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Abstract

Analytic and force-directed placement methods that simultaneously minimize wire length and

spread cells are receiving renewed attention from both academia and industry. However, these

methods are by no means trivial to implement—to date, published works have failed to provide

sufficient engineering details to replicate results.

This dissertation addresses the implementation of a generic force-directed placer entitled FDP.

Specifically, this thesis provides (1) a description of efficient force computation for spreading cells,

(2) an illustration of numerical instability in this method and a means to avoid the instability,

(3) metrics for measuring cell distribution throughout the placement area, and (4) a complementary

technique that aids in minimizing wire length. FDP is compared to Kraftwerk and other leading

academic tools including Capo, Dragon, and mPG for both standard cell and mixed-size circuits.

Wire lengths produced by FDP are found to be, on average, up to 9% and 3% better than Kraftwerk

and Capo, respectively. All told, this thesis confirms the validity and applicability of the approach,

and provides clarifying details of the intricacies surrounding the implementation of a force-directed

global placer.
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Chapter 1

Introduction

The development of a modern integrated circuit (IC) can be a daunting task. More and more,

designers must balance the constraints of power and performance, all while remaining within the

confines of short design cycles. It is for this reason that design automation tools have come to play

an increasingly important role in the development of ICs.

As circuits have grown in size, performance has become limited by the delay of the interconnect

rather than the switching speed of logic elements. Consequently, research in computer-aided design

(CAD) algorithms has focused much attention on the minimization of wire length and critical

path delay. Yet, these algorithms can be complicated—the optimization problems that must be

solved are often NP-complete [1–3]. Thus, the optimal solutions to many of these problems cannot

be found in polynomial time; rather, heuristic methods are employed to approximate the optimal

solutions. This thesis presents a detailed discussion of one such heuristic for computer-aided circuit

placement.

1.1 VLSI CAD Flow

The VLSI CAD flow begins with a formal specification of a chip. A circuit may be specified,

for example, using a schematic or hardware description language such as VHDL or Verilog. The

conversion of this high-level representation into a usable, hardware-based implementation follows

1



Chapter 1. Introduction 2

a series of steps, as shown in Figure 1.1.

Synthesis is an automatic method for converting the high-level design to a gate-level netlist

consisting of interconnected gate-level macro cells [4, 5]. In deriving this netlist representation, an

attempt is made to minimize the number of gate-level cells using logic optimization. The circuit is

then mapped into cells based on the available technology library.

The inputs to the placement phase are the module description, consisting of the shapes, sizes,

and terminal locations, and the netlist, describing the interconnections between modules. The

output is a list of x- and y-coordinates for all modules [6]. Placement seeks to position cells in valid

locations (without overlap) while optimizing chip area, wire length, and critical path delay. Area

is typically minimized to be able to fit more logic functionality into a given chip, while wire length

is minimized to reduce the interconnect delay. In some cases, secondary performance measures,

such as the preferential minimization of delay in a few critical nets, may also be employed, at the

cost of an increase in total wire length [6].

Since module placement is NP-complete [1–3], it is not possible to find an optimal placement

of cells in polynomial time. Trying to find such an exact solution would take time proportional

to the factorial of the number of modules [3]; consequently, a heuristic approach must be used

to efficiently search through the candidate placements. The quality of this heuristic can largely

determine the performance and area requirements of the final, integrated circuit.

Placement usually consists of both global and detailed phases—the former strives to locate

cells within the general vicinity of where they should be fixed, and the latter ensures that final

cell positions are legal. Iterative techniques are often applied during or after detailed placement to

further improve results.

After the cells have been placed, the circuit is then routed. This process establishes the pin-to-

pin connections between cells. Finding an optimal routing given a placement is also a NP-complete

problem [6], although a number of heuristic approaches exist (c.f. [7, 8]) which can find very good,

admissible routings in polynomial time.

Placement heuristics often work in consort with routing by considering net congestion when
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Figure 1.1: Traditional view of the VLSI CAD flow.
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placing cells. Figure 1.2 illustrates the nets of a small integrated circuit after the application of

a placement heuristic, compared to the those net lengths resulting from a random assignment of

cells. In this example, fixed pads are located along the periphery of the chip, while movable cells

are located inside the chip. The nets in the random placement are highly congested, while the

opposite is true of the circuit which has undergone module placement. The shorter, less congested

nets of the latter are more likely to route (and use fewer layers of metal), and are also more likely

to offer a faster overall implementation. An example of the routed version of the circuit is provided

in Figure 1.3.

The final steps in the VLSI CAD flow are to verify the circuit, ensuring that the layout meets

system specifications and fabrication (or programming) requirements. This step often consists of

a “design rule check” and “circuit extraction”. In these procedures, the implementation is checked

to ensure that it meets fabrication constraints and that the functionality of the final implementation

matches the original specification. Once verified, the design may be implemented based on the

desired design style, described in Section 1.2.

1.2 Design Styles for Modern VLSI CAD

Computed-aided design tools make it possible to automate the entire layout process for VLSI

designs. This has been made possible through the use of restricted models and design styles which

reduce the complexity of the circuit layout. Two design styles which are typically used in modern

CAD flows include standard cells and field programmable gate arrays (FPGAs).

1.2.1 Standard Cell Circuits

A standard cell is a logic module with a pre-designed internal layout. These cells have a fixed

height but different widths, depending on the functionality of the module [6]. Standard cells

are placed in horizontal rows, with channels (or spaces) between rows reserved for interconnect

routing. Historically, routing was performed entirely in channels, though in modern circuits, with
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a. Random assignment of cells and I/O pads, and the resultant nets.

b. Locations of cells and the resultant nets after placement.

Figure 1.2: Illustration of cells, I/O pads, and nets due to both a random assignment and a
placement heuristic, prior to routing. Note how the placement heuristic rearranged cells to visibly
minimize wire length and net congestion. The circuit in this example is very small by modern
standards and is provided only for illustrative purposes. In this case, there are 274 logic cells, 65
I/O pads, and 339 nets. This problem instance is known as e64 and was captured using the VPR
FPGA placement tool, described in Chapter 2.
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Figure 1.3: Illustration of the resources used to route the design of Figure 1.2 (b).
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more layers of metal available for routing, channels are not typically required. Logic modules

connect to fixed pads (terminals) along the edges of the chip. Macro cells are logic modules not

in the standard cell format—they are usually larger than standard cells, and may be placed at any

convenient location on the chip. In this thesis, circuits with both standard and macro cells are

referred to as mixed-size designs. Figure 1.4 shows an example of a mixed-size circuit layout.

1.2.2 Field Programmable Gate Arrays

In Field Programmable Gate Arrays (FPGAs), the entire wafer is prefabricated with a regular

grid structure of configurable elements, as shown in Figure 1.5. There are three main types of

configurable elements: logic blocks, input/output (I/O) blocks, and interconnects.

Logic blocks permit the implementation of a designer’s logic. Logic blocks may possess look-

up tables and flip-flops which allow a designer to implement combinatorial and synchronous logic.

In addition to simple logic blocks, modern FPGAs may also implement programmable RAMs,

carry-chains, embedded processors, or other macro-sized blocks.

I/O blocks provide the interface between the internal circuit and the package’s pins. A modern

FPGA can implement a wide variety of high-speed I/O interface standards.

The interconnect allows routing paths to be configured between individual logic blocks and

I/O blocks [7, 9]. FPGAs are customized by loading configuration data into internal static memory

cells. Stored values in these cells determine the logic functions and interconnections in the FPGA.

An example of an FPGA’s routing resources, as well as a sample programming of the resources

is shown in Figure 1.6. The interconnect, I/O cells, and logic cells are visible in this figure, as

well as the resultant, programmed interconnect. The FPGA architecture shown in this diagram

possesses uniformly-sized channels, with each I/O slot able to accommodate up to two I/O cells.

Each logic cell supports four inputs, corresponding to a cell with a four-input lookup table and a

flip-flop. In the figure, pins 0 to 3 of each logic cell act as inputs, pin 4 represents an output, and

pin 5 represents the global clock input.1

1 The routing resources for the global clock are not shown. Since clocks are generally distributed to every logic cell
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Figure 1.4: Diagram of a mixed-size standard cell layout. Standard cells are placed in rows, but
macro cells are not subjected to this constraint. “Whitespace” (unused, wasted space) may also
be present in the design. Fixed pads, representing connections to the I/O terminals, are typically
located along the periphery of the chip.
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Figure 1.5: Diagram of a simplified FPGA architecture. Internal connections are made by
programming the switching points to connect metal segments.
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a. Magnified view of the routing resources in an FPGA.

b. Programmed interconnect.

Figure 1.6: Magnified view of a programmable interconnect in an FPGA. The top row of each
diagram contains I/O blocks, while the second and third rows contain movable cells.
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1.2.3 Placement

With respect to placement, standard cell and FPGA designs differ primarily in their need for

alternative legalization strategies. In both cases, similar global placement heuristics may be used

to locate cells, while a different detailed placement strategy would be used to ensure that overlap

is fully removed subject to the constraints and characteristics of each architecture. Standard

cell circuits, for example, typically require that all overlap be removed. FPGA circuits, on the

other hand, require that cells be placed in valid (pre-assigned) locations, and, furthermore, that all

constraints on cell type and wiring resources be satisfied. In both cases, the same global placement

heuristic can be used to achieve a fairly non-overlapping placement, while a different legalization

strategy can be employed to finalize the layout.

1.3 Conventions and Terminology

In this thesis, the terms module, cell, and node are used to describe a standard or macro cell. Macro

cell and macro block are also used interchangeably. Similarly, net, wire, and interconnect are used

synonymously. The term pad is used to refer to the terminals of the chip. Moreover, placement and

solution (to the placement problem) are used synonymously to represent an assignment of modules

to physical locations on the chip [6]. The term placer refers to a tool which implements a heuristic

to place cells.

1.4 Statement of Thesis

The need for better CAD tools, and especially placement heuristics, has become increasingly

important as circuits and placement instances have grown in size. This dissertation describes a

practical implementation of a global, force-directed placer capable of accommodating modern

VLSI problems. While the literature provides a good starting point for the development of such

a heuristic, numerous additional techniques are required to stabilize the method and to improve

in an FPGA, they are routed along dedicated, high-speed lines.
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the quality of results. None of the recent literature on force-directed placement (c.f. [10–13]) has

addressed the stability and quality issues broached here. Specifically, this dissertation presents and

expounds upon:

• a means of efficiently computing forces for cell spreading;

• techniques for assessing cell distribution throughout the placement area;

• a method of preventing the destabilization of a placement due to numerical instability; and,

• a method for direct minimization of wire length that significantly improves the overall quality

of the placement.

The rest of this work is organized as follows. Chapter 2 presents an overview of modern

placement heuristics. Chapter 3 introduces the concept of force-directed placement and discusses

the engineering details of the framework; moreover, it describes the additional techniques that were

developed for enhancing placement quality. Chapter 4 touches upon this dissertation’s strategy

for detailed placement and presents results comparing the force-directed placer to other modern

approaches. Finally, Chapter 5 offers concluding remarks and discusses future directions.



Chapter 2

Background

The quality of the global placement heuristic used in the CAD flow can effect a tremendous change

in the overall performance of an integrated circuit. Recent experiments suggest that placement

tools yield results that are 50%–150% worse than optimal [14]. On the other hand, the demand

for higher-quality placement techniques must also be balanced with the need for shorter running

times—some heuristics, which worked fine twenty years ago, are no longer able to keep pace with

the size of modern designs [6, 14, 15]. In this chapter, the three most common types of heuristics

for global placement—search-based, partitioning-based, and analytic methods—are examined, and

recent advances in each class are discussed.

