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Abstract 

Nonribosomal peptides (NRP) are a class of peptide secondary 

metabolites, usually produced by microorganisms like bacteria and fungi. NRP 

antibiotics, cytostatics, and immunosuppressants are in commercial use. In 

pharmacological studies, novel NRPs are often promising substances for new 

drug development. To discover novel NRPs with limited resources from 

microbial fermentations, a significant process is to identify known NRPs and 

their analogs in an early stage and exclude them from further investigation. 

This so-called “dereplication” step ensures less resource wasted in the 

subsequent experiments. Tandem mass spectrometry has been routinely used 

for NRP dereplication. Other researchers have developed software to identify 

known NRPs with a database. However, only a rather small part of NRPs are 

discovered by now and identifying analog of these NRPs is still occupying 

much resources and hindering the throughput of novel NRP discovery. 

In this thesis, we review the nature of nonribosomal peptides and 

investigate the challenges in computationally solving the analog finding 

problem. After that, a program called NRP Analog Finder is introduced as an 

automated method to identify NRPs and their analogs with tandem mass 

spectrometry. It is designed to identify mixtures of NRP compounds from 

LC-MS/MS of complex extract; find structural analogs that differ from an 

identified known NRP compound with at most two monomers; localize the 

modified residues; and determine how much mass is changed at each 

modification site. NRP analog finder is tested to be an effective tool for mass 

spectrometry based NRP analog identification.

http://en.wikipedia.org/wiki/Peptide
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Chapter 1  

Introduction 

 Motivation 1.1

Nature provides man with an almost infinite number of unique and effective 

molecules. Among these resourceful molecules produced by nature, a lot have 

been proved to have diverse bioactivities, such as antibiotics, immune suppressants, 

toxins, and etc. [1]. All of these suggest pharmaceutical potentials. According to 

Newman’s review [2], natural product and/or natural product structures play a highly 

significant role in the drug discovery and development process, thus influence the 

design of small molecules. Approximately 50% of all new drug approvals in the past 

30 years in US either come from natural products and their variants, or are 

semi-synthetics (synthesized using natural compounds as starting materials) (Figure 

0.1). And in all countries, only less than 30% of newly approved drugs are totally 

synthetic (Figure 0.2). 

Among these natural products, nonribosomal peptides (NRP) are a class of 

peptide secondary metabolites, usually produced by microorganisms like bacteria and 

fungi. NRPs are also found in higher organisms, but are thought to be made by bacteria 

inside these organisms. As secondary metabolites, NRPs are not directly necessary in 

an organism’s life, but often play important role in the organism’s continuing 

existence in adverse situations and interspecies defense [3]. Thus, NRPs are a very 

diverse family of natural products with an extremely broad range of biological 

activities and pharmacological properties. 
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Figure 0.1 Natural products as source of new drugs in US from 1981 to 2010 [2]. 

 

Figure 0.2 All new drugs in all countries from 1981 to 2010 [2]. “B” Biological; “N” Natural 

product. “NB” Natural product “Botanical”. “ND” Derived from a natural product and is usually a 

semisynthetic modification. “S” Totally synthetic drug. “S*” Made by total synthesis, but the 

pharmacophore is/was from a natural product. “V” Vaccine.  
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As such, nonribosomal peptides always provide an attractive platform to search 

for therapeutic agents and agrochemicals [4]. Proliferation of drug-resistant bacteria 

makes the demand for powerful antibiotics substantial. And lots of 

nonribosomal peptides have been discovered to be used as therapeutic agents. 

Here are some well-known examples. The famous antibiotic, penicillin (Figure 

0.3), discovered in 1928 by Sir Alexander Fleming, was historically 

significant because they were the first drugs that were effective against many 

previously serious diseases. Vancomycin [5] (Figure 0.3) is a NRP discovered 

and isolated in 1953. This group of NRPs was once used as the strongest 

weapon of human beings against bacteria and pathogenic organisms. With the 

proliferation of drug-resistant bacteria, more novel drugs have been developed, 

such as daptomycin [6] (Figure 0.3), which is also originated from NRPs. At present 

the need for more and more effective antibiotics is indeed urgent and NRPs provide 

us with plenty of promising candidates due to various particularities and a large 

structural diversity. 

 Vast numbers of other kinds of drugs have also been developed from NRPs. For 

antibiotics drugs, besides penicillin and vancomycin, more NRP compounds have been 

developed or synthesized to be approved as novel drugs, such as polymyxins [7] and 

gramicidins [8] (Figure 0.3). NRPs are also widely used as anticancer agents in 

clinical treatment of various types of cancers, such as epothilone [9], bleomycin [10] 

and their analogs. In the immunosuppressant category, cyclosporine-A [11] and 

rapamycin [12] (Figure 0.4) were isolated to be novel drugs, widely used in order to 

reduce the risk of rejection in organ transplantation. According to a French researcher 

Caboche [13], around 5% of 205 families of NRPs are currently clinically approved 

drugs. 

With many NRPs discovered and developed to be new drugs, more research is 

done in order to find new compounds with bioactivity [14]. To identify novel NRPs, 

researchers grow microbial strains under various conditions, and often stressed with 

heat and ethanol shock in order to provide the situation, in which nonribosomal 

peptide synthetase (NRPS) may take place. Fragments of proteins are separated for 

bioactivity by liquid chromatograph (LC). Then researchers can get structural 

information of compounds, mainly mass and charge information with tandem mass 

spectrometry (MS/MS) in bioactive fractions. As long as there could be promising 

compounds in certain compounds, they are then purified to be processed with nuclear 

magnetic resonance spectroscopy (NMR) in order to allow structural confirmation. 

Unfortunately, most natural NRPs have complicated structure with nonstandard 

amino acids, thus are notoriously difficult to sequence. Moreover, the dominant  
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Figure 0.3 Structures of NRPs as approved drugs. 
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Figure 0.4  Structures of NRPs as approved drugs. 
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technique, NMR, for sequencing antibiotics requires large amounts of highly purified 

materials. In addition, NRP discovery increasingly results in reconfirmation of known 

compounds, which is quite a waste of precious resources. Thus it is necessary to 

identify known NRPs in an early stage and exclude them from the subsequent NMR 

process. This process is also referred to as dereplication [4].  

Structural confirmation with NMR consumes expensive reagents and highly 

purified material. A good dereplication process can help researchers save time and 

resources. Besides, additional structural information of experimental spectra is 

useful for further investigation. We want to further improve the performance 

of NRP dereplication and focus limited resources on more promising novel 

NRPs. Thus using computer technology to identify analogs of known NRPs 

before applying more complicated and expensive technology seems to be a 

good option.  

 Problem Definition 1.2

The building blocks of an NRP structure are the NRP residues, also referred to as 

monomers. There are several hundred observed types of residues that can be used by 

the bacteria to build an NRP. These residues are connected by the residue bonds and 

usually form a branching structure. By treating residues as vertices and the bonds as 

edges, such a branching structure can be represented as a graph in computer. Figure 0.5 

shows the chemical structure of an NRP and its corresponding graph representation. 

The graph representation of an NRP is usually not too complicated, containing no more 

than one cycle and a few branches. But more complicated structures are possible.  

When such a structure is measured in an MS/MS spectrometer, the structure can 

be broken into pieces. Each resulting fragment is a connected subgraph of the NRP’s 

structural graph. If the mass (molecular weight) of each residue is known, then the mass 

of each possible fragment can be computed as the total residue mass in that fragment, 

plus or minus some commonly known mass offsets (such as -18 Da for the loss of a 

water molecule). Each possible fragment potentially forms a signal peak in the MS/MS 

spectrum. Thus, by examining the mass values of the peaks in the spectrum, it is 

possible to derive the structural information of the measured NRP molecule.  

Former researchers (Yang et al [3]) have developed iSNAP software for NRP 

identification. The software essentially searches in an NRP structure database, and 

picks the structure of which the predicated spectrum matches the input spectrum the 

best. Some later extensions of the software also made it possible to consider small   
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Figure 0.5 Structure of bactracin A and its graph. As is shown in the figure, the graph 

represents the structure of bactracin A, 12 vertices represent 12 residues and edges the bonds 

between different residues. Every vertex   has a mass value   . Particularly for bacitracin A, 

they are 98.166, 101.12, 113.158, 129.114, 113.158, 127.164, 114.146, 113.158, 119.174,137.139, 

115.087, 114.103.   
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variations of the structures in the database. For example, by using a given structure as 

the “seed”, iSNAP can identify a structure that is at most one residue difference from 

the seed, and matches a given spectrum the best. Throughout this thesis, the given 

structure is called the seed structure or seed NRP, and the other structures that are 

similar to the seed are called analogs of the seed. For example in Figure 0.6, each 

molecule is an analog of any other molecule. 

However, it is often insufficient to identify only the analogs with only one residue 

difference. Since NRP modifications are common, the real NRP analogs often differ 

from the seed by two or more residues. Thus, it would be useful to identify analogs with 

two or more residue differences. One immediate difficulty for the analog identification 

is the imperfect quality of the spectrum. Although in theory each fragment of the 

structure can produce a peak in the spectrum, it is rarely the case in reality. In a real 

spectrum, a significant portion of the theoretically predicted peaks are missing from the 

experimental spectrum. Moreover, many peaks in the experimental spectrum are 

unexplainable by the fragments of the NRP. These peaks can be due to contaminants, 

noise, and more complex fragmentation pathways. Thus, the one residue difference 

achieved by iSNAP seems to be already at the limit of the analog identification with the 

spectrum of the analog structure. 

