Learning Coordination Strategies for Cooperative

Multiagent Systems

Fenton Ho

A thesis

presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 1997

©Fenton Ho 1997

vl

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et =

Bibliographic Services services bibliographiques

395 Wellington Street 385, rue Weliington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada Your Sle Votre réfdrence

Our Rg Notre réfdrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése a la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du
copyright in his’her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts la thése ni des extraits substantiels de
from it may be printed or otherwise celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.
0-612-21357-9

Canadi

The University of Waterloo requires the signatures of all persons using or photo-

copying this thesis. Please sign below, and give address and date.

iii

Abstract

This thesis proposes a new technique for learning multiagent coordination strate-
gies that addresses the issues of convergence, complexity, credit assignment, and
utility. Traditionally, strategies to control the behavior of multiple agents have been
hand-coded to meet a designer’s goals. This task is complex due to the interactions
that can occur among agents. Recent work in this area has focused on how strategies
can be learned. Yet, these systems suffer from a variety of problems that include lack

of convergence or performance guarantees and from complexity concerns.

Following a formalization of the problem, a review of related works and a dis-
cussion of unresolved issues, a generic multiagent learning framework is presented.
Then the basis of the proposed technique, probabilistic hill-climbing, is discussed and
mapped into this framework. Implementation details are then described and exper-
imental results on three different domains reported. Finally, an extension to reduce

sample complexity is considered.

iv

Acknowledgements

I would like to thank my supervisor, Professor Mohamed Kamel, for his patient
support through all phases of this research. Thanks also goes to my examination
committee: Professors Michael Huhns, Keith Hipel, Jan Huissoon, and Andrew Wong,

for their criticisms and insights into this work.

My deepest heart-felt thanks go to those friends who kept me sane during these
last four years of uncertainty and growth. Puiwing, Kai, Philip, Reda and Sharon,
I'll cherish the times that we've had and look forward to spending my days in the
“real world” with all of you. A special thanks goes to the Waterloo Chinese Christian
Fellowship and my Sunday School “kids” at the Kitchener Waterloo Chinese Alliance
Church. Thanks for letting me share my life with you and for sharing your lives with
me.

I dedicate this work to my triune God. I confess that our relationship has been

strained throughout these years but you've always been there to startle and confront

me with who You are and who I am. I can’t say that it’s been always fun but You're

a character.

Finally, I thank my parents for their sacrifice and their undying faith in me.

Contents

1 Introduction
1.1 Learning Coordination Strategies
1.2 Statement of Research Problem

1.3 Overviewof Thesis i i i i it i i ..

2 Related Works
2.1 Explanation-Based Learning
2.2 Instance-based Learning
2.3 Reinforcement Learning
2.4 Genetic Programming 0.
25 Case-based Learning

2.6 SUmMmMArYy - . e e e e e e e e e e e e e e e e

3 Multiagent Probabilistic Hill-Climbing

3.1 Learning Multiagent Coordination
3.2 Multiagent Probabilistic Hill-Climbing
3.2.1 Probabilistic Hill-Climbing

vi

10

11

11

14

16

23

24

26

28

3.2.2 Application of Probabilistic Hill-Climbing to Multiple Agents . 41

3.2.3 Implementation Details_...... 48

4 Experimental Validation 52
41 ProblemSolverso L., 53
4.2 SyntheticDomain 54
43 Navigation Domain, ..., 65
44 Predatorand PreyDomain. 68
44.1 Comparisons to Genetic Programming 73

4.4.2 Analysis of Intermediate Results 87

45 Overall Evaluation 88

5 An Extension to Probabilistic Hill-Climbing 90
5.1 Independent Transformations 91
5.2 Independence in STRIPS Type Domains 93
5.3 Generating Deletion Lists 95

5.4 Application of Selective Deletion to a

Restaurant Domain 96

5.4.1 Performance of a Random Initial Strategy 98

5.4.2 Learning with Selective Deletion 99

6 Conclusions and Future Research 107
6.1 Contributions o oo 107
6.2 FutureDirections 109

A Statistical Tests

Al ClimbingTests

A.2 Tests for Interactions i c i i e e e e

B Restaurant Domain Operators

Bibliography

viil

110
110

112

114

119

List of Tables

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

3.1

5.2

5.3

Assigned Symbolso Lo 19
Positive Reinforcement Outputs 20
Results for the Hard Distribution 60
Results for the Center Distribution 61
Results for the Skewed Distribution 62
Agent Coordinates 69
Captures and Average numberof Moves 74
Example Pursuit Path 86
Example Pursuit Path: contd 87
Initial Operator Order 102
Typical Execution Trace: Original Strategies 103
Typical Execution Trace: Learned Strategy (Selective Deletion) . . . 106

List of Figures

1.1

1.2

2.1

3.1

3.2

3.3

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

General Learning Process 5
Research Problem, 8
DRLMBlock Diagram 22
Generic Coordination Learning Algorithm 29
Hill-climbing Algorithm 40
Joint Transformation Algorithm 44
Seven-up Operator 53
Hard Problem Distribution_..... 56
Center Problem Distribution 57
Skewed Problem Distribution 58
Robot Navigation Domain 66
Configuration before pushing 70
Configuration after pushing 71
Relative Positions 72
Strategy generated by STGP 75

4.10 Strategy using AlforAgent 1 76

4.11 Strategy using Alfor Agent 2 7
4.12 Strategy using AlforAgent3 77
4.13 Strategy using AlforAgent4 78
4.14 Strategy using MPHCl1forAgent1 78
4.15 Strategy using MPHCI1 for Agent 2 . .v 79
4.16 Strategy using MPHClforAgent3 79
4.17 Strategy using MPHC1 for Agent 4 80
4.18 Strategy using MPHC2 for Agent 1 81
4.19 Strategy using MPHC2for Agent2 81
4.20 Strategy using MPHC2 for Agent3 82
4.21 Strategy using MPHC2 for Agent4 82
4.22 Strategy using MPHC3 for Agent 1 83
4.23 Strategy using MPHC3 for Agent 2 84
4.24 Strategy using MPHC3 for Agent3 84
4.25 Strategy using MPHC3 for Agent 4 85
5.1 Selective Deletion Algorithm 95
5.2 ModificationsforStage 2 96
53 ExampleOperators 101
54 DeletionLists: Part 1. 104
55 DeletionLists: Part 2. 105

Chapter 1

Introduction

Distributed artificial intelligence (DAI) is concerned with how a group of intelligent
agents can cooperate to jointly solve problems. Typically, Al systems are distributed

due to one or more of the following reasons:

1. Complexity of the Domain: The complexity of the environment and/or the
complexity of the tasks may render the design of a single monolithic system
difficult.

2. Distributed nature of the Domain: Some domains, such as air traffic control

[11], involve multiple autonomous entities.

3. Performance Requirements: Time constraints may require the use of more than

one agent to meet objectives in domains that allow for parallel execution.

4. Fault Tolerance: Redundant capabilities in multiple agents would allow for goals
to be achieved should a subset of the agents be damaged.

5. Leveraging Existing Components: Rather than building systems from scratch,

intelligent agents can be used to coordinate the use of existing software [42].

CHAPTER 1. INTRODUCTION 2

One of the central issues in DAI is coordination. Jennings defines coordination as
“the process by which an agent reasons about its local actions and the (anticipated)
actions of others to try and ensure the community acts in a coherent manner” [30].-
The aims of the coordination process are to “ensure that all necessary portions of
the overall problem are included in the activities of at least one agent, that agents
interact in a manner which permits their activities to be developed and integrated into
an overall solution, that team members act in a purposeful and consistent manner,
and that all of these objectives are achievable within the available computational and
resource limitations” [30]. Intuitively, coordination can be measured by the gain in

system performance over naive collective behavior.

Some common approaches to coordination include organizational structures, the

exchange of meta-level information, and multiagent planning.

e Organizational Structures
An organizational structure is a method of defining the flow of information
or control among a group of agents. The structure encodes the authority of
each agent, its role and whom it can interact with. These can be used to
achieve coordinated behavior. For instance, authority relations are means of
fusing overlapping but possibly inconsistent data. Defined roles are methods of

decomposing and assigning problems.

Examples of systems that use organizational structures for coordination include
DVMT [6] and those built on social laws [52]. In the latter approach, each
agent adopts a set of social laws or conventions that dictate its behavior. One
familiar example of a social law is coming to a halt at a four-way intersection.
By convention, if two cars arrive simultaneously, then the one on the right goes

first. This helps to avoid potential collisions.

CHAPTER 1. INTRODUCTION 3

In general, organizational structures are static, but work has been done to adapt

the granularity of the agents assigned to each role [28] [29].

e Metalevel Information Sharing
Coordination is achieved under metalevel information sharing by agents incor-
porating each other’s goals, plans, and schedules into their own deliberations.
Unlike the use of organizational structures, agents are free to change their roles
and plans dynamically in response to the activities and anticipated activities of
other agents. This style of coordination is exemplified by partial global planning
(PGP) [7] and CDS [14]. In the latter approach, meta-reasoning is used to
select the appropriate heuristics for coordination based upon the beliefs of the
agents about expected interdependencies. Given the interaction probabilities,
a decision theoretic framework can be used to formulate a “rational” solution

to the coordination problem.

e Multiagent Planning
In contrast to the use of organizational structures and metalevel information ex-
change, coordination in multiagent planning is achieved by following a complete,
predefined plan. All the actions of the agents, as well as the synchronization
points, are explicitly spelled out. As such, the agents have committed to a
fixed course of action and are not free to change their behavior dynamically.

Examples of multiagent planning systems include [3] and [32].

A commonality among the three approaches is that they are off-line and use exten-
sive domain knowledge to derive the coordination strategies. Consider the task of
designing collective behaviors for multiple behavior-based robots[37] [38], which is
an instance of the organizational structure paradigm. Typically, the first step is to
decide on a set of basic behaviors for each robot that will “span” the problem space.

That is, this set of behaviors will allow the robots to solve the problems that they are

CHAPTER 1. INTRODUCTION 4

required to solve. The next step is to find a method of coordinating these individual
behaviors across agents to arrive at the desired collective behavior. For instance,
the collective flocking behavior is constructed by weighting the direction and velocity
vectors from the local safe-wander, disperse, aggregate, and home behaviors in each
robot. The weights are experimentally determined and are based on the dynamics

and mechanics of the robots and the ranges of their sensors.

Tools have been developed to simplify the design process. A graphical, object-
oriented approach has been implemented [38] to analyze the effects of different be-
havior configurations. Sequences of behaviors can be examined in the context of the
possible preconditions that may have caused the behaviors to become active. Never-

theless, the task is complex and scaling is extremely difficult.

Moreover, two assumptions which underlie these techniques are the existence of a
complete world model and the stationarity of this model. These conditiouns, particu-
larly the first, are difficult to achieve in practice. Another issue is the computational
complexity [18] of deciding the optimal coordination scheme given the nature of the
interactions/dependencies between agents. The complexity of finding an optimal set
of social laws for heterogeneous agents is [52] NP-hard. A similar statement is echoed
by Parker {43]. Haynes suggests that “in most cases a coordination strategy is chosen
if it is reasonably good” [24]. Parker concurs by stating the need for approximations

[43].

1.1 Learning Coordination Strategies

Given the difficulties with hand-coding, model stationarity, completeness, and the
cost of generating a good strategy, some researchers have developed systems that

learn coordination strategies.

CHAPTER 1. INTRODUCTION 5

Learning can be viewed as the process of transforming the knowledge of an agent

to achieve a particular goal [39]. Michalski's general learning process is shown in

g

Inference Mechanism
Induction
Analogy
Deduction

Figure 1.1.

Output Internal Input

=

Background Knowledge
Memory

Figure 1.1: General Learning Process

The transformation procedure takes as its inputs training sample(s), the current
knowledge of the agent, a set of potential transformations or inferencing methods
and a set of goals. It then modifies the agent by either transforming and storing the
sample(s) and/or by directly transforming the knowledge of the agent to meet the
goals. For the multiagent coordination problem, the learning goal is to increase the
coordination of the agents as measured by a global utility function. Since the goal is
to increase performance and not to acquire new knowledge, the transformations will
directly modify the agent’s background knowledge. Within the learning community,
this task is commonly known as a speed-up learning problem. The learning task can
be formalized using the following definitions.

Definition 1: A problem solving strategy, II;, where ¢ is the agent index, is a

mapping from a problem context to an action. The form of the context and

CHAPTER 1. INTRODUCTION 6

action is dependent on the problem solver. For instance, it could be a fine-
grained policy that maps a state to an action. At the other extreme, it could
be a mapping from a problem description to a high-level solution method. The

type of problem solver is not assumed.

Definition 2: A problem, P,, is an instance from P, the stationary distribution of
problems that will be encountered by the system. The stationarity assumption
is required to make learning appropriate. If the system is constantly changing,
then there is little point in learning. It can be argued that stationarity is
rarely achieved due to issues such as system aging. Thus, stationarity in this
context means that the distribution is evolving “slowly enough” for the results of
learning to be useful. It is assumed that problems can be individually requested

from an oracle.

Definition 3: A global utility function, U, measures the performance of the entire
multiagent system (IT; UII,...IIy), where N is the total number of agents, on
P,. This function can take into account factors such as the cost of communi-
cations, the utilization of the agents, and the total number of steps required to
solve a problem. This function does not have to be evaluated by a single over-
seeing agent. It can also be decomposed or distributed into local functions that
reflect the contributions of an agent to global utility. The implication is that
by maximizing these localized measures the global measure will also be maxi-
mized. A local as opposed to localized utility function is not required to meet

this requirement. As a result, the agents may compete rather than cooperate.
Definition 4: A set of transformations, 7, is associated with each strategy II;.

Definition 5: A combined transformation, C;, =1 ... M, where M is the total

number of combined transformations, is made up of individual transformations

CHAPTER 1. INTRODUCTION 7
on the part of each agent
Cj €ETixT... Ty

A key difference between multiagent and single agent systems is the assumption
that there are interactions or interdependencies among agents. Otherwise, the
domain can be modeled as a set of disjoint subdomains involving individual
agents. Interdependencies can arise both “physically” and “mentally” [14]. In
the first case, the agents could be sharing a resource, while in the second, they
could be relying on each other’s capabilities or knowledge. Mental interactions
can also take the form of conflicts in desire, commitments and interests. Due
to the interactions, transformations over N agents may only be beneficial if all

N are simultaneously implemented.

Definition 6: A sample, (C;,II, P;,U), is the utility of II = C; ® IT on problem
P: where @ denotes the applicaticn of the combined transformation C; on the

complete strategy II. It is assumed that samples are independent.

1.2 Statement of Research Problem

The goal of the research is to develop a method to solve the multiagent coordination
learning problem as formalized in Figure 1.2. Using the general learning paradigm,
training samples from P are used to guide the transformation of the IIis such that
the overall performance of the system is increased. The definition of “high” will be
left up to the learning algorithm.

There is nothing particularly multiagent about the definition in Figure 1.2 except

for the existence of multiple agents. Coordination is achieved through the use of

a global utility function. If there are interdependencies in the domain, the goal of

CHAPTER 1. INTRODUCTION 8

Given 7P, a stationary distribution of the problems that will be
encountered by the system
U, a global utility function over the solutions
I1,, I, ...I1,, a problem solving strategy for each agent 1, ..., n
A set of potential transformations 73,7z, ... 7, on II;, II5, . . . IT,,, respectively,
Find C™** such that the expected utility of C™2* @ II over P is “high”.

Figure 1.2: Research Problem

optimality dictates that the agents work together. On the other hand, if the domain
is decoupled and the agents are independent, then the definition would describe a
collection of additive single-agent learners. Note that there are also no assumptions
about the knowledge and/or capabilities of the agents. They could be either homoge-
neous or heterogeneous. There are also no assumptions about the form of the problem

distribution.

Beyond the issue of optimality, there are also other criteria that can be used to
evaluate the effectiveness of a particular learning algorithm. They include:

1. Sample Complezity
One measure of how efficient a learning method is, is the number of training
instances that it needs to learn a concept. This measure has different instantia-
tions depending on the learning method. For instance, in reinforcement learning,
it is a function of the number of trials required until convergence, and in ge-
netic programming, it is a function of the population size, the number of fitness

evaluations per generation, and the number of generations.

2. Convergence

A basic requirement for all learning algorithms is that they converge. Recall

CHAPTER 1. INTRODUCTION 9

that, under the transformational model, learning is the transformation and
addition of new knowledge or the transformation of existing knowledge. The-
oretically, this means that a transformation can be applied and then reversed.
As result the system can oscillate between a set of states and thus fail to halt.

3. Scalability
An issue particular to multiagent learning systems is whether the approach
scales when the number of agents is increased. Techniques that seem promising
with a small number of agents might be computationally intractable or ineffec-
tive given a larger number of agents. Thus the use of scaling here includes both

a cost as well as an efficacy dimension.

4. Performance
The ultimate goal of any learning algorithm is to return a problem solver whose
performance is optimized in some sense. This leads to the related questions
of “what kinds of performance guarantees are afforded by the method?” and
“what is the confidence that these guarantees will be achieved?”

To narrow the scope of the problem, the coordination approach will be restricted to
an instance of the organizational structure paradigm. Each agent, 1, is supplied with
a problem solving strategy II; that it executes in a top down manner. This is done
using a forward chainer where each agent executes the first action in the strategy
that has its preconditions fulfilled. Implementation details can be found in Chapter
3. It is also assumed that no explicit communication occurs between agents. Agents
take note of the presence of other agents by how they interact with the environment.
Finally, it is assumed that the agents are cooperative and will defer to each other in
order to fulfill the goal of increasing global utility.

CHAPTER 1. INTRODUCTION 10

1.3 Overview of Thesis

The remainder of the thesis is organized as follows.

Chapter 2 is a review of current research that is relevant to learning coordination
strategies. A broad range of learning techniques is discussed along with their inherent

limitations.

The bulk of the original work developed for this thesis is presented in Chapter 3.
A new multiagent coordination learning scheme based on probabilistic hill-climbing
is discussed. The work is situated within issues that underlie the generic problem of
learning multiagent coordination strategies. In particular, the problem of multiagent

credit assignment is cousidered.

Results of experiments, performed on three domains, are reported in Chapter 4.
One of the tests assesses the performance of the approach in a controlled environment.

The other domains directly compare the method to two existing techniques.

Chapter 5 discusses an extension to multiagent probabilistic hill-climbing that can
decrease sample complexity. The underlying theory is presented and the technique is

validated using a simple restaurant domain.

The final chapter highlights the contributions of this research and proposes further
directions in which it can be extended.

Chapter 2

Related Works

The problem of learning multiagent coordination strategies is relatively new. Tra-
ditionally, coordination strategies have been developed off-line, but there has been
growing interest in applying learning techniques as witnessed by recent workshops
and symposia [48] [49]. This chapter will survey the current state of the art in learn-

ing multiagent coordination strategies.

The existing techniques are classified, based on the learning methods that they use,
into either ezplanation-based, reinforcement based, instance based, genetic program-
ming based, or case-based. A brief description of these learning methods is provided

and then a few examples of systems that fall under each category are discussed.

