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Abstract

We give randomized algorithms for linear algebra problems concerning an input matrix
A ∈ Kn×m over a field K. We give an algorithm that simultaneously computes the row and

column rank profiles of A in 2r3 + (r2 + n+m+ |A|)1+o(1) field operations in K, where r is
the rank of A and |A| denotes the number of nonzero entries of A. Here, the o(1) in our cost
estimates captures some missing log n and logm factors. The rank profiles algorithm is
randomized of the Monte Carlo type: the correct answer will be returned with probability
at least 1/2. Given b ∈ Kn×1, we give an algorithm that either computes a particular
solution vector x ∈ Km×1 to the system Ax = b, or produces an inconsistency certificate
vector u ∈ K1×n such that uA = 0 and ub 6= 0. The linear solver examines at most r + 1

rows and r columns of A and has running time 2r3 + (r2 + n+m+ |R|+ |C|)1+o(1) field
operations in K, where |R| and |C| are the number of nonzero entries in the rows and
columns, respectively, that are examined. The solver is randomized of the Las Vegas type:
an incorrect result is never returned, but the algorithm may report FAIL with probability
at most 1/2. These cost estimates are achieved by making use of a novel randomized online
data structure for the detection of linearly independent rows and columns.

The leading term 2r3 in the cost estimate 2r3 + (r2 + n+m+ |A|)1+o(1) of our rank
profile algorithm arises from our use of an iterative algorithm to compute, for s = 1, 2, . . . , r,
the inverse of the leading principal s × s submatrix Bs of an r × r matrix B that has
generic rank profile, and whose rows are given from first to last, one at a time, for s =
1, 2, . . . , r. These inverses are used to compute a sequence of subsystem solutions B−1s bs
for s = 1, 2, . . . , r, where bs ∈ Ks×1 is the leading subvector of b ∈ Kr×1. We give a relaxed
algorithm that computes the sequence B−11 b1, B

−1
2 b2, . . . , B

−1
r br in an online fashion in time

O(rω), effectively allowing matrix multiplication to be incorporated into our rank profile
algorithm. Together with a Toeplitz preconditioner, we can compute the row rank profile
of a full column rank matrix A in time (rω + |A|)1+o(1). Combined with Cheung, Kwok
and Lau’s (2013) algorithm for computing a maximal rank subset of linearly independent
columns, this gives a Monte Carlo algorithm that computes the row rank profile of A in
time (rω + |A|)1+o(1).
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Chapter 1

Introduction

In computational exact linear algebra, a classical problem is to transform a matrix over a
finite field to row echelon form. A matrix is in row echelon form if

• zero rows, if any, lie below rows having a nonzero element,

• the first nonzero element in each nonzero row — the pivot — is in a column to the
right of pivots in any previous rows, and

• all entries in a column below a pivot entry are zero.

For example, consider a matrix A ∈ K6×9 over a field K. A possible shape for the row
echelon form of A is 

∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗© ∗ ∗ ∗ ∗ ∗ ∗
∗© ∗ ∗ ∗ ∗ ∗

∗© ∗ ∗
∗©

∗© ∗© ∗© ∗©

 , (1.1)

where ∗ indicates arbitrary elements of K, ∗© indicates the nonzero pivots, and necessarily
zero entries are simply left blank. Similarly, the column echelon form is just the transpose
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situation. A possible shape for the column echelon form of A is
∗©
∗
∗ ∗©
∗ ∗ ∗©
∗ ∗ ∗ ∗©
∗ ∗ ∗ ∗ ∗© ∗© ∗© ∗© ∗©

 . (1.2)

Recall that transformation to row echelon form is accomplished using elementary row
operations:

(i) interchanging two rows;

(ii) adding a multiple of one row to a different row;

(iii) multiplying a row by a nonzero element of K.

Algorithm 1 recalls the classical Gaussian elimination algorithm to transform a matrix to
row echelon form. Line 7 performs operations of type (i) while line 10 performs operations of
type (ii). Operations of type (iii) are not required. The cost of Algorithm 1 is 2nmr+O(nm)
scalar field operations of type {+,−,×, /} from K, where r is the rank of A.

Many linear algebra problems involving an input matrix A can be solved by trans-
forming A to echelon form. In particular, the rank of A is the number of nonzero rows
in the echelon form. More importantly, the column rank profile of A is given by the list
of column indices of the pivots, computed to be [j1, j2, . . . , jr] by Algorithm 1. For ex-
ample, the column rank profile of the example row echelon form in (1.1) is [1, 3, 4, 7, 9].
Similarly, the row rank profile is revealed to be [1, 3, 4, 5, 6] by the column echelon form
in (1.2). The rank profile is important information in exact linear algebra computations,
and is needed in applications such as Gröbner basis computations [10] and computational
number theory [22].

Transformation to echelon form can also be used for linear solving: given a right-hand-
side vector b ∈ Km×1 in addition to A ∈ Kn×m, find a particular solution x such that
Ax = b, if one exists. First, transform the augmented system

[
A b

]
to echelon form.

The linear system Ax = b is consistent if the rank of
[
A b

]
is equal to the rank of A,

and inconsistent if the rank of
[
A b

]
is greater than the rank of A. If the system is

inconsistent, a so-called certificate of inconsistency [11] — a row vector u such that uA = 0
and ub 6= 0 — can be read off from row r+ 1 of the transformation matrix U ∈ Kn×n such
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Algorithm 1 GaussianElimination(A)

Require: A ∈ Kn×m

Ensure: A is transformed to row echelon form in-place
1: r := 0;
2: for k := 1 to m do
3: if there exists a p ∈ {r + 1, r + 2, . . . , n} such that A[p, k] 6= 0 then
4: r := r + 1;
5: jr := k;
6: if p > r then
7: Interchange rows p and r;
8: end if
9: for i := r + 1 to n do
10: Add A[i, k]/A[k, k] times row r to row i;
11: end for
12: end if
13: end for

that UA is in row echelon form. For example, using the same input matrix A ∈ K6×9 from
above, the row echelon form, together with the transformation matrix, for an inconsistent
system Ax = b can be found by transforming the augmented matrix

[
A b I6

]
to row

echelon form.

[
A b I6

]
−→


∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗© ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗© ∗© ∗© ∗© ∗© ∗ ∗ ∗ ∗ ∗ ∗


Note that the trailing 6× 6 matrix in the echelon form is the transformation matrix U . A
certificate of inconsistency vector u is indicated by ∗ .

If the system is consistent, a particular solution can be obtained by performing some
further row operations that transform

[
A b

]
to reduced row echelon form, where all

pivot entries are 1 and entries above the pivot entries are all zero. For example, if b ∈ K6×1

is a right hand side such that the system Ax = b is consistent, the reduced row echelon

3



form of the augmented system
[
A b

]
for the same example above is

1 ∗ ∗ ∗ ∗ x1
1 ∗ ∗ ∗ x3

1 ∗ ∗ ∗ x4
1 ∗ x7

1 x9
∗© ∗© ∗© ∗©


A particular solution x ∈ K9×1 to Ax = b can be read off from the last column: set
x1, x3, x4, x7, x9 to be entries 1, 3, 4, 7, 9 of x, and set the other entries of x to be zero.

We can define these two problems, which are the focus of this thesis, as follows.

• LinSys: Given a b ∈ Kn×1, compute a particular solution x ∈ Km×1 to Ax = b, or a
certificate of inconsistency [11]: a row vector u ∈ K1×n such that uA = 0 and ub 6= 0.

• RankProfiles: Compute the rank r together with the lexicographically minimal
lists [i1, i2, . . . , ir] and [j1, j2, . . . , jr] of row and column indices of A such that these
rows and columns of A, respectively, are linearly independent.

Although transformation to echelon form will solve these problems, it is not necessarily
required. Much research has been devoted to obtaining algorithms for these problems
which have improved asymptotic running time compared to that of Algorithm 1. Before
summarizing previous results in the next section, we mention three main directions that
research has taken.

D1 Improved cost estimates for rectangular and low rank systems.
Input matrices may be rectangular and may be rank deficient and it would be desir-
able for an algorithm to exploit this. As mentioned above, classical Gaussian elimi-
nation already gives an algorithm with a rank sensitive cost estimate 2nmr+O(nm),
where r is the rank, which improves on the coarse, single-parameter cost estimate
max(n,m)3 whenever n < m, m < n, or r < min(n,m). Another goal is to decouple
the cubic part of the complexity from the matrix dimensions n and m to achieve
algorithms with running time on the order of, for example, O(r3 + nm) instead of
O(nmr).

D2 Exploit possible sparsity of the input matrix.
Input matrices may be sparse, that is, if we let |A| denotes the number of nonzero

4



entries in A, then we may have |A| ∈ o(nm). Sparse matrices over finite fields arise
in applications such as factoring integers [17] and Gröbner basis computations where
huge sparse linear systems must be solved [9]. Unfortunately, Gaussian elimination
tends to quickly cause the matrix being transformed to fill in and may not give
improved worst case time bound in terms of |A|. Many heuristics have been designed
to reduce fill-in during Gaussian elimination (see Section 2.1 of [7] for a discussion)
but they do not in general guarantee improved worst case running time bounds, that
is, the worst case cost when |A| ∈ o(nm) is not better than when |A| = Θ(nm).
Projection methods, also called or black-box methods [16], avoid fill in by only using
A to perform matrix×vector products and for sparse matrices and can have improved
running time compared to elimination methods.

D3 Exploit fast matrix multiplication.
Let ω, 2 < ω ≤ 3, be the exponent of matrix multiplication. The best currently
known upper bound for ω is 2.3727 [29]. Block recursive versions of Gaussian elim-
ination [15, 24, 25] can compute echelon forms in time O(nmrω−2) field operations
from K. Fast matrix multiplication is highly important from a practical, implemen-
tation point of view because it exploits cache effects. High-performance, exceedingly
optimized matrix multiplication implementations such as ATLAS BLAS [27] and Go-
toBLAS [13] are used to obtain fast implementations of linear algebra algorithms for
matrices over finite fields [3, 5].

