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  Abstract	
  

 

At the forefront of revolutionizing medicine, gene therapy provides an effective way to 

treat a range of diseases by regulating defective genes at the root of the disease. Short 

interfering RNA (siRNA) holds great promise as therapeutic agents in this domain. The 

siRNAs are a class of 20 to 25 nucleotide-long double-stranded RNA molecules that play 

an important role in the RNA interference (RNAi) pathway. RNA interference is a post 

transcriptional process triggered by siRNA, which inhibits the expression of a specific 

gene by the degradation of its complementary messenger RNA (mRNA). Despite its 

potential value, intracellular delivery remains a major obstacle to clinical applications of 

therapeutic siRNAs. Its large size and negative charge prevent siRNA molecules from 

crossing cellular membranes while the sensitivity of naked siRNA to endogenous 

enzymes makes it vulnerable in serum. To address these problems, several novel 

strategies are created to achieve an effective and safe mode of delivery. Among them, 

peptide based drug/gene carriers are emerging as one promising delivery system for safer 

in vitro and in vivo applications.   

       This thesis focuses on the design, characterization and utilization of novel 

endosomolytic peptides for siRNA delivery. The studies include the following: (i) the 

design of new peptide sequences, and modification of existing sequences; (ii) the 

physicochemical characterization of peptides, and the interaction between peptides and 

siRNA molecules; (iii) the evaluation of the silencing efficiency, and toxicity of 
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peptides/siRNA complexes in cultured cells and in vivo; (iv) the study of their 

intracellular pathway, and endosomal release mechanism; (v) the in vitro 

biocompatibility study of the peptides/siRNA nanocomplexes, and (vi) the co-delivery of 

anti-cancer drugs and siRNA into cancer cells. 

       The peptide C6, a 18-mer peptide, was first evaluated as an siRNA carrier. C6 

contains three types of amino acids: positively charged arginine, hydrophobic leucine and 

tryptophan. C6 would bind to negatively charged siRNA molecules through electrostatic 

interaction, whereby a peptide/siRNA molar ratio above 10/1 is needed to neutralize all 

the negative charges of siRNA molecules, indicated by the agarose gel shift assay. 

Fluorescence microscopy shows a punctuated distribution of peptide/siRNA complexes. 

Despite the great intracellular uptake, the silencing efficiency of siRNA delivered by C6 

is very low, probably due to the entrapment in the endocytic vesicles.  

        Therefore, modifications by including pore-formation or pH-sensitive moiety to the 

sequence have been applied to enhance the endosomal escape capability of C6/siRNA 

complexes. Based on these strategies, a peptide library was generated by modifying 

prototype peptide C6. All the modifications improved the transfection efficiency of C6 to 

some degree. After completing the pre-screening for the activity, several promising 

candidates were used for further evaluations. Aromatic tryptophan residues were used to 

substitute some leucine residues in the sequence, since tryptophan rich motif is found 

abundantly in the pore-forming toxins of bacteria. The resulting peptide C6M1 shows 

increased endosomal membrane disruption ability in acidic environment. In addition, 

certain residues in C6 were replaced by histidine in the hope that they will facilitate the 

endosomal escape of peptide/siRNA complexes through the “proton sponge effect.” 
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Selected peptides C6M1, C6M3, and C6M6 could form stable complexes with siRNA. 

Formed nanoscale complexes are able to deliver siRNA into different cells and induce 

specific gene knockdown. Effective in vivo RNAi was achieved in a mouse model 

bearing a subcutaneous tumor. Intratumoral injection of the complexes resulted in a 

marked reduction of tumor growth through downregulation of antiapoptotic Bcl-2 protein 

in mice. Furthermore, these complexes were proven safe at transfection concentration by 

the cytotoxicity, the complement activation, and the cytokines activation assays. These 

results demonstrate that the C6 family peptides are a potent system for efficient gene 

delivery in vitro and in vivo. 

      As positive charges and endosomal escape ability both play an important role in 

promoting the transfection efficiency of siRNA, next the structure-activity relationship of 

efficient peptide-based siRNA carriers were explored. Here, oligoarginine peptides, 

prominent members in cell-penetrating peptide family, are rationally modified with 

oligohistidine and stearyl moieties (STR-). It is found that when the ratio of 

histidine/arginine in a stearylated peptide sequence is >1.5, pronounced GAPDH gene 

silencing is induced in a range of cell lines. Among these peptides, STR-HnR8 (n>12) 

showed high knockdown efficiency, which was rarely reported before. The main 

endosomal escape mechenism of stearylated and oligohistidylated oligoarginine/siRNA 

complexes is determined to be the “proton-sponge” effect. This peptide could also 

stabilize hydrophobic EPT/HCPT hybrid NPs in water. Co-delivery of EPT/HCPT hybrid 

NPs and Bcl-2 siRNA into cancer cells achieved a triple synergistic effect by greatly 

inhibiting cancer cells proliferation. Together, this work suggests a new strategy for the 

improvement and optimization of CPP-based siRNA delivery systems. 
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Chapter 1 

Introduction 
	
  

	
  

1.1 Overview 

The discovery of RNA interference (RNAi) is considered to be the most important and 

exciting breakthrough of the past decade by many biologists [1]. RNA interference is a 

highly efficient regulatory process in most eukaryotic cells by which double-stranded 

RNA (dsRNA) is able to cleave complementary mRNA and causes posttranscriptional 

gene silencing [2–4]. The high significance and transformative values of this discovery 

gained its inventors the award of Nobel Prize in Physiology or Medicine in 2006. 

     In general, long dsRNAs derived from either convergent transcription or hairpin- 

structured RNAs are the precursor of the short interfering RNA (siRNA) that can trigger 

RNAi [5]. When introduced into cells, dsRNA will be processively cleaved by the RNase 

III like enzyme, dicer, into short duplexed RNAs, i.e. siRNAs [6]. These newly formed 

21-23nt long nucleotides will then be loaded onto an RNA-induced silencing complex 

(RISC). Argonaute 2 (Ago-2) is the catalytic core of RISC. Upon binding to siRNA, it 

will release one strand from the siRNA, resulting in an activated form of RISC containing 

a single-strand RNA (guide strand) that directs the specific recognition of complementary 

mRNA [7–10]. Ago-2 then cleaves the target mRNA, thereby preventing specific genes 

from expression of proteins [11]. Tuschl and his colleagues found that instead of using 

long dsRNA, the introduction of chemically synthesized siRNA into mammalian cells 
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can also efficiently silence specific genes [4]. Figure 1.1 shows the entire RNA 

interference pathway [12]. 

              

 

              Figure 1.1 Schematic representation of siRNA mediated gene silencing 

       RNA interference has been widely used in basic biological research and clinical 

applications. Short interfering RNA therapy is becoming an important means for 

functional genomics study and the development of gene-specific drugs [13,14]. In 

biology, one of the most effective ways to determine the biological function of a protein 

or a pathway is to examine the phenotype of organisms that lack of or contain mutations 

in its encoding gene [15]. Thus, molecules that can specifically silence the expression of 

certain genes are powerful tools. The high efficiency and diversity in source of siRNA 

has made it one of the latest additions to gene-silencing reagents. RNA interference has 

also stimulated considerable interest in the pharmaceutical field as a potential therapeutic 

agent. Turning off problematic genes with RNA interference shows tremendous promise 
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for a huge number of human diseases. The first clinical trial with short interfering RNA 

(siRNA) in patients suffering from age-related macular degeneration (AMD) started in 

2004 [16]. The relatively low safety concerns of siRNA in humans have led to its clinical 

evaluation in other genetic and viral diseases [17]. Moreover, the rapid development of 

RNA interference technology opens the path to powerful gene therapy for cancer 

treatment where traditional surgery, radiation and chemotherapy cause deleterious side 

effects due to their non-specificity to the tumor cells [18]. Some in vivo experiments have 

already demonstrated that siRNA could significantly inhibit tumor cell growth in a 

xenograft mouse model [19–23].  

       However, despite abundant promise, a number of problems and hurdles remain in the 

way for siRNA-based therapeutics. The most important concern is the effective delivery 

of siRNA to its site of action in the cytoplasm. Some unfavorable physicochemical 

properties, including their large molecule weight, negatively charged surface, 

hydrophilicity, sensitivity to nuclease degradation and instability with plasma half-lives 

of less than ten minutes [24] impede the uptake of siRNA into the cells, especially after 

systemic administration [25]. Therefore, the application of siRNA as a potential 

therapeutic agent requires efficient and safe delivery that will retain their biological 

functions. An ideal delivery system should bear following properties: (1) siRNA carriers 

should protect siRNA from serum degradation (2) increase the retention time of siRNA in 

the circulatory system by reducing clearance rate in the human body (3) ensure effective 

biodistribution (4) facilitate siRNA delivery to specific cell types (5) promote cellular 

uptake and release siRNA to the cytoplasm after internalization (6) be made from 
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biocompatible, well characterized and easily prepared material, showing minimized 

toxicity to the human body. 

       Many non-viral carriers have been developed to deliver siRNAs, including liposome 

[26], polymeric complexes [27],  dendrimers [28] and gold nanoparticles [29]. They all 

have achieved varying degrees of success. Among the siRNA carriers, liposomes or 

lipidic carriers represent a mature technology. Cationic lipids have been used to 

encapsulate negatively charged siRNA molecules and deliver them into cells. Although 

satisfactory in certain in vitro systems, there are still difficulties with the lipidic 

strategies. The relatively large amount of the lipids required for siRNA transfection can 

often cause severe toxicity [30]. It has been reported that cationic lipids can modify 

cellular signaling pathways and stimulate specific immune or anti-inflammatory 

responses [31]. These toxic/immunogenic features limit the use of lipidic carriers in vivo. 

A clinical trial of liposomal siRNA delivery for hypercholesterolemia was terminated 

recently because of the potential for immune stimulation to interfere with further dose 

escalation [32]. Although new approaches have addressed some of the toxicity and 

targeting issues, long term in vivo safety and efficacy of this strategy remain in question. 

 Synthetic and natural polymers, consisting of repeated units of covalently bonded 

monomers, are another class of carrier systems for siRNA therapeutics. The structural 

and chemical properties of the polymers are well established, and cationic polymers bind 

to siRNAs through electrostatic interactions. A number of polymers, including poly 

(ethyleneimine) (PEI), poly (L-lysine) (PLL), chitosan, gelatin, poly-D, L-lactide-co-

glycolide (PLGA), poly (dimethylaminoethylmethacry-late) (PDMAEMA), and poly 

(trimethylamino-ethylmethacrylate) (PTMAEMA) have been investigated as siRNA 
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carriers. Like lipidic carriers, polymeric delivery systems also suffer from cellular 

toxicity and immunogenicity [33]. So their in vivo applications have been hindered thus 

far. 

       In light of the safety concerns and efficacy issues with current drug delivery systems, 

peptide-based carriers are emerging as an alternative for safer in vitro and in vivo 

delivery. They can traverse cellular membrane and deliver a variety of cargos including 

small molecule pharmaceuticals, proteins and oligonucleotides into cells with efficiency 

and specificity. Particularly, these cell penetrating peptides can deliver active substances 

to area of the body that are not easily accessible, the blood-brain barrier for instance. Our 

lab has been studying a class of peptides, the self-assembling/co-assembling peptides, 

which can be used as drug or gene delivery vehicles [34]. These peptides have been 

successfully used to encapsulate a model anticancer drug and deliver it across the cell 

membrane in a controlled manner. Encouraged by these results, we generated libraries of 

peptides that have potential to deliver siRNAs into cells. After high-throughput 

screening, several peptides with high transfection efficiency were selected for further 

study. Physicochemical characterizations were first applied to study the formed 

peptide/siRNA complexes, which include the interaction between peptides and siRNAs; 

the size and zeta potential; the morphology of the complexes. Then, the peptide/siRNA 

complexes with certain combinations of peptide and siRNA concentrations were further 

tested on their cellular uptake, cytotoxicity and their in vitro therapeutic effect on several 

cell lines. Potential immune side effects of these peptides in terms of complement 

activation and cytokine activation were also addressed. Their intracellular trafficking 

mechanism was systematically studied to explore a rational design strategy for peptides 
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as siRNA carriers. This information will be critical to the next phase of in vivo studies. In 

the next step, human tumor xenografts in a nude mice model were used to conduct in vivo 

efficacy and toxicity evaluation of potential gene therapy for cancer treatment. The 

simultaneous delivery of two anticancer drugs and therapeutic siRNA was investigated in 

A549 cancer cells. Based on the results reported in this work, strategies could be 

developed to design efficient peptides to construct functional nanocarriers for in vitro 

siRNA delivery and cancer gene therapy.  

1.2 Research Objectives  

The goal of this research is to develop an efficient and safe peptide based delivery system 

for in vitro and in vivo siRNA delivery. To achieve this goal, several promising peptides 

selected from designed peptide libraries were studied for their siRNA binding ability, 

silencing efficiency and toxicity on cultured cells and a mouse model. The specific 

objectives of this thesis are listed in the following: 

(1) Design of peptide libraries that consist of novel peptides and structurally 

modified analogues of existing peptides to achieve high siRNA transfection 

efficiency and low cytotoxicity.  

(2) Characterization of peptide/siRNA complexes; This will give us a general 

understanding of their binding mode at different molar ratios, thereby providing 

information for formulating desirable siRNA/peptide complexes. 

(3) Investigation of the therapeutic efficacy, toxicity and biocompatibility of the 

complexes in vitro with several cell lines. 

(4) Evaluation of the antitumor activity of complexes in vivo on a mouse xenograft 

tumor model. 
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(5) Study of the intracellular traffic mechanism of the complexes, providing insight 

into the design of efficient peptide based siRNA delivery system. 

(6) Exploration of the possibility to co-deliver anticancer drugs and siRNA into 

cancer cells. 

1.3  Outline of the Thesis 

The thesis consists of eight chapters. The scope of each chapter is listed as follows:  

	
  	
  	
  	
  	
  	
  	
  Chapter 1 gives an overview of the thesis, including a brief introduction to RNA 

interference and mechanism, its potential clinical applications, existing gene delivery 

materials and the promising future of peptide based delivery system. The objectives and 

the scope of the thesis are also given in this chapter. 

      Chapter 2 provides a review of the advantages of RNAi as potential new 

pharmaceutical drugs, therapeutical applications of siRNAs and current siRNA delivery 

systems. Uptake pathways and subsequent intracellular trafficking of these cell-

penetrating peptides as siRNA delivery vector are also reviewed. 

       Chapter 3 presents a new amphiphilic cell-penetrating peptide C6. Physicochemical 

characterizations were conducted. Of particular interest is that this peptide could deliver 

large amounts of siRNA into cells, yet the knockdown efficiency is very low, probably 

due to poor endosomal escape ability.  

        In order to improve the endosomolytic ability of peptide C6, thus enhancing 

transfection efficiency, different strategies were applied to modify C6 sequence.  In 

Chapter 4, we designed a new peptide C6M1 by substituting some leucine residues in C6 

with tryptophan. In chapter 5, peptides were generated by adding pH-responsive histidine 
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residues to the sequence. Both modifications, though working through different 

endosomal escape pathways, greatly improve the knockdown efficiency of 

peptide/siRNA complexes. In vivo antitumor activity of therapeutic siRNA delivered by 

these peptides was investigated in a tumor xenograft mouse model.  

        To further explore the structure-activity relationship of cell-penetrating peptides, in 

Chapter 6, oligoarginine peptides, prominent members in CPPs, were rationally modified 

with oligohistidine and stearyl moieties (STR-). The optimal histidine/arginine ratio for 

efficient gene knockdown was determined.  

       Chapter 7 studies the possibility of simultaneous delivery the anticancer drugs and 

therapeutic siRNA into cancer cells by promising peptide. The importance of peptide to 

stabilize hydrophobic anticancer drugs hybrid nanoparticles in water was also described.  

        Chapter 8 presents the conclusions of studies in the thesis, contributions of this 

research and recommendations for future work. 
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Chapter 2 

Literature Review 
	
  

 

2.1 RNAi as a potential new class of pharmaceutical drugs 

2.1.1 Comparison of siRNA therapy with traditional drugs 

Most approved drugs share important features like relatively small in size (molecular 

weight< 500 Da), apolar and function by binding to proteins or altering protein function 

[35]. Although much is known about designing traditional drugs and how to modify them 

to improve their in vivo efficacy, the development of small molecule drugs is often 

marked by failure in preclinical and clinical trials even with this vast experience [36]. 

siRNA drugs are not quite similar to traditional drugs. “Traditional drug discovery was 

done by trial and error—applying materials to cells until the desired phenotype is 

obtained. Drugs discovered in this method usually are nonspecific and have extensive 

side effects. With siRNA, it’s possible to identify the reason a phenotype develops, 

validate your identification, and attack the exact location in the cell that’s responsible for 

disease with minimal side effects. RNAi’s sequence specificity allows the kind of 

specific treatment you would demand from a next-generation drug,” says Sharon Engel, 

director of genomic data at Compugen Ltd., Tel Aviv, Israel. As an alternative 

therapeutic approach, RNAi may provide solutions to the major disadvantages of 

traditional pharmaceutical drugs. Figure 2.1 compares the key features between RNAi as 

a therapeutic approach and the two major classes of traditional pharmaceutical drugs-- 
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small molecules and proteins & antibodies [12]. One principle advantage of RNAi over 

other drugs is that all targets, including “non druggable” targets for traditional therapy, 

can be inhibited with RNAi and the corresponding siRNA can be rapidly identified and 

synthesized. The identification of highly selective and potent compounds for small 

molecule drugs is a difficult and time-consuming process, and can be unsuccessful 

sometimes. For RNAi, the identification of highly selective and potent target gene is  

 

 

Figure 2.1 Comparison of the key features between RNAi as a therapeutic approach and 

the two major classes of traditional pharmaceutical drugs-- small molecules and proteins 

& antibodies.  

rapid and has been demonstrated with numerous molecular targets. With protein and 

antibody drugs, the major technical challenge is production. Acceptable cellular 

production levels are difficult to achieve for protein drugs, while the aggregation 

problems continue to be a major issue for biologics. In contrast, siRNA molecules are 

easy to produce with respect to chemical synthesis process. One shortcoming of RNAi 

therapy is that they only have antagonism effect to the specific targets, whereas the other 

two classes of drugs provide agonism as well as antagonism effect. Overall, RNA holds 
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great promise as a pharmaceutical drug that will fill in a significant gap in modern 

medicine.  

2.1.2 Therapeutic applications of RNAi 

RNAi based therapeutics has significant advantages including broad applicability, 

therapeutic precision and selectivity avoiding side effects. Recent advances in RNAi 

therapy have broadened the scope of its application for a variety of human diseases. A 

number of studies have been reported demonstrating the silencing of disease genes by 

administration of siRNAs. Figure 2.2 shows the organs in the human body for which 

RNAi proof of concept has been demonstrated [12]. Direct RNAi means local delivery of 

siRNA molecules. This has been carried out successfully to specific tissues and organs 

like eye, lung, skin, nose, the nervous system and the digestive system. Systemic RNAi 

means intravenous delivery of siRNA molecules into lung, tumors, liver and joint.  

Several different types of diseases that are very common and widely studied will be 

discussed here.  

Infectious disease 

Diseases caused by bacteria and viruses continue to be one major cause of death around 

the world. The emergence of resistant strains raises increasing concerns worldwide. The 

prominent examples are AIDS, influenza and hepatitis for virus infection and pneumonia 

and sepsis for bacterial infections [37].  Cell culture studies clearly demonstrated that 

RNAi was able to inhibit the cellular uptake or replication of infectious agents. Many 

studies have shown that siRNAs could knock down the expression of HBV gene [38,39]. 
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Figure 2.2 Organs and diseases for which the effect of RNAi has been proved [12]. 

        HBV is a DNA virus, its DNA replicates through a genomic RNA intermediate and 

uses a virally encoded reverse transcriptase during replication. It is found that the distinct 

RNAi targeting sequences on specific gene on virus exhibited various efficacies on 

inhibition of the viral DNA replication and gene expression [40–42]. Morrissey et al. 

reported a reduced serum HBV DNA concentration in mice by intravenous injections of a 

stable nucleic-acid-lipid particle (SNALP) [40].  McCaffrey et al. injected a large volume 

of plasmids encoding the HBC gene along with HBV specific shRNAs (small heparin 

RNA) into mouse liver. The HBV specific shRNAs significantly reduced viral mRNAs 
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and protein expression, thus inhibiting HBV replication in infected mice [43]. More 

examples of siRNA treatment for HBV are shown in Table 2.1. 

                               Table 2.1 Examples of siRNAs targeting HBV 

Gene Host Transfection/Delivery Results 

S, C HepG2.2.15 
cells 

Liposomes Reduction in HBsAg secretion by 
80% in cell culture 

C Mice Tail vein injection Significant reduction in HBsAg and 
HBeAg expression 

S Mice Hydrodynamic injection Three daily intravenous injections 
of 3 mg/kg day reduced serum 

P, C, S HepG2.2.15 
cells 

oligofectamine HBeAg expression decreased by 
73.8% and 72.8% after siRNAs 
targeting Pre C region 

C HuH7 and 
HepG2 cells 

oligofectamine HBeAg levels in the cell culture 
medium decreased to 4.6 fold and 
4.9 fold 

NA HepG2.2.15 
cells 

DOTAP liposomes Inhibition rate is approximately 80-
90% in treated cells 

Abbreviation: C, core antigen; S, surface antigen; P, polymerase; S, X protein; NA, not 
report; DOTAP, 1,2-dioleoyl-3-trimethylammonium propane 

      HIV was the first infectious agent targeted by RNAi, as the pattern and lifecycle of 

gene expression of HIV is well known. A number of studies have been carried out using 

siRNAs and shRNAs targeting HIV genome regions such as tat, rev, gag, pol, nef, vif, 

env, vpr, and the long terminal repeat (LTR) in infected cells and showed promising 

results to inhibit viral production [44]. Despite several successful cases, targeting the 

virus directly encounters a substantial challenge for clinical application, because the high 

viral mutant rate may lead to mutants that escape from being targeted [45]. Thus, RNAi 

mediated knockdown of cofactors associated with virus infection has become an 

alternative approach. Qin et al. successfully constructed a lentivirus-based vector to 
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deliver siRNAs against the HIV-1 co-receptor CCR5, into human peripheral blood T 

lymphocytes [46]. This resulted in up to 10-fold inhibition of CCR5 expression on the 

cell surface over two weeks, which therefore provided a substantial protection for the 

lymphocyte populations from HIV-1 virus infection, dropping infected cells by 3-7 fold. 

Kumar et al. conjugated a CD7 specific single-chain antibody to oligo-9-arginine peptide 

for T cell specific siRNA delivery in mice or CD43+ hematopoietic stem cells [47]. This 

treatment controlled viral replication and prevented the disease-associated CD4 T cell 

loss. Surabhi and Gaynor [48] addressed that siRNAs directed against NF-κB p65 subunit 

could significantly decrease the levels of the protein and thus inhibiting HIV-1 

replication. Multiplexing shRNAs or siRNAs targeting several sites in the HIV is an 

option that should be fully explored and carefully examined for efficacy, inhibition of 

viral mutants, and potential toxicity. One example of a potent combination of shRNAs 

with mixtures of non-shRNA antivirals is shown in Figure 2.3 [49]. However, the 

delivery of siRNAs to HIV infected cells is also problematic sometimes. The systemic 

delivery of siRNAs to T cells is probably not feasible owing to the immense number of 

target cells, which are primarily T lymphocytes, monocytes and macrophages. Therefore, 

the preferred method is to isolate T cells from patients. These cells are then transfected, 

expanded and reinfused into the same patients.  
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Figure 2.3 Proposed multiplexing RNA interference (RNAi) with ribozymes and decoys 

for the treatment of HIV infection. Different stages of HIV replication can be targeted 

using siRNA and combinations of other RNA based inhibitors. CD4 receptor and CCR5 

co-receptor are binding site for HIV-1. The proviral RNA is reverse transcribed into 

DNA, which will integrate randomly into the host chromosomes. The scissors represent 

targeting site for siRNA or ribozymes. The decoy for binding viral Tat or Rev is depicted 

as a barrel in the nucleus.  The virus may be attacked by siRNA or ribozymes at the 

preintegration step to block proviral DNA formation and integration. While at 

postintegration step, siRNAs can target all classes of HIV transcripts.  

Neurodegenerative diseases 

For many neurodegenerative disorders, a causative therapy is unavailable. Designing an 

inhibitor for any neurodegenerative disease that effectively suppresses the pathogenicity 
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of the disease is yet to be achieved. The challenge lies in crossing the blood-brain barrier 

(BBB) and blood-cerebrospinal fluid barrier (BCSFB) to reach the catalytic sites of the 

enzyme/protein involved in the molecular mechanism of the disease process [50]. siRNA 

holds a promising option for the development of novel therapeutic strategies for this kind 

of disease. Alzheimer's disease, Amyotrophic Lateral Sclerosis (ALS), Parkinson’s 

disease, Huntington's disease are examples of relatively common age-related 

neurodegenerative disorders, each of which is characterized by the dysfunction and death 

of specific populations of neurons: Hippocampal and cortical neurons involved in 

learning and memory processes in Alzheimer’s disease, dopamine- producing neurons in 

the substantia nigra controlling body movements in Parkinson’s disease and spinal cord 

motor neurons in ALS [37].  Specific genetic mutations are responsible for a small 

percentage of cases of Alzheimer’s disease, Parkinson’s disease and ALS [51], where all 

cases of Huntington’s disease result from mutations in the Huntington protein [52]. These 

neurodegenerative disorders share some biochemical cascades that result in neuronal cell 

death, including increased oxidative stress, irregulation of cellular calcium, homeostasis 

and apoptosis. Therefore, two different strategies were proposed for preventative and 

therapeutic treatment in these diseases. One is to silence the disease-causing genes that 

are believed to initiate the neurodegenerative process. The other is to target downstream 

events in the neurodegenerative cascade. Wang et al. used siRNA directed against the 

huntington gene to repress its transgenic mutant expression in an HD mouse model [53]. 

Results showed that intraventricular injection of siRNAs at an early postnatal period 

inhibited transgenic Huntington gene expression in brain neurons and induced a decrease 

in the numbers and sizes of intranuclear inclusions in striatal neurons. Treated model 
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mice showed significantly prolonged longevity, improved motor function and slowed 

down in the loss of body weight. In Alzheimer’s disease, increased beta-secretase 

(BACE1) activity is associated with neurodegeneration and accumulation of amyloid 

precursor protein (APP) products. Therefore, the inhibition of BACE1 could be important 

in the treatment of Alzheimer’s disease. Singer et al. found that decreasing BACE1 levels 

by using lentiviral vectors with siRNAs targeting BACE1 gene reduced amyloid 

production and the neurodegenerative and behavioral deficits in mice model with 

Alzheimer’s disease [54].  In summary, in vitro cell culture experiments and in vivo 

animal studies have shown that siRNA is a highly effective tool to downregulate different 

target genes involved in the pathogenesis of neurodegenerative diseases.   

Cancer 

Cancer is one of the primary causes of death around the world and it is estimated to cause 

13.1 million human casualties in 2030 [55]. Cancer is a chronic disease that causes 

growing burden to the patients, families and society. Thus, effective and safe treatments 

are urgently needed. Current available and common cancer treatment—surgery, 

chemotherapy and radiation have made tremendous progress, but they have ample of 

limitations. Recent understanding of the genetic causes of the disease provides the 

prospective for gene therapy as an alternative approach. The antigene approaches include 

ribozymes [56], antigene oligonucleotides [57], peptide nucleic acids (PNAs) and 

antisense oligonucleotides. In contrast to antisense technology, siRNA applies a post-

transcriptional gene silencing (PTGS) mechanism. siRNAs are much better in silencing 

the target gene compared to the antisense RNA alone as the transcript of the gene is 
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rapidly degraded without accumulation. Table 2.2 compares the pros and cons of 

different gene silencing strategies [18].  

        In cancer cells, proto-oncogenes have frequently been activated by various 

mechanisms. Cancer cells are different from normal cells in that they exhibit abnormality 

in cell cycle resulting in uncontrolled growth; they are resistant to death as a result of the 

dysfunction of the proteins that mediate cell apoptosis; they gradually acquire resistance 

to many anti-cancer drugs. Therefore, the approach for siRNA in the treatment of cancer 

is downregulation of genes that contribute to tumor progression, e.g. the expression of the 

oncogenes in cell cycle and/or an anti-apoptotic gene in cancer cells. The other genes 

involved in tumor formation were also widely studied—vascular growth factor involved 

in cancer metastasis, mutated genes that contributed to the development of drug-resistant 

cancer cells.  

      This high-throughput screening technique has paved the way for loss-of-function 

studies, thus numerous genes involved in tumor formation have been identified. This has 

indeed led to a recent acceleration in the development of siRNA-based strategies for 

cancer therapy. Figure 2.4 shows different target genes and pathways for which in vivo 

animal studies have been conducted successfully [58].  
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              Table 2.2 Advantages and disadvantages of different gene-silencing strategies 

Strategy Advantages Disadvantages 

Low-molecular-
weight agents 

Easy to administrate  Often nonspecific 

 Often inexpensive May not be available  

  Off-target effects 

Antisense ODNs Easy to synthesize Only exogenous 
delivery 

 Inexpensive Protein binding  

 Modification to improve selectivity and efficacy Off-target effects 

 
 Induction of interferon 

response 

Ribozymes Simple catalytic domain  Requirement of 
specific cleavage 
triplets 

 Delivery as free molecules and by expression 
vectors 

Protein binding  

 Tissue-specific delivery if vector established   

 Administration to subcellular compartments  

DNAzymes Inexpensive Only exogenous 
delivery 

 Good catalytic properties Off-target effects 

 Modification for systemic delivery  

RNAi Highly effective at low concentrations Off-target effects 

 
Delivery as free siRNA molecules and by short 
hairpin RNA expression vector 

Induction of interferon 
response 

 
Tissue-specific delivery if vector established  Expensiveness of 

siRNAs 

ODN: Oligodeoxynucleotide; siRNA: Short interfering RNA 
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Figure 2.4 Pathway targeting by siRNA delivery systems in cancer. Representation of 

siRNA targeted molecules used in preclinical studies to develop an anti-cancer treatment. 

