
Live API Documentation

by

Siddharth Subramanian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Siddharth Subramanian 2014

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

Note that some of the content in this thesis are taken from two of my previous published
papers where I am the first author [1, 2].

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

In Chapter 1:

Contributor Contributions

Subramanian, S. Manuscript writing
Inozemtseva, L. Manuscript editing

Holmes, R. Manuscript editing and Figure 1.1

iii

Abstract

Application Programming Interfaces (APIs) provide powerful abstraction mechanisms
that enable complex functionality to be used by client programs. However, this abstraction
does not come for free: understanding how to use an API can be difficult. While API docu-
mentation can help, it is often insufficient on its own. Online sites like Stack Overflow and
Github Gists have grown to fill the gap between traditional API documentation and more
example-based resources. Unfortunately, these two important classes of documentation are
independent.

This thesis describes an iterative, deductive method of linking source code examples
to API documentation. We also present an implementation of this method, called Baker,
that is highly precise (0.97) and supports both Java and JavaScript. Baker can be used to
enhance traditional API documentation with up-to-date source code examples; it can also
be used to incorporate links to the API documentation into the code snippets that use the
API.

iv

Acknowledgements

I would like to thank my supervisor Reid Holmes for his support and guidance over the last
two years. Our regular meetings not only gave me insights on conducting good research
but also kept me on my toes and ensured that I completed my work on time. I would also
like to thank Laura Inozemtseva for having worked with me on the two ICSE publications.
By working with her, I learned a lot about good academic writing practices.

I would like to thank my readers, Ondřej Lhoták and Michael Godfrey for their valuable
comments and suggestions which helped improve this thesis.

Finally, I would like to thanks MITACS for their generous financial support which has
been of immense help during my time here at Waterloo.

v

Dedication

I dedicate this thesis to my parents. It is their love and encouragement that keeps me
going.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivating Scenario . 4

1.2 Benefits of Recovering Traceability Links 5

1.3 Challenges . 6

1.4 Contributions . 7

1.5 Outline . 8

2 Background and Related Work 9

2.1 Example Recommendation Systems . 10

2.2 Traceability Link Recovery . 12

2.3 Stack Overflow as a Data Source . 13

3 Methodology 15

3.1 The Need for an Oracle . 15

3.2 Deductive Linking Technique . 16

3.3 Examples . 19

3.3.1 Java Example . 19

3.3.2 JavaScript Example . 22

vii

4 Baker: Deductive Linking System 24

4.1 Snippet Extractor . 24

4.2 Oracle Generator . 26

4.2.1 Java Oracle . 27

4.2.2 JavaScript Oracle . 29

4.2.3 Naming Ambiguities . 30

4.3 Snippet Parser . 31

4.3.1 Java Parser . 32

4.3.2 JavaScript Parser . 32

4.4 Example Database . 32

4.5 Enabling Live Documentation . 32

5 Results and Evaluation 36

5.1 Linker Accuracy . 36

5.2 Example Diversity . 38

5.3 Quantifying High-Cardinality Matches . 40

6 Discussion 42

7 Threats to Validity 44

8 Future Work 45

9 Conclusion 47

APPENDICES 48

A Ambiguous Snippets 49

A.1 Missing Statements . 49

A.2 Use of Ellipses . 50

viii

B Naming Ambiguities 51

References 52

ix

List of Tables

4.1 Distribution of code snippets in posts tagged Java and JavaScript. 26

4.2 Analysis of naming ambiguities in the Java oracle. 31

5.1 Baker’s overall Java precision (0.98) and recall (0.83). Only exact matches
(cardinality = 1) were considered. 37

5.2 Baker’s overall JavaScript precision (0.97) and recall (0.96). Only exact
matches (cardinality = 1) were considered. 38

5.3 Number of matched elements from 4,000 Java code snippets extracted from
Stack Overflow and Github. The types and method cells are split (total no.
of matches / unique no. of elements). 39

5.4 Number of matched elements from 1,000 JavaScript code snippets extracted
from Stack Overflow and Github. The object and properties cells are split
(total no. of matches / unique no. of elements). 39

5.5 Example of an imprecise Baker match. The top row represents the correct
answer. 41

B.1 Naming collisions among the 10 most-used Android methods. 51

x

List of Figures

1.1 A mockup of what could be achieved with an effective traceability linking
strategy across a number of information sources. 3

1.2 A Java code snippet representing a Java API (GWT) usage. 4

1.3 A JavaScript code snippet containing Cordova, JQuery and JavaScript DOM
API usage. 5

4.1 Baker’s architecture depicting the Snippet Extractor, Oracle Generator and
Snippet Parser modules. 25

4.2 Frequency vs Size of code snippets in Stack Overflow posts tagged Java or
JavaScript (> 3 LOC) . 27

4.3 Template followed by the graph oracle. 28

4.4 A snippet from the source code of Backbone.js 29

4.5 The JSON output generated by Baker for the Java code snippet in Figure 1.2. 33

4.6 Baker-augmented Stack Overflow post. Note that the Baker browser exten-
sion automatically augmented the Stack Overflow post without any inter-
vention from the teams maintaining Stack Overflow, Github, or the Android
documentation. 34

4.7 The Baker browser extension automatically injects a list of relevant Stack
Overflow posts into the official Android API documentation. These links
dynamically update without any intervention from the documentation team. 35

5.1 A histogram of the cardinality values obtained when the tool was run on
the 4,000 code snippets described in Table 5.3. 40

A.1 Stack Overflow PostID: 1916391 . 49

xi

A.2 Stack Overflow PostID: 6272964 . 50

xii

Chapter 1

Introduction

Software reuse is a technique that is widely employed to reduce the effort required to build
new systems [3]. Utilizing components of existing software to build new systems greatly
expedites the software development process. These reusable software components are typ-
ically bundled into software libraries or frameworks, and are exposed through Application
Programming Interfaces (API). APIs are powerful abstraction mechanisms that provide ac-
cess to complex functionality, often involving low-level system calls through simple classes
and methods. They allow developers to use sophisticated functions without having to
modify or understand the underlying implementation details. By supporting abstraction,
APIs also make client programs easier to understand and maintain. Thus, APIs play an
integral role in the software development process.

Though APIs facilitate software development tasks, they are often complex and hard to
learn [4]. APIs may contain hundreds of elements (classes, fields, methods and interfaces),
and the dependencies between these elements can sometimes be overwhelming for a devel-
oper to comprehend [5]. Hence, to assist developers in learning new APIs, API authors
provide documentation that describes the behavior of various API elements. Occasionally,
additional resources like reference manuals and support channels are also provided. These
resources play a vital role in determining the usability of libraries and frameworks [6].

However, creating and maintaining these resources requires considerable effort. Docu-
mentation often fails to keep up with evolving software, and this renders the documentation
obsolete and untrustworthy [7, 8]. API learnability is further exacerbated by the lack of
usage examples in the documentation [4]. Although other resources like support channels
(e.g., mailing lists) try to address these issues, they are disconnected from the API and
the corresponding documentation due to their unstructured and informal nature [9, 10].

1

For example, there is no cross-referencing between a library’s mailing list threads and the
API elements referenced in them. This loose coupling makes it difficult for a developer
learning an API to identify relevant mailing list threads. Additionally, although documen-
tation is common, not all libraries provide additional resources like support channels. The
difficulties associated with learning APIs and the inadequacy of various learning resources
in addressing them, increase the overhead associated with integrating a new API into an
existing project.

This division between the benefits offered by APIs and the shortcomings of conventional
learning resources has led developers to look for better resources to learn from. Web-based
resources like discussion forums and blogs that discuss software development have grown
to bridge this gap [11]. Developers are increasingly starting to use these resources to find
solutions to their API learning problems [12]. Stack Overflow 1 is one such discussion
forum that is highly popular among developers and rich in insightful discussions [13]. Its
discussions cover not only a large number of libraries and frameworks, but also a wide
range of APIs within these libraries and frameworks [13]. A large volume of these posts
are accompanied by code snippets that illustrate API usage [13, 2]. Additionally, the
high quality of posts is maintained through a strict set of community guidelines that
favor factual and informative answers [14]. By overcoming many of the shortcomings of
conventional API documentation, Stack Overflow has turned into a worthy extension to
API documentation, if not a replacement.

Effectively harnessing Stack Overflow to improve API learnability requires precise iden-
tification of API elements referenced in posts. Due to frequent naming collisions among
source code identifiers, this is a difficult task. However, every language provides a mech-
anism to reference external API, be it through namespaces, packages or global objects
that have specific names. This allows every API element to be uniquely identified by its
Fully Qualified Name (FQN), which is the name of the identifier prefixed by the name of
its package or namespace. The use of FQNs avoids naming collisions among identifiers
and allows distinct source code elements to share the same short identifier names. For
example, though the Android library has 32 different methods named onCreate belonging
to 15 different packages, each of these methods can be uniquely identified by their FQNs
(e.g., android.app.Application.onCreate(), android.content.ContentProvider.on-
Create()) . Hence, mapping source code elements to their respective API documentation
requires identification of the FQNs of the API elements they reference.

In fact, other online resources including the element’s source code, bug reports and code
review, can also be tied together using the FQN [15]. Generating these traceability links

1 http://stackoverflow.com

2

http://stackoverflow.com

to various related resources satisfies the developer’s information needs to a large extent
and helps in thorough understanding of the API. Figure 1.1 depicts the different kinds of
resources that can be linked together using the FQN of an API. In this thesis, we focus on
mapping Stack Overflow posts to their respective API documentation.

Figure 1.1: A mockup of what could be achieved with an effective traceability linking
strategy across a number of information sources.

However, identification of FQNs of elements in plain text resources like Stack Overflow
is difficult. The primary challenge involved is the inherent ambiguity of natural language
text. Previous techniques that have tried to identify source code elements in non-code
resources [16, 17, 18, 10] have limitations. For example, some techniques expect the target
library to be specified beforehand and all other external library references are ignored [18].
Some techniques only provide partially qualified API elements [10], which are not useful
to cross-reference API documentation with API usage.

Fortunately, web-based learning resources contain high quality code snippets that sup-
port discussions [13]. In our preliminary study [2], we found that the structural information
in these code snippets can be used to identify API elements being referenced in them. This
information can, in turn, help us cross-reference the API elements to relevant discussions
and examples on the web and vice-versa, thereby enabling live documentation.

This thesis proposes a deductive linking technique that leverages structural information
to uniquely identify fine-grained API type and method references in incomplete snippets
of code through static program analysis, and map them to their respective API documen-
tation. We demonstrate the generality of this approach by providing implementations for
both typed (Java) and dynamic (JavaScript) languages through a tool called Baker. We

3

also evaluate the ability of Baker to cross-reference code elements contained in snippets ex-
tracted from Stack Overflow to the corresponding API documentation over five widely-used
Java libraries and four JavaScript libraries.