In this thesis we give randomized algorithms for problems LinSys and RankProfiles
that support the currently fastest running times in terms of the parameters n, m, r and
|A| for many cases of these input parameters. The algorithms we give are applicable to
dense and spare systems, and naturally take advantage of sparsity when it is present. Our
algorithm for RankProfile can exploit matrix multiplication.

We first summarize previous complexity results and then discuss our new algorithms and
cost estimates for solving the above problems. Throughout, running times of algorithms
are given in terms of the number of required field operations from K.

1.1 Previous work

A lot of effort has been devoted to designing and analyzing algorithms for problems LinSys
and RankProfiles that have a running time that is sensitive to the rank r of A. We
have seen that classical Gaussian elimination already solves both problems in time O(nmr).
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Using block recursive methods [6, 15] the running time is reduced to O(nmrω−2) where ω
is the exponent of matrix multiplication. A somewhat faster algorithm is possible when A
is sparse [30]. Problem LinSys can be solved in time O((n+m)r2) using a so-called oracle
based variant [19, Section 2] of Gaussian elimination that examines at most r+ 1 rows and
r columns of A. Note that if r2 < min(m,n), then (n + m)r2 < nm, so the running time
of the oracle solver may be sublinear in the size of the input.

Now consider randomized algorithms. If only the rank of A is required, then efficient
preconditioners [2, 16] give a Monte Carlo algorithm with running time

(rω + nm)1+o(1). (1.3)

Here, the o(1) in the exponent of cost estimates captures some missing log n and logm
factors. The running time bound (1.3) improves on Gaussian elimination by not only
incorporating matrix multiplication but also decoupling the “matrix multiplication” com-
ponent from the row and column dimension n and m. However, the method does not
exploit any possible sparsity of A.

Heuristics and algorithms (with implementations) for computing the rank of very large
(out of core) dense matrices modulo a prime p have been developed [18,20]. Now let µ(A)
denote the time required to multiply a vector by A. For a sparse or structured matrix we
may have µ(A) ∈ o(nm). In particular, if |A| denotes the number of nonzero entries in
A then we can take µ(A) ∈ O(|A|). Black-box approaches [16, 28] combined with early

termination [8] can compute r in time (µ(A) r)1+o(1); incorporating early termination into
the black-box algorithm in [11] would seem to give a Las Vegas algorithm for LinSys
with the same running time. In terms of the rank, none of the randomized approaches
just mentioned recover the rank profile, or even determine a set of r linearly independent
columns of A.

Our work in this thesis is motivated by a recent breakthrough by Cheung, Kwok and
Lau [4], who give an algorithm for computing the rank ofA in time (rω + n+m+ |A|)1+o(1).
Note that the |A| term in the cost estimate is optimal, since changing a single entry of A
might modify the rank. They also show how to compute a set of r linearly independent
columns of A in the same time. However, the columns computed may not correspond
to the column rank profile. For an extensive list of applications (with citations) of fast
rank computation to combinatorial optimization and exact linear algebra problems we refer
to [4].
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1.2 New algorithms

In this thesis we give new randomized algorithms for the problems LinSys and RankPro-
files that have improved running times in the special case when the rank r is small
compared to the row dimension n or column dimension m, or both. We give Monte
Carlo randomized algorithms for RankProfiles that support the running time bounds

2r3 + (r2 + n+m+ |A|)1+o(1) and (rω + n+m+ |A|)1+o(1), depending on whether or not
matrix multiplication is incorporated. We give a Las Vegas randomized algorithm for

LinSys that has running time 2r3 + (r2 + n+m+ |R|+ |C|)1+o(1), where |R| and |C| are
the number of nonzero entries in the subset of at most r + 1 rows and r columns of A,
respectively, that are examined by the solver: at least (m − r)(n − r − 1) entries of A
are not examined. The algorithm of Cheung, Kwok and Lau [4] also gives a solution to

problem LinSys in time (rω + |A|)1+o(1). The algorithm we give here for LinSys has the
advantage that we examine at most r + 1 rows and r columns of A; in particular, we may
have |R|+ |C| < |A|.

Now consider the new cost estimates compared to the black box approaches mentioned
above. The black box approaches can find the rank in a Monte Carlo fashion and solve
LinSys in time (|A| r)1+o(1). Thus, the algorithms we present here are asymptotically
faster whenever r2 < |A|. In terms of space, the black box approaches use space for only
O(n+m) additional field elements, while our algorithms use O(r2) additional space. Thus,
if r2 ∈ ω(n+m) then the black box approach requires asymptotically less space. However,
the black box approach can only compute the rank, but does not recover the rank profile,
or even determine a set of r linearly independent columns of A.

In later chapters we develop our algorithm for LinSys and RankProfiles directly for
the general case of an input matrix A ∈ Kn×m of (unknown) rank r. But to help explain
our main technical contributions, we first consider the special case of an input matrix with
full row rank, and then with full column rank.

Let A ∈ Kn×m be an input matrix that has full row rank n, and consider the problem of
computing the column rank profile of A. Gaussian elimination on A uses O(n2m) time to
compute a lower triangular matrix L such that, up to a row permutation, the matrix LA is
upper triangular. The first few rows of such a transformation are shown in Figure 1.1. The
columns of A corresponding to the pivot entries of LA (the first nonzero zero entry in each
row) are thus linearly independent. But even if L is given, computing LA explicitly uses
O(n2m) time using standard matrix multiplication. Instead of computing LA explicitly,

we show how to construct from the columns of A in time |A|1+o(1) a randomized data
structure — a linear independence oracle — that allows one to apply binary search to find
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L
∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
...

...
...

...
. . .



A
...

...
...

...
...

...
...

=
LA
∗

∗
∗

∗
...

...
...

...
...

...
...


Figure 1.1: Example of pivot locations

the pivot locations in LA in a Monte Carlo fashion in time (n2 logm)
1+o(1)

. This gives a
Monte Carlo algorithm to find the column rank profile of a full row rank A ∈ Kn×m in time

2n3 + (n2 +m+ |A|)1+o(1).

Now let A ∈ Kn×m have full column rank m, and consider the problem of computing
the row rank profile of A. Of course, we could simply apply the algorithm for column rank
profile to the transpose of A. But with an eye to the general case (A with unknown rank)
we develop an alternative method based on incorporating a linear independence oracle for
the rows of A into the oracle linear solving algorithm [19]. We prove that the row rank
profile of a full column rank A ∈ Kn×m can be computed in a Monte Carlo fashion in time

2m3 + (m2 + n+ |A|)1+o(1) by running the linear solver algorithm with a right-hand-side
vector b that is uniformly and randomly sampled from the column space of A.

Incorporating linear independence oracles for both the rows and columns of A, we

achieve the running time bound 2r3 + (r2 + n+m+ |A|)1+o(1) for RankProfiles. The
leading term 2r3 in the cost estimate arises from our use of an iterative algorithm to
compute, for s = 1, 2, . . . , r, the inverse of the leading principal s × s submatrix Bs of
an r × r matrix B that has generic rank profile, and whose rows are given from first to
last, one at a time, for s = 1, 2, . . . , r. These inverses are used to compute a sequence of
subsystem solutions B−1s bs for s = 1, 2, . . . , r, where bs ∈ Ks×1 is the leading subvector of
a b ∈ Kr×1, as shown by the following augmented system.

[
B b

]
=

[
Bs ∗ bs
∗ ∗ ∗

]
This motivates the definition of the following problem.

• OnlineSystem: Let B ∈ Kr×r with generic rank profile and b ∈ Kr×1 be given.
Suppose the rows of the augmented system

[
A b

]
are given one at a time, from

first to last. As soon as rows 1, 2, . . . , s of
[
B b

]
are given, produce the subsystem

solution B−1s bs, for s = 1, 2, . . . , r.

8



In Chapter 8 we show how to compute the sequence B−11 b1, B
−1
2 b2, . . . , B

−1
r br in an online

fashion in time O(rω), effectively allowing matrix multiplication to be incorporated into our
rank profile algorithm. Together with a Toeplitz preconditioner [16], we can compute the

row rank profile of a full column rank matrix A in time (rω + n+m+ |A|)1+o(1). Combined
with the algorithm supporting [4, Theorem 2.11] for computing a maximal rank subset of
of linearly independent columns, this gives a Monte Carlo algorithm for RankProfiles
in time (rω + n+m+ |A|)1+o(1).

To summarize, the rest of this thesis is organised as follows. In Chapter 2 we recall
the deterministic oracle linear solving algorithm [19]. Next, Chapters 3–8 give our novel
technical contributions, which can be partitioned into four main contributions C1–4 as
follows.

C1 • Chapter 3: We show how the deterministic oracle linear solver [19, Section 2] can
be used to simultaneously recover the row and column rank profiles of an input
matrix A in a Monte Carlo fashion by giving as input to the solver a system[
A b

]
where b is uniformly and randomly sampled form the column space of

A.

C2 • Chapter 4: We design and analysis a new online randomized data structure —
the linear independence oracle — that allows applying binary search for the
detection of linearly independent rows and columns of a matrix A.

C3 • Chapter 5: We show how to incorporate linear independence oracles for both the
rows and columns of A into the oracle-based linear solving algorithm to obtain
a randomized Las Vegas algorithm for problem LinSys that has running time

2r3 + (r2 + n+m+ |R|+ |C|)1+o(1).
• Chapter 6: We show how to incorporate linear independence oracles into the

rank algorithm of Chapter 3 to obtain a randomized Monte Carlo algorithm for

problem RankProfiles that has running time 2r3 + (r2 + n+m+ |A|)1+o(1).

C4 • Chapter 7: We design a relaxed representation of the inverse of a matrix, and
design and analyse an online algorithm that gives a solution to problem On-
lineInverse that supports the running time bound O(rω).

• Chapter 8: We establish that problem RankProfiles can be solved in a Monte
Carlo fashion in time (rω + n+m+ |A|)1+o(1).

Finally, Chapter 9 gives a conclusion along with topics for future research.
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Contributions C1–4 have been published [23]. While the full exposition of C4 appears
for the first time in this thesis, a poster presentation of the main ideas has appeared [26].

