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Abstract 

This thesis proposes a new technique for learning multiagent coordination strate- 

gies that addresses the issues of convergence, complexity, credit assignment, and 

utility. Traditionally, strategies to control the behavior of multiple agents have been 

hand-coded to meet a designer's goals. This task is complex due to the interactions 

that can occur among agents. Recent work in this area has focused on how strategies 

can be learned. Yet, these systems s d e r  nom a Mnety of problems that include lack 

of convergence or performance guarantees and fiom complexity concem. 

Following a formalkation of the problem, a review of related works and a dis- 

cussion of unresolved issues, a generic multiagent Iearning framework is presented. 

Then the basis of the proposed technique, probabilistic hill-climbing, is discussed and 

mapped into this framework. Implementation details are then described and exper- 

imental results on three different domains reported. Finaily, an extension to reduce 

sample complexity is considered. 
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Chapter 1 

Introduction 

Distributed artificial intelligence (DAI) is concerned with how a group of intefigent 

agents can cooperate to jointly solve problems. Typically, AI systems are distributed 

due to one or more of the folIowing reasons: 

1. Complexity of the Domain: The complexity of the environment and/or the 

complexity of the tasks may tender the design of a single monolithic system 

d3Ecdt. 

2. Distributed nature of the Domain: Some domains, such as air tr&c control 

[Il], involve multiple autonomous entities. 

3. Performance Requirements: Time constraints may require the use of more than 

one agent to meet objectives in domains that aiiow for paraliel execution. 

4. Fault Tolerance: Redundant capabiiities in multiple agents would allow for goals 

to be achieved shoulci a subset of the agents be damaged. 

5. Leveraging Existing Components: Rathet than building systems from scratch, 

intelligent agents can be used to coordinate the use of existing softwaxe [42]. 



One of the centrai issues in DAI is coordination. Jennings defines coordination as 

"the process by which CU agent reasons about its local actions and the (anticipated) 

actions of others to try and ensure the cornmunity acts in a coherent manner'' [30].- 

The aims of the coordination process are to "ensure that all necessary portions of 

the overall problem are included in the activities of a t  least one agent, that agents 

interact in a manner which permits their activities to be developed and integrated into 

an overall solution, that team members act in a purposeful and consistent manner, 

and that all of these objectives are achievable within the a d a b l e  computational and 

resource limitations" [30]. Intuitively, coordination can be meamed by the gain in 

system performance over naive collective behavior. 

Some common approaches to coordination include organizational stmctures, the 

exchange of meta-level information, aiid multiagent planning. 

Onpnizational Structures 

An organizational structure is a method of deâning the fiow of information 

or control among a group of agents. The structure encodes the authority of 

each agent, its role and whom it can interact with. These can be used to 

achieve coordinated behavior. For instance, authority relations are means of 

fusing overlapping but possibly inconsistent data. Defined roles are methods of 

decomposing and assigning problems. 

Examples of systems that use organizational structures for coordination include 

DVMT [6] and those built on social laws [52]. In the latter approach, each 

agent adopts a set of social laws or conventions that dictate its behavior. One 

familiar example of a social law is coming to a halt a t  a four-way intersection. 

By convention, if two cars arrive simultaneously, then the one on the right goes 

first. This helps to avoid potential collisions. 



In generd, organizationd stmctures are static, but work has been done to adapt 

the granularity of the agents assigned to each role [28] [29]. 

Metalevel In  fornation Sharing 

Coordination is achieved under metalevel information sharing by agents incor- 

porating each otlier's goals, plans, and schedules into their own deliberations. 

Unlike the use of organizational structures, agents are free to change their roles 

and plans dynamicaliy in response to the act ivities and anticipated activities of 

other agents. This swle of coordination is exemplified by partial global planning 

(PGP) [7] and CDS [14]. In the latter approach, meta-reasoning is used to 

select the approp~<ate heuristics for coordination based upon the beüefs of the 

agents about expected interdependencies. Given the interaction pro babilities, 

a decision theoretic fiarnework can be used to formulate a "rationai" solution 

to the coordination problem. 

0 Multiagent Planning 

1 .  contrast to the use of organizationd stmctures and metaievel information ex- 

change, coordination in multiagent planning is achieved by following a complete, 

predefined plan. AU the actions of the agents, a s  well as the synchronization 

points, are explicitly spelied out. As such, the agents have cornmittecl to a 

fixed course of action and are not free to change their behavior dynamically. 

Examples of multiagent planning systems include (31 and [32]. 

A cornmonality among the three approaches is that they are off-line and use exten- 

sive domain knowledge to derive the coordination strategies. Consider the task of 

designing collective behaviors for multiple behavior-based robots[37] [38], which is 

an instance of the organizational structure paradigm. Typically, the k t  step is to 

decide on a set of basic behaviors for each robot that will "span" the problem space. 

That is, this set of behaviors d l  allow the robots to solve the problems that they are 
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required to solve. The next step is to find a method of coordinathg these individual 

behaviors across agents to arrive at the desired collective behavior. For instance, 

the collective flocking behavior is constructed by weighting the direction and velocity 

vectors from the local safe-wander, disperse, aggregate, and home behaviors in each 

robot. The weights are experimentaiiy detennined and are based on the dynamics 

and rnechanics of the robots and the ranges of their sensors. 

Tools have been developed to simpiify the design process. A graphitai, object- 

oriented approach has been implemented [38] to andyze the effects of different be- 

havior configurations. Sequences of behaviors can be examinecl in the context of the 

possible preconditions that may have caused the behaviors to become active. Never- 

theless, the task is coniplex and scaiing is extremely diflicult. 

Moreover, two assuniptions which underlie these techniques are the existence of a 

complete world model and the stationarity of this model. These conditions, particu- 

lady the k t ,  are di8icidt to achieve in practice. Another issue is the computational 

complexity (181 of deciding the optimal coordination scheme given the nature of the 

interactions/dependencies between agents. The complexity of finding an optimal set 

of social laws for heterogeneous agents is [52] NP-hard. A similar statement is echoed 

by Parker [43]. Haynes suggests that "in most cases a coordination strategy is chosen 

if it is reasonably good" [24]. Parker concurs by stating the need for approximations 

WI- 

1.1 Learning Coordination Strategies 

Given the difficul ties wi t h hand-coding, model s tationari ty, completeness, and the 

cost of generating a good strategy, some researchers have developed systems that 

learn coordination strategies. 



CHAPTER 1. INTRODUCTION 5 

Leanùng can be viewed as the process of transfonning the knowledge of an agent 

to achieve a particular goal [39]. Michaiski's general learning process is shown in 

Figure 1.1. 

Figure 1.1: Generai Leamïng Process 

The transformation procedure takes as its inputs training sample(s), the current 

knowledge of the agent, a set of potential transformations or inferencing methods 

and a set of goals. It tken modifies the agent by either transforming and storing the 

sample(s) and/or by directly transforming the knowledge of the agent to meet the 

goals. For the multiagent coordination problem, the learning goal is to increase the 

coordination of the agents as measured by a global utilify function. Since the goal is 

to increase performance and not to acquire new knowledge, the transformations will 

direct ly modify the agent's background knowledge. Within the learnuig cornmunity, 

this task is commonly known as a speed-up Ieaming problem. The learning task can 

be formalized using the foilowing definitions. 

Definition 1: A problem solving strategy, IL-, where i is the agent index, is a 

mapping fkom a problem context to an action. The f o m  of the context and 
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action is dependent on the problem solver. For instance, it could be a h e -  

grained policy that maps a state to  an action. At the other extreme, it could 

be a mapping fiom a problem description to a high-level solution method. The 

type of problem solver is not assumed. 

Definition 2: A problem, Pi, is an instance ftom P, the stationary distribution of 

problems that wiil be encountered by the system. The stationarity assumption 

is required to  make learning appropriate. If the system is constsntly changing, 

then there is little point in learning. It can be argued that stationaxity is 

rarely achieved due to issues stich as system aging. Thus, stationarity in this 

context means that the distribution is evolving "slowly enough" for the r e d t s  of 

learning to be usefiil. It is itssumed that problems can be individuaily requested 

from an oracle. 

Definition 3: A global utility hinction, U, measures the performance of the entire 

multiagent system (IIl U 112 . . . I I N ) ,  where N is the total number of agents, on 

Pl. This function can take into account factors such as the cost of communi- 

cations, the utilization of the agents, and the total number of steps required to 

solve a problem. This function does not have to be evaluated by a single over- 

seeing agent. It can also be decomposed or distributed into local functions that 

reflect the contributions of an agent to global utiliw. The implication is that 

by maiomizing these locaüzed measures the global measure will also be maxi- 

mized. A local as opposed to localized utility function is not required to meet 

this requirement. As a remit, the agents may compete rather than cooperate. 

Definition 4: A set of transformations, 7& is associated with each strategy ni. 

Definition 5: A combined transformation, Ci, +1 . . .M, where M is the total 

number of combined transformations, is made up of individual transformations 



on the part of each agent 

A key difference between multiagent and single agent systems is the assumption 

that there are interactions or interdependencies among agents. Otherwise, the 

domain can be modeled as a set of disjoint subdomains involving individual 

agents. Interdependencies can &se both "physically" and ''mentdy" [14]. In 

the first case, the agents could be sharing a resource, while in the second, they 

could be relying ou each other's capabilities or knowledge. Mental interactions 

can aiso take the form of confiicts in desire, commitments and interests. Due 

to the interactions, transformations over N agents may only be beneficiai if ail 

N are simult aneously implement ed . 

Definition 6: A sample, (CilII, Pr,U), is the utiiity of II' = Ci @ II on problem 

Pl where @ denotes the application of the combined transformation Ci on the 

complete strategy II. It is assumed that samples are independent. 

1.2 Statement of Research Problem 

The goal of the research is to develop a method to solve the rnultiagent coordination 

learning problem as formalized in Figure 1.2. Using the general learning paradigm, 

training samples from P are used to guide the transformation of the II:s such that 

the overall performance of the system is increased. The definition of "high" will be 

left up to the leaming algorithm. 

There is nothing particularly multiagent about the definition in Figure 1.2 except 

for the existence of multiple agents. Coordination is achieved through the use of 

a global utility fwiction. If there are interdependencies in the domain, the goal of 



Given P, a stationary distribution of the problems that wdI be 

encountered by the system 

U, a global utiiity function over the solutions 

II,, II,, ...Il, a problem solving strategy for each agent 1, . . ., n 
A set of potential transformations 7;, 5, . . .7, on IIl, Da,.  . . IIn, respectively, 

Find Cm= such that the expected utiüty of Cm- 8 II over P is "high" . 

Figure 1.2: Research Problem 

optirnaliw dictates that the agents work together. On the other hand, if the domain 

is decoupled and the agents are independent, then the dennition would descnbe a 

collection of additive single-agent Leamers. Note that there are also no asswnptions 

about the knowledge andior capabilities of the agents. They could be either homoge- 

neous or heterogeneous. There are also no assumptions about the form of the problem 

distribution. 

Beyond the issue of optimality, there are &O other criteria that can be used to 

evaluate the effectiveness of a particdar learning algorithm. They indude: 

1. Sample Cornplexit y 

One nieasure of how efficient a leaming method is, is the number of training 

instances that it needs to leam a concept. This measure has different instantia- 

tions depending on the leaming method. For instance, in reinforcement learning, 

it is a fimction of the number of trials required untü convergence, and in ge- 

netic programniing, it is a function of the population size, the nurnber of fitness 

evaluations per generation, and the number of generations. 

2. Conuergence 

A basic requirement for al1 leamhg algonthms is that they converge. Recall 
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that, under the trdormationai  model, leaniing is the transformation and 

addition of new knowiedge or the traflsfomation of existing howledge. The- 

oreticdy, this means that a transformation can be applied and then reversed. 

As result the system can oscillate between a set of states and thus faii to halt. 

3. Scala bility 

An issue particuiar to multiagent learning systems is whether the approach 

scdes when the number of agents is increased. Techniques that seem promising 

with a s m d  number of agents might be computationdy intractable or ineffec- 

tive given a larger number of agents. Thus the use of scaling here includes both 

a cost as weli as an efficacy dimension. 

4. Performance 

The ultimate goal of any learning algorithm is to retum a problem solver whose 

performance is optimized in some sense. This leads to the related questions 

of "what kinds of performance guarantees are afforded by the method?" and 

"what is the confidence that these guarantees wiii be achieved?" 

To narrow the scope of the problem, the coordination approach will be restricted to 

an instance of the organizationd structure paradigm. Each agent, i, is supplied with 

a problem solving strategy I& that it executes in a top down manner. This is done 

using a forward chiner where each agent executes the fiRt action in the strategy 

that has its preconditions fuUilled. Implementation details c m  be found in Chapter 

3. It is also assumed that no expiicit comrnULLication occurs between agents. Agents 

take note of the presence of other agents by how they uiteract with the environment. 

Finally, it is assumed that the agents are cooperative and wiii defer to each other in 

order to hWl  the goal of increasing global utility. 



1.3 Overview of Thesis 

The remainder of the tliesis is organized as foiiows. 

Chapter 2 is a review of current research that is relevant to Iearning coordination 

strategies. A broad range of learning techniques is discuased dong with theïr inherent 

limitations. 

The bulk of the original work developed for this thesis is presented in Chapter 3. 

A new multiagent coordination Iearnuig scheme based on probabilistic hiil-clunbing 

is discussed. The work is situated within issues that underüe the generic problem of 

leaming multiagent coordination strategies. In particular, the problem of multiagent 

credit assignment is cousidered. 

Results of experirneuts, performed on three domains, are reported in Chapter 4. 

One of the tests assesses the performance of the approach in a controlled environment. 

The other domains directly compare the method to two existing techniques. 

Chapter 5 discusses an extension to multiagent probabilistic hill-climbing that can 

decrease sample complexity. The underlying theory is presented and the technique is 

validated using a simple restaurant domain. 

The final chapter higlilights the contributions of this research and proposes further 

directions in which it can be extended. 



Chapter 2 

Relat ed Works 

The problem of learniiig multiagent coordination strategies is relatively new. Tra- 

ditionaily, coordination strategies have been developed off-he, but there has been 

growing interest in applying learning techniques as witnessed by recent workshops 

and symposia [48] [49]. This chapter wül survey the current state of the art in l e m -  

ing multiagent coordinat ion strategies. 

The existing techniques are classified, based on the learning methods that they use, 

into either expianation-based, reinforcement based, instance based, genetic pmgmm- 

ming based, or me-based. A bnef description of these leaniing methods is provided 

and then a few examples of systems that fidi under each category are discussed. 

2.1 Explanat ion-Based Learning 

The task of explmation-based leamhg (EBL) is to operationalize, or convert to a 

more computationaily efficient form, knowledge that is already known by the agents. 

Typically this is done by proving that part of an execution trace is an instance of 

a concept and then rewriting the concept using the proof such that it can be easily 



classified. For instance, given an example of a fded  planning trace and the concept of 

failure, fbt  prove that the plan is a faüure and then use the proof to quickly classify 

situations that could Lead to failure and thereby avoid them. Another classic example 

is Wi ton ' s  cup domain, where the task is to learn a usehl conceptual definition 

for a cup. One high-level definition is that the object holds water and is graspable. 

However, this may be too abstract to allow for recognition. Given an example of 

a cup, the theory can be operationalized by rewriting it in te- of the observable 

characteristics of the example. A dennition of a cup as any object that is convex and 

has a handle might be more more usehi than the previous definition. The danger is 

that the new definition may be so specific that it misclassifies positive instances or it 

may still be too general to be efficientiy computable. This leads to the issue of utility, 

which is discussed below. 

EBL has been applied by Sugawara and Lesser [SOI to learn plan modifications 

that avoid confiicts during coordination. The steps in deriving the modifications are 

as follows: 

1. Tmcing the "rnainstream". 

Since EBL requires the entire problem solving trace, it must be pieced together 

from the contributions of each agent to the final solution. Note that the ''main- 

stream" differs from normal EBL problem traces in that only those inferences 

that contributed to the solution axe kept. This is just a matter of semantics, 

but it does effect the way errors are defined. 

2. Detectàon of LAPS. 

LAPS are leaniing analysls pmblems or error contexts where agents have the 

potential for irnproving system performance. Some problems that can be de- 

tected are: 

0 Long delays in understanding communicated information. 



Redundant activities in the "mmainstream" . 

Long delays in one of the "mainstream" activities. 

Redundant activities not in the L'mmainstream'' that are costly (e-g., back- 

tracking). 

Unusecl variables. 

3. LAP Analysis 

The task of LAP analysis is to discover the causes of the problems and then to 

propose remedies. LAPS are causeci by the la& of nonlocal knowledge and/or 

the lack of rules or efficient d e s  to interpret this knowledge. 

4. Propose Modifcutions 

Given the causes from the previous step, modifications must be made to the 

agent's control knowledge to remove the errors. Typically this rnay require that 

multiple agents coordinate changes to achieve the desired effect. Individual 

agents may perform the foIlowïng modifications: 

Substitute another mid-level plan that achieves the same effect since the 

reasoning metliod is based on skeletal planning. 

Postpone an action untii relevant information is received fiom another 

agent or until the "correct" state is achieved. 

Change the order that messages are sent. 

Obtain information from another agent if it takes too long to compute it 

iocally. 