Dox: doxorubicin; Doce: docetaxel. Plk1: polo-like kinase1; MAD2: mitotic-arrest 

deficient 2; EphA2: receptor of ephrins; AKT 1/2/3: KLFisoforme of serinethreonin 

kinase; PKN3: protein kinase N3; FAK: focal adhesion kinase; Bcl: B-cell lymphoma; 

Mcl-1: myeloid cell leukemia; VEGF: vascular endothelium growth factor; PAR-1: 

protease activated receptor 1; KLF-5: Kruppel-like factor 5; PLX1DC: plexin domain 
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containing 1; HIF-1a: hypoxia inducible factor 1a; CA: ceramidase acid; MDM2: murine 

double minute 2; POSTN: periostin. 

       Many studies have confirmed the therapeutic potential of RNAi in vivo by 

demonstrating the anticipated tumor inhibition effect. Table 2.3 summarizes these studies 

with detailed information [58].  

           Table 2.3 Studies based on siRNA delivery in cancer therapy 

Pathway siRNA 
target 

Cancer 
model 

Injection 
route 

Inhibition 
of tumor 
volume 

Other effects 

Cell cycle Cyclin B Prostate s.c 70%-92% 50% long 
survivial 

 PLK1 Breast s.c 70% Caspase 3 
activation 

 MAD2 Colon s.c 35% Increased 
apoptosis 

Proliferation EphA2 Ovarian i.p 55% / 

 AKT1 Prostate s.c 66% / 

 AKT2 Prostate s.c 89% / 

 AKT3 Prostate s.c 57% / 

 PKN3 Prostate Orthotopic 60% 75% for 
metastasis 

 FAK Ovarian i.p 60% / 

Cell death and 
Survival 

Bcl-2 Prostate s.c 65% / 

 Mcl-1 Breast s.c 75% no toxicity for 
max dose 

 Survivin  Prostate s.c 30% / 
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Angiogenesis VEGF Prostate s.c 87% No toxicity 

 PAR-1 Melanoma s.c 77% / 

  Melanoma 
meta 

i.v / Decreased 
metastase 
number 81% 

 CD31 Prostate Orthotopic 65% / 

 KLF-5 Lung 
carcinoma 

s.c 60% / 

  Prostate s.c 48% Prolonged 
survival 
median 

 PLX1DC Ovarian i.p 87% Increased 
apoptosis 35% 

Oncogene 
protein 

E6/7 Renal s.c 55% No synergic 
effect with 
cisplatin 

 ret/PTC1 Fibroblast s.c 90% / 

 

EWS-
FLI1 

Ewing 
sarcoma 

i.v 80% No 
inflammatory 
response 

 SS18-
SSX 

Synovial 
sarcoma 

s.c 83% / 

Hypoxy  HIF-1a Glioblastoma s.c 50% / 

Metabolism CA BT474 s.c 75% Increased 
apoptosis,non-
immunogenic 

DNA repair RecQL1 Colorectal 
meta 

Spleen 43% / 

  Pancreatic 
meta 

Spleen 31% / 

  Lung s.c 46% / 

Nuclear 
transport 

Ran Neuroblasto-
ma 

s.c 49% Increased 
apoptotic cell 
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Resistance P-gp Breast s.c 60% / 

Migration Actine B HT-1080 s.c 65% No 
inflammatory 
response 

siRNA 
concomitance 

MDM2, 
c-myc, 
VEGF 

Melanoma i.v 30% No 
inflammatory 
response 

Chemotherapy 
Concomitance 

c-myc Colon s.c 60% Increased 
apoptosis 

 c-myc, 

VEGF 

Ovarian s.c 57%-60% Increased 
apoptosis, no 
inflammatory 
response 

 POSTN Ovarian i.p 90% Increased 
apoptosis 45%, 
decreased 
proliferation 
60% 

Plk1: Polo-like kinase1; MAD2: mitotic-arrest deficient 2; EphA2: receptor of ephrins; 

AKT 1/2/3: KLFisoforme of serinethreonin kinase; PKN3: protein kinase N3; FAK: focal 

adhesion kinase; Bcl: B-cell lymphoma; Mcl-1: myeloid cell leukemia; VEGF: vascular 

endothelium growth factor; PAR-1: protease activated receptor 1; KLF-5: Kruppel-like 

factor 5; PLX1DC: plexin domain containing 1; HIF-1a: hypoxia inducible factor 1a; CA: 

ceramidase acid; MDM2: murine double minute 2; POSTN: periostin. s.c: sub-cutaneous 

injection, i.p: intraperitoneal injection, i.v: intravenous injection. 

 

However, to avoid the side effects often inccurred in traditional treatment, we should 

selectively eliminate cancer cells without damaging normal cells. To do so, the siRNA 

would be targeted to a gene specifically involved in the growth or survival of cancer 

cells, or the siRNAs would be selectively delivered into the cancer cells.  
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2.1.3 siRNA therapeutics in clinical trials 

RNAi has rapidly advanced from research discovery to clinical trials. Large amounts of 

money and effort have been invested in bringing siRNA technology to drug market. 

Initial trials have focused on well validated therapeutic targets, such as the VEGF 

pathway for the wet form of AMD, a leading cause of blindness and on the RSV genome, 

for the treatment of RSV infection, the leading cause of pediatric hospitalizations [59]. 

Phase I trials for above studies have already been completed without untoward toxicity. A 

total of 14 RNAi therapeutic programs have been reported to enter clinical trials in 2010 

[60]. Till 2013, this number has increased to 22, as shown in Table 2.4, and many more 

are still in the development pipeline [61]. However, few publications detailing these 

clinical practices have emerged currently, we can only acquire following information 

from company press releases or the US National Institutes of Health hosted database of 

ongoing and completed clinical trials. 

                      Table 2.4 siRNA based drugs in clinical trials 

Drug Target Disease Phase Company 

ALN-
VSP02 

KSP and 
VEGF 

Solid tumors I Alynylam 
Pharmaceuticals 

siRNA-
EphA2-
DOPC 

EphA2 Advanced cancers I MD Anderson 
Cancer Center 

Atu027 PKN3 Solid tumors I Silence 
Therapeutics 

TKM-
080301 

PLK1 Cancer I Tekmira 
Pharmaceutical 

TKM-
100201 

VP24, VP35, 
Zaire Ebola,  

Ebola-virus infection I Tekmira 
Pharmaceutical 
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ALN-
RSV01 

RSV 
nucleocapsid 

Respiratory syncytial 
virus infections 

II Alynylam 
Pharmaceuticals 

PRO-
040201 

ApoB Hypercholesterolaemia I Tekmira 
Pharmaceutical 

ALN-
PCS02 

PCSK9 Hypercholesterolaemia I Alynylam 
Pharmaceuticals 

ALN-
TTR02 

TTR Transthyretin-mediated 
amyloidosis 

II Alynylam 
Pharmaceuticals 

CAKAA-01 RRM2 Solid tumors I Calando 
Pharmaceuticals 

TD101 K6a (N171K 
mutation) 

Pachyonychia 
congenita 

I Pachyonychia 
Congenita 
Project 

AGN211745 VEGFR1 Age-related macular 
degeneration, choroidal 
neovascularization 

II Allergan 

QPI-1007 CASP2 Optic atrophy, non-
arteritic anterior 
ischaemic optic 
neuropathy 

I Quark 
Pharmaceuticals 

I5NP p53 Kidney injury, acute 
renal failure 

I Quark 
Pharmaceuticals 

PF-655 RTP801 Choroidal 
neovascularization, 
diabetic 
retinopathy,diabetic 
macular oedema 

II Quark 
Pharmaceuticals 

siG12D 
LODER 

KRAS Pancreatic cancer II Silenseed 

Bevasiranib VEGF Diabetic macular 
oedema,macular 
degeneration 

II Opko Health 

SYL1001 TRPV1 Ocular pain, dry-eye 
syndrome 

I, II Sylentis 

SYL040012 ADRB2 Ocular hypertension, 
open-angle glaucoma 

II Sylentis 
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CEQ508 CTNNB1 Familial adenomatous 
polyposis 

I, II Marina Biotech 

Rxi-109 CTGF Cicatrix scar 
prevention 

I Rxi 
Pharmaceuticals 

ALN-TTRsc TTR Transthyretin-mediated 
amyloidosis 

I Alynylam 
Pharmaceuticals 

ARC-520 Conserved 
regions of 
HBV 

HBV I Arrowhead 
Research 

 

As these and other trials advance through the clinic in the near future, the exciting 

potential of siRNAs may be demonstrated. Despite the obvious promise, there are several 

extracellular and intracellular challenges that currently limit the use of RNAi in the clinic. 

Important considerations for therapeutic RNAi include that gene silencing approaches 

rarely remove 100% of the mRNA, that off-target silencing can occur and that each target 

organ and tissues sometimes requires unique treatment. In some cases, the goal is to 

target every cell in the tissue, in other instances certain cell type in an organ is the 

objective. siRNA can also induce potential unwanted effects by activating the innate 

immune response, shutting off defense systems usually needed to fight against viruses. 
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2.2 Current delivery systems 

siRNA molecules must be delivered to the target cells to activate the RNAi pathway. 

Many reports have described the direct delivery of naked siRNA to tissues in vivo such as 

eye, lung and central nervous system [59]. It is still not understood why certain cells, 

other than the rest, can directly take up siRNA into cytoplasm. But in most cases, as 

siRNAs are too large and hydrophilic to pass through cell membranes by themselves, a 

delivery strategy is required to assist their uptake and protect them from degradation. 

Figure 2.5 lists the barriers the delivery system may encounter in vivo [62]. Many types 

of delivery strategy have been created therefore to solve these issues. These include some 

physical internalization method, such as hydrodynamic injection [63,64], which rapidly 

inject large volume of siRNA solution into a mouse via the tail vein; particle 

bombardment and electroporation [63,64]. Physical delivery methods have not been 

studied as extensively as chemical delivery systems, though these approaches may avoid 

possible immune system stimulations that often arise in normal chemical based delivery 

systems. Viral vectors are still the most powerful transfection tools used currently with 

respect to their high efficiency. However, viral vectors are difficult to produce in a large 

scale and more important, their inflammatory and immunogenic nature prevents them 

from clinical administration. To overcome these limitations, non-viral vectors have been 

investigated as an alternative safer way for siRNA delivery. These non-viral 

nanoparticles are preferred to viral carrier due to their relatively low immunogenicity and 

high biocompatibility. Three major types of siRNA delivery system will be discussed 

here. 
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 Figure 2.6 In vivo siRNA systemic delivery barriers. (A) Stability in the blood stream; 

(B) transport across the vascular endothelial barrier; (C) diffusion through the 

extracellular matrix; (D) delivery into the cytoplasm by (Di) endosomal escape and (Dii) 
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direct cytosolic delivery. (Dia) The siRNAs or siRNA nanoparticles were trapped in the 

endosome and (Dib) the siRNAs were released from the endosome into the cytoplasm. 

2.2.1 Lipid based siRNA delivery system  

Since the first discovery and active research of lipid carriers in 1965, the field has 

attracted enormous interest among scientists around the world [65]. Liposomes are 

considered the most versatile supramolecular assemblies with respect to size variety, 

composition and capacity to capsulate a variety of compounds. Liposome technology has 

made significant progress in the pharmaceutical industry, especially in drug and gene 

delivery. Several liposomes have been proved efficient and safe to deliver small molecule 

drugs in patients. Doxorubicin liposome (Doxil; Orthobiotech) has received FDA 

approval for treatment of breast cancer, ovarian cancer and other solid tumors [66]. 

        The ideal liposomes for siRNA delivery will encapsulate siRNA with high 

efficiency, protect siRNA from enzymatic degradation in serum, and form a narrow size 

distribution of less than 200 nm to be able to access extravascular regions. A number of 

different lipid and lipid-like formulation methods have been developed, generating a 

variety of LNPs including liposomes, micelles, microemulsions and solid lipid 

nanoparticles [67]. Among these synthetic carriers, cationic liposomes and lipoplexes 

emerged as the most promising vehicles. Liposomes usually consist of an aqueous core 

enclosed in a phospholipid bilayer with hydrophilic drug entrapped in the aqueous phase. 

In contrast, lipoplexes are spontaneously formed through static interaction [68]. The 

interaction of lipid with siRNA is based on the electrostatic interaction between the 

positive charges of the cationic lipid and the negatively charged phosphate backbone of 
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the siRNA. Upon mixing of the two species in solution, the siRNA is condensed with 

lipid in order to neutralize negative charge. The structure of the lipid/siRNA complex 

depends on the composition of lipid, the properties of solution and the molar ratio of 

them. The structure of the cationic lipids is known to influence the transfection efficiency 

and toxicity of the lipid based delivery system [69]. Thus, the ratio of lipid and siRNA 

should be optimized before experiment to facilitate its interaction with the cell membrane 

and cellular internalization.  

         Lipid-based carriers have been successfully used to deliver siRNA into cells. 

Lipofectamine, RNAifect, Oligofectamine are commercial lipid-based delivery system 

that are routinely used in the laboratory [70]. For instance, siRNA targeting CD31 and 

Tie2 genes complexed with a mixture of cationic and fusogenic lipids can downregulate 

the corresponding mRNA and protein levels in vivo after intravenous injection [71]. 

Intraperitoneal injection of anti-TNF-α siRNA complexed with cationic liposomes 

DOTAP can inhibit LPS induced anti-TNF-α gene expression in mice [72]. 

       Although satisfactory results were obtained for lipid based siRNA delivery system, 

there are still inherent difficulties exist. The amount of lipid required for efficient siRNA 

delivery in vivo is often accompanied by severe toxicity problems [73]. Besides, lipid 

can rapidly adsorb to serum proteins and trigger immune system response in the body. 

Thus, limited successful use of lipid was reported in vivo.  

2.2.2 Polymers and dendrimer based siRNA delivery system 

Linear or branched cationic polymers, made up of repeated units of covalently bonded 

monomers is another class of widely studied siRNA delivery system. The positively 
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charged polymers bind to siRNA through electrostatic interaction [74]. Figure 2.7 

illustrates the schematic structures of siRNA nanocarriers formed by polymers [75].  

                      

Figure 2.7 Schematic structure of various polymer based nanocarrier for siRNA delivery 

       A variety of polymers including poly(ethyleneimine)(PEI), poly-(L-lysine)(PLL) 

[76], chitosan [77], gelatin [78], poly-D,L-lactide-co-glycolide (PLGA) [79], poly 

(dimethylaminoethylme-thacrylate) (PDMAEMA) [80,81] and poly (trimethylamino-

ehylmethacrylate) (PTMAEMA) were investigated. PEI is the most widely used polymer 

for siRNA delivery. In general, a branched structure of PEI offers higher transfection 

efficiency and a high molecular weight complex leads to increased toxicity. Non-

covalently complexed PEI/siRNA could be internalized by the cells and achieve 

significant silencing effect. The systemic application of HER-2-specific gene complexed 

with PEI inhibited the growth of established tumors [82]. The intrathecal injection of 

PEI-siRNA complex targeting the pain receptor NR2B subunit decreased the mRNA 

level and its associated protein expression [83]. Dendrimers are synthetic 

macromolecules with highly branched peripheral chain ends. Although the investigation 

of dendrimers as siRNA delivery vector is still in its infancy, there are several reported 

advantages, which make it a promising versatile carrier. A novel surface neutral 
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dendrimers generated from poly(amidoamine) (QPAMAM) [84] was reported to show 

low cytotoxicity and highly organized compact ability because of its neutral surface and 

cationic inside structure.  

2.2.3 Cell-penetrating peptide based siRNA delivery system 

Cell penetrating peptides are defined by their ability to reach the cytoplasmic and/or other 

cellular compartments after internalization [85,86]. The initial discovery of cell 

penetrating peptide goes back about twenty years when the HIV-1 transactivating protein 

Tat was found to be taken up by mammalian cells [87,88]. And the following discovery 

of the homeodomain of Drosophila melanogaster transcription factor Antennapedia 

demonstrated that some “non-nature” peptides also share this property [89]. Mutation and 

deletion analyses have shown that in fact small domains within these proteins are 

responsible for the cellular uptake instead of the full-length peptide. These small peptide 

sequences are now referred to as CPPs or protein transduction domains (PTDs). Some of 

the CPPs, like Tat and penetratin, are small domains obtained from nature sequences, 

while some others are artificial designed constructs containing the critical feature of 

already known CPPs [90,91]. These CPPs share some common properties such as 

amphipathic and net positively charged at physiological pH [92]. Sometimes, siRNAs are 

linked to CPPs by expression as a fusion or by chemical coupling. Less peptide is 

required for this method. This is extremely important if peptide shows high toxicity to the 

cells. Recently, a more popular way to construct siRNA/peptide complex is allow them to 

bind each other non-covalently through mainly ionic interactions. The advantage of the 

later approach is that it does not require chemical modification of siRNAs, which 

maintain the nature structure of RNAs and reduces the purification procedures [93]. 
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Some positively charged amino acid such as arginine, lysine and histidine are often 

included in the peptide sequence for this purpose. 

        MPG, which is derived from the fusion peptide domain of HIV-1 gp41 protein and 

the nuclear localization sequence (NLS) of SV 40 T antigen, is the first peptide non-

covalently complexed with siRNA [94]. Luciferase activity was decreased by 80% after 

transfection with the complex. The derivatives MPG∆NLS and MPGα shows enhanced 

transfection efficiency and increased siRNA binding ability [95]. Further variations in 

the hydrophobic part of MPG led to pep-family [96,97]. In addition, more information on 

the recent discovered CPPs can be found in a variety of reviews [98–103]. 

   

       Figure 2.8 Principles of peptide mediated siRNA delivery [104] 
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2.3 Uptake pathways and subsequent intracellular trafficking of cell-

penetrating peptides as siRNA delivery vector 

2.3.1 Internalization mechanism of CPP/siRNA complexes 

Despite the intensive study in cell penetrating peptide, the uptake mechanisms are still 

elusive and remain a major controversy. In general, positively charged CPPs will attach 

to membrane surface through ionic interactions with negatively charged membrane 

components, i.e. heparin sulfate proteoglycans [105–107]. Subsequently, the complexes 

are internalized to cells by directly penetrating or endocytosis, depending on the uptake 

mechanism. Early study on labeled siRNA with fluorescence microscopy and flow 

cytometry showed that these peptides seemed to be internalized very rapidly within 

minutes even at 4°C, suggesting an energy-independent mechanism [108]. The secondary 

structure of peptides possibly plays an important role in cell membrane penetrating 

process. The peptides would form secondary structures as α-helix or β-sheet depending 

on the sequences and solvent. These structures would help the complex to translocate the 

cell membrane [109,110]. However, some peptides such as oligoarginine can translocate 

through cell membranes in a random coil, suggesting secondary structure is not the only 

factor that decides the uptake mechanism [111]. The recent studies that the uptake 

mechanism of CPPs also can be influenced by the kind of cargo it carries make the 

situation more complicated. For example, a Tat-GFP fusion protein was involved in 

caveolae/lipid raft-dependent process [112] while a fusion construct of Tat and Cre 

recombinase went through a macropinocytotic uptake pathway [113].  In a word, the 

mechanism of internalization strongly depends on the properties of both CPP and cargo 

as well as on the cell lines, transfection condition and even complex concentration [114]. 
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CPPs can cross the membrane bilayer directly in a non-endocytic, energy independent 

manner [115]. This occurs when the peptide are compatible with the membrane or can 

sufficiently disturb the structural integrity of the membrane. The process will be 

influenced if there are changes in membrane properties, such as fluidity and membrane 

potential. MPG and Pep-1 are reported to deliver siRNA into cells efficiently in an 

endosomal independent pathway [116,117].   

       Endocytosis is a process by which cells use to internalize solutes and fluids from the 

extracellular matrix [118]. It comprises of phagocytosis and pinocytosis. Phagocytosis 

relates to the uptake of large particles and exists in special cell types, where pinocytosis 

occurs in all cells and can be further divided into four mechanistically different pathways: 

macropinocytosis, clathrin-mediated endocytosis (CME), caveolae-/lipid-raft mediated 

endocytosis and clathrin and caveolin-independent endocytosis [119]. Figure 2.9 lists the 

uptake pathways for CPP/siRNA complexes. Extracellular molecules will be 

encapsulated in a lipid vesicle after internalization. Whether they can reach RISC in 

cytosol depends on their ability to escape the endosome before they are delivered back to 

the cell membrane for recycling or degraded by enzymes in lysosomes. Evidences have 

shown that the release of CPP-siRNA complex into the cytoplasm is a bottleneck for 

many peptide-mediated siRNA delivery systems.  

      To determine which uptake pathway the complex applys, some biological tools are 

used. These tools are usually various endocytosis pathways inhibitors, which will block 

the specific uptake of labeled complex. Tracer molecules for labeling endocytic pathway 



	
   36	
  

 

                        Figure 2.9 Uptake pathways of CPP/siRNA complexes 

compartments can be use to investigate uptake mode as well [120]. Based on 

experimental results, widespread opinions favor endocytosis as major pathway for most 

CPPs while direct membrane penetration is also regarded as possible for individual CPPs.  

2.3.2 Endosomal escape strategy 

For now, the most widely used delivery strategy for macromolecules including siRNA is 

to take advantage of the endocytosis pathway. After internalized via endocytosis, the 

internalized complexes exist in endosomes with no access to the cytosol. Therefore, 

endocytosed siRNA will need to escape from the endosome to reach the cytoplasm where 

the RISC locates. The endosomal entrapment and subsequent enzymatic degradation in 

lysosome contribute to the low transfection efficiency and is a major impediment for 

most non-viral carriers. Therefore, a variety of strategies have been used to facilitate 
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endosome escape, these include the addition of pore formation or fusion in the endosomal 

membrane, pH-buffering effect (the proton sponge effect), and photosensitizers [121].  

        Liposomes represent a mature delivery system as mentioned above. The mechanism 

by which cationic lipids escape from the endosome was proposed by Xu and Szoka [122]. 

The cationic lipids can interact with negatively charged membrane lipids in early 

endosome by formation of ion-pair. The electrostatic interaction could further promote 

the formation of the inverted hexagonal phase [123]. This will lead to the fusion of the 

liposome with endosome membrane, triggering the release of siRNA into cytoplasm.  

        For many cell penetrating peptides[124], the most troublesome problem is the 

entrapment in endosome after uptake, rather than the internalization itself. Thus, these 

CPPs can be further modified to promote endosomal escape, preventing degradation and 

allowing the siRNA to reach targets in cytosol. Endosomolytic reagents that are able to 

disturb endosome membrane can be used in combination with CPPs to enhance the 

release of complex. Chemical reagent chloroquine is thought to disrupt endosomes by 

inhibiting the acidification process of the endosome [98]. Some studies have 

demonstrated that an enhancement of the silencing effect was obtained by adding 

chloroquine with CPP-siRNA complex [95,113,125]. However, chloroquine is not 

suitable for in vivo therapeutic administration.  

       As alternatives, some peptides, known as fusogenic or endosomolytic peptides can be 

utilized to destabilize the endosomal membrane. The majority of viruses such as the 

influenza and adeno virus have single integral membrane peptides that will induce 

endosomal disruption or fusion upon acidic pH of endosomes. These peptides will go 
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through conformational changes in response to acidification of the endosome [126]. HA2 

peptide, derived from influenza virus hemagglutinin [127] is the most widely used 

fusogenic peptide. Protonation of the acidic residues of HA2 when endosome 

acidification happens results in a sided α-helix with a hydrophobic and a hydrophilic 

face. The hydrophobic face will strongly interact with the endosomal membrane, thus 

destabilizing it and cause the cargo molecules released [128]. In a study, the silencing 

ability of cell-penetrating peptide penetratin fused with HA2 was examined. The results 

indicated that the fusion of HA2 to penetratin significantly improve the transfection 

efficiency of penetratin alone [129]. Similarly, the biological activity of another CPP Tat 

was also enhanced by the fusion of HA2 to it, or by the administration of HA2-Tat 

protein with Tat at the same time [127]. Covalently linking the fusogenic peptide to the 

CPP directly increases the endosomolytic property of CPP, in contrast to adding chemical 

endosomolytic reagent. 

      Photostimulation strategy can also be applied to release endocytosed molecules in a 

biologically active form from endosomal vesicles. The photosensitizer reagents used here 

can be small molecules like TPPS2a and AlPcS2a [130] or fluorescent dye [131,132]. After 

internalization, the photosensitizers are mainly localized in the endosome with trapped 

CPP/siRNA complex. The cells or tissues are then exposed to light at a wavelength close 

to the excitation of the photosensitizers. This photostimulation will trigger the generation 

of highly reactive singlet oxygen (1O2), which result in disruption of endosomal 

membranes and the release of contents into the cytosol [98]. Some experiments have 

proved that this photostimulation strategy could greatly improve siRNA silencing 

efficiency [133,134]. This photoinduced endosomal escape strategy has potential use in 
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therapeutics as a targeting method without inducing extensive cell death and with 

maintenance of the biological activity of the released cargos.  

       The “proton sponge ” effect is mediated by agents with high buffering ability and the 

flexibility to swell when protonated. In this approach, proton absorbance by buffering 

agents prevents acidification of endosomes, thereby increasing the ATPase-mediated 

influx of protons, as well as counter ions, which enter endosomes to balance the proton 

flux. Increased ion concentrations inside endosomes will lead to osmotic swelling, 

endosomal membrane rupture and eventually leakage of the contents into cytosol [135]. 

Figure 2.10 demonstrates the endosomal escape process via “proton sponge” effect [136]. 

         

                   Figure 2.10 Endosomal escape process via “proton sponge” effect 
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        With the aim to increase the endosomal escape of siRNAs after peptide-mediated 

delivery, we can rationally include some agents with buffering effect when we design the 

cell-penetrating peptide, such as histidine residues. The imidazole group of histidine has a 

pKa of around six and can absorb protons in the acidic environment (pH5-6.5) of the 

endosome, leading to osmotic swelling, membrane disruption and eventually cargos 

escape [137]. Lundberg has reported a new peptide EB1 derived from penetratin by 

replacing two basic amino acids with histidines and the N-terminal addition of six amino 

acids [129]. This peptide will undergo a pH-dependent conformational change to a higher 

degree of helicity. The followed transfection experiment demonstrated that this modified 

peptide had better silencing effect than penetratin. Other examples of histidine containing 

peptide improving the transfection efficiency of peptide are also reported in literatures 

[138,139].  
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Chapter 3 

A New Amphipathic Peptide as siRNA Delivery Carrier: 

Physicochemical Characterization and Cellular Uptake* 

 

3.1 Introduction  

The recent discovery of RNA interference (RNAi) is considered to be the most important 

and exciting discovery of the past multiple decades [140]. RNAi is a natural regulatory 

process where small, double-stranded RNA molecules (typically 21-25 nucleotides) turn 

off specific genes in a biological cell [4]. Because RNAi is highly specific and efficient, 

it has become a widely used tool to dissect signaling pathways, discover important genes 

to embryonic development, and elucidate the function of novel genes in various 

fundamental biological processes—functional genomics [1,141]. However, the real 

payoff of RNAi lies in new therapies—short interfering RNAs (siRNAs)—which could 

yield more efficient drugs to fight cancer, HIV, influenza, and other diseases where 

conventional therapies fail. Rather than blocking the effects of specific proteins, which is 

what most conventional drugs do, an RNAi-based therapy could, in theory, stop the 

proteins from being made in the first place.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

*	
   	
   This chapter is based on a paper M. Jafari, W. Xu, S. Naahidi, B. Chen, P. Chen, A new 
amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical 
characterization and in vitro uptake, J. Phys. Chem. B. 116 (2012) 13183–13191. M. Jafari and 
W. Xu contribute equally to this paper.	
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  However, despite abundant promise, the translation of RNAi to realistic therapeutics 

has faced serious obstacles. The large size and polyanionic nature of free siRNAs prevent 

them from translocating across the negatively charged cell membrane. Moreover, without 

protection, siRNAs are subject to enzymatic degradation under physiological conditions. 

These highlight the importance of developing an efficient siRNA delivery system. In 

light of the safety concerns and efficacy issues with current drug delivery systems, cell-

penetrating peptides (CPPs), net positively charged peptides with fewer than 30 amino 

acids, have been widely applied to deliver cargos into cells. We have been studying a 

class of peptides, the self-assembling/co-assembling peptides, which can be used as drug 

or gene delivery vehicles [34]. These peptides have been successfully used to encapsulate 

a model anticancer drug and deliver it across the cell membrane in a controlled manner 

[142]. Encouraged by these results, we generated libraries of peptides that have potential 

to deliver siRNAs into cells. After high throughput screening from the first library of 

designed peptide [143], we have discovered a promising peptide C6 that is able to form 

stable non-covalent complexes with siRNA and deliver into cells efficiently. Considering 

the amphiphilic nature of the cell membrane, most CPPs possess both hydrophilic and 

hydrophobic moieties. C6 is amphiphilic, as the hydrophilic side interacts with the 

hydrophilic drugs/gene through electrostatic interaction, whereas the hydrophobic side is 

anchored in the hydrophobic core of the bilayer, triggering the endocytosis pathways or 

assisting the direct translocation of peptide-cargo to the cytosol. The amphiphilicity of 

the peptides may evolve from their primary structure, for example, MPG [144], or 

secondary structure, for example, penetratin, where the peptide needs to adapt a helical 
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structure to organize hydrophilic and hydrophobic moieties at different sides of the 

peptide.  

      Three types of amino acids were incorporated in the design of C6 peptide (Ac-

RLLRLLLRLWRRLLRLLR-NH2): (1) seven arginine residues were incorporated to 

interact with siRNA and cell membrane. Positively charged arginine residues can interact 

with the negatively charged phosphate groups on the siRNA backbone via ionic 

interactions. These basic residues also interact with negatively charged cell surface 

proteoglycans to initiate their cellular uptake [145]. CPPs with six to nine arginine 

residues have been reported to have the highest translocation efficiency [146]. (2) Ten 

leucine residues were incorporated to induce the amphiphilicity and helicity to the 

peptide structure. These hydrophobic residues are found abundantly in the helical regions 

of proteins [147]. They also interact with hydrophobic tails of lipid bilayer and facilitate 

the translocation of peptide [148]. (3) An aromatic tryptophan residue in the middle of 

the sequence was incorporated to use as an intrinsic fluorescence probe to study the 

structural change of peptide upon changing the environment or interaction with siRNA. 