2.1 Explanation-Based Learning

The task of explanation-based learning (EBL) is to operationalize, or convert to a
more computationally efficient form, knowledge that is already known by the agents.
Typically this is done by proving that part of an execution trace is an instance of

a concept and then rewriting the concept using the proof such that it can be easily

11

CHAPTER 2. RELATED WORKS 12

classified. For instance, given an example of a failed planning trace and the concept of
failure, first prove that the plan is a failure and then use the proof to quickly classify
situations that could lead to failure and thereby avoid them. Another classic example
is Winston's cup domain, where the task is to learn a useful conceptual definition
for a cup. One high-level definition is that the object holds water and is graspable.
However, this may be too abstract to allow for recognition. Given an example of
a cup, the theory can be operationalized by rewriting it in terms of the observable
characteristics of the example. A definition of a cup as any object that is convex and
has a handle might be more more useful than the previous definition. The danger is
that the new definition may be so specific that it misclassifies positive instances or it
may still be too general to be efficiently computable. This leads to the issue of utility,
which is discussed below.

EBL has been applied by Sugawara and Lesser [50] to learn plan modifications
that avoid conflicts during coordination. The steps in deriving the modifications are

as follows:

1. Tracing the “mainstream”.
Since EBL requires the entire problem solving trace, it must be pieced together
from the contributions of each agent to the final solution. Note that the “main-
stream” differs from normal EBL problem traces in that only those inferences
that contributed to the solution are kept. This is just a matter of semantics,

but it does effect the way errors are defined.

2. Detection of LAPS.
LAPS are learning analysis problems or error contexts where agents have the
potential for improving system performance. Some problems that can be de-

tected are:

e Long delays in understanding commuricated information.

CHAPTER 2. RELATED WORKS 13

e Redundant activities in the “mainstream”.
e Long delays in one of the “mainstream” activities.

e Redundant activities not in the “mainstream” that are costly (e.g., back-
tracking).

e Unused variables.

3. LAP Analysis
The task of LAP analysis is to discover the causes of the problems and then to
propose remedies. LAPs are caused by the lack of nonlocal knowledge and/or
the lack of rules or efficient rules to interpret this knowledge.

4. Propose Modifications
Given the causes from the previous step, modifications must be made to the
agent’s control knowledge to remove the errors. Typically this may require that
multiple agents coordinate changes to achieve the desired effect. Individual

agents may perform the following modifications:

e Substitute another mid-level plan that achieves the same effect since the
reasoning method is based on skeletal planning.

e Postpone an action until relevant information is received from another

agent or until the “correct” state is achieved.
e Change the order that messages are sent.

e Obtain information from another agent if it takes too long to compute it

locally.

5. Negotiation
If the proposed modifications cannot be accepted by all agents, then negotiation
is required to reach a compromise. For example, agents can choose locally sub-

optimal solutions such that it may be possible to achieve a complete solution.

CHAPTER 2. RELATED WORKS 14

6. Precondition Identification
The final stage of EBL is to identify when the new knowledge should be applied.
In multiagent settings there is the added difficultly that components of the

preconditions might not be local.

One problem with EBL-based approaches is the utility of the changes. Recent work
[15] has indicated that supposedly good operationalizing transformations, measured
over a single learning context, may lead to decreased performance over a set of queries.
As a result, research in EBL has concentrated on measuring the utility of these
changes [15] [21]. This work deviates from traditional EBL in that it requires a

number of samples to quantify the utility.

The utility problem arises because the learner cannot decide between alternate
operationalized theories. This is not to say that any of the alternatives is incorrect,
but that some should be used before others. For instance, in a domain that uses
paper cups, the definition that a cup is convex and made of paper is more useful than
a cup being defined as convex and having a handle. Thus the “operationality” of a

definition is highly dependent upon the problem distribution.

2.2 Instance-based Learning

Instance-based learning algorithms [1] (IBL) are supervised learning methods which
can be traced to nearest neighbor pattern classifiers. Rather than using generaliza-
tions of instances to classify samples, IBL algorithms use selected instances as concept
definitions for each class. IBL algorithms are comprised of the stored instances for
each class, a similarity function, a classification function, and a concept description

updater function [1]. A brief description of each function follows:

CHAPTER 2. RELATED WORKS 15

1. Stmilarity Function
Given a labeled training instance, 7, it computes the similarity between i and

the instances in the concept descriptions.

2. Classification Function
Given the results of the similarity function and the previous classification per-
formance of the instances in the concept descriptions, it returns a classification

for 1.

3. Concept Description Updater
Given ¢, the similarity value, the history of the classification results and the
instances in the current concept definition, it decides how to modify the concept

description.

Prasad et al [44] have used IBL to learn which one of 5 different coordination mecha-
nisms should be applied in a given context. This research is situated within the partial
global planning paradigm with the consequence that these mechanisms are high level.

For instance, one of them decides at what level of detail results are communicated.

Learning involves testing the performance of each method on a set of trial prob-
lems. This builds up a set of triplets made up of a global situation vector, a coordina-
tion algorithm, and its performance within this context. A situation vector is formed
by aggregating the local situations of each agent. This is individually done by each
agent through integrating the communicated status of other agents with its own local
perspective. The system performance measure is built up in a similar manner. Each

agent stores its own set of triplets.

Once learning has terminated, the triplets are used to classify a new problem into
one of the 5 methods. First the neighboring instances of the problem are determined
using the similarity measure. Then a classification function based on the weighted

previous performance of the neighbors is used to return one of the 5 methods.

CHAPTER 2. RELATED WORKS 16

Although the method learns context dependent multiagent coordination strategies,
the learning takes place within a single agent framework. The multiagent component

of the task is to aggregate the local situation information and performance measures.

2.3 Reinforcement Learning

Reinforcement learning is a learning approach where an agent discovers a mapping
from situations to actions so as to maximize the value of a scalar reward or reinforce-
ment signal. In contrast to other forms of learning, such as classification tasks, the
agent is not told what the target actions should be, but instead must rely on trial and
error to find which actions produce the highest reward. An example of a reinforcement
learning problem is learning how to navigate a hallway to reach a certain location.
For this task, the agent receives positive reinforcement only when it has reached the
goal and negative reinforcement when it collides with any wall. Since the agent does
not initially know the correct mapping, it may choose actions that result in collisions
until it discovers the optimal policy. This combination of delayed reward and the use

of exploration are two distinguishing characteristics of reinforcement learning.

e Bucket Brigade with Shared Information

One approach to learning coordinated actions between agents is Weiff's ACE
(Action Estimation) [56] and AGE (Action Group Estimation) [57] al-
gorithms. Based on Holland’s bucket brigade credit assignment model, each
agent bids for the right to execute its actions. In the case of ACE these are
independent actions on the part of each agent, while for AGE they are for a

joint set of actions. Each bid for agent #’s jth action is formulated as
B = { (a+ B)E{IS] Eils]6
0

otherwise

CHAPTER 2. RELATED WORKS 17

where « is a small constant called the risk factor, 3 is a small random number
called the noise term, 6 is a constant called the estimate minimum, and E[S]
is agent ?'s estimate of action j5’s utility in state S. The risk term, «, represents
the portion of £} that agent i is willing to risk to execute action j. The noise

term, (3, reduces the risk of getting caught in a local minima.

After the agents have finished bidding, the agent with the highest bid is allowed
to execute the action associated with this bid. All other agents then withdraw
any of their bids with actions that are incompatible with the chosen action.
The process repeats until no other action can be executed. A bucket brigade
assignment scheme is then used to update the utility of the actions. At every
stage, the agent that won the bid reduces the utility estimate of its winning

action by its bid and passes this value to the previous winners.

The AGE algorithm is similar to ACE except that actions are grouped into
compatible sets. For each set, the bids of each agent with an action in the set

are summed. The set with the largest summed bid is then executed.

A drawback of the ACE algorithm is that it does not function in parallel.
Agents must sequentially bid on the actions to be performed. This eliminates
the potential performance improvements available with multiple agents, and
does not take into consideration beneficial interactions between actions. AGE
addresses this limitation by allowing for groups of operators to be considered.
However, this raises the issue of computational complexity, since every com-
bination of compatible actions must be considered as a group. The number
of groups is bounded by the product of the number of applicable actions per
agent in a given state. Moreover, there is the overhead of broadcasting the bids
to all the agents and, once the bids have been received, of determining if the
group is compatible. Dowell [5] has developed an addition to AGE that learns
if a group of actions is compatible in a particular context. Only those that are

CHAPTER 2. RELATED WORKS 18

compatible are bid on. This may reduce the bidding overhead, but the added
cost of learning the incompatible actions and filtering the groups must also be

factored in. It is unclear if this method provides any benefits.

e Q-learning
Another reinforcement based approach to learning coordination strategies is
Sen’s [46] [47] use of independent Q-learners. Unlike WeiB’s work, there is no
communication between agents. Instead, agents treat each other as if they were
part of the environment. Sen contends that some advantages of this approach
include: robustness to communication delays and to failures of key agents, and
tolerance to unreliable or misleading information. The use of independent learn-
ers can also reduce the computational complexity of the coordination learning
task, since the examination of useful action groups is implicit in the joint behav-
ior of the agents. Permissible groupings are not explicitly constructed. More-
over, the approach does not make any assumptions about the nature of the
agents. They can be cooperative or antagonistic. The behavior of the system

is totally dependent on the local utility functions.

As in the standard reinforcement learning paradigm, Q-learning seeks to learn
the utility of a given action a in state s. These utility values are called Q-values.
For each agent 7, in state s, the action a with the highest Q-value Q(s, a) is
chosen for execution. The Q-values of the executed actions are then updated

using the following rule:
Q(s,a) «— (1-B)Q(s,0) + B(R + ymax Q(s',a'))

where 8 is the learning rate and + is the discount rate. The vy term allows

delayed reinforcement values to be propagated to actions earlier in the chain.

Multiagent Q-learning has been applied to a two-agent block-pushing problem
[46] and to a four-agent robot navigation task [47]. In the first example, two

CHAPTER 2. RELATED WORKS 19

agents are assigned to push a block from an initial position to a goal position.
Neither agent is aware of the capabilities or the existence of the other agent.
The performance of the system was evaluated by measuring the number of trials
required for it to “converge”. Convergence is achieved when the block reaches

its goal or if the number of steps exceeds a threshold.

The second task involved four agents navigating from one side of a 10 by 10
gridworld to opposite positions on the other side while avoiding collisions. Each
agent was supplied with a local utility function that considered if an agent was
involved in a collision. This domain will be examined in detail in Chapter 4.

A major weakness of the multiple, independent Q-learner approach is that it is
not guaranteed to converge. One of the fundamental assumptions underlying
Q-learning is that the world remains stationary. However, since the agents
interact while modifying their behaviors, this stationarity requirement may be
violated. Consider the following contrived example. Let there be three agents,
each with only one state. They have been assigned three distinct symbols, one
of which they emit during a given trial. The assignments are shown in Table
2.1. The utility function is global with the payoff received dependent upon the

Agent | Symbols

1 ABC
2 DEF
3 GHI

Table 2.1: Assigned Symbols

combined output of the agents and the current state of the world. The world
has 3 equiprobable states and for each state there is only one combination of

agent outputs which has positive utility. Possible world states and the required

CHAPTER 2. RELATED WORKS 20

agent outputs for positive reinforcement are shown in Table 2.2 Note that the
outputs are listed in agent order with ¢ referring to don’t care. For instance,
(A D ?) means that agent 1 and 2 must output symbols A and D respectively

while it doesn’t matter what agent 3 outputs. Given the standard formulation

World State | Required Outputs
1 (AD?

2 (? EH)

3 (c?1$

Table 2.2: Positive Reinforcement Outputs

for Q-learning, the value of v can be set to zero since there is only one state.

As formulated this problem will not converge to a steady solution using Q-
learning. Instead the agents will oscillate between the three positive utility
outputs. That is, the combined agent outputs will constantly shift between one
of the outputs in Table 2.2. Convergence can be forced by halting learning after
the agents have produced the same behavior for a pre-determined length of time.
However setting this length is ad-hoc since there is no criteria for assessing the

optimality of the solution.

On the other hand, the system will converge if one of the agents settles on a
particular symbol. For instance if agent 1 settles on A then agent 2 will settle
on D while agent 3 will “wander”. This reflects the positive utility output
for world state 1. In this case convergence means that the average utility will
remain constant rather than the output being constant. Two of the agents will
always emit the symbols corresponding to one of the high utility states while
the third is free to vary.

CHAPTER 2. RELATED WORKS 21

e Distributed Q-learning
DRLM (Distributed Reinforcement Learning Model) [22], is a Q-learning
approach that starts from a different set of environmental assumptions than
those found in [46] [47]. The two major differences are that the agents are
allowed to communicate and that perceptual aliasing [58] is the problem.

Actions within DRLM are divided into either local or transfer actions. As its
name implies, local actions are those actions that are directly performed by the

agent, whereas transfer actions transfer the control of a task to other agents.

Agents communicate to obtain reinforcement and state information. Reinforce-
ment is received when a local action is performed. An assumption of DRLM
is that actions are individually rewarded or penalized. Thus an agent that
performs a transfer action must make a request that it also receive the rein-
forcement signal when a local action is executed. Communication is also used

to discern which agents transferred a task.

Perceptual aliasing occurs when an agent is unable to distinguish between two
world states using its direct perception. This can occur due to incomplete
perception, where the agent’s sensors; either physical or logical, are unable to
sense the distinctions or where the differences cannot be directly sensed. In
multiagent settings, the second case can arise when there are interdependencies
between tasks such that the local information of each agent is insufficient to
account for the state of the entire system. DRLM deals with these issues by
including two stochastic models that handle incomplete perception and inter-
dependencies respectively. A block diagram of the system is shown in Figure
2.1. The HTM (Hidden Task Model) maps the agents that transferred the
task to a set of hidden tasks. This is done using a probabilistic model that
associates an observable set of tasks to the cross-product of all potential tasks

across agents. The one to many mapping uncovers tasks that cannot be directly

CHAPTER 2. RELATED WORKS 22

observations _hidden tasks _composite states
HTM ——-:-—b CSM - QLS - actions
update TOP upate SOP upate Q-values

Figure 2.1: DRLM Block Diagram

observed. Next, the hidden tasks and observations from the world are used to
construct a composite state that makes explicit the dependencies. Given the
transfer agents, the composite state is estimated by first hypothesizing which
state each agent is in and then by using the independence assumption to com-
pute the joint probability of being in a composite state. Finally, it is this state
that is used to index the Q-values.

DRLM contains more than one learning task. The first is standard Q-learning
which maps state to action. The additional task is to update the probabilities
in the task models. This is done using a variant of the Baum-Welch expectation
maximization algorithm which is used to estimate the p.d.f of the distribution.
The actual state that is passed onto the next stage of algorithm is biased towards
the state with the highest probability. This is done using a stochastic selector
based on the Boltzmann distribution. The size of these models, particularly
the composite state model, can be very large since it is composed of the cross-

product of the possible agent states.

o Other Systems

As can be discerned by the number of reinforcement learning systems that

CHAPTER 2. RELATED WORKS 23

already have been discussed, a great many of the existing approaches fall under
this paradigm. Other examples include [37] which uses local progress estimators
in addition to goal functions, [13] which learns whether to be selfish or to follow
the group, and [43] which uses windowed averages to learn how to prioritize

between sets of behaviors rather than individual behaviors.

2.4 Genetic Programming

Genetic programming (GP) is a learning approach that uses a genetic or “evolu-
tionary” paradigm. An initial population of individuals, in this case, programs, is
subjected to a “fitness” or utility test. Those that perform well are selected to un-

dergo “genetic operations” such as crossover, mutation, and simple reproduction.

Crossover involves exchanging “genetic material” between two programs. If both
parents have high fitness scores, it is hoped that the resulting individual will inherit
the good traits of its predecessors. Mutation is the random modification of the pro-
gram. This provides a stochastic component to the learning process, thereby reducing
the likelihood of it being trapped in a local minima. Finally, reproduction generates
copies of an individual without modifying its program.

These operations are performed in cycles called “generations”. During each cycle
the performance of the individuals, or their “fitness” is measured. Those that pass
are subjected to genetic operations and then promoted to the next generation. On

the other hand, those that fail are discarded.

Haynes et al [23] [25] has used genetic programming to evolve a coordination
strategy for the predator and prey pursuit game. In this task, four predators must
coordinate to capture the prey within a toroidal grid world. The prey is captured when

it is surrounded by four predators, since diagonal movement is not allowed. There is

CHAPTER 2. RELATED WORKS 24

no explicit communication between the predators and thus they cannot negotiate a
capture strategy. Fitness is measured by a function that takes into account keeping
close to the prey, surrounding the prey, and maintaining a position around the prey.
These factors are necessary to provide feedback in the event that the prey is not

captured.

Haynes’ original experiments [23] evolved a single program that was used by all
the agents. This assumes that all the agents are homogeneous and can also be viewed
as a form of implicit communications. Later work focused on evolving different pro-
grams for each individual agent. Rather than evolving each one individually, a team
approach was taken. This is a consequence of the credit assignment problem, which
is the task of dividing the fitness results across agents. The agents act simultaneously
and thus it is uncertain how each agent contributed to the fitness score. This problem

will be discussed in detail in Chapter 3.

Earlier, AGE was criticized for the complexity of group-based methods. However
the same criticism cannot be made of GP’s since there is a fixed population size. The
potential combinatorics of examining the possible groups is reduced by stochastically

generating a fixed number of combinations.

2.5 Case-based Learning

Case-based learning (CBL) [35] can be viewed as an extension of IBL that also
allows for the adaptation of the instances. Consider an IBL problem where there
is a solution method rather than a class label associated with each instance. When
given a problem, the task becomes one of finding a matching case or stored instance
and then returning the method. In addition to retrieval, CBL, allows for the method
associated with the most similar case to be adapted to the current situation when an

exact match is not found.

CHAPTER 2. RELATED WORKS 25

Haynes [24] has also applied CBL to the predator and prey domain. Unlike his
previous work on genetic programming, cases are used to modify the behavior of a
greedy strategy based on the Meanhattan Distance(MD) between predator and prey
[36]. The MD approach moves the predator so as to minimize this distance with all
ties being randomly broken. Given a list of possible actions, the metric can be used

to order them.

One problem with the MD algorithm is that it is susceptible to deadlock situations
where the predators block each other from surrounding the prey [24]. To prevent this,
cases are used by each agent to eliminate actions from the default MD ordering. A
case, within this framework, is a mapping from a template situation to a rejection
rule. If the current situation matches the template, then reject the action from the
default strategy. This continues until an action from the strategy can be executed or
until all the actions have been eliminated. In the latter case, Haynes’ system executes
the first action in the default strategy. Cases are learned when expectations are not

met, such as when an action ends in a collision.

Haynes’ use of CBL suffers from the “utility problem” in that the usefulness of
the learned cases is uncertain. This stems from two factors: uncoordinated learning
and uncontrolled learning. Learning is uncoordinated since each agent learns its own
cases. This approach assumes that the other agents’ strategies remain static, which
is the same problem that plagues independent Q-learning. Again, the assumption is
invalidated by the fact that the agents are allowed to learn simultaneously. Moreover,
the learning is uncontrolled since a case is learned for each deviation from expecta-
tions. It is well known that the utility of generalizing an instance, in this case a
template to a rejection rule pair, cannot be estimated from seeing a single instance

[41] [15]. Thus, the utility of this technique beyond the tested domain is questionable.