5. Negotiation 

If the proposed modincations cannot be accepted by all agents, then negotiation 

is required to reach a compromise. For example, agents can choose locally sub 

optimal solutions such that it may be possible to achieve a complete solution. 



6. Precczndition Identification 

The final stage of EBL is to ident* when the new knowledge should be applied. 

In multiagent settings there is the added difncultly that components of the 

preconditions miglit not be local. 

One problem with EBL-based approaches is the utüity of the changes. Recent work 

[15] has indicated that supposedly good operationalizing transformations, measured 

over a single learning context, may lead to decreased performance over a set of queries. 

As a result, research in EBL has concentrated on measuring the utility of these 

changes [15] [21]. This work deviates bom traditional EBL in that it requires a 

number of sarnples to quanti@ the utility. 

The utility problem arises because the learner cannot decide betmeen alternate 

operationalized theories. This is not to say that any of the alternatives is incorrect, 

but that some should Be used before othen. For instance, in a domain that uses 

paper cups, the definition that a cup is convex and made of paper is more useful than 

a cup being defined as convex and having a handle. Thus the "operationalit$' of a 

de finition is highly dependent upon the problem distribution. 

Instance-based leaniing algorithms [II (IBL) are supervised leamhg methods which 

can be traced to nearest neighbor pattern classifiers. Rather than using generahza- 

tions of instances to classify sarnples, IBL algorithms use selected instances as concept 

definitions for each class. IBL algorithms are comprised of the stored instances for 

each class, a similarïty function, a classification function, and a concept description 

updater function [l]. A brief description of each function foilows: 



1. Similarit y Funetion 

Given a labeled training instance, i, it cornputes the similarity between i and 

the instances in the concept descriptions. 

2. Classifiieation Functzon 

Given the resuits of the similarity huiction and the previous classification per- 

formance of the instances in the concept descriptions, it retunis a classification 

for i 

3. Concept Description Updater 

Given i, the similarisr value, the history of the classification results and the 

instances in the current concept defmition, it decides how to modify the concept 

description. 

Prasad et al [44] have iised IBL to learn which one of 5 Merent coordination mecha- 

nisms shodd be applied in a given context. This research is situated within the partial 

global planning paradigm with the consequence that these mechanisms are high level. 

For instance, one of them decides at what level of detail results are communicated. 

Learning involves testing the performance of each method on a set of trial prob- 

lems. This builds up a set of triplets made up of a global situation vector, a coordina- 

tion algorithm, and its performance within this context. A situation vector is formed 

by aggregating the local situations of each agent. This is individuaiiy done by each 

agent through integrating the communicated status of other agents with its own local 

perspective. The system performance measure is built up in a similar manner. Each 

agent stores its own set of triplets. 

Once learning has terminateci, the triplets are used to c lassa  a new problem into 

one of the 5 methods. First the neighboring instances of the problem are detelpzined 

using the similarity measure. Then a classification function based on the weighted 

previous performance of the neighbors is used to return one of the 5 methods. 
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Although the method leanis context dependent multiagent coordination strategis, 

the learnuig takes place within a single agent framework. The muitiagent component 

of the task is to aggregate the local situation information and performance measUres. 

2.3 Reinforcement Learning 

Reinforcement learning is a learning approach where an agent discovers a mapping 

from situations to actions so as to maximize the value of a scdar reward or reinforce- 

ment signal. In contrast to other forms of learning, such as classification tasks, the 

agent is not told what the target actions should be, but instead must rely on trial and 

error to h d  which actious produce the highest reward. An example of a reinforcement 

learning problem is Ieiu-ning how to navigate a hailway to reach a certain location. 

For this task, the agent ceceives positive reinforcement only when it has reached the 

goal and negative reinforcement when it collides with any wd. Since the agent does 

not initially know the correct mapping, it may choose actions that result in collisions 

until it discovers the optimal policy. This combination of delayed reward and the use 

of exploration are two clistinguishing characteristics of reinforcement learning. 

Bucket Brigade with Shared Information 

One approach to learning coordinated actions between agents is WeiB's ACE 

(Action Estimation) [56] and AGE (Action Group Estimation) [57] al- 

gorithrns. Based on Holland's bucket brigade credit assignment model, each 

agent bids for the right to execute its actions. In the case of ACE these are 

independent actions on the part of each agent, while for AGE they are for a 

joint set of actions. Each bid for agent 2's jth action is fomdated as 



where a is a smaii constant called the risk factor, /3 is a small random number 

called the noise term, 0 is a constant called the estimate minimum, and E{[s] 

is agent 3s estirnate of action Js utility in state S. The risk term, a, represents 

the portion of E! that agent i is willing to risk to  execute action j. The noise 

term, p, reduces tlie risk of getting caught in a local minima. 

After the agents have hished bidding, the agent with the highest bid is aiiowed 

to execute the action associated with this bid. AU other agents then withdraw 

any of their bids with actions that are incompatible with the chosen action. 

The process repeats until no other action can be executed. A bucket brigade 

assignment scheme is then used to update the utility of the actions. At every 

stage, the agent that won the bid reduces the utility estimate of its winning 

action by its bid and passes this value to the previous winners. 

The AGE algorithm is sirnilar to ACE except that actions are grouped into 

compatible sets. For each set, the bids of each agent with an action in the set 

are summed. The set with the Iargest summed bid is then executed. 

A drawback of tlie ACE algorithm is that it does not function in pardel. 

Agents must sequentidly bid on the actions to be performed. This eliminates 

the potential performance improvements available with multiple agents, and 

does not take into consideration beneficial interactions between actions. AGE 

addresses this limitation by allowing for groups of operators to be considered. 

However, this raises the issue of computational compiexity, since every corn- 

bination of compatible actions must be considered as a group. The number 

of groups is bounded by the product of the number of applicable actions per 

agent in a given state. Moreover, there is the overhead of broadcasting the bids 

to ail the agents and, once the bids have been received, of determinhg if the 

group is compatible. Doweil [5] has developed an addition to AGE that learns 

if a group of actions is compatible in a particulas context. Only those that are 



compatible are bit1 on. This may reduce the bidding overhead, but the added 

cost of learning the incompatible actions and filtering the groups must also be 

factored in. It is unclear if this  method provides sny benefits. 

Q-learning 

Another reinforcement based approach to leaming coordination strategies is 

Sen's [46] [47] use of independent Q-leamers. Unlike WeiB's work, there is no 

communication between agents. Instead, agents treat each other as if they were 

part of the environment. Sen contends that some advantages of this approach 

include: robustness to communication delays and to failwes of key agents, and 

tolerance to unreliable or misleading information. The use of independent leam- 

ers c m  also reduce the computationd complexity of the coordination leamhg 

task, since the examination of useful action groups is implicit in the joint behav- 

ior of the agents. Permissible groupings are not explicitly constmcted. More- 

over, the approach does not make any assumptions about the nature of the 

agents. They can be cooperative or antagonistic. The behavior of the system 

is totally dependent on the local utiüty hinctions. 

As in the standard reinforcement learning paradigm, Q-learning seeks to l e m  

the utiiity of a given action a in state S. These utility values are cded Q-values. 

For each agent i, in state s, the action a with the highest Q-value Q(s, a) is 

chosen for execution. The Q-values of the executed actions are then updated 

using the following d e :  

where p is the learning rate and y is the discount rate. The 7 term allows 

delayed reinforcement values to be propagated to actions eariier in the chah 

Multiagent Q-leaining has been applied to a two-agent block-pushing problem 

[46] and to a four-agent robot navigation task [47]. In the fVst example, two 



agents are assigned to push a block fiom an initial position to a goal position. 

Neither agent is aware of the capabilities or the existence of the other agent. 

The performance of the system was evaluated by measuring the number of triaIs 

required for it to "converge". Convergence is achieved when the block reaches 

its goal or if the number of steps exceeds a threshold. 

The second task involved four agents navigating fiom one side of a 10 by 10 

gridworld to opposite positions on the other side while avoiding collisions. Each 

agent was supplied with a local utility function that considered if an agent was 

involved in a collision. This domain wilI be examined in detail in Chapter 4. 

A major weakness of the multiple, independent Q-learner approach is that it is 

not guaranteed to converge. One of the hindamental assumptions undertying 

Q-learning is that the world remains stationary. However, since the agents 

interact while modifying their behaviors, this stationaxity requirement may be 

violated. Consider the foilowing contrived example. Let there be three agents, 

each with only one state. They have been assigned three distinct symbols, one 

of which they emit during a given trial. The assignments are shown in Table 

2.1. The utility fitnction is global with the payoff received dependent upon the 

Table 2.1: Assigned Symbois 

combined output of the agents and the current state of the world. The world 

has 3 equiprobable states and for each state there is only one combination of 

agent outputs which has positive utility. Possible world states and the required 



agent outputs for positive reinforcement are shown in Table 2.2 Note that the 

outputs are listed in agent order with ? referring to don't care. For instance, 

(A D ?) means that agent 1 and 2 must output symbols A and D respectively 

while it doesn't matter what agent 3 outputs. Given the standard formulation 

Table 2.2: Positive Reinforcement Outputs 

for Q-leaniing, the value of y can be set to zero since there is only one state. 

As formulated this problem will not converge to a steady solution usùig Q- 

learning. Instead the agents will oscillate between the three positive utility 

outputs. That is, the combuied agent outputs wiii constantly shift between one 

of the outputs in Table 2.2. Convergence can be forced by hdting learning after 

the agents have produced the same behavior for a pre-detennined length of t h e .  

However setting this tength is ad-hoc since there is no criteria for assessing the 

optimaiity of the solution. 

On the other hand, the system will converge if one of the agents settles on a 

particular symbol. For instance if agent 1 settles on A then agent 2 will settle 

on D while agent 3 will "wandef'. This reflects the positive utility output 

for world state 1. In this case convergence means that the average utility will 

remain constant rather than the output being constant. Two of the agents will 

always emit the symbols corresponding to one of the high utility states while 

the third is free to Vary. 
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O Distributed Q-learning 

DRLM (Distributed Reinforcement Learning Model) [22], is a Q-learnùig 

approach that stC&s fiom a diflerent set of environmental assumptions than 

those fomd in [46] [47]. The two major ciifferences are that the agents are 

dowed to communicate and that perceptual aliasing [58] is the problem. 

Actions within DRLM are divided into either local or tmns/er actions. As its 

name implies, [ocal actions are those actions that are directly performed by the 

agent, whereas trunsfer actions transfer the control of a task to other agents. 

Agents communicate to obtain reinforcement and state information. Reinforce- 

ment is received when a local action is performed. An assumption of DRLM 

is that actions are individudy rewarded or penalized. Thus an agent that 

performs a transIer action must make a request that it ais0 receive the rein- 

forcement signal when a lucal action is executed. Communication is also used 

to discern which agents transferred a task. 

Perceptual aliasiug occurs when an agent is unable to distinguish between two 

world states using its direct perception. This can occur due to incomplete 

perception, where the agent's sensors; either physical or logical, are unable to 

sense the distinctions or where the ciifferences cannot be directly sensed. In 

multiagent settings, the second case cm arise when there are interdependencies 

between tasks such that the local information of each agent is insufncient to 

account for the state of the entire system. DRLM deals with these issues by 

including two stochastic models that handle incomplete perception and inter- 

dependencies respectively. A block diagram of the system is shown in Figure 

2.1. The HTM (Hidden Task Model) maps the agents that transferred the 

task to a set of hidden tasks. This is done using a probabiüstic mode1 that 

associates an observable set of tasks to the cross-product of aii potential tasks 

across agents. The one to many mapping uncovers tasks that cannot be directly 



upd* TOP upiue SOP upate Q-vatues 

Figure 2.1: DRLM Block Diagram 

obsemed. Next, the hidden tasks and observations fiom the world are used to 

construct a composite state that makes explicit the dependencies. Given the 

transfer agents, the composite state is estimated by first hypothesizing which 

state each agent is in and then by using the independence assumption to corn- 

pute the joint probability of being in a composite state. Finaliy, it is this state 

that is used to index the Q-values. 

DRLM contains more than one learning task. The h t  is standard Q-leamhg 

which maps state to action. The additional task is to update the probabiüties 

in the task models. This is done using a variant of the Baum-Welch expectation 

maiamization algonthm which is used to estimate the p.d.f of the distribution. 

The actual state that is passed onto the next stage of algorithm is biased towards 

the state with the lughest probabiüty. This is done using a stochastic selector 

based on the Boltzmann distribution. The size of these models, particularly 

the composite state model, can be very large since it is composed of the cross- 

product of the possible agent States. 

Other Systems 

As can be discemed by the number of reinforcement leatning systems that 



already have been discussed, a great many of the existing approaches fall under 

this paradigm. Other examples include [37] which uses local progress estimators 

in addition to goal hinctions, [13] which leanis whether to be seifish or to follow 

the group, and [43] which uses windowed averages to leam how to prioritize 

between sets of behaviors rather t han individual behaviors. 

2.4 Genetic Programming 

Genetic programming (GP) is a leamhg approach that uses a genetic or "evolu- 

tionary" paradigm. Au initial population of individuals, in this case, programs, is 

subjected to a 'Lfitness" or utility test. Those that perform weil are selected to un- 

dergo "genetic operations" such as crossover, mutation, and simple reproduction. 

Crossover involves exchanging "genetic materiai" between two progams. If both 

parents have high fitness scores, it is hoped that the resulting individual will inherit 

the good traits of its predecessors. Mutation is the random modification of the pro- 

gram. This provides a stochastic component to the learning process, thereby reducing 

the likeiihood of it being trapped in a local minima. Finaliy, reproduction generates 

copies of an individual without modifying its program. 

These operations are performed in cycles cded  "generations" . During each cycle 

the performance of the individuals, or their ccfitness'~ is measwed. Those that pass 

are subjected to genetic operations and then promoted to the next generation. On 

the other hand, those that fail are discarded. 

Haynes et al [23] [25] has used genetic programming to evolve a coordination 

strategy for the predator and prey ptusuit game. In this task, four predators must 

coordinate to capture the prey within a toroidal grid world. The prey is captured when 

i t  is surrounded by four predators, since diagonal movement is not allowed. There is 



no explicit communication between the predators and thus they cannot negotiate a 

capture strategy. Fitness is measured by a function that takes into account keeping 

close to the prey, surroiinding the prey, and maintainhg a position around the prey. 

These factors are necessary to provide feedback in the event that the prey is not 

captured. 

Haynes' original expenments [23] evolved a single program that was used by ali 

the agents. This assumes that all the agents are homogeneous and can aiso be viewed 

as a fonn of implicit coinmunications. Later work focused on evolving different pro- 

grarns for each individiial agent. Rather than evolving each one individuaiiy, a team 

approach was taken. This is a consequence of the credit assignment problem, which 

is the task of dividing the fitness results across agents. The agents act simultaneously 

and thus it is uncertain how each agent contributed to the fitness score. This problem 

will be discussed in detail in Chapter 3. 

Earlier, AGE was ciiticized for the complexity of groupbased methods. However 

the same criticism cannot be made of GP's since there is a Gxed population size. The 

potential combinatoncs of examining the possible groups is reduced by stochasticali y 

generating a b e d  number of combinations. 

Case-based learning (CBL) [35] can be viewed as an extension of IBL that also 

allows for the adaptation of the instances. Consider an IBL problem where there 

is a solution method rather than a class label associated with each instance. When 

given a problem, the task becomes one of finding a matching case or stored instance 

and then returning the method. In addition to retrieval, CBL, aiiows for the method 

associated with the most similar case to be adapted to the current situation when an 

exact match is not foiind. 
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Haynes [24] has also applied CBL to the predator and prey domain. Unlike his 

previous work on genetic programming, cases are used tu modify the behavior of a 

greedy strategy based on the Manhattan Distance(MD) between predator and prey 

[36]. The MD approach moves the predator so as to rninimize this distance with ali 

ties being randomly broken. Given a list of possible actions, the metric can be used 

to order them. 

One problem with the MD algorithm is that it is susceptible to deadlock situations 

where the predators block each other from surrounding the prey [NI. To prevent this, 

cases are used by each agent to eliminate actions from the default MD ocdering. A 

case, within this fkamework, is a mapping from a template situation to a rejection 

rule. If the current situation matches the template, then reject the action £rom the 

default strategy. This continues until an action from the strategy can be executed or 

until all the actions have been eliminated. In the latter case, Haynes' system executes 

the h t  action in the defauit strategy. Cases are learned when expectations are not 

met, sucb as when an action ends in a collision. 

Hsynes' use of CBL suf5ers fkom the "utility problem" in that the usehilness of 

the learned cases is uncertain. This stems from two factors: uncoordinated learning 

and uncontroiled learning. Learning is uncoordinated since each agent l e m  its own 

cases. This approach assumes that the other agents' strategies remain static, which 

is the same problem that plagues independent Q-learning. Again, the assumption is 

invalidated by the fact that the agents are allowed to leam simultaneously. Moreover, 

the leaming is uncontrolled since a case is learned for each deviation from expecta- 

tions. It is well known that the utility of generalizing an instance, in this case a 

template to a rejection nile pair, cannot be estimated fiom seeing a single instance 

[41] [15]. Thw, the utility of this technique beyond the tested domain is questionable. 