In the thesis, we propose to include additional information to make the remote 

analog identification possible. More specifically, in addition to the seed structure and 

the analog spectrum, we further require the spectrum of the seed structure as the input. 

This way, by comparing the two spectra of the seed structure and the analog structure, 

important differences can be found. Then the algorithm will be able to make more 

confident derivations by focusing on the differences of the two spectra. By doing so, the 

irrelevant peaks (such as the peaks caused by a common contaminant) can be removed; 

and the less useful fragments (such as those do not produce peaks in both spectra) are 

excluded from the analysis. Given two MS/MS spectra of a known NRP structure (the 

seed) and an unknown analog NRP structure, the main purpose of the thesis is to 

develop algorithm to compute the unknown analog NRP structure.  

 Requirements 1.3

Ever since 1970, when Paulien Hogeweg coined the term “Bioinformatics”, 

computational technology has been used more and more frequently in dealing with 

biological problem. Using these methods to analyze mass spectrometry data is not a 

piece of news either. These algorithms help researchers link MS/MS data to 

certain already known peptides or lead them to discovery of new ones. Former  
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Figure 0.6 Structures of tyrocidine A, B, C, D, E. 
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work has already shown that the workflow could be adopted to NRPs (Figure 

0.7) [5]. 

On the basis of former work, the primary objective is to develop a NRP 

analog identification algorithm which can practically identify NRP analog 

spectra and compute their structure with tandem mass spectral information 

and structural information of the seed. 

The specified requirements which need to be satisfied practically are as 

follows: 

 Usefulness 

 The algorithm should be able to identify NRPs and their analogs from 

either purified sample or complex compounds. 

 Identifications results should be interpretable and represented by certain 

statistical scores. The scores should help users decide whether the 

sample contains an already known NRP or an analog or a novel NRP in 

order to improve the dereplication process. 

 Actual spectra of good quality should be picked to be used for future 

identification. 

 Correctness 

 Different analogs of seed molecule should be distinguishably identified. 

The algorithm should also tell the site of the residue that is modified as 

well as the mass difference caused by the modification. 

 The output result should have a relatively low false positive and false 

negative rate. 

 Novel NRP with different structures should not be identified as NRPs 

already known or their analogs. 

However, as it is difficult to get high quality spectra and fairly purified samples, 

analogs with more than two different sites are nearly impractical to be identified 

based on the existing spectrum quality. Thus we only aimed to identify analogs with 

at most two different monomers. 
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Figure 0.7 Workflow of MS/MS based NRPs dereplication. Microbial fermentation with 

bioactivity is analyzed using an LC-MS system. With data dependent acquisition or 

pre-determined acquisition window, ionized compounds in the complex mixture are selected and 

then fragmented in tandem mass spectrometry. For each selected precursor ion, an MS/MS 

spectrum is generated with detected fragment ions. In such an experiment, the number of MS/MS 

spectra can be hundreds. Software is needed to compare those MS/MS spectra with a database of 

discovered NRPs, so that known NRPs in the fermentation can be identified and excluded from 

further studies [3]. 
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 Thesis Overview 1.4

The remaining of the thesis is organized as follows. 

In Chapter 2, we briefly review the characteristics of NRPs. And then the main 

challenges to be overcome to develop our NRP analog identification algorithm are 

discussed. They are followed by a brief review of the work of former researchers. In 

Chapter 3, the algorithm of this thesis is introduced. After describing data structure 

we used in this thesis, we include how to find the possible mass difference values of 

the analog and potential modified monomers. After that the scoring scheme is 

discussed. Chapter 4 provides the experiment results that illustrate the usefulness and 

the correctness of the algorithm. The next chapter, chapter 5 presents some ideas on 

the future work. At last, conclusions of this thesis are given in Chapter 6. 
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Chapter 2 

Background 

 Nonribosomal Peptides 2.1

Nonribosomal peptides are a class of peptide secondary metabolites, which are 

synthesized by NRPSs. Unlike the ribosomal peptides, they are independent of 

messenger RNA (mRNA). In the synthesis of ribosomal peptide, a certain gene is 

transcribed to mRNA which comprises a series of codons. These mRNAs are bound 

by ribosomes, and dictate to the ribosome the sequence of the amino acids needed to 

make the protein. Transfer RNA (tRNA) recognizes codons and brings in the 

corresponding amino acid. The ribosome traverses each codon (3 nucleotides) of the 

mRNA, pairing it with the appropriate amino acid. 20 different proteinogenic amino 

acids then form a peptide. Although lariat structures have been observed by former 

scientists [17], in general, the chain of translated amino acids is then assembled to 

form a linear peptide. 

For NRPs, things are quite different. 

The most straightforward difference comes in structure. Unlike the linear 

ribosomal peptides, NRPs have much more diverse structures, often having a 

non-linear peptide backbone which is cyclic, branched, or a combination of the two 

[18]. Vancomycin is an example of molecule with a very complex structure (Figure 

0.1). Amino acids in this molecule are connected to each other to form several cyclic 

structures, which is rare, if will be discovered, in ribosome peptides. Other NRPs, like 

bacitracin-A, have both cyclic structure and linear branch. 
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Figure 0.1 Structure of vancomycin (multiple cyclic structure).  

 

 

 

Figure 0.2 Example of non-proteinogenic amino acid in NRPs. 

  

Vancomycin 
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What makes NRPs more complex is their monomer composition. For ribosomal 

peptides, there are mainly 20 proteinogenic amino acids, except a few exceptions 

before post-translation modification. However, NRPs may consist of monomers out of 

those proteinogenic amino acids coded for by DNA. Former researchers (Caboche et 

al [13]) have proposed a NRPs database called Norine in 2007. Norine contains 1164 

peptides by July 2013, while 528 monomers are documented. In addition, NRPs can 

carry modifications like N-methyl and N-formyl groups, or are glycosylated, 

acylated, halogenated, or hydroxylated and many other types of modification, which 

are more commonly observed with NRPs [19] . All of the above give NRP larger 

diversity. 

With the discovery of some NRPs, when there was no such a concept then, 

researchers began to pay their attention to the synthesis of these NRPs. Comparatively 

comprehensive knowledge about NRPs synthesis was acquired this century. NRPs are 

synthesized by one or more specialized NRPSs. NRPSs are multi-enzyme complexes. 

They vary in size, with their masses ranging from several KDa to MDa. These NRPSs 

are organized in modules and each module consists of several domains with different 

functions. The modules are initiation module, elongation module and termination 

module. They function during the different stages, which have the same names of 

those modules. What is also different from the synthesis of ribosomal peptides is that 

NRPS also determine the types of monomers. Then the NRPs often undergo 

cyclization and modified such as glycosylation, acylation, or hydroxylatioin [19] . All 

of these explain the complexity of the structure of NRPs 

The biosynthesis of NRPs shares characteristics with polyketide 

synthetases (PKS). In some databases these two are even put under a common 

category. Due to these structural and mechanistic similarities, some NRPs 

may contain polyketide components [20]. Such a situation is mainly spotted in 

secondary metabolites, which makes the structure of NRPs more complex. 

 Challenges for NRP Analog Identification 

As discussed above, NRPs are so different in structure from its ribosomal 

counterpart, thus difficulties in NRP identification are also different. 

For traditional peptide identification, in order to interpret hundreds of thousands 

of MS/MS spectra, researchers have begun to use computational technology in 

peptide identification for nearly two decades. Ever since 1994, several pieces of 

software have been developed and put into use commercially. In general, peptides 
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identification algorithms fall into two classes, database search and de novo sequencing 

search. Database search can be further classified into sequence database search and 

spectral library search. And these algorithms help researchers correlate tandem 

spectra and peptides in order to identify linear peptides from mass spectra. Some 

famous examples are SEQUEST developed by Yates et al [21], PEAKS DB 

developed by Ma et al [22]. 

Database search, particularly sequence database search, is more popular and 

considered to produce higher quality results in most cases at present. This kind of 

algorithms identifies peptides by comparing the tandem mass spectra against a 

database containing all amino acid sequences assumed to be present. The spectra are 

generated by the algorithm on the basis of the assumed sequence and certain 

fragmentation rules. And then the software gives a score that shows how well this 

experimental spectrum is matched by a hypothetical spectrum. As long as the score is 

better than a decent threshold, the experimental spectrum is considered to be 

generated by certain sequence in the database. SEQUEST, Mascot [23], PEAKS DB 

and X!Tandem [24] are all well-known examples which apply sequence database 

search algorithms for peptide identification. 

Spectral library search has been used in mass spectra identification as early as 

1980s [25]. But until recent years, it began to show practical use with the 

development of millions of MS/MS spectra. Spectral library search is, to some extent, 

similar to sequence database search. What is different from the former algorithm is 

that, instead of using hypothetical spectra generated from peptide sequence in the 

database, it matches the experimental spectra with a library of actual spectra. 

Generally speaking, spectral library search can process more spectra than sequence 

database search in given time because there is no need to fragment the peptide 

computationally and generate the hypothetical spectra. However, the shortcoming of 

spectral library search for the time being is also obvious. The sizes and availability of 

spectral libraries is not satisfactory. Moreover, it cannot be used to identify a novel 

peptide. However, with more and higher quality spectra being acquired by researchers, 

this approach is showing a more and more promising future. 