        Because each turn of a peptide helix includes 3.6 residues, arginine residues were 

distributed along the peptide sequence in three or four residue intervals, so when a helical 

structure was formed, they all faced the same side of the helix (Figure 3.1). This induces 

amphiphilicity to the peptide structure as polar (R) and nonpolar (L, W) residues face 

opposite sides when peptide adopts a helical structure. The presence of all arginine 

residues on hydrophilic face of the helix facilitates ionic interaction of positively charged 

residues with siRNA backbone, maximizing the loading capacity of the peptide. 
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Figure 3.1 Helical wheel projection of peptide C6. A downward cross-sectional view of 

the α helix axis, orthogonal to the paper plane, is shown. The bigger the circle is, the 

upper turn the residue is located at, when viewing from the top. R (green), L (yellow), 

and W (blue) represent arginine, leucine and tryptophan residues, respectively. 

 

The chapter will be focused on physicochemical characterization of C6 and its 

coassembly/complex with siRNA as well as C6-mediated cellular uptake of siRNA using 

several biophysical, spectroscopy, and microscopy approaches. 
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3.2 Materials and Methods 

3.2.1 Peptide and siRNA  

The C6 peptide (Ac-RLLRLLLRLWRRLLRLLR-NH2, MW 2470.2 g/mol) was 

purchased from CanPeptide (Montreal, Canada). High performance liquid 

chromatography (HPLC) analysis indicated that the synthetic peptide was at least 98% 

pure. SilencerTM GAPDH siRNA  (Life Technologies, Carlsbad, USA) was used as 

siRNA targeting the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. The 

SilencerTM Cy3-labeled GAPDH siRNA (Life Technologies, Carlsbad, USA) was used in 

fluorescence microscopy and Fluorescence Activated Cell Sorting (FACS). The siRNA 

used in agarose gel electrophoresis and fluorescence spectroscopy is eGFP siRNA, which 

was purchased from Dharmacon with an extinction coefficient of 362408 L/mol cm. The 

sense sequence is GACGUAAACGG CCACAAG UUC and antisense sequence is 

ACUUGUGGCCGU UUACGUCGC.	
  The negative control siRNA (Life Technologies, 

Carlsbad, USA) used in the experiment was siRNA with scrambled sequence. 

3.2.2 Cell Culture  

CHO-K1 (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (ATCC, Manassas, USA). Cells were cultured in F-12K medium (Thermo 

scientific, Ottawa, Canada) supplemented with 10% fetal bovine serum (FBS) (Sigma, 

Oakville, Canada). All of the cells were incubated at 37°C in a humidified atmosphere 

containing 5% CO2. 
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3.2.3 Preparation of Peptide/siRNA Coassembly/Complex 

The C6 peptide was prepared by dissolving peptide powder in RNase-free water. A stock 

solution of 1 mM was made and diluted at desirable concentrations for various 

experiments. The solution was vortexed for 10 s and sonicated for 10 min in a tabletop 

ultrasonic cleaner (Branson, model 2510, Danbury, USA). siRNA was diluted in RNase-

free water to a concentration of 50 µM. Peptide/siRNA complexes were formed by 

adding peptide solution into siRNA in proportion according to the designed experiment. 

The complexes were incubated for 20 min at room temperature before each experiment. 

3.2.4 Atomic Force Microscopy (AFM) 

 The nanostructures of peptide C6 (40 µM) and C6/siRNA (molar ratio of 40/1) 

complexes were characterized by AFM. The sample solution (10 µL) was placed on a 

freshly cleaved mica surface, fixed on a glass slide, and incubated for 30 min at room 

temperature to allow the sample to adhere onto the mica surface. The mica was then 

rinsed five times with Milli-Q water to remove any unattached particles, followed by air-

drying overnight. The mica surface was analyzed by a PicoScan AFM (Molecular 

Imaging, Phoenix, USA) at room temperature using the tapping mode with silicon single-

crystal tips (NCL type, Molecular Imaging, Ann Arbor, USA), with a typical tip radius of 

10 nm and resonance frequency of <170 kHz. A scanner with the maximum scan size of 

5 µm × 5 µm was used. All AFM images were obtained at a resolution of 512 × 512 

pixels on a scale of 2 µm × 2 µm. 

3.2.5 Agarose Gel-Shift Assay and Heparin Competition Assay 

The ability of C6 to coassemble with siRNA was investigated by agarose gel (1.2 wt %/ 
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vol) shift assay. siRNA was incubated for 30 min at 37 °C in RNase-free water with 

different concentrations of C6 to obtain peptide/ siRNA molar ratios ranging from 1/1 to 

80/1. The samples (10 µL containing 0.3 µg of siRNA per well) and loading dye were 

loaded to each well, and electrophoresis was carried out at a constant voltage of 55 V for 

1.5 h in TBE buffer (4.45 mM Tris−base, 1 mM sodium EDTA, 4.45 mM boric acid, pH 

8.3) containing 0.5 µg/mL ethidium bromide. 

      In the case of heparin competition assay, different amounts of heparin corresponding 

to final concentrations from 0.5 to 10 µg heparin per 10 µL of complex were added to 

C6/siRNA complexes at molar ratios of 15/1, 40/1, 60/1, and 80/1. Ten microliters of 

each sample, corresponding to 50 pmol of siRNA, was then analyzed by electrophoresis 

on agarose gel (1.2 wt %/vol) stained with ethidium bromide. 

3.2.6 Peptide mediated siRNA transfection in cultured cells 

CHO-K1 cells were seeded in F-12K medium with 10% FBS without antibacterial agents 

in a 24 well plate, 24 hrs before transfection. Overlay the cells with 100 ul of preformed 

complexes after rinse the cells with PBS, incubate for 3–5 minutes, and then 200 µl of 

Opti-MEM (Life Technologies, Carlsbad, USA) were added. After 4 hours of incubation 

in 37°C, 300ul of media containing 20% FBS was added to obtain a final FBS 

concentration of 10%. For siRNA uptake experiment, cells were harvested after 3 hours 

while for knockdown experiments, cells were collected after 48 hours.  

3.2.7 Fluorescence-Activated Cell Sorting (FACS) 

The amount of Cy-3 labeled siRNA uptaken by the cells was studied by Flow Cytometry 

(type BD Biosciences, BD FACSVantage SE Cell Sorter, Franklin Lakes, USA). 
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Approximately 50000 CHO-K1 cells were seeded in a 24-well cell culture plate 24 h 

before treatment. Cy3-labeled GAPDH siRNA was complexed with C6 peptide at molar 

ratios of 15/1, 25/1, and 40/1 and incubated at room temperature for 20 m. Lipofectamine 

2000 (Life Technologies, Carlsbad, USA) was complexed with labeled siRNA according 

to manufacturer’s protocol and used as a positive control. The complexes were added to 

cells with a final siRNA concentration of 50 nM per well and incubated at 37 °C for 3 h 

in Opti-MEM. The medium was removed by aspiration, and the wells were washed with 

heparin (10 U/mL, three times total for 1 h at 37 °C). After washing, the cells were 

detached from the plate by adding trypsin-EDTA and resuspended in fresh 4% 

paraformaldehyde (PFA) in phosphate-bufferred saline (PBS) and collected in FACS 

tubes for analysis.  

3.2.8 mRNA level measurement 

Approximately 4x104 CHO cells were plated in a 24-well cell culture plate. 24 h later, the 

medium was replaced by Opti-MEM. GAPDH siRNA or scrambled siRNA complexed 

with C6 at different molar ratios were prepared in Opti-MEM medium and added to the 

cells. Three hours later, growth medium with 20% FBS was added, followed by 48 h 

incubation at 37 °C in a 5% CO2 atmosphere. The cultures were then washed with PBS. 

Total RNA was extracted from the cells with TRIzol reagent (Life Technology, Carlsbad, 

USA), then treated with chloroform (Sigma, Oakville, Canada) and 2-propanol (Sigma, 

Oakville, Canada) as recommended by the manufacturer. RNA concentrations were 

measured by Nanodrop spectrophotometer ND-1000 (Thermo scientific, Ottawa, 

Canada). All RNAs were reverse transcribed with Bio-Rad iScript cDNA synthesis kit. 

The cDNA synthesis was primed with a unique blend of oligo (dT) and random primers. 
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The following pairs of primers were used for PCR: 5ʹ′-TTGCTGTTGAAGT- 

CGCAGGAG-3ʹ′, 5ʹ′-TGTGTCCGTCGTGGATCTGA-3ʹ′ (Sigma, Oakville, Canada). 

Here, the housekeeping gene cyclophilin was chosen as an internal control to normalize 

the GAPDH gene. The normalization was performed by the amplification of mouse/rat 

cyclophilin mRNA with the following primers: 5ʹ′-AGGGTTTCTCCACTTCGATCT- 

TGC-3ʹ′ and 5’-AGATGGCACAGGAGGAAAGAGCAT-3ʹ′ (Sigma, Oakville, Canada). 

PCR reaction was performed with Brilliant II Fast SYBR Green QPCR Master Mix 

(Agilent Technologies, Wilmington, USA) on an Mx3005P™ Real-Time PCR System 

(Agilent Technologies, Wilmington, USA). 

3.3 Results and Discussion 

3.3.1 Morphology of C6/siRNA complex  

The particle size and charge significantly affect its circulation in the bloodstream, 

biodistribution, and uptake by the cells. The particle size ranging from 100 to 500 nm 

would be ideal for passive targeting to solid tumors through the enhanced permeability 

and retention (EPR) effect [149]. Therefore, engineering the nanoparticle to obtain 

appropriate physical properties could significantly enhance its therapeutic effect. The 

particle size and zeta potential of C6/siRNA complex were first studied by dynamic light 

scattering and zeta potential. As reported [150], the majority of C6/siRNA coassemblies 

at molar ratios of 10/1 to 20/1 had an average size of ∼50 nm. However some larger 

particles (∼200 nm) were also observed. The size of complexes was increased by adding 

more peptides, because the extra peptides added layers to the initially formed 

peptide/RNA cores. This finding was in agreement with AFM images (Figure 3.2b), 
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which show high population of small nanoparticles (∼50 nm) as well as the presence of 

larger complexes (∼100−200 nm). At molar ratio of 40/1, the complex became more 

uniform as the intensity and number-based DLS results showed the average size between 

150 and 250 nm. The peptide only sample formed globular structures with an average 

diameter of ∼45 nm, eventually organized to form a network of strings of nanospheres, 

shown in Figure 3.2b. The formation of these globular structures was derived by 

hydrophobic attraction between leucine residues, distributed along the peptide sequence. 

 

Figure 3.2 AFM images of (a) C6 peptide aggregates/assemblies (40 µM) and (b) 

C6/siRNA complex (MR = 40/1). The sample solution (10 µL) was placed on the mica 

surface and incubated for 30 min at room temperature. The mica was then rinsed five 

times with Milli-Q water, followed by air-drying overnight. The scan size of the images 

is 2 × 2 µm2. The scale bar denotes 200 nm.  
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Because there was not such a template for nanoparticles in solution in DLS experiment to 

form the network, they aggregated, instead, as larger particles to minimize the interaction 

of hydrophobic residues and water molecules. This self-assembly/aggregation process is 

thermodynamically favored by minimizing Gibbs free energy through limiting the 

exposure of hydrophobic residues to the aqueous environment and having mostly charged 

arginine residues on the surface of globules. 

      The surface charge of C6/siRNA complex at molar ratio of 10/1 was slightly 

negative, which implies that siRNA molecules were not fully saturated by peptides. 

Considering seven positively charged arginine groups of the peptide C6 and 21 pairs of 

negatively charged nucleotides in a siRNA molecule, it was theoretically expected to 

neutralize the negative charge of siRNA at molar ratio of 6/1; however, at a higher molar 

ratio, that is, 15/1, the zeta potential of the complex jumped to +30 mV, indicating that 

peptides fully covered the surface of the complex. With the increasing concentration of 

peptide at the same siRNA concentration, the positive value of the surface charge of the 

complexes increased from +30 (MR = 15/1) to +60 mV (MR = 40/1) due to the increase 

in the number of positively charged arginine residues. The net positive charge of the 

particles is crucial because it inhibits particle aggregation and enhances electrostatic 

interaction with the negatively charged phospholipids of the cell membrane upon siRNA 

delivery. 

        The helical structure of C6 was also confirmed by CD spectroscopy. C6 in water 

showed a small content of a random coil conformation with a minimum at 203 nm. By 

adding a small amount of siRNA (MR of 40/1), a clear shift in the spectrum minimum 

from 203 to 208 along with a maximum around 190 nm was observed, which represents a 
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typical helical conformation. The absolute values of the minima at 208 and 222 nm and 

the maximum at 190 nm were increased by adding more siRNAs to MR of 10/1, which 

indicates the increase in helical content in secondary structure of the peptide at a higher 

concentration of siRNA. Adding further siRNA beyond the MR of 10/1 did not 

significantly change the secondary structure of the peptide. Considering the nature of C6 

and siRNA interaction, that is, ionic interaction, the charge neutralization of seven 

arginine residues in the peptide sequence may decrease the repulsion between them, 

which eventually facilitated the peptide adoption to a helical conformation. 

 

3.3.2 Agarose gel-shift assay and heparin competition assay 

Agarose gel shift assay was used to detect the interaction between siRNA and peptide 

molecules and the stability of the formed complex in the presence of heparin. Peptide can 

interact with siRNA through noncovalent interactions such as Coulombic forces and 

hydrogen bonding. In particular, basic amino acids such as lysine, arginine, or histidine 

can interact with the negatively charged phosphate groups on the siRNA sugar rings 

through electrostatic interactions. Free siRNA molecules could move toward the positive 

electrode when the voltage is applied, whereas the inability of peptide/siRNA complexes 

to enter the agarose gel suggests the formation of stable complex with no free siRNAs to 

be shown in siRNA bands. As shown in Figure 3.3a, the effective formation of the 

C6/siRNA complex started at molar ratio of as low as 5/1 because the band was less 

bright than that of siRNA only. At the molar ratio of 10/1, siRNA molecules were almost 

completely associated with peptide C6 because a very small amount of free siRNA was 

observed on siRNA band. This band completely disappeared at the molar ratio of 15/1. 
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This finding suggests that excess peptide molecules are needed to obtain stable 

peptide/RNA complexes, as six molecules of peptides are theoretically required to 

neutralize electrostatically one molecule of siRNA. Further experiments showed that the 

excess peptide molecules could provide a shield to protect siRNA molecules against 

degradation and also interact with cell membrane to initiate the peptide/siRNA cellular 

uptake. 

 

Figure 3.3 (a) Formation of C6/siRNA complexes at different molar ratios, indicated by 

agarose gel. siRNA was incubated with different concentrations of C6 corresponding to a 

molar ratio ranging from 1/1 to 80/1. Lane 1 refers to siRNA control in the absence of 

C6, and lanes 2−8 refer to different molar ratios. (b) Stability of C6/siRNA complex 

indicated by heparin competition assay. Different amounts of heparin corresponding to 

final concentrations of 0.5 to 10 µg heparin per 10 µL of complex were added to 

C6/siRNA complexes at different molar ratios. The stability of complexes was analyzed 

by electrophoresis on agarose gel (1.2 wt %/vol) stained with ethidium bromide. For 

better comparison, the siRNA bands of four independent gels were put in the same image.  
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          The stability of C6/siRNA complexes at different molar ratios in the presence of 

heparin was also analyzed by gel electrophoresis. As shown in Figure 3.3b, C6/siRNA 

complexes were stable in the absence of heparin (second well from left), and no free 

siRNA was shown in siRNA bands at all MRs. The complex at MR of 15/1 was stable at 

very low concentration of heparin, that is, 0.5 µg per 10 µL of sample, but dissociated at 

higher heparin concentration. The minimum concentration of heparin required for 

dissociation of the complex increased by increasing the MR up to 60/1. However, the 

complex at the molar ratio of 80/1 was completely stable even at high heparin 

concentration (10 µg in 10 µL of loaded sample). 

 

3.3.3 Subcellular distribution of C6/Cy-3 siRNA  

To study the cellular uptake, distribution, and localization of siRNA complexed with C6, 

we transfected CHO cells with Cy3-labeled siRNA alone or in complex with C6 or 

lipofectamine 2000. CHO cells were incubated with or without complexes for 3 h and 

observed under a fluorescence microscope (Figure 3.4). 

      As expected, Cy-3 siRNA alone was not able to enter the cells by itself due to the 

negative charge and lack of an appropriate delivery vector (Figure 3.4b). siRNA 

internalization happened within 3 h of incubation at the presence of transfection reagent, 

Lipofectamine 2000, as shown as small red dots in the cytosol of most of the cells (Figure 

3.4d). In the cells treated with C6/siRNA complexes (Figure 3.4e, f), siRNA was 

localized to regions in close proximity to the nuclear membrane. siRNAs delivered by C6 
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showed a punctual nonhomogeneous distribution pattern around the periphery of the 

nucleus inside the cell, which indicated the possibility of endocytosis pathways [95].     

      C6/siRNA complexes at high molar ratios 40/1 may form high-molecular-weight 

complexes or aggregate, as previously documented for other CPPs. These large 

complexes may be internalized through the macropinocytosis pathway, which can include 

all pinosomes larger than 200 nm. However the uptake of large aggregates by fluid phase 

endocytosis may not result in the effective release of siRNA into the cytoplasm and 

eventually significant gene knockdown. Thus, precautions should be taken into account 

when increasing the molar ratio because the large aggregates might have problems 

dissociating and releasing siRNA in the cells, eventually decreasing the knockdown 

efficiency of the complex. 
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Figure 3.4 Subcellular distribution pattern of Cy3-labeled siRNA 3 h post-treatment. 

Cy3-labeled GAPDH siRNA (red) was transfected to CHO-K1 cells with positive control 

reagent and different molar ratio of C6 at a siRNA concentration of 50 nM. Cells were 

analyzed by fluorescence microscopy 3 h after transfection (magnification, 40×). Nuclei 

were stained with DAPI (blue). (a) Nontreated cells and (b) cells treated with 50 nM 

siRNA only, (c) with C6 peptide only, (d) with Lipofectamine 2000 as positive control, 

and (e) with siRNA complexed with C6 at molar ratio of 15/1 and (f) molar ratio of 40/1. 

3.3.4 Cellular uptake of peptide/siRNA complex 

The efficiency of C6 to deliver siRNA into CHO-K1 cells was evaluated using FACS. As 

shown in Figure 3.5, cellular uptake efficiency of siRNA was correlated to the molar ratio 

of C6/siRNA. Even though a 15/1 molar ratio was sufficient to deliver an even higher 

amount of siRNA into cells compared with Lipofectamine 2000, the intracellular 

fluorescence intensity increased with increasing molar ratio (MR 25/1 and MR 40/1). 
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Figure 3.5 Flow cytometry results for Cy3-labeled siRNA delivered by Lipofectamine 

2000 and C6 at different molar ratios (MRs).  

3.3.5 Gene silencing efficiency of C6/siRNA complexes 

As GAPDH siRNA can be effectively delivered to CHO-K1 cells, next we want to see 

whether this delivered siRNA is able to perform RNAi and decrease the expression level 

of GAPDH mRNA. As shown in Figure 3.6, the positive control Lipo2000/siRNA 

complex demonstrates around 80% knockdown efficiency of GAPDH mRNA.  
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Figure 3.6 Gene silencing efficiency of C6/siRNA complex on CHO-K1 cells. Relative 

GAPDH mRNA level in CHO-K1 cells after transfected with C6/GAPDH siRNA 

complexes was measured by qRT-PCR method. All the data were normalized to another 

house keeping gene cyclophilin and compared to scrambled siRNA control. The results 

correspond to an average of at least three separate experiments. 

 

We expected that C6/siRNA complex would show similar transfection efficiency as 

Lipo2000, since the internalization efficiency is similar. However, C6/siRNA complexes 

only showed 20% knockdown efficiency at most with MR 40/1. This great discrepancy 

was very likely caused by the entrapment of C6/siRNA complexes in the endosomes after 

internalization. In order to increase the silencing efficiency of peptide/siRNA complexes, 

we should improve the endosomolytic ability of peptide C6 itself.  
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3.4 Conclusions 

C6, an amphipathic peptide, was introduced as a safe and efficient carrier for siRNA 

delivery in vitro. The noncovalent interaction/coassembly between C6 and siRNA and the 

physicochemical properties of the resulting coassemblies were studied. C6 alone showed 

a random coil secondary structure in water but adopted a helical conformation upon 

binding to siRNA. The gel electrophoresis and AFM results confirmed stable C6/siRNA 

complex formation in the molar ratios from 10/1 to 40/1. The flow cytometry data and 

fluorescence microscopy images also indicated the high cellular uptake and cytoplasmic 

localization of siRNA delivered by C6. However, in contrast to the high uptake 

efficiency, the silencing efficiency of C6/siRNA is very low at various molar ratios, 

probably due to endosome entrapment of this complex after being internalized into cells 

through endocytosis pathway. Thus, in the following experiments, we try to improve the 

silencing efficiency of C6/siRNA complex by modifying C6 sequence with the addition 

of endosomolytic moiety.  
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Chapter 4 

In vitro and in vivo therapeutic siRNA delivery induced by a 

tryptophan-rich endosomolytic peptide 

 

4.1 Introduction  

RNA interference (RNAi) is considered one of the most important and exciting 

discoveries in biology of the past decade [151]. Only over ten years following its 

discovery, RNAi has already become a widely used tool in biology and medicine, and is 

poised to catalyze development of the next major class of pharmaceutical drugs. Rather 

than blocking the effects of faulty proteins, which is what most conventional drugs do, an 

RNAi-based therapy would, in theory, stop the proteins from being made in the first 

place. Despite abundant promise, several sizable challenges remain in the way of siRNA-

based therapeutics. The most important concern is the effective delivery of siRNA to its 

site of action in the cytoplasm. Some unfavorable physicochemical properties impede the 

uptake of siRNA into the cells, particularly following systemic administration [25], 

including: a relatively large molecular weight, negatively charged surface, hydrophilicity, 

sensitivity to nuclease degradation, and instability (plasma half-life of less than ten 

minutes) [24]. The application of therapeutic siRNA for the targeted silencing of specific 

genes to most tissues and organs requires clinically suitable, efficient and safe delivery 

systems. 
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      Although demonstrated to have high transfection efficiency in vitro, the application of 

some lipids (e.g., Lipofectamine 2000) and polymers (e.g., PEI) [21] as siRNA vectors in 

vivo is limited due in large part to high toxicity [73] and a tendency to induce the immune 

response [32,33]. Among non-viral delivery systems, cell-penetrating peptides (CPPs) are 

emerging as one of the most promising to facilitate cellular uptake of various 

biomolecules, including siRNA. By comparison, CPPs mediated internalization is highly 

efficient and often harmless to the cell in therapeutic dosages, avoiding severe cell 

membrane destabilization [152]. Most well characterized cell penetrating peptides to date 

are derived from known transduction domains of proteins that interact with cell 

membranes, e.g., TAT(-YGRKKRRQRRR-) from HIV-1 TAT protein [153], penetratin 

from the homeodomain of the Antennapedia protein of Drosophila [154], and CADY 

from fusion peptide JTS1 [155]. These peptides usually consist of 30 or less amino acids 

and share some common characteristics, such as amphipathicity and a positive charge at 

physiological pH.    

      In previous chapter, we have reported a new cell penetrating peptide C6 

(RLLRLLLRLWR RLLRLLR) that can form stable complexes with siRNA and deliver 

them into cells in a highly efficient manner [156]. However, the knockdown efficiency of 

the complex is low, probably due to the poor endosome escape ability. siRNA that 

remains entrapped within endosomes cannot display biological activity, as it can not 

reach cytoplasm where RNAi happens. In order to optimize delivery, we modified the C6 

sequence by replacing some amino acids to increase its endosomolytic property. Among 

derivatives, C6M1 is one of the peptides showing potent therapeutic siRNA delivery 

ability. This new peptide, C6M1 (Ac-RLWRLLWRLWRRLWRLLR-NH2) maintains the 
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seven arginine residues in C6, in accordance with reports that peptides with six to nine 

arginine residues have the highest translocation efficiencies [146]. These positively 

charged arginine residues can interact with the negatively charged phosphate groups on 

the siRNA sugar rings through electrostatic interaction and increase the affinity of the 

complex with negatively charged head groups of plasma membrane [157]. Some of the 

leucine residues were kept from C6, as leucine is the strongest structure forming residue 

found abundantly in the helical regions of proteins [158]. Hydrophobic residue leucine, as 

well as other hydrophobic residues, may facilitate the translocation of the peptide by 

interacting with the hydrophobic tails in the lipid bilayer [148]. To improve endosomal 

escape, we use aromatic tryptophan to substitute some leucine residues in the sequence, 

since tryptophan rich motif is found abundantly in the pore-forming toxins of bacteria 

[159,160]. Meanwhile, tryptophan is able to interact with lipids/cholesterols within the 

cell membrane and have therefore been shown to play an essential role in the cellular 

uptake of many cell-penetrating peptides [109,154]. We arrange the amino acid residues 

in alternating order in the sequence that if the peptide adopts α-helical structure, it has an 

amphiphilic helical structure with one side of the helix contains mainly hydrophilic 

amino acid residues, while the other side contains mainly hydrophobic ones. This 

amphiphilic helical structure is widely found in antimicrobial peptides [161,162], which 

have high affinity for cell membrane. Viewed from the top, C6M1 displayed an α-helical 

secondary structure with three distinct sections, see Figure 4.1a. When folded, the 

ordered segregation of polar (R) and nonpolar (L, W) amino acids on different sides of 

the helix constitutes a secondary amphiphilic structure.  
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Figure 4.1 Predicted helical structure of peptide C6M1. (a) Helical wheel projection of 

C6M1 peptide. R represents arginine, L represents leucine, W represents tryptophan. (b) 

3D molecular structure of C6M1. Positively charged functional groups are denoted in 

blue. (c) Formulation strategy for siRNA and C6M1 molecules. Double helix represents 

siRNA.  (d) The final nanocomplex of siRNA and peptides. The figures b-d were 

generated using Hyperchem (Hypercube, Inc.) 
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The hydrogen bonding between C=O and N-H groups in the backbone of the peptide is 

involved in the formation of the helical structure. Also, the role of electrostatic, π-π 

stacking, hydrogen bonding, and hydrophobic interactions between side chains in 

stabilizing the helices has also been reported [163,164]. The unique arrangement of 

amino acids in C6M1 helical structure facilitates hydrophobic interaction between leucine 

residues, π-π stacking between tryptophan residues, and hydrogen bonding between 

arginine residues, which eventually stabilize the helical conformation of the peptide. By 

concentrating the positive charge on one side of the helix (see Figure 4.1b), the loading 

capacity of the peptide may be maximized, enabling it to more easily neutralize siRNA 

molecules, which may subsequently reduce the dose required for effective delivery, 

Figure 4.1c. Theoretically, around 10 molecules (7 being minimum) of the peptide are 

needed to neutralize one siRNA molecule in the formation of peptide-siRNA complexes. 

These monomers will then further aggregate to form nanocomplex that can be 

internalized by cells, see Figure 4.1d.  

       Here, we characterized this peptide-siRNA complex/nanocomplex and determined 

the optimal transfection condition. The amount of the complexes taken up by cells was 

determined by flow cytometry. Quantitative RT-PCR was applied to measure the mRNA 

level of cells treated with C6 and C6M1. Our results show that the substitution of 

tryptophan for leucine in C6 sequence significantly increases transfection efficiency. In 

addition, the complex could significantly inhibit tumor growth in a xenograft mouse 

tumor model without causing toxicity effect, suggesting potential therapeutic application.  
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4.2 Materials and Methods 

4.2.1 Materials 

Peptide and siRNA: The C6 and C6M1 peptides were synthesized in bulk by CanPeptide 

Inc (Montreal, Canada). High performance liquid chromatography (HPLC) analysis 

indicated that the synthetic peptide was at least 95% pure. SilencerTM GAPDH siRNA  

(Life Technologies, Carlsbad, USA) was used as siRNA targeting the glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) gene. The SilencerTM Cy3-labeled GAPDH siRNA 

(Life Technologies, Carlsbad, USA) was used in fluorescence microscopy and 

Fluorescence Activated Cell Sorting (FACS). For experiments involving A549 cells, 

siRNA targeting Bcl-2 oncogene (Sigma, Oakville, Canada) was used, with a sense 

sequence of GUGAAGUCAACAUGCCUGCdTdT and antisense sequence of 

GCAGGCAUGUUGACUUCACdTdT. The negative control siRNA (Life Technologies, 

Carlsbad, USA) used in the experiment was siRNA with scrambled sequence.  

4.2.2 Cell culture 

CHO-K1 (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (ATCC, Manassas, USA). Cells were cultured in F-12K medium (Thermo 

scientific, Ottawa, Canada) supplemented with 10% fetal bovine serum (FBS) (Sigma, 

Oakville, Canada). The non-small lung carcinoma A549 cells were obtained from 

American Type Culture Collection (ATCC, Manassas, USA), and cultured in Dulbecco’s 

Modified Eagle Media-high glucose  (Life Technologies, Carlsbad, USA) with 10% heat-

inactivated FBS. All of the cells were incubated at 37°C in a humidified atmosphere 

containing 5% CO2.   
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4.2.3 Preparation of peptide/siRNA complex 

 The peptides were prepared by dissolving peptide powders in RNase free water. The 

solution was vortexed for 5 sec and sonicated for 10 min in a tabletop ultrasonic cleaner 

(Branson, model 2510, USA). siRNA was diluted with RNase free water. Peptide/siRNA 

complexes were formed by adding peptide solution into siRNA in proportion according 

to the designed experiment. The complexes were incubated for 20 min at room 

temperature before characterization and transfection.  

4.2.4 Agarose gel-shift assay 

 siRNA was incubated for 30 min at 37°C in RNase free water with different 

concentrations of C6M1 corresponding to a peptide/siRNA molar ratio ranging between 

1/1 and 80/1. Each well contains 300 ng of siRNA. The preformed complexes were then 

analyzed by electrophoresis in agarose gel (1.2% wt/vol) stained with ethidium bromide.  

