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Abstract

Facing the challenges of large amounts of data generated by various companies (such as
Facebook, Amazon, and Twitter), cloud computing frameworks such as Hadoop are used
to store and process the Big Data. Hadoop, an open source cloud computing framework,
is popular because of its scalability and fault tolerance. However, by frequently writing
and reading data from the Hadoop Distributed File System (HDFS), Hadoop is quite slow
in many applications. Apache Spark, a new cloud computing framework developed at
AMPLab of UC Berkeley, solves this problem by caching data in memory. Spark develops
a new abstraction called resilient distributed dataset (RDD) which is both scalable and
fault-tolerant. In this thesis, we describe the architecture of Hadoop and Spark and discuss
their differences. Properties of RDDs and how they work in Spark are discussed in detail,
which gives a guide on how to use them efficiently. The main contribution of the thesis is
to implement the PageRank algorithm and Conjugate Gradient (CG) method in Hadoop
and Spark, and show how Spark out-performs Hadoop by taking advantage of memory
caching.

111



Acknowledgements

[ am thankful to my supervisor, Professor Hans De Sterck, who guided me inspirationally
throughout my master’s study. Without his superb diligence, kindness and patience, this
thesis would not have been possible. Additional thanks goes to my committee members,
Lilia Krivodonova and Marek Stastna. I would also like to thank Professor Nathalie Lanson
for teaching me numerical analysis. Moreover, I want to thank Chen Zhang, who is also
my supervisor’s student, for offering me helpful suggestions when I was facing difficulties in
Hadoop. Finally, I would like to thank Anthony Caterini and Shawn Brunsting for giving
me valuable feedback and critique when I was writing the thesis.

v



Table of Contents

List of Tables viii
List of Figures X
1 Introduction 1
1.1 Tterative methods . . . . . . . . . .. . 1
1.2 Cloud computing . . . . . . . . . .. 2
1.3 Motivation and thesis outline . . . . . . . ... ... 0oL 3

2 Background 5
2.1 Apache Hadoop . . . . . . . . . . 5
2.1.1 Hadoop distributed file system . . . . . . . ... ..., 5)

2.1.2 MapReduce in Hadoop . . . . . .. . .. ... ... 8

2.1.3 MapReduce example . . . ... ... 11

2.2 Apache Spark . . . . .. .. 14
221 RDD basics . . . . . .. 15

2.2.2 RDDoperations . . . . . . . . . ... 16

2.2.3 Lineage, persistence and representation . . . . . . .. .. ... ... 20

2.2.4 Running Spark on a cluster . . . . . .. ... ... . L. 22

225 Spark example . . . ... Lo 22



3 Iterative algorithm description

3.1 Pagerank . . . . ...
3.2 Conjugate Gradient Algorithm . . . . . . .. .. ... ... ... ......

4 Implementations in Hadoop

4.1 Matrix and Vector Operations . . . . . . . . .. ... ... ...
4.1.1 Matrix-Vector Multiplication . . . . . . . . . ... ... ... ...
4.1.2  Vector scalar product . . . . . . . ..o Lo
4.1.3 Vector addition . . . . . . . ..o

4.2 Pagerank in Hadoop . . . . . . . . ...
4.2.1 Pagerank without dangling nodes . . . . . .. ... ... ... ...
4.2.2 Pagerank with dangling nodes . . . . . . . .. ... ... ...

4.3 CGinHadoop . . . . . . . . .

4.4 Performance tests in Hadoop . . . . . . . . . . . ... L.
4.4.1 Single Node test . . . . . . . .. ..o
4.4.2 Tests on gridbase cluster . . . . . .. .. ... oo

5 RDD transformations in Spark

5.1 combineByKey . . . . ..o
0.2 COZGIOUD . . v v v v ettt e e e e
5.3 co-partition and co-location . . . . . ... ... L

6 Algorithm implementations in Spark

6.1 Pagerank in Spark . . . . . ..o
6.2 CGin Spark . . . . . . .
6.2.1 Matrix and Vector operations in Spark . . . . .. .. ... ... ..
6.2.2 Naive implementation of CG . . . . . . ... ... ... ... ...,
6.2.3 Integrated CG method . . . . . . .. .. .. ... ... ... ...
6.2.4 Half-integrated CG method . . . . . . ... ... ... ... ....
6.2.5 Optimization using blocks . . . . . . .. ... ... ... ..

vi

26
26
28

29
29
29
33
35
37
37
41
49
o1
o1
23

55
25
60
63



7 Spark performance experiments

7.1 Pagerank tests in Spark . . . . .
7.2 Tests for CG in Spark . . . . ..
7.3 Spark GC time . . ... .. ...

7.4 Comparison with tests in Hadoop
8 Conclusion

References

vii

83
83
85
87
89

91

93



List of Tables

2.1

4.1
4.2
4.3

4.4
4.5

5.1

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6

The CPU information for gridbase machines . . . . . . . . ... ... ...

Description of variables in algorithm 7, 8,9, 10, 11 and 12 . . . . . . . . .
The WordCount test on a single node with 16 Mappers and 1 Reducer

The WordCount test on a single node with 16 Mappers and different number
of Reducers . . . . . . . . . .

The CPU information of the gridbase machines . . . . . . .. ... .. ..

The WordCount test on the gridbase cluster with 12 Reducers in total and
4 concurrent Reducers on each node. (Time in seconds.) . . ... .. ...

partitioner information of input, other and output RDDs in cogroup . . . .

RDDs in CG implementation . . . . . . . . .. ... ... ... ......
Variables in each iteration of the Integrated CG implementation . . . . . .
Types of RDDs in Half-integrated CG . . . . . . . . ... .. .. ... ...
Types of RDDs in Integrated CG with blocks . . . . ... ... ... ...

The properties of Worker nodes on the gridbase cluster . . . . . ... ...
Graphs used in our Pagerank tests . . . . .. ... ...
Matrices used in our CG tests. . . . . . . . . . . ... ...
Vectors used in our CG tests. . . . . . . .. ... ... L.
Shuffle read /write for the first iteration in Integrated CG . . . . . . . . ..
Shuffle read/write for the first iteration in Integrated CG using blocks . . .

viil



7.7 The sizes of RDDs cached in memory for Pagerank in Spark

X



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

HDFS architecture . . . . . . . ... ... L
Data replication. (Figure from [21].) . . . . . . ... ... ... ... ...
MapReduce in Hadoop. (Figure from [23].) . . . . . . ... ... ... ...
The high-level MapReduce dataflow. (Figure from [22].). . . . .. ... ..
Combiner step inserted into the MapReduce data flow. (Figure from [25].)
The lineage graph for RDDs in the WordCount example . . . . .. .. ..
WordCount in Spark . . . . . .. ... o
Monitoring data in a web UL (Figure from [30].) . . . . . .. ... ... ..

Ax =Db for GIM-V . . . . . .
GIM-V Stage 1 Map . . . . . . . . .
GIM-V Stage 1 Reduce . . . . . . .. . ... ...
GIM-V Stage 2 Map . . . . . . . . .
GIM-V Stage 2 Reduce . . . . . . . .. ..
Square of vector Map . . . . . . .. ..
Square of vector Reduce . . . . . . . . ... ...
Vector-Scalar Multiplication Map . . . . . . . .. .. ... ... ... ...
Vector addition Map . . . . . . . . ...

4.10 Vector addition Reduce . . . . . . . . . . .

4.11 Pagerank pre-Stage Map . . . . . . . . ...

4.12 Pagerank pre-Stage Reduce . . . . . . . .. ..o



4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1

5.2

2.3

5.4

2.5
2.6
2.7
2.8
2.9

6.1

6.2
6.3

Pagerank Map . . . . . . . . . . 40

Pagerank Reduce . . . . . . .. .. oo 40
Pagerank with dangling nodes pre-Stage Map . . . . . . .. .. ... ... 42
Pagerank with dangling nodes pre-Stage Reduce . . . . . . . .. ... ... 42
Pagerank with dangling nodes Stage 1 Map . . . . .. .. ... ... ... 44
Pagerank with dangling nodes Stage 1 Reduce . . . . . .. ... ... ... 44
Pagerank with dangling nodes Stage 2 Map . . . . .. .. ... ... ... 46
Directed graph of a small network . . . . . . ... ... ... ... ... .. 47
Scheduling Mappers in a Hadoop cluster . . . . .. ... ... ... .... 53

Putting elements of a partition in the Hash table during a combineByKey
combining operation . . . . .. ... Lo 56

combineByKey without shuffling, for the case where the input RDD has the
same partitioner as the output RDD. . . . . .. ... ... ... ... .. 58

combineByKey using map-side combine before shuffling, for the case where
the input RDD has no partitioner or a partitioner different from the output
RDD. . e 58

combineByKey without map-side combine before shuffling, for the case where
the input RDD has no partitioner or a partitioner different from the output

RDD. . . 59
Shuffling in Spark . . . . . . .. .. 60
cogroup forcase 0 . . . . . . .. 62
cogroup forcase 1. . . . . . .. 63
co-partition and co-location . . . . . . ... ... Lo 64
cogroup step 1 for co-partitioned RDD . . . . ... ... .. ... ..... 65

Removing RDDs from memory in CG when memory is running out since

the ith iteration . . . . . . . . . . 72
Create initial RDD X . . . . . . . . 76
kth iteration in Integrated CG in Spark . . . . . . . ... .. ... ... .. 7

X1



6.4

6.5

7.1
7.2
7.3
7.4

7.5

Remove RDD partitions from memory. Here a blue or green rectangle rep-

resents an RDD partition. RDD X1 narrowly depends on RDD X. . . . . . 78
kth iteration in Half-integrated CG in Spark . . . . . . ... .. ... ... 81
Pagerank tests in Spark . . . . .. ..o 84
The scalability of our algorithms for CG in Spark . . . . .. ... .. ... 86
The scalability of Pagerank using serialized caching in Spark . . . . . . .. 88

Ratio of Running time of Pagerank in Hadoop to the Running time of Pager-
ank in Spark . . . . ... 89

Ratio of Running time of CG in Hadoop to the Running time of CG in Spark 90

xii



Chapter 1

Introduction

1.1 Iterative methods

[terative numerical methods are used in many applications. Many algorithms in scientific
computing, such as the Newton method, the Jacobi method, and the Pagerank algorithm,
are iterative in nature and they often play vital roles in application areas such as computer
science, physics, finance, etc. For example, iterative methods can be used in solving large
linear systems which is an essential part of scientific computing and engineering. One may
encounter this problem when some equations need to be discretized. Given a hyperbolic
partial differential equation (PDE), it might be necessary to solve a system of numerical
equations in each time step when applying an implicit time integration method. Using
the finite difference method (FDM) for elliptic PDEs may also result in large sparse linear
systems in which the matrix is symmetric positive definite (SPD) [!]. In such cases, the
Conjugate Gradient (CG) method, an iterative algorithm to solve the linear system, might
be a good choice. Machine learning also uses many iterative algorithms, such as K-means
which is used in signal processing, clustering, feature learning, etc. It is also worth to
mention the Pagerank algorithm, which is an iterative algorithm pioneered at Google to
measure the relative importance of websites and compute a rank for each web page based
on the web graph [2].

Matrix-Vector Multiplication, a basic operation in numerical linear algebra, plays key roles
in some iterative methods such as the Conjugate Gradient method, the Lanczos algorithm
for computing eigenvalues and eigenvectors and singular value decomposition (SVD). The
Pagerank algorithm also involves Matrix-Vector Multiplication when it computes each



page’s new rank obtained from other pages in each iteration. In this thesis, we are concerned
with these kinds of iterative algorithms and their implementations.

1.2 Cloud computing

Cloud computing, which provides a homogeneous operating environment and full control
over dedicated resources, has become more and more popular recently, both in the research
and commercial arenas [3]. Google’s web processing system is a well-known framework for
cloud computing and originally had three main components: MapReduce, Google File Sys-
tem (GFS) and BigTable. The MapReduce programming model, in which the users can
specify a map function that processes input data to generate a set of intermediate key /-
value pairs and a reduce function that merges all intermediate values associated with the
same intermediate key, can be implemented scalably on a large cluster of commodity ma-
chines [1]. The Google File System is, a scalable distributed file system for large distributed
data-intensive applications, provides fault tolerance while running on inexpensive com-
modity hardware, and delivers high aggregate performance to a large number of clients [5].
BigTable is a distributed storage system built upon GFS for managing structured data
and is designed to scale to a very large size. It provides a flexible, high-performance data
store for Google products (such as web indexing, Google Earth, and Google Finance) [0].
GigaSpaces [7], Elastra [8], and Amazon [9] are well-known cloud computing providers.
Many open-source software frameworks that provide the foundation for cloud computing
environments have recently appeared, including Apache Hadoop [10] and VMware’s Cloud
Foundry [11].

As a framework for cloud computing, Hadoop has three main components analogous to
Google’s components: the Hadoop Distributed File System (HDFS), Hadoop MapReduce,
and HBase. It is a software project supported by the Apache Software Foundation [12] (an
American non-profit corporation) and written in Java. It can also be used with Python and
C++. Many companies like Facebook, Yahoo!, LinkedIn and Twitter are using Hadoop
as part of their computing infrastructure. Other related projects based on the Hadoop
platform include Hadoop Yarn (a resource negotiator for managing running applications),
Pig and Hive (tools similar to SQL), ZooKeeper (for configuration services) and others.

Hadoop is well-known for its scalability and fault tolerance; however, it can be very slow
compared with solutions based on other platforms like the Message Passing Interface (MPI)
since Hadoop frequently writes and reads data from HDFS instead of caching it in memory.
To overcome this drawback, a new cluster computing framework called Apache Spark [13],
which can be much faster than Hadoop while keeping the scalability and fault tolerance,



has been developed at AMPLab of UC Berkeley. Spark is implemented in Scala (an object-
oriented and functional programming language which is simpler and more compact than
Java), Java, and Python. Spark is built on top of HDFS and has four main high-level tools:
Shark for SQL, MLIib for machine learning, GraphX for graph computation, and Spark
Streaming for stream processing [14]. Replacing the MapReduce model in Hadoop, a new
abstraction called resilient distributed dataset (RDD) is developed by Spark. RDDs are
fault-tolerant, parallel structures that allow users to persist intermediate data in memory,
control its partitioning and manipulate it using the operators provided by Spark, enabling
efficient data reuse in various applications, including, in particular, iterative algorithms [15].

1.3 Motivation and thesis outline

Companies now face the challenges of large amounts of data that are too large to fit in
memory in any single machine. For example, by July 2010, Facebook handled about 50
billion photos in total and dealt with 130 terabytes (TB) of logs every day [10]; as of 2005,
Amazon had three Linux databases, with a total capacity of 7.8 TB, 18.5 TB and 24.7 TB
respectively [17]; as of 2013, E-bay stored about 90 petabytes of data in three systems:
Teradata enterprise data warehouse, commodity Hadoop clusters and a custom system for
deep-dive analysis [18]. They may use HDFS to store large files and want to do advanced
analysis which requires iterative algorithms with efficient execution. Big Data software
such as Hadoop is used for large scale data processing and some iterative algorithms have
been parallelized and implemented based on MapReduce as a result. For example, the
Generalized Iterated Matrix-Vector multiplication (GIM-V) in Pegasus, a library imple-
mented on top of the Hadoop platform, is optimized with block-multiplication [19]; the
clustering of growing volumes of data is a challenging task, for which parallel K-means
clustering based on Hadoop has been developed [20]. However, Hadoop frequently writes
and reads data from HDF'S, making implementations of those algorithms inefficient. Spark
solves this problem by performing in-memory computations and makes it more worthwhile
to implement those iterative algorithms in Spark.

Our work investigates implementation of iterative algorithms in Hadoop and Spark. The
rest of the thesis is organized as follows. In Chapter 2, we will discuss background on the
architecture of Hadoop and Spark and give some examples. In Chapter 3, we give a brief
description of the algorithms to be implemented. Chapter 4 shows how those algorithms
are implemented in Hadoop/MapReduce and presents the performance tests in Hadoop.
In Chapter 5, we will investigate the details of how RDD transformations work in Spark.
In Chapter 6, we describe the algorithm implementations and optimizations in Spark. The



Spark performance of our implementations is discussed in Chapter 7. Chapter 8 concludes
the thesis, discussing some limitations and future work.



Chapter 2

Background

2.1 Apache Hadoop

Many parallel computing application programming interfaces like MPI divide large com-
puting problems into smaller ones which are distributed among different central processing
units (CPUs) and executed simultaneously. However, the necessity of communications
between processors makes fault tolerance a challenge for parallel computing as each node
is required not to fail. This deficiency is overcome in Hadoop by limiting these kinds of
communications. We focus our discussion on the HDFS and MapReduce components of
Hadoop. Hadoop runs on clusters composed of nodes, one of which is designated the mas-
ter node, and the other nodes are called slaves. A node normally corresponds to a physical
machine (a “box”) and usually has multiple processors and cores.