Although database search yields decent results in most cases and can identify 

large number of peptides from large quantities of data. This method requires a 

well-built database beforehand. Normally, novel peptides can hardly find a match in 

the database, even those with unexpected modifications or mutations can fail the 

algorithm. For NRPs, this kind of situation may appear more often than ribosomal 

peptides because of their complex structure and modifications. 

De novo sequencing for mass spectrometry is a kind of algorithm which directly 
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analyzes peak information in the spectra and typically is performed without prior 

knowledge of the sequence. It yields a peptide with highest matching score composed 

with the 20 proteinogenic amino acids. De novo sequencing does not have to match 

the experimental spectra to any spectra or peptide in any database, thus it can be used 

to identify modified peptides with mutations as well as to discover totally novel 

peptides. Compared to database search, de novo sequencing is not as popular, but can 

be used to confirm and expand upon results from database searches. The most 

commonly used de novo sequencing software is PEAKS [26]. 

Traditional algorithms have been developed for some time and are becoming 

more and more mature. However, it is not practical to apply these algorithms directly 

to identify NRPs owing to the complex structures of NRPs. However, NRP 

identification also shares some similarities with ribosomal peptide identification. It 

makes us believe that we could identify NRP analogs with certain algorithms similar 

to traditional ones. However, some particular problems need to be discussed before a 

proper identification algorithm being given. 

Traditionally, each amino acid is stored as a single letter code. Every time when 

we need to fragment the molecule, we just use substrings to represent the fragments. 

However, the number of types of monomers which appeared in NRPs is more than 

five hundred and more may be discovered in future. Also, these monomers may form 

a cyclic or branching structure instead of a linear structure. This makes it impossible 

to represent a peptide with a string of twenty letters as what we do with ribosomal 

peptides. Another method to represent the peptide and its fragments is needed. 

Besides, NRPs can be composed of more than five hundred types of monomers, 

rather than the 20 amino acids for its ribosomal counterpart. Taking the enormous 

number of monomers and non-linear structure, to reconstruct a peptide sequence with 

the monomers in the database is a serious problem. Applying algorithms like de novo 

sequencing to identify NRPs can have a considerably large search space, thus implies 

the requirement for both high quality spectrum and the search time. 

What’s more, for traditional linear ribosomal peptides, the peptides are mostly 

dissociated at one amide bond at a time and yield two fragment ions. For cyclic 

structure, a common molecular structure in NRPs, this kind of fragmentation done on 

different locations of the cyclic structure can yield only one linear fragment ion, 

which does not provide much information to derive the structure. Thus in order to get 

enough peaks information, we have to generate fragments with further dissociation on 

these linear sequence. 

Another issue to be discussed is the availability of NRP database. For spectral 
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library search, there are currently only a small amount of spectra data from 

comparatively pure nonribosomal molecules, which makes spectral library search not 

a practical option for NRP identification at present. 

Meanwhile structural database for NRPs are still developing. NORINE, the 

database of NRPs now have more than 1100 molecules documented and the number 

keeps increasing. It has been freely available since 2008, which makes it easier to 

identify NRPs with a database. 

Thus with all the challenges discussed above, we have already made a 

conclusion that compared with library database search and de novo sequencing, 

sequence database search is a more suitable method to identify NRP spectra currently. 

Hence it is more appropriate to satisfy the requirement of NRP dereplication. 

However, as the experimental spectra used are normally not pure, additional spectral 

information is needed to identify the analogs of certain NRPs in order to increase the 

accuracy. Moreover, an adequate scoring scheme is in need to tell whether the input 

experimental spectrum can be explained by an analog structure we compute or not. 

 Related Works 2.3

Despite that NRP and NRP analog identification is still in its infancy, there are 

already some former researches who have laid some basis for this thesis research. We 

will review some of these works and introduce some particular details of iSNAP 

which is very useful and helps a lot in this thesis. The limitations of these researches 

will also be discussed. 

2.3.1 Interpretations of Spectra of Cyclic NRPS 

Liu et al developed a program as well as a user friendly web interface called 

MS-CPA [27] in 2009 which readily annotates a mass spectrum resulting from the 

collision induced dissociation of cyclic peptides. MS-CPA is capable of direct 

annotating the actual input cyclic peptide MS spectra. This program has been proved 

to be capable of annotating seglitides and tyrocidines. It was also used to confirm the 

sequence of two newly discovered NRPs, desmethoxymajusculamide-C (DMMC) and 

dudawalamide-A, both from marine product.  

In addition to this program, they also discovered that more than 28% of the 

ion intensity remained unexplained by fragments generated from the 

corresponding NRP. These data were acquired with high resolution. They 
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further alternated combinations of amino acids that would result from peptide 

residues rearrangements. 10% of the total ion intensity could be explained by 

a rearrangement of the amino acid sequence in the cyclic peptide backbone. 

This kind of abnormal fragmentation behavior is called non-direct sequence 

(NDS). By these NDS behavior included, the explained intensity increased 

from 71.5% to 82.1%.  

Liu et al developed MS-CPA, which could interpret tandem spectra, and 

revealed some unknown facts about the fragmentation behavior of cyclic 

NRPs. However, this program might be a good method to confirm the 

identified spectra but not an ideal way to do NRP analog identification. It 

required a NRP structure as already known information, which is not the case 

in our project. Also, they only used this program to match NRPs with a cyclic 

backbone without more complex structure, like branch structure. However 

complex structures are quite common in NRPs.  

2.3.2 De Novo Sequencing of NRPs 

Alex et al introduced their research in de novo sequencing of cyclic 

NRPs in their paper in 2009 [28]. A de novo sequencing algorithm using MS3 

spectra was introduced and successfully identified certain types of NRPs. It 

was rather challenging given the fact that there were hundreds of types of 

monomers in NRPs. For NRPs with a cyclic structure, the amide bonds in the 

cycle could all be disconnected. In the stage of MS/MS, the cycle of each 

molecule of NRPs was disconnected at just one site with collision energy 

controlled. Since the molecule had no other structure but a cycle, MS/MS 

generated different linearized versions of the original NRP, and not any other 

fragments (Figure 0.3). Then the researchers further fragmented these linear 

molecules in MS3 stage. The spectra of MS3 contained more peaks 

information, which was the combination of ions of different linear fragments.  

In order to identify the sequence with these peaks information, they first 

used spectral auto-convolution to find a list of significant peak values in the 

MS3 spectrum. After this auto-convolution, the mass shift values which gave 

several largest outputs were believed to correspond to the mass of monomers 

in the NRPs. With these mass values, researchers could get a list of monomers 

that formed this peptide. Thus this list of monomers acted as the role of the 20 

proteinogenic amino acids in ribosomal peptides case. The sequence was built 

without using all the monomers but a shorter list and the complexity of the 
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algorithm became much lower.  

The algorithms could sequence purified tyrocidines, cyclosporines and 

surfactins. Although it was a great algorithm to sequence NRPs, like MS-CPA, 

this algorithm was applied to only perfect cyclic molecule, which made it 

impractical for most NRPs. Because the quality of the spectra could not be 

guaranteed, using this algorithm to identify NRPs analogs might not work in a 

high-throughput setting. However, using peaks information to find mass of 

monomers could provide a good idea for our research. 

2.3.3 NRP Identification Software iSNAP 

Yang et al proposed a NRP identification software called iSNAP [3], which is 

available freely online since 2012. iSNAP was designed to be a high through-put NRP 

dereplication algorithm. It was capable of handling LC-MS/MS as well as MS/MS data 

and was proved to be able to identify NRPs such as Kutzneride, Di-bromokutzneride 

and Tyrocidines A, B, C, D, E. 

iSNAP was composed of three parts. The first one was the structural 

nonribosomal database. NRPs molecules were represented with SMILES (Simplified 

Molecular Input Line Specification) code [16]. SMILES stands for Simplified 

Molecular Input Line Specification, which is a standard encoding method that 

represents non-linear molecules with linear strings. Amide bonds of these molecules 

were broken to yield a list of fragments, and then created hypothetical spectra. 

The next part was the scoring scheme. When experimental spectra were inputted, 

the algorithm matched the experimental spectrum with some spectra in the database 

by comparing ion mass. The score of this match was calculated based on the relative 

intensity of certain peaks of the experimental spectra. With additional normalized 

scores as well as appropriate threshold value, the algorithm could correctly identify 

NRPs in low or moderate quality samples.  

The last component of iSNAP was for NRP analog search. The identification 

output of the database search served as seeds in this part. The algorithms analyzed the 

input experimental spectra again to find analogs of seed NRPs. It could also use user 

specified seeds. 

iSNAP did well in identifying NRPs with comparatively high speed. It could also 

identify NRP analogs. However, the analog identification part could only search 

peptides with only one different monomer from the seed NRP. This was because the 

algorithm just shifted mass of each monomer in seed NRP by mass difference of the 
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two precursors. However, for analogs with two or more different monomers, it is 

impractical to enumerate all mass shift values. Not only will the running speed of the 

algorithm become too slow, but the spectrum also does not contain enough 

information to accurately determine two modifications from the seed structure. Thus a 

new algorithm is in need to identify NRP analogs with more than one different 

monomer. 

 

 

 

Figure 0.3 Linearization of a cyclic NRP molecule [3]. 

  



22 

 

 

 

 

 

 

Chapter 3 

Nonribosomal Peptides Analog 

Identification 

 Problem Definition 3.1

Recall that an analog NRP structure is a structure that differs from a known 

structure (the seed structure) with very few residues. In our thesis, we are given two 

MS/MS spectra, one from a known NRP structure (the seed) and the other possibly 

from an unknown analog NRP structure. The main purpose of the thesis is to develop 

algorithm to compute the analog NRP structure, or label the spectrum as not generated 

from an analog. 

