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Abstract

This work deals with the control of the human immune system. A standard
immune system model is modified by introducing control signals corresponding to
drug cocktail and immune suppressor treatments. The ultimate objective is to use
these control signals to ‘cure’ a chronically-ill patient. Control is challenging for this
system due to nonlinearities and time delays. In fact, it is shown that fundamental
aspects of the system dynamics are lost when the system is linearised; hence, control
approaches involving linearisation are fruitless. Feedback linearisation and some
optimal control methods are also investigated and shown to be infeasible. However,
it is shown that, for certain parameter values and initial conditions related to the
virus and patient, a specific open-loop control scheme using only the drug cocktail
achieves the objective. It is also proven that, unfortunately, this control scheme fails
for other parameter values and initial conditions. A two-stage open-loop controller
that uses both control inputs is then proposed. It is shown in simulation that the
two-stage controller works over a larger set of parameters and initial conditions
than the single-stage controller, but a rigorous analysis of the two-stage controller
remains elusive.
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Chapter 1

Introduction

1.1 Background

The motivation for this masters thesis came from the field of immunology. Im-
munology is the study of the immune system, which is a highly complex collection
of processes whose main purpose is to remove or destroy hostile substances, such as
harmful bacteria and viruses, from the body. By ignoring factors such as swelling
and temperature increase, the fundamental cell based process can be examined,
specifically the humoral and cell-mediated immune responses. These processes are
both part of a system that the layman thinks of as white blood cells.

For the purposes of this thesis only the humoral response will be investigated.
It suffices to explain this response in the following way: A hostile virus or bacteria,
henceforth referred to as the antigen or virus (V ), causes the system to increase
the rate of production of antigen specific antibodies (F ) from a source of plasma
cells (P ). These antibodies then destroy the antigen. However, a certain number
of antibodies are ‘used up’ for each viral cell that is killed, so antibody production
must be ongoing. It is possible that healthy cells can be damaged or destroyed by
the antigen or, as collateral damage, by the antibody. This damage can affect the
ability of the immune system to function, which is accounted for through a concept
called mass damage (m). Once the virus has been eliminated from the body, the
immune system can recover and return to normal operation.

The variables V , P , and F have units of moles/cm3, while m is dimensionless.
It is important to note that, while the equations that will be used in this thesis are
written as continuous functions of concentration, cells are discrete entities; there-
fore, due to quantisation error, the models break down for small concentrations.
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Figure 1.1: Possible forms of disease: 1-Subclinical; 2-Acute; 3-Lethal; 4-Chronic
[1]

Another difficulty that appears at low concentrations, from the point of view of
physical application, is that there is a lower limit to the concentration that medical
equipment can detect.

Throughout this thesis, two pairs of terms will be used that are somewhat similar
but that have very different meanings; therefore, we will clearly define them now to
avoid confusion in the future. To discuss one of these pairs, a threshold value, V ∗,
must first be defined to be the larger of the following two concentrations: the level
below which the model breaks down due to quantization error, and the minimum
measurable concentration. Below V ∗ we are unsure of the physical system’s true
behaviour; indeed, for model concentrations below V ∗, the actual physical viral
concentration may in fact be zero! Using the notion of V ∗, we can now define the
terms ‘healthy’ and ‘sick’, which refer to viral levels. If, at a given time t, V (t) ≤ V ∗,
then the person is healthy at that time instant; otherwise, they are referred to as
being sick. ‘Dead’ and ‘alive’ refer to damage. A patient is considered dead if, at
any time during the course of treatment, m(t) ≥ 1. The patient is considered to be
alive if, for the entire duration of the treatment, m(t) < 1. So, it is possible for a
patient to be referred to as healthy but dead! The important distinction to make
here is that the terms alive and dead do not refer to the entire patient, but rather
to the concept of mass damage and the ability of the immune system to continue
producing plasma cells. In this thesis death will be considered unacceptable.

There are four standard descriptions of a person’s reaction to infection: subclin-
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ical, acute, chronic, and lethal (see Figure 1.1). The particular behaviour exhibited
by a patient depends on the initial conditions and the model parameters, deter-
mined by properties of the patient’s immune system and the particular virus. The
subclinical case is characterised by a constantly decreasing amount of virus in the
body until the virus is eradicated, while the acute response is characterised by an
initial rise in virus followed by swift elimination due to a strong immune response.
Both of these cases result in a healthy patient. In the chronic case, the virus main-
tains a presence in the body that is balanced by the antibody and hence results in
neither death nor health. In the lethal case, the virus maintains unlimited growth
resulting in death and therefore an inability to combat the proliferation of viral cells
[1]. Obviously, the lethal case is less desirable than the chronic case, which is less
desirable than the acute case, which in turn is less desirable than the subclinical
case.

The previous discussion indicates that an appropriate model will have at least
one equilibrium point corresponding to the healthy case and one limit cycle or
equilibrium point corresponding to the chronic case.

1.2 Objectives

In laymen’s terms, the objective of this thesis is to take a patient that is chronically
ill and make them healthy in finite time, tf . Typically tf is on the order of many
months; however, it will vary according to the patient and the virus. To accomplish
this, two objectives must be satisfied:

1. Find a mathematical model of the immune system that is suitable for control
purposes, and

2. Find a controller that will take an uncontrolled system whose initial conditions
lie within the region of convergence of a stable chronic equilibrium point and
control it such that the trajectory described by the system under control ends
with V (tf ) ≤ V ∗ without causing death in the process.

Inherent in Objective 2 is the assumption that the chronic equilibrium point
is stable. Equilibrium points of nonlinear systems are either stable or unstable,
possibly asymptotically. If they are unstable they may exhibit the properties of a
saddle point, where, even though they move away from the equilibrium for most
x(t0), there exists a non-empty ‘stable submanifold’ which is defined to be the set
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of all x(t0) such that x(t) with initial condition x(t0), approaches the equilibrium
point asymptotically.

The ideal situation for the achievement of Objective 2 is to have the healthy
equilibrium be asymptotically stable; in this case, the objective would be met by
simply forcing the system into the region of convergence of that point, then remov-
ing the control signal. If this is not possible, then the next best situation would
be to have the healthy equilibrium point exhibit the properties of a saddle; in this
case, it would be sufficient to force the system to the stable submanifold. In this
thesis, it will be shown that if the chronic equilibrium point is stable, then the
healthy equilibrium point is an unstable saddle whose stable submanifold includes
all x(t0) where V (t0) = 0.

Recall that below V ∗ the physical value of the virus may be zero. We conclude
from the preceding paragraph that, if the true physical value is indeed zero, then
satisfying Objective 2 will have the added benefit of forcing the entire system to
settle to the healthy equilibrium point. Unfortunately, if the true physical value
is non-zero then, since the healthy point is unstable, the viral concentration will
increase until, eventually, it is above V ∗. At this point, additional control would
be required; however, this situation is beyond the scope of this thesis.

It is assumed that all states of the chosen model are acessible.

1.3 Overview of Thesis

The thesis will begin by finding a model of the immune system and adjusting it
such that it is suitable for control. Properties of the model, such as equilibrium
points and stability, bounds, and existence of solutions will be investigated. A list
of important terms and ideas can be found in Appendix B.

In Chapter 3, previous work by other researchers will be investigated. Further-
more, standard control methods such as linearisation and optimal control though
Model Predictive Control will be investigated. These methods are shown to be
either infeasible or problematic for this system.

Finally, in Chapter 4, a simple open-loop ‘step’ controller, using only one input,
is investigated and shown to work under certain conditions, but fail under others.
A two-stage controller is then proposed and shown to satisfy the thesis objectives
for a wider range of model parameters and initial conditions.

This thesis is purely theoretical. Neither the physical realisation of the control
scheme, nor the feasibility of such a realisation, will be discussed.
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Chapter 2

The Model

2.1 Finding a Model

Two papers, [1] and [2], were found which provide sets of equations that model the
humoral response of the human immune system. The equations in [1] describe the
reaction to viruses, while those in [2] describe the reaction to bacteria. A thorough
discussion of the physical interpretation of the equations and parameters for the
chosen model will occur in Section 2.1.2; here we are only interested in the form
of the equations. Given that the relationship between ζ(m) and m is as shown in
Figure 2.1 and that V , P , F , and m are as defined in Chapter 1, the equations
from [1] are:

V̇ (t) = (β − γF (t))V (t), (2.1)

Ṗ (t) = ζ(m(t− τ))αV (t− τ)F (t− τ)− µP (P (t)− P ∗), (2.2)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t), (2.3)

ṁ(t) = σV (t)− µmm(t) + σfF (t). (2.4)

The following set of equations, from [2], describe the interaction between the
bacteria (B) and the antibody (A) and are based on a predator-prey model. Given

5



Figure 2.1: Relationship between mass damage and ζ(m) [1]

that 1+(t) is the step function, the equations from [2] are:

Ḃ(t) = a1 − ω
(A(t)− Aeq)B(t)

d+B(t)/η + A(t)− Aeq

−bB(t)2 + αB(t)û(t), (2.5)

Ȧ(t) = ρ
A(t− τ)B(t− τ)

η(γ + A(t− τ) +B(t− τ)/η)

[
1− A(t)

A∗

]
×1+(t− τ)− ω

(A(t)− Aeq)B(t)

η(d+B(t)/η + A(t)− Aeq)
− a2(A(t)− Aeq).

The equations in (2.1)-(2.4) are slightly more general than (2.5). Perhaps more
importantly from a control standpoint, the nonlinearities in (2.1)-(2.4) are ‘simpler’
than those in (2.5). Due to these considerations, it was decided to use [1], and
therefore (2.1)-(2.4), as the basis for this work. There exist further extensions to
(2.1)-(2.4) in [3] that also take into account the cell mediated response; however, it
was felt that it would be prudent to control the simpler model first, then move on
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to the extended one. Henceforth, the system state will be denoted:

x(t) ,


V (t)
P (t)
F (t)
m(t)

 . (2.6)

2.1.1 Initial Conditions

It will be established in Section 2.4 that the system in (2.1)-(2.4) has a healthy
equilibrium point, x0h, corresponding to V0h = 0. For the purposes of this work
it will be assumed that the system has been at the healthy equilibrium point for
an indefinite time and that, at t = 0, the patient encounters a specified amount of
virus, in an impulse type interaction. Hence, the initial conditions of all variables
will correspond to the healthy equilibrium point for the given set of parameters,
with the exception of V , which will take on a value equivalent to the initial dose of
germs. Furthermore, for all t ∈ [−τ, 0), V (t) = 0 and, if F0h denotes the healthy
equilibrium value of F , F (t) = F0h. For the remainder of the thesis define x0 , x(0)
to be the initial condition.

2.1.2 Physical Description of Model

In this section, a high-level description of each equation in (2.1)-(2.4) will be pre-
sented, followed by a list summarising descriptions of each parameter.

The first equation in the system, (2.1), describes the rate of growth of the
antigen cells. These cells replicate exponentially and are destroyed only though
encounters with antibody cells.

Plasma cell replication, modeled in (2.2) is influenced by two factors: prior
antigen/antibody encounters and the current concentration of plasma cells. There
is a probability, affected by the amount of damage sustained, that each anti-
gen/antibody encounter will result in the creation of a new plasma cell. This
creation will happen only after a delay, associated with the generation of memory
cells and other dynamic components otherwise ignored in this model. The body
will also create enough plasma cells to ensure that the concentration of cells re-
mains above a threshold level, P ∗. Plasma cells are not ‘used up’ in the creation of
antibodies, nor are they killed by virus cells. Instead, they die off exponentially.

As indicated in (2.3), the only source of antibody cells is plasma. Plasma
cells produce antibodies at a specific rate. For each antigen cell destroyed in an
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antigen/antibody reaction, η antibody cells are ‘used up’ or destroyed. Antibodies
are also lost exponentially due to natural attrition.

In contrast to (2.1)-(2.3), (2.4) reflects an attempt to model an idea, rather than
specific cell interactions. Damage can be caused by the virus or, as collateral dam-
age, by the antibody; in addition, the immune system is a self-healing mechanism.
The easiest way to model these concepts is in a linear fashion, with both damage
and repair occurring at exponential rates relative to the appropriate factor.