2.6 Summary 

The techniques that have been applied to learning mult iagent coordination strategies 

are diverse and cover a large portion of the d i n g  machine learning methods. Major 

obsenmtions and criticisms gleaned fiom analyzing these systems are summarized 

below: 

1. Considering Interactions 

Two approaches to accounting for the interactions among transformations are 

grouping and the lise of independent leamers. The use of grouping can be com- 

binatorid. In the case of AGE, if there are N agents with 171 transformations 

each, then the mc.wcimum number of groups is 17IN - 1. DRLM3s construction 

of a composite state can also be viewed as a fom of grouping. However, Haynes' 

use of grouping in the predator and prey domain does not theoretically d e r  

fiom this problem, since the groups are stochasticaliy generated using a fixed 

population size. However, the size of the population will have a great impact 

on the solution- 

As discussed, groiiping can occur at several levels. In the case of AGE and 

DRLM it is at the level of actions for a state, and in the case of Haynes it is 

at the level of an entire agent for the problem distribution. The latter's use of 

agent grouping begs the philosophical question "1s this multiagent learning?" 

The answer is not clear. DAI problems solvers have generally been charscter- 

ized by their "relative autonomy and adaptabïiity" [BI. This does not seem to 

be the case in agent grouping. Once the agents have been grouped, the problem 

appears to be a "single agent" learning task since the goal is to evaluate the 

utility of each atomic group. 'Itansfomations are applied to the group or in 

the case of genetic programming, crossover takes place between groups. This 

raises the question "Is group learning multiagent learning or an application of 
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leamïng techniques to multiagent domains?" 

Arguably, the use of action grouping does not d e r  from the same criticism 

since the agent can be seen as coordinathg to ascertain the effects of a combined 

action. The agents are distinct and stilI distinguishable. The ciifference between 

the two types of grouping may be subtle but it c a b  attention to the need for a 

better dennition of multiagent learning. 

The use of multiple, independent leamers does not d e r  fiom the same corn- 

binatonal or philosophicd problems as group leaniing but scisting implemen- 

tations are plagued by issues siich as convergence. 

Multiagent Credit Assignment 

An underlying problem behind systems with components that can act in paral- 

le1 is how to allocate credit or blame to a component when global performance 

either increases or decreases. The existing approaches to this problem either 

equaily aliocate the credit, use a domain theory to identify the cause, or consider 

components only in groups. Since the task of learning is to identify a set of ben- 

eficial transformations, it is important to correctly identify the contributions. 

This issue wili be discussed in detail in Chapter 3. 

3, Performance Guarantees 

Many of the existing coordination strategy leaming methods have vaguely de- 

fined notions of performance. In particular, EBL and CBL have inherent util- 

ity problems, while independent Q-leaming is not even guaranteed to converge. 

Learning systems that can guarantee performance as good as, if not better than, 

the original system are desirable. 



Chapter 3 

Multiagent Probabilistic 

Hill- Climbing 

This chapter describes the proposed system in detail. The first section is a general 

discussion of issues that rnust be resolved when implementing an approach that learns 

miiltiagent coordination strategies. Next, probabüistic hill-climbing is presented, fol- 

Iowed by an examination of how it can be applied to multiple agents. 

3.1 Learning Multiagent Coordinat ion 

The problem definition in Chapter 1 can be directly rewritten as the generic co- 

ordination 1e-g algorithm shown in Figure 3.1. It is an on-line procedure that 

generates the potential transformations for each agent, combines them, and then as- 

sesses the combinations. The method then cornputes the best candidate from the set 

and, if the candidate passes a predefined critenon, the algonthm halts. Otherwise, 

the assessrnent process continues. 

There axe also variauts on the approach, such as moving the transformation gen- 



LEARN-COORDINATION(II = ILl, Ih, - . - , I L N )  
7 = {7;, 72, - - - , TN) = generate-trandormations(n) (1) 
loop while not h g  do 

Pi= retrieve-problem(P) 
C = {Cl, C2, . . . , CM)= combine(7) (2) 

=-(C) (3) 
J= cornpute-best (C) (4) 
Pag= terminate?(J) (5) 

Figure 3.1: Generic Coordination Leaniing Algorithm 

eration inside the loop and performing batch learning by storing a fixed number of 

sample problems before assessment. 

Placing the generation step within the loop allows for the dynamic inclusion of 

transformations. That is, they can be produced in response to the problems that 

have been encountered. Given that the system is required to solve problem A, only 

combined transformations C4 and C7 may be usefd to the task. This can reduce the 

number of transformations and hence the cost of computing their utilities, but requires 

knowledge to disceni which transformation may be effective for a given problem. The 

relationship between problem, transformation and effect might not be readily known, 

and thus a knowledge deficient solution is to generate d transformations so as not 

to miss a potentially useN one. 

On-line procedures are preferred over batch approaches, unless the termination 

criteria is static or unless the problems can only be obtained in batches. Recall that 

the second condition has been ruleci out by the assumption that problems are avaïiable 

individually. An example of a static criterion is to terminate after a fked number 

of samples or generations in the case of genetic programming. On the other hand, a 



dynamic critena is basect on the characteristics of the current best candidate. Thus, 

theïe is the potential for a dynamic scheme to halt before a static one. This requires 

a stronger termination criteria than just the number of samples. Note that a 6xed 

sample method can also be used on-line. 

The steps in Figure 3.1 have been numbered and will be discussed below: 

1. Cornputing Transfonnutions 

Given an initiai multiagent problem solving strategy, II, the k t  task is to 

compute a set of potential transformations. Two related decisions have to be 

made at this point. They are the "size" of the transformations as measured 

by the maximum syntactic distance that a transforrned solver can be away 

£rom the initial one and what portion of these potential transformations should 

be included. In concert, these factors determine the nature of the learning 

algorithm and its performance limits. 

Consider the transformation of sequence {B D A C) into {A B C D). This 

can be done by making a series of one-step moves, such as placing A in fkoont of 

B, or a single two-step move which puts A in fiont of B and C in fiont of D. 

The second case can be regarded as a composition of two one-step moves. These 

examples correspoud to traosformations of size 1 and 2, respectively. Note that 

the set of size 2 tmsformations encompasses the set of size 1 transformations 

since 4, the null transformation, can be one of the composed steps. 

Now, let S,, be the maximum distance that a transforrned solver can be fiom 

the initiai solver. If the maximum size of the transformations is below S-, 

t hen the algorithm harr to be iterative if any notion of optirnaMy is to be main- 

tained, since not every solver configuration can be reached in one step. As 

such, compute-best can only be with respect to this iteration. However, i t em 

tion does not guarantee optimality since any distance-limited learning algorithm 



has the potential to be trapped in a local minima. Another issue is the mm- 

ber of transformations to assess. For many domains, computationd cornplexity 

d e s  out using the cornplete set of S,, transformations. Either a portion of 

the S- set or aii entire sub-S. set is typically used. In the kst case, a 

reduction in the Lwidth" of the transfonned solver space that is explored also 

contributes to the possibility of suboptimal performance. Combinations of both 

types of restrictions are also possible. 

If an iterative version of the algorithm is used, then the LEARN-COORDINATION 

procedure is repeated until another, possibly related, termination criteria is 

met. Transformations for a subsequent iteration are generated with respect to 

the strategy that was promoted during the current iteration. More than one 

transformed solveï can also be passed on. 

2. Computing Combined Tmfomtations 

Once the transformations have been computed, a method must be devised to 

determine if certain combinations interact beneficiaiiy. As discussed in Chapter 

2, two such methods are grouping and the use of independent leamers. h the 

algorithm skeleton, the combine step is placed within the main loop to allow 

for either case. Generating combinations "on the fly" would correspond to 

independent Iearning, while recalling a fked set of combined tramdonnations 

would correspond to grouping. 

3. Assessing the Tmnsfonnatzons 

Generally, the only way to determine the effect of a transformation is to actually 

use the modified strategy. In [ZO], a method is described to app roha te  the 

clifference in cost between a transfonned solver and its initial solver using only 

the latter's execution traces. However, the technique requires a complete cost 

model, which is itstia,lly not available. 



4. Computing the Best Tmnsfomation 

Upon termination, the algorithm must return the "best" combined transforma- 

tion for implementation. The question is b h a t  does best mean?" or equiva- 

lently, '%hidi local transformations should be aàopted?". The answer to both 

requires that the utilities of the component transformations be known. This 

leads to the multiagent credit assignment problem. 

As briefly outiined in Chapter 2, the core of the issue is how to determine the 

individual contribution of a local transformation to the utility of the system 

as measured by a global funetion. The problem arises with the use of a single 

global utility measure, since it ody  retunis one value. The simplest solution 

is to distribute the measure across agents. These functions need to return 

conditional utilities, since the iisefulness of an individual transformation may 

be tied to the existence of other transformations due to interactions. Finding a 

good measure is cüfEcdt and is akin to developing a good search heuristic. 

Currently, the only purported solution to the multiagent credit assignment prob- 

lem, besides the use of domain knowledge [50], is the use of agent grouping in 

genetic programming [23] [25]. The central idea behind grouping [25] is that 

the transformations are evaluated only w i t h  the context of a set of transfor- 

mations. Thus, it does not matter what the individual contributions are given 

that the group utility is known and that all transformations will be applied si- 

multaneously. This would seem to sidestep the issue. However, this analysis is 

deceptive in that it  does not look at  the question from the standpoint of "what 

wouid happen if credit assignment is not p e r f o d ? "  

The answer depends on the type of leaming algorithm. In particular, credit 

assignment only becomes an issue if the method uses simultaneous, mutudy 

exclusive, irreversible transformations. B y defmition, the h t  case is dways 

true of systems that learn multiagent coordination strategies. The remaining 



two conditions are contingent on the learning paradigm. Consider the use of 

multiple, independent Q-leamers [46], which is an example of a monoüthic algo- 

rithm. This statement may be troubüng, since the aigorithm performs continual 

Q-value updates. However, these updates can be regarded as part of the task of 

hding the best transformation rather than as individual iterations. Note that 

the algorithm is only nui once and, when and if it converges, a cornplete policy 

is retumed. 

Credit assignment is not expficitly performed in independent Q-learning and 

all agents are aliocated the same reward. However, credit assignment is also 

not a problem in this scenario. Assume that the agents have converged and 

found an optimal policy. This implïes that every transformation that has been 

implemented forms either an integral part of the policy or it does not hinder the 

poiicy. In this context, the only type of "error7' that rnay have been committed 

is to adopt an useless and unnecessary transformation. This "enor" has no 

effect on the performance of the system. Similarly, AGE does not s d e r  fiom 

this problem since it also l e m  an entire policy. Recd  that grouping is used 

in AGE to determine interaction effkcts and not to solve the credit assignment 

problem. Thus, the "best" combined transfonnation in a monolithic leamer is 

simply the combined transformation with the highest utility. 

NOW consider a similar scenario in a domain wbere the transformations are 

mutuaily exclusive and irreversible. In other words, the leaming system is 

iterative and b i t s  the size of the concept space. Hill-climbing is an example of 

such a system. Since useless is with respect to a step, the implementation of such 

a transformation may bloc. the implementation of a beneficial transformation 

at  a later step. Let there be two agents, Al and A*. At time step 1, Ai can only 

apply transfonnation xi wMe Az can apply either '& or 7=. xi negatively 

interacts with x2 but has no interactions with Zi. In fact, the utility of z1 is 



0. also has the highest utüity. As a resuit of aliasing under a single global 

utility function, both xi and '& are implemented. This can occur since the 

system can't teil the ciifference between candidates that have the same utiiity. 

CM= {xi) and Cm-= {7;i,Zi) are equivalent under a scheme that merely 

looks at utility. Now let the application of Ti make possible the application of 

7i2. Fùrthermore. let 7;* interact positively with 7*. Due to the fact that Zi 
has been implemented, Tn is no longer available and thus the system halts in a 

suboptimal state. Note that merely considering the transformations in groups 

has no effect on the potential oiitcome. This does not imply that grouping is 

useless; only that the form used in [25] does not eliminate the credit assignment 

problem. As will be shown, comparing the utility of grouped transformations 

can be used to isolate the effects of their components. 

For a concrete example, consider a much sirnpiified scenario taken from a han- 

cid domain. Company X is losing money and thus it must make some changes 

to its business strategy. Unwisely, the fhn is stmctured into two units that 

independently make their own decisions. The first is responsible for production 

and the other for sales and marketing. Production has the option of either in- 

creasing the output of widget A or diversifying and building a factory to make 

widget B. Note that they currently do not sell ail the A's that they manufacture. 

Sales and marketing only have the option of spending more money on market- 

ing A. There is siifficient capital to Uicrease or start the production of A or B, 

respectively, and to promote A. In fact, the transformation associated with the 

increased marketing of A can be applied several times while stiii increasing or 

starting the production of A or B. There are W c i e n t  resowces to both in- 

crease the production of A and to start the production of B while simultaneously 

increasing the promotion of A. 

The rationale b e h d  producing more of A is that the increased econornies of 



scale may help to reduce costs and the rationaie behind proclucing B is that 

there may be a market for it. Let Cl be production deciding to build a factory 

for B while sales decides to promote A. m e r  the application of the combined 

transformation it was found that promotion worked and demand for A was 

increased. As a residt the inventory of A is sold and revenue increases. However, 

widget B fa& to sell. Due to aliasing, production decides to build a new factory 

for B and sales decides to more aggressively market A. At this point, the only 

available transfoipiation is for sales to again increase spending. Let the ad 

campa@ be so siiccessful that it exceeds production of A. Since the factory for 

B has already been built there are no additional resources to spend on A. This 

results in a sub-optimal solution. 

ALthough the adoption of a useless transformation in a monolithic leaming 

system has no effect, i t  can degrade the optimality of an iterative algorithm. 

However, aliasing is not the only problem in multi-step methods since blocking 

can also occur even if the utility of the transformation is positive. Thus a simple 

minimality criteria, requiring each component transformation to have positive 

utiiity, will be insiifficient to resolve the issue. 

One approach to the bloeking problem is to try to minimize its occurrence. Re- 

c d  that iterative dgorithms cm promote one or more of the "best" candidates 

from one iteration to the n&. Thus one method of reducing the iikelihood 

of a blockage is to advance a different combined transformation. Genetic pro- 

gramming talces this route by copying the best programs from one generation 

to the next. However, this does not guarantee that the problem wi i l  not occur 

and is also combinatorial. Another technique is to pass one candidate, as in 

hill-climbing, but then to minimize the number of component transformations 

that are implemented to those that are "necessary". The following definitions 

d l  be used to clarify this concept. 



Definition 7: Joint Bandormation 

A joint transformation 3 is a set of t rdormat ions  7;, 5, . . . ,z 3 
U ( 3 )  > U(7;)  + U ( 5 )  + . . . + U(Z)-  That is, there is an interaction 

between the effects of the transformations such that the joint utility is 

greater than the sum of the individual utiiities. By definition, the set of 

individual tr.uisformations are aiso joint transfomat ions. 

Defmition 8: Minimal Joint Transformation 

A minimal joint transformation is a joint transformation where there 

are no subsets of 7 that are joint transformations. 

A necessary transformation is a member of a minimal joint transformation. in 

other words, if oue element of the set is not implemented then the overall utility 

will decrease by niore than wiil be explained by additivity uniess the minimal 

joint transformation is a singleton. In other words, the best "atomic" trans- 

formation should be adopted. Additive transformations can be implemented in 

later steps if they have not been outperformed by new transformations enabled 

by the best ,T. 

5.  Tenninating Leaniing 

A recurring problem in machine learning is deciduig when to stop learning. 

This is an important issue since learning can be expensive. Effort that is used 

to explore a space of transformations can be spent solving problems. Moreover, 

transformations with negative utiiity can be h a d  to an agent. Consider a 

robot that is learning how to disarm a bomb. Reducing the number of samples 

to examine would be highly beneficid. 

The problem of tennination is also related to utiliw. An agent should stop leam- 

ing when it cannot improve its performance. This c m  occur when it has found 

the best transformation(s) or when it decides that  none of the trdormations 



are effective. Note that none of the surveyed systems have a well-defined termi- 

nation criteria. For instance, GP relies on a predehed number of generations, 

RBL uses the convergence behavior of the agents, and CBL does not have a 

tennination criteria at ail. These conditions are ad hoc and do not provide 

guarantees on performance. 

If an agent is to use a utility based method of termination, then it must have a 

cornputable notion of best transformation. Ignoring the issue of credit assign- 

ment, the task of simply finding the combined transformation with the highest 

utility is difncult chie to the fact that the performance of a transformation may 

be inconsistent across problems. In some cases, it may even have negative in- 

cremental utiüty. Secondly, the problems are assumed to follow a distribution. 

Thus the modifieci strategy may be performing well for a number of problems 

and then abruptly perform poorly as another portion of the distribution cornes 

into play. Factoring in the topic of credit assignment adds another level of 

dif5culty. The pmblem of incousistent performance carries over to finding the 

minimal joint transformation. Positive interactions that are readily apparent in 

one context could be absent in motber. 

Another way of looking at both issues is kom the w t a g e  point of what the 

agent is learning. Abstractly, the problems c m  be describeci as trying to identify 

the concepts of high utility and interacting transformations. Given that the 

behavior of the system is pmblem and hence distribution dependent, a more 

menningfid definition for both would include the notion of expectation. 