2.1.1 Hadoop distributed file system

The Hadoop distributed file system (HDFS) is a highly fault-tolerant distributed file sys-
tem designed for big data storage and to run on clusters of commodity machines. HDF'S
has three main daemon processes: a NameNode, several DataNodes, and a Secondary Na-
meNode. Running on the master node in HDF'S, the NameNode acts as the manager of the
whole file system and is, thus, more important than other nodes. The metadata (including
the names of files and directories, the permissions, and the locations of their blocks) for
HDEFS are stored in the NameNode which does not store the data blocks. It is recommended
to use the most powerful node as the master node. Note that once the NameNode fails
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Figure 2.1: HDFS architecture

it will not be restarted automatically (it is a single point of failure). DataNodes, running
on slave nodes, are responsible for storing the data blocks and executing instructions from
the NameNode. Usually, each slave machine has one DataNode daemon. The Secondary
NameNode acts as an assistant for the HDFS cluster: it communicates periodically with
the NameNode to download the metadata in order to perform periodic checkpoints. If
the NameNode fails it can be restarted on the same physical machine without restarting
other DataNodes. However, the Secondary NameNode can never become a NameNode and
cannot be used as a substitute when the NameNode fails, since it cannot connect to the
DataNodes like the NameNode.

Figure 2.1 shows the HDFS architecture and how the NameNode and DataNodes work.
The input data is broken into many blocks and these data blocks will be replicated for
fault-tolerance and stored in many different DataNodes. The NameNode decides how to
break the initial file into blocks and how to replicate those blocks across the DataNodes,
and sends instructions to do so to the DataNodes. The client communicates with the
NameNode to get information about the files it needs to access. Then the client writes and
reads those data blocks through the corresponding DataNodes.

Figure 2.2 gives an example of data replication in HDF'S. We assume two files are stored in
HDEF'S: foo and bar with size of 192 MB and 128 MB, respectively. The default block size
for Hadoop (dfs.block.size) is 64 MB which we will keep for this example. Each block is
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DataNodes: Store blocks from files

Figure 2.2: Data replication. (Figure from [21].)

replicated twice by setting the parameter dfs.replication to 2 (it is 3 by default). The file
foo is split into three blocks (we name them 1, 2 and 4) and file bar is split into two blocks
(we name them 3 and 5). Those blocks are replicated twice and then stored across the
three DataNodes in the HDFS cluster. For example, the two copies of block 1 are stored
in the first and third DataNodes. If the client wants to read the file bar, for example, it
will contact the NameNode to obtain the information about this file (including the storage
scheme of the blocks of file bar). Then the client knows the block copies of 3 are located
in the DataNodes 2 and 3 while the block copies of 5 are located in the DataNodes 1 and
2. The client may contact the DataNodes 2 and 1 to read the blocks 3 and 5, which has a
higher degree of parallelism than, for example, reading both blocks 3 and 5 from DataNode
2. If one DataNode fails, say the first one, the client can still read the files foo and bar by
communicating with the rest of the DataNodes, 2 and 3, as all the blocks needed are still
available in these DataNodes. The parameter dfs.block.size determines the size each block
occupies in HDFS. A file of size 200 MB is broken into blocks of sizes 64 MB, 64 MB, 64
MB and 8 MB, if the default block size is set in the configuration file. In this case, the
block size can be changed to 50 MB to make the size of the data blocks balanced if one
wants to split the file into 4 blocks. Choosing the block size is important in Hadoop as
each block will usually be assigned one Mapper process, as we will discuss later.



2.1.2 MapReduce in Hadoop

Each MapReduce job is composed of tasks which may be executed in parallel. We first
describe two daemons in Hadoop MapReduce: JobTracker and TaskTracker. Just like
the NameNode in HDFS, every MapReduce cluster has only one JobTracker which is
run on the master node. It is responsible for determining the execution plan including:
determining which files to process, assigning nodes to different tasks, and monitoring all
running tasks [22]. Each slave node usually has one TaskTracker which is used to execute
the tasks assigned by the JobTracker.

2:get new job ID

B 1 St brn et e -
LIun ji . 4: it ",
";"""“ .]..w.r.-.lfz!ﬂ..,. J4submitjob . M iader "s:ntalize job
rogram <+

dient JVM H 6: retrieve
client node input splits, .-

jobtracker node

3: oy job 7: heartbeat
resources v (returns task)

‘

Shared
FileSystem < TaskTracker
(e.g. HDFS) 8: retrieve job
resources

9: launch
A 4
child JVM

Child

10: runE
A 4

MapTask
or
ReduceTask

tasktracker node

Figure 2.3: MapReduce in Hadoop. (Figure from [23].)

Figure 2.3 illustrates how to run a MapReduce job in Hadoop. Once the JobClient (the
primary interface for the user-job to interact with the cluster) submits the MapReduce job,
the JobTracker initializes the job and retrieves the input splits (the blocks, where one Map
task will be started for each block) from HDFS. The input splits are determined by the



block size which determines the number of blocks in the input file before replication. By
communicating with the JobTracker periodically, the TaskTracker in each slave node can
let the JobTracker know about its availability (whether or not it is alive and whether or not
it is ready to start a new task). New tasks are assigned to TaskTrackers according to their
availability. If the JobTracker does not receive a heartbeat message from a TaskTracker
within a certain time interval, then this TackTracker is assumed to be stale and the tasks
running on this node can be restarted on other healthy nodes for fault-tolerance. To run a
task, the TaskTracker retrieves job resources from the HDFS and launches the Java Virtual
Machine (JVM) in which the task will be running. Each task has its own JVM. Starting
the JVM takes about one second overhead. However, JVM reuse can be enabled in Hadoop
when there are many short-time tasks (a JVM can run multiple tasks sequentially to reduce
the total overhead).

Now we provide some details on how MapReduce works in Hadoop. Figure 2.4 illustrates
the high-level MapReduce process. MapReduce has two phases: mapping and reducing.
During the mapping phase, the TaskTracker on each slave node starts one Mapper (a Map
task) for each input split assigned to the node. A Mapper is responsible for reading the
records from its split, applying the map function (defined by the user) to each record, and
outputting intermediate (key, value) pairs which are written to the local disk. The map
outputs are divided into partitions corresponding to the reducers that they will ultimately
be sent to before they are written to the disk [23]. The Partitioner will decide which
partition an intermediate (key, value) pair should go to and all (key, value) pairs with
the same key will be put together in the same partition. The default Partitioner is the
HashPartitioner which partitions the keys based on their hash values. The reducing phase
has two main processes: shuffle and reduce. After a Mapper has finished, each Reducer
(Reduce task) starts copying its partition from the intermediate outputs of this map task,
which is known as shuffling. This is the only process that requires node communication
in MapReduce. After the shuffling is finished, which means all relevant map outputs have
been copied, the inputs to each Reducer are merged so that the values with the same
intermediate key will be merged together to form a new (key, values||) pair, where values|]
means a sequence of values. Then the reduce function is applied to the merged (key,
values[]) pairs and the outputs are written to HDFS. Unlike the number of Mappers which
is determined by the number of blocks in the input, the number of Reducers can be specified
by the mapred.reduce.tasks parameter as desired by the user and each partition is assigned
to one Reducer.
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1

2.1.3 MapReduce example

We present the WordCount example, which counts occurrence of each word in a text file,
to further understand MapReduce programming in Hadoop. We use the example from the
MapReduce tutorial [21]. At first, we write the Map and Reduce classes in the WordCount
class of the WordCount.java program:

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
// define the map function
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
// split the line to obtain the word sequence
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set (tokenizer .nextToken()) ;
// collect the map (key, value) pairs (intermediate outputs)
output.collect(word, one);

+
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
// define the reduce function
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
// count how many times the word "key" occurs by adding all the values
(1) together
while (values.hasNext()) {
sum += values.next().get();
3
// collect the reduce outputs
output.collect(key, new IntWritable(sum));

11



In the Map class, we define a map function which is applied to each (key, value) pair read
from the input records. In this example, the input file is the text file with several words
in each line. Using the TextInputFormat (default), a Mapper reads the records from the
split line by line, passing the byte offset of the line to the key and the line contents to
the value to form an input (key, value) pair for each line. In the map function, the line
(value) is split into words and each word is used to output a new (key, value) pair (word,
one) (“one” stands for one occurrence and is used to count the number of occurrences of
this word). The reduce function in the Reduce class is applied to each (key, values|]) pair
from the intermediate data after shuffling. In this function, values is the iterator for the
sequence of ones which share the same key (the word). Those ones in the sequence are
reduced to calculate the total number of occurrences of the word which becomes the value
of the final output (key, value) pair.

After defining the Map and Reduce classes, we need to configure the job and submit it in
the main function:

public static void main(String[] args) throws Exception {
// Create a new JobConf
JobConf conf = new JobConf (WordCount.class);
conf .setJobName ("wordcount") ;
// set the key, value type for each output (key, value) pair
conf .setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
// set the Map, Reduce, and Combine class
conf .setMapperClass (Map.class) ;
conf.setCombinerClass (Reduce.class);
conf .setReducerClass (Reduce.class);
// set the Input (Output)Format
conf.setInputFormat (TextInputFormat.class);
conf . setOutputFormat (TextOutputFormat.class) ;
//specify the total number of Reducers:
conf . setNumReduceTasks (Integer.parselnt (args[2]));
//set the input (output) path in HDFS
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
//submit the job
JobClient.runJob(conf) ;
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Figure 2.5: Combiner step inserted into the MapReduce data flow. (Figure from [25].)

The JobConf object conf is created to specify the job parameters. Then the JobClient
submits the job according to the configuration in conf. Setting a CombinerClass like in
this example, the outputs from a map process are combined for efficiency before being
sent to the Reducers. For example, if a Mapper outputs several (key, value) pairs like:
(wordl, 1), (word2, 1), (wordl, 1), (wordl, 1), (word2, 1), (word3, 1), they are combined
into (wordl, 3), (word2, 2), (word3, 1). Only three (key, value) pairs are then sent to
the Reducers instead of six without using the combiner function, which reduces the data
transferred between nodes in the shuffling. Figure 2.5 illustrates how the Combiner works
as a pre/mini-Reducer which runs only on the intermediate data generated by one node.

Hadoop is scalable because more nodes can be used as input file increases. Hadoop is
fault-tolerant because file blocks are replicated across disks and tasks on failing nodes are
restarted on healthy nodes.
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2.2 Apache Spark

Now we introduce a second cluster computing framework, Apache Spark, which is scalable
and fault-tolerant, and can be much faster than Hadoop. Instead of using the MapReduce
paradigm like Hadoop, Spark introduces a new parallel and fault-tolerant data structure
called Resilient Distributed Dataset (RDD) [15]. Although the Spark library can also be
used from Java and Python, we choose the Scala language for our implementations since
it results in more compact code.

We first give the meaning of some terms used to refer to Spark concepts [20].

e Application User program built on Spark. An application consists of a driver pro-
gram and several executors on the cluster.

e Driver Program The process running the main() function of the application and
creating the SparkContext (see section 2.2.1) in the main function. The application
name is specified in the SparkContext.

e Cluster manager An external service for acquiring resources on a cluster. The
Spark system supports three types of cluster managers: Standalone, Apache Mesos
and Hadoop YARN. In our work, we only use the Standalone cluster manager.

e Worker node Similar to slave node in Hadoop cluster, runs the application in a
cluster. The hostnames of all Worker nodes are specified in a file called slaves in the
SPARK_HOME/conf directory.

e Executor A process launched for an application on a Worker node that runs tasks
and keeps data in memory or disk storage. Each application has its own executors.
Each Worker node has one Executor.

e Task A unit of work that will be sent to one executor. Each task runs on one
partition (slice) of an RDD and applies a sequence of RDD transformations to that
partition.

e Job A parallel computation consisting of multiple stages. A job is triggered by a
Spark action (defined in section 2.2.2).

e Stage Each job is divided into smaller sets of tasks called stages. Stages depend
on each other and are executed sequentially (similar to the map and reduce stages
in MapReduce). A stage is divided into several tasks which may be concurrent and
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are sent to executors on Worker nodes for execution. Each stage pipelines a series of
transformations to its input RDD and the resulting RDD becomes the input data of
the next stage.

2.2.1 RDD basics

An RDD is a read-only, partitioned collection of elements and can be created from data in
stable storage such as HDF'S or by transforming other RDDs [15]. To create an RDD from
HDEFS or the local file system, one first creates a SparkContext object which acts as the
main entry point to Spark and represents the connection to the master node. When creating
a SparkContext object, one needs to specify the network address of the master node, the
application name and the configuration object (used to set various Spark parameters) like
this:

val sc = new SparkContext(master: String, appName: String, conf: SparkConf)

Once the SparkContext object sc is created,one can create text file RDDs from text files in
HDEF'S or the local file system using the SparkContexts textFile method. For example, if
one wants to create an RDD from the files in the directory “/user/user0/data” in HDFS,
one just needs to specify the hostname of the machine where HDF'S is located and the
directory name in the HDFS using the textFile method:

val data = sc.textFile("hdfs://[HDFS name]/user/user0/data")

Each line of the text file in the HDFS is then read as a String and becomes an element in
the newly created RDD. For example, for a text file with three lines like this:

Hello World Bye World
Hello Spark GoodBye Spark
Hello Hadoop Bye Hadoop

the resultant RDD has three String elements: “Hello World Bye World”, “Hello Spark
GoodBye Spark” and “Hello Hadoop Bye Hadoop”. One can also create other types of
RDDs using other methods in the SparkContext class. Using the SparkContext’s sequence-
File[K, V] method, one can create RDDs from the Hadoop SequenceFile consisting of binary
(key, value) pairs. One can also create RDDs from data of other InputFormats using, for
example, the hadoopF'ile method.
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An RDD can also be parallelized by controlling the number of its slices (or partitions). The
number of partitions of an RDD depends on the slicing of the input data. For example,
each block of a file in HDFS results in one slice by default. However, one can create
multiple slices for each block by passing the total desired number of slices as the second
argument to the textFile method when creating a text file RDD. Note that this number
must be larger than the total number of blocks as each block must have at least one slice.
Choosing a suitable number of slices can improve performance as one processing task is
assigned to each slice (this will be discussed in later sections).

2.2.2 RDD operations

RDDs have two types of operations (or methods): transformations (which we mentioned
in the previous section) and actions. A transformation creates a new RDD by applying
a function to each element of an existing RDD, and an action results in a value which is
returned to the driver program (such as print final results on the screen or save them as
files). RDDs of (key, value) pairs are used in most implementations of Spark and can be
building blocks for algorithms based on MapReduce principles. PairRDDFunctions in the
Spark library provides operations for (key, value) pair RDDs in addition to the operations
for general RDDs. Some RDD operations (including operations in PairRDDFunctions)
have similarities to Map and Reduce processes in Hadoop when they are applied to a (key,
value) pair RDD. For example, the flatMap() transformation applies a function to each
element in a (key, value) pair RDD and then outputs several new (key, value) pairs, which
is similar to the Map function in Hadoop. The groupByKey() groups the values for each
key in the (key, value) pair RDD into a single sequence, which is similar to the process of
forming (key, values[]) pairs in Hadoop.

Now we list some basic RDD operations we use in our work. Here RDD[T]| means RDD
with elements of type T. A full list of RDD operations (including PairRDDFunctions) can
be found in [27] and [28].

RDD transformations

e map(func: T => U): RDD[T] => RDDIU]

Return a new RDD by applying a function func to all elements of this RDD. For
example, given an RDD[String] with three String elements: “17, “2” and “3”, we use
the function func: s => s.tolnt which transforms a String to an Int. After the map
transformation the resulting RDD[Int] has three Int elements: 1, 2 and 3.
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o filter(func: T => Boolean): RDD[T| => RDDIT]

Return a new RDD[T] containing only the elements that satisfy the condition of
func.

e flatMap(func: T => Seq[U]): RDD[T] => RDD|[U]
Similar to map, but func maps each element to multiple elements. Here Seq|U]
means a sequence of elements of type U. After applying func to all elements of this
RDD, the results are flattened. For example, given an RDD[String] (“wordl word2”,
“word3 word4”, “word5 word6”) and a function func that splits a String into words,
then the resulting RDD[String] has six String elements: “word1”, “word2”, “word3”,
“word4”, “wordb”, “word6”.

e union(other: RDD[T]): RDD[T] => RDDIT]
Return the union of this RDD and another one of the same type (other of the type
RDDI[T]).

e mapValues(func: V. => U): RDD[(K, V)] => RDD|(K, U)]
Pass each value in the (key, value) pair RDD through func without changing the
keys. This transformation also retains the original RDD’s partitioning.

e groupByKey(): RDD|[(K, V)] => RDD|(K, Seq[V])]

Group the values for each key in the RDD into a single sequence. This transformation
involves shuffling.

e reduceByKey(func: (V, V) => V): RDD|[(K, V)] => RDD|(K, V)]

Merge the values for each key using an associative reduce function func which satisfies
func(z,y) = func(y,z). This transformation also involves shuffling.

e cogroup(other: RDD[(K, W)]): RDD[(K, V)] => RDDJ[(K,(Seq[V], Seq[W]))]

For each key in this RDD and in other, return a resulting RDD that contains a tuple
with the list of values for that key in both RDDs.

e join(other: RDD[(K, W)]): RDD[(K, V)] => RDD[(K, (V, W))]

Return an RDD containing all pairs of elements with maching keys in this RDD and
other. This transformation may involve shuffling between nodes.