The following list describes each parameter individually:

β - Inverse time constant of virus (or antigen)
γ - Probability of an antigen/antibody encounter that results in antigen neu-

tralization
α - Probability of an antibody encountering a virus such that production of

plasma cells is stimulated
τ - Approximates delay associated with generation of memory cells and other

dynamic components otherwise ignored in this model
µp - Inverse of average life span of plasma cells
P ∗ - Minimum number of plasma cells in the body
ρ - Rate of production of antibodies due to one plasma cell
µf - Inverse of average life span of antibody cells
η - Number of antibody cells required to neutralize one antigen cell; this is

a natural number
σ - Rate of damage due to one viral cell
µm - Inverse of recuperation period of m
σf - Rate of damage due to one antibody cell.

2.2 Control Input Placement

The researchers who developed (2.1)-(2.4) did not address the issue of how a control
input would be included. By consulting medical literature, it was found that there
are two main types of drugs designed to assist the humoral immune system in
fighting viruses. These drugs take the form of immune response inhibitors and
drug cocktails.

The drug cocktail acts in a similar manner to the antibody, reducing the rate
of replication of the viral cells. The biological mechanisms responsible for the
interaction between the drug cocktail and the virus indicate that a naive way to
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introduce the drug cocktail input, u, would be as follows:

V̇ (t) = (β − u(t)− γF (t))V (t),

Ṗ (t) = ξ(m(t− τ))αV (t− τ)F (t− τ)− µP (P (t)− P ∗), (2.7)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t),

ṁ(t) = σV (t)− µmm(t) + σfF (t).

This system has a trivial control scheme: simply choosing an input large enough will
force the viral level below V ∗ within the desired time. The equations do not reflect
any detrimental aspect to this treatment, so, assuming that the financial cost of the
drug is of no consequence, our problem is solved. In reality, the drug cocktail can
increase the damage. This is due to the fact that the drug cocktail works by killing
infected cells, so healthy cells can be damaged or killed inadvertently; hence, the
drug cocktail causes collateral damage. To account for this, a u term is introduced
linearly in the damage equation.

V̇ (t) = (β − u(t)− γF (t))V (t),

Ṗ (t) = ξ(m(t− τ))αV (t− τ)F (t− τ)− µP (P (t)− P ∗), (2.8)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t),

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t).

This choice of a linear operation is somewhat arbitrary, but is sufficient to capture
the desired concept.

The immune inhibitor drug, v, does not stop existing antibodies from attacking
and killing viral cells; it simply blocks the production of plasma cells. This indicates
that a logical way to introduce v is as a multiplicitive input; therefore, when v = 0 it
is ‘on’, actively stopping production of plasma due to antigen/antibody interactions.
Conversely, when v = 1 it is ‘off’, since multiplication by 1 does not affect a product.
Using v in this way, combined with u as discussed above, results in the final system
to be controlled:

V̇ (t) = (β − u(t)− γF (t))V (t), (2.9)

Ṗ (t) = ξ(m(t− τ))αV (t− τ)F (t− τ)v(t− τ)− µP (P (t)− P ∗), (2.10)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t), (2.11)

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t). (2.12)

It is important to note that having both inputs active at the same time is
counterproductive, as u’s function is to decrease the viral levels, while v increases
V while it is active. Indeed, this discussion also implies that, if v is used, it should
be active before u.
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2.3 Existence and Continuity

Since (2.9)-(2.12) are continuous in the state variables then a solution exists and is
locally continuous [4].

2.4 Equilibrium Points and Stability

The controlled system (2.9)-(2.12) has two equilibrium points, healthy and chronic,
whose stability can be affected through the choice of parameter values. Subse-
quently ‘0h’ and ‘0c’ will be used to denote the healthy and mild chronic equilibrium
points, respectively.

The healthy equilibrium point is characterized by the following parameter-to-
variable relationships:

V0h = 0,

F0h = ρP ∗/µf , (2.13)

P0h = P ∗,

m0h =
σfρP

∗

µmµf
.

The chronic equilibrium point has two main forms corresponding to different
values of moc. In the first case, which will be called the ‘mild’ case, moc < m∗,
while in the ‘severe’ case, moc ≥ m∗, where m∗ is as shown in Figure 2.1. Only
one of these cases will occur for a given choice of parameters. In particular, the
mild case arises when µpτ ≤ 1 [1]. This inequality indicates that there is a critical
relationship between the delay in creation of plasma cells, τ , and the rate at which
they die, µp. In this thesis we will only be concerned with the mild chronic case,
whose equilibrium point is the following:

V0c =
µP [µf (β − u0c)− γρP ∗]

(β − u0c)(αv0cρ− µPηγ)
> 0,

F0c = (β − u0c)/γ,

P0c =
αv0cµf (β − u0c)− ηµPγ

2P ∗

γ(αv0cρ− µPηγ)
, (2.14)

m0c =
σV0c + σfF0c + σcu0c

µm
< m∗.
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2.4.1 Linearisation

Perhaps the simplest way to gain insight into the qualitative properties of a non-
linear system is to linearise it about an equilibrium point and to investigate the
properties of that linearised system. Using Taylor series techniques, denoting xe to
be the equilibrium point, and defining ∆x , x−xe, the linearisation for (2.9)-(2.12)
is:

∆V̇ (t) = (β − ue − γFe)∆V (t)− Ve∆u(t)− γVe∆F (t),

∆Ṗ (t) = αVeve∆F (t− τ) + αFeve∆V (t− τ) +

αFeVe∆v(t− τ)− µP∆P (t), (2.15)

∆Ḟ (t) = ρ∆P (t)− (µf + ηγVe)∆F (t)− ηγFe∆V (t),

∆ṁ(t) = σ∆V (t)− µm∆m(t) + σf∆F (t) + σc∆u(t).

In particular, linearising about the healthy equilibrium point results in:

∆V̇ (t) = (β − u0h − γρP ∗/µf )∆V (t),

∆Ṗ (t) = αvohρP
∗/µf∆V (t− τ)− µP∆P (t), (2.16)

∆Ḟ (t) = ρ∆P (t)− µf∆F (t)− ηγρP ∗/µf∆V (t),

∆ṁ(t) = σ∆V (t)− µm∆m(t) + σf∆F (t) + σc∆u(t).

Similarly, linearising about the chronic equilibrium point results in:

∆V̇ (t) =
µP [µf (β − u0c)− γρP ∗]

(β − u0c)(αv0cρ− µPηγ)
(−∆u − γ∆F (t)), (2.17)

∆Ṗ (t) = αv0c
µP [µf (β − u0c)− γρP ∗]

(β − u0c)(αv0cρ− µPηγ)
∆F (t− τ)

+
αµP [µf (β − u0c)− γρP ∗]

γ(αv0cρ− µPηγ)
∆v(t− τ)

+
αv0c(β − u0)

γ
∆V (t− τ)− µP∆P (t), (2.18)

∆Ḟ (t) = ρ∆P (t)−
(
µf + ηγ

µP (µf (β − u0c)− γρP ∗)

(β − u0c)(αvocρ− µPηγ)

)
∆F (t)

−ηγ(β − u0c)

γ
∆V (t), (2.19)

∆ṁ(t) = σ∆V (t)− µm∆m(t) + σf∆F (t) + σc∆u(t). (2.20)

11



2.4.2 Stability

This subsection will deal with the uncontrolled system; however, we would like
to use the linearisation results determined above. Under the substitutions ∆u =
∆v = 0, u0 = 0, and v0 = 1, (2.16) and (2.17)-(2.20) correspond to the uncontrolled
case. Therefore, under these substitutions, (2.16) and (2.17)-(2.20) can be used to
evaluate the stability of the uncontrolled equilibrium points.

The healthy equilibrium point will be stable if and only if the rate of increase
of the virus, β, is smaller than the equilibrium rate at which the antibody is able
to destroy the virus, γF0h:

Theorem 2.1 The healthy equilibrium point is asymptotically stable iff β < γF0h.

Proof

The characteristic polynomial of (2.16) under no control is:

det


s− (β − γF0h) 0 0 0
−αF0he

sτ s+ µp 0 0
ηγF0h −ρ s+ µf 0
−σ 0 −σf s+ µm

 ,
which corresponds to:

(s− (β − γF0h))(s+ µp)(s+ µf )(s+ µm). (2.21)

Recall that all parameters are positive; therefore, the only term of interest here is
(s − (β − γF0h)), since all other roots are guaranteed to lie in the Open Left Half
Plane (OLHP).

If β < γF0h then β−γF0h < 0; consequently, all roots are in the OLHP, thus, the
system is stable. Similarly, if the system is stable, then all roots of the characteristic
polynomial must lie in the OLHP; hence β − γF0h < 0 and therefore β < γF0h. �

It is interesting to note that the time delay in (2.16) does not enter into the
characteristic polynomial and hence does not affect the stability of the system.
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In order to state the conditions for the stability of the chronic equilibrium point,
some terms must first be defined:

a , µp + µf + ηγV0c, (2.22)

b , µp(µf + ηγV0c)− ηγβV0c, (2.23)

d , ηγβµpV0c, (2.24)

f , αβρV0c, (2.25)

g , αρV0c. (2.26)

From (2.22)-(2.26) and the fact that all parameters in (2.9)-(2.12) are positive, it
follows that each of a, d, f , and g is positive, but no conclusions can be made about
the sign of b.

A set of conservative sufficient conditions for the stability of the mild chronic
equilibrium point is stated in the following theorem:

Theorem 2.2 The mild chronic equilibrium point (2.14), where µpτ ≤ 1, is stable
if 0 < f−d

a
< b− g − fτ and a− gτ > 0.

Proof Please see Appendix A.1.

Finally, the chronic point is stable only if the combination of the creation rates
of the plasma cells, α, and antibody cells, ρ, is larger than the combination of the
rate of destruction of plasma cells due to natural attrition, µp, and the rate at which
antibody cells are ‘used up’ to fight viruses, ηγ. This is equivalent to the condition
f − d > 0, which is the notation used in the following theorem:

Theorem 2.3 If the mild chronic equilibrium point is stable then f − d > 0

Proof Please see Appendix A.3.

2.4.3 Simultaneous Stability of Equilibrium Points

It is worthwhile to determine if both equilibrium points can be stable simultane-
ously. As discussed in Section 1.2, if this were true, a chronic patient could be
‘cured’ by using a control scheme that simply forces the system into the region
of attraction of the healthy equilibrium point. Unfortunately, in this model, both
equilibrium points cannot be stable at the same time:
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Theorem 2.4 It is impossible for both equilibrium points to be stable simultane-
ously.

Proof

We will use proof by contradiction, so assume that both equilibrium points exist
and are stable. This implies that:

1. β < γρP ∗/µf (see Theorem 2.1 and (2.13)) and

2. f − d > 0 (see Theorem 2.3).

Item 1 is equivalent to:

µfβ − γρP ∗ < 0. (2.27)

Investigating item 2:

0 < f − d,
⇔ 0 < βαρV0c − ηγβµpV0c,
⇔ 0 < αρ− ηγµp.

(2.28)

Now, recall from (2.14) that

V0c =
µP [µf (β)− γρP ∗]

(β)(αρ− µPηγ)
> 0. (2.29)

Inequality (2.27) implies that the numerator of the expression in (2.29) is negative,
and inequality (2.28) implies that the denominator of the expression in (2.29) is
positive. Hence, V0c is negative. This contradicts (2.29). �

So we have shown that if the chronic point is stable, then the healthy point
must be unstable. It is worthwhile to investigate whether the healthy point is a
saddle point and, if it is, whether {x(t0) : V (t0) = 0} is on the stable submanifold.

2.4.4 System Behaviour when V = 0

Recall that in the discussion of the second objective in Section 1.2, it was stated
that, if the chronic equilibrium point is stable then the healthy equilibrium is a
saddle such that {x(t0) : V (t0) = 0} is in the stable submanifold. We have already
shown that the healthy equilibrium is unstable. The following theorem establishes
that there is a stable submanifold that contains {x(t0) : V (t0) = 0} and that the
equilibrium point is a saddle (see Figure 2.2).

14



(0, F0h, P0h, m0h)

V

(F, P, m)

Figure 2.2: Example of a saddle point

Theorem 2.5 In the uncontrolled system, (2.1)-(2.4), if V (tf ) = 0 then V (t) = 0
for all t ≥ tf and the system asymptotically approaches the healthy equilibrium point
(2.13).

Proof Please see Appendix A.4

This theorem implies that F and P are guaranteed to tend to their healthy equilib-
rium values after control is released (assuming V (tf ) = 0 is achieved), and therefore
justifies the appropriateness of the emphasis placed on V and m in this work.

2.5 Bounds and Finite Escape Time

To confirm that the equations reflect reality appropriately, bounds on variables were
investigated. In order to ensure that an upper bound exists for each variable over
a finite time interval, it is necessary to establish that there are no conditions that
result in finite escape time. The proof regarding finite escape time requires lower
bounds on the variables, so these bounds will be investigated first.