4.2.5 Particle size and zeta potential 

The hydrodynamic diameter of C6M1/siRNA complexes were measured on a Zetasizer 

Nano ZS (Malvern Instruments, Malvern, UK) equipped with a 4 mW He-Ne laser 

operating at 633 nm. Samples at molar ratios of 40/1 with final siRNA concentrations of 

100 nM were prepared as mentioned above. A quartz microcell (45 µL) with a 3 mm light 

path was used and the scattered light intensities were collected at an angle of 173°. Zeta 

potential measurements were also performed on the same machine using clear disposable 

zeta cells. Three measurements were performed to generate the intensity-based size and 

zeta potential plot reported herein. 
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4.2.6 Circular Dichroism (CD) 

 Spectra from 190 to 250 nm with spectral resolution and pitch of 1 nm and scan speed of 

200 nm/min were recorded by a J-810 spectropolarimeter (Jasco Europe, Cremella, Italy). 

A 40 µM C6M1 sample was measured in a 1 mm long quartz cell and maintained at 

25°C. Spectra reported herein are the averages of three replicates. The raw CD ellipticity 

(in millidegrees) was converted to residue molar ellipticity (deg.cm2.dmol-1.residue-1). 

4.2.7 Transmission electron microscopy (TEM) 

 An electron micrograph of the C6M1/siRNA complex was acquired using a transmission 

electron microscope. A 10 ul sample of 300 nM siRNA at a peptide/siRNA ratio of 40/1 

was applied to a 400 mesh Formva coated copper grid (Canemco-Marivac, Canton de 

Gore, Canada) for 3-5 min. The sample was then washed using 5 successive wash steps 

(RNase free water) and dried overnight. The complex was stained with uranyl acetate 

(Electron Microscopy Sciences, Hatfield, USA) and analyzed using TEM (Philips CM10 

TEM, Amsterdam, the Netherlands).  

4.2.8 Confocal and Fluorescence microscopy  

Approximately 50,000 CHO cells were plated in a 24-well cell culture plate 24 h before 

transfection. Cy3-labeled GAPDH siRNA was mixed with C6M1 peptide at a 

peptide/siRNA molar ratio of 40/1 for 20 min. The complexes were added to cells to 

reach a final siRNA concentration of 50 nM per well. Treated cells were incubated at 

37°C for 3 h with Opti-MEM medium. For endosome labeling, the cells were incubated 

with 50 nM Lysotracker Green (Life Technology, Carlsbad, USA) for 30 min before 
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fixing. The wells were then washed with heparin (15 U/ml, a total of three times for one 

hour at 37°C) and fixed with 500 ul/well of fresh 4% Paraformaldehyde (PFA) in 

phosphate buffer saline (PBS) at 37°C for 30 min. The fixation agent was aspirated, and 

the cells were washed twice with PBS before they were covered with Fluoroshield with 

DAPI mounting medium (Sigma, Oakville, Canada). Carl Zeiss LSM 700 Confocal laser 

scanning microscopy (Zeiss, Jena, Germany) was used to visualize the cells. The 

microscope was equipped with Plan-Apochromat 60x/1.4 NA oil immersion objective 

lens. The images were analyzed with LSM Zen 2009 software. For fluorescence 

microscope, the samples were visualized on a Zeiss Observer Z1 microscope with a 40x 

objective lens. Images were analyzed using AxioVision software.  

4.2.9 Fluorescence-activated cell sorting (FACS) 

 Cellular uptake of Cy-3 labeled siRNA was studied using Flow Cytometry (type BD 

Biosciences, BD FACSVantage SE Cell Sorter, Franklin Lakes, USA). Cells were 

transfected with peptide/siRNA complexes according to the protocol listed above. 

Untreated cells and naked siRNA served as a negative control. Lipofectamine 2000, a 

commercial transfection reagent, was used as a positive control. After 3 h incubation, the 

culture medium was discarded and cells were washed with PBS, Trypsin-EDTA was then 

added to detach the cells from the plate; cells were suspended in 4% PFA solution and 

collected.  

4.2.10 mRNA level measurement 

Approximately 40,000 CHO cells were plated in a 24-well cell culture plate. 24 h later, 

the medium was replaced by Opti-MEM. GAPDH siRNA or scrambled siRNA 
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complexed with C6M1 at different molar ratios were prepared in Opti-MEM medium and 

added to the cells. Three hours later, growth medium with 20% FBS was added, followed 

by 48 h incubation at 37 °C in a 5% CO2 atmosphere. The cultures were then washed 

with PBS. Total RNA was extracted from the cells with TRIzol reagent (Life 

Technology, Carlsbad, USA), then treated with chloroform (Sigma, Oakville, Canada) 

and 2-propanol (Sigma, Oakville, Canada) as recommended by the manufacturer. RNA 

concentrations were measured by Nanodrop spectrophotometer ND-1000 (Thermo 

scientific, Ottawa, Canada). All RNAs were reverse transcribed with Bio-Rad iScript 

cDNA synthesis kit. The cDNA synthesis was primed with a unique blend of oligo (dT) 

and random primers. The following pairs of primers were used for PCR: 5ʹ′-

TTGCTGTTGAAGT- CGCAGGAG-3ʹ′, 5ʹ′-TGTGTCCGTCGTGGATCTGA-3ʹ′ (Sigma, 

Oakville, Canada). Here, the housekeeping gene cyclophilin was chosen as an internal 

control to normalize the GAPDH gene. The normalization was performed by the 

amplification of mouse/rat cyclophilin mRNA with the following primers: 5ʹ′-

AGGGTTTCTCCACTTCGATCTTGC-3ʹ′ and 5’-AGATGGCACAGGAGGAAAGAG 

CAT-3ʹ′ (Sigma, Oakville, Canada). PCR reaction was performed with Brilliant II Fast 

SYBR Green QPCR Master Mix (Agilent Technologies, Wilmington, USA) on an 

Mx3005P™ Real-Time PCR System (Agilent Technologies, Wilmington, USA). The 

Bcl-2 mRNA levels in A549 cells were also measured using the method described above. 

The primers for PCR were: 5ʹ′-GGATTGTGGCCTTCTTTGAG-3ʹ′ (sense), 5ʹ′-

CCAAACTGAGCAGAGTCTTC-3ʹ′ (antisense). 



	
   70	
  

4.2.11 pH dependent membrane disruption  

8,000 CHO-K1 cells were plated on 96-well plates and incubated overnight in 200 µL of 

F-12K medium containing 10% FBS. The cell culture medium was removed and replaced 

by Opti-MEM medium with PH 7.4, PH 6.3 and PH 5.2, respectively. Peptides were then 

added accordingly. After incubation at 37 °C for 3 h, the plates were centrifuged. 50 µL 

of aliquots in each well were collected for the LDH assay. The LDH activity in these 

samples was determined using a CytoTox 96 Non-Radioactive Cytotoxicity Assay kit 

(Promega, Madison, USA) according to the manufacturer’s protocol, which determined 

the LDH activity from the amount of produced red formazan product by a colorimetric 

assay. The amount of formazan produced was assessed by measuring the absorbance at 

490 nm with a FLUOstar OPTIMA microplate reader (BMG Labtech, Ortenberg, 

Germany). Percentages of the LDH activity in each well were calculated from a raito of 

the obtained value to the control well containing 10 µL lysis buffer.  

4.2.12 Cytotoxicity assay 

CHO cells were plated in to 96-well plates (5,000/well) in F-12K medium with 10% FBS 

in the presence of the C6/siRNA and C6M1/siRNA complexes formed at different molar 

ratios: 20/1, 40/1, 60/1. After 48 h, MTT dissolved in PBS (5 mg/ml) was added to each 

well. Cells were incubated with MTT for 4 h, followed by the addition of 100 ul MTT 

solubilization solution (Sigma, Oakville, Canada). Cell viability was assessed by 

measuring the absorbance at 570 nm with a FLUOstar OPTIMA microplate reader (BMG 

Labtech, Ortenberg, Germany) and expressed as the ratio of the cells treated with 

C6M1/siRNA over the nontreated cells (negative control). 
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4.2.13 In vivo experiment ∗  

Six-week-old male BALB/c nude mice were obtained from the B&K Universal Group 

Limited (Shanghai, China). The mice were maintained under a 12 h light/dark cycle at 

25°C and a humidity of 60 ± 10%. In order to generate the xenograft tumor model, the 

mice were inoculated subcutaneously with 5×106 A549 cells at the right armpit. When 

the tumor volume reached 100-200 mm3, Bcl-2 siRNA complexed with C6M1 at molar 

ratio 60:1 was injected directly into the tumor. Treatment was administered every 3 d for 

a total of nine treatments at the siRNA dose of 160 µg/kg. Mice were sacrificed on day 

27. Tumor diameters were measured every day and the volume was calculated as follows: 

tumor volume=0.5×(width)2×length. Mouse body weight was also monitored. All the 

procedures and care administered to the animals have been approved by the institutional 

ethics committee, under a permit of animal use (Approval ID: (2012) 005) in No.3 

People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 

compliance with the Experimental Animal Regulation by the National Science and 

Technology Commission, China.  

4.2.14 Western blot 

Proteins were extracted using a total protein extraction kit (Kangchen Biotechnology, 

Shanghai, China) according to the manufacturer’s instructions. The total protein was 

stored at -20°C until use. The antibodies used included Bcl-2 rabbit polyclonal IgG 
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(Santa Cruz Biotechnology, Dallas, USA), horseradish peroxidase (HRP) conjugated goat 

anti-rabbit IgG (Kangchen Biotechnology, Shanghai, China) and goat anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Kangchen Biotechnology, 

Shanghai, China). Protein samples were separated by 12% SDS-PAGE gels and then 

transferred to nitrocellulose (NC) membranes. After blocking with blocking buffer for 2 

h, the membranes were incubated with polyclonal rabbit anti-Bcl-2 (1:1000, overnight at 

4°C). HRP-goat anti-rabbit IgG (1:2000, 2 h) conjugate was used as a secondary 

antibody. The bound secondary antibody was detected by enhanced chemiluminescence 

(Pierce Biotechnology, Rockford, USA). The housekeeping gene, GAPDH, was used as 

an internal standard.  

4.2.15 Statistical analysis 

 Results were expressed as mean values ± SD. Data were analyzed by two tailed T test 

and only p-values < 0.05 were considered statistically significant.  

 

4.3 Results and Discussion 

4.3.1 Characterization of C6M1/siRNA complexes 

Circular Dichroism (CD) result confirmed the secondary structure of C6M1 peptide. As 

shown in Figure 4.2a, C6M1 showed a CD spectrum with two minima at 208 and 222 

nm, confirming a typical helical structure.  

       Agarose gel shift assay was applied to detect the interaction between siRNA and 

C6M1 molecules. Basic amino acids such as lysine, arginine and histidine can interact 
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with the negatively charged phosphate groups on siRNA sugar rings through electrostatic 

interactions. C6M1 is designed to contain seven positively charged arginine residues so 

as to strongly bind siRNA molecules. Complex formation between siRNA and increasing 

amounts of peptide C6M1, from molar ratios 1/1 to 80/1, was followed by agarose gel 

electrophoresis of the mixture. Free siRNA will move toward the positive electrode when 

voltage is applied. Results shown in Figure 4.2b indicate that the formation of a stable 

peptide-siRNA complex began at a relatively low molar ratio, since the band produced by 

molar ratio 1/1 was less bright than band produced by siRNA alone. At molar ratios 

above 15/1, siRNA molecules complexed completely with C6M1, as no free siRNA was 

detected on the agarose gel at these ratios. This suggests that C6M1 at molar ratios higher 

than 15/1 is sufficient to neutralize and form a complex with siRNA.  

      The interaction was also confirmed by zeta potential measurements of C6M1/siRNA 

complexes at different molar ratios, Figure 4.2c. Naked siRNA alone in solution had a 

large negative zeta potential (-37 mV), reflecting the contribution from the negative 

charges on the phosphate group. Increasing the C6M1/siRNA molar ratio gradually 

neutralized the negative charge of siRNA. The increase in zeta potential was most 

pronounced when the molar ratio reached 15/1 (+51.67 mV); however, its value increased 

consistently as the peptide content increased. Thus, molar ratios above 15/1 can be used 

in the following transfection experiment. Resulting complexes were stable, as zeta 

potential obtained for molar ratios 15/1, 20/1, 40/1, and 80/1 were all around 50 mV. As a 

general rule, particles with zeta potentials more positive than +30 mV or more negative 

than -30 mV are normally considered stable [165].  
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Figure 4.2 (a) Secondary structure of peptide C6M1 (40 µM) was obtained by far-UV 

CD spectroscopy. (b) The formation of siRNA-peptide complex indicated by agarose gel. 

The preformed C6M1/siRNA complexes were analyzed by electrophoresis on agarose gel 

(1.2% wt/vol) stained with ethidium bromide. The siRNA targeting eGFP gene was 

incubated with different concentrations of C6M1 corresponding to molar ratios ranging 

between 1/1 and 80/1. Lane 1 refers to siRNA only control in the absence of C6M1, and 

lanes 2–8 to molar ratios of 1/1, 5/1, 10/1, 15/1, 20/1, 40/1, and 80/1, respectively. 300 ng 

of siRNA per well was used here. (c) Zeta potential of C6M1/siRNA complexes at 

different molar ratios. Error bars represent the standard deviation from three replicates. 
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      The size and morphology of the complex formed in transfection medium OPTI-MEM 

at a peptide to siRNA molar ratio of 40/1 was examined by transmission electron 

microscopy and dynamic light scattering, shown in Figure 4.3. The electron micrograph 

exhibited isolated particles of nanometric size and irregular shape, with an average 

diameter of about 100 – 200 nm (Figure 4.3a). This is the optimal size for cellular 

internalization through clathrin- and caveolae- mediated endocytosis [166]. Smaller 

complexes, depending on their surface properties, can directly penetrate the cell 

membrane, but are quickly removed from the blood [167]. Larger particles, on the other 

hand, can be easily recognized and removed by phagocytic cells [168]. The diameter of 

the complex, around 200 nm, was consistent with the DLS results shown in Figure 4.3b. 

Peptide C6M1 was able to condense siRNA into positively charged nanosized particles 

suitable for intracellular delivery.   

 

Figure 4.3 The complexes have a particle size suitable for transfection. (a) Transmission 

electron micrograph of C6M1/siRNA complexes (examples pointed by arrow) containing 
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300 nM siRNA at molar ratio 40/1 in OPTI-MEM medium. (b)	
   Size distribution of 

C6M1-siRNA complex at molar ratio 40/1. 

 

4.3.2 C6M1/siRNA complexes silence gene expression in vitro 

It is widely accepted that the main prerequisite for an optimal siRNA delivery system is 

the ability to deliver siRNA into cells and then release it into the cytoplasm, where it can 

guide sequence specific mRNA degradation. We next used fluorescently labeled siRNA 

molecules to evaluate the efficacy of C6M1 to delivery siRNA molecules into cultured 

cells. Internalized siRNA is reported to selectively localize in the cytoplasm or 

translocate into the nucleus, depending on the target RNA residues [169]. To study 

cellular uptake, distribution, and localization of the C6M1/siRNA complex, we 

transfected the Chinese hamster ovary (CHO) cells with Cy3-labeled siRNA for 

visualization under fluorescent microscope and confocal microscope. CHO cells were 

treated with or without the complex for 3 hours and observed. To eliminate the effect of 

extracellular complexes on the image [170], cells were washed with 15 U/ml heparin in 

OPTI-MEM three times at 37°C to remove extracellularly bound complexes [95]. This 

ensures that the fluorescent siRNA we observed is indeed inside the cells and not 

attached to the cell membrane. Figure 4.4a and b show a typical fluorescence microscope 

image of CHO-K1 cells treated with siRNA alone and siRNA complexed with peptide 

C6M1, respectively. As expected, uncomplexed Cy3-labeled siRNA could not enter the 

cells. siRNA internalization occurred within three hours of incubation, and only in the 
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presence of peptide C6M1. The red fluorescence signal can be found in almost every cell. 

 

Figure 4.4 Uptake of C6M1/siRNA complexes in CHO cells. Fluorescent microscopy 

analysis of CHO cells 3 h after transfection with Cy-3 labeled GAPDH siRNA alone (a) 

or Cy-3 siRNA/C6M1 complexes (b), respectively.  Panel i. Cy3-labeled siRNA (red); 

Panel ii. Nuclei were stained with DAPI (blue); Panel iii. Differential interference 

contrast (DIC); Panel iv. Merged image. Scale bar stands for 10 um. 

 

       To visualize subcellular localization, we applied peptide/siRNA complexes to CHO-

K1 cells and visualized intracellular trafficking via confocal microscopy. As can be seen 

in Figure 4.5, siRNA delivered by C6 and C6M1 were localized to regions in close 

proximity to the nuclear membrane, but not in the nucleus. Labeled siRNA was delivered 

only to the cytosol, where it will bind to RNA-induced silencing complex (RISC) and 

then initiate RNA interference.  
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Figure 4.5 Intracellular trafficking of C6/siRNA and C6M1/siRNA nanocomplexes. 

CHO-K1 cells were transfected with peptides carrying 50nM Cy-3 labeled siRNA for 3 h 

and subsequently incubated with LysoTracker Green. Images were pseudocolored for 

visualization: blue = DAPI; red = Cy-3 siRNA; green = LysoTracker Green. Co-

localization of siRNA with the endosomal/lysosomal marker is in yellow. 

 

The siRNA delivered by peptides showed a punctual non-homogeneous distribution 

pattern around the periphery of the nucleus inside the cell, rather than a diffuse 

distribution, which indicated the possibility of an endocytosis pathway [95]. Meanwhile, 

the colocalization of Cy-3 labeled siRNA (red) with a marker of endosome (green) 

yielded yellow spots, suggesting that both C6/siRNA and C6M1/siRNA complexes enter 

the cells via endocytosis. Endosomal escape of Cy-3 labeled siRNA can be observed 9 

hours after treatment, see Figure 4.6. 
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Figure 4.6 Confocal microscopy images of CHO-K1 cells treated with C6M1 peptide 

carrying 50 nM Cy-3 labeled siRNA. Images were taken 9 h after treatment. Images were 

pseudocolored for visualization: blue = DAPI; red = Cy-3 siRNA; green = LysoTracker 

Green. Co-localization of siRNA with the endosomal/lysosomal marker is in yellow. To 

clearly see the intracellular location of the complexes, the merged image was enlarged. 

        Cellular uptake of labeled siRNA was quantified using fluorescence-activated cell 

sorting (FACS). As shown in Figure 4.7, labeled siRNA alone was not internalized, 
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which is in good agreement with the fluorescence microscope results. Complexing with 

C6M1 will increase cellular uptake efficiency of siRNA accordingly, depending on the 

molar ratio of C6M1/siRNA. The intracellular fluorescence intensity of siRNA delivered 

by C6M1 is stronger than that of Lipofectamine 2000.  The FACS data for peptide C6 has 

been reported previously [156], indicating high cellular uptake. 

 

Figure 4.7 Cellular uptake of C6M1/siRNA complex in CHO-K1 cells. C6M1 delivered 

siRNA into cells in a molar ratio dependent manner. C6M1/siRNA complexes were 

formed at different molar ratios (40/1 and 60/1) and then added to CHO cells. Cells were 

then washed, trypsinized, and fixed. Fluorescent cells were counted by FACS. 

 

        In order to evaluate whether the amino acid change in sequence improved the 

biological effect of the delivered siRNA, RT-PCR measurement of GAPDH mRNA 

levels in the CHO-K1 cell line was used as a gene knockdown assay. The GAPDH 
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mRNA level in each sample was compared to the level measured in cells treated with a 

scrambled siRNA (negative control). Quantitative real-time PCR results revealed a 

spontaneous decrease in GAPDH mRNA levels in C6M1/siRNA transfected cells over 

the 48 h testing period, while steady state levels of another housekeeping gene, 

cyclophilin, remained relatively stable. As shown in Figure 4.8a, C6M1 mediated siRNA  
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Figure 4.8 Gene silencing efficiency of C6/siRNA and C6M1/siRNA complexes in 

CHO-K1 cells. (a) Relative GAPDH mRNA level in CHO cells after transfected with 

peptides/GAPDH siRNA complexes. Black and white bar denote C6/siRNA and 

C6M1/siRNA complexes separately. (b) Silencing effect of C6M1/siRNA targeting Bcl-2 

gene in A549 cells. 

delivery resulted in a significant GAPDH mRNA decreases in a molar ratio dependent 

manner. A notable mRNA level reduction was initiated at a molar ratio of 20/1 at 50 nM 

siRNA concentration. Compared to untreated cells, C6M1/siRNA complexes at molar 

ratio 40/1 and 60/1 reduced mRNA levels by 54 ± 5.4% and 58 ± 6.2%, respectively, 

much higher than cells treated with C6/siRNA complexes, which only showed 20% 

knockdown. The knockdown efficiency of C6M1/siRNA complex was also evaluated on 

cultured A549 cancer cells before further in vivo study. The result showed similar 

silencing effect (Figure 4.8b). 

       MTT assay was performed to evaluate the cytotoxicity of 50 nM siRNA complexed 

with C6 and C6M1 at various concentrations. Lipofectamine 2000 was used as a control. 

As shown in Figure 4.9a, cell survival was not significantly impacted by the treatments of 

peptide C6M1. 48 h after transfection, CHO cells showed more than 85% viability even 

at the highest molar ratio, much higher than that of control Lipofectamine 2000, which 

achieved only 70% cell viability. Compared to C6, which showed slightly lower cell 

viability, the change in amino acid sequences also helped to improve the cytotoxicity.  

       The FACS data showed similar uptake amounts of C6/siRNA and C6M1/siRNA 

complexes. In direct contrast, quantitative PCR revealed a significant difference in 
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knockdown efficiency, indicating better release of siRNA delivery by C6M1. Therefore, 

the modification with tryptophan must have an impact on the endosomal membrane since 

both peptides are internalized via endocytosis. We next sought to directly evaluate the 

membrane disruption ability of peptides to CHO-K1 cells. This was realized through a 

colorimetric LDH assay, which estimate the membrane destabilizing capacity of peptides 

by measuring the activity of extracellular lactate dehydrogenases (LDH) liberated from 

disrupted cell membrane [171]. Medium with pH 7.4, 6.3 and 5.2 were used respectively 

to mimic the pH drops along the endocytic pathway, from extracellular pH 7.4 to pH 6.0-

6.5 in early endosomes to pH 4.5-5.5 in late endosomes [172]. As clearly seen in Figure 

4.9b, peptide C6M1 induced LDH release was critically enhanced by decreasing the 

environmental pH from neutral to acidic at both concentrations. These date suggested a 

strong capacity of C6M1 to destabilize cell membrane as well as endosomal membrane 

with the decrease of pH. Though peptide C6 also showed the trend to trigger cytosolic 

release of LDH when pH decreased, it is not so obvious compared to C6M1. Apparently, 

the increase in the membrane disruption ability under acidic condition corresponds to the 

enhanced transfection efficiency of C6M1. Therefore, the substitution of tryptophan for 

leucine indeed improves the endosomolytic property of the peptide. The role tryptophan 

played in the endosomolytic activity is not conclusive. Considering the absence of 

protonable residues in tryptophan at physiological pH, the “proton sponge” hypothesis 

[121] does not apply here. It is possible that tryptophan residues which are crucial for 

pore formation [173] disrupt the endosome membrane, causing endosomal/lysosomal 

leakage. The α-helical component of C6M1 may also play a crucial role in endosomal 
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membrane destabilization. The endosomolytic property of a series amphiphilic α-helical 

structural peptides such as HA2 and GALA have been reported [174].  

 

Figure 4.9 Cytotoxicity assay and pH dependent membrane disruption of C6/siRNA and 
C6M1/siRNA complexes in CHO cells. (a) Cytotoxicity of Lipofectamine 2000/siRNA 
and peptide/siRNA complex and at different molar ratios for CHO cells.  Experiments 
were performed in quintuplicate each time. Results correspond to the average of three 
separate experiments and compared to untreated cells cultured in the same condition. (b) 
The activity of lactate dehydrogenase released from CHO cells upon interaction with 
peptides at different pH.  
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4.3.3 C6M1/siRNA complexes inhibit cancer cell proliferation in vivo 

siRNA has widely been used to interfere with oncogene activity in mouse tumor models. 

In recent years, many studies have investigated the efficacy of liposomes as in vivo gene 

delivery agents [175–177], while the application of peptides in this area were rarely 

reported. Although some siRNA carriers can achieve high transfection efficiency in vitro, 

in vivo delivery presents unique challenges, such as the extracellular matrix barrier, 

serum degradation, and immune response, which limit their utility as clinical therapeutic 

agents. Thus, in an effort to demonstrate its clinical potential, we investigated the 

antitumor activity of the C6M1/siRNA complex in a mouse xenograft tumor model.  

        The Bcl-2 protein is an attractive target for gene therapy because it regulates the 

mitochondria-mediated apoptosis pathway [178]. A drug designed to reduce the level of 

this protein is expected to promote apoptosis and therefore inhibit tumor growth. The 

experimental results showed that Bcl-2 siRNA complexed with C6M1 at molar ratio 60/1 

suppressed the tumor cell proliferation throughout the experimental period, even at low 

siRNA dose (160 µg/kg) (Figure 4.10a). After treatments, the tumor tissues were 

separated and weighed (Figure 4.10b). The average tumor volume was 1113 mm3 in the 

control group and 459 mm3 in the C6M1/siRNA group. The tumor weight of 

C6M1/siRNA group (0.5176 g) is significantly lower than that of untreated control (1.12 

g) and saline treated control (1.24 g) groups, indicating a tumor inhibition rate of 53.7%. 

Reduced tumor volumes were due to decreased tumor cell proliferation. Moreover, the 

complexes showed minimal toxicity; all mice survived the 27 day treatment period 

without incurring severe side effects and none of the treatment groups demonstrated 

significant changes in body weight (Figure 4.10c), suggesting the complexes are 
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relatively safe to use.  

 

 

Figure 4.10 Local treatments with C6M1/siRNA complexes inhibit tumor growth in a 
mouse xenograft tumor model. (a) Antitumor activity of C6M1/siRNA complex in a 
mouse tumor model. The complexes were administered intratumorally in mice model 
bearing A549 cancer cells xenografted under the skin. The tumor sizes were measured 
everyday. Data shown is the mean value of eight mice in each group. S.D. of the data 
points is not shown for clarity. ** p＜0.01 versus model group (n=8). (b) Dissected 
tumor tissues after treatment. Mice were killed by cervical dislocation on the 27th day. 
Tumors were then separated. Representatives of five treatment groups: model, saline, 
C6M1 peptide, naked Bcl-2 siRNA and C6M/siRNA complex. (c) The body weight of 
each group. Body weights of the mice were measured everyday during the treatment. 
Data shown is the mean value of eight mice in each group (n=8). (d) Inhibition of Bcl-2 
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protein expressions by C6M1/siRNA in CHO cells. Tumor tissues were dissected after 
treatment and total proteins were extracted. Bcl-2 levels in five treatment groups: model, 
saline, C6M1, naked siRNA, C6M1/siRNA were analyzed by western blot.  

 

       Western blot analysis was used to detect Bcl-2 protein expression in tumor tissue 

specimens. The analysis revealed specific downregulation of Bcl-2 protein in the 

C6M1/siRNA complex treated group and the housekeeping protein GAPDH remained 

unchanged. From Figure 4.10d, we conclude that, compared to untreated and saline 

control treated groups, the C6M1/siRNA complex can significantly inhibit Bcl-2 protein 

expression in cancer cells. 

 

 

4.4 Conclusions 

Peptide delivery systems have recently emerged as an alternative means to transport the 

therapeutic genes into targeted cells. Our study reported the silencing of an endogenous 

gene in tumor tissues using unmodified siRNA delivered by a novel peptide. C6M1 was 

rationally designed to improve the endosome escape ability of cell penetrating peptide 

C6. C6M1 adopts a helical structure that aligns all positive charges along one side. C6M1 

demonstrated significant gene knockdown efficiency, both on CHO-K1 cells and A549 

cells, compared to unmodified C6, though similar cellular uptakes were observed. We 

conclude that the enhanced membrane disruption of C6M1 at acidic pH improved the 

endosomal escape ability of the complexes, inducing obvious silencing effect. Our novel 

peptide delivery system is not only able to deliver siRNA into cultured cells, but also to 



	
   89	
  

tumor cells via intratumoral injection in a xenograft mouse tumor model. In vivo results 

suggest that Bcl-2 siRNA complexed with peptide C6M1 specifically inhibited tumor 

growth, as treated animals showed a significant reduction in tumor size compared with 

untreated and saline control groups. The toxicological analysis showed that the treatment 

was well tolerated at therapeutic dosage both in vitro and in vivo. Results obtained here 

not only shed light on the development of a new peptide vector for siRNA delivery, but 

also on the new system as a practicable anticancer therapy strategy in clinical application.  
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Chapter 5 

Design and evaluation of endosomolytic biocompatible 

peptides as carrier for siRNA delivery  

	
  

5.1 Introduction	
  	
  

A new class of drugs that can silence specific gene expression, such as small interfering 

RNAs (siRNAs), has the potential to transform modern medicine [12]. In RNA 

interference (RNAi), which is induced by a particular siRNA, target mRNA is degraded 

by enzyme, leading to decreased expression of corresponding protein [179]. In principle, 

siRNA therapy could selectively downregulating pathological proteins, including those 

that are difficult to modulate with traditional drugs, with less extensive systemic toxicity 

[180]. Numerous research labs and pharmaceutical companies have already been 

developing siRNA drugs for age-related macular degeneration [181], cancer [67] and 

HIV infection [182], among other diseases. Although very promising, efficient in vivo 

siRNA delivery to the target site encounters many obstacles, including incapacity of 

highly negatively charged siRNA to cross cell membrane efficiently and vulnerability of 

siRNA to nuclease degradation in serum [183]. Therefore, an appropriate delivery 

formulation is required for siRNA treatment in order to transform the breakthrough 

science of RNAi into a new class of clinical therapy. Cationic liposomes [184] and 

polymers [27] are some of the more popular delivery method among non-viral carriers. 
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They facilitate delivery by encapsulating or condensing siRNA into nano-sized particles, 

which can be taken up by cells in a highly effective manner. Yet, when applied in vivo 

these approaches sometimes suffer from limitations such as cytotoxicity and 

immunogenicity [185–187]. 