Throughout the paper we use the following notation. For a list P of distinct row indices
and Q of distinct column indices, we write AP to denote the submatrix of A consisting
of rows P , AQ to denote the submatrix consisting of columns Q, and APQ to denote the
submatrix consisting of the intersection of rows P and columns Q of A.

10



Chapter 2

Oracle linear system solving

Let A ∈ Kn×m and b ∈ Kn×1 be given. Oracle-based elimination [19] is a variation of
Gaussian elimination that either finds a particular solution to the linear system Ax = b
or proves that the system is inconsistent. The cost of the algorithm is O((n + m)r2) field
operations from K, where r is the rank of A. This cost estimate, which can be o(nm)
for small values of r, can be achieved because the algorithm never examines more than
r columns and r + 1 rows of the input matrix. The name was chosen because the target
vector b is used as an oracle to determine a set of linearly independent rows of the matrix
A.

The oracle based solver proceeds in stages for s = 0, 1, . . .. The goal at stage s is to
determine a list of row indices P = [i1, i2, . . . , is] and column indices Q = [j1, j2, . . . , js]
such that

• AP ∈ Ks×m has full row rank s,

• AQ ∈ Kn×s has full column rank s, and

• APQ ∈ Ks×s is nonsingular.

To start the process for stage s = 0 the lists P and Q are simply initialized to be empty.
To complete a stage s for some s > 0, the algorithm takes the following two steps.

1. If
b− AQ (APQ)−1 bP (2.1)

11



is the zero vector, then construct a particular solution to Ax = b by setting x to
be the zero vector except with entries at index j1, . . . , js−1 equal to entries at index
1, . . . , s− 1 of (APQ)−1 bP . Otherwise, let is be the index of the first nonzero entry of
the column vector in (2.1) and go to step 2.

2. If
A[is] − A[is]

Q (APQ)−1AP (2.2)

is the zero vector, then the system is inconsistent. A so-called certificate of inconsis-
tency [11] can be constructed by setting u ∈ K1×n to be the zero vector, except with

entry at index i1, . . . , is−1 equal to the entry at index 1, 2, . . . , s− 1 of −A[is]
Q (APQ)−1,

and entry at index is equals to 1. The vector u has the property that uA = 0 and
ub 6= 0. Otherwise, set js to be the index of the first nonzero entry of the row vector
in (2.2), update P = [i1, i2, . . . , is] and Q = [j1, j2, . . . , js], and proceed to stage s+1.

Note that for s = 1, (2.1) is simply equal to the b vector. Also note that (APQ)−1 need
not be recomputed from scratch at each stage. Rather, the inverse for the next stage can
be computed in O(s2) field operations from the inverse of the current stage by performing
a rank 1 update (Lemma 2). Since s is bounded by r + 1, all the inverses required can be
computed in time O(r3). Similarly, computing the vectors in (2.1) and (2.2) costs O(sn)
and O(sm) time, respectively, for an overall cost of O((n+m)r2).

Theorem 1. There exists a deterministic algorithm OracleSolve(A, b) that takes as input
A ∈ Kn×m and b ∈ Kn×1, and returns as output either “consistent, x, P, Q” or “incon-
sistent, u, P, Q” as described above. The cost of the algorithm is O((n + m)r2) field
operations from K.

Although the overall cost estimate O(r3) for computing the required inverses does not
dominate the running time of algorithm OracleSolve, it might dominate the running time
for the improved variations of algorithm OracleSolve that we give in later sections. Thus,
it will be useful here to derive the leading constant in this asymptotic bound for updating
the inverses. Let P = [i1, i2, . . . , is−1] and Q = [j1, j2, . . . , js−1] be as at the start of stage
s, and let is and js be as computed in steps 1 and 2. If we set u = AP[js] ∈ K(s−1)×1,

v = A
[is]
Q ∈ K1×(s−1) and d = A

[is]
[js]
∈ K1×1, then at stage s+ 1 we need the inverse of[

APQ u
v d

]
∈ Ks×s. (2.3)
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Lemma 2. If the inverse B := (APQ)−1 ∈ K(s−1)×(s−1) is precomputed, then the inverse of
the matrix in (2.3), if it exists, is equal to[

B + (Bu)w(vB) −(Bu)w
−w(vB) w

]
, (2.4)

with w = (d− v(Bu))−1, and can be computed in 6s2 +O(s) field operations from K.

Proof. Correctness of the inverse is verified by direct computation. The total cost of the
matrix×vector product Bu, the vector×matrix product vB, the outer product (Bu)(vB),
and the addition B + (Bu)w(vB), is 6s2 + O(s) field operations from K. The remaining
dot products and scalar operations have cost O(s).

Since s is bounded by r + 1, all the inverses required can be be computed in time∑r+1
s=1(6s

2 +O(s)) = 2r3 +O(r2).

Remark 3. The vector×matrix product A
[is]
Q (APQ)−1 in (2.2) for stage s is exactly the

vector×matrix product vB used to update the inverse for stage s+1 in the proof of Lemma 2.

Remark 4. Assuming that Bu and vB in (2.4) have been precomputed, the matrix×vector
product (APQ)−1 bP in (2.1) for stage s + 1 can be computed in O(s) field operations by
applying the formula for (APQ)−1 shown in (2.4) to bP , using the fact that Bb[i1,...,is−1] is
known from the previous stage.
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Chapter 3

Randomized rank profiles

In this section we establish that if b is uniformly and randomly sampled from the col-
umn space of A, then the list of row indices P and the list of column indices Q returned
by OracleSolve(A, b) will be the row and column rank profiles of A with high probabil-
ity. (The list Q may need to be sorted in increasing order.) Algorithm 2 outlines this
randomized algorithm for RankProfiles.

Algorithm 2 RandomRankProfile(A)

Require: A ∈ Kn×m

Ensure: s ∈ Z≥0, P , C
1: Choose a w ∈ Km×1 uniformly and randomly.
2: b := Aw
3: ∗, ∗,P ,Q := OracleSolve(A, b)
4: C := sort(Q)
5: Return length(P), P , C

Lemma 5. Let s, P and C be the output of Algorithm 2 RandomRankProfile for an input
matrix A of rank r. If s = r then C is the column rank profile of A.

Proof. If s = r then the row space of AP is equal to the row space of A. Now note that
(APQ)−1AP is equal to a row permutation of the reduced row echelon form of A. Since
the list Q corresponds to the column indices of the pivot entries in (APQ)−1AP it is, up to
sorting, equal to the column rank profile of A.
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Theorem 6. The output P and C of Algorithm 2 RandomRankProfile is the row and
column rank profile of A with probability at least (1− 1/#K)r, where r is the rank of A.

The following two lemmas contribute to the proof of Theorem 6.

Lemma 7. Let A ∈ Kn×m be a matrix of rank r and let b ∈ Kn×1 be in the column space
of A. Let

• Ā ∈ Kr×m be the submatrix of A comprised of the rank profile rows and let P̄ be the
list of row indices returned by OracleSolve(Ā, b),

• P be the row indices returned by OracleSolve(A, b).

If P̄ = [1, 2, ..., r], then P is the row rank profile of A.

Proof. Assume P̄ = [1, 2, . . . , r]. Then the only difference in the computations done by
the call OracleSolve(A, b) compared to OracleSolve(Ā, b) occurs in step 1 when finding
the first nonzero entry in the vector in (2.1): precisely the indices corresponding to rows
not belonging to the rank profile will be skipped over, since these rows of the augmented
system

[
A b

]
are linearly dependent on the previous rows.

Lemma 8. Let K be a finite field. If A ∈ Kn×m has full row rank n, and w ∈ Km×1 is
chosen uniformly and randomly, then Aw is chosen uniformly and randomly from Kn×1.

Proof. Corresponding to A ∈ Kn×m there always exists a nonsingular matrix U ∈ Km×m

such that AU =
[
In 0

]
. Then Aw = AU(U−1w) = b. When w ∈ Km×1 is uniformly and

randomly chosen from K, U−1w is also uniformly and randomly chosen from Km×1. The
result now follows by noting that b is equal to the first n entries of U−1w.

Proof of Theorem 6. By Lemma 7, it will be sufficient to prove the theorem with input
matrix A ∈ Kr×m of full row rank r. When w is chosen uniformly and randomly from
Km×1, vector b = Aw ∈ Kr×1 is also chosen uniformly and randomly from Kr×1 (Lemma 8).
Since A is full rank, P is the row rank profile of A if is = s for 1 ≤ s ≤ r.

For some s ≥ 1, suppose P = [i1, i2, ..., is−1] at the start of stage s has been computed
correctly to be [1, 2, . . . , s− 1]. Then we claim that at stage s the probability that step 1
of the algorithm computes is = s is equal to 1 − 1/#K. To see this, note that the entry
of (2.1) at index s is equal to

b[s]− A[s]
Q (APQ)−1 bP .
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Since b[s] is chosen uniformly and randomly from field K, the probability that b[s] =

A
[s]
Q (APQ)−1 bP is bounded by 1/#K.

Since the entries in b are chosen independently, the success probability at each stage
can be multiplied together to obtain (1 − 1/#K)r for the probability that the algorithm
returns P = [1, 2, . . . , r].

Finally, if P is the rank profile of A, then by Lemma 5, C will be the column rank
profile also.

For Algorithm 2, we remark that the output can satisfy length(P) = rank(A) even if
P is not the rank profile of A. Consider the following example over K = Z3:

A =

[
−1 1
1 0

]
, w =

[
1
1

]
, b = Aw =

[
0
1

]
.

At stage s = 1, the vector (2.1) in step 1 is equal to b. The first entry in (2.1) is zero, so
i1 = 2. Therefore, OracleSolve(A, b) will return P = [2, 1] for the row rank profile, which
is incorrect.
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Chapter 4

Linear independence oracles

Throughout this section we fix R ∈ Kr×m and let v ∈ K1×r be given. We describe the
construction of a randomized binary tree data structure T that will allow us to either
determine if v is in the left nullspace of R, that is, if vR is the zero vector, or to find the
first nonzero entry of vR ∈ K1×m, in a Monte Carlo fashion in time O(r logm). We call T
a linear independence oracle for R. Constructing a single linear independence oracle T for
R costs O(mr) field operations, which would seem to preclude its usefulness since we can
compute vR ∈ K1×m explicitly in the same time. However, our algorithm for constructing
T is online. We will show how to construct in overall O(mr) time a sequence of linear
independence oracles Ts for the submatrices R[1,2,...,s] for R, s = 1, 2, . . . , r.