2.5.1 Lower Bounds

Begin with the basic nonlinear controlled equations (2.9)-(2.12) and the following
assumptions:

15



1. All initial conditions are positive and P0 ≥ P ∗.

2. Both F (t) and V (t) are positive for all t ∈ [−τ, 0).

3. All model parameters are positive.

4. The state variables are locally continuous (Section 2.3).

Then the following lower bounds hold:

Theorem 2.6 All variables in the system (2.9)-(2.12) have a lower bound of 0.
Furthermore, P (t) has a lower bound of P ∗.

Proof Please see Appendix A.5.

Henceforth, all lower bounds will be denoted with a check, for example, x̌.

2.5.2 Finite Escape Time

To show that (2.9)-(2.12) does not exhibit finite escape time in our region of interest,
we will show that each component of the state is finite for all time t ∈ [0,∞).

Theorem 2.7 The signals V (t), P (t), F (t), and m(t) in (2.9)-(2.12) are finite for
all time t ∈ [0,∞).

Proof Please see Appendix A.6

It follows directly from Theorem 2.7 that the system (2.9)-(2.12) does not exhibit
finite escape time.

2.5.3 Upper Bounds

Since the system does not exhibit finite escape time (Theorem 2.7) it follows that,
over any finite time interval, there exists a maximum value for each variable. Hence-
forth, all upper bounds over the interval t ∈ [0, tf ] will be denoted with a hat, for
example, x̂.
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Table 2.1: Parameter Values for Healthy, Chronic, and Unstable Cases
Parameter Chronic Acute/Subclinical Lethal

P ∗ 2× 10−21 2× 10−21 2× 10−21

ρ 2× 108 2× 108 2× 108

µF 0.043 0.043 0.043
µP 0.32 0.4 0.33
η 220 220 1× 1010

γ 4.09091× 109 4.09091× 1010 90
β 0.1 0.5 1
α 1010 1010 100
σ 1× 1011 1× 1011 1× 1011

σf 10 10 10
µm 1× 10−4 1× 10−4 0.01
τ 3 3 3

2.6 Simulation Setup

In order to simulate (2.9)-(2.12), numerical values for the parameters must be
determined, and the equations must be normalised.

2.6.1 Parameter Value Selection

In [3] a range of acceptable values for the parameters of a more complex system were
found. These parameters were mapped to the equivalent terms in the simplified
equations where possible. In this thesis, the focus is on the acute and chronic
cases; these two cases require that the healthy and mild chronic equilibrium points
be stable, respectively. The parameters for the lethal case, which is of little interest
in this work, can be determined by forcing both equilibrium points to be unstable.
Parameters corresponding to the three cases are provided in Table 2.1.

2.6.2 Normalization

The variables associated with (2.9)-(2.12) vary drastically in size; therefore, to assist
with the reduction of numerical errors in simulation, (2.9)-(2.12) was normalized
using x̄ = x/x0. The inhibitor input, v, and the damage, m, were not normalised

17



because the range of interest is already [0, 1]. Note that P ∗ = P0 is always true.
The normalized equations are:

˙̄V (t) = (β − u0ū(t)− γF̄ (t)F0)V̄ (t),

˙̄P (t) = ζ(m(t− τ))
F0V0

P0

αV̄ (t− τ)F̄ (t− τ)v(t− τ)− µP (P̄ (t)− 1), (2.30)

˙̄F (t) =
P0

F0

ρP̄ (t)− (µf + ηγV̄ (t)V0)F̄ (t),

ṁ(t) = σV̄ (t)V0 − µmm(t) + σf F̄ (t)F0 + σcu0u(t).

Because the normalisation is only used for simulations it is acceptable to use
the non-normalised equations for the analysis in the remainder of this thesis.

2.7 Restatement of Objectives

At this point we have satisfied Objective 1; that is, we have found a model suitable
for control. Now that we have chosen the model and defined the notation that
will be used in this thesis, it is possible to state the second objective in clear
mathematical terminology:

1. Fix all parameters (listed in Section 2.1.2) and fix P0 = P0h, F0 = F0h, and
m0 = m0h.

2. Fix V0 such that (2.1)-(2.4) settles to the chronic equilibrium point.

3. Fix any restrictions on the inputs such as maximum or minimum values,
switching times, and tf . (This point will be clearer when the class of con-
trollers is introduced.)

4. Determine if these selections result in a system of the form (2.9)-(2.12) that,
for an appropriate choice of controller, has the properties V (tf ) < V ∗ and
m(t) < 1 for all t ∈ [0, tf ].

Before investigating the final two-stage controller, we digress to explore some
previous work and other standard control techniques, such as linearisation.
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Chapter 3

Preliminary Control Attempts

In this chapter, initial attempts at control will be briefly discussed, including pre-
vious work by the authors of [2] and some interesting AIDS-related work from [5].
Methods of control such as linearisation and optimal control will be investigated
and shown to be infeasible or problematic for this problem.

3.1 Previous Work

When originally investigating the control problem posed in this thesis, various con-
trol schemes were explored, including: methods of controlling bilinear systems [6],
converting quadratic systems to bilinear with linear feedback [7], and optimal con-
trol. Bilinear control methods are not applicable to our system, since, even when
combining them with the transformation outlined in [7], the resultant system was
fundamentally nonlinear. Most of the literature regarding optimal control as ap-
plied to the immune system includes discussions of how the immune system itself
is optimal; however, these documents do not address control through drug inputs
[8].

Now we will investigate the control approaches taken in [2] and [5]. Note that
there was no control discussion in [1]; that paper was concerned with analysis of
the model, not control.

3.1.1 Linear Matrix Inequalities and the ‘Epsilon Trick’

In [2] the authors took advantage of the quotient nature of the equations, which
our system does not exhibit, to perform an input-output linearisation. This lin-
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earisation resulted in a system with a linear forward path and nonlinear feedback.
The nonlinear feedback was then thought of as a set of structured, bounded un-
certainties. This allowed standard Linear Matrix Inequality (LMI) techniques from
robust control to be applied. It was then shown that to minimise the total drug
administered over the period of treatment, it is sufficient to minimize the upper
bound on one of the internal interactions in the model.

This LMI approach is not feasible for this thesis since we were unable to perform
the initial step of input-output linearisation. There was, however, a technique used
in [2] that was thought, for a time, to be useful to us, we refer to the the technique
as the ‘Epsilon Trick’. In both systems, (2.5) and (2.1)-(2.4), numerical errors
begin to occur when the antigen concentration gets very small, so the authors of
[2] implemented the desired drug concentration as:

û(t) =

{
0 if ū(t) < 0
ū(t)

B(t)+ε
otherwise,

(3.1)

where ū is the control signal that is determined by the LMI analysis and ε was
chosen to represent the concentration below which drug dosages would be stopped.
This value was chosen to correspond to the concentration below which the au-
thors consider the antigen to be eliminated. This concept was the inspiration for
investigating and using the V ∗ term in this thesis.

3.1.2 AIDS and Model Predictive Control

In [5] the researchers use MPC to determine the optimal drug dosage for a patient
suffering from HIV. The system under study in this paper has the benefit of very
large sampling times, on the order of weeks. This means that computation times on
the order of weeks for one control step are acceptable. The researchers also restrict
the controller to having only two possible values, 0 or 1, which reduces the required
computation time. The choice of stage and terminal cost are straightforward and
lead to a reasonable controller for the system.

3.2 New Attempts

3.2.1 Linearisation

A simple approach for controlling a nonlinear system is through linearisation. First,
the system is linearised via Taylor series about the operating point of interest.
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This linear plant is then used in place of the nonlinear plant to design a linear
controller that results in the desired performance. From [9] we know that the linear
controller, when combined with the nonlinear system, will exhibit behaviour in
a similar manner as to when it is combined with the linear plant, as long as the
operating region is within a neighbourhood of the operating point. In [9] the system
under study has no delay; none-the-less, this is still an accepted control approach
for systems with delay. The two linearisations from the previous chapter will be
investigated as to their usefulness for control purposes.

Recall that the system when linearised about the healthy equilibrium point is:

∆V̇ (t) = (β − u0h − γρP ∗/µf )∆V (t),

∆Ṗ (t) = αvohρP
∗/µf∆V (t− τ)− µP∆P (t), (3.2)

∆Ḟ (t) = ρ∆P (t)− µf∆F (t)− ηγρP ∗/µf∆V (t),

∆ṁ(t) = σ∆V (t)− µm∆m(t) + σf∆F (t) + σc∆u(t).

Clearly, (3.2) is not useful, since the critical variable, V , depends only on itself and
hence is an uncontrollable mode. Indeed, both inputs are eliminated everywhere
that they appear, other than in the damage equation, where u has a negative impact
and hence is not useful. This linearisation has eliminated a fundamental part of
the dynamics in the system; therefore, this approach cannot be used to design a
controller for operation near the healthy operating point.

The mild chronic linearisation,

∆V̇ (t) =
µP [µf (β − u0c)− γρP ∗]

(β − u0c)(αv0cρ− µPηγ)
(−∆u − γ∆F (t)), (3.3)

∆Ṗ (t) = αv0c
µP [µf (β − u0c)− γρP ∗]

(β − u0c)(αv0cρ− µPηγ)
∆F (t− τ)

+
αµP [µf (β − u0c)− γρP ∗]

γ(αv0cρ− µPηγ)
∆v(t− τ)

+
αv0c(β − u0)

γ
∆V (t− τ)− µP∆P (t), (3.4)

∆Ḟ (t) = ρ∆P (t)−
(
µf + ηγ

µP (µf (β − u0c)− γρP ∗)

(β − u0c)(αvocρ− µPηγ)

)
∆F (t)

−ηγ(β − u0c)

γ
∆V (t), (3.5)

∆ṁ(t) = σ∆V (t)− µm∆m(t) + σf∆F (t) + σc∆u(t), (3.6)

is no more useful for control than the healthy one. From (2.17), it is clear that
the virus no longer affects itself: there is replication of the virus only through
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an unstable parameter selection or through the inputs, but not due to its own
presence. So a fundamental part of the dynamics of the system are missing yet
again. Therefore, as in the healthy case, this control method cannot be used to
attempt to control (2.9)-(2.12) near the mild chronic equilibrium point.

3.2.2 Linearisation After Eliminating the Bilinear Term

The following method will be used only on the u input.

In both the general linearised equations (2.15) and the original equations (2.9)-
(2.12), it is easy to see that driving V to zero becomes problematic, since the effect
of any control input will be eliminated as V → 0. As discussed in Section 3.1.1,
the authors of [2] introduced an ε term and a variable substitution to attempt to
avoid numerical problems. A similar approach was taken here, introducing a new
input term, û, under the following substitution:

u(t) =

{
û(t)/V (t) V (t) > V ∗

0 V (t) ≤ V ∗.
(3.7)

The difficulty with this method appears when trying to introduce this new input
into (2.12). Since u appears linearly in this equation, the introduction of û intro-
duces a division, so when (2.9)-(2.12) is linearised about the healthy equilibrium
point under the substitution (3.7), the resulting system has a zero division, which
is unacceptable.

3.2.3 Feedback Linearisation

There are two main types of feedback linearisation, full and input-output. Both
require the choice of an output. In this case, the natural choice is V since that is
the variable of most interest. It is easiest to use these methods on systems with
only one input, so they were applied to one input at a time under the logic that, if
it does not work for them individually then it likely will not work for both together.

There is a standard test, outlined in [10], that can be used to determine whether
full feedback linearisation is possible. The system fails this test.

Input-output feedback linearisation is somewhat more complicated. This method
involves a change of variables that splits the dynamics of a nonlinear system into
two parts, linear and nonlinear, such that the input-output characteristics are fully
expressed in the linear part. The transformed state variables of the linear part
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Figure 3.1: Simulation of an uncontrolled acute response

act as an input to the remainder of the system dynamics, which are nonlinear. A
transformation was found that, at first, seemed viable for this system, however the
diffeomorphism broke down at V = 0.

3.2.4 Optimal Control - Model Predictive Control

Optimal Control through Model Predictive Control (MPC) was investigated as a
possible avenue, motivated by the work in [5]. The main idea of MPC is to find the
optimal control signal over a finite horizon, then apply that signal at the current
time step. This cycle is repeated until the system reaches the desired region or
point. Optimality can be determined through a combination of state cost and
final value cost. It can be shown that stability is guaranteed if a specific set of
assumptions is satisfied [11].