       Alternative strategies are necessary and one possibility is cell-penetrating peptides 

(CPPs). CPPs are a class of amphiphilic and positively charged short peptides that are 

able to penetrate cell membranes and translocate different cargoes [90]. The first 

discovery of CPPs dated back to 1988, when trans-activating transcriptional activator 

(TAT) [87] from human immunodeficiency virus 1 (HIV-1) was found to be taken up 

efficiently by various cells. After more CPPs were found in the following studies, they 

have been used to transport a wide range of cargoes into cells, including active proteins 

[188], quantum dots [189] and oligonucelotides [190]. With respect to siRNA delivery, 

TAT, penetratin and transportan [191] have been covalently linked to siRNA and 

successfully delivered them to various cell types. Other CPPs can form stable 

noncovalent complexes with siRNA. In this category, MPG [144], Pep-1 [96], as well as 

CADY [192], are among the best characterized. A well-designed CPP carrier should 

promote cellular uptake as well as intracellular release of the cargo. The endocytosis 

pathway is one major internalization mechanism for biological molecules [193]. These 

agents become entrapped in endosome and are degraded by enzymes in the lysosome if 

they are not able to escape in time. Thus, a key step in achieving effective biological 

function of siRNA is to facilitate the endosomal escape and ensure cargos reach cytosol 

where RNAi happens. The mechanisms by which siRNA carriers manage to escape 

endosome are extensively studied in recent years. In general, several mechanisms such as 
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pore formation in the endosomal membrane, pH-buffering effect of protonable groups 

(pH sponge effect) and fusion into the lipid bilayer of endosomes have been proposed 

[121].  

       In our laboratory, we focus on the study of cell penetrating peptides derived from 

peptide C6, a peptide that has been reported to delivery large amount of siRNA into cells 

but with low knockdown efficiency due to poor endosomal escape ability [150]. C6 

consists of amino acids arginine, leucine and tryptophan. The seven positively charged 

arginine residues would interact with siRNA that carries negatively charged phosphate 

groups and provide extra charge for cell membrane interaction. These amino acids were 

arranged alternatively in the sequence so that when adopt a helical structure, polar (R) 

and nonpolar (L, W) residues would face opposite to form a secondary amphiphilicity 

structure [161]. However, for efficient siRNA delivery, we need to enhance the 

endosomolytic property of peptide C6. Thus, we first designed a peptide C6M1 by 

replacing certain hydrophobic leucine with tryptophan residues. The modified peptide 

showed significant membrane disruption ability with the decrease of pH, promoting the 

release of siRNA from endosome [194]. In this paper, an alternative modification applied 

to facilitate endosomal escape and ensure cytosolic delivery of siRNAs will be discussed. 

The incorporation of histidine residues is a common way to introduce protonable groups 

into peptide or polymer sequences [195]. The accumulation of histidine residues inside 

acidic endosomes causes influx of protons, which increases osmolarity, leading to 

swelling and hence disruption of the endosome membrane, according to proton sponges 

effect. Therefore, in the following design, peptides C6M2-C6M8 were obtained by 

substituting some residues in C6 and C6M1 with pH responsive histidine. From C6M6 to 
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C6M8, glycine was used as the first amino acid in N-terminal, as a number of cell-

penetrating peptides have a glycine residue in the N-end, such as MPG [144], CADY 

[196], PPTG1[155] and Tat (48-60) [197]. Free N-terminal glycine was required by some 

CPPs for full membrane activity. The substitution of glycine with other amino acid would 

influence the stability and fusion activity of peptides [198]. In this study, we intended to 

elucidate whether our modifications were able to increase knockdown efficiency of C6 

mediated siRNA delivery. The physiochemical properties of several peptides were 

characterized and compared followed by in vitro activity and toxicity measurements. 

Furthermore, the particular therapeutic significance of C6 family mediated siRNA 

delivery was demonstrated by the inhibition of cancer cell proliferation in a tumor 

xenograft mouse model. The immunogenicity of siRNA delivery systems has not been 

intensively studied in the past. As some reports appear in the literature concerning 

immune response elicited by liposomes in clinical trial, it is crucial to address possible 

immune side effects of these peptides. Hence, complement activation in human serum 

and cytokines activation in macrophages by peptide C6M3 and C6M6 were examined.  

5.2 Materials and Methods 

5.2.1 Materials 

The C6 series peptides were synthesized in bulk (Pepscan, Lelystad, Netherland). High 

performance liquid chromatography (HPLC) analysis indicated that the synthetic peptide 

was at least 75% pure. Peptide sequences were shown in Table 5.1. Peptide C6, C6M3 

and C6M6 for further characterization, in vitro and in vivo experiments were synthesized 

by CanPeptide Inc (Montreal, Canada) with at least 95% purity. SilencerTM GAPDH 
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siRNA (Life Technologies, Burlington, Canada) was used as siRNA targeting the 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. The SilencerTM Cy3-labeled 

GAPDH siRNA (Life Technologies, Burlington, Canada) was used in fluorescence 

microscopy and Fluorescence Activated Cell Sorting (FACS). For experiments involving 

A549 cells, siRNA targeting Bcl-2 oncogene (Sigma,	
  Oakville, Canada) was used, with a 

sense sequence of GUGAAGUCAACAUGCCUGCdTdT and antisense sequence of 

GCAGGCAUGUUGACUUCACdTdT. The negative control siRNA (Life Technologies, 

Burlington, Canada) used in the experiment was siRNA with scrambled sequence.  

                          Table 5.1 Peptides sequences used in this study 

Peptide              Sequence                                              M. W.      Net charge in neutral PH 

C6                   RLLRLLLRLWRRLLRLLR                 2470.2                      +7 

C6M1              RLWRLLWRLWRRLWRLLR            2689.4                      +7 

C6M2              RLWRLLWHLWRHLWRLLR            2651.3                      +5 

C6M3              RLWHLLWRLWRRLHRLLR             2621.2                      +6 

C6M4              HLLRLLLRLWHRLLRLLR                2505.2                      +5 

C6M5              HLWHLLLRLWRRLLRLLR               2505.2                      +5 

C6M6              GLWHLLLHLWRRLLRLLR               2406                         +4 

C6M7              GLWHLLLHLWRRHHRHHR             2502                         +4 

C6M8              GLWHLHLHLWRRHHRLLR              2478                         +4 

Peptides were all modified by N terminal acetylation and C terminal amidation.  

5.2.2 Cell culture 

CHO-K1 (Chinese hamster ovary) cells and the non-small lung carcinoma A549 cells 

were purchased from American Type Culture Collection (ATCC, Washington DC, USA). 
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Cells were cultured in F-12K medium (Thermo scientific, Ottawa, Canada) supplemented 

with 10% fetal bovine serum (FBS) (Sigma, Oakville, Canada). All of the cells were 

incubated at 37°C in a humidified atmosphere containing 5% CO2.   

5.2.3 Preparation of peptide/siRNA complex 

siRNA was diluted in RNase free water. The final concentration was determined by 

Nanodrop 2000 Spectrophotometer (Thermo scientific, Ottawa, Canada). All peptide 

solutions (1 mM) were made by dissolving peptide powder in RNase free water. The 

solution was vortexed for 5 sec and sonicated for 10 min with a Microson XL2000 

Sonicator (Qsonica, Newtown, USA). Peptide/siRNA complexes were made by mixing 

peptide and siRNA solution in a desired concentration. The complexes were then 

incubated for 20 min at room temperature before further experiments. 

5.2.4 Particle size and zeta-potential 

The hydrodynamic diameter of formed peptide/siRNA complexes were determined by 

dynamic light scattering on a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, 

UK) equipped with a 4 mW He-Ne laser operating at 633 nm. Samples at molar ratio of 

40/1 with final siRNA concentration 100nM were held in a quartz microcell (45 µl) with 

a 3 mm light path. The scattered light intensities of the samples at an angle of 173° were 

collected with appropriate viscosity and refractive index of water at 25 °C. Zeta potential 

measurements were also performed on the same machine using clear disposable zeta 

cells. Three measurements were performed to generate the intensity-based size and zeta 

potential plot reported herein. 
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5.2.5 Atomic Force Microscopy (AFM)  

The nanostructure of peptide/siRNA complexes was imaged on AFM. The samples were 

prepared according to the following procedures: The peptide/siRNA complex solutions 

were prepared as mentioned in 2.3. 10 µl of the sample solution (1 µM siRNA with a 

peptide/siRNA molar ratio of 60:1) was put on a freshly cleaved mica surface. The 

sample was incubated for 10 min at room temperature to allow the complexes to adhere 

onto mica surface. Mica was then washed at least five times with RNase free water to 

remove unattached complexes. After air-drying, the mica surface was analyzed by a 

Dimension Icon AFM (Bruker, Santa Barbara, USA) at room temperature using the 

tapping mode with ScanAsyst-Air tips (Bruker, Santa Barbara, USA). All AFM images 

were obtained at a resolution of 512 × 512 pixels on a scale of 2 µm × 2 µm. 

5.2.6 RiboGreen intercalation assay 

RiboGreen assay was performed to quantify the encapsulation efficiency of siRNA with 

peptides. RiboGreen working solution was prepared by diluting Quant-itTM RiboGreen 

RNA Assay Kit (Life Technologies Inc, Burlington, Canada) 1 to 32 in water. Initial 

siRNA concentration is 50 nM. Different volumes of peptide stock solution were added 

to the fixed siRNA concentration to obtain peptide/siRNA molar ratio from 1:1 to 80:1. 

Samples (60 µL) were mixed with 5 µl RiboGreen working solution and then transferred 

to a quartz cell (1 cm × 1 cm) and excited at 480 nm, The fluorescence was acquired on a 

Photon Technology International spectrafluorometer (Type LS-100, London, Canada) 

with a pulsed xenon lamp as the light source. Spectra were collected in the range of 

500−600 nm. The amount of free siRNA after peptide addition was calculated by 
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subtracting the values of RiboGreen background fluorescence from the average 

intensities of sample at 528 nm, and expressed as a percentage of the control (naked 

siRNA only) with the following equation: Free siRNA percentage = Fluorescence 

intensity of complexes/Fluorescence intensity of naked siRNA x 100% 

This percentage was then plotted versus peptide/siRNA molar ratios. 

5.2.7 Fluorescence microscopy cell imaging 

To investigate the distribution of the peptide/siRNA complexes in CHO-K1 cells, we 

used Cy-3 labeled GAPDH siRNA. Approximately 80,000 CHO cells were plated in a 

24-well cell culture plate 1 d before transfection. Cy-3 labeled siRNA was mixed with 

different peptides at a peptide/siRNA molar ratio of 40/1 for 20 min. The cells were 

transfected with complexes (final siRNA concentration 50 µM) at 37°C for 3 h in Opti-

MEM medium. The wells were washed with heparin in medium (15 U/ml, a total of three 

times for one hour at 37°C) to eliminate the effect of extracellular complexes and then 

fixed with 500 µl/well of fresh 4% Paraformaldehyde (PFA) for 30 min. After that, the 

fixation agent was aspirated, and the cells were washed twice with phosphate buffer 

saline (PBS) before they were subjected to Fluoroshield with DAPI (Sigma, Oakville, 

Canada) staining to visualize nuclei. The samples were monitored on a Zeiss Observer Z1 

microscope with a 40x objective lens. Images were analyzed using AxioVision software. 

5.2.8 Fluorescence-activated cell sorting (FACS) 

The amount of Cy-3 labeled siRNA taken up by the cells via different peptide delivery 

vector was studied using Flow Cytometry (type BD Biosciences, BD FACSVantage SE 

Cell Sorter, USA). Cells were transfected with peptide/siRNA complexes according to 
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the protocol listed above. Untreated and naked siRNA only treated cells served as 

negative controls. Lipofectamine 2000 was used as a positive control. After 3 h 

incubation, cells were washed with PBS and trypsinized for 5 min, then resuspended in 

4% PFA solution and collected. For each sample, data was acquired on 10,000 cells. The 

siRNA delivered to the cells was assessed using the FL-2 detection channel.  

5.2.9 GAPDH enzyme activity measurement  

CHO-K1 cells were seeded in a 96-well plate with 5,000 cells/well one day before 

transfection. 24 h later, the peptide/siRNA complexes containing GAPDH siRNA or 

negative control siRNA were prepared in Opti-MEM and added to each well in 

quintuplicate giving a final siRNA concentration of 50 nM. After 4 h of incubation at 

37°C, equal volume of medium with 20% FBS were added to the cells. After 48 h, the 

GAPDH enzyme activity was detected using KDalert™ GAPDH assay kit (Life 

Technologies, Burlington, Canada) according to the manufacturer’s protocol. The 

increase of fluorescence intensity was measured by a FLUOstar OPTIMA microplate 

reader (BMG Labtech, Ortenberg, Germany) with excitation wavelength at 560 nm and 

emission wavelength at 590 nm. The GAPDH gene knockdown efficiency was expressed 

as 100% - the fluorescence intensity of cells treated with GAPDH siRNA/ the cells 

treated with negative control siRNA. 

5.2.10 qRT-PCR for GAPDH mRNA measurement 

40,000 CHO-K1 cells were seeded in a 24-well plate 1 d before transfection. The 

transfection process was mentioned above. Gene knockdown efficiency was assessed 48 

h later. Total RNA was isolated from the cells using TRIzol reagent (Invitrogen, Life 
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Technologies Inc, Burlington, Canada) according to the manufacturer’s instructions. 

RNA concentration measurements and quality control were performed using Nanodrop 

spectrophotometer ND-1000. 0.5 µg of isolated RNA was reverse transcribed to cDNA 

with qScriptTM cDNA SuperMix (Quanta Biosciences, Gaithersburg, USA). A 

quantitative PCR analysis was performed using PerfeCTa SYBR Green FastMix (Quanta 

Biosciences, Gaithersburg, USA) on an Mx3005P™ Real-Time PCR System (Agilent 

Technologies, Santa Clara, USA). The primers for mouse GAPDH were: 5ʹ′-TTGCTG- 

TTGAAGTCGCAGGAG-3ʹ′, 5ʹ′-TGTGTCCGTCGTGGATCTGA-3ʹ′. The housekeeping 

gene Cyclophilin was used as an internal control. Following primers were used: 5ʹ′-

AGGGTTTCTCCACTTCGATCTTGC-3ʹ′ and 5’-AGATGGCACAGGAGGAAAGAG- 

CAT-3ʹ′. The PCR parameters consisted of an initial denaturation at 95°C for 30 s, 

followed by 40 cycles of PCR at 95°C for 5 s and 60°C for 30 s. 

5.2.11 Cell viability assay 

CHO-K1 cells (5,000 cells/well) in 200 µl F-12K medium with 10% FBS were seeded 

on 96-well plates and incubated. After 24 h, the cells were washed with PBS and 

transfected with peptide/negative control siRNA complexes formed at different molar 

ratios: 20/1, 40/1, 60/1. 4 h later, equal volume of medium with 20% FBS was added. 

After 48 h, MTT dissolved in PBS (5 mg/ml) was added to each well. Cells were 

incubated with MTT for 4 h, followed by the addition of 100 µl MTT solubilization 

solution (Sigma, Oakville, Canada). Cell viability was assessed by measuring the 

absorbance at 570 nm with a FLUOstar OPTIMA microplate reader. The absorbance of 
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control cells was set as 100% viability, and the viability of all other cells was expressed 

as a percentage relative to the absorbance of the control cells.  

5.2.12 In vitro complement activation assay 

The ELISA-based method for quantification of serum S-protein bound C terminal 

complex (SC5b-9) was performed. The test peptides C6M3, C6M6, at the concentration 

determined to be best in transfection experiment, and control compound Zymosan 

(Sigma,	
  Oakville, Canada) were incubated with human serum (Quidel, San Diego, USA) 

for 1 h at 37°C. After that, the serum was diluted by specimen diluent (provided in the 

ELISA kits) at a 150-fold volume. Samples were tested for SC5b-9 levels using the 

MicroVue SC5b-9 plus (Quidel, San Diego, USA) kit following the manufacture’s 

instruction. All reactions were tested in duplicates. 

5.2.13 Cytokine activation in RAW 264.7 cells 

2.5x105 RAW 264.7 cells were seeded in a 12-well plate 1 d before experiment. 24 h 

later, peptides/siRNA complexes at transfection concentration were added to the cells. 6 h 

post treatment, RNA was extracted with the method mentioned above. qRT-PCR were 

then performed with the primers in Table 5.2.  

 

Table 5.2 Sequences of primers for qRT-PCR assay 

Gene  Primer sequence 

β-actin (F) AGAGGGAAATCGTGCGTGAC 

 (R) CAATAGTGATGACCTGGCCGT 
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iNOS (F) CAGCTGGGCTGTACAAACCTT 

 (R) CATTGGAAGTGAAGCGTTTCG 

COX-2 (F) AGAAGGAAATGGCTGCAGAA 

 (R) CTCAATACTGGAAGCCGAGC 

IL1-β (F) CCCAAGCAATACCCAAAGAA 

 (R) GCTTGTGCTCTGCTTGTGAG 

TNF-α (F) AGACCCTCACACTCAGATCATCTTC 

 (R) TTGCTACGACGTGGGCTACA 

IL6 (F) AAGTGCATCATCGTTGTTCAT 

 (R) GAGGATACCACTCCCAACAGA 

 
 

5.2.14 In vivo experiment∗ 

Tumor-bearing mice were prepared by subcutaneous injection of 5×106 A549 cells into 

the right armpit of six-week-old male BALB/c nude mice (B&K Universal Group 

Limited, Shanghai, China). Tumor diameters were measured every day and the tumor 

volume was calculated using the equation: tumor volume=0.5×(width)2×length. When 

the tumor volume reached 100-200 mm3, Bcl-2 siRNA complexed with peptides at molar 

ratio 1/60 was injected directly into the tumor. Treatment was administered every 3 d at 

the dose of 4 µg siRNA per mouse. After the 9th injection the mice were sacrificed and 

tumors were excised. Mouse body weight was also monitored during the treatments.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

∗The in vivo experiments were designed by us and performed in 
NO.3 people’s hospital affiliated to shanghai Jiao Tong University School of Medicine 
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5.2.15 Western blot 

Proteins were extracted using a total protein extraction kit (Kangchen Biotechnology, 

China) according to the manufacturer’s instructions. The cell extracts containing 60 µg of 

protein samples were loaded into a 12% SDS-PAGE gels and electrophoresis was run. 

After that, they were transferred to a nitrocellulose (NC) membrane. After blocking with 

blocking buffer for 2 h, the membranes were incubated with polyclonal rabbit anti-Bcl-2 

(1:1000, overnight at 4°C) (Santa Cruz Biotechnology, USA). HRP-goat anti-rabbit IgG 

(1:2000, 2 h) (Kangchen Biotechnology, Shanghai, China) conjugate was used as a 

secondary antibody. The bounded secondary antibody was detected by enhanced 

chemiluminescence (Pierce Biotechnology, Rockford, USA). In order to control protein 

loading, membranes were stripped and then incubated with goat anti-glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) antibody (Kangchen Biotechnology, Shanghai, 

China). 

5.2.16 Statistical analysis 

 Results were expressed as mean values ± SD. Data were analyzed by two tailed T test 

and only p-values < 0.05 were considered statistically significant.  

 

5.3 Results and Discussion 

5.3.1. Peptide screening with KDalert™ GAPDH assay 

To preliminarily determine the rank-order potency, all the peptides from C6 family were 

formulated with siRNA and tested by KDalert GAPDH assay kit. This kit relies on a 
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fluorescence-based assay to measure GAPDH enzyme activity in cell lysates, thus the 

amount of GAPDH protein activity was determined. By comparing GAPDH enzymatic 

activity in cells transfected with GAPDH siRNA to those transfected with a negative 

control siRNA, the level of gene silencing can be readily determined. Figure 5.1 shows 

the knockdown efficiency of GAPDH gene by GAPDH siRNA with C6 family peptides 

as carriers. Total nine peptides from C6 family were complexed with siRNA at molar 

ratio 20/1 and 40/1. The derivatives showed higher transfection efficiency than C6, 

indicating all the modifications improved the performance of their prototype C6 to some 

extent. The optimal peptides that produced an approximately 60% reduction in the 

GAPDH activity without being toxic to the cells were then selected. Apart from C6M1, 

two other peptides C6M3 and C6M6 achieved over 60% knockdown and therefore were 

chosen for further detailed study. Comparison of results obtained with C6 family shows 

that the transfection efficiency of the peptides seems not to be solely linked to the amount 

of histidine in the sequence, as peptides C6M2-C6M6 have the same number of histidine 

residues, but the efficiency varies. The location of histidine may also play an essential 

role in determining the transfection efficiency. It is reported that histidine residues have 

to be positioned in the core of peptide LAH4 and its derivatives to achieve high 

transfection efficiency [199].  
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Figure 5.1 Percent knockdown of GAPDH protein levels after treatment. After 48 h of 

transfection, the cells were disrupted in lysis buffer before adding KDalert master mix. 

The fluorescence intensity was read on a plate reader at 590 nm. The knockdown 

efficiency was calculated as mentioned in the methods. Each sample was repeated by five 

times. 

5.3.2 Insights into the characteristics and in vitro effect of peptides/siRNA 

complexes 

The abilities of these peptides to bind to siRNA were studied using a RiboGreen 

intercalation assay. This reagent is a highly sensitive fluorescent nucleic acid stain for 

siRNA quantification [200]. Plot of decreased siRNA fluorescence intensity with 

increased peptides/siRNA molar ratios was shown in Figure 5.2. The siRNA 

encapsulation efficiency of all four peptides increased along with the increase of molar 

ratio of peptide/siRNA, reaching a plateau when the molar ratio was over 40/1 for 

peptides C6, C6M1, C6M3 and over 60/1 for C6M6. C6 and C6M1 showed similar 

siRNA binding ability, since they have the same overall charges contributed by seven 
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arginine residues. C6M3 and C6M6 have six and four arginine residues separately, in 

addition to two partially charged histidine at neutral pH. Therefore, their affinity for 

siRNA is weaker.  It is obvious that at the molar ratio between 10/1 and 40/1, siRNA 

remaining free after complexed with C6M6 was significantly more than with other 

peptides, due to the less negative charges.  However, this discrepancy became much 

smaller when the molar ratio is over 60/1, where siRNA was almost all saturated by 

peptides. To ensure better transfection efficiency, we will use molar ratio higher than 

40/1 for all the peptides for in vitro and in vivo experiment.  

                 

Figure 5.2 Evaluation of siRNA encapsulation efficiency. siRNA concentration was 

determined by a Quant-iTTM RiboGreen RNA assay. Initial siRNA concentration is 50 

nM. Different volumes of peptide stock solution were added to the fixed siRNA 

concentration to obtain peptide/siRNA molar ratio from 1/1 to 80/1. 
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       Peptide/siRNA complexes at molar ratio 60/1 were imaged by AFM (Figure 5.3a and 

5.3c). The morphology of siRNA complexes with C6 and C6M1 were reported earlier 

[150]. For C6M3 and C6M6 complexed siRNA, the height and amplitude scan of a 2 × 2 

µm field revealing a scattered distribution of particles. The main particles were 

characterized by a width of 100 nm and a height around 30 nm, which were confirmed 

later by DLS results. Interestingly, different from the smooth edge of particles formed by 

other peptides, we can observe a granular morphology of C6M6/siRNA complexes 

(Figure 5.3c). A magnification of several complexes revealed that the particles were 

formed by association of smaller complex elements. C6M6 and siRNA may first form 

smaller particles, which will then aggregate to larger complexes. This shape is similar to 

another cell penetrating peptide CADY, which was reported to adopt a “raspberry” like 

structure when complexed with siRNA [201]. Zeta potential results obtained for 

C6M3/siRNA (Figure 5.3b) at molar ratio 20/1, 40/1 and 60/1 are positive, with values of 

26 ± 4.1 mV, 32± 3.5 mV and 37± 4.4 mV. The complexes are stable at these molar 

ratios, with a value of +/- 25 mV has been proposed as the arbitrary line between stable 

and unstable particles [202].  Particles with a zeta potential above +25 mV or below-25 

mV are considered electrically stable, while particles within the range tend to aggregate 

and coagulate. In contrast, C6M6/siRNA complexes at molar ratio 20/1 with a very low 

zeta potential of 15± 3.3 mV clearly indicates instability whereas a higher molar ratio of 

40/1 and 60/1 suggest stable particles. This can be explained by the fewer overall positive 

charges in C6M6 than C6M3. Apparently at molar ratio 20/1, the arginine residues in 

C6M6 are just enough to neutralize all the negative charges of siRNA. A molar ratio 

above 20/1 is needed to form stable complexes.  
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Figure 5.3 Representative AFM images and particle size of peptide/siRNA complexes. 

AFM images of 1 µM siRNA complexed with peptide C6M3 (a) and C6M6 (c) at molar 

ratio 40/1 and 60/1 respectively. Smaller images in (c) denotes enlarged AFM image of 

C6M6/siRNA complexes by DMT modulus. (b) (d) Particle size and zeta potential of 

C6M3/siRNA and C6M6/siRNA complexes at molar ratios 20/1, 40/1 and 60/1. Data are 

presented as the mean of three measurements.  
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      The cellular uptake and intracellular localization of Cy-3 labeled siRNA was 

observed by fluorescence microscopy. Successful siRNA delivery to the cells is shown in 

Figure 5.4, which depicts fluorescence microscopy images of the Cy3 labeled siRNA 

transfected cells 3 h post-transfection. As expected, uncomplexed Cy3-labeled siRNA 

could not enter the cells. siRNA internalization occurred within three hours of incubation, 

and only in the presence of peptide C6M3 and C6M6. The red fluorescence signal can be 

found in almost every cell. As can been seen in the image, siRNA was localized to 

regions in close proximity to the nuclear membrane, but not in the nucleus. Labeled 

siRNA is delivered only to the cytosol, where it will bind to RNA-induced silencing 

complex (RISC) and then initiate RNA interference. The siRNA delivered by peptides 

C6M3 and C6M6 shows a punctual non-homogeneous distribution pattern around the 

periphery of the nucleus inside the cell, rather than a diffuse distribution, which indicated 

the possibility of an endocytosis pathway [95]. 

 

    Effectiveness of carriers for siRNA delivery was determined by measuring the 

fluorescence intensity of cells after delivery of Cy-3 labeled GAPDH siRNA. Three 

peptides from the library were studied here. Fluorescence activated cell sorting (FACS) 

analysis of CHO-K1 cells, gated for live cells (Figure 5.5a) clearly showed comparable or 

higher siRNA delivery efficiency than a market leader Lipofectamine 2000. The mean 

fluorescence intensity of CHO cells (Figure 5.5b) after 3 h transfection with Cy-3 labeled 

siRNA complexed with peptides C6, C6M3, C6M6 at molar ratio 60/1 also shows a large 

amount of uptake. 



	
   109	
  

 

 

Figure 5.4 Uptake of peptides/siRNA complexes in CHO cells. Fluorescent microscopy 
analysis of CHO cells 3 h after transfection with Cy-3 siRNA only, C6M3/Cy-3 siRNA 
complexes and C6M6/Cy-3 siRNA complexes, respectively. Nuclei were visualized by 
DAPI (blue).  
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    To confirm the delivered siRNA performed its function, quantitative RT-PCR was 

utilized to analyze GAPDH mRNA level in CHO-K1 cells. The cells were transfected 

with both the negative control siRNA (using siRNA with a nonsense / scrambled 

sequence) and GAPDH siRNA. The GAPDH mRNA level was first normalized to an 

internal control Cyclophilin mRNA and the ratio between GAPDH siRNA transfected 

samples and the corresponding negative control was used to calculate the relative 

GAPDH mRNA expression level. The result reveals that C6/siRNA complexes did not 

decrease GAPDH mRNA level at all tested molar ratios, as reported before. The modified 

peptides, C6M3 and C6M6 suppress GAPDH gene expression in a molar ratio dependent 

manner, Figure 5.5c. At molar ratio 60/1, C6M3/siRNA and C6M6/siRNA complexes 

demonstrate comparable gene knockdown efficiency, inhibiting GAPDH mRNA 

expression levels by 65% and 62%, respectively. This data was in accordance with 

KDalert results, but with smaller error bars. Given the fact that peptide C6 only shows 

20% silencing efficiency at most, it is obviously that the replacement of some arginine 

residues with histidine improves transfection efficiency of the peptides remarkably. 

Histidine contains an imidazole ring, which is a weak base with pKa of 6 [203]. Studies 

have shown that the incorporation of histidine into polymeric and peptide gene delivery 

vehicles increases the endosomal buffering capacity, improving the efficiency of 

endosomal escape [204–207]. Proton sponge effect was attributed as the mechanism for 

the endosomolytic ability of histidine. Protonation of histidine residues in acidic 

endosomes will induce an extensive inflow of ions and water, subsequently leading to 

rupture of endosomal membrane and release of the entrapped components [121].  
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      In addition, the toxicity of peptides based formulations was investigated using MTT 

assay. As reported in Figure 5.5d, almost no toxicity was detected for C6M3/siRNA 

complexes at various molar ratios tested. For C6/siRNA and C6M6/siRNA complexes, 

only 10–15% of cell death was observed at molar ratio 40/1 and less than 20% of cell 

death at molar ratio 60/1, still lower than Lipofectamine 2000, which caused around 30% 

of cell death.  

 

Figure 5.5 Peptide mediated delivery of siRNA into CHO-K1 cells. (a) Cellular uptake 

of peptide/siRNA complexes. CHO-K1 cells were incubated with the complexes of 

peptide/Cy-3 siRNA or Cy-3 siRNA alone for 3 h. The cells were then analyzed by 

fluorescence activated cell sorting (FACS) in the Cy-3 channel. (b) Mean fluorescence 
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intensity of Cy-3 siRNA in CHO cells treated with different peptides. (c) Relative 

GAPDH mRNA level in CHO-K1 cells after treatment. CHO-K1 cells were incubated 

with preformed complexes at different peptide/siRNA molar ratios (20/1, 40/1 and 60/1) 

for 3 h. 48 h later, total RNA was extracted and gene knockdown efficiency was 

determined by RT-PCR.  All the data were normalized to another house keeping gene 

cyclophilin and compared to cells treated with corresponding peptide/scrambled siRNA 

control.  (d) The toxicity of peptide/siRNA complexes was investigated by MTT assay. 