Expected utility c m  be dehed in the usual statistical sense. A definition for 

expected interaction cm built on top of this by requulng that the expected 

utility of an interacting transformation be greater than the expected utility of 

the s u m  of its components. If the problem distribution were known a prion 

then these values can be computed by assessing each transformation and then 
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by applying the probabilities. However the distribution is generdy unknown. 

R e f e h g  back to the initial problem, the issue is: given the problems that have 

been encountered, how sure can the system be that it has found the expected 

minimal joint trmsformation ,th the highest expected utility. A hill-climbing 

approach can terminate a step under this condition. 

Probably Approximately Correct (PAC) learning 1541 is a learning paradigm 

that quantifies the "degree" that a concept has been learned. This allows state- 

ments to be made about the performance of an algorithm. Consider the task 

of learning what a cup is. To leam this concept exactly requires that an agent 

see every ob ject t Lat is a cup. However, for most learning problems, the world 

is not so accommodating as to enumerate all the possible cups in a sequence. 

The same type of cup may be seen many times before a new cup is introduced. 

The question is, "how many cups have to be seen before it can be said that the 

concept has been leanied?" 

Rather than exactly Ieaming a concept, a PAC learner approximates it with 

error e and probability 1- 6. Using the assumption that the instances that 

have been seen follow a fixed distribution, PAC learning guarantees that the 

approximation criteria are met by requiring the learner to see a sutFcient number 

of samples. In the basic model, E is the probability of misclassification. However, 

an alternate way of looking at  the PAC problem is to consider the space of 

positive examples as a population [9]. The characteristic function for a concept 

csn be viewed as a random variable whose mean is the mean of the population. 

PAC Learning can then be considered as estïmating the mean for the population 

within a confidence intemal of dz with confidence 1- 6. This observation allows 

for the incorporation of various statistical tools into the PAC framework. The 

PAC paradigrn can be applied to the expected utility and interaction problems 

by requiring each concept to be learned with error E and probability 1-6. 



3.2 Mult iagent Probabilistic Hill-Climbing 

A technique [26] (27) based on probabilistic hill-climbing has been implemented to ad- 

dress the four issues raised in the previous section. It is a two-stage hybrid approach 

founded on both individtial and group learning. The first stage uses CO-learning to as- 

sess the combined utility of the transformations. Each agent individualiy selects their 

"best" transformation from their local set while interacting with the other agents. 

Once this set is found, the method proceeds to the second stage where the trans- 

formations are coiiected into groups and evaluated. The joint minùnaliw criterion 

is then appüed to resolve the credit assignment problem. The foilowing is a general 

discussion of probabilistic hill-climbing. It is foUowed by a discussion of how this 

technique can be applied to multiple agents. 

3.2.1 Probabilistic Hill-Climbing 

Probabilistic hiil-chbing [21] [20] [15] is a PAC leaming method that seeks to locally 

improve the average performance of a system until no incrementai improvement can be 

made. The rationale for devising a satisficing solution is that it is too computationally 

expensive to derive an optimal strategy. For instance, a monolithic approach based 

on first leamïng the distribution P and then generating an optimal strategy is NP- 

hard [19]. The basic hiil-climbing algorithm is shown in Figure 3.2. It resembles the 

generic procedure found in Figure 3.1. 

A set of transformations on the curent system, including the nuli transformation, 

$, is proposed. These could have been generated by a sirnplistic mechanism or a 

sophisticated EBL domain theory. In each case, the average expected change in 

utility of this transformation is computed under some sampling scheme. Sampling 

could be performed round robin or be based on a function of the utiiity values. 



HILL-CL-(& C, 6) 
i - 1  
T= generate-t ransforms (S) 
loop while not(termination-crïtena(S)) do 

&= distribute(6,i) 
sample(7) 
if 3ti E 7 3 climb-criteria(ti, 7, Ji, r) then 

S= ti 
T= generate-transforms (S) 
i= i+l 

end if 
end loop 

Figure 3.2: Hill-climbing Aigorithm 

When sutncient samples have been accumulated to uidicate that the mean A- 

utility of the best transformation is better or within I e  of any other transformation 

wi t h probability I d i  then the system Mi-climbs using this transformation. 

Definition 9: eoptimai 'Iiansfomation 

A transformation 7- is e-optimal when it has the highest expected utiiity in 

the set of A's or when al1 other have expected utilities which are f É of 7- 

with probabiiity 1-6,. 

The c parameter is a measure of indiflerence. That is, if the "best transformations" 

have average (A)-utilities within E of each other, then the agent does not care which 

one is implemented. This proceas continues until no additional local modifications 

can be made or the "bestn transformation is 4. 

The confidence parameter 6 is distributed over each hU-cümbing step such that 

the sum of the probability of erron over al1 steps is less than or equal to 6. If the 



number of hill-ciimbing steps is bounded, then the di's can be computed by dividing 

6 by the number of steps- In cases where the number of steps is unknown, the ai's 

can be computed by mdtiplying 6 by any series that sums to 1 at infinity; such as 

& [20]. This approacli is guaranteed to return a systern that is locally eoptimal 

with probability 1-6. 

From the above discission it can be seen that probabilistic Mi-clunbing address 

a number of issues in the generic coordination barnework. 

1. Computing Tmns~omations 

By design, probabilistic bill-climbing is iterative. Thus there is a trade-off be- 

tween optimality and complexity. 

5. Tenninating Leaming 

As an instance of PAC learning, probabilistic hU-climbing has a well-defined 

termination condition. 

Issues 2 and 3 will be examined below where the hiii-climbing aigorithm is extended 

to multiple agents. 

3.2.2 Application of Probabilistic Hill-Climbing to Multiple 

Agents 

The use of probabilistic hill-climbing requires the introduction of an additional defi- 

nit ion: 

Definition 10: €-joint Transformation 

A €-joint transformation, c - 3, is a set of local transformations x, 5, . . . 
such t hat: 



2. Another way of defining a €-joint transformation is to define its opposite. 

In this case. a combined transformation C is not E - 3 if IE(U(C)) - 

E(cL,u(V)I I E 

with probability 1-JI. Related definitions for minimal €-joint transformations, 

É - T ,  and É-optimal €-joint transformations, ~-3&* foilow directly from 8, 9 

and 10. 

In practice, the definitious associated with 10 use A-utilïties instead of actual utiüties. 

This is in keeping with the use of ha-climbing where the task is to incrementaily 

improve performance. 

The rnost straightforward way to apply pro babilistic hill-climbing to multiple 

agents is to use it to estimate the A-utiliw of grouped transformations. These groups 

would correspond to the cross-product of ail the local transformations, including #, at 

a given step. The €-joint rninimality criteria can be then applied to filter the groups 

with error probability &. E - J& is then selected with error probability 6,. If & + 
6, is l e s  than d then the best candidate is returned for implementation. 

Another way of looking at the problem is to f i t  select the eoptimal group, Çl, 

with error probability &- Then fiom out of Gl, s - 3- is &mcted with error 

probability Again, if + da is Iess then 6 then the system hül climbs. This 

variant is possible since Ç1 must contain B - .7&- The group with the largest utiliw 

must contain the atomic transformation with the largest utility. 

Both approaches are based on standard grouping and still suffer from the same 

complexity concerns. Note that the grouping is performed on transformations and 

not on agents and thus the scheme is not as philosophicaiiy objectionable. 

Between the two approaches, the second is arguably better in that it reduces the 

groups to one candidate. This is a weak argument, since there may not be any savings 
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in temu of sample complexity ushg this technique. However, the rationaie for this 

variant becomes much stronger if the guarantee of eoptimality is dropped and an 

approximation method iised to find &. 

The proposed approach decomposes the learning task at each step ùito two stages. 

The h t  step individually computes the best transformation for each agent. In effect, 

this produces a set, G2, which is an estimate for A. Next, e - 3- is isolated nom 

Ç2 using grouping. 

During stage 1, eacli agent individually runs a copy of the probabüistic hill- 

climbing algorithm. Local transformations are evaluated without coordinating with 

the other agents. This scheme is identical to Sen's use of independent Q-learners, 

except that probabilistic hiU-ciimbing is guaranteed to converge. An agent either 

decides that one of the transformations is usehl or it defauits to its current strategy. 

When applied to the symbol emitting domain £iom Chapter 2, an earlier variant of 

the method halted in 50 out of 50 trials while returning one of the 3 equal positive 

utility solutions in 49 cases. The remaining trial r e tmed  a negative utiiity outcorne. 

Probabiiistic hill-climbing is guaranteed to retiun the transformation with the 

Iiighest expected r - A-utility with probabiiity 1-6, for each agent. However this 

does not guarantee that is equal to gl. If this were true, then it is necessary for 

each agent to retum an eoptimal transformation, but this condition is not sufncient 

to guarantee the conve~se. Thus the local transformation method can be viewed as 

a heuristic for f inhg Çi. It has been empirically proven to be effective in this task. 

Results will be discussed in Chapter 4. 

The second stage of the procedure groups the members of the individual maximum 

transformations, samples the groups, computes the €-joint transformations and then 

looks for the ejoint transformation with the largest mean. Since the approach relies 

on two stages, 6i is docated across both stages as bil and bj2 respectively. Similarly, 

e is also allocated as el and €2. The rationaie for the h s t  ailocation is clear. In the 
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second case, E is dktributed to prevent the foilowing scenario. Let the first stage 

approximate gl exactly and retuni a which is one c away from the best group. 

During the second stage selection process, the system also returns a within solution. 

As a result the final group is 26 away. To eliminate this problem, al and €2 must add 

up to €. 

The second stage algorithm is shown in Figure 3.3. Once has been found, the N, 

JOWT - T R A N S F O R M S ( ~ ~ ~ ~ ~ ~ ,  E, 6, No) 
J= compute-combinations(agents) 
i=l 
loop whiie not f i g  do 

simultaneous-extract (9) 
if (i > No) then 

[TT, i-emod= compute-independence(3) 
[M 7, m-errod = hd-rnax-trans(Z7,~) 
if ( ( i -emr + m-emr) < 6) then Jag= TRUE 

i= i+l 
return(M 7) 

Figure 3 -3: Joint Transformation Algorithm 

N-1 to 1 combinations of the transformations are computed. This set represents the 

potential minimal joint transformations since it contains aII the possible combinations - 

of local transformations. There are stili, ( y )  + ( 2 )  + - - - +  (N) =z"-I. 

an exponential number of transformations but, N is oniy in the number of agents and 

not a function of the number of agents and the number of transformations. Consider 

the case of three agents with theù individual best transformations being A, B, and 

C respectively. The seven potential joint transformations are {A B C), (A B), {B 

C), {A C), {A), (B) and {C). If a transformation is not chosen to be a mernber 



of the joint transformation, then the corresponding agent adopts its default strate= 

The A-utiiities of the potential joint transformations are assessed by applying 

them on the same problem instances. After an initial nurnber, Ni, of problems have 

been solveà; the potential joint transformations are tested for intemction effects. 

This is done by directly implementing the minimal joint transformation criteria in 

the compute-independence hinction. 

The expected A-utility of a potential joint transformation is compared to the 

expected sum of the iitilities of its individual components. Cmsider the combined 

transformation A B C. If ail three component transformations interact, then the 

expected A-utility of A B C, E(A - U(A B C)), should be greater than of: 

where Di stands for the default strategy of agent i. When combined, each test cor- 

responds to determining whether or not there is a positive interaction, the joint 

transformation condition, and whether this condition can be explained by a subset 

of the combined transformation, the minimality condition. For instance, in the k t  

test, the expected A-uttility of {A B C) is being compared to one of its second order 

subsets, A B. If the expected A-utility of {A B C) is greater than that of the ex- 

pected utility of {A B) plus C then there is an interaction between {A B C). On 

the other hand, if the expected A-utilities are the same then this implies that either 

the A-utilities in {A B C )  are additive or that (A B) interacts. In either case, {A 

B C) should not be considered a minimal ejoint transfomation. 



Ingeneral,thereare( ) + ( ) +-..+ (:) +l t e s t a rhe reN 
N - 2  IV-3 

is the number of agents or the maximum order of the potential joint transformation. 

For each test, the probabiiity that there is a positive interaction and the proba- 

bility that the values axe the same are computed. In some instances, it is easier to 

prove that the means of two distributions are within E than to prove that one mean 

is larger than another [4]. This accounts for the second condition in Definition 10. 

Thus both probabilities are computed. In both cases, the probabilities across all tests 

must be integrated to reach a conclusion about a given potential joint transfonna- 

tion. This requires an error model, which is discussed in section 3.2.3. Given the 

combined probabiiities of being larger or being the same, the hypothesis associated 

with the larger of the two, Pm, is considered correct. Accordingly, the probability 

of error is 1-Pm,. Again, these error values have to be integrated across potential 

joint transformations. The integrated value is the probability, à-emr, that the set of 

interacting joint transformations has been incorrectly identified. c - g'&Pi, is found 

by sampling the current set of hypothesized joint transformations. The best inter- 

acting joint transformation dong with its probability of error, rn-emr,  is returned. 

When the sum of i-en-or, rn-enm; and the errors fkom stage 1 is l e s  than Ji, the 

system hiIi climbs using the best joint transformation. The remaining miaimal joint 

transformations are then deleted to avoid the blocking problem. New transformations 

are generated and the process repeats until a predefined termination criteria, such 

as a bound on the number of hiil climbs, or when the current best transformation is 

. The latter criteria is preferred since it is weil founded. However, in some of the 

experiments, a climbing bound was used to reduce run tirne. 

At this point, the remaiaùig two issues in the generic muitiagent leaming aigorithm 

can now be summarized. 



2. Computing Cornbined Tmwfonnations 

The effect of combining transformations is ascertained by using independent 

Learning. This trades off optimalit31 for complexity- It is ais0 an attempt to 

address the philosophical issue of autonomy in learnuig. 

4. Computing the Best Tmnsfomation 

The minimal joint transformations are discovered using a method based on 

grouping. As in the case of AGE, grouping is perfomed at the Ievel of trans- 

formations and oot at the levei of agents. Again, this is to address the issue 

of agent autonomy. By itseif, grouping is useless. Although it can be used to 

assess the effect of a set of transformations, it cannot determine which subset 

of the group gave rise to the positive A-utility. This requires that the effects 

of a group be compared to those of its components to determine the minimal 

subgroup responsible. This, in turn, requires some cnteria to determine the 

confidence of the iitility estimates. A statisticai technique is used to compute 

the error of estimation- 

A rough cornparison cm be made between this method and groupbased techniques by 

examining the nurnber of expected utilities that have to be estimated. For instance, 

consider a domain with four agents, each with five transformations. Using grouping 

there would be 5' - 1 = 624 means to be estimated. On the other hand, if the 

proposed approach is taken, there are 20 (4 x 5) utilities to be estimated in stage 1 

and then 2'-1 or 15 in stage 2 for a total of 35. These numbers cannot be directly 

compared since the number of samples requûed to perform the estimation may not 

be equal, but there is a large Merence in the number of utilities. Moreover, the 

range in the number of samples required should be similar. In each case, the task is 

to estimate the parameters of a distribution to a prescribed confidence level. 



3.2.3 Implementation Details 

The suggested algoritlun is a skeieton with many possible instantiations. Two ques- 

tions have to be answered before an implementation c m  be developed. These are: 

what assumptions shorild be made when comparing the system error and what method 

should be used to simple the transformations. 

There are three places in the algoritlun where errors are computed. In two of these 

cases, the curent best transformation is compared to the remaining transformations 

to determine if it is the best and in the other, the error of missclassifjring a joint 

transformation is calciilated. AU cases involve the cornparison of distributions. The 

proposed system uses paired t-tests to determine if the mean of one distribution is 

strictly better than another or if they are within f c. More details can be found in 

Appendiv A. Since a set of paired tests are used, the question is how to hande the 

results of these tests. That is, whicli error mode1 should be employed? There are 

three possible models [lG] : 

1. Worse Case. Take the s u m  of al1 the errors. 

2. Independent Case. Take the finai error as 1 - nZ,(l- errori). 

3. Best Cose. Take the largest error. 

Consider the case of hding the best transformation. An error occurs when either: 

1) the best transformation is properly estimated and another transformation is over- 

estimated or 2) when the best transformation is underestimated and the other trans- 

formation properly estimated or 3) when the best is underestimated and the other is 



overesthated. Thus, tlie errors c m  be dependent. Rather than potentially underes- 

timating the error using either the independent or best case modeis, it was decided 

to overestimate the error using the worse case model. On the other hand, the miss- 

classification error for an individuai joint transformation was computed using the 

independent model. T b  is not to tdy  correct, since the errors could be correlated 

if the subcomponents are additive. For instance, when testing {A B C) against {A 

B) and A + B, if U ( A  B)= U(A) + U(B) then these tests may be correlated. This 

is mitigated by the fact that Definition 6 assumed that sarnpling is independent. To 

offset this, the worst case model was tised across joint transformations. 

Sampling Schemes 

There are a vaxiety of ways in which the transformations could be sampled. The 

simplest approach is to use a round-robin scheme and to consider each in turn. This 

is commonly known as simultaneous extraction [2 11. 

In general, the optimal scheme would return tlie best transformation in the least 

ntimber of samples. It is assumed that testing is expensive and thus should be min- 

imized. The learning community has proposed various solutions to the problem [12] 

[3 11 [17] [4]. There are also related problems ui statistics, such as finding the member 

of a population with the largest mean (531 [51] or finding the "best a m "  in a bandit 

problem [45] Pl. The latter task involves an imaginary, multiarmed slot machine 

that retunis a random award depending on the arm that was pulied. The goal is to 

rnaximize the long-run total reward using the results of previous trials. 

