveness of CMS in managing freeway

traffic, however, is a function of many factors including the number of CMS installations,

the location of CMS, the messages displayed, varied traffic network characteristics, and

drivers’ response to incident conditions and CMS information. The objective of this thesis

is to develop a CMS location planning model that can be used by transportation agencies

to develop a CMS location plan that could achieve the largest long-term benefit to the

system.

This research is mainly motivated by the lack of systematic, robust and practical meth-

ods for locating CMS. State-of-practice methods rely mostly on the practitioner’s experi-

ence and judgement. Other methods fail to incorporate reasonable driver behaviour mod-

els, consider time-varying demand, allow for computational efficiency on large networks,

or consider the spatial variation of incidents on a traffic network.

A new CMS location optimization model has been developed that is unique in both

model realism and computational efficiency. The model incorporates several components to

estimate incident delay, predict driver response, estimate network-wide benefit, and choose

those CMS locations that would provide the most benefit. Deterministic queuing methods

are used in conjunction with historic incident characteristics to approximate the delay

impact of an incident with and without CMS. A discrete choice model is used to predict

the rate at which drivers would switch from the incident route to a less congested alternative

under CMS information. A network traffic assignment model is then incorporated in an

attempt to estimate the resulting traffic induced by incidents. Genetic algorithms are
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utilized as an optimization technique to choose a set of CMS that would provide the most

benefit.

An extensive computational analysis was performed on both a hypothetical network

and a segment of Highway 401 through Toronto. A sensitivity analysis was performed to

test the model’s response to parameter and data estimation errors. The model was found

to be most sensitive to the diversion model parameters. The model produced reasonable

results with locations selected upstream of major freeway interchange diversion points.

Considering the additional components included in the proposed model, and its ability

to consider more location schemes, the proposed model may be considered superior to

previous CMS location models.
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CHAPTER 1

INTRODUCTION

1.1 Background

Freeway congestion in urban areas has increased steadily over the past 20 years. For

example, from 1982 to 2000 the average annual delay per commuter in major U.S. urban

areas increased from 16 hours to 62 hours (Schrank and Lomax, 2002). The total monetary

cost for this delay increase was estimated to be $67.5 billion US$ based on 3.6 billion hours

of delay and 5.7 billion gallons of excess fuel consumed.

Among the transportation community, it is generally believed that the strategy of

meeting demand through new road construction is too cost-prohibitive to be effective and

the focus should be shifted to better management of existing facilities. An increasingly

popular management method is the use of intelligent transportation systems (ITS), the ap-

plication of information technologies to transportation to save lives, time, money, energy

and the environment. Advanced Traveler Information Systems (ATIS), an integral compo-

nent of ITS, seek to provide accurate and timely information on traffic, weather and other

travel-related conditions to travelers. One of the primary ATIS methods for transportation

agencies to disseminate information to motorists is through the use of Changeable Message

Signs (CMS), also known as Variable Message Signs (VMS).

CMS can generally be defined to be any electronically controlled message sign dis-

played either above or beside a roadway for the purpose of providing travel information

to motorists. The message a CMS can display is usually programmed from a central traf-

fic control centre and is updated, either manually or through a computer algorithm, to

show current roadway conditions and events to drivers. CMS can be divided into one of

two types, transportable or permanently mounted. As the name implies, transportable

CMS are portable and may be moved based on current requirements. They are usually
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set-up temporarily at some locations to inform motorists of scheduled events such as road-

way construction, road closures or other types of special events. The use of permanently

mounted CMS differs from the transportable type in that their primary use is to respond to

unscheduled incidents, such as freeway accidents, with the additional capability of display-

ing scheduled event information. Additionally, CMS depend on other traffic management

technologies such as loop detectors and closed circuit television (CCTV) for monitoring

traffic conditions and incident detection algorithms for detecting incident occurrences in

real time (Figure 1.1).

ACCIDENT LOCATIONCMS

LOOP DETECTORS

COMPASS Control Center

INCIDENT DETECTION
ALGORITHM

VISUAL
CONFIRMATION

CCTV

DISPLAY
INFORMATION

Figure 1.1: CMS Data and Communication for Toronto COMPASS System

The deployment levels in both Canada and the US support the belief that CMS are an
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effective tool for information provision. In the US, 38 of the nation’s 75 largest metropoli-

tan areas utilize 1,799 CMS as part of their traffic management program (Gordon and

Trombley, 2001). This number is expected to increase as many additional metropolitan

areas are planning to implement CMS technologies, a trend represented in Figure 1.2.

Compared to the US, the deployment level of CMS in Canada has been modest, with only

63 CMS in the Greater Toronto Area, Ottawa, and Vancouver combined (Fu et al., 2003).

0
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Figure 1.2: US CMS Deployment (Gordon and Trombley, 2001)

The installation of new ITS infrastructure, however, requires significant economic com-

mitments. Furthermore, while transportation planners acknowledge CMS as a potentially

effective tool, the cost component associated with location and development would render

poor decisions difficult to correct. For instance, a recent survey of ITS technologies revealed

the cost of installing a CMS to be in the range of $80,000 to $120,000 US$ exclusive of

mounting and communications (Lockheed Martin and Odetics, 1997). An additional cost
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of mounting ($25,000 to $125,000 US$) is also a consideration since attachment to existing

highway structures is preferred, but not usually possible.

1.2 CMS Benefits in the Context of Freeway Traffic Management

Dudek (1997) performed a state-of-practice survey of CMS applications in 29 US states,

one US turnpike authority and one Canadian province (Ontario). The survey indicated

that CMS are used primarily for the following nine freeway management applications (per-

centage of agencies using):

• Incident/Traffic Management (72%),

• General Traffic Information/Warning (62%),

• Diversion Information (59%),

• Construction/Maintenance Support (55%),

• Warnings of Adverse Weather/Road Conditions (51%),

• Special Event Traffic Control (34%),

• Fog Warnings (31%),

• High Occupancy Vehicle/Contraflow Lane information (24%), and

• Reversible Lane Control (17%).

Incident and traffic management show the highest use of CMS (72%), indicative of the

widespread belief that incident management has the most potential for system benefit.
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This is supported by many studies that conclude incidents to be the cause of a signifi-

cant portion of congestion-induced delay. As an example, the Schrank and Lomax study

(2002) estimates that incidents cause anywhere between 52 and 58 percent of freeway delay.

Additionally, it is known that during these incidents traffic equilibrium is disrupted to a

point where the travel time through a freeway incident location is much higher than that

through an alternative route. So the potential does exist to provide delay reduction for a

large group of freeway motorists by diverting them through less congested areas.

The provision of general traffic information, the second most popular usage of CMS

at 62%, has not been shown in previous studies to produce any significant reduction in

system travel time. For example, a case study by Tarry and Graham (1995) suggested

that diversion rates are usually very low when no incident information is presented to

motorists. However, despite the common belief of its effect, advising motorists of demand-

induced congestion and travel time information on their predetermined routes can reduce

drivers’ anxiety (Chatterjee et al., 2002).

Diversion information, usually given concurrently with incident information, highly

depends on the availability of travel time information on alternative routes. These times,

when not available, lead to the reduced provision of diversion information since providing

poor quality information can be much worse than providing no information at all (Arnott

et al., 1991). 59% of the agencies surveyed use CMS to provide diversion information, the

third most popular CMS message type.

CMS are also extensively used for providing fog and other adverse weather warnings,

indicated by the 51% of agencies providing information of this type, with the expected

benefit of increased safety. Though this benefit has not yet been quantified, it is generally

believed that the reduction in traffic speeds observed during poor weather advisories would

decrease the risk of accidents. These applications are also somewhat different in that they
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are proactive to prevent problems before they occur compared to reactive strategies that

respond to problems.

The remaining application types are either of the planned or special type. In the case of

a planned capacity reduction, such as construction or special events, CMS is a redundant

source of information to support portable signs and other information sources. Specialized

CMS information, including reversible and high-occupancy vehicle lanes, are not applicable

to most freeway segments and will not be elaborated here.

In summary, while CMS have been deployed to provide a wide range of information,

the benefits of most information types have yet to be substantiated. Among the few

applications that have proven beneficial are incident management and provision of diversion

information. This suggests that any decision-making process relating to CMS installation

should first focus on these two areas with other applications as secondary objectives, at

least until reliable studies and models are developed.

1.3 The Research Problem

The discussion to this point has mainly focused on the studies of existing CMS deployments.

The popularity, cost component, and application types of CMS have all been presented

in addition to the role of CMS in the context of ITS freeway traffic management. Recent

US and Canadian deployment studies have indicated that the number of CMS is expected

to increase in the foreseeable future. However, an important issue that has not been fully

addressed is the planning of these future CMS installation locations.

The planning of future locations of CMS represents a significant knowledge gap in the

transportation systems planning process. Specifically, given a network and application

environment, how many CMS should be installed and where should these installations

be located? Existing guidelines merely indicate that CMS should be located upstream of
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major diversion points, bottleneck locations, and frequent accident locations (Abbas and

McCoy, 1999). There is no complete methodical approach to help senior planners decide

how many CMS and where to install these CMS. Therefore, a need exists to develop a

model that determines the optimal number of CMS to install and locates the CMS based

on some system-wide benefit measure.

Currently, CMS are allocated in an ad-hoc method such as installing CMS on high-

volume freeway segments close to points of diversion. The resulting decision may not be the

optimal solution, however, resulting in poor and expensive decisions. An alternate approach

of installing CMS at all freeway diversion points is also a poor policy for two reasons. First,

the cost would be prohibitive considering the initial construction, maintenance, and energy

requirements of these signs. The second reason relates to the diminishing effectiveness of

placing too many additional signs. If the entire freeway network were instrumented with

CMS it is likely that drivers would shift their attention away from the signs over time, since

incidents are relatively rare. Urgent messages relating to recent events would be missed by

motorists and the benefit of providing information could be lost.

1.4 Objectives and Scope

The main goal of this research is to develop a planning model for locating CMS in an

optimal way that maximizes the benefit of the information delivered through CMS to

users. The benefit would be a result of drivers diverting from an incident-induced highly

congested freeway segment to a less congested diversion route. The specific objectives

include:

1. Develop a method to estimate total vehicle delay both without and with CMS infor-

mation.
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2. Synthesize current driver behaviour models so that, for a specified incident condition,

the aggregate diversion response can be estimated.

3. Develop an efficient optimization method that can be used as a planning tool for

identifying the optimal locations of a given set of CMS.

4. Examine the sensitivity of the proposed model to stochastic variations and parameter

estimation errors.

It should be noted that while the scope of this research is limited to the consideration

of incident-induced delay, other CMS benefits can be incorporated into the model once

reliable information and models become available for quantifying the effect of information

provision.

1.5 Structure of this Document

The various aspects of the research are presented in seven chapters. Presented in Chapter 2

is an overview of past research relevant to this study. In Chapter 3, delay estimation using

deterministic queuing is discussed. The network benefit model is described in Chapter 4

and the optimization procedure for maximizing that benefit is presented in Chapter 5. A

case study of the Toronto freeway system is analyzed and sensitivity of the model to various

input and parameter estimations is discussed in Chapter 6. Finally, relevant conclusions

and future work are presented in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

Transportation researchers have only recently proposed models to locate CMS to max-

imize the expected transportation system benefit. Most of these models synthesize several

well-established component methods. Deterministic queuing theory, a method utilized in

many scientific and engineering disciplines, is an excellent tool for input-output analysis

and delay estimation resulting from capacity restrictions of a system. Utility theory, and

more specifically choice models, are commonly used to estimate both aggregate and dis-

aggregate choice behaviour. Lastly, genetic algorithms as an optimization tool are robust

in their ability to handle computationally difficult and implicitly structured problems in-

cluding location optimization. This section reviews each of these techniques followed by a

critical examination of directly related research.

2.1 CMS Location Models

A thorough literature review revealed only two directly related models to locate CMS.

Abbas and McCoy (1999) were the first in literature to study the problem of optimizing

CMS locations in a road network. Their location optimization objective (Equation 2.1)

was to maximize the potential reduction in vehicle delay due to traffic diversion to alterna-

tive routes in response to incident information provided by CMS. A simple deterministic

queuing model was used to estimate delays, and the associated delay savings (DS), with

and without CMS on a linear freeway network (Figure 2.1) considering a constant diversion

rate. However, it was not clear how issues such as over-saturated conditions, incident rates

on individual links, and dependency of diversion rate on potential savings were handled in

their model.
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Bi =
∑

j

∑
k

νijk∑
i νijk

DSj (2.1)

where

Bi = benefit of deploying a CMS at diversion point i (vehicle-hours);

νijk = number of vehicle trips from diversion point i through downstream

freeway section j during time period k;

k = time period (k = 1 : peak period, k = 2 : off-peak period);

DSj = total estimated delay savings due to traffic diversion during incidents

on freeway section j (vehicle-hours).
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Figure 2.1: Freeway Origin-Destination Distribution in Abbas and McCoy (1999)

Another relevant study was initiated by Chiu et al. (2001) who proposed a bi-level

stochastic integer programming model for the CMS location problem. The location opti-

mization problem was realized at the upper level, seeking to maximize the total user benefit
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of real-time information from CMS. The users’ responses (route choices) to incident condi-

tions and information were represented at the lower level as a user optimal dynamic traffic

assignment problem. The expected total user benefit corresponding to a given location

solution was calculated based on a sample of benefits, each of which was estimated by

generating a random incident on a network link and solving the resulting dynamic traffic

assignment problem. An overview of the Chiu et al. (2001) tabu-search location algorithm

is as follows:

1. Determine the solution space by identifying all candidate CMS locations. A candidate

CMS location is one on the freeway link with an off-ramp as one of its outbound links.

2. Find a new candidate solution by dropping a location from the current solution and

add one based on probability of incident occurring in the activation region of the

CMS. An activation region (geographical area within which incident information will

be displayed for a specific CMS) is considered so that information regarding distant

incidents is not provided to drivers. The algorithm begins using the highest ranked

locations from the initial solution. This approach facilitates the search to converge to

a plausible solution. The new candidate solution is adopted if it is not a tabu move

(previously evaluated solution); otherwise, regenerate a new candidate solution.

3. Generate a random incident realization by drawing a random number from the uni-

form distribution, U(0, 1), and map it to the corresponding cumulative distribution,

which is constructed from the probability mass function of the ratio of link lane-miles

and the total link lane-miles.

4. Activate CMS if the randomly generated incident occurs inside the CMS activation

region.
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5. Perform the time-dependent user equilibrium (UE) procedure and divert those vehi-

cles that reach the CMS to their destinations via UE paths.

6. Simulate until the end of the horizon.

7. Repeat from step 3 for K number of incident realizations.

8. Update current solution and tabu list.

9. Repeat from step 2 until the specified maximum iteration is reached.

The Chiu et al. model suffers from several limitations. First, as acknowledged by the

authors, the whole process is extremely computationally intensive because of the need to

evaluate a large number of candidate location plans, consider sufficient number of incident

realizations for each location solution, and perform a simulation-based dynamic traffic

assignment procedure for each incident realization. Second, their location benefit model

was based on a route choice assumption that all users have perfect knowledge and real-time

information on the network and incident conditions and possess the ability to anticipate

other users’ choice of routes and choose their optimal routes accordingly. Third, they do not

consider a variation of incident rates across the freeway network. Every lane-km of freeway

is assumed to have the same incident rate, reducing the robustness and validity of the

model. Additionally, the use of randomly generated incidents most likely would introduce

sampling errors since insufficient incidents would be realized to match the distribution

proposed. Finally, it is unclear if it is practical or necessary to apply such a complex

model, seemingly designed for operational management and control purposes, for solving

the CMS location problem, which is essentially a planning problem.
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2.2 Deterministic Queuing Models

As discussed in the previous section, one of the key elements of a CMS location optimization

system is how to estimate delay. Deterministic queuing theory is a well-known graphical

technique to estimate delay in systems with input-output constraints, such as a highway

section with an incident.

The general system can be defined in terms of an arrival stream and a server service

rate (Figure 2.2). The arrival rate, usually denoted by λ, represents the number of arrivals

over a given time period. Similarly, the number of departures during a period in time is

called the service rate, generally denoted by µ.

λ

SERVER

QUEUE

µ

Constant inter-
arrival times

ARRIVALS

Constant inter-
departure times

DEPARTURES

Figure 2.2: Deterministic Queuing System

The analysis of deterministic queuing systems is commonly performed using a graphical

technique that requires the calculation of cumulative arrivals and departures from an initial

reference time. The most accurate form of this technique considers all arrival and departure

events as discrete (Figure 2.3). At each instance of time the cumulative curves represent a

summation of all the events from the initial reference time to the current instance of time.

To achieve this result, the arrival curve is incremented whenever an arrival event occurs.

The departure curve is increased in a similar manner. It is notable that, by definition, the
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cumulative number of departures cannot exceed the cumulative number of arrivals at any

instance of time.
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Figure 2.3: Discrete Queuing System

Considering arrivals and departures in a discrete form, although realistic, is generally

inconvenient for applying mathematical operations such as derivatives and integrals. Be-

sides, it is often difficult to accurately measure individual arrivals and departures in a traffic

stream. Furthermore, queuing analysis is generally performed for future traffic analysis or

systems without complete data. Therefore, a discrete representation of individual vehicle

arrivals is not necessary and a continuous representation scheme is commonly adopted.

Figure 2.4 shows a continuous representation of a queuing process, assuming continuous

arrival and departure rates. Several quantities may be derived from the interaction between

the arrival and departure curves. As noted on the diagram, the area between the cumulative

arrival and departure curves represents the system delay. The queue length at time t, in
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vehicles, may be determined from the vertical distance between the arrival and departure

curves at time t. Similarly, the delay experienced for a vehicle joining the queue at time

t is represented by the horizontal distance between the arrival curve at time t and the

departure curve. For illustrative purposes a capacity reduction caused by an incident is

shown in Figure 2.4. For a more in-depth background specifically relating to traffic queuing

refer to May (1990).
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Figure 2.4: Deterministic Queuing Graphical Analysis

For traffic analysis studies, however, there are assumptions related to vehicle queuing

that must be considered. Most importantly, it is assumed that any vehicle arriving to an

over-saturated section, and not able to immediately depart, is stacked on a vertical pile

at the location of the bottleneck. The major implication of this assumption lies in the
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definition of an arrival, which now corresponds to the time at which a vehicle would have

crossed the bottleneck had there not been a queue. This definition does not correspond

with the actual arrival of a vehicle joining the end of a queue.

The shock-wave analysis technique (or simple hydrodynamic theory of traffic flow)

first developed by Lighthill and Whitham (1955), has the mechanism to overcome the

physical queue estimation limits imposed by deterministic queuing. The method utilizes

macroscopic speed-flow-density relationships to identify flow states in a space-time graph.

A shock-wave represents the transition between two flow states. Figure 2.5 illustrates the

shock-wave technique for a freeway incident similar to the deterministic queuing example

(Figure 2.4).
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Figure 2.5: Shock-wave Graphical Analysis
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Three flow states are introduced in the shock-wave example. State A is the original flow

state that extends to areas unaffected by the incident. States B and C are queue flow states

with State B as the queue forming state (flow equal to reduced capacity) and State C as the

queue recovery state (flow equal to full capacity). Three shock-waves lie at the boundaries

of these flow states: ωAB, ωBC , and ωCA. The relative traffic flow (q) and density (k) for

adjacent flow states are required to compute shock-wave speed (Equation 2.2).

ωAB =
∆q

∆k
(2.2)

The computation of total vehicle travel time (
∑

TT ) utilizing traffic density (k), flow

state areas (A), and the shock-wave space-time diagram is illustrated in Equation 2.3. The

total vehicle delay (Equation 2.4) is derived by considering the total vehicle travel time

with and without an incident occurrence.

∑
TT = kAAA + kBAB + . . . + kNAN (2.3)

Delay =
∑

TTIC −
∑

TTNIC (2.4)

where

kN = traffic density in flow state N ;

AN = area of flow state N ;

TT = total travel time for area under consideration;

IC = incident conditions;

NIC = non-incident conditions.

Since the development of shock-wave analysis, there have been several arguments indi-

cating that deterministic queuing and shock-wave analysis do not provide consistent results

(e.g. Michalopoulos and Pisharody, 1981). These arguments are mostly a result of the dif-

ference between the physical queues determined by shock-wave analysis and the vertical
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pile queues estimated by deterministic analysis. However, there are several notable refer-

ences (Makigami and Newell, 1971; Daganzo, 1983; Lawson et al., 1997; Erera et al., 1998)

proving the consistency of the two methods. These papers all conclude that deterministic

queuing and shock-wave analysis provide the same estimate for vehicle delay. However,

time-dependent queue length estimates are not consistent due to different interpretations

for vehicle arrivals. Therefore, the consensus among researchers is that while delay esti-

mation using deterministic queuing is valid, queue length interpretations have no physical

meaning.

2.3 Driver Response to CMS Information

The second main component of a CMS location optimization system is to simulate drivers’

route choice behaviour under CMS information. Several studies have been undertaken in

an attempt to understand the reaction of drivers to information and, in this specific case,

CMS information. The ultimate goal of these lines of research is to be able to predict

the percentage of drivers who would divert to alternative routes, or driver diversion rates

and/or route choices based upon the information specified.

Albrecht et al. (1978) performed the first of these studies relating driver behaviour to

CMS information. The result of a traffic count study indicates that anywhere between 5%

and 80% of drivers will voluntarily divert. This range is obviously too wide to be useful,

but it does represent an attempt on the part of researchers to understand driver behaviour

in the presence of CMS information. More detailed driver behaviour studies can generally

be classified into: stated preference (SP) surveys, revealed preference (RP) surveys, route

choice simulators and driving simulators.

A SP survey presents a variety of hypothetical situations to drivers, usually via a paper

questionnaire, in an attempt to estimate drivers’ preference within a set of transportation
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options. The utility of each of these options (Equation 2.5) may be estimated based on

the drivers’ response. A variety of statistical techniques may be used to estimate the

relative utility weights, with the most popular method in the transportation sector being

the maximum likelihood logistic regression for multinomial logit (MNL) models.

Uk = α1xk,1 + α2xk,2 . . . αnxk,n (2.5)

where

Uk = utility towards option k;

xk,1 to xk,n = values of factors 1 to n associated with option k;

α1 to αn = utility weights for factors 1 to n.

A simple example of utilizing a stated preference questionnaire to evaluate a particu-

lar bus service is provided in Kroes and Sheldon (1988). In the example three variables

(journey time, availability of a seat, and fare) each with two levels (30|40 minutes, seats|no

seats available, and 20|30 pence) are evaluated. Three of the sample alternative options

presented to passengers are described:

Alternative 1

30 minute journey time

no seats available

20 pence fare

Alternative 4

30 minute journey time

seats available

30 pence fare

Alternative 7

40 minute journey time

no seats available

20 pence fare

To completely isolate factors all combinations of all levels of each factor need to be

incorporated into the experimental design. This is generally referred to as “full factorial

design” and can only be applied if there are few factors and levels under consideration.

Conversely, “fractional factorial design” utilizes a subset of the full factorial design to

capture the direct effects but not the interaction effects between factors. The difference
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between the two design philosophies is illustrated, for the bus service example of Kroes

and Sheldon (1988), in Table 2.1.

Table 2.1: Bus Service Example of Experimental Designs

Factor 1 Factor 2 Factor 3

(i) Full Factorial Design
Alternative 1 1 1 1
Alternative 2 1 1 2
Alternative 3 1 2 1
Alternative 4 1 2 2
Alternative 5 2 1 1
Alternative 6 2 1 2
Alternative 7 2 2 1
Alternative 8 2 2 2
(ii) Fractional Factorial Design
Alternative 1 1 1 1
Alternative 4 1 2 2
Alternative 6 2 1 2
Alternative 7 2 2 1

The low cost of SP surveys has popularized the method as a way to collect data on a

wide variety of driving situations, including en-route information. However, a recognized

shortcoming of the SP method lies in the fact that drivers are not committed to behave in

accordance with their stated preference responses (Bates, 1988). Fortunately, many studies

have found that SP surveys generally correspond well with RP surveys (e.g. Louviere et al.,

1980).

RP surveys consist of driver interviews conducted downstream of a specific investiga-

tion area, or more generally, an after-the-fact investigation. In most respects RP surveys

are identical to SP surveys, with the notable exception being that RP surveys record past

or observed behaviour and stated preference surveys measure projected behaviour under
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hypothetical situations. RP surveys generally provide slightly better ”real-world” corre-

lation than SP surveys, but they suffer from a limiting range of situations that can be

examined and the problem of unwanted factors being introduced into the analysis section.

Additionally, RP methods cannot be used to directly evaluate situations that do not yet

exist (Kroes and Sheldon, 1988).

Several stated and revealed preference studies (e.g. Abdel-Aty, 2000; Bonsall et al.,

1995; Hato et al., 1995, 1999; Zhao et al., 1995) have identified factors that influence driver

route choice behaviour in the presence of information, but not specifically CMS information.

These studies show inconsistencies for several driver factors (age, education, income, etc.).

However, they generally agree that the diversion rate is most highly influenced by drivers’

network knowledge and the implied or actual travel time benefit of diversion. These studies

will not be explicitly detailed, however it is notable that many of the important factors

(Table 2.2) identified in these studies were used in the CMS SP studies of Wardman et al.

(1998), Peeta et al. (2000), and Chatterjee et al. (2002) to reduce the number of factors

considered.

Table 2.2: Transportation System Factors Influencing Individual Route Choice

Factor Factor

overall expected journey time safety and security hazards
delays unfamiliar routes

congestion accident information
signposted routes delay information

tolls congestion information

Wardman et al. (1998) conducted a route preference study including hypothetical sce-

narios at a junction between the main travel route to Manchester, UK (M62 motorway)

and alternate routes (via M6 motorway). A highly visible CMS is located a short distance
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upstream of the M62/M6 junction. Survey respondents were provided with a photograph

representing a “through-the-windshield” view of the junction and CMS panel information

(Table 2.3). Considering the visual and CMS information, it was expected that survey

respondents had the following information:

• local traffic conditions on the M62 ahead (queuing or clear)

• local traffic conditions on the off-ramp to the M6 (queuing or clear)

• expected delays ahead on specified routes (notified via the CMS panel)

• cause of these delays (notified via the CMS panel)

Table 2.3: CMS Messages used in Wardman et al. (1998)

Message Message Message

All clear 20 Mins delay [accident] Delays likely [congestion]
(No message) 30 Mins delay [accident] Long delays [congestion]
5 Mins delay Delays likely [accident] 5 Mins delay [roadworks]
10 Mins delay Long delays [accident] 10 Mins delay [roadworks]
20 Mins delay 5 Mins delay [congestion] 20 Mins delay [roadworks]
30 Mins delay 10 Mins delay [congestion] 30 Mins delay [roadworks]
Delays likely 20 Mins delay [congestion] Delays likely [roadworks]
Long delays 30 Mins delay [congestion] Long delays [roadworks]
10 Mins delay [accident]

Wardman et al. (1998) obtained 289 responses representing a total of 2304 choice obser-

vations. Several utility function forms were tested and the following power model (Equa-

tion 2.6) was found to provide the best fit.

Uk = α1x
λ
k,1 + α2x

λ
k,2 + . . . + αnx

λ
k,n (2.6)
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This power model differs slightly from the more common linear utility function form

(Equation 2.5). Results for the utility weights and factor powers are provided in Table 2.4.