4.1 Definition

By augmenting R with at most m−2 zero columns we may assume without loss of generality
that m is a power of two. A linear independence oracle T for R, shown in Figure 4.1, is
a perfect binary tree of height h := log2m, that is, with m leaf nodes. The nodes of the
last level of the tree, from left to right, are associated with (i.e., store) the corresponding
columns R[1], R[2], . . . , R[m] of R. In addition to R, the definition of the tree is based on
a given list of elements α1, α2, . . . , αm−1 ∈ K, which we associate with the internal nodes of
T according to level order traversal. In a bottom-up fashion, for levels h− 1, h− 2, . . . , 0,
associate with each internal node the vector obtained by adding the vector associated to
the left child with α∗ times the vector associated with the right child. For example, for
the left child of the root we have R1∼m

2
= R1∼m

4
+α2Rm

4
+1∼m

2
. Note that, by construction,

Ra∼b is a vector that is a linear combination of R[a], R[a+ 1], . . . , R[b]. We call T a linear
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α1, R1∼m

α3, Rm
2
+1∼m

α7, R3m
4

+1∼m

...

αm−1, Rm−1∼m

R[m]R[m− 1]

...

...

· · ·

α6, Rm
2
+1∼3m

4

...

...

· · ·

...

...

· · ·

α2, R1∼m
2

α5, Rm
4
+1∼m

2

...

...

· · ·

...

...

· · ·

α4, R1∼m
4

...

...

· · ·

...

αm/2, R1∼2

R[2]R[1]

Figure 4.1: Oracle tree

independence oracle for R based on the parameters α1, . . . , αm−1. In what follows it will
be helpful to abuse notation somewhat and simply identify the nodes of T with the vectors
stored at the node. For example, v is non-orthogonal with a node x if the dot product of
v with x is nonzero.

4.2 Output

On the one hand, if v is in the left nullspace of R, then v is orthogonal with the root
R1∼m as well, since by construction R1∼m is a linear combination of the columns of R.
On the other hand, if vR1∼m is nonzero, then because each internal node of T is a linear
combination of its children, there must be a path from the root down to a leaf with v
non-orthogonal to all nodes on the path.

Definition 9. The output of a linear independence oracle T with respect to a v ∈ K1×r is
either

• “v is in the left nullspace of R” if vR1∼m is zero, or,

• the minimal j for which v is non-orthogonal with all nodes on the path from R[j] back
up to the root.
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Lemma 10. The output of T with respect to v can be found in time O(r log2m).

Proof. If vR1∼m is zero we are done. Otherwise, use a straightforward recursive search
starting at the root node. For example, if vR1∼m

2
6= 0 then recurse on the left subtree. If

vR1∼m/2 = 0 then necessarily vRm
2
+1∼m 6= 0, so recurse on the right subtree. After arriving

at a leaf node R[j] report j. The cost is h dot products of length r.

Definition 11. T is correct with respect to a v ∈ K1×r if either v is in the left nullspace
of R, or the output of T with respect to v is the minimal j such that v is non-orthogonal
to R[j].

Correctness of T will depend on the choice of the parameters α1, . . . , αm−1 used during
the construction. We first deal with construction of T before considering the probability
of correctness.

4.3 Construction

Theorem 12. A sequence of linear independence oracles Ts for R[1,2,...,s] ∈ Ks×m, s =
0, 1, . . . , r, all based on the parameters α1, . . . , αm−1, can be constructed in total time
O(min(mr,m+ |R| log2m)), where |R| denotes the number of nonzero entries of R.

Proof. We will construct Ts for s = 0, 1, . . . , r in succession. For efficiency, each column
vector associated with a node in tree Ts should be represented as a singly linked list of
nonzero elements, that is, each node in the list contains the index and the nonzero element
of the vector stored at that index. Initialize T0 to be a perfect binary tree with each node
associated with a vector of length zero. The cost of this initialization is accounted for by
the “m+” term in the cost estimate.

Given Ts−1 for some s > 0, the linear oracle Ts is constructed from Ts−1 and the next
row vector R[s] in a bottom up fashion: augment the column vectors associated to the
nodes in level i of Ts−1 for i = h, h − 1, . . . , 1. Since there are 2m − 1 nodes in the tree
the cost of obtaining Ts from Ts−1 is bounded by O(m). Since 1 ≤ s ≤ r the total cost is
O(mr).

Note that only the leaf nodes associated to nonzero elements of row R[s] may need to
have their associated vectors modified. Similarly, internal nodes of the tree may need to
be modified only if they had a child node that was modified. The cost of modifying each
level is thus |R[s]|. (See Example 13 below.) Since there are 1+log2m levels, the total cost
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Figure 4.2: T1, T2, and T3

of constructing Ts from Ts−1 is O(|R[s]| logm). Summing this estimate for s = 1, 2, . . . , r,
that is, over all rows of R, gives the claimed result.

Example 13. Suppose r = 3, m = 8 and

R =

1 2 3 4 5 6 7 8
∗ ∗
∗ ∗

∗ ∗ ∗

∈ K3×8,

with zero entries left blank and nonzero entries indicated with a ∗. All nodes in the initial
tree T0 store empty linked lists. The construction of T1, T2 and T3 are shown in Figure 4.2.
For brevity, for each node in the tree only the length of the list, corresponding to the
number of nonzero entries in the vector, is indicated. The modified nodes (and their paths)
are highlighted in dashed red.

4.4 Probability of correctness

Lemma 14. Let K be a finite field and α1, . . . , αm−1 ∈ K be chosen uniformly and randomly.
If T is a linear independence oracle for R ∈ Kr×m based on α1, . . . , αm−1, then T is correct
with respect to v with probability at least (1− 1/#K)log2m.
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Proof. If vR = 0, then T is correct independent of the choice of the α1, . . . , αm−1, so assume
vR 6= 0 and let j be the minimal index such that vR[j] 6= 0. Consider the path from R[j]
up to the root. If the sibling of R[j] is R[j̄] then the parent of R[j] is either R[j̄] + α∗R[j]
or R[j] + α∗R[j̄], depending on whether or not j is even or odd, respectively. In either
case, since vR[j] 6= 0 there is at most one choice of α∗ such that v is orthogonal with the
parent of R[j]. The same argument applies for the other internal nodes on the path from
R[j] up to the root. Since the α∗ associated with each internal node are chosen uniformly
and independently from K, and the number of internal nodes on the path is h = log2m,
the result follows.

Now, instead of a single v ∈ K1×r, let a sequence of vectors vs ∈ K1×s for s = 1, 2, . . . , r
be given in addition to R ∈ Kr×m.

Corollary 15. Let K be a finite field and α1, . . . , αm−1 ∈ K be chosen uniformly and
randomly. If (Ts)1≤s≤r is a sequence of linear independence oracles for (R[1,2,...,s])1≤s≤r, all
based on the same α1, . . . , αm−1 ∈ K, then the (Ts)1≤s≤r are correct with respect to (vs)1≤s≤r
simultaneously with probability at least (1− r/#K)log2m.

Proof. For 1 ≤ s ≤ r, let v̄s ∈ K1×r be the vector obtained from vs by augmenting with
r− s zeroes. Then Ts is correct with respect to vs precisely when T is correct with respect
to v̄s. For all s ∈ [1, 2, . . . , r] such that v̄sR 6= 0, consider the path from the leftmost leaf
node in T that is non-orthogonal to v̄ back up to the root. There will be at most r such
paths. (See Figure 4.3 for an example illustrating eight such paths.) Consider the choice
of α∗ for the nodes at level i = h − 1, h − 2, . . . , 0 of T . In the best case, all the paths at
level i from the leaf nodes back up to the root are independent, so we can multiply the
probability of success at each internal node to get the estimate (1 − 1/#K)r that all the
α∗ intersecting a path at level i are well chosen. However, as paths rise they may join
implying that the same α∗ has to be well chosen for more than one path. The worst case
occurs near the root node when possibly all paths converge. In the worst case, we can
bound from below the probability that a given α∗ is good for all paths is at least 1−r/#K.
Since there are log2m internal levels, and the α∗ at each level are chosen independently,
the result follows.
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Figure 4.3: Non-orthogonal paths in a linear independence oracle
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Chapter 5

Faster linear system solving

The computations that dominated the running time in the deterministic oracle solver
described in Section 2 were to determine, at stage s = 1, 2, . . ., the first nonzero entry in
b− AQ · (APQ)−1 bP and A[is] − A[is]

Q (APQ)−1 · AP in steps 1 and 2, respectively. We use “·”
to emphasis that the product is not directly computed. We can recast the computation in
step 2 as follows. First compute

vs :=
[
−A[is]

Q (APQ)−1 1
]
∈ K1×s

in 2s2 + O(s) field operations. By Remark (3), the leading term 2s2 in this cost estimate
is already counted in the worst case cost estimate for updating all the required inverses.
Now set

R[1,2,...,s] :=

[
AP

A[is]

]
∈ Ks×m.

We now need to determine if vsR
[1,2,...,s] ∈ K1×m is the zero vector, and find the index of the

first nonzero element of vsR
[1,2,...,s] otherwise: if we have precomputed a linear independence

oracle Ts for R[1,2,...,s] we can solve this problem in a Monte Carlo fashion in time O(r logm).

Since the situation in (2.1) is simply transposed vs here, the computation in step 1 can
be recast similarly by computing

v̄s :=

[
1

−(APQ)−1 bP

]T
∈ K1×s

and setting

R̄[1,2,...,s] =
[
b AQ

]T ∈ Ks×n.
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By Remark 4, v̄s can be computed in O(s) field operations.

This gives the following algorithm.