2.1 Overview

A circuit is typically modeled as a hypergraph Gh(Vh,Eh) with vertices Vh = {v1,v2, . . . ,vn}

representing cells and hyperedges Eh = {e1,e2, . . . ,em} corresponding to signal nets. Vertices are

weighted by cell area while hyperedges are weighted according to criticalities or multiplicities.

Vertices are either free or fixed. Cell placements in the x- and y-directions are captured by

placement vectors x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn).

A placer seeks to position cells from the hypergraph in valid, non-overlapping locations within

a placement region while minimizing chip area and critical path delay. Ideally, a placer also makes

13
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an effort to ensure that all wires can be routed. Additional objectives may also attempt to minimize

power dissipation or reduce cross talk between signals [16].

Placement objectives are often difficult to formulate and computationally difficult to satisfy

optimally in present day integrated circuits. As a result, placement tools use approximations to

these objectives. Some commonly-used approximations attempt to:

• minimize the total estimated interconnect length;

• meet the timing requirements for critical nets; and,

• minimize the interconnect congestion [16].

Wire length is one of the most commonly-employed measures of quality in VLSI CAD because,

by minimizing wire length, the delays of the interconnect are also reduced.

During placement, the minimum wire length of a net can be measured by finding the minimal

Steiner tree connecting the pins of the net. However, given that finding the minimum Steiner

tree is NP complete [3], and that the number of nets in modern circuits can be very large1, this

method of measuring wire length is impractical. Finding a minimum spanning tree can also be

too computationally demanding, owing, again, to the large number of nets in modern circuits.

Instead, an approximate, easy-to-calculate measure of wire length, closely correlated with the final

interconnect length, is required [16]. The measurement most commonly used in modern tools is

the half perimeter wire length (or HPWL) of the minimum rectangle enclosing all cells on a net.

Generally, search-based placement methods are able to minimize HPWL directly, while

partitioning- and analytic-based methods minimize approximations to HPWL, such as the mini-

mum net cut or quadratic (instead of Euclidean) wire length. As a result of using an approximation

in their objective formulation, analytic and partitioning-based placers can process very large

problem instances. It is for this reason that hybrid methods which combine more than one

placement approach often use an approximative technique to encourage quick cell placement,

while interleaving calls to a direct HPWL-minimizing algorithm to improve the quality of results.

1 Some placement benchmarks, such as ibm18 (see Chapter 4), possess more than two hundred thousand nets.
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2.2 Search-Based Placement

Search-based placement methods involve iterative improvement of an existing solution. For

example, simulated annealing-based placers, such as TimberWolf [17, 18] and VPR [7], produce

placements using stochastic search (c.f. [19]). Genetic algorithms are another type of search-based

heuristic which work by “emulating the natural process of evolution as a means of progressing

toward the optimum” [6]. Genetic algorithms are no longer used in modern CAD flows, and are

not treated here.2

2.2.1 Simulated Annealing

Simulated annealing is perhaps the most well-developed, well-studied method for module place-

ment. It can be very time consuming, but can yield good results. Most importantly, the cost

function used in an annealer can easily be extended to consider new constraints (such as overlap

removal or thermal “hot-spot” minimization) with only minimal changes required to the remainder

of the placement flow.

As a result of its flexibility, simulated annealing remains a widely-used heuristic for placement

in tightly-constrained design styles, such as FPGAs. Due to the ever-evolving nature of the FPGA

marketplace, vendors must continually adapt their placement heuristics to account for new product

generations. Moreover, FPGAs tend to impose more constraints on the validity of cell locations

than in standard cell designs—for instance, the placement of basic logic elements in modern

FPGAs is constrained by the pre-fabricated routing resources available for each logic block. Thus,

it does not merely suffice, in some FPGAs, to ensure that cells are placed in non-overlapping

locations, but also that the wires connecting logic blocks do not exceed IC limitations. An

annealing-based placer, more than any other placement technique, can quickly and easily be

modified to account for such constraints.

Simulated annealing is essentially an improvement of a random pairwise interchange algo-

2 The reader is referred to [6] for more information about genetic placement.
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rithm. In this approach, the heuristic periodically accepts moves that result in an increase in the

cost—this ensures that the method will not get stuck in local minima. The heuristic works as

follows. All moves that result in a reduction in the cost are accepted. Moves which result in a cost

increase are accepted with a probability that decreases with the increase in cost [6]. A temperature

parameter T is typically used to control the probability of accepting moves which increase cost.

In most implementations, the acceptance probability is given by e
−∆C

T , where ∆C is the increase in

cost [6]. Initially, the temperature is set to a large value, allowing numerous cost-increasing moves

to be accepted. The temperature is then gradually decreased, so that the probability of accepting

a cost-increasing move is also decreased. If left to run for a sufficiently long time with a proper

cooling schedule, simulated annealing is guaranteed to converge to the global minimum [20].

Simulated annealing derives its name from the annealing process in metals [19]. If a metal

has an imperfect crystal structure, its atomic arrangement can be restored by heating it to a high

temperature and then allowing it to cool slowly. At high temperature, the atoms have sufficient

kinetic energy to break loose from their incorrect positions. As the material cools, the atoms

become trapped at the correct lattice locations. If the material is cooled too rapidly, the atoms

may not move into correct lattice locations, thereby freezing defects into the crystal structure [6].

Analogously, in annealing-based placement, the high initial temperature T allows cells at incorrect

initial locations to be dislodged from their positions. As T decreases, the cells are placed into their

optimum locations.

The pseudocode for a general simulated annealing-based placer is shown in Figure 2.1.

Initially, the cells in the netlist N are placed in random (but valid) locations. Within the inner

loop, modules are either randomly displaced to new locations or interchanged.3 A range-limiting

function may be applied to ensure that cells are not moved further than a specified distance from

the target location [6]. The change in cost is computed for a move by evaluating the change in

only those nets connected to cells that were moved. If the cost improved after the perturbation, the

new cell locations are retained. Otherwise, if the cost worsened, then the new placement may still

3 Cells can even be rotated or mirrored as part of the perturbation.
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be retained (probabilistically) based on the current temperature, T . The temperature for the next

loop of the algorithm is subsequently decreased based on the number of iterations and the previous

temperature. The temperature at iteration i + 1, for example, may be derived simply by taking a

fraction of the temperature in iteration i, as in Ti+1 = 0.1Ti.

In simulated annealing, there “are no fixed rules about the initial temperature, the cooling

schedule, the probabilistic acceptance function, or the stopping criterion, nor are there any

restrictions on the types of moves to be used—displacement, interchange, rotation, and so on” [6].

For example, in TimberWolf [21], cells are chosen randomly and either interchanged or displaced

to a random location on the chip. The algorithm performs best when the number of displacements

is between three and eight times the number of interchanges [21].

The cost function employed by TimberWolf accounts for wire length and also penalizes

module overlap and the length of standard cell rows. This cost function can be described as

φ = ∑
# nets

(αxbbx(i)+αybby(i))+αo ∑
i6= j

(

OL(i, j)2)+αr ∑
# rows

|ARL(i)−DRL(i)| .

Here, bbx and bby denote the horizontal and vertical spans of net i’s bounding box. αx and αy are

weights applied to the horizontal and vertical wiring spans. The function OL(i, j) calculates the

amount of overlap between cells i and j, while αo acts as a weighting for the overlap penalty. The

quadratic nature of this overlap term discourages large overlaps. The third term of the objective

equalizes row lengths by increasing the cost if rows are unequal lengths. In this case, ARL(i) and

DRL(i) represent the actual row length and the desired row length of row i, while αr allows the

term to be weighted appropriately.

2.3 Partitioning-Based Placement

A top-down, divide-and-conquer approach to global placement has been used successfully in

commercial tools for many years. This approach “seeks to decompose the given placement

problem instance into smaller instances by subdividing the placement region, assigning modules to
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Procedure: SIMULATED ANNEALING1

Input: A netlist, N2

begin3

Initialize variables;4

Generate a random placement of the cells in N;5

while outer loop count < MAX OUTER PASSES and T > MIN TEMP do6

inner loop count← 0;7

while inner loop count < MAX INNER PASSES do8

Perform a random perturbation of the placement;9

∆C← the change in cost of the placement;10

if ∆C < 0 or the probability function accepts the move then11

Accept the new placement;12

else13

Reject the new placement (and restore the previous cell location);14

fi15

T ← decreased value based on cooling schedule;16

inner loop count← inner loop count+1;17

od18

outer loop count← outer loop count+1;19

od20

end21

Figure 2.1: Pseudocode for a general simulated annealing placement algorithm.
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subregions, reformulating constraints, and cutting the netlist—such that good solutions to smaller

instances (subproblems) combine into good solutions of the original problem” [22]. That is,

top-down methods recursively divide the placement area and the circuit netlist into smaller pieces

using either bi-section or (less commonly) quadri-section and a minimum-cut (or other) objective

function to approximate wire length.

Modern partitioning-based placers decompose the netlist using minimum-cut hypergraph bi-

partitioning. Quadri-section techniques [23] are less commonly used in modern flows. Each bi-

partitioned instance is created from a division of a rectangular region, or block, in the placement

region. Figure 2.2 shows an example of a placement region partitioned alternately using horizontal

and vertical cuts. At each level, the number of nets intersected by the cut line is minimized, and

the sub-circuits are assigned to horizontally and vertically partitioned chip areas [6]. Pseudocode

for a general top-down, partitioning-based placement heuristic is provided in Figure 2.3. This

pseudocode provides a high-level outline of the placement strategy.

Inside each block, there exist nodes which correspond to the cells inside the block as well as

propagated external terminals. These terminals represent the connections from cells internal to the

block to modules external to the block. Such modules may exist in another partitioned region,

for instance. The modules are propagated to a block’s boundaries to account for the external

connections. The motivation for doing so follows from the notion that, if a module is “connected

to an external terminal on the right side of the chip, it should be preferentially assigned to the

right side of the chip, and vice versa” [6]. To propagate terminals, the partitioning must be done

in a breadth first manner—there is little point in partitioning one group to finer levels without

partitioning the other groups, since in that case, no information would be available about the group

to which a module should preferentially be assigned [6].

Cell placement imposes additional constraints on the partitioning of a hypergraph—chiefly,

that the sizes of the partitions in the solution are not allowed to deviate from target partition sizes.

These constraints arise because the proportion of whitespace in modern designs is often quite

small. Thus, the total module area assigned to a block must closely match the available layout area
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in the block [22]; otherwise, relaxed balance constraints can lead to uneven area utilization and

overlapping placements [22, 24].

Partitioning is typically performed using an iterative, multi-level Fiduccia-Mattheyses (FM)

heuristic [25, 26]. The Kernighan-Lin (KL) heuristic [27, 28] is also used for hypergraph bi-

partitioning. For example, the popular multi-level partitioner, hMetis [29–31], employs FM for

large partitioning instances, while KL is used when the instances are smaller than a threshold

parameter.