RDD actions
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e reduce(func: (T, T) =>T): RDD[T] => T
Reduces all elements of this RDD using the specified commutative and associative
binary operator to one element and return it to driver program.

e collect(): RDD[T] => Array|[T]

Return an array that contains all of the elements in this RDD.

e count(): RDD[T] => Long
Return the number of elements in this RDD.

e saveAsTextFile(path: String)

Write the elements of this RDD as a text file in a given path in the local file system,
HDEFS or any other Hadoop-supported file system.

e saveAsSequenceFile(path: String)

Write the elements of this RDD as a Hadoop SequenceFile in a given path in the
local file system, HDFS or any other Hadoop-supported file system.

Unlike the RDD actions, the transformations for RDDs are lazy, which means the com-
putation for a new RDD is not executed immediately after the command is given in the
code, but only when it is needed for producing the result of an action that comes later.
For example, when executing the Spark program:

object Filter {
def main(args: Array[String]) {

val file = sc.textFile("hdfs://.../README.md") //transformation
println("Filtering Spark:")
val spark = file.filter(line => line.contains("Spark")) //transformation
println("Filtered")
val sparkcount = spark.count() //action
println("Count all the Spark:" + sparkcount)

The result shown on the screen is:
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1

[info] Running WordCount
14/05/06 07:19:38 INFO ......
Filtering Spark:

Filtered

14/05/06 07:19:38 INFO scheduler.DAGScheduler: Submitting Stage 0 (Filtere-
dRDD[2] at filter at Filter.scala:5), which has no missing parents

14/05/06 07:20:01 INFO spark.SparkContext: Job finished: ......

Count all the Spark:150

As we can see from the screen, the filter (line 5) does not actually happen after “Filtered”
(line 6) has been printed to the console. The filtering process was triggered by an RDD
action (line 7) at 07:19:39 and finished at 07:20:01. Since RDD transformations are lazy,
it is recommended to use immutable variables (val) instead of mutable variables (var) in
Scala if RDDs depend on those variables. If we use mutable variables, unexpected results
may be obtained if those variables change before the actions on RDDs are executed. To
further understand the laziness of transformations of RDDs, we give some examples. First,
consider the code fragment:

val data = Array(1, 2, 3, 4, 5)

//creating a mutable variable b

var b = 2

//creating a new RDD aa which depends on mutable variable b
val aa = sc.parallelize(data) .map(i => i * b) //transformation
b =3

val aarray = aa.collect() //action

The SparkContext’s parallelize method is used to create parallelized collections from an
existing collection (linke Array in this example) in the driver program. Here, an RDD aa
with Int elements 1, 2, 3, 4, and 5 is created. Although it is created before the statement
“b=3", aarray is (3, 6, 9, 12, 15) instead of (2, 4, 6, 8, 10) at the end of the code fragment
because the map transformation in the 5th line is not executed until the collect action is
applied to RDD aa in line 7. Below is another example.

val data = Array(1, 2, 3, 4, 5)
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//creating a mutable variable b which refers to an RDD

var b = sc.parallelize(data)

//creating a new RDD aa which depends on mutable variable b

val aa = b.map(i => i * 2)

// variable b can be modified, but the underlying RDD is immutable
b = b.map(i => i * 5)

// applying action to b to execute the modification

val barray = b.collect()

val aarray = aa.collect()

In this example, the mutable variable b refers to an RDD instead of an other type of object
in Scala. However, in this case, the change to b in line 7 does not influence the final value
of aarray. The reason is that an RDD has the information (also called lineage) about how
it was derived from other RDDs and this information is used to execute the final action
(note that RDDs are immutable). So aarray is (2, 4, 6, 8, 10) instead of (10, 20, 30, 40,
50). These issues are not clearly expressed in the code syntax, so the programmer has to
be aware of these differences that are implicit in the code syntax.

2.2.3 Lineage, persistence and representation

An RDD may be created through several transformations. For example, if one wants to
count the number of occurences of each word in a text file, one may type the following
Scala code:

val file = spark.textFile("hdfs://...") // creates and RDD with text line
elements

val lines

val words

file.flatMap(line => line.split(" ")) // transforms the RDD to words
lines.map(word => (word, 1)) // transforms the RDD to (word, 1)

pairs
val counts = words.reduceByKey(_ + _) // transforms the RDD to (word, #) pairs
counts.saveAsTextFile("hdfs://...") // action that saves the RDD to a text file

This creates four RDDs in line 1, 2, 3 and 4. Figure 2.6 shows the lineage graph for those
RDDs. The arrows represent the transformations between RDDs. Spark achieves fault
tolerance by tracking the lineage for the RDDs. For example, if a slice (partition) of RDD
words is lost, Spark tracks the lineage graph and recomputes it by applying transformations
flatMap and map to the grandparent of that slice (slice of the RDD file) and then pipelines
its own transformation (reduceByKey) to it. Some transformations may take a long time
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l reduceByKey

Figure 2.6: The lineage graph for RDDs in the WordCount example

to finish and therefore it may be usefule to cache and reuse RDDs created from them. For
example, after the saveAsTextFile action, one may want to get an RDD only with lines
containing ”Spark” by applying a filter transformation to the RDD lines:

lines.filter(_.contains("Spark"))

In those cases, it is recommended to persist (or cache) the original RDD lines in memory:

val lines = file.flatMap(line => line.split(" ")).cache()

because otherwise it may have to be recreated when it is used in a second action.

Should slices of any other RDDs that depend on lines be lost, the transformation is started
from the corresponding slices of RDD lines since they are cached in memory. After the
RDD lines is cached, it can be transformed to other RDDs directly without re-executing
the transformation before it (flatMap) in the lineage. An RDD can be persisted at different
levels; the details can be found in [29)].

Each RDD is characterized by five pieces of information [15]:
e a list of partitions (slices);

e a list of dependencies on other RDDs;
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e a function for computing each partition;
e a partitioner (optional, for RDDs of key-value pairs);

e a list of preferred locations of each partition (optional).

The partitioner of a (key, value) pair RDD decides how the elements are partitioned by
key. Note that all elements with the same key are located in the same partition if an RDD
of (key, value) pairs has a partitioner. An RDD may not have a partitioner, for example,
it is created by reading text file from HDFS. In this case, elements with the same key may
be located in different partitions and even different Worker nodes.

2.2.4 Running Spark on a cluster

A basic Spark cluster is very similar to a Hadoop cluster. It consists of a cluster manager
(the master) and several Worker nodes (similar to the slave nodes in Hadoop cluster). The
cluster manager, which acts as the resource manager, is connected to the SparkContext
object in the main program (the driver) which is responsible for coordination in the cluster.
One executor is launched on each Worker node to run the tasks and persist the data (the
slices) on the node. An executor can run multiple tasks simultaneously and the number of
tasks is determined by the number of cores in the node (each core can only run one task
at a time). Note that one task is executed for each slice (or partition) on each Worker
node, but these tasks may not all run concurrently if there are more slices than cores on
a node. For example, given an input RDD with 24 partitions for a stage, if there are two
nodes in a cluster with 4 and 8 cores respectively, then the first 12 tasks can be executed
at the same time in the cluster. Spark can apply the operations to 12 slices (partitions)
at the same time. Once a task is finished, the core that runs this task can start executing
another task in the same stage.

2.2.5 Spark example

In this section, we give the WordCount example to illustrate how Spark schedules jobs and
tasks within an application. In this application, we use three machines: gridbasel.math.uwa-
terloo.ca, gridbase2.math.uwaterloo.ca and gridbase3.math.uwaterloo.ca. Below is the in-
formation for each machine:

Each machine is used as a slave node while gridbase 1 acts as master node as well. The
Spark code in Scala is as follows:
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gridbase | No. of cores | Memory
1 4 6.8 GB
2 8 6.8 GB
3 16 14.7 GB

Table 2.1: The CPU information for gridbase machines

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object WordCount {
def main(args: Array[String]) {
System.setProperty("spark.executor.memory", "1024m")
System.setProperty("spark.cores.max", "12")
// gridbasel.math is the hostname of the Master node, "WordCount" is the
// application name
val sc = new SparkContext("spark://gridbasel.math:7077", "WordCount",
"/home/j331lai/spark-0.8.1-incubating", // Spark home directory
List("target/scala-2.9.3/word-count_2.9.3-1.0.jar")) // list of JAR files
val file = sc.textFile("hdfs://gridbasel.math:56638/user/j33lai/data")
val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey (_ + _)
counts.saveAsTextFile("hdfs://gridbasel.math:56638/user/j331lai/output")
}
}

The memory for each executor is 1024 MB (line 6), which means each machine has to
provide this amount of memory to its executor process. This parameter must be lower
than the memory available in each machine, otherwise one would get an “out of memory”
error. The parameter spark.cores.max determines the total number of cores used in the
cluster (line 7). Spark tries to use the cores available on each machine equally so in
this case 4 cores will be used on each node. The default port for the master is 7077 so
“spark://gridbasel.math:7077” has been put in the first argument of SparkContext (line
10).
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Figure 2.7: WordCount in Spark

Figure 2.7 illustrates how the WordCount application runs in Spark. A blue box in the
figure represents an RDD. In this application, we only have one action on an RDD: saveAs-
TextFile (line 16). Therefore only one job will run. The job is divided into two stages due
to the shuffling process that occurs in reduceByKey and these two stages are executed
sequentially. Stage 0 contains flatMap and map transformations and ends at the RDD in
line 14. The transformation reduceByKey involves shuffling and therefore it starts a new
stage. The two stages are similar to the MapReduce stages in Hadoop. Stage 0 is similar
to the Map phase in Hadoop; Stage 1 is similar to the Reduce phase in Hadoop: it shuffles
and writes results into HDFS. However the “reduce” stage (stage 1) in Spark will not be
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launched until the “map” stage (stage 0) is finished. The information (time, RDD storage,
etc.) of stages and tasks in an application can be observed visually from the master’s
web User Interface (http://localhost:8080). Figure 2.8 gives an example of monitoring

stages in an application.

Spof? Stages Storage Environment Executors

Spark Stages

Total Duration: 20.3 s
Scheduling Mode: FIFO
Active Stages: 1
Completed Stages: 4
Failed Stages: 1
Active Stages (1)
Stage Id Description

3 Partially failed phase
count at UlWorkloadGenerator.scala:72

Completed Stages (4)

Stage Id Description
2 Single Shuffle
count at UlWorkloadGenerator.scala:63
3 Single Shuffle
reduceByKey at UlWorkloadGenerator.scala:63
1 Cache and Count

Submitted
2013/09/25 13:02:09

Submitted
2013/09/25 13:02:00

2013/09/25 13:01:59

2013/09/25 13:01:54

Spark Ul Tester application Ul

Duration Tasks: Succeeded/Total Shuffle Read Shuffle Write
64 ms L 15/100 (3 failed)
Duration Tasks: Succeeded/Total Shuffle Read Shuffle Write
£8s [P 11 S—|
14s e JOONOO ] 151.2 K8
1.0s 100/100

Figure 2.8: Monitoring data in a web UL (Figure from [30].)

25


http://localhost:8080

Chapter 3

Iterative algorithm description

3.1 Pagerank

Consider N web pages: Py, Pi,...,Py_1 and consider the graph formed by the directed links
between the web pages. Assume pages have no self-links. For simplicity, we first assume
that every page has outlinks. We also assume that every page has at least one inlink (link
from another page). We use R,(Cj ) to represent the rank of page P, after the jth iteration.
For each page P;, we assume it has N; outlinks and N; > 0 by assumption. Then the
simplest version of Pagerank computes the rank of P; at the j + 1th iteration as:

. 1 .
R(]+1) — Z _R](f]) (31)

()
. - Vi,
inlinks k of i

Note that reducible graphs have rank sinks (subgraphs that attract all the rank in the
graph), but irreducible graphs don’t. We say the graph is irreducible if, for every page,
there exists a path to all other pages. In case we have a reducible graph, we make the
graph irreducible by including a damping factor o and computing

. 1 .
R =(1-a)+a > —RY (3.2)
inlinks k of i k

This effectively reduces the weights of the original graph edges by the factor « , and adds
new links from every node to every other node with weight 1 — «. In the context of web
surfing, the damping factor a represents the probability that a user will follow a link from
the web page they are currently visiting. 1 — « is the probability that they will jump
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to another page by typing in a web address. The damping factor « is normally taken
a = 0.85 [31]. Once we choose to normalize the ranks as in Page and Brin’s paper [2],
letting the sum of all ranks be one (such that ranks become probabilities), we have:

; 11—« 1 ;
RE]-FI) = 1 Z —R/?) (33)
N inlinks k of i Nk

Here N is the total number of pages in the graph. In this section, we assume the ranks
are not normalized. In a real network, there may be many dangling nodes (pages) which
have no outlinks and the total rank (or probability) decreases if we calculate each rank by
equation 3.2 or 3.3. The ranks still converge but the sum of all ranks may be much less
than 1 or N (if initial ranks are not normalized). One solution is to distribute the ranks
of those dangling nodes to each page equally and the total rank will remain unchanged
during the iterations. Then equation 3.2 becomes:

G+ _ 1 2o LNE)
inlinks k of i dangling pages k

We use RY) to represent the rank vector after the jth iteration. So the Pagerank algorithm
can be also described as the following matrix equation:

) 1 .
RUTD — (M + Nld’) RY + (1—a)l, (3.5)

where M is defined as

1 . . . ..
.-l m if Page j links to Page i;
K 0  otherwise,

<.
—
@
D
~—

and d is a vector defined as

4 = { 1 if Page i has no outlinks (dangling node); (3.7)

0 otherwise.

As we can see, the Pagerank algorithm involves matrix-vector multiplications and it can
be implemented in Hadoop MapReduce and Spark. The detailed implementations will be
discussed in Chapter 4.
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3.2 Conjugate Gradient Algorithm

The conjugate gradient method is an iterative algorithm for solving linear systems where
the matrix is symmetric and positive-definite (SPD). Consider the linear equation Ax = b,
where A is SPD, then the algorithm is given as follows:

Algorithm 1 Conjugate Gradient algorithm

: IT'g < b —-fXXO

: Po < Io
k<0
: repeat

rgrk

1
2
3
4
5: A PEAPk
6
7
8
9

Xk+1 ¢ Xk + QxPxk

ki1 ¢ ' — apApk

if ri.q is sufficiently small then exit loop
Bk —rgié?:l

10: Pki1 < Ty + BiPx

11: k< k+1

12: end repeat

13: The result is xj 1

In this algorithm, there is one matrix-vector multiplication, three vector additions and two
vector scalar products in each iteration. After the first iteration, rirk in line 5 can be
obtained from the computation in the previous iteration (line 9). For the matrix-vector
multiplication and the vector scalar product (which can also be considered a type of matrix-
vector multiplication), two MapReduce stages are required in general. However, the vector
scalar product riry only needs one MapReduce stage because it involves the same vector
twice. The vector addition needs two stages as well. Therefore eleven MapReduce stages
may be required in each iteration. The implementation in Hadoop MapReduce will be

discussed in Chapter 4.
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Chapter 4

Implementations in Hadoop

4.1 Matrix and Vector Operations

In this section, we discuss how Matrix-Vector Multiplication, vector scalar product, and
vector addition can be implemented in Hadoop MapReduce.