Validation of the model was based largely on the observed market share of each of the

routes and value of time comparisons to previous studies. Wardman et al. (1998) found

that their resulting range of delay/free flow travel time ratios of 1.30 to 1.70 generally

corresponded to the values of 1.43, 1.39, and 1.70 obtained in Wardman (1991), Oscar

Faber TPA (1992), and Hensher (1992) respectively.

Table 2.4: Wardman et al. (1998) Preferred Utility Model

Utility Weight (α) Factor Power(λ)

Delays (Mins) Caused by Roadworks -0.041 1.3
Delays (Mins) Caused by Congestion -0.042 1.3
Delays (Mins) Caused by Accidents -0.048 1.3
Delays (Mins) Unspecified Cause -0.036 1.3
Likely Delays Message (Roadworks) -0.595 1.0
Likely Delays Message (Congestion) -1.867 1.0
Likely Delays Message (Accidents) -2.100 1.0
Likely Delays Message (Unspecified Cause) -0.835 1.0
Long Delays Message (Roadworks) -2.732 1.0
Long Delays Message (Congestion) -2.450 1.0
Long Delays Message (Accidents) -3.337 1.0
Long Delays Message (Unspecified Cause) -2.623 1.0
Alternate Route Clear Message 0.815 1.0
Alternate Route Visible Queuing -0.043 1.0
Route Travel Time -0.068 1.0

The major findings of Wardman et al. (1998) can be summarized as follows:

• additional delays are valued more highly than normally expected delays, at a ratio

between 1.30 and 1.70 depending on the stated cause of the delay

• delays attributed to accidents had the biggest impact on route choice
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• visible queues were found to have a significant effect on driver route choice

• those who had never used the alternate routes were less likely to be persuaded by

the CMS panel advice

Peeta et al. (2000) conducted a similar stated preference survey in the Borman Ex-

pressway region of northwestern Indiana. The state department of transportation was in

the process of developing an advanced traffic management system (ATMS) and, as such,

there were no existing CMS within the study area. The survey presented hypothetical

CMS messages to 248 respondents and collected responses on a five-point Likert scale (1

to 5), where 1 represented a low willingness to divert and 5 represented a high willing-

ness to divert. Based on the responses, an aggregate effect of CMS message content was

developed (Table 2.5). This was followed by the development of a logit model, similar to

the Wardman et al. (1998) study, incorporating both the responses and socio-economic

characteristics of drivers (Table 2.6).

Several conclusions were stated by Peeta et al. (2000), which can be summarized as

follows:

• female and older drivers are, on average, more risk averse (less willing to divert) than

males and younger drivers

• well-educated individuals are more likely to comply with the CMS messages than

their less-educated counterparts under similar conditions

• incident location is significant in the diversion decision, however, it was not incorpo-

rated into this study

• truck drivers exhibit more resistance to diversion than other drivers
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Table 2.5: Effect of CMS Content in Peeta et al. (2000)

CMS Relative Willingness to Divert
Message Message Content 1 2 3 4 5

Type % % % % %

1 Occurrence of accident only 13.7 33.9 26.6 13.3 12.5
2 Location of the accident only 20.2 33.1 22.6 11.3 12.9
3 Expected delay only 9.3 12.9 39.5 23.8 14.5
4 The best detour strategy only 7.7 18.5 30.2 25.0 18.5
5 Location of the accident and 2.0 4.0 22.6 35.1 36.3

the best detour strategy
6 Location of the accident and 0.8 0.8 19.8 38.3 40.3

the expected delay
7 Expected delay and the best 2.0 2.0 13.7 33.5 48.8

detour strategy
8 Location of the accident, expected 1.2 2.0 5.6 19.8 71.4

delay, and the best detour strategy

Drivers attitude towards CMS information in London was studied by Chatterjee et al.

(2002) through stated preference data. The mailed questionnaires provided a hypothetical

incident situation, CMS message, and a map with which the respondents could indicate

their diversion route if they would choose to divert. An example of a stated intention

question used in this study is shown in Figure 2.6.

Chatterjee et al. (2002) developed four logit models, the two most comprehensive models

(highest Nagelkerke R2) are presented in Table 2.7. Further analysis revealed that the two

most significant independent variables in these models are distance from the driver’s origin

to the Archway (Euclidean distance) and the indicator variable for a non-London origin.

Other relevant factors revealed from the modeling process include the incident severity

(magnitude of delay), if the incident occurs on the normal route, and if the driver is able

to return to the normal route after diverting. The implication of the last point is that the
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Table 2.6: Logit Model for Driver Response in Peeta et al. (2000)

Variable Level 0 Level 1 Utility Weight (α)

Alternative specific constant -1.897
Sex female male 0.433
Age < 40 years ≥ 40 years -0.458
Education ≥ college ≤ some college -0.308
Regular driver in region no yes 0.207
Trust in information otherwise high 0.666
CMS message type 2 5 levels, see Table 2.5. -0.090

CMS message type 3
... 0.611

CMS message type 4
... 0.842

CMS message type 5
... 2.083

CMS message type 6
... 2.490

CMS message type 7
... 2.731

CMS message type 8 5 levels, see Table 2.5. 3.548

If, as you approached Archway junction, you had seen a CMS saying:

ISLINGTON ACCIDENT LONG DELAYS

Would you divert from the route you have marked on the map?

Yes, I would divert 2

Yes, but not until encountering further problems 2

No, I would not divert 2

Figure 2.6: Example Stated Intention Question

probability of diversion is increased if the driver can return to their normal route.

Online evaluation of existing systems, either through traffic count or revealed preference
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Table 2.7: Logistic Regression Models in Chatterjee et al. (2002)

Variable Utility Weight (α)

CMS Messages (full data set)
Constant -2.24
Distance between Archway and problem (Euclidean) -0.218
Problem on normal route 1.37
Non-London origin -0.781
Problem cause (w.r.t. congestion)

Accident or roadworks 0.676
Demonstration 1.38

Problem severity (w.r.t. delays/15 min delay)
30 min delay/long delays/avoid area 0.686

CMS Messages (reduced data set)
Constant -1.16
Distance between Archway and problem (Euclidean) -0.412
Non-London origin -0.662
Problem cause (w.r.t. congestion)

Accident or Roadworks 0.422
Demonstration 1.40

Problem severity (w.r.t. delays/15 min delay)
30 min delay/long delays/avoid area 0.717
Distance from destination where alternative 0.195
route merges back with normal route
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data, has provided estimations of driver diversion rates. Table 2.8 provides a sample of

some of these studies. There are a few other studies of this type, but the problem with this

line of research is that results from one study site are not transferable to another site. So

the only real value of these statistics is in providing bounds on reasonable diversion rates.

Table 2.8: Online Evaluations of Effects of CMS Systems on Diversion Rate

Study Item Details
Swann et al. (1995) Location A64/A1 Interchange, North Yorkshire, U.K.

Method Revealed preference questionnaires
Results 16% diversion

Yim and Ygnace (1996) Location SIRUS System, Paris, France
Method Statistical and graphical analysis of loop

detector data (ramps)
Results 1 Negligible (0.5 km queue)

7% below capacity (1.0 km queue)
10% below capacity (2.0 km queue)
15% below capacity (3.0 km queue)
30% below capacity (4.0 km queue)

Kraan et al. (1999) Location RIA System, Amsterdam, Netherlands
Method Statistical regression analysis of loop detector data
Results 2 0.8% to 1.6% diversion per additional km of queue

Chatterjee et al. (2002) Location London, U.K.
Method Analysis of SCOOT UTC detector data
Results 3 1st experiment: 3.0% diversion rate

2nd experiment: no significant diversion
Levinson and Huo (2003) Location Minnesota, U.S.A.

Method Statistical analysis of loop detector data
Results 0.13% to 0.15% diversion

1Basis of results is the degree to which the on-ramp to a congested freeway segment (A86) is under
capacity, i.e. drivers divert to less congested D45 route. CMS messages indicate the length of queue.
2Kraan et al. (1999) note a large proportion of traffic entering system has no route choice due to location
of predetermined destination. 3Experiments were performed during scheduled roadworks.
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2.4 GA and its Application to Facility Location Problem

The CMS location planning problem belongs to the general class of facility location prob-

lems which have been studied extensively over the past forty years since the early work of

Cooper (1963) and Hakimi (1964). The most general form of the problem can be simply

stated as follows. Given a set of locations, L = {l1, l2, . . . , ln}, an objective function f (L),

and possibly a constraint on how many and where such facilities can be located, find the

subset of L denoted by L∗ such that f (L∗) is maximized (or minimized). Most variants

of the location problem are combinatory in nature defying optimal solution approaches.

Because of their discrete nature and computational intractability, location problems have

been found to be a natural fit for a Genetic Algorithm (GA) based solution approach. Back-

ground on GA are provided in Appendix A and Henderson and Fu (2004) with algorithm

details shown in Section 5.3.

Hosage and Goodchild (1986) were the first to apply genetic algorithms to the location-

allocation (p-median) problem, a well-studied form of the location problem. The objective

is to minimize the transportation cost (travel time or distance) of allocating a set of de-

mands to the nearest facility subject to a limit on the number of facilities (Equation 2.7).

min Z =
∑

i

∑
j

dijrjλij (2.7)

where

dij = distance from node i to node j;

rj = demand at the nodes, j = 1 . . . n;

λij = a binary variable such that node j is assigned to a

facility at node i when λij = 1, else λij = 0.

A representation scheme was developed whereby each gene in the chromosome string is
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used to represent a facility location, i.e. if the bit = 1 then the facility is chosen and not if

the bit = 0. Though this coding scheme would allow illegal solutions (e.g., total number of

facilities allocated exceeds the maximum number of facilities to be allocated), the authors

contend that other more efficient representations may not permit all possible combinations.

To partially deal with illegal solutions, a penalty function was introduced that multiplies

the objective by (number of facilities over maximum + 1)2. The reasoning behind this

penalty function was not explained or justified other than the intuitive appeal that the

use of this function lowers the likelihood of over allocation. They utilized a variant on the

simple genetic algorithm with roulette wheel selection and non-overlapping generations.

An inversion operator was used in lieu of the standard crossover techniques to reduce the

number of infeasible solutions. Also, 50% of the chromosomes were chosen for mutation,

which, as a result of the bit inversion, would most likely lead to an incorrect number of

facilities. This problem is recognized by the authors and only noted that “considerable

fine-tuning” of the genetic algorithm application should be undertaken. The authors note

a 69% → 89% rate of finding the optimal solution and state that the algorithm failed in

instances where the local optimum, in terms of the objective function, is very similar to

the global optimum. However, there are many other good heuristic algorithms to solve this

type of problem that were not used as a basis of comparison and consideration of these

algorithms should have been made.

Jaramillo et al. (2002) studied the application of genetic algorithms to five classes of

location problems and was the first to compare the performance of the GA-based heuristics

against other traditional heuristics for the location problems. The same representation

scheme as Hosage and Goodchild was used and a binary tournament selection method was

chosen due to its effectiveness on problems in a similar class. A fitness-based uniform

crossover operator based on earlier work by Beasley and Chu (1996) was modified to
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include forced mutation when parents and offspring are identical. The fitness-based uniform

crossover operator only differs from the uniform operator in that the selection of genes from

either parent is proportional to their fitness value and not a completely random selection.

Note also that in this implementation crossover and mutation are mutually exclusive events

and as the algorithm converges the crossover rate will decrease and mutation rate will

increase, a scheme of variable crossover and mutation rates. A population size equal to the

chromosome length (which was set to the number of facilities to be allocated) was used

and the algorithm was terminated when no improvement in the objective function value is

experienced. Based on comparisons with well-known problem-specific heuristics, such as in

Beasley (1993), the authors conclude that genetic algorithms produce better solutions, or

at least not worse solutions, but the algorithms require much more computational effort.

31



CHAPTER 3

INCIDENT DELAY ESTIMATION

One of the main challenges in optimally locating CMS is how to estimate the benefit

of a given set of CMS locations. In this research, we assumed that the benefit is expressed

as expected total reduction in user delay under incident conditions due to diversion in

response to congestion and route guidance information displayed on CMS. The expected

delay is modeled as a function of many factors including network conditions, peak and off-

peak demands, availability of alternative routes, route guidance information, compliance

rates, etc. This chapter details the impact of incidents resulting in vehicle delay. First, the

delay caused by a single incident on a single link is developed. Then, the expected annual

incident induced delay on a single link is determined based on a probabilistic incident rate.

Lastly, the network-wide expected annual incident delay is outlined.

3.1 Deterministic Queuing Justification

The major drawback for deterministic queuing, as outlined in the literature review, is the

assumption that vehicles are stacked in a vertical pile. However, this is often overlooked

considering that the method produces good estimates for delay and is relatively simple to

implement. Alternatively, shock-wave analysis or stochastic queuing could be considered,

but these methods are more restrictive.

Shock-wave analysis (Lighthill and Whitham, 1955) is able to estimate physical queue

lengths and locations more accurately as compared to deterministic queuing. The deter-

mination of physical queue lengths however raises some issues. Traffic density (veh/km or

veh/lane/km), required to estimate shock-waves, is difficult to predict in advance of the

actual occurrence of a given traffic situation. Often a calibration procedure is required for

each freeway segment and this would be extremely time consuming. The other problem

32



is that, to make physical queue length relevant, the location of the incident needs to be

estimated. In this sense we would need to know the exact spatial distribution of incidents

and not just the occurrence probabilities in relation to coded link segments. This increased

complexity is not likely to improve the estimation without extensive additional effort.

Another alternative to deterministic queuing is stochastic queuing or Poisson processes.

This method, though extremely useful in numerous other applications, is not applicable

here for several reasons. Firstly, stochastic queuing models require that the arrival rate be

less than the departure rate. This requirement is not usually met during incident conditions

that experience excessive congestion. Secondly, the system must attain equilibrium with

steady arrivals and departures over a long period of time. Again, it is unlikely for a traffic

system to reach equilibrium given that traffic flows can fluctuate dramatically over a day.

Lastly, independent arrivals are necessary for Poisson queuing to be valid and, especially

during peak periods, drivers’ behaviour may be based on that of other drivers.

3.2 Network Model

To determine shortest paths, shortest alternative routes, and ultimately project traffic

volumes, or link arrival rates, under both incident and non-incident conditions a network

model is developed. These arrival rate predictions are key is estimating vehicle delay

utilizing deterministic queuing. Generally, any network model is defined by a set of nodes

and a set of links. The starting and ending nodes geometrically define each road segment

and corresponding road segment attributes are referenced to a directional link (Figure 3.1,

Appendix B - NetLink & NetNode tables).

By performing the idealization for every road segment within the analysis area a network

structure can be established (Figure 3.2). This complete structure also includes origin and

destination nodes (or trip generators and attractors) where vehicle trips are generated and
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Number of Lanes (uni-directional)

Type of Link

Incident Rate

...

Figure 3.1: Network Representation

attracted and will be used to predict traffic volumes on road segments. The estimation

of the magnitude of these trips is part of the four-step transportation planning process

(Ortuzar and Willumsen, 1994).
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Figure 3.2: Network Representation with Generators
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3.3 A Link-Based Incident Model

In order to quantify network-wide delay reduction benefit due to CMS information provi-

sion, a model for estimating incident delay on a given link must first be developed. The

data required to construct the queuing diagram model are derived from databases. Link

capacity, expected capacity reduction (incidents), expected incident duration, and detec-

tion time and processing time are all essential to the proposed model (NetLink Table,

Appendix B). It is notable that incident duration is assumed to be a deterministic value,

since it is expected that incident duration would be relatively consistent and reduced in

length for freeway segments within the extents of an advanced traffic management system.

The effects of stochastic variations in incident duration will be examined in Chapter 6.

The original arrival rate for each incident link is determined based on trip rates (ODTrips

Table, Appendix B) and the corresponding traffic assignment results.

A time-dependent model is used to estimate user delay on a specific link during an

incident. The time of day is divided into several periods, depending on temporal variation

of demand distribution (Figure 3.3). The total user delay for each of the time periods may

be classified into one of three cases: Case I - off-peak, Case II - peak under-capacity, or

Case III - peak over-capacity. The queuing diagrams for Cases I, II, and III are shown

in Figures 3.4, 3.5, and 3.6 respectively. The shaded area represents the total user delay

when an incident occurs on the specific link a during a specific period p, denoted by Dp
a.

The incident occurrence time, denoted by to, is defined for each of the three cases as

follows:

to =

 0 Case I

0 → tp Case II, Case III
(3.1)

Where tp represents the end of the peak period under consideration, p, and start of
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Figure 3.6: Vehicle Queuing Under Incident Conditions (Case III)

the off-peak period p + 1. Note that for the off-peak case (Case I), it is assumed that

all links are under-saturated in normal traffic conditions and the incident occurrence time

has negligible effect on the user delay. Therefore, to simplify calculations, only incidents

that occur at the beginning of the time period, and cleared before the peak period, will

be considered as Case I. If the computed time required to clear an off-peak incident queue

exceeds the time to the beginning of the peak period, then Case II may be used in lieu of

Case I conditions. It is additionally assumed that, for the peak period cases (Case II and

III), the incident occurrence time is uniformly distributed from zero to the period duration

under consideration. To determine a value for user delay for the peak period cases, a range

of incident occurrence times must be considered and the user delay results averaged for

each of these occurrence times. An arithmetic mean of user delays for a given number

of incident occurrence times are evaluated. This same method is applied in the following

section for estimating delay with information.
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The cumulative arrivals and departures at the incident occurrence time (to), denoted

by N o
arr and N o

dep respectively, can be calculated as follows:

N o
dep = N o

arr =0 Case I (3.2)

N o
arr = xp to Case II, Case III (3.3)

N o
dep =

 xp to Case II

S to Case III
(3.4)

where

xp = flow rate on specific link during normal traffic conditions (non-incident)

during period p. The arrival (flow) rate is assumed to be known for each

of the time periods (veh/hour);

S = capacity of specific link during incident recovery period (veh/hour);

to = incident occurrence time (hours).

Note that, for the under-capacity cases (Cases I & II), the cumulative arrivals and

departures are equivalent at the incident occurrence time. However, since the link is over

capacity for Case III, the cumulative number of arrivals is greater than departures.

Similar to the occurrence time, the time of incident clearance (tc) and the corresponding

cumulative number of departures (N c
dep) is defined for each of the three cases as follows:

tc = to + τ Case I, Case II, Case III (3.5)

N c
dep = N o

dep + C τ Case I, Case II, Case III (3.6)

where

39



τ = time required to clear the incident (hours);

C = reduced capacity of the link during the incident (veh/hour);

to = incident occurrence time (hours);

N o
dep = cumulative number of departures at the incident occurrence time.

Note that the cumulative number of arrivals at the time of incident clearance is not

required to determine the user delay for any of the cases. It is also notable that the arrival

rate to the incident link must be greater than the reduced capacity for Equation 3.6 to be

valid. Otherwise a trivial case with zero delay must be considered when the arrival rate is

less than the reduced capacity.

Recalling the assumption that the original arrival rate for a specific link (xp) and the

duration of each time period (tp) are both known. Therefore, the cumulative number of

arrivals at the end of the peak period p under consideration, denoted by Np
arr, can be

determined from the following equation:

Np
arr = xp tp Case II, Case III (3.7)

Similar to the cumulative number of arrivals at the time of incident clearance, the

cumulative number of departures at tp is not required to determine the user delay for any

of the cases. Also recall that for the off-peak incident case, Case I, the incident is assumed

to have occurred at the start of the time period under consideration. Therefore, for Case

I under normal conditions, the end of the time period will occur after the incident queue

clearance time (tq).

The incident queue clearance time (tq) and the cumulative number of vehicles at the

queue clearance time (N q) are determined from the following equations:
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tq =


(S−C) tc

(S−xp)
Case I

xp (tp−to)−xp+1 tp+(S−C) tc+C to

(S−xp+1)
Case II

(xp−xp+1) tp+(S−C) (tc−to)
(S−xp+1)

Case III

(3.8)

N q =

 xp tq Case I

xp tp + xp+1 (tq − tp) Case II, Case III
(3.9)

It is important to note that the delay estimation methodology discussed above, while

commonly used in literature such as the Highway Capacity Manual (Transportation Re-

search Board, 2000), does not account for queue spill-back and its possible effects on delay

estimation. Queue spillback may cause three possible effects on delay estimation. The

first effect is that queue spillback may block neighbouring intersections, which would then

reduce the capacity of neighbouring links and cause additional delays. Queue spillback

may also induce traffic diversion from the incident link, which would lead to an arrival

rate at the incident link lower than what would normally be expected under non-incident

conditions. Lastly, queue spillback may block diversion access points such as freeway off

ramps, preventing drivers from altering their routes. These effects are difficult to accurately

represent in a delay estimation model, requiring knowledge of detailed network geometry

and driver behaviour, and therefore are not treated in this research.

3.4 Expected Incident Delay

The queuing model developed to this point has focused on estimating delay for a single

incident on a single link in the network. However, the focus of the proposed CMS location

model is to plan for future incidents. Therefore, since the location and frequency of future

incidents cannot be known beforehand, the CMS planning model will instead rely on his-
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torical rates of incidents. The expected number of incidents on link a during time period

p (np
a) may then be developed from the historical incident rate (Equation 3.10).

np
a = ∆p xp La ra (3.10)∑

p

∆p = 24

where

np
a = expected number of incidents on link a during time period p (# incidents);

∆p = duration of time period p, which is assumed to be known (hours);

xp = original link arrival rate (veh/hour);

La = length of link a (km);

ra = incident rate for link a (# incidents/veh-km).

Equation 3.10 can now be combined with the incident delay estimation to determine

the expected incident delay for a given link a. Recall that the area between the arrival and

departure curves in the queuing diagram represents the magnitude of the delay estimation

(Figure 3.4, 3.5 or 3.6). The expected incident delay for link a in a typical year is devel-

oped in Equation 3.11, with no distinction between weekend and weekday incident-induced

delays. A more accurate analysis may be performed using weekend demand and incident

scenarios.

Dyear
a = 365

∑
p

Dp
a np

a (3.11)

where
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Dyear
a = expected incident delay on link a for a typical year (veh-hours);

Dp
a = total vehicle incident delay on link a, during time period p, without CMS

information calculated using Figures 3.4 → 3.6 and Equations 3.2 → 3.8

(veh-hours);

Equation 3.11 detailed calculations for expected incident delay for a single link. To

extend this result to the entire traffic network an incident, and the corresponding rate,

must be considered for every link. This straightforward total delay calculation is detailed

in Equation 3.12.

Dyear
network =

∑
a

Dyear
a (3.12)

where

Dyear
network = expected delays caused by incidents on the entire traffic network

during a typical year (veh-hours).
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CHAPTER 4

INCIDENT DELAY WITH INFORMATION

The previous chapter described a method to estimate expected incident induced delay

under the assumption that drivers are not informed of the incident. However, to optimize

the locations of CMS across an entire freeway-arterial network the expected incident delay

under the assumption that some drivers would be informed of the incidents by CMS must

be estimated. Such estimation requires a set of models that can be used to predict driver’s

route diversion behaviour, identifying shortest paths and assign traffic to the underlying

network. This chapter, derived from Henderson et al. (2004b), discusses these individual

elements with a specific focus on driver diversion behaviour impact on incident induced

delay.

4.1 Overview of Methodology

Providing information to drivers via CMS messages is expected to produce a system benefit

by diverting vehicles from congested incident locations to less congested alternative routes.

The benefit of CMS information can be illustrated using a deterministic queuing diagram

(Figure 4.1). The straight, solid line represents the cumulative arrival of vehicles at an

incident location under no information scenario, while the dashed line depicts the arrivals

under real-time information from CMS. The arrival rate is reduced because some vehicles

divert to alternative routes. The total delay is therefore reduced accordingly, with the

corresponding delay benefit represented by the solid area in Figure 4.1. In order to estimate

the reduced delay we need to predict the traffic diversion rate under each incident scenario.

The former requires individual path flows be determined and potential benefit for each path

be quantified. The following sections provide a detailed discussion on these components,

including:
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1. Traffic Assignment : Determine link traffic volumes and path flows utilizing a path-

based assignment method (Section 4.3).

2. Incident Delay : Calculate incident induced delay without the benefit of CMS infor-

mation based on the traffic volumes (Section 3.4).

3. Traffic Diversion : Estimate driver response to CMS information (Section 4.2).

4. Delay Reduction : Calculate the benefit of CMS information (Section 4.4).
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Figure 4.1: Benefit of Incident Information

4.2 Diversion Model

To be able to quantify the benefits of a given CMS, a diversion model is required to

predict the number of vehicles that would divert to alternative routes due to message
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activation of the CMS during incident conditions. When a driver is provided information

from a CMS that an incident has occurred along the intended travel path, he/she would

make a decision to either stay on the same route or divert to an alternative route. This

decision depends on various factors such as severity of the incident, current extent of queue

caused by the incident, the driver’s experience and familiarity of the network, and incident

characteristics delivered via the CMS. Therefore, modeling the underlying decisions is a

significant challenge due to the behavioural complexity of the drivers’ response to incidents

and incident information (Wardman et al., 1998). In the two existing studies on the

CMS location problem, Abbas and McCoy (1999) assumed a constant fixed diversion rate

regardless of availability of alternative routes, severity of incidents and various other factors.

In Chiu et al. (2001)’s simulation-based model, a bounded route choice model was applied,

assuming a driver would divert to an alternative route if the expected travel time saving

exceeds a certain threshold.

A simplified discrete choice model is proposed in this research to capture the major

characteristics of drivers’ common response behaviour under incident conditions. The

model was motivated by the empirical work of Wardman et al. (1998), assuming that the

probability for a driver to choose to divert depends on the expected travel time saving from

diverting with the following logit form:

Pk,m(t) =
1

1 + eα−β Sk,m(t)
(4.1)

where

Pk,m(t) = probability for a vehicle, arriving at time t and traveling through

CMS k on path m, to divert to an alternative route;

α, β = model parameters;

Sk,m(t) = travel time savings ratio as defined in the next paragraph.
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The travel time savings ratio, Sk,m(t), is based on the expected delay that vehicles join-

ing the incident queue will experience and the travel time through the shortest alternative

route, as defined as follows:

Sk,m(t) =
Tk,m(t)− T ∗

k,m

T ∗
k,m

(4.2)

where

Tk,m(t) = expected travel time a vehicle joining the queue at time t will

experience (hours);

T ∗
k,m = travel time of the shortest alternative route, not traversing the

incident link.

The expected travel time experienced by a vehicle joining the queue, Tk,m(t), is based

on two components. The first component is the expected travel time from the CMS link,

through the incident link, to the destination node of the path under incident-free conditions.

The second component is based on the expected queuing delay for a vehicle if it were to

continue on its original path.

It is possible for drivers to pass more than one CMS enroute to the incident link,

however the diversion model does not distinguish between between single and multiple CMS

information sources. Instead, the assumption is that drivers would delay their decision to

divert until the closest CMS to the incident. Therefore, in this research, only the closest

CMS for each path is considered in the diversion calculations of Equations 4.1 and 4.2.

Further driver behaviour research is required before multiple CMS information sources can

be incorporated into a diversion model.