1.1 Motivating Scenario

Consider the Java code snippet shown in Figure 1.2. This snippet (pertaining to a library
called GWT) was posted to Stack Overflow to assist a developer who did not understand
how to manipulate the state of History objects. The figure contains a number of elements
in bold characters. If we can identify what API types and methods are being referenced
by these elements, we can automatically augment the HTML version of the official API
documentation for History by dynamically injecting the code example into the web page.
We can also inject the links to the official API documentation pages into the Stack Overflow
post. These two additions to the API documentation would make it easier for developers
to learn how to use this class.

1 public FirstPanel() {
2 History.addHistoryListener(this);
3 String token = History.getToken();
4 if (token.length() == 0) {
5 History.newItem(INIT_STATE);
6 } else {
7 History.fireCurrentHistoryState();
8 }
9 .. rest of code

10 }

Figure 1.2: A Java code snippet representing a Java API (GWT) usage.

Next, consider the JavaScript snippet in Figure 1.3, where a developer is trying to
make a web application that can take a photo and inject it into an element in an HTML
document. This example interacts with the JavaScript DOM (getElementById), takes a
photo using the Cordova project (getPicture), and uses jQuery to detect when the the
photo should be taken ($ and on). For each of these method references, identifying the right
API can help in cross-referencing this code with the corresponding API documentation,
thereby improving API learnability.

4

1 $("#addphoto").on(’click’,
2 function() { useGetPicture();}
3);
4 function useGetPicture() {
5 var cameraOptions = { ... };
6 navigator.camera.getPicture(onCameraSuccess,
7 onCameraError, cameraOptions);
8 }
9 function onCameraSuccess(imageData) {

10 var image = document.getElementById("..");
11 image.src = "data:image/jpeg" + imageData;
12 }
13 function onCameraError(message) {
14 alert("Failed: " + message);
15 }

Figure 1.3: A JavaScript code snippet containing Cordova, JQuery and JavaScript DOM
API usage.

The code snippets in Figures 1.2 and 1.3 were both submitted as the correct solution
to problems developers posted on Stack Overflow. Since Stack Overflow posts are ranked,
and accepted answers are known to have solved a real problem, Stack Overflow is a good
source of high quality code snippets that demonstrate the correct usage of many APIs.
Increasing the integration between these examples and the official API documentation will
make documentation maintenance easier and increase the visibility and accessibility of the
official API documentation within source code examples.

1.2 Benefits of Recovering Traceability Links

Enabling cross-referencing between API documentation and relevant online resources like
Stack Overflow has a number of advantages, including:

• Better API Understanding
Stack Overflow posts have proven to be highly effective at answering framework (e.g.,
jQuery, ruby-on-rails) and environment (e.g., Android, iOS) related questions [19].
Developers learning a new API can utilize these resources to gain a thorough under-
standing of how various elements in the API interact with each other. The related
discussion can provide better contextual information about what the code is trying
to achieve, in contrast to code search engines (CSE), which just provide example
snippets of code that use the API.

5

• Easier Documentation Maintenance
Since content in web-based resources like Stack Overflow is constantly on the rise,
enabling this kind of coupling provides automatic API documentation. New dis-
cussions are mapped to their respective API documentation as and when they are
posted. Moreover, APIs that are frequently used in practice are documented better
on Stack Overflow than ones that are used less often [13]. Thus, these discussions
and relevant code snippets serve as effective learning resources for developers, and
can easily be augmented with existing documentation.

• Enhanced Code Reuse
A majority of web-based resources contain code snippets [11]. These code snippets
are of high quality, since they are tested and constantly improved through discussions.
In fact, websites like Stack Overflow allows users to test and choose the answer that
best solves the problem. A large volume of these accepted answers contain code
snippets [2]. Since they are succinct and accurate, they can be readily reused in
client code.

1.3 Challenges

Our technique tries to identify and map API references in source code snippets to their
FQNs. Identifying such fine grained API references in incomplete code snippets requires
the ability to parse these code snippets. Since code snippets are typically incomplete, and
hence ambiguous, parsing them is hard. Of the four types of ambiguities identified by
Dagenais and Robillard in their study on identifying code elements in plain-text [18], two
are relevant to our task of parsing code snippets. These are Declaration Ambiguity and
External Reference Ambiguity.

• Declaration Ambiguity
Code snippets are inherently incomplete; they contain just the amount of information
required for a human reader to comprehend the code. For example, code statements
are generally not enclosed within methods or classes, declaration statements are
omitted, and classes are unqualified (missing package information). Unfortunately,
multiple API elements, often belonging to different libraries, share the same name.
This makes it difficult to precisely identify the elements being referenced in a piece
of code. Analysis is further hampered by the frequent use of syntactically incorrect
constructs like ‘...’ to elide functionality.

6

• External Reference Ambiguity
References to types and methods belonging to JDK (Java Standard Library) and
other external libraries is common. Previous studies have overcome this by ignoring
references to external elements. However, these could be valuable examples that
depict API usage for the external library and cannot be outrightly ignored.

Unlike previous approaches, our technique handles these ambiguities through a reduced
dependency on the parser and through the use of an oracle.

Since code snippets are syntactically incomplete, generating a proper Abstract Syntax
Tree (AST) for these snippets is not possible. As a solution, we modify every code snippet
appropriately so that the parser can at least generate an incomplete AST. While traversing
this AST, the only information we extract at every node is the node type (e.g., Method
Invocation node). Maintaining this minimal dependency on the parser allows us to deal
with ambiguous code snippets.

The oracle, on the other hand, is a large database containing information about APIs
belonging to various libraries and frameworks. When Baker encounters an ambiguous code
element, such as the History class in Figure 1.2, it uses the oracle to identify the possible
types of the code element. In this case, there are 58 History classes in the oracle, but by
using information from other parts of the code snippet, we can identify which of the 58 is
the correct one.

More information about ambiguous code snippets we encountered on Stack Overflow
during this study is presented in Appendix A. Chapters 3 and 4 discuss the need for an
oracle, its design and its contents. Additionally, a quantitative study of naming ambiguities
among various libraries in the oracle is presented in Chapter 4.

1.4 Contributions

The contributions of this thesis are as follows:

• A quantitative analysis of code snippets in Stack Overflow posts.

• A constraint-based, iterative approach to deduce the fully qualified names of code
elements in source code snippets. This approach works with both statically and
dynamically typed languages.

7

• A prototype tool called Baker that implements this approach and uses the results to
automatically create bidirectional links between API documentation and source code
examples by marking up HTML using a web browser extension.

1.5 Outline

Chapter 2 discusses existing work in the area of improving API learnability. We then
present our deductive linking technique in Chapter 3. Chapter 4 describes the implemen-
tation of the deductive linking technique for Java and JavaScript in a tool called Baker.
Chapter 5 then presents our evaluation of Baker. This is followed by concluding remarks
with some related discussion and future work.

8

Chapter 2

Background and Related Work

Software engineering researchers have long recognized the difficulties associated with learn-
ing APIs and the shortcomings of API documentation in addressing them. Consequently,
a number of approaches have been proposed to improve documentation. In one of the
earliest documented studies in this field [20], McLellan et al. advocated for the practice
of usability testing of APIs to identify their flaws and make appropriate changes to their
design and documentation. Researchers have also called for API design that ensures that
the API is self-documenting [6]. Code that uses such self-documenting API can easily be
read and written without having to refer to the documentation. Nevertheless, fairly recent
studies on API usability have found that APIs are still hard to use and that documentation
is still lacking [4].

Lately, researchers have started to investigate techniques that support existing docu-
mentation by leveraging information from related resources like source code repositories
and mailing lists. By combining multiple information sources, these techniques provide de-
velopers with a comprehensive view of the API. Previous work in this field can be broadly
classified into two categories. The first category contains techniques that extract examples
relevant to a developer from code-based resources like source code repositories (Exam-
ple Recommendation Systems), while the second contains techniques that identify API
references in plain-text resources like mailing lists and link them to their respective API
elements (Traceability Link Recovery). Both of these categories are challenging in their
own right. While the former deals with challenges in estimating an example’s relevance to
the developer’s context, the latter has to overcome various natural language ambiguities
to identify API references in plain text. Our approach lies at the intersection of these two
categories. By mapping Stack Overflow posts to their respective API documentation, we

9

recover traceability links between these two resources which are otherwise independent,
but, we do so by analyzing source code snippets in these posts.

The following sections describes various tools and techniques belonging to the two
categories and their relation to our approach. This is followed by a discussion on the
potential of Stack Overflow as a source for high quality snippets and discussions.

2.1 Example Recommendation Systems

Example Recommendation Systems are tools that assist developers in using new libraries
by recommending relevant reusable code snippets. These snippets are extracted from soft-
ware projects that use the library, typically belonging to source code repositories. Source
code repositories are archives of software projects that cover a wide range of libraries and
frameworks. By recommending relevant code examples, these systems make it easier for a
developer to use complex libraries and frameworks.

A number of different example recommendation systems have been proposed in the past.
Holmes and Murphy proposed Strathcona [21], an Eclipse plugin that helps developers
learn a new framework by recommending contextually relevant code examples. Strathcona
extracts structural information like the container class, parent class, implemented interfaces
and method calls from the developer’s code by parsing its AST. Then, using a set of
heuristics, it matches the extracted contextual information against a collection of projects
that use the corresponding framework, and identifies and recommends the most relevant
examples to the developer. However, Strathcona requires that all projects in the example
database use the target library or framework. In other words, it requires prior knowledge
about the possible libraries that the code might use. This is a difficult requirement to
satisfy. Additionally, maintaining an up to date example database which is specific to a
framework is challenging.

Prospector [22], proposed by Mandelin et al., is a tool that recommends reusable jun-
gloids. A jungloid is the sequence of object creations and method calls required to obtain
an object of type τ2 from an object of type τ1. In their study, they identified that a majority
of API usage obstacles involved difficulties in finding the jungloid required for a task. As
a solution, they use signatures of the library’s API to construct a directed acyclic graph
with API types connected by API methods. The appropriate jungloids for a query (τ1, τ2)
are paths in the graph from τ1 to τ2. Parseweb [23] is another tool that solves the problem
of synthesizing task-specific jungloids. Parseweb retrieves source code files through a code
search engine (CSE) and mines them for relevant jungloids. It identifies method invocation

10

sequences required to convert type τ1 to τ2 using the data flow graph of the source code
files. This dependency on real-world code, as opposed to API signatures, helps Parseweb
produce more accurate results than Prospector. However, the task of finding jungloids is
only one sub-problem of many API usability issues. A better solution would be to identify
code examples that illustrate a variety of different API usages patterns.