CHO-K1 cells were treated with increasing molar ratios of peptide/siRNA complexes 

ranging from 20/1 to 60/1 and cell viability was then evaluated 24 h after treatment. 

Scrambled siRNA was used here. Reported data are the average of three separate 

experiments. 

5.3.3 In vitro complement and cytokine activation assay 

The complement system is an important part of the innate immunity and serves as a first-

line of defense after the invasion of a foreign object. The complement system can be 

activated via the classical, the lectin and the alternative pathway [208]. The Terminal 

Complement Complex (TCC, SC5b-9) is generated by the assembly of C5 through C9 as 

a consequence of activation of the complement system by either the classical, lectin or 

alternative pathway. The ELISA-based method for quantification measures concentration 

of serum S-protein-bound C terminal complex (SC5b-9), thereby giving an indication of 

the status of the level of complement activation in the specimen. High levels of 

complement activation have been demonstrated in a variety of disease states.	
   In Figure 

5.6a, positive control Zymosan caused significant elevation of SC5b-9 over baseline, 

compared to serum only sample. While peptides C6M3 and C6M6 at transfection 
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concentration did not exhibit SC5b-9 activation. To determine whether these complexes 

could induce pro-inflammatory cytokines, the mRNA levels of five types of cytokine in 

macrophage RAW 264.7 cells after treated with peptide/siRNA were measured by qRT-

PCR, Figure 5.6b. The RAW 264.7 murine macrophages were incubated with either 

0.1µg/ml bacterial endotoxin LPS or peptides/siRNA complexes. High induction of 

cytokines iNOS, COX-2, IL1-β, TNF-α and IL6 was observed 6 h post treatment with the 

positive control LPS. This induction of COX-2 expression was 3-fold higher than 

untreated cells and more than 100-fold higher for other cytokines. There was almost no 

significant cytokines induction from the peptide/siRNA complexes treatment in RAW 

264.7 cells. 

 

Figure 5.6 In vitro complement and cytokine activation assay. (a) SC5b-9 formation in 

human serum after incubation with peptides was quantified by ELISA assay. 5 ug/ml 

Zymosan was used as positive control. (b) Cytokine mRNA expressions in RAW 264.7 

cells, measured 6 h after treatment with 0.1 µg/ml LPS, C6M3/siRNA and C6M6/siRNA 

complexes. Housekeeping gene β-actin was used as an internal control. All cytokine 

mRNA levels were normalized to β-actin mRNA.  
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5.3.4 Anti-tumor effect of peptide/siRNA complexes in mice bearing A549 

derived tumors 

 
Bcl-2 protein, encoded by the Bcl-2 gene, is the founding member of Bcl-2 family that 

regulate cell death [209]. The Bcl-2 family comprises antiapoptotic proteins (Bcl-2, Mcl-

1, Bcl-w and A-1) and proapoptotic proteins (Bax, Bak, Bik, Bad, Bid, BMF, and 

PUMA) [210,211]. The Bcl-2 oncogene overexpression occurs in many cancer types and 

is associated with chemoresistance and radioresistance [212,213]. Inhibition of Bcl-2 will 

either restore normal apoptotic process in cancer cells or enhance the sensitivity of these 

cells to conventional chemotherapy. Thereby, Bcl-2 gene is an important therapeutic 

target in various human cancers. The potential of peptides C6M3 and C6M6 to deliver 

therapeutic siRNA in vivo was first evaluated on human non-small cell lung cancer 

A549-xenografted mice. The effect of local intra-tumoral administration of C6M3/ Bcl-2 

siRNA and C6M6/ Bcl-2 siRNA complexes on the growth of established subcutaneous 

tumors was assessed. When tumor volume reaches 100-200 mm3, four groups of mice 

were injected with saline, 4 µg (0.16 mg/kg) naked siRNA, peptide only and 

peptide/siRNA complexes at molar ratio 60/1, separately. The treatment was given every 

three days for a total of 9 times. Reduction of tumor size was observed in both 

C6M3/siRNA and C6M6/siRNA treatment group Figure 5.7a and 5.7b. In contrast, intra-

tumoral administration of saline and peptide only did not significantly reduce tumor 

growth, compared to the model group. Surprisingly, we found that naked Bcl-2 siRNA 

treated group also showed decreased tumor size, which has also been reported by other 

researchers in A549 xenograft mice [214] and other types of cancer cells [215]. The 
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mechanisms for greater uptake of siRNA into tissue cells in vivo, compared with 

ineffectiveness in cultured cells are not known, but could involve serum proteins or 

components of the complex extracellular matrices in tissues [215]. However, peptide 

C6M3 and C6M6 as carrier for siRNA could promote the anti-tumor effect further and 

provide better protection against enzymatic degradation.  On day 27, mice were sacrificed 

and tumor tissues were excised (Figure 5.7c and 5.7d). Tumor inhibition rate was 

calculated as tumor inhibition rate=(1- tumor weight of treatment group/tumor weight of 

model group)×100%. The tumor growth was reduced by 54.72% and 53.86% with 4 µg 

of Bcl-2 siRNA formulated with C6M3 and C6M6 respectively. The body weights of 

mice were monitored throughout treatment (Figure 5.7e and 5.7f). Mice exposed to 

peptide/siRNA complexes or peptide only did not suffer from weight loss for 27 days. 

Therefore, no toxicity was observed and the treatment was well tolerated. Next, we tried 

to validate that the Bcl-2 siRNA mediated inhibition of tumor growth was directly 

associated with a decrease in the level of Bcl-2 protein. Western blot analysis (Figure 

5.7g and 5.7h) using lysates from A549 tumors collected at the end of treatment revealed 

that the reduction in tumor size was directly correlated to Bcl-2 protein level, as 

evidenced by significant reduction in Bcl-2 expression with decreased tumor size. These 

data suggest silencing Bcl-2 protein expression is an effective way for inhibiting tumor 

growth.  
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Figure 5.7 Suppression of tumor growth in a non-small cell lung cancer xenograft mouse 

model by peptide based delivery of Bcl-2 siRNA. BALB/c nude mice (N=8) were 
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injected subcutaneously with 5×106 A549. When the tumor volume reached 100-200 

mm3, animals were treated by intratumoral injection of 20 µl saline solution, free Bcl-2 

siRNA (4 µg/mouse), peptide alone or Bcl-2 siRNA (4 µg/mouse) complexed with C6M3 

or C6M6 at a 1/60 molar ratio, every three days. Curves show the mean value of each 

group. (a) (b) Tumor diameters were measured during treatment. The tumor volume was 

calculated as Tumor volume=0.5×(width)2×length . ** P< 0.01 versus nontreated control. 

(c)(d) Images of tumors excised from the tumor-bearing mice on day 27 after treatments. 

(e)(f) Body weight of each mouse was monitored during treatment to evaluate toxicity. 

(g)(h) Total proteins were extracted from tumor tissues. Bcl-2 protein expression was 

detected by western blot. House keeping protein GAPDH was used as control.  
 

5.4 Conclusions 

In the present work, various numbers of histidine residues were placed in a prototype 

peptide C6 in an effort to aid in the endosomal release of siRNA, thereby improving its 

intracellular delivery. Preliminary GAPDH protein assay reveals that all the 

modifications increased the biological activity of siRNA with varying degrees. The 

transfection efficiency seems not solely depend on the number of histidine residues in the 

sequence, as peptides with same histidine numbers vary by effect in silencing efficiency. 

Two peptides C6M3 and C6M6 achieving above 60% knockdown efficiency were 

selected for further in-depth study. These two peptides could saturate all the negative 

charges of siRNA molecules at molar ratio 40/1 and 60/1, assessed by RiboGreen 

intercalation assay. The formed complexes are around 100 nm at molar ratio 60/1, with a 
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more than 30 mV surface charge enough for stability.  Subsequent experiments focused 

on the biological effect of peptide/siRNA complex reveals its strong uptake in CHO-K1 

cell line and its ability to reduce GAPDH gene expression with low cytotoxicity. In 

addition, this peptide-based delivery system is biocompatible, as it has been shown that 

no complement or cytokines were stimulated after treatment with peptides in vitro. 

Furthermore, we tried to suppress tumor growth by regulating Bcl-2 protein level, which 

enhances the growth of tumors by suppressing apoptosis. The in vivo results show that 

the reduction in Bcl-2 protein level could inhibit tumor growth in a mouse xenograft 

tumor model. Collectively, in vitro and in vivo data suggest our new carriers based on 

peptides C6M3 and C6M6 promote the delivery of siRNA into tumor cells, and might 

have therapeutic utility in a variety of diseases. 
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Chapter 6 

Rational modification of cell penetrating peptides for highly 

efficient siRNA delivery: structure-activity relationship and 

mechanism of intracellular trafficking of siRNA 

	
  

6.1 Introduction 

RNA interference (RNAi)-mediated silencing offers one of the most attractive methods 

of gene therapy for many diseases. Many types of diseases including viral infections and 

cancers have been demonstrated to be potential targets for RNAi based therapy 

[59,216,217]; however efficient delivery of short interfering RNAs (20~25 base pairs) 

(siRNAs), the molecules that mediate RNAi, is still a key challenge in realizing the full 

potential of RNAi therapeutics [218]. 

       siRNAs must first enter target cells, typically by endocytosis, cross the endosomal 

membrane to be released into the cytosol, and finally get loaded onto the RNA-induced 

silencing complex (RISC) for silencing of the target gene [2,4]. However, passive 

diffusion of “naked” siRNAs across biological membranes is impeded by the 

physicochemical properties of the siRNA, including their high molecular weight, 

negative charge and hydrophilicity [219,220]. Thus, different systems have been 

developed for siRNA delivery by taking advantage of viral or nonviral vectors. Viral 
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vectors are highly efficient but they bear an inherent risk for the patient to encounter 

severe immunological responses or even develop cancer [221–223]. These problems in 

viral delivery have initiated an intense search for efficient non-viral delivery systems. 

Common non-viral siRNA delivery systems include cationic lipids and polymers. These 

vectors have various levels of efficiency and toxicity, but for most clinical indications 

still remain unsatisfactory [224–231]. Hence, the development of appropriate delivery 

systems is still an essential requirement to turn these molecules into medicine.  

        Recently, cell-penetrating peptides (CPPs), consisting of short cationic or 

amphipathic sequences of about 5-30 amino acids, have received much attention owing to 

their low toxicity, along with their ability to translocate through plasma membranes 

[85,232,233], which is a significant barrier for siRNA access to the intended targets in 

the cytoplasm. In most cases, however, the CPP/siRNA complexes were either 

internalized by the cells only in very low amounts, or the internalized CPP/siRNA 

complexes were trapped in endosomes, therefore inducing little or no gene silencing 

[98,234–236]. In terms of cellular uptake, stearyl modification of CPPs has significantly 

improved the internalization of siRNA by cells in comparison to the unmodified peptide 

[237]. For CPP/siRNA entrapments inside the endosomes, it is highly desirable to modify 

these complexes in order to facilitate their endosomal escape. Two main mechanisms are 

currently proposed to explain the escape of biologicals induced by peptides. The first is 

the “proton sponge” effect [238], that relies on protonable groups in the molecules with 

pKa values close to the endosomal/lysosomal pH. This will lead to a higher influx of 

protons, along with chloride ions and water, resulting in inevitable endosomal swelling 

and rupture. This release mechanism of contents to the cytosol has been established for 
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polyhistidine based delivery systems [238,239]. The second mechanism is pH-sensitive 

membrane disruption [240,241]. The hypothesis is that as endosomes acidify, 

endocytosed pH-sensitive peptides shift from an inactive state to an active, membrane-

disruptive state. In line with this concept, a histidine-rich peptide [242] and a 

pentadecaarginine (R15)-PLGA-PEG polymer [243] with pH-sensitive membrane 

disruption capability have been developed.   

         In this study, by taking all this knowledge into account, we undertake a rational 

design of CPP derivatives aiming to provide highly efficient siRNA delivery. First, 

oligoarginine, one group of the most widely utilized CPPs for intracellular delivery of 

biologicals, is employed as a model carrier because it can bind to the cell surface with 

high affinity [244] and is additionally more effective at entering cells than oligolysine, 

oligoornithine and arginine-rich peptides [146,245]. Second, in order to overcome the 

lack of silencing activity induced by oligoarginine [236,246], we introduce stearic acid 

and various oligohistidine modifications that are found to significantly enhance cellular 

uptake and endosomal escape of siRNA. Moreover, we hypothesize that hydrophobic 

stearyl groups conjugated to a peptide sequence would improve the co-assembly of 

peptide with siRNA in forming nanoparticles (<200 nm) in aqueous solution due to their 

hydrophobic interaction. We explore in detail the relationship between structures and 

properties of the oligoarginine based molecules with their biological activities. 

Particularly, we demonstrate that the residue number ratio of histidine/arginine in a 

stearylated peptide sequence is important for inducing pronounced gene silencing, and 

use this knowledge to deliberately design stearylated and oligohistidylated oligoarginine 

based siRNA carriers that have significantly improved efficiency compared to the most 
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commonly used benchmark delivery systems, Lipofactamine 2000 (Lipo). Finally and 

most notably, we discover the mechanism of intracellular siRNA release mediated by the 

carrier. In culmination, not only do these newly developed, highly efficient carriers 

provide practical advancement in terms of siRNA delivery, the understanding 

surrounding oligoarginine-based siRNA delivery system developments reported herein 

will provide valuable guidance for future investigation of CPP-based siRNA vectors. 

Figure 6.1 demonstrates the whole process of peptide mediated siRNA delivery, from 

peptide-siRNA binding, internalization, intracellular trafficking, to endosomal release 

and RNA interference.  

 

 

 

 

	
  

 

 

Figure 6.1 Schematic diagram depicting the application of stearylated and 

oligohistidylated oligoarginine based peptide as siRNA carriers. 

 

 



	
   123	
  

6.2 Materials and Methods 

6.2.1 Materials 

Peptides, stearylated peptides and siRNA: The R8, R15, STR-R8 and STR-H12R8 were 

synthesized in bulk (CanPeptide Inc., Pointe-Claire, Canada). The H16R8, STR-H8R8, 

H8R15, STR-H8R15, STR-H16R8 and STR-H20R8 were synthesized in bulk by Pepscan 

(Lelystad, The Netherlands). SilencerTM GAPDH siRNA (Life Technologies, Carlsbad, 

USA) was used to target the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. 

The sense sequence was 5'-GGU CAU CCA UGA CAA CUU Utt-3' and antisense 

sequence was 5'-AAA GUU GUC AUG GAU GAC Ctt-3'. The SilencerTM Cy3-labeled 

GAPDH siRNA (Life Technologies, Carlsbad, USA) was used in confocal laser scanning 

microscopy (CLSM) and Fluorescence Activated Cell Sorting (FACS). The scrambled 

siRNA (Life Technologies, Carlsbad, USA) was used as negative control in the 

experiments.  

 6.2.2 Cell culture 

 CHO-K1 (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (ATCC CCL-61). Cells were cultured in F-12K (Thermo scientific, Ottawa, 

Canada) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich, Oakville, 

Canada). The Hela cells were obtained from American Type Culture Collection (ATCC 

CCL-2), and cultured in Eagle's Minimum Essential Medium (Thermo scientific, Ottawa, 

Canada) with 10% heat-inactivated FBS. All of the cells were incubated at 37°C in a 

humidified atmosphere containing 5% CO2. 



	
   124	
  

6.2.3 Preparation of the complexes 

Both of the powders of the modified or unmodified peptides and siRNA were dissolved 

in RNase free water, respectively. The complexes were formed by mixing the two 

solutions at various molar ratios of arginine residues in peptides to phosphate groups of 

siRNA (R/P ratio). Lipofactamine 2000 (Lipo) (Life Technologies, Carlsbad, USA), a 

commercial transfection reagent, was also diluted in RNase free water and mixed with the 

siRNA solution to form complexes with the final concentration of 20 µL Lipo/mL. The 

final siRNA concentration was 1µM for all the samples containing complexes, which 

were incubated for 20 minutes at room temperature before characterization and siRNA 

release study. The samples were diluted further to 10% of the original concentration in 

Opti-MEM medium (Life Technologies, Carlsbad, USA) before transfection.    

6.2.4 Particle size and zeta potential 

 The hydrodynamic diameter of the complexes were measured on a Zetasizer Nano ZS 

(Malvern Instruments, Malvern, UK) equipped with a 4 mW He-Ne laser operating at 

633 nm. A quartz microcell (45 µL) with a 3 mm light path was used and the scattered 

light intensities were collected at an angle of 173°. Zeta potential measurements were 

also performed on the same machine using clear disposable zeta cells. Three 

measurements were performed to generate the intensity-based size and zeta potential plot 

reported herein. 
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6.2.5 Atomic force microscopy (AFM) 

 The nanostructure of the complexes was imaged on AFM. 10 µL of the sample solution 

containing complexes of H16R8 or STR-H16R8/siRNA with an R/P ratio of 10:1 was put 

on a freshly cleaved mica surface. The sample was incubated for 10 min at room 

temperature to allow the complexes to adhere onto mica surface. Mica was then washed 

at least five times with RNase free water to remove unattached complexes. After air 

drying, the mica surface was analyzed by a Dimension Icon AFM (Bruker, Santa 

Barbara, USA) at room temperature using the tapping mode with ScanAsyst-Air tips 

(Bruker, Santa Barbara, USA). All AFM images were obtained at a resolution of 512 × 

512 pixels on a scale of 5 µm × 5 µm and 2 µm × 2 µm. 

6.2.6 Transmission electron microscopy (TEM) 

10 µL of sample solution containing the complexes of STR-H16R8/siRNA at R/P 10 or 

STR-H16R8 only in the same concentration was applied to a 400 mesh Formvar coated 

copper grid (Canemco-Marivac, Canton de Gore, Canada) for 3-5 minutes. The sample 

was then washed using 5 successive wash steps and dried overnight. The complexes was 

stained with uranyl acetate and analyzed using a JEOL JEM 1200 EX TEMSCAN 

transmission electron microscope (JEOL, Peabody, USA) operating at an accelerating 

voltage of 80kV. The images were acquired with an AMT 4 megapixel digital camera 

(Advanced Microscopy Techniques, Woburn, USA). 

 6.2.7 siRNA loading efficiency 

RiboGreen assay was used to determine the siRNA loading efficiency using the 

manufacturer's protocol (Life Technologies, Carlsbad, USA). This assay is based on the 
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strong fluorescence of riboGreen upon intercalation with siRNA. RiboGreen solution was 

diluted to 1/30 (v/v) and then added to the samples (1:12, v/v). After 5 min, the 

RiboGreen fluorescence was measured by a QM4-SE spectrofluorometer (Photon 

Technology International, London, Canada) at excitation wavelength of 480 nm and 

emission wavelength of 525 nm. Free siRNA concentrations were obtained from the 

fluorescence using a standard curve prepared with standard siRNA solution. Peptides or 

stearylated peptides only were used as controls. The results were obtained from three 

independent experiments (n = 3). 

6.2.8 Gene silencing 

CHO-K1 cells (40,000/well) were plated in a 24-well cell culture plate in F-12K medium 

with 10% FBS. 24 h later, the medium was removed and washed with PBS, and then 300 

µL of the sample solution containing the complexes of the Peptides, stearylated peptides 

or Lipo/GAPDH siRNA or scrambled siRNA was added to the cells. 3 h later, 300 µL of 

F-12K with 20% FBS was added. In case of chloroquine and bafilomycin A1, both of 

them was dissolved in 300 µL of F-12K with 20% FBS, respectively, which was added to 

the cells 3 h after the cells were treated with the complexes. Afterwards, the cells were 

incubated for 48 hours at 37 °C in a 5% CO2 atmosphere. The cultures were then washed 

with PBS. Total RNA was extracted from the cells with TRIzol reagent (Life 

Technologies, Carlsbad, USA), then treated with chloroform (Sigma, Oakville, Canada) 

and 2-propanol (Sigma-Aldrich, Oakville, Canada) as recommended by the manufacturer. 

RNA concentrations were measured by Nanodrop spectrophotometer ND-1000 (Thermo 

scientific, Ottawa, Canada). All RNAs were reverse transcribed with Bio-Rad iScript 

cDNA synthesis kit (Bio-Rad, Mississauga, Canada). The cDNA synthesis was primed 
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with a unique blend of oligo (dT) and random primers. The following pairs of primers 

were used for PCR: 5ʹ′-TTGCTGTTGAAGTCGCAGGAG-3ʹ′, 5ʹ′-TGTGTCCGT- 

CGTGGATCTGA-3ʹ′ (Sigma, Oakville, Canada). Here, the housekeeping gene 

cyclophilin was chosen as an internal control to normalize the GAPDH gene. The 

normalization was performed by the amplification of mouse/rat cyclophilin mRNA with 

the following primers: 5ʹ′-AGGGTTTCTCCACTTCGATCTTGC-3ʹ′ and 5’-

AGATGGCACAGGAGGAAAGA- GCAT-3ʹ′ (Sigma, Oakville, Canada). PCR reaction 

was performed with Brilliant II Fast SYBR Green QPCR Master Mix (Agilent 

Technologies, Wilmington, USA) on an Mx3005P™ Real-Time PCR System (Agilent 

Technologies, Wilmington, USA).  

6.2.9 Fluorescence-activated cell sorting (FACS) 

 Cellular uptake of Cy-3 labeled GAPDH siRNA was studied using BD FACSCalibur 

Flow Cytometry (BD Biosciences, Mississauga, Canada). CHO-K1 cells were transfected 

with the cationic molecules/Cy3-labeled GAPDH siRNA complexes according to the 

protocol listed above. nontreated cells and naked siRNA served as a negative control. 

After 3 h incubation, the culture medium was discarded and cells were washed with PBS, 

Trypsin-EDTA was then added to detach the cells from the plate; cells were suspended in 

4% PFA solution and collected.  

 6.2.10 Confocal laser scanning microscopy (CLSM) 

 CHO-K1 cells (80,000/well) were plated in a Nunc Lab-Tek 4-well glass chamber slides 

(Thermo scientific, Ottawa, Canada) 24 h before transfection. CHO-K1 cells were also 

treated with the same protocol as described above. Treated cells were incubated at 37°C 
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for 3 h with Opti-MEM medium. For endosomal labeling, the cells were incubated with 

50 nM Lysotracker Green (Life Technology, Carlsbad, USA) for 30 min before fixing. 

The wells were then washed with 15 U/mL heparin (Grade I-A, ≥180 USP U/mg, Sigma-

Aldrich, Oakville, Canada) for three times in one hour at 37°C and fixed with 500 

µL/well of fresh 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) at 37°C 

for 30 min. The fixation agent was aspirated, and the cells were washed twice with PBS 

before they were covered with Fluoroshield with DAPI mounting medium (Sigma-

Aldrich, Oakville, Canada). Carl Zeiss LSM 700 Confocal laser scanning microscopy 

(Zeiss, Jena, Germany) was used to visualize the cells. The microscope was equipped 

with Plan-Apochromat 20x/0.8 NA objective lens. The images were analyzed with LSM 

Zen 2009 software. 

6.2.11 Membrane integrity assay 

 CHO-K1 cells (8,000/well) were plated on 96-well plates and incubated overnight in 100 

µL of F-12K medium containing 10% FBS. The cell culture medium was removed and 

washed with PBS. The modified and unmodified oligoarginine were dissolved in Opti-

MEM medium with pH 7.4, pH 6.3 and pH 5.5, respectively. After stand for 5 min, the 

solution was added to the cells.  After the incubation at 37°C for 3 h, the plates were 

centrifuged. 50 µL of aliquots in each well were collected for the LDH assay. The LDH 

activity in these samples was determined using a CytoTox 96 Non-Radioactive 

Cytotoxicity Assay kit (Promega, Madison, USA) according to the manufacturer’s 

protocol, which determined the LDH activity from the amount of produced red formazan 

product by a colorimetric assay. The amount of formazan produced was assessed by 

measuring the absorbance at 490 nm with a FLUOstar OPTIMA microplate reader (BMG 
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Labtech, Ortenberg, Germany). Percentages of the LDH activity in each well were 

calculated from a ratio of the obtained value to the control well containing 10 µL lysis 

buffer.  

6.2.12 pH-dependant siRNA release 

The solutions containing the complexes at R/P 10 were diluted to 10% of the original 

concentration in a serial dilution of heparin in PBS, pH7.4 or 5.5, respectively. 15 min 

later, the released siRNA was determined by the RiboGreen method as described above 

in “siRNA loading efficiency”. 

6.2.13 Cytotoxicity assay 

 CHO cells were plated in to 96-well plates (8,000 cells/well) in F-12K medium with 

10% FBS. 24 h later, the medium was removed and washed with PBS. The solutions 

containing carriers were prepared in RNase free water and diluted by Opti-MEM medium 

to 10% of the original concentration. After stand for 5 min, 60 µL of the solution was 

added to the cells. 3 h later, 60 µL F12-K medium with 20% FBS was added. After 

incubation for 24 hours at 37 °C in a 5% CO2 atmosphere, the cultures were washed with 

PBS. 100 µL of Opti-MEM medium with CCK-8 reagent was then added to each well. 

Cell viability was assessed by measuring the absorbance at 570 nm with a FLUOstar 

OPTIMA microplate reader and expressed as the ratio of the cells treated with the carriers 

over the nontreated cells (negative control). 
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6.3 Results and Discussion 

6.3.1 Modification of oligoarginine 

It has been reported that oligoarginine uptake increases with increasing charge, peaking 

between octaarginine (R8) and pentadecaarginine (R15) [146,245]. For this reason, in our 

approach, ten peptides were designed and investigated including R8 and R15, along with 

their high purity derivatives obtained by modification with oligohistidine and a stearyl 

moiety synthesized by a solid-phase synthesis method and purified by HPLC (Table 6.1).  

Table 6.1 Sequences of the unmodified and modified oligoarginine complexes along with 

their molecular weight and purity. These compounds were synthesized by a solid-phase 

synthesis method and purified by HPLC 

Name Sequences1 MW2 Purity3 

R8 Acetyl-RRRRRRRR-NH2 1,308.6 98.8 

STR-R8 Stearyl-RRRRRRRR-NH2 1.533.0 96.8 

STR-H8R8 Stearyl-HHHHHHHHRRRRRRRR-NH2 2,630.2 94.0 

R15 Acetyl-RRRRRRRRRRRRRRR-NH2 2,401.9 98.8 

H8R15 Acetyl –HHHHHHHHRRRRRRRRRRRRRRR-NH2 3,499.1 99.4 

STR-H8R15 Stearyl-HHHHHHHHRRRRRRRRRRRRRRR-NH2 3,723.6 92.4 

STR-H12R8 Stearyl-HHHHHHHHHHHHRRRRRRRR-NH2 3,178.7 96.0 

H16R8 Acetyl-HHHHHHHHHHHHHHHHRRRRRRRR-NH2 3,503.0 99.9 

STR-H16R8 Stearyl-HHHHHHHHHHHHHHHHRRRRRRRR-NH2 3,727.4 98.3 

STR-H20R8 Stearyl-HHHHHHHHHHHHHHHHHHHHRRRRRRRR-
NH2 4276.0 98.7 

1 N-term acetylation or stearylation and C-term amidation 
2 Molecular weight of dalton by LC/MS 
3 by HPLC, % 
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6.3.2 Particle size and morphology of peptides/siRNA complexes 

We first examined the ability of the ten peptides to form nano-sized complexes with 

siRNA. For all the non-stearylated and stearylated peptides only, no diameters were 

detected, which indicated that these molecules were not self-assembled, but freely 

dissolved in water. This highlights that hydrophilicity as well as the positive charges of 

the peptides impeded the aggregation of hydrophobic stearyl moieties. Ideally, cationic 

carrier/siRNA complexes should be smaller than 200 nm to: (i) ensure optimal diffusion 

through tumor tissues by the enhanced permeation retention effect (EPR) [247]; and (ii) 

reduce the recognition and removal by phagocytic cells in vivo. At various molar ratios of 

arginine residues in peptides to phosphate groups of siRNA (R/P ratio), un-stearylated 

peptides of R8, R15, H8R15 and H16R8 failed to condense the siRNA into nanoparticles 

(<200 nm). This was especially apparent for H8R15 and H16R8, which can only form 

complexes with siRNA having particle sizes > 1 µm and polydispersity index (PDI) > 0.5. 

Conversely, peptides with stearic acid modification—STR-R8, STR-H8R8, STR-H8R15, 

STR-H12R8, STR-H16R8 and STR-H20R8 showed particle sizes of less than 200 nm at 

various R/P ratios (Table 6.2), indicating the stearic acid moiety was able to assist 

peptides to condense siRNA into small complexes suitable for transfection. 

 

Table 6.2 Particle Size of the unmodified and modified oligoarginine/siRNA complexes, 

determined by dynamic light scattering (DLS) measurements. The complexes were 

formed by mixing the solutions of cationic carriers and siRNA with the final siRNA 

concentration of 1µM at various molar ratios of arginine residues in peptides versus 

phosphate groups of siRNA (R/P ratio).  
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 Name 
R/P1 2.5 

(nm) 
PDI2 

R/P 5 

(nm) 
PDI 

R/P 10 

(nm) 
PDI 

R8 415±154 0.48±0.17 288±13 0.18±0.03 364±19 0.39±0.1 

STR-R8 120±35 0.31±0.06 89±15 0.29±0.04 73±14 0.24±0.04 

STR-H8R8 65±16 0.22±0.02 71±9 0.27±0.01 78±7 0.29±0.03 

R15 257±27 0.35±0.09 > 1µm > 0.5 > 1µm > 0.5 

H8R15 > 1µm > 0.5 > 1µm > 0.5 > 1µm > 0.5 

STR-H8R15 64±8 0.31±0.05 78±5 0.29±0.05 77±8 0.28±0.04 

STR-H12R8 88±2 0.31±0.01 95±3 0.28±0.03 89±2 0.27±0.01 

H16R8 > 1µm > 0.5 > 1µm > 0.5 > 1µm > 0.5 

STR-H16R8 79±11 0.22±0.03 88±12 0.3±0.03 75±9 0.31±0.03 

STR-H20R8 89±13 0.29±0.05 95±7 0.32±0.04 92±7 0.29±0.04 

1 R/P: Molar ratio of arginine residues in peptides versus phosphate groups of siRNA 
2 PDI: Polydispersity index  

     AFM and TEM imaging also supported the DLS size measurements, showing no 

regular nanoparticles for H16R8/siRNA and peptide STR-H16R8 only (Figure 6.2a and 

6.2b). 
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Figure 6.2 (a) AFM image of H16R8/siRNA complexes does not reveal the formation of 

regular nanoparticles with 1µM siRNA concentration at R/P 10. (b) TEM image of STR-

H16R8 only shows no nanoparticles. The concentration of STR-H16R8 is in accordance 

with that at R/P 10. Scale bar is 100 nm. 
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        AFM images depict the presence of distinct nanoparticles with an average diameter 

of 70 nm for STR-H16R8/siRNA complexes (Figure 6.3). The larger height (2.6 nm, 

Figure 6.3b) of STR-H16R8/siRNA complexes than that from H16R8/siRNA (1.1 nm) 

also suggested the formation of nanoparticles between peptide STR-H16R8 and siRNA. 