CHAPTER 2. RELATED WORKS 26
2.6 Summary

The techniques that have been applied to learning multiagent coordination strategies
are diverse and cover a large portion of the existing machine learning methods. Major
observations and criticisms gleaned from analyzing these systems are summarized

below:

1. Considering Interactions
Two approaches to accounting for the interactions among transformations are
grouping and the use of independent learners. The use of grouping can be com-
binatorial. In the case of AGE, if there are N agents with |7 transformations
each, then the maximum number of groups is [TV - 1. DRLM’s construction
of a composite state can also be viewed as a form of grouping. However, Haynes’
use of grouping in the predator and prey domain does not theoretically suffer
from this problem, since the groups are stochastically generated using a fixed
population size. However, the size of the population will have a great impact

on the solution.

As discussed, grouping can occur at several levels. In the case of AGE and
DRLM it is at the level of actions for a state, and in the case of Haynes it is
at the level of an entire agent for the problem distribution. The latter’s use of

agent grouping begs the philosophical question “Is this multiagent learning?"

The answer is not clear. DAI problems solvers have generally been character-
ized by their “relative autonomy and adaptability” [8]. This does not seem to
be the case in agent grouping. Once the agents have been grouped, the problem
appears to be a “single agent” learning task since the goal is to evaluate the
utility of each atomic group. Transformations are applied to the group or in
the case of genetic programming, crossover takes place between groups. This

raises the question “Is group learning multiagent learning or an application of

CHAPTER 2. RELATED WORKS 27

learning techniques to multiagent domains?”

Arguably, the use of action grouping does not suffer from the same criticism
since the agent can be seen as coordinating to ascertain the effects of a combined
action. The agents are distinct and still distinguishable. The difference between
the two types of grouping may be subtle but it calls attention to the need for a
better definition of multiagent learning.

The use of multiple, independent learners does not suffer from the same com-
binatorial or philosophical problems as group learning but existing implemen-

tations are plagued by issues such as convergence.

2. Multiagent Credit Assignment
An underlying problem behind systems with components that can act in paral-
lel is how to allocate credit or blame to a component when global performance
either increases or decreases. The existing approaches to this problem either
equally allocate the credit, use a domain theory to identify the cause, or consider
components only in groups. Since the task of learning is to identify a set of ben-
eficial transformations, it is important to correctly identify the contributions.

This issue will be discussed in detail in Chapter 3.

3. Performance Guarantees
Many of the existing coordination strategy learning methods have vaguely de-
fined notions of performance. In particular, EBL and CBL have inherent util-
ity problems, while independent Q-learning is not even guaranteed to converge.
Learning systems that can guarantee performance as good as, if not better than,

the original system are desirable.

Chapter 3

Multiagent Probabilistic
Hill-Climbing

This chapter describes the proposed system in detail. The first section is a general
discussion of issues that must be resolved when implementing an approach that learns
multiagent coordination strategies. Next, probabilistic hill-climbing is presented, fol-

lowed by an examination of how it can be applied to multiple agents.

3.1 Learning Multiagent Coordination

The problem definition in Chapter 1 can be directly rewritten as the generic co-
ordination learning algorithm shown in Figure 3.1. It is an on-line procedure that
generates the potential transformations for each agent, combines them, and then as-
sesses the combinations. The method then computes the best candidate from the set
and, if the candidate passes a predefined criterion, the algorithm halts. Otherwise,

the assessment process continues.

There are also variants on the approach, such as moving the transformation gen-

28

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 29

LEARN-COORDINATION(II =T, IT5, . . . , I y)
T = {7, Ta-.., Tv} = generate-transformations(II) (1)
loop while not flag do
P:= retrieve-problem(P)
C ={C,,C,,...,Cuy}= combine(T) (2)
assess(C) (3)
J = compute-best(C) (4)
flag= terminate?(7) (5)

Figure 3.1: Generic Coordination Learning Algorithm

eration inside the loop and performing batch learning by storing a fixed number of

sample problems before assessment.

Placing the generation step within the loop allows for the dynamic inclusion of
transformations. That is, they can be produced in response to the problems that
have been encountered. Given that the system is required to solve problem A, only
combined transformations C; and C; may be useful to the task. This can reduce the
number of transformations and hence the cost of computing their utilities, but requires
knowledge to discern which transformation may be effective for a given problem. The
relationship between problem, transformation and effect might not be readily known,
and thus a knowledge deficient solution is to generate all transformations so as not

to miss a potentially useful one.

On-line procedures are preferred over batch approaches, unless the termination
criteria is static or unless the problems can only be obtained in batches. Recall that
the second condition has been ruled out by the assumption that problems are available
individually. An example of a static criterion is to terminate after a fixed number

of samples or generations in the case of genetic programming. On the other hand, a

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 30

dynamic criteria is based on the characteristics of the current best candidate. Thus,
there is the potential for a dynamic scheme to halt before a static one. This requires
a stronger termination criteria than just the number of samples. Note that a fixed

sample method can also be used on-line.

The steps in Figure 3.1 have been numbered and will be discussed below:

1. Computing Transformations
Given an initial multiagent problem solving strategy, II, the first task is to
compute a set of potential transformations. Two related decisions have to be
made at this point. They are the “size” of the transformations as measured
by the maximum syntactic distance that a transformed solver can be away
from the initial one and what portion of these potential transformations should
be included. In concert, these factors determine the nature of the learning

algorithm and its performance limits.

Consider the transformation of sequence {B D A C} into {A B C D}. This
can be done by making a series of one-step moves, such as placing A in front of
B, or a single two-step move which puts A in front of B and C in front of D.
The second case can be regarded as a composition of two one-step moves. These
examples correspond to transformations of size 1 and 2, respectively. Note that
the set of size 2 transformations encompasses the set of size 1 transformations

since ¢, the null transformation, can be one of the composed steps.

Now, let S,..: be the maximum distance that a transformed solver can be from
the initial solver. If the maximum size of the transformations is below S;..,
then the algorithm has to be iterative if any notion of optimality is to be main-
tained, since not every solver configuration can be reached in one step. As
such, compute-best can only be with respect to this iteration. However, itera-

tion does not guarantee optimality since any distance-limited learning algorithm

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 31

has the potential to be trapped in a local minima. Another issue is the num-
ber of transformations to assess. For many domains, computational complexity
rules out using the complete set of Sy, transformations. Either a portion of
the Spaz set or an entire sub-S,,,, set is typically used. In the first case, a
reduction in the “width” of the transformed solver space that is explored also
contributes to the possibility of suboptimal performance. Combinations of both

types of restrictions are also possible.

If an iterative version of the algorithm is used, then the LEARN-COORDINATION
procedure is repeated until another, possibly related, termination criteria is
met. Transformations for a subsequent iteration are generated with respect to
the strategy that was promoted during the current iteration. More than one

transformed solver can also be passed on.

2. Computing Combined Transformations
Once the transformations have been computed, a method must be devised to
determine if certain combinations interact beneficially. As discussed in Chapter
2, two such methods are grouping and the use of independent learners. In the
algorithm skeleton, the combine step is placed within the main loop to allow
for either case. Generating combinations “on the fly” would correspond to
independent learning, while recalling a fixed set of combined transformations

would correspond to grouping.

3. Assessing the Transformations
Generally, the only way to determine the effect of a transformation is to actually
use the modified strategy. In [20], a method is described to approximate the
difference in cost between a transformed solver and its initial solver using only
the latter’s execution traces. However, the technique requires a complete cost

model, which is usually not available.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 32

4. Computing the Best Transformation
Upon termination, the algorithm must return the “best” combined transforma-
tion for implementation. The question is “what does best mean?” or equiva-
lently, “which local transformations should be adopted?”. The answer to both
requires that the utilities of the component transformations be known. This
leads to the multiagent credit assignment problem.

As briefly outlined in Chapter 2, the core of the issue is how to determine the
individual contribution of a local transformation to the utility of the system
as measured by a global function. The problem arises with the use of a single
global utility measure, since it only returns one value. The simplest solution
is to distribute the measure across agents. These functions need to return
conditional utilities, since the usefulness of an individual transformation may
be tied to the existence of other transformations due to interactions. Finding a

good measure is difficult and is akin to developing a good search heuristic.

Currently, the only purported solution to the multiagent credit assignment prob-
lem, besides the use of domain knowledge [50], is the use of agent grouping in
genetic programming [23] [25]. The central idea behind grouping [25] is that
the transformations are evaluated only within the context of a set of transfor-
mations. Thus, it does not matter what the individual contributions are given
that the group utility is known and that all transformations will be applied si-
multaneously. This would seem to sidestep the issue. However, this analysis is
deceptive in that it does not look at the question from the standpoint of “what

would happen if credit assignment is not performed?”

The answer depends on the type of learning algorithm. In particular, credit
assignment only becomes an issue if the method uses simultaneous, mutually
exclusive, irreversible transformations. By definition, the first case is always

true of systems that learn multiagent coordination strategies. The remaining

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 33

two conditions are contingent on the learning paradigm. Consider the use of
multiple, independent Q-learners [46], which is an example of a monolithic algo-
rithm. This statement may be troubling, since the algorithm performs continual
Q-value updates. However, these updates can be regarded as part of the task of
finding the best transformation rather than as individual iterations. Note that
the algorithm is only run once and, when and if it converges, a complete policy

is returned.

Credit assignment is not explicitly performed in independent Q-learning and
all agents are allocated the same reward. However, credit assignment is also
not a problem in this scenario. Assume that the agents have converged and
found an optimal policy. This implies that every transformation that has been
implemented forms either an integral part of the policy or it does not hinder the
policy. In this context, the only type of “error” that may have been committed
is to adopt an useless and unnecessary transformation. This “error” has no
effect on the performance of the system. Similarly, AGE does not suffer from
this problem since it also learns an entire policy. Recall that grouping is used
in AGE to determine interaction effects and not to solve the credit assignment
problem. Thus, the “best” combined transformation in a monolithic learner is

simply the combined transformation with the highest utility.

Now consider a similar scenario in a domain where the transformations are
mutually exclusive and irreversible. In other words, the learning system is
iterative and limits the size of the concept space. Hill-climbing is an example of
such a system. Since useless is with respect to a step, the implementation of such
a transformation may block the implementation of a beneficial transformation
at a later step. Let there be two agents, A; and A,. At time step 1, A; can only
apply transformation 7;; while A, can apply either 72; or 72;. 77; negatively
interacts with 73, but has no interactions with 72;. In fact, the utility of 73; is

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 34

0. 711 also has the highest utility. As a result of aliasing under a single global
utility function, both 7;; and 7;; are implemented. This can occur since the
system can’t tell the difference between candidates that have the same utility.
C™**= {Ti1} and C™**= {7{,, 75} are equivalent under a scheme that merely
looks at utility. Now let the application of 7;; make possible the application of
T12. Furthermore, let 71, interact positively with 73;. Due to the fact that 73
has been implemented, T3, is no longer available and thus the system halts in a
suboptimal state. Note that merely considering the transformations in groups
has no effect on the potential outcome. This does not imply that grouping is
useless; only that the form used in [25] does not eliminate the credit assignment
problem. As will be shown, comparing the utility of grouped transformations

can be used to isolate the effects of their components.

For a concrete example, consider a much simplified scenario taken from a finan-
cial domain. Company X is losing money and thus it must make some changes
to its business strategy. Unwisely, the firm is structured into two units that
independently make their own decisions. The first is responsible for production
and the other for sales and marketing. Production has the option of either in-
creasing the output of widget A or diversifying and building a factory to make
widget B. Note that they currently do not sell all the A’s that they manufacture.

Sales and marketing only have the option of spending more money on market-
ing A. There is sufficient capital to increase or start the production of A or B,
respectively, and to promote A. In fact, the transformation associated with the
increased marketing of A can be applied several times while still increasing or
starting the production of A or B. There are insufficient resources to both in-
crease the production of A and to start the production of B while simultaneously

increasing the promotion of A.

The rationale behind producing more of A is that the increased economies of

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 35

scale may help to reduce costs and the rationale behind producing B is that
there may be a market for it. Let C; be production deciding to build a factory
for B while sales decides to promote A. After the application of the combined
transformation it was found that promotion worked and demand for A was
increased. As a result the inventory of A is sold and revenue increases. However,
widget B fails to sell. Due to aliasing, production decides to build a new factory
for B and sales decides to more aggressively market A. At this point, the only
available transformation is for sales to again increase spending. Let the ad
campaign be so successful that it exceeds production of A. Since the factory for
B has already been built there are no additional resources to spend on A. This

results in a sub-optimal solution.

Although the adoption of a useless transformation in a monolithic learning
system has no effect, it can degrade the optimality of an iterative algorithm.
However, aliasing is not the only problem in multi-step methods since blocking
can also occur even if the utility of the transformation is positive. Thus a simple
minimality criteria, requiring each component transformation to have positive

utility, will be insufficient to resolve the issue.

One approach to the blocking problem is to try to minimize its occurrence. Re-
call that iterative algorithms can promote one or more of the “best” candidates
from one iteration to the next. Thus one method of reducing the likelihood
of a blockage is to advance a different combined transformation. Genetic pro-
gramming takes this route by copying the best programs from one generation
to the next. However, this does not guarantee that the problem will not occur
and is also combinatorial. Another technique is to pass one candidate, as in
hill-climbing, but then to minimize the number of component transformations
that are implemented to those that are “necessary”. The following definitions

will be used to clarify this concept.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 36

Definition 7: Joint Transformation
A joint transformation J is a set of transformations 7;,73,...,Tx >
UT) > U(T) + U(T3) + ... +U(T:)- That is, there is an interaction
between the effects of the transformations such that the joint utility is
greater than the sum of the individual utilities. By definition, the set of

individual transformations are also joint transformations.

Definition 8: Minimal Joint Transformation
A minimal joint transformation J* is a joint transformation where there

are no subsets of J* that are joint transformations.

A necessary transformation is a member of a minimal joint transformation. In
other words, if one element of the set is not implemented then the overall utility
will decrease by more than will be explained by additivity unless the minimal
joint transformation is a singleton. In other words, the best “atomic” trans-
formation should be adopted. Additive transformations can be implemented in
later steps if they have not been outperformed by new transformations enabled
by the best J*.

5. Terminating Learning
A recurring problem in machine learning is deciding when to stop learning.
This is an important issue since learning can be expensive. Effort that is used
to explore a space of transformations can be spent solving problems. Moreover,
transformations with negative utility can be harmful to an agent. Consider a
robot that is learning how to disarm a bomb. Reducing the number of samples

to examine would be highly beneficial.

The problem of termination is also related to utility. An agent should stop learn-
ing when it cannot improve its performance. This can occur when it has found

the best transformation(s) or when it decides that none of the transformations

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 37

are effective. Note that none of the surveyed systems have a well-defined termi-
nation criteria. For instance, GP relies on a predefined number of generations,
RBL uses the convergence behavior of the agents, and CBL does not have a
termination criteria at all. These conditions are ad hoc and do not provide

guarantees on performance.

If an agent is to use a utility based method of termination, then it must have a
computable notion of best transformation. Ignoring the issue of credit assign-
ment, the task of simply finding the combined transformation with the highest
utility is difficult due to the fact that the performance of a transformation may
be inconsistent across problems. In some cases, it may even have negative in-
cremental utility. Secondly, the problems are assumed to follow a distribution.
Thus the modified strategy may be performing well for a number of problems
and then abruptly perform poorly as another portion of the distribution comes
into play. Factoring in the topic of credit assignment adds another level of
difficulty. The problem of inconsistent performance carries over to finding the
minimal joint transformation. Positive interactions that are readily apparent in

one context could be absent in another.

Another way of looking at both issues is from the vantage point of what the
agent is learning. Abstractly, the problems can be described as trying to identify
the concepts of high utility and interacting transformations. Given that the
behavior of the system is problem and hence distribution dependent, a more

meaningful definition for both would include the notion of expectation.

Expected utility can be defined in the usual statistical sense. A definition for
expected interaction can built on top of this by requiring that the expected
utility of an interacting transformation be greater than the expected utility of
the sum of its components. If the problem distribution were known a priori

then these values can be computed by assessing each transformation and then

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 38

by applying the probabilities. However the distribution is generally unknown.
Referring back to the initial problem, the issue is: given the problems that have
been encountered, how sure can the system be that it has found the expected
minimal joint transformation with the highest expected utility. A hill-climbing

approach can terminate a step under this condition.

Probably Approximately Correct (PAC) learning [54] is a learning paradigm
that quantifies the “degree” that a concept has been learned. This allows state-
ments to be made about the performance of an algorithm. Consider the task
of learning what a cup is. To learn this concept exactly requires that an agent
see every object that is a cup. However, for most learning problems, the world
is not so accommodating as to enumerate all the possible cups in a sequence.
The same type of cup may be seen many times before a new cup is introduced.
The question is, *how many cups have to be seen before it can be said that the

concept has been learned?”

Rather than exactly learning a concept, a PAC learner approximates it with
error € and probability 1- §. Using the assumption that the instances that
have been seen follow a fixed distribution, PAC learning guarantees that the
approximation criteria are met by requiring the learner to see a sufficient number
of samples. In the basic model, ¢ is the probability of misclassification. However,
an alternate way of looking at the PAC problem is to consider the space of
positive examples as a population [9]. The characteristic function for a concept
can be viewed as a random variable whose mean is the mean of the population.
PAC learning can then be considered as estimating the mean for the population
within a confidence interval of +¢ with confidence 1- §. This observation allows
for the incorporation of various statistical tools into the PAC framework. The
PAC paradigm can be applied to the expected utility and interaction problems
by requiring each concept to be learned with error € and probability 1-4.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 39

3.2 Multiagent Probabilistic Hill-Climbing

A technique [26] [27] based on probabilistic hill-climbing has been implemented to ad-
dress the four issues raised in the previous section. It is a two-stage hybrid approach
founded on both individual and group learning. The first stage uses co-learning to as-
sess the combined utility of the transformations. Each agent individually selects their
“best” transformation from their local set while interacting with the other agents.
Once this set is found, the method proceeds to the second stage where the trans-
formations are collected into groups and evaluated. The joint minimality criterion
is then applied to resolve the credit assignment problem. The following is a general
discussion of probabilistic hill-climbing. It is followed by a discussion of how this
technique can be applied to multiple agents.

3.2.1 Probabilistic Hill-Climbing

Probabilistic hill-climbing [21] [20] [15] is a PAC learning method that seeks to locally
improve the average performance of a system until no incremental improvement can be
made. The rationale for devising a satisficing solution is that it is too computationally
expensive to derive an optimal strategy. For instance, a monolithic approach based
on first learning the distribution P and then generating an optimal strategy is NP-
hard [19]. The basic hill-climbing algorithm is shown in Figure 3.2. It resembles the

generic procedure found in Figure 3.1.

A set of transformations on the current system, including the null transformation,
¢, is proposed. These could have been generated by a simplistic mechanism or a
sophisticated EBL domain theory. In each case, the average expected change in
utility of this transformation is computed under some sampling scheme. Sampling

could be performed round robin or be based on a function of the utility values.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 40

HILL-CLIMB(S, ¢, d)
i=1
T = generate-transforms(S)
loop while not(termination-criteria(S)) do
&;= distribute(d,i)
sample(7)
if 3t; € T > climb-criteria(¢;, T, d;, €) then
S= t,'
T= generate-transforms(S)
i=i+1
end if
end loop

Figure 3.2: Hill-climbing Algorithm

When sufficient samples have been accumulated to indicate that the mean A-
utility of the best transformation is better or within *e of any other transformation
with probability 1-4; then the system hill-climbs using this transformation.

Definition 9: e-optimal Transformation
A transformation 7max is €-optimal when it has the highest expected utility in
the set of T;’s or when all other 7; have expected utilities which are ¢ of Tax
with probability 1-4,,.