Let   be a given spectrum and   the total peptide mass of its corresponding 

ion.   is represented by a peak list. Each peak         corresponds to a fragment 

ion, where    represents the mass to charge       value of the peak and    is its 

intensity. Over the whole spectrum    could vary a lot. A peak at    is called a 

significant peak, if its corresponding    is no less than 0.5% of the largest    in the 

spectrum.  

Structures of seed peptides are represented by its SMILES code [16]. Each 

building block of nonribosomal peptides as well as part or whole molecule can be 

represented by a unique SMILES code. These SMILES codes are further parsed and 

represented by a graph   (Figure 0.5) of residues and bonds. Each vertex    

represents a single residue which has mass      . Each edge     represents bonds 
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between residues    and   . Let   be the set of connected subgraphs of  , every 

subgraph in   represents a possible fragment of the NRP. In the process of 

fragmentation, possible mass offset of hydrogen and other common neutral losses 

(water, ammonium and carbon monoxide), make     value of the actual ion slightly 

different from the fragment peptide. For each NRP structure  , by considering all 

these mass offsets, we can get     value of all possible ions and generate a peak list 

    . This is called the hypothetical spectrum      of the analog structure  . In 

theory, this hypothetical spectrum should match the experimental spectrum of   

relatively well. 

Conversely, given an experimental spectrum   of an NRP, in theory one can try 

to compute its structure   by enumerating all possible structures and finding the one 

that maximizes the matching score between      and  . However, as discussed in 

the introduction section, the noise and missing of peaks in the experimental spectrum 

makes such a process difficult. The experimental spectrum   may not have enough 

information to confidently determine   from all NRP structures. 

To achieve the goal of NRP structure determination, in this thesis we make two 

additional assumptions. First, we require the unknown NRP structure to be an analog 

of a known seed structure      . This requirement effectively reduces the search 

space of the unknown structure, and therefore makes it more likely to use the noisy 

experimental spectrum to determine the unknown structure. Meanwhile, since there 

are a significant number of NRP structures that are analogs of a known structure, the 

solution to the problem under this assumption is still widely useful. 

Our second requirement is to have the experimental spectrum of the known seed 

structure available. Denote the seed structure and the unknown analog structure by 

      and        , respectively. Denote the experimental spectra of the two 

structures by       and        , respectively. Since       and         differ by 

only one or two residues, their spectra       and         share a lot of peaks, while 

differ at a few critical peaks that can be used to derive the residue differences. The 

availability of       in addition to         can help highlight these critical peaks 

and help us to design more accurate scoring functions and simpler algorithms to 

compute        . This requirement is very reasonable practically. In fact, a major 

application of our algorithm is to identify the analogs from the data after the seed 

structure has been identified from the same dataset. In such an application, the 

spectrum of the seed structure is naturally known without any additional experiments. 

We leave the discussion of the scoring function in later sections, and assume that 

such a scoring function      (                           ) is made available to us. 

Then our main problem can be defined as follows: 
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Analog Identification Problem: Given a spectrum        , a seed 

structure      , and the spectrum       of      , compute an analog 

structure         such that      (                           ) is 

maximized.  

To achieve this goal, we have to deal with two main tasks: generating potential 

analog peptide graph        , and developing the scoring function 

     (                           )  With both tasks solved, we can solve the main 

problem by enumerating each potential        , computing its score, and reporting 

the one with the highest score. 

        and       share the same structure and the only difference is the 

corresponding       of   . Thus in order to compute        , we have to decide 

the modified sites    and the corresponding mass shift value      . We calculate 

   and possible       by shifting       to match        . Let 

                 | |  be the set of      , each        has a matching 

score    . Denote the mass of seed NRP and NRP corresponding to         by 

      and       , respectively.We wanted to find combinations of        with 

higher     such that the elements in each combination add up to the difference 

between       and       . This is a combinatorial optimization problem. 

Obviously,       can be both positive and negative, which leads to large number 

of possible combinations. Hence it is impractical to do exhaustive search. Thus, we 

need to develop a combinatorial algorithm to find the optimal combination of 

      . 

After generating all potential        , we also need to develop a decent scoring 

scheme      (                           ). The scoring function should tell apart 

better         from random ones and yield satisfactory output. Under this scoring 

scheme, a higher score means a higher probability that the input spectrum is generated 

from an analog of the seed and can be explained by our        . 

In practice, we are usually given a large dataset with hundreds to thousands of 

spectra for unknown structures. Additionally, we are given a list of seed structures 

and their experimental spectra. However, the experiments do not tell us whether a 

spectrum is from an analog of the given seed structures, and if yes, which seed 

structure it is. Although one can apply the algorithm for the above Analog 

Identification Problem to each combination of spectrum and the seed, such an 

exhaustive approach would be too time consuming. So, we additionally need to 

develop a faster filtration algorithm to find the potential analog spectrum – seed 

structure pairs from the large dataset provided to us.  
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 Algorithm Overview 3.2

This nonribosomal peptide analog identification algorithm is proposed as a 

computational tool to identify NRP analogs of seed structure from spectra set 

          generated in lab and compute optimal         to best explain the 

experimental spectra. Our algorithm makes use of the result of iSNAP software, 

which was previously developed by Yang et al [3].  

The structure of this algorithm is shown in Figure 0.1.  

The first part is potential NRP analog filter for each seed structure. In this part, 

all experimental spectra           are provided as input. With the filtration, part of 

          that have higher possibility to be generated by a         of the 

corresponding seed molecule will be picked out and transmitted to the following 

analog identification part. We denote these spectra as           

The task of the next part of this algorithm is to generate a list of possible 

       ,           for every        . In this part, a list of         picked by the 

filter is provided as input. For every         in this list, by solving a combinatorial 

optimization problem, the algorithm yields a list of    as potential modified 

monomers               , a list of possible       combination   [      ]  , 

where [      ] is a combination of possible      . With             , 

 [      ]  and      , the algorithm could generate          .  

The last part is the analog matching algorithm. We evaluate the matches between 

            of each         in           with         ,         and      . 

With decent scoring scheme and appropriate threshold value, a         is finalized 

to explain the         or we label this         as not generated from an analog of 

our seed NRP. Identification of NRP analogs is fulfilled. 

 Nonribosomal Peptides Data 3.3

In this thesis, both structure and spectrum of seed NRPs are in need. However, 

there is no such spectral library available currently. We got actual experimental 

spectra         collected by research collaborators from Nathan Magarvey Lab at 

McMaster University. All the data used in this thesis have been previously published 

in [3]. Then, these        went through iSNAP as the input. Normally, there are tens 

of spectra of the same NRP in one group of experimental spectra. After iSNAP 

identified part of them, we manually picked spectra with higher quality as our        
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Figure 0.1 Workflow of NRP analog identification. MS/MS spectra first go through 

preprocessing and a short list of spectra is selected as possible analog spectra. For every input 

spectrum, after calculating modified sites and mass shift values, analog structure and their 

corresponding hypothetical spectra are generated. Then each hypothetical analog spectrum will 

be matched with the input spectrum, seed spectrum and hypothetical spectrum of seed NRP. The 

structure with highest score will be our final output, thus the identification is done.  
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by checking spectra with PEAKS studio software. This is an important step because a 

well selected seed spectrum is essential for the accuracy of identification. These       

should have enough identified pairs of peaks        , and as few unidentified 

significant peaks as possible. Thus the possibility that spectrum of two or more NRPs 

are contained in our single       is relatively low. 

The output of iSNAP (Figure 0.2) also includes the annotation of the 

experimental spectra, which means some of the peaks are identified as fragments of 

the NRP molecule. NRP structures, both the whole peptides and their fragments are 

represented by SMILES code. The SMILEs code of seed molecules and their 

fragments are formatted in csv files as input of our algorithm to provide structural 

information. 

The SMILES code is firstly parsed and converted to a graph using atom-bond 

model using Chemistry Development Kit (CDK) [29], which stores atoms and bonds 

as vertices and edges. In this thesis, structures in individual residue are not considered 

in our identification algorithm, thus we simplify the graph and use each vertex    to 

represent a single residue. Each    has mass of the residue       and each edge     

represents bonds between residues    and   , then we get      . With      , our 

algorithm could handle NRP with linear, cyclic and cyclic-branching components. 

 

 

 

Figure 0.2 Output report of iSNAP. 
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 Potential NRP Analog Filter 3.4

The first part of our algorithm is potential NRP analog filter of        . 

Identifying analogs with more than one different building block gives 

considerably large upper bound for the size of  [      ] , because as long as the 

modified       is positive, this could be a possible option. Larger size of 

 [      ]  means more possible        . For each        , we have to do in silico 

fragmentation to generate connected subgraphs of        . And this process could 

occupy much running time. It is too time consuming to run identification process over 

all        . Thus, we need a preprocessing of the raw data to shorten the list of 

candidate         to identify in order to identify the           in a shorter time.  

Let        |            | be the mass difference between seed NRP and 

input ion,        be the actual molecular structure of        . If we have a large 

     , the actual         and       may have too many different       or even 

different number of vertices. Both of above situations are not situations included in 

our NRP analog identification and will be tagged as not an analog. Thus we eliminate 

spectra whose       is beyond a certain threshold    defined by the user. In our 

thesis we set default value of    as 200Da. Hence for each         to be 

considered, we have          . 