4.1.1 Matrix-Vector Multiplication

We first present the Generalized Iterative Matrix-Vector Multiplication (GIM-V) algorithm
for Graph Mining Library Pegasus [19]. Given a sparse matrix A and a vector x, we want
to compute Ax. We use A;; to represent the 7, jth entry of A and z; to represent the ith
element of x. Figure 4.1 illustrates how the GIM-V method works.
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Figure 4.1: Ax = Db for GIM-V

In our implementation in Hadoop, only nonzeros in the matrix and vector are stored in
the input file. The matrix and vector are stored as a text file in HDFS with the following
format:

Matrix A

i1 J1 Aiy g
11 J2 Aihjz

U Ji Aik:jl

Vector x

For the file that stores a matrix, each line has the row and column information of an
element of the matrix. For a vector, each line in the file that stores it contains the row
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information of a vector element. When we run Hadoop for GIM-V, matrix and vector files
are read together and the Map function can determine whether a line represents a matrix
or vector element through its structure. GIM-V is done in two MapReduce stages. In stage
1, the Stage-1 Map function (Figure 4.2) reads each line from the input files (matrix and
vector file). If a line represents a vector element, say x;, the Map function outputs (i, z;)
with the row index as the key. For a matrix element A, ;, it outputs (j, i A, ;) with the
column index as the key, and the row index along with the matrix element as the value.
Then matrix elements in the same column are merged together with the corresponding
vector element in a shuffle operation. For each matrix element A;; the Stage 1 Reduce
function (Figure 4.3) multiplies it with the vector element z;, and outputs (i, A;; * z;).
The pseudocode for Stage 1 is given as follows:

Figure 4.2: GIM-V Stage 1 Map

Figure 4.3: GIM-V Stage 1 Reduce

31



Algorithm 2 GIM-V Stage 1

Function Stage-1-Map(LongWritable Key, Text Value)
Value is either a matriz element [row(i) column(j) value(A; ;)]
or a vector element [row(i) value(x;)]

1:

if Value is a matriz element then
output (column, row value)
else if Value is a vector element then

output(row, value)
end if

Function Stage-1-Reduce(LongWritable Key, Text Values]])
For Key = j, Values contains a sequence of matriz elements [row(i) value(A; ;)]
and vector element [z;]

7

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

v+ 0
matrizColumnElements < ||
for each element e in Values
if e is a vector element then
(O Z;
else
matrizColumnElementslend] < A,
end if
end for
if v is not equal to 0 then
for each matrix element m in matrizColumnElements
q< A jxv
output(row(i), q)
end for
end if

The result of Stage 1 is stored in HDFS and one can choose the suitable OutputFormat of
the output data generated from Reduce phase in Stage 1 to make sure the it can be read
as (key, value) pairs from HDFS in the next MapReduce stage (Stage 2). In Stage 2, the
Stage-2-Map function (Figure 4.4) performs identity mapping (assigning the row as the
key) and the Stage-2 Reduce function (Figure 4.5) adds values on the same row together
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and then outputs the final result.

kel vale
[T TA R

bakevad  value
=

Figure 4.4: GIM-V Stage 2 Map

Figure 4.5: GIM-V Stage 2 Reduce

Algorithm 3 GIM-V Stage-2

Function Stage-2-Map(LongWritable Key, Text Value)
For Key = i, Value is a component [A; ; * ;]
L. output(row(i), A; j * x;)

Function Stage-2-Reduce(LongWritable Key, DoubleWritable Values])
For Key = i, Values contains a sequence of components A; j * x;

2:
vNew < 0
for each element e in Values

vNew < vNew + e(value)

end for
output(Key,vNew)

4.1.2 Vector scalar product
The product of two different vectors can be considered as a type of Matrix-Vector Multi-

plication and can be computed using the same algorithm as in the section 4.1.1. The scalar
product of a vector with itself (the square of the vector) can be finished in one MapReduce
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stage. In this case, for each input line “4  z;”, the Map function (Figure 4.6) outputs (—1,
r?) with “—~1” as the key. Then all (key, value) pairs from the Map phase share the same
key and can be summed up to obtain the square of the vector during the Reduce phase
(Figure 4.7). Note that to make the implementation effective one must use combiner in
the MapReduce. Otherwise the single Reducer has to do all the additions as only one key
(-1) exists in the Reduce phase.

_-%

Figure 4.6: Square of vector Map

2 2

Figure 4.7: Square of vector Reduce

The pseudocode for square of a vector is given as follows:
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Algorithm 4 Square of a vector

Function Map(LongWritable Key, Text Value)
Value is a line that represents a vector element: [row(i) x;]
1: output(—1, z?)

Function Reduce(LongWritable Key, DoubleWritable Values]])
2

All Keys are -1; Values contains a sequence of the squares of all non-zero vector elements x;

viNew + 0

for each element e in Values
vNew < vNew + e(value)

end for

Write vNew to HDFS

4.1.3 Vector addition

We now discuss how to compute a + vb, where a and b are sparse vectors, and v is a
scalar. Two MapReduce stages are required in the implementation. It is difficult to do it
in 1 stage because a and b are read from separate files in the same directory in HDF'S,
and cannot be distinguished when you add them. The first stage only has a Map phase
(Figure 4.8), which computes vb. The second stage (Figure 4.9 and Figure 4.10) adds the
two vectors a and yb together. In Figure 4.10, there are three types of value since some
elements of sparse vectors a and b are zero and not stored in the input files.

Figure 4.8: Vector-Scalar Multiplication Map
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Figure 4.9: Vector addition Map
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Figure 4.10: Vector addition Reduce

See Algorithm 5 and Algorithm 6 for Vector-Scalar Multiplication and Vector addition,
respectively.

Algorithm 5 Vector-Scalar Multiplication

Function Map(LongWritable Key, Text Value)
Value is a line that represents a vector element: [row(i) x;]
1:
2: output(row(i),y * ;)

Algorithm 6 Vector addition

Function Map(LongWritable Key, Text Value)

Value is a line that represents a vector element: [row(i) a;] or [row(j) b;]
1:

2: output(row(i), a;) or (row(j),b;)

Function Reduce(LongWritable Key, DoubleWritable Values][])
For Key = i, Values contains the ith vector elements of a and b, Ja; b;]
3: output(row(i), a; + b;)
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4.2 Pagerank in Hadoop

In this section, we discuss the implementation of the Pagerank algorithm in Hadoop
MapReduce. The variables used in this section are shown in the following table:

Variables | Description

Page i

Rank of Page i

Number of total pages
Number of outlinks of Page i
Discount (Damping factor)

Rz = m

Table 4.1: Description of variables in algorithm 7, 8,9, 10, 11 and 12

4.2.1 Pagerank without dangling nodes

At first, we consider a network without dangling nodes. Let the links of the web graph
(a directed graph) be stored in a text file where every line represents a link between two
pages. The input file is supposed to be in the following format:

urly uring
urly urlng
urly uring
urls urlns

urly, urlng

As we can see, each link in the graph occupies one line in the input file. For example, the
first line means page urly has an outgoing link to page urin0. Before we start computing
the ranks iteratively, we need to collect a list of the outlinks of each page in a pre- Stage
phase such that we can later calculate the rank contributions from each page (the R;; G) /Ni
in equation 3.3) more easily and then reduce the contributions to get the new rank for each
page according to equation 3.3 iteratively. In the pre-Stage, each line in the input file is
assigned to the pre-Stage Map function (Figure 4.11). The Map function transforms each

37



line into a (key, value) pair. After shuffling, every shuffled (key, value) pair is assigned to
the pre-Stage Reduce function (Figure 4.12) and an initial rank is added to the value field.

--:ﬂ_m-

Figure 4.11: Pagerank pre-Stage Map

Figure 4.12: Pagerank pre-Stage Reduce

Now we give the MapReduce algorithm for the pre-Stage of the Pagerank computing:

Algorithm 7 Pagerank pre-Stage without dangling nodes

Function Map(LongWritable P;, Text Value)
Value contains the url of a page and one of its outlinks:
[Pi Pi]

1. output(P;, Py)

Function Reduce(Text Key, Text Values|])
For Key = P;, Values contains a list of the outlinks of P;:
[Po P Po ...]

2:

3: Outlinks < Ranki(Initial Rank)
for each element Value in Values

Outlinks + = Value // add Value to Outlinks String

end for
output(P;, Outlinks)

The desired input file of the iterative stages has the following format:
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urly ranky urlong urlyny ... urlons,
urly ranky urling urling ... urling,

urly ranky urlyng urlyng ... urlyng,

This is the format produced by the pre-Stage.

Each line contains the following arguments: a page’s url, its rank, and a list of its outlinks.
For example, the urly in the first line has rank of rank, (a String which can be trans-
formed to Double or Float during the calculation) and outlinks: wrlyny ... urlynsg. As
we mentioned before, one can choose the suitable OutputFormat for the output file from
the pre-Stage to make sure it can be read as (key, value) pairs from HDFS as input file
of the next MapReduce stage. When we read this file in the Map process of an iteration
stage, the name of the page will be read as key and the rest of the line, the rank and out-
links together, will be read as a value of type String. Given (key, value) pair (url;, rank;
urling urlyng ... urlng,), the Map function (Figure 4.13) divides ranki by s; (number of
outlinks) and outputs (urln;, rank;/s;) for each j. The function also outputs (url;, m
urling urlyny ... urling) with the list of url;’s outlinks as the value and wurl; as the key
(m is used as a flag to indicate that this (key, value) pair represents url;’s outlinks). For
each (key, value) pair after shuffling, say (url;, value), the Reduce function (Figure 4.14)
receives the outlinks of wrli and its rank contributions from other pages. It adds those
rank contributions together and adjusts the sum using damping factor a to obtain a new
rank for page url;. Note that the algorithm “Pagerank without dangling nodes” can also
be applied to a network with dangling nodes, but then the sum of the ranks decays, since
dangling nodes are not properly taken into account.

39



rank,/s.

rank,/s,

rank; url.n, ...

rank,/s,

m urkn, ... urkng

Figure 4.13: Pagerank Map

newrank = (rankf,
+ .. +rankf )*a +
(1-a)/N

m urlng ... urlng
url; '

url, newrank urln, ... urlin
I
rankf, rankf,

Figure 4.14: Pagerank Reduce

The MapReduce algorithm for each iteration of the Pagerank algorithm is given as follows:
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Algorithm 8 Pagerank without dangling nodes

Function Map(Text P;,, Text Value)
Value contains the rank of page P; and its outlinks:
[R; Py Pa Py .|
1: N; = Number of outlinks
2: for each outlink P, in Value
3: output(Py, R;/N;)
4: end for
5: output(P;, m Py Py P...... )(m means the value is a list of outlinks)

Function Reduce(Text Key, Text Values]])
For Key = Py, Values contains list of outlinks of P, and Ranks of Py from
other pages —>/(m Py Py Py ) Ro/NO Rl/Nl RQ/NQ /

6:

7. R« 0

8: for each element Value in Values

9:  if Value is the list of outlinks then

10: Outlinks < Value delete m // according to equation 3.3
11:  else

12: R+ = R;/N; x «

13:  end if

14: end for

15: Ry += (1-a)/N // according to equation 3.3
16: output(Py, Ry Outlinks)

4.2.2 Pagerank with dangling nodes

In this section, we consider the network with dangling nodes. With normalization, equa-
tion 3.4 becomes:

: 1 1 . 1 —
wea g ¥ Sm)alnt

inlinks k of i k dangling pages k

Here we use 7; to represent total rank contributions from all pages with outlink to Page

i, namely, > 1o NLkR,(Cj ) in equation 4.1. And we use 7 to represent total rank con-

tributions of all dangling pages, namely, > dangling pages kR,(f ). Assume the input file has
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the same format as in the previous section except that some pages may have no outlinks,
which means they do not appear in the first column of the input text file. Before we start a
Pagerank iteration, we need to collect each page’s outlinks in a pre-Stage as well. Moreover,
we should collect the dangling pages from the second column of the input file. For each
line “url; wrin;”, the Map function (Figure 4.15) in the pre-Stage now not only outputs
the (key, value) pair (url;,urin;) but also outputs (urln;, “”) with the empty String as the
key to collect dangling pages. The Reduce function (Figure 4.16) in the pre-Stage collects
every page’s outlinks and outputs a (key, value) pair as we do in the previous section. For
each dangling page, the value in the (key, value) pair only contains the initial rank.

Figure 4.16: Pagerank with dangling nodes pre-Stage Reduce

The pseudocode of the pre-Stage is given as follows:
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Algorithm 9 Pagerank pre-Stage with dangling nodes

Function Map(LongWritable P;, Text Value)
Value contains the url of a page and one of its outlinks:
[Pi Pi]

1. output(P;, Py)

2: output( Py, ")

Function Reduce(Text Key, Text Values]])
For Key = P;, Values contains list of outlinks of P;:
[Py Pu Ps ...]

3:

4: Outlinks < Ranki(Initial Rank)
for each element Value in Values

Outlinks + = Value // add Value to Outlinks String

end for

output(P;, Outlinks)

The input file of the iterative stages has the same format as in the previous section. Each
Pagerank iteration now requires two MapReduce stages. Some lines may only have one
page and its rank, which means those lines represent dangling pages. The MapReduce code
for pages with outlinks is almost the same as in the previous section. For dangling pages,
the Stage 1 Map function (Figure 4.17) outputs a (key, value) pair with “1” as the key
and the rank as the value to collect all rank contributions from dangling nodes together
in the Reduce phase. It also outputs a (key, value) pair that represents the page’s outlink
information. The Stage 1 Reduce function (Figure 4.18) adds all ranks with key of “-1”
together, multiplies the sum by a/N, and then writes it to HDFS or the local file system
as the result will be used in the next stage.
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rank,/s;

rank./s;

rank; urln, ... urln_

- ranki/s.

rank; '
murln, ... urln_

rank;

m

Figure 4.17: Pagerank with dangling nodes Stage 1 Map

newrank0 = (rankf,
+ ... + rankfy)*a

m urkn, ... urln,

NewrankO urln, ... urlin

C % Write to HDFS

rankf, rankf,,

rankd, rankdy

rankd = (rankd, +
-+ rankd,) *

a/N

Figure 4.18: Pagerank with dangling nodes Stage 1 Reduce

Below is the algorithm for Stage 1 in each iteration of Pagerank with dangling nodes:
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Algorithm 10 Pagerank Stage 1 with dangling nodes

Function Stage-1-Map(Text P;, Text Value)
Value contains the rank of page P; and its outlinks:
/R% Pio Pi1 Plé /

1: if page P; has outlinks then

2:  N; = Number of outlinks

3 for each outlink P, in Value

4: output(Py, R;/N;)

5. end for

6:  output(P;, m Py Py Pyp...... )(m indicates that the value is the list of outlinks)
7

else if page P; doesn’t have outlinks then
8:  output(—1, R;)
9:  output(P;,m)

10: end if

Function Stage-1-Reduce(Text Key, Text Values]])

For Key = -1, Values contains Rank contributions of pages without outlinks

— [Rny Rny Rny -]

For Key = Py, Values contains list of outlinks of P, and rank contributions to Py from
other pages —[/m Py Py Py ...] Ry/No Ri/Ny Ry/Ns ...J

11:

12: if Key = -1 then

13: 70

14:  for each element R, in Values
15: 7+ = Ry,

16:  end for
17 r=ax7/N // N is the number of total pages
18:  Write 7 into a HDF'S file

19: else

20: 7, < 0

21:  for each element Value in Values
22: if Value is the list of outlinks then
23: Outlinks < Value delete m

24: else

25: T+ = R;/N;

26: end if

27:  end for

28: T = Q*Tg

29:  output(Py, 7, Outlinks)

30: end if 45




After Stage 1, we just need one Map phase to finish the iteration. The Stage 2 Map
function (Figure 4.19) computes the new rank for each page by reading 7 from HDFS and
adjusting the rank with damping factor a.

Read rankd from HDFS SR :
before Map Stage rankd + (1-a)/N

url; rank; urlkng ... urkn, url, newrank urkn, ... urkn,

Figure 4.19: Pagerank with dangling nodes Stage 2 Map

The pseudocode of the Stage 2 Map is given as follows:

Algorithm 11 Pagerank Stage 2 with dangling nodes

1: Before we launch the Map process, we read 7 from the HDFS file created in the
2: the Reduce process in Stage 1
Function Stage-2-Map(Text Key,Text Value)
For Key = Py, Value contains total rank contribution from all pages with
outlink to Py and list of outlinks of P, — [fx Py Py Py ...J
3: R, + 0
4: Ry, =7, + 7 + (1-a)/N // according to the equation 4.1
5. output(Py, Ry Py Py P ...)

Here we will give a example to show how our algorithm works. Figure 4.20 is the directed
graph of a small network.
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Figure 4.20: Directed graph of a small network

The input file (after pre-Stage) for the above network is as follows:

Py Ry P P, Py
Py Ry P, P
Py Ry Py

P3 R3

Py Ry

Ps Rs P,

P; and P, are dangling nodes.