The e parameter is a measure of indifference. That is, if the “best transformations”
have average (A)-utilities within e of each other, then the agent does not care which
one is implemented. This process continues until no additional local modifications

can be made or the “best” transformation is ¢.

The confidence parameter § is distributed over each hill-climbing step such that
the sum of the probability of errors over all steps is less than or equal to d. If the

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 41

number of hill-climbing steps is bounded, then the &;’s can be computed by dividing
0 by the number of steps. In cases where the number of steps is unknown, the J;’s
can be computed by multiplying § by any series that sums to 1 at infinity; such as
;;%— [20]. This approach is guaranteed to return a system that is locally e-optimal
with probability 1-4.

From the above discussion it can be seen that probabilistic hill-climbing address

a number of issues in the generic coordination framework.

1. Computing Transformations
By design, probabilistic hill-climbing is iterative. Thus there is a trade-off be-
tween optimality and complexity.

5. Terminating Learning
As an instance of PAC learning, probabilistic hill-climbing has a well-defined

termination condition.

Issues 2 and 3 will be examined below where the hill-climbing algorithm is extended

to multiple agents.

3.2.2 Application of Probabilistic Hill-Climbing to Multiple
Agents

The use of probabilistic hill-climbing requires the introduction of an additional defi-

nition:

Definition 10: e-joint Transformation
A e-joint transformation, € — 7, is a set of local transformations 73, 73, ... T«

such that:

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 42

1. EU(e - J)) > E(TL U(T)) or

2. Another way of defining a e-joint transformation is to define its opposite.
In this case. a combined transformation C is not ¢ — J if |[E(U(C)) —
E(CL UT)] <e

with probability 1-4;. Related definitions for minimal e-joint transformations,
€ — J*, and e-optimal e-joint transformations, -7, follow directly from 8, 9
and 10.

In practice, the definitions associated with 10 use A-utilities instead of actual utilities.
This is in keeping with the use of hill-climbing where the task is to incrementally

improve performance.

The most straightforward way to apply probabilistic hill-climbing to multiple
agents is to use it to estimate the A-utility of grouped transformations. These groups
would correspond to the cross-product of all the local transformations, including ¢, at
a given step. The e-joint minimality criteria can be then applied to filter the groups
with error probability d;. € — J5.x is then selected with error probability d,,. If 6; +

O is less than § then the best candidate is returned for implementation.

Another way of looking at the problem is to first select the e-optimal group, Gy,
with error probability d,,;. Then from out of Gy, € ~ J5.x is eztracted with error
probability d;. Again, if d,,; + 95 is less then & then the system hill climbs. This
variant is possible since G; must contain € — J},,.- The group with the largest utility

must contain the atomic transformation with the largest utility.

Both approaches are based on standard grouping and still suffer from the same
complexity concerns. Note that the grouping is performed on transformations and

not on agents and thus the scheme is not as philosophically objectionable.

Between the two approaches, the second is arguably better in that it reduces the

groups to one candidate. This is a weak argument, since there may not be any savings

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 43

in terms of sample complexity using this technique. However, the rationale for this
variant becomes much stronger if the guarantee of e-optimality is dropped and an

approximation method used to find G, .

The proposed approach decomposes the learning task at each step into two stages.
The first step individually computes the best transformation for each agent. In effect,
this produces a set, G, which is an estimate for G;. Next, € — J3, . is isolated from
G, using grouping.

During stage 1, each agent individually runs a copy of the probabilistic hill-
climbing algorithm. Local transformations are evaluated without coordinating with
the other agents. This scheme is identical to Sen’s use of independent Q-learners,
except that probabilistic hill-climbing is guaranteed to converge. An agent either
decides that one of the transformations is useful or it defaults to its current strategy.
When applied to the symbol emitting domain from Chapter 2, an earlier variant of
the method halted in 50 out of 50 trials while returning one of the 3 equal positive

utility solutions in 49 cases. The remaining trial returned a negative utility outcome.

Probabilistic hill-climbing is guaranteed to return the transformation with the
highest expected € — A-utility with probability 1-4,, for each agent. However this
does not guarantee that G, is equal to G;. If this were true, then it is necessary for
each agent to return an e-optimal transformation, but this condition is not sufficient
to guarantee the converse. Thus the local transformation method can be viewed as
a heuristic for finding G;. It has been empirically proven to be effective in this task.
Results will be discussed in Chapter 4.

The second stage of the procedure groups the members of the individual maximum
transformations, samples the groups, computes the e-joint transformations and then
looks for the e-joint transformation with the largest mean. Since the approach relies
on two stages, 9; is allocated across both stages as §; and J;; respectively. Similarly,

€ is also allocated as €; and e;5. The rationale for the first allocation is clear. In the

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 44

second case, ¢ is distributed to prevent the following scenario. Let the first stage
approximate G; exactly and return a G which is one ¢ away from the best group.
During the second stage selection process, the system also returns a within e solution.
As a result the final group is 2e away. To eliminate this problem, ¢; and e; must add

up to e.

The second stage algorithm is shown in Figure 3.3. Once G, has been found, the N,

JOINT — TRANSFORMS(agents, €, §, Np)
J = compute-combinations(agents)
=1
loop while not flag do
simultaneous-extract(.7)
if (i > Np) then
[ZT, i-error]= compute-independence(J)
[MT, m-error]= find-max-trans(Z T, €)
if ((i-error + m-error) < §) then flag= TRUE
= 1+1
return(MT)

Figure 3.3: Joint Transformation Algorithm

N-1 to 1 combinations of the transformations are computed. This set represents the

potential minimal joint transformations since it contains all the possible combinations

N N N
of local transformations. There are still, + +--- + =2¥ -1,
1 2 N

an exponential number of transformations but, N is only in the number of agents and
not a function of the number of agents and the number of transformations. Consider
the case of three agents with their individual best transformations being A, B, and
C respectively. The seven potential joint transformations are {A B C}, {A B}, {B
C}, {A C}, {A}, {B} and {C}. If a transformation is not chosen to be a member

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 45

of the joint transformation, then the corresponding agent adopts its default strategy.

The A-utilities of the potential joint transformations are assessed by applying
them on the same problem instances. After an initial number, A, of problems have
been solved; the potential joint transformations are tested for interaction effects.
This is done by directly implementing the minimal joint transformation criteria in

the compute-independence function.

The expected A-utility of a potential joint transformation is compared to the
expected sum of the utilities of its individual components. Consider the combined
transformation A B C. If all three component transformations interact, then the

expected A-utility of A B C, E(A —U(A B C)), should be greater than of:

1. E(A —U(A B Ds) + A — U(D; D; C))
2. E(A-U(AD;C) + A-U(D, BDs))
3. E(A-U(Dy BC) + A—-U(A D; D))

4. E(A-U(A) + A —U(B) + A —U(C) + A - U(D))

where D; stands for the default strategy of agent . When combined, each test cor-
responds to determining whether or not there is a positive interaction, the joint
transformation condition, and whether this condition can be explained by a subset
of the combined transformation, the minimality condition. For instance, in the first
test, the expected A-utility of {A B C} is being compared to one of its second order
subsets, A B. If the expected A-utility of {A B C} is greater than that of the ex-
pected utility of {A B} plus C then there is an interaction between {A B C}. On
the other hand, if the expected A-utilities are the same then this implies that either
the A-utilities in {A B C} are additive or that {A B} interacts. In either case, {A

B C} should not be considered a minimal e-joint transformation.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 46

N-2 N -3 2
is the number of agents or the maximum order of the potential joint transformation.

N N N
In general, there are + +...+ + 1 tests where N

For each test, the probability that there is a positive interaction and the proba-
bility that the values are the same are computed. In some instances, it is easier to
prove that the means of two distributions are within € than to prove that one mean
is larger than another [4]. This accounts for the second condition in Definition 10.
Thus both probabilities are computed. In both cases, the probabilities across all tests
must be integrated to reach a conclusion about a given potential joint transforma-
tion. This requires an error model, which is discussed in section 3.2.3. Given the
combined probabilities of being larger or being the same, the hypothesis associated
with the larger of the two, P, is considered correct. Accordingly, the probability
of error is 1-Pmee- Again, these error values have to be integrated across potential
joint transformations. The integrated value is the probability, i-error, that the set of
interacting joint transformations has been incorrectly identified. € — 73, is found
by sampling the current set of hypothesized joint transformations. The best inter-
acting joint transformation along with its probability of error, m-error, is returned.
When the sum of i-error, m-error, and the errors from stage 1 is less than 4;, the
system hill climbs using the best joint transformation. The remaining minimal joint
transformations are then deleted to avoid the blocking problem. New transformations
are generated and the process repeats until a predefined termination criteria, such
as a bound on the number of hill climbs, or when the current best transformation is
¢. The latter criteria is preferred since it is well founded. However, in some of the

experiments, a climbing bound was used to reduce run time.

At this point, the remaining two issues in the generic multiagent learning algorithm

can now be summarized.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 47

2. Computing Combined Transformations
The effect of combining transformations is ascertained by using independent
learning. This trades off optimality for complexity. It is also an attempt to

address the philosophical issue of autonomy in learning.

4. Computing the Best Transformation
The minimal joint transformations are discovered using a method based on
grouping. As in the case of AGE, grouping is performed at the level of trans-
formations and not at the level of agents. Again, this is to address the issue
of agent autonomy. By itself, grouping is useless. Although it can be used to
assess the effect of a set of transformations, it cannot determine which subset
of the group gave rise to the positive A-utility. This requires that the effects
of a group be compared to those of its components to determine the minimal
subgroup responsible. This, in turn, requires some criteria to determine the
confidence of the utility estimates. A statistical technique is used to compute

the error of estimation.

A rough comparison can be made between this method and group-based techniques by
examining the number of expected utilities that have to be estimated. For instance,
consider a domain with four agents, each with five transformations. Using grouping
there would be 5* — 1 = 624 means to be estimated. On the other hand, if the
proposed approach is taken, there are 20 (4 x 5) utilities to be estimated in stage 1
and then 2%-1 or 15 in stage 2 for a total of 35. These numbers cannot be directly
compared since the number of samples required to perform the estimation may not
be equal, but there is a large difference in the number of utilities. Moreover, the
range in the number of samples required should be similar. In each case, the task is

to estimate the parameters of a distribution to a prescribed confidence level.

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 48

3.2.3 Implementation Details

The suggested algorithm is a skeleton with many possible instantiations. Two ques-
tions have to be answered before an implementation can be developed. These are:
what assumptions should be made when comparing the system error and what method

should be used to sample the transformations.

Computing Errors

There are three places in the algorithm where errors are computed. In two of these
cases, the current best transformation is compared to the remaining transformations
to determine if it is the best and in the other, the error of missclassifying a joint
transformation is calculated. All cases involve the comparison of distributions. The
proposed system uses paired t-tests to determine if the mean of one distribution is
strictly better than another or if they are within +e. More details can be found in
Appendix A. Since a set of paired tests are used, the question is how to handle the
results of these tests. That is, which error model should be employed? There are

three possible models [16]:

1. Worse Case. Take the sum of all the errors.
2. Independent Case. Take the final error as 1 — [, (1 — error:).

3. Best Case. Take the largest error.

Consider the case of finding the best transformation. An error occurs when either:
1) the best transformation is properly estimated and another transformation is over-
estimated or 2) when the best transformation is underestimated and the other trans-

formation properly estimated or 3) when the best is underestimated and the other is

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 49

overestimated. Thus, the errors can be dependent. Rather than potentially underes-
timating the error using either the independent or best case models, it was decided
to overestimate the error using the worse case model. On the other hand, the miss-
classification error for an individual joint transformation was computed using the
independent model. This is not totally correct, since the errors could be correlated
if the subcomponents are additive. For instance, when testing {A B C} against {A
B} and A + B, if U(A B)=U(A) + U(B) then these tests may be correlated. This
is mitigated by the fact that Definition 6 assumed that sampling is independent. To

offset this, the worst case model was used across joint transformations.

Sampling Schemes

There are a variety of ways in which the transformations could be sampled. The
simplest approach is to use a round-robin scheme and to consider each in turn. This

is commonly known as simultaneous extraction [21].

In general, the optimal scheme would return the best transformation in the least
number of samples. It is assumed that testing is expensive and thus should be min-
imized. The learning community has proposed various solutions to the problem [12]
[31] [17] [4]. There are also related problems in statistics, such as finding the member
of a population with the largest mean (53] [51] or finding the “best arm” in a bandit
problem [45] {2]. The latter task involves an imaginary, multiarmed slot machine
that returns a random award depending on the arm that was pulled. The goal is to

maximize the long-run total reward using the results of previous trials.

Some of the techniques sequentially sample all the transformations until it has
been proven that a particular transformation cannot be the best [53] [51], while others
compute dominance or confidence intervals for the means of the transformations [12]

[31] [17] [45]). The transformation that dominates or has the largest upper bound on

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 50

its confidence interval is sampled. Finally, the remaining approach [17] [4] weighs the
cost of sampling a transformation against the benefits in error reduction and then

picks the one with the best ratio.

While these techniques reduce sample complexity for single agent learners, the
learning environment for multiagent systems is different. The difference is that the
utilities of the transformations may not be independent, but instead depend on the
transformations being tested by other agents. Thus, sequential methods will tend
be useless, since they would “smear” the utility estimates for potentially good joint
transformations over all the transformations. This has been empirically confirmed
for certain types of distributions. See section 4.2 for results. Intuitively, a “good”
multiagent sampling scheme would have each agent explore its space of transforma-
tions and then settle on a subset that has high utility when combined with those of
the remaining agents. This would allow the agents to “converge” on a set of joint

transformations.

The development of a new multiagent sampling scheme is beyond the scope of
this thesis. In the proposed system, for all but one experiment, agents sample their
transformations using the Z-heuristic [45] which was developed to solve the bandit
problem. Initially, Ny samples of each transformation are randomly taken. The mean
and the variance of the mean of each transformation are then used as parameters to
a set of normal distributions. A random number is generated from each distribution
and the transformation associated with the largest number is sampled. This approach
has characteristics of the intuitive scheme discussed above. Its effect will be discussed
in Chapter 4.

Experiments in the navigation domain used interval estimation (IE) [12] [31]
rather than the Z-heuristic. This is a historical consequence of it being one of the
earliest experiments performed. After some discussion with the author of [12] and

some experiments, it was decided that the sample complexity of the Z-heuristic was

CHAPTER 3. MULTIAGENT PROBABILISTIC HILL-CLIMBING 51

better than that of IE and thus the remaining experiments used this scheme. The
results of these initial trials will not be presented here.

Chapter 4

Experimental Validation

Three sets of experiments are performed to test the effectiveness of the technique.
The first set involves a synthetic domain where the characteristics of the problems
can be easily controlled to determine their influence. The second set are performed
using Sen’s [47] robot navigation domain. These tests stress the scalability of the
first stage of the approach, since the domain can be viewed as involving a maximum
of 400 agents. The final experiment applies multiagent probabilistic hill-climbing to
the predator and prey pursuit domain. This is a well studied problem in DAI with
published results for the GP learning paradigm. A simplified restaurant domain will
also be presented in Chapter 5, but it will be used to demonstrate a sample complexity

reduction method.

The next section discusses the coordination approach and the associated problem
solving framework that is used throughout the rest of this thesis. FEach domain is

then considered in turn.

52

CHAPTER 4. EXPERIMENTAL VALIDATION 53

(make-operator
:template ’(get-drink-seven ?x)
:preconds ’((send-dorder ?x) (seven 7x)
(have-seven ?y))
:addlist ’((have-drink ?x) (not-pay-d ?x))
:dellist ’((send-dorder ?x) (seven 7x)
(have-seven ?y)))

Figure 4.1: Seven-up Operator

4.1 Problem Solvers

The coordination paradigm used in the research is an instance of an organizational
structure approach. A coordination strategy is implicitly encoded in the behavior of
the agents. The behavior of an agent is controlled by a policy which is executed depth
first. Given a context, an agent will “commit” to execute the first action or operator

in the policy that is applicable. This occurs in parallel using the same context.

The actions/operators range from simple state to action mappings in the case
of the navigation and the predator and prey domains to STRIPS operators in the
restaurant domain in Chapter 5. An example of a state action pair is {(10,10),
north}. If an agent is in grid location (10,10) then it should go north. Figure 4.1
shows an example of a STRIPS operator from the restaurant domain. The symbols
preceded by “?” are variables. The function of this operator is to obtain a glass
of Seven-up for agent ?x. As in the usual STRIPS paradigm, it can be applied
when its preconditions are met. The result is that the literals on the addlist are
added to the world and the literals on the dellist are deleted from the world. In

this case, if agent ?x orders a drink, wants a Seven-up and there exists a free glass

CHAPTER 4. EXPERIMENTAL VALIDATION 54

of Seven-up then this operator can be used. These two requirements correspond to
the (send-dorder ?x), (seven ?x) and the (have-seven ?y) literals in the pre-
conditions, respectively. Once the operator has been applied then agent ?x has a
drink which has not been paid for, the order has been filled and the glass of Seven-up
has been assigned. The first condition is added by the (have-drink ?x) and the
(not-pay-d ?x) literals in the addlist. The fact that the order has been filled and
the glass used-up is reflected in the three elements of the dellist.

In domains containing variables, bindings are resolved at execution time. Thus
two agents can execute the same action using different objects. If more than one
agent selects an operator with only one binding, then a simple agent priority scheme
is used to resolve the conflict. Agents are assigned numerical id's. The agent with
the lower id executes the operator while the remaining agents are idle. Bindings are
assigned in the order that they are found. The strategies do not explicitly control
bindings.

Since strategies are executed depth first, transformations correspond to reorder-
ing the elements of the strategy. This could entail moving one element or moving
multiple elements. To reduce complexity, the implemented solvers only use one-step
transformations. This scheme can contribute to the system being trapped in a local

minima.

4.2 Synthetic Domain

In this domain, each one of four agents outputs a symbol from the distinct set that
it has been assigned. The feedback received is a function of the world state and
the combined set of outputs from all agents. As described above, strategies are
ordered lists of symbols. An agent outputs the first symbol in its strategy. This

problem is similar to the contrived example presented in Chapter 2. To determine

CHAPTER 4. EXPERIMENTAL VALIDATION 55

the performance of the method, the domain and the experiments were parameterized

in the following ways:

1. Changing the shape of the problem distribution

As its name implies, the problem distribution refers to the frequency of the
problems that will be encountered by the system. For the symbol domain, this
corresponds to the frequency of the states. If the utilities of the transformations
are equal then the transformation that improves performance on the most com-
mon problem should be implemented. The use of equal utilities is a simplifying
assumption. In general, the transformation that has the best expected utility
should be selected.

The experiments used a variant of the simplifying assumption, but exchanged
what was fixed. Instead of varying the distribution and fixing the utility, the
distributions were kept uniform and the utilities varied. This was done to
simplify the setup of the experiments, since it is immediately apparent which
transformations were e-local of the best. Thus, problem distributions refer to

the distribution of high utility transformations.

The algorithm was tested on three different problem distributions to ascertain
their effects on performance. In all three cases, the distributions required the
use of 3rd order joint transformations. That is, utility values are based on the
returned symbols from three different agents. For the system to return a within
€ result, three out of the four agents must return the appropriate symbols.

Histograms for the three cases are shown in Figures 4.2, 4.3 and 4.4 respectively.

The y-axis of the histogram measures the number of triples that are within
the respective multiples of ¢ from the best triple. For the lack of better labels,
the distributions will be referred to as hard, center, and skewed, respectively.