In this thesis, we assume that seed NRP and its analogs should have a similar 

way of fragmentation. In the collision-induced dissociation [30], the protonated NRPs 

and their analogs break the amide bonds of the same position within the gas phase of 

an MS/MS experiment. Thus subgraphs of         and       should share the same 

structure. When all    with different       are contained in the subgraph, the mass 

of the corresponding fragments differ from its counterpart by      .   

We shift         by adding every    in         by      . Then significant 

peaks in         are matched to significant peaks in      . It is obvious that those 

        whose corresponding         represents an analog have more matched   . 

A score for this math between shifted         and       will be generated to 

evaluate similarity between the spectra (Figure 0.3). Here, we have    be     of 

one peak in        ,    be     of one peak in      . Let       |     |, if 

         , then we call this a match. This mass error tolerance (0.1) is empirical 

decided to allow for system errors as well as random errors owing to the poor 

accuracy of certain mass spectrometer. Lower error tolerance makes the list of 

potential NRP analogs too short, while a too high tolerance results in too many 
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matches and can hardly tell the difference between a real analog from a false one. 

Then we give matching scores for every match. The matching score contains two 

parts. The first part is the number of matched    and we mark it with  . The other 

part is the summary of log value of relative intensity of the each experimental 

spectrum.  

       ∑           
  

    
                     

      (0-1) 

Where      is the largest    in current        . The factor 200 in the above 

formula is decided because in this case matched    with       ⁄       yields a 

score of 0.  

Threshold for this preprocess is set empirically in this thesis. In order to pass the 

filter process, an         should have at least ten percent of the significant    

matched with significant    in      . The matching score should be larger than 20. 

        generated from a         is believed to have more matched significant 

peaks. Thus those         which satisfy our filtering requirement are picked out to 

form           and identified by the other parts of the algorithm.  

 

 

 

Figure 0.3 Spectra of tyrocidine C (       and its “potential” analog tyrocidine B (        . 

When we add 39 (     ) to        , we will get several pairs of matched significant peaks.  
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Each       have a short list of         which is considered to be a spectrum 

possible generated from its analog. With this filtration procedure, the running time of 

the subsequent analysis can be reduced considerably. 

 NRP Potential Analog Structure Generator 3.5

After we get           for every      , a generator is used to generate all 

possible         for each         in the list by modifying      . This generator 

mainly consists of four components. The objective of the first part is to find 

             in      . The second part is to calculate a list of Δ    . The third part 

is to get combination of               and [      ]. The task of the last part is to 

generate         and           . 

3.5.1 Modification Sites Locator 

For modification sites locator, we have a certain        ,       and       as 

input, what we need is to calculate             . 

It is known that       and our         have the same structure and at most 

two different      . Let            and              be the set of connected 

subgraphs of       and our         respectively. Naturally, for part of the 

subgraphs in            and             , that do not contain those different   , the 

corresponding fragment and ions as well as their corresponding peaks    should be 

the same. Thus it is very likely that these    appear in both         and      . 

Consequently, the corresponding subgraphs of these    less likely contain    with 

different      . 

In the iSNAP identification report of our seed NRP, we have SMILES code of 

some   . These SMILES code can be parsed into a subgraph of      . Thus we will 

know which    is covered by this   . After we get all    in both       and 

       , we should know the number of times each    appears in all matched   , 

referred as   . Apparently a larger    indicates    is more likely contained in those 

shared subgraphs. Thus we select several    with smallest    to form              

as the list of potential modified monomers.  

However, in some cases of our experiment, different    differ very little from 

each other for all the   . Thus it is not conclusive to say which    has modified 

      and which does not. Hence when the differences between    are not obvious, 

we can simply include all    in             . 
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3.5.2 ΔMass Calculator 

After              is generated, the next part of the algorithm is to calculate 

 [      ]  with         and       as input.  

In the collision-induced dissociation, the seed NRP molecules and their analogs 

may break the amide bonds of the same position within the gas phase of an MS/MS 

experiment because of their similar structure. Suppose we have    in       and its 

counterpart   
  in        , and              

   |  |   , there should be 

some connected subgraphs of       and their counterpart of        , which only 

contain this one    with different mass. Thus if the ions generated by these 

subgraphs have their corresponding    and    respectively in       and        , 

we should have           . Hence, if we add    to        , those    

should be matched with an    in      . Ideally every element in [      ] should 

be covered by all possible   . Inevitably, some random    may also result in 

some match. However for significant    and   , they have higher possibility to find 

their matches when              
  . 

Therefore, in this step we just add    to        , where    is a integer and 

       ,   is a mass shift range set by the user. The default value of   is 200 

Da. Then for each   , we get a        
 , further we calculate matching score    

between        
  and       following (3-1). 

Then we have this score for all   , and an example score of tyrocidine B and a 

potential tyrocidine D is shown in Figure 0.4. 

In order to get the final  [      ] , we firstly group all    into two different 

groups. The first group       contains a few    with larger   , and the second 

group       consists of the majority of    with smaller   . 

Then, since we only consider no more than two different      , we do 

1-combination and 2-combination with repetition of the first group and get two lists of 

combinations of    . The elements in the first list      are combinations with 

only one    , and the elements in the second lists      contains two    . For 

each combination in the two lists, we calculate the total of the mass change in the 

combination and denote it as      . If       equals to                 , 

we just add this combination to our  [      ]  and calculate        ∑    , 

where     is corresponding score for those    . After we do this for all 

combinations, we get the largest       and we mark it as       or we get nothing 

in  [      ]  
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The last part of ΔMass Calculator goes as follows. For every element in the 

1-combination list, we find an element in      , when             . Then 

we add their corresponding matching score. If the score is larger than 20% of      , 

we also add this combination to  [      ] . Hence  [      ]  is properly 

generated by ΔMass Calculator. The whole algorithm of ΔMass Calculator is shown 

in Figure 3.5. 

3.5.3 Combination of Sites and Mass Lists 

The input of this part is              and  [      ] . And what we want is to 

generate a list of combinations for        and   , which is referred as 

 [           ] . Every element in this list is a list of paired            , and each 

pair consists of vertex    (  is the position of the vertex in      ) and mass shift 

value        of   . 

For every [      ], let             be the size of [      ]. In order to 

generate all possible [           ], the first step is to get permutation of [      ]. 

Thus each [      ] will have one (only one element in [      ] or two equal 

      ) or two permutations. Then we calculate all n-combination of 

      ����    . Let [             ] be a permutation of [      ], and 

[     ] be one of its  

 

 

Figure 0.4 Possible        for tyrocidine B and its analog tyrocidine D.    between the 

seed and experimental molecule (tyrocidine D in this example) is -62.    consists of two 
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modified sites, and the corresponding values are -39 and -23. In this example, the program could 

correctly compute  [      ] .  

 

  

Input: Spectra        ,       and their ion mass        ,      . 

Output: a list of mass shift value [      ] or an empty list. 

  1: For every integer        , let it be    (      ): 

1.1 Add     to every    in         to get        
 . 

1.2 Calculate matching score     between        
 

 and      . 

2: Group all     according to their corresponding    ,       for 

    with higher     and       for     with lower    . 

3: Do 1-combination      and 2-combination      with repetition 

for      . 

4: For every combination {           } in        and {    }, if 

                        ∑           : 

    4.1 Add {           } to {[      ]}. 

    4.2 Calculate      . 

5: Get largest       and mark it      . 

6: For every element    
   in       , find an Δ   in      , let 

        
     : 

6.1 Calculate       for this    
   and    . 

6.2 If      >0.2      , add     
        to {[      ]}. 

7: Output {[      ]} or an empty list. 

 

Figure 0.5 Algorithm of ΔMass Calculator. 
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corresponding 2-combination of             . We get [                       ] 

and add this list of paired combination to  [           ] . Similar list will be 

generated when we consider other combinations of              for 

[             ], and other permutation of [      ] if there is. After we deal with 

every [      ] in  [      ] , we should get a complete list of [           ] to 

generate all possible        . 

3.5.4 Potential Analog Spectra Generator 

For this Potential Analog Spectra Generator, we have  [           ]  and 

      as our input and the objective is to generate all possible         and its 

corresponding hypothetical spectrum           . 

For every [           ], by subtracting        from       of      , we 

could generate a        . For example, if we have a [           ] = 

[                       ], we just subtract        from       and subtract 

       from      . Then this altered       is one of our possible        . After 

applying this to all [           ], we get the complete list of possible        . 

For each        , we generate all connected subgraphs and further give 

hypothetical spectrum           . The method to generate this            is 

developed on the basis of work by former researchers, Yang et al (Figure 0.6). Each 

amide bond of these molecules, which is represented by an edge in        , is tagged 

as a potential site for cleavage. By exhaustively fragmentation of the structures and 

taking possible mass offset into account, the algorithm enumerates all possible 

hypothetical peaks    and forms hypothetical spectrum           . We also 

generate hypothetical spectrum         . 

In order to generate proper hypothetical spectrum for our evaluation algorithm, 

we made a minor modification of former work. In iSNAP, in order to simulate a real 

experimental spectrum, if we have two peaks   ,    and |     |      , then it 

simply delete    from         . In our algorithm, we keep both    and   . Thus, 

with this modification,            and          have the same length. Suppose    

is the  th peak of         ,   
  is the  th peak of           . In our algorithm,    

is generated from a subgraph            of        , then   
  should be generated 

from a subgraph          of      . And            have the same structure as 

        . If these subgraphs do not contain    in [           ], then we have    

=   , otherwise       ∑      , for every    [           ] and 

             . Then we say    and   
  are each other’s counterpart. 