47



After the Map process in stage 1, the shuffled data will become:

{-1, [Rs Rul}

{Po,[“m” P, Py Py Ro/Ny }  // P has an inlink from P,
{Pla[“m” Py Ps] RO/NO }

{Py,[“m” Po] Ro/Ny Ri/N:1}

{P3,“m” R1/N1}

{P4,“m” R()/N()}

{Ps,[“m” P }

After the Reduce process in stage 1, we will write ax(R3+R4)/N into a HDFS file and have:

P() Oé*RQ/NQ P1 P2 P4

P1 OC*RO/NO P2 Pg

Pg (X*(Ro/No—f-Rl/Nl) P()

P3 CY*Rl/Nl

Py ax Ry/N,

Ps; 0.0P, // Psdoes not have an inlink

In the stage 2 Map we output the result after one iteration:

PO Oé*RQ/N2+Oé*(R3—|—R4)/N+(]_—Oé)/N P1 PQ P4
P1 O./*R[)/N()—f-oz*(R3+R4)/N+(1—&)/N P2 P3

P2 OJ*(RQ/N0+R1/N1)+OZ*(R3—|—R4)/N+(1—Oé)/N PO
Py axRi/Ny+ax(Rs+ Ry)/N+(1—a«)/N

Py axRy/Nog+ax(Rs+ Ry)/N+(1—a)/N

P, ax(Rs+Ry)/N+(1—a)/N P,

As we can see, it seems we need to use two MapReduce stages in each iteration for Pagerank
with dangling nodes. But in fact, the Stage 2 Map process can be done in the next
iteration’s Stage 1 Map process. Then each iteration can be done with only one MapReduce
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stage, which reduces the overhead for starting a new stage and saves time for reading and
writing data in HDFS. The Stage 1 Map in algorithm 10 can be modified as follows:

Algorithm 12 Modified Pagerank Stage 1 with dangling nodes

1: Before we launch the Map process, we read 7 from the HDFS file created in the
2: the Reduce process in Stage 1

Function Stage-1-Map(Text P;,Text Value)

Value contains the rank (not fully updated) of page P; and its outlinks:

/R% Pio Pi1 Piz /

3:

4: if page P; has outlinks then

5. for each outlink P, in Value

6: N; = Number of outlinks

7 output(Py, (R; + 7+ (1 —a)/N)/N;)

8: end for

9:  output(P;, “m” Py Py Pp...... )(“m” means the value is the list of outlinks)

10: else if page P; doesn’t have outlinks then
11:  output(—1,R; + 7+ (1 —a)/N)

12:  output(P;, “m”)

13: end if

In the last iteration, one should use one more MapReduce Stage, namely, Algorithm 11
to compute the final ranks as there is no more iteration and therefore ranks can not be
computed using Algorithm 12. Assume we want to compute ranks using n iterations, then
one pre-Stage MapReduce (Algorithm 9), one MapReduce stage for Algorithm 10 (for the
first iteration), n — 1 MapReduce stages for Algorithm 12 (for the last n — 1 iterations),
and one final MapReduce stage for Algorithm 11 to compute the final ranks. In total, we
should have n + 1 MapReduce stages if we compute ranks using n iterations.

4.3 CG in Hadoop

The following operations are used in CG:

(1) Matrix-vector multiplication: given a matrix A and a vector x, calculate Ax (line 1,
5, and 7 in Algorithm 1);
(2) Square of a vector: given a vector v, calculate vIv (line 5 and 9 in Algorithm 1);
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(3) Scalar product of vectors: given two vectors v and vy, calculate v vy (line 5 in Al-
gorithm 1);

(4) Vector addition: given two vectors vo and vy, and a scalar «, calculate vg + avy (line
1, 6, 7 and 10 in Algorithm 1).

The implementations of these operations have been discussed in Section 4.1. We use
four functions to launch Hadoop MapReduce for each operation: MV (Path of A, Path
of x), VSquare(Path of v), VVM(Path of vo, Path of v1), VA(Path of vq, Path of vy,
«), respectively. For operations (1),(3) and (4), we need to launch two MapReduce stages
while only one stage is needed for operation (2).

The file format of the matrix and vector is the same as that in Section 4.1. The matrix,
vectors and parameters used or created in the kth iteration are stored in HDFS with the
following directory structure:

CG/A : the given matrix A

CG/b : the given vector b

CG/x/k : the kth solution xj
CG/x/k+1 : the k+1th solution xy41
CG/r/k : the kth residual ry
CG/r/k+1 : the k+1th residual ry 4
CG/p/k : pk

CG/p/k+1: pri1

CG/Apk/k : Apx

The pseudo code for our CG implementation is given as follows:
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Algorithm 13 CG-Hadoop algorithm

— = = = =
Ll I A vl

»—
o

16:
17:

calculate Axg by MV(CG/A,CG/x/0)
calculate ro by VA(CG/b,Path of Axg,-1)
Po < To

k<0

calculate ryrg by VSquare(CG/r/0)
repeat

(if k = 0, we use CG/r/0 to substitute CG/p/0)
calculate Apyx by MV(CG/A,CG/p/k)
calculate pf Apx by VV(CG/p/k,CG/Apk/k)

Py

calculate xx1 by VA(CG/x/k,CG/p/k,as)
calculate ri 1 by VA(CG/r/k,CG/Apk/k,—ay)
calculate r  Tii1 by VSquare(CG/r/k+1)

if ry. 1Tk is sufficiently small then exit loop

T
i ) P
k41 k+
Bk: < rTr
k Tk

calculate pxy1 by VA(CG/r/k+1,CG/p/k,5k)
E+—Fk+1

18: end repeat
19: The result is stored in CG/x/k+1

Note that the MapReduce processes in line 11 and 12 can be done in parallel since they

are independent from each other.

4.4 Performance tests in Hadoop

4.4.1 Single Node test

In this section, we first do a test for WordCount on a linux machine with one processor
(Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz) and four cores available. We use
the data from http://www.memetracker.org/data.html as the input file (4116073668B,
namely 4.2 GB). In this test, the block size is changed to 257,254,912 to make sure we
have 16 Mappers (Map tasks) in total. At first, we do tests by changing the parameter
mapred.tasktracker.map.tasks.maximum from 2 to 16 and then compare the performance.
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This parameter controls the maximum number of Mappers running simultaneously on each
node (concurrent Mappers). Here the total number of Reducers is one by default. The
test results are shown in Table 4.2:

No. of Mappers | No. of concurrent Mappers | Time(s)
16 2 971.058
16 4 675.701
16 8 914.731
16 12 1,075.751
16 16 3,701.899

Table 4.2: The WordCount test on a single node with 16 Mappers and 1 Reducer

As we can see, increasing the number of concurrent Mappers makes the performance
worse. So we should choose this parameter according to the cores available on the node.
Each core should only run one Mapper at the same time. Now we turn to how to
choose the total number of Reducers. We do the test by changing two parameters:
mapred.tasktracker.reduce.tasks.maximum (maximum number of Reducers running simul-
taneously on each node) and mapred.reduce.tasks (total number of Reducers for the job).
In this test, the number of concurrent Mapper is chosen to be 4 (the optimal one). Table 4.3
reports the test results:

No. of Reducers
No. of 4 8 12 16
concurrent Reduce
2 614.304 | 611.625 | 647.292 645.57
4 679.756 | 666.36 680.7 638.753
8 N/A 841.445 | 838.048 815.7
12 N/A N/A 1523.884 | 1203.268
16 N/A N/A N/A 2732.139

Table 4.3: The WordCount test on a single node with 16 Mappers and different number of
Reducers

The total number of Reducers does not have much influence on the performance of Word-
Count on a single node as there in no communication between different nodes. However,
the number of co-current Reducers should not be larger than the number of cores available
on the node otherwise the performance can be greatly harmed.
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4.4.2 Tests on gridbase cluster

At first, we discuss how Mappers and Reducers are assigned to each node, which is deter-
mined by four parameters: dfs.block.size, mapred.reduce.tasks, and mapred.tasktracker.map
(reduce).tasks.maximum. The first two parameters determine the total number of Map-
pers and Reducers for a job, respectively, and the last two define the maximum number
of concurrent Mappers (Reducers) on each node. We first illustrate how the Mappers are
scheduled. The scheduling for Reducers is similar. Assume we have n slave nodes in the
cluster, M Mappers in total, and at most N Mappers are allowed to run simultaneously on
a node. If n* N > M, which means each node runs less than N Mappers on average, all
Mappers are distributed across the slave nodes equally, in the sense that each node runs
[M/n] or [M/n]+ 1 Mappers. For the case nx N < M, N Mappers are assigned to each
node once the MapReduce job is launched. Once a node finishes some Map tasks, new
Mappers (from the remaining unlaunched M — n x N Mappers) are assigned to it to fill
up the Map slots in the node. This process continues until all Mappers are launched or
finished. The map phase ends when all Mappers are finished. Figure 4.21 illustrates the
scheduling process for M =20, N =4 and n = 3. A gray box represents a slave node and
a blue box represents a Mapper.

Time 0 Time 1 Time 2

Node 0 | H # # L

Node 1

=

Figure 4.21: Scheduling Mappers in a Hadoop cluster
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Our test in this section is done on the gridbase cluster with 28 cores in total. The cluster
has three machines: gridbasel, gridbase2 and gridbase3. All machines are used as slave
nodes and gridbasel also acts as master node. Table 4.4 reports the properties of each
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machine:

gridbase | No. of cores | No. of processors | Name of processor

1 4 2 Dual-Core AMD Opteron(tm) 2218@2.6Hz
2 8 2 Intel(R) Xeon(R) CPU X5460 @ 3.16GHz
3 16 4 Intel(R) Xeon(R) CPU X5460 @ 3.16GHz

Table 4.4: The CPU information of the gridbase machines

Table 4.5 reports the results of WordCount tests in Hadoop. As we can see, increasing the
No. of concurrent Mappers per node makes the performance worse in most cases. The
reason is because the gridbase cluster is heterogeneous: each slave node has a different
number of cores. The node gridbase 3 may perform well for 16 concurrent Mappers while
gridbase 1 gets stuck with 16 Mappers running simultaneously. Although gridbase 2 and
gridbase 3 are capable of running more Mappers at the same time, we suggest that the
number of concurrent Mappers should be 4 as running more Mappers on gridbase 1 may
strongly harm the performance. For example, given 48 Mappers in total and 16 concurrent
Mappers per node, each node gets 16 Mappers but gridbase 3 can finish its 16 Mappers
quickly while gridbase 1 needs more time to complete, which is not parallel and is wasteful.
Table 4.2 shows that running more Mappers (than the number of cores available) in a node
could strongly harm the performance. Using 4 concurrent Mappers in each node may be a
little bit slower sometimes but it is much more stable. The number of concurrent Reducers
should also be set as 4 for the same reason.

No. of Mappers
No. of 123 62 49 31
concurrent Mappe
4 218.901 | 204.138 | 185.957 | 188.048
8 234.753 | 199.944 | 171.371 | 183.614
16 251.919 | 190.586 | 212.019 | 206.95

Table 4.5: The WordCount test on the gridbase cluster with 12 Reducers in total and 4

concurrent Reducers on each node. (Time in seconds.)

The test results for Pagerank and CG are presented and discussed in Section 7.4.
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Chapter 5

RDD transformations in Spark

We now present some basic and essential RDD transformations in detail and illustrate how
they work in Spark since many RDD transformations that may involve shuffling are based
on them. We also investigate how co-partitioning and co-location of RDDs influence their
performance in Spark.

5.1 combineByKey

CombineByKey combines the elements for each key using a a custom set of aggregation
functions. It turns an RDD](K, V)] into a result of type RDD[(K, C)]. It is a transformation
for RDDs of (key, value) pairs and many other (key, value) pair RDD transformations like
reduceByKey are based on combineByKey. This RDD transformation combines the values
of each key into a new type of element. Given an RDD of type RDDJ[(K, V)], it transforms
it into an RDD of type RDD|(K, C)] where C is called a combined type. CombineByKey
is mainly determined by five arguments: createCombiner, mergeValue, mergeCombiners,
partitioner, and mapSideCombine. CreateCombiner ((V) => C) is a function used for
creating a combiner (C) if no combiner has been created for a key. Here a combiner refers
to the result of a combining operation. MergeValue ((C, V) => C) is used to merge a value
(V) into a combiner (C). MapSideCombine (Boolean = true by default) decides whether or
not to perform combining during the map-side (perform combining locally), which means a
key may initially have multiple combiners. If one chooses to use map-side combining, then
mergeCombiners must be defined. MergeCombiners ((C, C) => C) merges two combiners
into a single one. The partitioner defines the partitioner of the resulting RDD.
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Shuffling between different nodes may occur when combineByKey is applied to an RDD.
This depends on the partitioners of this RDD and the output RDD (the child RDD). If
an RDD has the same partitioner as its output RDD, then there is no shuffling process
between nodes during this RDD transformation. However, shuffling is inevitable in a Spark
cluster with several Worker nodes if the RDDs have different partitioners.

A Hash table is created for each partition of the input RDD to merge values into a com-
biner for each key. After the Hash table is created, all elements (key-value Tuples) of the
corresponding partition are “put” into the Hash table one by one. Here “put” means: if
the combiner for the key in this (key ,value) pair has not been created yet in the Hash
table, then create one by applying the createCombiner function to this (key, value) pair
element; if the combiner for this key has already been created, then combine the value of
this element into the combiner for this key using function mergeValue. Once all elements
in the partition are put in the Hash table, the computation for the partition of the output
RDD is finished, which means all elements of the output RDD have been generated.

Now we give an example to show how combineByKey works and how elements in a parti-
tion are put into the Hash table. Assume we want to combine values of type String into a
sequence. Let V = String and C = Seq|[String] (Seq[T] represents a sequence of elements
of type T). The createCombiner, mergeValue, mergeCombiners are defined as: createCom-
biner transforms a String value into a sequence containing only this value; mergeValue adds
a value to the end of a given sequence and then returns the sequence; mergeCombiners adds
all elements of a sequence to another sequence and returns the new sequence containing all
elements of the two sequences. Suppose a partition has three elements: (1, “hadoop”), (2,
“spark”) and (1, “java”). Figure 5.1 illustrates how elements of this partition are put in
the Hash table using createCombiner and mergeValue. The process of putting combiners
in the Hash table after shuffling with map-side combining is similar.

put (1, “hadoop”) in Hash table put (2, “spark”) in Hash table put (1, “java”) in Hash table

key [vaive [N ey [vaiue [N key lvale |

1 {“hadoop”} 1 {“hadoop”} 1 {“hadoop”, “java”}

; 2 {“spark”} ‘:: 2 {“spark”}

Figure 5.1: Putting elements of a partition in the Hash table during a combineByKey
combining operation
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Figure 5.2, 5.3 and 5.4 show how combineByKey works. The blue, red and green boxes
represent RDD partitions. The grey box stands for a Worker node. Figure 5.2 illustrates
the case when the input RDD and output RDD have the same partitioner. The input RDD
is stored in three Worker nodes with partition 0 and 1 in node 0, partition 2 and 3 in node
1 and partition 4 and 5 in node 2.

Figure 5.3 shows how combineByKey works when the output RDD’s partitioner is supposed
to be changed after this transformation. Here, the argument mapSideCombine is set to
be true, which means a combining process called map-side combining is applied to each
partition before shuffling. The scheme of this combining is the same as in Figure 5.2. Each
element of the resulting RDD after this combining has the type of (K, C) with the value
(of type C) as the combiner produced by the map-side combining. However, each key
may have multiple combiners belonging to different partitions which may be located on
different nodes. Since the output RDD has a new partitioner, new partitions are created
and each element needs to be shuffled to the desired partition. After the shuffling, another
combining process is necessary as a key may have multiple combiners. Those combiners
must be merged using the function mergeCombiners. A Hash table is created for each
partition of the shuffied RDD to merge combiners for all keys in the partition. This
process is similar to map-side combining.

One can also choose not to use map-side combining by setting the argument mapSideCom-
bine to be false. Figure 5.4 illustrates how combineByKey works in this case. At first, the
input RDD needs to be shuffled to make sure all keys go to their desired partitions. After
shuffling, the combining process is the same as shown in Figure 5.2.
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Node 2

Figure 5.2: combineByKey without shuffling, for the case where the input RDD has the
same partitioner as the output RDD.

input . . . shuffled L. output
RDD map-side combining shuffling RDD combining

Combine using Hash table Combine using Hash table

Combine using Hash table

Combine using Hash table Combine using Hash table

Combine using Hash table

Combine using Hash table

Combine using Hash table

Combine using Hash table

Figure 5.3: combineByKey using map-side combine before shuffling, for the case where the
input RDD has no partitioner or a partitioner different from the output RDD.
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input _ shuffled . output
RDD shuffling RDD combining RDD

Combine using Hash table

Combine using Hash table

Combine using Hash table

Combine using Hash table
Combine using Hash table

Combine using Hash table

Combine using Hash table

Combine using Hash table

Combine using Hash table

LEE EEE R

Figure 5.4: combineByKey without map-side combine before shuffling, for the case where
the input RDD has no partitioner or a partitioner different from the output RDD.

Note that Figure 5.3 is similar to Hadoop MapReduce with a combiner function (to do
partial reduces), and Figure 5.4 is similar to Hadoop MapRedue without a combiner func-
tion.