The diversion model suggests that the proportion of vehicles that would divert increases

as the travel-time savings increase. The relationship between diversion probability, or rate,

and travel time savings is depicted in Figure 4.2 under three assumed combinations of
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model parameters. The curves developed based on the logit model structure are intuitively

correct: the higher the travel time savings, the higher the probability for a vehicle to

divert; drivers are usually reluctant to change routes with a small percentage of savings.

For example, if α = 5 and β = 5, a 50% probability of diversion would correspond to a

50% travel time savings and 100% diversion for travel time savings of 100% or greater.
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Figure 4.2: Diversion vs. Travel Time Savings

The parameters α and β essentially model variations in drivers’ characteristics (e.g.,

aggressiveness) and information attributes (e.g., types, level of reliability, frequency etc.).

Realistic estimates of these model parameters could be obtained through a statistical anal-

ysis of stated preference or revealed preference survey results as in Wardman et al. (1998).

A sensitivity analysis is described in Chapter 6 to evaluate the potential impact of these

parameters on the final CMS location solutions.

The reduced flow rate at an incident link due to a CMS may be determined by applying

diversion probabilities, derived for a single path, to all paths (Equation 4.3).
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x̂k(t) =
∑
m

fk,m [1− Pk,m(t)] (4.3)

where

x̂k(t) = flow on the incident link, or reduced arrival rate, for vehicles that

traverse both CMS k and the incident link (veh/hour);

fk,m = flow on the mth path passing both CMS k and the incident link

had there been no incident (veh/hour);

Pk,m(t) = probability for a vehicle traveling through CMS k, on path m, to

divert to an alternative route, as defined in Equation 4.1.

In determining the reduced arrival rate at a given link due to all CMS, it is assumed

that drivers would defer their decision until they reach the CMS that is closest to the

incident link. That is, for a path flow that traverses several CMS, only the CMS closest to

the incident link has an effect on the diversion rate. An activating zone is also considered

so that only CMS within a certain distance of the incident will display information.

4.3 Path-Based Traffic Assignment

In order to estimate the delay caused by incidents (with or without information), traffic

volume estimates, for the time periods of interest, at individual network links must first

be obtained. Typically, network traffic volumes are obtained using a link-based method

(e.g. Frank-Wolfe method), which produces link flow estimates from a matrix of origin-

destination flows based on Wardrop’s user equilibrium (UE) assumption. This information

is, however, not sufficient for the proposed benefit model as it requires not only the volume

of traffic on a specific link but the individual path flows between origins and destinations of

that traffic as well. This information is used both in the prediction of traffic diversion and
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the alternative route travel times. A conceptual difference between the link-based method

and path-based assignment methods is illustrated in Figure 4.3.
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Figure 4.3: Conceptual Differences Between Assignment Methods

Generally, there are two classes of path-based assignment methods: incremental and

user-equilibrium. The incremental method performs successive all-or-nothing assignments

on a parsed OD trip matrix (Sheffi, 1985). Incremental assignment is not guaranteed to

result in a UE condition and will not be considered further. Several user-equilibrium path-

based methods for traffic assignment have been developed, including a modified Frank-

Wolfe approach. However, the gradient projection (GP) method proposed by Jayakrishnan

et al. (1994) for traffic assignment has thus far proven the most efficient (Chen and Lee,

1999). This formulation is based on Bertsekas (1976)’s more general version of GP for

network assignment based on the Goldstein-Levitin-Polyak gradient projection method of

non-linear programming. The complete algorithm is presented here, mainly following Chen

and Lee (1999).
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1. Definitions

qrs = trip demand between origin r and destination s.

xa(n) = flow on link a during iteration n.

ta = travel time on link a.

Krs(n) = set of paths between r and s during iteration n.

k̄rs(n) = shortest path between r and s during iteration n.

f rs
k = set of path flows between r and s on paths k.

δrs
ka =

 1 if link a is on path k connecting r and s

0 otherwise

α(n) = update stepsize that affects speed of convergence (usually = 1).

2. Initialization : Generate an initial path for each OD pair

i) Set xa(0) = 0, ta = ta[xa(0)],∀ a and Krs(0) = ∅.

ii) Set iteration counter n = 1.

iii) Solve the shortest path problem: k̄rs(n), Krs(n) = k̄rs(n) ∪Krs(n− 1),∀r, s.

iv) Perform AON assignment: f rs
k̄rs(n)

= qrs,∀ r, s.

v) Assign path flows to links: xa(n) =
∑
r∈R

∑
s∈S

∑
k∈Krs(n)

f rs
k (n)δrs

ka,∀ a.

3. Column Generation : Generate shortest path based on current link travel times and

augment the set of generated paths if it is new.

i) Increment iteration counter: n = n + 1.

ii) Update link travel time: ta(n) = ta[xa(n− 1)],∀ a.

iii) Solve the shorted path problem: k̄rs(n),∀ r, s.

iv) Augment path k̄rs(n) to the path set Krs(n− 1) if it has not already existed:

If k̄rs(n) /∈ Krs(n− 1), then Krs(n) = k̄rs(n) ∪Krs(n− 1).

Otherwise, tag the shortest path among the paths in Krs(n− 1) as

k̄rs(n) and set Krs(n) = Krs(n− 1).
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4. Equilibration : Solve the path-formulated traffic assignment problem over the re-

stricted set of paths generated thus far, Krs(n).

i) Compute first and second derivative path costs: drs
k (n), drs

k̄rs(n)
, and srs

k (n)

drs
k (n) =

∑
a∈A

ta(n) δrs
ka ∀ k ∈ Krs(n), k 6= k̄rs(n), r, s

drs
k̄rs

(n) =
∑
a∈A

ta(n) δrs
k̄rs(n)a

∀ r, s

srs
k (n) =

∑
a∈A

t′a(n) (δrs
ka − δrs

k̄rs(n)a
)2 ∀ k ∈ Krs(n), k 6= k̄rs(n), r, s

ii) Update non-shortest path flows:

f rs
k (n + 1) = max

 f rs
k (n)− α(n)

srs
k (n)

(drs
k (n)− drs

k̄rs(n)
)

0

∀k ∈ Krs(n), k 6= k̄rs(n), r, s

iii) If f rs
k (n + 1) = 0, then drop path k:

Krs(n) = Krs(n) \ k

iv) Update shortest path flow:

f rs
k̄rs(n)

(n + 1) = qrs −
∑

k ∈ Krs(n)

k 6= k̄rs(n)

f rs
k (n + 1) ∀ r, s

v) Update link flows:

xa(n + 1) =
∑
r∈R

∑
s∈S

∑
k∈Krs(n)

f rs
k (n + 1) δrs

ka ∀ a

5. Termination : Terminate the algorithm if it satisfies the stopping criterion.

i) If max
rs

∑
k ∈ Krs(n)

k 6= k̄rs(n)

frs
k (n)

qrs

(
drs

k (n)−drs
k̄rs(n)

drs
k (n)

)
≤ ε, then terminate.

Otherwise, go to Column Generation.

The major concern when utilizing path enumeration methods is the realization that path

flows are usually not unique. An example of non-unique path flows is shown in Figure 4.4.

Current path assignment methods rely on initial path flow generation to determine paths,
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i.e. the initial solution dictates the non-unique final solution. The impact of non-unique

path flow solutions was not considered in this research and the extent to which optimal

CMS locations depend on path flows is unknown.
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250 vph
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      850 vph

        150 vph
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250 vph

POSSIBLE PATH SOLUTION #1 POSSIBLE PATH SOLUTION #2

1 2 OD12 = 1400 vph

Figure 4.4: Non-Uniqueness of Path Assignment Solution

4.4 Delay Under Realtime CMS Information

The time-dependent deterministic queuing model may be combined with the diversion

model to estimate the reduction in user delay for a given incident link and a given set of

CMS. The set of CMS is ordered based on the shortest path travel time from the CMS link
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to the incident link, Tk, with the shortest time at the start of the CMS set and the longest

time at the end of the CMS set. The method of determining the reduction in incident

delay may be best illustrated using an example based on the simplest off-peak case, Case I.

Consider a network with three CMS (Figure 4.5), ordered from the closest to longest from

the incident link, and an opportunity to divert to an alternative route after each of the

CMS. The corresponding queuing diagram for this simple network is shown in Figure 4.6.

Although this method is illustrated with three CMS, the extension to any number of CMS

is straightforward.

CMS 3

CMS 2

CMS 1
x(t)p

qp qp

Incident Link

Figure 4.5: Three CMS Simple Network

Shown in Figure 4.6, an incident occurs at time to, and, after a time lag including three

major components: incident detection time, information processing time, and CMS acti-

vating time, diversion due to CMS starts at time ts. The incident link does not experience

a reduction in arrival rate until ts + T1 due to the travel time component from the first

CMS to the incident link. The same is true for additional reduction in arrivals caused by

CMS 2 and CMS 3.
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Figure 4.6: Simple Network Queuing Diagram

Determining the actual reduced flow rate at each interval between the diversion start

times corresponding to two neighbouring CMS is not straightforward. This is because the

reduction in flow rate depends on the proportion of traffic diverted due to CMS informa-

tion, while traffic diversion is a function of travel time savings, which in turn depends on

how much traffic is diverted. We solve this interdependency problem by constructing the

reduced flow rate curve from left, starting at time ts + T1, to right at a small time interval

(e.g. 5 minutes). At the start of each interval, the cumulative number of arrivals is calcu-

lated based on the reduced arrival rate of the previous interval. This cumulative arrivals

is then used to estimate the expected delay for a vehicle arriving during this time instance

and all vehicles arriving at the current interval are assumed to experience this same delay.
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The diversion rate can then be estimated for the corresponding interval. This process

continues until the reduced arrival curve, x̂(t), intersects with the cumulative departure

curve.

The benefit estimation model can now be completely defined to estimate the expected

travel time savings for a specific incident link a during time period p (TTSp
a), as well as

the expected savings for the entire traffic network during the year.

TTSp
a(F) = [Dp

a − D̂p
a(F)] np

a (4.4)

TTSyear
network(F) = 365

∑
p

∑
a

TTSp
a(F) (4.5)

where

F = allocated CMS locations;

Dp
a = total vehicle incident delay on link a, during time period p,

without CMS information (veh-hours) as in Equation 3.11;

D̂p
a(F) = total vehicle incident delay on link a, during time period p,

with CMS information (veh-hours);

np
a = expected number of incidents on link a during time period p

(# incidents) as in Equation 3.10;

TTSyear
network(F) = expected travel time savings for the entire network during a

year (veh-hours).

4.5 Effect of Diversion on Alternative Routes

The diversion model presented in Section 4.2 approximates the rate at which drivers divert

from their originally intended route to one or more alternatives during incident conditions.

However, no prediction is made as to what those alternative routes are, since there are
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presently no reliable route choice models during traffic equilibrium disruption. Addition-

ally, the increased travel time experienced by drivers on these alternatives is not considered

in the travel time savings calculation of Equation 4.5.

To partially account for this impact an alteration to the diversion rate and incident

link-based travel time savings is proposed that re-assigns diverted traffic to the shortest

alternative route between the CMS link and the trip destination. A diversion equilibrium

is approximated through successive iterations of Tk,m(t) and T ∗
k,m in Equation 4.2. Dur-

ing the iterations, link travel times are updated to reflect volume changes resulting from

traffic diversion. These updated link travel times may then be included in Equation 4.5 to

adequately reflect the negative impact of diverted traffic on otherwise unaffected links.

TTSp
a(F) = [Dp

a − D̂p
a(F)− TTIp

a(F)] np
a (4.6)

where

TTIp
a(F) = travel time increase caused by diversion from incident link a during

time period p;

57



CHAPTER 5

LOCATION OPTIMIZATION

The previous section focused on formulating a model to estimate the network benefit

of providing incident information to drivers via messages at predetermined CMS locations.

The next step is to extend the benefit model to include a CMS location optimization routine

so that decisions can be made where to locate future CMS installations. The section will

start with the location formulation with solution strategies following.

5.1 Problem Formulation

Many of the traditional facility location formulations in operations research literature seek

to minimize a transportation cost objective. In the context of this research the location

objective is to maximize the expected travel time savings over the duration of a CMS

installation life. Furthermore, the candidate locations are links for the presented model as

opposed to nodes used in traditional location models.

The CMS location problem can be described as follows. Given a maximum number of

CMS to allocate N and a set of links A from which to choose candidate CMS locations a

determine the optimal set of CMS F that maximizes the following objective within a cost

constraint.

max TTSyear
network(F) (5.1)

subject to

∑
a∈F

fa ≤ F (5.2)

where
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TTSyear
network(F) = travel time savings over all p time periods and all incident

links a in a year (veh-hours);

fa = equivalent annual construction and operating costs for a CMS

installation on link a ($);

F = maximum CMS costs ($).

There are two major obstacles preventing the application of traditional combinatorial

optimization techniques to this problem. First, the problem is implicitly structured given

that diversion rates are a function of delay, while delay in turn depends on cumulative

arrivals, which are also a function of diversion rates. Secondly, location problems involving

interactions between distinct locations belong to a class of computationally difficult prob-

lem sets that, generally, cannot be solved to optimality. Therefore, this section will explore

two heuristic strategies, namely, greedy allocation and genetic algorithms.

5.2 Greedy Allocation

The main idea behind greedy optimization techniques is that the problem at hand is

broken into a set of incremental problems which are then solved sequentially. Generally,

greedy solutions are best known for producing “good” solutions, which are also occasionally

optimal solutions, in a reasonable amount of computational time.

A greedy algorithm as applied to the present CMS location problem entails sequential

steps of locating one CMS at a time. Once a CMS is located, its location is assumed to

be fixed in the subsequent steps of locating other CMS. Figure 5.1 gives the pseudocode

of this algorithm.
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for n = 1 to N do
for all a ∈ A do

if a /∈ L then
temporarily add a CMS at location a to L
calculate TTSyear

network (Equation 4.5)
if TTSyear

network is maximized in this iteration then
amax ⇐ a

end if
remove CMS at location a from L

end if
end for
add amax to L

end for

Figure 5.1: Greedy Location Allocation

5.3 Genetic Optimization

Genetic algorithms (GA) as an optimization technique are outlined in Figure 5.2 and

Appendix A. The reviewed research papers described in Section 2.4, specifically relating to

location problems, contain some broad recommendations as to the most appropriate genetic

algorithm parameters (Table 5.1). These parameters will be given the most consideration

when choosing an appropriate variant of the simple genetic algorithm.

5.3.1 Encoding

Only the problem native encoding scheme will be considered as shown in Table 5.1. The

main advantage of using this encoding scheme, as noted by GA researchers, is the explicit

handling of the limitation on the number of facility locations. To accommodate this, each

individual chromosome in the population, with a length corresponding to the number of

CMS to add, contains genes that are references to link objects. Also, some algorithmic

extensions have been added to the population generation, mutation, and crossover oper-
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L ≡ population
λ ≡ population size
for i = 1 to λ do {randomly generate initial population}

for j = 1 to sizeof(L) do
lj = random(A) {randomly select a link from A}
Li ⇐ lj

end for
L ⇐ Li

end for
mark best individual as elite
for i = 1 to max generations do {run GA max generations number of times}

for all L ∈ L do
evaluate fitness of individual L

end for
selection()
crossover()
mutation()
generational replacement

end for

Figure 5.2: Genetic Algorithm

ators to prevent duplicate CMS at the same location. The binary encoding would have

required a chromosome with the number of possible CMS locations as its length. Fur-

thermore, limitations on the number of facility locations would be difficult to implement

algorithmically.

5.3.2 Selection

The selection() function defined in Figure 5.2 can be performed utilizing the fitness pro-

portionate, rank, or the tournament selection schemes. These schemes are detailed in

Figures 5.3, 5.4, and 5.5. For each of these algorithms fi denotes the fitness of individual

i and F is the summation of the fitnesses of all individuals in the population.
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Table 5.1: Suitable GA Parameter Options for CMS Location Optimization

Component Options
Numerical Parameters 1 Population Size

Maximum Generations
Crossover Probability 2

Mutation Probability 3

Elitism (Binary)
Encoding Native
Selection Fitness Proportionate (Figure 5.3, pg.63)

Rank 4(Figure 5.4, pg.63)
Tournament 5(Figure 5.5, pg.64)

Crossover One point (Figure 5.6, pg.64)
Uniform (Figure 5.7, pg.64)
Fusion (Figure 5.8, pg.65)

Mutation Simple (Figure 5.9, pg.65)
Self-Adaptive (Equation 5.3, pg.66)
Deterministic Increasing/Decreasing (Equations 5.4&5.5 , pg.66)

1Option is the real-value numerical quantity, other components involve selection from a discrete choice set.
2Not applicable to fusion crossover.
3Only applicable to simple mutation.
4Rank weight (1 ≤ νmax ≤ 2) also required.
5Tournament size (multiple of 2) also required.

5.3.3 Crossover

Three variants on the standard crossover operator have been considered for this research:

one point (Figure 5.6), uniform (Figure 5.7), and fusion (Figure 5.8) which is a slight variant

of the uniform crossover. It is notable that only the fusion operator prevents the duplication

of CMS locations in a particular solution. Also, the fusion operator only produces one

offspring compared to the two offspring for the other two operators. Additional algorithmic

components were added to mutation operators for the one point and uniform crossover

operators to remove duplication of solutions.
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F =
∑
i

fi

F rand = rand[0, 1] F {randomly generate a fitness}
SUM = 0
for i = 1 to λ do {add fitness values until F rand reached}

SUM = SUM + fi

if SUM ≥ F rand then
select individual i

end if
end for

Figure 5.3: Fitness Proportionate Selection

Require: 1 ≤ νmax ≤ 2
for i = 1 to λ do

Pi = 1
λ

(
νmax − (νmax − νmin) i−1

λ−1

)
{νmin = 2− νmax}

end for
sort(L) {sort the population in ascending order}
P = rand[0, 1] {randomly generate a number on [0,1] interval}
SUM = 0
for i = 1 to λ do

SUM = SUM + Pi λ
while SUM > P do
C(i) ⇐ i
P = P + 1

end while
end for
Individual 1= C(rand[0, λ− 1]) {1st selected based on random integer index}
repeat

Individual 2= C(rand[0, λ− 1])
until Individual 2 6= Individual 1

Figure 5.4: Rank Selection

5.3.4 Mutation

All of the mutation schemes presented here perform that same mutation operation, only

the rate at which the mutation occurs changes. The mutation operation randomly changes
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Require: SIZE be a multiple of 2
WINNER = rand(A) {randomly select initial winner}
for i = 1 to tournament size −1 do

PICK = rand(A) {randomly select a contestant}
if fPICK > fWINNER then

WINNER ⇐ PICK {change winner if fitness improves}
end if

end for

Figure 5.5: Tournament Selection

if rand[0, 1] ≤ pc then
X point = rand[1, N − 1] {randomly generate a crossover point}

else
X point = N {no exchange, crossover point at end of chromosome}

end if
Set 1st child to 1st parent’s genes up to crossover point, 2nd parent thereafter
Set 2nd child to 2nd parent’s genes up to crossover point, 1st parent thereafter

Figure 5.6: One Point Crossover

if rand[0, 1] ≤ pc then
for i = 1 to N do {consider exchanging genetic material at each gene in chromosome}

if rand[0, 1] < 0.5 then
copy chromosome i from parent 1 to child 1
copy chromosome i from parent 2 to child 2

else
copy chromosome i from parent 2 to child 1
copy chromosome i from parent 1 to child 2

end if
end for

else
copy entire parent chromosomes to children if no crossover

end if

Figure 5.7: Uniform Crossover
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P (1) = f1

f1+f2
{probability of selecting parent 1’s genes during crossover}

for i = 0 to N do
if rand[0, 1] ≤ P (1) then

copy chromosome i from parent 1 to child
else

copy chromosome i from parent 2 to child
end if

end for

Figure 5.8: Fusion Crossover

the CMS location to any link in the network, exclusive of those links already included in

the chromosome. The simple algorithm with a static pm is described in Figure 5.9. Details

of non-static mutation rates are provided in Equations 5.3, 5.4, and 5.5.

for all l ∈ L do {iterate through each gene in chromosome}
if rand[0, 1] ≤ pm then {if mutation}

repeat
l = rand(A) {randomly mutate chromosome l to another CMS location}

until l /∈ L {iterate to remove duplicate locations}
end if

end for

Figure 5.9: Simple Mutation

Self-Adaptive Mutation

The philosophy behind the self-adaptive mutation strategy is to relate a variant mutation

rate to each individual in the population. The mutation rate changes or “learns” (Equa-

tion 5.3) over successive generations with the expectation of estimating superior mutation

rates and not just superior solutions.
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p′m =

(
1 +

1− pm

pm

e(−LR) N(0,1)

)−1

(5.3)

where

LR = learning rate (usually LR = 0.22);

N(0, 1) = normal distribution (mean = 0, standard deviation = 1).

Deterministic Mutation Rate Changes

Some researchers argue that utilizing a high rate of mutation through part of the GA pro-

cess will introduce more genetic diversity into the population and, subsequently, increase

the quality of the generated solutions. To this end two changing mutation strategies have

been described in the literature that increase, or decrease, in a predictable way the popu-

lation mutation rate. The deterministically increasing mutation (Equation 5.4) starts at a

rate of (equivalent binary chromosome length)−1 and increases mutation up to a rate of 0.5.

Alternatively, the decreasing rate (Equation 5.5) starts at 0.5 and goes down to (equivalent

binary chromosome length)−1 upon reaching the maximal number of generations.

p′m =

(
2 +

n− 2

T − 1
(T − 1− t)

)−1

(5.4)

p′m =

(
2 +

n− 2

T − 1
t

)−1

(5.5)

where

n = equivalent binary chromosome length;

T = maximum number of generations;

t = current generation (0 . . . T − 1).
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5.4 OptimalCMS: A Decision Support Tool For Locating CMS

The methodologies outlined in this and previous chapters are calculation intensive and

could not be performed, on a realistic traffic network, without the aid of a software program.

To this end a software program, OptimalCMS, was developed to implement the delay

benefit and optimization algorithms for locating CMS. OptimalCMS was written using the

C#.NET programming language, with coding details presented in Appendix E. The data

structure and logical program execution of OptimalCMS is illustrated in Figure 5.10 with

further information contained in Henderson et al. (2004a).

Network O-D Matrix
(AM, PM, Off-Peak)

Existing CMS

Traffic Assignment to Identify Path Flows

Estimate Network Benefit
- Diversion Model

Optimize CMS Locations
- Greedy Allocation
- Genetic Algorithm

Output CMS
Location

Input Data

Figure 5.10: Algorithm Framework
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CHAPTER 6

COMPUTATIONAL STUDY

The CMS location model presented in Chapters 3-5 is established on the basis of a

number of assumptions and simplifications. For example, the proposed model assumes

that the only benefit of installing CMS is in providing incident information. Also, the

model is deterministic in nature, assuming perfect information on input parameters such

as O-D demand, incident conditions and traffic diversion behaviour. In practice, however,

most of these parameters are inherently uncertain due to various factors, such as insufficient

relevant data to estimate the model parameters, errors in both the raw data and model

specification, and errors in predicting future traffic demand and conditions. The objective

of this chapter is therefore twofold: to demonstrate the application of the proposed model

and its ability to solve realistic CMS location problems; to quantify the potential effects

of these variations on CMS location.

Two datasets will be utilized in this computational study. The first dataset is rela-

tively small, representing a hypothetical network. This dataset will be mainly applied

to analyze the sensitivity of the model to variations in data and model parameters. The

second dataset represents a section of the Highway 401 express-collector freeway and its

surrounding arterials in the City of Toronto. This second dataset will be used to further

substantiate the results obtained using the first network and to develop suitable genetic al-

gorithm parameters. Unless otherwise stated, all optimization in this chapter is performed

using the greedy allocation method.

6.1 Case A: Small Network

Figure 6.1 shows the layout of the road network used in the sensitivity analysis. The

network represents a freeway-arterial system, consisting of 56 nodes and 124 links. The
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longest of these links being 6 km and the shortest being 0.25 km. Also, the link free-flow

speeds range from 60 km/h for the arterials and ramps to 110 km/h for the freeway links.

An east-west freeway is located in the middle of the network surrounded by arterial links

with a total east-west extension of 17.2 km and a north-south extension of 6.0 km.

Also shown in the network are 14 origin-destination zones as trip generators. Four

time periods are considered: AM peak, midday off-peak, PM peak, and overnight off-peak

with period durations of 2, 7, 3, and 12 hours respectively. Generally, a large number of

trips travel eastbound (from west to east) during the AM peak period and, conversely, a

large number of trips travel westbound (from east to west) during the PM peak period.

The rate of AM demand is monotonically higher than the PM demand. Also, the demand

matrix for modelling uncertainty in traffic demand and driver behaviour is different (larger

demand) than the demand matrix for modelling uncertainty in incident attributes. The

base demand matrix, from which all other analysis matrices are derived, is provided in

Appendix C. Additionally, an example of the variation in demand experienced throughout

24 hours is shown in Figure 6.2.

The Bureau of Public Roads (BPR) link congestion function was chosen for traffic

assignment purposes. The BPR function (Equation 6.1) is the most common travel con-

gestion function used in transportation planning applications.

t = tf

(
1 + α

(
V

C

)β
)

(6.1)

where
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Figure 6.1: Sample Network

t = link travel time (min);

tf = free-flow link travel time (min);

V = link volume (veh/hour);

C = link capacity (veh/hour);

α = function parameter, α = 0.15 in this case;

β = function parameter, β = 4 in this case.

For the purpose of this analysis the base incident rate was set at 2.9 incidents per

million-veh-km as suggested by a National Highway Traffic Safety Administration (2000)

70



Time Demand
0 370
7 370
7 3994

10 3994
10 586
16 586
16 2538
19 2538
19 370
24 370

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 4 8 12 16 20 24

Time of Day (h)

D
em

an
d 

(v
ph

)

Figure 6.2: Time Varying Demand Example, Origin 2 to Destination 5

report. Equation 3.10 was used to convert this value, ra, to incidents over a given time

period, np
a. Other base values used for this sample network and applied to all incident

links are: capacity reduction of 80%, incident duration of 30 min, detection time of 10 min,

and processing and CMS activating time of 5 min. These values are similar to incident

characteristics used in other relevant literature (Abbas and McCoy, 1999; Chiu et al., 2001).

6.1.1 Optimal CMS Locations and Marginal Benefits

The OptimalCMS software program was run using the data and parameters described in

Section 6.1. The four best CMS locations are shown in Figure 6.3. The first two CMS

are located at either end of the freeway, which is reasonable considering the high traffic

volume on the freeway and the opportunity to divert at the most easterly and westerly

interchanges. The second two CMS, located upstream of the next interchanges, also capture

high volumes from zones 1 through 6 and provide a good opportunity for diversion.

Figure 6.4 shows the relationship between the total benefits of CMS and the total
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Figure 6.3: First Four Selected CMS Locations

number of CMS installed in the network. As seen in the figure, a significant increase

in total network benefit resulted when the first 3 CMS were added to the network (an

increased travel time saving of about 62% from 1 CMS to 2 CMS). The additional total

network benefits from adding more CMS become less significant after the third CMS is

added. The total travel time benefit tends to level off between 3 and 4 CMS. These

results suggest the existence of optimal number of CMS for a given network, which could

be obtained through a systematic cost-benefit analysis with the support of the proposed

location model.