1. Choose α1, . . . , αm−1, β1, . . . , βn−1 uniformly and randomly from K.

2. Use algorithm OracleSolve described in Section 2, but instead of explicitly comput-
ing the vectors in (2.1) for s = 1, 2, . . ., initialize T0 to be an oracle tree for the 0×m
vector, and use the method supporting Theorem 12 to construct from Ts−1 and R[s]

an oracle tree Ts for R[1,2,...,s] based on α1, . . . , αm−1. Similarly, instead of explicitly
computing the vectors in (2.2), use a sequence of oracle trees based on β1, . . . , βn−1.

3. Assay correctness of the output of the algorithm either by checking that Ax = b or
checking that uA = 0.

Corollary 15 bounds from below the probability that the linear independence oracles in step
2 will make exactly the same choices for i1, i2, . . . , is and j1, j2, . . . , js as the deterministic
algorithm OracleSolve described in Section 2. We obtain the following result as a corollary
of Lemma 10 (cost of using an oracle), Theorem 12 (constructing the sequences of oracles)
and Corollary 15 (probability of success).

Theorem 16. Let K be a finite field. There exists a randomized algorithm RandomOracleS-

olve(A, b) that takes as input A ∈ Kn×m and b ∈ Kn×1, and returns as output either

• “FAIL, x, P, Q” with Ax 6= b, or

• “FAIL, u, P, Q” with uA 6= 0 and ub 6= 0, or

• “consistent, x, P, Q” with Ax = b, or

• “inconsistent, u, P, Q” with uA = 0 and ub 6= 0.

Here, P = [i1, . . . , is] and Q = [j1, . . . , js] are such that AP and AQ have full row and
column rank s, respectively. The algorithm has the following properties:

1. n+m− 2 random choices from K are required.

2. If r is the rank of A, then with probability at least(
1− r

#K

)dlog2 ne+dlog2me
, (5.1)

FAIL is not returned and the output is identical to that of algorithm OracleSolver

supporting Theorem 1.
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3. The running time is bounded by

2r3 +O(r2(log n+ logm) + r(n+m))

and
2r3 +O(r2(log n+ logm) + n+m+ |AQ| log n+ |AP | logm)

field operations in K.

If #K is too small we can work over a small field extension of #K to ensure positive
probability of success. The following corollary is obtained from (5.1) by substituting r ≤
min(n,m) and using the fact that for any x > 0 and y ∈ Z>0 we have 1− xy ≤ (1− x)y.

Corollary 17. If
#K ≥ 2 min(n,m)(dlog2 ne+ dlog2me)

then the probability that algorithm RandomOracleSolve does not return FAIL is at least
1/2.

By Corollary 17, the degree of the field extension required to ensure a probability of
success at least 1/2 is bounded by O(log n + logm) in the worst case. If a field extension
is required, then the cost of constructing and using the sequence of oracles increase by a
multiplicative factor that is softly linear in log n+logm. However, the inverse computations
via rank one updates during each phase of the oracle solver are still performed over the
ground field and have overall cost bounded by 2r3 +O(r2) field operations. This gives the
following result, valid over any finite field.

Corollary 18. There exists a Las Vegas algorithm for problem LinSys that has running
time

2r3 + (r2 + n+m+ |AP |+ |AQ|)
1+o(1)

,

where P and Q are the indices of the subsets of at most r + 1 rows and r columns of A
that are examined by the algorithm.
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Chapter 6

Faster rank profiles

In the following theorem, let ImprovedRankProfile be identical to Algorithm 2 RandomRa-

nkProfile except with the call to the deterministic algorithm OracleSolve replaced with
a call to the faster algorithm RandomOracleSolve supporting Theorem 16.

The following theorem follows as a corollary of Theorems 6 and 16.

Theorem 19. Let K be a finite field. There exists a randomized algorithm ImprovedRankP-

rofile(A) that takes as input A ∈ Kn×m and returns as output s ∈ Z≥0 together with lists
P = [i1, . . . , is] and C = [j1, . . . , js] such that AP and AC have full row and column rank s,
respectively. The algorithm has the following properties:

1. n+ 2m− 2 random choices from K are required.

2. If r is the rank of A, then with probability at least(
1− 1

#K

)r (
1− r

#K

)dlog2 ne+dlog2me
,

P and C are the row and column rank profiles of A, respectively.

3. The running time is bounded by

2r3 +O(r2(log n+ logm) + nm)

and
2r3 +O(r2(log n+ logm) + n+m+ |A|+ |AC| log n+ |AP | logm)

field operations in K.
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The following two corollaries are very similar to Corollaries 17 and 18.

Corollary 20. If
#K ≥ 2 min(n,m)(1 + dlog2 ne+ dlog2me)

then the probability that ImprovedRankProfile returns the correct result is at least 1/2.

Corollary 21. There exists a Monte Carlo algorithm for problem RankProfiles that

has running time bounded by 2r3 + (r2 + n+m+ |A|)1+o(1).

30



Chapter 7

A Relaxed Algorithm for Online
Matrix Inversion

Throughout this chapter let A ∈ Kn×n and b ∈ Kn×1 be given. Let As denote the leading
s × s submatrix of A and bs ∈ Ks×1 be the vector containing the first s elements of b as
shown in the following augmented system.

[
A b

]
=

 As bs


Assume A has generic rank profile, that is, As is nonsingular for 1 ≤ s ≤ n. In this chapter
we consider the following problem.

• OnlineSystem: Let A ∈ Kn×n with generic rank profile and b ∈ Kn×1 be given.
Suppose the rows of the augmented system

[
A b

]
are given one at a time, from

first to last. As soon as rows 1, 2, . . . , s of
[
A b

]
are given, produce the subsystem

solution A−1s bs, for s = 1, 2, . . . , n.

Because A is assumed to have generic rank profile, Gaussian elimination without pivoting
produces a unique decomposition A−1 = Pn ·Pn−1 · · ·P1, where Ps = Rs ·Ls is the product
of a pair of structured matrices Rs and Ls, 1 ≤ s ≤ n. The matrices Rs and Ls will be
defined precisely in the next section. For now, consider the following example which shows
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the structure of matrices in the decomposition for n = 6.

A−1 =

R61 ∗
1 ∗
1 ∗
1 ∗
1∗∗

 ·
L6111
1
1∗∗∗∗∗1


︸ ︷︷ ︸

P6

·

R51 ∗
1 ∗
1 ∗
1∗∗

1

 ·
L5111
1∗∗∗∗1

1


︸ ︷︷ ︸

P5

· · ·

R1∗11
1
1
1

 ·
L1111
1
1
1


︸ ︷︷ ︸

P1

(7.1)

Moreover, PsPs−1 · · ·P1 = diag(A−1s , In−s) for 1 ≤ s ≤ n. Thus, computing the sequence

A−11 b1, A
−1
2 b2, A

−1
3 b3, . . . , A

−1
n bn (7.2)

can be accomplished by computing the sequence

P1b, P2P1b, P3P2P1b, . . . , Pn · · ·P3P2P1b. (7.3)

This motivates the definition of the following problem.

• OnlineInverse: Suppose the rows of an A ∈ Kn×n with generic rank profile are
given one at a time, from first to last. As soon as rows 1, 2, . . . , s of A are given, the
pair of matrices Ps = Rs · Ls should be produced, for s = 1, 2, . . . , n.

On the one hand, if the pairs of structured matrices P1, P2, . . . , Pn are known, the sequence
shown in (7.3) can be computed in O(n2) field operations. On the other hand, a lower
bound on the cost of solving problem OnlineInverse is Ω(n2) since this a lower bound
for the total size (number of field elements) to write down the sequence P1, P2, . . . , Pn. It
follows that any algorithm for problem OnlineInverse immediately gives an algorithm
for problem OnlineSystem that supports the same running time bound. For the rest of
this chapter, we consider algorithms to solve problem OnlineInverse.

7.1 Full inverse decomposition

For 1 ≤ s ≤ n, let

As =

[
As−1 us
vs ds

]
∈ Ks×s,
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where us ∈ K(s−1)×1, vs ∈ K1×(s−1), and ds ∈ K. Suppose we have computed a decomposi-
tion of A−1s−1 for some s > 0. Then Gaussian elimination produces a pair of s× s matrices
L̄s and R̄s such that

R̄s[
Is−1 −A−1s−1us

(ds − vsA−1s−1us)−1
] L̄s[

Is−1
−vs 1

] [
A−1s−1

1

]
︸ ︷︷ ︸

A−1s

As[
As−1 us
vs ds

]
=

Is[
Is−1

1

]
. (7.4)

The exact formula for A−1s is given by Lemma 2. However, the algorithms we describe in
this chapter do not compute A−1s explicitly at each stage, but rather keep it as the product
of pairs of structured matrices. For example, applying (7.4) for s = 1, 2, . . . , n gives the
following full decomposition for the inverse of A = An.

A−1n = Pn ·
[
A−1n−1

1

]
= Pn · Pn−1 ·

[
A−1n−2

I2

]
= · · · = Pn · Pn−1 · · ·P1,

where Ps ∈ Kn×n, 1 ≤ s ≤ n, is the product of two structured matrices:

Ps = Rs ·Ls =

[
R̄s

In−s

]
·
[
L̄s

In−s

]
=

 Is−1

In−s

 ·
 Is−1

1
In−s

 , (7.5)

with R̄s and L̄s as in (7.4). Thus Rs and Ls are the identity matrices, except for possibly
the column vector and row vector indicated by the rectangles in Rs and Ls, respectively.

Naturally, equation (7.4) gives an iterative approach to solve problem OnlineInverse.
Once the matrix×vector product A−1s−1us has been computed, the pair Ps = Rs · Ls can
be computed in a further O(s) field operations. Computing A−1s−1us is equivalent to pre-
multiplying the leading principal (s − 1) × (s − 1) submatrices of P1, P2, · · · , Ps−1 by us
sequentially at a cost of 4s2 + O(s) field operations. Overall, all Ps, 1 ≤ s ≤ n, can
be computed sequentially in 2n3 + O(n2) field operations. In the next 2 sections we show
how to incorporate matrix multiplication to solve problem OnlineInverse in overall time
O(nw).