Finally, we discuss how shuffling works in Spark. Shuffling occurs (for example, in com-
bineByKey) because the output RDD has a different partitioner. Computing each partition
of the output RDD requires fetching some elements from potentially all partitions of the
input RDD, which means each partition of the output RDD may depend on all partitions
of the input RDD (this is called wide dependency in Spark terminology). For a partition of
the output RDD, we call those elements needed from a partition of the input RDD a block.
To compute a partition of the output RDD we need to fetch all the blocks. If a block and
the partition are located on the same node, we call this block a local block; otherwise we
call it a remote block. As we said before, Spark stages are divided by shuffling. An RDD
transformation involving shuffling is the first transformation of its stage. Those blocks to
be fetched are created in its previous stage. If the output RDD has N partitions, then each
Worker node creates N blocks while computing the input RDD. The data (elements of the
input RDD) can be written to those files when computing a partition of the input RDD
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is finished. Figure 5.5 gives an example of shuffling. The input RDD is computed on two
nodes and has four partitions. Each Worker node creates three files (blocks) according to
the partitioner of the output RDD. After each partition of the input RDD is computed, its
elements are written to the corresponding blocks. Writing data into blocks is also included
in Stage 0 and must be finished before Stage 1 starts. In Stage 1, each partition of the
output RDD is computed by fetching the corresponding blocks and then applying RDD
transformations to the elements.

input
RDD

I
1
I
blocks !
i
1

Figure 5.5: Shuffling in Spark

5.2 cogroup

The cogroup transformation groups an RDD of type RDD[(K,V)] with other (key, value)
pair RDDs of type RDD[(K,W)] (W can be of different type than V). The cogroup can
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group at most three (key, value) pair RDDs sharing the same key type in Spark. Each
element of the resulting RDD has the type (K, (Seq[V], Seq[W])) (group two RDDs) or
(K, (Seq[V], Seq|W1], Seq[W2])) (group three RDDs). For each key in the RDDs to be
grouped together, the value of the resulting RDD is a Tuple2 (2-tuple) or Tuple3 (3-tuple)
containing the list of values for this key in the input RDDs. Each element of the tuple is
used to represent a sequence of values for this key from an input RDD. If no value exists for
a key in an input RDD, then the corresponding element of the tuple is an empty sequence.
In this section, we discuss how cogroup groups two RDDs; grouping three RDDs would be
similar.

Assume the input RDD has the type RDD[(K, V)] and cogroup is applied to it to group it
with another RDD of type RDD[(K, W)] (we name it “other RDD” in this section). The
cogroup transformation may also involve shuffling between different Worker nodes and this
is determined by several factors such as the partitioners of the RDDs involved in this
transformation. Table 5.1 lists different cases which determine the shuffling in cogroup.

Case input RDD partitioner: | other RDD partitioner:
same as output RDD same as output RDD

0 Yes Yes

1 Yes No

2 No Yes

3 No No

Table 5.1: partitioner information of input, other and output RDDs in cogroup

We now illustrate how cogroup works for case 0, 1 and 3. Case 1 and case 2 are similar.
The cogroup for each partition contains two steps:

e Step 1 Fetch RDD partitions and blocks (for case 1, 2, and 3 only);

e Step 2 Then put all the elements of fetched RDD partitions and blocks in a Hash
table for this partition.

Here an RDD block in step 1 represents a portion of an RDD partition. An RDD partition
has to be divided into several blocks if the partitioning of this RDD is different from the
output RDD. For example, in case 1, the partitions of the other RDD have to be divided
into blocks.

Case 0 does not involve shuffling between partitions as all RDDs have the same partitioner.
Each partition of the output RDD is computed by several steps. Figure 5.6 gives an example
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of cogroup for case 0 where a solid rectangle represents an RDD partition. We assume that
partition i (i = 0, 1, 2) of the input RDD is located on the same node as partition i of
the output RDD. At first, the corresponding partitions of input RDD and other RDD (the
partitions that a partition of output RDD depends on) are fetched to the node where the
partition of output RDD is located. For example, partition 0 from the input RDD and
partition 0 from the other RDD are fetched to the same node. After fetching, a Hash
table is created for each partition of output RDD. The Hash table has keys of type K and
values of type Seq(Seq[V], Seq[W]). All elements of the corresponding partitions from the
input RDD and the output RDD are put into the Hash table one by one. For example,
all elements from partitions 0 of the input RDD and the output RDD are put into the top
Hash table. When an element is put into the Hash table, the value of the corresponding
(key, value) pair in the Hash table is updated (the value of the element is added to Seq[V]
or Seq[W]) if the (key, value) pair already exists; otherwise, a (key, value) pair is created
in the Hash table with value containing the value of this element. Putting elements in the
Hash table is similar to the case of combineByKey as we discussed in section 5.1. After all
elements are put in the Hash table, the partition of output RDD is created using the final
Hash table.

fetch

partitions Hash

tables

output
RDD

Putting all elements in
3 the Hash table
input

RDD

Putting all elements in
the Hash table

[

other A
RDD

Putting all elements in
the Hash table

Figure 5.6: cogroup for case 0

Figure 5.7 shows cogroup for case 1. Small black rectangles represent blocks created from
the previous stage. The tiny blocks with numbers on them represent local blocks (which
do not need to be fetched from other Worker nodes remotely). Other blue, black or green
rectangles represent RDD partitions. Here we assume that partition i (i = 0, 1, 2) of the
input RDD is located on the same node as partition i of the other RDD. Partition 3 of the
other RDD is located in a different node than partitions 0, 1 and 2. The input RDD has
the same partitioner as the output RDD while the other RDD has a different partitioner.
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We illustrate this process by explaining how partition 0 of output RDD is computed. After
determining that input RDD has the same partitioner as output RDD, partition 0 of the
input RDD is fetched locally. When turning to the other RDD, a different partitioner is
found and then only a portion of the partition 0 (local block 0) is located on the same node
where partition 0 of the input RDD is located. The local block fetching takes a very short
time. Then the Spark starts the process of fetching remote blocks from other partitions
(1, 2, 3). Step 2 starts immediately after the local block fetching and does not wait for
the completion of remote fetching. In summary, step 1 deals with local fetching (fetch
local blocks 0 or entire partition 0 of input and other RDD) while step 2 involves remote
fetching and putting elements in the Hash table. For case 3, the process for input RDD of
case 1 is replaced by the step for other RDD.

fetch
artiions or * Putting all elements in the Hash
P Y Hash table tables
local blocks 0

output

input

RDD /'
other

RDD

Fetch remote blocks and put
all elements in the Hash
table

Figure 5.7: cogroup for case 1

5.3 co-partition and co-location

We now discuss the co-partition and co-location of two RDDs as they may influence the
performance of cogroup. The term co-partition means two RDDs have the same partitioner.
In this case, the cogroup of them does not involve shuffling between different partitions as
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we discussed in section 5.2 (we assume the partitioner of output RDD is the same as input
RDD). However, co-partitioning two RDDs does not mean there is no remote fetching
of entire partitions if they are not co-located. We call two RDDs co-located if they are
co-partitioned and their corresponding partitions are located in the same Worker node.
Figure 5.8 shows the difference between co-partition and co-location.

co-partition but

) co-location
not co-location

Node 0 Node 1 Node 2 Node 0 Node 1 Node 2

Figure 5.8: co-partition and co-location

When two co-partitioned RDDs are cogrouped into an output RDD with the same par-
titioner, the two source RDDs are co-located if the process of computing them and the
cogroup transformation are in the same job triggered by an action. In this case, Spark
makes their co-location possible by launching their computing stage at the same time,
which means two stages may be running simultaneously before cogroup is launched. How-
ever, if the two RDDs are computed from different jobs and cached in memory after the
computing, their co-location can not be guaranteed as the cogroup cannot choose their
partitions’ locations at this moment. Cogroup can not control an RDD’s storage if this
RDD is computed from another job. If the two RDDs are not co-located, the storage of
the output RDD is aligned with the input RDD. Some partitions of the other RDD have
to be fetched remotely in Step 1 of cogroup. Figure 5.9 shows how cogroup works in Step
1 for two co-partitioned RDDs which are not co-located and for two co-located RDDs,
respectively.
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Figure 5.9: cogroup step 1 for co-partitioned RDD
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Chapter 6

Algorithm implementations in Spark

6.1 Pagerank in Spark

The Pagerank algorithm (without considering dangling nodes) has already been imple-
mented in Spark [15]. In this section, we give a brief description of the Pagerank algorithm
(without considering dangling nodes) implementation in Spark. First, we present the code
for Pagerank from Spark package org.apache.spark.examples (see https://github.com/
mateiz/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/
SparkPageRank.scala):

package org.apache.spark.examples

import org.apache.spark.SparkContext._
import org.apache.spark.{SparkConf, SparkContext}

/*%

* Computes the PageRank of URLs from an input file. Input file should
* be in format of:

* URL neighbor URL

* URL neighbor URL

* URL neighbor URL

* where URL and their neighbors are separated by space(s).

4
object SparkPageRank {
def main(args: Array[String]) {
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// Configuration for a Spark application:
val sparkConf = new SparkConf () .setAppName ("PageRank")
// Specify the number of iterations:
var iters = args(1l).tolInt
// Create the SparkContext object:
val ctx = new SparkContext (sparkConf)
// Read input data line by line from text file:
val lines = ctx.textFile(args(0), 1)
// Transform each line to (key, value) pair, group all outlinks for
// each page:
val links = lines.map{ s =>
val parts = s.split("\\s+")
(parts(0), parts(1))
}.distinct () .groupByKey () .cache ()
// Create an RDD representing the rank for each page:
var ranks = links.mapValues(v => 1.0)

for (i <- 1 to iters) {
// Create a (key, pair) RDD with the contributions sent by each page:
val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>
val size = urls.size
urls.map(url => (url, rank / size))

+
//Sum contributions for each page and update the ranks:
ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)
}
// Collect ranks and print the results out:
val output = ranks.collect() // RDD action collect
output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

ctx.stop()

In line 30, RDD links obtains a partitioner (HashPartitioner) as it is created from the
transformation groupBykey. The number of partitions is determined by the block size of
the text file read from HDFS or the local file system. RDD ranks (line 32) has the same
partitioner as RDD links since it is created by applying the mapValues transformation to
RDD links. Therefore RDDs links and ranks are co-partitioned and the join in line 36 does
not involve shuffling between partitions as a result. In line 42, the new RDD ranks keeps
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the partitioner of its parent RDD contribs, which enables the co-partition of RDDs in the
next iteration. Moreover, the co-partition in this Pagerank implementation also guarantees
the co-location of RDDs because this application only has one job (line 44).

6.2 CG in Spark

We now discuss how the Conjugate Gradient method is implemented in Spark. Here we
assume the matrix A is a sparse matrix while the vector b is a dense vector (zero elements
are also stored). At first, we present a naive implementation of CG, which is similar to its
implementation in Hadoop. Then we discuss the drawbacks of this implementation and
propose a new method called “Integrated CG” which implements CG in a different and
efficient way. Finally, we present a way to optimize the integrated CG method by grouping
elements into blocks.

6.2.1 Matrix and Vector operations in Spark

Before we detail the CG implementations, we present implementations of some matrix and
vector operations in Spark as they are used in CG. The matrix and vector data is stored
in HDFS as text files. Each line in the file represents an element. The format of the file
has been described in section 4.1. We use a SparkContext object sc (see section 2.2.1) to
read a file from HDFS and create an RDD representing a matrix or vector. The following
Scala code shows how matrix and vector RDDs are created.

val sc = new SparkContext(master: String, appName: String, conf: SparkConf)
// read matrix data from HDFS file matrix.txt
val matrix = sc.textFile("hdfs:...... /matrix.txt")
// create an RDD representing a matrix where a key is the column id and a value
contains the row id and the matrix element.
val RDD_matrix = matrix.map{s =>
val parts = s.split("\\s+")
(parts(1) .toInt, (parts(0).toInt, parts(2).toDouble))

}
// read vector data from HDFS file vector.txt
val vector = sc.textFile("hdfs:...... /vector.txt")

// create an RDD representing a vector where a key is the row id and a value is
the vector element.
val RDD_vector = vector.map{s =>
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val parts = s.split("\\s+")
(parts(0) .toInt, parts(l).toDouble)
}

Assume we want to implement vector operation fa + b, where a and b are vectors,
and 6 and ~ are scalars. This can be done by using two RDD transformations: join and
map Values.

// compute theta * a + gamma * b,
// RDDs RDD_a and RDD_b represent vector a and b, aplusb is the RDD
representing result vector
val aplusb = RDD_a.join(RDD_b) .mapValues{ s =>
theta * s._1 + gamma * s._2

Iy

After the join transformation, the value of each element of RDD aplusb is a Tuple2 object
with the vector element of a as its first element and the vector element of b as its second
element.

Computing a vector scalar product requires two RDD transformations and one RDD action:
join, map, and reduce. Here we use map transformation instead of mapValues since we no
longer need to keep the keys.

// compute a * b,

// RDDs RDD_a and RDD_b represent vector a and b, atimesb is scalar product of
the two vectors

val atimesb = RDD_a.join(RDD_b) .map{ case(k, v) => v._1 * v._2}.reduce(_ + _)

For computing the vector square, only a map transformation and a reduce action are
needed.

// compute a * a,
// RDDs RDD_a represents the vector a, asquare is square of the vector
val asquare = RDD_a.map{ case(k, v) => v * v}.reduce(_ + _)

Now we detail how the GIM-V algorithm (discussed in 4.1.1) is implemented in Spark to
do Matrix-Vector Multiplication. At first, all elements in each column must be grouped
together using the RDD transformation groupByKey. To multiply each element of a column
with the corresponding vector element, we first need to apply the join transformation
to put each column and the corresponding vector element together. Then the flatMap
transformation can perform the multiplication (compute @); ;, see section 4.1.1), changing
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N}

key to the row id. The reduceByKey finishes the whole process by adding all (); . for each
i together. The following Scala code illustrates how Ax is computed in Spark:

// compute Ax:

// RDD RDD_x represents the vector x, RDD_matrix stores the matrix elements
with column id as the key as we presented before, RDD_Ax represents the
computed vector Ax.

val RDD_Ax = RDD_matrix.groupByKey() // group elements by column

.join(RDD_x) // join with vector elements

.flatMap{case(k, v) => // multiply with vector elements
v._l.map(mv => (mv._1, mv._2 *x v._2))}

.reduceByKey(_ + _) // add Q values by row

6.2.2 Naive implementation of CG

In this section, we detail the naive implementation of CG. This implementation is based on
the implementations of matrix and vector operations described in section 6.2.1. Table 6.1
reports the RDDs created in our CG implementation.

RDD name | type | description

matrix val | represents matrix A, stores matrix elements using (key, value) pairs
Al val | represents matrix A, stores matrix elements by column

r0 val | represents vector rg

xk var | represents vector xy for all iterations

rk var | represents vector ry for all iterations

pk var | represents vector py for all iterations

Apk val | represents vector Apy for all iterations

Table 6.1: RDDs in CG implementation

The RDDs representing vectors (10, xk, rk, pk, Apk) have the same format as RDD_vector
in section 6.2.1 (RDD[(Int, Double)]). RDD matrix has the same format as RDD_matrix
in the previous section (RDD|(Int, (Int, Double))], where the first Int is the column and
the second Int is the row). RDD A1l has the format of RDD[(Int, Seq[(Int, Double)])] as it
is the output RDD from applying groupByKey to RDD matrix. Most of the RDDs listed
in the table above should be cached as they are used more than once. RDD A1l must be
cached as it is used at the beginning to compute Axg and in all iterations to compute
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Apyk. The RDDs rk, pk, and Apk are used twice in each iteration and they should also be
cached after they are updated in the iteration if possible. The algorithm implementation
is given as follows:

Algorithm 14 Naive CG in Spark

1: Read data for A from HDFS and create a (key, value) pair RDD (matrix) for A.
2: Group all elements in each column by applying groupByKey to matrix (create RDD

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:

22:

23:
24:
25:
26:
27:
28:

Al), then cache Al in memory.

Read vector data for b and xo and create (key, value) pair RDDs (b for b and x0 for

x0).

Create RDD Ax0 for Axg using A1, x0.

Create RDD 10 for rg = b — Axg using Ax0 and b.

xk + x0

rk < 10

pk < 10

Compute rg ro using r0 (the RDD action reduce is used)

k<0

repeat
Create RDD Apk using Al and pk and cache Apk in memory.
Compute py Apy using Apk and pk (RDD action reduce is used)

I'TI'
pEkA;k
/* Compute Xp11 = Xk + axpx */

Update xk using pk and a, the updated RDD xk represents xj. 1.
/* Compute ri 1 = rx — o Apk */

Update rk using Apk and ay, the updated RDD rk represents ry 1.
Cache RDD rk in memory.