The hard distribution not only has the least amount of ¢; entries but also

CHAPTER 4. EXPERIMENTAL VALIDATION 56

8

Number of instances
Q@ 8 & B 8 3 8 8

-
o

ATk

12

4
E from Bast Uity

Figure 4.2: Hard Problem Distribution

has a skewed distribution of ¢; outcomes. The remaining two have different
proportions of €; entries with the center distribution being, naturally, more
centered and the skewed distribution being skewed to the right with a large
number of €; entries. In terms of percentages, the hard, center, and skewed

distributions have 1.8%, 4.2% and 20% of within ¢ entries.

2. Changing Ny
The number of initial samples can be changed to assess the sensitivity of the

algorithm to this parameter. Experiments used A values of 5, 10, and 15.

3. Changing the allocation of §
As discussed in Chapter 3, § must be allocated across the stages, since the
proposed approach is a multistage algorithm. Allocation can be controlled using
a single parameter that defines the fraction of § that can be used in stage 1 with
the remainder being allotted to stage 2. Parameter values of .25, .5, and .75

were used in the experiments.

CHAPTER 4. EXPERIMENTAL VALIDATION 57

u{
7o}]]
3 Sor] 1
5o |
20
1
) 2 n s . 10 12
E trom Best Unility

Figure 4.3: Center Problem Distribution

4. Changing the sampling scheme
The effect that the sampling scheme has on the overall results can be determined
by varying the scheme. In this case, the Z-heuristic was compared to trials using

random and round robin (simultaneous extraction) sampling.

Throughout the tests, the number of agents, the number of symbols per agent,
the ¢, the § and the N} parameters were held constant at 4, 5, 0.4, 0.05, and 30,
respectively. All initial symbol lists were ordered randomly. It was found that all
trials used more than 30 samples during stage 2 and thus N; was not varied. A cutoff
of 5000 and 800 samples were placed in stage 1 and 2 of the trials, respectively. If
the algorithm did not return an answer by this time, the failure was noted. Results
are tallied by distributions in Tables 4.1, 4.2, and 4.3. These correspond to the hard,
center and skewed problem distributions, respectively. The first column of each table
represents the test conditions in order of § allocation, Ny, and sampling scheme. In
the case of the last parameter, Z refers to the Z-heuristic, R to random sampling,
and S to simultaneous extraction. Fifty trials were run for each combination and the

following statistics stored:

CHAPTER 4. EXPERIMENTAL VALIDATION 58

Number of Instances

8

4] 12

qmnﬂﬂﬂﬂn

6
E from Best Uity

Figure 4.4: Skewed Problem Distribution

1. eg: The number of trials that found the best transformation.
2. €;: The number of trials that found a transformation within € of the best.

3. Failed Stage 1: The number of trials that did not return an ¢ or €; transfor-

mation during stage 1.

4. Failed Stage 2: The number of trials that did not return either ¢ or €; trans-

formations during stage 2.

5. D.N.H Stage 1: This item contains two entries. The first is the number of
trials that reached the first stage sample limit of 5000 without halting. Entry
two is the number of stage 1 D.N.H entries that would have resulted in a stage
1 failure if the algorithm had returned the current best set as the final best

transformations.

6. D.N.H Stage 2: This item contains two entries. The first is the number of trials
that reached the second stage sample limit of 800 without halting. Entry two
is the number of stage 2 D.N.H entries that would have resulted in a stage 2

CHAPTER 4. EXPERIMENTAL VALIDATION 59

failure if the algorithm had returned the current best joint transformation as

the actual one.

7. SamplesI: The total number of stage 1 samples accumulated over all trials.
Totals for stage 1 and 2 samples are kept distinct due to the different cutoffs.

8. Samples2: The total number of stage 2 samples accumulated over all trials.
Note that each stage 2 sample is equivalent to 15 (2%-1) stage 1 samples since

each group is assessed using the sample.

The effects of the test parameters are linked and thus the result of modifying one
individual parameter may be hard to isolate. The discussion will be broken down
into three headings: 1) distribution/sampling scheme, 2) Ap and 4§ allocation, and 3)

error rate.

1. Changing the shape of the distribution/sampling scheme:
The consequences of changing the distribution and the sampling scheme are
coupled. When the number of ¢; entries is small, sampling schemes that do
not converge on a set of transformations make many errors, as can be seen in
Tables 4.1 and 4.2. As suggested, simultaneous extraction tends to “smear” the
A-utility estimates for a joint transformation across the joint transformation.
Random sampling has a similar effect. However, these methods can return a
€; solution in a smaller number of samples than the Z-heuristic if the number
of ¢; entries is large. Consider the results for the skewed distribution. The Z-
heuristic performs poorly in terms of sample complexity, due to the large number
of potential solutions. The learning algorithm must keep sampling until it has
determined that either the best transformation is the best or that every other
transformation is within e of it. Since many sets of transformations fall into

the latter category, it will take correspondingly many samples.

CHAPTER 4. EXPERIMENTAL VALIDATION

Parameters | g | €, | F1| F2 | DNH1 | DNH2 | Semples1 | Samples2
.75/5/Z 5 {15612 |4 |(24/1) |0 138626 2194
.75/10/2 111283 |6 | (1/0) |(1/0) {17502 6042
75/15/Z 18 |25|7 |8 |(2/2) |0 25030 3443
50/5/Z 8 |10(2 [3 |(27/5)(0 152989 | 1700
.50/10/Z |13[27|0 |6) [(4/3) |0 29318 3405
50/15/Z |8 |22|5 |7 [(8/8) |0 54317 3796
25/5/Z 4 |4 (1 |4 |(47/5)]0 195403 768
.25/10/2 9 [24(1 |7 |(9/2) |0 66952 3495
25/15/Z |8 |31|2 |6 |(3/3) |o 30793 2944
.75/10/R 1 {2 |46 (|1 |0 0 29230 124
.50/10/R 0 |4 |45 (|1 |O 0 38348 310
25/10/R 1]6 |42 |1 (O 0 43142 249
.75/10/S 2 112|315 |0 0 46616 1592
.50/10/S 1 |1412211 |[(12/8)]0 62634 2079
.25/10/S 1 (14]22 (1 |[(12/8) |0 62770 1930

Table 4.1: Results for the Hard Distribution

60

CHAPTER 4. EXPERIMENTAL VALIDATION

Parameters | €g | €, | F1| F2 | DNH1 | DNH2 | Samples1 | Samples2
75/5/2 312410 |2 |{(21/0)(0 121330 2210
75/10/Z |6 [37]|1 |6 |0 0 7521 4120
75/15/Z |3 [39]2 |6 |0 0 7769 3538
50/5/Z 419 o |3 |@34/0)]0 176533 | 1210
50/10/Z |4 [36]5 [2 |(3/0) |o 37492 | 3158
.50/15/Z 713813 |2 |0 0 8215 3587
25/5/Z 2 |10|10 |1 |(37/0)0 191894 | 994
25/10/Z |7 |32]0 |3 [(8/1) |0 53815 | 3293
25/15/Z |5 (373 |4 |(@/1) |o 12909 | 2741
.75/10/R 1 112|343 |0 0 69807 773
.50/10/R 1 (12]35(2 |0 0 78104 620
25/10/R 1 113133 (3 |0 0 86803 662
.75/10/S 2 1231223 |0 0 44267 2899
50/10/S |2 |16{17 |4 |(@1/2) |0 57296 | 2135
.25/10/S 2 (1611714 |[(11/2)|0 57473 1974

Table 4.2: Results for the Center Distribution

61

CHAPTER 4. EXPERIMENTAL VALIDATION

Parameters | ¢y | €, | F1 | F2{ DNH1 | DNH2 | Samplesl | Samples2
.75/5/Z 3 |40 |0 [(43/0)]|0 234065 197
75/10/Z 5 {15(0 {0 {(30/0)}|0 191779 1319
75/15/Z2 | 10[23|0 |1 |(16/0) |0 133241 | 2249
50/5/Z 4 |10 |1 [(44/0)]0 241079 | 366
50/10/Z {4 {3 |0 {0 |[(43/0){0 133241 | 2249
50/15/Z |5 |14]0 |o | (31/0) |0 179980 | 899
25/5/% 0 {1 (0 [0 |[(49/0)]0 246356 | 31
25/10/Z (1 |2 |0 [0 [@7/0){0 245000 | 93
25/15/Z |2 |4 |0 |1 |(43/1)]0 223868 | 389
75/10/R |0 {3015 |4 [(1/0) |0 85634 1246
50/10/R [0 [34|10{4 |(2/0) |0 244679 | 1753
25/10/R [0 [32|9 |5 |[(4/0) |0 56243 1206
75/10/S |7 [41|0 |1 |0 1 17772 6586
.50/10/S 3 {430 |2 |(2/0) ;O 16736 3289
.25/10/S 3 |43|0 |2 |(2/0) |O 17491 3103

Table 4.3: Results for the Skewed Distribution

62

CHAPTER 4. EXPERIMENTAL VALIDATION 63

'l\'l

On the other hand, random and round-robin sampling do not suffer from this de-
cision problem, since they have difficulty in finding €; solutions. These schemes
simply return the best set of transformations that the agents have found with-
out exploration. If the number of €; entries is high, then the probability of
returning one of these results increases. This effect can be seen by comparing
the data for the center and skewed distributions. The percentage of correct
results increases with the proportion of ¢; entries. It is the most dramatic in
the case of simultaneous extraction. Random sampling has problems exploiting

the increased solution density due to the “noise” inherent in the method.

Changing Ny and é allocation:

These results indicate that the approach is sensitive to the value of Ny. Halv-
ing the value from 10 to 5 dramatically increases the total number of stage 1
D.N.H’s. This can be explained by looking at the number of times that a given
transformation has been sampled. Generally, the combination of a distribution
with a small number of ¢; entries and a low Aj causes a large disparity in the
number of samples across transformations. That is, the transformations corre-
sponding to an ¢ or €; entry will have many more samples than the remaining
transformations. This is an artifact of the Z-heuristic sampling scheme. One
problem is that it tends to spend most of its time sampling the best transfor-
mation. This is exacerbated by distributions where a few transformations are

much better than the others.

Confidence in the utility estimates and hence the error is a function of the
number of samples. Given that most of the samples are concentrated on one
transformation, the incremental error reduction per sample is low. Increasing
N, forces the procedure to sample each transformation at least a fixed number
of times. Zeroing in on the best transformation works well for bandit problems

and fits in with the idea of the system converging on the best transformations.

CHAPTER 4. EXPERIMENTAL VALIDATION 64

However, it may not optimally address the simultaneous goal of reducing sample
complexity. Note that the Z-heuristic does implicitly factor in the uncertainty

of the estimate. This can be seen in its use of the variance of the mean.

Increasing Ny to 15 had a marginal effect on the results. Thus, as long as M
is not “too low”, the algorithm will not use an inordinate amount of samples.
However, note that the limiting case on increasing N, is purely random sam-
pling. As has been shown, random sampling does not perform as well as the

Z-heuristic on sparse distributions.

The effect of changing the 4 allocation can be seen in the sample complexity.
As may be expected, as less of § is allocated to the first stage, the number of
stage 1 samples increases. Conversely, the number of stage 2 samples decreases
as its share increases. Beyond this observation, it was hard to gauge the effect

of modifying the weighting.

3. Error Rate:
It is hard to quantify the error rate of the method due to the sample cut-offs.
Simply summing the €; and ¢; entries indicates that the best result was 10% in
the case of .50/15/Z if the partial round-robin results for the skewed distribution
are ignored. This is below the theoretical requirement of 5% for a system that
does not use approximations. Recall that the approach does approximate G,
and thus this condition is invalid. It can be argued that, in general, taking the
difference between the number of samples and the sum of ¢; and ¢; overestimates
the error rate. For instance, an examination of the stage 1 D.N.H’s indicates
that most of them would have returned a within ¢; solution if it had been allowed
to halt. This may lead to more ¢; final results. The validation of this hypothesis
is pragmatically beyond the computational capabilities of the Sparcstation IPX

used in these experiments.

CHAPTER 4. EXPERIMENTAL VALIDATION 65

As the results indicate, multiagent probabilistic hill-climbing is capable of returning
e-local joint transformations with a good success rate given parameters appropriate to
the distribution. Thus, like other parameterized learning techniques, it may require

several trials using different values to realize these outcomes.

4.3 Navigation Domain

The navigation problem involves four robots that have to maneuver from one side
of a ten-by-ten gridworld to preassigned locations on the other side while avoiding
collisions. A diagram of the gridworld is shown in Figure 4.5. An agent’s policy is
represented by an ordered list of actions, one per square. These actions are north,
south, east, west, and hold as specified by Sen [47]. When an agent enters a square,
it executes the first action in the list. This will result in the agent moving to a new
square or remaining in the same one. The second case occurs during a collision or
when the hold action is executed. If this occurs then the next action in the list is
executed during the next time step. Consider the following strategy for square (10,10):
{(10,10),(north west hold south east)}. Given that the current move has resulted in
a collision, the next move would be to the west. This prevents deadlock, since the
agents would normally execute the same action that resulted in the collision, since
they are at the same grid location. Hold actions are useful for letting another agent

pass to avoid a collision. However, an agent should move during the next step.

Each of these squares can be viewed as an agent since it has it own local policy
and local transformations. Since the grid is ten-by-ten and there are four agents,
there is the potential that the problem may involve up to 400 agents. This number is
not normally realized since the agents do not tend to wander all over the grid. Thus,

this experiment assesses the scalability of the technique.

Using the aforementioned execution scheme, the transformations reordered the

CHAPTER 4. EXPERIMENTAL VALIDATION 66

A B C D
1 I L T
b - - - | R . I 1
I 4 i 1
L T T I
! I | N g |
I L} ! !
L J ! T
I I I 1
I 4 ! !
L 1 L I
[} { i PR S |
i i ! !
L 1 T L
[S I |]
! [} I 1
1 1) t
e d b - L1
I I !
L ! !
R (R S I S |
i I 1 1
1§ L T I
LJ-L-_I__I
! i !
I T T
- -l Tl - - - -l -
[} ! }-l
1 ! 1
—f - = I ! [S -
! | i !
D’ c B’ A’

Figure 4.5: Robot Navigation Domain

action lists as in the case of the synthetic domain. Rather than simply permuting the
actions, a “lock-step” approach was taken to compute the transformations. At any
given hill-climbing step, the transformations only modified one specific position in
the order. Initially this was the first position in the action list and was subsequently
incremented upon hill-climbing.

Another issue is the reordering of the hold action since the utility of this trans-
formation is dependent upon what comes after hold. The solution was to generate
four different transformations for hold. Each one corresponded to one of the four

remaining possible actions.

CHAPTER 4. EXPERIMENTAL VALIDATION 67

The reinforcement signal is a function of the position of the square being entered
into with respect to the goal and also the occurrence, if any, of a collision. Thus, the
utility function is local. If the new square is closer to the goal then a value of 1 is
received. Conversely, if the new square is farther away then a value of -1 is returned.
Otherwise, the agent obtains a value of zero. The cost of a collision depends on the
status of the other agent involved. If it is stationary, that is, it is executing a hold
action then the cost is -10; else it is -5. In the event that an agent tries to leave the

grid, it receives a punishment of -10.

The utility function does not measure the number of steps in a solution as would
appear in a global function. To remedy this, a payoff filter [40] was used to promote
cooperation. The A-utility estimates involved a difference in local reinforcement
values as well as the weighted A-utility of the best transformation in a subsequent
grid location. Grid locations with strategies that move an agent closer to its goal
should be entered to reduce the overall path length. The second term of the A-utility
factors this in. This scheme corresponds to the delayed reinforcement used in Sen'’s

paper. Similarly the discounting value or the weight, -y, was set to 0.8.

The aim of the experiment is to test the efficacy of co-learning during stage 1.
A question is, “does the approach scale?” In this case, scaling does not refer to
computational complexity, but rather to the ability of the technique to converge on
beneficial transformations. This issue is important since errors at this point limit the
effectivenss of the rest of the algorithm. As such, the second stage procedure was not
used nor could it have been used under these circumstances. The cost of assessing
2190 _ 1 potential joint transformations is completely unrealistic. On the other hand,
a complete grouping solution would require 84 — 1 means to be estimated. However,
the domain does provide a mitigating factor in that it admits many solutions and
thus the blocking problem may not occur. That is, the space of paths that an agent

can take is large and thus if a local error is made, a workaround may be found. To

CHAPTER 4. EXPERIMENTAL VALIDATION 68

further reduce the chance of blockage, only one transformation was implemented each
step. A consequence of this is that the co-learning mechanism must “rediscover” the
remaining components of a beneficial transformation during subsequent iterations.

This makes the test much more difficult.

For the experiment. Ny was set at 5. Since the number of possible hill-climbs
is bounded by the number of squares and the number of actions, a division scheme
was also used to compute the delta}s. Rather than dividing by 400, a dynamic
scheme was used that enumerated all the grid locations that have been visited and
used that number. As stated in Chapter 3, interval estimation was used as the
sampling scheme. IE samples the transformation with the largest upper bound for
the confidence interval on its mean. This approach is similar to the Z-heuristic but

without the random element.

Using a common initial ordering of (north, south, east, west, hold) for all agents,
the system returned the solution shown in Figure 4.5. The dotted lines indicate the
paths taken by the agents. The corresponding agent coordinates, with respect to
time, are shown in table 4.4. As can be seen, the solution is optimal with each agent
arriving at its intending destination in the shortest number of moves while avoiding
collisions. In comparison, Q-learning did not arrive at the optimal solution. Rather

the paths contained small detours.

4.4 Predator and Prey Domain

The object of the predator and prey domain is for four predators to capture a prey
within a 30 by 30 toroidal grid world. Diagonal moves are not allowed and capture
occurs when the four agents are directly adjacent and orthogonal to the prey. Agents
choose and execute their actions simultaneously without communicating their intent

to other agents. This is in line with Korf’s hypothesis that predators can locally

CHAPTER 4. EXPERIMENTAL VALIDATION

Step | Agent 1 | Agent 2| Agent 3| Agent §
1 |11 4,1 7.1 10,1
2 2,1 5,1 7,2 10,2
3 3,1 5,2 73 9,2
4 3,2 5,3 7,4 9,3
5 3,3 5.4 7.5 94
6 3.4 5,9 7,6 8,4
7 3,5 5,6 7.7 8,5
8 4,5 5,7 7,8 8,6
9 4,6 5,8 6,8 7,6
10 |56 59 58 77
11 |66 6,9 48 6,7
12 6,7 7.9 49 5,7
13 |68 7,10 4,10 4,7
14 7.8 4,8
15 |79 4,9
16 |89 39
17 | 8,10 3,10
18 9,10 2,10
19 10,10 1,10

Table 4.4: Agent Coordinates

69

CHAPTER 4. EXPERIMENTAL VALIDATION 70

Figure 4.6: Configuration before pushing

choose optimal moves while still consistently capturing the prey [36].

At each time step, the prey has a 90% chance of moving. Thus the predators move
faster than the prey. The prey has a simple strategy that moves it away from the
closest predator. All ties are arbitrarily broken. Collisions occur when two agents try
to occupy the same square. In this case, the agents remain in their previous positions.
However, if a predator does not move then it can be pushed by another predator. A
predator cannot push the prey. Consider the situation shown in Figure 4.6. The prey
is white while the predators are grey. The prey has decided not to move. The arrows
indicate the direction in which a predator wants to move. Predators 1 and 4 want
to push the prey but they can’t. Instead they are pushed by 2 and 4, respectively,
resulting in the configuration shown in Figure 4.7.