7.2 Relaxed inverse decomposition

To store each A−1s explicitly as a dense s × s matrix at each stage is too expensive, but
the representation diag(A−1s , In−s) = Ps ·Ps−1 · · ·P1 as the product of s pairs of structured
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matrices is too lazy: both of these approaches lead to an algorithm with running time
Ω(n3). In this section, we present a relaxed inverse decomposition for A−1s such that,
at stage s, after the first s rows of A are given, A−1s is represented as the product of
HammingWeight(s) ≤ dlog se pairs of structured matrices, where HammingWeight(s) is
the number of 1s in the binary representation of s.

Lemma 22. (Rj · Lj) · (Rj−1 · Lj−1) · · · (Ri · Li) can be expressed as the product of two
structured matrices:

Rj∼i · Lj∼i =


Ii−1

· · ·
. . .

In−j

 ·

Ii−1

1
...

. . .

1
In−j

 , (7.6)

where the column dimension of the submatrix indicated by the rectangle in Rj∼i and the
row dimension of the submatrix indicated by the rectangle in Lj∼i are both j − i+ 1.

Proof. Consider the block case of (7.4):

R̄j∼i[
Is−1 −A−1s U

(D − V A−1s U)−1

] L̄j∼i[
Is−1
−V Ij−i+1

] [
A−1s−1

Ij−i+1

] As+j−i[
As−1 U
V D

]
=

Is+j−i[
Is−1

Ij−i+1

]
where U ∈ K(s−1)×(j−i+1), V ∈ K(j−i+1)×(s−1), and D ∈ K(j−i+1)×(j−i+1). By augmenting
R̄j∼i as diag(R̄j∼i, In−s−j+i) and L̄j∼i as diag(L̄j∼i, In−s−j+i) we get the two structured
matrices in (7.6). Thus we have

(Rj∼i Lj∼i) diag(As−1, In−s+1)A = In

and
(Rj LjRj−1 Lj−1 · · ·Ri Li) diag(As−1, In−s+1)A = In

The result follows by the uniqueness of the inverse.

Note that Lemma 22 does not hold for general matrices (R∗ · L∗) of the same shape
in (7.5). But it does hold in the case where the pairs (R∗ · L∗) are coming from Gaussian
elimination directly.

Definition 23. Let Pj∼i be the unevaluated product of the pair of matrices Rj∼i ·Lj∼i with
the shape as shown in (7.6). The size of Pj∼i is j−i+1, the number of pairs in the product.
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Note that when i = 1, Lj∼i = In and thus Pj∼i = Rj∼i is explicitly computed. We do
not give the exact formula for general Pj∼i, but we will give the formula for a special case
later. To have a basic idea we remark that the submatrix indicated by the rectangle in
Lj∼i is equal to −A[i,...,j]

[1...,i−1]. The following example gives the formula for a Pj∼i of size 2.

Example 24. Let P̄j and P̄j−1 be the leading j× j principal submatrix of Pj and Pj−1. Let

P̄j =

 Ij−2 a
1 b

c

 ·
 Ij−2

1
d e 1

 , P̄j−1 =

 Ij−2 f
g

1

 ·
 Ij−2

h 1
1


Let M =

[
d e

] [
f g

]T
. Then P̄j∼j−1 can be expressed as the product of two structured

matrices as follows:

P̄j∼j−1 = R̄j∼j−1 · L̄j∼j−1 =

 Ij−2 aM + f a
bM + g b
cM c

 Ij−2
h 1
d 1


From definition, diag(A−1s , In−s) = Ps ·Ps−1 · · ·P1 is the product of s pairs of structured

matrices of size 1. We now introduce a relaxed/lazy representation for diag(A−1s , In−s),
denoted by (As)

−1
L , that expresses A−1s as the product of at most log s pairs of structured

matrices. We first give a few examples of the relaxed representation before giving a precise
definition.

Example 25. The relaxed representation of A−1s for 1 ≤ s ≤ 8.

s (As)
−1
L

1 = (1)2 P1∼1
2 = (10)2 P2∼1
3 = (11)2 P3∼3 · P2∼1
4 = (100)2 P4∼1
5 = (101)2 P5∼5 · P4∼1
6 = (110)2 P6∼5 · P4∼1
7 = (111)2 P7∼7 · P6∼5 · P4∼1
8 = (1000)2 P8∼1

The relaxed inverse decomposition for s = 6, 7, 8 are shown below. Note that for each of
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these examples we assume n = s, to avoid having to augment with In−s.

(A6)
−1
L =

R6∼51 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗

 ·
L6∼51
1
1
1∗ ∗ ∗ ∗ 1∗ ∗ ∗ ∗ 1


︸ ︷︷ ︸

P6∼5

·

R4∼1∗ ∗ ∗ ∗ 1∗ ∗ ∗ ∗ 1∗ ∗ ∗ ∗ 1∗ ∗ ∗ ∗ 1
1
1

 ·
L4∼11 1 1

1
1
1


︸ ︷︷ ︸

P4∼1

(A7)
−1
L =

R71 ∗
1 ∗
1 ∗
1 ∗
11 ∗
1 1∗
1 ∗

 ·
L71111
1
1∗∗∗∗∗∗1


︸ ︷︷ ︸

P7

·

R6∼51 ∗∗
1 ∗∗
1 ∗∗
1∗∗
1∗∗
1∗∗
1 1

 ·
L6∼51111∗∗∗∗1∗∗∗∗ 1
1 1


︸ ︷︷ ︸

P6∼5

·

R4∼1∗∗∗∗1∗∗∗∗1∗∗∗∗1∗∗∗∗1
1
1

1 1

 ·
L4∼11111

1
1

1 1


︸ ︷︷ ︸

P4∼1

(A8)
−1
L =

R8∼1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 ·
L8∼1

1
1
1
1
1
1
1
1


︸ ︷︷ ︸

P8∼1

To understand the following formal definition of the relaxed inverse, consider the case
s = 7 and diag(A−17 , In−7). The full inverse decomposition is

diag(A−17 , In−7) = P7 · P6 · P5 · P4 · P3 · P2 · P1

while the relaxed/lazy representation is

diag(A−17 , In−7) = P7∼7 · P6∼5 · P4∼1.

The structure of the relaxed decomposition is determined as follows. The highest power
of 2 that divides 7 is 4, and thus in the relaxed representation the rightmost four pairs
P4 · P3 · P2 · P1 of size 1 are compressed into the single pair P4∼1 of size 4. Continuing, the
highest power of 2 that divides 7 − 4 is 2, so P6 · P5 is compressed to P6∼5. Finally, the
highest power of 2 that divides 7− 4− 2 is 1, so P7 = P7∼7 is left alone.

Definition 26. The relaxed/lazy representation of the inverse (Ak)
−1 is defined as

(Ak)
−1
L =

{
(Pk∼2m+1) · · · (P2i+2j∼2i+1) · (P2i∼1), if k is even;
(Pk) · (Pk−1∼2m+1) · · · (P2i+2j∼2i+1) · (P2i∼1), if k is odd.
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where i = blog2 kc, j = blog2(k−2i)c,. . ., until the smallest possible number m = blog2(k−
2i − 2j − · · · )c ≥ 1 is reached. The first pair of (Ak)

−1 is Pk∼2m+1 if k is even and Pk if k
is odd.

Note that when k is a power of two, we have i = log2 k and

(Ak)
−1
L = P2i∼1 = R2i∼1 · L2i∼1 = R2i∼1,

so A−1k is explicitly computed in this case. Otherwise, (Ak)
−1
L is represented as the product

of a sequence of pairs of structured matrices P∗∼∗. Observe that in Definition 26 we have
m < · · · < j < i. Thus the sizes of the product factors are strictly increasing from left to
right.

In the next section we will give algorithms for the online computation of the sequence
(A1)

−1
L , (A2)

−1
L , (A3)

−1
L , . . .. It turns out — and may already be clear from Example 25 —

that the construction of (As)
−1
L from (As−1)

−1
L and Ps∼s may require the combinations of

two adjacent (P∗∼∗) of equal size. In particular, we will need to compute the compression

Pj∼j−2m+1 = Pj∼j−m+1 · Pj−m∼j−2m+1, (7.7)

where both Pj∼j−m+1 and Pj−m∼j−2m+1 are of size m. Since this computation is important
in deriving the cost of the relaxed approach, we give the formula and derive the cost for
computing the left hand side of (7.7) given the two pairs on the right. For brevity, let
P2 = R2 · L2, P1 = R1 · L1 and P = R · L denotes the leading j × j principal submatrix of
Pj∼j−m+1, Pj−m∼j−2m+1 and Pj∼j−2m+1 respectively. (Note that we are “overloading” the
notation P2, R2, L2, ..., but only temporarily in this example.) Then (7.7) is the block case
of Example 24. We have

R2
Ij−m

R̄2

. . .

 ·
L2

Ij−m
1

L̄2
. . .

1


︸ ︷︷ ︸

P2

·

R1
Ij−2m

R̄1

. . .

Ii

 ·
L1

Ij−2m

L̄1
. . .

1
Ii


︸ ︷︷ ︸

P1

=

R
Ij−2m

R̄
. . .

 ·
L

Ij−2m
Ij−2m . . . 1

L̄
. . .

1


︸ ︷︷ ︸

P
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where
L̄ =

[
L̄1 (L̄2)[1,...,j−2m]

]T ∈ K2m×(j−2m) (7.8)

and R̄ ∈ Kj×2m can be computed by solving R = (R2L2R1L1)L
−1 to obtain

R̄ =
[
R̄2(L̄2R̄1) +

[
R̄1 0

]T
R̄2

]
(7.9)

Theorem 27. There exists a deterministic algorithm EqualSizeCompress that takes as
input the two pairs Pj∼j−m+1, Pj−m∼j−2m+1 ∈ Kn×n, both with size m, and returns as output
the single pair Pj∼j−2m+1 ∈ Kn×n of size 2m such that Pj∼j−2m+1 = Pj∼j−m+1 ·Pj−m∼j−2m+1.
The cost of the algorithm is O(nmω−1) field operations in K.