Also seen in Figure 6.4, the benefit of adding ten CMS to the freeway network is 3123

veh-hours/day. This benefit is the difference between the incident-induced delay without

CMS information (22899 veh-hours/day) and the incident-induced delay in the presence of

CMS information (19776 veh-hours/day).
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Figure 6.4: Benefit vs. Number of CMS Installed

6.1.2 Comparison to Heuristic Methodology

In the absence of a methodical approach for optimizing CMS locations, traffic managers

usually locate CMS in a heuristic ad-hoc way based on freeway link traffic volume and

diversion opportunities at downstream off-ramps. To illustrate the difference between the

proposed model and this ad-hoc approach, we consider the greedy allocation results for

the base case of the hypothetical sample network. Shown in Table 6.1 is the order of

CMS allocation based on the proposed model, and the revised order based on link traffic

volume. It is reasonable to assume that there is a good opportunity for traffic to divert

to an alternative route from each of these links since they were all selected in the greedy

allocation process.

As seen in Table 6.1, there is a significant difference between CMS allocation based on
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Table 6.1: CMS Allocation Order, Proposed Model vs. Link Volume

Allocated CMS Daily CMS
at Greedy Link ID Volume Order

Iteration # (veh) (Volume)
1 119 22500 6
2 28 21295 7
3 116 53310 1
4 25 47930 2
5 155 20345 8
6 45 17980 9
7 50 14350 10
8 158 24105 5
9 16 47790 3
10 21 46750 4

traffic volume and allocation based on the proposed model. Using the proposed model,

freeway links with highest volume are not necessarily the first assigned with a CMS. A

visual comparison of the two techniques may also be considered using Figure 6.3 for the

proposed model and Figure 6.5 for the heuristic technique. As seen in the Figures, the two

CMS at the end of the freeway are replaced with two CMS in the middle of the freeway

with higher traffic volumes but inferior diversion opportunities.

6.1.3 Consideration of Multiple Time Periods

Most existing models for optimizing CMS locations consider only a single time period, AM

or PM peak, and ignore the traffic exposure for the remainder of the day. The proposed

model, however, is able to consider the entire day in the optimization process. The CMS

allocation results based on a single time period compared to the results for all time periods

are shown in Table 6.2.

It is evident that only considering a single time period in the optimization process does
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not produce the best CMS locations since demand is directional and the highest volume

freeway links during the AM peak period are not the highest volume freeway links during

the PM peak period. Also, incidents during the off-peak period had a negligible impact

on the final location solutions of the optimization process, as the estimated benefit was

several orders of magnitude smaller than the benefit predicted during the peak periods.

6.1.4 Effects of Error in Traffic Demand Estimates

The location benefit model proposed is this research assumes O-D traffic demand as de-

terministic and known. The actual demand varies stochastically and can not be predicted

accurately. This section attempts to quantify the effects of error in demand estimates on

CMS location solutions. The uncertainty in traffic demand was modelled by considering

several variations of the original O-D matrix. Variations of +10%, −10%, ±5%, ±10%,

and ±20% to the base origin-destination demand matrix were evaluated. The variation
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Table 6.2: Greedy Allocation Results Based On Time Period

Allocated All Periods AM Peak Midday PM Peak Overnight
CMS at Greedy Link MS 1 Link MS 1 Link MS 1 Link MS 1 Link MS 1

Iteration # ID ID ID ID ID
1 119 3123 28 1941 45 3 119 3120 16 0
2 28 1942 25 556 16 2 116 841 45 0
3 116 849 45 223 155 1 133 407 125 0
4 25 560 39 142 50 1 155 266 155 0
5 155 406 21 55 160 1 19 63 50 0
6 45 268 145 30 21 0 176 28 160 0
7 50 224 75 29 116 0 55 20 105 0
8 158 142 125 9 125 0 58 14 174 0
9 16 64 12 7 25 0 16 9 68 0
10 21 55 35 4 106 0 145 5 80 0

1Marginal savings (veh-hours/day)

in each case was developed by increasing or decreasing each entry (O-D pair) in the base

O-D matrix (AM, PM, and off-peak) by a certain amount. For example, for the case of

+10% variation, each demand entry was increased by a random amount from 0% to 10%

inclusive. The -10% variation in demand was determined in a similar manner. For the ±5%

variations in demand, each demand entry was either increased or decreased, depending on

the random value selector from -5% to +5% for each particular entry. The same stochastic

changes are also applied to the ±10% and ±20% variation cases.

The results of the greedy allocation procedure for each of the demand variations are

shown in Table 6.3. As seen in the Table, the error effect is relatively small since there

is no effect to the first five CMS locations chosen or their respective order allocated. The

order for some CMS locations are altered between the sixth and tenth CMS allocations,

however only one further link (Link ID 50) is introduced into the solution sets.
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Table 6.3: CMS Allocation Results for Variable Congestion Levels

Greedy Base Case +10% −10% −5% → +5% −10% → +10% −20% → +20%
Iteration Link MS 1 Link MS 1 Link MS 1 Link MS 1 Link MS 1 Link MS 1

# ID ID ID ID ID ID
1 119 3123 119 3489 119 2997 119 3254 119 3628 119 2448
2 28 1942 28 2087 28 1675 28 1921 28 1918 28 2123
3 116 849 116 933 116 812 116 865 116 891 116 772
4 25 560 25 601 25 508 25 562 25 563 25 575
5 133 406 133 449 133 372 133 422 133 415 133 331
6 155 268 155 308 155 242 155 279 155 312 45 248
7 45 224 45 240 45 197 45 221 45 223 155 222
8 39 142 50 144 50 134 39 147 39 144 50 129
9 19 64 21 72 19 57 19 58 19 63 21 70
10 21 55 19 66 21 51 21 55 21 55 19 63

1Marginal savings (veh-hours/day)
## CMS location identified as different from the base case

6.1.5 Effects of Uncertainty in Incident Conditions

Similar to O-D demand estimates, the proposed model also assumes deterministic and

known incident attributes. Four incident attributes, including incident rate, incident du-

ration, incident occurrence time, and capacity reduction, were modelled for uncertainty.

Since the incident occurrence time, as mentioned earlier, is assumed to be distributed uni-

formly over the time period of concern it is not considered hereafter. The uncertainty in

incident rate was modelled by considering random fluctuations in the link exposure-based

incident rate. Fluctuations of +10%, - 10%, +50%, -50%, +100%, and -100% were consid-

ered and developed as previously described for other variations. The CMS location results

for variations in link incident rates are shown in Table 6.4.

The optimal CMS locations are insensitive to smaller variations of 10% in the link inci-
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Table 6.4: CMS Allocation Results for Variable Link Incident Rates

Greedy Base Case +10% +50% −50% +100% −100%
Iteration Link MS 1 Link MS 1 Link MS 1 Link MS 1 Link MS 1 Link MS 1

# ID ID ID ID ID ID
1 119 559 119 545 119 735 119 549 119 605 119 283
2 28 417 28 444 28 375 28 381 28 461 28 218
3 116 138 116 134 116 173 116 114 116 160 155 56
4 25 103 25 107 25 94 25 83 25 116 45 41
5 155 49 155 48 155 65 155 62 45 50 116 33
6 45 43 45 46 45 39 45 44 155 44 50 29
7 50 25 50 27 158 33 158 31 50 26 158 19
8 158 24 158 24 50 22 50 26 160 22 21 17
9 16 15 21 15 19 18 16 13 16 22 25 4
10 21 15 16 15 21 16 21 12 21 17 19 3

1Marginal savings (veh-hours/day)
## CMS location identified as different from the base case

dent rate, however, larger variations (±100%) seem to affect the allocated CMS locations.

The reason for the effect on CMS locations is the linear relationship between incident rates

and travel time savings.

An 80% reduction in link capacity was used for the base case. Four additional cases

were generated: the first two cases involved monotonic reductions of 40% and 60% for all

links; the other two cases had variations similar to the random fluctuations in congestion

level. Random decreases in capacity with equal likelihood of a decrease from 50% to 70%

inclusive for one case, and 40% to 80% for the other case were generated independently

for each of the links. The CMS location results for capacity reduction variations were

identical for the first six CMS allocated and only the order of allocation for the last four

varied from the base case. This indicates that the optimal CMS location is insensitive to
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uniform changes in capacity reduction and relatively insensitive to random fluctuations in

capacity reduction. Again, a slight variation in CMS allocation order was observed but

only for a few locations that produced a small marginal benefit.

Variations in incident duration were evaluated using 30 minutes for the base incident

duration case, and uniform durations of 40 minutes and 50 minutes for additional uniform

incident duration cases. Random fluctuations, similar to those discussed for capacity re-

duction, were modelled using two additional random duration cases with equal likelihood

for durations between 30 minutes and 50 minutes inclusive for the first random case and

between 20 minutes and 60 minutes inclusive for the second random case. The results of

the allocation procedure, similar to those of variations in link capacity reduction, show

identical CMS locations for the first six allocated and differing order for the last four allo-

cated. Therefore, with the exception of a few locations with marginal benefit, the allocated

CMS location is insensitive to both monotonic and random variations in incident duration.

6.2 Case B: Toronto Network

The Toronto case will now be considered for additional analysis. The complete dataset

(Figure 6.6), provided by the Ministry of Transportation of Ontario, consists of 14160

nodes, 37386 links, and 69448 O-D pairs extracted from the emme/2 transportation plan-

ning software. This study area is prohibitively large for model execution, therefore, a

smaller network (Figure 6.7) mainly comprised of Highway 401 and its nearby arterials

was extracted for computational analysis. This reduced the number of nodes, links, and

O-D pairs to 961, 2363, and 6149 respectively. The longest of these links being 3.45 km

and the shortest being 0.04 km. Also, the link free-flow speeds range from 40 → 70 km/h

for the arterials and ramps to 110 km/h for the freeway links. The smaller study area

is approximately 23.2 km in the east-west direction, from west of Highway 410 to east of

79



Allen Road, and 17.4 km from the most southerly node to the most northerly node.
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Figure 6.6: Toronto Street Network (Source: MTO Official Road Map)

The O-D demand for the smaller network (Appendix D) was not provided, only a

sample of the larger demand matrix for the entire Greater Toronto Area was included.

The smaller demand matrix was determined by performing path-based assignment for the

complete dataset and saving the path information for each O-D pair. The paths, referenced

as a succession of nodes, were truncated at the edges of the study area. The truncation

was performed by eliminating all nodes up to the first node that was part of the smaller

network, this node being the origin node, then continuing until the last node that appears
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Figure 6.7: Highway 401 Network

in the network is found, this node being the complementary destination node. The demand

for this new O-D pair was then set to the associated path flow. Demands with common

origins and destinations were combined to reduce the size of the derived demand matrix.

The peak hour demand (AM) for this matrix is approximately 152,000 vehicles and the

associated daily demand is approximately 948,500 vehicles.

To increase the realism of these results, all calculations include the negative impact of

diverted traffic on alternative routes in the travel time savings benefit results. However, no

diversion rate iterations are performed as described in Section 4.5, except those described

in Section 6.2.4.
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6.2.1 Optimal CMS Locations and Marginal Benefits

Figure 6.8 illustrates the ten best CMS locations as chosen by the proposed model. Gen-

erally, most of the CMS have been allocated to freeway links upstream of an interchange.

This can be expected from a good CMS location model since interchanges represent an

excellent diversion opportunity. The first five of these locations are described below.

1. Link 7628 is located at the easterly end of westbound Highway 401. This location

captures most of the westbound freeway traffic while providing a diversion opportu-

nity to Allen Road.

2. Link 9980 is located on westbound Highway 401 just after the on-ramp from south-

bound Highway 400. Highway 400 as well as Highway 401 traffic pass this point and

can be informed of conditions on the Highway 401 main route and Highway 409 →

Highway 427 alternative route.

3. Link 7547 is located on the eastbound Highway 401 after the Highway 427 inter-

change. The Highway 401 and 427 traffic may divert at a minor interchange down-

stream of the CMS link.

4. Link 9986, located on eastbound Highway 401 at the Highway 400 interchange, has

a high traffic volume but poorer diversion opportunities than the first three CMS

allocated.

5. Link 29486, located at the beginning of the eastbound Highway 409, provides two ex-

cellent diversion opportunities through eastbound Highway 409 or southbound High-

way 427. However, the traffic volume is much lower than the first four locations that

CMS were located.
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Figure 6.8: Model Selected Optimal CMS Locations
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Similar to Figure 6.4 for the small network, Figure 6.9 shows the relationship between

the total benefits of CMS and the total number of CMS installed in the GTA network

for various diversion model parameters. The general trend is the same with a very high

benefit for the first few CMS installed, followed by decreasingly marginal gains. Between

the ninth and tenth CMS installation there is practically no further network benefit. The

allocation of ten CMS would be excessive when considering the size of this network. A

more reasonable number would be five CMS when considering the relatively small positive

impact of CMS 6 → 10 and the limited opportunities to divert through interchanges.

The benefit of adding CMS to Highway 401 is approximately 1.52 million veh-hours/year

when considering an α and β of 5. This benefit is the difference between the incident-

induced delay without CMS information (4.44 million veh-hours/year) and the incident-

induced delay in the presence of CMS information (2.92 million veh-hours/year).

The network benefit may be converted to a dollar value by assuming a value of time,

e.g. $10/hour. Utilizing this value of time the benefit attained by installing one CMS,

approximately 640,000 → 1,010,000 veh-hours, may be converted to a range of $6.4 →

$10.1 million. After the installation of the second CMS the benefit increases to $8.5 →

$11.9 million. Again, a cost-benefit analysis would be complementary in determining the

optimal number of CMS to install.

6.2.2 Comparison to Existing CMS

There are 21 existing CMS in the study area under consideration (Figure 6.10). A compar-

ison was made between these existing locations and the model selected optimal locations.

The most significant difference between the two sets of CMS locations is that the model al-

located CMS upstream of interchanges while the existing CMS locations are mainly located

upstream of the ramps connecting the express and collector routes. This is not unexpected
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a=5,b=5 a=5,b=10 a=10,b=5 a=10,b=10
0 0 0 0 0
1 902365 1007918 640798.2 883396
2 1082216 1191687 853049.4 1068229
3 1208080 1357585 982616.4 1174517
4 1334575 1450655 1044373 1269450
5 1406943 1523950 1065140 1336239
6 1451257 1565695 1095260 1386438
7 1481232 1600274 1103864 1420975
8 1497566 1633477 1108676 1451342
9 1510287 1651103 1125986 1474510

10 1521305 1661255 1139333 1490434
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Figure 6.9: Benefit vs. Number of CMS Installed

when considering that the CMS in this section of Highway 401 are used to manage traffic

between the express and collector routes and not to provide information relating to al-

ternative routes off of the freeway system. Also, the network representation provided for

this study did not distinguish between the express and collector systems, instead combin-

ing these capacities into a single link instead of parallel links for each of the express and

collector options. This simplification impacts chosen CMS locations since diversion from

express to collector and vice versa could not be considered in the model without a more

detailed network.

Another major difference between the model results and the existing condition is the

number of CMS installed. Only the first 5 CMS installed had any significantly positive

effect according to the model, a substantially smaller number than the actual 21 installa-

tions. Additionally, these 21 existing locations did not achieve the model optimal travel

time savings of approximately 1.52 million vehicle-hours and instead produced a slightly

smaller value of 1.38 million vehicle-hours. However, the 21 installed CMS may not be
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Figure 6.10: Existing CMS Locations
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excessive when considering a positive repetition effect of passing multiple CMS which was

not included in the proposed model.

6.2.3 Uncertainty in Diversion Model

The diversion model contains a high degree of uncertainty. To identify the impact of the

diversion model on CMS allocation, CMS were allocated on the basis of different α and β

values. Recall from Equation 4.1 that increasing α will monotonically decrease the diversion

rate for all paths and increasing β will increase the diversion rate, depending on the travel

time for the shortest alternative route. Therefore, a comparison of the marginal benefits

of each allocation procedure is not relevant. Instead the focus will be on a comparison of

the chosen locations (Table 6.5).

Table 6.5: CMS Allocation Order Based On Diversion Model Parameters

Allocated CMS α = 5 α = 5 α = 10 α = 10
at Greedy β = 5 β = 10 β = 5 β = 10

Iteration # Link ID Link ID Link ID Link ID
1 7628 7628 7628 7628
2 9980 7547 29007 9980
3 7547 9980 7593 7547
4 9986 9986 7607 9986
5 29486 29469 9969 29486
6 28974 28974 7615 28974
7 7615 10250 10250 9774
8 9972 7559 10089 10421
9 10250 7615 28039 7575
10 7597 7597 25008 9966

As seen in Table 6.5, the model selected CMS locations are highly dependent on the

α and β parameters of Equation 4.1. Generally, the absolute values of α and β are not
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as important as the ratio of the two parameters. Relatively higher values of α produce

CMS locations with higher traffic volumes but, possibly, lower savings on alternate routes.

Alternatively, a higher β parameter results in CMS locations where the value of travel

time savings is more important than link traffic volumes. The relative values of these two

parameters should, therefore, be a result of an accurate utility model for route preference.

6.2.4 Inclusion of Alternative Path Travel Time

As indicated in Section 4.5, the increased delay incurred on alternative routes may be a

factor in CMS location decisions. Therefore, a comparison was made between chosen CMS

locations with and without the inclusion of the negative impact diversion has on alternative

route travel times. Recall that both methods include the travel times on alternate routes,

but the consideration of alternate path travel times are used along with diverted traffic

information in determining diversion rates. As seen in Figure 6.11 the inclusion of alternate

path travel time slightly increases the travel time benefit. This can be expected since the

iterative approach to determining diversion rates would prevent excessive re-routing of

traffic to congested alternate paths, however the change is not enough to significantly alter

the solution benefit, especially after the fifth allocation.

The locations of these two approaches were also compared and the results are presented

in Table 6.6. The results with and without the consideration of alternate path travel

time are quite different as seen in the Table. Generally, after an examination of network

characteristics, the available diversion paths are slightly less congested when including the

effects of alternate path travel time. This result is reasonable when considering that the

optimal solution may not be unique. That is, there may be many different combinations

of solutions that would produce the same objective function value. So while the solutions

may be different, the actual end result in terms of travel time savings is the same.
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Figure 6.11: Cumulative Benefit Comparison: With and Without Consideration of Alter-

nate Path Travel Time

6.3 Greedy vs. Genetic Optimization

All of the computation analysis performed in this Section use the Greedy optimization

method. However, this method is not guaranteed to produce the optimal CMS locations.

Therefore, a comparison was made between results obtained using both the Greedy and

Genetic optimization techniques for both the hypothetical network and the Toronto net-

work.

The computational time required for GA can be much greater than the greedy method.

Using a computer with a 2.0 GHz processor and 512MB of RAM, the benefit evaluations for

Cases A and B required 10.32 and 590.56 seconds of CPU time respectively. These times

are not significant, however the greedy and genetic algorithms require many iterations of

benefit evaluations. Applying the greedy algorithm to the Toronto Highway 401 network

results in approximately 1500 iterations, but each iteration does not require the same
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Table 6.6: Optimal CMS Locations: With and Without Consideration of Alternate Path
Travel Time

Allocated CMS Without Alt. With Alt.
at Greedy Path Time Path Time

Iteration # Link ID Link ID
1 7628 7628
2 9980 7547
3 7547 9980
4 9986 7615
5 29486 9986
6 28974 28039
7 7615 29486
8 9972 25008
9 10250 7559
10 7597 9972

## CMS location not included in base solution.

computational effort due to code optimization. The CPU time of GA are highly dependant

on population size and number of generations. For example, a population size of 100 with

100 generations requires 10,000 iterations of benefit calculations.

6.3.1 GA Parameters

As indicated in Section 5.3 there are many parameters required to specify how the GA will

execute. The parameters chosen for the analysis of both Case A and Case B are shown

in Table 6.7. Each of the parameter values was determined by the general rules-of-thumb

outlined in Appendix A. The Case A network contains 124 candidate locations, which

is approximately equivalent to a chromosome length of 100. Using this value both the

population size (100) and mutation rate ( 1
100

= 0.01) were determined. Similarly, Case B

with 157 candidate locations was assigned a population size of 150 and a mutation rate of
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0.0067. Other parameter values were set based on recommendations of relevant literature

in location theory.

Table 6.7: Genetic Algorithm Parameters used in Computational Analysis

GA Parameter Case A Value Case B Value
Population Size 100 150

Maximum Number of Generations Determined during algorithm execution
Crossover Rate 0.8
Mutation Rate 0.01 ( 1

100) 0.0067 ( 1
150)

Elitism ON
Selection Method Binary Tournament
Crossover Method Fusion Operator
Mutation Method Simple

6.3.2 Results

The Case A network was run five times using the previously described GA parameters for

500 generations. One of the GA runs is shown in Figure 6.12 with corresponding maximum,

average, and minimum statistics for each generation. All of the GA runs produced superior

results to the greedy method, however the difference was marginal. In the case illustrated

in Figure 6.12 the best GA result (3181 veh-hours/year) does not significantly improve on

the greedy result (3123 veh-hours/year).

The larger Case B was run for 100 generations but the results did not exceed the greedy

results. A better solution than the greedy result may exist, but the solution space explored,

which depends on the population size and number of generations considered, was not large

enough to explore sufficient location schemes and find a superior solution. Therefore, the

application of GA to larger networks is inconclusive at this point without further study

and longer CPU run times.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

Changeable Message Signs (CMS) are becoming an important component of ITS appli-

cations such as Advanced Traffic Management and Traveler Information Systems (ATMS/ATIS).

By providing travelers with accurate, timely and reliable traffic information, safety and ef-

ficiency of the road network can be improved. The effectiveness of CMS, however, depend

on how many CMS are installed and where the CMS are located. This thesis presents an

optimization model that can be used to systematically locate CMS. This chapter summa-

rizes the major contributions and findings of this research and suggests future research in

the CMS location area.

7.1 Contributions

The following contributions have been made in this study:

• A multi-period, user-equilibrium traffic assignment procedure was implemented to

estimate traffic volumes on individual links and path flows between individual O-D

pairs. This improves existing methods that only consider a single time period, the

peak period. The use of a user-equilibrium path-based assignment procedure allowed

for diversion calculations on a complete traffic network as compared to a simplified

linear freeway network model.

• A dynamic diversion model was proposed that relates the probability for a vehicle to

divert from an incident path to an alternative route with the potential for travel time

savings. This model is based on utility theory, well accepted in the transportation

research community, and is considered superior to static diversion rates or choices

based on a delay upper-limit tolerance (threshold).
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• A time-dependent queuing model is developed to estimate delays with and without

the presence of CMS information. This model expands on current methods by syn-

chronizing the arrival curve with the dynamic diversion model to continually update

queue length and expected delay. Additionally, the drop-off in arrivals at the end of

peak periods is introduced as a consideration.

• A hybrid genetic algorithm was implemented to identify the best locations for fu-

ture CMS installations. Appropriate parameters are developed based on extensive

computational analysis of real-world data.

• A computational study was conducted on a hypothetical as well as a real traffic net-

work. The case study indicates that the assumption of deterministic input parameters

is appropriate for many, but not all, input parameters. Additionally, the CMS loca-

tions chosen by the proposed model were upstream of good diversion opportunities

in reasonable locations.

7.2 Findings

The computational study yielded the following findings:

• The chosen CMS locations were found to be relatively insensitive to uncertainties in

traffic demand and incident conditions. Only large changes were found to impact the

model selected optimal locations.

• Including the negative impact of diverting traffic on alternative route travel time did

not significantly alter the CMS locations for the Toronto case that was considered.

• The allocated CMS locations were found to be highly sensitive to the diversion model
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parameters indicating the importance of careful selection of these parameters, ideally

based on field calibrated values.

• The cumulative benefit curves, for both cases, indicate that there exists a point where

adding additional CMS would not be significantly beneficial. This point, along with

a cost-benefit analysis, may be used to determine the optimal number of CMS to

allocate in addition to the optimal locations.

• Links directly upstream of major interchanges were the most frequently chosen for

CMS locations. This is reasonable considering the diversion opportunities.

7.3 Suggestions for Future Research

Suggestions for modifications to the proposed model are listed as follows:

• More research is needed to accurately predict utility model parameters under incident

conditions with CMS information.

• The benefit of other CMS uses (e.g. environmental information) needs to be quanti-

fied before they are included in a CMS location model.

• Other traffic diversion models that take into account repetition effect of vehicles

passing multiple CMS should be considered.

• Further computational analysis using GA as an optimization tool for locating CMS

is required. More specifically, it is still unknown whether or not the genetic method

will produce significantly superior results as compared to the greedy method.
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APPENDIX A: GENETIC ALGORITHMS AND THEIR

APPLICATION TO TRANSPORTATION ENGINEER-

ING
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Optimization problems arise frequently in many transportation systems engineering

processes such as planning, design, management, and operations control. Because of the

complex nature of transportation systems, most of these problems are difficult to for-

mulate and solve, characterized by complex objective functions (e.g., multiple competing

objectives, multiple peaks and no closed form), large number of variables with mixed so-

lution space (e.g., integer and continuous variables) and exponential number of potential

solutions. Because of these challenges, these problems are not amenable to traditional

optimization and computational techniques such as linear and non-linear programming

and greedy search algorithms that often require an explicit formulation of the problem

with a convex and differentiable objective function. Heuristic solution methods such as

genetic algorithms (GA) have therefore attracted a great deal of attention and interest in

transportation research community.

GA (Holland, 1975; Goldberg, 1989) are fundamentally an optimization technique. Dif-

ferent from traditional optimization techniques, GA seeks an optimal solution through a

course mimicking the natural evolution process. In GA, each candidate solution is coded

as a chromosome string and the search process starts from a group of these chromosomes,

referred to as populations, and generates new solutions or offspring by alternating (mu-

tation) and recombining (crossover) those chromosomes in the population through many

iterative steps or generations. The algorithm is terminated after a specified number of

generations or the change in the fitness of the population after several generations between

successive generations becomes acceptably small. A representation of the simple genetic

algorithm (SGA) is shown in Figure A.1.
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Generate Initial Population
Randomly

Evaluate Fitness

Termination Condition ? Yes Best Individual

No

Select Parents

Create Next Generation
(Crossover/Mutation)

Figure A.1: Overview of Simple Genetic Algorithm

Encoding

Application of GA to a specific problem requires the development of a fitness function

and representation of candidate solutions in a chromosome string. The fitness function

generally involves three problem specific components: the original or variant on the problem

objective function, a scaling function, and possibly a penalty function for invalid solutions

or violation of constraints. Adding a scaling function to the fitness function can be useful

at the initial and final stages of algorithm execution to deal with premature convergence.

Despite many possible representation schemes, binary encoding of chromosome genes

(bits) is still preferred by the majority of researchers (Bäck et al., 1997). The main argu-

ment for binary encoding relates to schema theory (or solution templates) as discussed in

Goldberg (1989) but beyond the intended scope. Additionally, binary encoding presents a

more simplified problem representation. As shown in Figure A.2, binary encoding repre-
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sents a candidate solution as a string of 0-1 bits.