Once a partitioned block is sufficiently small (or contains too few cells), partitioning-based

placers use an alternate, end-case algorithm to finalize cell locations. Tight balance constraints

and a potentially large variation in standard cell sizes makes small partitioning instances difficult

for a FM partitioner to solve. This problem arises in small instances because the FM algorithm

“may (1) never reach the feasible part of the solution space (especially if it has trouble finding

an initial balance-feasible solution) and (2) even a relative scarcity of feasible moves (from any

given feasible solution) can make the algorithm more susceptible to being trapped in a bad local

minimum” [22]. Consequently, a branch-and-bound strategy is typically employed for small

partitioning instances (c.f. [22, 32]).

2.3.1 Recent Advances

With the advent of multi-level hypergraph partitioning in 1997 [30, 31], the quality of cuts

generated by partitioners improved significantly, and by extension, so did the quality of VLSI

placements.4 Since then, hundreds of papers have undertaken the task of improving upon

partitioning-based techniques; the following is a selection of some of the most pertinent works.

In [22], the authors examined end-case partitioning strategies, as well as a branch-and-bound

technique for optimal cell placement. The authors point out that FM-like strategies do not work

well for end-case placement (when block sizes are too small) due, in part, to tight area-balancing

4 An excellent review of partitioning and its applications to placement prior to 1995 is given in [24].
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a. One level.

b. Two levels.

c. Up to three levels.

Figure 2.2: Placement region partitioned using alternating horizontal and vertical cuts. In this
diagram, a “level” refers to one horizontal followed by one vertical cut of each partitioned block.
Generally, iterative partitioning of a block stops when the size of the block or the number of cells
contained therein passes a threshold parameter. For such blocks, a different end-case partitioning
strategy is often employed.
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Procedure: TOP-DOWN PARTITIONING PLACEMENT1

Input: A netlist, N2

Local Variables: A queue of blocks3

begin4

Initialize a block which contains all cells in N and has the original5

placement region as its dimensions;6

7

while queue is not empty do8

Dequeue a block;9

if block is small enough then10

Use end-case placement to place cells in block;11

else12

Bipartition cells from block into two smaller sub-blocks;13

Enqueue both sub-blocks;14

fi15

od16

end17

Figure 2.3: High-level pseudocode for a top-down partitioning based placement technique [22].

constraints. Instead, enumerative approaches can yield significantly better cuts for small blocks.

Since then, almost all partitioning-based placers have employed similar strategies for end-case

placement.

In [33], Vygen considers a method of quad-secting a placement region using American maps

and a linear-time binary-search-like heuristic. The author describes how a region of already-placed

cells (with a given weight, and a given capacity per region) can be quad-sected such that the total

weight of points assigned to a quadrant does not exceed its capacity and the total movement is

minimized. Vygen proves that, at most, only three cells may be “split” and partially assigned to

several quadrants [33]. This technique forms the basis for the BonnPlace [34] placement tool.

Caldwell et. al. introduce a recursive bisection placement tool in [35]. This paper builds upon

the authors’ previous work on multi-level hypergraph partitioning and end-case placement (c.f. [22,

25, 32]), and describes the implementation of the first commercial-quality, academic partitioning-

based placer, Capo. Since then, Feng Shui [36] has emerged as another popular bisection-based

placer. The two differ primarily in their placement of horizontal cuts: while Capo attempts to place

horizontal cuts along standard cell row boundaries to aid cell legalization, Feng Shui allows cuts
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to occupy a fraction of a row (a “fractional cut”). The latter then employs a row-by-row legalization

strategy to satisfy overlap constraints.

In [37], the authors describe a means of augmenting partitioning-based placement using

analytic strategies. (Analytic methods are discussed more thoroughly in Section 2.4.) In their work,

a quadratic placement is used to calculate the area balance parameter for dividing each block—this

parameter is then used to make a more informed minimum-cut partition. The significance of this

paper is that it presents a means of enhancing the quality of cuts using analytic methods.

Adya et. al. further the notion of analytically-augmented partitioning-based placement in [38].

In this work, the authors use quadratic placement to aid in propagating terminal cells within each

block. First moment constraints (based on the area of cells within each block) are added to the

quadratic problem to encourage cell spreading (c.f. [39]). The locations of the cells from the

quadratic placement are then used to aid in the assignment of propagated terminals for partitioning

blocks which have not yet been processed.

In [40], modifications to the Feng Shui placer to handle mixed-size designs are described.

The traditional recursive bisection approach employed in Capo typically “shreds” macro cells into

standard cell sizes and connects the shredded components via high edge weights. The average

location of the shredded cells is taken as the final positions of the macro cells. However, in [40],

macro cells are processed simultaneously by simply not performing shredding and allowing cut

lines to be placed in any location. A minimum-movement legalization strategy is then employed

to remove overlap.

Kahng and Reda, in [41], introduce a concept called “feedback”, which proposes a solution to

the problem of ambiguous terminal propagation. The concept of augmenting partitioning-based

techniques to determine how to propagate terminals (when there remain partitioning blocks which

have not yet been processed) is similar in motivation to [38]. In this work, however, the blocks at a

given level of the partitioning are placed via minimum-cut bisection, and then repeatedly restored

and replaced using the previous iteration’s cell locations to intelligently propagate terminals. While

feedback can slow the partitioning process by causing blocks at each level to be repartitioned
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multiple times, a significant improvement in overall placement quality can result.

2.4 Analytic Placement

Analytic placement methods (c.f. [13, 34, 39, 42–44]) use linear or quadratic optimization to place

cells. While linear programming formulations themselves are generally not employed for global

placement, various other techniques have been used to approximate a linearized objective (c.f. [45–

49]).

In analytic placers, circuit hypergraphs are typically transformed into graphs in which each

hyperedge is represented by a set of equally-weighted edges. The star model adds a new centre

vertex and represents the original net by edges connecting the centre to the previously existing

vertices. The clique model connects all pairs of vertices incident to the original hyperedge by

equally-weighted edges. A clique and star model for a five-pin net are shown in Figure 2.4.

Clique models of large hyperedges become prohibitively expensive due to the quadratic edge

count. Consequently, large edges are either dropped completely, or a combination of clique and

star models are employed in which cliques are used to model small hyperedges and stars are used

to model large hyperedges.5

Although convex, HPWL is neither a strictly convex nor differentiable function, and is therefore

difficult to minimize directly. As a result, analytic methods typically select a different (but

satisfactory) approximation for efficient minimization. One of the most popular approximations to

HPWL is that of quadratic wire length.

In [50], Hall formulated the placement problem as a quadratic assignment problem (QAP)

and devised a method for solving it using eigenvalues. By itself, the quadratic assignment

problem is arguably the most difficult NP-hard combinatorial optimization problem—solving

general problems of size greater than thirty is still computationally impractical due, in part, to

the lack of sharp lower bound techniques [51].

5 The notion of what may be a “large” or “small” hyperedge can vary between analytic methods. Experimental
results for net sizes in this dissertation are provided in Section 3.2.2.
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Figure 2.4: A comparison of the clique (left) and star (right) net models for a five-pin net.

The quadratic assignment problem is formulated as follows: given a cost matrix Ci j represent-

ing the connection cost of elements i and j and a distance matrix Dkl representing the distance

between locations k and l, find a permutation function p that maps elements i and j to locations

k = p(i) and l = p( j) such that the sum

φ = ∑
i, j

Ci jDp(i)p( j) (2.1)

is minimized [6].

Hall showed that cell placement could be converted to a quadratic assignment problem, with Ci j

representing the connectivity between cell i and cell j, and Dkl representing the distance between

slot k and slot l. The permutation function p maps each cell to a slot. The wire length is given

by the product of the connectivity and the distance between the slots to which the cells have been

mapped [6]. Thus, φ gives the total wire length for the circuit, which is to be minimized [6]. Since

the cost function seeks to minimize the square of the distance between logic cells, this method is

known as quadratic placement.

Requiring logic cells to be placed into fixed slots leads to a series of n equations which

restrict the values of the logic cell coordinates [16, 52]. If all of these constraints are imposed,

the quadratic problem becomes NP-hard. Instead, Hall proposed that these constraints be relaxed.
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This leads to an approximation of the QAP placement which can be solved very quickly; however,

the consequence of this relaxation is that cells may overlap. To overcome this overlap, quadratic

methods are often augmented with partitioning or “spreading forces”, as discussed in Section 2.5

and Section 3.1.6

2.4.1 Eigenvector Placement

Hall [50] formulated the quadratic placement problem as follows. Let C be the connection matrix.

Let ci be the sum of all elements in the ith row of C. A diagonal matrix D is defined such that

di j =















0, if i 6= j,

ci, if i = j.

The matrix B is defined as

B = D−C.

Recall, from Section 2.1, that vectors x and y are typically used to capture the resultant placement.

Hall proved that Equation (2.1) can be rewritten as

φ = xT Bx+yT By

subject to the constraints that xT x = 1 and yT y = 1. Hall then showed that the eigenvectors of the

matrix B are the solutions to the placement problem—that is, the eigenvectors of B give the x- and

y-coordinates of all modules. In a two-dimensional placement problem, the x- and y-coordinates

are given by the eigenvectors corresponding to the two smallest, nonzero eigenvalues.7

6 The majority of the discussion of force-based placement is deferred until Chapter 3.

7 Using the two smallest, nonzero eigenvalues avoids the trivial solution of xi = 0 (for all i).
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2.4.2 Quadratic Placement

An alternative quadratic formulation was introduced in [39]. In this approach, the overall method

for minimizing wire length is accomplished by solving the quadratic optimization problem (x-

direction only) given by

min
x

(

∑
i, j

ai j(xi− x j)
2

)

= min
x

1
2

xT Qxx+ cT
x x+dx (2.2)

where ai j represents the weight of the edge connecting cells i and j in the weighted graph

representation of the circuit. A similar optimization problem is solved for the y-direction. The

matrix Qx is the Hessian which encapsulates the hyperedge connectivities. Assuming that some

cells are fixed, the Hessian is a symmetric, positive-definite matrix. This requirement is realized

in any real circuit since I/O pads are fixed, typically around the periphery of the placement area.

The vector cx is a result of fixed cell-to-free cell connections, and the vector dx is a result of fixed

cell-to-fixed cell connections.

This optimization problem is strictly convex and has a unique minimizer given by the solution

of a single, positive-definite system of linear equations,

Qxx+ cx = 0.

In this formulation, cell overlap is ignored, and the vector x provides only relative cell locations.