One of the major drawbacks of this scheme is that it is calculation intense. In
simulations of an acute case it can easily be seen that in order to capture the upswing
and downturn characteristic of the response, it is necessary to have a horizon of
at least 20 days (see Figure 3.1); however, in order to capture the fast downturn,
the step size must be on the order of 1/4 days, so there are easily 80 steps in the
horizon. In the simplest case, where the input has only two possible values, this
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results in 280 calculations if every path is investigated exhaustively. Even Dynamic
Programming [12] is not able to reduce this value to a tractable number, since we
run into quantization problems and numerous situations where paths do not cross
and, hence, there is little to no simplification. Our conclusion is that MPC is not
useful in determining the optimal time in which to apply v, essentially because of
the curse of dimensionality.

At the time that we were investigating MPC the drug cocktail input information
had not yet been found, so MPC was not attempted on this input. This is definitely
an avenue to pursue for future work.

3.3 Summary

From the results in this section it quickly becomes clear that the system’s dynam-
ics are fundamentally non-linear. Any attempt at linearisation, even with certain
substitutions, results in a loss of critical dynamics. Furthermore, optimal control
via MPC is infeasible for determining a useful v since that aspect of the system
suffers from the curse of dimensionality. We conclude that, for a control approach
to be succesful, it must take advantage of the particular nonlinear structure in
(2.9)-(2.12). Such a control scheme is considered in the next chapter.
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Chapter 4

Two-Stage Control

In this chapter, we first investigate the use of the cocktail drug (u) to achieve Ob-
jective 2. It is shown that the only-u scheme works sometimes, but there exist
parameter and initial condition choices which result in death if health is achieved,
which is possible due to the definitions of death and health. This motivates the
use of the second control input, the inhibitor drug (v), to increase the range of
parameters and initial conditions for which Objective 2 can be satisfied. The final
controller proposed in this work is a two-stage open-loop controller, in which appli-
cation of v is followed by application of u. This is similar to multi-stage treatments
used in chemotherapy, but we are not aware of multi-stage controllers being used
for this type of application.

In Section 2.5, it was established that F ∈ [F̌ , F̂ ], where a conservative choice
of F̌ is zero, and V ∈ [0, V̂ ]. Note that most variable bounds will depend on plant
parameters, initial conditions, and the control inputs. This dependence can easily
introduce difficulties in the mathematical analysis. We avoid such problems by
considering only the use of open-loop control applied over a finite time interval,
[0, tf ]. Throughout, the reader should consider everything to be fixed, that is, we
will determine results for a given set of parameters, initial conditions, t1 (to be
introduced soon), tf , and either U or Ǔ and Û .

In the theorem statements in this chapter, F̂ , F̌ and V̂ are, as usual, bounds
on the signals F and V ; they can be (typically conservative) bounds computed a
priori, or they can be the actual maximum and minimum values of F and V in the
range t ∈ [0, tf ],

Throughout this chapter, the following assumptions are made:
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Figure 4.1: Timing diagram for control signals v and u.

• V0 > V ∗, since otherwise the patient is already healthy and control is not
needed

• m0 = m0h < 1, F0 = F0h, and P0 = P0h as outlined in Section 2.1.1

• F (t) = F0 and V (t) = 0 for all t ∈ [−τ, 0) as outlined in Section 2.1.1

• F̌ , F̂ , and V̂ all exist and lie in [0,∞), as discussed above.

4.1 Defining the Controller Class

This chapter deals with open-loop controllers consisting of a single switch between
application of v and application of u, as shown in Figure (4.1); recall that v is ‘on’
when v = 0. Mathematically, inputs of the following form, where t1 ∈ [0, tf ], will
be considered:

v(t) =

{
0 t ∈ [0, t1]
1 otherwise

, (4.1)

u(t) =

{
U t ∈ [t1, tf ]
0 otherwise

. (4.2)

This choice of controller class is reasonable both mathematically and physically;
step-type signals make analysis feasible while modelling drug dosage through an
intravenous drip. It is also important to note that there are upper and lower
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physical limits to the amount of u that can be used (i.e., you can only put so much
or so little drug into a person!); therefore, we make the reasonable assumption that
U ∈ [Ǔ , Û ], where Ǔ > 0 and Û <∞ are known.

The following theorem gives a condition under which the patient is guaranteed
to stay alive; recall that the term ‘alive’ was defined in Section 1.1. The result will
prove to be useful throughout the chapter.

Theorem 4.1 If the condition

σV̂ + σf F̂ + σCU

µm
≤ 1

holds, then the patient is alive.

Proof:

Begin with (2.12), where t ∈ [0, tf ]:

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t)

≤ σV̂ − µmm(t) + σf F̂ + σcU.

This implies that

m(t) ≤ e−µmtm0 +
σV̂ + σf F̂ + σcU

µm
(1− e−µmt)

< max

{
m0,

σV̂ + σf F̂ + σcU

µm

}
≤ 1,

where the second inequality follows since t is restricted to [0, tf ]. The final inequality
follows from the theorem condition and m0 < 1. �

We now turn to the controller analysis, starting with the situation where only the
cocktail drug, u, is applied, that is, t1 = 0. Before investigating the true controller,
the ideal situation in which U can be made arbitrarily large will be considered.
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4.2 Control Using Only u: The Ideal Case, Û = ∞

In this subsection, we examine the situation when U is not bounded above since, it
is conjectured that using a large enough U for a short enough time guarantees that
the patient will be both alive and healthy. It will be shown that this conjecture is
true only sometimes.

Since we are focusing on application of control for a short time interval, it is
assumed in this section that the region of operation satisfies tf ≤ τ . The equations
(2.9)-(2.12) simplify to the following (for t ∈ [0, tf ]):

V̇ (t) = (β − U − γF )V (t) (4.3)

Ṗ (t) = µP (P (t)− P ∗) = 0 (4.4)

Ḟ (t) = ρP0 − (µf + ηγV (t))F (t) (4.5)

ṁ(t) = σV (t) + σfF (t) + σCU − µmm(t). (4.6)

Since all variables are positive, (4.5) implies that F (t) ≤ F0, so a (nonconserva-
tive) choice for F̂ is F0. Furthermore, for U > β it follows that V (t) ≤ V0, so a
(nonconservative) choice for V̂ is V0.

Define

w ,
σV0 + σfF0 + σCU

µm
.

Fix tf . From (4.3), it is clear that health can be achieved by choosing sufficiently
large U . For any such U , if w ≤ 1, then (using Theorem 4.1) the patient will also
be alive and Objective 2 is satisfied. An obvious question at this point is, what
happens when w > 1? The following theorem addresses this case:

Theorem 4.2 Suppose that U > max
{
β, σcU

µm

}
and that σcU

µm
> 1. Define:

T1 ,
ln V ∗

V0

β − U
,

T2 ,
ln V ∗

V0

β − U − γF̂
,

T3 ,
ln 1−w

m0−w

−µm
,

T4 ,
ln

1−σCU

µm

m0−
σCU

µm

−µm
.
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Then the following relationships hold:

1. If tf > T1 then the patient is healthy.

2. If the patient is healthy, then tf > T2.

3. If tf < T3 then the patient is alive.

4. If the patient is alive, then tf < T4.

In the limit as U approaches infinity, T1 approaches T2 and T3 approaches T4.
Furthermore, in this limit, the patient is alive and healthy iff 1−m0 > σc ln(V0/V

∗).

Proof

This proof will begin by investigating Items 1 through 4.

Proof of Item 1:

From (4.3),

V̇ (t) = (β − U − γF (t))V (t)

≤ (β − U)V (t),

which implies
V (t) ≤ e(β−U)tV0,

which in turn implies

V (tf ) ≤ e(β−U)tfV0,

< e(β−U)T1V0,

= e(β−U)
ln V ∗

V0
β−U V0

= V ∗,

where the second inequality follows since U > β. �

Investigating the form of T1 reveals that T1 → 0 as U → ∞. Hence, for large
enough U it is possible to restrict tf to the range [0, τ ] while still guaranteeing
health.

Proof of Item 2:
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From (4.3),

V̇ (t) = (β − U − γF (t))V (t)

≥ (β − U − γF̂ )V (t),

which implies

V (t) ≥ e(β−U−γF̂ )tV0,

which in turn implies

V (tf ) ≥ e(β−U−γF̂ )tfV0.

Use the fact that V (tf ) < V ∗ to conclude

V ∗ > e(β−U−γF̂ )tfV0,

which, since U > β, implies that

tf >
ln(V ∗/V0)

β − U − γF̂
= T2.

�

Proof of Item 3:

Recall that the region of interest satisfies tf ≤ τ , so we can use V̂ = V0 and

F̂ = F0, as discussed above. To verify that the patient is alive, we must examine
m. To this end, start with

ṁ(t) ≤ σV0 + σfF0 + σCu(t)− µmm(t),

where t ∈ [0, tf ]. It follows that

m(t) ≤ e−µmtm0 +
σV0 + σfF0 + σCU

µm
(1− eµmt)

= e−µmtm0 + w(1− eµmt),

= w + e−µmt(m0 − w)

< w + e−µmT3(m0 − w)

= w + e−µm

ln 1−w
m0−w
−µm (m0 − w)

= 1,

where the third inequality inequality follows from the facts that t < T3 andm0−w <
0. �
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Proof of Item 4:

We will show that, if tf ≥ T4, then the patient is dead. We proceed by finding
a lower bound on m. Starting with

ṁ(t) ≥ σCu(t)− µmm(t)

we see that

m(t) ≥ e−µmtm0 +
σCU

µm
(1− eµmt),

which implies

m(tf ) ≥ e−µmtfm0 +
σCU

µm
(1− eµmtf )

= w + e−µmtf (m0 −
σCU

µm
)

≥ w + e−µmT4(m0 −
σCU

µm
)

= w + e−µm

ln
1−σCU

µm

m0−
σCU
µm

−µm (m0 −
σCU

µm
)

= 1,

where the second inequality follows from the fact that m0 − σCU
µm

is negative. �

Now we must investigate what happens in the limit as U approaches infinity. It
is desired to obtain the following relationships:

• T1 = T2,

• T3 = T4, and

• T3 > T1.

First we will investigate T1 and T2:

lim
U→∞

T2

T1

=

ln V ∗
V0

β−U−γF̂
ln V ∗

V0

β−U
= 1.
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Similarly, for T3 and T4:

lim
U→∞

T3

T4

= lim
U→∞

ln 1−w
m0−w

−µm

ln
1−σCU

µm

m0−
σCU
µm

−µm

= lim
U→∞

 σc(m0−1)
µ2

m(m0−w)(1−w)

σc(m0−1)

µ2
m(m0−

σCU

µm
)(1−σCU

µm
)


=

m0−1
σc

σc

m0−1

= 1,

where the second equality follows from the definition of w and L’Hopital’s rule.

Finally, we must show that the condition outlined in the theorem is the only
way for T3 > T1 to be true in the limit U →∞. In other words, we must show that

lim
U→∞

T3

T1

> 1 (4.7)

holds iff 1−m0 > σc ln(V0/V
∗). Towards this end, compute:

lim
U→∞

T3

T1

= lim
U→∞

ln 1−w
m0−w

−µm

ln V ∗
V0

β−U

= lim
U→∞

 σc(m0−1)
µ2

m(m0−w)(1−w)

− ln V ∗
V0

(β−U)2


=

m0 − 1

σc ln
V ∗

V0

=
1−m0

σc ln
V0

V ∗

,

where the second equality follows from the definition of w and L’Hopital’s rule and
where the third equality follows from the definition of w. We conclude that (4.7)
holds iff 1−m0 > σc ln(V0/V

∗). �

A conclusion from Theorem 4.2 is that, even if the step size of u is unbounded,
there are some cases where a drug cocktail treatment alone cannot satisfy Objec-
tive 2.

32



4.3 Control Using Only u: The Case Where Û <

∞

As discussed in the previous section, there are cases where even an unbounded u
cannot achieve the control goals. One might expect that placing a finite upper
bound on U only worsens the situation. The purpose of this section is to evaluate
conditions under which the control objectives can be achieved and those under
which they cannot be achieved, when Û <∞. Our approach is to derive conditions
for health and conditions for death. Once those conditions are found, it will be
shown that there are situations where it is possible to achieve health before causing
death and where, to achieve health, the patient must first die.

4.3.1 Conditions for Health

Recall that health is defined as V (tf ) ≤ V ∗. It is worthwhile to note that there are
cases where, irrespective of the length of time that u is applied, the patient will be
sick.