Some of the techniques sequentiaily sarnple dl the transformations until it has 

been proven that a particular transformation cannot be the best [53] [SI], whüe others 

compute dominance or confidence intervals for the means of the transformations [12] 

[31] [17] [45]. The transformation that dominates or has the largest upper bound on 



its confidence interval is sarnpled. Finaliy, the remaining approach [17] [4] weighs the 

cost of sampling a transformation against the benefits in error reduction and then 

picks the one with the best ratio. 

While these techniques reduce sample complexity for single agent leamers, the 

learning environment for multiagent systerns is different. The ciifference is that the 

utilities of the transformations may not be independent, but instead depend on the 

transformations being tested by other agents. Thus, sequential methods wi l l  tend 

be useless, since they wodd "smear" the ut* estimates for potentially good joint 

transformations over dl the transformations. This has been empiricaily confirmed 

for certain types of distributions. See section 4.2 for results. Intuitively, a "good" 

multiagent sampling scheme would have each agent explore its space of transforma- 

tions and then settle oii a subset that has high utility when combined with those of 

the remaining agents. This would d o w  the agents to "converge" on a set of joint 

transformations- 

The development of a new multiagent sampling scheme is beyond the scope of 

this thesis. In the proposed system, for all but one experirnent, agents sample their 

transformations using the Zheuristic [45] which was developed to solve the bandit 

problem. Initiaiiy, No samples of each transformation are randomly taken. The mean 

and the variance of the mean of each transformation are then used as parameters to 

a set of normal distributions. A random number is generated fiom each distribution 

and the transformation associateci with the largest number is sarnpled. This approach 

has characteristics of the intuitive scheme discussed above. Its effect wiU be discussed 

in Chapter 4. 

Experiments in the navigation domain used interval estimation (IE) [12] [31] 

rather than the Z-heuristic. This is a historical consequence of it being one of the 

earliest experiments perfomed. After some discussion with the author of [12] and 

some experîments, it was decided that the sample complexity of the Zheuristic was 



better than that of IE and thus the remaining experiments used this scheme. The 

results of these initial trials will not be presented here. 



Chapter 4 

Experiment al Validation 

Three sets of experiments are performed to test the effectiveness of the technique. 

The first set involves s synthetic domain where the characteristics of the problems 

can be easiiy controllecl to determine their influence. The second set are performed 

using Sen's [47] robot uavigation domain. These tests stress the scalability of the 

first stage of the approach, since the domain can be viewed as involving a maximum 

of 400 agents. The final experiment applies multiagent probabilistic àill-climbing to 

the predator and prey piinuit domain. This is a weli studied problem in DAI with 

published results for the GP leaming paradigrn. A simplified restaurant domain will 

also be presented in Chapter 5, but it will be used to demonstrate a sample complexify 

reduction method. 

The next section discusses the coordination approach and the associated problem 

solving hmework that is used throughout the rest of this thesis. Each domain is 

then considered in turn. 
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(make-operator 
: template ' (get-drink-seven ?x) 
:preconds '((send-dorder ?x) (seven ?x) 

(have-seven ?y)) 
:addlist '((have-drink ?x) (not-pay-d ?x)) 
:dellist ' ((send-dorder ?x) (seven ?x) 

(have-seven ?y) ) ) 

Figure 4.1: Seven-up Operator 

4.1 Problem Solvers 

The coordination paradigm used in the research is an instance of an organizational 

structure approach. A coordination strategy is implicitly encoded in the behavior of 

the agents. The behavior of an agent is controlled by a poiicy which is executed depth 

bs t .  Given a context, an agent wiii to execute the first action or operator 

in the poiicy that is applicable. This occm in parauel using the same context. 

The actions/operators range fkom simple state to action mappings in the case 

of the navigation and the predator and prey domains to STRIPS operators in the 

restaurant domain in Chapter 5. An example of a state action pair is {(10,10), 

north). If an agent is in grid location (L0,lO) then it should go nozth. Figure 4.1 

shows an example of a STRIPS operator hom the restaurant domain. The symbols 

preceded by "?" are variables. The huiction of this operator is to obtain a glas 

of Seven-up for agent ?x. As in the usual STRIPS paradigrn, it can be applied 

when its preconditions are met. The result is that the literals on the addlist are 

added to the world and the literals on the dellist are deleted fkom the world. In 

this case, if agent ?x orders a drink, wants a Seven-up and there d s t s  a fiee glass 



of Seven-up then this operator can be used. These two requirements correspond to 

the (send-dorder ?XI (seven ?XI and the (have-seven ?y) literals in the pre- 

conditions, respectively- Once the operator has been applied then agent ?x has a 

drink which has not been paid for, the order has been Wed and the glass of Seven-up 

has been assigned. The first condition is added by the (have-drink ?x) and the 

(not-pay-d ?x) literals in the addlist. The fact that the order has been Ued and 

the g la s  used-up is reffected in the t h e e  elements of the dellist. 

In domains containing variables, bindings are resolved at execution time. Thus 

two agents can execute the same action using dinerent objects. If more than one 

agent selects an operator with only one binding, then a simple agent priority scheme 

is used to resolve the contlict. Agents are assigned numerical id's. The agent with 

the lower id executes the operator wlde the remaining agents are idle. Bindings are 

assigned in the order tliat they are found. The strategies do not explicitly control 

bindings . 

Since strategies are executed depth k t ,  transformations correspond to reorder- 

ing the elements of the strategy. This could entail movllig one elernent or moving 

multiple elements. To reduce complexity, the implemented solven only use one-step 

transformations. This sclieme can coutnbute to the system being trapped in a local 

minima. 

4.2 Synthetic Domain 

In this domain, each one of four agents outputs a symbol from the distinct set that 

it has been assigned. The feedbadc received is a hinction of the world state and 

the combined set of outputs from all agents. As described above, strategies are 

ordered lists of symbols. An agent outputs the h t  symbol in its strategy. This 

probiem is simila to the contrived example presented in Chapter 2. To determine 
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the performance of the niethod, the domain and the experiments were parameterized 

in the following ways: 

1. Changing the shape of the problem distribution 

As its name implies, the problem distribution refers to the fiequency of the 

problems that will be encountered by the system. For the symbol domain, this 

corresponds to the frequency of the states. If the utilities of the transformations 

are equal then the transformation that improves performance on the most com- 

mon problem shoidd be implemented. The use of equal utilities is a simplifying 

assumption. In geuerai, the transformation that has the best expected utility 

should be selected. 

The experiments tised a variant of the simplifying assumption, but exchanged 

what was fixed. Iustead of varying the distribution and fixing the utility, the 

distributions were kept uniform and the utiüties varied. This was done to 

s i m p w  the settip of the experiments, since it is immediately apparent which 

transformations were c-local of the best . Thus, problem distributions refer to 

the distribution of high utility transformations. 

The algori thm was tested on three different pro blem distributions to ascertain 

their efFects on performance. In aiI three cases, the distributions required the 

use of 3rd order joint transformations. That is, utility values are based on the 

retumed symbols from three different agents. For the system to return a within 

e result, three out of the four agents must return the appropnate symbois. 

Histograms for the three cases are shown in Figures 4.2,4.3 and 4.4 respectively. 

The y-axis of the histogram measures the number of triples that are within 

the respective multiples of e from the best triple. For the lack of better labels, 

the distributions wiil be referred to as hard, center, and skewed, respectively. 

The haxd distribution not only has the least amount of cl entries but also 



Figure 4.2: Had Problem Distribution 

has a skewed distribution of c2 outcornes. The remaining two have different 

proportions of €1 entries with the center distribution being, naturdy, more 

centered and the skewed distribution being skewed to the right with a large 

number of el entries. In terms of percentages, the hard, center, and skewed 

distributions have 1.8%, 4.2% and 20% of within c entries. 

2. Changàng No 
The number of initial samples can be changed to assess the sensitivity of the 

algorithm to this parameter. Experiments used No values of 5, 10, and 15. 

3. Changàng the allocation of 6 

As discussed in Cliapter 3, d must be allocated across the stages, since the 

proposed approach is a multistage algorithm. Ailocation c m  be controlled using 

a single parameter that defines the fraction of 6 that can be used in stage 1 with 

the remainder being dotteci to stage 2. Parameter values of .25, .5, and .75 

were used in the experiments. 



Figure 4.3: Center Problem Distribution 

4. Ghanging the sanipiing scheme 

The effect that the sampling scheme has on the overd results can be detennined 

by varying the scheme. Ln this case, the Zheuristic was compared to trials using 

random and round robin (simultaneous extraction) sampling. 

Throughout the tests, the number of agents, the number of symbols per agent, 

the E ,  the 6 and the Ni parameters were held constant at 4, 5, 0.4, 0.05, and 30, 

respectively. Ail initial syrnbol lists were ordered randomly. It was found that all 

trials used more than 30 samples during stage 2 and thus Ni was not varied. A cutoff 

of 5000 and 800 samples were placed in stage 1 and 2 of the trials, respectively. If 

the algorithm did not retuni an anmer by this time, the failure was noted. Results 

are tallied by distributions in Tables 4.1, 4.2, and 4.3. These correspond to the hard, 

center and skewed problem distributions, respectively. The ht column of each table 

represents the test conditions in order of b allocation, No, and sampling scheme. In 

the case of the last parameter, 2 refers to the Zheuristic, R to random sampling, 

and S to simultaneous extraction. FiRy tnds were nin for each combination and the 

following statistics stored: 



Figure 4.4: Skewed Problem Distribution 

1. €0: The number of triaIs that found the best transformation. 

2. cl: The number of trials that fomd a transformation within E of the best. 

3. Fuiled Stage 1: The number of trials that did not retum an €0 or €1 transfor- 

mation during stage 1. 

4. Failed Stage 2 The number of triais that did not return either €0 or el tram- 

formations during stage 2. 

5.  D.N.H Stage 1: This item contains h o  entries. The k t  is the number of 

trials that reached the k t  stage sample limit of 5000 without halting. Entry 

two is the number of stage 1 D.N.H entries that would have resdted in a stage 

1 failure if the algorithm had teturnecl the current best set as the final best 

transformations. 

6. D.N.H Stage 2: This item contains two entries. The fi.& is the number of trials 

that reached the second stage sample limit of 800 without halting. Entry two 

is the number of stage 2 D.N.A entries that would have resulted in a stage 2 



failure if the algorithm had returned the curent best joint transformation as  

the actual one. 

7. Samplesl: The total number of stage 1 samples accumulated over ai i  trials. 

Tot& for stage 1 and 2 samples are kept distinct due to the different cutoffs. 

8. Samples2 The total number of stage 2 samples accumulated over ali triais. 

Note that each stage 2 sample is equivalent to 15 (2'-1) stage 1 samples since 

each group is assessed using the sample. 

The effects of the test parameters are Linked and thus the result of modifying one 

individual parameter may be hard to isolate. The discussion wiU be broken d o m  

into three headings: 1) tlistribution/sampling scheme, 2) No and 6 docation, and 3) 

error rate. 

1. Changing the shape of the distribution/sampling scheme: 

The consequences of changing the distribution and the sarnphg scheme are 

coupled. When the number of €1 entries is small, sampling schemes that do 

not converge on a set of transformations make many errors, as can be seen in 

Tables 4.1 and 4.2. As suggested, simultaneous extraction tends to 'csmear'y the 

A-utility estimates for a joint transformation across the joint transformation. 

Random sampling has a similar effect. However, these methods can retum a 

q solution in a smder  number of samp1es than the Zheuristic if the number 

of €1 entries is large. Consider the results for the skewed distribution. The Z- 

heuristic performs poorly in terms of sample complexiiy, due to the large number 

of potential solutions. The learning algorithm must keep sampling until it has 

determined that either the best transformation is the best or that every other 

transformation is within f c of it. Since many sets of traasformations fall into 

the latter category, it will take correspondingly many samples. 



Table 4.1: Results for the Hard Distribution 
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Table 4.2: Results for the Center Distribution 



Table 4.3: Results for the Skewed Distribution 



On the other hand, random and round-robin sampling do not M e r  from this de- 

cision problem, since they have difliculty in hding €1 solutions. These schemes 

simply r e t m  the best set of transformations that the agents have found with- 

out exploration. If the number of el entries is high, then the probability of 

retuniing one of these results increases. This effkct can be seen by comparing 

the data for the center and skewed distributions. The percentage of correct 

results increases with the proportion of €1 entries. It is the most dramatic in 

the case of simultaneous extraction. Random sampling has problems exploithg 

the uicreased solution density due to the "noise1' inherent in the method. 

2. Changing No and b allocation: 

These results indicate that the approach is sensitive to the value of No. Halv- 

ing the value fiom 10 to 5 dramatically increases the total number of stage 1 

D.N.Hys. This c m  be explained by looking at the number of times that a given 

transformation has been sampled. Generaiiy, the combination of a distribution 

with a srnaIl number of €1 entries and a low No causes a large disparity in the 

number of samples across transformations. That is, the transformations corre- 

sponding to an €0 or €1 entry will have many more samples than the remaining 

transformations. This is an artifact of the Zheuristic sampling scheme. One 

problem is that it tends to spend most of its time sampling the best transfor- 

mation. This is exacerbated by distributions where a few transformations are 

much better than the others. 

Confidence in the utility estimates and hence the error is a function of the 

number of samples. Given that most of the sarnples are concentrated on one 

transformation, the incremental error reduction per sample is low. Increasing 

No forces the procedure to sample each transformation at least a fixed number 

of times. Zeroing in on the best transformation works well for bandit problems 

and fits in with the idea of the system converging on the best transformations. 



However, it may not optimaiiy address the mmultaneous goal of reducing sample 

complexity. Note that the Zheuristic does implicitly faetor in the uncertainty 

of the estimate. This can be seen in its use of the variance of the mean. 

Increasing No to 15 had a marginal effwt on the results. Thus, as long as No 
is not "too low", the aigorithm will not use an inordinate amount of samples. 

However, note that the Iimiting case on increasing No is purely random sam- 

pling. As has been shovm, random sampling does not perform as weil as the 

Zheuristic on sparse distributions. 

The effect of changing the b docation can be seen in the sample complexity. 

As may be expected, as  less of 6 is allocated to the first stage, the number of 

stage 1 samples increases. Conversely, the number of stage 2 samples decreases 

as its share increases. Beyond this observation, it was hard to gauge the effect 

of modi@g the weighting- 

3. E m r  Rate: 

It is hard to quant* the error rate of the method due to the sarnple cut-O&. 

Simply summing the €0 and s entries indicates that the best result was 10% in 

the case of .50/15/2 if the partial round-robin results for the skewed distribution 

are ignored. This is below the theoretical requirement of 5% for a system that 

does not use approximations. R e d  that the approach does approximate 

and thus this condition is invalid. It cm be argueci that, in general, taking the 

Merence between the number of samples and the s u m  of €0 and Q overestimates 

the error rate. For instance, an examination of the stage 1 D.N.H's indicates 

that most of them would have retumed a within el solution ifit had been allowd 

to halt. This may lead to more el ha1 results. The validation of this hypothesis 

is pragmaticdy beyond the computational capabilities of the S parcstation P X  

used in these experiments. 



As the resuits indicate, multiagent pro babiiistic hiil-climbing is capable of returning 

d o c d  joint transformations with a good success rate given parameters appropriate to 

the distribution. Thus, like O t her parameterized learning techniques, it may require 

several t d s  using different values to realize these outcornes. 

4.3 Navigation Domain 

The navigation probleni involves four robots that have to maneuver fiom one side 

of a ten-by-ten gridworid to preassigned locations on the other side while avoiding 

collisions. A diagram of the gridworld is shown in Figure 4.5. An agent's policy is 

represented by an ordered kt of actions, one per square. These actions are north, 

south, mt, west, and hold as specified by Sen [47]. When an agent enters a square, 

it executes the first action in the k t .  This will result in the agent rnoving to a new 

square or remaining in the same one. The second case occurs during a collision or 

when the hold action is executed. If this occurs then the next action in the list is 

executed during the next time step. Consider the foilowing strategy for square (10,lO): 

{(10,10),(north west hold south eost)). Given that the current move has resulted in 

a collision, the next move would be to the west. This prevents deadlock, since the 

agents would normaily execute the same action that resulted in the collision, since 

they are at  the same grid location. Hold actions are usehl for letting another agent 

p a s  to avoid a collision. However, an agent shouid move during the next step. 

Each of these squares can be viewed as an agent since it has it own local policy 

and local traasformations. Since the grid is ten-by-ten and there are four agents, 

there is the potentiai that the problem may imlve  up to 400 agents. This number is 

not normally realized since the agents do not tend to wander ail over the grid. Thus, 

this experiment assesses the scalability of the technique. 

Using the aforementioned execution scheme, the transformations reordered the 
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Figure 4.5: Robot Navigation Domain 

action lists as in the case of the synthetic domain. Rather than simply pemuting the 

actions, a "lock-step" approach was taken to compute the transformations. At any 

given Ml-climbing step, the transformations oniy modined one specific position in 

the order. Initially this was the first position in the action list and was subsequently 

incremented upon hili-climbing. 