To address this issue, Zhong et al. proposed MAPO [24], which identifies frequent
patterns of API usage in code. MAPO leverages existing CSEs to find relevant source
code files and then uses data mining techniques to identify frequently used sequences of
methods and classes, thereby helping developers in understanding how APIs are used.
However, a major drawback with such tools is their tight dependency with CSEs. Most
CSEs treat code as plain text. Hence, improperly framed queries return irrelevant results
due to naming collisions among API elements belonging to various libraries.

More recently, McMillan et al. proposed Portfolio [25] that tried to overcome many of
the shortcomings of these previous approaches. Much like a textual search engine, Portfo-
lio is a search engine that retrieves relevant functions based on user queries and provides
visualizations to illustrate their dependencies with other functions. It uses Natural Lan-
guage Processing (NLP) techniques to identify relevant source code files from a database
of open source projects and employs a combination of PageRank and spreading activation
network (SAN) algorithms to model user behavior and to identify functions that best solve
the developer’s programming task. Portfolio is robust in handling searches since it adopts
techniques that have proven to be successful in plain text search. Nevertheless, this re-
liance on text-based techniques rather than the structural information in code does not
allow identification of fine-grained API references.

Although example recommendation systems have been more or less successful at iden-
tifying contextually relevant examples, the techniques they use identify only snippets that
are structurally similar to the developer’s context. Their goal is not to precisely identify
API references in code. However, to link documentation to code examples, we require iden-
tification of fine-grained API references in code. Additionally, most of these tools require
prior knowledge about the libraries or frameworks being used. This dependency restricts
these tools from leveraging arbitrary software projects. In techniques where this knowl-
edge is not required, the tools rely on text-based approaches. Such tools cannot identify
fine-grained references (FQNs). For example, consider the snippet of Java code in Fig-
ure 1.2 that uses methods from the History class of the GWT library. Unless it is known
beforehand that this snippet refers to API from the GWT library, these tools cannot dis-
ambiguate the History class to com.google.gwt.user.client.History from among the
58 different History classes belonging to various Java libraries and frameworks. Our tech-
nique overcomes these obstacles by using an oracle that contains API information about

11

various libraries. This use of a single global oracle enables us to identify API references
from snippets pertaining to a number of different libraries and does not require any prior
knowledge. Thus, our technique eliminates many of the constraints that the previous
techniques imposed.

2.2 Traceability Link Recovery

A large volume of software development artifacts like requirements and design documents
consist of natural language text. Several techniques have been proposed to map such
non-code resources to their respective source code elements. Antoniol et al. [16] proposed
and evaluated two Information Retrieval (IR) based techniques, a probabilistic model and
a vector space model, to recover traceability links between free text documentation and
code. Similarly, Chen [26], De Lucia et al. [27] and Hsin-Yi et al. [28] used information
retrieval techniques to do coarse granularity linking (e.g., linking an entire document to
a source class). A major drawback of using IR techniques to identify code elements is
that they cannot identify fine-grained references, which are necessary to identify correct
uses of an API element and hence, they cannot be used in our task. Techniques that use
regular expressions to identify and match text terms to API elements also face the same
problem [9].

The two systems most similar to ours are RecoDoc [18] and ACE [10]. RecoDoc uses
partial program analysis (PPA [29]) to identify code-like elements in support channels and
emails and link them to their respective API elements. Like RecoDoc, we use a PPA like
technique and an oracle as part of our link finding approach. However, unlike PPA, we use
a much bigger oracle and do not require prior knowledge about the target libraries. The
use of a bigger oracle also allows us to infer external API references (API not belonging
to the target libraries) in the code. Additionally, our technique can be implemented for
dynamically typed languages.

ACE is a linking system that tries to relax two of RecoDoc’s key assumptions: that
there must be an oracle, and that each mention of a code element in the documentation
has equal relevance to a problem. Like ACE, our technique ranks the output based on
expected relevance. However, ACE uses an island grammar [30] instead of PPA and cannot
do documentation linking because the results are not fully qualified.

12

2.3 Stack Overflow as a Data Source

Lately, developers have started to use web-based resources like discussion forums and
blogs to complement for the inadequacy of API documentation. These resources document
software-related discussions over time and act as a thorough reference guide for developers.
Parnin and Treude [11] performed an exploratory study to quantify API documentation
on the web. In an analysis of the jQuery JavaScript library 1, they found that over 85%
of the its API methods are covered by blog posts and discussion forums. This crowd
documentation [13] is sought after by developers not only because it is thorough, but
also because it is up-to-date and improved over time. This was confirmed by a study
conducted by Li et al. [12] which tried to understand how developers sought help while
solving software engineering tasks. They observed that online crowd-sourced knowledge in
discussion forums and blogs made a significant contribution.

Of these online resources, Stack Overflow has had a notable impact. The phenomenal
success of Stack Overflow has been attributed to the website’s exceptional technical design
and tight involvement of the design team with the user community [14]. A strict set of
community guidelines and a carefully built reputation system ensures that the answers are
always of high quality. In fact, Stack Overflow has proven to be particularly effective at
answering framework and library related questions [19].

A major impetus for our research comes from a detailed study conducted by Parnin
et al. [13]. To understand the coverage and dynamics of API related discussions on Stack
Overflow, they examined the extent of the Java (JDK), Android 2 and GWT 3 library APIs
in Stack Overflow posts. Through a set of natural language rules that took advantage of
the Java language specifics, posts were approximately mapped to API classes. They found
that 77% of Java classes, 87% of Android classes and 54% of GWT classes had related
discussions on Stack Overflow posts. Moreover, they found that over 66% of the classes in
these libraries had relevant code examples in posts, a majority of which were in accepted
answers. This study motivated us to exploit these code examples and associated discussions
to improve existing documentation.

However, though there is enough evidence on the effectiveness of web-based resources
like Stack Overflow as substitutes for conventional API documentation, not much has been
done in effectively harnessing them to improve documentation. Bacchelli et al. [31] tried to
integrate Stack Overflow search into the Eclipse IDE, but this is only of minimal use to a

1 http://jquery.com
2 http://developer.android.com/reference/packages.html
3 http://gwtproject.org/javadoc/latest/index.html

13

http://jquery.com
http://developer.android.com/reference/packages.html
http://gwtproject.org/javadoc/latest/index.html

developer. Effectively harnessing Stack Overflow requires identification of fine grained API
references in the posts and this is a challenging task. Use of programming language specific
rules along with natural language processing techniques allows us to differentiate code-like
terms from non-essential text. However, mapping these code-like terms to their respective
API elements requires identification of fully-qualified API references in the posts. This
is often not possible due to insufficient information and naming collisions among APIs.
However, in our preliminary study of Android posts on Stack Overflow, we found that
the structural information in code snippets can be used to identify fully qualified API
references. In this thesis, we build on this idea to develop a system that utilizes this
structural information in code snippets contained in Stack Overflow posts to map the
posts to their relevant API documentation pages.

14

Chapter 3

Methodology

Ambiguities associated with code snippets make their analysis challenging. Any attempt to
infer API references in code snippets must work around these challenges. In this chapter, we
propose a deductive linking technique to overcome these challenges and map API references
in code snippets to their respective fully qualified API elements.

In the deductive linking technique, we first generate an incomplete abstract syntax
tree (AST) for the code snippet being analyzed. Over multiple depth-first traversals of the
AST, we examine all nodes involved in declaration, invocation, and assignment statements.
In each of these nodes, we extract information about the class or method being referenced
from the AST and query the oracle for a set of potential API element matches for the
node (candidate API elements). These candidates are then used to disambiguate other
nodes and are updated in subsequent iterations as new facts are uncovered. This process is
repeated until an iteration fails to improve the results for any element (viz. the fixed point).
Eventually, every API reference node in the tree is associated with the fully qualified API
element it refers to.

The following sections present more details about the contents of the oracle and the
deductive linking technique. The algorithm is presented in Algorithm 1 and is then demon-
strated over Java and JavaScript code snippets in Section 3.3.

3.1 The Need for an Oracle

To map source code identifiers to their Fully Qualified Names (FQN), we require a reference
list containing information about APIs belonging to various libraries that may be referenced

15

in the code snippets. We call this list the oracle. The information contained in this oracle
is used to locate identifiers that reference API elements in the code, and subsequently map
them to their respective FQNs. Thus, our technique’s capacity to handle new libraries and
frameworks is determined by the availability of the corresponding API information in the
oracle.

In our approach, we implement the oracle as a database that contains API signatures
of classes, methods and fields from a wide variety of libraries and frameworks. The API
signatures in the oracle are preprocessed and stored such that the relationships between
various elements of a library are retained. This allows us to query the oracle and extract a
variety of facts. For example, the oracle can be easily queried for a list of all possible API
classes that are named History, the methods contained in each of them, and their return
types.

A few traceability tasks do not require an oracle. For example, Recodoc [10] proposed by
Rigby and Robillard does not use an oracle. Yet, it can extract code elements contained
in various documents with high precision. However, without an oracle, it is generally
impossible to identify the FQNs of the code elements in a snippet. These FQNs are
essential to documentation linking tasks and thus, an oracle is required. Additionally,
the use of a single global oracle allows us to work with multiple libraries and frameworks
simultaneously, and eliminates the need to know the target library beforehand. As we will
see in the next chapter, this oracle is not a difficult requirement to satisfy since the initial
oracle can be constructed fairly quickly and subsequent updates can be done dynamically.

3.2 Deductive Linking Technique

Snippets of code, although incomplete, contain valuable structural information. In the
deductive linking technique, we leverage this information to locate and disambiguate API
references in code snippets.

In this technique, we first determine if the snippet is surrounded by valid class and
method declarations. If it is not, we add dummy class and method wrappers to facilitate
parsing. We then parse the code snippet to generate an AST. Due to the incomplete
nature of the code snippets being analyzed, the nodes of the generated ASTs lack binding
information. Nevertheless, most parsers are capable of disambiguating node types even in
incomplete snippets, i.e., the parsers can identify and annotate AST nodes based on the
source code construct the node represents (e.g., method invocation, class declaration, etc.).
This is the only information we extract from the AST and this minimal dependency on
the parser allows us to deal with malformed code snippets.

16

Next, two empty sets localTypes and localMethods are initialized to store facts about
the AST. Specifically, these sets record information about classes and methods that are
declared locally. Additionally, maps candidateTypesMap and candidateMethodsMap are
initialized to store API facts inferred about various identifiers in the code.