Proof. See (7.8) and (7.9) for the formula for computing the pair Pj∼j−2m+1. Computing L
is free since L̄ can be read off from L̄2 and L̄1 directly. The dominating cost of computing
R is to compute R̄2(L̄2R̄1), where R̄2 ∈ Kj×m, L̄2 ∈ Km×(j−m) and R̄1 ∈ K(j−m)×m. The
product of two m × m matrix can be computed in cmω field operations, for some fixed
constant c. Dividing R̄2, L̄2, and R̄1 into at most dj/me blocks of dimension bounded
by m ×m, L̄2R̄1 can be computed in dj/mecmω + O(mj) field operations and R̄2(L̄2R̄1)
takes another dj/mecmω +O(mj) field operations. The result now follows by noting that
j ≤ n.

7.3 A relaxed algorithm for online matrix inversion

The iterative approach to solve problem OnlineInverse has overall cost 2n3+O(n2) field
operations in K. We show in this section, how to incorporate matrix multiplication to solve
the problem OnlineInverse in O(nw) field operations in K. We adopt two ideas used in
relaxed [14] and online [12] algorithms.

The first idea is to relax, that is, use the relaxed representation (Ak)
−1
L for A−1k as

defined in Definition 26. The representation (Ak)
−1
L for k = 1, 2, . . . , n is constructed

in an incremental fashion. Let k > 0 and suppose (Ak−1)
−1
L and Pk are known. Since

(Ak)
−1 = Pk(Ak−1)

−1
L , the relaxed representation (Ak)

−1
L is computed by compressing the

pair Pk (of size one) and the first pair of (Ak−1)
−1
L into a single pair if they have equal

size, repeating if required. Algorithm 3 outlines the algorithm for computing (Ak)
−1
L from

(Ak−1)
−1
L and Pk.

Note that when k is odd, then by Definition 26 the first pair of (Ak−1)
−1
L has size

greater than one, so the while loop is never executed. For even values of k the while loop
is executed at least once, possibly as many as log k times.
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Algorithm 3 RelaxedRepresentation((Ak−1)
−1
L , Pk)

Require: (Ak−1)
−1
L , Pk ∈ Kn×n

Ensure: (Ak)
−1
L

1: P := Pk;
2: Pl := first pair in (Ak−1)

−1
L ;

3: while (size of P = size of Pl) do
4: P := EqualSizeCompress(P, Pl);
5: Remove Pl from (Ak−1)

−1
L ;

6: Pl := first pair of (Ak−1)
−1
L ;

7: end while
8: return P · (Ak−1)−1L ;

Example 28. The steps of the call to RelaxedRepresentation((A7)
−1
L , P8) to compute

the relaxed representation (A8)
−1
L are as follows.

(A8)
−1
L = P8 · (A7)

−1
L

= P8 · (P7 · P6∼5 · P4∼1)

= P8∼7 · P6∼5 · P4∼1 (7.10)

= P8∼5 · P4∼1 (7.11)

= P8∼1 (7.12)

Three compressions are required: the compression P8∼7 := EqualSizeCompress(P8∼8, P7∼7)
of size 1 to 2 in (7.10); the compression P8∼5 := EqualSizeCompress(P8∼7, P6∼5) of size
2 to 4 in (7.11); and the compression P8∼1 := EqualSizeCompress(P8∼5, P4∼1) of size 4
to 8 in (7.12).

The second idea is to anticipate computations. To make it clear that rows of A are given
one at a time, we use a work matrix B for the anticipated computations. B is initialized
to be the n×n zero matrix. At stage s > 0, row s of A is copied to row s of B. At stage s
the first s rows of the input matrix A are defined, and the (untransformed) input matrix
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can be decomposed as follows, where us is the first column of U .

A =

As−1 us U

vs ds

0

∈ Kn×n (7.13)

Recall that the dominant cost of computing the pair Ps = Rs ·Ls arises from computing the
matrix×vector product A−1s−1us as shown in (7.5). At stage s− 1, when (As−1)

−1
L has been

computed, we don’t apply A−1s−1 to the single column us of A, which would be sufficient to
compute the pair Ps at the next stage. Rather, we anticipate computations by applying the
first pair P of the lazy representation (As−1)

−1
L to m columns of the work matrix B, where

m is the size of P . This effectively incorporates matrix multiplication, and has the effect
that at the beginning of stage s we have B

[1,...,s−1]
[s] = (As−1)

−1us. Algorithm 4 outlines
the algorithm to compute Pk for a given k along with the anticipated computations. It
first checks whether Pk exists, and reports “FAIL” if not. Detection is simple: if dk −
vk(Ak−1)

−1uk = 0 then Pk does not exist.

Algorithm 4 ComputeP(A, (Ak−1)
−1
L , k)

Require: A ∈ Kn×n full rank, (Ak−1)
−1
L , k ∈ Z≥1

Ensure: Pk ∈ Kn×n

1: Copy row k of A to row k of work matrix B;
2: if (dk − vkB[1,...,k−1]

[k] = 0) then
3: return “FAIL”;
4: end if
5: Compute Pk := Rk · Lk using Equation (7.5);
6: if (k < n) then
7: (Ak)

−1
L := RelaxedRepresentation((Ak−1)

−1
L , Pk);

8: Let Ck := Pk∼∗ be the first element of (Ak)
−1
L and s be the size of Ck;

9: t := min(k + s, n);
10: B[k+1,...,t] := CkB[k+1,...,t];
11: end if ;
12: return Pk;
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Example 29. We consider the computations of the first four stages of the relaxed on-
line inverse update for A ∈ K8×8. The following shows the work matrix B with certain
submatrices highlighted.

1 2 3 4 5 6 7 8

0

1
2
3
4
5
6
7
8

At stage s = 0, B is initialized to be the 8×8 zero matrix. For 1 ≤ s ≤ 4, the computations
done at each stage are summarized below.

1. Copy row 1 of A to row 1 of B and compute P1 = R1 · L1.
Apply P1 to column 2 of B ( s area).

2. Copy row 2 of A to row 2 of B and compute P2 = R2 · L2.
Compress P2 · P1 = P2∼1.
Apply P2∼1 to columns 3, 4 of B ( s area).

3. Copy row 3 of A to row 3 of B and compute P3 = R3 · L3.
Apply P3 to column 4 of B ( s area).

4. Copy row 4 of A to row 4 of B and compute P4 = R4 · L4.
Compress P4 · P3 = P4∼3.
Compress P4∼3 · P2∼1 = P4∼1.
Apply P4∼1 to columns 5,6,7,8 of B ( s area).

At stages 2k = 1, 2, 4, . . . the explicit inverse has been computed since L2k∼1 = In and
R2k∼1 = diag(A−1

2k
, n− 2k). At the end of stage 3, though, we only have the relaxed repre-

sentation diag(A−13 , n− 3) = P3 · P2∼1.

The relaxed algorithm to solve problem OnlineInverse is thus to call Algorithm 4
ComputeP n times with input k = 1, 2, . . . , n, and the initial input (A0)

−1
L = In.
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Theorem 30. There exists a relaxed algorithm RelaxedInverse to solve problem On-
lineInverse in O(nω) field operations from K.

Proof. For simplicity, assume n is a power of two; otherwise, we can augment A as
diag(A, I∗). There are two parts of the cost: (1) computing Pk and anticipation; (2)
updating (Ak)

−1
L from (Ak−1)

−1
L and Pk. For cost (1), the dominate cost is to anticipate

computations (step 8 of Algorithm 4). At each stage k, step 8 costs O(k · sw−1) field oper-
ations from K, where s is the size of the first element of (Ak)

−1
L . From Definition 26, s is

the highest power of 2 dividing k. Note for k = n, no anticipation is needed. The sequence
of s for the first n− 1 stages are listed below.

(2ν2(i))1≤i≤n−1 = 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, · · · , 1, 2, 1

where ν2(i) is the exponent of the largest power of 2 dividing i [21]. Note the number 2i in
the sequence appears n/2i+1 times. For instance, 1 appears every other number, 2 appears
every four numbers,· · · . For k ≤ n, we obtain the following.

(logn)−2∑
i=0

n

2i+1

(
cn(2i)ω−1

)
=
cn2

2

(logn)−2∑
i=0

2i(ω−2)

=
cn2

2

(
1 + 2ω−2 + 4(ω−2) + 8(ω−2) + · · ·+ (

n

4
)ω−2

)
=
cn2

2

(
1− 2(ω−2)(logn−1)

1− 2ω−2

)
=
cn2

2

(
1− (n/2)ω−2

1− 2ω−2

)
=
cn2

2
O(nω−2)

= O(nω)

For cost (2), the number of compressions done at stage k is equal to the maximal c ∈ Z
such that 2c | k. Thus some stages are more costly than others. For example, when k is
odd, c = 0, and thus no compression is performed. When k is a power of 2, then there are
log k compressions required (see Figure 7.1, where compressions performed are highlighted
in dashed lines). We consider the overall cost for 1 ≤ k ≤ n, as shown in Figure 7.2. Nodes
in the inverse tree are computed in a bottom-up fashion. We label level l = 0, 1, . . . , log n
from leaf up to root level. For l > 0, nodes at level l can be computed using Theorem 27
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Figure 7.1: Examples of relaxed representation update
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Figure 7.2: Online inverse tree

with m = 2l−1. The number of nodes at level l is n/2l. Overall, the cost of constructing
the whole inverse tree is

logn∑
l=1

(
cn(2l−1)w−1

) n
2l

= O(nω)

The steps for achieving the result for this summation are skipped since it is similar to the
previous summation. The result follows by adding the cost of both parts.

Corollary 31. There exists a deterministic algorithm to solve problem OnlineSystem
in O(nω) field operations in K.
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Chapter 8

Application for RankProfiles

In this chapter we show how to use the algorithm RelaxedInverse supporting Theorem 30
to obtain a Monte Carlo algorithm for computing the row rank profile of an arbitrary
A ∈ Kn×m in time (rω + n+m+ |A|)1+o(1), where r is the rank of A.