Predators are controlled by a strategy that uses the relative position of the prey
with respect to a given predator. Associated with each compass direction, (N, S, E,
W, NW, SW, NE, SE), is an ordered list of four potential actions (north, west,

CHAPTER 4. EXPERIMENTAL VALIDATION 71

()

Figure 4.7: Configuration after pushing

south, east). As in the other domains, an agent executes the first action in the list
given the relative direction of the prey. For example, one strategy element might be
(N (west, south, east, north)). If the prey is to the north of the agent, then it will
go west. Under this scheme, transformations correspond to reordering the lists for
each agent for each one of the eight directions. This approach limits the number of
potential hill-climbs to eight per agent. Thus, § can be distributed over the iterations
by simply dividing by eight.

Since the grid world is toroidal and there is no explicit representation for distances,
a scheme was developed to map the relative position of the prey to one of the eight
directions. Consider the situation shown in Figure 4.8. The light circle represents
the prey while the darker one represents the predator. The question is, “Is the prey
to the south of the predator or is it to the north?” The direction that minimized the
distance between the predator and prey was the one returned to the predator. In this

case, the prey was north of the predator. Although this representation is simple, it

CHAPTER 4. EXPERIMENTAL VALIDATION 72

Figure 4.8: Relative Positions

is capable of encoding similar strategies to those found in [23] [25].

The reinforcement signal used was identical to that found in [25]. It included the

following components:

- 1 -
1. After each move, each predator receives a value of j—"— ==~ Lhis encour

ages the predators to stay close to the prey.

2. At the end of the simulation, every predator that is orthogonally adjacent to
the prey, receives a reward of the total number of moves allowed. This biases

transformations that bring the predators next to the prey.

3. If the predators capture the prey then all predators are given a value of four
times the number of moves in addition to any other reinforcement received.

Clearly this favors transformations that aid in capture.

As in [25], the initial locations of the predators are random with the prey being

CHAPTER 4. EXPERIMENTAL VALIDATION 73

centered in the grid. The movement of the prey was synchronized with that of the
agents. The maximum number of moves was set at 100. The trial ends when either

this number is exceeded or if the prey is captured.

4.4.1 Comparisons to Genetic Programming

The approach was compared to Haynes’ genetic programming results to ascertain its
performance. Corresponding to the procedure in [25], experiments were performed

using a maximum of 200 moves although learning only used 100 moves.

Three different trials were performed using multiagent probabilistic hill-climbing.
The first two are based on an initial strategy that had every agent moving north
regardless of the relative location of the prey. For experiment 1, the parameters were
set as follows: €;= 4, e&2= 4, Mp= 70, M;= 30, and §= .4 which was evenly allocated
between é;; and J;2 over the eight possible hill-climbing steps. Experiment 2 had the
same values except that Ny was lowered to 50. The third case used a completely
random initial strategy. Its parameters were identical to the second trial. The runs
will be denoted as MPHC1, MPHC2, and MPHCS3, respectively. The number of
captures and the average number of moves to capture over 100 trials are shown in table
4.5. The first two entries in the table are the best results for strategies generated by
genetic programming. In the case of STGP [23], a single strategy was learned that
was used by all the agents. Thus, there is an implicit form of communication between
the agents, which are also assumed to be homogeneous. A1 [25] is an agent grouping
approach to learning using the “TeamAll” crossover strategy in which there is a
potential crossover point in every agent in every group. Given these characteristics,

it is a prime candidate for the blocking problem.

Note that the results for STGP and A1l are not those reported in [25]. Rather

new simulations were performed using the coordination strategies that were described.

CHAPTER 4. EXPERIMENTAL VALIDATION

Algorithm | Captures | Avg. Moves
STGP 26 79.9

Al 0 200
MPHC1 | 70 45.2
MPHC2 | 97 71.9
MPHC3 | 100 72

74

Table 4.5: Captures and Average number of Moves

This allowed the methods to be compared using the same test cases. In any event, the
results were similar to those that were published. From figure 2 in [23], the capture
rates for STGP seem to be in the 10% range while the value for A1l is close to 0
[25]. The average path length of 200 for A1 was included to indicate that it failed to

capture.

It is also interesting to compare the strategies generated by genetic programming
to those produced by hill-climbing. A visualization of the strategies is shown in
figures 4.9 to 4.25. P indicates the prey and the arrows indicate the direction an
agent would move given its current relative position to the prey. For instance, in the
STGP strategy, if the prey is to the east of a predator then the predator will always
move east. The perturbations at the edges of STGP and A1 strategies are probably
the result of the low level representation used in GP. They were reproduced in the

runs.

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.9: Strategy generated by STGP

75

CHAPTER 4. EXPERIMENTAL VALIDATION 76

Figure 4.10: Strategy using A1 for Agent 1

The strategy produced by STGP moves the predator to an orthogonal position
to the prey and then closes in. A1 produced a strategy which contains 2 orthogonal

components that do not necessarily bring it closer to the prey.

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.11: Strategy using A1 for Agent 2

Figure 4.12: Strategy using Al for Agent 3

77

CHAPTER 4. EXPERIMENTAL VALIDATION

PIRTRLETRTETE

I

p1id

Figure 4.13: Strategy using A1l for Agent 4

Figure 4.14: Strategy using MPHCI1 for Agent 1

78

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.15: Strategy using MPHC1 for Agent 2

Figure 4.16: Strategy using MPHC]1 for Agent 3

79

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.17: Strategy using MPHCI1 for Agent 4

80

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.18: Strategy using MPHC2 for Agent 1

v

]

PIRIRIRNRIRIRERNRIDIE

Figure 4.19: Strategy using MPHC?2 for Agent 2

81

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.20: Strategy using MPHC2 for Agent 3

Figure 4.21: Strategy using MPHC2 for Agent 4

82

CHAPTER 4. EXPERIMENTAL VALIDATION 83

Figure 4.22: Strategy using MPHC3 for Agent 1

The strategies generated by MPHCI1 are similar to those of STGP except that
they exhibit a degree of specialization. This is particularly true for agent 4, which
only approaches the prey from the southern direction. MPHC2 shows even greater
differentiation in that agent 1 approaches from the south, agent 2 approaches from
the east, agent 3 approaches from the north, south, and west, and agent 4 approaches
from the north. The best results are for MPHC3, which again shows specialization,
except for the case of agent 2. From figure 4.23 it can be seen that this agent does
not approach the prey at all. One of the shorter pursuit paths for this strategy is
shown in tables 4.6 and 4.7. The coordinates are not graphically displayed, since the
paths overlap and make the resulting diagram confusing. It would seem that agent
2 is “luring” the prey by staying on the diagonal before finally moving into position.
This exploits a weakness in the prey in that it moves away from the closest predator.

Since Manhattan distances are computed, being on a diagonal would seem to leave

an empty spot.

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.23: Strategy using MPHC3 for Agent 2

Heltlth

a4

Figure 4.24: Strategy using MPHC3 for Agent 3

84

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.25: Strategy using MPHCS3 for Agent 4

85

CHAPTER 4. EXPERIMENTAL VALIDATION

Step | Prey Pred 1 | Pred 2 | Pred 3 | Pred 4
1 {(414)|(@a20) {(187) | (120)|(266)
2 |(413)] (1229 |88 |(@121)](256)
3 |(414)]|(1228)|(189) |(1122) | (246)
4 |(314)|(1227) | (18 10) | (11 23) | (23 6)
5 | (1315)] (1226) | (18 11) | (11 24) | (22 6)
6 |(1316)|(1225) | (1812) | (1125) | (21 6)
7 |(216) | (12 24) | (18 13) | (11 26) | (20 6)
8 |(1216)|(1124) | 18 14) | (1127) | (19 6)
9 |(1116)|(1123) | (18 15) | (11 28) | (18 6)
10 | (1115) | (1023) | (18 16) | (12 28) | (17 6)
11 | (11 14) | (10 22) | (17 16) | (12 27) | (16 6)
12 | (10 14) | (10 21) | (16 16) | (12 26) | (15 6)
13 |(1114) | (921) | (1516) | (12 25) | (14 6)
14 [(1014) | (920) | (a16) | (1224) | (13 6)
15 |(1013)](919) | (1316) | (1223) | (12 6)
16 |(1012)](918) | (1216) | (1222) | (11 6)
17 | (o11)|(917) | (116) | (1221) | (106)
18 |(911) |(916) |(1016) | (1220) | (107)
19 |(912) |(816) | (916) | (1219)|(97)
20 [(911) |(815) |(816) | (1218) | (9 8)
21 |(1011){(814) {(916) |(1217)|(99)
22 | (1012)|(813) | (1016) | (1216) | (109)
23 |(1112)|(812) |(916) | (1215)] (10 10)
24 | (1113)|(912) |(1016) | (12 14) | (11 10)

Table 4.6: Example Pursuit Path

86

CHAPTER 4. EXPERIMENTAL VALIDATION 87

Step | Prey Pred I | Pred 2 | Pred 3 | Pred §
25 | (1112) [(913) | (1116) | (1213) | (11 11)
26 | (1112) | (912) | (1016) | (1213) | (11 1)
27 |(1112)|(912) |(1116) | (1212) | (11 11)
28 | (1113) | (10 12) | (10 16) | (12 12) | (11 11)
29 | (1114)|(1013) | (1116) | (1213) | (11 12)
30 | (1114)] (10 14) | (10 16) | (12 14) | (11 13)
31 | (1115) | (10 14) | (11 16) | (12 14) | (11 13)
32 | (1115) | (10 14) | 0 16) | 12 15) | (11 14)
33 | (1115) | (10 15) | (11 16) | (12 15) | (11 14)

Table 4.7: Example Pursuit Path: contd

The average solution length for all strategies are similar except for the case of
MPHCI. It is conjectured that the value of Ay may have caused the algorithm to
commit errors. The reduction of Ay in MPHC2 was an attempt to examine this

hypothesis.

4.4.2 Analysis of Intermediate Results

Examining the intermediate steps between hill-climbs can uncover aspects of the
system’s behavior that cannot be seen from looking at the final results. For instance,
is multiagent credit assignment working and is it really the problem as described in
Chapter 3?

If credit assignment is a problem in this domain then, it might explain the poor

performance of A1. Within probabilistic hill-climbing, the credit assignment prob-

lem can be seen by comparing the intermediate results of a sequence of climbs. For

CHAPTER 4. EXPERIMENTAL VALIDATION 88

instance, let the predators return transformations {73=A, 7,=B, T3=C, T;=D},
respectively, after stage 1. Stage 2 then returns {71=A,T3=C} as the joint transfor-
mation to be implemented. At a later point, stage 2 returns {7;=K,7;=L} where
K and B are mutually exclusive. A blocking problem would have occurred if 7= B

had been implemented during the previous step.

During the experiments, the multiagent credit assignment problem was observed
in several instances. For example, during the MPHC2 trial, agent 1 returned a trans-
formation that changed the strategy for the southwest direction during stage 1. This
change was filtered out by stage 2. Individually, the A-utility of this transformation
was -8.47. Four climb steps later a transformation in the southwest direction was
again returned in stage 1. This change was accepted. The transformation would not
have been available if the initial “southwest” transformation had been implemented.
Since the problem cropped up using the all north initial condition, it was decided to
rerun the experiment without stage 2 while using the same 4; value. The resulting

strategy had a capture rate of only 51% in an average capture time of 78.5 steps.

4.5 Overall Evaluation

When combined, the results hint at the efficacy of the proposed technique as compared
to existing multiagent coordination learning methods. In particular, the findings for
the robot navigation and the predator prey domain are promising. Beginning with a
completely incorrect and a random strategy, multiagent probabilistic hill-climbing was
able to learn a strategy that outperformed the best strategy produced by independent
Q-learning and genetic programming. This does not imply that the technique is
always better under every circumstance. Rather, if the basis of comparison is the
“best” versus the “best” then the proposed method is “better” since the examples

have been shown to be better without much parameter or initial state tuning.

CHAPTER 4. EXPERIMENTAL VALIDATION 89

One remaining issue is the correspondence between results for the synthetic do-
main and the simulated domains. The first class of experiments would seem to indicate
that achieving e-optimal performance is difficult without the appropriate parameters.
However, it must be stressed that the problem distributions for this domain are diffi-
cult. Recall that the hard and center distributions had within € percentages of 1.8%
and 4.2%. In the case of the skewed distribution, the sample cutoffs may have pre-
vented the algorithm from returning a solution. The simulated domains used as many

samples as required to return a result.

This raises the question of direct sample complexity comparisons between the
proposed technique and the existing ones. For the predator prey domain, MPHC3
required a total of 23433 stage 1 and 9837 stage 2 samples. Rewritten in terms of stage
1 samples, the total is 170988. The experimental setup for STGP was not revealed
in [23], but A1l used a population size of 600 for 1000 generations [25]. The latter
numbers imply 600000 samples. However, comparisons are not meaningful, since the
samples are predicated on the random initial strategies in the case of MPHC and are
arbitrary in the case of A1. Moreover, it can be argued that the representation used
in Al is more expressive and thus the algorithm should take longer. Thus, it may

only make sense comparing these values for procedures using the same paradigm.

Chapter 5

An Extension to Probabilistic

Hill-Climbing

One problem with hill-climbing on the minimal joint transformation is that this wastes
samples, if the remaining joint transformations are “independent” from the one being
implemented. Intuitively, independence implies that the remaining transformations
will not block transformations that are made possible by the one just implemented.
Conversely, it also implies that the recently adopted transformation does not affect
these alternate transformations. The second case holds if the implemented and al-
ternate transformations are additive since the joint transformation criterion indicates
that they do not otherwise interact. Given independence, these transformations may
eventually be adopted. The uncertainty arises from errors in the co-learning approx-
imation of G; and from the € indifference zone. In the first case, co-learning may fail
to return the same transformations due to error, while in the second, a different but
within e transformation is returned. Ignoring the issue of error, it doesn’t matter
which one of the within e transformations is implemented since all meet the local

optimality criterion. Thus, it makes sense to adopt the current “independent” trans-

90

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 91

formation rather than looking for another one. Yet, at the end of each hill-climbing
step, the statistics for the unimplemented minimal joint transformations are deleted.

This requires that the “independent” transformations be unnecessarily reevaluated.

Consider an example which is similar to the one used in the discussion of credit
assignment. Let agent A, be able to apply transformation 77, and agent .A; be able to
apply transformations 72, and 72, which are mutually exclusive. As in the previous
case, let 71; have the highest utility and let it “enable” 7i,. In this scenario, 712
does not positively interact with 722, but instead the utility of the transformations
are ordered as follows: U(T11) > U(T2) > U(Ta) > U(Tz)- Also, let the
transformations of A; be additive with those of A;. Thus, 73; can be regarded as
independent of 7i;, since it does not block a transformation, which is enabled by the
latter transformation and is also additive.

The ordering would cause the algorithm to implement {71;, 712, 721 } as a climb
sequence. Using deletion would require that that the statistics for 73; be recomputed
three times. If the independence of the transformations had been realized, then 73;

could have been implemented during the first step.

One advantage of the agent grouping technique is that it implicitly exploits the
case of independent transformation. The downside of this is that it does so indiscrim-
inantly. The detection of independent transformations would reduce computation

without incurring a reduction in utility in the event of a blocking problem or conflict.

5.1 Independent Transformations

The intuitive definition of the blocking problem can be formalized using the following

definitions. €’s and 4’s are omitted for notational clarity.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 92

Definition 11: Enabler
Ta enables Tg, denoted by T4 — Tp, if the implementation of T at step i
allows for the existence of 7g at step i+1.

Definition 12: Denier
The opposite of an enabler is a denier. T, is a denier of 7, Ta /> Ta, if
Ta's existence prevents Tp from being available. The relation is not necessarily

symmetric. The form of enablers and deniers is dependent on the domain.

Definition 13: Conflict
At a given climb step, i, J}; conflicts with Jy; if 3 T2 € Tani, 3Ta € T} 3
Te — To,Tc € Tmaxivr Ta 7~ Te- That is, T;; conflicts with 7., if there
is an transformation in 7 that denies a component of the best minimal joint
transformation in some future step that was enabled by the best minimal joint

transformation in the current step.

Any minimal joint transformation J; which does not conflict with J,.; can be

implemented during the same step.

The difficulty with Definition 13 is that J,..;, is generally not known ahead
of time. Moreover, even if the minimal e-optimal joint transformation is known,
this does not imply that 7 is also known, since the denial relation may only hold
in certain problem contexts. In other words, a few problems may have to solved
after hill-climbing before the relation is noticed. These factors can be eliminated by
relaxing the definition of a conflict.

Definition 14: Possible Conflict
At a given climb step, i, T possibly conflicts with T g0y if 3 Te € Tpaxi» 3Ta €
T 3 OTc — T, OTq /= T., where © denotes possibly.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 93

Definition 15: Independent Transformation
At a given climb step, 7, J; is independent of J,,,; if it does not possibly
conflict with it.

Rather than dealing with necessary conflicts, Definition 14 side-steps the issue by
looking for all possible conflicts. It ignores problem contexts and what the e-local
joint transformation will be in the next step. If a transformation has the poten-
tial for conflicting with the current best joint transformation then it is tagged as a
possible conflict. Implementing only independent transformations is a conservative
approach whose worst case performance is identical to that of promoting one joint

transformation.

5.2 Independence in STRIPS Type Domains

Building a system that exploits independence requires that enablers, deniers, and
possible conflicts be defined. As stated in the definitions, both are dependent on
the problem solver. To illustrate the process, a2 exemplar was developed based on a

STRIPS [10] operator representation.

Recall, from the previous chapter, that the STRIPS operators are used in forward-
chaining mode and not as they typically are in goal regression. Given that an envi-
ronment may not be totally controlled by the agents, the problem solving scheme can
be viewed as a form of reactive planning. In hindsight, the sequences of operators
executed by the agents can be seen as a plan. When viewed in this manner, the
relations between operators can be regarded as one of precondition establishment [59].
The opposite of precondition establishment occurs when an operator deletes a precon-
dition. The deleting operator is commonly known as a clobberer. Potential enablers

and deniers can be reexpressed in terms of these two relations. The key is to notice

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 94

that under the reordering scheme, a transformation is tied to the operator that is
being reordered. The implementation of a transformation implies that its associated
operator is used in lieu of some other operator with the same preconditions. Thus

the transformations can be analyzed by referring to their operators.

Definition 11a: Possible Enabler (under STRIPS)
Ta possibly enables Tg, denoted by &T4 — T, if T, is implemented at step i

and either:

1. op(Ta) possibly establishes preconds(op(Tg)) or

2. 3OP¢ 2 0p(Ta) possibly establishes preconds(OP¢) A OP¢ possibly es-
tablishes preconds(op(Tg))

The function op returns the operator that was reordered in a transformation

while OP¢ represent an operator from the domain.