The deductive linking approach is implemented over three stages involving depth-first
traversals of the AST.

• First Iteration:
In the first iteration, the AST is traversed, and classes and methods that are locally
declared in the snippet are identified and stored in localTypes and localMethods

respectively. The purpose of this pass is to differentiate API references from references
to locally declared elements. Since we are interested only in API references, any
references to locally declared classes and methods are ignored in subsequent passes.
Our technique treats any class or method that is used but not declared locally as an
API reference. In Java snippets, any extended classes or implemented interfaces are
recorded to identify overridden methods.

• Second Iteration:
The second iteration contains two short AST passes.

In the first pass, type information is extracted from variable declaration, field decla-
ration, static method invocation and method parameter nodes. For extracted types
that do not belong to localTypes, a list of candidate API classes having this type
information is retrieved from the oracle. These candidates are recorded against the
identifier in candidateTypesMap along with the identifier’s scope information.

In the second pass, method invocation nodes are visited. At each method invocation
node, one of the following actions is performed.

– If the object invoking the method has candidate classes in candidateTypesMap,
then those candidates that declare the invoked method are retrieved. The cor-
responding method is extracted from each of these candidate classes and stored
against the invoked method in candidateMethodsMap along with the node’s
scope. The invoking object’s mapping in candidateTypesMap is updated with
the reduced set of candidates that declare this method.

– If the object invoking the method is another method invocation (method invo-
cation chain), then the list of return types of the candidate methods of the
method invocation is extracted from candidateMethodsMap. Of these, the

17

candidates that declare the invoked method are retrieved and the correspond-
ing method in each of these candidates is stored against the invoked method
in candidateMethodsMap along with the node’s scope. The candidate meth-
ods of the method invocation that invokes the current method are updated in
candidateMethodsMap according to the reduced return types list.

– If the method invocation is a static method invocation, then the candidate
API classes of the invoking class are extracted from candidateTypesMap. Of
these, the candidates that declare the invoked method are retrieved, and the
corresponding method in each of these candidates is stored against the invoked
method in candidateMethodsMap along with the node’s scope.

– If the object invoking the method does not have a list of candidate API classes in
candidateTypesMap (missing declaration statement), or if the entry in candi-

dateTypesMap is not within the method invocation’s scope, then a list of candi-
date methods for the invoked method is extracted from the oracle and is stored
against the invoked method in candidateMethodsMap along with the the node’s
scope. The declaring classes of each of these candidate methods is stored against
the object reference in candidateTypesMap along with the object’s scope.

For Java snippets, the inheritance hierarchy of classes is considered in assignment
statements and when we look for methods in classes. Polymorphic methods are
disambiguated based on the parameter types. If parameter types are not available,
parameter count is used.

• Third and Subsequent Iterations:
In every subsequent iteration until a fixed point is reached, the AST is traversed and
candidates that do not satisfy the set constraints are rejected, and the constraints
are updated. More specifically, at every method invocation node, candidate API
methods that do not have their return type in the list of candidate return types
or their container class in the list of candidate classes of the object reference, are
rejected. The candidate API types of the object reference (or candidate return types
if the object reference is another method invocation) and the candidate return types
of the method are updated accordingly.

Repeating this iteration helps propagate facts up the tree in method invocation
chains. Hence, the number of iterations to reach a fixed point depends on the max-
imum length of method invocation chains in the code. In practice, we find that not
more than two iterations are generally needed to reach the fixed point.

18

All through the traversal, the scope of all data being used is tracked to ensure that
nodes are combined only if allowed by the scoping rules of the language. Scope at every
node is computed using the list of AST parent nodes of the current node. A variable usage
is within the scope of its declaration if it shares the same set of parent nodes, or if the
parent nodes of the declaration node are a subset of the parent nodes of the usage node.

While the goal of the approach is to identify the sole fully qualified API element that a
given identifier can represent, sometimes there is not enough information to choose from a
set of candidates. In this case, we generate a match with cardinality greater than 1. When
this happens, we can either return all candidate elements or simply report that a unique
match cannot be found. Sometimes a specific FQN cannot be identified for an element,
but examining the set of candidates reveals that they are all related – for example, if one
of the elements is a supertype for all other elements in the set. In this case, we report the
supertype as the match and elide the concrete subtypes from the results.

3.3 Examples

The above technique can be applied to disambiguate API references in both Java and
JavaScript snippets. However, the lack of type information makes it difficult to disam-
biguate references in JavaScript code. During the course of this study, we observed that
JavaScript library code usually use an object literal as an implied namespace and make
functions and variables properties of the object literal. We exploit this in our analysis to
link JavaScript objects and functions to the API elements they reference. The following
sections demonstrate the algorithm over snippets of Java and JavaScript code extracted
from Stack Overflow.

3.3.1 Java Example

To describe the deductive linking technique more concretely, we will revisit the Java code
fragment from Figure 1.2 and describe how it would be analyzed. Since the fragment in
this case does not contain a class declaration, it is wrapped in a synthetic class before the
parsing process begins.

1a. In the first iteration, the AST of the snippet is traversed and FirstPanel on line
1 is recorded as a locally defined class in localTypes. Since there are no method
definitions, localMethods is left empty.

19

Algorithm 1 The Deductive Linking Technique

1: //Initialization
2: Generate AST
3: INIT localTypes = Set()
4: INIT localMethods = Set()
5: INIT candidateTypesMap = Map()
6: INIT candidateMethodsMap = Map()
7:

8: //First Iteration
9: for each node in AST do
10: if node is class declaration node then
11: STORE class name in localTypes.
12: else if node is method declaration node then
13: STORE method name and corresponding class name in localMethods.
14: end if
15: end for
16:

17: //Second Iteration
18: for each node in AST do
19: if node contains type facts then
20: if type not in localTypes then
21: Obtain list of candidate API types from the oracle.
22: STORE variable, scope and candidates in candidateTypesMap.
23: end if
24: end if
25: end for
26:

27: for each node in AST do
28: if node is method invocation node then
29: if method not in localMethods then
30: Identify candidate API types of object reference that declare the method.
31: STORE method, scope and candidates in candidateMethodsMap.
32: UPDATE candidate types of object reference in candidateTypesMap.
33: end if
34: end if
35: end for
36:

20

37: //Subsequent Iterations
38: while fixed point is not reached do
39: for each node in AST do
40: if node is method invocation node then
41: Identify candidate methods that satisfy updated object reference and return
42: type candidates.
43: UPDATE candidateMethodsMap.
44: end if
45: end for
46: end while

2a. In the first pass of the second iteration, type information is collected from declaration
nodes. Since line 2 contains a static method invocation, the oracle is queried for API
classes called History. The 58 candidate types that are returned are recorded in
candidateTypesMap against History, along with the scope of the method call.

2b. Next, the variable token declared as a String is encountered on line 2. The oracle is
queried for API classes named String and the 54 candidates that are returned are
recorded in candidateTypesMap against String, along with the declaration’s scope.

2c. Since there are no other nodes that contain type information, we now proceed to
investigate method invocation nodes.

2d. History.addHistoryListener(this) on line 2 is the first expression that is encoun-
tered which requires analysis. Corresponding to the left-hand side of this expres-
sion, all elements named History are retrieved from the candidateTypesMap map.
These 58 candidate types are investigated for addHistoryListener(...) that take
a single object parameter. This results in 4 candidate methods which are added to
candidateMethodsMap. Correspondingly, the left-hand side (History) is updated to
reflect the number of candidates (reduced from 58 to 4).

2e. For the assignment on line 3, the right-hand side is considered first. Here, we assume
that the name History refers to the same History class as the reference on line 2 and
subsequently starts using its 4 candidates from candidateTypesMap; this is because
in Java conflicting names in the same class must be fully qualified. Evaluating the
getToken() method, History is further reduced to 2 candidates; getToken() also
has cardinality 2. The return types of getToken() can be used to reduce the number
of candidates of the String object on the left hand side. Note that inheritance
hierarchy of the class is considered while handling assignments.

21

2f. The same procedure continues for lines 4 through 10. On lines 5 and 7 the scope being
assigned to the History nodes is updated to reflect the inner block being analyzed.
After the whole snippet has been analyzed, we iterate again.

3a. Once we return to line 2 History can be identified as com.google.gwt.user.client.-
History in candidateTypesMap because the method call constraints from lines 3, 5,
and 7 leave only one possible candidate. All other History references are updated
to the same FQN, as are the method calls being made on it.

3b. The return type of the now-resolved getToken() can be used to confirm that token is
of type java.lang.String.

3c. Since all elements have been fully qualified, we does not need to do another pass.

Additional pieces of information are used to help identify elements whenever available.
They include import statements (rarely present in example code), cast expressions, return
statements, super invocations, extends/implements relationships, and parameter types.

3.3.2 JavaScript Example

We revisit the code snippet in Figure 1.3 to demonstrate the deductive linking for Java-
Script in detail.

1a. In the first iteration, locally declared function objects are extracted. In this case, lines
4, 9 and 13 contain function object declarations. Information about these nodes is
recorded in the localMethods set.

2a. In the first pass of the second iteration, there is no specific type information that can
be extracted from the nodes since JavaScript is dynamically typed. Hence, this step
is skipped.

2b. In the second pass, we first investigate line 1 which contains two function expressions,
$ and on. Checking the oracle, we find only one instance of $ from jQuery. Because
we can uniquely identify $, we use this fact while examining any other methods in
the call chain. In this case, there is only one jQuery method called on so it matches
correctly on the first try (even though there are three on methods in the oracle).
This library preference is only used for chained calls. The two maps are updated
appropriately.

22

2c. The next function expression encountered is a call to useGetPicture(). Since this
identifier is recorded in localMethods as a locally defined method, it is ignored.

2d. On line 5, the scope of cameraOptions is recorded to ensure that any constraints
applied to it do not ‘leak’ outside its scope. When we reach the function expres-
sion getPicture, the oracle is queried for methods with the same name taking at
least three variables; this returns only one possible match. This match is called
navigator.camera.getPicture in the oracle so the full expression ends up match-
ing.

2e. The next function expression is on line 10; getElementById matches 3 functions.
Next, we check to see if any of these are defined as document.getElementById; this
results in a single match.

2f. Some JavaScript libraries are augmented with return type information. In this case, the
oracle knows that document.getElementById returns an Element; as such, image is
annotated with 68 possible types. On line 11, the reference to the property image.-

src further reduces the number of possible types to three. It is important to note
that even if the returned object did not have a src property, this would be valid
JavaScript code – a new property would be added to the object. We assumes that
library code will not be dynamically augmented in this way.