Compute rif, ;i1 using rk (the RDD action reduce is used)

If r{f, ;T is sufficiently small then exit loop

rf k41
Compute ), = *—=
r T

/* Compute pixi1 = i1 + Brpx ™/
Update pk using rk and S, the updated RDD pk represents py1.-
Cache RDD pk in memory.
kE+—k+1
end repeat
Save RDD xk as text file in HDFS (RDD action saveAsTextFile is used)

Compute oy, = (rfry is obtained from the previous iteration).
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In Algorithm 14, each iteration adds newly created RDDs pk, Apk, and rk in memory. After
many iterations the total size of RDDs in memory can grow to be extremely large. Once
the amount of memory is running out, Spark removes some old RDD partitions cached
in memory if a newly created RDD needs to be cached. The oldest RDD in memory is
removed first and Spark stops removing RDDs once enough space is released to cache the
newly created RDD. Here “oldest” does not mean this RDD is created before all the other
RDDs; it means this RDD has been left unused for the longest time. For example, during
the 100th iteration, RDD rk created in the first iteration is the oldest RDD in memory
as it has not been used since the second iteration. However, RDD Al is used in every
iteration and should not be regarded as the oldest RDD even though it was created at the
beginning. Therefore RDD rk created in the first iteration should be removed automatically
once memory is running out. Figure 6.1 illustrates how RDDs are removed from memory.

ith iteration (i+1)th iteration (i+j)th iteration

memory

Figure 6.1: Removing RDDs from memory in CG when memory is running out since the
1th iteration

In each iteration there are RDD actions that trigger the computation of pk, Apk, and
rk. Therefore it does not matter if all their ancestor RDDs are still in memory as long as
the memory is large enough to cache RDD Al and RDDs created in any two consecutive
iterations. However, note that there are no RDD actions to trigger the computation of
RDD xk created in each iteration except the action in line 28, which means computation
of RDDs xk from all iterations starts after the loop ends. As we know, RDD xk in each
iteration depends on RDD pk in that iteration. If there is enough memory that no RDDs
have been removed, then everything is fine as each pk can be obtained from memory and
used to compute each xk. However, many iterations may be required in CG, therefore,
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removing RDDs from memory becomes inevitable. Some old RDDs (like RDDs rk, pk,
and Apk created in the first few iterations) may have been removed from memory after
the loop is finished as they have not been used for a long time. In this case, removed
RDDs pk must be recomputed; this causes additional problems as each RDD pk depends
on the corresponding RDDs rk and Apk which may also have been removed from memory.
One way to avoid this problem is to cache RDD xk from each iteration and force it to be
computed immediately after its creation. One may apply a simple action which takes very
little time to RDD xk. For example, using the RDD action count may only take less than
a second which is a small amount of time for a big CG problem.

There are several sources of potential inefficiency in this naive implementation. For each
iteration in Algorithm 14, five join transformations are applied to RDDs. The join method
is actually based on cogroup by flattening values of output RDD from cogroup:

// for an RDD[(K,V)], the join applies to it as follows
def join(other: RDD[(K, W)], partitioner: Partitiomer): RDD[(K, (V, W))] = {
this.cogroup(other, partitioner).flatMapValues { case (vs, ws) =>
for (v <- vs; w <- ws) yield (v, w)
}
}

When we join two vectors, it takes very little time for the flatMapValues transformation
to run, since vs (Seq[V]) and ws (Seq|W]) only have at most one element respectively. As
the size of vectors increases, the cogroup transformation could be quite time consuming
as it may involve shuffling between different Worker nodes. The fact that cogroup puts
data in the Hash tables can also harm the performance once the memory is full. Moreover,
co-location for some join transformations in our implementation cannot be guaranteed.
The five join transformations in Algorithm 14 are: A1l and pk (line 12), Apk and pk (line
13), xk and pk (line 16), rk and Apk (line 18), and pk and rk (line 24). RDDs pk and
Apk are computed in line 13 while RDDs Al, rk and xk are computed in line 9 (where
the computation of Al is triggered by an RDD action for computing rgre), 20 and 28
(or some place within the loop from a naive action like count as we mentioned above),
respectively. RDD pk and its child RDD Apk are computed in the same job, therefore
they are co-located with RDD A1 since RDDs Al and pk are co-located. The co-location
for the join applied in line 12 and 13 is guaranteed as long as A1 is co-partitioned with pk.
However, for the join in line 18, input RDD, other RDD and output RDD are computed
in different jobs: rk is computed in line 20 from the previous iteration, Apk is computed
in line 13 in this iteration, and the updated rk is computed in line 20 in this iteration.
This may cause RDD rk and RDD Apk to not be co-located as we explained in section 5.3.
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Moreover, the RDD xk and pk in line 16 may not be co-located if one chooses to trigger
the computation of xk in each iteration by, for example, applying an RDD action first()
to xk at the end of each iteration. Fetching partitions remotely also consumes quite a bit
of time, therefore join without co-location can strongly harm the performance. To avoid
or at least reduce those join transformations and the potential problems they may cause
(absence of co-location), we develop a different method for CG in Spark by changing the
storage of matrices and vectors (see section 6.2.3).

6.2.3 Integrated CG method

We now detail a new method called Integrated CG which is much more efficient than the
naive implementation method. In this method, four join transformations can be avoided by
integrating Xy, ry, px and A in the same RDD. Before we start describing our algorithm,
we list some variables used in the implementation (Table 6.2). Each element of sequence
A; is a Tuple2 (2-tuple) representing a matrix element in the ith column of A with as first
element the row number and as second element the matrix element.

variable | type description

T Double the ith element of xy

T Double the 7th element of ry

Di Double the ith element of py

Apk; Double the ith element of Apy

A, Seq[(Int, Double)] | a sequence of all elements in the ith column of A

Table 6.2: Variables in each iteration of the Integrated CG implementation

Three types of RDDs are created in each iteration: X, X1, and Apk. RDD Apk has the
same format as in section 6.2.2 and represents vector Apx. RDD X has the type RDD|(Int,
(Double, Double, Double, Seq[(Int, Double)]))] and each element of X has structure (i, (x;,
i, Pi; A;)) with the key indicating the row number of vectors and the column number
of the matrix at the same time. Therefore all data of x, ri, px and A is stored in X
and parallelized by putting the corresponding element of the vectors and column of the
matrix in the same Tuple. Each element of RDD X1 has the type RDD[(Int, (Double,
Double, Double, Double, Seq[(Int, Double)])) and the extra element in the Tuple is used to
store Apk;: one element of X1 stores (i, (z;, i, pi, Apki, A;)). With such kind of storage,
vector additions in Algorithm 1 (line 6, 7 and 10) can be done by applying mapValue
transformations to X or X1 instead of using join like in Algorithm 14. Moreover, join
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can also be avoided for the Matrix-Vector Multiplication Apy as each element of the ith
column of A (stored in A;) can be multiplied by r; using mapValue as well. Algorithm 15
provides pseudo code of our implementation.

Algorithm 15 Integrated CG in Spark

1: Create RDD X by reading data for A, xq, and b from HDFS. RDD X stores data for
Xg, I'o, Po and A.

2: Cache RDD X in memory.
3: Compute ryre using X. (here RDD action reduce is used)
4: k<0
5: repeat
6: Create RDD Apk using X.
T: Create RDD X1 by cogrouping X and Apk, and cache X1 in memory.
8: Compute pf Apy using X1. (here RDD action reduce is used)
rTr . . . . .
9: Compute oy, = ka—AIk>k (rfry is obtained from the previous iteration).
k
10: /* Compute X1 = Xk + axpx and r 1 = rx — o Apk */
11: Update X using X1 and ay, the updated X stores data for xy 1, rr.r1, px and A.
12: Cache RDD X in memory.
13: Compute rii, ;ris1 using X. (here RDD action reduce is used)
14: If r{f, ;T is sufficiently small then exit loop
I‘T r
15: Compute ), = ki%—:fl
k
16: /* Compute pxy1 = i1 + SePx */
17: Update X using [, the updated X stores data for xy.1, rre1, Pxr1 and A.
18: Cache RDD X in memory.

19: k<« Fk+1

20: end repeat

21: Create an RDD x (which only stores data for xi) using RDD X and save it as text file
in HDFS. (RDD action saveAsTextFile is used)

Now we detail how each step in Algorithm 15 is done. The initial RDD X is created by
using several join transformations as it stores both matrix and vector data. At first, some
RDDs in Algorithm 14 (A1, x0, b, Ax0) should be created before creating X. Algorithm 15
describes how the initial X (line 1 in Algorithm 15) is created.
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Algorithm 16 Create RDD X

1: Read data for A from HDFS and create a (key, value) pair RDD (matrix) for A.

2: Group all elements in each column by applying groupByKey to matrix (create RDD
Al).

3: Read vector data for b and x¢ and create (key, value) pair RDDs (b for b and x0 for
x0).

4: Create RDD X0 using A1, x0 and b; each element of X0 stores corresponding elements
of A1, x0 and b: (4, (x;, b;, A;)). Cache X0 in memory.

5. Create RDD Ax0 for Axq using XO0.

6: Create RDD X using X0 and Ax0.

When we create RDD X0, the cogroup transformation is used to cogroup three RDDs:
A1, x0, b. Then mapValues is used to transform the RDD element type to (Int, (Double,
Double, Seq[(Int, Double)])). The value is a Tuple3 representing z;, b; and A; respectively,
where b; is the ith element of b. X0 can be used to create RDD Ax0 using the same scheme
as in section 6.2.1. RDD X is created by grouping X0 with Ax0 and then computing r;
(p; = r; for k = 0). Figure 6.2 illustrates the process of creating RDD X and the structure
of each RDD. Here Ax; represents the ith element of vector Axg and r; = p; = b; — Ax;.

cogroup

mapVaIues

=

(1,06, by, Ax;, A))) (1, (% 1 pw A))

Figure 6.2: Create initial RDD X
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During each iteration, only one cogroup is involved (line 7 in Algorithm 15). The RDDs to
be cogrouped (X and Apk) are co-located if they are co-partitioned as they are computed
in the same job (line 8). As for the vector additions, only the mapValues transformation is
used in our implementation. Line 10 updates RDD X by updating z; (= x; + agp;) and r;
(= r; — ap Apk;) using the mapValues transformation, and so does line 15 (p; < r; + Brp;)-
Figure 6.3 shows how our implementation works in each iteration.

flatMap
reduceByKey

memory

from previous
iteration

insert with
Apki for each i

-
-
-

reduce

update each x;, r;,
remove Apki for eachi

Figure 6.3: kth iteration in Integrated CG in Spark

Note that the size of RDD X or X1 could be very large compared to RDD Al. In each
iteration, three RDDs X and one RDD X1 are added in memory. Each RDD X or X1
cached in memory only depends on its parent RDD and is used only by its child RDD of
X or X1. Therefore, the oldest RDD (in this case it is the first RDD created and cached in
memory) should be removed from memory first once there is insufficient memory to cache
more RDD partitions. It is very important to make sure that the memory used to cache
RDDs is large enough to cache any two consecutive RDDs X or X1 (all RDDs X have almost
the same size, and RDDs X1 are a little larger than an RDD X). Otherwise, for example,
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if the memory is running out during the computing of the second RDD (X1) in Figure 6.3,
then some partitions of the first RDD (X) must be removed from memory. However, the
partitions removed may be needed to compute some partitions of RDD X1 which are not
computed yet (Figure 6.4). If this happens, those removed partitions should be computed
again and the re-computing of X makes our implementation quite inefficient and even
inapplicable. Moreover, since all RDDs cached in memory have sequential dependency,
re-computing an RDD requires re-computing all of its ancestor RDDs since they are older
and would have been removed before the desired RDD. So it is essential to have sufficient
memory to cache any two consecutive RDDs X or X1.

remove from memaory
4 .

RDD X1

v
remove from memory remove from memory

Figure 6.4: Remove RDD partitions from memory. Here a blue or green rectangle represents
an RDD partition. RDD X1 narrowly depends on RDD X.

6.2.4 Half-integrated CG method

To solve the memory shortage that may occur in the Integrated CG implementation, we
can remove the data for matrix A in RDD X and X1 at the expense of having one more
cogroup or join transformation in each iteration. We call this method Half-integrated CG.
The RDD A1l from the naive CG implementation is created here and cached in memory
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for use in each iteration. The types and formats of RDD X and X1 in the Half-integrated
CG are shown in Table 6.3.

RDD | element type format
X (Int, (Double, Double, Double)) (1, (x4, 74, D))
X1 (Int, (Double, Double, Double, Double)) | (i, (z;, ri, pi, Apk;))

Table 6.3: Types of RDDs in Half-integrated CG

The algorithm description is given in Algorithm 17. The main differences between Algo-
rithm 15 and 17 are:

e Algorithm 17 has one more cogroup (line 8);

e RDD Al is cached in memory in Algorithm 17.

Figure 6.5 illustrates how Half-integrated CG works in the kth iteration. As we can see,
RDDs X and X1 in Figure 6.5 become smaller compared to Figure 6.3. RDD A1 can always
remain in memory as it is used in each iteration and will not be chosen to be removed first
if memory runs out.
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Algorithm 17 Half-integrated CG in Spark
1: Read data for A from HDFS and create a (key, value) pair RDD (matrix) for A.
2: Group all elements in each column by applying groupByKey to matrix (create RDD
A1), then cache Al in memory.
3: Create RDD X by reading data for xqg, and b from HDFS and using RDD Al. RDD
X stores data for xg, rg, Po.

4: Cache RDD X in memory.

5: Compute rg ro using X. (here RDD action reduce is used)

6: K<+ 0

7: repeat

8: Create RDD Apk by cogrouping X and Al.

9: Create RDD X1 by cogrouping X and Apk and cache X1 in memory.

10: Compute pf Apy using X1. (here RDD action reduce is used)

11: Compute oy, = pff%:;k (rfry is obtained from the previous iteration).

12: /* Compute Xy41 = Xk + axpk and r 1 = rx — apApg */

13: Update X using X1 and «ay, the updated X stores data for xy 1, rx.1, px and A.
14: Cache RDD X in memory.

15: Compute rif, ;i1 using X. (here RDD action reduce is used)

16: If r{f, ; vt is sufficiently small then exit loop

17: Compute 3, = r%&%

18: /* Compute pxi1 = ree1 + SkpPx ™/

19: Update X using [, the updated X stores data for xy.1, i1, Pxr1 and A.
20: Cache RDD X in memory.
21: k< Fk+1

22: end repeat
23: Create an RDD x (which only stores data for xi) using RDD X and save it as text file
in HDFS. (RDD action saveAsTextFile is used)
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cogroup
flatMap
reduceByKey

from previous
iteration

insert with
Apki for each i

update each x;, ri,
remove Apkiforeachi

Figure 6.5: kth iteration in Half-integrated CG in Spark

6.2.5 Optimization using blocks

Now we discuss how to optimize the Integrated CG implementation in Spark by grouping
elements into blocks. We assume that A is an M x M matrix and x¢ and b are M x 1
vectors. Therefore, in our Integrated CG, RDDs X, X1 and Apk are supposed to have M
elements. Our idea is to group elements of each RDD into blocks according to their keys.
Suppose the block size is B, then new types of RDDs X, X1, and Apk are described in
Table 6.4.
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RDD | element type

X (Int, Array[(Double, Double, Double, Seq[(Int, Double)])](B))

X1 (Int, Array[(Double, Double, Double, Double, Seq[(Int, Double)])](B))
Apk | (Int, Array[Double](B))

Table 6.4: Types of RDDs in Integrated CG with blocks

The format of each element of RDD X, X1 or Apk is (BlocklId, Block). For the ith element
of RDD X, X1 or Apk in section 6.2.3, it is stored in a block with BlockId = [4] (here ||
means function, [z] is the largest integer not greater than x) at position (i mod B) in the
Block. For the element of X, X1 or Apk with Blockld = j, its value (Block) stores (z;,
Tis Diy Ai), (x4, T3y piy Apk;, A;) or Apk; for j x B < i < (j 4+ 1) x B. Using blocks can
improve the performance by reducing the time for shuffling in each iteration.
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Chapter 7

Spark performance experiments

Now we present performance test results for the algorithms we implement in Spark. Our
tests are done on the gridbase cluster and the properties for each Worker node are given
in Table 7.1. The node gridbase 1 also acts as Master node in our tests. The executor on
each Worker, if not specified, is allocated with 5.0 GB memory. Therefore, 60 percent of
total memory (15.0 GB), namely 9.0 GB, can be used to cache RDDs by default.

gridbase | No. of cores | memory | No. of processors | Name of processor

1 4 6.8GB |2 Dual-Core AMD Opteron(tm) 2218@2.6Hz
2 8 6.8 GB |2 Intel(R) Xeon(R) CPU X5460@3.16GHz

3 16 147GB | 4 Intel(R) Xeon(R) CPU X5460@3.16GHz

Table 7.1: The properties of Worker nodes on the gridbase cluster

7.1 Pagerank tests in Spark

Now we present our test results for Pagerank in Spark (see section 6.1). In our test, we
use 12 cores in total so 4 cores are used on each Worker node. Table 7.2 reports the
details of adjacency matrices for the input graphs from http://snap.stanford.edu/.
Some pages in each graph may not have inlinks and they are removed according to the
algorithm in sec 6.1. In our tests, we used 10 iterations to compute the ranks for pages.
The Pagerank algorithm in Spark is scalable on a cluster with fixed size when the input
graph is not large. However, the performance becomes much worse once there is not enough
memory to fit the entire graph (see Figure 7.1). We found that the time for later iterations
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http://snap.stanford.edu/

increased dramatically because of the Garbage Collection (GC) time, which is discussed in

Chapter 7.3.