(The resultant placement would be infeasible and would have to be legalized.) Pseudocode for

setting up the Hessian and cost vector (i.e., the objective function) is provided in Figure 2.5 and

Figure 2.6. An example of the highly-overlapping nature of a quadratic placement is shown in

Figure 2.7.8

Studies have demonstrated that quadratic optimization, although most efficient, tends to

produce placements of inferior qualities. Better results may be achieved using iterative quadratic

8 The reader is referred to [39, 42, 50] for more information about the quadratic problem formulation.
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Procedure: OUTERLOOP1

Input: A netlist, N, Hessian Q, cost vector c2

begin3

Q← 0;4

c← 0;5

for each edge e ∈ N do6

k← number of cells on edge e;7

8

// Edge weights are typically calculated as w = 1
k−1 .9

w← weight for edge e;10

11

if k ≥ 2 and k < MAX CLIQUE SIZE then12

// Build using clique net model.13

for each cell pi on e do14

for each cell p j | j > i on e do15

call INNERSETUP( Q,c, pi, p j,w );16

od17

od18

else if k ≥ MAX CLIQUE SIZE then19

// Build using star net model. Weights are multiplied by k.20

w← k×w;21

pi← star node for edge e;22

for each cell p j | j 6= i on e do23

call INNERSETUP( Q,c, pi, p j,w );24

od25

fi26

od27

end28

Figure 2.5: Simplified pseudocode for the outer loop used in setting up the quadratic placement
objective for a hybrid clique/star model.
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Procedure: INNERSETUP1

Input: Hessian Q, cost vector c, cells pi, p j, edge weight w2

begin3

// Note that the indices which map into Q also map similarly into c.4

mi← index that maps pi into matrix Q;5

m j← index that maps p j into matrix Q;6

7

if pi is movable and p j is movable8

Q(mi,mi)←Q(mi,mi)+w;9

Q(m j,m j)←Q(m j,m j)+w;10

Q(mi,m j)←Q(mi,m j)−w;11

Q(m j,mi)←Q(m j,mi)−w;12

else if pi is movable and p j is fixed13

Q(mi,mi)←Q(mi,mi)+w;14

c(mi) = c(mi)+w× location of cell p j;15

else if pi is fixed and pj is movable16

Q(m j,m j)←Q(m j,m j)+w;17

c(m j) = c(m j)+w× location of cell pi;18

else19

// Both cells are fixed, so do nothing.20

fi21

end22

Figure 2.6: Simplified pseudocode for setting up a quadratic placement objective based on [39].
This function shows how to set-up the Hessian matrix Q and cost vector c for one direction only.
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Figure 2.7: Quadratic placement for a mixed-size problem with approximately twenty-seven
thousand cells. I/O pads, fixed along the periphery, “pull” some of the cells outward from the
centre, but the placement is still far from legal.
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optimization with re-weighting at the expense of potentially significant increases in run-time. For

instance, in [44], a series of quadratic problems with re-weighting given by

min
xv ∑

i j

ai j

|xv−1
i −xv−1

j |
(xv

i − xv
j)

2

are solved to yield cell locations. Here, xv−1 and xv denote the vectors of vertex locations at

iterations v− 1 and v, respectively. Thus, a quadratic objective function is used for efficient

optimization, but re-weighting is used to approximate linear rather than quadratic distances.

Analytic placement is ideally performed using unconstrained, strictly convex formulations that

are amenable to efficient solutions using Newton-type solvers. It is these efficient and “easily

solvable” formulations that enable analytic methods to be used on modern, large-scale placement

problems.

2.4.3 Recent Advances

In [47], Kennings and Markov establish that net models lead to a loss in solution quality. To

address this loss, the authors introduce an analytic heuristic known as BoxPlace that does not

require net models and permits a direct inclusion of non-linear delay terms. BoxPlace finds the

median location of nets and moves cells directly to a point of minimal HPWL.

In [53], Kahng et. al. introduce a continuous optimization problem to improve timing within

the context of a top-down placement algorithm. The reduction of net delay is accomplished by the

minimization of maximal slack; that is,

φ = min

(

max
π ∑

e∈π

1
cπ
×delay(e)

)

for all paths π and per-path weighting, c. The minimization of this objective, which can be

accomplished by linear or non-linear programming (depending on net delay models) is then shown

to be solvable in linear time using linear wire length delay objectives [53].
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Obenaus and Szymanski introduce an alternative means of dealing with overlapping cells from

a quadratic placement in [54]. In this approach, cells are initially positioned along the outer

periphery of the placement region. A quadratic formulation is then used to draw the nodes closer

to the centre of the placement region—effectively implementing a “gravitational” force. This

gravitational tendency is counter-balanced by slowing cell movement using force-based iterations

and by binning and rescaling parts of the placement region to arrive at an approximately uniform

cell distribution.

In [55], the authors describe and extend a patent originally presented in [56]. In this work, the

placement area is divided into grid bins, with the objective being to equalize the total cell area in

every grid subject to a penalty function. The penalty function may be formulated as:

ρ = ∑
bin b

(TotCellArea(b)−AvgCellArea(b))2 .

Since ρ is not smooth or differentiable, it is difficult to minimize. The authors account for this

difficulty by proposing a bell-shaped potential function, given by

Potential(c,b) = α(c) · f (|cx−bx|) · f (|cy−by|)

for each bin b and cell c, whose (x,y) centre is (bx,by) and (cx,cy), respectively. In this formulation,

f (q) =















1− 2q2

r2 , 0≤ q≤ r
2

2(q−r)2

r2 , r
2 ≤ q≤ r

where r controls the radius of the cells’ potentials and α(c) is a proportionality factor used to

ensure that

∑
bin b

Potential(c,b) = Area(c) ∀ c ∈ V.

This yields the following form of the optimization problem, which can be solved efficiently using
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a conjugate gradient technique:

Penalty = ∑
bin b

(

∑
cell c

Potential(c,b)−
TotCellArea

NumGridBins

)2

.

The authors then extend the objective function to account for wire length using the convex log-

sum-exponential [57] approximation of HPWL,

WL = α×
(

ln(∑e
xi
α )+ ln(∑e−

xi
α )
)

for a net t with pin coordinates (x1,y1),(x2,y2), . . . ,(xn,yn) and smoothing parameter α [47].9

Finally, the wire length and penalty objectives are linearly weighted to give the objective function:

β ·WL + (1− β) · Penalty. The objective is solved repeatedly, with the weight β controlling the

“preference” for overlap removal versus cell spreading in each iteration.

FastPlace [15] augments quadratic placement with heuristics for spreading cells and per-

forming local refinement. The authors describe a cell shifting technique which removes overlap

from a placement by first creating an equal and an unequal bin structure over the placement

area for the x-direction. The unequal bin structure is based on the utilization of cells in a row.

Every cell belonging to a particular bin in the regular bin structure is then linearly mapped to the

corresponding bin in the unequal structure. As a result, cells in bins with a high utilization shift in

a way so as to reduce the bin utilization (and the overlap between cells) [15]. A similar strategy is

then applied to columns in the y-direction.

The authors also introduce a local refinement technique in which a regular grid structure is

used for performing wire length improvement. Cells are rippled by one bin width in one of four

directions (up, down, left, or right) based on a gain metric. This metric considers the gain (or

loss) in wire length achieved by moving cells in a particular direction, as well as the increase (or

decrease) in occupancy of the target bin. If all four scores are negative, the cell remains in its

9 Only the x-direction is shown in this example. The y-direction is similar.
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current bin; otherwise, it moves to the target bin with the highest score [15].

Xiu et. al. introduce the novel concept of “grid-warping” in [58]. In this analytic strategy,

quadratic placement is used to initially place the cells. A uniform grid is then superimposed

over the placement region. This grid is subsequently deformed (warped) by the “gravity” of

the placement “mass” such that individual “bins” in the grid become convex quadrilaterals. An

inverse bilinear transform [58] is applied to map the grid shapes back into the original, uniform

grid. GORDIAN-style partitioning [39] is used to further alleviate congestion—that is, the analytic

placement is used to seed a partitioner, which then imposes cutline constraints, effectively dividing

the placement region. The combination of partitioning and grid-warping is repeated until cells

have been adequately spread.

A new net model for the quadratic placement formulation is presented in [59]. Unlike the

clique or star models, the model in [59] is based on Steiner trees built on the Hanan grid (c.f. [60]).

These trees are used to construct a quadratic objective geared toward minimizing net delay rather

than wire length. The lengths of segments in the trees—and by extension, the representation of

the distance between cells—can be individually controlled; thus, this approach gives the net model

(and placement engine) more precise control over timing constraints.

2.5 Hybrid Methods

Multiple techniques are often combined to improve the performance and quality of the resulting

placements, as well as to handle additional constraints in a convenient manner. For example,

Dragon [61] uses recursive partitioning to arrive at an initial placement, which is then improved

using simulated annealing methods.

Similarly, GORDIAN [39], GORDIAN-L [44] and BonnPlace [34] combine quadratic formulations

with top-down partitioning-based methods. In such frameworks, analytic techniques are used to

solve a relaxed placement problem to determine relative cell locations while ignoring placement

restrictions—that is, cells are allowed to overlap. Partitioning-based methods are subsequently

employed to enforce the constraints that cells must not overlap with each other while further
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optimizing the placement.

Alternatively, an analytic method can use forces such that fairly non-overlapping placements

are obtained without the need for partitioning. In Kraftwerk10 [13], forces are used to push

cells from over-filled toward under-filled regions of the placement area. Mo and Brayton [10, 62]

present a similar, force-based strategy but offer an alternative means of calculating forces based on

attractive and density-balancing constraints. In [43, 63], dummy cells are used to accomplish cell

spreading. In Mongrel [64], ripple-moves are used to reduce congestion and improve the quality

of placement during the overlap removal stage of global placement [64]; spreading forces are used

to direct and control the placer’s rippling of cells.

These force-based approaches are of great interest for several reasons. Mixed-size problems—

that is, circuits with a combination of standard cells and macro blocks—are handled seamlessly

by such heuristics. Furthermore, these methods provide continuous cell locations and therefore

appear very amenable to timing- and congestion-driven placement and physical re-synthesis.

10 Kraftwerk is the commercial implementation of the ideas presented in [13].
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Force-Directed Global Placement

This chapter begins with a description of how to augment a quadratic formulation with spreading

forces to obtain fairly non-overlapping placements. Next, the major implementation details of

this thesis’ force-directed placer, called FDP, are described. Finally, additional techniques for

improving the quality and performance of the heuristic are presented.

3.1 Review of Spreading Forces

Since analytic techniques solve for cell locations while ignoring overlap, additional methods are

required to obtain placements that do not violate overlap constraints. In [13], the authors proposed

to directly modify the optimality conditions for the quadratic problem in Equation (2.2) via the

inclusion of an additional vector of forces at each iteration of the placement. The force vector is

derived from the distribution of cells throughout the placement region and perturbs the optimal

solution in (2.2) to remove overlap. The perturbation is selected such that cells are “pushed” away

from regions of high density and “pulled” toward regions of low density. That is, at iteration i, the

cell locations are determined from the system of equations given by

Qxxi + cx +
i−1

∑
l=1

αlfl +αifi = 0 (3.1)

36
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where fi represents the spreading forces computed at iteration i and αi represents the weighting

with respect to wire length. At each iteration, forces throughout the placement region are computed

using an analogy similar to charge attraction or repulsion in an electric force field. Spreading forces

are accumulated over iterations to avoid placements from “collapsing” back onto themselves. An

illustration of placement at various stages of optimization using the quadratic problem in (2.2) with

the perturbed optimality conditions given in (3.1) is shown in Figure 3.1.

At each iteration i of placement, the vector of spreading forces fi is calculated using current

cell locations and Poisson’s equation given by

f (x,y) = k
Z ∞

−∞

Z ∞

−∞
D(x′,y′)

~r(x,y)−~r(x′,y′)
|~r(x,y)−~r(x′,y′)|2

dx′dy′ (3.2)

where f (x,y) is the force on a cell at location (x,y),~r(x,y) is the vector representation of the point

(x,y) and D(x,y) is the density at point (x,y). D(x,y) represents the ratio of total cell occupancy

and allowable capacity at point (x,y); consequently, D(x,y) measures the over-utilization of any

point within the placement region. In practice, the force computation is accomplished using

discrete bins, with the continuous integration in (3.2) being replaced with discrete summations.

Force computation is further elaborated upon in Section 3.2.3, and the selection of force weights

is discussed in Section 3.3.2.