35 

 

 

 

 

Figure 0.6 Fragmentations of bacitracin-A [3]. 
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 Match Evaluation 3.6

The final step of our NRP analog identification algorithm is to evaluate matches 

between       ,           ,       and         . In order to yield a good and 

convincing identification output, to compute an appropriate         to explain 

       , we develop a scoring function                                          

and relative scoring scheme. 

3.6.1 Scoring Scheme 

In this section, we introduce our scoring function. It takes         ,        

                    as input, and gives matching score for         and         as 

output. 

For    in             and its counterpart   
  in         , we look for their 

match    (|     |     ) and   
  in         and       respectively. 

When we try to find matches for an    and its counterpart   
 , we could run 

into four situations in total: 

 Case 1: Both    in         and an   
  in      . 

 Case 2: An    in         but no   
  in      . 

 Case 3: An   
  in      , but no    in        . 

 Case 4: Neither    in        , nor   
  in      . 

As introduced before, NRP molecules and their analogs are similar in structure. 

Thus they tend to break the amide bonds of the same position within the gas phase of 

an MS/MS experiment and should have similar ions. Moreover,         of a real 

analog should have more matches with           . Thus, when         is or is not 

the actual spectrum for        , the distribution pattern of the four cases above 

should be different. 

In this thesis we use log likelihood ratio to calculate the matching score. Every 

time when we run into one of the three situations, we calculate the score for    and 

its counterpart   
  with log likelihood ratio. Matching score of the whole spectra is 

the sum of scores for all    and   
 : 

               ∑   
 
      

  

  
        (3-2) 
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Where    is the number of    in case  , (         ).    is the probability 

that an    belongs to case   for a real pair of         and        , and    is the 

same probability when         is randomly chosen. 

Naturally, case 1 and case 2 happen more often in matches involving actual 

analog while case 3 and case 4 happen more often in random ones. Thus in (3-2), case 

1 and case 2 yield positive score while case 3 and case 4 give negative score. Matches 

with higher score means they have closer distribution pattern with correct         

situation. Hence the         we compute can best explain the         and this 

scoring function works. 

Before we apply this scoring scheme, we need to calculate the probabilities of 

case 1, 2 3 and 4. We calculate these probabilities of correct         using spectrum 

of tyrocidine C as      , hypothetical spectrum generated from       (structure of 

tyrocidine C) as         , spectrum of tyrocidine B as        , hypothetical 

spectrum generated from structure of tyrocidine B as           . We calculate these 

probabilities of random         by using different  [           ]  (adding 

[      ] to other       or adding other possible [      ]). Probabilities of these 

four cases for correct         and random         are shown in Table 0.1. 

Then we could calculate matching score following (3-2) for all            

generated from         in the list. Then the algorithm picks        , whose 

           yields the highest matching score. This         is the best analog 

structure computed which can explain        . The algorithm gives this matching 

score as            . 

3.6.2 Result Filtering 

Sometimes, an         that passes filtering process may not be generated from 

an analog of the seed NRP, like some random         with resourceful   . For 

these         even the         with highest matching score is not good enough to 

explain it. Fortunately, this kind of          only yields low matching score, no 

matter what our         looks like. Thus we apply a filtering function before final 

output to improve identification result. 

We provide a threshold to judge whether a         is decent enough to be 

reported as the structure generating        . The threshold is acquired empirically by 

running experiments. Precisely, if              , the         picked by our 

scoring scheme will be outputted, otherwise this         will be labeled as not 

generated from an analog of the seed NRP.  
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An example of matching score between a seed NRP (tyrocidine C), and an 

       of its potential analog (tyrocidine B) is shown below in Figure 0.7.  

 

 Case 1 Case 2 Case 3 Case 4 

Correct         0.301 0.103 0.108 0.481 

Random         0.245 0.082 0.171 0.501 

Table 0.1 Probabilities of the four cases. We use tyrocidine C as our seed and fourteen 

different spectra of tyrocidine B as our        .          and  (       ). We have 3696 pairs of 

peaks for correct        . The number of pairs for the four cases is 1142, 380, 398, 1776 

respectively. To get random        , we added the mass shift value to the other monomers, one 

at a time. Then we get 33264 pairs of peaks in total. The number of pairs for the three cases is 

8164, 2733, 5696, 16671 respectively. 

 

Figure 0.7 Matching score of tyrocidine C and its potential analog with different sites 

modified. ∆M =   , and  [      ]     [  ] .       consists of 10 vertices, thus we just 

subtract    from       (i=1,…,10), one vertex at a time. Then we generate 10 similar         

with only differences of particular      . The real structure of tyrocidine B              differs 

from       by 39 at      .         with highest score differs from       at       which 

agrees with what we expect.  
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Chapter 4 

Experiments and Results 

 Overview 4.1

In this chapter, we will present five experiments on NRP analog identification 

algorithm. The first two experiments were designed to make sure that the individual 

parts of the algorithm work. The other three experiments tested the algorithm’s ability 

to identify analogs under different conditions. 

Experiment I was designed to test the effectiveness of filtration part of the 

algorithm, to check whether it could pick out those        which were more likely to 

be generated from an analog NRP of a seed. Lots of        cannot be explained by a 

        due to poor quality of the scans. The identification part of this algorithm 

spends much time in building         and generating            even for these 

      . In order to avoid the waste of resources, it is essential for the filtration part to 

distinguish         which have higher possibility to be explained by a         from 

those random       . However, if we set the filtration requirement too strict, too 

many meaningful         might be discarded. This experiment tested the 

effectiveness of filtering function. Also by altering the threshold we acquired an 

appropriate threshold to filter the list of       . 

The goal of Experiment II was to test the scoring function of the algorithm. 

Scoring function plays an essential part in making a correct identification. It should be 

able to output the correct        . It also should be capable to discard         that 

cannot be decently explained by a        . This experiment tested the scoring 

function with         of a true         and random        . For         of a true 



40 

 

       , we modified             to generate different        . With the output, 

we examined whether the true         was distinguished. 

After these two experiments, we designed three other experiments to 

demonstrate the effectiveness of the algorithm as a whole.  

In Experiment III, we only identified         generated from         which 

only had one different      . Bacillus sp. [31] were cultured to produce tyrocidines, 

which was a series of bioactive cyclic NRPs with similar structures. Five of them 

(Figure 0.6) could be identified by iSNAP, and were selected to be seed structure. The 

NRP analog identification algorithm was used to interrogate the LC-MS/MS spectra 

(      ) of the microbial culture, and to identify a series of         with only one 

different       from      . 

In both Experiment IV and V, we demonstrated identification of         which 

can be explained by         with no more than two different      . In Experiment 

IV, we only provided the program with        ,      , and      . In Experiment V, 

additional [      ] was given. The reason why we provided [      ] 

information was that sometimes         and       differed from each other on two 

consecutive vertices (tyrocidine A and C), and this made it very difficult for the 

program to get the right [      ]. However, by analyzing the structure of the 

molecule and possible modified monomers, researchers could reasonably guess some 

      in addition to those generated by the ΔMass calculator of the algorithm. We 

tested whether the program can yield better performance with additional information 

and the ability to distinguish similar        . 

The experimental spectra used in this thesis were generated and shared by 

research collaborators in Nathan Magarvey lab in McMaster University, with a Bruker 

amaZon-X ion-trap instrument and electro-spray ionization source. The mass 

spectrometer was coupled to a Dionex Ultimate 3000 HPLC system to perform 

LC-MS/MS analysis [3]. All datasets were previously published in [3]. 

 Experiment I – Preprocessing 4.2

This experiment was designed to validate the preprocessing part, which is also 

the filtering part of the algorithm. The preprocessing function should be able to output 

a list of         more likely generated from a         from the whole set of input 

spectra. By doing this it could reduce running time and avoid the waste of resource. 

To do this experiment, we selected tyrocidine C as our seed NRP.        was 

matched and filtered by      . It was expected that as many as         generated 
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from an analog of tyrocidine C would be chosen while other random        would be 

discarded. 

We altered the filtration threshold from 10 to 30 with step size of 2. The number 

of selected         and discarded        outputted as well as total number of each 

kind is shown in Table 0.1. We observed those         in PEAKS studio software as 

the judging criteria and compared the output with the identification report of iSNAP. 

It is noticed that the false positive and false negative rate of the filtering output is 

acceptable. It illustrates that this filtration part is useful in reducing running time of 

the program and help decide a proper threshold value. 

To further prove the usefulness of our filtration function, we also applied this it 

on other seed NRPs, tyrocidine A, B, D and E. For each different molecule, the output 

was recorded and shown in Figure 0.1 and Figure 0.2. Combining information 

provided by Figure 0.1 and Figure 0.2, we choose 20 to be the threshold for 

preprocessing part of the algorithm, on the tradeoff of false negative and false positive 

rate. This threshold value may not be ideal for all seed molecules spectra, however 

will not be too much different. With proper threshold, most         generated from a 

        were selected and random        were discarded. 

 Experiment II – Scoring Function 4.3

This experiment aimed to prove that the scoring scheme could be trustworthy to 

distinguish true         from false one. It should be capable of giving higher score 

for real         than         with different [           ]. It should also give 

relatively low score for a random spectrum regardless the        . To evaluate the 

scoring scheme, we matched two         with       (tyrocidine C). One was 

generated from its analog, tyrocidine B, and the other was a random spectrum.  