5,100

Graph Nodes Edges size
cit-Patents 3,774,768 | 16,518,948 | 267 MB
soc-pokec-relationships | 1,632,803 | 30,622,564 | 404 MB
soc-LiveJournall 4,847,571 | 68,993,773 | 1030 MB
com-orkut.ungraph 3,072,441 | 117,185,083 | 1687 MB

Table 7.2: Graphs used in our Pagerank tests
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Figure 7.1: Pagerank tests in Spark

84

7,000



7.2 Tests for CG in Spark

Three matrices and six vectors are used in our tests for our CG implementation. Thus
we can do tests for three problems A;x = b; of different sizes. The details about the
matrices (Ao, A1, Az2) and vectors (bg, b1, b2, Xg0, Xo1, Xo2) are shown in Table 7.3 and
Table 7.4, respectively. All matrices and vectors are generated from MATLAB and stored
as text files (only nonzero elements are stored). The matrices A; are block diagonal where
each block is 10-by-10 symmetric positive definite (SPD) matrix. All vectors are dense
vectors generated randomly. Therefore, A; are SPD and CG can be used to solve problems
A;x = b;. Moreover, we run 10 iterations for each CG problem in our tests regardless of
matrix size.

Matrix | Number of rows | No. of nonzero elements | size

Ay 10,000,000 28,000,000 921 MB
A, 5,000,000 14,000,000 458 MB
A, 2,500,000 7,000,000 226 MB

Table 7.3: Matrices used in our CG tests.

Vector | Number of components | No. of elements | size

bg, Xgo | 10,000,000 10,000,000 248 MB
b1, x01 | 5,000,000 5,000,000 124 MB
ba, Xg2 | 2,500,000 2,500,000 61 MB

Table 7.4: Vectors used in our CG tests.

At first, we investigate the scalability of the algorithms we proposed in section 6.2: the
Naive CG, Half-integrated CG, Integrated CG and Integrated CG with blocks. In our
tests, 12 cores are used in total therefore each Worker node is allocated four cores. The
test results are shown in Figure 7.2. The Naive CG method is not efficient when compared
with other methods as it has too many cogroup transformations in each iteration. The
Half-integrated CG is faster than the Naive CG because it puts the data for the vectors
together. The Integrated CG improves the performance of the Half-integrated CG by
inserting matrix data into the integrated vector data. Grouping elements into blocks also
improves performance a bit by reducing shuffling between partitions. In our tests for
Integrated CG with blocks, we set the block size to be 50 for the problems Agx = bg and
A1x = by, and 25 for the problem Asx = by. Using blocks in the Integrated CG method
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can reduce the shuffle write and read in each iteration (see Table 7.5 and Table 7.6). The
shuffle read/write in the tables means the total shuffle read/write for all stages in one
iteration. Here the shuffle read /write for a stage can be observed in the Spark web UI (see
Figure 2.8). The shuffle read for a stage shows the amount of data read from previous
stage remotely. The shuffle write for a stage means the amount of data written to different
Worker nodes in this stage. Moreover, grouping elements into blocks also reduces the size
of RDD X or X1 a bit. For problem Agx = bg, we found that RDD X or X1 can be about
3.8 GB for the Integrated CG while the size of X or X1 can be reduced to at most 3.3 GB
using blocking, which may be very helpful if there is not enough memory.
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Maive CG

—E— Half-integrated CG
Integrated CG
——Integrated CG with blocks

1200

1000

800 - —

B00 - -

Running time (s)

200 -

L1
200 = 300 400 500 500 1000
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Figure 7.2: The scalability of our algorithms for CG in Spark
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CG problem | shuffie read | shuffle write | No. of partitions for each RDD
Agx = Dby 144.2 MB | 458.5 MB 96
Aix=Db; 80.0 MB 230.4 MB 48
Asx =bs 52.2 MB 115.7 MB 24

Table 7.5: Shuffle read/write for the first iteration in Integrated CG

CG problem | shuffle read | shuffle write | No. of partitions for each RDD
Aox —by | 0.0 MB 2249 MB | 96
A,x—=b; |0.0MB 1125 MB | 48
Asx =bs 0.0 MB 58.3 MB 24

Table 7.6: Shuffle read/write for the first iteration in Integrated CG using blocks

7.3 Spark GC time

In this section, we discuss how to reduce the Spark GC time using serialized RDD storage.
Jave virtual machine (JVM) garbage collection (GC) can harm the performance in Spark
when one has large RDDs in the Spark application [34]. The running time of GC is
proportional to the number of objects in the program. As suggested in the Spark tuning
guide [34], the first thing to try is to use serialized caching as there will be only one object
per RDD partition. Moreover, the size of a serialized RDD in memory becomes much
smaller, which means more memory can be used for task execution instead of memory
caching to make the application more efficient. The fraction of executor memory to use for
Spark’s memory cache is controlled by the parameter spark.storage.memoryFraction (0.6
by default). One can choose to lower this value if cached RDDs are small.

There are two types of data serialization in Spark: Java serialization (default serializer for
Spark) and Kryo serialization (faster than Java serialization). Storing RDDs in serialized
form can increase the access time but reduce the memory used to cache RDDs.

Now we present the test results for Pagerank using serialized caching. Table 7.7 reports
the sizes of RDDs cached in memory for each graph. The memory abailable to cache RDDs
is 9.0 GB (60 percent of 15.0 GB, the total executor memory) in total by default, which
is wasteful for cases using RDD serialized caching, so we can allocate more memory for
task execution by lowering the parameter spark.storage.memoryFraction. In our tests, we
set it to be 0.3 for cases with Java and Kryo serialized caching. Figure 7.3 shows the
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scalability of Pagerank with serialized caching in Spark. Using serialized RDD storage,
the time for each iteration becomes stable since Spark has enough available memory to
properly perform garbage collection. Storing RDDs in serialized form also can be very
helpful to our Integrated CG since it requires large RDDs to be cached in memory.

Graph cache without serialization | Java serialization | Kryo serialization
cit-Patents 1,313.1 MB 257.3 MB 243.1 MB
soc-pokec-relationships | 1,936.7 MB 333.1 MB 300.0 MB
soc-LiveJournall 4.2 GB 833.9 MB 755.9 MB
com-orkut.ungraph 7.2 GB 1247.0 MB 1107.2 MB

Table 7.7: The sizes of RDDs cached in memory for Pagerank in Spark
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Figure 7.3: The scalability of Pagerank using serialized caching in Spark
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7.4 Comparison with tests in Hadoop

Now we run Pagerank and CG tests in Hadoop and compare the results with Spark. Here
we use the Pagerank algorithm without considering dangling nodes in the Hadoop imple-
mentation. The properties of our test data has been detailed in Table 7.2, Table 7.3 and Ta-
ble 7.4. Figure 7.4 compares performance of the Pagerank implementation in Hadoop and
Spark. The optimized Pagerank implementation in Spark (using Kryo serialized caching)
can be at least 1.5 times faster than Hadoop. However, Hadoop out-performs Spark when
there is not enough memory to fit large graphs.

—H—Non-serialized caching
—5— Java serialized caching

Kryo serialized caching

Ratio of Running Time (T Hadoop ITSWK)

g | I | | I | I
0 300 500 1,200 1,600 2,000
Size of the graph (MB)

Figure 7.4: Ratio of Running time of Pagerank in Hadoop to the Running time of Pagerank
in Spark

Figure 7.5 shows the ratio of running time of CG in Hadoop to the running time of CG in
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Spark. When the matrix A is small, the overhead of Hadoop costs a lot of time therefore
CG in Spark is extremely fast compared to Hadoop.

Maive CG
=& Half-integrated CG T
Integrated CG
5L 2 Integrated GG with blocks

Ratio of Running time (THadoop #TSmrk)

% 1} 4DID SDID 1,000
Size of the matrix A (MB)

Figure 7.5: Ratio of Running time of CG in Hadoop to the Running time of CG in Spark

90



Chapter 8

Conclusion

In this thesis, we implemented the Pagerank algorithm and the CG method in Hadoop and
Spark. For Pagerank with dangling pages, we developed an algorithm to compute ranks
using only one MapReduce stage in each iteration. As RDDs in Spark have many special
properties (like the lazy property) which are quite different from the MapReduce model in
Hadoop, we presented some examples to illustrate how to use RDDs efficiently. We also
illustrated how the two main RDD transformations (combineByKey and cogroup) work
in Spark. The co-partition and co-location of RDDs to be co-grouped was investigated
and we found it is essential to make sure that co-partitioned RDDs are co-located other-
wise it takes a lot of time to fetch RDD partitions remotely. Before implementing CG in
Spark, we presented how to perform matrix and vector operations using RDDs. At first
we gave a naive implementation of CG and discussed its drawbacks (too much shuffling
and some RDDs are not co-located). We developed a new algorithm called Integrated CG
which has only one RDD transformation (cogroup) in each iteration. Our experiments
showed that the Integrated CG is much faster and is scalable given enough memory to
cache RDDs. When we implement the Pagerank algorithm in Spark we found that using
serialized caching can substantially reduce the sizes of RDDs and therefore reduce the
Spark GC time. This is also helpful to our Integrated CG method since having enough
memory is vital to the success of our implementation.

The Pagerank implementation that is part of Spark only deals with the problem without
dangling nodes. It would be interesting to implement Pagerank algorithm considering dan-
gling nodes in Spark as it is more complicated than the existing Pagerank implementation.
Moreover, we plan to implement other iterative algorithms like the Lanczos method which
is used to find eigenvalues of a matrix. Since many iterative methods are similar to CG,
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which means they use many matrix and vector operations in each iteration, our idea of
integrating data can also be used in their implementations, similar to what we did in CG.

92



References

1]

2]

J. M. Ortega. Introduction to parallel and vector solutions of linear systems. Plenum
Press, New York, 1988.

Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry. The
PageRank Citation Ranking: Bringing Order to the Web. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab, 1999.

Chen Zhang, Hans De Sterck, Ashraf Aboulnaga, Haig Djambazian, and Rob Sladek.
Case Study of Scientic Data Processing on a Cloud Using Hadoop. High Performance

Computing Systems and Applications Lecture Notes in Computer Science Volume
5976, 2010, pp 400-415,Springer-Verlag Berlin Heidelberg 2010.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. OSDI'04: Sixth Symposium on Operating System Design and Implementa-
tion, San Francisco, CA, December, 2004.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
19th ACM Symposium on Operating Systems Principles, Lake George, NY, October,
2003.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. OSDI’06: Seventh Symposium on
Operating System Design and Implementation, Seattle, WA, November, 2006.

GigaSpaces. http://www.gigaspaces.com/. [Online; accessed May 25, 2014].
ELASTRA. http://www.elastra.com/. [Online; accessed May 25, 2014].

Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/. [Online; accessed
May 25, 2014].

93


http://www.gigaspaces.com/
http://www.elastra.com/
http://aws.amazon.com/ec2/

[10] Apache Hadoop. http://hadoop.apache.org/. [Online; accessed May 25, 2014].

[11] Cloud Foundry. http://cloudfoundry.com/. [Online; accessed May 25, 2014].

[12] Apache Software Foundation. http://www.apache.org/. [Online; accessed May 25,

2014].

[13] Apache Spark. https://spark.incubator.apache.org/. [Online; accessed May 25,

2014].

[14] AMPLab Software. https://amplab.cs.berkeley.edu/software/. [Online; ac-

cessed May 25, 2014].

[15] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, Ton Stoica. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI'12
Proceedings of the 9th USENIX conference on Networked Systems Design and Imple-

mentation Pages 2-2, USENIX Association Berkeley, CA, USA 2012.

[16] Scaling Facebook to 500 Million Users and Beyond.

https://www.facebook.com/notes/facebook-engineering/

scaling-facebook-to-500-million-users—-and-beyond/409881258919. [On-

line; accessed May 25, 2014].

[17] Amazon Technology. http://money.howstuffworks.com/amazonl.htm. [Online; ac-

cessed May 25, 2014].

[18] Inside eBays 90PB data warehouse. http://www.itnews.com.au/News/342615,

inside-ebay8217s-90pb-data-warehouse.aspx. [Online; accessed May 25, 2014].

[19] U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: A Peta-
Scale Graph Mining System - Implementation and Observations. In IEEE Interna-

tional Conference on Data Mining (ICDM 2009).

[20] Weizhong Zhao, Huifang Ma, Qing He. Parallel K-Means Clustering Based on MapRe-
duce. CloudCom 2009, LNCS 5931, pp. 674679, 2009, Springer-Verlag Berlin Heidel-

berg 2009.

[21] Module 2: The Hadoop Distributed File System. http://developer.yahoo.com/

hadoop/tutorial/module2. html. [Online; accessed March 25, 2014].

[22] Chuck Lam. Hadoop in Action. Manning Publications, 2010.

94


http://hadoop.apache.org/
http://cloudfoundry.com/
http://www.apache.org/
https://spark.incubator.apache.org/
https://amplab.cs.berkeley.edu/software/
https://www.facebook.com/notes/facebook-engineering/scaling-facebook-to-500-million-users-and-beyond/409881258919
https://www.facebook.com/notes/facebook-engineering/scaling-facebook-to-500-million-users-and-beyond/409881258919
http://money.howstuffworks.com/amazon1.htm
http://www.itnews.com.au/News/342615,inside-ebay8217s-90pb-data-warehouse.aspx
http://www.itnews.com.au/News/342615,inside-ebay8217s-90pb-data-warehouse.aspx
http://developer.yahoo.com/hadoop/tutorial/module2.html
http://developer.yahoo.com/hadoop/tutorial/module2.html

[23] Tom White. Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media, 2012.

[24] MapReduce  Tutorial. http://hadoop.apache.org/docs/r1.2.1/mapred_
tutorial.html. [Online; accessed May 25, 2014].

[25] Module 4:  MapReduce. http://developer.yahoo.com/hadoop/tutorial/
module4 . html. [Online; accessed May 25, 2014].

[26] Cluster Mode Overview. http://spark.incubator.apache.org/docs/latest/
cluster-overview.html. Glossary. [Online; accessed May 25, 2014].

[27] Spark Core for Java/Scala. http://spark.apache.org/docs/latest/api/core/
index.html#org.apache.spark.rdd.RDD. RDD. [Online; accessed May 25, 2014].

[28] Spark Core for Java/Scala. http://spark.apache.org/docs/latest/api/core/
index.html#org.apache.spark.rdd.PairRDDFunctions. PairRDDFunctions. [On-
line; accessed May 25, 2014].

[29] Spark  Programming  Guide. http://spark.apache.org/docs/latest/
scala-programming-guide.html#rdd-persistence. ~RDD Persistence. [Online;
accessed May 25, 2014].

[30] Spark Release 0.8.0. http://spark.apache.org/releases/spark-release-0-8-0.
html. Monitoring UI and Metrics. [Online; accessed May 25, 2014].

[31] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks and ISDN Systems 30: 107117.

[32] Algorithms Rank Relevant Results Higher. http://www.google.com/competition/
howgooglesearchworks.html. Facts about Google and Competition. [Online; ac-
cessed May 25, 2014].

[33] HDFS Architecture Guide. http://hadoop.apache.org/docs/rl.2.1/hdfs_
design.html. [Online; accessed May 25, 2014].

[34] Tuning Spark. http://spark.apache.org/docs/latest/tuning. html. [Online; ac-
cessed May 25, 2014].

95


http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://developer.yahoo.com/hadoop/tutorial/module4.html
http://developer.yahoo.com/hadoop/tutorial/module4.html
http://spark.incubator.apache.org/docs/latest/cluster-overview.html
http://spark.incubator.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/api/core/index.html#org.apache.spark.rdd.RDD
http://spark.apache.org/docs/latest/api/core/index.html#org.apache.spark.rdd.RDD
http://spark.apache.org/docs/latest/api/core/index.html#org.apache.spark.rdd.PairRDDFunctions
http://spark.apache.org/docs/latest/api/core/index.html#org.apache.spark.rdd.PairRDDFunctions
http://spark.apache.org/docs/latest/scala-programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/scala-programming-guide.html#rdd-persistence
http://spark.apache.org/releases/spark-release-0-8-0.html
http://spark.apache.org/releases/spark-release-0-8-0.html
http://www.google.com/competition/howgooglesearchworks.html
http://www.google.com/competition/howgooglesearchworks.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://spark.apache.org/docs/latest/tuning.html

	List of Tables
	List of Figures
	Introduction
	Iterative methods
	Cloud computing
	Motivation and thesis outline

	Background
	Apache Hadoop
	Hadoop distributed file system
	MapReduce in Hadoop
	MapReduce example

	Apache Spark
	RDD basics
	RDD operations
	Lineage, persistence and representation
	Running Spark on a cluster
	Spark example


	Iterative algorithm description
	Pagerank
	Conjugate Gradient Algorithm

	Implementations in Hadoop
	Matrix and Vector Operations
	Matrix-Vector Multiplication
	Vector scalar product
	Vector addition

	Pagerank in Hadoop
	Pagerank without dangling nodes
	Pagerank with dangling nodes

	CG in Hadoop
	Performance tests in Hadoop
	Single Node test
	Tests on gridbase cluster


	RDD transformations in Spark
	combineByKey
	cogroup
	co-partition and co-location

	Algorithm implementations in Spark
	Pagerank in Spark
	CG in Spark
	Matrix and Vector operations in Spark
	Naive implementation of CG
	Integrated CG method
	Half-integrated CG method
	Optimization using blocks


	Spark performance experiments
	Pagerank tests in Spark
	Tests for CG in Spark
	Spark GC time
	Comparison with tests in Hadoop

	Conclusion
	References