0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1Chromosome

Decoding Encoding

5 9 2 13 17 12 15 8 1 20 3 6 11 4 18 7 19 16 10 14Candidate Locations

1. Binary Representation Scheme

9 2 15 1 18 7 14Chromosome

2. Problem Native Representation Scheme

5 9 2 13 17 12 15 8 1 20 3 6 11 4 18 7 19 16 10 14Candidate Locations

Decoding Encoding

Figure A.2: GA Encoding Schemes

A string of bits may also be used to represent an integer or real-valued vector (Goldberg,

1989). This mapping is more complex, however, as details such as parameter precision and

decision variable bounds must be worked out beforehand. Also, these encoding techniques

may encounter problems involving loss of valuable information if crossover operations are

not performed in appropriate locations between decision variables, or, mutation is applied

to bits that produce large changes in parameter values. For example, if left-most bit of a

5-bit string (0→31 range) is mutated a relatively large variation of ±16 would occur.

Incorporating native problem specific encoding to a chromosome is an alternative to

binary representation schemes. Usually, using more natural representations allows con-

straints to be considered explicitly, which limit invalid solutions and subsequently the need

for penalty functions. Figure A.2 illustrates the same solution using both binary represen-

tation and native encoding.
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Population

The set of candidate solutions, retained during each iteration (generation) of the algorithm,

is referred to as the population. The size of population is an important parameter in the

effectiveness of the genetic algorithm. Larger populations create a more diverse gene pool

and a greater likelihood of achieving the globally optimum solution, but require more

computational time. Smaller populations contain a less diverse gene pool and run the risk

of premature convergence. Therefore, a trade-off must be made between larger populations,

with more substantial computational efforts, and smaller populations that may converge to

sub-optimal solutions but require less computing time. Unfortunately there are no universal

rules for determining the optimal population size for a specific problem or application. A

general rule-of-thumb has however been developed that indicates a population size at least

as large as the chromosome string length in an equivalent binary representation. Therefore,

if we were using a binary chromosome length of 20 for our sample problem, we would choose

a population size of at least 20.

Selection

Numerous selection schemes have been proposed for GA; however many of them can be

classified as variants of fitness proportionate selection (roulette wheel selection), rank se-

lection or tournament selection. All methods rely on the fitness of individual members

of the population and explicit requirements that all fitness values are positive and larger

magnitude fitness values are superior to smaller magnitude fitness values. Populations that

do not meet these requirements must have their fitness values mapped. Details will not

be provided here but several references are available. An example of each of the selection

mechanisms is shown in Figure A.3.

Elitist selection is also often used to retain the best member in the population for sub-
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Fitness Proportionate Selection

0 1 1 0 0

Individual # Chromosome

1

Fitness (f
i
)

16

1 0 0 1 02 31

0 1 0 1 03 4

0 1 0 0 14 9

0 1 1 0 01 160 1 1 0 01 161 0 1 0 05 20

Fitness Proportionate Selection

Step 0: Determine fitness values for population.

Step 1: Sum all fitness values. (∑ f
i
).

Step 2: Calculate selection probability as p
i
 = f

i
/∑ f

i
.

∑∑∑∑ f
i
 = 80

Probability (p
i
)

16/80 = 0.2

0.3875

0.05

0.1125

16160.25

∑∑∑∑ p
i
 = 1.0

Step 3: Calculate cumulative probability for all j≤i (∑ p
i
, j≤i).

Cumulative

Probability

0.2

0.5875

0.6375

0.75

16161.0

Step 4: Generate a random number on the interval {0,1}. Select the individual with the greatest

cumulative probability that does not exceed the random number generated.

Ex. random number = 0.611, Individual 3 selected.

Rank Selection

Step 0: Determine fitness values and rank individual from best to worst fitness (r
i
).

Step 1: Choose a distribution from which selection probabilities will be calculated. Ex. Linear -0.08i+0.44.

Step 2: Calculate probabilities using selected distribution. Note that ∑ p
i
 must equal 1.

Rank (r
i
)

3

1

5

4

16162

Probability (p
i
)

0.2

0.36

0.04

0.12

16160.28

∑∑∑∑ p
i
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Rank Selection

Step 3: Same as Steps 3&4 for Fitness Proportionate Selection.

Tournament Selection

Step 0: Randomly select a group of individuals from the population. Ex. Individuals 1, 4 and 5 in the example.

Step 1: Select the individual with the highest fitness. In the random group Individual 5 has the highest fitness

(20) and would be selected.

Figure A.3: GA Selection Schemes
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sequent generations. When elitism is applied to a genetic algorithm the best individual

survives to the next generation. Though there is a risk of being trapped in a local opti-

mum solution, this method is useful to preserve the best individual through subsequent

generations.

Crossover

Crossover, or recombination, is the process of transferring well adapted “building blocks”

from fit individuals to offspring generations for the further successful evolution. Holland

(1975) noted that it was crossover, and not random point mutations, which separated

genetic algorithms from other evolutionary computation methods. For example, crossover

operations have the “ability” to identify those successful “building blocks” (subset strings)

of individual chromosomes and use them to invent new and innovative individuals. This

feature of a crossover operator is in contrast to the mutation operator that rarely produces

these types of successful “innovations”.

Most of the crossover operations are variants on three basic recombination schemes:

one-point crossover, multiple-point crossover, and uniform crossover. Each of these schemes

is shown in Figure A.4. The one-point crossover (most basic and common) and multiple-

point crossover operations are self-explanatory. For the uniform crossover operation, each

offspring bit is taken from either parent with an equal probability. The decision on whether

or not to perform a crossover operation on two selected parents is determined randomly

based on the GA parameter called crossover probability (pc). Because of the effectiveness of

the operation, a large crossover probability is commonly used in literature (e.g., pc ≥ 0.8).

Mutation

Mutations are small changes to the genetic code usually achieved by altering one or more of

the genes in the chromosome. The mutation operation (Figure A.5) is generally considered
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0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1

Parent 1

1. One-Point Crossover

1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0

Parent 2

Crossover Point

0 1 1 0 0 0 1 0 1 0 0

Offspring 1

1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

Offspring 2

0 0 0 1 1 0 0 0 1

0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1

Parent 1

2. Multiple-Point Crossover (2-Point Shown)

1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0

Parent 2

Crossover Points

0 1 1 0 0 0 0 1 0 0 0

Offspring 1

1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0

Offspring 2

0 0 0 1 0 0 1 0 0

0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1

Parent 1

3. Uniform Crossover

1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0

Parent 2

0 0 0 0 1 0 1 0 0 0 0Offspring 1 0 0 1 0 0 0 0 1

Randomly select from both parents.

Figure A.4: GA Crossover Operators
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as a method to recover lost genetic material rather than to search for better solutions.

The decision on whether or not a given gene should be mutated is decided on the basis

of a GA parameter called mutation probability (pm). Past research has suggested that a

low mutation probability should be used (pm = 0.001 → 0.01) and that a good rule of

thumb is to set pm = (number of bits in the chromosome)−1. Also, close attention should

be paid to the mutation probability convention used in literature. Some researchers use

the probability that a bit will change (deterministic flip) while other researchers refer to

mutation as the probability that a bit could change, i.e. even if a bit is selected for mutation

there is a 50% probability (for binary strings) that the value will not change.

0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1Original Chromosome

0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1Mutated Chromosome

Figure A.5: GA Simple Mutation Operation
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Link Information Table (Netlink)

Field Type Description
LinkID Long Integer Unique link identifier
FromNodeID Long Integer Unique node identifier for start node of link
ToNodeID Long Integer Unique node identified for end node of link
LinkLength Double Length of link (km)
Speed Double Speed used in link congestion function (km/h)
Capacity Integer Capacity used in link congestion function

(vehicles/h/lane)
RecoveryCapacity Double Reduced capacity during recovery to full

capacity after incident
NumberLanes Byte Number of lanes for this link direction
LinkType Byte 1 = zone centroid connector, 2 = other
IncidentRate Double Exposure based incident rate (incidents/veh-km)
CapacityReduction Double Percentage reduction of capacity during

incidents (%)
IncidentDuration Double Average length of incident on link (minutes)
DetectionTime Double Time to detect incident on link (minutes)
ProcessingTime Double Time to active CMS message (minutes)

Node Information Table (Netnode)

Field Type Description
NodeID Long Integer Unique node identifier
CoordinateX Double X-Coordinate
CoordinateY Double Y-Coordinate
NodeType Long Integer 1 = zone centroid, 2 = other
Notation Text (5) Short description of NodeType
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Origin-Destination Trips Table (ODTrips)

Field Type Description
ID Long Integer Unique trip identifier
FromZone Long Integer Trip start node (zone)
ToZone Long Integer Trip end node (zone)
AMPeakTripRate Double Trip rate during AM peak (veh/h)
MiddayTripRate Double Trip rate during midday (veh/h)
PMPeakTripRate Double Trip rate during PM peak (veh/h)
OvernightTripRate Double Trip rate during overnight period (veh/h)

CMS Information Table (CMS)

Field Type Description
CMSID Long Integer Unique identifier for CMS installation
LinkID Long Integer Unique link identifier where CMS is installed
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Link Data Note

The fields IncidentRate, CapacityReduction, IncidentDuration, DetectionTime, and Processing
Time contained the same data: 0.0000029, .8, 30, 10, and 5 respectively for each link in the
Toronto network case study. These fields were omitted from this Appendix to save space.
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Link Table

Link From To Link Speed Capacity Number Link
ID NodeID NodeID Length Lanes Type
1 111 1 2.50 60.00 1000 2 2
2 112 111 0.50 60.00 1000 2 2
3 113 112 1.00 60.00 1000 2 2
4 114 113 1.00 60.00 1000 2 2
5 115 114 0.50 60.00 1000 2 2
6 212 115 0.25 60.00 1000 2 2
7 115 212 0.25 60.00 1000 2 2
8 114 115 0.50 60.00 1000 2 2
9 113 114 1.00 60.00 1000 2 2
10 112 113 1.00 60.00 1000 2 2
11 111 112 0.50 60.00 1000 2 2
12 1 111 2.50 60.00 1000 2 2
13 117 2 6.00 110.00 2000 3 2
15 119 117 0.30 110.00 2000 3 2
16 121 119 1.70 110.00 2000 3 2
18 123 121 0.30 110.00 2000 3 2
19 217 123 0.60 110.00 2000 3 2
21 135 232 0.60 110.00 2000 3 2
23 134 135 0.30 110.00 2000 3 2
25 133 134 1.70 110.00 2000 3 2
26 132 133 0.30 110.00 2000 3 2
28 2 132 6.00 110.00 2000 3 2
29 125 3 2.50 60.00 2000 2 2
30 126 125 0.50 60.00 2000 2 2
31 127 126 1.00 60.00 2000 2 2
32 128 127 1.00 60.00 2000 2 2
33 129 128 0.50 60.00 2000 2 2
34 226 129 0.25 60.00 2000 2 2
35 129 226 0.25 60.00 2000 2 2
36 128 129 0.50 60.00 2000 2 2
37 127 128 1.00 60.00 2000 2 2
38 126 127 1.00 60.00 2000 2 2
39 125 126 0.50 60.00 2000 2 2
40 3 125 2.50 60.00 2000 2 2
41 111 125 1.00 60.00 1000 2 2
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Link From To Link Speed Capacity Number Link
ID NodeID NodeID Length Lanes Type
42 125 111 1.00 60.00 1000 2 2
45 112 118 0.35 60.00 1000 2 2
46 118 112 0.35 60.00 1000 2 2
47 118 130 0.30 60.00 1000 2 2
48 130 118 0.30 60.00 1000 2 2
49 130 126 0.35 60.00 1000 2 2
50 126 130 0.35 60.00 1000 2 2
51 113 127 1.00 60.00 1000 2 2
52 127 113 1.00 60.00 1000 2 2
55 114 122 0.35 60.00 1000 2 2
56 122 114 0.35 60.00 1000 2 2
57 122 131 0.30 60.00 1000 2 2
58 131 122 0.30 60.00 1000 2 2
59 131 128 0.35 60.00 1000 2 2
60 128 131 0.35 60.00 1000 2 2
61 115 129 1.00 60.00 1000 2 2
62 129 115 1.00 60.00 1000 2 2
65 118 117 0.30 60.00 1000 2 2
66 132 130 0.30 60.00 1000 2 2
67 130 133 0.30 60.00 1000 2 2
68 119 118 0.30 60.00 1000 2 2
69 122 121 0.30 60.00 1000 2 2
70 134 131 0.30 60.00 1000 2 2
71 131 135 0.30 60.00 1000 2 2
72 123 122 0.30 60.00 1000 2 2
73 112 10 0.25 60.00 1000 2 2
74 9 114 2.50 60.00 1000 2 2
75 8 126 2.50 60.00 1000 2 2
76 7 128 2.50 60.00 1000 2 2
77 128 7 2.50 60.00 1000 2 2
78 126 8 2.50 60.00 1000 2 2
79 114 9 2.50 60.00 1000 2 2
80 10 112 2.50 60.00 1000 2 2
103 213 212 1.00 60.00 1000 2 2
104 214 213 1.00 60.00 1000 2 2
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Link From To Link Speed Capacity Number Link
ID NodeID NodeID Length Lanes Type
105 215 214 0.50 60.00 1000 2 2
106 4 215 2.50 60.00 1000 2 2
107 215 4 2.50 60.00 1000 2 2
108 214 215 0.50 60.00 1000 2 2
109 213 214 1.00 60.00 1000 2 2
110 212 213 1.00 60.00 1000 2 2
115 219 217 0.30 110.00 2000 3 2
116 221 219 1.70 110.00 2000 3 2
118 223 221 0.30 110.00 2000 3 2
119 5 223 6.00 110.00 2000 3 2
121 235 5 6.00 110.00 2000 3 2
123 234 235 0.30 110.00 2000 3 2
125 233 234 1.70 110.00 2000 3 2
126 232 233 0.30 110.00 2000 3 2
131 227 226 1.00 60.00 2000 2 2
132 228 227 1.00 60.00 2000 2 2
133 229 228 0.50 60.00 2000 2 2
134 6 229 2.50 60.00 2000 2 2
135 229 6 2.50 60.00 2000 2 2
136 228 229 0.50 60.00 2000 2 2
137 227 228 1.00 60.00 2000 2 2
138 226 227 1.00 60.00 2000 2 2
145 212 218 0.35 60.00 1000 2 2
146 218 212 0.35 60.00 1000 2 2
147 218 230 0.30 60.00 1000 2 2
148 230 218 0.30 60.00 1000 2 2
149 230 226 0.35 60.00 1000 2 2
150 226 230 0.35 60.00 1000 2 2
151 213 227 1.00 60.00 1000 2 2
152 227 213 1.00 60.00 1000 2 2
155 214 222 0.35 60.00 1000 2 2
156 222 214 0.35 60.00 1000 2 2
157 222 231 0.30 60.00 1000 2 2
158 231 222 0.30 60.00 1000 2 2
159 231 228 0.35 60.00 1000 2 2
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Link From To Link Speed Capacity Number Link
ID NodeID NodeID Length Lanes Type
160 228 231 0.35 60.00 1000 2 2
161 215 229 1.00 60.00 1000 2 2
162 229 215 1.00 60.00 1000 2 2
165 218 217 0.30 60.00 1000 2 2
166 232 230 0.30 60.00 1000 2 2
167 230 233 0.30 60.00 1000 2 2
168 219 218 0.30 60.00 1000 2 2
169 222 221 0.30 60.00 1000 2 2
170 234 231 0.30 60.00 1000 2 2
171 231 235 0.30 60.00 1000 2 2
172 223 222 0.30 60.00 1000 2 2
173 212 14 2.50 60.00 1000 2 2
174 13 214 2.50 60.00 1000 2 2
175 12 226 2.50 60.00 1000 2 2
176 11 228 2.50 60.00 1000 2 2
177 228 11 2.50 60.00 1000 2 2
178 226 12 2.50 60.00 1000 2 2
179 214 13 2.50 60.00 1000 2 2
180 14 212 2.50 60.00 1000 2 2
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NodeID CoordinateX CoordinateY NodeType Notation
1 250.00 1500.00 1 zone
10 1000.00 1750.00 1 zone
9 3000.00 1750.00 1 zone
7 3000.00 250.00 1 zone
8 1000.00 250.00 1 zone
3 250.00 500.00 1 zone
2 250.00 1000.00 1 zone
111 500.00 1500.00 2
112 1000.00 1500.00 2
113 2000.00 1500.00 2
114 3000.00 1500.00 2
115 4000.00 1500.00 2
117 850.00 1010.00 2
118 1000.00 1150.00 2
119 1150.00 1010.00 2
121 2850.00 1010.00 2
122 3000.00 1150.00 2
123 3150.00 1010.00 2
125 500.00 500.00 2
126 1000.00 500.00 2
127 2000.00 500.00 2
128 3000.00 500.00 2
129 4000.00 500.00 2
130 1000.00 850.00 2
131 3000.00 850.00 2
132 850.00 990.00 2
133 1150.00 990.00 2
134 2850.00 990.00 2
135 3150.00 990.00 2
14 5000.00 1750.00 1 zone
13 7000.00 1750.00 1 zone
4 7750.00 1500.00 1 zone
5 7750.00 1000.00 1 zone
6 7750.00 500.00 1 zone
11 7000.00 250.00 1 zone
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Node Table

NodeID CoordinateX CoordinateY NodeType Notation
12 5000.00 250.00 1 zone
212 5000.00 1500.00 2
213 6000.00 1500.00 2
214 7000.00 1500.00 2
215 7500.00 1500.00 2
217 4850.00 1010.00 2
218 5000.00 1150.00 2
219 5150.00 1010.00 2
221 6850.00 1010.00 2
222 7000.00 1150.00 2
223 7150.00 1010.00 2
226 5000.00 500.00 2
227 6000.00 500.00 2
228 7000.00 500.00 2
229 7500.00 500.00 2
230 5000.00 850.00 2
231 7000.00 850.00 2
232 4850.00 990.00 2
233 5150.00 990.00 2
234 6850.00 990.00 2
235 7150.00 990.00 2
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Trips Table

ID FromZone ToZone AMPeakRate MiddayRate PMPeakRate OvernightRate
1 2 4 1916.00 104.00 111.00 59.00
2 2 6 2073.00 102.00 98.00 47.00
3 2 5 3994.00 586.00 2538.00 370.00
4 5 2 2102.00 413.00 3583.00 257.00
5 5 1 111.00 97.00 3382.00 54.00
6 5 3 95.00 110.00 1379.00 41.00
11 4 1 90.00 106.00 93.00 50.00
12 4 2 119.00 108.00 1051.00 54.00
13 4 3 101.00 104.00 115.00 51.00
16 1 4 90.00 111.00 109.00 58.00
17 1 5 1742.00 96.00 105.00 53.00
18 1 6 101.00 90.00 81.00 45.00
26 3 4 88.00 101.00 103.00 59.00
27 3 5 1798.00 82.00 110.00 44.00
28 3 6 116.00 87.00 81.00 53.00
32 6 1 110.00 108.00 119.00 55.00
39 6 2 116.00 93.00 2367.00 44.00
40 6 3 81.00 82.00 109.00 58.00
41 10 8 104.00 110.00 85.00 51.00
42 10 7 106.00 114.00 96.00 59.00
43 10 11 103.00 100.00 87.00 56.00
44 10 12 110.00 110.00 87.00 48.00
45 9 8 85.00 114.00 96.00 57.00
46 9 7 115.00 104.00 94.00 52.00
47 9 11 112.00 117.00 107.00 46.00
48 9 12 84.00 119.00 104.00 46.00
49 13 8 86.00 90.00 111.00 53.00
50 13 7 84.00 92.00 90.00 58.00
51 13 11 83.00 97.00 101.00 59.00
52 13 12 110.00 97.00 117.00 59.00
53 14 8 85.00 107.00 99.00 56.00
54 14 7 89.00 104.00 108.00 54.00
55 14 11 83.00 108.00 88.00 51.00
56 14 12 92.00 120.00 101.00 47.00
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ID FromZone ToZone AMPeakRate MiddayRate PMPeakRate OvernightRate
57 7 9 108.00 103.00 119.00 54.00
58 7 10 113.00 93.00 91.00 51.00
59 7 13 110.00 86.00 100.00 53.00
60 7 14 92.00 96.00 105.00 56.00
61 8 9 95.00 86.00 103.00 43.00
62 8 10 104.00 117.00 89.00 45.00
63 8 13 114.00 96.00 94.00 53.00
64 8 14 116.00 83.00 94.00 45.00
65 11 9 93.00 101.00 85.00 43.00
66 11 10 99.00 111.00 84.00 51.00
67 1 11 110.00 118.00 107.00 60.00
68 1 12 118.00 94.00 118.00 49.00
69 4 8 116.00 87.00 91.00 46.00
70 4 7 93.00 83.00 95.00 58.00
71 4 11 111.00 97.00 81.00 43.00
72 4 12 96.00 111.00 80.00 52.00
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Link Data Note

The fields IncidentRate, CapacityReduction, IncidentDuration, DetectionTime, and Processing
Time contained the same data: 0.0000029, .8, 30, 10, and 5 respectively for each link in the
Toronto network case study. These fields were omitted from this Appendix to save space.

125



Link Table

Link From To Link Speed Capacity Recovery Number Link
ID NodeID NodeID Length Capacity Lanes Type
9724 11953 11954 0.11 20.00 1400 700 1 2
9725 11954 11955 0.07 20.00 1400 700 1 2
9726 11955 11956 0.11 20.00 1400 700 1 2
9727 11956 11947 0.30 110.00 1800 900 7 3
9728 11957 11506 0.27 60.00 800 400 2 2
9729 11957 11958 0.35 50.00 1400 700 1 2
9730 11957 11963 0.22 60.00 800 400 2 2
9731 11957 14051 0.33 20.00 500 250 1 2
9732 11958 11087 0.79 110.00 1800 900 7 3
9733 11959 10153 0.30 60.00 800 400 2 2
9734 11959 11071 0.51 50.00 1400 700 1 2
9735 11959 11967 0.19 60.00 800 400 2 2
9736 11960 11958 0.21 110.00 1800 900 7 3
9737 11960 11961 0.11 20.00 1400 700 2 2
9738 11961 11962 0.08 20.00 1400 700 2 2
9739 11962 11963 0.07 20.00 1400 700 2 2
9740 11963 11957 0.22 60.00 800 400 2 2
9741 11963 11967 0.22 60.00 800 400 2 2
9742 11964 11965 0.10 20.00 1400 700 2 2
9743 11965 11967 0.10 20.00 1400 700 2 2
9744 11966 11071 0.43 110.00 1800 900 7 3
9745 11966 11964 0.13 20.00 1400 700 2 2
9746 11967 11959 0.19 60.00 800 400 2 2
9747 11967 11963 0.22 60.00 800 400 2 2
9748 11968 10143 0.11 60.00 800 400 2 2
9749 11968 10186 0.15 60.00 800 400 2 2
9750 11968 11969 0.07 20.00 1400 700 1 2
9751 11969 11970 0.08 20.00 1400 700 1 2
9752 11970 11971 0.11 20.00 1400 700 1 2
9753 11971 11076 0.24 110.00 1800 900 3 3
9754 11972 10134 0.22 50.00 700 350 2 2
9755 11972 11973 0.36 50.00 1400 700 1 2
9756 11972 11976 0.10 50.00 700 350 2 2
9757 11973 11222 1.13 110.00 1800 900 3 3
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Link From To Link Speed Capacity Recovery Number Link
ID NodeID NodeID Length Capacity Lanes Type
9758 11974 11975 0.48 50.00 1400 700 2 2
9759 11974 11983 0.42 110.00 1800 900 3 3
9760 11975 11074 0.45 50.00 1400 700 1 2
9761 11975 11980 0.11 50.00 700 350 2 2
9762 11975 11993 0.46 50.00 700 350 2 2
9763 11976 11972 0.10 50.00 700 350 2 2
9764 11976 11977 0.09 20.00 1400 700 1 2
9765 11976 11980 0.07 50.00 700 350 2 2
9766 11977 11978 0.09 20.00 1400 700 1 2
9767 11978 11979 0.10 20.00 1400 700 1 2
9768 11979 11973 0.38 110.00 1800 900 3 3
9769 11980 11975 0.11 50.00 700 350 2 2
9770 11980 11976 0.07 50.00 700 350 2 2
9771 11980 11981 0.10 20.00 1400 700 1 2
9772 11981 11982 0.08 20.00 1400 700 1 2
9773 11982 11983 0.08 20.00 1400 700 1 2
9774 11983 11074 0.43 110.00 1800 900 3 3
9775 11984 11709 0.15 50.00 700 350 1 2
9776 11984 11710 0.31 50.00 700 350 1 2
9777 11985 10131 0.23 50.00 700 350 1 2
9778 11985 10133 0.29 50.00 700 350 1 2
9779 11985 11222 0.24 50.00 1400 700 1 2
9780 11986 11078 0.69 110.00 1800 900 5 3
9781 11986 11987 0.90 50.00 1400 700 2 2
9782 11987 11988 0.27 50.00 1400 700 1 2
9783 11987 11989 0.22 60.00 800 400 3 2
9784 11987 13028 0.30 60.00 800 400 3 2
9785 11988 11072 1.63 110.00 1800 900 5 3
9786 11989 11987 0.22 60.00 800 400 3 2
9787 11989 11990 0.07 20.00 1400 700 1 2
9788 11989 11998 0.08 60.00 800 400 3 2
9789 11990 11991 0.10 20.00 1400 700 1 2
9790 11991 11078 0.06 20.00 1400 700 1 2
9791 11992 11994 0.27 50.00 1400 700 2 2
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Node Table

NodeID CoordinateX CoordinateY NodeType Notation
25 614030 834534 1 zone
26 614678 835031 1 zone
30 615349 837312 1 zone
31 616179 837360 1 zone
37 616890 838297 1 zone
38 615897 838112 1 zone
39 616438 839415 1 zone
40 617201 839737 1 zone
48 613964 837641 1 zone
49 613409 838406 1 zone
50 613167 839504 1 zone
59 613949 840981 1 zone
60 614357 839291 1 zone
61 615364 839622 1 zone
62 615498 840829 1 zone
63 614960 841386 1 zone
68 616743 841851 1 zone
69 618949 840910 1 zone
70 617929 842187 1 zone
71 618726 842502 1 zone
79 619747 842296 1 zone
80 620991 840689 1 zone
83 622213 841089 1 zone
84 622704 841657 1 zone
91 621051 842411 1 zone
92 622293 842846 1 zone
99 621386 842212 1 zone
100 623649 843124 1 zone
101 623930 841657 1 zone
106 625453 843982 1 zone
124 620032 840092 1 zone
283 628239 843010 1 zone
293 627020 842449 1 zone
294 625933 843101 1 zone
295 624581 842598 1 zone
296 624641 843333 1 zone
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NodeID CoordinateX CoordinateY NodeType Notation
297 626787 843703 1 zone
298 626274 844745 1 zone
299 627639 844003 1 zone
300 628480 845165 1 zone
301 629580 845835 1 zone
302 629231 844409 1 zone
306 631149 846049 1 zone
307 627640 846569 1 zone
320 628085 847032 1 zone
322 629289 847336 1 zone
323 628414 846614 1 zone
324 630752 847532 1 zone
330 632660 847800 1 zone
331 632426 848682 1 zone
339 633319 847848 1 zone
340 634653 848018 1 zone
341 634082 848626 1 zone
344 633423 846741 1 zone
354 634694 846873 1 zone
377 637267 849432 1 zone
378 637493 848846 1 zone
379 638193 848954 1 zone
382 638541 849932 1 zone
385 635320 848644 1 zone
388 636598 849174 1 zone
389 636035 848289 1 zone
390 636193 846929 1 zone
416 638294 847751 1 zone
417 639268 847971 1 zone
425 640174 848537 1 zone
426 641294 848771 1 zone
429 638948 849260 1 zone
430 639857 849637 1 zone
431 641020 850119 1 zone
439 642573 851355 1 zone
440 642921 850601 1 zone
446 644974 851670 1 zone
447 646974 851688 1 zone
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Trips Table