The two         were both selected by filtration function of the algorithm, and 

the program gave the same list of       , only one element 39. In order to 

demonstrate our experiment thoroughly, we included all vertices in the             . 

Thus we generated 10 different         for each        . Their corresponding 

matching scores are shown in Table 0.2. It is noticed that matching scores of         

representing an analog of the seed is greatly higher than random        , even in the 

case where [           ] was wrong. We can also see correct combination of 

[           ] yield highest score. This illustrates that the scoring scheme is 

practical in distinguishing true         from the fake ones. 

We also tested the scoring scheme with different       but the same      .   
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Threshold value Filtered Scan Tyrocidines 

(Analog) 

Not Tyrocidines 

10 182 113 69 

12 173 110 63 

14 164 108 56 

16 158 107 51 

18 155 107 48 

20 147 105 42 

22 145 103 42 

24 144 102 42 

26 141 100 41 

28 138 98 40 

30 137 98 39 

Table 0.1 Summary of filtered        for tyrocidine C as seed. The threshold values goes 

from 10 to 30 in this experiment. Total number of        generated from tyrocidine NRPs is 146. 

As the threshold value becomes larger, number of filtered        gets smaller, as well as false 

positive ones. As is shown in the table, the highest percentage of        generated from an 

analog filtered appears when threshold equals to 20. 
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Figure 0.1 Percentage of NRP analog spectra in the filtered scans. With the increase of 

threshold value, percentage of spectra finally identified in filtered        keeps increasing 

generally. However, as we can see in the figure, this increasing trend becomes less obvious when 

the threshold reaches 20 for every       except tyrocidine E. For tyrocidine C, this percentage 

even becomes lower, which means that the false positive rate becomes higher.  
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Figure 0.2 Number of         selected by filtering function. As is shown in Figure 4.2, 

number of         selected by filtering function becomes lower with the increase of threshold 

value. The descending trend stays nearly at the same pace from 10 to 30.  
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   Analog Random 

1 -4.0733 -17.6411 

2 -8.9321 -18.4400 

3 -11.8701 -13.4764 

4 -13.7910 -13.4764 

5 -7.9717 -17.4796 

6 -1.6198 -23.1373 

7 6.7095 -22.7662 

8 5.3213 -23.8881 

9 4.3609 -19.2956 

10 -1.8861 -16.9470 

Table 0.2 Matching score between       (spectrum of tyrocidine C) and         of its 

analog (tyrocidine B) and a random        .    is the different vertex between       and 

       . And the actual              differs from       at   . It is noticed that         with the 

correct [           ] has the highest score. We can also see that matching scores for random 

        is lower than         generated from analog. Hence this scoring system is effective.  
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This experiment showed whether a different       affected the scoring scheme much. 

As is shown in Figure 0.3, the scoring function is still trustworthy. Although there is a 

little difference between different      , it is quite reasonable because different       

may have different matched    in the process of identification. 

 Experiment III – Analog Identification with One 4.4

Different Monomer 

This experiment was designed to test the ability of the algorithm to identify 

        possible generated from an analog NRP of the seed and further compute 

corresponding        . As mentioned before, we used five different molecules in our 

experiment, which are all in tyrocidine family. NRPs in the same family can be 

generated at once in a biosynthesis pathway in the same microbial fermentation, and 

all the products are structurally similar. The molecules we used belong to tyrocidine 

family. It contains 28 cyclic NRPs as far as known by now [31]. They only differed 

from each other at a few monomers (Figure 0.6). Thus they are each other’s analogs. 

However, only five of them, what we used as seed, tyrocidine A to E had been 

characterized. This situation provided an appropriate task for NRP analog identifier to 

function. In addition to these five known NRPs, there were probably         of other 

molecules in tyrocidine family. In order to be a practical NRP analog identification 

program, the algorithm should be able to identify         of these similar NRPs and 

their analogs in the same LC-MS/MS dataset. 

The spectra were provided by our co-researchers in McMaster University, 

publicly accessible on iSNAP website. In Nathan Magarvey lab, bacitracin strain 

Bacillus sp. [31] was cultured as the source of tyrocidines. During the process of 

screening the microbial cultured for the tyrocidine family NRP compounds, an assay 

was used to detect antibiotic agents from crude fermentation extracts. Then they used 

HPLC to separate the crude extract (Figure 0.4), and fragmented the extract for 

antibacterial testing. A bioluminescent strain of staphylococcus was used as a 

bioactivity indicator [3]. Bioactivity screening of the extract is shown below in Figure 

0.5. High bioactivity ensured the abundance of tyrocidine molecules, which made a 

decent material for our experiment. All datasets have been published in [3]. 

Analogs with only one different monomer were very structural similar to seed 

NRP. Hence their spectra were similar to seed molecule spectra, which made them 

easier to be identified. It is the fundamental requirement for NRP analog identifier to 

be capable of correctly identifying         generated from these analog NRPs and  
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Figure 0.3 Matching score for different       of tyrocidine C and its analog (tyrocidine B). 

As is shown in the figure, matching score for different       but the same       can vary, from 

below the threshold 0 to above 10. This is due to the various qualities of the spectra. Thus 

choosing a decent       is very essential. Meanwhile, all       except one have their highest 

score when different       is located at   . This agrees with correct modified sites between 

tyrocidine C and B. This testifies the scoring scheme is practical with a decent       provided. 
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Figure 0.4 Liquid chromatogram of the Bacillus sp. extract. The bioactive fractions D1-D6 

corresponds to the retention time of 36 - 42min. The LC chart shows the fermentation is a 

complex mixture with various compounds [3]. 
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Figure 0.5 Bioactivity screening of LC fractions of Bacillus sp. extract. A bioluminescent 

strain of staphylococcus was used as the bioactivity indicator. Grey wells (C11, D1-6, D8, E1 and 

F2) indicate that the fractions are antibacterial and have killed the staphylococcus [3]. 
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computing the right         in more than 95% cases, giving the possibility that there 

might be some really tricky         in the experimental data. We applied NRP 

analog identifier to interrogate the LC-MS/MS of the microbial culture and compared 

our identification result to iSNAP output to verify it. We still used tyrocidine C as our 

seed NRP. Tyrocidine B and D differ from tyrocidine C with only one      , which 

made them our target analog. The identification report is shown in Figure 0.6 and 

Table 0.3. 

Combining report in Figure 0.6 and Table 0.3, NRP analog identifier has been 

proved as an effective computational tool to identify NRP analog spectra with one 

modified site from seed molecule. For the other seed NRPs except for tyrocidine C, 

their identification report will be covered in the following Experiment IV and 

Experiment V. 

 Experiment IV – Analog Identification with 4.5

More than one Different Residue 

In order to further use our algorithm as NRP analog identifier, we applied it to 

identify         correlates with         with at most two different      . The 

same         in Experiment III were used. All seed molecules, tyrocidine A, B, C, D 

and E, were used. We only focused on         of         with no more than two 

different       for the following reasons. First of all,         identified with three 

or more different       were not trustworthy. The matching score was generally 

lower than         with one or two different      . Thus the identification output 

is of little use. In addition, time complexity of the algorithm became extremely higher 

when we allowed three or more       to be modified at once. In our experiment, 

size of {[      ]} roughly became 10 times larger when we have three different 

      comparing to two. Corresponding              is eight times of the size. 

They together make running time of the program intolerantly long. Hence, we limited 

the number of different residues to two. 

In order to demonstrate the ability of the algorithm to identify analog         

and compute corresponding         with two different      , we mainly focused 

on tyrocidine B and D. Their structures are shown in Figure 0.7. Tyrocidine A and C 

were also covered in this experiment. However, they differ from each other at two 

consecutive monomers. Such fact makes it difficult for the program to find correct 

{[      ]}. Their identification report will be discussed in detail in Experiment V. 
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Figure 0.6 Identification result for tyrocidine B and D with tyrocidine C as the seed NRP. In 

iSNAP, 13 spectra of tyrocidine B and 10 spectra of tyrocidine D could be identified. We 

interrogated         with our algorithm, 11 spectra of tyrocidine B and 7 spectra of tyrocidine D 

could be identified as tyrocidine C’s analog and their         are correctly given. 
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Tyrocidine B scan 

number 

Modified Monomer 

(mass = 39)  

Tyrocidine D scan 

number 

Modified Monomer 

(mass = -23) 

1162 7 1025#  

1163 7 1179 < 

1167 7 1182 4 

1168 7 1187 4 

1172 7 1188 4 

1173 7 1192 No mass 

1177 7 1197 4 

1178 7 1202 No mass 

1183 7 1208 No mass 

1184 7 1214 No mass 

1189 7 1185* 4 

1190 No mass 1193* 4 

1200 No mass 1198* 4 

1195* 8   

Table 0.3 Comparison with iSNAP database search identification report. Scan number like 

1195* means this         was not identified by iSNAP but through manual observation with 

PEAKS, it is an analog spectrum. “<” in the mass cell mean score is lower than threshold. “No 

mass” means no identification because of the incorrect {[      ]}. Scan number with a “#” 

means that iSNAP report a false positive identification.  
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Figure 0.7 Structure comparison of tyrocidine B and D. The residues which are marked with 

red rectangles are the    with different      . The two monomers were represented by    and 

  . Residue at position    has a Δmass of 23 and the other one at    has a       of 39. 

Tyrocidine D has the heavier monomer at both positions. Unlike tyrocidine A and C, the two 

different vertices are not consecutive, thus it will be a good pair of molecules to test the 

algorithm’s ability to identify         with more than one modified residues. 
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As shown in Table 0.4 and Figure 0.8,         whose corresponding         

differs from       with one       were identified correctly in most case. 