Another issue is the reordering of the hold action since the utiiity of this trans- 

formation is dependent upon what cornes after hold. The solution was to generate 

four different transfomations for hold. Each one corresponded to one of the four 

remainiog possible actions. 
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The reinforcement signal is a function of the position of the square being entered 

into with respect to the goal and also the occurrence, if any, of a collision. Thus, the 

utility function is local. If the new square is closer to the goal then a value of 1 is 

received. Conversely, if the new square is farther away then a value of -1 is returned. 

Otherwise, the agent obtains a value of zero. The cost of a collision depends on the 

status of the other agent involved. If it is stationary, that is, it is executing a hoM 

action then the cost is -10; else it is -5. In the event that an agent tries to leave the 

grid, it receives a punisiunent of -10. 

The utility functiou does not measure the number of steps in a solution as wouid 

appear in a global function. To remedy this, a payoff filter (401 was used to promote 

cooperation. The A-utiLity estimates involved a ciifference in local reinforcement 

values as weil as  the weighted A-utility of the best transformation in a subsequent 

grid location. Grid Ioçations with strategies that move an agent closer to its goal 

sliould be entered to recliice the overd path length. The second term of the A-utility 

factors this in. This scheme corresponds to the delayed reinforcement used in Sen's 

paper. Sunilarly the discounting value or the weight, 7, was set to 0.8. 

The aim of the experiment is to test the efficacy of CO-learning during stage 1. 

A question is, "does the approach scale?' In this case, scsling does not refer to 

computational complexity, but rather to the ability of the technique to converge on 

beneficid transformations. This issue is important since errors at this point Iimit the 

effective= of the r a t  of the algorithm. As such, the second stage procedure was not 

used nor could it have been used under these circumstances. The cost of assessing 

Z4O0 - 1 potential joint triLIiSformations is completely unrealistic. On the other hand, 

a complete grouping solution would require 8400 - 1 means to be estimated. However, 

the domain does provide a mitigating factor in that it admits many solutions and 

thus the blocking problem may not occur. That is, the space of paths that an agent 

can take is large and thus if a local error is made, a workaround may be found. To 
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further reduce the chance of blockage, only one transformation was implemented each 

step. A consequence of this is that the CO-leaniing mechanism must "rediscover" the 

remaining components of a beneficial transformation during subsequent iterations. 

This rnakes the test much more difEcult- 

For the experiment. No was set at 5. Since the number of possible bill-climbs 

is bounded by the nurnber of squares and the number of actions, a division scheme 

was also used to compute the deltais. Rather than dîviduig by 400, a dynamic 

scheme was used that enumerated aii the grid locations that have been visited and 

used that number. As stated in Chapter 3, intervai estimation was used as the 

sampling scheme. IE samples the transformation with the largest upper bound for 

the confidence interval on its mean. This approach is similar to the Z-heuRstic but 

without the random element . 

Using a common initial ordering of (north, south, east, west, hold) for d agents, 

the system returned the solution shown in Figure 4.5. The dotted lines indicate the 

paths taken by the agents. The conesponding agent coordinates, with respect to 

t h e ,  are shown in table 4.4. As c m  be seen, the solution is optimal with each agent 

arriving at its intending destination in the shortest number of moves whiie avoiding 

collisions. In cornparison, Q-learning did not arrive at the optimal solution. Rather 

the paths containeci smaii detours. 

4.4 Predator and Prey Domain 

The object of the predator and prey domain is for four predators to capture a prey 

within a 30 by 30 toroidal grid world. Diagonal moves are not dowed and capture 

occurs when the four agents are directly adjacent and orthogonal to the prey. Agents 

choose and execute their actions simultaneously without communicating their intent 

to other agents. This is in line with Korf's hypothesis that predators can locally 
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Table 4.4: Agent Coordinat es 



choose optimal moves while still consistently capturing the prey (361. 

At each time step, the prey has a 90% chance of moving. Thus the predators move 

faster than the prey. The prey has a simple strategy that moves it away fkom the 

closest predator. All ties are arbitrarily broken. Coiiïsions occur when two agents try 

to occupy the same square. Io this case, the agents remain in their previous positions. 

However, if a predator does not move then it can be pushed by another predator. A 

predator cannot push the prey. Consider the situation shown in Figure 4.6. The prey 

is white while the predators are grey. The prey has decided not to move. The arrows 

indicate the direction in which a predator wants to move. Predators 1 and 4 want 

to push the prey but they can't. hstead they are pushed by 2 and 4, respectively, 

resulting in the configuration shown in Figure 4.7. 

Predators are controiied by a strategy that uses the relative position of the prey 

with respect to a given predator. Associated with each compass direction, (N, S, E, 

W, NW, SW, NE, SE), is an ordered list of four potential actions (north, west, 
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Figure 4.7: Configuration after pushing 

south, east). As in the other domains, an agent executes the first action in the list 

given the relative direction of the prey. For example, one strategy element rnight be 

(N (west, south, east, north)). If the prey is to the north of the agent, then it wili 

go west. Under this sclieme, transfoimations correspond to reordering the Iists for 

each agent for each one of the eight directions. This approach limits the number of 

potential Ml-ciimbs to eight pet agent. Thus, 6 can be distnbuted over the iterations 

by simply dividing by eight. 

Since the grid world is toroidal and there is no explicit representation for distances, 

a scheme was developed to map the relative position of the prey to one of the eight 

directions. Consider the situation shown in Figure 4.8. The light circle represents 

the prey while the darker one represents the predator. The question is, "Is the prey 

to the south of the predator or is it to the north?" The direction that minimized the 

distance between the predator and prey was the one returned to the predator. In this 

case, the prey was nortli of the predator. Aithough this representation is simple, it 



Figure 4.8: Relative Positions 

is capable of encoding similar strategies to those found in [23] [25]. 

The reinforcement signal used was identical to that found in [25]. It included the 

following components: 

1 1. After each move, each predator receives a value of dirhne+-u- T b  encour- 

ages the predators to stay close to the prey. 

2. At the end of the simulation, every predator that is oahogonally adjacent to 

the prey, receives a reward of the total number of moves aliowed. This biases 

transformations that bring the predators next to the prey. 

3. If the predators capture the prey then ali predators are given a value of four 

tirnes the number of moves in addition to any other reinforcement received. 

Clearly this favors transformations that aid in capture. 

As in [25], the initial locations of the predators are random with the prey being 
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centered in the grid. The movement of the prey was synehronized with that of the 

agents. The maximum number of moves was set at 100. The trial ends when either 

this number is exceeded or if the prey is captured. 

4.4.1 Cornparisons to Genetic Prograrnming 

The approach was compared to Haynes' genetic programming results to axertain its 

performance. Correspondhg to the procedure in [25], experiments were performed 

using a maximum of 200 moves aithough Ieaming only used 100 moves. 

Three dinerent trials were performed using multiagent probabilistic ha-climbing. 

The first two are based on an initial strategy that had every agent moving north 

regardless of the relative location of the prey. For experiment 1, the parameters were 

set as foiiows: EL= 4, c2= 4, No= 70, Ni= 30, and 6= -4 which was evenly allocated 

between & and biz over the eight possible hill-ciimbing.steps. Experiment 2 had the 

same values except that No was lowered to 50. The third case used a completely 

random initial strategy. Its parameten were identical to the second trial. The nuis 

will be denoted as MPHC1, MPHC2, and MPHC3, respectively. The number of 

captures and the average number of moves to capture over 100 trials are shown in table 

4.5. The first two entries in the table are the best results for strategies generated by 

genetic programming. In the case of STGP [23], a single strategy was Ieamed that 

was used by all the agents. Thus, there is an implicit form of communication between 

the agents, which are also assumed to be homogeneous. A l  [25] is an agent grouping 

approach to learning using the "TeamAK" crossover strategy in which there is a 

potential cmsover point in every agent in every group. Given these characteristics, 

it is a prime candidate for the blocking problem. 

Note that the results for STGP and A l  are not those reported in [25]. Rather 

new simulations were performed using the coordination strategies that were described. 



Algorithm Captures Avg. Moues 

Table 4.5: Captures and Average number of Moves 

This dowed the methods to be compared using the same test cases. ui any event, the 

results were sirnïiar to those that were pubiished. From figure 2 in [23], the capture 

rates for STGP seem CO be in the 10% range while the value for A l  is close to O 

[25]. The average path length of 200 for A l  was included to indicate that it failed to 

capture. 

It is ais0 interesting to compare the strategies generated by genetic programming 

to those produced by hiIl-climbing. A visualization of the strategies is shown in 

figures 4.9 to 4.25. P iudicates the prey and the arrows indicate the direction an 

agent would move given its current relative position to the prey. For instance, in the 

STGP strategy, if the prey is to the east of a predator then the predator will aiways 

move e s t .  The perturbations at the edges of STGP and A l  strategies are probably 

the resuit of the low level representation used in GP. They were reproduced in the 

rum. 



Figure 4.9: Strategy generated by STGP 



Figure 4.10: Strategy using A l  for Agent 1 

The strategy produced by STGP moves the predator to an orthogonal position 

to the prey and then closes in. A l  produced a strategy which contains 2 orthogonal 

components that do not necessarily bring it closer to the prey. 



Figure 4.11: Strategy using A l  for Agent 2 

Figure 4.12: Strategy using Al for Agent 3 



Figure 4.13: Strategy using Al for Agent 4 

Figure 4.14: Strategy using MPHC 1 for Agent 1 



Figure 4.15: Strategy using MPHCl for Agent 2 

Figure 4.16: Strategy using MPHCl br Agent 3 



Figure 4.17: Strategy using MPHCl for Agent 4 



Figure 4.18: Strategy using MPHCP for Agent 1 

Figure 4.19: Strategy using MPHC2 for Agent 2 



Figure 4.20: Strategy using MPHC2 for Agent 3 

Figure 4.21: Strategy using MPHC2 for Agent 4 



Figure 4.22: Strategy using MPHC3 for Agent 1 

The strategies generated by MPHCl are similar to those of STGP except that 

they euhibit a degree of speciaiization. This is particuiarly tme for agent 4, which 

only approaches the prey from the southern direction. MPHC2 shows even greater 

differentiation in that agent 1 approaches fiom the south, agent 2 approaches fiom 

the east, agent 3 approaches fkom the north, south, and west, and agent 4 approaches 

kom the north. The best results are for MPHC3, which again shows specialization, 

except for the case of agent 2. Fkom figure 4.23 it can be seen that this agent does 

not approach the prey at ali. One of the shorter pursuit paths for this strategy is 

shown in tables 4.6 and 4.7. The coordinates are not graphically displayed, since the 

paths overlap and make the redting diagram confusing. It would seem that agent 

2 is "luring" the prey by staying on the diagonal before findy moving into position. 

This exploits a weakness in the prey in that it moves away ftom the closest predator. 

Since Manhattan distances are computed, being on a diagonal would seem to leave 

an empty spot. 



Figure 4.23: Strategy using MPHC3 for Agent 2 

Figure 4.24: Strategy using MPHC3 for Agent 3 
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Figure 4.25: Strategy using MPHC3 for Agent 4 



Table 4.6: Example Pursuit Path 



Table 4.7: Example Pursuit Path: contd 

The average solution length for au strategies are similar except for the case of 

MPHC1. It is conjectured that the value of No may have caused the algonthm to 

commit errors. The reduction of No in MPHC2 was an attempt to examine this 

hypo t hesis . 

4.4.2 Analysis of Intermediate Results 

Examining the intermediate steps between hill-climbs can uncover aspects of the 

system's behavior that cannot be seen fkom looking at the h a 1  results. For instance, 

is muhiagent credit assignment working and is it redy the p r o b l e ~  s described in 

Chapter 3? 

If credit assignment is a problem in this domain then, it rnight explain the poor 

p erforrnance of Al .  Wi thin probabilistic hiil-climbing, the credit assignment prob- 

lem can be seen by comparing the intermediate results of a sequence of climbs. For 
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instance, let the predators return transformations {%=A, X=B, 5=C, z=D), 

respectively, after stage 1. Stage 2 then retums {7;=A,7j=C) as the joint transfor- 

mation to be implemented. At a later point, stage 2 r e t m  {z=K,7;=L) where 

K and B are mutudy exclusive. A blocking problem wodd have occurred if 7;= B 

had been implemented during the previous step. 

During the experirnents, the multiagent credit assignment problem was observed 

in several instances. For example, during the MPHC2 trial, agent 1 returned a trans- 

formation that changed the strategy for the southwest direction during stage 1. This 

change was filtered out by stage 2. Individually, the A-ut%@ of this transformation 

was -8.47. Four climb steps later a transformation in the southwest direction was 

again returned in stage 1. This change was accepted. The trsnsformation would not 

have been available if the initial "southwest" transformation had been implemented. 

Since the problem cropped up using the al1 north initial condition, it was decided to 

rerun the experiment without stage 2 while using the same value. The resulting 

strategy had a capture rate of only 51% in an average capture time of 78.5 steps. 

4.5 Overali Evaluation 

When combined, the resiilts hint at the efficacy of the proposed technique as compared 

to existing multiagent coordination leaniing methods. In particular, the hdings for 

the robot navigation and the predator prey domain are prornising. Beginning with a 

completely incorrect and a random strategy, multiagent probabilistic hül-cümbing was 

able to leam a strategy that outperformed the best strategy produced by independent 

Q-learning and genetic programming. This does not imply that the technique is 

always better under every citcumstance. Rather, if the basis of cornparison is the 

"best" vernis the "best" then the proposed method is ''bette?' since the examples 

have been shown to be better without much parameter or initial state tuning. 



One remaining issue is the cornespondence between results for the synthetic do- 

main and the simulated domains. The h t  cla~s of experiments would seem to indicate 

that achieving r-optimal performance is diflicult without the appropnate parameten. 

However, it must be stressed that the problem distributions for this domain are ciBi- 

cult. Recall that the hard and center distributions had within a percentages of 1.8% 

and 4.2%. In the case of the skewed distribution, the sample cutofi may have pre- 

vented the algorithm from retuming a solution. The simulated domains used as many 

samples as required to r e t m  a result. 

This raises the question of direct sample complexity cornparisons between the 

proposed technique and the existing ones- For the predator prey domain, MPHC3 

required a total of 23433 stage 1 and 9837 stage 2 samples. Rewritten in terrns of stage 

1 samples, the total is 170988. The experimental setup for STGP was not reveaied 

in [23], but A l  used a population size of 600 for 1000 generations [25]. The latter 

numbers b p l y  600000 samples. However, comparisons are not meirningN, since the 

samples are predicated on the random initial strategies in the case of MPHC and are 

arbitrary in the case of Al .  Moreover, it can be argued that the representation used 

in A t  is more expressive and thus the algorithm should take longer. Thus, it may 

only make sense comparing these values for procedures using the same paradigm. 



Chapter 5 

An Extension to Probabilistic 

Hill- Climbing 

One problem with hill-ciimbing on the minimal joint transformation is that this wastes 

samples, if the remaining joint transformations are "independent" fiom the one being 

implemented. Intuitively, independence implies that the remaining transformations 

will not block transformations that are made possible by the one just implernented. 

Conversely, it also implies that the recently adopted transformation does not afTect 

these alternate transformations. The second case holds if the implemented and al- 

ternate transformations are additive since the joint transformation criterion indicates 

that they do not otherwise interact. Given independence, these transformations may 

eventually be adopted. The uncertainty arises fiom errors in the CO-learning apptox- 

imation of and from the E inciifference zone. IR the fi& case, co-leaming may fail 

to return the same trandomations due to error, while in the second, a ditferent but 

within a transformation is returned. Ignoring the issue of error, it doesn't matter 

which one of the within a transformations is implemented sinee all meet the local 

optimality criterion. Thus, it makes sense to adopt the curent "independent" trans- 
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formation rather than Iooking for another one. Yet, at the end of each hill-climbing 

step, the statistics for the unimplemented minimal joint transformations are deleted. 

This requires that the "independent" transformations be unnecessady reevaluated. 

Consider an example which is sunilac to the one used in the discussion of credit 

assignment. Let agent Al be able to apply transformation xi and agent da be able to 

apply transformations zl and Ta, which are mutualiy exclusive. As in the previous 

case, let have the highest utility and let it "enable" x2. In this scenario, 

does not positively interact with Ta, but instead the utility of the transformations 

are ordered as follows: U('&) > U(T2) > U(zi) > U('7&)- Mso, let the 

transformations of Al be additive with those of A*. Thus, xi can be regarded as 

independent of xi, since it does not block a transformation, which is enabled by the 

latter transformation and is also additive. 

The ordering would cause the algorithm to implement {Tl, x2, & } as a c h b  

sequence. Using deletiou would require that that the statistics for z1 be recomputed 

three times. If the independence of the transformations had been realized, then 7& 

couid have been impleniented during the fht step. 

One advantage of the agent grouping technique is that it implicitly exploits the 

case of independent transformation. The downside of this is that it does so indiscrim- 

inantly. The detection of independent transformations would reduce computation 

without incufiing a reduction in utility in the event of a blocking problem or conflict. 

5.1 Independent Transformations 

The intuitive definition of the blocking problem can be formaüzed using the foilowing 

definitions. c's and 6's are omitted for notational cla.city. 
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Definition 11: Enableï 

TA enables TB, denoted by TA + TB, if the implementation of TA at step i 

ailows for the existence of TB at  step i+l. 