TEM image of STR-H16R8/siRNA (Figure 6.4a) also confirm the formation of uniform 

sized particles. These indicated that the hydrophobic stearyl moiety could significantly 

improve the formation of the nano-scaled complexes between siRNA and the cationic 

carriers, even with the addition of oligohistidine. The reason would be that the negative 

charge on siRNA molecules neutralizes the positive charge of the peptides, leading to a 

reduced intermolecular repulsion from arginine residues, and consequently improving the 

hydrophobic interaction of stearyl groups.  

	
  	
  	
  	
  	
  	
  	
  The zeta potentials of R8/siRNA complexes at R/P 2.5 and 5 were 15.2 and 19.2 mV, 

but increased to 22.4 mV at R/P 10. We only measured the zeta potential of R15/siRNA 

complexes at R/P 2.5 to be 19.8 mV, because the particle size can be detected only at this 

R/P ratio (Table 2). The zeta potentials of stearylated peptides/siRNA complexes at R/P 

2.5 to 10 were all in the range of 20~30 mV, which is suitable for gene transfection 

(Figure 6.4b). 
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Figure 6.3 AFM images of STR-H16R8/siRNA complexes at a 5 µm × 5 µm scale and  

2 µm × 2 µm scale. AFM image reveals an average particle size of 70 ± 8 nm (n = 96). 
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Figure 6.4 (a) TEM image of STR-H16R8/siRNA complexes with siRNA concentration 

of 1µM at R/P 10. (b) Zeta potential of the oligoarginine based peptides/siRNA 

complexes at R/P ratios of 2.5, 5 and 10. The concentrations of the complexes were the 

same as that of the particle size measurement. The results indicated that stearylation 

modification on oligoarginine increased the surface charges of the complexes. 
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6.3.3 siRNA binding capacity of peptides 

To gain deeper insight into the interactions occurring between these oligoarginine-based 

molecules and siRNA, siRNA loading capacities were determined by RiboGreen assay. 

This assay was based on the strong fluorescence of RiboGreen upon intercalation with 

free siRNA. In this assay, H16R8 and H8R15 were not included as they were difficult to 

form nanoparticles with siRNA at various R/P ratios. 

	
  	
  	
  	
  	
  	
  Generally, R8, R15, STR-R15 and STR-(H)nR8 (n=0, 8, 12, 16 or 20) showed 

significant fluorescence quenching above an R/P ratio of 2.5, meaning these molecules 

could condense siRNA efficiently above this ratio (Figure 6.5). For an R/P ratio of < 2.5, 

R8 exhibits less siRNA binding capacity than the corresponding stearylated R8. This 

confirmed that the stearyl moiety could help condense siRNA more efficiently to form 

smaller complexes as shown in Table 2. Interestingly, after the conjugation of 

oligohistidine, fluorescence quenching was clearly increased with extended chain length 

of oligohistidine in the order of STR-H20R8 > STR-H16R8 > STR-H12R8 > STR-H8R8 

> STR-R8. We assumed that a portion of histidine (pKa of the side chain is 6.0) residues 

in the stearyl-oligohistidine-oligoarginine were positively charged in aqueous solutions 

and interact with siRNA as well, so that they can show a more pronounced binding effect. 

In the case of STR-H8R15 however, this assumption is not suitable, since at the same R/P 

ratio, the number ratio of histidine/arginine in the sequence was only 0.53, far lower than 

that of STR-H8R8 and STR-H12R8 with the histidine/arginine ratio of 1 and 1.5, 

respectively. However, the binding capacity of STR-H8R15 is higher than those of STR-

H8R8 and STR-H12R8. This phenomenon suggested that the extended chain length of 

oligoarginine improved the condensing of siRNA significantly, which surpassed the 
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contributions made by histidine residues to the siRNA binding. In terms of unmodified 

oligoarginine peptides, R15 also showed a higher siRNA binding capacity than that of 

R8, verifying that longer oligoarginine had greater capability to condense siRNA 

compared with the short one. 

 

 

 

 

 

 

 

 

Figure 6.5 siRNA binding capacity of the unmodified and modified oligoarginine 

peptides was measured by RiboGreen intercalation assay. Initial siRNA concentration is 

100 nM. Different volumes of peptide stock solution were added to the fixed siRNA 

concentration to obtain peptide/siRNA charge ratios from 1 to 3. 
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6.3.4 Gene silencing efficiency and cytotoxicity of peptide/siRNA complexes 

on cultured cells 

The gene silencing efficacy of siRNA delivered by the individual oligoarginine-based 

carriers was examined using a GAPDH gene knockdown assay. The mRNA levels in 

CHO-K1 cells after treatment were measured by quantitative real-time PCR. As shown in 

Figure 6.6a, R8, R15 and STR-R8 did not induce GAPDH mRNA knockdown at various 

R/P ratios. The STR-H8R8/siRNA formulations showed 16 and 26% lower mRNA levels 

than that of nontreated cells at R/P 5 and 10, respectively. However, STR-H8R15/siRNA 

formulations revealed decreased mRNA levels by 17% at R/P 10, lower than that of STR-

H8R8. This implied that increased chain length of oligoarginine could not improve the 

efficacy of siRNA delivery. Furthermore, with an increased chain length of 

oligohistidine, STR-H12R8 induced gene silencing with the knockdown efficiency of 

31% at R/P 5 and 59% at R/P 10. Taking the positive correlation between the ratios of 

histidine/arginine in stearylated oligoarginine derivatives and knockdown efficiency into 

consideration as well, we assumed that histidine residues would play an important role in 

the cellular delivery of siRNA. Following this finding, we extended the chain length of 

oligohistidine further in stearylated and oligohistidylated R8 molecules, and STR-H16R8 

and STR-H20R8 were evaluated in gene silencing assays. STR-H16R8 showed 

significant gene knockdown levels of 50% at R/P 5 and 88% at R/P 10. The latter value 

was similar to that of a benchmark, Lipofactamine 2000 (Lipo), which is the most 

commonly utilized and efficient transfection reagent to introduce siRNA into cells, 

inducing 84% gene silencing in this assay. Moreover, the knockdown efficiency was 

improved further to 92% by STR-H20R8, which verified the established theory very well.  
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When these oligoarginine-based peptides are used as siRNA delivery agents, a low 

cytotoxicity is critical. The followed investigation therefore was evaluation of the 

cytotoxicity of these cationic molecules. The viability of cells treated with R8, R15 and 

modified R8 was almost the same as that in nontreated cells. However, Lipo showed 

slight cytotoxicity with only 87% of the cells surviving (Figure 6.6b). The STR-H8R15 

showed 80% cell viability at R/P 10, though the molar concentration of it was much 

lower than those of the molecules containing R8 at the same R/P ratio, which would be 

due to that both the longer chain length of oligoarginine and stearyl group improved the 

interaction between it and cell membrane. Hela cells were also employed for the mRNA 

knockdown study, which showed a similarly higher silencing efficiency induced by STR-

H16R8 than that of Lipo (Figure 6.7a). STR-H16R8 did not show any cytotoxicity up to 

R/P 10 in Hela cells as well (Figure 6.7b).  

 

Figure 6.7 (a) Gene knockdown efficiency and (b) cytotoxicity of STR-H16R8/siRNA 

complexes on Hela cells. In gene knockdown assay, GAPDH siRNA was used and in 

cytotoxicity assay negative control siRNA was used.  
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Figure 6.6 (a) Gene knockdown efficiency and (b) cytotoxicity of STR-H16R8/siRNA 

complexes on CHO-K1 cells. In gene knockdown assay, GAPDH siRNA was used and in 

cytotoxicity assay negative control siRNA was used. 
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6.3.5 Cellular uptake 

Cellular uptake of Cy-3 labeled siRNA formulated with the carriers at R/P 10 was 

measured by fluorescence activated cell sorting (FACS). As shown in Figure 6.8a, in 

comparison to the other modified peptides R8 and R15 mediated a markedly lower 

internalization of siRNA, which would be one main reason for its ineffectiveness in gene 

silencing. In terms of stearylated peptides, STR-R8 had the highest mean fluorescence 

intensity of 260, with STR-H8R8, STR-H8R15, STR-H12R8, STR-H16R8 and STR-

H20R8 inducing mean fluorescence intensities of 160, 195, 187, 220 and 211, 

respectively. These intensities were all much greater than that of Lipo, inducing a mean 

fluorescence intensity of 59 (Figure 6.8b). Based on these observations, we can conclude 

that stearylated peptides with various chain lengths of oligoarginine and oligohistidine 

resulted in similar cellular uptakes of the complexes. These findings were directly in 

accordance with the excellent ability of them to condense siRNA. Furthermore, 

significant differences in the efficacy of the stearylated peptide/siRNA complexes would 

not be attributed to the internalization of the complexes, which were only slightly 

different, but rather to the varying degrees of released siRNA into the cytosol, where 

siRNAs have to reach and then get loaded onto the RNA-induced silencing complex 

(RISC) for gene silencing.   
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Figure 6.8 Cellular uptake of Cy3-siRNA complexes formed with the modified and 

unmodified oligoarginine at 3 h after the treatment in CHO-K1 cells. The same procedure 

as that involved in gene silencing assay was used to prepare the complexes with the final 

siRNA concentration of 100 nM at R/P 10 for all cationic molecules and at R/P 2.5 for 
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R15, only where nanoparticles can be detected. Flow cytometry and reveals the 

stearylated oligoarginine with or without oligohistidine segments deliver similar amounts 

of Cy3-labeled siRNA into cells, which were much higher than these induced by the 

unmodified oligoarginine.  

 

6.3.6 Subcellular localization of peptides/Cy-3 siRNA complexes 

The sub-cellular localization of the complexes was imaged using confocal laser scanning 

microscopy (CLSM). Particularly, DAPI was used to stain nuclei, and Lysotracker Green 

was used to stain endolysosomal vesicles. Figure 6.9 shows that the cells treated with the 

Lysotracker Green revealed a punctuate pattern of endolysosomes in the cytosol. The 

Cy3-labeled GAPDH siRNA with red fluorescence delivered by the two typical cationic 

molecules, STR-R8 and STR-H16R8, also showed a punctuate distribution pattern in the 

cytosol. The majority of Cy-3 fluorescence-labeled siRNA appeared to be trapped in 

endosomal/lysosomal vesicles as demonstrated by its extensive colocalization with the 

LysoTracker Green marker, visualized as yellow punctuate fluorescence. This suggested 

that the uptake of the complexes followed an endocytosis pathway. Moreover, for the 

STR-H16R8/siRNA complexes inducing high gene silencing, a small amount of the Cy3 

labelled siRNA can be observed distributed in the cytosol at 6h (Figure 6.10). A zoomed 

in image for the co-localization of STR-H15R8/Cy-3 siRNA and lysosomes/endosomes 

was shown in Figure 6.11.   
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Figure 6.9 Intracellular localization of Cy-3 siRNA in CHO-K1 cells at 3 h after the 

treatment with STR-R8 or STR-H16R8/Cy3-labeled siRNA (red) complexes at R/P 10 

with 100 nM of siRNA in Opti-MEM medium determined by confocal laser scanning 

microscopy. Nucleic was stained with DAPI (blue). Endosomes/lysosomes were stained 

with LysoTracker Green (green). Full co-localization of siRNA with 

endosomes/lysosomes was observed in punctuate pattern with yellow fluorescence in 

merged images suggesting the complexes were taken up by endocytosis. Both length and 

width are 160 µm for every picture. Plan-Apochromat 20x/0.8 NA objective lens was 

used to obtain these images.  
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Figure 6.10 Intracellular localization of siRNA in CHO-K1 cells at 6 h after the 

treatment with STR-H16R8/Cy3-labeled siRNA (red) complexes at R/P 10 with 100 nM 

of siRNA in Opti-MEM medium determined by confocal microscopy. Nucleic is stained 

with DAPI (blue). Endosomes/lysosomes are stained with LysoTracker Green (green). 

Most of the siRNA is localized in endosome/lysosome and a small amount of siRNA can 

be found distributing in cytosol (red dots). The punctuate distribution pattern of yellow 

fluorescence increase in size and decrease in amount due to the fusion of 

endosome/lysosome compartments into larger vesicles [248–250]. Both length and width 

are 160 µm for each picture. Plan-Apochromat 20x/0.8 NA objective lens was used to 

obtain these images.  
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Figure 6.11 Intracellular localization of siRNA in CHO-K1 cells at 3 h after the 

treatment with STR-H16R8/Cy3-labeled siRNA (red) complexes at R/P 10 with 100 nM 

of siRNA. Nucleic is stained with DAPI (blue). Endosomes/lysosomes are stained with 

LysoTracker Green (green). Most of the siRNA is localized in endosome/lysosome and a 

small amount of siRNA can be found distributing in cytosol (red dots). Plan-Apochromat 

40x/0.8 NA objective lens was used to obtain this image.  
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6.3.7 pH-dependant siRNA release 

It has been suggested that the release of siRNA from the internalized complexes is crucial 

for effective gene silencing, whereby a low intracellular siRNA dissociation would most 

likely reduce the gene silencing efficiency [251]. On the contrary, a premature 

extracellular release of siRNA is also undesired. Therefore, siRNA dissociation from the 

stearylated peptides was investigated in PBS at pH 5.5 and 7.4, mimicking the acidic 

environment in the endosome/lysosome and the physiological conditions during cell 

culturing, respectively. Negatively charged heparin was used to represent the endogenous 

polyanions [252]. For STR-R8 at pH 5.5, siRNA dissociation from the complexes 

decreased by 15 and 10% in comparison to pH 7.4, at heparin concentrations of 0.02 and 

0.05 mg/mL, respectively, while in terms of other stearylated and oligohistidylated 

oligoarginine, no pronounced change of siRNA release was found when the medium was 

acidified (Figure 6.12). These results indicated that the acidic environment did not 

significantly change the release of siRNA from the complexes. In both of the PBS 

solutions, extended chain lengths of oligohistidine and oligoarginine segments reduced 

the siRNA release against the heparin competition, which showed a similar order as the 

siRNA binding capacity of these oligoarginine based molecules (Figure 6.5). Therefore, 

siRNA dissociation from the internalized complexes would not be an issue in terms of 

hindering the effective gene silencing. This is because STR-R8 and STR-H8R8, 

exhibiting higher release of siRNA did not induce effective gene silencing, while STR-

HnR8 (n=12, 16 or 20), inducing a higher knockdown efficiency showed a lower siRNA 

release. On the other hand, less replacement of siRNA by heparin indicated that siRNA 

could be better protected in the complexes formed with the molecules possessing longer 
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oligohistidine and oligoarginine chains, presumably preventing siRNA from the 

degradation in the endosome/lysosome more effectively. However, STR-H8R15, which 

protected siRNA slightly better than STR-H12R8 (showing a significant knockdown 

efficiency) did not induce efficient gene silencing. Thus, better protection of siRNA in 

the complexes, although important, would not be a determining factor to the more 

efficient gene silencing. However, a certain ratio of histidine/arginine (>1.5) in 

stearylated peptides is undoubtedly a necessity to ensure the highly efficient intracellular 

siRNA delivery.  

             

Figure 6.12 pH-dependant siRNA release performed in a serial dilution of heparin in 

PBS, at pH7.4 or 5.5, respectively. The free siRNA was determined by the RiboGreen 

method. At pH 5.5, siRNA dissociated from the STR-R8/siRNA complexes decreased 

slightly, while in terms of the stearylated and oligohistidylated oligoarginine, no 

significant change of siRNA release was found between pH 7.4 and 5.5. 
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6.3.8 Endosomal escape mechanism 

Chloroquine (CQ) is an endosomolytic agent well known to facilitate the release of 

entrapped biomolecules by causing the swelling and disruption of endocytic vesicles by 

osmotic effects [239]. To date, CQ has been widely used to elucidate the uptake 

mechanism of non-viral nucleic acid delivery systems [253] To confirm that stearylated 

peptides/siRNA complexes are taken up by an endocytic pathway, gene silencing was 

carried out in CHO-K1 cells in the presence of CQ at a final concentration of 50 µM. In 

the case of STR-R8, which induced a high uptake of siRNA but hardly detectable gene 

silencing, a 13% decrease in mRNA levels was observed when it was simultaneously 

treated with chloroquine. The effect of CQ was more pronounced however with STR-

H8R8 and STR-H16R8, showing a significant increase in gene silencing from 8% to 49% 

and 45 to 79%, respectively (Figure 6.13a). Therefore, on the one hand, the assay 

confirmed that the stearylated peptides/siRNA complexes were internalized via 

endocytosis. On the other hand, such different enhancements with CQ treatment 

confirmed that the involvement of oligohistidine in STR-R8 could enhance the 

endosomal escape of siRNA substantially. 

    All the aforementioned data clearly suggested the important effects of histidine 

residues on the intracellular trafficking of siRNA. Similar to CQ, the accumulation of 

histidine residues in endosomes can induce a “proton sponge” effect as well, which will 

disrupt the endosomal membranes and inevitably result in the release of trapped 

biologicals. Focusing on STR-H16R8, we used an inhibitor for vacuolar ATPase proton 

pump, bafilomycin A1 (Baf A1), to reduce the acidification of the endosomes [254,255].  
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Figure 6.13 The effect of endosomal pathway inhibitors on the silencing efficiency of 
peptide/siRNA complexes. (a) Effect of an endosomolytic agent, Chloroquine (CQ), on 
gene silencing of siRNA formulated with STR-R8, STR-H8R8 and STR-H16R8 at R/P 5. 
CQ improved the mRNA knockdown more pronouncedly for STR-H8R8 and STR-
H16R8 than that of STR-R8. (b) Acidification inhibition of endosomes induced by 
bafilomycin A1 (Baf A1) reduced the knockdown efficiency of STR-H16R8/siRNA 
complexes at R/P 10 significantly. Both of experiments were conducted in the same 
manner as gene silencing assay with the siRNA concentration of 100 nM, but with 
addition of 50 µM CQ or 20 nM Baf A1, respectively, to the wells 3 h after the CHO-K1 
cells treated with the complexes.  
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Naturally, the inhibition of the proton pumps on the endolysosomes should weaken both 

the “proton-sponge” effect [256]  and the pH-dependent endosomal membrane disruption 

[240]. Figure 6.13b showed that the addition of Baf A1 decreased the gene silencing 

dramatically. These findings clearly indicated that the endosomal acidification was 

important to help the release of siRNA formulated in the complexes from endosomes. 

      The pH-dependent membrane disruption was further investigated by a membrane 

integrity study using the lactate dehydrogenase (LDH) leakage assay [257]. In terms of 

all the stearylated peptides, there was no significant pH-dependent promotion of LDH 

leakage at various concentrations (Figure 6.14), although pH-sensitive membrane 

disruption was demonstrated with R8 and R15. This suggested that after stearylation or 

stearylation/oligohistidylation modifications, the pH-sensitive membrane disruption 

capabilities of the oligoarginine molecules were restrained completely. Moreover, the 

overall capabilities of membrane disruption were similar among these modified R8 

peptides, which were surpassed slightly by STR-H8R15.   

    The results demonstrated that all these modified stearylated oligoarginines of various 

concentrations possessed similar membrane disruption capabilities at pH 5.5, 6.3 and 7.4. 

However, Figure 6.6 revealed that the knockdown efficiency varied remarkably between 

these oligoarginine derivatives. Thus, we believe that pH sensitive membrane disruption 

was less likely to be the major endosomal escape pathway induced by these cationic 

molecules. Based on the comprehensive investigations on the mechanism of endosomal 

escape, we therefore concluded that the “proton-sponge” effect induced by histidine 

residues played a predominant role in the escape of siRNA from endosomes to cytosol. 



	
   153	
  

 

 

Figure 6.14 Membrane disruption ability of the unmodified and modified oligoarginine 

in CHO-K1 cells at pH 7.4, 6.3 and 5.5. This was measured by comparing the amount of 

leaked lactate dehydrogenase (LDH) in the wells with samples to the control well 

containing the lysis buffer. R8 and R15 showed pH-sensitive membrane disruption, while 

after stearylation or stearylation/oligohistidylation modifications, the membrane 

disruption capabilities of STR-R8, STR-H8R8, STR-H12R8, STR-H16R8 and STR-

H20R8 are pH-independent and similar. The membrane disruption ability of STR-H8R15 

is also not pH-sensitive but induces a slightly higher LDH leakage.  

 

 

6.4 Conclusions 

By fully taking into account the formation of nanoparticles, cellular uptake and 

intracellular trafficking of siRNA, we have rationally modified oligoarginine with stearic 
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acid and various oligoarginine in order to deliver siRNA with high efficiency. 

Furthermore, the relationship between the structures/properties of the oligoarginine based 

molecules and their biological activities have been investigated in detail. It was found 

that stearyl moieties could facilitate the formation of small complexes (<200 nm). 

Extended oligohistidine or oligoarginine segments can further promote the co-assembly 

of siRNA with these cationic molecules. Increased oligohistidine segments improved the 

gene silencing, but did not cause the toxicity. Moreover, stearylation modification was 

necessary to enhance the cellular internalization of siRNA. Most importantly, it was 

found that improved gene silencing was induced by the stearylated peptides with 

increased number ratio of histidine/arginine in a peptide sequence. On the contrary, 

longer oligoarginine segments will induce the toxicity but not enhance the knockdown 

efficiency. Using these findings, STR-HnR8 (n=16 and 20) were deliberately designed 

and developed, showing outstanding knockdown efficiency capabilities compared to the 

most commonly used benchmark delivery systems. Finally, we found that either siRNA 

release from the complexes or protection of siRNA by the complexes was not a 

determining factor for highly efficient gene silencing. Also, endosomal escape of siRNA 

induced by stearylated peptides was not due to pH-dependent membrane disruption, but 

from “proton-sponge” effect induced by the oligohistidine segments. In summary, we 

developed a promising platform for the improvement and optimization of CPP-based 

vectors that can induce highly efficient siRNA delivery. The knowledge generated 

provides valuable understanding and guidance surrounding the deliberate design and 

preparation of highly practical CCP-based siRNA delivery systems. 
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Chapter 7 

Co-delivery of hybrid drug nanoparticles and siRNA mediated 

by a modified cell penetrating peptide for triple synergy to 

inhibit cancer cell proliferation 

 

7.1 Introduction 

Combinations of two or more chemotherapeutic agents with different anti-cancer 

mechanisms have been proved effective in the treatment of many types of cancer. Since 

cancer is a disease caused by multiple gene mutations [258,259], this combination 

therapy has advantages by affecting multiple disease pathways. Over the past decade, 

combinations of conventional chemotherapeutics and small interfering RNA (siRNA) 

have shown promise with synergistic effects on the treatment of cancer [260,261]. 

However, co-delivery of anticancer drugs and siRNA is particularly challenging, because 

of the large differences in the physicochemical properties of the two types of agents. 

Moreover, uncontrolled agglomerations often lead to the instability of nanoparticles 

(NPs) in aqueous medium [262]. Therefore, this combination therapy is still in its early 

discovery stage. To date, only several types of carriers for single drug-siRNA 

combination have been developed, such as polyplex and lipoplex [263].  
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      Ellipticine (EPT), whose mode of action is based mainly on DNA intercalation and 

inhibition of topoisomerase II, has exhibited significant antitumor activities [264,265]. 

10-Hydroxycamptothecin (HCPT), isolated from Camptotheca acuminata extract, has a 

broad spectrum of anticancer activities by targeting and inhibiting topoisomerase I [266]. 

In terms of drug-siRNA combination therapy for cancer treatment, it has been reported 

that siRNA induced knockdown of the Bcl-2 gene, a key regulator of cell apoptosis [267], 

could sensitize cancer cells to anticancer drugs [268,269]. 

      Here, by taking all this knowledge into account, we hypothesized that co-delivery of 

anti-cancer drugs EPT, HCPT and Bcl-2 siRNA will have multiple synergy effect on the 

treatment of cancer. A novel peptide-based delivery system based on a stearylated and 

oligohistidylated cell penetrating peptide, stearyl-(histidine)16-(arginine)8 (STR-H16R8) 

was used here as carrier. This peptide was recently developed by us for highly efficient 

siRNA delivery [270]. In this chapter, at first, carrier-free EPT/HCPT hybrid 

nanoparticles were prepared by a solvent displacement method [271], as both of the 

molecules have a poor aqueous solubility [272,273]. Secondly, the NPs were stabilized 

by surfactant-like and water soluble STR-H16R8 in the aqueous solution. Thirdly, Bcl-2 

siRNA was introduced into the drug nanosuspension to form complexes with STR-

H16R8. Last, the anti-proliferation effect of this co-delivery system was investigated on 

cancer cells. We demonstrated that the combination of EPT/HCPT exhibited a synergistic 

effect on the inhibition of cancer cell proliferation. Furthermore, we found that the 

cationic stearylated peptide not only improved the stability of nanosuspension, but also 

significantly enhanced the efficacy of the drugs. Moreover, Bcl-2 siRNA further 
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increased efficacy of the chemotherapeutics, leading to the triple synergistic effects on 

suppressing the cancer cell growth. 

7.2 Materials and Methods 

7.2.1 Materials and reagents 

Ellipticine (EPT) (MW, 246.31; >98% purity) was purchased from EMD-Merck 

(Mississauga, Canada). (S)-10-Hydroxycamptothecin (HCPT) (MW, 364.35; >98% 

purity) was provided by AdooQ BioScience (Irvine, US). STR-H16R8 was synthesized 

by Pepscan (Lelystad, The Netherlands). R8 was synthesized by CanPeptide Inc. (Pointe-

Claire, Canada). siRNA targeting Bcl-2 oncogene was purchased from Sigma, (Oakville, 

Canada) with a sense sequence of GUGAAGUCAACAUGCCUGCdTdT and antisense 

sequence of GCAGGCAUGUUGACUUCACdTdT. The scrambled siRNA from Life 

Technologies (Carlsbad, USA) was employed as negative control in the experiments.  

7.2.2 Cell culture 

The non-small lung carcinoma A549 cells (ATCC, Manassas, USA) were cultured in 

Dulbecco’s Modified Eagle Medium-high glucose (DMEM) (Invitrogen, Burlington, 

Canada) with 10% heat-inactivated FBS. All of the cells were incubated at 37°C in a 

humidified atmosphere containing 5% CO2.  

7.2.3 Preparation of the nanosuspension 

	
  1 mL of 4 mM of EPT and 0.2 mM of HCPT acetone solution was added into 5 mL 

RNase free water at 40°C under vigorous stirring at 1,000 rpm. 5 min later, 7.5 mL of 
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RNase free water or STR-H16R8 solution was added into the EPT/HCPT suspension, 

which was stirred at 200 rpm for 8 hours to remove acetone, the final volume of which 

was adjusted to 12.5 mL by adding RNase free water. Afterwards, the original 

EPT/HCPT NP suspension was mixed with RNase free water with the volume ratio of 1: 

3, and then mixed with RNase free water or 2 µM siRNA solution, respectively (1:1, v/v). 

The resulting solutions were incubated for 20 min at room temperature before 

characterization, determination of drug contents and in vitro release. The EPT/HCPT 

nanosuspension without STR-H16R8 was subject to lyophilization before observed by 

Leo-1530 scanning electron microscopy (SEM) (Zeiss, Oberkochen). The 

nanosuspension was diluted further to 1/10 of the original concentration with Opti-MEM 

medium (Life Technologies, Carlsbad, USA) before cell treatments with a final 

concentration of siRNA at 100 nM.  

7.2.4 Particle size and zeta potential 

 The hydrodynamic diameter of the complexes were measured on a Zetasizer Nano ZS 

(Malvern Instruments, Malvern, UK) equipped with a 4 mW He-Ne laser operating at 

633 nm. A quartz microcell (45 µL) with a 3 mm light path was used and the scattered 

light intensities were collected at an angle of 173°. Zeta potential measurements were 

also performed on the same machine using clear disposable zeta cells. The zeta potential 

values were obtained with the multimodal algorithm CONTIN, Dispersion Technology 

Software 5.0. Three measurements were performed to generate the intensity-based size 

and zeta potential plot reported herein. 
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7.2.5 Gene silencing effect of peptide/siRNA complexes 

 A549 cells (40,000 cells/well) were plated in a 24-well cell culture plate. 24 h later, the 

medium was removed and washed with PBS. 1.28 µL of Lipofactamine 2000 (Lipo) (Life 

Technologies, Carlsbad, USA), a commercial transfection reagent, was diluted in 30.72 

µL of RNase free water and mixed with 32 µL of Bcl-2 siRNA solution to form 

complexes with the final concentration of siRNA at 1 µM, which was then diluted in 596 

µL of OPTI-MEM medium before transfection. 300 µL of the sample solution containing 

the lipoplexes of Lipo/siRNA or the complexes of STR-H16R8/siRNA was added to the 

cells. 3 h later, 300 µL of DMEM with 20% FBS was added. Afterwards, the cells were 

incubated for 48 hours at 37 °C in a 5% CO2 atmosphere. The cultures were then washed 

with PBS. Total RNA was extracted from the cells with TRIzol reagent (Life 

Technologies, Carlsbad, USA), then treated with chloroform (Sigma, Oakville, Canada) 

and 2-propanol (Sigma-Aldrich, Oakville, Canada) as recommended by the manufacturer. 