Theorem 4.3 If Û ≤ β − γF̂ then V (tf ) > V ∗.

Proof

From (2.9),

V̇ (t) = (β − u(t)− γF (t))V (t)

≥ (β − Û − γF̂ )V (t).

The assumption Û ≤ β − γF̂ gives 0 ≤ β − γF̂ − Û , implying that V̇ ≥ 0;
therefore, V is monotonically increasing. Since V0 > V ∗, this implies that V (t) >
V ∗ ∀ t ∈ [0, tf ]. �

To state necessary conditions for health the following definition will be used:

Th1 ,
ln(V ∗/V0)

β − Û − γF̂
. (4.8)

Note that Th1 is well defined if the patient is healthy since, by the contrapositive
statement of Theorem 4.3, Û > β−γF̂ . Necessary conditions for health are outlined
in the following theorem.

33



Theorem 4.4 If V (tf ) ≤ V ∗ then tf ≥ Th1 > 0.

Proof

From (2.9),

V̇ (t) = (β − u(t)− γF (t))V (t)

≥ (β − Û − γF̂ )V (t),

which implies

V (t) ≥ e(β−Û−γF̂ )(t)V0

and
V (tf ) ≥ e(β−Û−γF̂ )tfV0.

The assumption is that V ∗ ≥ V (tf ), so

V ∗ ≥ e(β−Û−γF̂ )tfV0,

which implies
ln(V ∗/V0) ≥ (β − Û − γF̂ )tf

and, using the contrapositive of Theorem 4.3,

tf ≥
ln(V ∗/V0)

β − Û − γF̂
= Th1.

Finally, since V0 > V ∗, it follows that ln(V ∗/V0) < 0; hence, Th1 is positive. �

The following time (which is well-defined when Ǔ > β − F̌ ) is required to state
sufficient conditions for health:

Th2 ,
ln(V ∗/V2)

β − Ǔ − γF̌
. (4.9)

These conditions are outlined in the following theorem:

Theorem 4.5 If Ǔ > β − F̌ and tf ≥ Th2 then V (tf ) ≤ V ∗.

Proof This proof is similar to the proof for Theorem 4.4 and is given in Ap-
pendix A.7.
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4.3.2 Conditions for Death

The following definitions will be useful in stating the next theorem, which outlines
necessary conditions for death:

wd1 ,
σV̂ + σf F̂ + σcÛ

µm
, (4.10)

Td1 ,
−1

µm
ln

(
1− wd1
m0 − wd1

)
. (4.11)

Note that Td1 is well-defined in the case where wd1 > 1, which is the only area of
interest, since by Theorem 4.1, if wd1 ≤ 1 the patient is guaranteed to be alive.

Theorem 4.6 If m(tf ) ≥ 1 then tf ≥ Td1.

Proof This proof is similar to the proof for Theorem 4.4 and is given in Ap-
pendix A.8

Finally, the following definition will be useful in stating the next theorem. which
gives sufficient conditions for death:

Td2 ,
−1

µm
ln

(
1− σcǓ

µm

m0 − σcǓ
µm

)
. (4.12)

This term is well defined when σcǓ
µm

> 1.

Theorem 4.7 If σcǓ
µm

> 1 and tf ≥ Td2 then m(tf ) ≥ 1.

Proof This proof is similar to the proof for Theorem 4.4 and is given in Ap-
pendix A.8

4.3.3 Healthy and Alive

The only way to ensure that the patient is both alive and healthy is to choose
control variables, initial conditions, and parameters such that tf ∈ [Th2, Td1). This
follows directly from Theorems 4.5 and 4.6. To achieve this requirement it is first
necessary to have Th2 < Td1. Note that satisfying the requirement tf < Td1 may be
difficult, since Td1 depends on tf . Using V0 = 5.5× 10−21, V ∗ = 10−40, Ǔ = 0.0001,

Û = 1, σc = 0.5, t1 = 0, and tf = 85 satisfies the requirements and results in
Figure 4.2. Observe that V (tf ) < V ∗ and m(t) < 1 for all t ∈ [0, tf ], so the patient
is both healthy and alive.
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Figure 4.2: Patient is healthy and alive, U = 0.01

4.3.4 Healthy but Dead

A particularly important result of the theorems outlined above is that, if Th1 > Td2,
then in every case where the patient is healthy they are also dead. This is a direct
result of Theorems 4.4 and 4.7. An example of when this would occur is with the
choices V0 = 5.5×10−21, V ∗ = 10−50, Ǔ = 0.02, Û = 1, σc = 1, t1 = 0, and tf = 16,
shown in Figure 4.3. Observe that, although health is achieved at approximately
15 days, the patient died long before, at approximately 11 days.

4.4 Control using u and v

To try to relax the conditions under which the controller is guaranteed to fail, we
now explore the possibility of using the second control input, v, in conjunction with
control input u, as described at the beginning of this chapter. We will establish
some notation before progressing: define xu to be the state under u-only control,
xv to be the state under v-only control, and xn to be the state under no control.

Before discussing the actual two-stage controller, we first attempt to gain some
insight into how the inhibitor input affects the system when it is used with no other
inputs.
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Figure 4.3: Patient is healthy but dead, u = 0.1

4.4.1 The Mechanism Behind the Inhibitor Drug

The problem with the u-only control method is that there are cases where applying
enough u to make the patient healthy always results in death. A way around this
problem is to find a method of decreasing V while using less u; this is the ultimate
purpose of the inhibitor drug, v.

It is worthwhile to return to the original equations to obtain some insight into the
mechanism underlying the inhibitor drug’s performance. Recall that the controlled
equations are as follows:

V̇ (t) = (β − u(t)− γF (t))V (t), (4.13)

Ṗ (t) = ξ(m(t− τ))αV (t− τ)F (t− τ)v(t− τ)− µP (P (t)− P ∗), (4.14)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t), (4.15)

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t). (4.16)

Consider (4.13). Since β is a constant, then clearly the only way to decrease the
virus, other than by increasing u, is by increasing F . Moving to (4.15) we see that
the only term that increases F is P . Finally, investigating (4.14), we see that P
increases through increases in V and F . So we conclude that an increase in V is
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Figure 4.4: V with no Control and Only v, t1 = 20, V0 = 5.5× 10−21

needed. At this point we have an obvious paradox: we are seeking to decrease V
through a mechanism that requires an increase in V .

The paradox can be resolved by using the inhibitor drug, v, in a somewhat
counter-intuitive manner. Introducing v allows the virus to increase in the short
term to create an increase in the antibody over the long term, which will, in turn,
result in a rapid decrease in the virus. In more detail, the mechanism by which
the inhibitor drug is intended to increase the antibody concentration is described
as follows:

1. At t = 0, set v = 0, causing plasma production to stop, even though there
is virus in the body. This will stop the generation of antibody and hence
allow the virus to increase (in the short term) more than it would in the
uncontrolled case.

2. At t = t1, set v = 1, allowing the plasma cells to again ‘see’ the virus. Since
the virus level is higher now than it would have been in the uncontrolled case,
the immune system will have a much stronger reaction; plasma production,
and hence antibody production, will occur at a much higher rate than in the
uncontrolled case.

3. The end result of Item 2 is that, after a certain time, Fv > Fn.
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Of course the hope is that the increase in F is enough to offset the increase in V so
that, in the long term, Vv < Vn. Simulations verify that this does, in fact, happen.
For example, a comparison of Vv and Vn can be seen in Figure 4.4. Observe that
the Vv reaches a minimum faster than Vn and that the minimum is smaller. Note
that, throughout the interval shown in Figure 4.4, u = 0. In the next section, the
full two-stage controller is considered.

4.4.2 Demonstration of the Two-Stage Controller

In this section the full two-stage controller is considered. We provide further justi-
fication for proposing this control scheme and present simulation results showing a
situation in which the scheme is successful.

Let us assume that v has been applied for some time; hence, the peak value of
Vv will be larger than the peak value of Vn, as explained above. From (4.13) we see
that every peak in V , in particular the first peak, occurs when F (t) = β/γ. From
simulation we have found that the first peaks of the controlled and uncontrolled V
occur at almost the same time instant; call this time T ∗. As a result, in both cases
it is approximately true that F (T ∗) = β/γ. This implies that, for t ≥ T ∗ until an
unknown time, Pv(t) > Pn(t); hence we have achieved our objective of increasing
P (and, thus, F ). One way of thinking about the effects of this input is to imagine
that we are simply increasing the initial condition of V , but that the time it takes
to accomplish this increase is such that the peaks of the two systems coincide in
time. Note that the switch in v occurs well before V reaches its first peak and that
v has no adverse affect on m aside from the increase in V .

It is important to note that the final effect of control with only v is to slightly
decrease the time to the first minimum in V and to decrease the value of that
minimum (Figure 4.4). If that minimum is decreased to such an extent that it is
less than V ∗, then v-only has made the patient healthy! Unfortunately, the increase
required in V to achieve health for a reasonable sized V ∗ is very large. Therefore,
the true use of this input is to decrease the value of V to a point where the u input
is able to quickly make the patient healthy without causing death. An example that
uses the same settings as in the healthy-but-dead example, i.e., V0 = 5.5 × 10−21,
V ∗ = 10−50, Ǔ = 0.02, Û = 1, σc = 1, is given in Figure 4.5. The critical result here
is that it was possible to use a much lower value of U while still achieving health.
This U was sufficiently small and applied for a sufficiently short period of time such
that it allowed the patient to be made healthy before they died, as opposed to the
size of U required to make the patient healthy in prior sections (Figure 4.3). Note
that m is close to 1 but does not actually reach that value.
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Figure 4.5: Results of Two-Stage Controller, t1 = 25, tf = 71, U = 0.02

We are well aware that there are numerous questions remaining regarding this
control scheme, such as how to choose t1 and how to guarantee that F increases
enough to offset the increase in V . These questions are very difficult to answer due
to the nonlinearities and the time delay exhibited by the system; rigorous analysis
remain elusive.
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Chapter 5

Summary and Future Work

In this thesis a model of the human immune system was found and modified such
that it is suitable for control purposes. This model is nonlinear with a time delay
and has proven to be very difficult to control. Early on it was shown that certain
standard control techniques, such as linearisation, were either problematic or infea-
sible for this model. The root of the problem is that critical system dynamics are
nonlinear in nature. Specifically, problems tended to arise at V = 0. Hence, it was
concluded that the system is fundamentally nonlinear.

Some open-loop controllers were then investigated. A single-stage controller,
using only the u input, was investigated and it was concluded that the u input alone
would only work under certain choices of parameters and initial conditions. Finally,
a two-stage controller was shown, in simulation, to satisfy the control objective for
a wider range of parameters and initial conditions than the u-only controller.

Avenues for further investigation include:

1. Using MPC for the u only input while not restricting u to having the form of
a step.

2. Finding a rigorous analysis for the usefulness of the two-stage controller.

3. Investigating a two-stage controller where u and v are not in the form of a
step.

4. Attempting to implement control of this type on a more complicated model.
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Appendix A

Proofs

A.1 Proof of Theorem 2.2 – Sufficient Conditions

for Stability of the Mild Chronic Equilibrium

Point

The goal here is to show that the mild chronic equilibrium point (2.14) is stable if
0 < f−d

a
< b− g − fτ and a− gτ > 0.

Throughout this discussion, the term ‘quasipolynomial’ will be used to refer to
systems of the form

f(s) = ans
n + an−1s

n−1 + · · ·+ a0 + (bns
q + bq−1s

q−1 + · · ·+ b0)e
−sτ , (A.1)

where ai, bi and τ are constants. Also, throughout this proof the functions <(x)
and =(x) will be used to denote the real and imaginary parts of x.

This proof is not straightforward. Before starting the formal proof, an outline
will be presented.

A.1.1 Outline of the Proof

The proof begins by using the fact that the stability of a nonlinear equilibrium
point can be assessed via the stability of the linearisation about that point, as
outlined in Section 2.4.1. To evaluate the stability of a linear system with delay, the
characteristic quasipolynomial is evaluated. If all the roots of that quasipolynomial
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lie in the open left half plane, then the system is stable [13]. Therefore, the first
step of the proof is to find the characteristic quasipolynomial of (2.17)-(2.20) so
that the location of its roots can be determined.