2g. The function call to alert matches two elements, window.alert and notification

.alert. Since window is the default namespace for JavaScript executed in the
browser, we link alert to window.alert and update candidateMethodsMap.

3a. No new information has been learned about the exact type of image on lines 11 and
12 in the next iteration; as such, this element is left with a cardinality of 3. That
said, if the developer were interested in this element they could be given the option to
choose between HTMLInputElement, HTMLImageElement, and HTMLScriptElement.
Given the data:image/jpg string on line 11, the developer could likely make the
right choice.

23

Chapter 4

Baker: Deductive Linking System

We implemented the Deductive Linking technique detailed in the previous chapter in a
tool called Baker. Baker identifies API references in code snippets and maps them to
their respective fully qualified API elements. It then uses this data to generate HTML
links between API documentation pages and relevant posts on Stack Overflow. Currently,
Baker can handle Java and JavaScript code snippets.

Baker’s architecture can be classified into three modules: a snippet extractor, an oracle
generator and a snippet parser. The snippet extractor module crawls Stack Overflow for
new Java and JavaScript posts. It then parses these posts to extract code snippets from
them and subsequently stores these snippets in a database (snippet database). The oracle
generator module constructs the initial oracle and handles subsequent additions to the
oracle. The snippet parser module uses information in the oracle to analyze code retrieved
by the snippet extractor to identify fine-grained API usage instances in them. It produces
a JSON representation of fully qualified API references in the code. This intermediate
representation of examples is stored in a database (example database) and is exposed
through a web server for other applications to use, including the documentation linking
module, which generates HTML links between API documentation and relevant Stack
Overflow posts. The following sections describe the design and implementation of each of
these modules.

4.1 Snippet Extractor

The Snippet Extractor module is responsible for retrieving appropriate posts from Stack
Overflow and extracting code snippets from them to populate a snippet database. Stack

24

Snippet

Database

Github
Gists

Web Server

Dependency
finder

API

Annotated
Snippets

Stack
Overflow

npm

AST
Parser

Incomplete
AST

Deductive
Linker

Documentation
 Linker

IDE
Integration

Code
Search

JS

Oracle

Java

Oracle

.js
files

.class
files

SN
IP

P
ET

 E
X

TR
A

C
TO

R

O
R

A
C

LE
 G

EN
ER

AT
O

R

SN
IP

P
ET

 P
A

R
SE

R

Figure 4.1: Baker’s architecture depicting the Snippet Extractor, Oracle Generator and
Snippet Parser modules.

Overflow uses XML to structure data within posts. In this format, blocks of code that are
used in the posts are marked with <code> tags. We use an XML parser to extract these
code snippets from the posts and add them to the snippet database. We consider only
code snippets that are greater than 3 lines of code (LOC). This lower bound was chosen
since manual investigation revealed that shorter snippets usually lacked the surrounding
context necessary to well understand the API’s usage. Additionally, we restrict this snip-
pet database to code snippets extracted from accepted answers to ensure good quality of
examples. Since we are interested only in Java and JavaScript snippets, we take advantage
of Stack Overflow’s tagging feature to identify posts associated with these languages. To

25

quickly construct a database of snippets, we used the data dump that was provided for
the Mining Challenge conducted at MSR 2013 [32]. This data dump, available as a Post-
greSQL database, is a cleaned version of the official data dump released by Stack Overflow.
Table 4.1 presents the distribution of code snippets in Stack Overflow posts that are tagged
Java or JavaScript. The frequency of snippets of various sizes is illustrated in Figure 4.2.

Accepted
Answers

Code
Snippets

Median Size
(LOC)

Mean Size
(LOC)

Java 110,516 69,794 10.0 16.60
JavaScript 121,113 89,737 9.0 12.57

Total 231,629 159,531 9.0 14.33

Table 4.1: Distribution of code snippets in posts tagged Java and JavaScript.

Once the initial snippet database is populated using the data dump, it is updated on
a daily basis. The Stack Exchange network provides access to the Stack Overflow data
through a RESTful API 1. We utilize this API to update our local database with the latest
Java and JavaScript discussions posted to Stack Overflow. Since we are interested only in
code snippets contained in the post, we do not store the contents of the entire post locally.
Instead, we extract code snippets from the post and store them along with appropriate
metadata that would allow us to trace back the original post (e.g., Question ID or Answer
ID). In fact, even the code snippets can be discarded once they are processed and their
results are stored. They can be queried on-demand using the Stack Exchange API and
appropriate metadata.

4.2 Oracle Generator

As demonstrated by the two detailed examples in the previous chapter, Baker’s oracle is
the key to its success. In this section, we describe how we design and populate our oracle.

We use two separate oracles, one each for Java and JavaScript. The oracles are
databases implemented on a server and can be accessed as web services, allowing them
to be updated dynamically by any user or program. New development resources can be
augmented through HTTP POST requests to the service. These resources are automatically

1 http://api.stackexchange.com

26

http://api.stackexchange.com

20 40 60 80 100
No. of lines of code

0

5000

10000

15000

20000

25000

30000

35000

40000
N

o.
of

co
de

sn
ip

pe
ts

Figure 4.2: Frequency vs Size of code snippets in Stack Overflow posts tagged Java or
JavaScript (> 3 LOC)

analyzed and incorporated into the oracle. Similarly, the oracle can also be shrunk on
demand to consider only a smaller set of target libraries and frameworks in the analysis.
For example, if a project is known to use only the JDK and Android API, the oracle can
accordingly be minimized to this subset of APIs. This results in more precise results.

4.2.1 Java Oracle

The Java oracle is a database containing API class, method and field signatures from a
large number of Java libraries and frameworks. We chose a graph database called Neo4j 2

to implement the Java oracle.

We chose a graph database for this purpose because the graph data structure makes
it easy to represent various relationships and hierarchies between code elements that an

2 http://neo4j.org

27

http://neo4j.org

object-oriented language like Java offers. In this graph, every class and method is repre-
sented as a node. These nodes hold information about the code element, including their
fully qualified name (FQN) and visibility (viz. public, private or protected). Class nodes
contain additional information to identify abstract classes and interfaces. Class nodes are
connected to the classes they extend and the interfaces they implement through appro-
priate edges. Similarly, method nodes are connected to their declaring class nodes and
parameter class nodes through appropriate edges. This database runs on a server and can
be queried through a RESTful API service that we implemented. Each of these nodes is
indexed based on their FQNs and their unqualified names to enable fast querying. Fig-
ure 4.3 presents an overview of how information and various relationships between API
elements are preserved in the graph.

Method 1

Class

has_method

Superclass

Interface Class
(Parameter 1)

Class
(Parameter2)

has_method

extends

implements

has_parameter

has_parameter

Method 2

Figure 4.3: Template followed by the graph oracle.

The Java oracle can be dynamically updated by analyzing the appropriate JAR. We
use a tool called Dependency Finder 3 to analyze and extract class, method and field
signatures from the .class files contained in the JAR. These signatures are then parsed
and augmented to the existing Neo4j oracle graph. We implement this as a web service to
make the oracle update process as seamless as possible.

The initial oracle was quickly populated using API signatures extracted from the Maven
repository [33]. This data dump contains over 14 million method signatures and 3 million
field signatures belonging to 1.5 million classes. This information, when updated into the
database, results in a graph with 32 million nodes and 89 million relationships.

3 https://bitbucket.org/rtholmes/depfind_uw

28

https://bitbucket.org/rtholmes/depfind_uw

4.2.2 JavaScript Oracle

The JavaScript oracle is built by statically analyzing the source files of JavaScript libraries.
JavaScript libraries are often minified to reduce their size. In such cases, the source code is
accompanied with a source-map that contains the mapping used to obfuscate the identifiers.
When the libraries are obfuscated, we use this mapping to reconstruct the original source
files and use them to build the oracle.

We use ESPRIMA 4 to parse the source code of each library and extract APIs. We
build an Abstract Syntax Tree (AST) for each source file and walk this tree in a depth-first
fashion to identify all of the ‘FunctionExpression’ and ‘FunctionDeclaration’ nodes. We
traverse the path to each of these function nodes to identify the namespace hierarchy that
would have to be used to access these functions. Since object assignments in JavaScript
are pass-by-reference, additional traversals of the AST are performed to map non-trivial
and indirect Function Expression assignments.

As an example, consider the snippet of code from Backbone.js in Figure 4.4. A first pass
is done to fetch all FunctionExpression variables, in this case, extend. Additional traversals
of the AST are performed to identify and resolve transitive aliases like History.extend

and View.extend, which inherit all properties of the extend object. With these additional
passes, most aliases are traced back and are subsequently entered into the oracle.

JavaScript libraries often make calls to external libraries in their source code. Function
objects are passed as parameters to these external libraries to be modified and assigned to
other objects. Since JavaScript does not have type information for objects returned from
functions, our ability to reason about these assignments is lost. For this reason, we only
follow such statements one level deep.

1 _.extend(History.prototype, Events, {
2

3 getHash: function(window) {
4 ...
5 },
6 });
7 var extend = function(protoProps, staticProps){
8 ...
9 };

10 View.extend = History.extend = extend;

Figure 4.4: A snippet from the source code of Backbone.js

4 http://esprima.org/

29

http://esprima.org/

The dynamic nature of JavaScript makes it harder to extract APIs from the source files
through static analysis. Hence, whenever available, we make use of annotations provided
by JSDoc 5 and other similar documentation tools. Furthermore, unlike Java, JavaScript
lacks visibility annotations. The code elements are not marked as public or private.
Private methods are hidden through various design patterns. This makes it difficult to
distinguish private methods from public methods through static analysis and we might
accidentally encounter false positives. However, they only slightly reduce Baker’s accuracy
since private methods are not used in code snippets and hence will rarely be matched.

In this study, we populated the oracle with source code from seven different libraries,
including the core JavaScript API. These libraries contain over 1,600 API object properties
including functions, properties and event handlers. These libraries were chosen by gauging
the popularity of the libraries’ Github repositories and related activity on Stack Overflow.

To dynamically add new JavaScript libraries to the oracle, we rely on npm 6, which
is a package manager for node.js 7. We use npm to fetch the source code of said library.
Baker then analyzes the source code to populate API methods and properties, and adds
them to the existing database of API signatures. Since the number of libraries analyzed is
smaller than in the Java oracle, we currently use only a key-value store for the JavaScript
oracle. However, we intend to implement the JavaScript oracle also as a graph database
in the future.