ID FromZone ToZone AMPeakRate MiddayRate PMPeakRate OvernightRate
56 10054 11356 6.07 1.77 38.01 5.69
57 10054 11728 57.50 16.41 35.23 5.40
58 10054 13016 28.75 8.30 0.00 0.00
59 13016 10054 0.00 0.00 27.35 8.04
60 10054 1505 46.57 14.24 0.00 0.00
61 1505 10054 0.00 0.00 39.67 13.02
62 10054 1508 17.41 4.37 0.00 0.00
63 1508 10054 0.00 0.00 14.86 4.21
64 10054 1509 21.06 6.25 0.00 0.00
65 1509 10054 0.00 0.00 20.98 5.54
66 10054 1582 6.07 1.74 0.00 0.00
67 1582 10054 0.00 0.00 5.58 1.82
68 10054 1593 19.44 5.48 0.00 0.00
69 1593 10054 0.00 0.00 17.21 6.29
70 10054 1596 23.49 6.42 0.00 0.00
71 1596 10054 0.00 0.00 23.54 6.19
72 10054 1598 23.49 7.55 0.00 0.00
73 1598 10054 0.00 0.00 25.71 7.45
74 10054 1599 4.86 1.29 0.00 0.00
75 1599 10054 0.00 0.00 5.01 1.43
76 10054 1600 36.45 12.07 9.72 1.56
77 10054 1601 30.37 9.87 0.00 0.00
78 1601 10054 0.00 0.00 26.37 9.32
79 10054 1602 52.25 16.70 0.00 0.00
80 1602 10054 0.00 0.00 43.54 16.90
81 10054 1603 41.31 11.29 8.10 1.23
82 10054 1604 26.73 6.98 0.00 0.00
83 1604 10054 0.00 0.00 23.00 6.26
84 10054 1609 70.06 19.04 17.01 2.63
85 10054 1610 34.02 10.13 0.00 0.00
86 1610 10054 0.00 0.00 30.05 10.82
87 10054 1613 24.30 6.18 0.00 0.00
88 1613 10054 0.00 0.00 24.54 5.33
89 10054 25 46.98 12.50 14.58 2.27
90 10054 26 30.37 8.77 42.12 6.48
91 10054 27 12.55 3.91 14.58 2.30
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Objects

File Page Description
CMS.cs 132 Changeable Message Sign object
Link.cs 133 Link object
Network.cs 139 Representation of traffic network including nodes and links
Node.cs 161 Node object
ODTrips.cs 165 Representation of origin-destination trips by an object
Path.cs 167 Sequential set of links used for traffic (re)assignment
QueuingDiagram.cs 175 Abstract representation of a deterministic queuing diagram with

and without CMS information
Settings.cs 195 Miscellaneous precision settings and GA parameters stored in object

Modules

File Page Description
Import.cs 210 Functions to import data from source database
Save.cs 214 Save functions for traffic assignment and optimization results

CMS.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for CMS.
/// </summary>
///

public class CMS
{

private Link link;

public CMS(Link lk)
{

link = lk;
}
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public Link Link
{

get
{

return link;
}
set
{

link = value;
}

}
}

}

Link.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Link.
/// </summary>
public class Link
{

#region Local variables to hold property values
private long linkID;
private Node fromNode;
private Node toNode;
private double length;
private double freeFlowTime;
private double capacity;
private double recoveryCapacity;
private double incidentRate;
private double incidentDuration;
private double reducedCapacity;
private double detectAndProcess;
private double[] timeAtLink;
private double[] flowAtLink;

133



//Store yearly incident rate for each link
//(depends on link length and volume)
private double yearlyIncidentRate;

//Store yearly incident rate/time period
private double[] yearlyIncidentRateByTimePeriod;

//Store reference to paths for faster indexing
private ArrayList[] paths;
#endregion

#region Constructor logic
//Import constructor
public Link(long numTimePeriods, object lLinkID, Node lFromNode,

Node lToNode, object lLength, object lFreeFlowSpeed, object
lCapacity, object lrecoveryCapacity, object lNumberLanes, object
lLinkType, object lIncidentRate, object lCapacityReduction,
object lIncidentDuration, params object[] lDetectAndProcess)

{
linkID = Convert.ToInt32(lLinkID);
fromNode = lFromNode;
toNode = lToNode;
length = Convert.ToDouble(lLength);
double freeFlowSpeed = Convert.ToDouble(lFreeFlowSpeed);
freeFlowTime = length/freeFlowSpeed;

long numberLanes = Convert.ToInt32(lNumberLanes);
for (int i = 0; i < numberLanes; i++)
{

capacity += Convert.ToDouble(lCapacity);
recoveryCapacity += Convert.ToDouble(lrecoveryCapacity);

}

incidentRate = Convert.ToDouble(lIncidentRate);

//Calculations for capacity of link during incident
double capacityReduction = Convert.ToDouble(lCapacityReduction);
if (capacityReduction >= 1)capacityReduction = 0D;
reducedCapacity = capacity * (1D - capacityReduction);
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//Convert minutes to hours
incidentDuration = Convert.ToDouble(lIncidentDuration)/60D;
detectAndProcess = (Convert.ToDouble(lDetectAndProcess[0])+

Convert.ToDouble(lDetectAndProcess[1]))/60D;

//Initialize array sizes
timeAtLink = new double[numTimePeriods];
flowAtLink = new double[numTimePeriods];
paths = new ArrayList[numTimePeriods];

}
#endregion

#region Define get/set methods for value type properties
public long LinkID
{

get
{

return linkID;
}

}

public Node FromNode
{

get
{

return fromNode;
}

}

public Node ToNode
{

get
{

return toNode;
}

}

public double Capacity
{
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get
{

return capacity;
}

}

public double RecoveryCapacity
{

get
{

return recoveryCapacity;
}

}

public double IncidentDuration
{

get
{

return incidentDuration;
}

}

public double ReducedCapacity
{

get
{

return reducedCapacity;
}

}

public double DetectAndProcess
{

get
{

return detectAndProcess;
}

}

public double[] TimeAtLink
{
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get
{

return timeAtLink;
}
set
{

timeAtLink = value;
}

}

public double[] FlowAtLink
{

get
{

return flowAtLink;
}
set
{

flowAtLink = value;
}

}

public double YearlyIncidentRate
{

get
{

return yearlyIncidentRate;
}

}

public double[] YearlyIncidentRateByTimePeriod
{

get
{

return yearlyIncidentRateByTimePeriod;
}

}

public ArrayList[] Paths
{
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get
{

return paths;
}

}
#endregion

#region Define add/get/delete methods for reference type properties

public void SetTimeAtLink(long timeIndex, double alpha,
double beta)

{
timeAtLink[timeIndex] = freeFlowTime * (1 + alpha *

Math.Pow((flowAtLink[timeIndex]/capacity), beta));
}

public void SetYearlyIncidentRate(double[] tripRateDurations)
{

//Store daily vehicle-kms
double dailyVehKms = 0D;
int numPeriods = tripRateDurations.Length;
for(int i = 0; i < numPeriods; i++)

dailyVehKms += tripRateDurations[i] * this.FlowAtLink[i];

//Multiply by days/year & incident rate & length
yearlyIncidentRate = dailyVehKms * 365D * this.incidentRate

* this.length;

//
//Now do calculations for each time period
yearlyIncidentRateByTimePeriod = new double[numPeriods];
for(int j = 0; j < numPeriods; j++)

yearlyIncidentRateByTimePeriod[j] = tripRateDurations[j]
* yearlyIncidentRate / 24D;

}

public double ReturnSecondDerivativeCost(long timeIndex,
double alpha, double beta)

{
return freeFlowTime * alpha * Math.Pow(capacity, (-1D * beta))
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* beta * Math.Pow(flowAtLink[timeIndex], (beta-1D));
}
#endregion

}

public enum LinkTypes
{

CentroidConnector = 1,
Other = 2,

}
}

Network.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Network.
/// </summary>
public class Network
{

#region Delegates
public delegate void ProgressSet();
public delegate void ProgressSetMax(int val);
public delegate void ChartProgress(double val);
public delegate void ChartGeneticProgress(double max,

double min, double avg);
private ProgressSet ps1;
#endregion

#region Local variables for GA
//Local variables
public double delayWithoutCMS;
public double delayWithCMS;
public double travelTimeSavings;
private Settings cmsCalcSet;
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private SortedList availableCMSLocations;

private ArrayList GApermanentCMSList;

#endregion

#region Local variables to hold property values
private double bprAlpha;
private double bprBeta;
private double cmsAlpha;
private double cmsBeta;
private SortedList nodeList;
private SortedList originNodeList;
private SortedList linkList;
private ArrayList odTripsList;
private ArrayList cmsList;
private ArrayList[] pathLists;
private double[] tripRateDurations;
private long numTimePeriods;

//Variables to store link characteristics
private SortedList linkFlows;

//Temporary list of candidate CMS locations during calculations
private ArrayList cmsTempList;

//Statistics for diversion rate
private double totalDiversion;
private double diversionCounter;

#endregion

#region Constructor logic
public Network(long numberPeriods)
{

bprAlpha = 0.15;
bprBeta = 4;
cmsAlpha = 5;
cmsBeta = 5;
nodeList = new SortedList();
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originNodeList = new SortedList();
linkList = new SortedList();
odTripsList = new ArrayList();
cmsList = new ArrayList();

numTimePeriods = numberPeriods;
pathLists = new ArrayList[numTimePeriods];
tripRateDurations = new double[numTimePeriods];

}

public void AddSettings(Settings CMSCalcSet)
{

cmsCalcSet = CMSCalcSet;
}

#endregion

#region Define get/set methods for value type properties
public double BPRalpha
{

get
{

return this.bprAlpha;
}
set
{

bprAlpha = value;
}

}

public double BPRbeta
{

get
{

return this.bprBeta;
}
set
{

bprBeta = value;
}
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}

public double CMSalpha
{

get
{

return this.cmsAlpha;
}
set
{

cmsAlpha = value;
}

}

public double CMSbeta
{

get
{

return this.cmsBeta;
}
set
{

cmsBeta = value;
}

}

public SortedList NodeList
{

get
{

return this.nodeList;
}

}

public SortedList LinkList
{

get
{

return this.linkList;
}

142



}

public ArrayList CMSList
{

get
{

return this.cmsList;
}

}

public long NumTimePeriods
{

get
{

return numTimePeriods;
}

}

public ArrayList[] PathLists
{

get
{

return pathLists;
}
set
{

pathLists = value;
}

}

public double[] TripRateDurations
{

get
{

return tripRateDurations;
}
set
{

tripRateDurations = value;
}
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}

public ArrayList CMSTempList
{

get
{

return cmsTempList;
}
set
{

cmsTempList = value;
}

}

public double MeanDiversion
{

get
{

return totalDiversion/(double)diversionCounter;
}

}

#endregion

#region Define add/get/delete methods for reference type properties
public Node GetNode(long NodeID)
{

return (Node)this.nodeList[NodeID];
}

public Link GetLink(long LinkID)
{

return (Link)linkList[LinkID];
}

public long NumberLinks()
{

return this.linkList.Count;
}
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public void AddNode(Node node)
{

if(!nodeList.ContainsKey(node.NodeID))
{

nodeList.Add(node.NodeID, node);

//If origin node add to origin node (used for faster assignment)
if (node.NodeType == NodeTypes.Centroid &&

!originNodeList.ContainsKey(node.NodeID))
originNodeList.Add(node.NodeID, node);

}
}

public void AddLink(Link link)
{

if(!linkList.ContainsKey(link.LinkID))
linkList.Add(link.LinkID, link);

}

public void AddODTrip(ODTrips odTrip)
{

odTripsList.Add(odTrip);
}

public void AddCMS(CMS cms)
{

cmsList.Add(cms);
}
#endregion

#region Network calculations/functions
public void FindSP_LC(Node orignode, long index)
{

//create a dqueue for storing the scan eligible node set
Stack q1 = new Stack(); //High priority list
Stack q2 = new Stack(); //Low priority list

//temp variables
Node iNode, jNode;
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double newCost = 0D;

//Step 1: Initialization - set information for the other nodes
foreach (Node node in this.nodeList.Values)
{

node.CostAtNode[index] = System.Single.MaxValue;
node.AppearedInQueue[index] = SPAState.NeverAppeared;

}
//set information for the origin node
orignode.CostAtNode[index] = newCost;
orignode.InLink[index] = null;
q1.Push(orignode);

//Step 2: Node selection
do
{

//Get and remove the first element
iNode = (Node)q1.Pop();
iNode.AppearedInQueue[index] = SPAState.AppearedNotInQueue;
//appeared, but removed (no longer in queue)

//Step 3: Node expansion
foreach (Link ijLink in iNode.OutLinkList.Values)
{

jNode = ijLink.ToNode;
newCost = iNode.CostAtNode[index] + ijLink.TimeAtLink[index];
if (newCost < jNode.CostAtNode[index])
{

//update cost and pointer
jNode.CostAtNode[index] = newCost;
jNode.InLink[index] = ijLink;

//insert node j into Q
if (jNode.AppearedInQueue[index] == SPAState.NeverAppeared)

q2.Push(jNode);
else

q1.Push(jNode);

jNode.AppearedInQueue[index] = SPAState.AppearedInQueue;
}
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}

//If no nodes in high priority queue -> copy low priority
//nodes to high
if(q1.Count == 0)
{

q1 = (Stack)q2.Clone();
q2.Clear();

}
}
//Step 4:Stop?
while(q1.Count != 0);

}

public Path ReturnShortestPath(Node oNode, Node dNode, long timeIndex)
{

//Create new path
Stack createPath = new Stack();

//Update each link along path
Node iNode = dNode;
Link link;
do
{

link = iNode.InLink[timeIndex];
createPath.Push(link);
iNode = link.FromNode;

}
while (iNode != oNode);

return new Path(createPath);
}

private void ResetLinkTravelTimes()
{

foreach (Link link in this.linkList.Values)
{

for (long index = 0; index < this.numTimePeriods; index++)
{

link.FlowAtLink[index] = 0D;
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link.SetTimeAtLink(index, this.bprAlpha, this.bprBeta);
}

}

for (long index = 0; index < this.numTimePeriods; index++)
this.pathLists[index] = new ArrayList();

}

private void UpdateLinkTravelTime()
{

foreach (Link link in this.linkList.Values)
for (long index = 0; index < this.numTimePeriods; index++)

link.SetTimeAtLink(index, this.bprAlpha, this.bprBeta);
}

private void CopyPathsToMaster()
{

//Copy paths back to roadNetwork pathlist
for (long index = 0; index < this.numTimePeriods; index++)
{

//Remove old paths from links
foreach(Link link in this.linkList.Values)

link.Paths[index] = new ArrayList();

foreach (ODTrips trip in this.odTripsList)
{

foreach(Path path in trip.PathList[index])
{

this.pathLists[index].Add(path);

//Add path to all links on the path
foreach(Link link in path.Links)

link.Paths[index].Add(path);

//Add destination node of the OD trip to the path
path.DestinationNode = trip.ToZone;

}
}

}
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}

private void AssignPathFlowsToLinks(long index)
{

//Constant double 0
const double ZERO = 0D;

//Set link flows to zero before assigning path flows
foreach (Link link in this.linkList.Values)

link.FlowAtLink[index] = ZERO;

//Then assign path flows
foreach (ODTrips trip in this.odTripsList)

foreach(Path path in trip.PathList[index])
foreach(Link link in path.Links)

link.FlowAtLink[index] += path.Flow;
}

public void GradientProjectionAssignment()
{

const double GPalpha = 0.2D;
const double StoppingCriterion = 0.01D;
double terminationVar = 1D;
double newSPFlow;
Stack removeStack = new Stack();
Path newPath, shortestPath;
bool firstSP;

//INITIALIZATION
ResetLinkTravelTimes();

long index = 0;

//for (long index = 0; index < this.numTimePeriods; index++)
//{
//Force SP calculations during first run
firstSP = true;

//Iterate through each entry in the O-D matrix
foreach (ODTrips trip in this.odTripsList)
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{
//Delete old paths
trip.PathList[index] = new ArrayList();

//Perform shortest path routing
if(trip.FromZone.CostAtNode[index] != 0 || firstSP)
{

firstSP = false;
FindSP_LC(trip.FromZone, index);

}

//Create new path
newPath = ReturnShortestPath(trip.FromZone, trip.ToZone, index);
newPath.Flow = trip.TripRate[index];

//Add path
trip.PathList[index].Add(newPath);

//Flag this path as the shortest path
trip.ShortestPath[index] = newPath;

}

//Assign path flows to links
AssignPathFlowsToLinks(index);
//}

//for (long index = 0; index < this.numTimePeriods; index++)
//{
//Counter for number of iterations
int counter = 0;

do
{

counter++;

//COLUMN GENERATION
//Update link travel time
this.UpdateLinkTravelTime();
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//Force SP calculations during first run
firstSP = true;

//Iterate through each entry in the O-D matrix
foreach (ODTrips trip in this.odTripsList)
{

//Perform shortest path routing
if(trip.FromZone.CostAtNode[index] != 0 || firstSP)
{

firstSP = false;
FindSP_LC(trip.FromZone, index);

}

//Create new path
newPath = ReturnShortestPath(trip.FromZone,

trip.ToZone, index);
trip.ShortestPath[index] = newPath;

//Add path
trip.PathList[index].Add(newPath);

}

//EQUILIBRATION
foreach (ODTrips trip in this.odTripsList)
{

//Get the shortest path object
shortestPath = trip.ShortestPath[index];

//Compute shortest path cost
shortestPath.PathCostD = 0D;
foreach(Link link_D in shortestPath.Links)

shortestPath.PathCostD += link_D.TimeAtLink[index];

foreach (Path path in trip.PathList[index])
{

if(path != shortestPath)
{

//Reset path costs
path.PathCostD = 0D;
path.PathCostS = 0D;
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//Compute non-shortest path costs
foreach (Link link in path.Links)
{

path.PathCostD += link.TimeAtLink[index];
if (shortestPath.Links.Contains(link) != true)

path.PathCostS += link.ReturnSecondDerivativeCost
(index, this.bprAlpha, this.bprBeta);

}

//Update non-shortest path flows
path.PreviousFlow = path.Flow;
if (path.PathCostS != 0D)

path.Flow = path.PreviousFlow - (GPalpha
/path.PathCostS) *(path.PathCostD
- shortestPath.PathCostD);

else path.Flow = -1D;

if (path.Flow <= 0D)
removeStack.Push(path);

}
}

//Remove paths with zero/negative flows
while(removeStack.Count != 0)

trip.PathList[index].Remove(removeStack.Pop());

//Update shortest path flow
shortestPath.PreviousFlow = shortestPath.Flow;
shortestPath.Flow = 0D;
newSPFlow = trip.TripRate[index];

//Remove non-shortest path flows
foreach(Path setpath in trip.PathList[index])

newSPFlow -= setpath.Flow;
shortestPath.Flow = newSPFlow;

}
//Update link flows
this.AssignPathFlowsToLinks(index);
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//TERMINATION
terminationVar = 0D;
foreach (ODTrips trip in this.odTripsList)
{

terminationVar = 0D;
foreach(Path path in trip.PathList[index])

terminationVar += (path.PreviousFlow/
(double)trip.TripRate[index]) *
(path.PathCostD -
trip.ShortestPath[index].PathCostD) /
path.PathCostD;

//Check for violations
if (terminationVar > StoppingCriterion)

break;
}

//Terminate if too many iterations
if (counter > 99) terminationVar = 0D;

}
while(terminationVar > StoppingCriterion);
//}
this.UpdateLinkTravelTime();
this.CopyPathsToMaster();
this.SetYearlyLinkIncidentRate();

}

public void IncrementalAssignment(long Increment)
{

//Reset the link flows to zero
this.ResetLinkTravelTimes();

//Incremental Assignment
for (long i = 0; i < Increment; i++)
{

//Update the link travel times
this.UpdateLinkTravelTime();

//Iterate through each entry in the O-D matrix
foreach (ODTrips trip in this.odTripsList)
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{
//Calculate for all time periods
for (long index = 0; index < 4; index++)
{

//Perform shortest path routing
FindSP_LC(trip.FromZone, index);

//Create new path
Path newPath = this.ReturnShortestPath(trip.FromZone,

trip.ToZone, index);
newPath.Flow = trip.TripRate[index]/(double)Increment;

//Assign path flows to links
this.AssignPathFlowsToLinks(index);

//Add path
trip.PathList[index].Add(newPath);

}
}

}
this.CopyPathsToMaster();
this.SetYearlyLinkIncidentRate();

}

private void SetYearlyLinkIncidentRate()
{

//Must be done after traffic assignment
foreach(Link lk in this.linkList.Values)

lk.SetYearlyIncidentRate(this.tripRateDurations);
}
#endregion

#region Save/Restore UE link characteristics
public void SaveUESolution()
{

linkFlows = new SortedList();
double[] flows;
double copy;

//Save link flows
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foreach(Link lk in this.linkList.Values)
{

flows = new double[lk.FlowAtLink.Length];
for(int i = 0; i < flows.Length; i++)
{

copy = lk.FlowAtLink[i];
flows[i] = copy;

}
linkFlows.Add(lk.LinkID, flows);

}
}

public void RestoreUESolution()
{

//Now reset the flows and times
foreach(Link lk in this.linkList.Values)
{

double[] copyArray = (double[])linkFlows[lk.LinkID];
for(int i = 0; i < copyArray.Length; i++)
{

double copy = copyArray[i];
lk.FlowAtLink[i] = copy;

}
}

}
#endregion

#region CMS benefit calculations
public void CMSBenefit()
{

//Save the UE solution for link flows and times
this.SaveUESolution();

//Reinitialize the calculation variables
delayWithoutCMS = delayWithCMS = travelTimeSavings = 0D;

//Create object that represents the queuing diagram
QueuingDiagram QD;

//Iterate through all links and simulate incident
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foreach(Link lk in linkList.Values)
{

//Iterate through each time period
for(int i = 0; i < numTimePeriods; i++)
{

//Create new diagram
QD = new QueuingDiagram(lk, i, cmsCalcSet.NumUpdateIntervals,

cmsCalcSet.NumIncidentStarts, this,
cmsCalcSet.IncludeAltTravelTime);

//Temporarily release system resources for other tasks
System.Windows.Forms.Application.DoEvents();

//Calculate delays
QD.CalculateDelay();
QD.CalculateCMSDelay();

//Scale by time period duration & incident rate
//and then store benefit
delayWithoutCMS += QD.Delay *

lk.YearlyIncidentRateByTimePeriod[i];
delayWithCMS += QD.CMSDelay < 0 ? 0D : QD.CMSDelay *

lk.YearlyIncidentRateByTimePeriod[i];

//Add statistical data
if(QD.TotalDiversion > 0D)
{

totalDiversion += QD.TotalDiversion;
diversionCounter += QD.DiversionCounter;

}
}

}
//Calculate the benefit of CMS
travelTimeSavings = delayWithoutCMS - delayWithCMS;

//Restore the UE Solution if it has not been done already
this.RestoreUESolution();

}
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#endregion

#region Optimization Calculations
private void InitializeStatistics()
{

totalDiversion = 0D;
diversionCounter = 0L;

}

public void GreedyCMSOptimization(ProgressSet ps, ProgressSetMax psMax,
ChartProgress chartP, ChartGeneticProgress chartGP)
//Adds one CMS incrementally at a time.