Definition 12a: Possible Deniers (under STRIPS)
Ta is a possible denier of Tg, Ta$ /= Tg, if T, either:

1. op(T4) possibly clobbers preconds(op(Tg)) or

2. JOPc 3 op(Ta) possibly establishes preconds(OPc) A OPc possibly clob-
bers preconds(op(Tg))

The second component of each definition uses an intervening operator and not a trans-
formation. The operator in 74 may indirectly interact with the one in 75 through
an existing operator in the strategy. Given that these relations are all problem con-
text dependent and hence unknown, possible establishes and clobberers are identified
by unifying add lists with preconditions and delete lists with preconditions, respec-
tively, without referring to the strategies or problem distributions. Thus they can be

computed off-line.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 95

5.3 Generating Deletion Lists

Using the definitions, a set of potential deniers can be precomputed from the operators
in the domain definition plus one additional operator. This operator arises from the
observation that the last step in any plan can be viewed as one that does nothing
except declare that the problem has been solved. Thus, the operator’s preconditions
are the literals in the goal state. Any operator that clobbers a literal added by
another operator, which is not part of an explicit precondition, can be said to clobber
a precondition for this implicit operator. The algorithm for computing the possibly
deniers is shown in Figure 5.1. The first step is to compute the direct clobberers of

GENERATE-DELETION(operators)
C= compute-clobbers(operators)
loop for x in operators do

&x= compute-enablers(x)

Dx= gx ne
Dx= Dx U ancestorsDy
end loop

Figure 5.1: Selective Deletion Algorithm

each operator. Then, for each operator, a list of enabled operators/transformations
are computed. Intersections between the enabling and clobbering lists are noted and
the ancestors of each item are also collected. The second step corresponds to the
second condition for being a denier. This process generates an associated list of

operators for each operator.
After hill-climbing, the deletion operators for each component of Jg,, are col-

lected. If one of the alternate joint transformations has a component in this set then

the transformation is removed. The remaining joint transformations are then avail-

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 96

able to be implemented if their effects are additive with 7*)max. This step requires
that the stage 2 algorithm be modified. The function find-ind-max, shown in Figure

5.2, is substituted for find-max-trans in the joint-transforms procedure.

FIND-IND-MAX(ZT ,agents, €)
[MT, m-error]= find-max-trans(ZT,)
N'T= remove-dependent(Z7", MT)
N T= remove-non-additive(N'T)
fNT
(
[MMT, mm-error]= find-ind-max(NT, agents, ¢€)
return [MT UMMT, mm-error+m-error]
)

return [MT, m-error]

Figure 5.2: Modifications for Stage 2

If there are any remaining joint transformations after an initial climb step then
the best out of this set must be returned. Next the non-additive transformations are
removed. The process recurses using the successive best joint transformations while
removing elements from the set of alternate transformations. When the sum of errors
from all these “best transformations” drops below 4 minus i-error, then the system

hill-climbs on all of them.

5.4 Application of Selective Deletion to a

Restaurant Domain

The selective deletion technique was applied to a simplified restaurant domain. Dur-

ing each time step, there is a 20% chance that from one to three customers will enter

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 97

the restaurant. Each customer will then order a hamburger with a 60% chance that it
will be topped with mustard and relish and the remaining 40% that it will be topped
with lettuce and tomato. They will also order a drink with a 60% chance that it is
a Coke and a 40% chance that it is a Seven-up. The task is to learn a coordination

strategy involving four agents such that a cost measure is minimized.

At every time step, an agent can execute one of 22 actions depending upon the
current state. Some of these operators are shown in Figure 5.3. A complete set of
operators can be found in appendix B. Given the task description, the operators fall
into one of four categories: making burgers, making toppings, getting drinks, and
combining items. The first three classes of operator are similar. If there is an existing
burger, topping, or drink, then it is returned, else a burger has to be ordered for
cooking, a topped bun made, or a drink order filled. In the latter two cases there
are distinct sets of operators, corresponding to the different toppings and drinks.
For cooking burgers there are four operators. These do not correspond to different
types of burgers, but rather to two different methods of cooking them. One method,
cook-burgerl, is less efficient than the other, cook-burger2, and is represented by

a sequence of three operators which are required to cook a burger.

A few of the operators do not have preconditions, for instance condimentl,
condiment2, drinkl, drink2 and burgerl. In the first two cases, an agent pre-
makes burger toppings without an order. Similarly, the next two cases pre-fill drinks.
An agent pre-cooks burger patties without an order in the last case. The combination
operators add the toppings to the burger, pool the filled orders, and manage payment
for the meal.

Given a fixed simulation duration of 40 time steps, experiments were performed
using a cost function based on the weighted sum of how long a customer had to wait
for their food, how many orders were unfilled, how many orders were unpaid for at

the end of the run, and how many excess burgers, toppings, and drinks remained.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 98

The probabilistic hill-climbing trials used a “lock-step” transformation approach
where only the operators at a specific position in each agent’s strategy is modified.
That is, during the first step, only the operator in the first position of the strategy was
changed. Upon hill-climbing, the second position was modified and so on. Since not
all agents implement one of their transformations at each step, the current positions
across agents may not correspond. To reduce runtime, each agent was limited to
two climbs. These constraints eliminated the possibility of arriving at an “optimal”

solution, but were necessitated by computational resources.

5.4.1 Performance of a Random Initial Strategy

Each of the 4 agents was supplied with a strategy generated by randomly ordering
the operators. The strategies are shown in Table 5.1. A typical execution trace using
these strategies is shown in Table 5.2. In this case, only 20 out of the 40 steps is
shown. The first column is the step number and the remaining columns, the actions
taken by each agent. In some cases, the action is a list with nil as its first entry.
This means that a conflict has occurred. Two or more agents have simultaneously
selected an action for execution that involves a unique binding. Recall that the
conflict resolution scheme simply picks the lower numbered agent for execution. The
remaining agents do nothing and thus the nil. Step 2 is an example of a conflict.
Step 1 has produced a burger that needs to be cooked. Since agent 1 has already
began cooking the burger and in the process has used up the only stove, agent 2 does
nothing during the step. As can be seen from the trace, the strategy is extremely
inefficient. At the end of 20 steps, no one has received their order and there are
many excess uncooked burgers and mustard/relish toppings. The average cost, over

50 runs, of using this strategy is 516.58.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 99

5.4.2 Learning with Selective Deletion

Applying the generate deletion algorithm to the restaurant domain yields the lists
shown in Figures 5.4 and 5.5. Operators that do not have a list have been removed
for succinctness. Intuitively, some of the entries in the list make sense. For instance,
consider the deletion items for the burgerl operator, which includes cook-burgert
and cook-burger2. The implementation of burgerl would increase the number of
burgers to be cooked and thus should be paired with a more efficient cooking method
such as cook-burger2. However, the algorithm does not know this. It only knows
that burgerl establishes a precondition for cook-burgerl and cook-burger2, and
that there is a resource contention between these operators. Thus the system should

hold off implementing a cooking operator until it has been determined which one has

greater utility.

In other cases, the results do not make sense. The list for drinki-no-d is one
example. Operator get-drink-seven interacts with drinki-no-d through the send-
dorder precondition for get-drink-coke. However, these operators would never con-
flict due to the remaining preconditions, since one operator is for Coke and the other
is for Seven-up. Again, the algorithm has no knowledge of this and being conserva-
tive flags this as a blocking problem. This situation occurs frequently throughout the
list and reflects the absence of domain knowledge and the use of possible conflicts.
In some domains, the use of possible rather than necessary conflicts may force the
deletion lists to include every operator. ALPINE [34], which is a method for generat-
ing abstraction hierarchies for planning, suffers from the same problem, since it also
uses possible interactions. The hierarchies frequently collapse since they are over-
constrained. Note that, in the worst case, the learning algorithm would take as many

samples as complete deletion.

Multiagent probabilistic hill-climbing with selective deletion was applied to the

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 100

random strategies using the following parameters: ;= 5, ;= 5, §;= .15, § = .15,
No= 15, N;= 30. Recall that a climb limit of two steps per agent was set which
corresponds to the total limit of eight. After a total of 6686 stage 1 and 1246 stage 2
samples, the algorithm halted. The execution trace for this learned strategy, on the
same problem that produced Table 5.2, is shown in Table 5.3.

As highlighted in boldface, the learned strategy completely fills 3 orders within
the 20 steps. On the same 50 problems as before, the learned strategy had an average
cost of 279.2 for a savings of 46% over the initial strategy. However, it is not an
optimal strategy in that the cook-burger2 operator should be used to cook the
burgers instead of cook-burgeri. This example illustrates that the algorithm has

become trapped in a local minimum.

Using complete deletion, the method consumed 10518 stage 1 and 1185 stage
2 samples. The strategies generated by the two methods were not identical. For
instance they differed in two transformations. Complete deletion was also 5% more

efficient but this difference can be accounted for by ¢=10 within each step.

Selective deletion hill-climbed four times as compared to five for the case of com-
plete deletion. During the first step, the former approach implemented one extra
minimal joint transformation than complete deletion. This transformation was sub-
sequently implemented by the second technique in the next hill-climbing step. The
difference allowed selective deletion to examine an alternate transformation which

reduced total sample complexity.

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 101

(make-operator

:template ’(take-order ?x)

:preconds ’((not-order ?x))

-addlist ’((send-border ?x)(send-torder ?x)
(send-dorder 7x))

:dellist '((not-order ?x)))

(make-operator

:template ’(get-burger ?x)
:preconds ’((send-border ?x)(have-order ?y))
:addlist ’((have-burger 7x))
:dellist ’((send-border 7x)
(have-order ?y)))

(make-operator

:template ’(get-drink-coke ?x)

:preconds '((send-dorder ?x)(coke 7x)
(have-coke ?y))

:addlist ’((have-drink ?x)(not-pay-d ?x))

:dellist '((send-dorder ?x)(coke ?x)
(have-coke ?y)))

(make-operator

:template ’(get-top-it ?x)

:preconds ’((send-torder ?x)(lettuce-tomato ?x)
(have-lettuce-tomato ?y))

:addlist ’((have-top ?x))

:dellist '((send-torder ?x)
(lettuce-tomato 7x)
(have-lettuce-tomato ?y)))

(make-operator

:template ’(condimentl)
:addlist ’((have-lettuce-tomato)))

Figure 5.3: Example Operators

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING

102

Position | Agent 1 Agent 2 Agent 3 Agent 4

1 pay-for-food get-burger get-burger-no-b | get-top-it

2 cook-burgerl get-drink-seven | get-burger get-drink-coke
3 burgerl get-top-It cook-burgerlb | condiment2

4 get-top-lt pay-for-food get-drink-coke | drink2-no-d

5 cook-burger2 drinkl-no-d get-top-lt burgerl

6 garnish-2-no-g | cook-burgerlb | get-top-mr cook-burger2
7 cook-burgerlb | get-drink-coke | drink2 garnish-1-no-g
8 drinkl garnish-1-no-g | cook-burgerla | drinkl

9 drinkl-no-d cook-burgerl pay-for-food pay-for-food
10 get-drink-coke | take-order cook-burgerl cook-burgerlb
11 get-top-mr condiment2 garnish2-no-g | drink2

12 drink2-no-d drink2 condiment2 cook-burgerl
13 drink2 combine burgerl condimentl
14 get-burger drinkl get-drink-seven | drinkl-no-d
15 get-drink-seven | drink2-no-d combine combine

16 combine garnish-2-no-g | drink2-no-d get-burger

17 cook-burgerla | get-burger-no-b | garnishl-no-g | get-drink-seven
18 garnish-1-no-g | burgerl cook-burger2 get-burger-no-b
19 get-burger-no-b { cook-burger2 take-order get-top-mr

20 take-order cook-burgerla | drinkl-no-d cook-burgerla
21 condiment2 get-top-mr condimentl garnish2-no-g
22 condiment1 condiment]l drinkl take-order

Table 5.1: Initial Operator Order

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING

Step | Agenti Agent2 Agent3 Agent4

1 burgerl condiment2 drink2 condiment2

2 cook-burgerl | (nil cook-burgerl) | drink2 condiment2

3 burgerl take-order drink2 condiment2

4 burgerl get-drink-seven get-burger-no-b | condiment2

5 burgerl take-order get-burger-no-b | condiment2

6 burgerl get-drink-seven get-burger-no-b | condiment2

7 burgerl garnish-1-no-g get-burger-no-b | condiment2

8 burgerl get-top-lt get-burger-no-b | (nil get-top-It)
9 burgerl take-order get-burger-no-b | condiment2
10 burgerl get-drink-seven get-burger-no-b | condiment2
11 burgerl garnish-1-no-g get-burger-no-b | condiment2
12 | burgerl get-top-lt get-burger-no-b | (nil get-top-lt)
13 burgerl take-order get-burger-no-b | condiment2
14 | burgerl drinkl-no-d get-burger-no-b | condiment?2
15 | burgerl drinkl-no-d get-burger-no-b | get-drink-coke
16 | burgerl garnish-1-no-g get-burger-no-b | condiment2
17 | burgerl get-top-lt get-burger-no-b | (nil get-top-It)
18 | burgerl take-order get-burger-no-b | condiment2
19 burgerl garnish-1-no-g get-burger-no-b | condiment2
20 | burgerl get-top-lt get-burger-no-b | (nil get-top-it)

Table 5.2: Typical Execution Trace: Original Strategies

103

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 104

((take-order ?x)
((get-top-mr ?x) (get-top-lt ?x) (get-drink-seven 7x) (get-drink-coke ?x)
(get-burger ?x) (cook-burger2 ?x) (drinkl-no-d ?x) (drinkl)
(drink2-no-d ?x) (drink2) (garnish-1-no-g ?x) (condiment1)
(garnish-2-no-g 7x) (condiment2) (take-order ?x) (get-burger-no-b ?x)
(burgerl) (cook-burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y)))

((garnish-1-no-g 7x)
((get-top-mr ?x) (take-order ?x) (garnish-2-no-g ?x) (condiment2)))

((garnish-2-no-g 7x)
((get-top-lt 7x) (take-order ?x) (garnish-1-no-g ?x) (condiment1)))

((drink1-no-d 7x)
((get-drink-seven ?x) (take-order ?x) (drink2-no-d ?x) (drink2)))

((drink2-no-d 7x)
((get-drink-coke ?x) (take-order ?x) (drinkl-no-d ?x) (drinkl)))

((get-burger-no-b ?x)
((cook-burger2 7x) (take-order ?x) (get-burger-no-b ?x) (burgerl)
(cook-burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y)))

((burgerl)
((cook-burger2 7x) (take-order ?x) (get-burger-no-b ?x) (burgerl)
(cook-burgerl ?x ?y) (cook-burgerla ?x ?y) (cook-burgerlb ?x ?y)))

((cook-burgerl ?x ?y)
((cook-burgerl ?x ?y) (take-order ?x) (get-burger-no-b ?x) (burgerl)))

Figure 5.4: Deletion Lists: Part 1

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING

((cook-burgerla ?x ?y)
((cook-burgerl ?x ?y)(take-order ?x)(get-burger-no-b ?x)(burgerl)))

((cook-burgerlb ?x ?y)
((cook-burgerl ?x ?y)(take-order ?x)(get-burger-no-b ?x)(burgerl)))

((condiment1)
((get-top-mr ?x) (take-order ?x) (garnish-2-no-g ?x) (condiment2)))

((condiment2)
((get-top-1t 7x) (take-order ?x) (garnish-1-no-g ?x) (condimentl)))

((drink1)
((get-drink-seven ?x; (take-order ?x) (drink2-no-d ?x) (drink2)))

((drink2)
((get-drink-coke 7x) (take-order 7x) (drink1-no-d ?x) (drink1))))

Figure 5.5: Deletion Lists: Part 2

105

CHAPTER 5. AN EXTENSION TO PROBABILISTIC HILL-CLIMBING 106

Step { Agentl Agent2 Agent3 Agent4

1 burgerl condiment2 drink2 condiment2

2 cook-burgerl | (nil cook-burgerl) | drink2 (nil cook-burgerl)
3 burgerl take-order cook-burgerla condiment2

4 burgerl get-drink-seven garnish-1-no-g condiment2

5 burgerl get-top-lt (nil garnish-1-no-g) | (nil get-top-lt)

6 burgerl caok-burgerlb get-burger-no-b condiment2

7 cook-burgerl | (nil cook-burgerl) | get-burger-no-b (nil cook-burgerl)
8 burgerl get-burger cook-burgerla condiment2

9 burgerl cook-burgerlb (nil cook-burgerlb) | combine

10 | pay-for-food | cook-burgerl drink2 (nil cook-burgerl)
11 burgerl take-order cook-burgerla condiment2

12 | get-top-mr get-burger (nil get-burger-no-b) | condiment2

13 burgerl get-drink-seven cook-burgerlb combine

14 | pay-for-food | cook-burgerl drink2 (nil cook-burgerl)
15 burgerl take-order cook-burgerla condiment2

16 burgerl get-burger garnish-1-no-g condiment2

17 burgerl get-drink-seven garnish-1-no-g get-top-1t

18 | burgerl cook-burgerlb (nil cook-burgerlb) | combine

19 [pay-for-food | cook-burgerl drink2 (nil cook-burgerl)
20 | burgerl take-order cook-burgerla condiment2

Table 5.3: Typical Execution Trace: Learned Strategy (Selective Deletion)

Chapter 6

Conclusions and Future Research

The primary goal of the thesis was to develop a method to solve the problem of
learning multiagent coordination strategies as outlined in section 1.2. That goal has
been achieved with the introduction of a new learning approach based on probabilistic
hill-climbing. The method has been implemented and evaluated using a variety of

experiments.

6.1 Contributions

This thesis has raised many issues in learning multiagent coordination strategies.
One method to examine the contributions of this research is to frame them within

the context of each issue. The following is a discussion of each topic.

1. Multiagent Credit Assignment
Of the existing iterative multiagent coordination learning techniques, the pro-
posed method is the only one that deals with the credit assignment problem
without the use of distributed utility functions or domain knowledge. This al-

107

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 108

lows the method to be applied to a broad range of domains where these two

components may not be available.

2. Convergence/Performance
Unlike some previous approaches, multiagent probabilistic hill-climbing is guar-
anteed to converge and to return a solution. This is done using a well-founded
rather than an ad hoc termination criteria. Although, the approximation in
stage 1 invalidates probabilistic hill-climbing’s performance guarantees, the method
has been shown to give better results than existing techniques on two different
domains. Moreover, it is the only approach that uses a heuristic version of an

optimality criteria.

3. Scalability/Complezity
One trade-off that was made in the design of the algorithm was in the area of
guaranteed performance versus computational scalability. Rather than using a
grouped approach that would have provided performance guarantees, a heuristic
procedure was used to reduce complexity. Using the navigation domain, the co-
learning stage of the technique has also been shown to be scalable, not in a
computational complexity sense, but by its ability to arrive at a useful strategy
involving many agents. A selective deletion mechanism has also been devised to
avoid unnecessary resampling after hill-climbing. It has been shown to reduce

sample complexity.

In summary, multiagent probabilistic hill-climbing is an attempt at combining the
best features of both an independent as well as a grouped approach to learning multi-
agent coordination strategies. Independent learning is better in terms of complexity
and captures the autonomy of individual agents. Grouped learning can be used to
discriminate between useful and useless transformations. The key in combining these

two methodologies is a probabilistic termination criteria that ensures the convergence

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 109

of independent learning and that allows for the quantification of interaction effects in

the combined transformations.

6.2 Future Directions

Although there has been a flurry of activity, research in learning multiagent coordi-
nation strategies can still be regarded as in its infancy. The proposed probabilistic
hill-climbing approach addresses a number of basic issues, but can be improved in a

number of areas. Among these are:

1. Sampling Strategies:
As discussed in section 4.2, one weakness of the Z-heuristic is that it may spend
a long time sampling the best transformation rather than sampling other trans-
formations, which may reduce the overall error. This may require an adaptive

sampling scheme that takes into account the potential error reduction.