4.2.3 Naming Ambiguities

Fully qualified names are heavily used in computer programs to reduce the likelihood
that program identifiers (e.g., type names, method names, and field names) will conflict
between different programs and libraries. For example, while Log is a common unqualified
type name (occurring 284 times in the Java oracle), developers use fully qualified names
to identify the Log they are interested in (such as org.apache.tomcat.util.log.Log vs.
org.eclipse.jetty.util.log.Log).

In Java, method and field identifiers can be partially qualified if the identifier contains
the type but not the package in which it is declared. For example, while the unqualified
method name getId() occurs 27,434 times in the oracle, a few of these methods may have
the same partially qualified names (Node.getId()). However, each of these methods can
be uniquely identified by their fully qualified names (org.neo4j.graphdb.Node.getId(),

5 https://github.com/jsdoc3/jsdoc
6 http://npmjs.org
7 http://nodejs.org

30

https://github.com/jsdoc3/jsdoc
http://npmjs.org
http://nodejs.org

jsx3.xml.Node.getId()). Though method and field names can be partially qualified,
class names cannot be partially qualified without considering the package identifier.

Naming ambiguity is common; Dagenais and Robillard previously found that 89% of
method names are ambiguous and the average method name conflicts with 13 other meth-
ods [18]. We extended their result using our oracle to 1.6 million types and extended
the analysis to include types, methods, and fields. We also investigated the differences
between fully qualified names (FQN), partially qualified names (PQN), and unqualified
names (UN). Our analysis revealed that 80% of the API elements are ambiguous when
unqualified. In fact, even partially qualified API elements, that a few previous approaches
used, are ambiguous 37% of the time. Thus, they can only be disambiguated based on
their fully qualified names. Table 4.2 provides an overview on the prevalence of naming
collisions in Java API.

With respect to method names, we found the same result as Dagenais and Robillard:
89% of unqualified method names collided. We also found that one-third of unqualified
types and one-third of partially qualified methods collide. These results confirm our earlier
statement that unqualified names are insufficient to link a code element to the correct
document. Some methods, like getId(), have thousands of unique fully qualified declara-
tions in the oracle that all conflict when unqualified. Moreover, APIs involved in naming
collisions are commonly used in applications. Appendix B investigates the frequency of
naming ambiguities in the applications that implement the Android android.

Types Methods Fields Total Average

FQN 1,646,650 14,206,944 3,149,206 19,002,800 /
PQN / 9,455,644 2,571,384 12,027,028 /
UN 1,121,887 1,600,053 1,115,099 3,837,039 /

% Ambiguous PQN / 33% 37% / 37%
% Ambiguous UN 32% 89% 65% / 80%

Table 4.2: Analysis of naming ambiguities in the Java oracle.

4.3 Snippet Parser

We use different parsing engines to statically analyze Java and JavaScript code to account
for the differences in the languages. In both these engines, the code is wrapped around
synthetic classes or methods as per the parser’s requirements.

31

4.3.1 Java Parser

To create ASTs from Java snippets, we built a parser using the Eclipse Java Development
Tools (JDT) project 8. Since the Eclipse parser is robust to badly formed input, it was
able to manage many of the problems associated with source code snippets. We also built
a web service for the parser that enables us to use HTTP POST to send snippets of code
to the Java Parser and get a JSON response with the results.

4.3.2 JavaScript Parser

JavaScript snippets are parsed by the ESPRIMA 9 parser. ESPRIMA is very tolerant of
malformed input because it is frequently found in JavaScript code. We implemented the
JavaScript parser as a web service so code snippets could easily be parsed from a variety
of applications.

4.4 Example Database

The parsing framework parses code snippets extracted from Stack Overflow and maps code
elements to the fully qualified API elements they reference. This information is output as
a JSON file and can readily be used by other applications (like the documentation linking
tool). These analyzed snippets and their results are stored in a SQL database (example
database), and this data is exposed as a web service for external applications to access. The
JSON representation of the output contains a list of all candidate elements for each code
element along with the exact location of the code element in snippet, thereby facilitating
further analysis of the snippet if required. Figure 4.5 represents a part of the output
generated for the example Java snippet that is presented in Figure 1.2.

4.5 Enabling Live Documentation

We utilize Baker’s ability to identify fully qualified API references in code snippets to
create bi-directional links between API documentation and relevant source code examples
on Stack Overflow. As previously discussed, keeping documentation current is challenging

8 http://eclipse.org/jdt/
9 http://esprima.org

32

http://eclipse.org/jdt/
http://esprima.org

1 "api_elements": [
2 ...,
3 {
4 "cardinality": "1",
5 "elementType": "api_type",
6 "name": "History",
7 "candidates": [
8 "com.google.gwt.user.client.History"
9],

10 "locationInCode": "46",
11 "lineNumber": "2"
12 },
13 ...
14]

Figure 4.5: The JSON output generated by Baker for the Java code snippet in Figure 1.2.

and expensive. Therefore enabling these links automatically keeps the document up to
date without any effort from documentation maintainers.

Our approach augments HTML-based source code examples and API documentation
by adding relevant links between pages that are related by the APIs they use (or describe).
These links can occur in multiple directions. For example, a Stack Overflow snippet can
be augmented with links from a specific method call to the documentation for the API the
call represents. The API documentation can also be updated with links back to source
code examples demonstrating its usage. To do this, we use a browser extension that is able
to monitor pages to see if they contain source code examples or are API documentation.
If either of these is true, the pages are augmented by injecting new HTML elements into
the page that represent links to other related resources.

The snippet extractor module ensures that the example database is always current
by continually monitoring Stack Overflow for new source code examples. Any API usage
detected in these examples is added to the example database so that usage links can be
injected into API documentation. This means that as long as questions are being asked
and answered about an API, the documentation will be updated. It remains to be seen if
this could convince API owners to answer questions about their APIs in Stack Overflow
knowing that their answers will be tied directly back to their own documentation.

One piece of data is missing in order for the browser extension to work is an explicit
mapping between a FQN and the corresponding official API documentation. Fortunately,
generating these links is easy to manage in practice. This is because the vast majority
of API documentation is automatically generated and is very well formed. For example,
augmenting the Android API documentation with examples simply requires a mapping

33

from a Java package to a web location, e.g., android.* → http://developer.android.

com/reference/. With this mapping, the browser extension can automatically determine
the correct target page that should be annotated (in either direction) with either the source
code example or API documentation link. Figure 4.6 shows how our browser extension
modifies a Stack Overflow post. Normally, the source code snippet in the post does not
contain the underlined elements and is treated as a plain text block. In this case, the Baker
extension detects that the user has navigated to a Stack Overflow post. If this post had
not been previously parsed, it is now parsed on demand. Once the parsing is complete,
Baker has a list of the API elements that are present in the post and their locations. After
consulting the mapping, the extension modifies the code block and inserts information to
show all of the elements that Baker has identified by underlining them. In this case, Baker
was able to correctly identify the FQN for mChronometer (in addition to several other types
and methods). When the developer hovers their mouse over mChronometer (as they are in
Figure 4.6), they are presented with a dynamic pop-up that contains links to the official
Android Chronometer API documentation, to the source code for Chronometer, and links
to 18 other Stack Overflow posts that also use Chronometer.

Figure 4.6: Baker-augmented Stack Overflow post. Note that the Baker browser extension
automatically augmented the Stack Overflow post without any intervention from the teams
maintaining Stack Overflow, Github, or the Android documentation.

In the opposite direction, Figure 4.7 shows how the browser extension augments the
official Android documentation with Stack Overflow examples. Once again, the browser
extension detects from the mapping file that the user is visiting a page for which it has API

34

http://developer.android.com/reference/
http://developer.android.com/reference/

usage examples. While Baker actively monitors new Stack Overflow posts for code exam-
ples, any snippet the browser extension has encountered can be included in the example
list. It then checks the page to see if Baker has any examples for any of the API elements on
the page; if it does, it injects a small table into the page that describes the relevant source
code examples. These example tables can be injected for both types and methods. Baker

Figure 4.7: The Baker browser extension automatically injects a list of relevant Stack
Overflow posts into the official Android API documentation. These links dynamically
update without any intervention from the documentation team.

is able to parse source code snippets found in online repositories to identify fully qualified
names that pertain to API usage. It is able to use these fully qualified names as a form of
links that can be dynamically injected into web-based code resources. This improves the
utility of the source code examples by enabling easy navigation to official API documen-
tation for any given code element while simultaneously enhancing the API documentation
by providing concrete usage examples that complement the traditional descriptions of the
API. The entire process is automatic, enabling injected markup to be dynamically updated
whenever new resources are encountered. The Baker parser web service and the browser
extension are both available online 10.

10 https://cs.uwaterloo.ca/~rtholmes/baker

35

https://cs.uwaterloo.ca/~rtholmes/baker

Chapter 5

Results and Evaluation

In our evaluation of Baker, we answer two questions.

• Can Baker accurately identify API elements in code snippets?

• Does Baker work on a variety of systems, or is it limited to just a few libraries?

5.1 Linker Accuracy

To answer the first question, we manually examined Baker’s results to check if API elements
in Java and JavaScript code snippets are correctly disambiguated.

Firstly, we populated the snippet database using the data from the MSR Challenge [32]
as described in the previous chapter. Additionally, we augmented this data by pulling
source code from a few repositories on Github. Of the resulting snippet database, Baker
analyzed 1,000 JavaScript source code snippets and 4,000 Java source code snippets.

In our context of linking examples to documentation, precision is much more important
than recall. Since the web contains tens of thousands of snippets, we would rather suffer
a false negative result (a failure to infer a link that should have been identified), than
a false positive (incorrectly linking one element to another). To this end, we also only
analyzed Baker’s recommendations that had a cardinality of 1; that is, we only examined
the results that the tool was sure were correct. While the other results could be useful for
the developer, we would not display them to the developer by default.

36

We chose the systems to analyze for our precision evaluation by identifying the union
of the systems evaluated in the RecoDoc [18] and ACE [10] papers and in Parnin’s Stack
Overflow study [13]. The five libraries used in these studies are listed in Table 5.1. We then
randomly selected code snippets from Baker’s example database that had been annotated
with a Stack Overflow tag appropriate to the project under study. Whenever Baker claimed
that it had identified an API element from one of the five libraries in Table 5.1, we manually
examined the snippet and Baker’s result to classify the result based on the following rules.

• If the result returned by Baker correctly matched the API intended by the developer,
it is classified as a true positive (TP).

• If the result returned by Baker incorrectly matched the API, it is classified as a false
positive (FP).

• If the result contained tokens that were not associated with an API element at all
but that we would have expected to see a result, it is classified as a false negative
(FN).