{
InitializeStatistics();

//Use a new list or current list depending on user choice
if(cmsCalcSet.AddLocations)

cmsTempList = cmsList;
else

cmsTempList = new ArrayList();

//Create a set of possible locations for CMS
SortedList availableCMSLocations = AvailableCMSLocations(cmsTempList);

//Set up the progress bar
psMax((int)cmsCalcSet.CMSToAllocate);

//Initial size of the cmsTempList
int initSize = cmsTempList.Count;

//Loop through greedy allocation of each additional CMS
for(int i = 0; i < cmsCalcSet.CMSToAllocate; i++)
{

//Store the highest travel time savings/CMS
double TTSOptimal = 0D;
Link optimalLink = null;

//Add a placeholder
cmsTempList.Add(null);
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foreach(Link link in availableCMSLocations.Values)
{

cmsTempList[i + initSize] = new CMS(link); //new CMS(link);

//Do the calculations
CMSBenefit();

//Check if benefit is greater than current optimal
if(travelTimeSavings > TTSOptimal)
{

TTSOptimal = travelTimeSavings;
optimalLink = link;

}
}

//Finally set the optimal link
cmsTempList[i + initSize] = new CMS(optimalLink);

//Do benefit calculations once more
CMSBenefit();

//Update the progress bar display
ps();

//Update the chart display
chartP(travelTimeSavings);

//Remove the optimal link from the available locations list
if(availableCMSLocations.Count != 0)

availableCMSLocations.Remove(optimalLink.LinkID);
}

}

public void GeneticOptimization(ProgressSet ps, ProgressSetMax psMax,
ChartProgress chartP, ChartGeneticProgress chartGP)

{
InitializeStatistics();

//Use a new list or current list depending on user choice

158



ArrayList permanentCMSlist = cmsCalcSet.AddLocations ?
cmsList : new ArrayList();

//
GApermanentCMSList = permanentCMSlist;

//Create a set of possible locations for CMS
availableCMSLocations = this.AvailableCMSLocations(permanentCMSlist);

//Send the listing of possible locations as a static value
//to the Allele class
SGA.availLinkSet = new Link[availableCMSLocations.Count];
availableCMSLocations.Values.CopyTo(SGA.availLinkSet, 0);

//Set the length of the chromosome
int lchrom = (int)cmsCalcSet.CMSToAllocate;

//Set up the progress bar
psMax((int)(cmsCalcSet.MaximumGenerations + 1)

*(int)cmsCalcSet.PopulationSize);

ps1 = ps;

//Start the algorithm
SGA sga = new SGA(cmsCalcSet,

new SGA.EvaluateObjectiveFunction(this.Decode),
new SGA.ChartGeneticProgress(chartGP));

//Get the best chromosome
Individual bestLocations = sga.Optimize();

//Set the travel time savings
this.travelTimeSavings = bestLocations.Fitness;

//Save the results
cmsTempList = new ArrayList();
CMS cmsSave;
for(int i = 0; i < bestLocations.Links.Length; i++)
{

cmsSave = new CMS(bestLocations.Links[i]);
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cmsTempList.Add(cmsSave);
}

}

private double Decode(Link[] Chromosome, long lchrom)
{

//Set the network temp CMS list for decoding
cmsTempList = (ArrayList)GApermanentCMSList.Clone();

//Add each CMS from the chromosome
CMS cmsAdd;
for(int i = 0; i < lchrom; i++)
{

cmsAdd = new CMS(Chromosome[i]);
cmsTempList.Add(cmsAdd);

}

//Do the calculations
CMSBenefit();

//Update the progressbar
ps1();

//Return the benefit
return this.travelTimeSavings;

}

public SortedList AvailableCMSLocations(ArrayList permanentCMSlist)
{

SortedList locations = new SortedList();

//Add possible locations
foreach(Link lk in linkList.Values)

locations.Add(lk.LinkID, lk);

//Remove permanent/fixed locations
foreach(CMS cms in permanentCMSlist)

locations.Remove(cms.Link.LinkID);

//Remove locations with no benefit
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CMS cmsCheck = new CMS(null);
cmsTempList = new ArrayList();
cmsTempList.Add(cmsCheck);
//
Stack inefficientLocations = new Stack();
foreach(Link lk in locations.Values)
{

cmsCheck.Link = lk;
this.CMSBenefit();

//Mark the inefficient location for removal
if(travelTimeSavings == 0)

inefficientLocations.Push(lk.LinkID);
}

//Finally remove the locations
while(inefficientLocations.Count != 0)

locations.Remove(inefficientLocations.Pop());

//Return the list
return locations;

}

#endregion
}

}

Node.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Node.
/// </summary>
public class Node
{

#region Local variables to hold property values
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private long nodeID;
private double x;
private double y;
private NodeTypes nodeType;
private SortedList outLinkList;

//shortest path algorithm variables
private double[] costAtNode;
private Link[] inLink;
private SPAState[] appearedInQueue;
#endregion

#region Constructor logic
//Import constructor
public Node(object lNodeID, object lCoordinateX, object lCoordinateY,

object lNodeType, long numTimePeriods)
{

nodeID = Convert.ToInt32(lNodeID);
x = Convert.ToDouble(lCoordinateX);
y = Convert.ToDouble(lCoordinateY);

if (Convert.ToInt32(lNodeType) == 1)
nodeType = NodeTypes.Centroid;

else
nodeType = NodeTypes.Other;

outLinkList = new SortedList();

costAtNode = new double[numTimePeriods];
inLink = new Link[numTimePeriods];
appearedInQueue = new SPAState[numTimePeriods];

}
#endregion

#region Define get/set methods for value type properties
public long NodeID
{

get
{

return nodeID;
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}
}

public double X
{

get
{

return x;
}

}

public double Y
{

get
{

return y;
}

}

public NodeTypes NodeType
{

get
{

return nodeType;
}

}

public double[] CostAtNode
{

get
{

return costAtNode;
}
set
{

costAtNode = value;
}

}

public Link[] InLink
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{
get
{

return inLink;
}
set
{

inLink = value;
}

}

public SPAState[] AppearedInQueue
{

get
{

return appearedInQueue;
}
set
{

appearedInQueue = value;
}

}

public SortedList OutLinkList
{

get
{

return outLinkList;
}

}
#endregion

#region Define add/get/delete methods for reference type properties
public void AddOutLink(Link newLink)
{

if(!outLinkList.ContainsKey(newLink.LinkID))
{

outLinkList.Add(newLink.LinkID, newLink);
}

}
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#endregion
}

public enum SPAState
{

NeverAppeared,
AppearedInQueue,
AppearedNotInQueue,

}

public enum NodeTypes
{

Centroid = 1,
Other = 2,

}
}

ODTrips.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for ODTrips.
/// </summary>
public class ODTrips
{

#region Local variables to store property values
private Node fromZone;
private Node toZone;
private double[] tripRate;
//Path-based traffic assignment variable
private ArrayList[] pathList;
private Path[] shortestPath;
#endregion

#region Constructor logic
//Import Constructor
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public ODTrips(Node FromNode, Node ToNode, params object[] TripRate)
{

long numberTimePeriods = TripRate.Length;
fromZone = FromNode;
toZone = ToNode;

//Set size of arrays
tripRate = new double[numberTimePeriods];
pathList = new ArrayList[numberTimePeriods];

for(int i = 0; i < numberTimePeriods; i++)
{

tripRate[i] = Convert.ToDouble(TripRate[i]);
pathList[i] = new ArrayList();

}

shortestPath = new Path[numberTimePeriods];
}
#endregion

#region Define get/set methods for value type properties
public Node FromZone
{

get
{

return fromZone;
}

}

public Node ToZone
{

get
{

return toZone;
}

}

public double[] TripRate
{

get
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{
return tripRate;

}
}

public Path[] ShortestPath
{

get
{

return shortestPath;
}
set
{

shortestPath = value;
}

}

public ArrayList[] PathList
{

get
{

return pathList;
}
set
{

pathList = value;
}

}
#endregion

}
}

Path.cs

using System;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
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/// Summary description for Path.
/// </summary>
public class Path
{

#region Local variables to hold property values
private double flow;
private ArrayList links;

//Traffic Assignment variables
private double pathCostD;
private double pathCostS;
private double previousFlow;
private Node destinationNode;

//Store already calculated alternative routes
private Hashtable alternateTimes;

//Used for extra delay on alternate routes
private double exDelayAlt;
#endregion

#region Constructor logic
public Path(ICollection lks)
{

links = new ArrayList(lks);
flow = pathCostD = pathCostS = previousFlow = 0D;
alternateTimes = new Hashtable();

}
#endregion

#region Define get/set methods for value type properties
public double Flow
{

get
{

return flow;
}
set
{

flow = value;
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}
}

public double PathCostD
{

get
{

return pathCostD;
}
set
{

pathCostD = value;
}

}

public double PathCostS
{

get
{

return pathCostS;
}
set
{

pathCostS = value;
}

}

public double PreviousFlow
{

get
{

return previousFlow;
}
set
{

previousFlow = value;
}

}

public Node DestinationNode
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{
set
{

destinationNode = value;
}

}

public ArrayList Links
{

get
{

return links;
}
set
{

links = value;
}

}

#endregion

#region Define function for diversion calculations
public double DivertWithAltTravelTime(long timeIndex, double delay,

Node divertNode, Link incidentLink, Network network)
{

//Travel time of alternative path
double TkmAlt = 0D;

//Keep the original path
ArrayList originalPath = new ArrayList();
ArrayList originalPathFlows = new ArrayList();
int indexOfOrigStart = 0;

//Add the travel times of the links before the diversion point
//to the alternate route
for(int i = 0; i < links.Count; i++)
{

Link lk = (Link)links[i];
TkmAlt += lk.TimeAtLink[timeIndex];
if(lk.ToNode.NodeID == divertNode.NodeID)
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{
indexOfOrigStart = i+1;
break;

}
}

//Travel time through the original path -> include links before
//diversion and delay. Links after diversion will be added later.
double Tkm = TkmAlt + delay;

//Store the original path after the diversion point
for(int i = indexOfOrigStart; i < links.Count; i++)
{

Link lk = (Link)links[i];
originalPath.Add(lk);
originalPathFlows.Add(lk.FlowAtLink[timeIndex]);

}

//Find the shortest alternative route
network.FindSP_LC(divertNode, timeIndex);

//Check for possibility that alternate path does not exist
if(destinationNode.CostAtNode[timeIndex] > 0.95*System.Single.MaxValue)

return 0D;

//Create a path object for that route
Path alternatePath = network.ReturnShortestPath(divertNode,

destinationNode, timeIndex);

//Store the alternate path flows
ArrayList alternatePathFlows = new ArrayList();
for(int i = 0; i < alternatePath.links.Count; i++)
{

Link lk = (Link)alternatePath.links[i];
alternatePathFlows.Add(lk.FlowAtLink[timeIndex]);

}

//Create a temporary alternate path travel time
double TkmAlternate = 0D;
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//The actual diversion that will occur
double divertedFlow = 0D;

//Calculate the original travel time on the alternate path
exDelayAlt = 0D;
for(int j = 0; j < alternatePath.links.Count; j++)
{

Link lk = (Link)alternatePath.links[j];
exDelayAlt -= lk.TimeAtLink[timeIndex];

}

//Loop until convergence
for(int j = 0; j < 10; j++)
{

//Partial path travel time first ...
TkmAlternate = TkmAlt;

//... then alternate path travel time
for(int k = 0; k < alternatePath.links.Count; k++)
{

Link lk = (Link)alternatePath.links[k];
lk.SetTimeAtLink(timeIndex, network.BPRalpha, network.BPRbeta);
TkmAlternate += lk.TimeAtLink[timeIndex];

}

//Restore original alternate path flow
for(int k = 0; k < alternatePath.links.Count; k++)
{

Link lk = (Link)alternatePath.links[k];
lk.FlowAtLink[timeIndex] = (double)alternatePathFlows[k];

}

//Original path travel time
Tkm = TkmAlt + delay;

//Add times of links after diversion point
foreach(Link lk in originalPath)
{

lk.SetTimeAtLink(timeIndex, network.BPRalpha, network.BPRbeta);
Tkm += lk.TimeAtLink[timeIndex];
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}

//Restore the original flow on the original path
for(int k = 0; k < originalPath.Count; k++)
{

Link lk = (Link)originalPath[k];
lk.FlowAtLink[timeIndex] = (double)originalPathFlows[k];

}

//Calculate diversion
divertedFlow = flow * (1 / (1 + Math.Exp(network.CMSalpha -

network.CMSbeta * ((Tkm - TkmAlternate)/TkmAlternate))));

//Update flows and recalculate travel times for alternate path
for(int k = 0; k < alternatePath.links.Count; k++)
{

Link lk = (Link)alternatePath.links[k];
lk.FlowAtLink[timeIndex] += divertedFlow;
lk.SetTimeAtLink(timeIndex, network.BPRalpha, network.BPRbeta);

}

//Update flows and recalculate travel times for original path
for(int k = 0; k < originalPath.Count; k++)
{

Link lk = (Link)originalPath[k];
lk.FlowAtLink[timeIndex] -= divertedFlow;
lk.SetTimeAtLink(timeIndex, network.BPRalpha, network.BPRbeta);

}
}

//Now calculate travel time on the alternate path with diversion
for(int j = 0; j < alternatePath.links.Count; j++)
{

Link lk = (Link)alternatePath.links[j];
exDelayAlt += lk.TimeAtLink[timeIndex];

}

//Return the diverted flow
return divertedFlow;

}
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public double ExtraDelay(double timeInterval)
{

return exDelayAlt*timeInterval;
}

public double Divert(long timeIndex, double delay, Node divertNode,
Link incidentLink, Network network)

{
//pathCostD is the travel time of the path -> computed in
//traffic assignment.
double Tkm = this.pathCostD + delay;

//Travel time of alternative path
double TkmAlt = 0D;

//Find the shortest alternative route
string keyForCosts = "N" + divertNode.NodeID.ToString() + "L"

+ incidentLink.LinkID.ToString();
if(this.alternateTimes.ContainsKey(keyForCosts))
{

TkmAlt = (double)alternateTimes[keyForCosts];
}
else
{

//Add the travel times of the links before the diversion point
//to the alternate route
for(int i = 0; i < links.Count; i++)
{

Link lk = (Link)links[i];
TkmAlt += lk.TimeAtLink[timeIndex];
if(lk.ToNode.NodeID == divertNode.NodeID)

break;
}

network.FindSP_LC(divertNode, timeIndex);
TkmAlt += destinationNode.CostAtNode[timeIndex];
alternateTimes.Add(keyForCosts, TkmAlt);

}
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//Return the diverted flow
return flow * (1 / (1 + Math.Exp(

network.CMSalpha - network.CMSbeta * ((Tkm - TkmAlt)/TkmAlt))));
}
#endregion

}
}

QueuingDiagram.cs

using System;
using System.Collections;
using System.IO;

namespace OptimalCMS
{

/// <summary>
/// Summary description for QueuingDiagram.
/// </summary>
public class QueuingDiagram
{

#region Local variables to hold queuing diagram parameters
private Link incidentLink;
private long timeIndex;
private long numberIncrements;
private long numberIncidentTimeInstances;
private Network network;
private bool includeAltPathTravelTime;
#endregion

#region Local variables to hold calculated values
private double delay;
private double cmsDelay;
private long arraySizes;
private CMS[] cmsList;
private bool[] cmsFlagList;
private double[] cmsIncidentDist;
private Path[][] cmsPathsCur;
private Path[][] cmsPathsNext;
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private long nextIndex;
private bool isOverSaturated;
private QPoint[] arrivalCurve;
private QPoint[][] departureCurve;
private QueueCase queueCase;
private double incidentStartInterval;
#endregion

#region Local variables to hold statistical quantities
private double totalDiversion;
private long diversionCounter;
#endregion

#region Constructor logic
public QueuingDiagram(Link IncidentLink, long TimeIndex,

long NumberIncrements, long NumberIncidentTimeInstances,
Network QDNetwork, bool IncludeAltPathTravelTime)

{
//Set link where the incident is simulated
incidentLink = IncidentLink;

//Set the time period of the simulated incident
timeIndex = TimeIndex;

//Set the number of increments used in calculating the
//diverted arrival curve
numberIncrements = NumberIncrements;

//Set the number of incident time considered
numberIncidentTimeInstances = NumberIncidentTimeInstances;

//Network data
network = QDNetwork;

//Does the savings include a penalty for impact to drivers
//on alternate routes?
includeAltPathTravelTime = IncludeAltPathTravelTime;

//Initialize statistical counters
totalDiversion = 0D;
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diversionCounter = 0L;
}
#endregion

#region Calculations section (Public)
public void CalculateDelay()
{

//
//First do calculations without the presence of CMS
//

//Check if incident link is already oversaturated
isOverSaturated = (incidentLink.FlowAtLink[timeIndex] >

incidentLink.Capacity);
nextIndex = timeIndex + 1L < network.NumTimePeriods ?

timeIndex + 1L : 0L;

//Do calculations based on queuing case
if(incidentLink.FlowAtLink[timeIndex] < incidentLink.ReducedCapacity)
{

//Flow is less than the reduced capacity case -- no delay predicted
delay = 0D;

}
else if(isOverSaturated)
{

//Case 3 - oversaturated case
queueCase = QueueCase.CaseIII;
delay = this.CaseIII();

}
else if(incidentLink.FlowAtLink[timeIndex] <

incidentLink.FlowAtLink[nextIndex] )
{

//Case 1 - regular undersaturated case
queueCase = QueueCase.CaseI;
delay = this.CaseI();

}
else //if(!isRatioSmaller)
{

//Case 2 - close to saturation, but still undersaturated
queueCase = QueueCase.CaseII;
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delay = this.CaseII();
}

}

public void CalculateCMSDelay()
{

//
//textWriter.WriteLine("Starting to calculate delay with CMS...");

//Reset delay
this.cmsDelay = 0D;

//If arrival rate is too low -> deterministic queuing predicts no delay
if(incidentLink.ReducedCapacity >= incidentLink.FlowAtLink[timeIndex])

return;

//CMS distance calcs
if(this.CMSDistance() == 0L)
{

this.cmsDelay = this.delay;
return;

}

//Set the travel time on the incident link to some large value
double[] incTimes = (double[])incidentLink.TimeAtLink.Clone();
incidentLink.TimeAtLink[timeIndex] = System.Double.PositiveInfinity;
incidentLink.TimeAtLink[nextIndex] = System.Double.PositiveInfinity;

//Create delay calculation for each incident time instance
double[] itiDelay = new double[this.numberIncidentTimeInstances];

//Jagged arrays store current and next time period path lists
cmsPathsCur = this.BuildPathFlowByCMSAndIncidentLink(timeIndex);
cmsPathsNext = this.BuildPathFlowByCMSAndIncidentLink(nextIndex);

//If no CMS are effective -> delay is the same as before
if(this.FlagCMSWithoutPaths() == 0)
{

this.cmsDelay = this.delay;
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incidentLink.TimeAtLink = incTimes;
return;

}

//Define the number of increments to use during incident
long numIncidents = queueCase == QueueCase.CaseI ? 1L :

this.numberIncidentTimeInstances;

//Variable to hold current incident time
double divertTime = incidentLink.DetectAndProcess + cmsIncidentDist[0];

//The interval for which the reduced arrival curve is calculated
double updateIncrement, curTime, dissipationTime;

//Temp t, N
double t, N;

//The current index of the arrival curve
int k = 1;

//Variable to indicate next time period has been reached
bool nextPeriodReached = false;

//Resize the arrival curve array (increments + zero pt
//+ 1st diversion pt + non-cms queue cleared pt)
arrivalCurve = new QPoint[this.numberIncrements + 3];

//Add the zero point
arrivalCurve[0] = new QPoint(0D, 0D);

//Do calculations for each simulated incident start time
for(int j = 0; j < numIncidents; j++)
{

//Calculate the diversion time
divertTime += incidentStartInterval;

//Calculate diversion start point
t = divertTime - network.TripRateDurations[timeIndex];
N = t < 0 ? divertTime * incidentLink.FlowAtLink[timeIndex]

: network.TripRateDurations[timeIndex]
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* incidentLink.FlowAtLink[timeIndex]
+ t * incidentLink.FlowAtLink[nextIndex];

arrivalCurve[1] = new QPoint(divertTime, N);

//Calculate the update increment
dissipationTime = departureCurve[j][departureCurve[j].Length-1].t;
updateIncrement = (dissipationTime-divertTime)/this.numberIncrements;

//Set the current time to the diversion start time
curTime = divertTime;

//Default - next time period has not been reached
nextPeriodReached = false;

//Reset the arrival curve index
k = 1;

//Store the reduced current flow rate
double currentFlow = 0D;

while(curTime <= dissipationTime)
{

//First calculate the expected delay
double expectedDelay = this.ExpectedDelay(j, arrivalCurve[k]);

//If expected delay == 0 then curve has been reached
if(expectedDelay <= 0D)
{

while(k < this.numberIncidentTimeInstances + 1)
{

k++;
arrivalCurve[k] = arrivalCurve[k-1];

}

if(queueCase == QueueCase.CaseIII)
{

//Check to see if incident clearance point should be added
if(arrivalCurve[k].N < departureCurve[j][2].N)

arrivalCurve[k] = departureCurve[j][2];

180



//Finally add the dissipation point
k++;
arrivalCurve[k] = departureCurve[j][3];

}
else //Same calculations as above, but for Cases I & II.
{

if(arrivalCurve[k].N < departureCurve[j][1].N)
arrivalCurve[k] = departureCurve[j][1];

k++;
arrivalCurve[k] = departureCurve[j][2];

}

//Break from the while statement
break;

}
else
{

//Then calculate the diverted vehicles
if(!nextPeriodReached &&

curTime > network.TripRateDurations[timeIndex])
nextPeriodReached = true;

currentFlow = this.ArrivalRateWithDiversion(arrivalCurve[k],
nextPeriodReached, expectedDelay, updateIncrement);

//Increment k, curTime, N
k++;
curTime += updateIncrement;
N += updateIncrement * currentFlow;

//Then add a point to the arrival curve
arrivalCurve[k] = new QPoint(curTime, N);

}

//If diversion not significant, ignore the effect of CMS
//--CMS too far away/not enough flow!
if(k == 2 && currentFlow > 0.95D * incidentLink.FlowAtLink[timeIndex])
{

this.cmsDelay = this.delay;
incidentLink.TimeAtLink = incTimes;
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return;
}

}
//Store delay
itiDelay[j] = this.CalculateDelayArea(j);

}
//Set the travel time on the incident link back to normal
incidentLink.TimeAtLink = incTimes;

//Set average delay with CMS
this.cmsDelay += this.MeanDelay(itiDelay);

}
#endregion

#region Calculations section (Private)
private double CaseI()
{

//Define some times
incidentStartInterval = 0D;

//Calculate time to dissipate incident queue
double dissipationTime = incidentLink.IncidentDuration*

(incidentLink.FlowAtLink[timeIndex]-incidentLink.ReducedCapacity)/
(incidentLink.Capacity-incidentLink.FlowAtLink[timeIndex]);

//Resize arrays
arrivalCurve = new QPoint[2];
if(queueCase == QueueCase.CaseI)
{

departureCurve = new QPoint[1][];
departureCurve[0] = new QPoint[3];

}

//Add points to arrival curve
//
//Origin point
arrivalCurve[0] = new QPoint(0D, 0D);

//Queue clearance time
double t = incidentLink.IncidentDuration + dissipationTime;
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arrivalCurve[1] = new QPoint(t, incidentLink.FlowAtLink[timeIndex]*t);

//Add points to departure curve
//Origin Point
departureCurve[0][0] = arrivalCurve[0];

//Incident Removed
t = incidentLink.IncidentDuration;
departureCurve[0][1] = new QPoint(t, incidentLink.ReducedCapacity*t);

//Queue clearance time
departureCurve[0][2] = arrivalCurve[1];

//Return area
return this.CalculateDelayArea(0);

}

private double CaseII()
{

//Create delay calculation for each incident time instance
double[] itiDelay = new double[this.numberIncidentTimeInstances];

//Define some times
incidentStartInterval = network.TripRateDurations[timeIndex]

/this.numberIncidentTimeInstances;
double incidentTimeToPeriodEnd = network.TripRateDurations[timeIndex];

double t, N;
double dissipationTime;
QPoint qpt;
departureCurve = new QPoint[this.numberIncidentTimeInstances][];

//Do calculation for each time instance
for(int i = 0; i < this.numberIncidentTimeInstances; i++)
{

//Resize/Reinitialize arrays
arrivalCurve = new QPoint[3];
departureCurve[i] = new QPoint[3];

//First set the time from the incident start to the end
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//of the time period
incidentTimeToPeriodEnd -= incidentStartInterval;

//Calculate the queue dissipation time
dissipationTime = (incidentTimeToPeriodEnd*

(incidentLink.FlowAtLink[timeIndex]
- incidentLink.FlowAtLink[nextIndex])
+ incidentLink.IncidentDuration*(incidentLink.Capacity
-incidentLink.ReducedCapacity))/
(incidentLink.Capacity-incidentLink.FlowAtLink[nextIndex]);

//Simple Case I queuing if time to period end is greater than
//the calculated dissipation time.
if(incidentTimeToPeriodEnd >= dissipationTime)
{

//No need to do calculations again since Case I
//queuing does not depend on incident start time
queueCase = QueueCase.CaseI;
return this.CaseI();

}
else //Case II
{

//Add first point to both curves
arrivalCurve[0] = departureCurve[i][0] = new QPoint(0D, 0D);

//Add points to arrival & departure curves
t = incidentTimeToPeriodEnd;
N = incidentLink.FlowAtLink[timeIndex] * t;
qpt = new QPoint(t, N);
arrivalCurve[1] = qpt;

//Check for queue clearance during incident -> departures
//greater than arrivals
if(incidentTimeToPeriodEnd < incidentLink.IncidentDuration &&

incidentLink.ReducedCapacity*incidentLink.IncidentDuration >
N + (incidentLink.IncidentDuration - t)*
incidentLink.FlowAtLink[nextIndex])

{
dissipationTime = (N - t * incidentLink.FlowAtLink[nextIndex])
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/(incidentLink.ReducedCapacity -
incidentLink.FlowAtLink[nextIndex]);

N = dissipationTime * incidentLink.ReducedCapacity;
qpt = new QPoint(dissipationTime, N);
departureCurve[i][1] = qpt;
arrivalCurve[2] = departureCurve[i][2] = departureCurve[i][1];

}
else
{

N += incidentLink.FlowAtLink[nextIndex] * (dissipationTime - t);
t = dissipationTime;
qpt = new QPoint(t, N);
arrivalCurve[2] = qpt;

//Add points to the departure curve
t = incidentLink.IncidentDuration;
N = incidentLink.ReducedCapacity * t;
qpt = new QPoint(t, N);
departureCurve[i][1] = qpt;
departureCurve[i][2] = arrivalCurve[2];

}

//Store delay
itiDelay[i] = this.CalculateDelayArea(i);

}
}
//Return average delay
return this.MeanDelay(itiDelay);

}

private double CaseIII()
{

//Create delay calculation for each incident time instance
double[] itiDelay = new double[this.numberIncidentTimeInstances];

//Define some times
incidentStartInterval = network.TripRateDurations[timeIndex]

/this.numberIncidentTimeInstances;
double incidentTime = 0D;
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double t, N, dissipationTime;
QPoint qpt;
departureCurve = new QPoint[this.numberIncidentTimeInstances][];

//Dissipation time does not depend on incident start time
//for the oversaturated case.
dissipationTime = (network.TripRateDurations[timeIndex]*

(incidentLink.FlowAtLink[timeIndex]-
incidentLink.FlowAtLink[nextIndex])+
incidentLink.IncidentDuration*(incidentLink.Capacity
-incidentLink.ReducedCapacity))/(incidentLink.Capacity
-incidentLink.FlowAtLink[nextIndex]);

//Arrival curve also does not depend on incident start time
//for the oversaturated case.
arrivalCurve = new QPoint[3];
arrivalCurve[0] = new QPoint(0D, 0D);

t = network.TripRateDurations[timeIndex];
N = t * incidentLink.FlowAtLink[timeIndex];
qpt = new QPoint(t, N);
arrivalCurve[1] = qpt;

N += (dissipationTime - t)*incidentLink.FlowAtLink[nextIndex];
qpt = new QPoint(dissipationTime, N);
arrivalCurve[2] = qpt;

//Do calculation for each time instance
//for(int i = 0; i < this.numberIncidentTimeInstances; i++)

//Only need to do calculation for first time instance.
//Difference in delay is constant!!!
for(int i = 0; i < this.numberIncidentTimeInstances; i++)
{

//Resize/Reinitialize departure array
departureCurve[i] = new QPoint[4];

if(i == 0)
{
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//First set the time of the incident start
incidentTime = ((double)i) * incidentStartInterval;

//Add points to the departure curve
departureCurve[i][0] = arrivalCurve[0];

N = incidentTime*incidentLink.Capacity;
qpt = new QPoint(incidentTime, N);
departureCurve[i][1] = qpt;

t = incidentTime+incidentLink.IncidentDuration;
N += incidentLink.IncidentDuration*incidentLink.ReducedCapacity;
qpt = new QPoint(t, N);
departureCurve[i][2] = qpt;

departureCurve[i][3] = arrivalCurve[2];
}
else
{

departureCurve[i][0] = departureCurve[i-1][0];
departureCurve[i][3] = departureCurve[i-1][3];

//Difference in arrivals
N = incidentStartInterval*incidentLink.Capacity;

qpt = departureCurve[i-1][1];
qpt.t += incidentStartInterval;
qpt.N += N;
departureCurve[i][1] = qpt;

qpt = departureCurve[i-1][2];
qpt.t += incidentStartInterval;
qpt.N += N;
departureCurve[i][2] = qpt;

}

//Store delay
if(i < 2)

itiDelay[i] = this.CalculateDelayArea(i);
}
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//Return average delay
return itiDelay[0]+0.5*(itiDelay[1]-itiDelay[0])

*(this.numberIncidentTimeInstances-1);
}

private double MeanDelay(double[] values)
{

//Calculation of simple mean for double values in an array
int numberObs = values.Length;
double tot = 0D;
for(int i = 0; i < numberObs; i++)
{

tot += values[i];
}
return tot/(double)numberObs;

}

private double ExpectedDelay(int inc, QPoint qpt)
{

//Get the index of the last pt on the departure curve
int lastIndex = queueCase == QueueCase.CaseIII ? 3 : 2;

//If number of arrivals is greater than that at the queue clearance
//then use the recovery curve, else use the reduced capacity curve
if(qpt.N < departureCurve[inc][lastIndex-1].N )

lastIndex--;