Due to the e−sτ terms in the quasipolynomial, standard polynomial based meth-
ods cannot be used to determine root locations. The Mikhailov Criterion, however,
is ideally suited to this task. For readers not familiar with this criterion, it is pre-
sented in Appendix A.1.2. Using this criterion, it is possible to conclude that, if a
specific curve never enters the fourth quadrant of the complex plane, then the sys-
tem will be stable. It is shown that the assumptions in Theorem 2.2 are sufficient
to ensure that this quadrant exclusion will occur.

A.1.2 A Useful Theorem

The Mikhailov Criterion is ideal for evaluating the stability of a delay system;
however, it is not well-known in North America and a proper statement of the
theorem, let alone a proof, is difficult to find.

Before stating the theorem, we will define a specific type of quasipolynomial,
denoted Q(s). Let P1(s) and P2(s) be real-valued polynomials such that deg(P1) >
deg(P2), P1(s) is monic, and

Q(s) , P1(s) + P2(s)e
−sτ

has no roots on the imaginary axis. Also define n , deg(P1(s)).

Theorem A.1 (The Mikhailov Criterion) All roots of Q(s) have negative real
parts iff the increase in the argument of Q(jω) equals nπ/2 as ω increases from
zero to infinity.

Proof Please see Appendix A.2.

A.1.3 Main Proof

Assume that

0 <
f − d

a
< b− g − fτ (A.2)

and
a− gτ > 0. (A.3)
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Recall that if the system, when linearised about the equilibrium point in ques-
tion, is stable, then so is the nonlinear equilibrium point (see Section 2.4.1). Also
recall that the mild chronic equilibrium point relates to the case where µpτ ≤ 1
and that we are assessing stability when there is no input to the system.

To evaluate stability of a linear system, the characteristic quasipolynomial must
be investigated; therefore, the first step in the proof is to find the characteris-
tic quasipolynomial, which can easily be determined via the chronic linearisation
(2.17)-(2.20) to be

det


s 0 γV0c 0

−αβ
γ
e−sτ s+ µpP −αV0ce

−sτ 0

ηβ −ρ s+ (µf + ηγV0c) 0
−σ 0 −σf s+ µm

 (A.4)

or

(s+ µm){s3 + (µp + µf + ηγV0c)s
2 +

[µp(µf + ηγV0c)− ηγβV0c]s− ηγβµpV0c + (αρV0cs− αβρV0c)e
−sτ}. (A.5)

By [13], (2.17)-(2.20) is stable iff all roots of (A.5) lie in the Open Left Half
Plane (OLHP). Using (2.22)-(2.26), define

Z(s) , s3 + as2 + bs− d+ (gs− f)e−sτ ; (A.6)

hence, the characteristic quasipolynomial is (s+ µm)Z(s). Since all model param-
eters are positive, the system pole at −µm is stable and can be ignored for the
remainder of the discussion. For stability, it is required that all of the roots of Z(s)
lie in the OLHP. The Mikhailov Criterion will be used to find sufficient criteria for
this to occur; therefore, Z(s) must be shown to be a quasipolynomial of the form
of Q(s), i.e.:

1. s3 + as2 + bs− d is monic,

2. deg(s3 + as2 + bs− d) > deg(gs− f), and

3. Z(s) has no roots on the imaginary axis.

Clearly, Item 1 is satisfied. Item 2 is satisfied since deg(s3 + as2 + bs − d) = 3
and deg(gs− f) = 1. Note that this implies that n = 3. Item 3 is more difficult to
satisfy, but it will be shown later in the proof that it is indeed fulfilled, so we will
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Figure A.1: Path of Z through the Imaginary plane. Solid line indicates desirable
path, dashed line indicates undesirable paths.

proceed with the investigation of the properties of Z(jω) as ω increases from zero
to infinity. As a result, throughout the remainder of the proof, assume that ω ≥ 0
unless stated otherwise.

The basis for the remainder of the proof will be outlined before we continue.
First it be will shown that arg(Z(0)) = 0 and arg(Z(jω)) for large ω approaches
3π/2 + 2πk, for some k ∈ Z. Therefore, if Z(jω) is restricted from entering the
fourth quadrant and from passing through the origin then k = 0, consistent with
the requirement from Theorem A.1 (see Figure A.1). One way to ensure that
Z(jω) neither enters the fourth quadrant nor passes through the origin is to require
=(Z(jω)) > 0 for all ω where <(Z(jω)) ≥ 0. Note that restricting Z(jω) from
passing though the origin is sufficient to ensure that Z(s) has no zeros on the
imaginary axis, as required by the third restriction on quasipolynomials of the form
of Q(s).

The following technical result will be required:

Lemma A.2 µpτ ≤ 1 ⇒ a > bτ .

Proof:
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Assume µpτ ≤ 1 and begin with (2.22):

a = ηγVc0 + µf + µp
= (ηγVc0µp + µfµp + µ2

p)/µp

=
µp(ηγVc0+µf )−βηγVco+βηγVco+µ2

p

µp

=
b+βηγVc0+µ2

p

µp
(from (2.23))

> b
µp

(∵ all parameters > 0)

≥ b(µpτ)

µp
(∵ µpτ ≤ 1)

= bτ.

�

The following facts are used throughout the remainder of the proof:

• sin(x) ≤ x ∀ x ≥ 0 and

• cos(y) ≤ 1 ∀ y.

This choice of bound for sine is being used instead of sin(x) ≤ 1 since it makes the
math cleaner.

Continuing with the formal proof, directly from (A.6) we have

<(Z(jω)) = −aω2 − d− gω sin(ωτ) + f cos(ωτ), (A.7)

=(Z(jω)) = −ω3 + bω − gω cos(ωτ)− f sin(ωτ), (A.8)

d<(Z(jω))

dω
= −2aω − gωτ cos(ωτ)− (g + fτ) sin(ωτ), (A.9)

d=(Z(jω))

dω
= −3ω2 + b+ gωτ sin(ωτ)− (g + fτ) cos(ωτ). (A.10)

From (A.2), we have 0 < (f − d)/a. Since a > 0, then f − d > 0. Use this fact,
(A.7), and (A.8) to obtain

<(Z(0)) = f − d > 0, (A.11)

=(Z(0)) = 0, (A.12)

and, for all large ω,

<(Z(jω)) = −aω2 +O(ω2) < 0, (A.13)

=(Z(jω)) = −ω3 +O(ω2) < 0. (A.14)
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Note that (A.13) and (A.14) imply that, as ω → ∞, arg(Z(jω)) → 3π/2 + 2πk,
k ∈ Z.

Since the curve starts with a positive real part, ends with a negative real
part, and is continuous, there must exist some ω1 such that <(Z(jω1)) = 0 and
<(Z(jω)) < 0 ∀ ω > ω1. That is, ω1 represents the largest ω such that the curve
crosses the imaginary axis (see Figure A.1). Furthermore, it can be shown that ω1

is the only crossing.

Claim 1: Z(jω) crosses the imaginary axis only once, at ω = ω1.

Proof of Claim 1:

Starting from (A.9):

d<(Z(jω))
dω

= −2aω − gωτ cos(ωτ)− (g + fτ) sin(ωτ)
≤ (−2a+ gτ + (gτ + fτ 2))ω
= [(−a+ gτ) + (−a+ gτ + fτ 2)]ω
≤ [−a+ gτ + (−b+ g + fτ)τ ]ω. (by Lemma A.2)

If we combine this result with (A.2), (A.3), and the fact that τ and ω are non-
negative we can conclude that

d<(Z(jω))

dω
< 0, (A.15)

which in turn implies that there can be only one imaginary axis crossing, specifically
at ω1. �

The following additional technical result is required for the main proof.

Lemma A.3 If ω ≤ ω1, then ω2
1 ≤ (f − d)/a.

Proof

Since a and d are positive and ω is non-negative, (A.7) gives

<(Z(jω)) < −gω sin(ωτ) + f cos(ωτ). (A.16)

Since ω1 is the only imaginary axis crossing (Claim 1), it follows that once
<(Z(jω)) becomes negative it must remain negative. It is useful to determine
conditions on ω that result in <(Z(jω)) < 0 since these conditions will give a
bound on ω1.
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Both sin(ωτ) and cos(ωτ) can be positive or negative; however, it is known that
ω follows a path that begins at zero and increases. Therefore, we can conclude that
sin(ωτ) and cos(ωτ) begin at 0 and 1 respectively and, as ω increases, sin(ωτ) and
cos(ωτ) are positive until ωτ = π/2, after which, until ωτ = π, sin(ωτ) is positive
and cos(ωτ) is negative. The critical piece of information here is that cos(ωτ)
switches signs before sin(ωτ); therefore, for ωτ ∈ (π/2, π),

<(Z(jω)) < −gω sin(ωτ) + f cos(ωτ)

< 0.

As previously mentioned, Z(jω) can only cross the imaginary axis once, so
it follows from the above inequality that ω1 < π

2τ
, which in turn implies that

cos(ωτ) ≥ 0 and − sin(ωτ) ≤ 0 for all ω ≤ ω1; therefore, from (A.16),

<(Z(jω)) < −aω2 − d+ f ∀ ω ≤ ω1. (A.17)

Finally,
0 = <(Z(jω1)), (definition of ω1)

⇒ 0 ≤ −aω2
1 − d+ f, (from (A.17))

⇔ ω2
1 ≤ (f − d)/a. (∵ a > 0)

�

To complete the proof, we show that for any ω ≤ ω1, which includes all ω
for which the real part of Z(jω) is non-negative, the imaginary part of Z(jω) is
positive. Begin with (A.8) and the assumption that ω ≤ ω1:

=(Z(jω)) = −ω3 + bω − gω cos(ωτ)− f sin(ωτ),
≥ ω[−ω2 + (b− g − fτ)],
> ω[−ω2 + (f − d)/a], (from (A.2))
≥ ω(−ω2 + ω2

1), (by Lemma A.3)
≥ 0. (∵ ω ≤ ω1)

Therefore, for all ω ≥ 0 such that <(Z(jω)) ≥ 0 it is also true that =(Z(jω)) >
0, so Z(jω) will never enter the fourth quadrant, nor will it pass through the ori-
gin, hence arg(Z(jω)) → 3π/2 as ω → ∞. Combining this with the fact that
arg(Z(0)) = 0 results in the conclusion that Z(jω) increases by 3π/2 as ω increases
from zero to infinity. Applying the Mikhailov Criterion (Theorem A.1) gives the
result that all roots of Z(s) have negative real parts; therefore, the chronic equilib-
rium point is stable. �
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A.2 Proof of Theorem A.1 - The Mikhailov Cri-

terion

To prove this theorem we first need to present some definitions, introduce the
Principle of the Argument, and state some useful lemmas.

A.2.1 Definitions

A complex function f is ‘analytic’ on a domain if it has a derivative at every point
in the domain. An equivalent definition is that f is analytic if it has a Taylor series
about each point, x, in the domain such that the series converges to f in an open
neighbourhood of x.

A function is ‘meromorphic’ in a domain if it is analytic throughout that domain
except possibly for poles. A function that is analytic on a domain is clearly also
meromorphic in that domain.

A ‘path’ is a curve in the complex plane that has a direction. A path is ‘closed’
if it ends where it starts and is ‘simple’ if it never crosses itself.

A point is ‘enclosed’ by a simple closed path if the point always lies to the right
of the path when that path is traversed in its prescribed direction.

The ‘net number of counter clockwise (CCW) encirclements’ of a point by a
curve travelling in the CCW direction is determined by drawing a ray from that
point to infinity, then determining the number of CCW crossings of the ray mi-
nus the number of CW crossings of the ray. Note that one CCW encirclement is
equivalent to an increase of 2π in the argument of the function.

Define Γ to be a simple closed and bounded curve in the complex plane. Fur-
thermore, define D to be the domain enclosed by Γ. Then B , D∪Γ is closed and
bounded.

Denote G(s), s ∈ C, to be some function that is meromorphic on D and analytic
and nonzero on Γ. Define N to be the (finite) number of zeros of G(s) in D and D
to be the (finite) number of poles of G(s) in D. Both N and D count multiplicities.
Define G(Γ) to be the mapped path determined by evaluating G(s) as s traverses
Γ. G(Γ) lies in the ‘mapped plane’.

A.2.2 The Principle of the Argument

The Principle of the Argument is stated as follows:
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Theorem A.4 (Principle of the Argument (POA)) G(Γ) is a simple closed
curve whose net number of clockwise encirclements of the origin is exactly N −D.