3.2 Development of the Core Placement Framework

The development of a force-directed placement framework is by no means trivial. While there are

simulated annealing and partitioning-based placers available for free download over the Internet, to

the author’s knowledge, no analytic placers are available—this may be a testament to the difficulty

of developing such a heuristic. The recent literature on force-directed placement (c.f. [10–13])

also fails to address the practical implementation details of this approach; chiefly, how to compute

spreading forces, gauge the progress of the placement, and deal with the resultant numerical

instability issues that have been observed. The following sub-sections discuss the pertinent details
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a. 1 iteration. b. 150 iterations.

c. 220 iterations. d. 310 iterations.

Figure 3.1: Illustration of force-directed placement for a design consisting of a mixture of standard
and macro cells. The total number of cells is approximately twenty-seven thousand. Wire length is
modeled using the quadratic problem in Equation (2.2) while the perturbed optimality conditions in
Equation (3.1) are used to determine cell locations to simultaneously account for both wire length
and cell overlap.



Chapter 3. Force-Directed Global Placement 39

surrounding the engineering of FDP.

An outline of the CAD flow implemented by FDP is shown in Figure 3.2. FDP begins by parsing

a netlist file in either of the two commonly-accepted academic formats, Bookshelf [65] or VPR [7].

The circuit is then passed to the force-directed global placement phase.

The general flow of the global placement phase is shown in Figure 3.3. The heuristic begins by

constructing a set of Hessian matrices for the x- and y-directions. The forces are initially set to zero,

and an unperturbed quadratic placement is solved using a conjugate gradient technique (discussed

in Section 3.2.1). Based on the amount of spreading, forces are calculated (see Section 3.2.3),

scaled (see Section 3.3.2), and added to the quadratic formulation (as in Section 3.1). This

updated problem formulation is then solved, and the algorithm is repeated. If, after solving the

quadratic problem and updating cell positions, it is found that the problem destabilized, then

friction is applied, as discussed in Section 3.2.5, and the algorithm continues. Once a circuit is

sufficiently well-spread (see Section 3.2.4), the placement framework proceeds to legalization (see

Section 4.1). Once legalized, the locations of each cell in the netlist are written to an output file.

3.2.1 Matrices and Linear Solver

The matrix library and solver lie at the heart of a force-directed placer. In developing FDP,

various open-source C++-based linear system packages were investigated. The MTL library [66] was

initially chosen for sparse matrix support due to its tight coupling with the well-known iterative

library, ITL [67]. However, recent experimental results comparing MTL to the Boost uBLAS matrix

library [68] have found uBLAS to be more efficient in matrix-vector operations [69]. Consequently,

uBLAS was adopted as the underlying sparse matrix package for the placer. The generalized “vector

of vectors” compressed storage format is used for the matrices, as this has been found to offer both

good performance and reasonable memory consumption.

As there were no free linear solvers available for uBLAS, a new solver had to be written.

Based on experiments and the results described in [70], a stable bi-conjugate gradient (BiCGStab)

solver [71] with an ILU(0) preconditioner [72] was developed. To further improve performance,
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Figure 3.2: Diagram of the flow in the analytic placement framework.
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Figure 3.3: Diagram of the general flow of the force-directed placement.

the Reverse Cuthill-Mckee [73] algorithm was implemented to reorder the Hessians.

3.2.2 Net Models

A hybrid clique/star model has been found to slightly improve solver performance and reduce

memory consumption. This performance improvement is accomplished through a reduction in the

number of non-zero entries in the Hessians, which renders the matrices more diagonalized and

solvable more quickly using a conjugate gradient technique. The findings of [15] may lead one

to conclude that drastic performance improvements can be achieved using a hybrid model. While

the importance of using this model to mitigate the quadratic edge count of large clique nets is

undeniable, the use of a star model for 4-pin (and greater) nets imparts only a slight (less than 10%)

performance gain, at the expense of 1%–2% in wire length. Consequently, when constructing the

Hessians, FDP uses a clique model for nets smaller than 20 and a star model for all larger nets, as

this has been observed to produce better quality placements than when using the sizing advocated

by [15].

Moreover, when using this hybrid net model, a clique (and star) net weighting of 1
k−1 (and k

k−1 ),

for nets with k pins, has been observed to produce the best results. This observation agrees with

the net weighting used in [15]. The weighting of 1
(k−1)2 , as suggested in [74], was tested, but the

resultant placements were found to be 3%–5% worse on average.
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3.2.3 Force Computation

Spreading forces are computed using a Barnes-Hut quad-tree for n-body force calculation [75].

This method was chosen for its good overall performance and its relatively high precision [76].

High accuracy (when calculating forces) was found to be especially important in the early stages

of placement, and it is for this reason that this algorithm was employed in FDP. Since the quad-tree

tracks cell locations and the distribution of cell area, it offers the additional advantage that it can

be employed in other algorithms, as discussed in Section 3.2.4.

In this approach, a quad-tree is constructed over the placement area such that, at the lowest level

of the tree, each bin contains approximately one cell (see Figure 3.4). Therefore, the quad-tree is

built bottom-up, and the bins in the lowest level of the tree are sized by computing the average

width and height of the cells. Given a current placement, cell area is inserted into all levels of the

quad-tree based on cell location. Then, for each bin in the bottom level of the tree, the forces acting

on the bin are accumulated (summed) using interaction lists and near neighbour computations.

Finally, the actual force on each individual cell is computed by summing the bin forces from those

bins that the cell overlaps.

Large cells may span several quad-tree bins, and may receive contributions to their forces

from the many bins that they occupy. As a result, the largest cells tend to receive the largest

forces. For placements with a wide distribution of cell dimensions, such as the mixed-size

benchmarks introduced in Chapter 4, the relative magnitudes of forces for different cells can

vary considerably—tests have suggested that this can cause the largest cells to spread too quickly

compared to the smaller cells, harming wire length. Dividing the magnitude of the forces on each

cell by the square root of the number of bins that it occupies (at each level in the quad-tree) has

been found to lead to a more even distribution of force magnitudes, as shown in Figure 3.5. This

empirically results in better placements.1

1 Force weights also play an important role in spreading the cells and preserving quality, and this issue is addressed
in Section 3.3.2.
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Figure 3.4: Diagram of the bin levels in the Barnes-Hut quad-tree. This diagram shows a bin C, at
the lowest grid level of the force tree. Forces are computed between the bin and those bins which
are in C’s interaction list. Then, the contributions from the near neighbours are summed. In this
example, there are only two interaction lists—the first, at the third quad-tree level, possesses 27
bins, and the other, at the second quad-tree level, possesses 7 bins.
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a. Before force scaling

b. After force scaling

Figure 3.5: Distribution of force magnitudes before and after scaling by the square root of the
number of quad-tree bins. The scales on the axes are linear in the number of cells and the size of
the force weights. Note that prior to scaling, forces on large cells are significant whereas the forces
on small cells are almost negligible (barely visible in the diagram). After scaling, forces are more
uniform, although larger cells still receive justifiably larger forces.



Chapter 3. Force-Directed Global Placement 45

3.2.4 Spread Metrics and Stopping Criteria

In force-directed placement, there is a need to accurately measure the progress of the placer in

minimizing cell overlap. In the absence of an adequate spread metric, it is difficult to assess how

much better (or worse) one placement is when compared to the placement of a previous iteration.

Moreover, it is difficult to judge whether or not the spreading forces are properly weighted, or

to determine when to terminate the placement and continue with legalization. To this end, two

metrics were developed to assess the spreading of cells.

The first metric is based on the violation of cell density as it occurs in the Barnes-Hut quad-tree.

The metric is calculated by traversing the quad-tree using Breadth-First Search (BFS) and adding

the factor by which the occupancy of a geometric region exceeds its allowable capacity, scaled by

the square of the quad-tree level; that is,

L

∑
l=1

1
l2

2l

∑
i, j:occ(i, j)>cap(i, j)

occupancy(i, j)
capacity(i, j)

is computed for bins (i, j) at each level l of the tree. This weighting places more emphasis on

capacity violations in the top levels of the quad-tree. Given that the worst possible value would

occur when all cell area is focused on the smallest bin at each level of the quad-tree, this spread

metric can be normalized to within the interval [0,1] with a metric closer to 0 implying less over-

utilization of available placement area.

A second spread metric, based on Klee’s measure problem [76, 77], is also employed. The

O(n logn) segment tree technique in [77] was implemented to measure the area of the union of the

modules in the placement region. This area is then divided by the total cell area to give a normalized

value in the interval [0,1]. The resulting value measures the percentage overlap remaining in the

placement, with a metric closer to 1 implying less overlap between cells. An example of the

calculation is shown in Figure 3.6.

Each of the spread metrics offers a different insight into the amount of cell spreading

throughout the placement area. The first metric, based on the violation in the quad-tree, works
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Figure 3.6: Sample Klee’s measure computation for overlap calculation. The area of the union of
the cells is divided by the area of the cells to yield a metric representative of the amount of overlap
in the placement.

well during the early stages of placement. However, near the end of placement, when cells are

well-spread, small changes in overlap are not accurately reflected in this metric. Klee’s measure

technique, on the other hand, offers little insight into the quality of spreading early in the design,

when there is significant cell overlap. However, it provides a very detailed view in the final

iterations of placement, when it becomes important to measure minute improvements in spreading.

Consequently, it has been observed that a 50%/50% combination of the two metrics works best in

assessing the amount of overlap at any iteration of the placement flow.

Unlike the approach used by [13], in which global placement is stopped once there are

“no empty squares within the placement area which is larger than four times the average area

of a cell”, the spread metrics described here can be used to stop placement in designs with

large amounts of whitespace. Experiments have shown that placement can finish when there is

30%–35% overlap remaining, as computed by Klee’s measure. As noted in [64], the force-directed

approach can require many iterations to completely purge overlap from a circuit. Consequently,

this stopping point offers a good trade-off between placer performance and overlap removal. It is

computationally more efficient to employ another algorithm as part of an intelligent legalization

scheme to remove residual overlap.

Numerical results substantiating this choice of stopping point are provided in Table 3.1. In
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this experiment, placement was stopped at varying degrees of overlap, with the run-times and wire

lengths reported for both pre- and post-legalized circuits. These results confirm that stopping a

force-directed placer with 30%–35% overlap remaining offers a good mix of performance and

quality.

3.2.5 Friction and Stability

It was discovered that the incremental addition of a small amount of spreading forces from one

placement iteration to another could result in a “destabilization” of the placement. In these cases,

initially-spread cells could “collapse” into the edge of the placement region. This phenomenon is

illustrated in Figure 3.7, and is easily detected by monitoring the aforementioned spread metrics.

Investigations indicated that this placement destabilization occurred due to the ill-conditioning of

the Hessians. A method with a physical interpretation was sought to avoid the “destabilization” of

the placement.

Recall that the cell locations at iteration i (x-direction only) are given by

Qxx+ cx + fx = 0 (3.3)

while at iteration i+1, cell locations are given by

Qxx′+ cx +(fx +∆fx) = 0 (3.4)

where x and x′ are the cell locations at iteration i and i + 1, respectively. Subtracting (3.3) from

(3.4) yields

Qx(∆x)+∆fx = 0 (3.5)

where ∆x = x′− x. In physical terms, (3.5) indicates that the increment in cell locations, ∆x, is a

function of the incremental force and the interconnections between movable cells. Hence, if Qx is

poorly conditioned, then small changes to the spreading forces, ∆fx, could result in large changes
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Table 3.1: Results comparing legalized wire length when using different overlap stopping points
for a standard cell placement instance with approximately thirteen thousand cells. HPWL values
have been divided by 106.