Identification of         with two different       was a little complicated. For 

tyrocidine A and C, none of         was correctly outputted in the report. For 

tyrocidine B and D, only half of the         filtered had correct         outputted. 

However, an uncharacterized molecule with        of 1293 had 8 scans 

identified correctly when we used tyrocidine D as seed. The identification report 

showed it differed from tyrocidine D at two monomers. Such phenomenon is not hard 

to understand. The two different      s in tyrocidine A and C were consecutive and 

there were two vertices between them in tyrocidine D and B, while for tyrocidine D 

and the uncharacterized tyrocidine there were three between them. The larger number 

of vertices between the two different       made it easier to tell the right [Δ     ]. 

This is because these Δ      can be reflected by enough different    in        . 

With correct [Δ     ], the actual         could be generated.  

  Experiment V – NRP Analog Identification with 4.6

Additional Mass Information 

As stated in experiment IV, analogs with two different residues was hard to 

identify due to lack of correct [      ], especially for two consecutive modified 

     . Additionally, for a few cases of analog with only one different      , they 

also lacked      . Thus, we designed experiment V to test the NRP analog 

identifier’s effectiveness when provided with additional      .  

We added these       on the basis of the following principles. First of all, 

   (mass difference of the two NRPs) was added into the list if the original list does 

not contain it. This was done because    was the mass difference of certain 

monomer if there is only one modified site. We also added other       based on 

other information. As shown in Figure 0.6, tyrocidine A, B, C, D, E were structurally 

similar. Their monomers differ from each other by only three values, 39, 23 and 16, 

which could be positive or negative. These three       were included in    of 

the five ions, and they were also reported in our analog identification output. Thus, we 

could add       which appeared in our matches with high scores. Hence we could 

get these additional       by running this program twice. In the first time, we ran 

this program on         with the same mass only once for each seed NRP to get 

these additional      . In the second time, we added these       to our 
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[      ] and applied this identification program to all        . 

 

 

 

 

Seed A B C D E 

Filtered 

Spectra 
99 135 147 109 54 

Not 

tyrocidine 

Spectra 

25 37 41 23 11 

A # 7 0 # 1 

B 7 # 11 5 0 

C 0 10 # 8 # 

D # 4 7 # # 

E 1 3 # # # 

Molecule of 

mass 1332 
2 10 9 8 3 

Molecule of 

mass 1293 
9 10 2 8 8 

Table 0.4 NRP analog identification report. In iSNAP, number of tyrocidine A, B, C, D and E 

identified was 10, 13, 10, 9, and 6 respectively. As is shown in the table, with only spectral 

information provided, most part of         can be identified. In addition,         unidentified 

by iSNAP but observed in PEAKS were identified. Besides, two novel analogs were identified by 

NRP analog identifier. 
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Figure 0.8 Matching score between tyrocidine D and B. We ran the program to identify 

analogs with two modified residues.         (spectra of tyrocidine B when tyrocidine D is the 

seed and vice versa) which passed filtering process were twice the size of the final identified 

       . Only one of them was discarded because of low matching score, while the other spectra 

were discarded due to lack of decent [      ]. 
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Seed A B C D E 

Filtered 

Scan 
99 135 147 109 54 

Not 

tyrocidine 

Scan 

25 37 41 23 11 

A # 7 9 # 2 

B 11 # 11 11 4 

C 9 13 # 13 # 

D # 7 11 # # 

E 1 3 # # # 

Molecule of 

mass 1332 
9 10 9 8 3 

Molecule of 

mass 1293 
10 10 5 8 8 

Table 0.5 NRP analog identification report with additional      . Compared to Table 0.4, 

identification output of analogs with two different       improved a lot.  
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Identification report of the all         was shown in Table 0.5. We recorded 

identification of tyrocidine B and D with each other one as seed in Figure 0.9. 

Identification report of tyrocidine A and C was shown in Figure 0.10.  

As shown in Experiment IV and Experiment V, there were unknown molecules 

identified by NRP analog identifier. Two of them were included in Table 4.4 and 

Table 4.5 because we believed they were analogs of seed NRPs. As was stated before, 

there are more than 28 tyrocidines in the family. The majority of them have mass 

around 1300Da [31]. The identified structure satisfied this characteristic and report of 

different seed molecules agreed with each other. Their        appeared in the other 

five characterized tyrocidines and could be structurally explainable at corresponding 

  . Thus although we could not conclude whether they were tyrocidines or belonged 

to different family, they were analogs of seed NRPs without question.  

The experiment shows that NRP analog identifier has the capability in 

identifying analog structures of seed molecule within a complex fermentation with no 

more than two monomers. It can be used as an analog dereplication tool as well as 

novel analog discovery tool. NRPs in the same family can be generated at once in a 

biosynthesis pathway in the same microbial fermentation, and all the products are 

structurally similar. Even if we only know a few or even one NRP in that family, we 

can run NRP analog identifier several rounds with previously recognized NRPs as 

seed to identify more NRPs. Identification of different seed can also verify each 

other’s findings. Although conclusive characterization of the novel NRP analog 

structure still needs further experimental techniques (such as NMR), identification 

report of NRP analog identifier gives a list of well-selected candidates and references 

to start with. 
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Figure 0.9 Comparison of identification output with and without additional      . It can be 

noticed that with additional       added, NRP analog identifier could identify 11         of 

tyrocidine B and 7         of tyrocidine D with each other as seed molecule. While only 5 and 4 

could be correctly identified without additional      . Matching scores of spectra identified 

before and after adding       don’t differ much. It illustrated that these unidentified spectra 

were unidentified only because of the lack of correct      . Thus additional       could 

improve the performance of NRP analog identifier. 
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Figure 0.10 Identification of tyrocidine A and C. Without additional      , NRP analog 

identifier could identify none         generated from tyrocidine A and C correctly. With 

additional      , it could identify nine         of tyrocidine As and Cs respectively. The 

matching score is acceptable. Compared to 10 identified by iSNAP, this result is satisfactory. This 

identification result further proved the capability of NRP analog identifier to identify NRP 

analogs with more than one different       with additional      . 
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Chapter 5 

Future Work 

 NRP Analog Identification with a much Larger 5.1

Seed NRP Dataset 

As demonstrated in experiments in chapter 4, NRP analog identifier is able to 

correctly identify NRP analogs of the seed molecule with no more than two modified 

sites with our current seed NRP dataset. However, in our experiment, we only have 

five different tyrocidines as our seed NRP. Thus we could just match every 

experimental spectrum with all seed NRPs and yield a decent identification report. 

In our experiment, we ran the program on a Lenovo personal laptop, with Intel 

i7-3630 2.4GHz CPU and 8 GB memory. It took about 35 minutes to identify analogs 

without additional      . In order to improve the identification accuracy, we ran the 

program on part of the        to get potential       first and then on the whole set. 

Running time increased to around 50.  

Without question, the number of available seed NRP spectra will become larger 

and larger in future. Thus, we may have hundreds of seed NRP structures and their 

corresponding spectra instead of five in future. Matching all seed NRPs with every 

input spectrum will lead to relatively long running time. Hence in order to reduce the 

running time of the program, we must improve the algorithm to reduce the time 

complexity of the algorithm. 

Moreover, all seed NRPs used in our experiment come from tyrocidine family, 

and their spectra and the input spectra to be identified were generated in the same 

experiment. Thus there is possibility that they share some similarities that can help 
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this algorithm work. With the development of datasets of NRP spectra, we will have 

seed spectra from various NRP families. Also, spectra of seed NRPs and the unknown 

possible analog NRPs may not be generated in the same experiment. With more and 

more data acquired, the scoring scheme may also need to be modified. All of these 

may affect the effectiveness of this NRP analog identification algorithm, thus we may 

need to improve the algorithm to deal with these differences in future. 

However, such large seed NRP dataset is not available right now. With the 

development of seed NRP spectra library, future work is needed to adapt this NRP 

analog identification algorithm to a much larger seed NRP dataset. 
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Chapter 6  

Conclusion 

In this thesis, we defined a mathematical problem in NRP analog identification. 

Given a mass spectrum of a known NRP structure (the seed) and another mass 

spectrum of an unknown possible analog NRP structure, the problem is to either 

compute the unknown analog structure, or determine that the second spectrum is not 

from an analog of the known NRP structure. To solve this problem, we present a new 

algorithm and a software tool NRP analog identifier in this thesis. 

The algorithm utilizes both structural and spectral information of seed molecules 

to identify NRP analog spectra. The algorithm first calculates combination of 

modified sites and potential combination of mass shift values. Then several analog 

structures and their corresponding hypothetical spectra as well as hypothetical 

spectrum of seed NRP are generated. After that matching score is calculated by log 

likelihood ratio. At last an analog structure is output or if matching score is below a 

threshold, the spectrum is labeled as not from an analog. 

Through several different experiments, NRP analog identifier was proved to be 

an effective program in computing analog structure with no more than two modified 

residues. With additional mass shift information, the algorithm can correctly 

identify analogs even if the two modifications are on two adjacent monomers. 

Hence, NRP analog identifier is a useful automated tool in NRP dereplication and 

novel NRP discovery. 
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Appendix A 

Appendix 

A.1 Acknowledgment 

NRP Analog Identifier uses following software packages as libraries. 

 The Chemistry Development Kit (CDK) [29], under LGPL license. 

 iSNAP
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