Proof

The proof for the case where G(s) is rational is presented in [14], but also holds
for any meromorphic function under the assumption that N and D are finite. The
proof follows directly from Cauchy’s theorem. �

A.2.3 Some Useful Lemmas

The following lemmas and corollary will be needed. The first lemma is a standard
result:

Lemma A.5 Any non-constant analytic function satisfies the following two prop-
erties:

1. Every zero is isolated.

2. The set of all zeros is closed.

Proof

Let’s start with Property 1. Let f be a function that is analytic on some domain
D1 and let z be a zero of f with multiplicity k. Therefore f(z) = 0 and, by the
definition of analyticity, there exists a Taylor series expansion for f around z which
converges on an open disk |x− z| < r, for some x ∈ D1 and some r > 0. Write this
expansion as f(x) = (x− z)k

∑∞
n=0 an+k(x− z)n, with ak 6= 0 and k > 0.

Observe that g(x) ,
∑∞

n=0 an+k(x − z)n is analytic on |x − z| < r and, fur-
thermore, g(z) = ak 6= 0, since we have removed all of the zeros of f that lie at z.
Since g(x) is analytic on |x − z| < r, it is continuous at z. Use this fact and the
fact that g(z) 6= 0 to conclude that there exists an ε > 0 such that, for all x where
|x − z| < ε, we have |g(x) − ak| < ak

2
, implying that g(x) is nonzero on that set.

Consequently, the zero z is isolated.

Property 2 follows directly from Property 1. �

It is possible to extend this result to establish that the number of zeros on D is
finite:
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Corollary A.6 If a complex function, f , is analytic on B and nonzero everywhere
on Γ, then the number of zeros of f in D is finite.

Proof

Property 1 from Lemma A.5, combined with the fact that B is closed and
bounded implies that the limit point of any convergent sequence of zeros of f in B
must lie in the set of zeros. However, limit points are not isolated, so from property
2, f cannot have a sequence of zeros in B that also forms a limit point; hence, there
will be a finite number of zeros in B. Furthermore, since D ⊂ B, the number of
zeros in D is finite. �

Define z ∈ {x ∈ C|Q(x) = 0 and <(x) ≥ 0}, i.e., z is a zero of G(s) that lies in
the closed right half plane (CRHP). Also, write

P1(s) = sn +
n−1∑
i=0

ais
i,

P2(s) =

q∑
i=0

bis
i,

where q < n. A useful technical result regarding quasipolynomials of the form Q(s),
is:

Lemma A.7 For a given quasipolynomial, Q(s), there exists an r ∈ [0,∞) such
that every zero of Q(s) that lies in the ORHP satisfies |z| < r.

Proof

Before we begin the proof note the following:

Fact 1: There exists an R > 0 such that, for all r̄ ≥ R,

r̄n −
n−1∑
i=0

(|ai|r̄i)−
q∑
i=0

(|bi|r̄i) > 0.

This is a proof by contradiction; hence, assume that, for all r ∈ [0,∞), there
exists a z such that |z| ≥ r. Choose r = R. This implies that there exists a z = r̄ejθ

such that |z| = r̄ ≥ R. Recall that, since z is a zero of Q(s), 0 = Q(z) = zn +∑n−1
i=0 aiz

i +(
∑q

i=0 biz
i) e−zτ . Since we are only concerned with zeros in the ORHP,
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we can choose θ ∈ [−π/2, π/2]. Using the fact that cos θ ∈ [0, 1] ∀ θ ∈ [−π/2, π/2],
the last term in Q(z) can be bounded as follows:

|e−zτ | = |e−(r̄ejθ)τ |
= |e−τ r̄(cos θ+j sin θ)|
= |e−τ r̄ cos θ · e−τ r̄j sin θ|
≤ |e−τ r̄·0e−τ r̄j sin θ|
= |e−τ r̄j sin θ|
= 1.

Using this result and the triangle inequality, we compute

0 = |Q(z)| =

∣∣∣∣∣zn +
n−1∑
i=0

aiz
i +

[
q∑
i=0

biz
i

]
e−r̄e

jωτ

∣∣∣∣∣
≥ |zn| −

∣∣∣∣∣
n−1∑
i=0

aiz
i

∣∣∣∣∣−
∣∣∣∣∣
q∑
i=0

biz
i

∣∣∣∣∣ |e−r̄ejωτ |

≥ |zn| −

∣∣∣∣∣
n−1∑
i=0

aiz
i

∣∣∣∣∣−
∣∣∣∣∣
q∑
i=0

biz
i

∣∣∣∣∣
≥ r̄n −

n−1∑
i=0

(|ai|r̄)i −
q∑
i=0

(|bi|r̄)i

> 0,

which is a contradiction. Note that the final inequality follows from Fact 1. �

This Lemma is useful since it shows that it is possible to enclose all of the CRHP
zeros of Q(s) with a bounded Γ.

A.2.4 Main Proof

Proceeding to the main proof of Theorem A.1, recall that the theorem states the
following: all roots of Q(s) have negative real parts iff the increase in the argument
of Q(jω) equals nπ/2 as ω increases from zero to infinity. Note that Q(s) is analytic
and therefore has no poles, so D = 0.

52



<

ΓB

r
ΓA ΓC

=

Figure A.2: The path described by Γ, where ΓA and ΓB are the positive and negative
imaginary axies respectively and ΓC describes a semicircle with infinite radius

Define the path Γ via Figure A.2. Choose a Γ that encloses all of the zeros of
Q(s) that lie in the ORHP (Lemma A.7). Recall that Γ is closed and bounded by
definition. Note that Γ, B, and D fulfil the requirements of Corollary A.6, hence
N is finite.

At this point we have satisfied all of the requirements for applying the POA
(Theorem A.4) to the function Q(s) and the curve Γ. Recall that it is already
known that D = 0; hence, from the POA, the net number of CW encirclements
of the origin is exactly N . Since N is the number of zeros of Q(s) that lie on the
open right half plane, then N = 0 iff there are no zeros of Q(s) with non-negative
real parts. To achieve no net encirclements of the origin, the total change in the
argument of Q(s) as it traverses Γ must equal zero.

It follows from Lemma A.7 and the definition of ΓC that the change in the
argument of Q(ΓC) as θ decreases from π to −π is nπ. Therefore, N = 0 iff Q(ΓA)
and Q(ΓB) together have an nπ increase of argument as ω increased from negative
infinity to positive infinity. Since all coefficients in Q(s) are real, Q(ΓA) and Q(ΓB)
are complex conjugates of each other; therefore, all roots of Q(s) have negative real
parts iff the total change in the argument of Q(jω) as ω increases from zero to
infinity equals nπ/2. �
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A.3 Proof of Theorem 2.3 - Necessary Conditions

for Stability of Chronic Case

Recall that the theorem states that, if the mild chronic case is stable, then f−d > 0.
We will prove the contrapositive statement; hence, assume f − d ≤ 0.

The beginning of the proof for sufficient conditions (Appendix A.1), up to and
including (A.14), with the exception of (A.13), holds in this proof. Consequently,
from (A.7) we have

<(Z(jω)) = −aω2 − d− gω sin(ωτ) + f cos(ωτ).

Therefore,
<(Z(0)) = f − d ≤ 0.

Since the equilibrium point does not exist for f − d = 0 (see (2.28) and the
definition of V0c) it cannot be ‘stable’ there. Hence, restrict the remainder of the
discussion to f − d < 0. Under this restriction, the mapping of Z(jω) for ω ≥ 0
begins on the negative real line and ends in the third quadrant, and it is therefore
impossible to obtain the necessary 3π/2 increase in the argument. We conclude by
Mikhailov’s Criterion (Theorem A.1) that at least one root of Z(s) does not lie in
the OLHP; hence, the equilibrium point is unstable. �

A.4 Proof of Theorem 2.5 - V = 0 ⊂ Stable Sub-

manifold

Begin by setting V (tf ) = 0.

Claim 1: V (t) = 0 for all t ≥ tf .

Proof of Claim 1:

From (2.1),

V̇ (tf ) = (β − γF (tf ))V (tf )

= (β − γF (tf )) · 0
= 0,

which implies that V = 0 is an equilibrium point of (2.1), independent of the value
of F (t), hence V (t) = 0 for all t ≥ tf . �
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Note that Claim 1 is logical from a physical standpoint, since the only way that
viral levels in a patient can move away from zero is due to an external viral source.

Let’s investigate the remaining variables, starting with (2.2). For all t ≥ tf + τ ,

Ṗ (t) = αξ(m(t))V (t− τ)F (t− τ)− µp(P (t)− P ∗)

= −µp(P (t)− P ∗),

where the second equality follows from Claim 1. This is an affine, stable, differential
equation in P (t); hence, P will asymptotically approach P ∗, its healthy equilibrium
value.

Next, move on to F , using (2.3) and Claim 1. For all t ≥ tf ,

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t)

= ρP (t)− µfF (t).

This is a stable, linear, forced, differential equation in F (t). Since it is already
known that P (t) → P ∗ asymptotically, it follows that F (t) → ρP ∗/µf asymptoti-
cally.

Again using Claim 1, (2.4) gives (for t ≥ tf )

ṁ(t) = σV (t) + σfF (t)− µmm(t)

= σfF (t)− µmm(t),

which is a stable, linear, forced, differential equation in m. Since it is already known
that F (t) → ρP ∗/µf asymptotically, it follows that m(t) → σfρP

∗

µfµm
asymptotically.

�

A.5 Proof of Theorem 2.6 - Lower Bounds

Recall that this proof applies to the controlled equations

V̇ (t) = (β − u(t)− γF (t))V (t), (A.18)

Ṗ (t) = ξ(m)αV (t− τ)F (t− τ)v(t)− µP (P (t)− P ∗), (A.19)

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t), (A.20)

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t), (A.21)
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and that the control signals satisfy u(t) ≥ 0 and v(t) ∈ [0, 1].

We begin by investigating V :

Claim 1: V (t) ≥ 0 ∀ t ≥ 0.

Proof:

This is a proof by contradiction; hence, assume that there exists t1 such that
V (t1) < 0. Since V0 ≥ 0 and V is continuous, there exists a t2 ∈ (0, t1) such that
V (t2) = 0 . From (A.18) and the definition of t2 we know that V̇ (t2) = 0 and,
therefore, V (t) = 0 for all t ≥ t2. In particular, V (t1) = 0. This is a contradiction.
�

The variables F and P are closely linked, and as such will be investigated
together, in the following two claims:

Claim 2: If F (ta) < 0 for some ta > 0, then there exists a tb ∈ (0, ta) and a
td ∈ (tb, ta) such that:

1. F (tb) = 0,

2. F (t) ≥ 0 for all t ∈ [−τ, tb),

3. F (t) < 0 for all t ∈ (tb, td], and

4. P (tb) < 0.

Proof:

Refer to Figure A.3 for the placement of ta and tb. Assume F (ta) < 0, ta > 0.
The continuity of F and the fact that F0 > 0 guarantee the satisfaction of Items 1
through 3. Then, from (A.20),

0 > Ḟ (tb) = ρP (tb)− (µf + ηγV (tb)) · 0. (A.22)

Since it is known that ρ > 0, we conclude that 0 > P (tb). �

Claim 3: If P (tb) < P ∗ for some tb > 0, then there exists a tc ∈ (0, tb) and a
te ∈ (tc, tb) such that:

1. P (tc) = P ∗,

2. P (t) ≥ P ∗ for all t ∈ [−τ, tc),

3. P (t) < P ∗ for all t ∈ (tc, te], and
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tc − τ
tb

tc

P ∗

ta

t

t

−τ

0

0

P (t)

F (t)

Figure A.3: Relationship Between P and F

4. F (tc − τ) < 0.

Proof:

Assume there exists a tb > 0 such that P (tb) < P ∗. The continuity of P and
the fact that P0 ≥ P ∗ guarantee the satisfaction of Items 1 through 3. Then, from
(A.19),

0 > Ṗ (tc) = αξ(m(tc))V (tc − τ)F (tc − τ)v + µP (P ∗ − P ∗). (A.23)

From Claim 1 we know that V (tc − τ) ≥ 0 and (by definition) α and ξ(m) are
non-negative, so the above inequality implies that F (tc − τ) < 0. �

Claims 2 and 3 can be used to prove that, for all t ≥ 0, F (t) ≥ 0 and P (t) ≥ P ∗.
For example, the following contradiction argument is used to show that F (t) > 0
(see Figure A.3):

• Assume that there exists a ta > 0 such that F (ta) < 0.

• From Claim 2, there exists a tb that corresponds to the first time that F
crosses the axis to become negative and, furthermore, P (tb) < 0 < P ∗.
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• From Claim 3, there exists a tc < tb that corresponds to the first time that P
crosses the P ∗ line to become less than P ∗ and, furthermore, F (tc − τ) < 0.