The leading term 2r3 in the cost estimate of algorithm ImprovedRankProfile described
in Chapter 6 arises from the iterative nature of computing, for s = 1, 2, 3, . . ., the inverse
(APQ)−1 ∈ Ks×s. However, considering the two steps of the oracle solver presented in
Chapter 2, we can see that we do not need to compute (APQ)−1 explicitly at each stage.
In particular, recall that the purpose of step 1 is to update P by setting is to be the first
nonzero entry of b − AQ(APQ)−1bP . The main computation in step 1 (to allow use of a
linear independence oracle) is thus to compute the linear system solution (APQ)−1bP . Our
approach will be to use algorithm RelaxedInverse to compute the vectors (APQ)−1bP at
each stage via matrix multiplication. Now consider step 2. Recall that the purpose of step 2
is to update Q by setting js to be the first nonzero entry of A[is] − A[is]

Q (APQ)−1AP . Our
approach will be to avoid the need to find js in step 2 by utilizing a Toeplitz preconditioner
to ensure with high probability that js can simply be set to s.

Let R denotes the row rank profile of a matrix A ∈ Kn×m. In Section 8.1 we first
consider the special case of an input matrix with full column rank and such that AR has
generic rank profile. In Section 8.2 we generalize to the case of an input matrix with full
column rank but for which AR does not necessarily have generic rank profile. Finally, in
Section 8.3 we give an algorithm for the general case of an input matrix with unknown
rank.
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8.1 A has full column rank and AR has generic rank

profile

We first consider the special case when A ∈ Kn×m has full column rank m and AR has
generic rank profile, that is, all the leading principal submatrices of AR are nonsingular.
Consider stage s of algorithm ImprovedRankProfile supporting Theorem 19. If, after
the first step, P := [i1, i2, . . . , is] has been correctly determined to be the first s entries
of R, then we can avoid any computation in step 2 by simply setting js = s. By Corol-
lary 31, the vectors (APQ)−1bP in step 1 for stages s = 1, 2, . . . ,m can be computed in
overall time O(mω). In the following theorem, let ModifiedRankProfile be identical to
ImprovedRankProfile except with the modifications just described.

Theorem 32. Let K be a finite field. There exists a randomized algorithm ModifiedRankP-

rofile that takes as input A ∈ Kn×m of rank m and AR has generic rank profile, where R
is the row rank profile of A, and returns as output s ∈ Z≥0 together with list P = [i1, . . . , is]
such that AP has full row rank s. The algorithm has the following properties.

1. n+m− 1 random choices from K are required.

2. With probability at least (
1− 1

#K

)m(
1− m

#K

)dlog2 ne
,

P is equal to the row rank profile R of A.

3. The running time is bounded by (mω + |A|)1+o(1) field operations in K.

Proof. Compared to Theorem 19, there are fewer random choices because we only use
the linear independence oracle on rows of A. The probability of success is slightly better
accordingly. The cost estimate follows as a corollary of Theorem 19 and Corollary 31.

8.2 A has full column rank

We now consider the case when A ∈ Kn×m has full column rank m, but AR does not
necessarily have generic rank profile.
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Lemma 33. [16, Theorem 2]. Let K be a finite field. If v2, v3, . . . , vm ∈ K are chosen
uniformly and randomly, then the lower triangular Toeplitz matrix

L =


1
v2 1
v3 v2 1
...

. . . . . .

vm vm−1 · · · v2 1

 ∈ Km×m

has the property that ARL has generic rank profile with probability at least 1 − m(m +
1)/(2#K).

We remark that compared to [16, Theorem 2], the above lemma only uses one Toeplitz
preconditioner L because the input matrix A has full column rank; this accounts for the
extra factor 2 in the denominator of the probability estimate compared to [16, Theorem 2].

Lemma 34. AL has the same row rank profile as the original matrix A.

Proof. Suppose U ∈ Km×m is a nonsingular matrix that transforms A into reduced column
echelon form C: AU = C. Then (AL)(L−1U) = C is also in reduced column echelon form,
where L−1U is a nonsingular transformation. The result follows by the uniqueness of the
reduced column echelon form.

From Lemma 34, the list P returned from ModifiedRankProfile(AL) will be the
row rank profile of the original matrix A with high probability. However, computing the
product AL directly is expensive, and exceeds the running time bound of Theorem 32.
Alternatively, we now describe a modification of algorithm ModfiedRankProfile, called
AdvancedRankProfile, that takes as input A·L unevaluated, as a product of two matrices,
and only evaluate parts of the product when necessary. We first observe that

(AL)P = APL

and
(AL)Q = ALQ.

Thus the computation of (2.1) for finding the first nonzero entry of the column vector
b− AQ · (APQ)−1 bP can be recast as follows.

b− (AL)Q · ((AL)PQ)−1bP = b− A · LQ
(
((AL)PQ)−1bP

)
(8.1)
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where b = A(Lw) and w ∈ Km×1 is chosen uniformly and randomly. Using the expres-
sion on the right hand side of (8.1) allows us to build a linear independence oracle on
the rows of A instead of (AL)Q. Moreover, the linear independence oracle is built at
once at the beginning instead of incrementally, which will not affect the overall cost of
constructing the oracle since A has full column rank. The remaining computation to con-
sider in (8.1) is to compute LQ

(
((AL)PQ)−1bP

)
. Once the vector ((AL)PQ)−1bP has been

computed, computing the product LQ
(
((AL)PQ)−1bP

)
costs M(m) field operations, where

M(m) = O(m logm log logm) [1] is the cost of multiplication of polynomials with degree
m. There are m stages in total. Overall, having the input A · L unevaluated yields an

additional cost mM(m) = (m2)
1+o(1)

field operations to find the first nonzero entry in (8.1)
compared to Theorem 32, which is within the cost bound of Theorem 32.

The vector ((AL)PQ)−1bP is updated using the relaxed approach as described in the
previous chapter. At stage s, once the next nonzero row index is of (8.1) has been chosen,
the corresponding row (AL)[is] is computed and copied to the work matrix B. Computing
(AL)[is] = A[is]L for 1 ≤ s ≤ m also has overall cost mM(m), and thus is within the cost
bound of Theorem 32. We obtain the following result.

Theorem 35. Let K be a finite field. There exists a randomized algorithm AdvancedRankP-

rofile that takes as input A ∈ Kn×m of full column rank m and returns as output s ∈ Z≥0
together with list P = [i1, . . . , is] such that AP has full row rank s. The algorithm has the
following properties.

1. n+ 2m− 2 random choices from K are required.

2. With probability at least(
1− 1

#K

)m(
1− m

#K

)dlog2 ne(
1− m(m+ 1)

2#K

)
, (8.2)

P is the row rank profile of A.

3. The running time is bounded by (mω + |A|)1+o(1) field operations in K.

Proof. Compared to Theorem 32, there are m − 1 more random choices coming from the
Toeplitz preconditioner (Lemma 33). The probability of success is slightly worse accord-
ingly. The running time has been addressed as discussed above.

If #K is too small we can work over a small field extension of #K to ensure positive
probability of success.
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Corollary 36. If

#K ≥ 10mmax

(
1

2
(m+ 1), dlog2 ne+ 1

)
then the probability that algorithm AdvancedRankProfile does not return FAIL is at least
3/4.

Proof. Using the fact that for any x > 0 and y ∈ Z>0 we have 1 − xy ≤ (1 − x)y, (8.2)
≥ 3/4 can be simplified as(

1− m(dlog2 ne+ 1)

#K

)
︸ ︷︷ ︸

(1)

(
1− m(m+ 1)

2#K

)
︸ ︷︷ ︸

(2)

≥ 3

4
.

The result follows by taking (1) ≥
√

3/2, (2) ≥
√

3/2, and (1−
√

3/2) > 0.1.

If a field extension is required, then the degree of the field extension is the minimal d
such that (

1− m(dlog2 ne+ 1)

(#K)d

)(
1− m(m+ 1)

2(#K)d

)
≥ 3

4
.

By Corollary 36, d is bounded by O(log log n+ logm) in the worst case to ensure a proba-
bility of success at least 3/4. The additional cost of working over an extension field increase
by a multiplicative factor that is softly linear in log log n+ logm. This gives the following
result, valid over any finite field.

Corollary 37. There exists a Monte Carlo algorithm that computes the row rank profile
of a full column rank matrix in time (mω + |A|)1+o(1).

8.3 Arbitrary A with unknown rank

Now consider the general case for the input matrix A ∈ Kn×m of (unknown) rank r. To
compute the row rank profile of A, we use the following two randomized algorithms.

• The Monte Carlo rank algorithm in [4, Theorem 2.11] to find a subset of s ≤ r

linearly independent columns of A in time (rω + |A|)1+o(1). The algorithm should
return s = r with probability at least 3/4. Provided r = s, the column space of the
resulting matrix is equal to that of A so they must have the same row rank profile.
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• The Monte Carlo algorithm supporting Corollary 36 and 37 with probability of cor-
rectness at least 3/4.

Since 1/4 + 1/4 = 1/2, the probability of failure for using both algorithms is at most
1/2. For the column rank profile, we can simply apply the same algorithm to the transpose
of A. This gives the following result.

Corollary 38. There exists a Monte Carlo algorithm for problem RankProfiles that
has running time bounded by (rω + |A|)1+o(1).
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Chapter 9

Conclusions and future work

We have given a Las Vegas algorithm for LinSys that has running time

2r3 + (r2 + n+m+ |R|+ |C|)1+o(1),

where |R| and |C| are the number of nonzero entries in the rows and columns, respectively,
that are examined. An open problem is to reduce the 2r3 term in this cost estimate by
incorporating fast matrix multiplication.

We also give Monte Carlo algorithms for RankProfiles that have running times

2r3 + (r2 + n+m+ |A|)1+o(1) and (rω + n+m+ |A|)1+o(1), where |A| is an upper bound
on the number of nonzero entries in A. The latter cost estimate is achieved by incorpo-
rating a relaxed approach for online inverse update. It would be interesting to find other
applications of our algorithm RelaxedInverse.

For convenience, we have assumed that K is a finite field, which allowed us to choose
elements uniformly and randomly from K, but it should not be difficult to extend algorithms
RandomOracleSolve and ImprovedLinSys to work over any field, for example by choosing
random elements from a sufficiently large subset of K.
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