We stopped once we had examined 50 code elements for each system in this way. Baker’s
overall precision with Java code snippets is 0.98 with a recall of 0.83. When we included
any result with a cardinality > 1 (that is, where the correct element was found but could
not be uniquely identified), the recall increased to 0.96.

System TP FP FNc=1 FNc>1

Android 40 1 8 1
GWT 43 0 7 0
Hibernate 37 0 13 0
Joda Time 44 3 3 0
XStream 40 0 10 0

Total 204 4 41 1

Table 5.1: Baker’s overall Java precision (0.98) and recall (0.83). Only exact matches
(cardinality = 1) were considered.

For JavaScript we applied the same procedure for analyzing the snippets and assessing
true positives, false positives, and true negatives. Since none of the previous studies in-
vestigated JavaScript, we just chose four Stack Overflow tags for which there were a large

37

number of associated questions. The JavaScript precision was 0.97 while the recall was
0.96. We believe the difference in the recall between the Java and JavaScript analyses
was that the Java oracle had millions of entities in it, while the JavaScript oracle had
only thousands. That said, we believe the Java oracle demonstrates that even with a huge
breadth of API elements to choose from the approach still delivers reasonably high recall.

System TP FP FNc=1 FNc>1

JSCore/DOM 48 2 0 0
JQuery 47 2 1 0
Phonegap 46 2 2 0
Webworks 43 0 5 2

Total 184 6 8 2

Table 5.2: Baker’s overall JavaScript precision (0.97) and recall (0.96). Only exact matches
(cardinality = 1) were considered.

5.2 Example Diversity

In addition to assessing Baker’s ability to identify links between source code examples and
the API they represent, we looked further into the fully qualified names identified by the
tool to see the breadth of the systems it was able to generate links for.

Baker parsed 4,000 Java source code snippets. It identified over 30,000 links to 4,500
unique API elements. Table 5.3 describes the elements that were identified in more detail.
To get an idea of the projects that were referenced, we looked at the packages that were
linked to. We then aggregated these and considered only those that had the same two initial
tokens (e.g., all org.eclipse references would count as 1). This resulted in 188 unique
second-tier packages for which we have examples. If we considered third-tier packages (the
same first three tokens), 347 different packages were referenced.

Baker parsed 1,000 JavaScript source code snippets and identified almost 10,000 refer-
ences to over 500 unique elements. A brief overview of the systems identified are shown in
Table 5.4. Looking into the elements in the ‘other’ category, we see a variety of popular
JavaScript frameworks like Angular, Ember, Underscore, Require, Backbone, and so on.
Since JavaScript programs tend to ‘mash up’ many libraries, we find that even if the exact

38

System No. of types No. of methods

Android 272/64 175/104
Apache 178/79 108/97
Eclipse 104/41 53/45
GWT 149/47 122/69
Hibernate 389/133 378/199
JDK 14,252/632 7,483/1,981
Other 5,956/487 1,339/747

Total 21,300/1,483 9,658/3,242

Table 5.3: Number of matched elements from 4,000 Java code snippets extracted from
Stack Overflow and Github. The types and method cells are split (total no. of matches /
unique no. of elements).

library being asked about is not in the oracle, elements from other libraries are often found
interspersed with these references.

System No. of properties

JSCore/DOM 6,467/107
JQuery 1,793/96
Phonegap 126/27
Webworks 244/52
Other 1,297/300

Total 9,927/582

Table 5.4: Number of matched elements from 1,000 JavaScript code snippets extracted
from Stack Overflow and Github. The object and properties cells are split (total no. of
matches / unique no. of elements).

39

5.3 Quantifying High-Cardinality Matches

As mentioned previously, our deductive linking method returns more than one match when
there is not enough information to uniquely identify the FQN of a method or type. However,
this is relatively rare. To quantify this, we recorded the cardinality of the result for each
of the 4,000 snippets described in Table 5.3; this data is plotted in Figure 5.1.

5 10 15 20
Cardinality

0

2000

4000

6000

8000

N
um

be
ro

fA
P

IM
et

ho
d/

Ty
pe

us
ag

e
in

st
an

ce
s

ex
cl

ud
in

g
JD

K
in

st
an

ce
s

Figure 5.1: A histogram of the cardinality values obtained when the tool was run on the
4,000 code snippets described in Table 5.3.

As can be seen in the figure, the majority (69%) of elements can be precisely identified,
though there was a long tail that had high cardinality values. We have removed references
to JDK types and methods from this figure since many of these results had cardinality 1
and we wanted to ensure this was not the cause of the long tail effect. The results with
them included are even better (85% precisely identified). This result supports the use of
the tool for live API documentation, since in the majority of cases we can link documents
that discuss the same source code element precisely.

We performed an informal analysis of the elements that Baker matched to with multiple
targets. Surprisingly, the most common cause of these multiple matches (more than half)
were situations where projects make internal clones of existing source code files to avoid
having to include an external JAR file along with their project. An example of this can be
seen in Table 5.5.

40

com.thoughtworks.xstream.io.xml.AbstractDocumentReader
com.cloudbees.shaded.thoughtworks.xstream.io.xml.AbstractDocumentReader

com.ovea.jetty.session.internal.xstream.io.xml.AbstractDocumentReader
cucumber.runtime.xstream.io.xml.AbstractDocumentReader

org.pitest.xstream.io.xml.AbstractDocumentReader

Table 5.5: Example of an imprecise Baker match. The top row represents the correct
answer.

In these cases, Baker’s results contain the correct FQN; we intend to work on techniques
for differentiating between these results in the future.

The impact of high-cardinality matches depends on the intended use of the data; some
tasks favour recall over precision while for other tasks the reverse is preferred. For example,
when annotating a Stack Overflow example with FQN information, presenting a small
number of possible type options for the developer to choose from would be reasonable
as they could use their own intuition gained from the snippet text to make an informed
selection. Conversely, when annotating official API documentation with usage examples
we would only want to include exact matches as this context would not be present.

41

Chapter 6

Discussion

The information extracted by Baker has a number of applications in addition to documen-
tation linking. For example, the API elements in a documentation page can be reordered
based on the number of API examples found on Stack Overflow for the element. While
API elements that have more examples associated with them could be interpreted as being
more difficult, they might also indicate the key elements a developer should consider. A
similar concept is explored by Holmes et al. in PopCon [34], where they leverage a large
static analysis repository rather than code examples.

Linking online discussions to API documentation can act as a feedback mechanism
for library developers to identify various difficulties faced by developers in using their
library’s API. This information can be be used to appropriately improve the design or
documentation of the API in future releases.

Since Baker manages to find fine-grained API references in code snippets, the resulting
data can be used to build a code search engine that supports compound queries. For in-
stance, we can query Baker for examples that use the method elapsedRealtime belonging
to the SystemClock class of the Android framework, along with the setBase method of the
Chronometer class. It can also help in finding jungloids (described in Chapter 2) relevant
to a specific task.

Additionally, in cases where the libraries or frameworks used by a snippet are known
beforehand, Baker’s oracle can accordingly be reduced to contain just the relevant API. For
example, Baker can use such a reduced oracle to analyze source code files from a collection
of Android projects found on Github, thereby generating more precise results.

42

Baker can also be implemented as a plugin for development environments (IDEs). The
data generated by Baker from Stack Overflow snippets can be used to recommend succinct
code examples that precisely use the set of API elements that the developer is interested
in.

43

Chapter 7

Threats to Validity

The accuracy of our evaluation is subject to our ability to correctly identify each API usage
in the code snippets we investigated. While the inherent ambiguity present in source code
snippets sometimes obscured what the developer intended, since snippets generally exist
to answer specific questions within a particular context, we were usually able to identify
the intended element. When we were not, or when Baker was incorrect, we conservatively
flagged the recommendation as a false positive.

To reduce overfitting and increase generalizability, the Java systems we selected for the
precision analysis were chosen by taking the union of systems evaluated for Recodoc [18],
ACE [10], and Parnin’s Stack Overflow study [13]. Baker was executed in its default
configuration for all studies. The only exception was that JavaScript snippets were only
submitted to JavaScript parser while the Java snippets were sent to the Java parser.

The parsers we use in our implementation cannot handle code that is extremely mal-
formed. For example, code with missing braces cannot be parsed. However, the goal of
this thesis is to identify examples that can help developers better understand APIs and
such examples are not of much use to a developer. Hence, we discard such snippets from
the snippet database.

In this study, we restrict our examples to code snippets found in accepted answers
on Stack Overflow to maintain example code quality. Though Baker can be extended to
analyze snippets of code on Github and other online resources, we cannot guarantee the
correctness of these snippets. Baker’s goal is not to assess the correctness of the code, but
to infer API references in them while assuming the code is correct.

44

Chapter 8

Future Work

A number of heuristics can be employed to improve Baker’s results. In practice, most
API elements that are used in software projects are used to solve a specific task, and
thus belong to a small set of libraries. In fact, in many cases, a lot of these elements
belong to the same package. Thus, when Baker identifies that a particular method in
the code refers to android.os.SystemClock.elapsedRealTime() in the Android frame-
work, it is more probable that a method called setBase in the same code snippet be-
longs to android.widget.Chronometer class of the same Android framework and not
org.hibernate.cfg.IndexColumn class of the Hibernate library. Thus, we can use Baker’s
results to predict what libraries or packages may have been used in the snippet to tune
facts collected about other elements in subsequent iterations.

The deductive linking algorithm used by Baker tries to identify the API type of an
object based on the constraints put forth by the methods it invokes. The algorithm de-
scribed in this thesis analyzes these constraints in the order of their appearance in the
code. However, every candidate type satisfies these constraints irrespective of the or-
dering of these constraints. Hence, the algorithm can be improved by re-ordering the
constraints (methods) based on how efficiently they reduce the list of candidate types of
the object. In other words, before analyzing the candidates, the methods can be reordered
based on the number of candidates they have in the oracle. For example, methods like
fireCurrentHistoryState() have fewer candidates than a method like start. Hence,
they can used earlier in the analysis of an object to significantly reduce the object’s can-
didate list, thereby making the algorithm more efficient.

The current implementation of Baker relies solely on code snippets in posts to map
them to their documentation. However, discussions associated with the snippets often

45

contain useful information that can help disambiguate the candidates when the cardinality
of Baker’s output is > 1. In future, we intend to employ natural language processing
techniques to extract code-like elements from plain text and use this information to improve
our linking technique.

Among all the code snippets that reference an API element, some snippets are better
examples than the others. We intend to construct a mechanism to estimate the usefulness
of a snippet in the context of a specific API element. This estimate can be used to present
the examples in decreasing order of their usefulness to the developer.