RNA concentrations were measured by Nanodrop spectrophotometer ND-1000 (Thermo 

scientific, Ottawa, Canada). All RNAs were reverse transcribed with Bio-Rad iScript 

cDNA synthesis kit (Bio-Rad, Mississauga, Canada). The cDNA synthesis was primed 

with a unique blend of oligo (dT) and random primers. The following pairs of primers 

were used for PCR: 5'-GGTGGGGTCATGTGTGTGG-3' and 5'-

CGGTTCAGGTACTCAGTCATCC-3' (Sigma, Oakville, Canada). Here, the 

housekeeping gene cyclophilin was chosen as an internal control to normalize the Bcl-2 

gene. The normalization was performed by the amplification of human cyclophilin with 

the following primers: 5'-GGTGATCTTTGGTCTCTTCGG-3' and 5’-

TAGATGCTCTTTCCTCCTGTG-3' (Sigma, Oakville, Canada). PCR reaction was 
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performed with Brilliant II Fast SYBR Green QPCR Master Mix (Agilent Technologies, 

Wilmington, USA) on an Mx3005P™ Real-Time PCR System (Agilent Technologies, 

Wilmington, USA).  

7.2.6 Cytotoxicity assay 

A549 cells were plated in to 96-well plates (8,000 cells/well). 24 h later, the medium was 

removed and washed with PBS. 16 µL of 160 µM of EPT or 8 µM of HCPT DMSO 

solution was mixed into 48 µL of RNase free water, which were further diluted with 596 

µL of OPTI-MEM medium. 60 µL of the sample solution was added to the cells. 3 h 

later, 60 µL DMEM medium with 20% FBS was added. After incubation for 24 hours, 

the cultures were washed with PBS. 100 µL of Opti-MEM medium with CCK-8 reagent 

was then added to each well. Cell viability was assessed by measuring the absorbance at 

570 nm with a FLUOstar OPTIMA microplate reader and expressed as the ratio of the 

cells treated over the nontreated cells (negative control). 

7.2.7 Fluorescence-activated cell sorting (FACS) 

 Cellular uptake of EPT and HCPT was studied using BD FACSCalibur Flow Cytometry 

(BD Biosciences, Mississauga, Canada). A549 cells (80,000 cells/well) were plated in a 

24-well cell culture plate. 24 h later, the medium was removed and washed with PBS. 

Afterwards, A549 cells were treated with 300 µL of EPT/HCPT NPs, EPT/HCPT 

NPs/STR-H16R8 or EPT/HCPT NPs/STR-H16R8/BCL-2 siRNA samples in Opti-MEM 

prepared according to the protocol listed above. Nontreated cells served as a negative 

control. After 3 h incubation, the culture medium was discarded and cells were washed 
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with PBS, Trypsin-EDTA was then added to detach the cells from the plate; cells were 

suspended in 4% PFA solution and collected.  

 

7.3 Results and Discussion 

7.3.1 STR-H16R8 could stable EPT/HCPT hybrid nanoparticles in water 

In order to develop a nanoparticulate delivery system for intravenous administration, a 

stable nanoparticle dispersion without agglomeration is prerequisite [262]. In this study, 

EPT/HCPT hybrid nanoparticles (NPs) prepared in 120 µM of STR-H16R8 showed a 

stable nanosuspension (Figure 1a, left), while NPs prepared in water sedimentated on the 

bottom rapidly (Figure 1a, middle). The morphology and structure of the NPs without 

addition of peptide STR-H16R8 were investigated via SEM, which showed the presence 

of distinct spherical NPs with an overall diameter of 170 nm and large agglomerations 

comprising of a number of nanoparticles (Figure 1b). 
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Figure 7.1 a) Photograph of 320 µM of EPT and 16 µM of HCPT hybrid NPs in 120 µM 

of STR-H16R8 (left) and water (middle) 3 h after preparation. Pure water (right) was 

used as reference; b) SEM imaging of freeze-dried unstabilized EPT/HCPT NPs. 

 

 

DLS measurements also showed a > 2 µm diameter of the NPs prepared in water (Figure 

7.2a). All these data suggested that the instability of the drug NPs without stabilizer was 

due to the sedimentation of agglomerations formed by nanoparticles in water. With the 

addition of 0.6 µM of STR-H16R8, particles sizes were reduced significantly to 770 nm, 

see Figure 7.2a. When the concentration of STR-H16R8 increased from 3 to 30 µM, the 

particle sizes decreased further from 331 nm to 195 nm. In 60 µM of the stabilizer, the 
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particle size was 198 nm, which was almost the same as that in 30 µM, suggesting that 

the nanoparticles have been stabilized completely, as showed in Figure 7.1a, left. The 

particle sizes were slightly bigger than that revealed by SEM imaging [274], which could 

be due to the anchor of STR-H16R8 on the surface of the drug NPs.  These results 

indicated that amphiphilic STR-H16R8 could stabilize EPT/HCPT NPs effectively, 

leading to a stable nanosuspension with an average particle size of 200 nm. As showed in 

Figure 7.2b, the zeta potential of drug NPs was -20.4 mV, but increased to 19.2 mV in 

0.6 µM of STR-H16R8. The zeta potentials were further increased from 27.1 to 36.8 mV 

when the concentration of STR-H16R8 altered from 3 to 60 µM. Cationic STR-H16R8 

did not aggregate, but freely dissolved in water showing no zeta potential [270]. 

Therefore, the zeta potential shifting from negative to positive confirmed that cationic 

STR-H16R8 has anchored on the surface of the NPs. Peptide octaarginine (R8) was also 

investigated, which failed to stabilize the EPT/HCPT NPs at various concentrations, 

showing particle sizes of > 2 µm. This proved that it was the hydrophobic interaction 

between hydrophobic segment of STR-H16R8 and the drugs, rather than the coulombic 

interaction between cationic oligoarginine and negatively charged surface of the NPs, 

played a predominant role for improving the stability of the NPs. 
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Figure 7.2 (a) Particle size and (b) zeta potential of 40 µM EPT and 2 µM HCPT hybrid 

NPs in various concentrations of STR-H16R8 solution.  

After the addition of 1 µM siRNA solution, the particle sizes and zeta-potential were 121-

132 nm and 27-33 mV (Figure 7.3), respectively. These values fell in between that of 

STR-H16R8/siRNA complexes (75-88 nm and 22-28 mV) [270] and STR-H16R8 

stabilized drug NPs (195-331 nm and 27.1-36.8 mV). This suggested that a mixture of 

peptide/siRNA complexes and stearylated peptide stabilized drug NPs constituted the 

nanosuspension. More importantly, a particle size of less than 200 nm ensured optimal 

diffusion through tumor tissues by the enhanced permeation retention effect (EPR) [275].     
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Figure 7.3 (a) Particle size and (b) zeta potential of 40 µM EPT and 2 µM HCPT hybrid 

NPs and 1 µM of siRNA in various concentrations of STR-H16R8 solution. 

 

7.3.2 Synergistic antitumor effect of EPT/HCPT NPs combined with Bcl-2 

siRNA delivered by peptide STR-H16R8 

As mentioned above, therapeutic silencing of Bcl-2 gene by specific Bcl-2 siRNA could 

inhibit tumor growth. Thus, we involved Bcl-2 siRNA in the combination therapy. As in 

Figure 7.4, at molar ratio (MR) 15 and 30, the STR-H16R8/Bcl-2 siRNA formulations 

show 33% and 58% lower mRNA levels than that of untreated cells, respectively. At MR 
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60, STR-H16R8/siRNA induced 86% gene knockdown efficiency. This value was 

comparable to that of a benchmark, Lipofactamine 2000 (Lipo), which is the most 

commonly utilized and efficient transfection reagent to introduce siRNA into cells, 

inducing 83% gene silencing in this assay.  

                     

Figure 7.4 Knockdown efficiency of STR-H16R8/Bcl-2 siRNA complexes in A549 cells 

at molar ratio (MR) of 15, 30 and 60. The corresponding STR-H16R8 concentrations 

were 1.5, 3 and 6 µM, respectively. siRNA concentration was 100 nM. Lipofactamine 

2000 (Lipo) was used as positive control.  

Their antitumor cell proliferation ability was evaluated by cytotoxicity assay. The 

viabilities of A549 cells treated with 1.5, 3 and 6 µM peptide STR-H16R8 only were 

almost the same as untreated cells, indicating the safety of peptide itself (Figure 7.5a). 

1.5, 3 and 6 µM STR-H16R8 formulated with 100 nM of siRNA did not induce any 

toxicity as well. Cells treated with anti-cancer drug EPT or HCPT only exhibited low 

cell-killing abilities with > 90% cell viability (Figure 7.5b), while the EPT/HCPT hybrid 

NPs showed enhanced cytotoxicity resulting in a decreased cell viability of 73%. This 

suggested a synergistic anticancer effect of DNA intercalator and topoisomerase II 
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inhibitor, EPT combined with topoisomerase II inhibitor, HCPT. Furthermore, the 

addition of 1.5, 3 and 6 µM peptide STR-H16R8 solution increased the toxicity of 

EPT/HCPT NPs significantly, showing cell viabilities of 39%, 28% and 14%, 

respectively (Figure 7.5c). After 100 nM of Bcl-2 siRNA was involved, the viabilities of 

A549 cells were further reduced to 29%, 14% and 4%, respectively (Figure7.5c). Taken 

together, the combination of EPT and HCPT induced a synergistic effect on inhibiting 

cancer cells growth. With the addition of nontoxic STR-H16R8 and siRNA, a triple 

synergy was revealed, which improved the efficacy of chemotherapeutics dramatically.     

      Cellular uptake of EPT and HCPT after the cells were treated with NPs and stabilized 

NPs was measured by fluorescence activated cell sorting (FACS) in FL-1 channel and 

FL-2 channel separately. As cell viability was low after treated with the hybrid NPs at 

STR-H16R8 concentration of more than 1.5 µM, a lower STR-H16R8 concentration of 

0.06 and 0.6 µM were used in this assay. As shown in Figure 7.6, the EPT/HCPT NPs 

only samples showed mean fluorescence intensities of 9.4 and 39.8 for EPT and HCPT, 

respectively. The addition of 0.06 µM STR-H16R8 significantly increased the mean 

fluorescence intensity to 15.8 and 72.2 for EPT and HCPT. The intensities were enhanced 

further with 0.6 µM of STR-H16R8 to 19.7 (EPT) and 78.3 (HCPT), respectively. This 

increased uptake could be attribute to the change of negatively charged surfaces of drugs 

to positively charged EPT/HCPT NPs after the addition of STR-H16R8, as positively 

charged particles have high affinity for the negatively charged outer-membrane leaflet of 

cancer cells [276].  
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Figure 7.5 Cytotoxicity of (a) STR-H16R8 only and STR-H16R8/Bcl-2 siRNA, (b) EPT 
only, HCPT only and EPT/HCPT NPs and (c) combination of EPT/HCPT NPs/STR-
H16R8 and combination of EPT/HCPT NPs/STR-H16R8/Bcl-2 siRNA on A549 cells. 
The concentrations of EPT and HCPT were 4 µM and 0.2 µM, respectively. The 
concentrations of STR-H16R8 were 1.5, 3 and 6 µM for MR 15, 30 and 60, respectively 
with 100 nM siRNA. 
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Figure 7.6 Cellular uptake of (a) EPT and (b) HCPT in A549 cells after treatment with 

bare EPT/HCPT NPs and stabilized NPs with STR-H16R8.  The concentrations of EPT 

and HCPT were 4 µM and 0.2 µM. 
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7.4 Conclusions 

In summary, negatively charged EPT/HCPT hybrid NPs with the particle sizes of 170 nm 

were prepared, and then further stabilized by surfactant-like and water soluble peptide 

STR-H16R8 in water. The positively charged surfaces of the stabilized NPs confirmed 

that cationic STR-H16R8 anchored on the surface of the NPs. We revealed the 

combination usage of EPT/HCPT exhibited a synergistic effect on the inhibition of 

cancer cell proliferation, compared to EPT or HCPT alone. Furthermore, the cationic 

stearylated peptide not only improved the stability of nanosuspension, but also 

significantly enhanced the efficacy of the drugs due to the increased cellular uptake. 

Moreover, the addition of Bcl-2 siRNA to the system further increased efficacy of the 

chemotherapeutics, leading to a triple synergy to suppress the cancer cell growth. In 

conclusion, a promising co-delivery system for multidrugs and siRNA was developed. 

We demonstrated its capability for combination therapy by co-delivering EPT, HCPT and 

siRNA targeting Bcl-2 gene to A549 cancer cells. The fundamental knowledge generated 

provides valuable understanding and guidance surrounding the combination therapy and 

design of highly practical co-delivery systems. 
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Chapter 8 

Original Contributions and Recommendations 

 

8.1 Original contributions to research  

This thesis presented the potential of peptides as carriers for siRNA delivery both in vitro 

and in vivo. We designed several peptide libraries and explored the possibility of these 

co-assembling, biocompatible peptides for safe and efficient delivery of therapeutic 

siRNA.  The thesis includes the following parts: (i) the discovery and characterization of 

a co-assembling, amphiphilic peptide C6, which demonstrate high siRNA delivery ability 

but low gene knockdown efficiency (Chapter 3); (ii) modification of C6 sequences by 

adding tryptophan residues (Chapter 4) and histidine residues (Chapter 5), both of which 

improved the gene silencing efficiency significantly; (iii) study of the structure-activity 

relationship by rationally modifying oligoarginine peptides with oligohistidine and 

stearyl moieties, providing information for future design of peptide-based delivery 

vehicles for siRNA (Chapter 6); (iv)  exploration of simultaneously delivering anticancer 

drugs and siRNA into cancer cells to achieve a synergistic therapeutic effect. The original 

contributions to research are summarized in the following sections. 

Peptide C6 family as siRNA delivery carriers in vitro and in vivo: A model co-

assembling, amphiphilic peptide, C6, was found to be able to transport large amounts of 

siRNA across the cell membrane. Peptide C6 adopted a helical structure upon 
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coassembling with siRNA. The C6/siRNA coassembly showed a size distribution 

between 50 and 250 nm, confirmed by dynamic light scattering and atomic force 

microscopy. Fluorescence microscopy images confirmed the localization of C6/siRNA 

complexes in the cytoplasm using Cy3-labeled siRNAs. Peptide C6 showed lower 

toxicity and higher efficiency in cellular uptake of siRNA compared with Lipofectamine 

2000. However, the gene silencing efficiency of siRNA delivered by C6 is very low (only 

15%), probably due to endosomal entrapment after endocytosis. To avoid lysosomal 

degradation, siRNAs complexed with the carrier must escape from the endosome into the 

cytosol, where they can associate with the RISC. Hence, developing peptides that 

promote endosomal escape is a prerequisite for successful siRNA implementation. 

Therefore, a peptide library was designed by modifying prototype peptide C6 with 

endosome-disruptive moiety. C6M1 was obtained by replacing some leucine residues in 

the sequence with aromatic tryptophan, which is found abundantly in the pore-forming 

toxins of bacteria. Formed C6M1/siRNA nanoscale complexes are able to deliver siRNA 

into cells and induce improved gene knockdown (58%) with low toxicity. The increased 

membrane disruption ability at acidic condition of the peptide with tryptophan residue 

substitution contributed to the enhanced gene silence efficacy, proved by LDH assay at 

different pH. Intratumoral injection of the complexes results in a marked reduction of 

tumor growth through downregulation of antiapoptotic Bcl-2 protein in mice.  Different 

from C6M1, peptides C6M2 to C6M8 were designed by adding pH responsive histidine 

residues, in order to facilitate the endosomal escape of peptide/siRNA complexes through 

the “proton sponge effect”. All variations improved the transfection efficiency of C6; 

several more promising candidates were used for further in vitro and in vivo evaluation. 
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The two peptides C6M3 and C6M6 could form stable complexes with siRNA, with a size 

of around 100 nm. These complexes could be uptaken by cells and showed a punctuate 

perinuclear distribution after membrane translocation. These peptide/siRNA complexes 

achieved high transfection efficiency in vitro without inducing substantial cytotoxicity. In 

order to evaluate possible immune side effects of these peptide carriers, biocompatibility 

studies were conducted in terms of complement activation and cytokine activation. None 

of the promising peptides induced such activation effects. These data was never reported 

before for peptide-based siRNA carriers. We further examined the therapeutic potential 

of this peptide mediated siRNA delivery for cancer treatment by targeting Bcl-2 gene in a 

mouse tumor model, and demonstrated that tumor growth was inhibited by at least 50%, 

as a result of the downregulation of Bcl-2 protein.   

Primary structure-activity relationship and intracellular trafficking mechanism of 

peptide/siRNA: oligoarginine peptides, prominent members in CPPs, are rationally 

modified with oligohistidine and stearyl moieties (STR-) to study the structure-activity 

relationship of this kind of cell-penetrating peptides. It demonstrated that stearyl groups 

are necessary to facilitate the formation of nanoscale siRNA complexes. siRNA binding 

can be promoted further by increasing the chain length of oliogohistidine or oligoarginine 

segments. Extended oligohistidine segments improve the gene silencing, but do not 

increase the toxicity. When the ratio of histidine/arginine in a peptide sequence is >1.5, 

pronounced gene silencing is induced. Following this rule, STR-HnR8 (n=16 and 20) are 

developed, which showed a high knockdown efficiency (over 90%) rarely reported 

before. It is found that endosomal escape of siRNA mediated by stearylated and 

oligohistidylated oligoarginine is only from “proton-sponge” effect, based on data 
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following the use of chemical inhibitors of endocytic pathways. In addition, the pH 

dependent membrane disruptive ability does not vary significantly among these peptides. 

Co-delivery of anticancer drug nanoparticles and siRNA mediated by STR-H16R8 

for triple synergy to inhibit cancer cell proliferation: The effectiveness of 

combination of two or more chemotherapeutic agents with different mechanisms has 

been proved in the treatment of cancer. The ability of STR-H16R8 to co-delivery DNA 

intercalator and topoisomerase II inhibitor, Ellipticine (EPT), topoisomerase I inhibitor, 

10-Hydroxycamptothecin (HCPT) and Bcl-2 siRNA into cancer cells were investigated. 

A solvent displacement method was used to produce the negatively charged EPT/HCPT 

hybrid nanoparticles (NPs) with a particle size of ca. 170 nm, which exhibited a 

synergistic effect on the inhibition of cancer cells. The stability of the nanosuspension 

was improved immensely by the cationic amphiphilic stearylated peptide STR-H16R8, 

due to the anchor of the peptide on the surface of the NPs through the hydrophobic 

interaction between hydrophobic segment of STR-H16R8 and the drugs. Moreover, the 

stabilized NPs showed significantly enhanced efficacy, by reducing the cell viability from 

73% to 14%, compared with the bare NPs. The efficacy of the chemotherapeutics was 

further increased with the addition of Bcl-2 siRNA, leading to the triple synergy to 

suppress cancer cell growth. This novel multidrugs-siRNA co-delivery platform suggests 

a new strategy of combination therapy for the treatment of cancer. 

 

 

 



	
   175	
  

8.2 Recommendations 

Recommended future work to develop peptide-based nanocarriers for efficient and safe 

siRNA delivery can be divided into following major parts: 

     Optimize the peptide/siRNA formulation to further increase transfection 

efficiency  

     1. Complete stability studies of peptide/siRNA complexes should be carried out. It is 

necessary to ascertain that this delivery system can tolerate various physiological 

conditions during transport to target site in serum. We can consider incorporate 

polyethylene glycol (PEG) moiety into peptide sequences. PEG is one of the most 

frequently used polymers for drug delivery with high water solubility, biocompatibility 

and chain flexibility; it has been introduced to help protect the siRNA by minimizing the 

interaction with serum proteins in biological fluids. Covalent attachment of PEG to 

siRNA or its delivery system was found to enhance the circulation time of the complex. 

Thus, PEG of varying chain lengths can be incorporated in the peptide-siRNA 

formulation.  

      2. If any of the tested peptides turns out to be effective at encapsulating, transporting 

and releasing siRNAs, we can further modify its sequence for cell targeting. Such 

modifications can be done by one of the following methods: 1) the targeting moiety is 

attached to one end of the original peptide chain if it is relatively short; 2) the targeting 

moiety is incorporated into the peptide assemblies by being attached onto the complex 

surface after the complexation.  
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       3. Since it has been confirmed that our peptide-mediated siRNA delivery is through 

endocytosis, rather than direct penetration across cell membranes, the specific 

translocation pathways can be further examined. Chemical inhibitors of endocytosis 

(sucrose, chlorpromazine, fillipin, nystatin and EIPA) will be used to identify the 

internalization mechanisms among the three main endocytosis pathways, namely clathrin-

dependent, lipid raft/caveolae-mediated and macropinocytosis pathways. Temperature 

dependence of the uptake will also be studied as an indicator for endocytosis in general. So 

far, the uptake for all tested peptide-mediated siRNA delivery systems was found to be 

using endocytosis. 

     

    Evaluate therapeutic effect and biocompatibility of peptide/siRNA complexes using 

intravenous injection in vivo: 

 Preliminary in vivo results have shown that intratumoral injection of Bcl-2 siRNA 

delivered by C6 family peptides can significantly inhibit the proliferation of tumor cells 

in a xenograft NSCLC model with nude mice. To explore the possibility of systemic 

delivery, the complexes of Bcl-2 siRNA with promising peptides with high transfection 

efficiency and low toxicity in vitro will be administered intravenously. The circulating 

complexes in the bloodstream will accumulate in the tumor through the enhanced 

permeability and retention (EPR) effect. The animal model can be established as 

mentioned in the methods part, by subcutaneous inoculation of 5×106 NSCLC A549 cells 

at the right armpit of six-week-old BALB/c nude mice, or other cell lines can be used. 

Tumor growth should be monitored on alternating days during treatment and the results 
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will be compared with those of control groups. After treatments, the animals will be 

sacrificed; tumor tissue and surrounding skin are excised and put on a microscopy glass 

slide. Tissue examination for vascularization and angiogenesis will be performed on a 

microscope. Western blotting can be used to detect knockdown efficiency at the protein 

level to ascertain whether the Bcl-2 protein level is reduced in the tumor. Note that 

besides Bcl-2, anti-RRM2, anti-VEGF, anti-HER2, and survivin targeted siRNAs are 

other extensively used targets. The efficiency of these siRNAs can be assessed on 

cultured cells first and then choose the best therapeutic siRNA for this and following in 

vivo studies. 

Preliminary in vitro experiment results have showed the biocompatibility of these 

peptide/siRNA complexes. To validate safety and biocompatibility of the peptide/siRNA 

complexes in vivo, immune responses and biocompatibility can be examined in mice. 

After treatments, blood will be collected, liver and kidney will be dissected, collected and 

frozen stored in -80°C. Blood samples are used to detect liver metabolic biomarkers, 

bilirubin and alanine aminotransferase (ALT). Plasma cytokines of interleukin (IL) IL1, 

IL2, IL 6 IL8, and IL18, Tumor necrosis factor alpha (TNFα) can be measured (Multiplex 

assay). Erythrocyte sedimentation rate (ESR), total and differential white blood cell 

counts can be performed with flow cytometry. Liver samples are homogenized and 

hepatic proteins are extracted for alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), and cytochrome P450 activity analyses. Kidney samples can be 

processed to assay clusterin and cystatin C for determining renal function.  

If the therapeutic efficacy is confirmed by intravenous administration, further 

biodistribution and pharmacokinetics study can then be carried out.   
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                                             Appendix  

Peptide library for siRNA delivery * 

No Name Sequence AA Design principle 

1 C6 RLLRLLLRLWRRLLRLLR 18 

2 C6M RLWRLWLRLWRRLWRLLR 18 

3 C6M1 RLWRLLWRLWRRLWRLLR 18 

4 C6M2 RLWRLLWHLWRHLWRLLR 18 

5 C6M3 RLWHLLWRLWRRLHRLLR 18 

6 C6M4 HLLRLLLRLWHRLWRLLR 18 

7 C6M5 HLWHLLLRLWRRLLRLLR 18 

8 C6M6 GLWHLLLHLWRRLLRLLR 18 

9 C6M7 GLWHLLLHLWRRHHRHHR 18 

10 C6M8 GLWHLHLHLWRRHHRLLR 18 

These sequences are different derivatives of C6 
peptide.  W and H amino acids are added at 
different positions to the sequence to increase 
the affinity of peptide with membrane and 
increase endosome escape, respectively. 
The peptides are synthesized with a cysteamide 
group at its C-terminus so as to stabilize the 
carrier/cargo complex and to improve its 
potency to cross cell membranes. Also the n-
term domain was replaced with GLW, which 
seems to be important in CADY and MPG 
peptides. The peptides are designed with a 
stearic acid conjugated to the N-terminal as to 
increase membrane affinity. 

11 CADY GLWRALWRLLRSLWRLLW
RA-cysteamide 

20 

12 MPG-
NLS 

GALFLGFLGAAGSTMGAW
SQPKSKRKV-cysteamide 

27 

13 EB1 LIRLWSHLIHIWFQNRRLK
WKKK 

23 

Peptide controls: all there sequences have 
shown significant gene silencing efficiency  

14 C6-
CYSt 

RLLRLLLRLWRRLLRLLR-
cysteamide 

18 

15 C6M1-
CYSt 

RLWRLLWRLWRRLWRLLR
-Cysteamide 

18 

16 C6M3-
CYSt 

RLWHLLWRLWRRLHRLLR
-Cysteamide 

18 

C-terminal are modified by Cysteamide group -
NH-CH2-CH2-SH which was reported to 
increase transfection efficiency 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

*	
   Peptide Sequence Design and Use Thereof for Peptide-Mediated siRNA Delivery. 
Patent number: WO2013075244 A1.           Inventors: Pu Chen, Mousa Jafari, Wen Xu, 
Baoling Chen, Ran Pan, Nedra Karunaratne.	
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17 C6M6-
CYSt 

GLWHLLLHLWRRLLRLLR-
Cysteamide 

18  

18 C6-Dr rLLrLLLrLWrrLLrLLr 18 

19 C6-D rllrlllrlwrrllrllr 18 

20 C6M1-
Dr 

rLWrLLWrLWrrLWrLLr 18 

21 C6M1-
D 

rlwrllwrlwrrlwrllr 18 

22 C6M3-
Dr 

rLWHLLWrLWrrLHrLLr 18 

23 C6M3-
D 

rlwhllwrlwrrlhrllr 18 

24 C6M6-
Dr 

GLWHLLLHLWrrLLrLLr 18 

25 C6M6-
D 

glwhlllhlwrrllrllr 18 

D form of arginine residue and all amino acids 
are used in these sequences to evaluate the 
effect of using two different isomers of 
arginine and whole sequence on transfection 
efficiency, stability, and cytotoxicity. 

26 C1 FQFNFQFNGGGHRRRRRRR 19 

27 C1M FQFNFQFNGGGPKKKRKV 18 

28 C1M1 FQFNFQFNGGGPKPKRKV 18 

29 C1M2 FQFNFQFNFQFNGGGPKKK
RKV 

22 

30 C1M3 FQFNFQFNFQFNWSQPKPK
RKV 

22 

31 C1M4 FQFNFQFNFQFNGGGPKPK
RKV 

22 

32 C1M5 FQFNFQFNFQFNGGGCHHR
RRRRRHC 

26 

33 C1M6 FQFNFQFNFQFNGGGCPKP
KRKVC 

24 

C1-family peptides: arginine-Rich domain was 
replaced with Lysine- rich segment 
PKKKRKV and PKPKRKV which have shown 
high nuclear and cytoplasmic localization 
properties, respectively. The length of self- 
assembling domain was also changed. H an C 
amino acids were added to enhance the 
endosomal scape and siRNA release. In C1M3 
the linker GGG was replaced with WSQ. 

34 STR-C1 CH3(CH2)16-GGGPKPKRKV 10+ 

35 STR-
HK 

CH3(CH2)16-HHHPKPKRKV 10+ 

36 STR-
HKC 

CH3(CH2)16-
HHHCPKKKRKVC 

12+ 

Stearic acid is used as the hydrophobic domain 
in a primary amphiphilic structure. The 
hydrophilic domains are chosen from C1 
family peptides. 
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37 E3 RFTFHFRFEFTFHFE 15 

38 E3M RLTLHLRLELTLHLE 15 

39 E3M1 RWTWHWRWEWTWHWE 15 

E3-family peptides: the hydrophobic amino 
acids of E3 were replaced with L and W which 
were reported to have higher affinity with cell 
membrane. 

40 A7 HRLRHALAHLLHKLKHLLH
ALAHRLRH 

27 

41 A7M RHALAHLLHKLKHLLHAL
AHR 

21 

42 A7M1 RHALAHLLHRLRHLLHALA
HR 

21 

A7-family peptides: the length of A7 sequence 
was shorten in A7M and the amino acid K was 
replaced with R in A7M1 

43 MW1 MWKSKIGSWILVRWAMWS
KKRPKP 

24 

44 MW2 MWKSHIGSWILVRWAMWS
HKRPKP 

24 

45 MW3 MWKSKISWILVSKPGLCKK
RPKP 

23 

46 MW4 MHKSKISWHLVSKPGLCHK
RPKP 

23 

These sequences are derived from CPP Bovine 
PrP MVKSKIGSWILVLFVAMWSDVG 
LCKKRPKP.  The transfection efficiency of 
Bovine PrP is 48%.  Some W and H are added 
to the sequence to increase the affinity of 
peptide with membrane and increase 
endosomal escape. 

47 HA2 GLFGAIAGFIENGWEGMID
GWYG 

23 

48 GL1 GLWRAWLWKAFLASNWR
RLLRLLR 

24 

49 GL2 GLWRASWLKAWLASNWH
KKHRLLR 

24 

50 GL3 GLWGAWFIEGWEGMIDGR
RLLRLLR  

23 

51 GL4 GLWRASWLKAFLASNWHK
KLHKK 

25 

52 HA2-C6 GLFGAIAGFIENGWEGMID
GRLLRLLLRLWRRLLRLLR 

38 

53 HA2-
PK 

GLFGAIAGFIENGWEGMID
GWYGPKKKRKV 

28 

55 CLK CLKHALAHLAKLRHLLRLL
RR 

21 

HA2 has been added to facilitate the endosomal 
escape for some CPPs, e.g., Penetratin HA2-
Penetratin was proved to increase the 
transfection efficiency of Penetratin.  

r=D-arginine, h=D-histidine, w=D-tryptophan, g=D-glycine, i=D-leucine  
C-terminal cysteamide= NH-CH2-CH2-SH   Stearic acid modified N-term=CH3(CH2)16-      
Peptides are N-term acetylated, C-term amidated, otherwise mentioned 
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