Definition 12: Denier 

The opposite of an enabler is a denier. TA is a denier of TB, TA ++ TB, if 

TA9s existence prevents TB from being available. The relation is not necessanly 

symmetric. The brm of enablers and deniers is dependent on the domain. 

Definition 13: Confiict 

At a given climb step, z ,  $5 conjlicts with JGai if 3 7. E JLi, 3% E 3; 3 

7; -+ 7,,7; E .7-+K,z + 7;. That is, conflicts with TA-  if there 

is an transformation in tthat denies a component of the best minimal joint 

transformation in some hituse step that was enabled by the best minimal joint 

transformation in the current step. 

Any minimal joint transformation 3- which does not conflict with JLj can be 

implemented during the same step. 

The difficuiw with Definition 13 is that 3Li+, is generally not known ahead 

of time. Moreover, even if the minimal e-optimal joint transformation is known, 

this does not imply that 7; is &O knom, since the denial relation may only hold 

in certain problem contexts. In other words, a few problems may have to solved 

after hill-climbing before the relation is noticed. These factors can be eliminated by 

relaxing the definition of a confLict. 

Definition 14: Possible Conflict 

At a given climb step, i, 3; possibly confits with 3Li if 3 7, E 3Ai, 3% E 

3; 3 007. t 7;, 0% t) 7;, where O denotes possibly- 
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Definition 15: Independent Transformation 

At a given clirnb step, i, 35 is independent of (L7Li if it does not possibly 

coaflict with it- 

Rather than dealing with necessary conflicts, Definition 14 side-steps the issue by 

looking for all possible codicts. It ignores problem c o n t a s  and what the docal  

joint transformation will be in the next step. If a transformation has the poten- 

tial for contlicting with the current best joint transformation then it is tagged as a 

possible conflict. hplementing only independent transformations is a consenmtive 

approach whose worst case performance is identical to that of promoting one joint 

transformation. 

5.2 Independence in STRIPS Type Domains 

Building a system that exploits independence requires that enablers, deniers, and 

possible conflicts be defineci. As stated in the definitions, both are dependent on 

the problem solver. To Nustrate the process, a exemplar was developed based on a 

STRIP S [IO] operator representation. 

Recall, fiom the previous chapter, that the STRIPS operators are used in forward- 

chaining mode and not as they typicdy are in goal cegression. Given that an envi- 

ronment may not be totaliy controlled by the agents, the problem solving scheme can 

be viewed as a form of reactive planning. In hindsight, the sequences of operaton 

executed by the agents can be seen as a plan. When viewed in this manner, the 

relations between operators can be regarded as one of precondition establishment [59]. 

The opposite of precondition establishment occurs when an operator deletes a precon- 

dition. The deleting operator is commonly known as a clobkrer. Potential enablem 

and deniers can be reexpressed in tems of these two relations. The key is to notice 
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that under the reordering scheme, a transformation is tied to the operator that is 

being reordered. The implementation of a transformation impiies that its associated 

operator is used in lieu of some other operator with the same preconditions. Thus 

the transformations can be analyzed by referring to their operators. 

Definition Ila: Possible Enabler (under STRIPS) 

TA possibly enables TB, denoted by OrA + TB, if TA is impiemented at step i 

and either: 

2. 3 OPc 3 o p ( f i )  possibly establishes preconds(OPc) I\ OPc possibly es- 

tablishes pre~onds(op(7~)) 

The function op retms the operator that was reordered in a transformation 

while OPc represent an operator from the domain. 

Definition 12a: Possible Deniers (under STRIPS ) 

TA is a possible denier of TB, TAO t, TB, if Ta either: 

1. op('&) possibly clobbers preconds(op(5)) or 

2. 30Pc 3 op(TA) possibly establishes pmonds(OPc)  A OPc possibly dob- 

bers preconds(op(7~)) 

The second component of each definition uses an intenrening operator and not a trans- 

formation. The operator in TA may indirectly interact with the one in TB through 

an existing operator in the strategy. GGen that these relations are ail problem con- 

text dependent and hence unknown, possible establishes and clobberers are identified 

by unifying add lists with preconditions and delete üsts with preconditions, respec- 

tively, without refemng to the strategies or problem distributions. Thus they can be 

comput ed off-line. 
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5.3 Generating Deletion Lists 

Using the defbitions, a set of potential deniers can be precomputed fiom the operators 

in the domain definition plus one additional operator. This operator arises fkom the 

observation that the last step in any plan can be viewed as one that does nothing 

except declare that the problem has been solved. Thus, the operator's preconditions 

are the iiterals in the goal state. Any operator that clobbers a literal added by 

another operator, which is not part of an explicit precondition, can be said to clobber 

a precondition for this implicit operator. The algorithm for computing the possibly 

deniers is shown in Figure 5.1. The fi& step is to compute the direct clobberers of 

GENERATE-DELETION(O~~~~O~S) 
C= cornpute-clobbers(opemtors) 
loop for x in operators do 

&= cornpute-ena blers(x) 
nX= Gnc 
Vx= V, U ancestors& 

end loop 

Figure 5.1: Selective Deletion Mgonthm 

each operator. Then, for each operator, a 1% of enabled operators/transformations 

are computed. Intersections between the enabling and clobbering lists are noted and 

the ancestors of each item are also collected. The second step corresponds to the 

second condition for being a denier. This process generates an associated list of 

operators for each operator. 

After Ml-climbing, the deletion operators for each component of J& are col- 

Iected. If one of the alternate joint transformations has a component in this set then 

the transformation is removed. The remaining joint transformations are then amil- 
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able to be implemented if their effects are additive with 9')max. This step requires 

that the stage 2 algorithm be modified. The function f ind-ind-max, shown in Figure 

5.2, is substituted for f ind-max-trans in the joint-transf orms procedure. 

FIND-IND-MAX(Z~, agen ts,~) 
[M 7, m-enor]= find-mu-trans(l7, e) 
NT= removedependent (TT, M7) 
NT= remove-non-addit ive(NT) 
ifNT 

( 
[MM 7, mm-emd= find-ind-max(NT, agents, c) 
return [MT U M M T ,  mm-emr+m-em.] 

1 
r e t m  [MT, m-emrl 

Figure 5.2: Modifications for Stage 2 

If there are any remaining joint transformations after an initial climb step then 

the best out of this set must be returned. Next the non-additive transformations are 

removed. The process recurses using the successive best joint transformations whiie 

removing elements fiom the set of altemate transformations. When the sum of errors 

h m  all these "best transformations" drops below 6 minus i -emr,  then the system 

hill-climbs on al1 of them. 

5.4 Application of Selective Deletion to a 

Restaurant Domain 

The selective deletion technique was applied to a simplined restaurant domain. Dur- 

ing each time step, there is a 20% chance that fiom one to three customers will enter 
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the restaurant. Each customer will then order a hamburger with a 60% chance that it 

wiil be topped with mustard and relish and the remaining 40% that it will be topped 

with lettuce and tomato- They will  also order a drink with a 60% chance that it is 

a Coke and a 40% chance that it is a Seven-up. The task is to leam a coordination 

strategy involving four agents such that a cost measure is minimized. 

At every time step, an agent can execute one of 22 actions depending upon the 

curent state. Some of these operators are shown in Figure 5.3. A complete set of 

operators can be found in appendix B. Given the task description, the operators fall 

into one of four categoiies: making burgers, making toppings, getting driaks, and 

combining items. The first three classes of operator are similar. If there is an existing 

burger, topping, or drink, then it is returned, eise a burger has to be ordered for 

cooking, a topped bun made, or a drink order fiiled. ln the latter two cases there 

are distinct sets of operators, correspondkg to the different toppings and drinks. 

For cooking burgers there are four operators. These do not correspond to Merent 

types of burgers, but rather to two different methods of cooking them. One method, 

cook-burgerl, is less efficient than the other, cook-burger2, and is represented by 

a seguence of three operators which are required to cook a burger. 

A few of the operators do not have preconditions, for instance condimentl, 

condimentî, drinkl, drink2 and burgerl. In the first two cases, an agent pre- 

makes burger toppings without an order. Sïmiiarly, the next two cases pre-6i.l drlliks. 

An agent pre-cooks burger patties without an order in the last case. The combination 

operators add the toppings to the burger, pool the 6Ued orders, and manage payment 

for the meal. 

Given a fked simulation duration of 40 time steps, experiments were performed 

using a cost funetion based on the weighted sum of how long a customer had to wait 

for their food, how many orders were d e d ,  how many orders were unpaid for at 

the end of the run, and liow many excess burgers, toppings, and drinks remained- 
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The probabilistic hiil-climbing trials used a "lock-step" transformation approach 

where only the operators a t  a specific position in each agent's strategy is modified. 

That is, during the f h t  step, only the operator in the b t  position of the strategy was 

changed. Upon hill-climbiag, the second position was modified and so on. Since not 

al1 agents implement one of their transformations at each step, the current positions 

across agents may not correspond. To reduce ruthne, each agent was limited to 

two climbs. These constraints eliminated the possibility of arriving at an ''optimal" 

solution, but were necessitated by computationai resources. 

5.4.1 Performance of a Random Initial Strategy 

Each of the 4 agents was suppiïed with a strategy generated by randomly ordering 

the operaton. The strategies are shown in Table 5.1. A typical execution trace using 

these strategies is shown in Table 5.2. In this case, oniy 20 out of the 40 steps is 

shown. The f b t  column is the step number and the remaining columns, the actions 

taken by each agent. In some cases, the action is a list with ni1 as its £irst entry. 

This means that a confïict has occurred. Two or more agents have simultaneously 

selected an action for execution that involves a unique binding. Recail that the 

codict  resolution scherne simply picks the lower numbered agent for execution. The 

remaining agents do nothing and thus the niï. Step 2 is an example of a conflict. 

Step 1 has produced a burger that needs to be cooked. Since agent 1 has already 

began cooking the burger and in the process has used up the only stove, agent 2 does 

nothing during the step. As c m  be seen from the trace, the strategy is extremely 

inefficient. At the end of 20 steps, no one has received their order and there are 

many excess uncooked burgers and mustard/relish toppings. The average cost, over 

50 mns, of using this strategy is 516.58. 
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5 A.2 LearMg with Selective Delet ion 

Applying the generate deletion algorithm to the restaurant domain yields the lists 

shown in Figures 5.4 and 5.5. Operators that do not have a Iist have been removed 

for succinctness. Intuitively, some of the entries in the list make sense. For instance, 

consider the deletion items for the burgerl operator, which includes cook-burgsrl 

and cook-burger2. The implementation of burgerl would increase the number of 

burgen to be cooked and thus should be paired with a more efficient cooking method 

siich as cook-burger2. However, the algorithm does not know this. It only knows 

that burgerl establishes a precondition for cook-burgerl and cook-burgerl, and 

that there is a resource contention between these operators. Thus the system should 

hold off implementing a cooking operator until it has been determined which one has 

greater utility. 

In other cases, the results do not make sense. The list for ûrinkl-no-d is one 

example. Operator get-ârink-seven interacts with drinkl-no-d through the send- 

dorder precondition for get -drink-coke. However, these operators would never con- 

flict due to the remaining preconditions, since one operator is for Coke and the other 

is for Seven-up. Again, the algorithm has no knowledge of this and being conserva- 

tive Bags this as a blocking problem. This situation occurs frequently throughout the 

list and reflects the absence of domain knowledge and the use of possible c o ~ c t s .  

In some domains, the use of possible rather than necessary codicts may force the 

deletion Lists to include every operator. ALPINE [34], which is a method for generat- 

h g  abstraction himarchies for planning, sders from the same problem, since it also 

uses possible interactions. The hieracchies frequently coilapse since they are over- 

constrained. Note that, in the worst case, the learning algorithm would take as many 

sarnples as complete delet ion. 

Multiagent probabilistic hill-climbing with selective deletion was applied to the 
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random strategies using the following parameters: el= 5, Q= 5, JI= -15, 62 = -15, 

No= 15, NI= 30. R e d  that a climb ümit of taro steps per agent was set which 

corresponds to the total limit of eight. M e r  a total of 6686 stage 1 and 1246 stage 2 

samples, the algorithm halted. The execution trace for this learned strategy, on the 

same problem that produced Table 5.2, is shown in Table 5.3. 

As highlighted in boldface, the learned strategy completely fills 3 orders within 

the 20 steps. On the same 50 problems as before, the learned strategy had an average 

cost of 279.2 for a savings of 46% over the initial strategy. However, it is not an 

optimal strategy in that the cook-burger2 operator should be used to cook the 

biirgers instead of cook-burgarl. This example illustrates that the algorithm has 

become trapped in a local minimum. 

Using complete deletion, the method consumed 10518 stage 1 and 1185 stage 

2 samples. The strategies generated by the two methods were not identical. For 

instance they differed in two transformations. Complete deletion was also 5% more 

efficient but this difference can be accounted for by €=IO within each step. 

Selective deletion bill-climbed four times as compared to five for the case of corn- 

plete deletion. During the fkst step, the former approach implemented one extra 

minimal joint transformation than complete deletion. This transformation was sub- 

sequently implemented by the second technique in the next hill-climbing step. The 

difference ailowed selective deletion to examine an alternate transformation which 

reduced total sample cornplexity. 
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(make-operator 

:template ' (take-order ?x) 
:precon& '((no t-order ?x) ) 
:addlist ' ( (send-bo rder ?x) (send-t order ?x) 

(send-dorder ?x)) 
:dellist ' ((notsnler ?x) ) ) 

(make-operator 

:template '(get-burger ?x) 
peconds ' ((send- border ?x) (have-order ?y)) 
:addist ' ((have-burger ?x) ) 
:cieliist '((send-border ?x) 

(have-order ?y))) 

(make-operator 

:template '(get-drink-coke ?x) 
:preconds '((send-dorder ?x) (coke ?x) 

(have-coke ?y)) 
:addlis t ' ( (have-drink ?x) (not-pay-d ?x) ) 
:clellist ' ( (send-dorder ?x) (coke ?x) 

( have-coke ?y))) 

(make-operator 

:template '(get-top-lt ?x) 
:preconds ' ((send-torder ?x) (lettuce-tomato ?x) 

(have-lettucetomato ?y)) 
:addlist ' ((have-top ?x) ) 
dellist '((send-torder ?x) 

t lettuce-tomato ?x) 
(have-let t uce-t omato ?y))) 

:template '(condimentl) 
:addlist ' ((have-lettucetomato)) ) 

Figure 5.3: Example Operators 
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Position 

1 

2 

3 

Agent 1 

pay-for-food 

cook-burgerl 

4 

8 1 drinkl 1 garnish-1-no-g 1 cook-burgerla 1 drinkl 

burgerl 

5 

6 

7 

9 1 drinkl-no-d 1 cook-burgerl 1 pay-for-food ( pay-for-food 

Agent 2 

get-burger 

get-drink-seven 

pet-top-lt 

10 1 get-drink-coke 1 take-order 1 cook-burgerl 1 cook-burgerlb 

get-top-lt 

cook-burger2 

garnish-2-no-g 

cook-burgerlb 

11 1 get-topmr 1 condiment2 1 garnish2-no-g 1 dlink2 

Agent 3 

get-burger-no-b 

get-burger 

pay-for-food 

12 1 drink2-no-d 1 drink2 1 condiment2 1 cook-burgerl 

7 

Agent 4 

get-toplt 

get-drink-CO ke 

cook-burgerlb 

drinkl-no-d 

cook-burger lb 

get-drink-coke 

condiment? 

get-drink-coke drink2-nctd 

pet-toplt 

get-topmr 

drink2 

13 

burgerl 

cook-burger2 

garnish-1-no-g 

14 

drink2 

15 

18 1 garnish-1-no-g 1 burgerl 1 cook-burger2 ( get-burger-no-b 

get-burger 

17 

combine 

get-drink-seven 

driakl 

cook-burgerla 

19 

b urger1 

drink2-noil 1 combine 

20 

Table 5.1: Initial Operator Order 

condiment 1 

get-drink-seven 

combine 

get-burger-no-b 

get-burger-no-b 

21 

22 

drinkl-ned 

take-order 

gamishl-nu=g 

cook-burger2 

condiment 2 

condiment 1 

get-drink-seven 

cook-burgerla 

take-order 

get-topmr 

condiment 1 

get-topmr 

drinkl-no-d cook-burgerla 

condiment 1 

drinki 

garnish2-no-g 

take-order 
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1 burgerl 

2 cook-burgerl 

3 burgerl 

4 burger 1 

condiment 2 

(ni1 cook-burgerl) 

take-order 

condiment2 

condiment2 

condiment 2 

condiment2 

7 1 burgerl 1 ganiish-l-no-g 1 get-burger-no-b 1 condiment2 . 