Overlap (%) Number of Placement
Passes (CPU Time)

Pre-Legal HPWL Post-Legal HPWL

50 243 (181 s) 1.48 1.76
45 287 (233 s) 1.54 1.74
40 310 (257 s) 1.57 1.73
35 345 (296 s) 1.61 1.71
30 374 (325 s) 1.65 1.71
25 390 (353 s) 1.67 1.70
20 410 (377 s) 1.70 1.70

to the cell locations since ‖∆x‖= ‖Q−1
x ∆fx‖= ‖Q−1

x ‖‖∆fx‖.

To improve conditioning, the system of equations was altered by using a subset of “virtual”

fixed points (i.e., dummy cells without height or width) positioned at the locations of a subset of

movable cells in the netlist. Each added virtual fixed point was connected to its corresponding

movable cell via a weighted virtual edge. This change only affects the diagonals of the Hessian,

while improving conditioning by making Qx more diagonally dominant. With the addition of these

virtual fixed points and weighted virtual edges, (3.5) becomes

Qx(x′−x)+wI(x′−x)+∆fx = 0

which yields

∆x =−(Qx +wI)−1∆fx (3.6)

where the weighted identity matrix wI is due to the weighted connections to the virtual fixed

points. Since the diagonals will be larger, (3.6) has the effect of also being easier and faster to

solve. Moreover, if one matrix dominates the other (wIÀ Qx), the system of equations can be

approximated by

∆x≈ (wI−1)∆fx ≈ w−1∆fx. (3.7)
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a. Before destabilization

b. After destabilization

Figure 3.7: Illustration of destabilization during placement for a circuit with thirteen thousand
cells. Note how the cells have shifted toward the right of the placement area. This destabilization
can be detected using the spread metrics by checking for large (greater than 5%) increases in the
amount of overlap.
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Equation (3.7) reveals that, if a sufficient number of virtual fixed cells are added at the locations

of the movable cells, then the step that will be taken will be in the direction of the incremental

force, and that only some fraction (controlled by w) of that distance will be traveled. Physically,

this weighted step in the direction of the spreading forces can be interpreted as friction.

Experiments conducted with friction have indicated that only a small percentage of the rows in

the Hessian—usually, only around 5% of the least diagonally-dominant rows—need to have virtual

fixed cells attached to improve conditioning and stability. After friction is applied and the previous

iteration’s cell locations are restored, subsequent placement iterations usually do not destabilize.

Moreover, the use of fixed virtual cells does not degrade the placement results relative to the results

obtained without the application of friction.

3.3 Improvements to the Core Placement Framework

A force-directed placer based on the concepts presented in Section 3.2 was implemented. Yet,

experiments performed with this early placer yielded results that were 5% to 10% worse than

Kraftwerk. Numerous additional techniques were thus required to bring the quality of results to a

level comparable with other modern tools, like Capo [32] and mPG [14].

BoxPlace, described in Section 3.3.1, is this dissertation’s primary quality-enhancing tech-

nique. BoxPlace augments the global placer in two ways: it directly repositions cells to minimize

HPWL, and it is used to reorient spreading forces to point in a direction that not only encourages

spreading, but also favours wire length minimization. Using BoxPlace in these two manners has

been observed to improve wire length by 5%–10%.

In Section 3.3.2, a dynamic force weighting schedule is presented. This schedule modifies the

force scalar αi in Equation (3.1) to modify the rate at which cells spread. This dynamic weighting

affords better control over the increase in wire length and in the rate of spreading of cells than does

a static weighting scheme.

Lastly, Section 3.3.3 describes the importance and the implementation of a Hybrid First

Choice clustering scheme. A small amount of clustering was found to improve wire length by
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preventing spreading forces from occasionally pushing cells—which should otherwise remain

close together—too far apart.

3.3.1 BoxPlace

Foremost among this thesis’ quality-enhancing methods is a technique called “BoxPlace” [47].

BoxPlace moves each cell to the median location of its connected nets, thereby reducing wire

length directly. The pseudocode for this algorithm is shown in Figure 3.8.

In BoxPlace, the range of (x,y) values which minimize HPWL for the nets connected to cell i

is calculated as follows. First, the x and y minima and maxima of the bounding boxes for all nets

(excluding the points contributed by cell i) are inserted into two vectors—one for each direction.

The vectors are then sorted by increasing value and the median locations—the locations (bn/2c)

and (bn/2c+ 1) in both vectors—yield the “box” (or range) of locations into which cell i can be

moved to improve wire length. By using a grid-based structure, cell locations can be tracked to

ensure that they are inserted into a relatively under-occupied area within their target box. Tracking

cell locations and cell area to prevent the re-introduction of cell overlap is an enhancement of the

BoxPlace algorithm described in [47]. With respect to FDP’s placement flow, calls to BoxPlace

are performed after every 3% reduction in cell overlap as measured by the spread metrics. Since

BoxPlace can reintroduce overlap, cell spreading is re-evaluated after each pass of BoxPlace—if

too much overlap is introduced, the previous cell locations are restored, and the algorithm stops.

BoxPlace is also used to compute “minimizing forces” which are employed in conjunction with

the spreading forces and the quadratic wire length objective. These minimizing forces are simply

vectors which point to the locations to which cells should move to reduce HPWL, as computed by

the BoxPlace algorithm. These forces are scaled appropriately, and then combined linearly with

the spreading forces described in Section 3.2.3.

Experiments have shown that the combination of BoxPlace and spreading forces achieves the

most favourable quality and performance trade-off when combined in a 40%/60% ratio. This vector

addition reorients the angles of the spreading forces to point in a direction that favours spreading,
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Procedure: BOXPLACE1

Input: A netlist, N2

begin3

E← all eligible, movable cells in N;4

for each pass ∈ 0,1, . . . ,MAX PASSES do5

lastPosn← location of all cells;6

Randomly permute E;7

for each ni ∈ E do8

Find the range (“box”) of (x,y) values that minimizes HPWL for n i;9

Move ni to a relatively non-overlapping area somewhere within the “box”;10

od11

if too much overlap was reintroduced then12

Restore the cell locations from lastPosn;13

break ;14

fi15

od16

end17

Figure 3.8: Pseudocode for the BoxPlace algorithm.

but additionally minimizes wire length. This modification to the spreading forces is illustrated

in Figure 3.9. A comparison of the wire lengths versus run times for different combinations of

BoxPlace and spreading forces is provided in Table 3.2.

BoxPlace, when employed individually and when used to modify the direction of the spreading

forces, can significantly improve wire length. It helps to achieve a more linearized measure of

wire length without degrading performance as much as a linearized re-weighting scheme, such as

the one previously mentioned in Section 2.4.2. BoxPlace forces have been found to be especially

important in improving the quality of placement above and beyond that of Kraftwerk, as discussed

in Chapter 4.

Finally, BoxPlace aids cell spreading in another, subtler fashion. One of the difficulties with

achieving high-quality placements lies in the fact that forces do not allow cells to “flip” sides—once

a cell is located to the left or right of another cell, the spreading forces will not allow the two

to cross paths, even if doing so would improve wire length. This problem can be particularly

troublesome given that relative cell ordering is often established early on in placement (after the

initial quadratic problem is solved). This is when there exists the greatest amount of “uncertainty”
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Figure 3.9: Illustration of the addition of spreading and BoxPlace forces, and the resultant vector.

in the placement due to cell overlap, and when an incorrect amount of spreading force is most

likely to do the greatest “damage” to the wire length. BoxPlace, on the other hand, performs this

“flipping” and situates cells in more favorable locations to reduce wire length.

3.3.2 Dynamic Force Weighting

The weights applied to the spreading forces impact the speed at which a circuit spreads, and can

affect the quality of the overall wire length [13, 64]. Experiments have shown that weighting forces

via a constant, as advocated by [13], leads to poor placements.

In FDP, the force weight is adapted dynamically in each iteration to achieve both fast spreading

and good quality. First, the force vectors for each iteration are normalized with respect to the

largest force vector. Then, the force weighting schedule weights the elements of fx and fy by a

scalar value α. The value of α in each iteration is adjusted based on the following experimental

observations:
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Table 3.2: Results comparing different combinations of BoxPlace and spreading forces for a
mixed-size placement instance with approximately thirteen thousand cells, at 33% overlap. The use
of BoxPlace forces in the ratio of 40%/60% has been observed to offer the best quality/performance
trade-off.

BoxPlace (%) Spreading (%) Number of Passes (CPU Time) HPWL (×106)
≥ 50 Placement Did Not Complete
40 60 271 (380 s) 2.25
30 70 250 (362 s) 2.29
20 80 245 (341 s) 2.33
10 90 231 (327 s) 2.30
0 100 222 (321 s) 2.29

• Initially, the force weight α should be as small as possible. While good spreading can still be

achieved if large force weights were used in the first 10 to 50 iterations of placement, wire

length may be significantly worsened.

• Once the relative ordering of cells has been well established, and the circuit begins to spread

consistently, α can be increased in each iteration to encourage faster spreading. α should

be reduced if the spread metrics detect too much reduction in the amount of overlap (and

vice-versa for too little improvement in the spreading).

In other words, force weights are adapted continuously using, in effect, a three-step state machine

in which the spread metrics are used to help in dynamically weighting forces—if there is too much

spreading, force weights are lowered, and if there is too little, force weights are raised. The spread

metrics can also help to determine if the placement is “oscillating” (no longer spreading), in which

case FDP can stop and proceed to legalization.

It should be further noted that to achieve consistent force weights across a variety of circuits,

the placement region (and all cells) are scaled by the average cell height and width. In general, this

scaling does a good job of normalizing the force weighting such that different sizes of placement

regions are affected in roughly the same way by the same force weight.
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3.3.3 Clustering

The final technique for improving quality is the application of a small amount of Hybrid First

Choice clustering [29], which can improve the wire length of a placement by up to 3%. Clustering

the netlist tends to “smooth” the differences in cell heights and widths. The more the cells are

similarly-sized in a problem, the less negative impact that spreading forces tend to impart on the

cells. This is due mostly to the fact that large cells tend to possess considerable overlap in the

early stages of placement, and may receive large “pushing” forces early on—these large forces can

negatively impact wire length by moving large cells to sub-optimal positions too quickly. Thus,

clustering ensures that nodes with high affinities remain close together throughout the placement.

In Hybrid First Choice clustering, cells are initially placed onto a “free” list which contains the

set of cells which have not been paired. The affinity for pairing any node i with any node j is then

calculated using the following formula:

ri j = ∑
e∈Eh | i, j∈e

1
|e|−1

. (3.8)

The algorithm repeatedly removes the node with the highest affinity from the free list, and pairs it

with the node that (originally) yielded this high affinity, even if that node had already been paired.

Once a node has been paired, it is said to form a “cluster”. In this algorithm, an unpaired node is

always paired with either another unpaired node or a cluster.