//Now use similar triangles property to calculate delay
QPoint qpt1 = departureCurve[inc][lastIndex-1];
QPoint qpt2 = departureCurve[inc][lastIndex];

//Calculate intersection of horizontal delay line with
//reduced/recovery curve
double timeOfIntersect = qpt2.t - (qpt2.t - qpt1.t) *

(qpt2.N - qpt.N) / (qpt2.N - qpt1.N);

return timeOfIntersect - qpt.t;
}

private double ArrivalRateWithDiversion(QPoint qpt, bool isNextTimePeriod,
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double delay, double updateIncrement)
{

Path[][] pathLists;
Path[] pathList;
double flow;

//Make sure original link flows and travel times are used
if(includeAltPathTravelTime)

network.RestoreUESolution();

//Set the variables according to time period
if(isNextTimePeriod)
{

flow = incidentLink.FlowAtLink[nextIndex];
pathLists = cmsPathsNext;

}
else //Current time period.
{

flow = incidentLink.FlowAtLink[timeIndex];
pathLists = cmsPathsCur;

}

double origFlow = flow;

//Loop through each CMS
for(int i = 0; i < this.arraySizes; i++)
{

//Check first to see if the CMS is effective
if(this.cmsFlagList[i] = false || cmsIncidentDist[i] >= qpt.t)

break;

//Otherwise start decrementing the flow
pathList = pathLists[i];

//Loop through each path
for(int j = 0; j < pathList.Length; j++)
{

if(this.includeAltPathTravelTime)
{

flow -= pathList[j].DivertWithAltTravelTime(timeIndex,

189



delay, cmsList[i].Link.ToNode, incidentLink, network);

//Add extra delay to alternative routes
this.cmsDelay += pathList[j].ExtraDelay(updateIncrement);

}
else

flow -= pathList[j].Divert(timeIndex, delay,
cmsList[i].Link.ToNode, incidentLink, network);

}
}

//Add some statistical information
double diversion = (origFlow-flow)/origFlow;
totalDiversion += diversion;
diversionCounter++;

//Return the reduced flow
return flow;

}

private double CalculateDelayArea(int dI) //short for departureIndex
{

double area = 0D;

for(int i = 0; i < arrivalCurve.Length-1; i++)
{

area += (arrivalCurve[i+1].t - arrivalCurve[i].t)
* (arrivalCurve[i+1].N + arrivalCurve[i].N) * 0.5;

}
for(int i = 0; i < departureCurve[dI].Length-1; i++)
{

area -= (departureCurve[dI][i+1].t - departureCurve[dI][i].t)
* (departureCurve[dI][i+1].N + departureCurve[dI][i].N) * 0.5;

}

return area;

}

private long CMSDistance()
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{
//List used so sort does not have to be programmed
SortedList sortedCMS = new SortedList();
double distance;

//Deal with duplicate distances--arbitrarily make slightly different
double duplicate = 0D;
const double DUPLICATE_SCALE = 0.0001D;

foreach(CMS cms in network.CMSTempList)
{

//Find the shortest path from the CMS link end node to all other nodes
network.FindSP_LC(cms.Link.FromNode, timeIndex);

//Now add to list with distance as key
distance = incidentLink.FromNode.CostAtNode[timeIndex];
if(distance != 0D && distance < System.Single.MaxValue)
{

try
{

sortedCMS.Add(distance, cms);
}
catch
{

duplicate++;
distance *= (1 + duplicate * DUPLICATE_SCALE);
sortedCMS.Add(distance, cms);

}
}

}

//Set up local arrays
arraySizes = sortedCMS.Count; //network.CMSTempList.Count;
cmsList = new CMS[arraySizes];
cmsIncidentDist = new double[arraySizes];
sortedCMS.Values.CopyTo(cmsList, 0);
sortedCMS.Keys.CopyTo(cmsIncidentDist, 0);

//Return arraySizes
return arraySizes;
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}

private Path[][] BuildPathFlowByCMSAndIncidentLink(long TimePeriod)
{

//Lists for storing paths
ArrayList[] cmsPathLists = new ArrayList[(int)arraySizes];

//Temporary variables
long IndexOfCMS = -1L;
long IndexOfIncLink = -1L;
Path path;
for(int k = 0; k < arraySizes; k++)

cmsPathLists[k] = new ArrayList();

//Build path lists
for(int j = 0; j < incidentLink.Paths[TimePeriod].Count; j++)
{

path = (Path)incidentLink.Paths[TimePeriod][j];
IndexOfIncLink = path.Links.IndexOf(incidentLink);
for(int i = 0; i < arraySizes; i++)
{

IndexOfCMS = path.Links.IndexOf(cmsList[i].Link);
if(IndexOfCMS > -1L && IndexOfCMS < IndexOfIncLink)
{

cmsPathLists[i].Add(path);

//Only add the path once -- IMPORTANT!!!
break;

}
}

}

//Create array to return
Path[][] returnPaths = new Path[(int)arraySizes][];
int jaggedIndex;
for(int j = 0; j < arraySizes; j++)
{

jaggedIndex = cmsPathLists[j].Count;
returnPaths[j] = new Path[jaggedIndex];
for(int k = 0; k < jaggedIndex; k++)
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returnPaths[j][k] = (Path)cmsPathLists[j][k];
}
return returnPaths;

}

private long FlagCMSWithoutPaths()
{

//Count the number of CMS with paths
long cmsWithPaths = 0L;

//Initialize the cms flag
this.cmsFlagList = new bool[this.arraySizes];

//Check to see if there are CMS with no paths
for(int i = 0; i < this.arraySizes; i++)
{

if(cmsPathsCur[i].Length == 0)
{

this.cmsFlagList[i] = false;
}
else
{

this.cmsFlagList[i] = true;
cmsWithPaths++;

}
}

//Return the count
return cmsWithPaths;

}
#endregion

#region Return values
public double Delay
{

get
{

return delay;
}
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}

public double CMSDelay
{

get
{

return cmsDelay;
}

}

public double TotalDiversion
{

get
{

return totalDiversion;
}

}

public long DiversionCounter
{

get
{

return diversionCounter;
}

}
#endregion

}

public struct QPoint
{

public double t, N;

public QPoint(double t1, double N2)
{

t = t1;
N = N2;

}
}
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public enum QueueCase
{

CaseI,
CaseII,
CaseIII,

}
}

Settings.cs

using System;
using System.Text;
using System.IO;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Settings.
/// </summary>
public class Settings
{

//File paths
private const string settingsFile = "\\OptimalCMS.set";
private string settingsFilePath = "";

//Output labels
private string[] outLabels = { "Number of Update Intervals = ",

"Number of Incident Starts = ",
"Include Alternate Path Travel Time = ",
"Optimization Type = ",
"CMS To Allocate = ",
"Add/Delete = ",
"Population Size = ",
"Maximum Generations = ",
"Crossover Probability = ",
"Mutation Probability = ",
"Elitism = ",
"Selection Type = ",
"Crossover Type = ",
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"Mutation Type = ",
"Rank Weight = ",
"Tournament Size = "};

//Notes
private string[] outNotes = { "",
"",
"",
"Notes",
"-----",
"1) Number of Update Intervals: Number of intervals to update arrival

rate with diversion due to CMS (default = 10).",
"",
"2) Number of Incident Starts: Number of simulated incident start

times (default = 10).",
"",
"3) Include the effect of travel time on alternate routes?: 0 = No,

1 = Yes",
"",
"4) Optimization Type: 0 = Greedy Optimization, 1 = Genetic Optimization.",
"",
"5) CMS to allocate: Number of additional CMS.",
"",
"6) Add/Delete: 0 = Add to existing locations, 1 = Delete current

locations.",
"",
"7-10) Genetic Algorithm parameters.",
"",
"11) Elitism: Genetic algorithm parameter = 1 if elitist strategy, = 0

if no elitist strategy.",
"",
"12) Selection Type: 1 = Roulette Wheel Selection, 2 = Rank Selection,

3 = Tournament Selection",
"",
"13) Crossover Type: 1 = One-Point Crossover, 2 = Uniform Crossover,

3 = Fusion Crossover",
"",
"14) Mutation Type: 1 = Simple, 2 = Deterministic Decreasing,

3 = Deterministic Increasing, 4 = Self-Adaptive",
"",
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"15) Rank Weight: 1 < Rank Weight < 2. Defined as the ratio of the
probability of selecting the best individual compared to an average
individual (Rank Selection).",

"",
"16) Tournament Size: Size of selection pool for tournament selection.

(= 2 for binary tournament)"};

#region Stored settings
//Queuing Diagram Settings
private long numUpdateIntervals;
private long numIncidentStarts;
private bool includeAltTravelTime;

//Optimization Settings
private bool greedyOptimization;
private bool geneticOptimization;
private long cmsToAllocate;
private bool addLocations;
private bool deleteLocations;

//Genetic Algorithm Settings
private long populationSize;
private long maximumGenerations;
private double pCrossover;
private double pMutation;
private bool elitism;

//More Genetic Algorithm Settings
private SelectionType selectType;
private CrossoverType crossType;
private MutationType mutateType;
private double rankWeight;
private long tournamentSize;

#endregion

#region Constructor
public Settings(string applicationPath)

197



{
//Set the full application path
settingsFilePath = applicationPath + settingsFile;

//Load settings from a text file
this.Load();

}

#endregion

#region Define access
public long NumUpdateIntervals
{

get
{

return numUpdateIntervals;
}
set
{

numUpdateIntervals = value;
}

}

public long NumIncidentStarts
{

get
{

return numIncidentStarts;
}
set
{

numIncidentStarts = value;
}

}

public bool IncludeAltTravelTime
{

get
{

return includeAltTravelTime;
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}
set
{

includeAltTravelTime = value;
}

}

public bool GreedyOptimization
{

get
{

return greedyOptimization;
}
set
{

greedyOptimization = value;
}

}

public bool GeneticOptimization
{

get
{

return geneticOptimization;
}
set
{

geneticOptimization = value;
}

}

public long CMSToAllocate
{

get
{

return cmsToAllocate;
}
set
{

cmsToAllocate = value;
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}
}

public bool AddLocations
{

get
{

return addLocations;
}
set
{

addLocations = value;
}

}

public bool DeleteLocations
{

get
{

return deleteLocations;
}
set
{

deleteLocations = value;
}

}

public long PopulationSize
{

get
{

return populationSize;
}
set
{

populationSize = value;
}

}

public long MaximumGenerations
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{
get
{

return maximumGenerations;
}
set
{

maximumGenerations = value;
}

}

public double PCrossover
{

get
{

return pCrossover;
}
set
{

pCrossover = value;
}

}

public double PMutation
{

get
{

return pMutation;
}
set
{

pMutation = value;
}

}

public bool Elitism
{

get
{

return elitism;
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}
set
{

elitism = value;
}

}

public SelectionType SelectType
{

get
{

return selectType;
}
set
{

selectType = value;
}

}

public CrossoverType CrossType
{

get
{

return crossType;
}
set
{

crossType = value;
}

}

public MutationType MutateType
{

get
{

return mutateType;
}
set
{

mutateType = value;
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}
}

public double RankWeight
{

get
{

return rankWeight;
}
set
{

rankWeight = value;
}

}

public long TournamentSize
{

get
{

return tournamentSize;
}
set
{

tournamentSize = value;
}

}

#endregion

#region Save/Load
private void Load()
{

//Open the settings file for reading
StreamReader inStream = new StreamReader(settingsFilePath);

//Read in data sequentially
numUpdateIntervals = GetLongData(inStream.ReadLine());
numIncidentStarts = GetLongData(inStream.ReadLine());
//Get whether to include the alternative path travel time impact
switch(GetLongData(inStream.ReadLine()))
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{
case 1:

includeAltTravelTime = true;
break;

case 0:
includeAltTravelTime = false;
break;

default:
includeAltTravelTime = true;
break;

}
//Get optimization type
switch(GetLongData(inStream.ReadLine()))
{

case 0:
greedyOptimization = true;
break;

case 1:
greedyOptimization = false;
break;

default:
greedyOptimization = true;
break;

}
geneticOptimization = !greedyOptimization;
cmsToAllocate = GetLongData(inStream.ReadLine());
//Get add to current or delete current locations
switch(GetLongData(inStream.ReadLine()))
{

case 0:
addLocations = true;
break;

case 1:
addLocations = false;
break;
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default:
addLocations = true;
break;

}
deleteLocations = !addLocations;
//Finally, get GA settings
populationSize = GetLongData(inStream.ReadLine());
maximumGenerations = GetLongData(inStream.ReadLine());
pCrossover = GetDoubleData(inStream.ReadLine());
pMutation = GetDoubleData(inStream.ReadLine());
switch(GetLongData(inStream.ReadLine()))
{

case 0:
elitism = false;
break;

case 1:
elitism = true;
break;

default:
elitism = true;
break;

}
switch(GetLongData(inStream.ReadLine()))
{

case 1:
selectType = SelectionType.RouletteWheel;
break;

case 2:
selectType = SelectionType.Rank;
break;

case 3:
selectType = SelectionType.Tournament;
break;

default:
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selectType = SelectionType.RouletteWheel;
break;

}
switch(GetLongData(inStream.ReadLine()))
{

case 1:
crossType = CrossoverType.OnePoint;
break;

case 2:
crossType = CrossoverType.Uniform;
break;

case 3:
crossType = CrossoverType.Fusion;
break;

default:
crossType = CrossoverType.OnePoint;
break;

}
switch(GetLongData(inStream.ReadLine()))
{

case 1:
mutateType = MutationType.Simple;
break;

case 2:
mutateType = MutationType.DeterministicDecreasing;
break;

case 3:
mutateType = MutationType.DeterministicIncreasing;
break;

case 4:
mutateType = MutationType.SelfAdaptive;
break;

default:
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mutateType = MutationType.Simple;
break;

}
rankWeight = GetDoubleData(inStream.ReadLine());
tournamentSize = GetLongData(inStream.ReadLine());

//Close the file
inStream.Close();

}

public void Save()
{

//Save the settings
StreamWriter outStream = File.CreateText(this.settingsFilePath);

//Write the settings
WriteSettings(outStream);

//Write notes
for(int i = 0; i < this.outNotes.Length; i++)

outStream.WriteLine(outNotes[i]);

//Close the file
outStream.Close();

}

public void WriteSettings(StreamWriter outStream)
{

int i = 0;
outStream.WriteLine(outLabels[i++] + numUpdateIntervals.ToString());
outStream.WriteLine(outLabels[i++] + numIncidentStarts.ToString());
outStream.Write(outLabels[i++]);
if(includeAltTravelTime)

outStream.WriteLine("1");
else

outStream.WriteLine("0");
outStream.Write(outLabels[i++]);
if(greedyOptimization)

outStream.WriteLine("0");
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else
outStream.WriteLine("1");

outStream.WriteLine(outLabels[i++] + cmsToAllocate.ToString());
outStream.Write(outLabels[i++]);
if(addLocations)

outStream.WriteLine("0");
else

outStream.WriteLine("1");
outStream.WriteLine(outLabels[i++] + populationSize.ToString());
outStream.WriteLine(outLabels[i++] + maximumGenerations.ToString());
outStream.WriteLine(outLabels[i++] + pCrossover.ToString());
outStream.WriteLine(outLabels[i++] + pMutation.ToString());
outStream.Write(outLabels[i++]);
if(elitism)

outStream.WriteLine("1");
else

outStream.WriteLine("0");
outStream.Write(outLabels[i++]);
if(selectType == SelectionType.RouletteWheel)

outStream.WriteLine("1");
else if(selectType == SelectionType.Rank)

outStream.WriteLine("2");
else if(selectType == SelectionType.Tournament)

outStream.WriteLine("3");
outStream.Write(outLabels[i++]);
if(crossType == CrossoverType.OnePoint)

outStream.WriteLine("1");
else if(crossType == CrossoverType.Uniform)

outStream.WriteLine("2");
else if(crossType == CrossoverType.Fusion)

outStream.WriteLine("3");
outStream.Write(outLabels[i++]);
if(mutateType == MutationType.Simple)

outStream.WriteLine("1");
else if(mutateType == MutationType.DeterministicDecreasing)

outStream.WriteLine("2");
else if(mutateType == MutationType.DeterministicIncreasing)

outStream.WriteLine("3");
else if(mutateType == MutationType.SelfAdaptive)

outStream.WriteLine("4");
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outStream.WriteLine(outLabels[i++] + rankWeight.ToString());
outStream.WriteLine(outLabels[i++] + tournamentSize.ToString());

}

private long GetLongData(string inLine)
{

StringBuilder streamIn = new StringBuilder(inLine);
streamIn.Remove(0, streamIn.ToString().LastIndexOf("=") + 1);
return Convert.ToInt32(streamIn.ToString());

}

private double GetDoubleData(string inLine)
{

StringBuilder streamIn = new StringBuilder(inLine);
streamIn.Remove(0, streamIn.ToString().LastIndexOf("=") + 1);
return Convert.ToDouble(streamIn.ToString());

}

#endregion

#region enums

public enum SelectionType
{

RouletteWheel,
Rank,
Tournament,

}

public enum CrossoverType
{

OnePoint,
Uniform,
Fusion,

}

public enum MutationType
{
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Simple,
DeterministicDecreasing,
DeterministicIncreasing,
SelfAdaptive,

}

#endregion

}
}

Import.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Collections;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Import.
/// </summary>
public class Import
{

public static void FromDatabase(string dataFileName, out Network roadNetwork)
{

//Static table names from database
string[] tablenames = {"Netnode", "NETLINK", "ODTrips", "CMS"};
//
DataSet ds = new DataSet();

//Clean up existing network
roadNetwork = new Network((long)4);

//Open the database and write data to dataset
OpenDatabase(dataFileName, ds, tablenames);
if (ds.Tables.Count == 0) {return;}

//Import the node information
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ImportNodes(ds, tablenames[0], roadNetwork);

//Import the link information
ImportLinks(ds, tablenames[1], roadNetwork);

//Import the O-D trips information
ImportODTrips(ds, tablenames[2], roadNetwork);

//Import the CMS information
ImportCMS(ds, tablenames[3], roadNetwork);

}
private static void OpenDatabase(string datafile, DataSet ds,

string[] tablenames)
{

const string STR_ACCESS_SELECT = "SELECT * FROM ";

//Create a dataset copy of the database
OleDbConnection myAccessConn = new OleDbConnection(

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + datafile);

//Open the database
try
{

myAccessConn.Open();
}
catch
{

return;
}

try
{

for (int i = 0; i < tablenames.Length; i++)
{

//Add tables to dataset
ds.Tables.Add(tablenames[i]);
OleDbCommand myAccessCommand = new OleDbCommand(

STR_ACCESS_SELECT + tablenames[i],myAccessConn);
OleDbDataAdapter myDataAdapter = new OleDbDataAdapter

(myAccessCommand);
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myDataAdapter.Fill(ds,tablenames[i]);
}

}
finally
{

myAccessConn.Close();
}

}

private static void ImportNodes(DataSet ds, string nodeTableName,
Network roadNetwork)

{
DataRowCollection dra = ds.Tables[nodeTableName].Rows;
Node node;

foreach (DataRow dr in dra)
{

//Create new node and add information
node = new Node(dr[0], dr[1], dr[2], dr[3], (long)4);

//Add node to node collection
roadNetwork.AddNode(node);

}
}

private static void ImportLinks(DataSet ds, string linkTableName,
Network roadNetwork)

{
DataRowCollection dra = ds.Tables[linkTableName].Rows;
Node fNode;
Node tNode;
Link link;
foreach (DataRow dr in dra)
{

//Get the from and to nodes
fNode = roadNetwork.GetNode((int)dr[1]);
tNode = roadNetwork.GetNode((int)dr[2]);

//Create new link and add information
link = new Link((long)4, dr[0], fNode, tNode, dr[3], dr[4],
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dr[5], dr[6], dr[7], dr[8], dr[9], dr[10], dr[11],
dr[12], dr[13]);

//Add link to link collection
roadNetwork.AddLink(link);

//Update the incoming and outgoing links of the nodes
fNode.AddOutLink(link);
//tNode.AddInLink(link);

}
}

private static void ImportODTrips(DataSet ds, string odTableName,
Network roadNetwork)

{
DataRowCollection dra = ds.Tables[odTableName].Rows;
ODTrips odTrips;
bool firstrow = true;

foreach (DataRow dr in dra)
{

//The first row in the OD matrix is the trip rate durations
if (firstrow)
{

for (int i = 0; i < 4; i++)
{

roadNetwork.TripRateDurations[i] = Convert.ToDouble(dr[i+3]);
}
firstrow = false;

}
else
{

//Create the new OD trips objects
odTrips = new ODTrips(roadNetwork.GetNode(Convert.ToInt32(dr[1])),

roadNetwork.GetNode(Convert.ToInt32(dr[2])), dr[3], dr[4],
dr[5], dr[6]);

//Add the OD trips to the OD trips list
roadNetwork.AddODTrip(odTrips);

}
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}
}

private static void ImportCMS(DataSet ds, string cmsTableName,
Network roadNetwork)

{
DataRowCollection dra = ds.Tables[cmsTableName].Rows;
CMS cms;
Link link;

foreach (DataRow dr in dra)
{

link = roadNetwork.GetLink(Convert.ToInt32(dr[1]));

//Create the new CMS object
cms = new CMS(link);

//Add the new CMS to the CMS list
roadNetwork.AddCMS(cms);

}
}

}
}

Save.cs

using System;
using System.IO;
using System.Collections;
using System.Windows.Forms;
using System.Text;

namespace OptimalCMS
{

/// <summary>
/// Summary description for Save.
/// </summary>
public class Save
{

public static void OptimizationResults(Settings settings, double ttSavings,
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ArrayList optimalLinkResults, double[] coordY)
{

//Save the optimization results
SaveFileDialog saveDlg = new SaveFileDialog();
saveDlg.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*";
saveDlg.FileName = "OptimizationResults.txt";
saveDlg.DefaultExt = ".txt";
saveDlg.CheckPathExists = true;

//Output
if(saveDlg.ShowDialog() == DialogResult.OK)
{

StreamWriter outStream = File.CreateText(saveDlg.FileName);

//Write the date
outStream.WriteLine(System.DateTime.Now.ToString());
outStream.WriteLine();

//Write the general settings
settings.WriteSettings(outStream);
outStream.Write(outStream.NewLine + outStream.NewLine);

//Write the optimization results
outStream.Write("Travel Time Savings : ");
outStream.Write(ttSavings.ToString() + outStream.NewLine

+ outStream.NewLine);

//Write the optimal CMS link locations
outStream.Write("Optimal Link Locations : ");
for(int i = 0; i < optimalLinkResults.Count; i++)
{

CMS cms = (CMS)optimalLinkResults[i];
outStream.Write(cms.Link.LinkID.ToString());

if(i != optimalLinkResults.Count - 1)
outStream.Write(", ");

}
outStream.Write(outStream.NewLine + outStream.NewLine);

//Write the incremental results

215



string blankSpace;
if(settings.GreedyOptimization) //Greedy Optimization
{

outStream.WriteLine("CMS # Benefit");
outStream.WriteLine("----- -------");
blankSpace = new String(’ ’, 4);

}
else //Genetic Optimization
{

outStream.WriteLine("Generation Benefit");
outStream.WriteLine("---------- -------");
blankSpace = new String(’ ’, 9);

}

outStream.WriteLine();
int k;
for(int j = 0; j < coordY.Length; j++)
{

//Write the index
k = j+1;
outStream.Write(k.ToString());
if(k < 10)
{

outStream.Write(blankSpace + " ");
}
else if(k < 100)
{

outStream.Write(blankSpace + " ");
}
else //(k < 1000)
{

outStream.Write(blankSpace);
}

//Then write the benefit
outStream.Write(coordY[j].ToString() + outStream.NewLine);

}
outStream.Close();

}
}
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public static void TrafficAssignmentResults(Network roadNetwork,
bool writePaths)

{
//Time period labels
string[] PeriodString = {"AM Peak Period", "Midday Period",

"PM Peak Period", "Overnight Period"};
const string linkheader = "LinkID, FromNode, ToNode,

TotalCapacity (vph), TotalFlow (vph), TravelTime (s)";
const string pathheader = "Path Information: Flow,

Link(i)[source], Link(i+1), ..., Link(j)[sink]";

//Save the traffic assignment results
SaveFileDialog saveDlg = new SaveFileDialog();
saveDlg.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*";
saveDlg.FileName = "TrafficAssignmentResults.txt";
saveDlg.DefaultExt = ".txt";
saveDlg.CheckPathExists = true;

//Output
if(saveDlg.ShowDialog() == DialogResult.OK)
{

StreamWriter outStream = File.CreateText(saveDlg.FileName);
//for (long j = 0; j < roadNetwork.NumTimePeriods; j++)
//{
long j = 0;

outStream.WriteLine(PeriodString[j]);
outStream.WriteLine(linkheader);

foreach (Link link in roadNetwork.LinkList.Values)
outStream.WriteLine("{0}, {1}, {2}, {3}, {4:F1}, {5:F1}",

link.LinkID, link.FromNode.NodeID, link.ToNode.NodeID,
link.Capacity, link.FlowAtLink[j], link.TimeAtLink[j]
* 3600D);

outStream.WriteLine("");

if(writePaths)
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{
outStream.WriteLine(pathheader);

IEnumerator pathIEnum = roadNetwork.PathLists[j].GetEnumerator();
Path path; Link link;
while(pathIEnum.MoveNext())
{

path = (Path)pathIEnum.Current;
outStream.Write(path.Flow);
IEnumerator linkIEnum = path.Links.GetEnumerator();
while(linkIEnum.MoveNext())
{

link = (Link)linkIEnum.Current;
outStream.Write(", " + Convert.ToString(link.LinkID));

}
outStream.WriteLine("");

}
}

outStream.WriteLine("");
outStream.WriteLine("");

//}
outStream.Close();

}
}

}
}
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APPENDIX F: OptimalCMS MANUAL
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1. Prepare Database : Import data from a transportation planning software dataset to

the nodes, links, and trips tables in the program database. Use the sample database

distributed with the application to get started or create a new database conforming

to the specifications of Appendix B. Make sure to include existing CMS locations in

the appropriate table.

2. Run Application : Run OptimalCMS by browsing to the appropriate directory and

double clicking on “OptimalCMS.exe”.

3. Import Data : Click File→Open Database File (*.mdb) then select the database

prepared in 1 from the Open File dialog. This step both imports the data and

performs traffic assignment. Click File→Save Traffic Assignment Results once

assignment has completed to save the traffic assignment results to a text file.

4. Settings GUI : A graphical interface is provided to modify queuing diagram and

genetic algorithm parameters. Click Tools→Options and modify the settings, if

necessary, before running the network benefit or optimization routines.
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5. Network Benefit : Click Tools→Benefit to estimate the network benefit provided

by the CMS locations listed in the database. Results are shown on a pop-up form.

6. Location Optimization : Click Tools→Optimize Locations to perform the opti-

mization routines. A pop-up form displays results (graphically) at each iteration and

the final results are shown, but not saved to the database, in the Optimal CMS

Link Locations frame. Upon completion of the optimization calculations the user

will be asked if they wish to save the optimization results in a text file, click Yes and

choose a file location, otherwise click No.
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