5 

6 

1 9 1 burgerl 1 take-order 1 get-burger-no-b ( condiment2 1 

burgerl 

burgerl 

8 

1 10 1 burgerl 1 get-drink-seven ( get-burger-no-b 1 condiment2 1 

take-order 

get-drink-seven 

burgeri 

11 

get-burger-no-b 

get-burger-no-b 

get-top1 t 

12 

condiment2 

condiment2 

burgerl 

13 

14 

get-burger-nu-b 

burgerl 

15 

1 17 1 burgerl 1 get-toplt 1 get-burger-no-b 1 (ni1 get-toplt) 1 

(ni1 get-toplt) 

garnish-l-no-g 

burgerl 

burgerl 

16 

get-toplt 

burgerl 

get-burger-no-b 

t ake-order 

drinkl-no-d 

burgerl 

18 

1 20 1 burgerl 1 get-toplt 1 get-burger-no-b 1 (ni1 get-toplt) ( 

condiment2 

get-burger-no-b 

drinkl-no-d 

19 

Table 5 -2: Typical Execution nace: Original Strategies 

(ni1 get-toglt) 

get-burger-no-b 

get-burger-no-b 

garnish-1-no-g 1 get-burger-no-b 

burgerl 

burgerl 1 garnish-l-no-g 1 get-burger-no-b 1 condiment2 

condiment2 

condiment2 

get-burger-no-b 

condiment2 1 
get-drink-coke 

t aborder  get-burger-no-b condiment2 
, 
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((take-order ?x) 
((pet-topm ?x) (get-top-lt ?x) (get-drink-seven ?x) (get-drink-coke ?x) 

(get-burger ?x) (cook-burger2 ?x) (drinkl-no4 ?x) (drinkl) 
(drink2-no-d ?x) (driak2) (garnish-1-no-g ?x) (condimentl) 
(garnish-2-no-g ?x) (condiment2) (takeorder ?x) (get-buget-no-b ?x) 
(bwgerl) (cook- burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y))) 

((garnish-1-no-g ?x) 
((get-toprnr ?x) (t aborder ?x) (gamish-2-no-g ?x) (condiment 2))) 

((ganùsh-2-no-g ?x) 
((get-toplt ?x) (take-order ?x) (gamish-1-no-g ?x) (condimentl))) 

((drinkl-no-d ?x) 
((get-drink-seven ?x) (takeorder ?x) (drink2-no-d ?x) (drink2))) 

((drinkl-no-d ?x) 
((get-drink-coke ?x) (take-order ?x) (drinkl-no-d ?x) (drinkl) ) ) 

((get-burger-neb ?x) 
((cook-butger2 ?x) (take-order ?x) (get-burger-no-b ?x) (burgerl) 

(cook-burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y))) 

((bu%-1 
((cook-burger2 ?x) (take-order ?x) (get-burger-no-b ?x) (burgerl) 

(cook-burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y))) 

((cook-burgerl ?x ?y) 
((cook-burgerî ?x ?y) (take-order ?x) (get-burger-no-b ?x) (bwgerl))) 

Figure 5.4: Deletion Lits: Part 1 
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((cook-burgerla ?x ?y) 
((cook-burgerl ?x ?y) (take-order ?x) (get- burger-no-b ?x) (bzvger 1) ) ) 

((cook-burgerl b ?x ?y) 
((cook-burgerl ?x ?y) (take-order ?x) (get-burger-no-b ?x) (burgerl) ) ) 

((condiment 1) 
((get-topmr ?x) (take-order ?x) (garnis h-2-no-g ?x) (condiment2))) 

((condiment 2) 
((get-t op-It ?x) (take-order ?x) (garnish-l-neg ?x) (condiment 1))) 

((drinkl) 
((get-drink-seven ?xi (take-order ?x) (drink2-no-d ?x) (drinh2))) 

((drink2) 
((get-drink-coke ?x) (taborder ?x) (drinkl-no-d ?x) (drinkl)))) 

Figure 5.5: Deletion Lists: Part 2 
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1 

2 

3 

4 

burger 1 

cook-burgerl 

burgerl 

5 

1 8 1 burgerl 1 get-burger 1 cook-burgerla 1 condiment2 

burger 1 

6 

7 

1 9 ( burgerî 1 cook-burgerlb 1 ( r d  cook-burgerlb) 1 combine 

condiment2 

(na cook-burgerl) 

t ake-order 

burgerl 

( 10 1 pay-for-food 1 cook-burgerl 1 drink2 1 (nil cook-burgerl) 

ge t-drink-seven 

burgerl 

cook-burgerl 

drink2 

dnnk;! 

cook-burgerla 

get-toplt 

condiment 2 

(nil cook-burgerl) 

condiment2 

garnis h-1-no-g 

cook-burgerlb 

(ni1 cook-burgerl) 

11 
t 

condiment2 

(na garnish-1-mg) 

burgerl 1 take-order 1 cook-burgerla 1 condiment2 
1 1 

12 

13 

(ni1 get-toplt ) 

get-burger-no-b 

get-burger-no-b 

14 

15 

117 Iburgerl 1 get-drink-seven 1 gamish-1-no-g 1 get-toplt 1 

condiment 2 

(rd cook-burgerl) 

get-topmr 

burgerî 

16 

1 18 1 burgerï 1 cook-burgerlb 1 (ni1 cook-burgerlb) 1 combine 1 

pay-for-food 

burgerl 

ge t-burger 

get-drink-seven 

burgerl 

Table 5.3: Typicai Execution nace: Lemeci Strategy (Selective Deletion) 

cook-burgerl 

t ake-order 

19 

20 

(ni1 get-burger-no-b) 

cook- burgerl b 

ge t- burger 

condiment2 

combine 

drink2 

cook-burgerla 

pay-for-food 

burgerï 

(ni1 coo k- burger 1) 

condiment 2 

garnish-1-no-g condiment2 

cook-burgerl 

t ake-order 

drink2 

cook-burgerla 

(nil cook-burgerl) 

condiment 2 



Chapter 6 

Conclusions and Future Research 

The primary goal of the thesis was to develop a method to solve the problem of 

Iearning mdtiagent coordination strategies as outlined in section 1.2. That goal has 

been achieved with the introduction of a new learning approach based on probabiüstic 

hili-climbing. The method has been implemented and evaluated using a Mciety of 

experiments. 

6.1 Contributions 

This thesis has raised many issues in learning multiagent coordination strategies. 

One method to examine the contributions of tbis research is to f i m e  them within 

the context of each issue. The following is a discussion of each topic. 

1. Multiagent C'redit Assignment 

Of the existing iterative multiagent coordination learning techniques, the pro- 

posed method is the only one that deals with the credit assignment problem 

without the use of distnbuted utility functions or domain knowledge. This al- 
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lows the method to be applied to a broad range of domains where these two 

components may not be available. 

2. Conuergence/Per/onnunce 

Unlike some previous approaches, multiagent probabilistic hill-climbing is par- 

anteed to converge and to retum a solution. This is done using a well-founded 

rather than an ad hoc tennination cnteria. Although, the approximation in 

stage 1 invalidates pro babiüstic hiiI-clirnbing's performance guarantees, the method 

has been shown to give better results than existing techniques on two Merent 

domains. Moreover, it is the only approach that uses a heuristic version of an 

optimality criteria. 

3. Scala biizt y/Com p le& y 

One trade-off that was made in the design of the algorithm was in the area of 

guaranteed performance versus computational scalability. Rather than using a 

grouped approach that wodd have provided performance guarantees, a heuristic 

procedure was used to reduce complexity. Using the navigation domain, the CO- 

leaming stage of the technique has also been shown to be scalable, not in a 

cornputational complexity sense, but by its ability to arrive at a useful strategy 

involving many agents. A selective deletion mechanism has also been devised to 

avoid unnecessary resampling after hiii-climbing. It has been shown to reduce 

sample complexity. 

In summary, multiagent probabilistic Ml-climbing is an attempt at combining the 

best features of both an independent as weil as a grouped approach to learning multi- 

agent coordination strategies. Independent learning is better in tenns of complexity 

and captures the autonomy of individual agents. Grouped learning can be used to 

discriminate between useful and useless transformations. The key in combining these 

two methodologies is a pro babilistic termination criteria that ensures the convergence 
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of independent learning and that dows for the quantification of interaction effects in 

the combined traasformations. 

6.2 Future Directions 

AIthough there has been a flurry of activity, research in learning multiagent coordi- 

nation strategies can still be regarded as in its infancy. The proposed probabilistic 

hill-climbing approach addresses a number of basic issues, but can be irnproved in a 

number of areas. Among these are: 

1. Sampling Stmtegies. 

As discussed in section 4.2, one weakness of the Zheuristic is that it may spend 

a long t h e  sampling the best transformation rather than sampling other trans- 

formations, which may reduce the overall error. This may require an adaptive 

sampiing scheme that takes into account the potential error reduction. 

2. Initial State: 

A major determinhg factor in the overail performance of any bill-climbing a p  

proach is the initial state. This WU directly influence the sample complexïty, 

since the closer the initial state is to an optima, the fewer the number of sam- 

ples required. Secondly, the initial state also influences the global optimality of 

the solution. If the starting conditions can be set such that the system avoids 

Local minima, then the h a l  utility of the solution will be increased. One ploy 

that may be effective is to perform off-line analysis using a uniform distribution 

assumption. That is, every problem is assumed to be as lütely as another. 



Appendix A 

Statistical Tests 

This section is a brief description of the statistical tests that were used throughout 

the system. It is divideci into two sections. The first one discusses how the transfor- 

mation with the largest expected utilïty was selected and the second discusses how 

the interacting joint trcdormations were determined. In both cases the data is as- 

sumed to be normdy distributed. The centrai Limit theorem [33] can be invoked 

here since the computations use clifferences in utiiity- If the variances are "reasonably 

homogeneous" then the theorem will hold. Normal plots have &O been constructed 

h m  data and the assnmption seems vaiid given the number of samples typically 

encountered- 

A.1 Climbing Tests 

Climbing tests are used in both stages of the credit assignment algorithm. In the 

first stage, they are used to individually cornpute the components of while in the 

second stage they are used to select the best minimal €-joint transformation. As 

briefly ciiscussed in Chapter 3, a transformation is considered to be the best if its 
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mean is better than any other transformation with cumulative probability of 1-6. or 

if its mean is within f e  of every other transformation with the same probability. 

The algorithm computes both of these probabilities and considers the larger one . 
This scheme is the same one used in [4] except for the statistical tests. In [4] it was 

assumed that the variances are equal and thus the standard normal distribution was 

used. This assumption was not made and t-tests are used instead. 

The foliowing two equations compute the probabiüty corresponding to the cases 

of being better and within ke respectively. 

where u, the degree of fieedom, is equal to: 

and where t - am, denotes the t-cumulative distribution function. 

The first equation is just the standard hypothesis test for comparing two means 

with unknown and not necessarily equal variances. Equation 2 computes the prob- 

ability that the Merence between the means lies between f a .  It can be derived 

by taking the inverse to the standard confidence interval problem. That is, given 

confidence Ievel 7, compute an interval such that the true mean lies within it with 

probability 7. In this case, the interval is given and the task is to find the probability. 

Using the worst case error model, one minus the maximum of both values is 

summed for each paired cornparison with the current best transformation. If this 

error falls below 6; then the system ha-climbs. 
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A.2 Tests for Interactions 

The goal of these tests is to discover if the mean of the joint transformation is sig- 

nificantly better than the sum of the means of its components. If so then there is a 

positive interaction between the components. 

Since the utilities have been gathered using simuitaneous extraction, it is possible 

to perfom paired testing to eliminate some of the variability in the data. A new 

random variable, d, is computed for each of the tests to represent the dinerence 

between the utility of the potential joint transformation and the sum of the utilities 

of its components. For instance, one set of components for the joint transformation 

{A B C) is {A B 4) and {Di V2 CC). Thus d would assume the value ofU(ABC) - 

(U (AB) + U (C) ) for simessive pro blem instances. 

To compute whether a joint transformation has an interaction effect, the proba- 

bility 

is determined, where C is the set of components and v is 2n-2. This represents the 

probability that joint transformation has a utilitsf which is greater than its parts. 

Similarly, the probability that the joint transformation is within f r  of its compo- 

nents is computed by 

As discussed in Chapter 3, the hypothesis associated with the larger of these 

two values is taken as the curent hypothesis. One minus its probability is taken as 

the probability of error and these probabilities are summed across dl potential joint 

transformations. 
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In some cases, the mean and Mnance of the clifference is exactly zero. This 

happens when the components of the joint transformation do not interact. The 

utility of the joint transfomation is simply the sum of the utilities of the individual 

components. As a residt, the statistical tests that have been used up tili now are 

inappropriate since the data behaves deterministicaily. This stems from the use of 

simulated rather than real data- There is no variability in the data and thus the 

difference is O. In this case, the Hoeffding inequality 

is used to compute the probability that the means diner by more than c. The ody 

hypothesis in this case is that the means of the transformations are withùi c and 

hence the combined traiisformation is not a joint transformation. 



Appendix B 

Restaurant Domain Operators 

The complete set of 22 operators used in the restaurant domain is iîsted below. 

(make-operator 
: t emplate ' (pay-for-food ?x) 
: preconds ' ( (hav e-food ?x) (have-drink ?x) 

(not-pay-f ?x) (not-pay-d ?x) ) 
:addlist '((paid ?x)) 
:clellist '((have-food ?x) (have-drink ?x) 

(no t-pay-f ?x) (not-paya ?x))) 

(make-operator 
: template ' (take-order ?x) 
:preconds '((not-order ?x)) 
: addlist ' ( (send-border ?x) (send-t order ?x) 

(send-dorder ?x)) 
:deEst ' ( (not-order ?x) ) ) 



(make-operator 
:template '(get-burger ?x) 
: preconds ' ((send-border ?x) (have-order ?y)) 
:addlist '((have-burger ?x) ) 
:cleliist ' ( (send-border ?x) 

(have-order ?y))) 

(make-operator 
:ternplate '(get-drink-coke ?x) 
:preconds '((send-dorder ?x) (coke ?x) 

(have-coke ?y))  
:dW '((have-drink ?x) (not-pay-d ?x)) 
:dellis t ' ((send-dorder ?x) (coke ?x) 

(have-coke ?y))) 

(make-operator 
: template ' (get-drink-seven ?x) 
:preconds '((send-dorder ?x) (seven ?x) 

(have-seven ?y)) 
:acldlist ' ((have-drink ?x) (no t-pay-d ?x) ) 
:dellist ' ((send-dorder ?x) (seven ?x) 

(haveseven ?y))) 

(make-operator 
:template '(get-toplt ?x) 
: preconds ' ((send-torder ?x) (lettucetomato ?x) 

(have-lettuce-tomato ?y)) 
:addlis t ' ((have- t op ?x) ) 
:dellist ' ((send-torder ?x) (lettuce-tomato ?x) 

(have-lettuce-tornato ?y))) 
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(make-operator 
: template '(ganiish-1-neg ?x) 
:preconds ' ((send-torder ?x) (lettuce-tomato ?x) ) 
:acidlist '((have-lettuce-tomato)) ) 

(make-operator 
:template '(garnish-2-no-g ?x) 
: preconds '((send-torder ?x) (mustard-reüsh ?x) ) 
:acldüst '((have-mustard-relish))) 

(make-operator 
: template ' (drinkl-no-d ?x) 
:preconds ' ( (send-dorder ?x) (coke ?x) ) 

:addlist ' ((have-coke) ) ) 

(make-operator 
: template '(drïnk2-no-d ?x) 
:preconds '((send-dorder ?x) 

(seven ?x) 
:acidiist '((have-seven))) 

(make-operator 
:template '(get-topmr ?x) 
:preconds '((send-torder ?x) (mustard-relish ?x) 

(have-mustard-relish ?y)) 
:addlist ' ((have-top ?x)) 
:deilist ' ((send-torder ?x) (mustard-relish ?x) 

(have-mustard-relish ?y))) 
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(make-operator 

:template '(combine ?x) 
: preconds ' ((havetop ?x) (have-burger ?x) ) 
:ad& '((have-food ?x) (not-pay-f ?x) ) 
:deKst ' ( (have-t op ?x) (have-burger ?x) ) ) 

(mc&e-operat or 
: template '(get-burger-no- b ?x) 
: preconds ' ( (send-border ?x) ) 
:addlist ' ( (burger-order) ) ) 

(make-operator 
: template ' (burgerl) 
:addiist ' ((burger-order) ) ) 

(rnake-operat or 
:template '(cook-burgerl ?x ?y) 
: preconds ' ( (burger-order ?x) (fiee-st ove ?y)) 
:addlist ' ( (have-order la ?x ?y)) 
:clellist ' ((burger-order ?x) 

(free-s t ove ?y))) 

(make-operator 
:template '(cook-burgerla ?x ?y) 
:preconds '((have-orderla ?x ?y)) 
:addlist '((have-orderlb ?x ?y)) 
:defit '((haveorderla ?x ?y))) 
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(make-operator 
: template '(cook-burgerlb ?x ?y) 
:preconds '((have-orderlb ?x ?y)) 
:addlist '((haveorder ?x) (kee-stove ?y)) 
:deil& '((have-orderlb ?x ?y))) 

(make-operator 
: template '(cook-burger2 ?x) 
:preconds '((burger-order ?x) (free-stme ?Y)) 
:addlist ' ( (have-or der ?x) ) 
:deilist ' ((burger-order ?x) ) ) 

(make-operator 
: ternplate ' (condiment 1) 
:addlist ' ((have-lettuce-tomato) )) 

(make-operator 
:ternplate '(condiment2) 
:addiis t ' ( (have-must ard-reiish) ) ) 

(make-operator 
:template '(drinkl) 
:addlist ' (( have-coke))) 

(make-operator 
: template '(drink2) 
:addlist ' ( (have-seven) ) ) 
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