It is important to note that a limit must be placed on both the number and size of clusters or else

the resulting clustered netlist will consist of too few, overly-large blocks (and placement quality

will suffer as a result). To this end, it suffices to not match a node i with a cluster j if the aggregate

area of the pairing (the sum of the area of node i and all of the paired nodes contained within the

cluster) would exceed four times the average cell area of the original netlist. In this circumstance,

cluster j would be avoided, and node i would simply be paired with its next best affinity match

which satisfies this area constraint. The affinity calculation in Equation (3.8) could alternately be
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modified along the lines of [78] to encourage more matchings between smaller cells:

ri j = ∑
e∈Eh | i, j∈e

1
(|e|−1) · area(e)

.

where area(e) represents the area of all nodes (excluding node i) on edge e. In addition, nodes

are only allowed to be paired if their affinity is greater than or equal to the median affinity of all

possible pairings—this encourages the algorithm to accept only the best possible pairings.2

2 This restriction allows only up to 50% of the original netlist to be paired in one pass of the algorithm.
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Results and Analysis

In this chapter, the strategy for detailed placement is described, and results for FDP are compared

with other leading academic tools. While FDP can place FPGA, standard cell, and mixed-size

designs, this thesis focuses primarily on the latter two, by way of Bookshelf-format circuits [65].

Standard cell benchmarks are attractive because they include large test circuits which allow

for easy comparison of the performance curves of competing placement heuristics. In contrast,

the largest academic FPGA circuit is less than 1
25

th
the size of the largest standard cell test circuit.

Furthermore, standard cell and mixed-size benchmarks feature a wide variety of cell dimensions,

whereas academic FPGA circuits possess only unit-sized cells. Most importantly, the Bookshelf

circuit format is supported by a wide range of placement software, including annealers (e.g.,

Dragon [61]), partitioners (e.g., Capo [35]), and analytic or hybrid placers (e.g., mPG [79] and

Kraftwerk [13]). On the other hand, only one other academic placer—VPR—is presently capable

of placing FPGA circuits. Therefore, FPGA benchmarks would do little to facilitate run-time or

quality comparisons between various placement heuristics. It is for these reasons that the focus

remains on standard cell and mixed-size problems in the following sections.

57
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4.1 Detailed Placement for Standard Cell and Mixed-Size

Designs

Placements produced by FDP are not “valid” in that cells are not assigned to rows and some residual

overlap may still be present. FDP must be used in conjunction with a legalizer in order to produce

non-overlapping placements.

The standard cell legalization strategy adopted in FDP is presently quite simple. Cells are

initially snapped to their closest rows in order to minimize total cell movement. Greedy juggling of

cells is performed between rows to meet width restrictions imposed by the fixed die. Finally, same-

size cell swaps and single-row branch and bound arrangement are applied on groups of cells [22].

In the case of circuits containing macro cells, the placement is first tested using a sequence pair

analysis along the lines of [80]. Generally, macro cells fit and no additional work is required. Of

course, operations on the sequence pair could be applied, as in [80], if the macro cells do not fit

inside the fixed die. Using the results of the sequence pair analysis, macro cells are shifted to align

with rows and remove overlap in the y-direction, and shifted to the left and right to remove overlap

in the x-direction. Currently, no attempt is made to optimize whitespace in the final placement.

Examples of two placements before and after legalization are shown in Figure 4.1.

4.2 Testing Methodology

In this section, FDP is compared to a number of other academic placement tools on a variety of

different problems, including standard cell and mixed-size designs that contain a number of macro

cells in addition to a large number of standard cells. In cases where placement tools were run by

the author, software runs were conducted on a Pentium 4, 2.8 GHz machine with 1 GB of RAM

running Fedora Linux. Run times are expressed in minutes where applicable. Wire lengths are

reported using HPWL divided by 106.

The ISPD2002 benchmark circuits from [81–83] are used for testing. These circuits are large-

scale, mixed macro and standard cell circuits with the exception of ibm05, which does not have any
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a. Circuit with 13 k cells before and after legalization.

b. Circuit with 27 k cells before and after legalization.

Figure 4.1: Illustration of two circuits before and after legalization.
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macro cells. The statistics for these circuits are shown in Table 4.1. In the table, column 1 gives

the benchmark name. Columns 2 through 5 provide the statistics for the benchmark, including the

number of standard cells, macro cells, I/O pads, and hyperedges, respectively. The total area of

macro cells versus the total area of standard cells expressed as a percentage is provided in column

6. The area of the largest macro cell versus the total area of standard cells in provided in column 7.

Finally, the ratio between the largest macro cell, the smallest macro cell, and the smallest standard

cell is provided in column 8. These circuits have been modified to give an aspect ratio close to 1.0,

with 20% whitespace available.

For standard cell test circuits, the mixed-size designs were modified by reducing the macro

cells to standard cell dimensions. In these designs, the standard cell height is 16 units. Hence,

for standard cell tests, all macro cells were reduced to be cells of 16× 16 units. The available

whitespace in the designs was also adjusted to be 5%. Finally, the placement area was modified to

maintain an aspect ratio close to 1.0, which is typical for modern chip design.

4.3 Numerical Results

4.3.1 Comparisons to Kraftwerk

In the first set of experiments, the quality of placements produced by FDP prior to legalization

were compared to those placements produced by Kraftwerk [13]. Upon termination, Kraftwerk

was found to produce placements with approximately 30% overlap as measured by the Klee’s

measure technique; thus, FDP was configured to terminate with approximately the same amount

of cell overlap. The results of these tests are presented in Table 4.2. Compared to Kraftwerk,

FDP achieved wire lengths that are, on average, 7% better, thereby validating the efficacy of the

methods presented in this thesis.
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Table 4.1: ISPD2002 mixed-size test circuits. These circuits are large-scale, mixed designs with
combinations of macro and standard cells (with the exception of ibm05, which does not have macro
cells).

Circuit Cells Macros Pads Nets Am Ab
m Ab

m/As
m/As

c
ibm01 12260 246 246 14111 67.13% 6.37% 8416:252:1
ibm02 19071 271 259 19584 76.89% 11.36% 30042:240:1
ibm03 22563 290 283 27401 70.75% 10.76% 33088:240:1
ibm04 26925 295 287 31970 59.82% 9.16% 26593:240:1
ibm05 28146 0 1201 28446 0.00% 0.00% -
ibm06 32154 178 166 34826 72.90% 13.64% 36347:175:1
ibm07 45348 291 287 48117 52.56% 4.75% 17578:240:1
ibm08 50722 301 286 50513 67.35% 12.11% 50880:240:1
ibm09 52857 253 285 60902 52.42% 5.42% 29707:240:1
ibm10 67899 786 744 75196 81.37% 4.80% 71299:252:1
ibm11 69779 373 406 81454 49.76% 4.48% 29707:240:1
ibm12 69788 651 637 77240 73.00% 6.43% 74256:252:1
ibm13 83285 424 490 99666 47.64% 4.22% 33088:240:1
ibm14 146474 614 517 152772 26.72% 1.99% 17860:144:1
ibm15 160794 393 383 186608 43.34% 11.00% 125562:240:1
ibm16 182522 458 504 190048 48.71% 1.89% 31093:252:1
ibm17 183992 760 743 189581 23.78% 0.94% 12441:252:1
ibm18 210056 285 272 201920 11.96% 0.95% 10152:243:1
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Table 4.2: Standard cell benchmarks comparing Kraftwerk to FDP at approximately the same
amount of pre-legal overlap. The Kraftwerk placement for ibm18 was not available. Kraftwerk
was not run by the author, and run-times were not available.

Circuit Kraftwerk FDP HPWL Ratio
Pre-Legal HPWL Overlap (%) Pre-Legal HPWL FDP/Kraftwerk

ibm01 1.86 28.65 1.75 0.94
ibm02 4.51 30.28 4.04 0.90
ibm03 5.91 33.19 5.70 0.96
ibm04 7.16 30.37 6.38 0.89
ibm05 12.34 30.19 10.87 0.88
ibm06 5.71 32.29 5.61 0.98
ibm07 10.43 30.73 9.77 0.94
ibm08 10.53 31.16 9.77 0.93
ibm09 12.17 34.69 11.34 0.93
ibm10 19.92 35.13 19.19 0.96
ibm11 17.68 35.82 17.25 0.98
ibm12 26.60 33.54 24.46 0.92
ibm13 22.20 37.85 20.70 0.93
ibm14 38.65 34.40 35.48 0.92
ibm15 50.66 36.12 47.68 0.94
ibm16 52.72 36.80 47.97 0.91
ibm17 78.22 34.24 67.07 0.86

Average 0.93
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4.3.2 Standard Cell Comparisons

The second experiment investigated the stability and capability of FDP to place standard cell

designs. To this end, FDP was compared with Capo 8.7 [35] and Dragon [61]. Numerical results

from these tests are presented in Table 4.3. FDP was also compared using the same benchmarks but

with unit-sized cells, and these results are presented in Table 4.4.

Table 4.3 shows that FDP achieved results that are, on average, 2% better than Capo 8.7, with

run times that are within a factor of four for ibm10 and above.1 It is noted that results are only

worse than Capo 8.7 on three of the eighteen benchmark circuits.

In the unit-sized tests, summarized in Table 4.4, FDP proved to be 3% better than Capo 8.7 on

average. FDP excels on unit-sized problems for two reasons. First, there is a more even distribution

of spreading force magnitudes, so it is less likely that some cells will be pushed “unfairly” to the

wrong side of the placement region. Second, the heuristic improvement strategies employed in the

legalizer are afforded more alternatives for swapping when cell dimensions are the same size.

4.3.3 Mixed-Size Comparisons

The third experiment investigated FDP’s handling of mixed-size designs. Results are compared to

those recently published in [81], which include values from Capo, Kraftwerk, and mPG [79]. As the

testing platform differed from those used in [81], the relative performance of each approach cannot

be compared, although it is possible to compare the quality of the final placements. Performance

values are provided as a “reality-check”.

This thesis does not explicitly compare to the results of [40]. FDP distributes whitespace

throughout the placement area, whereas [40] appears to pack to the left. While the wire lengths

of [40] are excellent, the difference in whitespace allocation appears to make comparisons difficult

1 In comparing to Capo, it is important to note that Capo is an actively developed academic placement tool and is
always evolving in terms of its version numbers. The version used in this thesis, namely Capo 8.7, is the latest
version available at the time of writing. Several other recent papers in the literature have compared to Capo 8.5.
Although those results are not presented, the author has compared to Capo 8.5 and has foudn that results are
better, on average, by 4% to 5%.
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Table 4.3: Results for standard cell circuits with an aspect ratio of 1.0 and 5% whitespace. Cases
marked with “n/a” indicates that the tool failed to place the circuit due to a crash. CPU run times
are reported in minutes.

Circuit Capo Dragon FDP vs. Capo
WL CPU WL CPU WL CPU WL CPU

ibm01 1.77 1 1.70 14 1.68 7 0.95 7.0
ibm02 3.87 2 n/a n/a 3.78 11 0.98 5.5
ibm03 5.38 2 5.73 12 5.56 11 1.03 5.5
ibm04 6.49 3 6.39 25 6.21 15 0.96 5.0
ibm05 10.12 3 9.97 37 10.39 18 1.03 6.0
ibm06 5.59 3 5.71 26 5.38 14 0.96 4.7
ibm07 9.59 5 9.19 35 9.34 23 0.97 4.6
ibm08 9.98 5 9.10 79 9.42 24 0.94 4.8
ibm09 11.51 6 13.03 77 11.23 26 0.98 4.3
ibm10 18.92 8 n/a n/a 18.36 29 0.97 3.6
ibm11 16.69 8 n/a n/a 17.04 34 1.02 4.3
ibm12 24.58 9 n/a n/a 23.24 33 0.95 3.7
ibm13 20.87 11 n/a n/a 20.51 41 0.98 3.7
ibm14 35.44 18 35.24 151 34.08 67 0.96 3.7
ibm15 46.68 25 49.88 208 46.57 89 1.00 3.6
ibm16 49.02 25 46.52 232 46.38 94 0.95 3.8
ibm17 66.93 30 69.26 505 63.60 120 0.95 4.0
ibm18 45.58 28 46.07 454 45.36 142 1.00 5.1

Average 0.98 4.6
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Table 4.4: Results for unit-sized standard cell circuits with an aspect ratio of 1.0 and 5%
whitespace. Cases marked with “n/a” indicates that the tool failed to place the circuit due to a
crash. CPU run times are reported in minutes.