Linking Stack Overflow discussions to API documentation is just one part of a frame-
work that links together multiple web-based resources like source code repositories, issue
trackers and mailing lists. Enabling this linking can help us generate composite pages for
API elements that provide easy access to multiple artefact repositories (as illustrated in
Figure 1.1) [15]. We intend to carry this research forward and build this framework.

Finally, we aim to document and fully open the web services that power Baker. This
would allow anyone to add new APIs to the Java and JavaScript oracles, update mapping
files, submit snippets to be parsed, and query Baker. In addition, we will be releasing the
browser extension so that other researchers and developers can try the tool and provide
feedback.

46

Chapter 9

Conclusion

Maintaining API documentation is a challenging and time-consuming task; consequently,
the documentation is frequently out of date. This thesis presented a method and tool for
automatically generating links between API documentation and source code examples on
Stack Overflow by using structural information in the code snippets. We demonstrated
that our tool, Baker, has high precision (0.97) and is able to successfully link code snippets
to thousands of different Java classes and methods along with hundreds of JavaScript func-
tions. Baker’s results can be automatically integrated into web pages for both the source
code examples and the official API documentation. This will increase the timeliness of the
API documentation while providing valuable reference links for source code examples.

47

APPENDICES

48

Appendix A

Ambiguous Snippets on Stack
Overflow
This chapter presents a few ambiguous code snippets we encountered on Stack Overflow
during the course of this research. Each code snippet presented below is associated with a
PostID. The corresponding post can be found at www.stackoverflow.com/questions/

PostID.

A.1 Missing Statements

To focus on the core functionality, variable declarations and field declarations are frequently
omitted from the code snippets. Sometimes, this is also caused when code snippets are
broken into multiple code blocks by the textual descriptions that support the snippet.

The code snippet in Figure A.1 presents a a piece of Java code, where the statement
declaring mChronometer is missing. Hence it is not clear what type this variable belongs
to.

1 View.OnClickListener mStartButtonListener = new OnClickListener() {
2 @Override
3 public void onClick(View arg0) {
4 mChronometer.setBase(SystemClock.elapsedRealtime());
5 mChronometer.start();
6 }
7 };

Figure A.1: Stack Overflow PostID: 1916391

49

www.stackoverflow.com/questions/PostID
www.stackoverflow.com/questions/PostID

Additionally, the snippet only contains a block of statements. It lacks import statements
and information about the class and method that surround these statements.

A.2 Use of Ellipses

Ellipses (“...”) are frequently used in code snippets to elide functionality that is not relevant
to the context of the post.

In the code snippet in Figure A.2, a large part of the code block is replaced with an
ellipsis. This results in snippets that are syntactically incorrect and hinders their analysis.

1 private void doClear(int y, int x, JButton[][] bArray2, int gridy,int gridx)
2 {
3 if (...already cleared...) {
4 return;
5 }
6

7 ...
8 }

Figure A.2: Stack Overflow PostID: 6272964

50

Appendix B

An Analysis of Naming Collisions in
the Android Framework API

To investigate if ambiguous APIs were frequently used in applications or if they were
limited to less used API, we examined applications that used the Android framework. We
obtained 47 example applications from the Android SDK that contained approximately 600
source files and 50,000 source lines of code. We examined the most-used non-constructor
method names from this corpus. Table B.1 contains the top ten method names, along with
the number of methods in the Android API having the same name (column 2) and the
number of packages these declarations are spread across (column 3).

Method Name No. of Collisions No. of Packages

onCreate 32 15
show 17 2
getResources 9 6
getContentResolver 4 2
getItemId 7 2
getAction 6 3
findViewById 5 3
getString 34 12
getData 12 9
close 137 36

Table B.1: Naming collisions among the 10 most-used Android methods.

51

References

[1] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documentation,” in Pro-
ceedings of the International Conference on Software Engineering (ICSE), pp. 643–
652, ACM, 2014.

[2] S. Subramanian and R. Holmes, “Making sense of online code snippets,” in Proceedings
of the Working Conference on Mining Software Repositories (MSR), pp. 85–88, ACM,
2013.

[3] L. P. Deutsch, “Design reuse and frameworks in the smalltalk-80 system,” in Software
Reusability, pp. 57–71, ACM, 1989.

[4] M. P. Robillard, “What makes APIs hard to learn? Answers from developers,” IEEE
Software, vol. 26, pp. 27–34, Nov. 2009.

[5] G. Butler, R. K. Keller, and H. Mili, “A Framework for framework documentation,”
ACM Computing Surveys (CSUR), vol. 32, p. 15, March 2000.

[6] J. Bloch, “How to design a good API and why it matters,” in Companion to the
ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 506–507, ACM, 2006.

[7] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documen-
tation: The state of the practice,” IEEE Softw., vol. 20, pp. 35–39, Nov. 2003.

[8] B. Dagenais and M. P.Robillard, “Creating and evolving developer documentation:
Understanding the decisions of open source contributors,” in Proceedings of the In-
ternational Symposium on Foundations of Software Engineering (FSE), pp. 127–136,
ACM, 2010.

52

[9] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source code artifacts,” in
Proceedings of the International Conference on Software Engineering (ICSE), pp. 375–
384, ACM, 2010.

[10] P. C. Rigby and M. P. Robillard, “Discovering essential code elements in informal doc-
umentation,” in Proceedings of the International Conference on Software Engineering
(ICSE), pp. 832–841, ACM, 2013.

[11] C. Parnin and C. Treude, “Measuring API documentation on the web,” in Proceed-
ings of the International Workshop on Web 2.0 for Software Engineering (Web2SE),
pp. 25–30, ACM, 2011.

[12] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek, when and
how?,” in Proceedings of the Working Conference on Reverse Engineering (WCRE),
pp. 142–151, IEEE, 2013.

[13] C. Parnin, C. Treude, L. Grammel, and M.-A. D. Storey, “Crowd documentation:
Exploring the coverage and the dynamics of API discussions on Stack Overflow,”
Georgia Institute of Technology, Tech. Report, no. GIT-CS-12-05, 2012.

[14] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design lessons
from the fastest Q&A site in the west,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2857–2866, ACM, 2011.

[15] L. Inozemtseva, S. Subramanian, and R. Holmes, “Integrating software project re-
sources using source code identifiers,” in Proceedings of the International Conference
on Software Engineering (ICSE - NIER Track), pp. 400–403, ACM, 2014.

[16] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo, “Recovering trace-
ability links between code and documentation,” IEEE Transactions of Software En-
gineering, vol. 28, pp. 970–983, October 2002.

[17] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability
links using latent semantic indexing,” in Proceedings of the International Conference
on Software Engineering (ICSE), pp. 125–135, ACM, 2003.

[18] B. Dagenais and M. P. Robillard, “Recovering traceability links between an API and
its learning resources,” in Proceedings of the International Conference on Software
Engineering (ICSE), pp. 47–57, ACM, 2012.

53

[19] C. Treude, O. Barzilay, and M.-A. D. Storey, “How do programmers ask and answer
questions on the web?,” in Proceedings of the International Conference on Software
Engineering (ICSE - NIER Track), pp. 804–807, ACM, 2011.

[20] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi, “Building more
usable APIs,” Software, IEEE, vol. 15, pp. 78–86, May 1998.

[21] R. Holmes and G. Murphy, “Using structural context to recommend source code
examples,” in Proceedings of the International Conference on Software Engineering
(ICSE), pp. 117–125, ACM, May 2005.

[22] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman, “Jungloid Mining: Helping to
navigate the API jungle,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pp. 48–61, ACM, 2005.

[23] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for reusing open
source code on the web,” in Proceedings of the International Conference on Automated
Software Engineering (ASE), pp. 204–213, ACM, 2007.

[24] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and recommending
API usage patterns,” in Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pp. 318–343, Springer-Verlag, 2009.

[25] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio: Finding
relevant functions and their usage,” in Proceedings of the International Conference on
Software Engineering (ICSE), pp. 111–120, ACM, May 2011.

[26] X. Chen, “Extraction and visualization of traceability relationships between docu-
ments and source code,” in Proceedings of the International Conference on Automated
Software Engineering (ASE), pp. 505–510, ACM, 2010.

[27] A. De Lucia, R. Oliveto, and G. Tortora, “Adams re-trace: Traceability link recov-
ery via latent semantic indexing,” in Proceedings of the International Conference on
Software Engineering (ICSE), pp. 839–842, ACM, 2008.

[28] H. Jiang, T. Nguyen, I.-X. Chen, H. Jaygarl, and C. Chang, “Incremental latent se-
mantic indexing for automatic traceability link evolution management,” in Proceedings
of the International Conference on Automated Software Engineering (ASE), pp. 59–68,
ACM, 2008.

54

[29] B. Dagenais and L. Hendren, “Enabling static analysis for partial Java programs,” in
Proceedings of the Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pp. 313–328, ACM, 2008.

[30] L. Moonen, “Generating robust parsers using island grammars,” in Proceedings of the
Working Conference on Reverse Engineering (WCRE), pp. 13–22, IEEE, 2001.

[31] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing stack overflow for the IDE,” in
Proceedings of the International Workshop on Recommendation Systems for Software
Engineering (RSSE), pp. 26–30, IEEE, June 2012.

[32] A. Bacchelli, “Mining Challenge 2013: Stack Overflow,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR), ACM, 2013.

[33] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software bertillonage,”
Empirical Software Engineering, vol. 18, no. 6, pp. 1195–1237, 2013.

[34] R. Holmes and R. J. Walker, “A newbie’s guide to Eclipse APIs,” in Proceedings of
the Working Conference on Mining Software Repositories (MSR), pp. 149–152, ACM,
2008.

55

	List of Tables
	List of Figures
	Introduction
	Motivating Scenario
	Benefits of Recovering Traceability Links
	Challenges
	Contributions
	Outline

	Background and Related Work
	Example Recommendation Systems
	Traceability Link Recovery
	Stack Overflow as a Data Source

	Methodology
	The Need for an Oracle
	Deductive Linking Technique
	Examples
	Java Example
	JavaScript Example

	Baker: Deductive Linking System
	Snippet Extractor
	Oracle Generator
	Java Oracle
	JavaScript Oracle
	Naming Ambiguities

	Snippet Parser
	Java Parser
	JavaScript Parser

	Example Database
	Enabling Live Documentation

	Results and Evaluation
	Linker Accuracy
	Example Diversity
	Quantifying High-Cardinality Matches

	Discussion
	Threats to Validity
	Future Work
	Conclusion
	APPENDICES
	Ambiguous Snippets
	Missing Statements
	Use of Ellipses

	Naming Ambiguities
	References