2. Initial State:
A major determining factor in the overall performance of any hill-climbing ap-
proach is the initial state. This will directly influence the sample complexity,
since the closer the initial state is to an optima, the fewer the number of sam-
ples required. Secondly, the initial state also influences the global optimality of
the solution. If the starting conditions can be set such that the system avoids
local minima, then the final utility of the solution will be increased. One ploy
that may be effective is to perform off-line analysis using a uniform distribution

assumption. That is, every problem is assumed to be as likely as another.

Appendix A

Statistical Tests

This section is a brief description of the statistical tests that were used throughout
the system. It is divided into two sections. The first one discusses how the transfor-
mation with the largest expected utility was selected and the second discusses how
the interacting joint transformations were determined. In both cases the data is as-
sumed to be normally distributed. The central limit theorem [33] can be invoked
here since the computations use differences in utility. If the variances are “reasonably
homogeneous” then the theorem will hold. Normal plots have also been constructed
from data and the assumption seems valid given the number of samples typically

encountered.

A.1 Climbing Tests

Climbing tests are used in both stages of the credit assignment algorithm. In the
first stage, they are used to individually compute the components of G, while in the
second stage they are used to select the best minimal e-joint transformation. As

briefly discussed in Chapter 3, a transformation is considered to be the best if its

110

APPENDIX A. STATISTICAL TESTS 111

mean is better than any other transformation with cumulative probability of 1-4; or
if its mean is within +e of every other transformation with the same probability.
The algorithm computes both of these probabilities and considers the larger one .
This scheme is the same one used in [4] except for the statistical tests. In [4] it was
assumed that the variances are equal and thus the standard normal distribution was

used. This assumption was not made and t-tests are used instead.

The following two equations compute the probability corresponding to the cases
of being better and within +e€ respectively.

Zmaz — Vi
t — cumv(_.i_—_)
s2 52
Zmex . 2
Nmar ny

-'Emaz—gi'{"f -imaz—gi—e)

t — cum,(= =) —t — cum,(= =
Shgx. 4 22 Smoz £ 2
Bmux n2 Nmas na

where v, the degree of freedom, is equal to:

L (shas/ma + s3/ma)?

82 _ /Mimaz)? + (s3/n2)?
ﬂm"l nz—-l

and where t — cum, denotes the t-cumulative distribution function.

The first equation is just the standard hypothesis test for comparing two means
with unknown and not necessarily equal variances. Equation 2 computes the prob-
ability that the difference between the means lies between +e. It can be derived
by taking the inverse to the standard confidence interval problem. That is, given
confidence level v, compute an interval such that the true mean lies within it with

probability «. In this case, the interval is given and the task is to find the probability.

Using the worst case error model, one minus the maximum of both values is
summed for each paired comparison with the current best transformation. If this

error falls below §; then the system hill-climbs.

APPENDIX A. STATISTICAL TESTS 112

A.2 Tests for Interactions

The goal of these tests is to discover if the mean of the joint transformation is sig-
nificantly better than the sum of the means of its components. If so then there is a

positive interaction between the components.

Since the utilities have been gathered using simultaneous extraction, it is possible
to perform paired testing to eliminate some of the variability in the data. A new
random variable, d, is computed for each of the tests to represent the difference
between the utility of the potential joint transformation and the sum of the utilities
of its components. For instance, one set of components for the joint transformation
{A B C}is {A B D3} and {Dy D; C}. Thus d would assume the value of /(ABC) —
(U(AB) + U(C)) for successive problem instances.

To compute whether a joint transformation has an interaction effect, the proba-
bility
c
gt cumu(7 \/_
is determined, where C is the set of components and v is 2n-2. This represents the

probability that joint transformation has a utility which is greater than its parts.

Similarly, the probability that the joint transformation is within ¢ of its compo-

nents is computed by

d; +¢ -
t —cum, -t —-cum,(——=
[l -) - om0
As discussed in Chapter 3, the hypothesis associated with the larger of these
two values is taken as the current hypothesis. One minus its probability is taken as
the probability of error and these probabilities are summed across all potential joint

transformations.

APPENDIX A. STATISTICAL TESTS 113

In some cases, the mean and variance of the difference is exactly zero. This
happens when the components of the joint transformation do not interact. The
utility of the joint transformation is simply the sum of the utilities of the individual
components. As a result, the statistical tests that have been used up till now are
inappropriate since the data behaves deterministically. This stems from the use of
simulated rather than real data. There is no variability in the data and thus the
difference is 0. In this case, the Hoeflding inequality

PriX —p2t < 2%

is used to compute the probability that the means differ by more than €. The only
hypothesis in this case is that the means of the transformations are within € and

hence the combined transformation is not a joint transformation.

Appendix B

Restaurant Domain Operators

The complete set of 22 operators used in the restaurant domain is listed below.

(make-operator
:template ’(pay-for-food 7x)
:preconds ’((have-food ?x) (have-drink ?x)
(not-pay-f 7x) (not-pay-d ?x))
:addlist ’((paid ?x))
:dellist ’((have-food ?x) (have-drink ?x)
(not-pay-f 7x) (not-pay-d 7x)))

(make-operator
:template ’(take-order ?x)
:preconds ’((not-order ?x))
-addlist '((send-border ?x)(send-torder ?x)
(send-dorder 7x))
:dellist '((not-order ?x)))

114

APPENDIX B. RESTAURANT DOMAIN OPERATORS

(make-operator
:template ’(get-burger ?x)
:preconds ’((send-border ?x) (have-order ?y))
-addlist '((have-burger ?x))
:dellist ’((send-border ?x)
(have-order ?y)))

(make-operator
:template ’(get-drink-coke 7x)
:preconds ’((send-dorder ?x) (coke 7x)
(have-coke ?y))
:addlist '((bave-drink ?x) (not-pay-d ?x))
dellist ’((send-dorder ?x) (coke 7x)
(have-coke ?y)))

(make-operator
:template ’(get-drink-seven 7x)
:preconds ’((send-dorder ?x) (seven ?x)
(have-seven ?7y))
:addlist ’((have-drink ?x) (not-pay-d 7x))
:dellist ’((send-dorder ?x) (seven ?x)
(have-seven ?y)))

(make-operator
:template ’(get-top-lt ?x)
:preconds ’((send-torder ?x) (lettuce-tomato ?x)
(have-lettuce-tomato ?y))
-addlist ’((have-top ?x))
:dellist '((send-torder ?x) (lettuce-tomato ?x)
(have-lettuce-tomato ?y)))

115

APPENDIX B. RESTAURANT DOMAIN OPERATORS 116

(make-operator
:template ’(garnish-1-no-g ?x)
:preconds ’'((send-torder ?x) (lettuce-tomato ?x))
:addlist '((have-lettuce-tomato)))

(make-operator
:template ’'(garnish-2-no-g 7x)
:preconds '((send-torder ?x) (mustard-relish ?x))
:addlist ’((have-mustard-relish)))

(make-operator
:template ’(drinkl-no-d 7x)
:preconds ’((send-dorder ?x) (coke ?x))
:addlist ’((have-coke)))

(make-operator
:template '(drink2-no-d ?x)
:preconds ’'((send-dorder ?x)
(seven 7x)
:addlist '((have-seven)))

(make-operator
:template ’(get-top-mr 7x)
:preconds ’((send-torder ?x) (mustard-relish ?x)
(have-mustard-relish ?y))
:addlist '((have-top 7x))
:dellist ’((send-torder ?x) (mustard-relish ?x)
(have-mustard-relish ?y)))

APPENDIX B. RESTAURANT DOMAIN OPERATORS 117

(make-operator

:template ’(combine ?x)

:preconds ’((have-top ?x)(have-burger ?x))
-addlist ’((have-food ?x)(not-pay-f ?x))
:dellist "((have-top ?x)(have-burger ?x}))

(make-operator
:template ’(get-burger-no-b 7x)
:preconds ‘((send-border 7x))
:addlist ’((burger-order)))

(make-operator
:template ’(burgerl)
:addlist ’((burger-order)))

(make-operator
:template ’(cook-burgerl 7x ?y)
:preconds ’((burger-order ?x) (free-stove ?y))
:addlist ’((have-orderla ?x ?y))
:dellist '((burger-order 7x)
(free-stove ?y)))

(make-operator
:template ’(cook-burgerla ?x ?y)
:preconds '((have-orderla ?x %y))
:addlist ’((have-orderlb 7x ?y))
dellist ’((have-orderla ?x ?y)))

APPENDIX B. RESTAURANT DOMAIN OPERATORS 118

(make-operator
:template ’(cook-burgerlb ?x ?y)
:preconds ’((have-orderlb ?x ?y))
-addlist ’((have-order ?x) (free-stove ?y))
:dellist ’((have-orderlb ?x ?y)))

(make-operator
:template ’(cook-burger2 ?x)
:preconds ’((burger-order ?x) (free-stove ?y))
:addlist '((have-order 7x))
:dellist ’({(burger-order 7x)))

(make-operator
:template '(condimentl)
:addlist '((have-lettuce-tomato)))

(make-operator
:template ’'(condiment2)
-addlist ’((have-mustard-relish)))

(make-operator
:template ’'(drinkl)
:addlist '((have-coke)))

(make-operator
:template ’'(drink2)
:addlist ’((have-seven)))

Bibliography

(1] Aha, D., Kibler, D., Albert, M., “Instance-based Learning Algorithms”, Machine
Learning, 6 (1), pp. 37-66, 1991.

[2] Berry, D., Fristedt, B., Bandit Problems: Sequential Allocation of Ezperiments, Chap-
man and Hall, London, 1985.

[3] Cammarata, S., McArthur, D., Steeb, R., “Strategies of Cooperation in Distributed
Problem Solving”, Proceedings of [JCAI-83, pp. 767-770, 1983.

[4] Chien, S., Gratch, J., Burl, M., “On the Efficient Allocation of Resources for Hypoth-
esis Evaluation: A Statistical Approach”, IEEE Transactions on PAMI, 17(7), pp.
652-665, 1995.

[5] Dowell, M., L., Stephens, L., M., “Mage: Additions to the AGE Algorithm for Learn-
ing in Multiagent Systems”, unpublished manuscript, 1996.

(6] Durfee, E., Lesser, V., Corkhill, D., “Coherent Cooperation Among Communicating
Problem Solvers”, IEEE Transactions on Computers, 36, pp. 1275-1291, 1987.

[7] Durfee, E., Coordination of distributed problem solvers, Kluwer, Boston, 1988.

(8] Durfee, E., H., Lesser, V., R., Corkill, D., D., “Cooperative Distributed Problem
Solving” in The Handbook of Artificial Intelligence: Volume 4, ed. by A. Barr, P., R.,
Cohen, E., A., Feigenbaum, Addison-Wesley, pp. 85-147, 1989.

119

BIBLIOGRAPHY 120

[9] Etzioni, O., “Hypothesis Filtering: A Practical Approach to Reliable Learning”, Pro-
ceedings of ML-88, pp. 416-429, 1988.

[10] Fikes, R., Nilsson, N., “Strips: a new approach to the application of theorem proving
to problem solving”, Artificial Intelligence, 2, pp. 189-208, 1972.

(11] Findler, N., V., Lo, R., “An Examination of Distributed Planning in the World of Air
Traffic Control”, Journal of Parallel and Distributed Computing, 3, pp. 411-431, 1986.

(12] Fong, W., L., “A Quantitative Study of Hypothesis Selection”, Proceedings of ML-95,
pp. 226-234, 1995.

(13] Fukuda, T., Iritani, G., Ueyama, T., Arai, F., “Optimization of Group Behavior on
Cellular Robotic System in Dynamic Environment”, Proceedings of I[CRA-94, pp. 1027-
1032, 1994.

[14] Ghepniwa, H.,, Kamel, M., “Coordination in Cooperative Distributed Systems: A
Rational, Intelligent Agent Model”, submitted to Artificial Intelligence, 1997.

[15] Gratch, J., DeJong, G., “A Hybrid Approach to Guaranteed Effective Control Strate-
gies”, Proceedings of ML-91, pp. 509-513, 1991.

(16] Gratch, J., “Composer: A Decision-theoretic Approach to Adaptive Problem Solving”,
UTUCDCS-R-93-1806, University of Illlinots at Urbana-Champaign, 1993.

[17] Gratch, J., Chien, S., DeJong, G., “Improving Learning Performance Through Rational
Resource Allocation”, Proceedings of AAAI-94, pp. 576-581, 1994.

(18] Grefenstette, J., “The evolution of strategies for multi-agent environments”, Adaptive

Behavior, 1(1), pp. 65-90, 1992.

(19] Greiner, R., “Finding the optimal derivation strategy in a redundant knowledge base”,
Artificial Intelligence, 50(1), pp. 95-115, 1991.

BIBLIOGRAPHY 121

[20] Greiner, R., Jurisica, L, “A Statistical Approach to Solving the EBL Utility Problem”,
Proceedings of AAAI-92, pp. 241-248, 1992.

[21] Greiner, R., “PALO Algorithms”, unpublished report, 1993.

[22] Gu, P.,, Maddox, A., B., “A Framework for Distributed Reinforcement Learning”,
Working notes of the Adaptation and Learning in Multiagent Systems Workshop,
IJCAI-95, pp. 26-31, 1995.

[23] Haynes, T., Sen, S., “Evolving behavioral strategies in predators and prey”, Working
notes of the Adaptation and Learning in Multiagent Systems Workshop, IICAI-95, pp.
32-37, 1995.

[24] Haynes, T., Sen. S., “Learning Cases to Resolve Conflicts and Improve Group Behav-
ior”, Working Notes of the AAAI Agent Modelling Workshop, 1996.

[25] Haynes, T., Sen, S., Schoenefeld, D., Wainwright, R., “Evolving a Team”, AAA[Fall
Symposium on Genetic Programming, 1996.

(26] Ho, F., Kamel, M., “Learning Multiagent Coordination using Probabilistic Hill-
climbing”, Proceedings of Robolearn-96, pp. 38-44, 1996.

[27] Ho, F., Kamel, M., “Learning to Coordinate Multiple Robots”, submitted to JCRA-97,
1996.

[28] Ishida, T., Yokoo, M., Gasser, L., “An Organizational Approach to Adaptive Produc-
tion Systmes”, Proceedings of AAAI-90, pp. 52-58, 1990.

[29] Ishida, T., Parallel, distributed, and multiagent production systems, Springer-Verlag,
Berlin, 1994.

[30] Jennings, N. R., “Coordination Techniques for Distributed Artificial Intelligence” in
Foundations of Distributed Artificial Intelligence, ed. by G. M. P. O’Hare and N. R.
Jennings, Wiley, pp. 187-210, 1996.

BIBLIOGRAPHY 122

[31] Kaelbling, L., P., Learning in Embedded Systems, MIT Press, 1993.

[32] Kamel, M., Syed, A., “A multiagent task planning method for agents with disparate
capabilities”, Journal of Advanced Manufacturing Technology, 9, pp. 408-420, 1994.

[33] Kirkpatrick, E., Introductory Statistics and Probability for Engineering, Science and
Technology, Prentice-Hall, Englewood Cliffs, 1974.

[34] Knoblock, C., “Automatically generating abstractions for problem solving”, CMU-CS-
91-120, Carnegie-Mellon University, 1991.

(35] Kolodner, J., L., Case-based Reasoning, Morgan Kaufmann, San Mateo, 1993.

(36] Korf, R., E., “A simple solution to pursuit games”, Working Papers of the 11th Inter-
national Workshop on Distributed Artificial Intelligence, pp. 183-194, 1992.

[37] Mataric, M., “Designing and Understanding Adaptive Group Behavior”, Adaptive Be-
havior, 4(1), pp. 51-80, 1995.

[38] MacKenzie, D., Cameron, J., Arkin, R., “Specification and Execution of Multiagent
Missions”, GIT-COGSCI-95/02, Georgia Tech, 1995.

[39] Michalski, R., “Inferential Theory of Learning as a Conceptual Basis for Multistrategy
Learning”, Machine Learning, 11, pp. 111-151, 1993.

[40] Mikami, S., Kakazu Y., Fogarty, T., C., “Co-operative Reinforcement Learning By
Payoff Filter”, Proceedings of ECML-95, pp. 319-322, 1995.

[41] Minton, S., Learning search control knowledge: an ezplanation-based approach, Kluwer,
Boston, 1988.

[42] Newell, A., Steier, D., “Intelligent control of external software systems”, Artificial
Intelligence in Engineering, 8, pp. 3-21, 1993.

[43] Parker, L., “L~-ALLIANCE: A Mechanism for Adaptive Action Selection in Heteroge-
neous Multi-Robot Teams”, ORNL/TM-13000, Oak Ridge National Labs., 1995.

BIBLIOGRAPHY 123

[44] Prasad, M., V., Lesser, V., R., “Learning Situation-specific Coordination in Gener-
alized Partial Global Planning”, AAAl 1996 Spring Symposium on Adaptation and
co-learning in Multiagent Systems, 1996.

[45] Rivest, R., L., Yin, Q., “Simulation Results for a New Two-armed Bandit Heuristic”,
in Computational Learning Theory and Natural Learning Systems Vol. 1: Constraints
and Prospects, ed. by S., J., Hanson, G., A., Drastal, R., L., Rivest, MIT Press,
Cambridge, pp. 477-486, 1994.

[46] Sen, S., Sekaran, M., Hale, J., “Learning to coordinate without sharing information”
Proceedings fo AAAI-94, pp. 426-431, 1994.

[47] Sen, S., Sekaran, M., “Multiagent coordination with learning classifier system”, in
Working Notes of Adaptation and Learning in Multiagent Systems Workshop, IJCAI-
95, pp- 84-89, 1995.

[48] Working Notes of Adaptation and Learning in Multiagent Systems Workshop, ed. by
S., Sen, IJCAI-95, 1995.

[49] Working Notes of Adaption, Co-evolution and Learning in Multiagent Systems Sym-
posia, ed. by S., Sen, AAAI Spring Symposium Series, 1996.

[50] Sugawara, T., Lesser, V., “On-Line Learning of Coordination Plans”, COINS-TR-
93-27, University of Massachusetts, 1993.

(51] Swanepoel, J., W., H., Geertsema, J., C., “Sequential Procedures with Elimination for
Selecting the Best of k Normal Populations”, South African Statistics Journal, 10, pp.
9-30, 1976.

[52] Tennenholtz, M., “On computational social laws for dynamic non-homogeneous social
structures”, J. Ezpt. Theor. Artif. Intell., 7, pp. 379-390, 1995.

[53] Turnbull, Weiss., “A class of sequential procedures for k-sample problems concerning

normal means with unknown unequal variances”, in Design of Ezperiments: Ranking

BIBLIOGRAPHY 124

and Selection: Essay in Honor of Robert E. Bechhofer, ed. by. T., J., Santer and A.,
C., Tahmhane, Marcel Decker, 1984.

[54] Valiant, L., “A theory of the learnable”, Communications of the ACM, 27(1), 1984.

[55] Watkins, C.,J., Learning from Delayed Rewards, PhD thesis, Kings College, Cam-
bridge, 1989.

[56] Weif}, G., “Action Selection and Learning in Multi-Agent Environments”, Proceedings
of SAB-92, pp. 502-510, 1992.

[57] WeiB, G., “Learning to Coordinate Actions in Multi-agent Systems”, Proceedings of
IJCAI-93, pp. 311-316, 1993.

(58] Whitehead, S., Ballard, D., “Learning to perceive and act by trial and error”, Machine
Learning, 7, pp. 45-93, 1991.

[569] Yang, Q., “A theory of conflict resolution in planning”, Artificial Intelligence, 58, pp.
361-392, 1992.