Circuit Capo Dragon FDP vs. Capo
WL CPU WL CPU WL CPU WL CPU

ibm01 2.17 1 2.15 12 2.14 5 0.99 5.0
ibm02 5.22 2 4.97 19 5.21 12 1.00 6.0
ibm03 6.87 2 6.54 21 6.52 9 0.95 4.5
ibm04 7.88 3 7.42 37 7.84 11 0.99 3.7
ibm05 13.04 3 12.39 53 13.78 14 1.06 4.7
ibm06 8.64 3 7.49 45 7.54 16 0.87 5.3
ibm07 12.86 4 11.98 33 12.23 23 0.95 5.8
ibm08 13.64 5 12.92 78 13.37 26 0.99 5.2
ibm09 13.50 6 13.17 63 12.91 22 0.96 3.7
ibm10 22.56 7 21.63 85 21.74 56 0.96 8.0
ibm11 20.46 8 19.33 73 19.82 39 0.97 4.9
ibm12 28.09 8 26.23 93 27.04 67 0.96 8.4
ibm13 24.86 10 24.36 94 23.97 38 0.96 3.8
ibm14 46.32 18 n/a n/a 43.80 76 0.95 4.2
ibm15 57.37 22 n/a n/a 57.67 100 1.01 4.6
ibm16 61.82 27 n/a n/a 58.62 103 0.95 3.8
ibm17 81.53 28 n/a n/a 77.84 127 0.95 4.5
ibm18 60.43 30 n/a n/a 58.11 127 0.96 4.2

Average 0.97 5.0
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and potentially misleading.

The results for the macro cell benchmarks are shown in Table 4.5 and Table 4.6. Note that

Capo I corresponds to the “Improved Flow 1 (C)” of [81], while Capo II corresponds to “Flow

2” in [81]. It should be noted that Capo II and Kraftwerk results are not legal whereas the results

for FDP are legalized, and that the ratios comparing FDP to Capo uses the best value from either of

the two Capo flows for each circuit.

Compared to the best of the Capo flows, FDP achieved results that were 9% better than Kraft-

werk and 1% better than mPG. FDP’s run times for these problems also appear to be competitive.

These numbers confirm that FDP not only implements but extends the techniques presented in [13],

rendering placements that are on-par with current state-of-the-art methods.
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Table 4.5: Macro cell benchmark results comparing Capo flows to FDP. Run times for Capo are
observed on a 2 GHz Pentium. CPU run times for FDP are observed on a 2.8 GHz Pentium, and are
reported in minutes.

Circuit Capo Flow I Capo Flow II FDP WL vs.
WL CPU WL CPU WL CPU Capo

ibm01 3.36 13 2.92 5 2.62 8 0.90
ibm02 8.23 240 6.5 11 6.59 19 1.01
ibm03 11.53 22 9.63 14 11.17 11 1.16
ibm04 11.93 25 11.2 14 10.05 17 0.90
ibm06 9.63 19 7.9 17 8.89 17 1.13
ibm07 15.80 39 13.6 55 14.09 21 1.04
ibm08 18.85 111 17.2 22 15.93 23 0.93
ibm09 17.52 178 17.8 31 17.89 31 1.02
ibm10 53.58 490 47.5 68 45.44 45 0.96
ibm11 26.47 69 25.1 41 26.60 33 1.06
ibm12 55.12 119 47.5 51 49.72 39 1.05
ibm13 33.56 88 33.4 68 31.83 37 0.95
ibm14 52.67 333 47.9 117 47.72 58 1.00
ibm15 64.69 264 66.8 122 69.00 115 1.07
ibm16 83.14 580 86.7 166 66.82 120 0.80
ibm17 91.50 249 87.6 136 80.35 115 0.92
ibm18 54.11 397 57.2 158 55.56 160 1.03

Average 1.00
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Table 4.6: Macro cell benchmark results comparing Kraftwerk and mPG to FDP. Run times for
Kraftwerk are observed on a 2 GHz Pentium. Run times for mPG are observed on a Sun Blade
1000 running at 750 MHz. Run times for FDP are observed on a 2.8 GHz Pentium. All CPU times
are reported in minutes.

Circuit Kraftwerk mPG FDP WL vs.
WL CPU WL CPU WL CPU Kraftwerk mPG

ibm01 3.01 2 3.01 18 2.62 8 0.87 0.87
ibm02 7.58 9 7.42 32 6.59 19 0.87 0.89
ibm03 11.4 10 11.2 32 11.17 11 0.98 1.00
ibm04 12.1 12 10.5 42 10.05 17 0.83 0.96
ibm06 10.2 12 9.2 45 8.89 17 0.87 0.97
ibm07 17.1 19 13.7 68 14.09 21 0.82 1.03
ibm08 18.2 21 16.4 82 15.93 23 0.88 0.97
ibm09 19.1 28 18.6 84 17.89 31 0.94 0.96
ibm10 51.5 35 43.6 172 45.44 45 0.88 1.04
ibm11 26.6 36 26.5 112 26.60 33 1.00 1.00
ibm12 52.6 43 44.3 153 49.72 39 0.95 1.12
ibm13 35.9 55 37.7 151 31.83 37 0.89 0.84
ibm14 47.4 74 43.5 276 47.72 58 1.01 1.10
ibm15 73.7 93 65.5 285 69.00 115 0.94 1.05
ibm16 82.4 94 72.4 436 66.82 120 0.81 0.92
ibm17 92.2 107 78.5 606 80.35 115 0.87 1.02
ibm18 54.9 110 50.7 437 55.56 160 1.01 1.10

Average 0.91 0.99



Chapter 5

Conclusion

5.1 Summary and Contributions

This thesis discussed the engineering of an analytic placer inspired by the work of Eisenmann and

Johannes [13]. Several implementation details were investigated, including:

• a means of efficiently computing forces for cell spreading;

• algorithms for assessing cell distribution throughout the placement area;

• a method of preventing the destabilization of a placement due to numerical instability; and,

• supplementary techniques for additional wire length minimization.

To the author’s knowledge, no other works in the literature have addressed these issues.

This dissertation clarified the intricacies surrounding the implementation of a force-directed

heuristic, and introduced new techniques for improving the quality of results. The placements

generated by FDP were compared to other leading-edge heuristics and found to be favourable, with

performance usually within four times that of Capo 8.7 and results up to 3% better on average.

Most importantly, by using this thesis’ extensions, FDP was shown to produce results up to 9%

better than Kraftwerk. These results validate the approach and confirm that FDP both implements

and improves upon the original method.
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5.2 Future Directions

There is still considerable room to improve the performance and quality of results from the force-

directed heuristic. For example, BoxPlace may be augmented in accordance with [15] so that it

does not reintroduce as much overlap late in the placement. This may allow it to further improve

the quality of the placement as well as to accelerate cell spreading.

Partitioning one or two levels prior to analytic placement could also improve results. Cutlines

added by a partitioning method would not only have the effect of creating a more initially-spread

design, they would also render the Hessians more diagonally dominant and therefore faster to solve

with a conjugate gradient technique. Lastly, there is still considerable room to improve upon run

times through parameter tweaking, and the use of a non-linear stretching technique along the lines

of [15].

In addition, the placer and the spread metrics could be extended to consider other placement

objectives, such as net congestion and timing. For timing, the Steiner tree method of [59] or the

min-max analytic approach of [53] may be incorporated. The Steiner tree method presents the

additional benefit that the trees themselves could be used to identify congested regions. The global

placer could then adapt forces (or add dummy cells) to discourage these “hot-spots”. BoxPlace

could also be adapted to account for both wire length- and timing-optimal locations for cells.

Furthermore, the placer could be extended to consider three-dimensional placement, as in [12].

For this application, it would suffice to replace the quad-tree with an oct-tree and extend the Klee’s

measure technique to three dimensions, as in [76].

It is hoped that the ideas presented in this thesis will stimulate research in force-directed

placement. Most importantly, as this heuristic matures, it is expected that the quality of VLSI

CAD tools on a whole will improve in kind.
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BiCGStab Bi-Conjugate Gradient-Stable Algorithm.

BookShelf An Internet-based repository for literature, benchmarks, and files related to

VLSI CAD. Available at: http://www.gigascale.org/bookshelf.

Boost A set of free, peer-reviewed, portable C++ source libraries, available at:

http://www.boost.org.

Capo A recursive, minimum-cut bi-partitioning placement tool, available at:

http://vlsicad.eecs.umich.edu/BK/PDtools.

CAD Computer Aided Design.

CPU Central Processing Unit. Software runtimes, in this thesis, are generally

reported in terms of the number of minutes spent executing on a CPU.

Dragon A partitioning- and simulated annealing-based placement tool, available at:

http://er.cs.ucla.edu/Dragon.
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FDP Force Directed Placer. The force-directed placement tool developed as part

of this thesis.

FM Fidduccia-Mattheyses. A bi-partitioning heuristic described in [1].

FPGA Field Programmable Gate Array. An integrated circuit where the logic and

wiring of the device can be reprogrammed after its manufacture. An FPGA

consists of an array of logic elements (which may include gates and lookup

tables), connected by programmable interconnect wiring.

HPWL Half Perimeter Wire Length. An approximation to the actual wire length

required to route a design. HPWL is calculated based on the lengths of the

horizontal and vertical spans of all nets.

IC Integrated Circuit.

ILU(0) Incomplete LU. An LU matrix preconditioner without threshold or fill-in,

described in [2].

I/O Input/Output.

KL Kernighan-Lin. A bi-partitioning heuristic described in [3].

Kraftwerk A commercial force-directed placer based on [4].
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Macro Cell A cell whose dimensions are neither defined nor constrained by the standard

cell library.

Mixed-Size

Design

A circuit which includes a mix of both standard cells and macro cells.

mPG A multilevel placement tool described in [5].

MTL Matrix Template Library. A C++-based library for matrix computation,

available at: http://www.osl.iu.edu/research/mtl.

NP Non-deterministic Polynomial. A set of computational decision problems

which are solvable by a nondeterministic Turing Machine in a number of

steps that is a polynomial function of the size of the input. An exponential

amount of time may be required to discover the solution, but a potential

solution must be verifiable in polynomial time.

QAP Quadratic Assignment Problem, described in [6, 7].

Reverse

Cuthill-Mckee

A matrix reordering heuristic described in [8].

Standard Cell A cell whose dimensions are specified in a standard library.

VLSI Very Large Scale Integration.
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uBLAS A C++-based matrix library. Part of the Boost C++ distribution.

VPR Versatile Place and Route. A placement and routing tool for FPGA research,

available at: http://www.eecg.toronto.edu/˜vaughn/vpr/vpr.html.

WL Wire Length.
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