• The contradiction is as follows: tc < tb, so tc − τ < tb, but tb is the first time
that F crosses the axis to become negative, so F cannot be negative prior to
tb.

• We conclude that F (t) ≥ 0 for all t ≥ 0.

A similar argument can be made by starting with P (ta) < P ∗ to show that P (t) >
P ∗ for t ≥ 0.

Finally, note that (A.21) is a linear differential equation whose only negative
sign is associated with the variable m. Since all variables other than m are known
to be positive and m0 < 1, then it follows directly that m(t) > 0 for all t ≥ 0. �

A.6 Proof of Theorem 2.7 - Finite Escape Time

This proof is divided into three parts: investigating V , then F and P together,
and finally m. Throughout this proof it is critical to note that all parameters and
variables are nonnegative (Theorem 2.6).

The following Lemma will be required in the proof:

Lemma A.8 For some vector z(t) =

∥∥∥∥ z1(t)
z2(t)

∥∥∥∥, and any function a(t) and constant

b, the following inequality holds:∥∥∥∥[ a(t)z2(θ − τ)
bz1(θ)

]∥∥∥∥ ≤ (a(t) + b)(2 max
φ∈[0,θ]

‖z(φ)‖+ max
φ∈[0−τ,0]

|z2(φ)|).

Proof

The following norm rule will be used throughout this proof:

|zi| ≤ ‖z‖ ≤
∑
i

|zi|.
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Begin with the left-hand side of the inequality in the Lemma:∥∥∥∥[ a(t)z2(θ − τ)
bz1(θ)

]∥∥∥∥ ≤
∥∥∥∥[ a(t) 0

0 b

]∥∥∥∥∥∥∥∥[ z2(θ − τ)
z1(θ)

]∥∥∥∥
≤ (a(t) + b)

∥∥∥∥[ z2(θ − τ)
z1(θ)

]∥∥∥∥ .
Using the norm rule outlined above it is possible to perform the following steps:∥∥∥∥[ z2(θ − τ)

z1(θ)

]∥∥∥∥ ≤ |z1(θ)|+ |z2(θ − τ)|

≤ max
φ∈[0,θ]

|z1(φ)|+ max
φ∈[0,θ]

|z2(φ− τ)|

≤ max
φ∈[0,θ]

‖z(φ)‖+ max
φ∈[0,θ]

|z2(φ− τ)|

≤ max
φ∈[0,θ]

‖z(φ)‖+ max
ψ∈[−τ,θ−τ ]

|z2(ψ)|

≤ max
φ∈[0,θ]

‖z(φ)‖+ max
ψ∈[−τ,0]

|z2(ψ)|+ max
ψ∈[0,θ−τ ]

|z2(ψ)|

≤ max
φ∈[0,θ]

‖z(φ)‖+ max
ψ∈[−τ,0]

|z2(ψ)|+ max
ψ∈[0,θ]

|z2(ψ)|

≤ 2 max
φ∈[0,θ]

‖z(φ)‖+ max
ψ∈[−τ,0]

|z2(ψ)|

= 2 max
φ∈[0,θ]

‖z(φ)‖+ max
φ∈[−τ,0]

|z2(φ)|.

Therefore,∥∥∥∥[ a(t)z2(θ − τ)
bz1(θ)

]∥∥∥∥ ≤ (a(t) + b)(2 max
φ∈[0,θ]

‖z(φ)‖+ max
φ∈[−τ,0]

|z2(φ)|).

�

Now investigate V :

Claim 1: V (t) ≤ eβtV0 and is finite for all t ∈ [0,∞) .

Proof of Claim 1:

From (2.9),

V̇ (t) = (β − u(t)− γF (t))V (t)

≤ βV (t).

It follows directly that
V (t) ≤ eβtV0, t ∈ [0,∞). (A.24)
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Since V is bounded above by a continuous function in the range t ∈ [0,∞) it must
be finite in that range. �

Claim 2: P (t) and F (t) are finite for all t ∈ [0,∞).

Proof of Claim 2:

From (2.10) and using Theorem 2.6, ξ(m) ≤ 1, v(t) ≤ 1, and Claim 1,

Ṗ (t) = ξ(m)αV (t− τ)F (t− τ)v(t− τ)− µP (P (t)− P ∗)

≤ αV0e
β(t−τ)F (t− τ)

= αV0e
−βτeβtF (t− τ). (A.25)

Similarly, from (2.11),

Ḟ (t) = ρP (t)− (µf + ηγV (t))F (t)

≤ ρP (t). (A.26)

Integrate (A.25) and (A.26) to obtain

P (t) = P0 +

∫ t

0

αV − 0e−βτeβtF (θ − τ)dθ, (A.27)

F (t) = F0 +

∫ t

0

ρP (θ)dθ. (A.28)

Defining

z(t) =

[
z1(t)
z2(t)

]
,

[
P (t)
F (t)

]
,

substituting (A.27) and (A.28) into z, and taking a p-norm yields

‖z(t)‖ ≤ ‖z0‖+

∫ t

0

∥∥∥∥[ αV0e
−βτeβtz2(θ − τ)
ρz1(θ)

]∥∥∥∥ dθ. (A.29)

If it were possible to solve this implicit inequality then we would be able to
find a bound on ‖z‖ and hence on P and F . We will apply the Gronwall-Bellman
Inequality (GBI) [15] instead. The GBI requires that the inequality be of the form

y(t) ≤ λ(t) +

∫ t

t0

ν(θ)y(θ)dθ (A.30)
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for a constant a and b such that λ and y : [a, b] → R are continuous, ν : [a, b] → R
is continuous and nonnegative, and a ≤ t ≤ b.

The form of (A.29) is similar to (A.30), but is not quite the same, due primarily
to the time delay in the z2 term of the integrand. It will be shown that (A.29)
can be manipulated to find an inequality in the form of (A.30) if the following
substitutions are made:

y(t) = max
θ∈[0,t]

‖z(θ)‖,

λ(t) = ‖z0‖+

∫ t

0

(αV0e
−βτeβθ + ρ) max

θ∈[−τ,0]
|z2(θ)|dθ,

ν(θ) = 2(αV0e
−βτeβθ + ρ),

t0 = 0.

Applying Lemma A.8 to the integrand of (A.29) results in

‖z(t)‖ ≤ ‖z0‖+

∫ t

0

(αV0e
−βτeβθ + ρ)(2 max

φ∈[0,θ]
‖z(φ)‖+ max

φ∈[−τ,0]
|z2(φ)|)dθ.

Note that the integrand is positive. Hence, the right hand side is strictly increasing
and it is therefore possible to write

max
φ∈[0,t]

‖z(φ)‖ ≤ ‖z0‖+
∫ t

0

(αV0e
−βτeβθ+ρ)(2 max

φ∈[0,θ]
‖z(φ)‖+ max

φ∈[−τ,0]
|z2(φ)|)dθ, (A.31)

which is in the form required to apply the GBI under the substitutions outlined in
(A.31). When the GBI is applied, the following inequality is obtained

y(t) ≤ λ(t) +

∫ t

0

λ(θ)ν(θ) exp

(∫ t

θ

ν(φ)dφ

)
dθ, (A.32)

which, from the definitions of λ and ν, is finite for each t ≥ 0. Therefore, for each
t ≥ 0,

max
φ∈[0,t]

‖z(φ)‖ = y(t) <∞.

Hence, an upper bound on ‖z(t)‖ exists for all t ∈ [0,∞) which implies that both
P (t) and F (t) are finite for all t ∈ [0,∞). �

Finally, we investigate m(t). The final equation in the system, (2.12), is linear
time-invariant, as can be seen below:

m(t) = σV (t) + σfF (t) + σcu(t)− µmm(t).
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A property of linear time-invariant differential equations is that, assuming the forc-
ing function is finite for t ∈ [0,∞), the state is finite for all t ∈ [0,∞). From Claims
1 and 2 it is known that V and F are finite in this time range. The control input,
u, is also finite. Hence, m(t) is finite for all t ∈ [0,∞). �

A.7 Proof of Theorem 4.5 - Sufficient Conditions

for Health

From (2.9),

V̇ (t) = (β − u(t)− γF (t))V (t)

≤ (β − Ǔ − γF̌ )V (t),

which implies
V (t) ≤ e(β−Ǔ−γF̌ )(t)V0,

and

V (tf ) ≤ e(β−Ǔ−γF̌ )tfV0

≤ e(β−Ǔ−γF̌ )Th2V0

= e
(β−Ǔ−γF̌ )

ln(V ∗/V0)

β−Ǔ−γF̌ V0

= V ∗,

where the second inequality follows from Ǔ > β − γF̌ and tf > Th2. �

A.8 Proof of Theorem 4.6 - Necessary Conditions

for Death

From (2.12),

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t)

≤ σV̂ + σf F̂ + σcÛ − µmm(t),

which implies
1 < m(t) ≤ w + (m0 − wd1)e

−µm(t).
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Since m0 < 1 and wd1 > 1 (Theorem 4.1), this implies

tf ≥
−1

µm
ln

(
1− wd1
m0 − wd1

)
. (A.33)

�

A.9 Proof of Theorem 4.7 - Sufficient Conditions

for Death

From (2.12),

ṁ(t) = σV (t)− µmm(t) + σfF (t) + σcu(t)

≥ σcǓ − µmm(t),

which implies

m(t) ≥ σcǓ

µm
+

(
m0 −

σcǓ

µm

)
e−µm(t);

therefore,

m(tf ) ≥ σcǓ

µm
+

(
m0 −

σcǓ

µm

)
e−µm(tf )

≥ σcǓ

µm
+

(
m0 −

σcǓ

µm

)
e−µm(Td2)

≥ σcǓ

µm
+

(
m0 −

σcǓ

µm

)
exp

−µm
− ln

(
1−σcǓ

µm

m0−σcǓ
µm

)
µm




=
σcǓ

µm
+

(
m0 −

σcǓ

µm

)(
1− σcǓ

µm

m0 − σcǓ
µm

)

=
σcǓ

µm
+

(
1− σcǓ

µm

)
= 1,

where the second inequality follows from tf ≥ Td2 and the third inequality follows
from the assumption σcu

µm
> 1. �
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Appendix B

Important Terms

Important Words and Concepts

Alive - Refers to mass damage, occurs if m(t) < 1 for all t ∈ [0, tf ], Pg. 2
‘check’ - x̌ - Indicates a lower bound, Pg. 16
Dead - Not alive, Pg. 2
‘hat’ - x̂ - Indicates an upper bound, Pg. 16
Healthy - Refers to viral levels, occurs at time t if V (t) < V ∗, Pg. 2
Sick - Refers to viral levels, occurs at time t if V (t) ≥ V ∗, Pg. 2.

Important Variables and Parameters

Note: All Greek letters first appear in (2.1)-(2.4) and are described on pages 7-8
unless stated otherwise.

a – g - Parameter substitutions for chronic stability theorems, Pg. 13 and (2.22)-
(2.26)

F - Antibody concentration, Pg. 1 and (2.3)
m - Mass damage term, relates to the ability of the body to produce plasma,

Pg. 1 and (2.4)
P - Plasma concentration, Pg. 1 and (2.2)
P ∗ - Minimum number of plasma cells in the body, Pg. 8 and (2.2)
t1 - Switching time, Pg. 26 and (4.1)-(4.2)
tf - Time at which control is stopped, Pg. 3
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U - Magnitude of step drug cocktail input, Pg. 26 and (4.2)
u - Drug cocktail input, Pg. 8-9 and (2.7)-(2.8)
V - Virus concentration, Pg. 1 and (2.1)
V ∗ - max {level below which model breaks down due to quantization error,

minimum measurable concentration of V }, Pg. 2
v - Immune inhibitor input, Pg. 9 and (2.10)
α - Probability of an antibody encountering a virus such that production of

plasma cells is stimulated
β - Inverse time constant of virus (or antigen)
γ - Probability of an antigen/antibody encounter that results in antigen neu-

tralization
η - Number of antibody cells required to neutralize one antigen cell; this is

a natural number
µf - Inverse of average life span of antibody cells
µm - Inverse of recuperation period of m
µp - Inverse of average life span of plasma cells
ρ - Rate of production of antibodies due to one plasma cell
σ - Rate of damage due to one viral cell
σc - Scalar effect of damage due to u, Pg. 9 and (2.8)
σf - Rate of damage due to one antibody cell
τ - Approximates delay associated with generation of memory cells and other

dynamic components otherwise ignored in this model.
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